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WITH TYPE IA SUPERNOVAE

Anja Weyant, PhD

University of Pittsburgh, 2014

The Large Synoptic Survey Telescope (LSST) anticipates observing hundreds of thousands of

well-measured Type Ia supernovae (SNe Ia). These stellar remnant explosions are exceptional

in that they have a standardizeable light curve which allows for an accurate measurement

of their luminosity. The standard nature of SNe Ia allow us to measure relative distances

in the Universe with better than 6% precision in distance. With distance estimates in hand

to large sets of galaxies through Type Ia Supernova (SN Ia) measurements, we can measure

the expansion history of the Universe or create flow models of how galaxies (matter) near

the Milky Way are moving.

In this new regime of large datasets, weaknesses and limitations of the current techniques

for estimating cosmological parameters and modeling local flows are becoming apparent. As

statistical errors are reduced systematic uncertainties ranging from calibration to survey

design and cadence to host galaxy contamination are dominating the error budget and lim-

iting our ability to make improvements on cosmological measurements. Similarly, recent

comparisons of flow models reveal systematic inconsistencies between different approaches.

For my dissertation I have employed modern statistical methods to improve flow models

in the local Universe by accounting for the non-uniform distribution of data across the sky and

demonstrated how Approximate Bayesian Computation can tackle complicated likelihood

functions in supernova cosmology. I also present the first results of a new near-infrared

SN Ia survey called ”SweetSpot” whose focus is on improving our ability to standardize the

total luminosity of SNe Ia.
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1.0 INTRODUCTION

Only 5% of all the mass and energy in the Universe is in the form of normal matter which

can be explained by basic physics. “Dark matter,” which makes up 25% of the matter-energy

content, is responsible for the structure and motion of galaxies we observe. Observations of

Type Ia Supernovae (SNe Ia) imply that dark matter and normal matter alone do not make

up the entire content of the universe. The remaining 70% is composed of “dark energy,”

which acts like a repulsive gravitational force and is responsible for the current observed

accelerated expansion of the Universe.

Consider a galaxy’s spectrum with an absorption line whose measured wavelength on

Earth is λe. The actual measurement at Earth of this absorption line λo is usually not the

same. It is shifted according to the galaxies motion relative to us. We quantify this shift

according to the redshift

z = (λo − λe)/λe. (1.1)

In 1929, Edwin Hubble plotted the motions of galaxies relative to Earth as a function

of distance. He observed that galaxies are receding from us at a rate proportional to their

distance. We now observe that the rate at which galaxies are moving away from each other

is greater today than it was in the past. To explain this accelerated expansion, we need an

energy that permeates all of space and acts in opposition to gravity, driving galaxies away

from each other. We call this energy dark energy.

1



1.1 MEASURING PROPERTIES OF THE UNIVERSE

A Hubble diagram plotting a measure of distance as a function of redshift reveals that

galaxies in the Universe are receding from Earth at a rate approximately proportional to

their distance from Earth. Measuring the redshift encodes a galaxy’s motion relative to

Earth and can be done easily and accurately from a spectrum. Distances in the Universe

are much harder to measure.

Suppose we have an object of known total luminosity. The inverse square law describes

how the observed brightness of a source is related to its distance given the luminosity. It is

often convenient to recast the inverse square law in terms of magnitudes such that a change

in 5 magnitudes corresponds to a factor of 100 in brightness. Thus, the measured brightness

of a source in magnitudes at distance DL is

m = M + 5log10(DL/10pc). (1.2)

where the absolute magnitude M is the energy flux of the source observed at a distance of

10 parsecs. It is a measure of the object’s luminosity.

If we know M for an object, we simply measure m and we can determine the luminosity

distance DL. Such objects are called standard candles. If we can determine what fundamen-

tal cosmological parameters control the luminosity distance, we can use a Hubble diagram

to infer properties of our Universe.

1.1.1 The Luminosity Distance

To understand more deeply the dynamics of the Universe we must first learn how to calculate

distances in an expanding universe. Consider an homogeneous, isotropic, and flat universe

such that the space-time separation between two events according to special relativity is

given by

ds2 = −c2dt2 + a2(t)[dr2 + r2(dθ2 + sin2θdφ2)] (1.3)

2



where t is the cosmological proper time (the time measured by an observer who sees the

universe expanding around him), (r, θ, φ) are the comoving coordinates of a point in space

such that if the expansion were perfectly homogeneous and isotropic they remain constant

in time, and where the scale factor a(t) describes how distances expand and contract over

time. Ultimately we would like to write the scale factor in terms of fundamental properties

of the Universe. c is the speed of light and will be set to one onward.

