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Embryonic stem cells (ESC) are pluripotent cells derived from the inner cell mass of the 

blastocyst. These cells have the unique properties of unlimited self-renewal and differentiation 

capability. ESC therefore hold huge potential for use in therapeutic applications in regenerative 

medicine. This potential has been demonstrated in vitro by directing differentiation of ESC to 

various cell types by modulating the soluble and insoluble cues to which the cells are exposed. 

Despite their great potential, current differentiation methods are still limited in the yield and 

functionality of the ESC-derived mature phenotype. We hypothesize the lack of mechanistic 

understanding of the complex differentiation process to be the primary reason behind their 

restricted success. Mathematical models, coupled to experimental data, can aid in this 

understanding. While the past several decades have seen advances in the mathematical analysis 

of biological systems, mathematical approaches to the ESC system have received limited 

attention. Furthermore, variability of ESC restricts direct application of deterministic approaches 

towards drawing mechanistic insight. 

The goal of the current work is to obtain a more thorough mechanistic understanding of 

the ESC system through mathematical modeling. In ESC, extracellular cues guide single cell 
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behavior in a non-deterministic fashion, giving rise to heterogeneous populations. Therefore, in 

this work we focus on modeling three levels of the ESC system: intracellular, extracellular, and 

population. We first developed an optimization framework to identify intracellular gene 

regulatory interactions from time series data. We show that incorporation of the bootstrapping 

technique into the formulism allows for accurate prediction of robust interactions from noisy 

data. A regression approach was then utilized to identify extracellular substrate features 

influential to cellular behavior. We apply this model to identify fibrin microstructural features 

which guide differentiation of mESC. Finally, we developed a stochastic model to capture 

heterogeneous population dynamics of hESC. We demonstrate the usefulness of the model to 

obtain mechanistic information of cell cycle transition and lineage commitment during 

differentiation.  Through development and utilization of different mathematical approaches to 

analyze multilevel behavior and variability of ESC self-renewal and differentiation, we 

demonstrate the applicability of mathematical models in extracting mechanistic information from 

the ESC system. 
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1.0  INTRODUCTION 

1.1 EMBRYONIC STEM CELLS 

Embryonic stem cells (ESC) are pluripotent cells which can give rise to any tissue type in 

the body. They are derived from the inner cell mass of the blastocyst, approximately 4-5 days 

after fertilization [1, 2]. Numerous ESC lines have been derived for numerous species, including 

mouse and primate [3, 4]. Human ESC (hESC) lines have also been derived, and come from 

unused fertilized eggs from in-vitro-fertilization (IVF) procedures [2]. If carefully maintained, 

these ESC can undergo unlimited self-renewal. If proper conditions are not met, these cells lose 

their pluripotency and become committed to a particular lineage [5]. Indeed, the purpose of stem 

cell research is to direct this differentiation to the desired tissue type. The first developmental 

stage to which the cells differentiate is that of the three primary germ layers of ectoderm, 

mesoderm, and endoderm. Ectoderm gives rise to tissues such as neurons and skin, mesoderm to 

bone and blood, and endoderm to liver and pancreas [6] (Figure 1.1). This ability of ESC to form 

any of these tissue types makes them a very attractive cell source for regenerative medicine. 
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Figure 1.1. Differentiation of ESC to different cellular phenotypes 

Schematic of ESC development to various lineages under different soluble cues [6] 

 

One application that holds promise, and the focus of our current work, is the use of ESC 

to treat type I diabetes. This disease, in which the β-cells in the Islets of Langerhans of the 

pancreas are destroyed, affects more than 1.5 million Americans [7]. Because of the lack of 

insulin in patients with the disease, glucose uptake is impaired, which can lead to effects 

including hypoxia and acidosis in addition to further complications to the kidneys and 

cardiovascular system [8, 9]. There are several treatment options for the disease. The most 

common is providing the body with an exogenous insulin supply from insulin injections with 

glucose monitoring. The main challenge with this option is user compliance; improper injections 

and monitoring can lead to serious complications, including those associated with the disease 
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itself, such as diabetic coma, and those associated with overuse of insulin, which include 

hypoglycemia [9]. An alternative to exogenous insulin supply is replacement of the β-cells 

through islet transplantation. An advantage of this option is that if successful, patients would not 

need to rely on insulin injections. This procedure holds promise, as studies have reported that 

patients can obtain insulin independence after transplantation [10, 11].  This route also faces 

obstacles, the most crucial being a lack of donor organs. Because of this lack of donor cells, ESC 

have been looked towards as a possible source of β-cells. This involves ESC first differentiating 

to the endoderm germ layer, then to pancreatic and endocrine progenitors, with final maturation 

into insulin producing β-cells. For this to be an eventual reality in a clinical setting, ESC first 

have to be properly expanded in an undifferentiated state, with subsequent efficient directed 

differentiation to each of the developmental stages.  

 

1.2 SELF-RENEWAL AND DIFFERENTIATION OF ESC 

The two unique ESC properties of unlimited self-renewal and differentiation are equally 

important for therapeutic applications, and both have been demonstrated in vitro, mainly by 

modulating the external cellular microenvironment. With the trait of self-renewal, ESC are able 

to divide with daughter cells retaining an undifferentiated phenotype. This trait has been shown 

to continue without limit, with ESC undergoing many cellular passages and still remaining in an 

undifferentiated state [2]. However, these characteristics are not guaranteed in vitro, and careful 

culture conditions must be maintained to sustain this self-renewing state. These conditions 

include soluble cues in the media as well as the substrate to which the ESC attach [12]. The first 
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successful culture configuration which sustained hESC self-renewal included the cells being 

seeded on a mouse embryonic fibroblast (MEF) feeder layer [2]. Further culture configurations 

have since been developed, including a feeder-free system, in which the hESC are seeded onto 

MatrigelTM, a gelatinous protein mixture consisting of various extracellular matrix (ECM) 

components, with MEF conditioned media [13]. These special culture conditions have been 

shown to sustain pluripotency and self-renewal for an extended period of time.  

In addition to retaining the self-renewal state, modulation of the extracellular 

microenvironment is necessary to direct differentiation to specific lineages (Figure 1.2). Through 

this modulation, the feasibility of differentiation of ESC to most of the tissue types in the body 

has already been established [14-16].  Environmental manipulations to direct differentiation are 

often achieved by addition of soluble factors to the culture media. For example, D’Amour  et al. 

uses a series of different conditioned media to mimic in vivo pancreatic development for 

endocrine cell production in vitro[17]. While soluble cues are predominantly used to modulate 

stem cell fate, more recently cues from the underlying substrate have also been shown to have a 

significant role in stem cell fate commitment. Substrates are widely known to be needed as an 

anchor for most cell types in vitro and in vivo; in addition, they also can be used as a means to 

induce and guide differentiation. Numerous aspects of the stem cell niche can influence the cues 

from the substrate, including extracellular matrix (ECM) and substrate topology (reviewed in 

[18, 19]). Crucial cues from the underlying substrate which are increasingly gaining importance, 

particularly in the area of stem cells, are the physical properties of the substrate, in particular, 

substrate mechanical properties  [20]. 
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Figure 1.2. Schematic of factors affecting cellular behavior 

Soluble cues, such as ligands binding to receptors, and insoluble cues, such as ECM and cell-cell contact, 

act to guide cellular behavior through effected signaling pathways [19] 

 

   Therefore, the primary characteristics of ESC are that they can proliferate indefinitely 

in an undifferentiated state and can differentiate to tissue specific lineages in vitro [1, 2]. Both of 

these processes have gained considerable attention within the scientific community, and much 

research has been invested in understanding and improving these processes so they may be used 

for regenerative therapy. Propagation of self-renewing cells is needed for scale-up of 

undifferentiated cells, and differentiation is needed to guide these cells to the tissue of interest. 

Improving these processes and making them more efficient has, for the most part, been purely 

experimental. Studies have focused on developing cause-and-effect relationships by perturbing 

soluble and insoluble cues and experimentally quantifying the cellular effect, which can be costly 

and time consuming. While mechanistic information can improve on this process, obtaining this 

information from the complex ESC system using a purely experimental approach is often 

difficult. Mathematical models are invaluable in gaining this mechanistic insight of biological 

systems.  
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1.3 USEFULNESS OF MATHEMATICAL MODELS IN ANALYZING STEM CELL 

DIFFERENTIATION 

Mathematical models have been extremely successful in understanding and analyzing 

biological and cellular systems. These approaches have been less explored in the ESC system, 

and a more dedicated effort is needed to extract the full potential of mathematical models applied 

to ESC. However, initial efforts by a few prominent groups have demonstrated the promise of 

mathematical approaches in extracting mechanistic information from stem cell systems.  

A key aspect of ESC which governs their self-renewal capabilities is the gene regulatory 

network. Several key genes have been identified which govern pluripotency, and include Oct4, 

Nanog, and Sox2 [21-24]. Understanding how these genes interact can give insight into self-

renewal behavior, and mathematical models have been utilized to gain a more quantitative 

understanding of the system. Notable studies of this network include the study by Chickarmane 

et al. [25] which reports identification of a bistable switch in the Oct4-Sox2-Nanog network 

leading to a binary decision of the cells to self-renew or differentiate (Figure 1.3). In a follow up 

work [26] the authors further extend the model to incorporate lineage specific differentiation 

namely to endoderm and trophectoderm. MacArthur et al. [27] also analyzed the Oct4-Sox2-

Nanog network coupled with a lineage specification network to investigate the induction of 

pluripotent cells from somatic cells. Glauche et al. also look at noise associated with this gene 

circuit, but with regards to pluripotency [28].  
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Figure 1.3. Pluripotency control model 

(a). Transcription factor network and connections governing pluripotency. (b) Resulting bi-stable switch in 

protein levels with signal B as proposed by Chickarmane et al. [25] 

  

In addition to gene regulatory networks, mathematical approaches have also been utilized 

to understand signaling pathways involved in pluripotency and differentiation.  Prudhomme et al.  

[29] performed a thorough systematic analysis of how the intracellular signaling relates to 

different extracellular cues during differentiation of mouse ESC. A partial-least-squared 

multivariate model was built to show the role of signaling proteins in self-renewal, 

differentiation, and proliferation of stem cells. In a follow up work, Woolf et al. [30] investigated 

the signaling network to determine the “cue-signal-response” interactions through a Bayesian 

network algorithm. The nodes of the network are assigned to be an extracellular stimulus, a 

signaling protein, or a cell response, following which the model identified interconnections 

between nodes without being explicit about the nature of connections (inhibition, induction). 

Mahdavi et al. [31] focused on signaling networks as well, employing sensitivity analysis in the  

Stat3 pathway to predict how self-renewal in mouse ESC is controlled. 

(b) (a) 
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Beyond intracellular processes, there have been modeling efforts to describe population 

behavior during self-renewal and pluripotency, and how this behavior is manifested from single 

cell characteristics. Viswanathan et al.[32] proposed a single cell model of the ESC system 

which would account for the heterogeneity in the cell population (Figure 1.4). They based their 

model on number of ligands/receptors per cell, and predicted the behavior of ESC self-renewal 

and differentiation, and the system’s response to different exogenous stimuli. Such analysis has 

potential use in selecting specific tuning parameters while guiding ESC towards a specific fate 

[32, 33].  Prudhomme et al. [34] developed an ordinary differential equation based kinetic model 

to quantify the differentiation dynamics in response to combinations of different extracellular 

stimuli. Based on experimental data of ESC response to different combinations of extracellular 

matrix and cytokines, the authors estimated kinetic rate constants for each culture condition. 

 

 

Figure 1.4. Single cell ESC model 

Receptor-ligand population distribution as proposed by Viswanathan et al. [32] 
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ESC are heterogeneous in nature, with high variability of mRNA and protein expression 

within a population, both during self-renewal and differentiation. Therefore, mathematical 

analyses that assume homogeneous populations may not be sufficient to describe ESC population 

dynamics, and therefore more descriptive techniques are needed to model population 

heterogeneity. A common modeling technique to describe population dynamics in a 

heterogeneous system is the population balance equation (PBE), which has been used to model 

various systems, including adult stem cell behavior [35]. Other approaches to capture the 

dynamics of a heterogeneous cellular population have also been developed. One notable example 

is the cellular ensemble model, in which individual cells are tracked with time, with the behavior 

of the individual cells dictated by rules or equations which are solved for each cell in the 

population [36]. Distributions and variability associated with the parameters of these rules and 

equations can capture the heterogeneity in the population. This approach has been successfully 

used in the hematopoietic system. Glauche et al. utilized this model to describe lineage 

specification of hematopoietic stem cells, with cellular choices governed by a competition of 

different lineage propensities [37]. Through their model, various cellular populations are tracked 

with time, and insight into the differentiation process is obtained.    

Another prominent feature of ESC, both during self-renewal and differentiation, is the 

cell cycle. ESC have a short doubling time, mainly due to an abbreviated G1 phase [38, 39]. In 

contrast, somatic cells have a much longer doubling time with the majority of the cell cycle spent 

in the G1 phase. When ESC differentiate, this G1 phase elongates, resulting in an overall longer 

doubling time [40, 41] and slower propagation. Analysis of the cell cycle behavior of ESC has 

largely remained experimental to date. However, mathematical modeling in other systems has 

demonstrated the usefulness of this approach in gaining mechanistic insight of cell cycle 
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behavior. Much focus has gone into describing in a mathematical sense how proteins governing 

the cell cycle work to control phase transitions [42, 43] (Figure 1.5). Understanding these control 

mechanisms has been invaluable to explain phenomena which is not intuitive from 

experimentation, and can offer insight into wide variety of observed behaviors, including 

sensitivity [44], reversibility and irreversibility [45, 46], and cancer behavior [47]. In particular, 

much work has gone into describing the G1-S transition and associated restriction point [48, 49]. 

Through mathematical modeling, it is now a current belief that this checkpoint is governed by a 

bistable switch generated by protein feedback networks [49, 50] , something which has been 

validated experimentally [51].  

 

 

Figure 1.5. Simulated protein dynamics and relationship to cell cycle 

ODE model captures temporal trends of cell cycle indicative proteins and how they change with phases 

[49] 

 

Mathematical descriptions of cell cycle population dynamics have also received  attention 

[52, 53]. These models do not focus so much on intracellular events, but describe how 

populations of cells in the individual cycle phases change with time and environment. A major 
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application of this type of modeling  is in cancer research, for which it is often necessary to know 

cell cycle phase behavior to guide treatment and to track cellular growth [54-58]. Another 

application is to describe synchrony behavior [59-61], a major factor of which is cell cycle 

variability.  

1.4 SPECIFIC AIMS 

Our long-term goal is to pave the way for the use of stem cells for cell replacement 

therapy for diabetes. The last decade of intense research in this area has clearly highlighted the 

need for more in-depth mechanistic understanding. Mechanistic understanding of complex 

systems like stem cells is best mediated by experimentally informed mathematical models, which 

is the objective of the current project. Stem cell differentiation is induced by controlled 

manipulation of the cell microenvironment. Stem cells transmit this information to the nuclei 

which activates specific gene regulatory networks governing differentiation. While this is a 

single cell-level phenomenon, the entire population responds to these external cues with certain 

variability and heterogeneity. The objective of this project is to characterize the stem cells at 

these levels: (i) intracellular information, specifically regulatory network identification; (ii) 

extracellular environment, and the influence of substrate characteristics on differentiation; and 

(iii) population information from differentiation and cell cycle dynamics. At each of these levels, 

the analysis of variability and complexity deserves particular attention. We individually address 

each of these cellular levels by the following specific aims: 
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1.4.1 Specific Aim 1: robust identification of gene regulatory networks in the presence of 

intracellular noise 

Networks of gene interactions are the primary determinant of cell fate and differentiation. 

Determining gene network interactions from experimental gene expression data is a critical, yet 

challenging, task. The variability in the mRNA levels further enhances the difficulty of this 

exercise. We developed a novel optimization formulism to identify robust gene interactions from 

noisy gene expression dynamics, which is detailed in Chapter 2. 

1.4.2 Specific Aim 2: identification of specific attributes of extracellular substrates 

influencing ESC differentiation 

Most cells in the body require an associated substrate with which they can attach and 

remain functional. In addition to promoting viability, substrates also guide cellular behavior. 

While soluble cues are the most predominant environmental perturbation used to drive stem cell 

differentiation, manipulation of insoluble biophysical cues, including cellular substrates, have 

also been shown to have a significant influence on cell fate determination. However, deciphering 

the mechanisms by which biophysical cues affect cells becomes challenging due to the often 

complex nature of the substrates. Because of this complexity, analysis of the cause-effect 

relationship between cells and their associated substrates is often not possible with a purely 

experimental approach. We utilized a system level approach to correlate the different factors 

associated with natural substrates with differentiation of ESC, thereby gaining insight on the 

importance of microenvironment on the stem cell system. This approach is detailed in Chapter 3. 
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1.4.3 Specific Aim 3: analyzing population dynamics of ESC during self-renewal and 

differentiation  

While the mechanism of self-renewal and differentiation can be assumed to be identical 

in all cells, the magnitude of expression of gene or protein typically varies across the population. 

Hence, even though we may assume a cell population to be ‘differentiated,’ the level of 

differentiation, as judged by expression of specific proteins, typically varies across the 

population. We developed a stochastic population model to capture this heterogeneity of the ESC 

system and elucidate mechanistic information on ESC processes, primarily focusing on two 

processes:  cell cycle and initial lineage commitment. In Chapter 4 we discuss the development 

and results of a stochastic population model to capture the cell cycle behavior both during 

pluripotency and differentiation.  This model was extended to describe initial differentiation 

during definitive endoderm induction (Chapter 5).  We show in these two chapters that utilizing 

these population models allows for the identification of plausible differentiation and cell cycle 

mechanisms in the presence of population heterogeneity. 
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2.0  ROBUST IDENTIFICATION OF GENE REGULATORY NETWORKS IN THE 

PRESENCE OF INTRACELLULAR NOISE 

2.1 INTRODUCTION 

In the first aim of this work, we will consider intracellular gene regulatory networks, 

specifically reverse engineering the networks from time series gene expression data. Gene 

regulatory network identification is an important problem, and yet accurate inference of gene 

interactions is made particularly difficult due to the inherent noise in transcription. Network 

identification algorithms therefore require numerous experimental replicates for reliable 

conclusions because of this inherent noise. Furthermore, evidence of robust algorithms directly 

exploiting basic biological traits are few. Advanced gene network identification algorithms are 

therefore expected to be efficient in their performance and robust in their prediction. This chapter 

presents a novel formulism to robustly identify gene regulatory networks in the presence of 

biological noise [62]. 

Biological systems have been shown to be “robust-yet-fragile” [63]. A robust system 

property is insensitive to a set of system perturbations. In the cellular system, perturbations could 

include changes in the extracellular environment or stochastic fluctuations in intracellular protein 

concentrations. In contrast, the same system can be fragile, in that other perturbations can cause 

devastating effects on the organism. The nature of the network governing the system largely 
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dictates its robustness and fragility, and can be categorized into two main structures: sparse and 

redundant. Network sparsity refers to a system with as minimal connections between nodes as 

possible to perform a specific task; for the specific case of gene regulatory networks, sparsity 

refers to the observation that interactions between transcription factors guiding gene expression 

are minimal. This is in direct contrast to network complexity and redundancy. Redundant 

systems are those which have components and connections which perform the same, or similar, 

tasks [64]. This is to increase reliability, and to ensure that the goal of the network is 

accomplished in the face of system perturbations. While redundancy is prominent in numerous 

cellular processes, including metabolic networks [65, 66], and complex network connections 

have been previously reported to result in robustness, new evidence has demonstrated that fewer 

connections are favorable in gene networks due to the costs associated with dense systems [67]. 

Network sparsity has been experimentally observed in various gene networks, including those of 

E. Coli, yeast, and sea urchin [67-70]. In this light, the focal point of the identification algorithm 

is network sparsity. Governed by the hypothesis of sparsity of gene network connections, the 

target of our network identification algorithm is to find the network structure with minimum 

number of connections that is in agreement with the experimental data at an acceptable level of 

tolerance. We initially developed an optimization formulation to identify the regulatory network 

from time profiles of gene expression data [71]. This algorithm was based on the following 

approximations: (i) gene expression dynamics were approximated by linear ordinary differential 

equations (ODE); and (ii) the system was treated as deterministic by considering only the mean 

experimental data for the analysis. We further developed this algorithm to utilize bootstrapping 

to identify robust networks from noisy data. The aforementioned approximations are removed by 

(i) representing the gene expression profile with an S-system model and (ii) directly accounting 
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for variability in experimental data. Our algorithm enables identification of robust networks from 

an inherently nonlinear and noisy system. We test the performance of our algorithm in various 

case studies including in silico and experimental data sets. 

2.2 METHODS 

2.2.1 S-System representation of gene expression dynamics 

Identification of the regulatory network from time series gene expression data first 

requires modeling the dynamic evolution of the individual genes constituting the network. Here 

we model gene dynamics as a set of coupled nonlinear ODE following the S-system formulation, 

which captures the nonlinearity in gene expression profiles using a power-law kinetic 

representation.  

For a system with N-genes, the S-system model can be represented using Equation 2.1: 
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Where Xi  is the concentration of the gene i, α and β represent the kinetic rate constants, g and h 

represent the kinetic orders for the production and degradation terms, respectively, and n is the 

total number of species in the system, in this case the total number of genes in the network. In 

this work, we are using a modification of the above equation by assuming that species 

degradation follows first order kinetics of the corresponding species and independent of other 

(2.1) 
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species (hij= 1 for i=j; 0 otherwise). While being relevant to biological systems [72], this 

assumption also reduces the unknown parameters from 2n(n+1) to n(n+2) [73]. 

 

2.2.2 Network identification algorithm 

Our network identification algorithm is primarily based on the hypothesis of sparsity of 

network connections governing gene transcription. Hence, our overall objective is to determine 

the sparsest gene regulatory network which can satisfactorily capture the observed network 

dynamics. Following this idea, the network identification problem is formulated as an 

optimization problem with the objective of promoting sparsity given the constraint of 

maximizing predictive capacity.  Such a problem definition results in a bi-level optimization 

problem, where the constraint itself is an unconstrained optimization problem. In the current 

formulation using S-system to model the gene expression level (Equation 2.1), the kinetic orders 

(gij) are decomposed into two parts: binary part, λij, which determines the existence of the 

connection; and continuous part, ρij, representing the nature and strength of interaction for an 

existing connection. A value of 1 of the binary variable λij would indicate the presence of the 

corresponding connection ji XX ← , while value of 0 indicates its absence. These binary variables 

are optimized in the upper level which results in an integer programming problem. For each 

chosen network in the upper level, the connections are sent to the lower level, where 

corresponding ρij are optimized to maximize network prediction and hence minimize deviation of 

the network predictions from the observables. The lower level essentially optimizes both strength 

(magnitude) and nature (sign) of the existing connections (ρij , reactions orders) as well as the 

strengths of the production and degradation rate constants (αi, and βi respectively). Hence it 
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results in a continuous nonlinear programming problem where the objective is to minimize the 

deviation of the predicted profiles from experimental data in a least square sense. A constraint of 

tolerance (tol) is imposed on this minimized error which defines the maximum allowable 

deviation in prediction. The mathematical formulation of the network identification problem in 

its entirety is shown in Equation 2.2: 
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λi j= binary variable 

=pred
ijij xx ,exp experimental and predicted gene expression levels, respectively 

αi, βi= kinetic rates of gene i production and degradation respectively 

gij,hij = kinetic orders of the effect of gene j on the production and degradation of gene i, 

respectively 

(2.2) 
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nstep = number of time points 

n = number of genes constituting the network 

m = number of experimental time points 

 

In the above formulation ∑λ represents the total number of network connections, 

minimizing which will promote sparsity in the network. The upper level integer programming is 

solved using combinatorial optimization techniques since combinatorial approach is known to 

handle L0 minimization problems more efficiently than approximation algorithms [74]. Of them, 

evolutionary algorithms are particularly efficient in finding a good approximate solution for 

combinatorial problems [75]. In this work, we have used genetic algorithm (GA) for solving the 

integer programming problem, while the lower level nonlinear programming problem is solved 

using a standard least square optimization routine.   

GA is typically designed to handle unconstrained optimization problems. One technique 

for constraint handling in GA is by a penalty function, where the constraint is conditionally 

incorporated in the objective function. For conditions violating the constraint the objective 

function is penalized, and not so otherwise. In the current formulation the constraint is 

incorporated in the objective function using the following modification to the objective function:  
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A significant advantage of the bi-level formulation is that it allows optimum utilization of 

experimental data by sequentially reducing the number of unknown parameters in the lower 

level. In a conventional least-square parameter estimation problem, the connectivity is fixed and 

includes all possible network connections. Therefore, the size of the identifiable system is 

restricted, governed by the availability of experimental data points so that the number of 

unknown parameters is less than the number of data points. For instance, a single level 

algorithm, using the above S-System formulation, would be restricted to less than m-3 genes.  

However, in the current bi-level formulation, this restriction is relaxed. Because the number of 

network connections is first reduced in the upper level, the number of genes to be analyzed is not 

so restricted, with the only constraint coming from the connectivity: 
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Hence the constraint is imposed on the maximum number of binary variables assigned in 

the upper level, but does not constrain the total size of the analyzed network. Moreover, our 

primary objective being sparsity of network connections, the formulation essentially tries to 

minimize the number of connections assigned to 1. Hence, except for the very initial phase of 

GA evolution the constraint defined in Equation 2.2 typically does not become active, and never 

so in the final optimal solution. 

 

(2.4) 
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2.2.3 Identification of robust networks 

Real world data typically contains noise due to experimental uncertainty and system 

stochasticity. Biological data are particularly notorious for its inherent heterogeneity and 

stochasticity [76]. Hence, it is important to explicitly account for data variability in order to 

increase confidence in the predicted network. In the presence of large experimental repeats it 

may be possible to determine robustness of the identified networks by repeatedly solving the 

network identification problem at each of the experimental data sets and analyzing the 

connections which are heavily repeated. However, drawing statistically significant inference 

would necessitate a large data set which is often impractical to obtain with gene expression 

dynamics. 

An alternative to actual experimental repeats is to use bootstrapping. The purpose of this 

statistical technique is to estimate the distribution of the estimator θ̂   around the unknown true 

value θ. However, instead of achieving this with a large number of individual replicates, 

bootstrapping utilizes resampling of the data. In this way, a large number artificial data sets can 

be generated from a limited number of experimental repeats. For each bootstrap run, data 

samples are randomly chosen, with replacement, from the empirical distribution, with the size of 

each artificial set being the same as the experimental set (e.g. if the experimental set has 20 data 

points, so would the bootstrap set). For each bootstrap, the estimators (e.g. mean, variance, or, as 

in the case of the current work, regression parameters) are calculated, and with sufficient number 

of resampled data sets, relevant statistical information, including confidence intervals, can be 

estimated [77, 78]. 
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In our algorithm, we are dealing with limited experimental data. Hence, following the 

above methodology, we generate a large artificial dataset by repeated resampling of the limited 

experimental repeats. Once the bootstrapped samples are obtained, the network identification 

algorithm described in section 2.2.2 is applied to all bootstrap data sets to identify a network 

corresponding to each. The network sets thus obtained are further analyzed to determine the 

frequency of occurrence of each connection in the entire set of identified networks. We 

hypothesize that frequent occurrence of network connections in the bootstrap samples indicate 

the insensitivity of the corresponding network to experimental noise, and hence claim that 

connection to be robust.  