We can find a relationship between scale factor and time by considering two pulses of

light. One pulse of light is emitted at time te and is observed after traveling a null geodesic

at time to. We can determine the distance the photon has traveled according to

ds2 = −dt2 + a2(t)dr2 = 0 (1.4)

dt2 = a2(t)dr2 (1.5)

r =

∫ to

te

dt

a(t)
. (1.6)

A second pulse of light is emitted at time te + δte and observed at time to + δto which travels

the same comoving distance such that

r =

∫ to+δto

te+δte

dt

a(t)
. (1.7)

These equations can be combined to show∫ te+δte

te

dt

a(t)
=

∫ to+δto

to

dt

a(t)
. (1.8)

This means that the integral of dt/a(t) is the same between the emitted pulses and

observed pulses of light. If we look at the first order perturbation such that in the time

between the two pulses of light the universe has not expanded by any appreciable amount

we find
δto
a(to)

=
δte
a(te)

(1.9)

If the time between the two pulses of light define the period of the wave then we can rewrite

the above equation in terms of wavelength to find

λo
a(to)

=
λe
a(te)

(1.10)
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which can be rewritten in terms of redshift as follows

1 + z =
a(to)

a(te)
. (1.11)

The redshift captures how much the Universe has expanded in the time light left a distant

galaxy and traveled to us.

The proper distance is the length of the spatial geodesic between two points when the

scale factor is fixed. For example, the proper distance between an observer and a galaxy in

a flat universe would be found by integrating over the radial comoving coordinate at fixed

time

dp = a(t)

∫ r

0

dr = a(t)r (1.12)

as the angle (θ, φ) are constant. The inverse square law for a static universe would then be

the familiar

F =
Lemit

4πd2
p

. (1.13)

where F is the flux and Lemit is the luminosity emitted at the source.

To generalize the inverse square law for an expanding universe consider the energy per

unit time moving through a comoving spherical shell with radius r. The area of this shell

today would be 4πa2(t0)r2. We first note that the energy emitted from a photon at the

source goes down by a factor of 1 + z due to the expansion. Additionally photons will travel

farther on a comoving grid at early times than at later times because the physical distance

in smaller. Therefore the number of photons crossing a shell for a fixed time interval will be

smaller today than at emission by a factor of 1 + z. We can rewrite the inverse square law

for an expanding universe as

F =
Lemit

4πa2(t0)r2(1 + z)2.
(1.14)

To keep the same form for the inverse square law as for a static universe we define the

luminosity distance for a flat universe to be

dL ≡ a(t0)r(1 + z). (1.15)
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Thus to calculate the luminosity distance requires calculating Equation 1.6, the null geodesic

traveled by a photon.

It is customary to rewrite Equation 1.6 in terms of redshift using Equation 1.11. We also

define

H ≡ ȧ

a
(1.16)

where the dot indicates time derivative. Equation 1.6 can now be recast as follows

r =

∫ a(t0)

a(te)

da

ȧa
(1.17)

=

∫ a(t0)

a(te)

da

a2H(a)
(1.18)

=
1

a(t0)

∫ z

0

dz

H(z)
(1.19)

We must first integrate Equation 1.19 before we can calculate the luminosity distance.

1.1.2 Friedmann Equation

Our goal is to understand how the scale factor a(t) evolves with time and determine the

fundamental parameters which control the luminosity distance. To do this we examine two

forms of energy conservation: the Friedmann equation and the first law of thermodynamics.

The Friedmann equation in the Newtonian approximation states that the total gravita-

tional potential energy and kinetic energy of expansion remains constant. We start with

r̈ =
GM

r2
(1.20)

=
4π

3
Gρr (1.21)

for a uniform density ρ. We can integrate once to get

ṙ2 =
8πGρr2

3
. (1.22)

Rewriting in terms of the scale factor we find(
ṙ

r

)2

=

(
ȧ

a

)2

=
8πGρ

3
. (1.23)

This is the Friedmann equation in a flat universe. We would like to integrate this equation

to find out how the scale factor evolves as a function of the different densities of “stuff” that

make up our universe.
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1.1.3 Fluid Equation

The first law of thermodynamics tells us that the heat flow into or out of a region is equal

to the change in internal energy E and the pressure P multiplied by the change in volume

V of the region or:

Q̇ = Ė + PV̇ (1.24)

If the universe is composed of a homogeneous fluid then

Ė = −PV̇ . (1.25)

If we consider a sphere expanding with the universe of comoving radius rs then the

volume of the sphere is

V (t) =
4π

3
r3
sa(t)3 (1.26)

and the energy of the sphere is

E(t) = V (t)ρ(t) (1.27)

Taking the time derivative of Equation 1.27 and substituting in the rate of change of the

sphere’s volume we find

E = ρV (1.28)

Ė = ρ̇V + ρV̇ (1.29)

= V

(
ρ̇+ 3

ȧ

a
ρ

)
. (1.30)

Combining Equation 1.25, Equation 1.30, and the time derivative of Equation 1.26 we find

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (1.31)

This is the fluid equation.
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1.1.4 Equation of State

If we assume an equation of state for “the stuff” in the universe of the form

P = wρ (1.32)

where w is constant, we can eliminate the pressure term in the fluid equation. This would

give us a relationship for how the density evolves with scale factor which then allows us

to integrate Equation 1.23. Substituting the equation of state into the fluid equation and

integrating yields

ρw = ρ0,wa
−3(1+w) (1.33)

where the energy density of the w component at present day is ρ0,w.