In order to quantify the quality of prediction of the proposed algorithm the measures of 

recall and precision are used, calculated as:  

 

FPTP
TPprecision

FNTP
TPrecall

+
=

+
=

 

 

Where: TP (True Positive) denotes the number of connections correctly captured; FN 

(False Negative) denotes existing connections which are not captured in the identified network; 

and FP (False Positive) denotes connections which are incorrectly captured in the identified 

network. Following the above equation, a low value of recall would indicate a more conservative 

estimate which is unable to capture many of the existing connections; a low value of precision 

will indicate prediction of incorrect connections not appearing in the actual network; and a value 

of 1 will indicate perfect network identification. The flow diagram of the overall network 

identification algorithm is shown in Figure 2.1. 

(2.5) 
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Figure 2.1. Pseudo-code of the robust network identification algorithm implementation 

 

2.3 RESULTS 

The performance of the developed bi-level integer programming algorithm is 

demonstrated on three case studies. In the first case study, we consider in silico gene expression 

data generated from a benchmark artificial 5-gene network model.  In the second case study, the 

applicability of the algorithm on a larger network is tested using an in silico 10-gene network. In 
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the third case study, the algorithm is applied to an experimental data set of the SOS DNA repair 

system in E.coli. 

 

2.3.1 Case study 1: five gene network model 

The purpose of this case study is to validate the algorithm on a small network with and 

without experimental noise. The chosen 5-gene network model [73] has been used as a 

benchmark problem by different research groups to test the validity of their algorithms [79, 80]. 

2.3.1.1 Network identification without noise 

Using the S-system formulation, the 5-gene network model can be represented by the 

system of five coupled nonlinear ODE, shown in Equation 2.6 [73]. 
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 In order to test our identification algorithm on this model we first generate in silico data 

by integrating these equations, which we use as experimental data for the identification 

algorithm. The limits of integration used were t={0, 0.5} (a.u.), with initial conditions 0.1, 0.7, 

0.7, 0.16,  and 0.18  for the five genes, respectively. For each gene, twenty time points of the 

temporal profile were generated through the numerical integration, yielding a total of 100 data 

(2.6) 
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points (excluding initial conditions) for the system.  To formulate the bi-level optimization 

problem, n2 = 25 binary variables are introduced corresponding to each of the five connections. 

GA, used to solve the upper level integer programming problem, does not have a convergence 

criterion. Standard practice is to evolve the population for enough generations until no significant 

improvement is observed. While dependent on the system being optimized, our experience has 

shown that if there is no change in the fitness value after 50 generations, there will unlikely be 

any further change henceforth. Figure 2.2 (a) illustrates the convergence characteristics of the 

GA for this example; the algorithm was run for a total of 150 generations, although at over 103 

generations, the optimal output remained invariant. The efficiency of the algorithm depends on 

appropriate choice of starting population, as well as other involved parameters, in addition to the 

number of generations. The initial population size plays an important role in the quality and 

efficiency of the algorithm. A small population size may lead to local convergence or extremely 

large number of generations. To avoid that a population size of 20 was chosen and the algorithm 

evolved for 150 generations. The crossover probability is chosen to be at a standard value of 0.5, 

and the chosen mutation probability of 0.02 was expected to maintain diversity in population. 

Since the data contain no noise, the tolerance in the lower level least square optimization 

problem has been kept at a very low value (10-5). Typically least square optimization routines are 

very sensitive to the user defined initial guess. To make sure that the algorithm can identify the 

underlying network structure even without any a priori information, we deliberately assigned the 

initial guess values for the least square optimization problem to be largely different from the 

actual values, and tested the algorithm for various combinations of the initial guess. 
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Figure 2.2. Identification of a 5-gene network without noise 

(a) Convergence study of the genetic algorithm. The number of connections identified in each of the 

solutions generated by GA is plotted. No feasible solution was found with less than 65 generations. (b) 

Identified network. Arrows represent the positive regulation and the filled circles represent the negative 

regulation of the genes. Kinetic orders of each connection are represented above the corresponding 

connecting lines and the rate constants for each gene are shown above the genes. All connections and 

parameters are consistent with the original differential equations used to generate the in silico data. 

 

Figure 2 .2(b) illustrates the 5-gene network identified using the above formulation. The 

kinetic orders (gij) are depicted over the connection and the kinetic rate constants (αij, βij) are 

depicted in brackets. The precision and recall value were both a perfect 1.0, indicating the 

accuracy with which the proposed algorithm predicted the network structure from time profile 

gene expression data. In addition, the identified kinetic orders and rate constants are also in 

agreement with the actual network model presented in Equation 2.6. These results validate the 

performance of the algorithm for a small network under deterministic conditions. 

2.3.1.2 Network identification under data uncertainty 

The performance of the algorithm is next analyzed in the presence of experimental noise, 

generated by adding 5% Gaussian noise to the time-course data generated from Equation 2.6. 
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The number of samples in each time series remained the same as in the study without noise: 20 

data points per gene. Therefore, for each gene, at each of the 20 time points, three new data 

points were generated by adding 5% Gaussian noise to the data point; these three new points  

represent three experimental replicates of the samples. These three data sets are then resampled 

using bootstrapping to generate 1000 artificial data sets. The network identification algorithm 

was then applied at each of the data sets to generate 1000 alternate networks. The presence of 

noise in the data restricts the accuracy by which the predicted profile can agree with the data. 

Hence the tolerance, tol in Equation 2.2, was relaxed to 0.12. If higher levels of noise are 

suspected, this tolerance level would have to be increased. The GA code was evolved for 200 

generations while retaining the population size of 20. The ensemble of alternate networks thus 

generated was analyzed for frequency of appearance of each of the connections (Figure 2.3(a)) 

which was hypothesized to directly correspond to its robustness against experimental noise. 
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Figure 2.3. Results from 5-gene network identified under data uncertainty with 5% noise 

(a) Number of bootstrap occurrences for each connection (1000 bootstrap samples total). (b) Identified 

network structure. Numbers above each connection represent percent occurrence, with the thick lines 

representing the number of connections appearing in more than 90% of the bootstrapped samples and the 

thin lines representing the connections appearing in more than 45% of bootstrapped samples. (c) frequency 

of specific connection values shown as heat map 
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Figure 2.3 (b) further illustrates the identified robust network connections screened for 

45% occurrence, with frequency of occurrence of network connections being depicted over the 

connection. Quite encouragingly, the algorithm correctly identified all the existing connections 

in the actual network. However because of noise, the algorithm also identifies two false 

interactions involving gene 2, hence resulting in a recall and precision of 1 and 0.78, 

respectively. 

The expected values of the S-system parameters estimated at 90% confidence level are 

represented in Table 2.1(a) (gij) and Table 2.1(b) (αij, βij), which demonstrates the excellent 

performance of the algorithm in identifying network parameters even from noisy data. The error 

of the rate constants varies considerably, from 1 to 80%. This is due to the insensitivity of the 

network identification to these parameters. This is in contrast to the sensitivity of the 

identification to the reaction orders; the errors on these parameters are low (0-20%) 

,demonstrating the accuracy of the network identification. The heat map in Figure 2.3 (c) further 

shows the algorithm’s effectiveness in finding a tight range of reaction orders of the robust 

connections in the network. 
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Table 2.1. Comparison of predicted and actual values of the S-system parameters for 5-gene network 

(a) Reaction orders. (b) Rate constants. 

a 
    Connection gactual gestimated 

  G1G3 1 1.2±0.09 
  G1G5 -1 -1.0±0.03 
  G2G1 2 2.4±0.04 
  G2G3 NA -3.4±0.06 
  G2G4 NA 3.9±0.05 
  G3G2 -1 -1.1±0.03 
  G4G3 2 1.9±0.02 
  G4G5 -1 -1.0±0.01 
  G5G4 2 2.0±0.02 
  b 

    Gene αi βi 
  actual estimated actual estimated 

X1 5 3.8±0.2 10 18.0±0.8 
X2 10 13.8±0.9 10 16.2±0.2 
X3 10 13.8±0.2 10 11.2±0.23 
X4 8 8.1±0.1 10 11.8±0.1 
X5 10 10.3±0.05 10 8.9±0.03 

 

 

To evaluate the accuracy of the formulism under increased uncertainty, the algorithm was 

tested under various amounts of added noise.  As one would expect, the accuracy of the 

algorithm depends on the level of noise added to the in silico data. Table 2.2 shows this trend, 

with the precision and recall being compared with 5, 7, and 10% noise. Increasing noise 

increases the number of false negatives, thereby reducing the recall. Interestingly, precision 

actually improves with increasing noise, indicating less false positives. This trend seems to 

converge, with both the recall and precision holding constant at 7 and 10%. Figure 2.4(a) shows 

the identified network with a data set incorporating 10% white Gaussian noise. The algorithm 

does not identify any connection which is not in the actual network (e.g. 0 false positives) and is 
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therefore able to achieve a perfect precision. However because of noise, the algorithm also fails 

to identify three of the actual connections (false negatives), hence resulting in a recall of 0.57. To 

be considered robust, a connection needs to be present in a certain fraction of bootstrapped 

identified networks. This fraction, called the bootstrap threshold value, affects the recall and 

precision of the algorithm, as shown in Figure 2.4(b). Given the identification sensitivity to this 

threshold, the value should be chosen judiciously depending on the overall goal. For instance, if 

the objective is to identify all connections without being concerned with false connections, recall 

should be high, and therefore a lower bootstrap threshold should be chosen. Conversely, if the 

priority is to avoid identification of false connections, then precision should be high, and a higher 

bootstrap threshold should be chosen. 

 

Table 2.2. Effect of added noise on the network identification results 

Percent 
noise Recall Precision 

5 1 0.78 
7 0.57 1 
10 0.57 1 
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Figure 2.4. Results from 5-gene network identified under data uncertainty with 10% noise 

(a) Identified network structure. Numbers above each connection represent percent occurrence. (b) 

Sensitivity of recall and precision to bootstrap occurrence threshold.  

 
 
 

While the analysis is performed on 1000 bootstrap samples, it is computationally 

expensive to solve 1000 network identification problems. Hence, we investigated the sensitivity 

of the identified robust network on the number of bootstrap samples by considering a broad 

range of samples from 200 to 1000. Figure 2.5 illustrates the percentage of total number of 

appearances of each identified interaction in every 200 bootstrapped samples, using 5% noise. 

The difference in the maximum and minimum number of appearances is less than 8% for all 

connections. The clearly shows that as little as 200 bootstrap samples can be enough in drawing 

statistically significant conclusions, which is in agreement with the literature [77]. 
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Figure 2.5. Convergence study on network identification using bootstrapping with 5% noise 

 

2.3.1.3 Deterministic network identification under data uncertainty 

To assess the necessity of this bootstrapping technique, the aforementioned results were 

compared to a control group which did not utilize bootstrapping. To do this, a more deterministic 

approach was employed. Experimental replicates were generated as detailed: 10% white 

Gaussian noise was added to the 5-gene in silico network. Instead of bootstrapping these 

replicates, the deterministic network identification was performed on the mean of the replicates. 

This was done for 3, 5, 7, 9, 12, 15, 18 and 20 replicates with the resulting precision and recall 

calculated for each case; results are shown in Figure 2.6. As shown, when the input data is 

generated from fewer than seven replicates, a solution is not found.  Even with seven replicates, 

the results are relatively poor. While the recall is comparable to that generated from 

bootstrapping (~0.57), precision is much worse (0.5). As the number of replicates is increased, 

this precision increases; however, even at 20 replicates, precision is not perfect (0.8). 
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Furthermore, in practice, generating this many experimental replicates is often not feasible. This 

illustrates that the proposed bootstrapping technique offers an accurate way of determining 

robust connections over a more traditional method, even with limited number of experimental 

repeats. 

 

 

Figure 2.6. Deterministic approach to network identification under noisy data 

Increasing number of replicates were generated using 10% noise from the in silico results, averaged, and 

used in the network identification algorithm, with their recall and precision quantified. Although three and 

five replicates were also used, these are not shown because no solution was found. 

 

2.3.2 Case study 2: ten gene network model 

In this example we investigate the performance of the developed algorithm in a larger 

network consisting of ten genes, as depicted in Equation 2.7. 
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 For each gene a total of 20 time points of the temporal profile were generated by 

numerically integrating the coupled ODE system. Integration limits were t={1,21} (a.u.), with 

initial conditions of 1.9, 1.3, 1.5, 1.5, 0.7, 1.7, 0.4, 1.1, 0.1, 0.55 for genes 1-10, respectively. For 

the deterministic case study the tolerance was specified at a low value of  10-5. Because the 10-

gene network increases the number of binary variables in the upper level to 100, more GA 

generations are needed to obtain a converged solution; therefore, the number of generations was 

increased to 1000. The identified connections and kinetic parameters are shown in Figure 2.7(a), 

with the kinetic orders (gij) depicted over the connections and kinetic rate constants (αij, βij) in 

brackets over the genes. The comparison of actual and identified time series profiles is shown in 

Figure 2.7(b). As evident from the figures, the algorithm correctly identified all the connections, 

kinetic orders and rate constants with a precision and recall of 1.0, thus verifying the satisfactory 

performance of the algorithm in larger systems. 

 

(2.7) 
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Figure 2.7. Results from the 10-gene network 

(a) Identified network. Arrows represent the positive regulation and the filled circles represent the negative 

regulation of the genes. The kinetic orders of each connection are represented above the corresponding 

connecting lines and the rate constants for each gene are shown above the genes. (b) Time profile for the 

ten gene network. The triangles represent the profile generated from the insilico data and the lines represent 

the predicted profiles 
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2.3.3 Case study 3: experimental data of E. Coli SOS DNA repair 

The proposed algorithm is next applied to the SOS DNA repair system of E.Coli [81] 

based on the gene data measured by Ronen et al. [82] which is available online [83]. In this 

model system, the response to DNA damage is governed by a few key genes, which in turn 

regulate the expression of more than 30 genes which have specific roles in DNA repair. A 

proposed model is that the RecA protein binds to single stranded DNA, and this nucleoprotein is 

integral in LexA cleavage, a transcription factor which is a major regulator of the DNA repair 

genes [81]. The work of Ronen et al. investigates the Michaelis-Menten kinetic parameters 

associated with promoter activity for eight of the major genes in this system. Experimental 

kinetics were measured by first incorporating a GFP reporter plasmid for each gene’s promoter. 

DNA damage was induced, and the resulting GFP intensities were measured. The number of 

GFP molecules is proportional to the promoter activity, and can be taken to be analogous to the 

rate of transcription [82]. We therefore used this promoter activity data [83] to represent gene 

expression (with the experimental intensity data normalized by the mean column intensity) and 

used it in our algorithm.  Among the four data sets provided by the authors, we chose the third 

and fourth for this case study because these are measured at the same conditions. For each gene, 

29 time points (excluding initial conditions) were utilized. Our objective was to identify 

regulatory interactions between six genes: uvrD, lexA, umuD, recA, uvrA and polB.   

Identification of this 6 gene network will require 36 binary variables; hence the GA 

parameters were retained similar to our first case study presented earlier: 20 populations evolved 

through 200 generations. The error tolerance, however, had to be relaxed to a higher value of 7 

because of noise inherent in experimental data set. Figure 2.8(a) compares the actual 
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experimental data with the predicted profiles generated from the identified algorithm, which 

shows excellent agreement.   
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Figure 2.8. Results from the 5-gene experimental E. Coli data 

(a)Time profile for the gene network, based off of the mean experimental data. The triangles represent the 

experimental data and the lines represent the predicted profile. (b) Identified network structure from 

experimental data for the six gene system. The percentage of connections in the bootstrapping samples are 

marked on the connections. (c) frequency of specific connection values shown as a heat map (connection 

coding: 1-uvrD, 2-lexA, 3-umuD, 4- recA, 5-uvrA, 6-polB) 
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In the next step the robust connections of the identified network are further analyzed by 

bootstrapping the experimental data set. Since our previous analysis on the first case study 

demonstrated 200 bootstrap samples to be adequate, in this example we generated 300 artificial 

data sets from the original experimental repeats. The network identification algorithm was solved 

for each of the data sets to generate 300 alternate networks. The frequency of occurrence of each 

network connection is analyzed over the array of alternate network and connections appearing 

with over 45% frequency are considered to be robust. This bootstrap threshold value was chosen 

to minimize false negatives and positives (maximize recall and precision), as per the analysis 

(Figure 2.4(b)) for the similar 5-gene system. Figure 2.8(b) illustrates the predicted robust 

network for the E. Coli data set along with the frequency of repeat of each connection. The 

corresponding estimated kinetic orders (gij) and rate constants (αij, βij)  with 90% confidence 

level are shown in Table 2.3. The heat map in Figure 2.8(c) further shows how well the 

algorithm identifies a robust network. 

 

Table 2.3. Results of E. Coli network identification 

(a) Reaction orders. (b) Rate constants. (connection coding: 1-uvrD, 2-lexA, 3-umuD, 4-recA, 5-uvrA, 6-
polB) 

a 
  Connection gestimated 

G1G2 0.9±0.04 
G1G3 1.4±0.03 
G1G4 0.9±0.04 
G2G3 0.9±0.04 
G2G4 0.9±0.07 
G2G5 0.8±0.08 
G3G4 1.0±0.03 
G3G5 0.9±0.03 
G4G4 1.3±0.07 
G4G5 -0.7±0.05 
G5G1 1.0±0.14 
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b       Table 2.3 (continued) 

Gene αi βi 
X1 3.2±0.28 8.4±0.12 
X2 1.5±0.09 1.6±0.19 
X3 1.7±0.21 1.5±0.17 
X4 5.3±0.16 1.6±0.07 
X5 1.6±0.16 2.0±0.15 
X6 4.3±0.22 3.8±0.12 

 

 

2.4 DISCUSSION 

The upper level integer programming problem is solved using GA. There are several 

advantages of using GA to solve the above problem, the most important being that it does not 

require gradient evaluation. This is a significant advantage for the current network identification 

algorithm, which contains a nonlinear ODE as a constraint function. In addition, GA starts its 

search not from a single point in the feasible parameter space, but from multiple locations 

specified in the starting population. Hence, it holds the chance of converging at a global 

minimum, although such convergence cannot be guaranteed with GA. However it also suffers 

from the disadvantage of increased computational cost. All the computations reported here have 

been carried out on a 2.66 Ghz processer and 16 GB RAM server. The computational time for a 

five gene network without noise was 1 hour and the same network with noise was 2.5 hours. The 

computational time for the experimental data was 3 hours. For the 10 gene network, the genetic 
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algorithm needed more generations to converge, resulting in computational time of 11 hours. 

Hence extension of the current solution procedure to a much larger data set will be expensive.  

In the formulation presented in Equation 2.2, the only user defined parameter is the value 

of the tolerance which dictates how closely the model prediction must agree with experimental 

dynamics in order for the network to be considered in the overall algorithm. While for an in 

silico case study without noise the tolerance may not play a vital role, it will be relevant when 

evaluating noisy scenarios. Specifying a low tolerance value (10-3) in our algorithm under noisy 

data failed to identify any network, as would be expected. Moreover, using a low tolerance is not 

advisable when using data sets with noisy replicates since we are not targeting a profile which 

exactly fits the noisy data; the target is to identify network profiles which describe all the noisy 

scenarios relatively well. On the other hand a relaxed tolerance runs the risk of compromised 

prediction quality. In order to quantitatively evaluate the effect of specified tolerance on the 

identified network structure, the bootstrap/ bi-level optimization algorithm was repeated on the 

same 5-gene dataset with different tolerance values. Table 2.4 illustrates how the precision and 

recall of the identified network changes with altered tolerance values. Quite interestingly, it is 

observed that precision is relatively insensitive to the network tolerance, while recall worsens 

with increased tolerance. This is very encouraging since this implies that even with relaxed 

tolerance the identified network does not have false positive connections, although false negative 

connections increase. Increase in false negatives can be explained by the nature of the objective 

function, which tries to minimize the number of connections. Hence relaxed tolerance will 

always lead to a sparser network, as seen in Table 2.4. This analysis indicates that even for a 

relaxed constraint the algorithm may fail to identify all the connections but the identified 

connections will always be accurate with low probability of false positivity.    
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Table 2.4. Effect of error constraint on 5-gene network identification, 5% noise 

Error Precision Recall Number of 
connections 

0.13 0.78 1 9 
0.2 0.88 0.88 7 
0.25 0.78 0.78 7 
0.3 0.88 0.7 5 
0.35 0.88 0.7 5 

 

In addition to error tolerance, the network identification algorithm performance also 

depends on the number of data points available for each gene’s time series profile (nstep, 

Equation (2.2)). For the tested five gene network case study, the minimum number of data points 

needed to accurately capture the network was found to be 20. Interestingly, this number did not 

change with network size (20 data points per gene were also sufficient in the 10 gene case study), 

although this number might increase with increased noise.  

The performance of the developed robust identification formulation is illustrated using 

three different systems, both in silico and experimental systems representing molecular networks 

governing gene transcription. Because gene regulatory networks are known to be sparse [67], the 

present algorithm of minimizing connectivity can be directly utilized. It should be noted that for 

systems which have been shown to display a high level of redundancy, the current formulation 

might not be applicable. The first two case studies are based on in silico data which allows for 

detailed analysis of the performance of the algorithm. Overall the algorithm was found to 

demonstrate excellent predictive capability both in the small 5-gene network along with larger 

10-gene network. The proposed bootstrapping scheme was found to adequately capture the 

precise network from the noisy data as well. Encouraged by the in silico results, we applied our 

algorithm to dynamic experimental data of a 6-gene network responsible for DNA damage repair 
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in E. Coli [82]. While verification of the identified network will be difficult for this system, the 

time profile of gene expression data predicted by the identified network is in good agreement 

with the experimental data set. A thorough literature search for existing knowledge of network 

interactions revealed that quite a few of the predicted connections have been reported in parallel 

studies. Our algorithm inferred the regulation of recA, umuD and uvrA by lexA, which is 

consistent with the findings reported earlier [84]. Another interesting finding is that our results 

suggest that polB does not influence any of the other genes in the system (pol B does not up- or 

down-regulate any other gene), a finding which was also reported by Kumura et al. Furthermore, 

our identified network shows the self-regulation of recA. This protein is the main factor 

responsible for sensing DNA damage, and has been reported to promote the transcription of 

itself, thereby promoting damage recognition, and other repair genes [81, 82].  

The current approach offers an improvement on existing algorithms. Numerous studies 

have used the 5-gene network (the current case study I) to test the accuracy and efficiency of 

their network identification methods. A comparison between the methods is presented by Kimura 

et al. [84] for the five gene network without noise. While most studies do not report the metrics 

of precision and recall, the accuracy of the results is still commented on.  Most methods have a 

shorter computational time than the proposed method. However, our algorithm is able to predict 

a perfect network (recall and precision of 1), while the other algorithms deviate from this. 

Therefore, there is a trade-off between computational time and accuracy, and selection of the 

most appropriate method for the system of interest should be chosen judiciously. Nevertheless, 

this comparison shows that recall and precision are an improvement over many existing 

algorithms when analyzing the 5-gene network.  Additional improvements could be made on the 

current approach to decrease computation time, such as  altering the formulism (e.g. avoiding 
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direct integration of the system of ODE). Furthermore, as the GA itself is parallelizable, the 

algorithm could be run in parallel, which could significantly decrease computational time. 

 

2.5 CONCLUSIONS 

In this chapter, we present an algorithm to identify robust regulatory networks from time 

profiles of noisy gene expression data. Our identification algorithm is primarily developed on the 

hypothesis of sparsity of regulatory network connections. In an earlier work the validity of the 

hypothesis of sparsity was established using a simplified linear ODE representation of gene 

expression dynamics in a deterministic system. Herein we further advance the algorithm by 

incorporating more realistic nonlinear representation using an S-system formulation of gene 

expression dynamics. The identification algorithm is formulated as a bi-level optimization 

problem in which the upper level solves an integer programming problem while the lower level 

is a continuous parameter identification problem. Furthermore, we proposed a framework to 

incorporate noisy experimental data towards identification of a robust regulatory network. This is 

done by first generating artificial experimental repeats using the bootstrapping technique, 

followed by solving the identification formulation for each of the bootstrap data sets. From this 

library of identified prospective networks we isolate the most repeated network connections 

which we hypothesize to be robust connections, having low variability to experimental noise. 

These results show that our bi-level integer optimization algorithm is able to effectively identify 

the topology and connection strength of gene regulatory networks, even when the gene dynamics 

are nonlinear and noisy in nature.  By using the biological trait of sparsity, the algorithm 



 46 

optimizes the number of connections in the network while maintaining agreement in gene 

temporal profiles with the experimental input data. Even with uncertainty and noise in the data, 

our bootstrapping/identification combination was able to identify a robust network in the in silico 

and E. Coli case studies.  
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3.0  IDENTIFICATION OF SPECIFIC ATTRIBUTES OF EXTRACELLULAR 

SUBSTRATES INFLUENCING ESC DIFFERENTIATION 

3.1 INTRODUCTION 

The preceding chapter focused on intracellular behavior, and the identification of 

regulatory networks from gene expression dynamics. Changes in mRNA levels occur from 

perturbations to the cell, including extracellular cues. These cues, in part, come from the 

characteristics of the cells’ associated substrate. However, identification of influential substrate 

characteristics poses difficulties because of their complex nature. In the study outlined in this 

chapter, we developed an integrated experimental and statistical approach to investigate and 

identify specific substrate features influencing differentiation of mouse embryonic stem cells 

(mESC) on a model fibrous substrate, fibrin [85]. Fibrin serves as an ideal substrate platform 

since its microstructural features can be easily modified by appropriate modification of the 

fabrication conditions [86]. Such modification also affects the substrate macroscopic property of 

stiffness, thereby providing a means to investigate the relative importance of macroscopic 

stiffness and microscopic architecture as cues to which the cells respond. 

Twelve different fibrin gels were synthesized by varying fibrinogen and thrombin 

concentration; this led to a range of substrate stiffness and microstructure. mESC were cultured 

on each of these gels and analyzed for the extent of differentiation by quantifying pluripotency 
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and germ layer markers with qRT-PCR. The network topology of the fibrin gels was then 

characterized by analyzing the electron micrographs of the gels with an image processing 

algorithm [87]. The complete network topology, which included nine different microstructural 

attributes, was quantified, and a subset of these features that were most important in describing 

the conditions and their variability was identified via principal component analysis. The 

mechanical response of the gels was also measured by both rheology and atomic force 

microscopy (AFM). The relationship between these explanatory variables (stiffness and 

microstructural features) and differentiation was then modeled via a second order polynomial. 

Inclusion of all explanatory variables into the model would require an immense data set, which is 

often impractical to obtain in the stem cell system. We therefore employed a combinatorial 

approach to analyze 2-dimensional subsets of the feature space at a time, with the important 

relationships being determined through significance tests.   
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3.2 METHODS 

3.2.1 Fibrin gel fabrication, mESC differentiation, and gene expression quantification 

Twelve different fibrin gels were fabricated by adjusting the fibrinogen concentration (1, 

2, 4, and 8 mg/mL fibrinogen) and fibrinogen to thrombin ratios (1.25, 2.5, and 10 mg 

fibrinogen/U thrombin). Each of these gels was used as a substrate for mESC differentiation for 

both 2D and 3D culture. For the former, cells were seeded onto the pre-formed fibrin gel, while 

for the latter, cells were embedded in the gel by suspending them in the fibrinogen before 

polymerization ensued. For both 2D and 3D cultures, the cells were cultured for a total of 4 days 

in DMEM supplemented with 10% fetal bovine serum (FBS). At the end of 4 days of 

differentiation, cells were harvested and gene expression was analyzed for 16 specific germ layer 

makers with quantitative polymerase chain reaction (qRT-PCR) on a Stratagene MX3005P. 

Primer sequences used for the analysis, and the genes’ associated germ layer, are shown in Table 

A1. Gene expression data was reported as fold change values calculated herein as 2-ΔΔct, where ct 

values (the cycle count at which the amplified cDNA values are first detected during qPCR) are 

first normalized to the housekeeping gene β-actin, and then to the control (undifferentiated cells, 

ΔΔct=((ctgene,differentiated-ctactin,differentiated)- (ctgene,undifferentiated-ctactin,undifferentiated))). 

3.2.2 Gel stiffness measurements 

To assess the mechanical response of the different fibrin gels, stiffness measurements 

were taken via two different methods: atomic force microscopy (AFM) and rheology. AFM 

nano-indentation measurements were performed using the MFP-3D Atomic Force Microscope 
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(Asylum Research).    For all measurements a glass borosilicate sphere (diameter 15.9 micron; 

Thermo Scientific) was attached to the tip of a commercially available silicon-nitride (Si3N4) 

cantilever with a spring constant (k) of ~.1 N/m. A thermal fluctuation method was used for 

calibrating the cantilever stiffness [88]. The stiffness of each fibrin gel was then investigated by 

nano-indentation with indentations made at randomly chosen locations considering 

approximately n = 16 force indentation curves at 3 locations on the fibrin gel [89-91]. The 

stiffness modulus was determined by applying the Sneddon model to nano-indentation curves 

from corresponding gels [89, 90, 92, 93]. Curve fitting of the sample indentation depth with the 

force applied was conducted for a spherical tip model using the following equation relating the 

force (f) and the sample indentation size (d): 
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where E is the Young’s modulus, R is the radius of the spherical indenter, and ν is the Poisson’s 

ratio.  The sample indentation (δ) is calculated as follows: 

 

( ) dzz −−= 0δ                       (3.2) 

 

Where z0 is the initial indentation contact point, z is the position of the piezo-electric 

cantilever, and d is the cantilever deflection.  Poisson’s ratio was approximated to be 0.5 for all 

experiments. Curves were fit to small indentation in comparison to the thickness of the samples.  

The apparent Young’s Modulus was obtained by fitting the force-indentation curves to Equations 
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3.1 and 3.2  with the initial deflection point and Young’s modulus (E) as the fitting parameters 

[94]. 

To assess the rheological properties, the fibrin was allowed to gel on glass slides and 

submersed in differentiation media. The slides were then secured to the Peltier cell of a stress-

controlled rheometer and the gels subjected to an oscillatory strain, with the stress required to 

achieve the strain being determined. The storage modulus was then determined from this data. 

3.2.3 Fiber network imaging and microstructural characterization 

To determine the microscopic structural characteristics of the fibrin, the gels were 

analyzed by scanning electron microscopy (SEM). First, excess water was removed from the 

fabricated fibrin gels through serial ethanol dilutions. The ethanol was removed while preserving 

the fibrin structure through critical point drying (CPD) with CO2. Samples were then sputter 

coated with palladium on a 108 Auto Sputter Coater with subsequent imaging on a Philips XL30 

field emission gun SEM. Three different images were taken for each fabrication condition, 

selected at random points on the gel. 

To characterize the SEM images, an image based  structural analysis algorithm, which 

has been previously implemented and described [87], was utilized.  In brief, a cascade of image 

processing steps including local thresholding segmentation, morphological processing, and 

Delaunay triangulation was adopted to identify and associate an artificial struts and nodes 

network to the real material fibers network. This approach has been qualitatively and 

quantitatively demonstrated [87] and adopted on a variety of engineered constructs [95-97]. Nine 

different fibrin gel topological attributes were quantified: pore size, fiber node density (node 

being determined by the intersection of two or more fibers; density being nodes per unit area), 
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connectivity (number of fibers per node), pore orientation, fiber orientation, pore aspect ratio, 

fiber length (length between nodes), fiber diameter, and bulk porosity. The pore and fiber 

orientation are reported as an index. The orientation index provides a measure of how an angular 

distribution is concentrated around a specific direction. The fiber index is calculated as: 
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                                   (3.3) 

 

where n represents number of fiber segments and θ represents the angle between the 

segment and assumed alignment direction [87]. This formulation offers a dimensionless number 

ranging from 0.5 for purely isotropic structures characterized by a random angular distribution to 

1 for a set of objects oriented parallel to a specific direction. Therefore, this fiber orientation 

index (OI) gives a measure of fiber alignment in the system. For pore orientation, an ellipse was 

associated to each pore and the major axis was considered to calculate a single pore angle with 

respect to the horizontal direction. For those features which were not scalars (e.g. fiber diameter 

output being a histogram of the diameters of all fibers in a given image), the mean value was 

taken. All results reported herein are from analyses using the mean data. This image analysis was 

performed on the three separate images taken. 

Once the fiber network topology was quantified with the image processing algorithm, a 

principal component analysis (PCA) was performed on the data. This analysis created a new set 

of orthogonal variables each being a linear combination of the microstructural features, and 

allowing the elucidation of how system variance was distributed. PCA was performed with the 

princomp function in MATLAB. 
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3.2.4 Predictive model, regression, and statistical analysis 

To describe the relationship between stiffness and the response variable (gene 

expression), two different approaches were used. First, the strength of the linear relationship was 

quantified via calculating the Pearson product-moment correlation coefficient. In the second 

approach, a second order polynomial was utilized, modeled as: 

 

2
210 xxy βββ ++=                  (3.4) 

 

which was able to capture linear as well as nonlinear effects. Equation 3.4 was used to model 

stiffness (x) versus gene expression levels (y), and was therefore 1-dimensional in the feature 

space (k=1, k being feature space dimensionality). 

The various microstructural features were expected to exhibit cooperative influence 

towards cell behavior. Incorporating these into one regression model to analyze the cooperative 

influence of all parameters would introduce a large number of variables which would not be 

feasible to estimate with the limited availability of data points. We addressed this restriction via a 

combinatorial approach in which two microstructural features were analyzed per regression. This 

model was therefore a 2-dimensional (k=2) 2nd order polynomial, shown in Equation 3.5. In the 

equation, y is the gene expression and xi is the ith feature. This regression model was analyzed for 

each combination of features; as there were 9 features which were quantified, a total of 36 

combinations were analyzed, as shown in the equation. 
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Using the above model, regression was performed to estimate the unknown coefficients 

(β) by fitting the model to the experimental data  (MATLAB).The experimental inputs (stiffness 

or microstructural feature values) were standardized by centering (by the mean) and scaling (by 

the standard deviation). Once the regression was performed, statistical tests were carried out to 

check significance of the overall correlation (p≤0.05, based on the F distribution). This analysis 

was done for each gene (16) and for each condition (2D and 3D), giving a total of 64 regressions 

using Equation 3.4 (16 genes x 2 conditions x 2 stiffness data sets (AFM and rheometry)) and 

1152 regressions using Equation 3.5 (16 genes x 2 conditions x 36 feature space combinations). 

The flow diagram of this screening method is shown in Figure 3.1. 

 

 
 

 . 
. . 
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Figure 3.1. Flow diagram of regression and screening methodology to determine significance 
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3.3 RESULTS 

3.3.1 Fibrin gel stiffness and mESC differentiation 

Fibrin was fabricated under 12 different conditions by varying the amounts of fibrinogen 

and thrombin. The stiffness of the fibrin gels at each of the 12 fabrication conditions as 

determined by AFM and rheometry are shown in Figure 3.2. The overall trend observed was that 

the stiffness increased with increased fibrinogen and thrombin. mESC were cultured in the 

synthesized gels both on the gels (2D condition) or embedded in the gels (3D condition). 

 

 

Figure 3.2. Fibrin gel elasticity measurements across various fabrication conditions 

(a) Young’s Modulus measured by AFM. (b) Storage Modulus measured by rheometry. Legend: mg 

fibrinogen/U thrombin 
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 After four days of culture, the cells were analyzed for pluripotent and germ layer gene 

expression. Day 4 was chosen as an appropriate time point to harvest the cells, since the first 

stage of differentiation normally involves a 4-6 day protocol [98, 99]. At this point the cells are 

committed to a specific germ layer, and further differentiation to subsequent developmental 

stages can commence. We have previously thoroughly characterized the behavior of the mESC 

on these substrates [100]. In the current study we are investigating specific features of the 

substrate which are influencing differentiation. This requires a thorough, quantitative, and 

sensitive characterization of the differentiated cells, which we perform by qPCR. Figure 3.3 

presents a heat map comparing the expression levels of representative pluripotency and germ 

layer (endoderm, mesoderm, and ectoderm) markers at different fibrin gel fabrication conditions, 

for both 2D and 3D cultures. For each row (gene), the expression values are normalized by the 

gene’s maximum level. The greater the dependency of gene expression on fabrication condition, 

the greater the color variation. While it is observed that most genes are affected to some extent 

by varying fibrin gel conditions, it seems as if the endoderm gene expression levels change more 

strongly. In the 2D condition (Figure 3.3(a)) the general trend seems to be higher expression for 

ectoderm and pluripotency genes with conditions fabricated with more fibrinogen. Interestingly, 

this trend seems to be reversed in the 3D condition (Figure 3.3(b)). From this figure, it is difficult 

to discern clear trends for the ectoderm and mesoderm genes. A more analytical approach was 

therefore taken to determine possible relationships between fabrication conditions and gene 

expression. In order to quantitatively analyze the effect of stiffness on differentiation patterning, 

the strength of the linear relationship between AFM/rheometry measurements and gene 

expression was determined via the Pearson product-moment correlation coefficient. Table 3.1 

reports the significance values of the correlation coefficients, which represent how significant 



 58 

this linear correlation was. Most genes did not show a statistically significant linear correlation 

between substrate stiffness (either AFM or rheometry measurements) and expression levels. Of 

the few significant relationships, the majority are for pluripotency genes: OCT4 and REX. Very 

few of the germ layer markers showed a strong linear correlation with substrate stiffness. In 

order to examine the presence of nonlinear correlations, 2nd order polynomial regression 

(Equation 3.4) was implemented, and the significance values of the overall regression were 

determined (Table 3.1). Still, only a few genes showed significance with the quadratic model 

(those genes which showed significance in the linear model); this alludes to the possibility that 

other features of the fibrin substrates, other than stiffness, might have a stronger influence on 

differentiation. 
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Table 3.1. Regression significance for elasticity relationship 

p-values for correlation coefficients and 2nd order polynomial regressions for the relationship of fibrin gel 

elasticity and gene expression. Values calculated for both 2D and 3D conditions, with significance (p≤0.05) 

denoted by an asterisk (*). Elasticity measured by both AFM and rheology. 

 

 
AFM rheology 

 
correlation coefficient 2nd order regression correlation coefficient 2nd order regression 

gene 2d 3d 2d 3d 2d 3d 2d 3d 

rex1 0.5764 0.0154* 0.5416 0.0441* 0.1789 0.0014* 0.4237 0.0009* 

 oct4 0.0025* 0.1859 0.013* 0.4369 0.0024* 0.0069* 0.0104* 0.004* 

sox2 0.7729 0.2198 0.9585 0.4786 0.1792 0.1476 0.1633 0.1344 

brach 0.3321 0.8619 0.6304 0.9858 0.3488 0.6504 0.6336 0.4936 

fgf8 0.6048 0.5994 0.8363 0.6928 0.1277 0.0993 0.3332 0.196 

gsc 0.3124 0.2509 0.5681 0.5108 0.3411 0.0123* 0.3902 0.0031* 

sox17 0.8181 0.1321 0.9675 0.3229 0.9162 0.1 0.8771 0.1656 

afp 0.8672 0.7262 0.6726 0.9156 0.3994 0.2465 0.4794 0.2559 

hnf4 0.3911 0.6683 0.5988 0.7135 0.1876 0.1441 0.4382 0.2854 

fgf5 0.084 0.859 0.1139 0.9826 0.0582 0.3938 0.0732 0.6853 

bmp4 0.1864 0.3583 0.1239 0.5809 0.6757 0.0488* 0.8429 0.0241* 

cxcr4 0.1007 0.0932 0.2799 0.241 0.0046* 0.0152* 0.0054* 0.0443* 

foxa2 0.4988 0.3423 0.5617 0.6138 0.5383 0.1514 0.5406 0.221 

nest 0.1452 0.8587 0.3616 0.8613 0.7292 0.9013 0.517 0.8961 

ttr 0.343 0.9349 0.4852 0.5058 0.0157* 0.7881 0.0055* 0.9612 

gata4 0.2656 0.6815 0.471 0.9 0.3861 0.4862 0.3054 0.4164 
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Figure 3.3. Heat map of relative gene expression with fibrin gel 

Heat map displaying relative gene expression data of various genes (vertical axis), representing markers for 

pluripotent cells and each of the 3 germ layers, across different fibrin gel cultures, shown as fabrication 

condition and gel stiffness measured by rheometry (horizontal axes). Top horizontal axis represents fibrin 

fabrication condition by its fibrinogen concentration and fibrinogen to thrombin ratio.  Data measured by 

PCR represents cells harvested at day 4 of culture in either 2D (a) or 3D (b) fibrin conditions. For each 

gene, expression levels were normalized to the gene’s maximum level across all gel conditions. Expression 

values calculated by 2-ΔΔct method, where ct values are first normalized to the housekeeping gene β-actin, 

and then to the control (undifferentiated cells). 
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3.3.2 Microstructural features of fibrin gels 

Fibrin substrates are highly fibrous in nature, and since the cells are directly interacting 

with the substrate microstructure, we hypothesized the fibrin microstructural features to be 

influential in directing cell fate. In order to analyze this further, we first examined the network 

topology of the synthesized substrates from SEM images. Representative SEM images of gels 

fabricated at three different conditions are shown in Figure 3.4(a-c).These conditions represent a 

wide range of stiffness and resulting differentiation behavior (Figure 3.4(d,e)). Even a qualitative 

comparison revealed differences in the substrate microstructure. In order to accurately determine 

the differences in the microstructural topology between the fabrication conditions, the fibrous gel 

characteristics needed to be quantified. The image processing algorithm described in 3.2.3 [87] 

was applied to the SEM images of all fibrin conditions (three images per gel condition) with the 

output being quantification of the fibrin topology. Figure 3.4(f-i) shows the algorithm output of 

four fibrous attributes for the gel conditions shown in Figure 3.4(a-c). There are clearly 

significant differences in the fibrous features between the three conditions. An interesting 

observation was that the microstructural features and macroscopic properties are not necessarily 

linearly related. For example, the gels fabricated under the first two conditions in Figure 3.4 gave 

similar stiffness (d). However, microscopic comparison of these two gels shows differences in 

pore size and fiber length (a, b, f, h). Gene expression resulting from culture on these two gels is 

also different, supporting the hypothesis that factors other than stiffness might be more 

influential in guiding differentiation. Examination of gels at a higher stiffness (Figure 3.4(c)), 

also showed microstructural differences from the softer gels, but these differences vary 

depending on the type of feature and fabrication condition, further demonstrating the complexity 

of the system.  
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Figure 3.4. Variable characteristics and behavior associated with fibrin gels fabricated under 

different conditions 

(a-c)  SEM images of fibrin gels fabricated with 2 mg/mL fibrinogen and a fibrinogen to thrombin ratio of 

10 mg/U (a), with 1 mg/mL fibrinogen and a ratio of 2.5 mg/U (b), and with 4 mg/mL fibrinogen and a 

ratio of 1.25 mg/U (c).  Bar = 1 μm. (d) Stiffness of these gels as measured by rheometry. (e)  

Differentiation patterning of cells cultured for 4 days in the aforementioned fibrin gels, 3D condition. Fold 

changed calculated by the ΔΔ Ct method as described in section 3.2. (f-i)Various fibrin fibrous attributes 

for the three gels quantified by the image processing algorithm. In (d-i), x-axis labels represent fibrin gels 

fabricated under different conditions:  ‘Gel A’ with 2 mg/mL fibrinogen and 10 mg/U fibrinogen:thrombin 

ratio; ‘Gel B’ with 1 mg/mL and 2.5 mg/U; and ‘Gel C’ with 4 mg/mL and 1.25 mg/U.  The average values 

of the features are presented. In all graphs significance performed via a Student’s t-test. * p<0.05, ** 

p<0.01. 
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To quantify the entire microstructural topology, the image processing algorithm was 

applied to the SEM images of all 12 gel conditions. Figure 3.5(a) displays the fibrous network, 

identified by the algorithm, for a representative image. The algorithm does an excellent job 

identifying the individual fibers and their connections. Two representative topological attribute 

histograms generated from this identification are shown in Figure 3.5(b) and (c) for fiber 

diameter and pore area respectively. This image and quantification reveals differences in the 

distribution of these two fiber network features: fiber diameter was approximately normally 

distributed; pore distribution, while dominant in a narrow range of small pores, still contained 

numerous outliers of large area. Nine different attributes were likewise quantified for 3 different 

images of all the 12 gel conditions to characterize the network, as outlined in section 3.2. How 

these attributes change with varying fibrin fabrication conditions is represented in Figure 3.5(d-

l), where the data represents average over 3 representative images. 
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Figure 3.5. Results of the image processing algorithm applied to the SEM images of the different 

fibrin gels 

(a) SEM image and identified fiber network. Lines traversing fiber width (red arrow head) indicate detected 

diameters, with several of the lines in bold for clarity; lines running along the fiber length (purple arrow 

head) denote identified fibers; large circles (green arrow head) indicate nodes. Bar = 1 μm; (b,c) output 

histograms of fiber diameter and pore size, respectively (a-c are representative outputs for fibrin gels 

fabricated with 2 mg/mL fibrinogen and 1.25 mg fibrinogen/U thrombin); (d-l) Compiled output 

(standardized, by centering by the mean and scaling by the standard deviation)  for all 9 features (error bars 

represent 1 standard deviation, n=3 images). Categories on horizontal axes represent fibrin fabrication 

condition: top row-mg fibrinogen/U thrombin; bottom row-mg fibrinogen/mL. Fiber length represents 

distance between two nodes. OI denotes orientation index. 
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These attributes were further analyzed by principal component analysis (PCA) in order to 

quantitatively determine the microstructural features more sensitive to the gel fabrication 

conditions. This data reduction technique, performed via singular value decomposition of the 

data, leads to generation of orthogonal variables and subsequent identification of variables that 

capture maximum data variance. .The resulting biplot (Figure 3.6) shows the contributions of 

each of these features towards the first and second principal components. By projecting the 

feature vector values onto the x axis, one can determine the importance of the features to the first 

component, which is responsible for most of the system variability. The most influential features 

are the ones that show the largest projection magnitude. Considering 0.1 as a lower threshold, 

features which contribute the least to feature space variability were identified to be pore angle 

orientation index and pore aspect ratio, which were excluded from subsequent analyses. The 

more influential features which were retained for subsequent analysis were fiber length, fiber 

diameter, pore size, node density, porosity, connectivity, and fiber orientation index (fiber 

alignment). 
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Figure 3.6. Identified influential microstructural features 

Biplot of the principal component analysis (PCA) of the feature space. Filled circles represent observations 

in the principal component space, while vectors indicate the contributions of each feature to the 1st (x-axis) 

and 2nd (y-axis) principal component. OI denotes orientation index. Vertical dashed lines represent the 0.1 

magnitude threshold value of the 1st principal component coefficients used to screen important features. 

 

3.3.3 Correlating microstructural features and differentiation 

Having identified the dominant microstructural features sensitive to the gel fabrication 

conditions, the next task was to analyze the gene expression data with respect to the gel 

microstructure, and to determine if specific genes were strongly correlated with this feature 

space. Incorporating all dominant microstructural features into the correlation would require an 

immense data set. To utilize a limited data set, this correlation was determined by performing a 

regression analysis for each of the 16 genes against a 2-dimensional second order polynomial 
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(Equation 3.5), considering combinations of two dominant features at a time (independent 

variables, x1 and x2). The analysis was repeated for both the 2D and 3D culture conditions (see 

Figure 3.1 for algorithm).The output of each regression was a set of best fit polynomial 

coefficients and the corresponding regression surface. Shown in Figure 3.7 is an example of two 

significant correlations relating FOXA2 (a) and SOX17 (b) gene expression to fiber length and 

diameter. The feature space is in its centered and scaled form, transformed as such for the 

regression analysis. As shown in both surfaces, a minimum seems to occur, as dictated by the 2nd 

order polynomial. Highest expression is achieved when fiber length is high and diameter low, or 

vice versa. The power of this analysis lies in the possibility of utilizing the microstructural 

information to aid in the design of materials that guide stem cells towards desired phenotype 

fates. By isolating important features of the fibrin substrate and determining how they affect 

cellular behavior during mechanical differentiation induction, one can try to mimic these features 

and recapitulate this substrate topology on prospective future synthetic induction substrates, 

rather than relying on a “guess-and-check” method. 
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Figure 3.7. Predicted response of representative genes to two features 

Regression surfaces and associated best-fit regression polynomial showing the regressed relationship 

between the influential features of fiber diameter/length and FOXA2 expression, 2D condition (a) and 

SOX17 expression, 3D condition (b). In the equations, x1 denotes fiber diameter and x2 fiber length. 

Expression values are in relative fold change, and features have been centered and scaled (previously 

described). Circles denote experimental data. 

 

A screening procedure was next implemented to isolate the most significant correlations 

and parameters. As stated in section 3.2, 1152 regressions resulted from the 9 different feature 

space, 2 gel condition, and 16 gene combinations. However, in order to isolate the effect of 

important microstructural features, only combinations of the 7 influential features identified by 

PCA were considered for the feature space. Therefore, for each gene, 21 regressions per 

condition (2D and 3D) were analyzed. Out of these regressions, significance was analyzed by 

determining the p-value of the overall regression. The resulting p-value for 42 regressions (21 x 

2 conditions) for each gene is shown in Figure 3.8(a). In the figure, each point represents each 

individual regression and the resulting significance levels (y-axis). Those correlations which 

have an overall p-value≤0.05 were considered significant. These significant regressions are 
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recorded in Table 3.2 and Table A2, which records the microstructural feature combinations 

which showed strong relationships to specific genes. Figure 3.8(b) displays the number of 

correlations per gene with p-value≤0.05. As shown, gene expression levels of REX1, 

BRACHYURY, and BMP4 do not show any strong relationships with microstructural features. 

The genes of AFP, FOXA2, and GATA4 show the strongest relationship with microstructural 

features, having the highest number of significant correlations with the features space (12, 11, 

and 8 significant correlations, respectively). 

 

Table 3.2. Regression significance for microcharacteristic relationship 

p-values for the significant (p≤0.05)  2nd order polynomial regressions relating two microstructural features 
to gene expression, 2D condition 

 

gene feature 1 feature 2 regression p-value 

sox2 porosity connectivity 0.0339 
fgf8 porosity connectivity 0.0208 
gsc fiber diameter fiber OI 0.0478 

nestin porosity fiber OI 0.0449 
sox17 pore size fiber OI 0.0117 
sox17 node density fiber OI 0.0044 
sox17 fiber diameter fiber OI 0.0059 

afp pore size fiber OI 0.0303 
afp node density fiber OI 0.0028 
afp fiber diameter fiber OI 0.0039 
afp fiber length fiber OI 0.0022 

foxa2 pore size fiber length 0.012 
foxa2 pore size fiber OI 0.0425 
foxa2 node density fiber length 0.0476 
foxa2 node density fiber OI 0.0272 
foxa2 fiber diameter fiber length 0.0078 
foxa2 fiber diameter fiber OI 0.0348 
foxa2 porosity fiber length 0.0346 

ttr pore size fiber OI 0.0041 
ttr node density fiber OI 0.0216 
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Figure 3.8. Significance levels for each regression 

(a)  The expression level data for each gene was regressed onto each 2 dimensional feature space 

combination (using the 7 most prominent microstructural features previously identified), and the overall 

regression significance level is recorded. Each data point represents a single regression (for each gene, 21 

regressions per condition (2D/3D) were performed). Those correlations which had an overall p-value≤0.05 

(horizontal line) were considered significant. (b) For each gene, the total number of correlations (both 2D 

and 3D) having an overall regression p-value≤0.05 were compiled per gene. 
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3.3.4 Germ layer specificity in response to microstructural features 

Next we systematically investigated whether any specific germ layers showed a stronger 

response to the microstructural feature space. From the screened significant correlations (Table 

3.2 and Table A2), the gene markers were segregated, and the results compiled, based on germ 

layer (see Table A1). Figure 3.9(a)shows the compiled results of the combined 2D and 3D 

conditions; overwhelmingly, genes from the endoderm lineage showed more significant 

correlations with microstructural features than those of mesoderm, ectoderm, and pluripotency. 

The figure shows that the average number of significant regressions per gene for endoderm is at 

least 2.8-fold higher than the other markers. These data suggest that while the examined 

microstructural features govern differentiation to some extent for several phenotypes, this effect 

is much stronger for endodermal genes. 
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Figure 3.9. Comparison of the effect of microstructural features on gene expression between germ 

layer/pluripotency markers 

(a) The average number of significant correlations per gene is organized for each phenotype. (b) Frequency 

of occurrence of influential microstructural features in significant endoderm correlations. Results out of a 

total of 46 significant regressions. OI denotes orientation index (representing fiber alignment). 
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Endoderm, being identified as the lineage which was most significantly affected by fibrin 

gel microstructure, was further analyzed to determine if any specific microstructural feature(s) 

were most prominent in guiding differentiation behavior. The regressions against endodermal 

gene expression which were found to be significant were first tallied. Of these significant 

correlations, the microstructural features present in the regressed equations were analyzed for 

frequency of occurrence. This can be done by analyzing Table 3.2 and Table A2 for only 

endoderm genes, and determining the frequency of occurrence of each microstructural feature. 

These results are compiled in Figure 3.9(b). All of the features identified by PCA occurred to 

some extent in guiding endoderm differentiation, as they were all present to some degree in the 

significant correlations. However, Figure 3.9(b) shows that fiber alignment (represented by the 

fiber orientation index) was the most important, as it appeared most frequently, greater than 50% 

more often than any of the other features. 