The w component of the Universe can be divided into non-relativistic matter, radiation,

and vacuum energy. For non-relativistic matter, w = 0 so that ρM ∝ a−3. This is because

we can write the energy density as ρM = nE where n is the number density of particles

and E is the mean energy. As the universe expands, the number density drops by a−3. For

relativistic particles, w = 1/3 which yields ρR ∝ a−4. The energy for relativistic particles

is inversely proportional to wavelength and thus inversely proportional to the scale factor.

This in addition to the drop in number density with scale factor yields a−4. For vacuum

energy (Λ), w = −1 such that the density is constant and does not change with scale factor.

We can now rewrite the Friedmann equation for a flat universe in terms of these three

components

H2 =
8πG

3
(ρM + ρR + ρΛ) (1.34)

H2 =
8πG

3

(
ρ0,Ma

−3 + ρ0,Ra
−4 + ρ0,Λ

)
(1.35)

At this point is it useful to define the critical density as

ρcrit ≡
3H2

0

8πG
(1.36)

We can now scale each density as Ωw = ρ0,w/ρcrit and rewrite the Friedmann equation to

yield

H2 = H2
0

(
ΩMa

−3 + ΩRa
−4 + ΩΛ

)
. (1.37)
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1.1.5 Luminosity Distance and the Matter-Energy Content of the Universe

We are now equipped to write out the luminosity distance in terms of the matter-energy

content of the Universe. Using Equation 1.19 and Equation 1.37, the luminosity distance

today described by a flat ΛCDM universe described by an FRW metric is given by

dL =
1 + z

H0

∫ z

0

dz

(ΩM(1 + z)3 + ΩΛ)1/2
. (1.38)

where we have assumed that the contribution from relativistic matter today is negligible and

that the scale factor today is one. This equation tells us that if we know the luminosity

distance to a set of objects and we know their redshift, we can learn something about Ωm,

ΩΛ and H0. SNe Ia constitute such a set.

The standard candle nature of SNe Ia make them useful for measuring cosmological

parameters (see e.g. Riess et al. (1998); Perlmutter et al. (1999). They have a standardizeable

luminosity such that relative distances can be calculated accurately. By measuring the

apparent magnitude, m, of a Type Ia Supernova (SN Ia) we can calculate its luminosity

distance according to Eq 1.2. As we have no direct measure of the luminosity of a SN Ia,

we must rely on the distance ladder which is anchored nearby with masers and Cepheid

variables to calibrate the absolute magnitude of SNe Ia (Riess et al., 2009).

In Figure 1.1.5 is a Hubble diagram from Conley et al. (2011) which was created from the

most recent supernova data sets; it is the brightness of the supernova corrected for light curve

shape as a function of redshift. The line fitted to the data is the best fit cosmology assuming

a flat universe and constant dark energy equation of state. ΩM and the dark energy equation

of state parameter w are the free parameters in this fit. In the bottom panel are the residuals

from the best fit line. In Figure 1.1.5 are the constraints placed on w and ΩM including all

statistical and systematic uncertainties for this sample of SNe Ia. These results show that for

a flat universe and constant dark energy equation of state parameter,ΩM ' 0.25(ΩΛ = 0.75)

which indicates that most of the energy in the Universe is in the form of dark energy and

that w = −1, which indicates that the Universe is accelerating in its expansion.
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Figure 1 Supernova brightness corrected for light curve shape as a function of redshift (Hub-

ble diagram) using a recent compilation of SNe Ia from Conley et al. (2011). The best fit

cosmology as a function of constant equation of state parameter w and ΩM for a flat universe

is plotted as the solid line. Residuals with respect to this line are plotted in the bottom panel.

c© AAS. Reproduced with permission. http://dx.doi.org/10.1088/0067-0049/192/1/1
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Figure 2 Cosmological constraints from Conley et al. (2011) including statistical and sys-

tematic uncertainty. The sample used in this analysis favors a universe dominated by

dark energy which is accelerating in its expansion. c© AAS. Reproduced with permission.

http://dx.doi.org/10.1088/0067-0049/192/1/1
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1.2 THE LOCAL PECULIAR VELOCITY FIELD

Accurate distance estimates to large sets of galaxies through SN Ia measurements allow us

to model the local peculiar velocity field. We know that dark energy acts only on large

scales. This means that local motions, like the Earth traveling around the Sun, are still

governed by gravity. Gravity will be the dominate force that acts on large objects which

are close together or bound. Galaxies which are gravitationally bound will collide in spite of

dark energy. This will depend on how much matter - dark matter in particular - is in these

galaxies.