3.4 DISCUSSION 

The most common method to drive embryonic stem cell differentiation is through 

chemical cues [17, 101, 102]. Recently, however, substrate properties have been reported to 

modulate cellular behavior, including elasticity and fibrous characteristics [20, 103]. However, 

identification of specific physical cues in a complex substrate which are most influential in 

guiding cellular behavior still remains a challenge. In this chapter, we have developed a systems 

level approach to guide this identification and applied it to analyze the effect of fibrin substrate 

microstructure on ESC differentiation without the use of any chemical cues. The highly fibrous 

nature of fibrin and the ease with which its fibrous topology can be adjusted makes it amenable 
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to investigation of cell-substrate behavior [86, 104]. The fibrous microstructure of fibrin consists 

of various attributes with which cells are likely to interact, including fiber diameter and 

orientation [103, 105]. Analysis of such complex interactions and identification of dominant 

attributes governing cellular behavior requires an integrated experimental and mathematical 

approach. This was accomplished with a systems level approach incorporating experimental, 

statistical, and image processing techniques in the analysis. Differentiation was quantified by 

PCR, and the relationship between differentiation and stiffness/microstructural features 

determined through a combinatorial statistical modeling approach. This combinatorial approach 

enabled the utilization of the complete microstructural feature space in the correlation analysis 

even with limited experimental data. Through this screening method, we were able to elucidate 

the relative strength of the correlations. 

3.4.1 Importance of fibrin and microstructural regression analysis 

Fibrin is becoming increasingly popular as cellular scaffolds, and is known to support cell 

survival, growth and differentiation [106, 107], with its biodegradable nature making it appealing 

for possible transplantation applications [86, 108]. Fibrin has been studied as a scaffold for 

mESC-derived progenitor cells [109, 110], and shows promise for future regenerative therapies, 

as has been shown by fibrin/mESC in vivo studies using rats [111] and engineered therapeutic 

protein delivery vehicles [112]. With more techniques being reported on the modification and 

control of fibrin substrate properties [113, 114], it may be possible to tailor fibrin substrates to 

guide cellular behavior, thereby improving its therapeutic uses. This potential could be realized 

to a larger extent if more information was available on how the substrate affects cellular 

behavior. Through the current approach, we offer a platform to advance this understanding.  
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In this study we have shown that during mESC differentiation on fibrin substrates, the 

microstructural characteristics of the substrate show stronger correlations with differentiation 

patterning of mESC than stiffness alone. We first tested the relationship of the latter by changing 

fibrinogen and thrombin amounts to create fibrin gels of varying stiffness, each of which being 

used to induce differentiation. Increasing fibrinogen and thrombin increased the stiffness of the 

fibrin substrate, an effect which corresponds to previous reports [104]. Although a trend was 

qualitatively observed between fibrin stiffness and differentiation (Figure 3.3), a statistically 

significant correlation was not present between these two variables (p>0.05) for the majority of 

the genes. In addition to stiffness, microstructural features also differed between substrate 

fabrication conditions (representative images shown in Figure 3.4); we therefore attempted to 

quantify the fibrin network topology and investigate whether certain microstructural attributes 

are important in phenotype commitment. While limited research has focused on analyzing the 

relationship between network topology and cellular behavior, it is particularly important when 

considering the scale of the interactions: the fiber microstructural features identified herein are 

on the micron-scale. These features are on the same scale as cellular components, and therefore 

can facilitate scaffold-cell interactions. Prior studies have examined substrate microstructure and 

how micro-characteristics affect behavior of cells [103, 105, 115]; however, these studies have 

typically focused on a few isolated micro-characteristics. We chose to perform a more exhaustive 

analysis by screening for 9 different topological features, and further expand on the research area 

by interrogating the effect of these features on stem cell phenotype commitment. It should be 

noted that the current method is applicable to fibrous network topology, and would not be 

amenable to more amorphous substrates, although other characterization approaches ([116, 117]) 

might be useful when identifying fiber orientation and angle distribution in amorphous materials. 
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During analysis of the fibrin gels, three random points on the fabricated gels were 

selected for characterization, both during microstructural topology and AFM stiffness 

quantification. These features were then averaged for the regression studies. A possible 

limitation might arise if there is significant heterogeneity, i.e. different gel stiffness and fiber 

topology, within a given gel, which could result in the cause-effect relationship between the 

fibrin and the cells to change depending on gel location. This heterogeneity, or lack thereof, can 

be quantified through AFM. This is a convenient tool to analyze heterogeneity and differences in 

microenvironment due to its precise nature (AFM tip was 15.9 micron) and ability to scan an 

area. For each gel location analyzed with AFM, up to 16 different measurements were taken. 

Figure 3.10(a) shows the coefficient of variation (CV) of the AFM measurements for each gel 

condition. As shown, over half of the gels exhibit stiffness CVs less than 20%, which suggests 

that heterogeneity is low across the gels. This is further demonstrated through a histogram of 

AFM values for a representative gel (Figure 3.10(b)). Therefore, the mean values of the fibrin 

characteristics should be appropriate in the regression analysis.  If a more exhaustive scan of 

fibrin heterogeneity would be required, AFM could be used, with more sample points across 

more of the gel.  
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Figure 3.10. Stiffness homogeneity of fibrin gels 

(a) Coefficient of variation (CV) for AFM measurements for each gel condition. Categories on horizontal 

axes represent fibrin fabrication condition: top row-mg fibrinogen/U thrombin; bottom row-mg 

fibrinogen/mL. (b) histogram of Young’s Modulus measurements across different locations of the fibrin gel 

fabricated with 4 mg fibrinogen/mL and 2.5 mg fibrinogen/U thrombin. 

 

Screening for significant correlations between microstructural features and gene 

expression was performed via a 2nd order polynomial regression. Developing correlations and 

mathematical models between these variables, although more complex, was advantageous over 

simple comparison for numerous reasons. While comparison can give statistical differences 

between conditions, mathematical correlations can give a better understanding of how the 

observed variable changes with the features space. Furthermore, optimization can be performed 

on the model to yield possible optimal responses. Ideally, this polynomial would include all 

features, with reduction of terms and subsequent selection of influential features being performed 

by such techniques as ridge regression, lasso, or backward stepwise selection [118]. However, 

because of the limited amount of data, combinations of two features were selected at a time. It is 

important to note that a proper design of experiments (e.g. central composite design) can enable 

more information to be extracted from the system via response surface methodology [119] (for 



 78 

an example of the use of this technique for investigating cell-substrate interactions, see [120]). 

This would entail performing experiments at precise points in the microstructure feature space. 

Because of the nature of our system, the microstructural features could not be precisely 

controlled, and therefore a design of experiments analysis was not feasible. Furthermore, exact 

information on the individual parameters is difficult to extract because of possible collinearity of 

the features (Figure 3.6). However, these restrictions do not prevent the significance level of the 

overall correlation (using the 2nd order polynomial model) from being obtained and from being 

used to determine if the microstructural features are strongly correlated to gene expression. In 

addition, through our screening approach one can obtain a sense of which features are most 

important, even in the presence of possible collinearity, and can perform further experiments to 

more accurately determine the effect of those important features on differentiation. For example, 

Figure 3.9 shows that fiber alignment occurs most frequently in the significant endoderm 

regressions. Given this, we can speculate that fiber alignment is influential in guiding endoderm 

differentiation, and further experiments can be done in which fiber alignment is controlled with 

other features invariant (with such tools as electrospinning and design of experiments). This may 

give more accurate response surfaces relating fiber alignment to differentiation, thereby yielding 

information which can be used in substrate design to optimize endoderm differentiation.  

3.4.2 Applicability of method to other systems 

The response between substrate characteristics and differentiation was taken to be a 2nd 

order polynomial. If a different form, for instance sigmoidal, existed between the variables, it is 

possible that the current model would not identify the correlation as significant, even if a strong 

relationship was present. However, specific functional forms of a response are usually only 
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considered when theory dictates that specific behavior. When little theoretical information is 

known, as is the case with the current system, polynomial models are most often used, and are 

very appropriate to capture first-order, second-order, and interaction behavior. It should also be 

noted that for those microstructural features giving a range of values per image as opposed to a 

single value (e.g. fiber diameter vs. bulk porosity), the mean of this range was used in the 

polynomial model. If the whole of the data were to be used (utilizing the whole histogram as 

explanatory variable values in the correlation), more sophisticated methods would have to be 

employed, which is not in the scope of the current work. 

In the presented system of mESC on fibrin gels, microstructural features exhibited a 

strong correlation with differentiation, while that with stiffness was relatively weak. This is in 

contrast to studies which have shown that substrate stiffness influences differentiation [20, 120-

126]. Most of these studies, however, employ synthetic polymer substrates that do not exhibit a 

discernable microstructure. Indeed, we have previously shown that in the system of mESC on 

alginate gel, differentiation does seem to be a function of the alginate stiffness [127]. However, 

this polymer is much more amorphous in nature, and does not have a fibrous microstructure. 

Furthermore, alginate is inert, and does not directly interact with the cells. In contrast to these 

studies, the present study has used a fibrous fibrin substrate with which the cells directly interact, 

and hence are likely to be more sensitive to the microstructure. 

3.4.3 Comparison of specific genes and 2D/3D conditions 

The relationship between gene expression patterning and microstructural features was 

determined to be lineage specific. The endoderm germ layer most strongly correlated with fibrin 

microstructural topology, with the pluripotency, mesoderm and ectoderm germ layer phenotypes 
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being less responsive to substrate modulation. More specifically, the endoderm genes of AFP 

and FOXA2 exhibited the most responsiveness to the fibrin microstructure, showing significant 

responses to the features in both 2D and 3D culture conditions. It is interesting to observe that 

while the downstream endoderm genes of GATA4 and HNF4 showed significant correlation with 

the fibrin topology, this is only present in the 3D case and not 2D. Further comparison of the 

different conditions shows that more significant correlations are present in the 3D condition than 

2D. The fibrin gel was expected to have less interaction with the cells under 2D conditions, as 

compared to 3D where the cells are completely embedded in the substrate. Therefore, the 

topological features of the fibrin could influence cell behavior to a lesser extent on the 2D gels, 

explaining the fewer significant correlations. While the current analysis shows that these specific 

genes were most strongly affected by network topology, a more rigorous analysis is needed to 

show co-regulation. This, for example, could be achieved through biclustering, which we have 

previously utilized to determine co-regulation across fibrin conditions [128], but could 

potentially be applied to microstructural features. 

 

3.4.4 Contribution of other substrate factors and mechanistic information 

The current work focused on comparing the effect of different fibrin substrate cues on 

mESC differentiation. Because fibrin is biodegradable, temporal changes in the substrate, in 

addition to degradation products, could influence differentiation. However, the current study was 

performed for a relatively short time period of four days, and while some fibrin gel degradation 

was observed, it was not significant and only becomes somewhat visible towards the very end of 

the differentiation protocol. Furthermore, this degradation was similar in all of the synthesis 
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conditions, and would therefore not affect the correlation results significantly. In addition to 

substrate characteristics, the cellular niche does comprise of other factors, including extra-

cellular matrix [129] and varying amounts of fibrin-bound thrombin [130, 131]. While these 

other factors might influence cellular behavior to some extent, because of the strong correlation 

found between microstructural features and differentiation, we feel that, in the current system, 

this relationship is the most influential. There are also media-related factors, including diffusion 

of ligands and growth factors to the cells, which would affect differentiation. However, since the 

media is the same between conditions, differences in these factors would be a function of 

microstructure. For instance, the diffusion of soluble factors to the cells would be a function of 

fibrin porosity. Therefore, the microstructural features are the independent variables in this 

system, although their effect on the cells could be considered through modulation of associated 

factors. The described screening approach and utilization of the image processing algorithm did 

not require selection of these microstructural features to analyze, but allowed the testing of 

correlations involving the complete fibrous network topology. Specific features identified to be 

influencing differentiation are fiber alignment, node density, fiber length, pore size, fiber 

diameter, porosity, and connectivity, of which fiber alignment was by far the most influential. 

Interestingly, other investigators have also shown that certain of these features affect cellular 

behavior, albeit in different systems and in different ways. Fiber alignment has been shown to be 

important for Schwann cell migration and neurite outgrowth [132]. The proliferation and 

morphology of osteoprogenitor cells seems to be affected by fiber diameter, while differentiation 

is not [105]. Fiber diameter and orientation have been shown to affect fibroblast morphology but 

not proliferation [103]. Herbert et al. studied the system of dorsal root ganglia on fibrin gels, and 

postulated that neurite behavior was governed more by the fibrin density rather than the number 
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of fibrin bundles or bundle diameter [115]. While these studies showed that fibrous micro-

characteristics are important in guiding cellular behavior, the current report is the first systematic 

study to analyze the effect of fibrin fiber network topology on mESC differentiation. 

The proposed systems level analysis offers a rigorous platform to identify and quantify 

cause and affect relationships. However, it does not provide any mechanistic information of the 

relationship. Such mechanistic studies have been reported in other systems. Mukhatyar et al. 

investigated the effect of fiber alignment on Schwann cell migration and neurite outgrowth, and 

determined that more aligned fibers promote fibronectin adsorption which in turn influences 

these two cellular behaviors [132]. Dalby et al. demonstrated the importance of nano-topology 

on mesenchymal stem cell differentiation: substrate nanoscale disorder promoted bone mineral 

production, with this behavior postulated to be governed by adhesion formation [133]. 

Trappmann et al. showed that, in a collagen-polymer substrate system, PDMS substrate stiffness 

did not affect epidermal or mesenchymal stem cell fate, while the stiffness of PAAm did. It was 

revealed that in PAAm changes in porosity with stiffness led to changes in collagen anchoring 

points, which in turn affected differentiation [134]. Also, specific integrins have been identified 

which interact with substrate microstructure to affect cellular behavior, including the α2β1 

integrin during osteoblastic differentiation on titanium substrates [135]. More studies such as 

these, focusing on the mESC-fibrin system, will be needed to extract how the aforementioned 

microstructural features affect differentiation patterning.  
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3.5 CONCLUSIONS 

In this study, we have developed a systems level modeling approach to investigate the 

contributions of various extracellular microstructural cues towards the differentiation patterning 

of mESC. A fibrin substrate amenable to fiber and elasticity manipulation was employed 

together with an integrated experimental and mathematical analysis. The combinatorial treatment 

and statistical analysis of the complex feature space allowed for investigation of the relative 

influence of individual fibrous features on ESC differentiation without the need for one-at-a time 

variable perturbations or large data sets.  Interestingly, it was found that in this system of 

spontaneous mESC differentiation on fibrin gel substrates, the correlation between fibrin 

stiffness and gene expression was relatively weak. On the other hand, the correlation between 

gene expression patterning and microstructural features was strong, with fiber alignment being 

the most influential feature. These features preferably induced differentiation of mESC to 

endodermal lineage, with the majority of significant correlations involving the endoderm genes 

FOXA2 and AFP.  
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4.0  STOCHASTIC POPULATION MODEL OF CELL CYCLE TRANSITION IN 

HESC DURING SELF-RENEWAL AND DIFFERENTIATION 

4.1 INTRODUCTION 

Chapter 3 focused on how different substrate cues affect end-point differentiation. 

Changing substrate fabrication conditions led to changing of the microstructural features, and 

differences in these features in turn lead to differences in gene expression. This gene expression 

was obtained for each substrate fabrication condition through PCR, and therefore represented 

population averaged information.  However, even in a given substrate (or, more generally, in a 

given culture condition), not all cells behave the same, as is apparent with experimental data 

which does not rely on population averaged information, but which reports single cell behavior. 

This amounts to variability from cell to cell, with a resulting heterogeneous cellular population. 

This variability can have consequences on population behavior, and can often dictate system 

dynamics. 

This cellular variability is especially evident in the cell cycle. The cell cycle is the 

process in which a cell prepares for and executes replication of itself [136]. The process begins 

with one daughter cell, and if conditions are such that division is supported, and if all cellular 

functions act properly, ends with two daughter cells with the same genomic material. ESC have a 

unique cell cycle structure, with short doubling times, mainly due to their abbreviated G1 phase 
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[38, 39]. In contrast, somatic cells have a much longer doubling time with the majority of the cell 

cycle spent in the G1 phase. When ESC differentiate, this G1 phase elongates, resulting in an 

overall longer doubling time [40, 41] and slower propagation.  This G1 phase is also important in 

governing cell fate, as studies have shown it is involved in cellular decision making [137, 138]. 

An important aspect of this system is therefore the coupling of pluripotency to cell cycle. It is 

now known that this coupling is very important, and in addition to differentiation affecting G1 

length, changes to the cell cycle, say from changes to the cyclins and CDKs, affect 

differentiation status [139].  

Our objective in this chapter is to represent the population dynamics of cell cycle 

transition in human ESC during self-renewal and differentiation, and to gain mechanistic 

information on the process. To describe this behavior, we utilize an automaton model which 

tracks autonomous cells through the cell cycle. Through this we determine phase residence time 

distributions of hESC and a more mature pancreatic progenitor cell phenotype. In this way, we 

can judge how variability in the cell cycle changes upon differentiation. To describe this 

transition, we focus on the G1 phase, as this phase seems to be the most crucial in guiding hESC 

behavior. We develop a cellular ensemble model, for which we integrate both a rule-based 

platform and a simple system of ordinary differential equations governing the G1 phase into the 

cellular automata. In this way we describe G1 lengthening at the single-cell level and how this 

behavior is manifested at the population level. Through this approach, we quantitatively 

represent the cell cycle dynamics of hESC and hESC-derived pancreatic progenitors, and 

elucidate the mechanisms of cell cycle changes during the process of differentiation. 



 86 

4.2 METHODS 

4.2.1 Cell culture and differentiation 

H1 hESC were cultured in feeder free conditions on MatrigelTM (hESC qualified matrix) 

in mTesr1® media. Cells were passaged every 6-8 days. In differentiation experiments, 

mTesr1® media was replaced at day 4 or 5 of culture with differentiation media. To direct 

towards definitive endoderm, DMEMF12, 0.2% BSA, and 1x B27® (base media) was 

supplemented with 100 ng/mL activin A and 25 ng/mL wnt3a and replaced daily for four days. 

Cells were then induced to a pancreatic progenitor phenotype with 0.2 uM cyclopamine in base 

media for two days, followed by another two days of cyclopamine and 2 uM retinoic acid, with 

media changes every day.  

4.2.2 Cell cycle synchronization, flow cytometry, Fourier analysis, and CFSE 

hESC were synchronized in the G2/M phase of the cell cycle with 200 ng/mL nocodazole 

for 16.5 hours. Cells were then rinsed two times with DMEM F12 and then mTesr1 was added to 

the wells. Directly after synchronization (t=0), and at three hour intervals, cells were harvested 

for cell cycle analysis by dissociation with Accutase®. After dissociation, cells were fixed in ice 

cold 70% ethanol and stored overnight at -20°C. Cells were then rinsed twice in PBS and 

incubated for 25 min at room temperature with 0.01 mg/mL/1 million cells propidium iodide (PI) 

and 0.2 mg/mL DNAse-free RNAse in 0.1% triton-X in PBS to stain for DNA. The cell cycle 

histogram was generated by analyzing the cellular population with an Accuri C6 flow cytometer, 

and the phase distribution was quantified by Modfit LT software. 
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To synchronize pancreatic progenitor cells, cells were first differentiated to a pancreatic 

progenitor phenotype as outlined above. These cells were then exposed to 200 ng/mL nocodazole 

in pancreatic progenitor media for 31 hours. This longer incubation time was chosen to allow for 

more slowly dividing cells to reach the G2 phase and arrest in the phase. Cells were then rinsed 

two times with DMEM F12 and pancreatic progenitor media was added to the wells. Several 

wells were immediately harvested for t=0 analysis, with temporal harvesting occurring every 

three hours. Dissociation, fixing, staining, and cell cycle analysis was performed as per the 

protocol outlined above for the undifferentiated cell synchronization experiment.  

Discrete Fourier Transform (DFT) was performed on the oscillatory data achieved 

through synchronization to convert the time series data into the frequency domain. Data was first 

normalized around 0, and a spline fit to the experimental dynamics was performed to generate 

enough data points to be amenable to DFT. The Fourier transform was performed with the fft 

function in MATLAB. To attenuate high frequency noise, the data was run through a low pass, 

Butterworth filter with the filtfilt function, the design parameters of which determined by the 

butter function, both in MATLAB.  

To capture the dynamics of differentiation, cells were induced towards endoderm and 

pancreatic progenitor as previously described. Cells were harvested at various times during this 

differentiation protocol, stained and analyzed for the cell cycle profile as detailed above. 

Carboxyfluorescein succinimidyl ester (CFSE) dye was used to experimentally determine 

doubling times. H1 hESC were washed two times with PBS, then incubated in 1.5 ug/mL in PBS 

for 15 minutes at 37°C. Cells were then washed three times with DMEM F12 with 20% knock-

out serum replacement (to help quench unbound CFSE), washed two times with DMEM F12, 

and then placed in mTesr1 media. Cells from several wells were then harvested (t=0), suspended 
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in PBS, and analyzed with flow cytometry. Proceeding this, cells were harvested and analyzed 

every 24 hours (those cells not harvested had daily media changes). CFSE flow cytometry data 

was then analyzed with Modfit LT software, and doubling times extracted. 

4.2.3 Population model of the cell cycle 

Experimental synchronization allows for the tracking of the cellular population through 

the individual phases of the cell cycle. To extract information from this data on phase residence 

times, distributions, and variability, and how this changes with differentiation, we develop a 

mathematical model of cell cycle population behavior and associated heterogeneity in the hESC 

system. In this mathematical approach we utilized an automaton model, in which we track 

individual cells and their progress through the cell cycle phases. This model was proposed by 

Altinok et al. [140], and we adapted it for the hESC system. The model starts off with a 

population of cells, with each cell in either the G1, S, or G2/M phase. We chose to combine the 

G2 and M phases because separating them will not add to the analysis, as the focus of the hESC 

system is the G1 phase. Each cell has two main attributes: the time it will stay in the phase and 

the time it transitioned from the previous phase (and therefore at any given time it can be 

determined how long the cell has been in the current phase). The former is determined 

stochastically from probability distributions. Each phase has a probability distribution describing 

its residence time, and as a cell enters this phase, the time it will stay in the phase is chosen from 

this distribution. These distributions are not known a priori, and have to be determined, along 

with their moments, with experimental data.  

The number of cells in each phase at the beginning of the simulation is determined by 

experimental population data directly after synchronization (t=0). Because no additional 
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experimental information is known about how long the cell has been in the current phase at this 

time, this value is randomly chosen from a non-informative (uniform) distribution, from 0 (just 

entered the phase) to the total residence time chosen from the probability distribution (just about 

to transfer to the next phase). The simulation is then started, and the individual cells progress 

through the cell cycle. At any time, the number of cells in each phase can be determined, and 

therefore cell cycle population dynamics can be generated. 

4.2.4 Parameter estimation 

Because the probability distributions describing the phase residence times were not 

known, we employed a combinatorial approach. Each prospective model contained a specific 

combination of distributions (e.g. gamma for G1, normal for S and G2/M). These combinations 

are listed in Table 4.1. As others have postulated that the G1 phase might behave differently than 

other phases and is most involved in differentiation and fate decisions [41, 137, 138, 141-144], 

we put more emphasis on this phase. In the simulations in which a normal distribution was 

involved, a cut-off of 0 was enforced so that all residence times were strictly positive. For each 

combination, a genetic algorithm was used to estimate the moments associated with each 

distribution from agreement with experimental data (Figure 4.1). For instance, for combination 2 

in Table 4.1, the genetic algorithm was employed to estimate the α and β parameters for the G1 

gamma distribution, μ and σ  for the S normal distribution, and μ and σ  for the G2/M normal 

distribution, to maximize agreement between the simulation and experimental synchronization 

dynamics.   
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Figure 4.1. Cell cycle model development 

Cell cycle structure (top) was used to develop a stochastic population model (bottom right) which utilized 

experimental cell cycle population data to determine cell cycle parameters and mechanisms 

 

Table 4.1. Combinations of probability distributions describing cell cycle utilized in parameter 

estimation 

Combination G1 Phase S Phase G2/M phase 

1 Normal Normal Normal 

2 Gamma Normal Normal 

3 Exponential Normal Normal 
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4.2.5 Cellular ensemble model 

To describe G1 lengthening with differentiation, and to create a method for hypothesis 

testing, we developed a cellular ensemble model. This model takes the cell cycle population 

model and incorporates mechanisms governing G1 lengthening at the single cell level. In 

particular, we developed a platform in which the probability distribution governing G1 residence 

time is replaced by a phenomenological formulation. In the simulation, cells entering G1 phase 

call upon the equations, which dictate G1 residence time and how this changes with 

differentiation.  

 In parallel with this, we employed a more mechanistic approach, in which the G1 

residence time and its changes are governed by a set of nonlinear ordinary differential equations 

(Equation 4.1-4.5 and Table A3).  
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These equations describe, at the single cell level, the temporal changes of the levels of proteins 

which are integral to the G1 phase (cyclin D, cyclin E, inhibitors p21/p27 (noted here as ‘I’ for 

simplicity)), and their associated complexes (denoted as a ‘.’)). Therefore, when cells enter the 

G1 phase, an ODE solver is called (lsode), which performs integration, and from this G1 time is 

determined as the time at which cyclin E switches from a low state to a high state. We adopted 

this ODE model from the work of Pfeuty [46] and Novak and Tyson [48], and modified it for the 

hESC system. As in these two studies, it is assumed that the CDKs, responsible for cell cycle 

transitions, are at constant high level, and therefore the transitions are governed by the temporal 

behavior of their catalytic partner, the cyclins. The model therefore represents this cyclin-CDK 

partnership in terms of just the cyclin levels. As described in these two studies, there are 

numerous proteins governing the G1 phase. In the current system we reduced the G1 model to a 

skeletal five molecule system (three proteins and two associated complexes) based on 

experimental evidence reported for hESC. Because of this, several simplifications needed to be 

made, the most crucial of these being the description of the effect of cyclin D and cyclin E on the 

latter’s behavior. These effects come about through other “intermediate” connections and 

proteins, including Rb and E2F. In the absence of these proteins in the current model, we 

represented the interaction as Michaelis-Menten kinetics describing cyclin D’s positive influence 

on cyclin E, and Hill type kinetics describing cyclin E’s autocatalytic function. For those protein 

interactions not simplified, we took nominal parameters agreeing with the two aforementioned 

works. For those which are simplified, namely the 6th and 7th terms in Equation 4.2, parameters 

were chosen which led to behavior consistent with biological observations.  
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 For the ensemble model, parameter estimation was accomplished using genetic algorithm 

with various G1 population dynamics resulting from various differentiation induction conditions 

(described in the section 4.3). In all models, the simulation was coded in FORTRAN 95. 

4.3 RESULTS 

4.3.1 Cell cycle synchrony behavior changes in hESC after differentiation to pancreatic 

progenitor 

To assess the cell cycle dynamics of self-renewing hESC, we performed PI staining to 

quantify the fraction of the population in each of the three main cell cycle phases: G1, S, and 

G2/M. Figure 4.2(a) shows a representative histogram of the DNA stain of asynchronous H1 

hESC analyzed by flow cytometry, with Figure 4.2(b) showing the phase proportions after 

quantification by Modfit, a program which fits raw flow cytometry DNA data to phase specific 

functions, with subsequent phase percentage quantification. As expected, the majority of the 

cells are in the S-phase, with a relatively small proportion in the G1 phase, converse to somatic 

cells. 
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Figure 4.2. Cell cycle behavior of self-renewing hESC 

(a) Representative flow cytometry histogram of DNA content for a population of H1 hESC. (b) 

Quantification of the cell cycle distribution, n=14. (c) Dynamics of the cell cycle distribution after release 

from G2/M synchronization, n=2. Error bars=std .dev. 

 
 

We gained insight into the cell cycle traits of hESC, including phase transition behavior, 

residence time distributions and variability, by performing dynamic synchronization 

experiments. Using nocodazole, we were able to synchronize close to 90% of the cellular 

population in the G2/M phase. Upon removal of nocodazole, the cells exit the phase and re-enter 

the cell cycle. While initially the cell population will retain synchronization characteristics, 

because of variability in the system, the cells tend to lose this synchronization and revert to their 

asynchronous state. The variability, or lack thereof, in the system can  be determined by 

analyzing how fast the synchronized oscillations dampen after nocodazole removal.  Figure 
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4.2(c) shows the dynamics of the cell population upon release from synchronization, displaying 

how the fractions of each of the phases change after G2/M synchronization. A striking feature of 

these dynamics is the retention of synchronization characteristics over the time course (~3.5 cell 

cycles) of the experiment when compared to other cells which desynchronize more quickly. 

While there seems to be some initial loss of synchrony of the ESC within the first cell cycle, 

afterwards the oscillations do not completely dampen within 3.5 cell cycles, which  is in contrast 

with synchronization studies of other cellular systems, which display desynchronization within 

three cell cycles [60, 145, 146]. This might be due to possible differences in the cell cycle and 

phase residence time variability between ESC and somatic cells. The cell cycle of somatic cells 

has been shown to be highly variable [141], which explains dramatic desynchronization. Low 

ESC cell cycle variability would explain the observed retention of synchronization 

characteristics. 

To analyze if this behavior is preserved with maturation, we differentiated hESC, first to 

definitive endoderm, then to pancreatic progenitor cells, and assessed the cell cycle. Flow 

cytometry at each stage of differentiation for indicative phenotype proteins (sox17 for endoderm, 

pdx1 for pancreatic progenitor) confirms differentiation (Figure 4.3(a)). Figure 4.3(b) shows the 

cell cycle phase distribution. As expected, with differentiation to a more mature phenotype, the 

G1 has lengthened, as shown by a larger proportion of the population in the phase. We 

performed synchronization on these cells and analyzed the cell cycle dynamics of this phenotype 

upon release from synchronization. Exposing the pancreatic progenitor cells to 200 ng/mL 

nocodazole (in pancreatic progenitor base media with cyclopamine and retinoic acid) for 31 hrs 

lead to 51% percent synchronization in the G2/M phase, at which point the nocodazole was 

removed and replaced with pancreatic progenitor media. The resulting dynamics are shown in 
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Figure 4.3(c). In stark contrast to the dynamics of the pluripotent cells, the synchronized 

oscillations in the pancreatic progenitor cells dampen out quite quickly after release from 

synchronizaion. By 24 hrs the cell cycle distribution is close to the asynchronous distribution. 

This might be an indicator of increased cell cycle variability with differentiation, which we 

further analyzed using our developed model. 

 

 

 

 

 

 

 



 97 

 

Figure 4.3. Cell cycle behavior of hESC-derived pancreatic progenitor cells 

(a) Schematic of differentiation protocol, showing presence of stage specific markers at end of 

differentiation stage. Gene fold change with respect to undifferentiated cells, quantified by qPCR. Flow 

cytometry showing population positive for respective protein.  Black histogram is 2ndary antibody only 

control. (b) Quantification of the cell cycle distribution of hESC-derived pancreatic progenitors, n=3. (c) 

Dynamics of the pancreatic progenitor cell cycle distribution after release from G2/M synchronization, n=2. 

Dashed line represents asynchronous distribution. Error bars=std. dev. 
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Another interesting feature of the oscillations is the irregular waves throughout the time 

series. If one considers the S-phase dynamics, superficial analysis of the waves seems to suggest 

that there are multiple wavelengths present. For instance, the distance between the two highest 

peaks is around 15 hrs, while the distance between the valleys at the middle and end of the time 

course is around 24 hrs. This is in addition to the multiple valleys at the beginning of the 

experiment. These features are reminiscent of multiple waves superimposed onto one another. 

This could happen if there were two subpopulations of cells with different cell cycle 

characteristics. To evaluate this, we performed a Discrete Fourier Transform (DFT) analysis on 

the data. This analysis transforms the data from the time domain into the frequency domain, and 

can therefore allow for the determination of prominent frequencies present in the data. The 

results of this analysis for the individual phases are shown in Figure 4.4 (a-c), and suggest that 

oscillations with several frequencies occur in the data set. When analyzing the frequencies in 

Figure 4.4(a), there exists a broad higher frequency peak at ~0.125 hr-1, which corresponds to a 

wavelength, and in the context of the current data set cellular doubling time, of 8 hrs. This is 

much too short for hESC, and therefore not a realistic oscillation, and can be considered high 

frequency noise, which has been observed elsewhere [146, 147]. To clean this data and remove 

this high frequency noise, we applied a low-pass Butterworth filter to the data (Figure 4.4(d)), 

which results in two prominent frequency peaks of 0.0178 hr-1 and 0.0533 hr-1, or doubling times 

of 56.2 hrs and 18.8 hrs, respectively (Figure 4.4(e-g)). This would indicate that proliferation of 

two subpopulations arising during differentiation were both retarded, but by different amounts. 

Together, these results suggest that while propagating hESC retain cell cycle synchrony with 

time, the behavior is lost with maturation towards pancreatic lineage, with this transition also 

bringing about an emergence of multiple populations displaying distinct phase characteristics. 
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Figure 4.4. Frequencies in synchronized pancreatic progenitor cells 

(a-c) Discrete Fourier transform (DFT) applied to the experimental pancreatic progenitor synchronization 

data of the G1 (a), S (b), and G2/M (c) phases. (d)  Experimental dynamics after noise removal with a 

Butterworth filter. (e-g) DFT analysis applied to G1 (e), S (f), and G2/M (g) phase data after noise removal 

4.3.2 Stochastic population model extracts single-cell information from population 

dynamics of differentiating hESC  

We first developed a stochastic population model to track the dynamics of the cell cycle 

after relaxation from synchronization.  An advantage of this type of model is that it allows for 

tracking the emergent cell population dynamics arising from single cell variability and features. 

Each cell progresses through each phase of the cell cycle following probabilistic rules. The basis 

of the cell cycle model utilized herein is that the cells are in a state (cell cycle phase), and the 

time in that state is stochastically chosen from a probability distribution. In particular, we 

adopted the approach by Altinok et et al. [140], wherein discrete, autonomous cells are tracked 
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with time, thereby simulating the behavior of a cellular population. The variables in the model 

are the probability distributions describing the residence times of the phases (normal, 

exponential, etc.), and the moments associated with each residence time (μ and σ for normal, λ 

for exponential, etc.). 

We applied the developed model to the measured dynamics of self-renewing hESCs. 

Since the type of distribution describing each phase was not known a priori, we employed a 

combinatorial approach to determine these distributions. For each combination of distributions, 

listed in Table 4.1, genetic algorithm was used to estimate the moments associated with the 

phase residence time distributions from experimental synchronization data. Akaike information 

criterion (AIC) was used to determine which combination of phase distributions were optimal. 

AIC, based on information theory, attempts to determine the relative quality of a model, and can 

therefore be utilized to select an optimal model/approach from a set of alternatives by 

minimizing information loss. AIC weighs the model fit against model complexity, namely the 

number of free parameters [148]. There are several ways of reporting AIC for a set of 

alternatives. To compare cell cycle model alternatives, we utilize AIC weights, which can be 

thought of as the probability that a given model is the best model of a set [149] (Equations 4.6 

and 4.7) 
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where n is the number of data points used to train the model, SSE is the sum of the squares of the 

residuals, k is the number of model parameters, and AICmin is the minimum AIC out of the set. In 

practice, if one model alternative’s weight is not clearly higher than others’, a single model 

cannot be conclusively selected.  In the current approach, we have determined the AIC weight 

for each of the three distribution combinations in Table 4.1, and are looking for a combination 

which has a weight that is much better than the rest, which would suggest an optimal 

combination. While the simulation is stochastic, we took one instance of the simulation (one 

Monte Carlo run) for each combination to determine the AIC weight. This analysis determined 

the Akaike weights for distributions 1, 2, 3 (Table 4.1) as 0.380, 0.591, and 0.029, respectively. 

This metric shows that while combination 3 (exponential describing G1 phase) performed 

poorly, both combinations 1 and 2 (normal and gamma distributions, respectively, describing G1 

phase) yield relatively large probabilities of being the best candidate model. Therefore, there is 

an amount of redundancy in the model. However, the phase means and standard deviations 

predicted from both of these combinations are almost identical, and the gamma distribution 

resulting from the predicted α and β parameters is roughly Gaussian in nature. We can therefore 

say that the G1 phase is normally distributed. The model dynamics and agreement to the 

experimental dynamics, as well as the predictions of the normal distribution parameters for each 

phase, are shown in Figure 4.5(a) and Table 4.2(a), respectively. As shown, the model does an 

excellent job at capturing the oscillations in cell cycle distribution associated with 

synchronization and release. The predicted G1 phase residence time is short, 3.2 hrs, as expected 

for hESC. The variability of these phases is quite low as well, something which may not be 

expected in somatic cells, especially for the G1 phase. 
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Figure 4.5. Cell cycle model predictions of the synchrony behavior of undifferentiated hESC 

(a) Simulated dynamics (blue band, 1000 stochastic runs), fitted to experimental data (black points, n=2, 

error bar=std. dev.) for the three phases. (b) Validation of total cell cycle time with CFSE staining for 

doubling time quantification.  (c) Validation of G1 and S residence times with small time step DNA 

staining quantifying S-phase fraction after G2/M synchronization.  

  

Table 4.2. Predicted cell cycle parameters from synchronization experiments 

Model predictions of the normal distribution parameters for each phase of (a) Self-nenewing hESC and (b) 

hESC-derived Pancreatic progenitor  

(a) Mean (hrs) Std. Dev. (hrs) 
G1 3.24 0.58 
S 5.61 1.76 

G2/M 6.67 0.74 
  

(b) Subpopulation 1=61.2% Subpopulation 
2=38.8% 

  Mean (hrs) Std. Dev. (hrs) Mean 
(hrs) 

Std. Dev. 
(hrs) 

G1 18.6 8.6 15.6 2.77 
S 15.6 5.3 4.7 0.57 

G2/M 22 10 1.2 0.24 
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To validate our model and the predicted results, we experimentally measured the 

doubling time and G1 and S phase residence times using flow cytometry on a completely 

separate cell culture (Figure 4.5 (b,c)). Using CFSE analysis to quantify doubling time yielded an 

average doubling time of 15.4 hrs, in excellent agreement with model predictions, achieved by 

summing the predicted individual mean residence times. To measure phase residence times, we 

again performed synchronization on the hESC cell culture, but analyzed the phase distributions 

at small time increments (1 hr) for better resolution. Shown in Figure 4.5(c) is the S phase 

population fraction. Because at t=0 the population has been synchronized in the G2/M phase, 

there are few cells in the S phase. The time at which this proportion jumps (4 hrs) corresponds to 

the G1-phase length. Additionally, the S-phase time corresponds to when the S-phase proportion 

substantially decreases (10 hrs), minus the G1 time (S-phase = 6 hrs).  Again, this is in excellent 

agreement with our model predictions, validating the accuracy of the model and estimated 

parameters.  

We then applied our population model to the analysis of pancreatic progenitor cells. 

Because the DFT analysis suggested that two subpopulations, with two distinct frequencies, 

might contribute to the overall oscillations, in the population model we simulated two 

populations of cells, the phases of which being described by normal distributions (as predicted 

by the self-renewing system), each with their own set of cell cycle phase characteristics. These 

predicted dynamics as compared to experimental data, as well as a visualization of the individual 

subpopulation dynamics which contribute to this behavior, are shown in Figure 4.6.  Table 

4.2(b), shows the predicted phase parameters. The model predicted that the split between the two 

populations is ~61/39%, with the larger subpopulation displaying almost proliferation arrested 

conditions, as the total cell cycle time is approximately the total experimental time. The 
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variability in this subpopulation is also very high, which would lead to quick reversion to an 

asynchronous state, as demonstrated by the green curves  in Figure 4.6(b). The other 

subpopulation shows behavior which suggests it is at a more immature state, as the cells are still 

doubling in a relatively short amount of time (~18 hrs); however, G1 has lengthened 

substantially from undifferentiated cells, and therefore the population has matured somewhat. 

Also, the variability associated with this subpopulation is lower than the first, suggesting that 

variability increases with differentiation. Together, these results demonstrate the utility of the 

population model in capturing single-cell level dynamics from cell population information. 

Encouragingly, the model exhibited excellent performance even with a heterogeneous 

differentiated population and could extract sub-population dynamics. 
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Figure 4.6. Cell cycle model predictions of the synchrony behavior of hESC-derived pancreatic 

progenitor cells 

(a) Combined simulation dynamics of both subpopulations and their contributions towards cell cycle phase 

oscillations (blue band, 1000 stochastic runs) as compared to experimental data (black points, n=2, error 

bar=std. dev.). (b) Simulated dynamics of individual populations. Blue: total, Green: subpopulation 1; Red: 

subpopulation 2.   
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4.3.3 Mechanisms of G1 lengthening during differentiation revealed by cellular ensemble 

model 

The population model when applied to the self-renewal and differentiated hESC could 

clearly capture (i) the short G1 residence time in self-renewing hESC, (ii) the lengthening of G1 

residence time with differentiation, and (iii) enhanced variability and population heterogeneity 

with differentiation. Next, we wanted to capture the transition from self-renewal to 

differentiation, i.e. the cell cycle dynamics during the process of differentiation.  

To capture and explain these trends, we needed to account for how G1 is lengthening in 

the interim during differentiation. The proposed model achieves this by capturing single cell 

behavior, and how this behavior manifests itself at the population level. Because the developed 

model tracks cellular automata, the model is directly amendable to this, and information on how 

a single cell’s G1 phase lengthens with time can be incorporated into each individual cell.  The 

G1 length is governed by a complex network of proteins controlling cell cycle progression. As a 

first step we wanted to determine a phenomenological model capturing the quantitative dynamics 

of G1 lengthening with time. Several alternate dependencies between G1 lengthening and time, 

along with their parameters, were considered. Furthermore, various alternatives on how and 

when a cell is primed for differentiation, thereby enabling G1 lengthening, were also considered. 

Elucidating the actual behavior of single cell lengthening, and deciding on which 

alternate mechanism in our model is prominent, requires model comparison to experimental data. 

We tested our model against a system which allows for real time quantification of G1 cells, the 

FUCCI reporter system. In this system, an oscillating protein, specific for the G1 phase, was 

tagged with a red fluorescent probe. In this way, cells in the G1 phase, and their time in the 

phase, can be determined very precisely in real time with viable cells, without the need to fix and 
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do subsequent DNA staining. Recently Calder et al. [41] has reported the performance of FUCCI 

reporter system in hESC. Using this reporter they have tracked the G1 characteristics of cells 

during pluripotency and initial differentiation with time lapse microscopy and image analysis. 

With exposure to differentiation agents like DMSO, a gradual transition was observed in the cell 

cycle dynamics, with fraction of G1 positive cells increasing with DMSO concentration (Figure 

4.7(a-c); these experimental G1 population dynamics, in addition to those in Figure 4.7(d-i), 

Figure 4.10 and 4.14(a-c), were generated by Calder et al. [41], published by Mary Ann Liebert, 

Inc., New Rochelle, NY). Further, the dynamics of the transition displays interesting non-

intuitive behavior, which can be explained by our ensemble model as we will show herein. 

Several features of the experimental dynamics deserve attention. First, in the majority of the 

samples, there is a decrease in the population in G1 towards the end of the experiment (green 

circles, Figure 4.7(b,c)). Another striking feature is the oscillations and “step” behavior in the 

dynamics. The G1 fraction seems to increase as jumps rather than a linear increase with time. 

This behavior is most evident in the initial (up to 1.75 days) and final (after 2.75 days) dynamics 

of the 0.75% DMSO sample (purple circles, Figure 4.7(b)). At around 1 day in the 1% DMSO 

sample, a step-like dynamics is prominent (black circle, Figure 4.7(c)), wherein the G1 fraction 

increases, then remains constant for approximately 12 hours, then proceeds to increase again. 

Another characteristic of the DMSO samples is the delay in the effect on G1 (red circles, Figure 

4.7(a,b)). The G1 percentage does not increase immediately but remains at undifferentiated 

levels for a time, and then proceeds to increase. This delay is not consistent throughout all 

samples, but seems to be dependent on DMSO concentration.  
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Figure 4.7. Application of ensemble model to induced differentiation with DMSO 

(a-c) Experimental population dynamics of FUCCI positive cells upon exposure of hESC to 0.5% (a), 

0.75% (b), and 1% (c) DMSO. Reproduced from Calder et al.[41].  (d-f) Simulated G1 dynamics  of 1% 

DMSO using mechanisms 1.a, 2.b.ii, 3. (d), 1.b.ii, 2.b.ii (e), and 1.b.i, 2.b.ii, 3. (f). (g-i) Dynamics of 

optimal model alternative (mechanism 1bii, 2bii, 3, 4) for DMSO concentrations of 0.5%, 0.75%, and 1%, 

respectively (blue band, 20 stochastic simulations). (j) Akaike weights for each of the mechanisms, 

averaged over all DMSO concentrations. See main text for description of mechanisms.  
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These experimental dynamics were utilized for model hypothesis testing. It is worth 

mentioning that the values reported in Figure 4.7 (a-c) are fraction of population FUCCI positive. 

This fraction is lower than the actual G1 fraction because of the time it takes for the FUCCI 

reporter to mature [41], which is evident when comparing undifferentiated values in Figure 

4.7(a-c) (t=0) and Figure 4.2(b). This FUCCI maturation time was taken into account in the 

model, and henceforth, subsequent model dynamics when compared to the experimental 

dynamics of Calder et al. are reporting the fraction of cells in G1 which have surpassed this 

maturation time, with figures labeled accordingly. 

 To explain cell cycle behavior, eight alternate G1 lengthening models were considered, 

which include different mechanisms which we wanted to test. In the proceeding model 

alternatives, we refer to differentiation, in the current context, as the state at which the G1 phase 

lengthens. The following are specific behaviors in the stem cell system which were modeled, 

with plausible mechanistic alternatives to govern each behavior: 

 

1. Proportion of cellular population committed to differentiation 
a. Cells committed to G1 lengthening are determined from the onset of 

differentiation, with the number of differentiated cells only changing 
through mitosis 

b. Differentiation commitment is a dynamic process, with a cell 
probabilistically choosing whether to differentiate each time it passes 
through the G1 phase 

i. If a cell is committed to differentiate, G1 lengthening starts 
immediately upon entering the G1 phase 

ii. A cell, upon deciding to differentiate in the G1 phase, is first 
“primed”, with lengthening only occurring upon the next cell cycle 

2. Nature of G1 lengthening 
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a. Once a cell is committed to differentiate, the G1 phase lengthens by a 
specific amount, the mean and variance of which is dictated by the 
differentiation agent 

b. Once a cell is committed to differentiate, the G1 phase gradually lengthens 
with time 

i. Lengthening is a linear function of time 
ii. Lengthening is an exponential function of time 

3. Reduction of differentiation agent efficacy: Does differentiation and G1 
lengthening stop at a specific time, depending on the differentiation agent? 

4. Maximum time on G1. Is there an existence of a maximum threshold of G1 
residence time beyond which the phase will not increase? 

 

These alternatives were hypothesized to be possible mechanisms to explain cell cycle population 

behavior. Importantly, on the basis of experimentation alone it is not intuitive which of these 

mechanisms are governing cell cycle behavior, and it was the goal to elucidate this information 

with the ensemble model. 

Each of these mechanisms was incorporated into the individual cellular automata of the 

population model, replacing the G1 probability distributions. These various models were 

simulated and compared to the experimental dynamics. The simulated dynamics for these model 

alternatives are shown in Figure 4.7(d-i) and Figure A1 and A2. As shown, the G1 dynamics are 

sensitive to the model structure, with different alternate mechanisms yielding drastically different 

population behavior. The majority of the mechanisms do not capture the observed experimental 

dynamics. Dynamics of alternatives without a dynamic change in differentiated cells (mechanism 

1a) do a particularly poor job of describing the population behavior, as do mechanisms which 

have G1 lengthening by a specific amount. This suggests that cells commit to differentiation 

probabilistically with time, and once differentiated, have G1 phases which lengthen gradually 

with time (mechanisms 1b and 2b, respectively). Further insight can be obtained when analyzing 

the 1% DMSO dynamics (Figure 4.7 (d-f, i). A stop in differentiation and G1 lengthening 
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(mechanism 3) is necessary to explain the reduction in G1 population fraction. Furthermore, this 

data suggest that “G1 priming”, the mechanism by which cell choose to differentiate in the G1 

phase, but only start G1 lengthening in the subsequent cell cycle (mechanism 1.b.ii), is necessary 

to explain the step behavior at ~20 hrs. 

Through this comparison and agreement with experimental data, the best alternate 

mechanism was found to be when differentiation and G1 lengthening was not instantaneous; 

instead the cells were primed for differentiation with subsequent G1 lengthening after a lag. This 

was incorporated in the model by probabilistically deciding which cell will differentiate. The G1 

length of the chosen cell, however, will not be affected immediately. Instead the cell is 

considered primed for differentiation, and the G1 will begin to lengthen starting the next cell 

cycle. Interestingly, prior literature also reports a delay between cell cycle changes and 

pluripotency perturbations [150].  In addition, an exponential increase in G1 with time was found 

to best explain the experimental dynamics. Such lengthening, however, is not indefinite and it 

ceases beyond a certain G1 length. Biologically, this may occur if, after a certain time, the 

efficacy of the differentiation factors diminishes. This model selection can be quantified by 

Akaike information criterion. The Akaike weights of each of the mechanism combinations is 

shown in Figure 4.7(j), and can represent the probability that the model alternative is the best 

model out of all of the model candidates. The optimal model outlined above displays the largest 

Akaike weight, further suggesting that the mechanisms outlined therein are governing the cell 

cycle behavior. The simulated dynamics of this optimal model alternative and the agreement to 

experimental data are show in Figure 4.7(g-i). The formulism is outlined in Equation 4.8 and 

pseudo-code in Figure 4.8(a) with descriptions of variables in Table A4. 
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Figure 4.8. Optimal cellular ensemble model 

(a) Schematic and psuedo-code of optimal model alternative for the cellular ensemble. (b) Dependency of 

G1 lengthening parameters (Equation 4.8) on DMSO concentration. (c) Snapshot of predicted G1 residence 

time at 91 hours after exposure to 0.5% DMSO.  
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As shown in Figure 4.7, the proposed mechanism captures the experimental dynamics to 

a high degree. Comparison of these simulated dynamics to other model alternatives can give an 

idea of the causes of the interesting features outlined above. For instance, the decrease in G1 

percentage seems to arise because of a dilution effect: undifferentiated cells continue to 

proliferate at a faster rate than the differentiated cells, thereby increasing in number and bringing 

the average length of G1 (and therefore the G1 percentage) down. However this behavior is 

observed only when we limit the effect of differentiating agent by ‘tstop’; as exclusion of this 

feature (not including ‘tstop’ in the formulation), does not yield this behavior. Another 

conclusion is that the oscillations seem to arise from differentiation priming only in the G1 

phase. The prominent step increase in G1 percentage (1% DMSO) was found to be resulting 

from our hypothesis of ‘priming’ the cells prior to increasing the length of G1 in the subsequent 

cell cycle. Furthermore, the probabilistic nature of differentiation priming and the form of G1 

lengthening (exponential) could adequately capture the initial delay observed in the increase in 

G1, and did not require an explicit delay parameter in the model. Hence even this simplistic 

phenomenological model could adequately explain the observed non-intuitive cell cycle 

dynamics. The sensitivity of the simulated dynamics to the model rules strengthens the 

usefulness of this platform for hypothesis testing. 

 In addition to elucidating the mechanisms of G1 lengthening by analyzing model 

structure, information can be obtained by analyzing the optimal parameter set. These values, for 

the DMSO experiment, and how they change with DMSO concentration, are shown in Figure 

4.8(b). A clear relationship is apparent between DMSO concentration and both the G1 

exponential length parameter (γ in Equation 4.8) and the maximum G1 time (α in Equation 4.8). 

It is interesting to note that the probability of differentiation does not change with DMSO 
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concentration (18.6±0.1%). Also, the time at which differentiation stops is consistent between all 

concentrations (63.0±5.1 hrs), and might suggest the time at which DMSO loses its efficacy. 

 Next we evaluated how the population distribution of G1 evolves over time, as G1 is 

gradually lengthening. Figure 4.9(a-c) shows the G1 residence time distribution and how it 

changes with differentiation for the DMSO system. In this system, the G1 phase lengthening is 

gradual, which causes the right tail of the G1 distribution to extend, leading to a more skewed 

distribution, resembling a log-normal or gamma distribution (Figure 4.8(c)). This is similar to 

how other studies have described cell cycle distributions [53, 141, 151] in more mature cellular 

systems, suggesting that as hESC differentiate, their distributions starts to resemble that of 

somatic cells. Together, these results show that the developed ensemble model can elucidate the 

mechanisms of G1 lengthening and predict pertinent cell cycle dynamic behavior. 
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Figure 4.9. Dynamic G1 residence time 
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As a form of validation, this model was next applied to capture the G1 dynamics of 

differentiating hESC, when induced with other small molecules [41]. The model rules were kept 

invariant while the model parameters were re-estimated. As shown in Figure 4.10, the model 

does an excellent job in capturing the unique and nonlinear dynamics of G1 changes during 

exposure to various differentiation agents and concentrations, further validating the model rules 

in accurately representing the dynamics of cell cycle transition during hESC differentiation. 

 

 

Figure 4.10. Application of ensemble model to induced differentiation with various small molecules 

Model predicted dynamics (blue band, 20 stochastic simulations) compared to experimental data (Calder et 

al [41]). (a-c) 10, 20 , and 40 uM RRD, respectively; (d-f) 10, 20, and 40 uM LY, respectively; (g,h) 1.5, 3 

mM HMBA, respectively 
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4.3.4 Oscillatory dynamics and emergence of two separate populations during endoderm 

differentiation explained by ensemble model 

We next applied our ensemble model to capture the G1 transition during directed 

differentiation towards definitive endoderm lineage. The experimental dynamics of the cell cycle 

transition during directed differentiation towards the endoderm and pancreatic progenitor 

lineages are displayed in Figure 4.11(a-c). In this system, hESC were guided towards endoderm 

fate by exposure to proteins Wnt3a and Activin A, with subsequent exposure to cyclopamine and 

retinoic acid to promote pancreatic progenitor commitment via sonic hedgehog inhibition [152]. 