Measuring the rate of expansion - the growing separation between galaxies - is difficult in

areas of space where objects are heavily influenced by gravity. This causes “peculiar motions”

which counteract the motions caused by the expansion of the Universe. Peculiar motions

are larger in areas with more mass, like clusters of galaxies, which consequently contain

more dark matter. By modeling these peculiar motions in the nearby Universe, we can

limit gravitational effects on our understanding of dark energy and on derived cosmological

parameters (Cooray & Caldwell, 2006; Hui & Greene, 2006; Gordon et al., 2007; Neill et al.,

2007; Davis et al., 2010b).

More precisely, on smaller physical scales large scale structure induces peculiar velocities

that create large fluctuations in redshift. Recall that the redshift encodes the total motion

of the source relative to Earth. We are therefore in a regime where a sizable component

of the redshift is due to peculiar motion. This limits the cosmological utility of SN Ia as

the redshift is assumed to be from cosmic expansion. Averaging over many SNe Ia reduces

scatter caused by random motions but not those caused by coherent large scale motions.

Recent work has shown significant peculiar velocity effects on cosmological parameters out

to z < 0.1 (Cooray & Caldwell, 2006; Hui & Greene, 2006); where peculiar velocities

contaminate the Hubble diagram in the nearby redshift regime which adds uncertainty to

derived cosmological parameters.

The total velocity (peculiar velocity plus velocity due to cosmic expansion) of an object

can be measured from the redshift. With an accurate distance we can calculate the velocity

of a galaxy due to the expansion of the universe. The peculiar velocity of an object given
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the redshift z and cosmological distance d is

U = H0dl(z)−H0d (1.39)

where H0 is the Hubble parameter and H0dl(z) is the recessional velocity described by

H0 dl(z) = (1 + z)

∫ z

0

[
ΩM(1 + z′)3 + ΩΛ

]−1/2
dz′. (1.40)

Redshifts to host galaxies of SN Ia can be measured accurately with an error σz ∼ 0.001.

Thus the accuracy of a peculiar velocity measurement depends on the distance uncertainty.

One can model the peculiar velocity field once the position and peculiar velocity for

a set of objects is known. The peculiar velocity of an object is influenced by matter on

all scales. Modeling the flow field is therefore a direct probe of the distribution of dark

matter. Calculating the dipole moment of the peculiar velocity field, or bulk flow, is an

example of a measurement which helps us investigate the density fluctuations on large scales.

One expects these bulk motions to converge to zero with increasing volume in the rest

frame of the CMB with the rate of convergence depending on the amplitude of the matter

perturbations (Zaroubi, 2002). This fact motivates accurate modeling of the local peculiar

velocity field.

1.3 TYPE IA SUPERNOVAE AS STANDARD CANDLES

Supernovae are divided into two classes according to the deficiency (Type I) and presence

(Type II) of hydrogen. The Type Ia subclass exhibits strong Si II absorption in its early-

time spectra and blended emission lines of iron-group elements in the late-time spectra

(Filippenko, 1997). As a group they display nearly uniform spectra and light curves. Figure

3 shows a typical quasi-bolometric light curve and spectral evolution (Figure 3 from Howell

(2011)). SNe Ia rise in brightness and peak 15-20 days after the initial explosion. Over

the next month they decline in brightness by about 3 magnitudes and continue declining

at a rate of about one magnitude per month. Initially the spectra show only absorption

lines probing the outer layers of the supernova. As the supernova expands the photosphere
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(light emitting region) recedes and spectra probe the inner regions of the ejecta. Around

the time of maximum the spectrum shows emission at the rest wavelength and blueshifted

absorption i.e. P-Cygni profiles. Around one month after peak brightness when the ejecta

starts to become optically thin, the spectra become dominated by emission features. Late

time spectra feature emission lines from iron-peak elements which were created near the

center of the explosion.

SNe Ia are found in young and old stellar populations. Spectral evolution analysis show

a total ejecta mass near Chandrasekhar mass and that many Type Ia progenitors have the

same mass (Mazzali et al., 2007). As a result, SNe Ia are believed to be the explosion of

a carbon-oxygen white dwarf which has reached the Chandrasekhar mass limit by accreting

mass from a companion (single degenerate scenario) or via the collision of two white dwarfs

(double degenerate scenario). A white dwarf is the stellar remnant of a low to medium mass

star (0.5-8 M�) which was hot enough to fuse helium into carbon and oxygen in its core

before expelling its outer material, creating a planetary nebula. The interior of the carbon

and oxygen core remnant is supported by electron degeneracy pressure while the outer layers

of non-degenerate matter radiate as a black body and slowly cool. The mass of a non-rotating

white dwarf is limited to the Chandrasekhar mass (∼ 1.4M�), the upper limit to the mass

of an electron-degenerate object. For the white dwarf to become a Type Ia it must exceed

this mass by accreting material from a companion or merging with another white dwarf

such that the combined mass is greater than the Chandrasekhar mass. The increase in mass

compresses the core thereby raising the temperature and the density. Eventually, electron

degeneracy pressure is no longer enough to support the growing mass of the white dwarf and

the core collapses producing a thermonuclear runaway creating a SN Ia.