With directed differentiation, the cells mature, with a gradual lengthening of G1. This is in 

contrast to DMSO, which directly promotes G1 lengthening by modulating Rb protein activity 

[153]. When analyzing the cell cycle dynamics during endoderm differentiation, we did not 

utilize the FUCCI reporter, but rather performed DNA staining with flow cytometry to quantify 

the cell cycle distribution. This difference in G1 quantification techniques is the reason for the 

large discrepancy in G1 fraction for undifferentiated cells (t=0) between Figure 4.11(a) and 

Figure 4.7(a-c): the FUCCI reporter takes time to mature, which is manifested as an 

underestimate of the G1 length [41] which in turn results in a lower G1 fraction. This is not 

encountered with DNA stains, and therefore the G1 fraction is considerably higher. The 

definitive endoderm/pancreatic progenitor system displays an increase in the G1 phase 

proportion, with most of the change happening within the first four days (definitive endoderm 

induction). After this point, the G1 phase does increase, but at a slower, more gradual rate. An 

interesting feature of these dynamics is the oscillatory behavior of this increase, especially during 

the onset of differentiation induction. 
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Figure 4.11. Dynamic changes of the H1 hESC cell cycle during pancreatic differentiation 

(a-c) experimental analysis of cell cycle distribution during  induction towards endoderm (up to day 4) and 

to pancreatic progenitor (up to day 8). n=2. Error bars=std. dev. (d) Ensemble model predicted dynamics 

describing G1 changes during endoderm (blue band, 20 stochastic simulations) as compared to 

experimental data. (e) Snapshot  at t=36 hrs of the predicted G1 residence time distribution during the 

definitive endoderm simulation. (f) Simulated fraction of differentiated cells with time 

 

 



 120 

The ensemble model was applied to the G1 phase definitive endoderm dynamics (Figure 

4.11(a), up to 96 hrs). As mentioned before, the model rules were kept largely invariant while the 

model parameters were re-optimized for the current experimental system. The only difference in 

the model rule being elimination of tstop parameter when considering DE differentiation. This is 

needed since the differentiation agents were replenished daily, hence removing the concern of 

diminished efficacy of the differentiation agent. The model does an excellent job in describing 

the experimental behavior (Figure 4.11(d)), and predicts relevant cellular parameters (Table 4.3).  

It is interesting to note that oscillatory behavior was observed in the experimental G1 population 

dynamics. While the source of these oscillations is non-intuitive, the model is able to capture this 

behavior. Analysis of the model structure and optimal parameter set revealed the following 

observation: this oscillatory behavior is likely due to the large jump in G1 length (large γ 

parameter), and can be explained in the following way. A large “jump” in G1 length, and 

therefore G1 population fraction, can be thought of “partially synchronizing” the cells in G1. 

Therefore, as shown in the preceding sections, oscillations will ensue. These will dampen out, 

but because of the increased G1 time, the new steady state fraction will be higher.  

 

Table 4.3. Parameters associated with the best fit cellular ensemble model to definitive endoderm 

dynamics 

Parameter (Equation 4.8) Value 

α 12.8 hrs 

μγ 0.305 

σγ 0.041 

Probability of differentiation 28.2% 
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As with the DMSO system, we analyzed the dynamic changes of the G1 residence time 

distribution during endoderm differentiation (Figures 4.9(d) and 4.11(e)). In contrast to the 

DMSO system, for definitive endoderm differentiation, the rate at which G1 phase lengthens is 

much greater, leading not to a gradual right-tail increase, but an abrupt jump in cells’ G1 time 

(Figure 4.11(e)). This leads to a separate subpopulation with a higher G1 residence time, which 

may explain the two subpopulations observed in the pancreatic progenitor synchronization 

model. Further dynamic information can be obtained by analyzing the time dependence of the 

fraction differentiated cells (Figure 4.11(f)). The simulation shows that there is a steady increase 

in the proportion of the population which is differentiated, until at around 1 day of directed 

differentiation the rate at which this proportion increases starts to diminish. By the end of the 

simulation (Day 4), this fraction seems to reach close to a steady state, with the total percentage 

of cells differentiated reaching around 80%. This is in agreement with separate flow cytometry 

analysis, which shows a similar percentage of sox17 positive cells (endoderm marker) at the end 

of definitive endoderm induction (Figure 4.3(a)). Thus analysis of the cell cycle dynamics using 

the developed ensemble model offers a powerful tool to characterize differentiation and achieve 

mechanistic explanations on observed cell cycle behavior, as demonstrated during definitive 

endoderm commitment.  

4.3.5 Changes in single cell protein network account for cell cycle population dynamics 

and increased variability with differentiation 

The developed population model could accurately capture cell cycle dynamics after 

synchronization, as well as predict phase times and variability, for a given phenotype. We further 

developed this into an ensemble model, which allowed distinct hypothesis testing of mechanisms 
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involved in G1 lengthening during the process of differentiation. In the next step we will further 

advance the ensemble model by accounting for the cell cycle proteins which govern G1-S 

transition. Numerous proteins interacting in a complex nonlinear network have been 

demonstrated to govern the cell cycle dynamics and phase transitions. There have been attempts 

to represent these interactions by a set of coupled nonlinear ODE. [44, 46, 48, 50], primarily 

targeting eukaryotic system. However, current attempts to elucidate the cell-cycle behavior of 

ESCs have been exclusively experimental. While a similar model can be theoretically extended 

to ESC, we developed a molecular model which captures the dynamics of key G1 proteins 

known to significantly change during differentiation, especially during definitive endoderm 

commitment.    When adapting the base equations describing G1-S protein dynamics ([46, 48]) 

for use in our system, two considerations were made: (1) a switch in the cyclin E expression is 

present, which we use as a simplified indicator of G1 transition time; and (2) molecules which 

have been shown to change during definitive endoderm differentiation (cyclin D [138]) and 

during differentiation in general (CIP/KIP (e.g. p21, p27) [154-156]), are present. This model is 

shown in Figure 4.12, with ODE and parameters described in Equations 4.1-4.5 and Table A3, 

respectively. While this is by no means a full model of the G1-S control circuit, this minimal 

model provides a mean to capture G1 residence time at the molecular level. The development of 

this model from a standard G1-S model is outlined in section 4.2.5. Profiles of the three proteins 

at nominal (undifferentiated) values are shown in Figure 4.12 (b). 
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(a) Schematic of the simplified protein network governing G1 residence time. (b) Protein temporal profiles 

simulated from the single cell ODE model under nominal (undifferentiated) parameters.  

 

Two different systems were tested: DMSO differentiation by Calder et al. [41] and 

definitive endoderm differentiation. For the former, it has been shown that a mechanism by 

which DMSO may lengthen the G1 phase is by inhibiting phosphorylation of the Rb protein 

[153]. This would suggest that the efficacy of cyclin D to phosphorylate Rb, thereby releasing 

E2F with subsequent promotion of cyclin E, would be diminished (for the logic of these protein 

connections, see [46, 48]) (Figure 4.13(a)). While Rb and E2F are not captured in Equations 4.1-

4.5, we can simulate this effect by increasing the Michaelis-Menten parameter associated with 

the DE term (parameter k9 in Equation 4.2, Figure 4.13(b)). To simulate DMSO effect in our 

simulation, the k9 parameter was increased linearly with time (Figure 4.13(c)). This effect, at the 

molecular level, is shown in Figure 4.13(d-f). As shown, the time at which cyclin E jumps from a 

low level to a high level, represented in this model G1 transition time, increases with increasing 

parameter value, thereby demonstrating how DMSO increases G1 residence time at the single 

cell level. Each profile represents a different value of k9, with the value increasing linearly. It is 

interesting to note that this linear increase in k9 results in an exponential-like increase in G1 

Figure 4.10. Single cell ODE model Figure 4.12. Single cell ODE model 
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transition time (Figure 4.13 (g)). This is in agreement with the mechanism proposed by the 

generalized model (Equation 4.8), which predicts that G1 time increases exponentially with time. 

These ODE were incorporated into the population model, and replaced the exponential G1 

lengthening in Equation 4.8. To account for cellular population heterogeneity, the amount k9 

increased is not deterministic, but has a stochastic component. Therefore, the parameters which 

were estimated were the same as in the aforementioned generalized model (Equation 4.8), 

including tstop, maximum G1, probability of differentiation, and the mean and variability 

associated with G1 increase. However, with the latter two parameters, rather than γ, in the 

current ODE formulism we are estimating the mean and variability of k9. The resulting 

population dynamics, and agreement with experimental data, are shown in Figure 4.14 (a-c).  
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Figure 4.13. Effects of different perturbations on the G1 protein behavior 

(a) Representation of the effect of DMSO on the protein network, which is captured by increasing 

parameter k9 in Equation 4.2 (b) linearly with time (c). (d-f) profiles of cyclin E, cyclin D, and CIP/KIP, 

respectively, with a linear increase in parameter k9. (g) G1 residence time as a function of k9 parameter. (h) 

Representation of the effect of definitive endoderm differentiation on the protein network, which is 

captured by decreasing parameter sD in Equation 4.1 and increasing parameter sI in Equation 4.3 (i) linearly 

with time (j). G1 residence time as a function of sD parameter (sI at nominal value) (k) and sI parameter (sD 

at nominal value) (l) 
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Figure 4.14. Application of ODE ensemble model to G1 population dynamics induced by various 

induction conditions 

(a-c) 0.5%, 0.75%, and 1% DMSO, respectively; (d) definitive endoderm. (error bar = st. dev.). Shown are 

10 stochastic runs  

 

 
This model was also applied to definitive endoderm differentiation. Numerous studies 

have reported that during differentiation, the levels of G1 inhibitors rise [154-156], and more 

specifically, during endoderm commitment, the level of cyclin D goes down [138]. Figure 

4.13(h) displays how this was simulated in our ensemble model, including a decrease in Cyclin 

D and an increase in CIP/KIP. In Equations 4.1 and 4.3, this can be achieved by decreasing and 

increasing sD and sI parameters, respectively (basal synthesis of cyclin D and inhibitor, (Figure 

4.13(i)). These synthesis rates changed linearly with time (Figure 4.13(j)). As above, a linear 
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change in these molecules gives rise to an exponential increase in G1 time (Figure 4.13(k,l)). 

When incorporated into the population model, the linear changes of these parameters included a 

random component, again to account for population heterogeneity. The simulated model 

dynamics and agreement with experimental data are shown in Figure 4.14(d) and displays the 

efficacy of the model to capture definitive endoderm cell cycle population dynamics resulting 

from perturbations at the single cell level. 

Given the established model, one can perform hypothesis testing and make predictions on 

how different perturbations may affect cell cycle behavior. One important aspect of the stem cell 

system is cell-to-cell variability, and how heterogeneous populations arise. Our ODE model 

provides us with a platform to analyze heterogeneity. Specifically, we wanted to determine how 

intracellular variability, including fluctuations in protein levels, contributes to cell cycle 

population variability with respect to cell cycle, and if this changes upon differentiation. To 

accomplish this, we first simulated the self-renewing system with nominal parameters (Table 

A3) and various coefficients of variation (CV) for both cyclin D and CIP/KIP synthesis levels 

(sD and sI, respectively), and quantified the distribution of G1 residence times. We then 

performed the same task with a differentiated cell type by adjusting these synthesis levels to 

yield a G1 residence time of 12 hours (either μsD=2.642 mM/hr or μsI=3.402 mM/hr). Figure 4.15 

shows the results of this analysis. While the trends are similar between cyclin D and CIP/KIP, 

the same cannot be said regarding the comparison between different stages of maturation. With 

undifferentiated parameters, the system behaves linearly, with a 10-fold increase in the parameter 

CV giving rise to a 10-fold increase in the G1 time CV. Interestingly, this linear correspondence 

is not observed with the more differentiated system; the 10-fold increase in parameter CV gives 

rise to a 30-fold increase in the CV of G1 times. Furthermore, given the same parameter 
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variability, the corresponding G1 time variability is much higher in the more mature system. 

Another striking feature is the shape of the distribution itself. With an undifferentiated cell type, 

and with very low parameter variation with a differentiated cell type, the G1 residence time 

distribution seems to be normally distributed. However, with higher amounts of variability, this 

distribution becomes more skewed, resembling a log-normal or gamma distribution, which is in 

agreement with the generalized ensemble model (Figure(4.9 (a-c)). The results suggest that 

heterogeneity associated with differentiation could in part be due to the increased variability of 

G1 times with maturation, and demonstrate the predictive utility of the model. 
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Figure 4.15. Effect of ODE parameter variability on G1 residence time variability 

Synthesis rates of cyclin D (sD) (a) or CIP/KIP (sI) (b) were normally distributed with different coefficients 

of variation (CV) (The variability of the parameter not being distributed (e.g. sI in (a) and sD in (b)) was 0).  

For each value, Equations 4.1-4.5 were solved and G1 times determined. This was performed with mean 

synthesis values yielding a relatively short mean G1 time (~3.2 hrs, undifferentiated hESC, left panels) and 

a longer mean G1 time (~12 hrs, right panels) 
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4.4 DISCUSSION 

Mathematical models of the cell cycle have been of great interest in order to understand 

the dynamics and mechanisms behind cell growth and proliferation, and have been applied to 

systems ranging from yeast to cancer cells. The cell cycle of the embryonic stem cell system has 

recently gained much attention, and over the past few years there has been a concerted 

experimental effort to understand the state of the cell cycle proteins contributing to the unique 

behavior of mouse and human ESC. However, a quantitative understanding of the cell cycle in 

ESC is still lacking. This work is the first attempt to mathematically represent the dynamics of 

human ESC cell cycle behavior and achieve a more thorough quantitative understanding of the 

system.  

In this work we have utilized a coupled experimental and computational approach to 

quantitatively represent the unique cell cycle behavior of hESC during self-renewal and 

differentiation. Cell cycle dynamics were first analyzed through synchronization experiments 

which show drastic differences between cell cycle behavior of self-renewing hESC and hESC-

derived pancreatic progenitors. These dynamics were captured by a stochastic population model, 

allowing for prediction of relevant cell cycle characteristics, including population heterogeneity 

and the phase residence time distributions. To capture the process of and elucidate the 

mechanisms behind G1 population increase during the process of differentiation, we developed 

an ensemble model which accounts for differentiation and G1 lengthening at the single cell level. 

This model was then extended to account for intracellular protein dynamics, giving insight into 

the mechanisms of G1 lengthening and population variability. 

Numerous approaches have been developed to mathematically understand cell cycle 

population dynamics, with a primary focus being analysis of cancer cells and the effects of drug 
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therapies. These approaches range from relatively simple ordinary differentiation equations to 

complex spatially and physiologically structured partial differential equations [157]. Herein we 

have adopted an approach which describes phase population and 

synchronization/desynchronization behavior by tracking cellular automata, whose phase times 

are described by probability distributions. There were several reasons for adopting this approach. 

The first is the directness by which stochasticity and variability can be incorporated, which was a 

focal point of the analysis, and which has been shown to be crucial in cell cycle analysis [141, 

158, 159]. Also, others have demonstrated the effectiveness of this modeling technique for 

mechanism prediction [54, 55], which was another goal of the current work. A more common 

modeling technique to describe population dynamics is the population balance equation (PBE), 

which has been used to model various systems, ranging from adult stem cell behavior [35] to 

plant cell aggregation [160]. PBE have also been used to study cell cycle dynamics, including 

models whose phases have age dependence [61], analogous to the phase residence times in the 

current work. However, these models often result in integro-partial differential equations, and 

while there have been advances in approaches to solve these equations, including discretization 

techniques, if the number of variables describing the intracellular state becomes more than one or 

two, it may not be possible to realistically solve them at all [36]. As one of the objectives of this 

paper was to describe the state of the cell by intracellular cell cycle proteins and the 

heterogeneity associated with these parameters, this approach would not be feasible, and we 

therefore adopted the single-cell approach, which can easily incorporate many variables to 

describe the cellular state. 

Recent years have seen advances in single cell analysis, which can yield more 

information of a cellular population than population-averaged data [161-163]. This is true for the 
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cell cycle system; FUCCI reporters, flow cytometry, single cell time-lapse tracking and mitosis 

detection are able to provide a wealth of information, including quantification of heterogeneity 

and individual G1/cell cycle times [41, 143, 144]. While it is possible to experimentally track 

single cell and population dynamics with ever-increasing resolution, this data alone is often 

inadequate in developing a mechanistic understanding of the complex system. Hence, we 

coupled single-cell information to our developed population and ensemble models to achieve this 

mechanistic understanding. A strength of this model is the ability to perform hypothesis testing, 

something which is not possible with experimentation alone. Through hypothesis testing, we are 

able to both elucidate mechanisms of cell cycle transition and make informed predictions of the 

effects of different perturbations to cell cycle behavior.   

Several researchers have suggested that G1 times are exponentially distributed [141, 

151]. We therefore expected our undifferentiated model and synchronization experiments to 

predict this behavior. This was not the case, with the best agreement arising from purely 

Gaussian distributions. This was not expected, and we hypothesize that at this pluripotent state 

the control mechanisms in place are such that there is tight control on the G1 phase which 

prohibits cells from probabilistically exiting the cell cycle and obtaining longer times, thereby 

maintaining fast proliferation and minimal time in which cells are exposed to differentiation 

cues. We postulate that as cells mature, this tight control becomes more relaxed, allowing for 

longer and more variable G1 times, which might be necessary with a more mature system. This 

transition would cause the normal distribution to become positively skewed, resembling a more 

gamma or exponential distribution. Indeed, this can be seen happening from the ensemble model 

simulating DMSO induced differentiation (Figure 4.9(a-c)). 
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 A further unexpected result came when analyzing the pancreatic progenitor system. First, 

as one can see from Figure 4.3(c), a high degree of synchronization was not achieved in this 

system. This was surprising, given the high degree of synchronization at the self-renewal stage 

(Figure 4.2(c)). Even with this less than optimal degree of synchronization, the flexibility of the 

model allows for the cell cycle dynamics to be captured and relevant parameters extracted, as 

long as the cell cycle distribution has been at least somewhat perturbed from its asynchronous 

state. It should be noted, however, that more accurate model predictions may be obtained with 

increasing synchronization. In addition to experimental synchrony, another important 

observation in the pancreatic progenitor system was the emergence of two populations of cells. 

When considering two, as suggested by DFT, excellent agreement between the simulation and 

data was obtained. This was corroborated through the ensemble model which predicted a 

population of cells displaying a different set of G1 traits, which arose from the predicted large 

G1 increase during endoderm differentiation. Furthermore, the percentage of differentiated cells 

at the end of the endoderm simulation (Figure 4.11(f)) is in relatively close agreement to the 

percentage of the population displaying higher doubling times predicted by the pancreatic 

progenitor synchronization model (61%, Table 4.2(b)). While the ensemble model was trained 

on a completely separate data set, and was not given any information on multimodality of G1 

times in the population, this multimodal distribution was nevertheless predicted (Figure 4.11(e)), 

further demonstrating the effectiveness of the modeling techniques. While this ensemble 

simulation was not continued throughout the pancreatic progenitor differentiation process, it is 

thought that these two modes would persists throughout, albeit shifted through further changes 

brought about by pancreatic differentiation.  
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In analyzing the phase residence times, and the changing of these times during 

differentiation, we particularly focused on the G1 phase. While there may be changes in the S 

and G2/M phases, at the current time the consensus in the field is that the majority of the change 

to the cell cycle during differentiation happens in the G1 phase [143]. Furthermore, it is a widely 

held belief that the majority of cell fate decisions, especially those involving ESC behavior, are 

made in the G1 phase [137, 164]. We therefore focused on this phase by which population 

dynamics is mostly affected. In the next step, when building our reduced G1 molecular ODE 

model for the ensemble model, we focused on those molecules in early G1, and those which are 

present in late G1 (guiding the cells towards DNA replication) were not considered.   Studies 

have shown that the early part of G1 is subject to high variability, with the latter part more 

deterministic [141, 151]. Therefore, we hypothesized that changes in cell cycle length and 

variability are associated with the early G1 phase. In addition, it has been postulated that 

differentiation, especially towards endoderm, is more likely to happen in early G1 [138, 142]. 

Early G1 control was therefore chosen to be a focal point of the ODE model and for G1 

lengthening.   

During the development of the ensemble model, parameter estimation, and elucidating 

mechanistic behavior, it is important to note that not all model alternatives worked, and the 

optimal model described herein was the only one to capture the unique dynamics of the G1 

population upon differentiation. A crucial aspect of the physical behavior that allows for this 

process to work is the nonlinearities associated with the temporal G1 population data, including 

the delay, step behavior, small and large oscillations, and end of experiment decay. If these 

features were not present, and the differentiation data resulted in simple monotonic, linear 

behavior, there would most assuredly be redundancy, with multiple models being able to explain 
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the experimental dynamics. However, with these nonlinearities, only one model alternative was 

able to do so, with the elucidation of mechanistic information. One of these mechanistic 

determinations was the necessity incorporating G1 “priming” to describe the population 

dynamics. Cells decide to differentiate only in the G1 phase, and if the cells do commit to 

differentiate, lengthening occurs upon entering G1 phase of the next cell cycle. This theory of G1 

“decision making” has been postulated through experimental evidence of several groups [41, 

137, 138, 142], as has the idea that G1 lengthening does not occurs immediately [150]. This 

behavior was suggested by comparing model alternatives to population data, without any direct 

experimental data on G1 decision making, further demonstrating the power of the modeling 

approach. 

When analyzing the cell cycle of stem cells, it is important to carefully separate the 

characteristics associated with adult and embryonic. While there has been considerable effort in 

studying, both experimentally and computationally, the adult stem cell cycle [165-168], the 

features associated with this behavior may or may not be directly translatable to studies looking 

at ESC division. For instance, asymmetric division and quiescence, hallmarks of adult stem cells, 

have not been characterized in ESC. In looking at this latter point in detail: many works 

modeling the G1-S switch at the molecular level concentrate on quiescence, in particular a G0 

phase in which the cell exits the cell cycle due to a lack of cues to move forward in the cycle, 

namely growth factors. However, it is currently not known if this restriction point exists in the 

ESC cell cycle, and if checkpoints are present, research is ongoing to determine in what fashion 

they operate [169-171]. Furthermore, it has been shown that ESC exposed to low serum 

conditions do not exit the cell cycle, and continue to proliferate [150]. Therefore, the idea of a 
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G0 phase may not be applicable to ESC cell cycle studies, and a more gradual lengthening of the 

G1 phase, induced by different factors, as modeled in the current work, may be more applicable. 

In addition to differences between adult and embryonic, differences between species 

should be taken into account. Genes and pathways are often conserved through evolution; 

indeed, studies have shown that the control mechanisms governing the G1-S transition have 

similarities between eukaryotes [172]. However, there seem to be substantial differences 

between the cell cycle of mESC and hESC. First, the doubling time in mESC is even shorter in 

mESC, ~8-10 hrs, with a smaller proportion of the cell cycle in the G1 phase, ~15%  [173]. This 

could be due to another substantial difference: elevated CDK activity which is not dependent on 

cell cycle position [174, 175]. If this were the case with hESC, the ODE model proposed herein 

would not be applicable. This, however, does not seem to be the case, as others have reported 

that, depending on the state of the cell cycle, proteins governing cell cycle transitions can be 

expressed at different levels and with different activities [154, 176, 177].  

4.5 CONCLUSIONS 

In this study we have developed a stochastic population model to describe and understand 

the cell cycle system of hESC during self-renewal and differentiation. We started off with a 

stochastic cellular automaton model; this tracks individual cells and their progress through the 

cell cycle, with phase residence times described by probability distributions. Information on the 

system is obtained by comparing simulations to experimentally synchronized cells, and accurate 

predictions of phase resident time distributions of undifferentiated cells are achieved, including 

phases which are governed by tight Gaussian distributions. This analysis was extended to explain 
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the desynchronization of pancreatic progenitor cells. The predicted phase distributions show that, 

in this more mature phenotype, their exists two separate subpopulations which display different 

cell cycle behavior, but with both populations showing G1 phases longer and more variable than 

undifferentiated cells. To mechanistically explain this behavior, we developed an ensemble 

model of G1-S transition, describing how this G1 lengthens upon differentiation. This is 

achieved in two parallel ways, with one model consisting of a phenomenological formulation, 

and the second as a set of ODE describing the temporal profiles of proteins controlling the cell 

cycle. Both of these structures were incorporated into the cellular automata. This ensemble 

model accurately captured the change in G1 population during differentiation and predicts 

pertinent features of this transition, including probability of lengthening, maximum G1 time, and 

the mechanism by which multiple cell cycle populations arise. 
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5.0  POPULATION BEHAVIOR OF STOCHASTIC CELLULAR DECISION 

MAKING DURING INITIAL LINEAGE COMMITMENT 

5.1 INTRODUCTION 

Chapter 4 demonstrated that mechanisms governing G1 lengthening at the population 

level can be determined through our developed stochastic model. To gain a more mechanistic 

understanding on the differentiation process itself, we extend this model to focus on population 

dynamics arising from initial lineage commitment to the germ layers [178]. We show that 

through this model, a better understanding of the endoderm differentiation process of human 

ESC can be obtained.  

Overall, the extended model involves a stochastic simulation, where a population of cells 

is evolved following specific rules through which the system dynamics can be extracted. The 

model predicts three aspects of endoderm formation: total cell proliferation, cell death, and 

lineage commitment. In order to understand the mechanism favoring the process of stem cell 

differentiation we simulate several alternate mechanisms and compare the simulated dynamics 

with our experimental data. Endoderm is experimentally induced in hESC through alternate 

pathways: addition of Activin A and Activin A supplemented with the growth factors basic 

fibroblast growth factor (FGF2) and bone morphogenetic protein 4 (BMP4) [15, 179, 180]. 

Differentiation dynamics of the cell population is experimentally tracked by analyzing 
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percentage of cell population expressing endoderm specific proteins: Sox17 and CXCR4 [181, 

182].  Through agreement between the experimental data and simulated dynamics, we elucidate 

the mechanisms behind initial lineage commitment during definitive endoderm differentiation 

induction.  

5.2 METHODS 

5.2.1 Cell culture and endoderm induction 

The culture of H1 hESC was described in Chapter 4. For the differentiation study, the 

current work chose to compare two conditions to induce endoderm: human Activin A 

(henceforth referred to as ‘Condition A’) and human Activin A supplemented with the growth 

factors FGF2 and BMP4 (‘Condition B’). To commence endoderm induction, DMEM/F12, 

1xB27® Supplement, and 0.2% Bovine Serum Albumin (BSA) supplemented with 100 ng/mL 

human Activin A (Condition A) or 100 ng/mL human Activin A, 100 ng/mL FGF2, and 100 

ng/mL BMP4 (Condition B) was used as differentiation media, which was replaced daily for a 

total of five days. Upon induction of differentiation cells were harvested on a daily basis for 

subsequent analysis. For each well, the supernatant was collected, the plated cells were 

dissociated with Trypsin+EDTA, Trypan Blue was added to distinguish live from dead , and the 

cells were counted using a standard hemacytometer. 
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5.2.2 Flow cytometry and quantitative polymerase chain reaction 

For flow cytometry, harvested cells were first fixed for 15 minutes in 4% methanol-free 

formaldehyde in phosphate-buffered saline (PBS). Cells were washed twice and permeabilized in 

0.1% Saponin + 0.5% BSA in PBS for 30 minutes. To block non-specific binding, the cells were 

incubated in 3% BSA + 0.25% dimethyl sulfoxide (DMSO) + 0.1% Saponin in PBS for 30 

minutes. A portion of cells were then set aside as the negative control (secondary antibody only 

without primary). The cells to be used as the positive samples were then incubated in blocking 

buffer with goat anti-human sox17 and rabbit anti-human cxcr4 primary antibodies, 1:200 

dilution, for 30 minutes. The cells were washed twice with blocking buffer, resuspended in the 

buffer, and incubated with donkey anti-goat APC (1:350 dilution) and donkey anti-rabbit FITC 

(1:200 dilution) for 30 minutes (both the samples and negative control). Two washings were 

followed by 10 minutes of 0.2% tween-20  to further eliminate non-specific staining. Cells were 

washed and transferred to flow cytometry tubes. Accuri C6 © Flow Cytometer was used to 

quantify sox17-APC and cxcr4-FITC expression. Cells stained with the secondary antibody only 

(without primary antibody) were first analyzed; this population was taken as the negative, and 

the gate was set beyond these cells to eliminate false positives due to auto-fluorescence and non-

specific secondary antibody binding. The completely stained samples (primary and secondary 

antibody stained) were then analyzed, and the percentage of the population falling within the set 

gate was recorded as the positive sample for the respective antibody.  

To quantify mRNA levels, harvested cells were lysed and mRNA was extracted and 

purified using a Nucleospin II RNA kit. The RNA quantity and quality was measured using a 

SmartSpecTM Plus spectrophotometer , after which reverse transcription was performed with the 

ImProm II Reverse Transcriptase System. cDNA levels of Gapdh, Oct4 , and Brachyury  were 
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measured with quantitative polymerase chain reaction (qPCR) using an Mx3005P system and 

Brilliant SYBR Green qPCR Master Mix (primers used in qPCR shown in Table A5).  

5.2.3 Mathematical model 

The system of stem cell differentiation to endoderm is modeled using a stochastic 

population-based model. The basic formulation of the model is based on earlier reports for 

hematopoietic stem cells [37, 183]. Here we are introducing some modifications to adapt it to the 

ESC system, followed by a stringent model analysis using parameter sensitivity and feasibility 

studies. In this section we summarize the working principle of the model along with our 

modifications. Figure 5.1 displays the pseudo-code describing the implementation of the main 

simulation, parameter ensemble, and sensitivity analysis. 
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Figure 5.1. Implementation of mathematical model 

Pseudo-code describing flow of events in the population based model. Black: events to simulate temporal 

behavior of cellular population (main routine). Green: model inclusions for parameter ensemble, which 

runs main routine using different parameter value combinations. Red: model inclusions for sensitivity 

analysis, which runs main routine 4000 times (replications determined by convergence study) for each 

perturbed parameter value, the output being the parameter sensitivities. 
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5.2.3.1 Signaling Regimes, proliferation, apoptosis, differentiation rules 

The model is initiated by a population of cells, the properties of which are evolved by 

specific pre-assigned rules. The cells are primarily categorized into two signaling regimes: Ω and 

A; Ω can be considered as an active regime supporting cellular proliferation and differentiation, 

while A is a more dormant regime where cells are prone to dedifferentiation. The cells can 

transfer in between these two regimes, an event decided upon primarily by a cell-specific 

parameter, termed as ‘a’ value. This parameter ‘a’ is randomly assigned to each cell at the 

beginning of simulation, and is updated at each time step. The probability of transfer to/ from a 

regime is dependent on this parameter along with the number of cells in the destination regime. 

This ‘a’ value is unaltered in the A regime while it progressively reduces in the Ω regime, and 

when it falls below a threshold the cells lose their ability to transfer to the A regime.  

Each cell is randomly assigned a maximum life span, exceeding which it will die. While 

the cells age in the Ω regime, they neither proliferate nor age in the A regime. Proliferation is 

allowed in the Ω regime for an amount of time which is cell dependent, after which the cell 

enters a senescent stage and will not proliferate. Furthermore, an individual cell is allowed to 

proliferate only after it loses the capability to pass into A regime having crossed the ‘a’ threshold 

value.  

Cellular differentiation is governed by the ‘lineage propensity’ parameter, representing a 

cell’s likelihood to differentiate into a particular lineage. Only the Ω regime allows an increase in 

lineage propensity. While updating the propensity of differentiation to a particular lineage, all the 

possible lineages are competing and any can be updated, with the one with higher propensity 

having a higher probability of being selected. Once a cell’s propensity exceeds a threshold level, 

the cell is considered committed to that particular lineage and will retain its differentiated 
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phenotype. If this threshold has not been exceeded and if the cell is chosen to be transferred to 

the A regime, the propensity values will converge to an average value.  The model is therefore 

able to track specific germ layer populations, and through this the percent of the population 

positive for Sox17 (visceral and definitive endoderm marker) and CXCR4 (definitive endoderm 

and mesendoderm marker) [181, 182, 184] can be extracted. 

5.2.3.2 Mechanism of hESC differentiation 

The current work is focused on the mechanistic investigation of the dynamics of hESC 

induction into endoderm. Using the platform of the stochastic population based model we 

investigated several alternate mechanisms and analyzed them for agreement with experimental 

data. Three characteristics of the differentiation process were chosen to be investigated: the 

presence/absence of an intermediate germ layer, mesendoderm, which subsequently gives rise to 

mesoderm and endoderm [185]; the presence/absence of CXCR4, in mesoderm; and whether 

proliferation of a specific differentiated cell phenotype is favored over others. Combination of 

aforementioned attributes results in 12 alternate mechanisms, shown below: 

1. All phenotypes with increased proliferation, CXCX4 in mesoderm, mesendoderm 

intermediate germ layer present 

2. Endoderm and undifferentiated phenotypes with increased proliferation, CXCX4 

in mesoderm, mesendoderm intermediate germ layer present 

3. Undifferentiated phenotype with increased proliferation, CXCX4 in mesoderm, 

mesendoderm intermediate germ layer present 

4. All phenotypes with increased proliferation, CXCX4 not in mesoderm, 

mesendoderm intermediate germ layer present 
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5. Endoderm and undifferentiated phenotypes with increased proliferation, CXCX4 

not in mesoderm, mesendoderm intermediate germ layer present 

6. Undifferentiated phenotype with increased proliferation, CXCX4 not in 

mesoderm, mesendoderm intermediate germ layer present 

7. All phenotypes with increased proliferation, CXCX4 in mesoderm, mesendoderm 

intermediate germ layer not present 

8. Endoderm and undifferentiated phenotypes with increased proliferation, CXCX4 

in mesoderm, mesendoderm intermediate germ layer not present 

9. Undifferentiated phenotype with increased proliferation, CXCX4 in mesoderm, 

mesendoderm intermediate germ layer not present 

10. All phenotypes with increased proliferation, CXCX4 not in mesoderm, 

mesendoderm intermediate germ layer not present 

11. Endoderm and undifferentiated phenotypes with increased proliferation, CXCX4 

not in mesoderm, mesendoderm intermediate germ layer not present 

12. Undifferentiated phenotype with increased proliferation, CXCX4 not in 

mesoderm, mesendoderm intermediate germ layer not present 

 

Each of these were incorporated into the model and analyzed for agreement with experimental 

data. It is expected that the most likely mechanism will best describe the experimental dynamics 

of the stem cell system.  

The incorporation of mesendoderm involved a two stage differentiation scheme. In the 

first stage, hESC are able to differentiate into either mesendoderm or visceral endoderm. Once 

cells are committed to the mesendoderm lineage, several of their attributes are re-initialized, such 
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as their ‘a’ value and lineage propensities. The mesendodermal cells can then further 

differentiate into endoderm or mesoderm. Differences in the proliferation potential of different 

phenotypes were incorporated by considering 3 scenarios: proliferation of hESC and 

mesendoderm; proliferation of hESC, mesendoderm and endoderm; and proliferation of all 

phenotypes.  

5.2.3.3 Convergence study, stochastic sensitivity analysis, and parameter ensemble 

As with any stochastic model, the number of model runs necessary to obtain a converged 

solution needs to be determined. An additional parameter of the current model is the initial cell 

population, which affects the solution over a certain range. A two-dimensional  convergence 

study was undertaken, wherein the effects of both stochastic run number and initial cell 

population on model output were determined. The convergence test allows determination of the 

minimum number of stochastic runs and initial cell population beyond which the model output 

does not significantly change. All results reported here are using the converged parameter values. 

Sensitivity analysis was performed to determine the relative importance of parameters in 

affecting the outputs of cellular growth, death, and lineage commitment. Because this model is 

probabilistic in nature, traditional ways of determining local sensitivity, e.g. partial derivative of 

output with respect to an input, cannot be employed. A stochastic analysis was therefore chosen, 

using differences in output histograms of nominal and perturbed parameters, S, to estimate 

parameter sensitivity [186] as: 
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where xj and yj are the individual elements in the nominal and perturbed histograms, 

respectively, Ii represents the range of each bin i in the nominal histogram, X is a counting 

variable which takes on a value of 1 if xj/yj is within the interval Ii, |x|  and  |y| are cardinalities of 

data sets x (nominal) and y (perturbed), respectively, and k is the number of bins, which was 

determined by calculating the appropriate bin size of the nominal output histogram by the 

Freedman-Daconis rule [187]: 
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Where IQR(P) is the interquartile range of a sample population P and n is the number of 

observations in P. The number of bins was different for each output, and ranged from 37 to 51.   

For sensitivity analysis, each parameter was perturbed by 10% while keeping the rest at 

the nominal value. For each bin in the nominal output histogram, the difference between the 

percentage of total nominal histogram elements residing in that bin and the percentage of the 

total perturbed histogram elements residing in that bin is calculated. The sum of the absolute 

value of this difference over all of the bins is the histogram distance. 

Having determined the most sensitive model parameters, the next step is to determine an 

appropriate value of the parameters which best estimates the experimental data. We realize that a 

single parameter combination may not be adequate in describing the experimental data; instead, 

there exists a parameter hyper-space adequately satisfying the data. Hence an ensemble 

parameter estimation was performed by randomly generating initial guesses from the hyper-

space of the sensitive parameters. The model was simulated with 10000 random parameter 

samples; for each of these simulations the least square estimate is determined between 
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experimental data and model output. These simulations were run for each mechanism and 

condition under investigation, and parameter ensembles were generated by considering only 

those parameter sets which meet certain error constraints. Following the above detailed 

methodology we evaluated the model predictions obtained from the different mechanisms and 

compared them with experimental data to determine the most plausible mechanism. 

5.3 RESULTS 

5.3.1 Experimental data 

The hESC culture was analyzed for cellular growth and death dynamics during endoderm 

induction by both Activin A (Condition A) and Activin A/FGF2/BMP4 (Condition B) conditions 

as illustrated in Figure 5.2. Cellular growth kinetics was found to exhibit nonlinear dynamics, 

while cell death remained predominantly linear over time. A proliferation lag time is exhibited in 

Condition A up until Day 3, during which time the number of live cells decreases because of cell 

death. Beyond this time, cells begin to proliferate in a roughly linear fashion. Interestingly, the 

majority of cell growth in Condition B occurs before Day 3.  
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Figure 5.2. Experimental results of cell behavior during endoderm induction 

Cellular growth (a) and death (b) dynamics for Conditions A and B. Temporal behavior of cellular 

population positive for Sox17 (c) and CXCR4 (d). Inset: Representative output of flow cytometry data. Red 

histogram: secondary antibody only control. Black histogram: sample. Red gate denotes sample taken to be 

positive. 

 

The differentiated cell population was analyzed by flow cytometry for percent of cells 

positive for Sox17 and CXCR4 for each day of differentiation. Figure 5.2 represents the 

dynamics of Sox17 (c) and CXCR4 (D) expression for both the experimental conditions, with the 

insets illustrating representative flow cytometry results. Details of the flow data are presented in 

Figure A3. The population positive for Sox17 exhibits a maximum percentage of ~19-23% at ~2-

3 days (depending on the condition), with subsequent decay. The fraction of cells positive for 

CXCR4 is relatively constant until the second day, after which there is a significant drop. 

Subsequently, there is an approximately linear increase in the CXCR4 population which is more 

prominent in Condition B.   
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5.3.2 Mathematical model 

5.3.2.1 Model parameter analysis 

In the next step the developed stochastic model was used to test the proposed 

mechanisms for agreement with experimental data. The mathematical model involves multiple 

parameters which require detailed analysis before the model can be used for prediction. The 

parameters can be grouped into two categories: (a) simulation parameters which affect the 

convergence behavior of the simulation and (b) model parameters which affect specific model 

output for the converged simulation. Two parameters were identified to be simulation 

parameters: initial cell population and number of stochastic runs. These parameter values were 

optimized by performing a two-dimensional convergence study, as illustrated in Figure 5.3 for 

the CXCR4-positive population output. Overall it is observed that the initial cell population has a 

more dominant effect on convergence, while the effect of stochastic runs was rather weak 

beyond 2000 runs. Following this analysis an initial cell population of 9000 and total stochastic 

runs of 4000 was used for subsequent simulations. 
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Output is percent of the simulated population positive for CXCR4, averaged over all stochastic runs at Day 5. 
 

A detailed sensitivity analysis was performed for the model parameters in order to 

determine the relative importance of the parameters in determining model output. As detailed in 

Equation 5.1, the measure of histogram distance is used to represent the parameter sensitivity 

associated with a specific model output. Figure 5.4(a) illustrates the model parameter sensitivity 

to the output of cellular growth, as concluded from the shift in histogram distance (inset). A clear 

jump in the sensitivity is observed, with a large difference between parameters with low and high 

sensitivity.  

 

Figure 5.3. Convergence study of simulated cell population over various initial cell populations and 

total stochastic runs 
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Figure 5.4. Sensitivity analysis of population based model 

(a) Cellular growth sensitivity to each of the parameters, perturbed by 10%. Parameter definitions listed in 

Table A6. (inset) Comparison of cellular growth output histogram from nominal (red) and perturbed (blue) 

parameters. (b) Number of sensitive parameters determined for each mechanistic model. Proliferation 

induced: A, all phenotypes; E&U, endoderm and uncommitted (hESC and mesendoderm); U, uncommitted 

only. 
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While Figure 5.4(a) represents the parameter sensitivity to model output of cellular 

growth, similar analysis was also performed for all of the model outputs. Overall it was observed 

that even though the magnitude of sensitivity differs between outputs, the highly sensitive 

parameters were mostly conserved across outputs. Furthermore, in the present study we are 

investigating multiple competing mechanisms, which require modification of the model 

formulation. Since the effect of such modifications on the parameter sensitivity is not intuitively 

obvious, similar analysis was repeated for each of the 12 proposed mechanisms. Figure 5.4(b) 

summarizes the number of sensitive parameters for each of the mechanisms. From the analysis, 

eight classes of parameters were consistently observed to have the highest sensitivity: 

 

• amin: ‘a’ value threshold beyond which a cell enters the proliferation phase 

• a0max: The initial cell population is randomly assigned an ‘a’ value, with an upper limit of 

a0max 

• xcom: lineage propensity threshold beyond which a cell is committed to a particular 

lineage 

• d: factor with which ‘a’ decreases 

• tg1: time cell stays in G1 phase of cell cycle. Only in this phase can a cell differentiate and 

transfer to the A regime from the Ω regime 

• lmax: upper value of range of cell population’s life span 

• nprogi: factor in determining magnitude of propensity updates for each lineage i 

• aa: parameter in determining the probability of a cell transferring from the Ω regime to 

the A regime 
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5.3.2.2 Ensemble parameter estimation 

Having determined the sensitive parameters for each of the mechanisms, the next step is 

to determine the optimum parameter values which will result in best agreement with 

experimental data. In literature, biological samples are typically defined as being ‘sloppy’ [76]  

with a broad ensemble of parameters satisfying the error constraints. Accordingly we also target 

identification of representative ensemble of parameters. The model is formulated to capture the 

dynamics of cellular growth, death and differentiation, the output of differentiation being of most 

interest. Hence the model parameters were optimized with respect to differentiation dynamics, 

while growth kinetics and the dynamics of cell death were used for verification. A projection of 

the simulated error onto a 2-dimensional parameter space (for the mechanism which incorporates 

mesendoderm and promotes proliferation of both uncommitted and endodermal cells without 

CXCR4 being expressed in mesoderm (‘Mechanism B’)) is shown in Figure 5.5(a). Although it 

was initially thought that a trend might be observed between the error and values of the 

parameter ensemble, Figure 5.5(a) shows that there is a lack of any correlation between multiple 

parameters and associated errors (shown for parameter ‘d’; further analysis of all parameter 

combinations yielded the same result).  Figure 5.5(b) illustrates the minimum ensemble error for 

each of the proposed mechanisms simulated under the two endoderm induction conditions, the 

error being evaluated according to least square formulation.   

 



 155 

 

Figure 5.5. Ensemble parameter estimation and model errors 

(a) Parameter values for Mechanism B ensemble yielding errors of less than 0.025. Each parameter is 

compared to the most sensitive parameter, ‘d’. Color bar denotes the ensemble error for that particular 

parameter value. (b) Minimum ensemble error generated for each mechanistic model. Proliferation 

induced: A, all phenotypes; E&U, endoderm and uncommitted (hESC and mesendoderm); U, uncommitted 

only. Blue, Condition A; Red, Condition B. 
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5.3.2.3 Mechanism evaluation: endoderm induction by Activin A 

As shown in Figure 5.5(b), the absence of mesendoderm gives rise to large errors, in 

some cases an order of magnitude higher than their counterpart models which include 

mesendoderm. If one considers the Activin A only condition, the most accurate mechanisms 

include those which incorporate mesendoderm and promote proliferation of both uncommitted 

and endoderm germ layer  both with (‘Mechanism A’) and without (‘Mechanism B’) CXCR4 in 

mesoderm. Since Figure 5.5(b) illustrates the accuracy of the model in predicting differentiation 

dynamics only, the performance of the 2 prospective mechanisms were further verified with the 

help of growth kinetics and the dynamics of cell death. Figure 5.6 illustrates the ensemble 

simulation of all the model outputs and its comparison with experimental data. While both the 

mechanisms had excellent performance in predicting Sox17 and CXCR4 dynamics (Figure 5.6 

(c,d,g,h) they differed significantly in predicting growth kinetics and cell death dynamics (Figure 

5.7 (a,b,e,f). Figure 5.6 clearly illustrates that Mechanism B performs better in describing both 

growth kinetics and cell death dynamics compared to Mechanism A. Hence the former was 

chosen to be the most likely mechanism for Condition A.  
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Figure 5.6. Simulated output dynamics compared to experimental data (Condition A) 

Grey band denotes the ensemble of simulations having an error less than the threshold, with the single solid 

black curve showing the best fit. Black circles represent the experimental data points. (a-d): Growth 

kinetics, cell death, fraction of population positive for Sox17 and CXCR4 dynamics, respectively, of 

Mechanism A; error threshold of 0.05. (e-f) Growth kinetics, cell death, fraction of population positive for 

Sox17 and CXCR4 dynamics, respectively, of Mechanism B; error threshold of 0.025. Cellular growth and 

death normalized to Day 4. 
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5.3.2.4 Mechanism evaluation: endoderm induction by Activin A supplemented by growth 

factors 

Condition B (Activin A supplemented with FGF2 and BMP4) proved more difficult to 

describe via the investigated mechanisms, mainly because CXCR4 dynamics exhibits a faster 

and more prominent drop as compared to Activin A only condition. As shown in Figure 5.5(b), 

the two mechanisms which give lowest error for Condition B are the ones which incorporate 

mesendoderm, have CXCR4 present in mesoderm and promote proliferation of all phenotypes 

(‘Mechanism C’) and the previously described Mechanism B. The simulated dynamics of these 

two mechanisms with experimental data of Condition B are shown in Figure 5.7. As with 

Condition A, although the incorporation of CXCR4 in mesoderm gives a small error, the 

simulated profiles of growth kinetics and cell death are not in agreement with experimental data. 

The next best mechanism, Mechanism B, exhibits both a low error and good results with all 

outputs, so it was again chosen as the most likely mechanism. 
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Figure 5.7. Simulated output dynamics compared to experimental data (Condition B) 

Grey band denotes the ensemble of simulations having an error less than the threshold, with the single solid 

black curve showing the best fit. Black circles represent the experimental data points. (A-D): Growth 

kinetics, cell death, fraction of population positive for Sox17 and CXCR4 dynamics, respectively, of 

Mechanism C; error threshold of 0.1. (E-F) Growth kinetics, cell death, fraction of population positive for 

Sox17 and CXCR4 dynamics, respectively, of Mechanism B; error threshold of 0.025. Cellular growth and 

death normalized to Day 4. 
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It is therefore reasonable to conclude that during endoderm induction with the conditions 

described above, undifferentiated stem cells first differentiate into a mesendoderm germ layer 

with subsequent differentiation to endoderm and mesoderm, the latter not expressing CXCR4. 

Furthermore, the induction condition seems to promote proliferation of both pluripotent and 

endoderm-like cells. The optimized parameters of this mechanism are shown in Table 5.1, with 

definitions of parameters in Table A6.  

 

Table 5.1. Comparison of the best fit parameter set between the two conditions 

Parameter Condition A Condition 
B 

a0max2 0.3 0.161 
xcom 0.8 0.767 

xcom2 0.9 0.79 
d 1.2 1.32 

tg1 12 14.6 
lmax 190 222 

nprog(ME) 0.11 0.0879 
nprog(endoderm) 0.04 0.0278 
nprog(mesoderm) 0.06 0.0457 

nprog(VE) 0.06 0.0611 
aa 2 2.07 

 

5.3.3 Model validation 

The power of mathematical models lies in their predictive capacity. The predictive 

capacity of our proposed model was thus tested by simulating the population dynamics of cell 

types for which no a priori data was used in constructing the model. The chosen populations 

were that of undifferentiated cells and mesendoderm cells. The simulated profile of the 
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undifferentiated cells (Figure 5.8(a) and (b)) shows an exponential decay to a final value of 10% 

of the cellular population. This final value was reached in approximately 3 days. The 

mesendoderm cell population was predicted to display more interesting dynamics, with a 

transient increase in cell population over the first day, followed by a decreasing trend over the 

next few days (Figure 5.8(d) and (e)).   
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Figure 5.8. Validation of model with experimental gene expression data 

Simulated dynamics of the undifferentiated (A (Condition A), B (Condition B)) and mesendoderm (D 

(Condition A), E (Condition B)) phenotypes were compared to experimental data of their respective genes, 

measured by qPCR: Oct4 (Undifferentiated; C) and Brachyury (Mesendoderm; F). The simulated dynamics 

bands represent 4000 stochastic simulations using the optimized parameters of Mechanism B. mRNA 

levels were measured with time using qPCR. Data was first normalized to the housekeeping gene Gapdh 

then to undifferentiated cells. Fold change levels, determined by the 2-ΔΔCt method, were then normalized to 

the maximum level for each respective gene (data reported as percent of maximum fold change). 
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In the next step the validity of such prediction was verified by conducting further 

experiments to analyze the dynamics of undifferentiated cells by Oct4 gene expression and that 

of mesendoderm cells by Brachyury expression. While the comparison of population dynamics 

with mRNA levels is not exact, under the assumption of efficient translation they become 

comparable. Figure 5.8 illustrates the comparison of experimental data with model prediction, 

which are found to have excellent agreement given that the model was generated with no 

information of these specific cellular dynamics. Oct4 levels exhibit a decay to a final value of 

around 20% of the maximum, at a time which correlates with simulated predictions (3 days). 

Brachyury levels showed a similar trend as was predicted by the model. It reached a maximum 

around 24 hrs, following which it gradually decayed over time.  

5.4 DISCUSSION 

5.4.1 Mechanism alternatives and identification 

Definitive endoderm was induced in hESC through two different pathways: the addition 

of Activin A and Activin A supplemented with FGF2 and BMP4. The population-based model, 

revised from the model originally developed for hematopoietic stem cells [37, 183], tracks 

individual cell behavior based on a number of set rules. The focal point of the rules is lineage 

propensity updating, wherein the likelihood of differentiation to a particular lineage is 

stochastically updated per time step. The lineages to which hESC can differentiate are definitive 

endoderm, visceral endoderm, and mesoderm. Depending on the specific mechanism of the 

model, hESC can first give rise to visceral endoderm and mesendoderm, with the latter 



 164 

differentiating into definitive endoderm and mesoderm. In the current model, the ectoderm germ 

layer has been omitted. From previous literature [188], hESC induced towards endoderm show 

low expression of ectoderm markers (Sox1). Commitment levels to ectoderm would be low, and 

therefore adding the additional ectoderm lineage would not enhance the model.   

It is important to note that the nonlinearity observed in the differentiation dynamics 

contributed significantly towards identification of a robust mechanism. Sloppiness of biological 

parameters is well reported [76] with ranges of values being large and sensitivities between 

parameters varying considerably; this can make robust mechanism identification challenging.  

Quite interestingly, the observed dynamics of the presented study could only be explained by a 

single specific mechanism. Even a rigorous search of the parameter hyperspace did not yield an 

alternate potential mechanism. Regarding the nonlinearity of CXCR4 expression, two possible 

explanations can be: (1) mesendoderm, expressing CXCR4, further differentiates to phenotypes 

which might not express the surface protein; and (2) the cellular environment might promote a 

higher rate of death of a certain cell phenotype which expresses CXCR4. These dynamics, along 

with those of Sox17, proliferation, and cell death, led us to investigate a total of 12 possible 

mechanisms. The majority of the mechanisms investigated was unable to capture the temporal 

behavior of these outputs, and therefore was discarded. The only mechanism which is able to 

accurately explain the experimental dynamics is one which does not have mesoderm expressing 

CXCR4, incorporates mesendoderm, and promotes proliferation of hESC and the mesendoderm 

and endoderm germ layers. This proposed mechanism is shown in Figure 5.9. 
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Figure 5.9. Proposed differentiation scheme of hESC during endoderm induction as generated by the 

population-based model 

Shown is the presence of mesendoderm, the lack of CXCR4 in mesoderm, and selective phenotype 

proliferation. ME: mesendoderm, VE: visceral endoderm 

 

One of the purposes of the present study was to investigate several aspects of 

differentiation which have faced conflicting reports in the past and to offer further insight using a 

mathematical analysis. One of these features is the presence of surface receptor, CXCR4.  

McGrath et al.[182] and Yusuf et al. [189] have reported that embryonic mesoderm expresses 

CXCR4 in vivo, depending on the stage of embryo development, whereas Takenaga et al. [190] 

reports using CXCR4 as a definitive endoderm marker with other markers used for mesoderm. 

Our results indicate that although both possibilities give low error with respect to Sox17 and 

CXCR4 population dynamics (depending on which phenotype proliferation is induced), only 

when CXCR4 is absent in mesoderm do we obtain qualitative agreement in the cellular growth 

and death temporal behavior. Furthermore, the majority of studies which follow embryo 

development in vivo or differentiation of ESC in vitro (for example [191-193]) include the 

mesendoderm as an intermediate phenotype arising from the differentiation of ESC which 

subsequently differentiates to endoderm and mesoderm rather than considering the latter two 

phenotypes differentiating directly from ESC. The model developed in the current study indeed 
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comes to the same conclusion: the mesendoderm germ layer needs to be considered in order to 

accurately describe experimental dynamics.   

5.4.2 Comparison between two differentiation conditions and parameter estimation 

The endoderm induction of hESC was conducted under two different conditions with the 

objective of investigating mechanistic differences between these two pathways. Quite 

interestingly, both conditions could be explained by the same, single mechanism, while the 

rejected mechanisms failed to describe the dynamics even after a thorough search of the 

parameter space. However,  there were significant differences in optimum parameter values. One 

prominent  difference between the two conditions was their differentiation potential after being 

committed to the mesendoderm germ layer. ‘a0max2’ is lower for Condition B, indicating that 

mesendodermal cells will more quickly reach the pro-differentiation and –proliferation regimes. 