It is generally accepted that the thermonuclear runaway of a carbon-oxygen white dwarf

near the Chandrasekhar mass is responsible for the standard nature of Type Ia’s. The

products of helium burning, C12 and O16, are efficiently combined into Ni56. The light curve

of a SN Ia - how the brightness rises and falls overtime - is powered by the radioactive decay

of Ni56 into Co56 into Fe56. Each decay process adds an exponential component to the light

curve and drives the shape of the light curve after maximum light. The initial light curve of

a SN Ia is shaped by the radiative diffusion of an expanding sphere of ejecta. A large ejecta
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Figure 3 Quasi-bolometric light curve and spectra from 2003du. Panel a shows the log

luminosity of the explosion as a function of time. The phase is shifted so that the time of

maximum corresponds to 0 days. The SN Ia rises in brightness over 2 weeks and declines

by 3 magnitudes over the first month after peak brightness. The late time light curve

follows a steady decline of about 1 magnitude per month. Panel b shows spectra which

were taken according to the orange points in panel a. The phase in days is also listed

above each spectrum. Reprinted by permission from Macmillan Publishers Ltd: Nature

Communications Howell (2011), http://dx.doi.org/10.1038/ncomms1344
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mass corresponds to a longer radiative diffusion time and has the effect of smearing out the

Ni56 peak. Understanding the interplay between the radiative diffusion and radioactive decay

time scales of the SN Ia enable us to calibrate their luminosity and use them as cosmological

distance indicators.

1.3.1 Progenitor Scenarios

It is generally accepted that Type Ia’s must be the thermonuclear runaway of a carbon-oxygen

white dwarf although it is unclear how the progenitor system reaches the Chandrasekhar mass

and what process leads to its ignition and explosion. Two popular progenitor mechanisms are

the single-degenerate scenario in which the white dwarf accretes mass from a non-degenerate

companion (Whelan & Iben, 1973) star and the double-degenerate scenario which involves

the merger of two white dwarfs (Webbink, 1984).

In the single degenerate model a white dwarf accretes mass from a secondary companion

star. One possible mechanism for accretion is via Roche lobe overflow. The Roche lobe is the

region of space around the companion star for which material is bound to that star. Once

the star expands beyond its Roche lobe material can be accreted onto the white dwarf. Mass

transfer can occur via Roche lobe overflow when the companion stars is a main sequence

star (van den Heuvel et al., 1992), a slightly evolved subgiant (Han & Podsiadlowski, 2004)

or a helium star (Tutukov & Yungelson, 1996) and has a orbital period less than several

days. Mass transfer can also occur when the companion is a low mass red giant with a long

orbital period extending from tens to hundreds of days (Li & van den Heuvel, 1997). In

this situation a strong wind is employed to stabilize the mass transfer rate (Hachisu et al.,

1996; Li & van den Heuvel, 1997).

The goal in these models is to grow the white dwarf in mass with stable nuclear burning

on the surface of the white dwarf of hydrogen into helium or through direct transfer of

helium from the companion star (Nomoto, 1982). For each type of secondary companion a

narrow range of accretion rates are allowable. It the accretion rates are too fast, the accretor

can expand into a red-giant-like configuration and engulf the companion into a common

envelope (Iben & Tutukov, 1984). If the material is accreted too slowly the hydrogen forms
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a cold degenerate layer until it ignites and burns in a nova eruption on the surface of the

white dwarf (Starrfield et al., 1972). It is expected that most of the accreted material is

blown away in this process along with some of the original white dwarf material (Yaron

et al., 2005). Uncertainty in the common envelope phase and uncertainty in the fraction

of transferred mass retained by white dwarf lead to a wide range of white dwarf growth

scenarios (Bours et al., 2013).

The double degenerate scenario features the merger of two white dwarfs through an

accretion disk configuration or through a collisional one where two white dwarfs collide head

on. In the first configuration the more-massive white dwarf tidally disrupts and accretes

the lower-mass white dwarf (see e.g. Lorén-Aguilar et al. (2009)). Carbon and oxygen

are efficiently transferred to the larger white dwarf eventually leading to carbon ignition in

the core. It is possible that the efficient mass transfer could lead to off-center ignition and

produce orientation effects (see e.g. Moll et al. (2013)) which would not reproduce the

uniform behavior of SNe Ia. In the second configuration two white dwarfs collide in some

dense stellar environment such as a globular cluster or galactic nuclei (Benz et al., 1989;

Raskin et al., 2009). In this situation a shock-triggered thermonuclear explosion arises at

the collision site (Rosswog et al., 2009) rather than carbon ignition in the core.

1.3.2 Observational tests of progenitor systems

Here I highlight some observational tests and techniques for testing different progenitor

models. For a more complete discussion see Maoz et al. (2013).