This is also evident from the higher level of ‘d’, although this is for both stages of differentiation. 

Also, cell commitment for Condition B can be considered expedited when considering the lower 

value of ‘xcom2’, which is the propensity threshold beyond which a mesendodermal cell is 

considered committed to either endoderm or mesoderm. Therefore, Activin A supplemented with 

FGF2 and BMP4 drives differentiation towards endoderm/mesoderm to a higher degree than 

Activin A alone. 

As detailed earlier, the developed model for the optimum mechanism could accurately 

capture the experimentally observed dynamics of differentiation. Quite interestingly, only a 

single mechanism could adequately describe the experimental data, while the rejected 

mechanisms failed to describe the dynamics even after a thorough search of the parameter space.    
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5.5 CONCLUSIONS 

The objective of the work in this chapter was to investigate the mechanism of 

differentiation of hESC during endoderm induction while capturing cell-to-cell variability 

through an integrated experimental and mathematical approach. We experimentally determined 

the dynamics of differentiation upon endoderm induction of hESC and use these data along with 

a population-based stochastic model to determine the mechanisms of differentiation. The model 

can track growth kinetics, the dynamics of cell death, and the dynamics of differentiation into the 

germ layers. Comparison of these simulated outputs with experimental data enables 

determination of the dominant mechanism of differentiation. Not every model alternative 

captured experimental dynamics; indeed, only one mechanism was able to describe the protein, 

cell growth and cell death dynamics. This mechanism indicates that during endoderm induction, 

certain phenotypes display increased proliferation-endoderm and uncommitted cells. 

Furthermore, several behaviors during initial differentiation that have received conflicting 

experimental results in literature have been predicted: the presence of an intermediate 

mesendoderm germ layer which arises before commitment to endoderm and mesoderm; and 

CXCR4, a surface protein, is present on the mesendoderm and endoderm germ layers, but not on 

mesoderm.   The model and predicted mechanism was validated against additional experimental 

observations of the temporal behavior of specific cellular phenotypes. Even though these data 

were not used to build the model, the model performed extremely well in capturing their 

dynamics.   
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6.0  OVERALL CONCLUSIONS AND FUTURE WORK 

In this work, we have analyzed the self-renewal and differentiation of the embryonic stem 

cell system at three different levels, and demonstrated the utility of computational modeling and 

mathematical analyses in extracting information that would otherwise be difficult from a purely 

experimental approach. Specifically, we have focused on the intracellular gene networks, 

extracellular substrate properties, and population dynamics of the ESC system, concentrating on 

the heterogeneity and complexity of each system.   

We have integrated a mixed-integer optimization algorithm with the bootstrapping 

technique to predict intracellular robust gene regulatory network interactions in the presence of 

high levels of transcriptional noise. Our developed algorithm is able to accurately predict gene 

interactions and associated strengths from gene expression dynamics. In addition to intracellular 

analysis, we developed a statistical approach to determine the effects of complex extracellular 

cues on ESC behavior. Using this approach we identified specific microstructural features 

contributing to spontaneous differentiation and gene expression patterning. Finally, to capture 

population dynamics and heterogeneity, we have built a stochastic model which describes cell 

cycle transition. We extend this model to capture differentiation during germ layer commitment. 

We utilize both models to make informed predictions on the mechanisms of differentiation and 

self-renewal. At these three levels, we have demonstrated the utility of mathematical models in 

information extraction, especially when variability is an issue. Future work will focus on 
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utilizing these methods and results to improve directed differentiation towards insulin producing 

β cells for diabetes treatment. Specifically, Aims 1 and 2 will be used for practical improvement 

of the differentiation protocol, upregulating genes dictating mature pancreatic development, 

including PDX1, NGN3, and INSULIN. Aim 3 will focus on characterizing cells during the 

maturation process, including tumorigenicity potential and differentiation status. 

 

6.1 IDENTIFICATION OF ROBUST INTRACELLULAR GENE REGULATORY 

NETWORKS 

Our first aim focused on the advancement of algorithms to reverse engineer gene 

regulatory networks. We have developed a network identification algorithm to accurately infer 

both the topology and strength of regulatory interactions from time series gene expression data in 

the presence of significant experimental noise and nonlinear behavior. In this novel formulism, 

we have addressed data variability in biological systems by integrating network identification 

with the bootstrap resampling technique, hence predicting robust interactions from limited 

experimental replicates subjected to noise. Furthermore, we have incorporated nonlinearity in 

gene dynamics using the S-system formulation. The basic network identification formulation 

exploits the trait of sparsity of gene regulatory interactions. Towards that, the identification 

algorithm is formulated as an integer-programming problem by introducing binary variables for 

each network component. The objective function is targeted to minimize the network 

connections subjected to the constraint of maximal agreement between the experimental and 

predicted gene dynamics. The developed algorithm is validated using both in silico and 
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experimental data sets. These studies show that the algorithm can accurately predict the topology 

and connection strength of the in silico networks, as quantified by high precision and recall, and 

small discrepancy between the actual and predicted kinetic parameters. Furthermore, in both the 

in silico and experimental case studies, the predicted gene expression profiles are in very close 

agreement with the dynamics of the input data. 

This algorithm is general in nature, meaning that it can be applied to any biological 

system for which time series gene expression data is available. Therefore, while the formulation 

has been validated against in silico and E. Coli data, its formulation, biological relevancy, and 

results are applicable to any gene regulatory network. This algorithm can therefore be directly 

utilized for the identification of regulatory networks governing ESC differentiation. As the 

primary goal of our research is to differentiate hESC to mature, insulin producing β-cells for 

diabetes treatment, determining the gene connections involved in pancreatic development is 

paramount. While population models, signaling models, and the like have the ability to offer 

mechanistic information and predictive capability, without understanding the effects in the 

nucleus and how genes are transcribed there is always an amount of speculation in the effects of 

system perturbations. With detailed information on the gene regulatory network, one can obtain 

specific information on how genes in the differentiation pathway behave. While information on 

how transcription factors interact is somewhat available, this information comes primarily from 

developmental in vivo studies, and detailed interaction information is rarely available for hESC 

in culture. Furthermore, much of the interaction information is qualitative, and quantitative 

kinetic behavior is lacking. The current algorithm can aid in this understanding. 

Researchers have shown that gene regulatory networks involved in the developmental 

process act as modules, in that for each developmental stage there is a central gene as a master 



 171 

regulatory, and that the connections between it and the other genes in the network are minimal 

(hence the formulation of sparsity in the current algorithm is directly applicable). Connections 

between hubs of different developmental stages are also minimal [194]. In future work these 

guiding features can help identify the regulatory modules and associated connections during in 

vitro hESC differentiation towards β-cell development. Preliminary work should first focus on 

compiling, from literature, the genes involved in in vivo endoderm, pancreatic progenitor, and 

endocrine progenitor/β-cell maturation development. Experimentally, hESC will be 

differentiated to these phenotypes, and the dynamics of the genes identified in the literature 

search will be quantified at each stage using qPCR. Having this temporal behavior, the network 

identification algorithm described herein can be implemented, and network topology and 

strength identified. While hESC gene expression is often characterized by high levels of 

variability, the bootstrapping approach utilized in the algorithm will be able to identify the robust 

connections in the presence of the replicate noise. 

By obtaining the information on the gene regulatory networks for these differentiation 

stages, and how the nodes interact with each other, a much more thorough understanding of 

hESC differentiation can be obtained, and can guide directed differentiation towards β-cells. For 

instance, from our previous differentiation studies, we have observed that at the pancreatic 

progenitor stage the marker indicative for this stage, PDX1, is expressed to a high level (~80% of 

cells positive for the protein). However, the final maturation stage yields relatively low amounts 

of insulin (10-20%). Using the information obtained by the gene regulatory network algorithm, 

we hope to improve this. For example, we hope to determine how PDX1 interacts with the early 

developmental genes in the endocrine node (NGN3) and subsequent β-cell node (INSULIN). 

Knowing these connections, we may be able to gauge which gene(s) should be perturbed to gain 
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larger upregulation of NGN3 and INSULIN. Once these genes are known, their expression levels 

will be experimentally altered. The method of this alternation will be determined from the 

algorithm results, e.g. if a gene should be up-regulated, down-regulated, or silenced. These gene 

perturbations can be experimentally done through a wide-range of techniques, including siRNA 

and gene knockouts. Growth factors can also be used to change the expression levels of the 

target genes if the pathways relating the growth factor to the target gene are known.  

6.2 IDENTIFICATION OF EXTRACELLULAR SUBSTRATE CUES INFLUENCING 

DIFFERENTIATION 

Our second aim focused on quantifying extracellular factors and determining which 

specific substrate features effect ESC differentiation behavior. The system we investigated was 

that of mESC on various fibrin gels. We synthesized a range of fibrin gels by varying fibrinogen 

and thrombin concentrations, which led to a range of substrate stiffness and microstructure. 

mESC were cultured on each of these gels, and characterization of the differentiated cells 

revealed a strong influence of substrate modulation on gene expression patterning. To identify 

specific substrate features influencing differentiation, the substrate microstructure was quantified 

by image analysis and correlated with stem cell gene expression patterns using a statistical 

model.  Overall, it was shown that for the presented class of fibrous substrates, the contribution 

of substrate microstructure to mESC differentiation was stronger than that of macroscopic 

stiffness. Furthermore, it was found that fibrous microstructural features had a strong influence 

on ESC differentiation to endoderm lineage, with fiber alignment being the most influential. 
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The approach applied to and results obtained from the system of mESC on fibrin gels 

may aid in the design of materials with a preferred microstructure to more effectively guide 

pancreatic specific stem cell differentiation with efficient transplantation capabilities. For 

eventual transplant of ESC-derived cells, appropriate scaffolds will have to be used. Because of 

fibrin’s characteristics (described in Chapter 3), this natural material could be an excellent choice 

for a transplantation scaffold. As a next step, this scaffold should support the phenotype of 

interest. In our case, this is β-cells. Therefore, if fibrin could be used to direct differentiation to 

this phenotype, transplantation potential could be greatly enhanced. The results in Chapter 3 

show that endoderm differentiation, a precursor to β-cells, is sensitive to the microstructural 

features of fibrin, and that certain features are more influential than others. The next step would 

be to utilize this information to optimize the values of these features in order to optimize 

endoderm gene upregulation. Specifically, fiber alignment was shown to have the greatest 

influence on endoderm differentiation. Therefore, fibrin gel fiber alignment will be modified to 

improve endoderm differentiation. To determine optimal fiber alignment values, a more precise 

response surface of the differentiation patterning to the alignment will be generated through 

design of experiments. Furthermore, to isolate the effects of the alignment, the other fibrous 

properties should be kept invariant. However, this would be difficult to achieve using the current 

protocol for fibrin fabrication. An attractive alternative could be to create these fibrin gels with 

electrospinning, which allows for much more controllable features. The effectiveness of this 

method has been demonstrated with fibrin [114]; this method may therefore have the potential to 

create fibrin gels with precise fiber alignment values. Once this is accomplished, the best fit 

equations of fiber alignment vs. endoderm gene expression will be optimized to determine what 

values will yield the largest endoderm upregulation. Again using electrospinning, fibrin gels will 
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be created with this optimized fiber alignment, with endoderm being upregulated. In addition to 

endoderm, the methodology can be applied to further stages of differentiation. In this way, fibrin 

substrates can be designed with optimal microstructural topology to guide differentiation through 

pancreatic lineage, with the resulting cell being ready for transplantation on the fibrin scaffolds.  

 

6.3 HETEROGENEOUS POPULATION DYNAMICS OF HESC CELL CYCLE AND 

DIFFERENTIATION 

The final objective of this work was to capture emergent population behavior from single 

cell behavior while utilizing population dynamics to gain mechanistic insight. This model was 

first applied to the embryonic stem cell cycle. The developed cell cycle model was compared to 

experimental data, using agreement with these dynamics to postulate on prominent mechanisms. 

These results allow us to theorize that G1 times are tightly controlled during pluripotency, but 

gradually become more variable with increased maturity, and that the population distributions of 

the phase residence times are governed by the differentiation induction condition acting in 

different ways at the single cell level. 

These proposed behaviors can be validated experimentally in several ways. As shown in 

Figure 4.5 (b,c), mean cell cycle and phase residence times can be validated by various assays, 

including cell dilution dyes and DNA stains coupled with synchronization. These validation 

experiments were in excellent agreement with the model predictions. Further population and 

ensemble model predictions can be validated with more sophisticated techniques. The most 

powerful of these is single cell tracking. By following individual cells with time-lapse 
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microscopy, and determining the intermitotic times and G1 times of individual cells (the latter of 

which being determined through the FUCCI reporter), the cell cycle and G1 residence time 

distributions and variabilities can be determined and used to validate model predictions. Single 

cell tracking can also be used to validate the G1 lengthening mechanisms. One model prediction 

suggests that G1 lengthening is exponential in nature. Again, single cell tracking coupled with 

the FUCCI reporter can quantify the exact G1 time, and capture how this changes with time and 

cell cycles, thereby offering a technique for model validation. 

An area of future work which may lend itself to the field and which was not considered in 

the current model is how cells interact with one another. This could be accomplished by 

incorporating the current model into an agent based model (ABM) platform. ABM could capture 

spatial orientation of the cells and the effects of cell-cell interactions. While cell-cell interactions 

are undoubtedly important in governing cell behavior, they may also be important specifically 

when considering the cell cycle. Sela et al. has reported that high cell density reduces 

differentiation in the G1 phase, and that this reduction is enhanced when the surrounding cells 

are in the S and G2/M phases [142]. This effect could be captured by ABM, and further aid in 

mechanistic understand and hypothesis testing. 

The cell cycle model will be used for precise characterization of the maturing ESC and 

ESC-derived progenitor cells. Specifically, the model can characterize which cells and cellular 

populations have fast or slow proliferation rates, which is relatable to tumorgigenicity, which is a 

challenge in using ESC for therapeutic use [195]. Quantifying tumorigenicity during the 

differentiation process is a challenging experimental task. Our model allows for the dynamics of 

cell cycle intermitotic times to be tracked, thereby determining possible origins of 

tumorigenicity. Our results suggest that with differentiation towards pancreatic progenitors there 
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exists a subpopulation of cells with faster division times. This analysis will be extended to the 

end maturation to determine if this subpopulation is still prominent. If so, then the differentiation 

protocol will need to be modified in order to reduce this population before eventual 

transplantation.   

We next extended this population model to focus on the specifics of differentiation, and 

initial lineage commitment during directed differentiation towards endoderm. The differentiating 

cell population was analyzed daily for cellular growth, cell death, and expression of the 

endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of 

undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to 

proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms 

which might have describe the observed dynamics were simulated, and an ensemble parameter 

estimation was performed on each mechanism. A comparison of the quality of agreement of 

experimental data with simulations for several competing mechanisms led to the identification of 

one which adequately describes the observed dynamics under both induction conditions.  The 

results indicate that hESC commitment to endoderm occurs through an intermediate 

mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that 

during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model 

suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in 

mesoderm. Comparison between the two induction conditions indicates that supplementing 

FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. 

This model will next be applied to later stages of ESC differentiation. This future work 

will not only provide mechanistic insight into lineage commitment during late-stage pancreatic 

specification, but will be used to determine which perturbations to the differentiation protocol 
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should be focused on to improve yield of more mature cell types. In particular, the population 

model can be extended to the process of generating endocrine progenitors from pancreatic 

progenitors, and subsequent derivation of single horomone-expressing cells. A challenge in the 

field of β-cell differentiation is the yield of insulin positive cells at the final stage of maturity. As 

mentioned above, in our own work, we see relatively efficient yield of pancreatic progenitors, 

but low yield (10-20%) of insulin positive cells. Utilizing the population model platform for later 

stages of differentiation may improve this yield. For instance, what mechanisms are involved 

when moving from a relatively homogeneous population of pancreatic progenitors to a very 

heterogeneous population of more mature cells? Is the proliferation rate of the less committed 

cells overtaking the more mature cells, leading to a dilution effect (as demonstrated in Chapter 

4)? Is the efficiency of α-cell differentiation much more than that of β-cells? Furthermore, we 

have also shown that after maturation, out of the insulin positive cells within the cellular 

population, there is a significant fraction which is polyhormonal (e.g. expresses glucagon and 

insulin). These cells are not truly mature, and would be difficult to use clinically. What is the 

origins of co-expression, and what possible perturbations to the differentiation protocol can 

reduce this? As with the endodermal stage, we hope to answer these questions by utilizing our 

model and comparing model alternatives to experimentally derived population dynamics. Once 

these questions are answered, modifications to the differentiation protocol will be made to 

improve β cell yield. For instance, if heterogeneity in the cellular population is more prominent 

at the endocrine progenitor stage, growth factors will be introduced to try and upregulate NGN3, 

rather than focusing on the last stage of maturation.  
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The process by which embryonic stem cells self-renew and differentiate is complex, and 

elucidating the mechanisms governing this behavior is difficult using a purely experimental 

approach. To extract mechanistic information on ESC, we developed diverse modeling 

techniques which were applied to three levels of the ESC system. Intracellular gene regulatory 

networks, the primary factor in guiding cellular behavior, are affected by insoluble cues from the 

extracellular environment, including the cell’s associated substrate. Due to the complexity of the 

substrate and cell-to-cell variability, these cues do not affect all cells equally, leading to a 

heterogeneous cellular population. Our contribution to the mathematical analysis of each of these 

cellular levels is helping to improve the mechanistic understanding of the ESC system, which in 

turn will aid in the efficient scale-up and expansion of pluripotent cells and differentiation 

towards mature β–like cells. Improvement of these protocols is necessary for ESC to be 

eventually used for diabetes treatment and other therapeutic applications. 
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APPENDIX 

SUPPLEMENARY TABLES AND FIGURES 

 

Table A.1. Primer sequences used during PCR analysis of differentiation of mESC on fibrin gels 

 Gene Left sequence Right sequence 
house-keeping β-actin cagcagttggttggagca tgggagggtgagggactt 

endoderm 

sox17 atccaaccagcccactga acaccacggaggaaatgg 
afp ctctggcgatgggtgttt aactggaagggtgggaca 
hnf4 catcgtcaagcctccctct ccctcagcacacggtttt 
foxa2 gttaaagtatgctgggagccg cgcccacataggatgacatg 
cxcr4 cgggatgaaaacgtccattt atgaccaggatcaccaatcca 
gata4 ggcccctcattaagcctcag caggacctgctggcgtctta 

ttr ttcacagccaacgactctgg ggcaagatcctggtcctcct 

mesoderm 
brach T aagaacggcaggaggatg gcgagtctgggtggatgta 

fgf8 acggcaaaggcaaggact tgaagggcgggtagttga 
gsc gcaccgcaccatcttca tcgcttctgtcgtctcca 

ectoderm 
nestin ggaggatgtggtggaggat ttcccgtctgctctggtt 
fgf5 ttcaagcagtccgagcaa taggcacagcagagggatg 

bmp4 atctggtctccgtccctga cgctccgaatggcacta 

pluripotency 
rex1 aaggtcatccacggcaca tgggagtcatcgcttggt 
oct4 ggagaagtgggtggaggaa gctgattggcgatgtgag 
sox2 ctggactgcgaactggaga ttggatgggattggtggt 

 

 

 

 

 

 

 



 180 

Table A.2. Regression significance for microcharacteristic relationship 

p-values for the significant (p≤0.05)  2nd order polynomial regressions relating two microstructural features 

to gene expression, 3D condition 

 
gene feature 1 feature 2 

regression p-
value 

  oct4 node density fiber length 0.0417 
  oct4 node density fiber OI 0.0295 
fgf8 pore size fiber OI 0.0049 
fgf8 porosity connectivity 0.0108 
fgf8 connectivity fiber OI 0.0143 
fgf5 fiber length connectivity 0.0367 
fgf5 connectivity fiber OI 0.0057 

nestin pore size connectivity 0.0175 
nestin porosity connectivity 0.014 
nestin fiber length fiber OI 0.0117 
nestin connectivity fiber OI 0.0078 
sox17 pore size fiber OI 0.0259 
sox17 fiber diameter fiber length 0.0246 
sox17 porosity fiber OI 0.0246 

afp pore size connectivity 0.0432 
afp node density fiber length 0.0416 
afp node density connectivity 0.0156 
afp node density fiber OI 0.0089 
afp fiber diameter connectivity 0.0418 
afp porosity fiber length 0.0134 
afp porosity connectivity 0.0349 
afp porosity fiber OI 0.001 

hnf4 pore size connectivity 0.042 
hnf4 pore size fiber OI 0.0097 
hnf4 porosity connectivity 0.005 
hnf4 connectivity fiber OI 0.0085 
cxcr4 porosity connectivity 0.0471 
foxa2 node density fiber length 0.0279 
foxa2 node density fiber OI 0.0166 
foxa2 porosity fiber length 0.0387 
foxa2 porosity fiber OI 0.0231 

ttr pore size fiber diameter 0.0442 
ttr node density connectivity 0.0309 

gata4 pore size connectivity 0.0034 
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Table A2 (continued 
gata4 node density fiber length 0.0336 
gata4 node density connectivity 0.003 
gata4 node density fiber OI 0.0179 
gata4 fiber diameter connectivity 0.0091 
gata4 porosity fiber length 0.0082 
gata4 porosity connectivity 0.0475 
gata4 porosity fiber OI 0.0089 
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Table A.3. Parameters in the reduced G1 ODE model 

Parameter Value Description 
sD 3 mM/hr 

Basal synthesis rates sI 3 mM/hr 
sE 0 mM/hr 
dD 3.2 hr-1 

Degradation rates 
dI 0.6 hr-1 
dE 2.25 hr-1 
d(D.I) 3 hr-1 
d(E.I) 3 hr-1 
k1 240 mM-1hr-1 D-I Dimerization constant 
k2 12 hr-1 D-I Dissociation constant 

k3 1 mM-1hr-1 Rate constant for phosphorylation of I 
by E 

k4 120 mM-1hr-1 E-I Dimerization constant 
k5 24 hr-1 I-I Dissociation constant 
k6 10 mM/hr 

Kinetic parameters for effect of cyclin 
E and D on cyclin E 

k7 1.5 mM/hr 
k8 1.01 mM2 
k9 1.01 mM 
H 2 Hill number 
D(0) 0 mM 

Initial conditions 
I(0) 0.3 mM 
E(0) 0 mM 
D.I(0) 0 mM 
E.I(0) 0 mM 
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Figure A.1. Dynamics of ensemble model resulting from different mechanism alternatives 

For each alternative, parameters were optimized for each of the three DMSO concentrations. Blue band: 

100 stochastic simulations. Mechanism listed above each set of dynamics (see 4.3.3 for descriptions of 

mechanisms) 
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Figure A.2. Dynamics of ensemble model resulting from further mechanism alternatives 

For each alternative, parameters were optimized for each of the three DMSO concentrations. Blue band: 

100 stochastic simulations. Mechanism listed above each set of dynamics (see 4.3.3 for descriptions of 

mechanisms) 
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Table A.4. Variables used in ensemble model, Equation 4.8 

Variable Description 
τG1 G1 residence time 
α Maximum G1 residence time of cells 

τG1,0 
G1 residence time of undifferentiated cells. This parameter is 
normally distributed, with mean μG1,undiff and standard deviation 
σG1,undiff 

     μG1,undiff Mean of τG1,0, from synchronization experiments 

     σG1,undiff Standard deviation of τG1,0, from synchronization experiments 

γ 
Exponential parameter governing the rate at which G1 will 
lengthen with time. This parameter is normally distributed, with 
mean μγ and standard deviation σγ 

     μγ Mean of γ 

     σγ Standard deviation of γ 

T* 

Time at which cells are primed for differentiation. If a cell in the 
G1 phase is probabilistically chosen to differentiate, the cell is 
primed for differentiation and G1 lengthening upon the next cell 
cycle, and T* is the time at which it exists the phase. 

tstop Time at which further differentiation ceases: G1 time stops 
lengthening and no further cells are primed for differentiation 

 

 

Table A.5. Primer sequences used during PCR analysis of differentiation of hESC 

Gene Left sequence Right sequence 
Gapdh acg acc act ttg tca agc tca ttt gca gtg agg gtc tct ctc ttc ctc 
Oct4 ctg ggt tga tcc tcg gac ct cac aga act cat acg gcg gg 

BrachT tgc ttc cct gag acc cag tt gat cac ttc ttt cct ttg cat caa g 
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Figure A.3. Flow cytometry of cells positive for specific markers 

 
Red histogram: negative (secondary antibody only) sample. Black histogram: stained sample. Red bar is 

gated beyond the negative control to denote the positive sample population. (a,b): Sox17 analysis for 

Conditions A and B, respectively. From left to right: Day 1-4. (c,d): CXCR4 analysis for Conditions A and 

B, respectively. From left to right: Day 1-5. 
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Table A.6. Definitions of the parameters used in the population based model 

Parameter Definition 

a0max maximum value of 'a' in initial cell population, first differentiation stage 

a0max2 maximum value of 'a' in initial cell population, second differentiation stage 

a0min minimum value of 'a' in initial cell population, first differentiation stage 

a0min2 minimum value of 'a' in initial cell population, second differentiation stage 

aa used when determining the probability of a cell transferring to the alpha regime 

amin threshold on 'a' below which a cell is able to proliferate 

aw used when determining the probability of a cell transferring to the omega regime 

ba used when determining the probability of a cell transferring to the alpha regime 

bprog used in updating propensity in omega regime 

bw used when determining the probability of a cell transferring to the omega regime 

ca used when determining the probability of a cell transferring to the alpha regime 

cw used when determining the probability of a cell transferring to the omega regime 

d factor by which 'a' decreases in omega regime 

da used when determining the probability of a cell transferring to the alpha regime 

dw used when determining the probability of a cell transferring to the omega regime 

lmax maximum bound on cell life span 

lmin minimum bound on cell life span 

nprog1a used in determining magnitude of propensity update in omega regime for lineage 1 

nprog2a used in determining magnitude of propensity update in omega regime for lineage 2 

nprog3a used in determining magnitude of propensity update in omega regime for lineage 3 

nprog4a used in determining magnitude of propensity update in omega regime for lineage 4 

nreg used in updating propensity in alpha regime 
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Table A6. (continued) 

tDstop time beyond which a cell enters into a senescent stage and will not die (counted from 
start of cell's life) 

tg1 time a cell stays in the g1 phase of the cell cycle 

tpmax upper bound of time beyond which a cell enters into a senescent stage and will not 
proliferate (counted from start of cell's life) 

tpmin lower bound of time beyond which a cell enters into a senescent stage and will not 
proliferate (counted from start of cell's life) 

xcom threshold level of propensity beyond which a cell is considered committed, first 
differentiation stage 

xcom2 threshold level of propensity beyond which a cell is considered committed, second 
differentiation stage 

 

Only the sensitive parameters are shown. A ‘2’ after the parameter denotes the parameter for the second stage of 

differentiation (mesendoderm to mesoderm and endoderm) as opposed to the first stage (hESC to mesendoderm and 

visceral endoderm). ME: mesendoderm, VE: visceral endoderm 
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