1.3.2.1 Pre-explosion data Perhaps one of the clearest paths to determining what the

progenitor system of a SN Ia is would be to observe one before it exploded. Unfortunately no

clear progenitor system has been detected although upper limits on progenitor luminosities

have been estimated from pre-explosion images (see e.g. Graur & Maoz (2012b,a); Maoz &

Mannucci (2008); Nelemans et al. (2008)). The most exciting pre-explosion progenitor limits

have come from the recent SN 2011fe in the nearby galaxy M101 (see Chomiuk (2013) for a

review). Because of its close proximity it is the earliest discovery of a SN Ia to date (Nugent
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et al., 2011). It also happens to be incredibly ordinary (Richmond & Smith, 2012) which

makes it useful for addressing progenitor questions. The exploding star is likely a carbon-

oxygen white dwarf (Nugent et al., 2011) and upper limits from pre-explosion images rule

out luminous redgiants and most helium stars as the companion (Li et al., 2011b).

1.3.2.2 Event Rates Another test of progenitor models is to look for potential progen-

itor systems in local galaxies, measure their properties and numbers, see if that matches

SN Ia rates and properties. For example, one possible progenitor system is a recurrent nova

(Schaefer, 2010; Kato & Hachisu, 2012). A nova eruption is the result of a thermonuclear

runaway event on the surface of a white dwarf as previously mentioned. The white dwarf

accretes hydrogen (or other material) from a companion, unstable hydrogen shell burning

sets in and the white dwarf becomes extremely bright as this envelope expands. Recurrent

novae are those systems which have such an outburst with rates greater than once per cen-

tury. There are 10 known galactic recurrent novae (Schaefer, 2010). It is believed that the

white dwarf must be near the Chandrasekhar mass for these systems to attain such a nova

frequency. A large white dwarf mass indicates high surface gravity such that less material

must be accreted to attain a thermonuclear runaway. High accretion rates would also lead to

a short recurrence timescale. A large white dwarf mass and high accretion rate make these

systems excellent SN Ia progenitor candidates although there is some evidence that recurrent

novae are systems for which the white dwarf actually loses mass with time (Patterson et al.,

2013).

Based on the frequency of occurrence of recurrent novae in local galaxies it it unlikely

that they make up all SNe Ia (della Valle & Livio, 1996). Schaefer (2010) estimate that

∼ 100 classified novae are actually recurrent novae and an analysis of the Galactic spatial

distribution suggest that a large fraction are missed bumping the galactic number to about

300. However to achieve a Galactic supernova rate of once per 200 years over 3300 systems

are needed (Maoz et al., 2013). Therefore recurrent novae cannot make up all, if any, SNe Ia.

A similar prescription can be applied to test the double-degenerate scenario. First search

the Galactic neighborhood for white dwarf binaries with periods short enough to allow merger

through gravitational decay within a reasonable time (a Hubble time) and derive a Galactic
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white dwarf merger rate. This merger rate should then match the Galactic supernova rate

if they are indeed the progenitors of most SNe Ia.

The ESO SN Ia Progenitor Survey (SPY) project aims at finding merging double degen-

erate systems (Geier et al., 2010; Nelemans et al., 2005). They have found ∼ 100 binary

candidates and several which are expected to merge within a Hubble time. A statistical in-

terpretation of these numbers in terms of selection effects and survey inefficiencies has yet to

be published. Nevertheless Toonen et al. (2012) use binary population synthesis code tech-

niques to estimate properties of observed white dwarf binaries and find reasonable agreement

with a compilation of known binaries from the literature. Further, they derive a Galactic

white dwarf merger rate which is agreement with estimates of the SN Ia rate for Milky Way

type galaxies of about 2 per century (Li et al., 2011a).

Similar to matching progenitor rates and SN Ia rates, one can examine SN Ia rates

and the progenitor dependence on environment and time. Different progenitor systems

evolve at different timescales which affect the SN Ia rate. One measure of the progenitors

environmental impact of the SN Ia rate is the delay-time distribution (DTD) which quantifies

how much time has passed between an outburst of star formation and the SN Ia event. It is

the distribution of times between star formation and SN Ia explosion. Measuring the DTD

is a major goal of SN Ia rate measurements (see Maoz & Mannucci (2012) for a review).

1.3.2.3 Remnants Examining the aftermath of a SN Ia explosion provides insight into

the progenitor system. To test the single degenerate scenario, one can search for the surviving

companion in SN Ia remnants. This star is expected to have unusual velocity, temperature,

or luminosity and could be detected from large proper or radial motions (Marietta et al.,

2000; Canal et al., 2001; Pan et al., 2013). The Tycho SN 1572 remnant is an SN Ia remnant

in the local neighborhood of the Milky Way (Rest et al., 2008) and is ideal for companion

star searches. Unfortunately results based on radial velocities, proper motions, and rotation

velocities for a surviving companion star in Tycho’s supernova remnant are in disagreement

(Ruiz-Lapuente et al., 2004; Fuhrmann, 2005; Ihara et al., 2007; Kerzendorf et al., 2009).

It is also expected that the companion star loses mass during the explosion and conse-

quently must have an overextended envelope. As a result, the companion becomes signifi-
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cantly more luminous. SNR 0509-67.5 in the Large Magellanic Cloud also appears to be a

SN Ia (Badenes et al., 2008) but deep imaging with the Hubble Space Telescope sets the

limit to the companion star which corresponds to a late-K type main sequence star of 0.5

solar masses (Schaefer & Pagnotta, 2012). This essentially rules out the single degenerate

scenario for this remnant. The lack of a leftover luminous companion star in other nearby

supernova remnants has provided additional evidence against the single degenerate scenario

(Shappee et al., 2013).

One can also construct hydrodynamical models of SN Ia events to try and reproduce

remnants thought to be Ia’s. Different initial conditions will produce different geometries,

dynamics, X-ray spectrum, etc. (Kosenko et al., 2011; Patnaude et al., 2012). For example,

Badenes et al. (2007) model the X-ray emission in seven remnants. They search for large

wind-blown cavities in the inter-stellar medium which are expected from rapidly accreting

white dwarfs in the wind-regulated accretion picture (Hachisu et al., 1996). They find that

the observations do not support this scenario and the growth of white dwarfs must proceed

another way.

1.3.2.4 Observed Event Properties Finally, one can use the observed properties of

the SN Ia itself to understand its progenitor system. For example, spectra from the event

contain many clues to understanding the progenitor. In some single degenerate scenarios,

hydrogen is accreted onto the white dwarf from a companion star. One could therefore search

for hydrogen emission in the early time spectra (Marietta et al., 2000; Mattila et al., 2005).

Polarization measurements reveal clues about the symmetry of an event. Spectropolarization

measurements are especially useful for addressing the progenitor problem as most progenitor

systems have an inherent asymmetry e.g. an accretion disk, rotational flattening, off-center

ignition, merger (see Wang & Wheeler (2008) for a review). Intervening absorption lines

give clues to the local environment of the SN Ia. For example, blueshifted time-varying Na

I D absorption lines may indicate circumstellar material local to the SN Ia (Maguire et al.,

2013). Shocks from the explosion eject hitting the companion star may be observable in

early time data and are another test of the single degenerate scenario (Kasen, 2010).

One can also use a modeling approach to reproduce observed spectra and light curves.

19



The chemical and velocity structure of the ejecta is revealed as the supernova expands and the

photosphere recedes. This can be used to differentiate between progenitor models. Overall

good agreement can be found between data and models but there are yet many shortcomings

in the details (Blondin et al., 2011; Röpke et al., 2012; Kasen et al., 2009).

1.3.3 Standardizing SN Ia Light Curves

SN Ia light curves display a color-luminosity and stretch-luminosity relationship. Intrinsically

faint supernovae are redder and have faster declining light curves (Phillips, 1993; Riess

et al., 1996). Nevertheless one can achieve 10-15% scatter in peak luminosity, better than

6% precision in distance, after corrections for light curve shape and color (see e.g. Jha et al.

(2007a)).

The goal of most light curve fitters is to standardize the shape of the light curve through

employment of the observed stretch- and color-luminosity relationships so that an accurate

distance can be measured. In one parameterization of the light curve the distance modulus

for a SN Ia can be written as

µB = mB −M − 5log(
H0

65 km s−1Mpc−1
) + α(s− 1)− βc (1.41)

where mB is the peak B-band apparent magnitude, M is the absolute magnitude of the

supernova, s is the stretch correction, α encodes the fact that fainter supernovae have faster

declining light curves, c is the color correction and β is the slope of the color-luminosity

relationship. H0, M , α, and β, are fixed quantities which are often measured from a training

set and other data. mB, s, and c are measured for each individual light curve.

When fitting a light curve one must correct for the fact that redder supernovae are

fainter. This is in part a result of the intrinsic color-luminosity relation but also a result of

reddening and extinction due to dust. MLCS2k2 (Jha et al., 2007a) attempts to make this

separation and perform corrections for each. SALT2 (Guy et al., 2007) and SifTO (Conley

& Sullivan, 2011) adopt the approach that the data are not yet good enough to make this

separation and make an empirical reddening correction.

One can separate the effects of intrinsic reddening and reddening due to dust with near-

infrared (NIR) observations, where dust becomes transparent. SNe Ia show reduced scatter
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in NIR before light curve shape and color corrections (Wood-Vasey et al., 2008a). So in

addition to being less affected by dust, SNe Ia appear to have more standard peak magnitudes

in the NIR.

This is supported in recent theoretical work by Kasen (2006). They generate synthetic

light curves using time-dependent multi-group radiative transfer calculations. They are able

to reproduce a peculiar feature of near-infrared light curves, a secondary maximum, and find

reasonable agreement with actual SN Ia light curves. The secondary maximum is claimed to

be a result of the ionization evolution of iron group elements in the ejecta. The temperature

of the ejecta decreases with radius and as a result, the transition between the double and

single ionized states in the iron/cobalt gas, which occurs at a temperature around 7000K,

is a thin shell of material. Initially this shell is at the outer edge of the ejecta. As the

supernova cools, this shell or ionization front moves inward. The sudden re-brightening of

the SN Ia is thought to be a result of when this front hits the iron-rich core of the ejecta.

The iron-rich gas becomes phosphorescent and is very effective at redistributing UV/blue

radiation to infrared wavelengths. Importantly, their models also confirm that SNe Ia are

excellent standard candles in the NIR.

Unfortunately, NIR observations are difficult to take from the ground due to significant

absorption and emission from water vapor in the atmosphere. This is compounded by the

fact that as supernovae are observed at higher redshift the region of the spectrum viewed

through a given filter changes. To create a rest-frame near-infrared Hubble diagram would

therefore require observing high redshift supernovae at even longer wavelengths from the

ground which is very challenging. As a result efforts from ground based NIR SN Ia searches

like the Carnegie Supernova Project (Stritzinger et al., 2011; Contreras et al., 2010; Burns

et al., 2011; Folatelli et al., 2010) and PAIRITEL (Wood-Vasey et al., 2008a) are focused

on calibrating and standardizing nearby SN Ia NIR luminosities for potential future space

based missions.
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1.4 CURRENT LIMITATIONS OF SN IA DATA SETS

With distances estimates in hand to larges sets of galaxies through SN Ia measurements, we

can measure the expansion history of the Universe or create models of how galaxies (matter)

near the Milky Way are moving. SN Ia samples sizes are around several thousand when we

combine results from searches like the Carnegie Supernova Project (Contreras et al., 2010;

Stritzinger et al., 2011), the Center for Astrophysics Supernova Group (Hicken et al., 2009b,

2012), the Supernova Legacy Survey (Guy et al., 2010; Astier et al., 2006; Conley et al.,

2011), the Sloan Digital Sky Survey-II Supernova Survey (Lampeitl et al., 2010; Sako et al.,

2014), the ESSENCE Survey (Wood-Vasey et al., 2007; Miknaitis et al., 2007), the Lick

Observatory Supernova Search (Ganeshalingam et al., 2010). and from individual efforts

with the Hubble Space Telescope (Riess et al., 2004, 2007; Knop et al., 2003; Amanullah

et al., 2010). Additional current and near-future surveys such as the Palomar Transient

Factory1 (Law et al., 2009), the Panoramic Survey Telescope and Rapid Response System

(Pan-STARRS)2, SkyMapper3, and the Dark Energy Survey4 will increase the sample by

another order of magnitude and the Large Synoptic Survey Telescope (LSST) anticipates

observing hundreds of thousands of well-measured SNe Ia (LSST Science Collaborations

et al., 2009).

In this new era of SN Ia cosmology, weaknesses and limitations of our current approach

to estimating cosmological parameters are becoming apparent. Traditionally when making

cosmological inference with SNe Ia one calculates the χ2 statistic (Conley et al., 2011;

Kessler et al., 2009a; Wood-Vasey et al., 2007; Astier et al., 2006; Riess et al., 2004). One

assumes that each measured distance modulus has a probability distribution function (PDF)

described by a Gaussian with standard deviation σ. A model for the distance modulus is

assumed which is a function of various cosmological and light curve parameters e.g. µmodel =

µmodel(ΩM ,ΩΛ, w, z, α, β). The likelihood for a single observation i is

p(µi, zi|ΩM ,ΩΛ, w, α, β) ∝ exp

[
−(µi − µmodel(zi,ΩM ,ΩΛ, w, α, β))2

2σ2
i

]
. (1.42)

1http://www.astro.caltech.edu/ptf/
2http://pan-starrs.ifa.hawaii.edu/public/
3http://www.mso.anu.edu.au/skymapper/
4http://www.darkenergysurvey.org/
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If the distance observations are independent after calibration such that there are no correlated

uncertainties, the likelihood for each observation can be multiplied together. We can then

derive the χ2 statistic by taking the logarithm

−2 ln (p(µ, z|ΩM ,ΩΛ, w, α, β)) = K +
N∑
i=1

(µi − µmodel(zi,ΩM ,ΩΛ, w, α, β))2

σ2
i

(1.43)

where K is an unimportant constant. Typically one must assume independent data with

normally distributed uncertainties to use this form of the χ2 statistic. Unfortunately there

are significant systematic uncertainties including errors from calibration, survey design and

cadence, host galaxy subtraction and intrinsic dust, population evolution, gravitational lens-

ing, and peculiar velocities. All of these uncertainties contribute to a probability model

which simply cannot be accurately described by a multivariate normal distribution.

Likewise, large numbers of SNe Ia allow one to model the local peculiar velocity field

but also reveal systematic inconsistencies between different methods. While SNe Ia are

ideal candidates to measure flow fields with only recently have there been enough data to

perform these measurements. Comparisons between different galaxy and SN Ia surveys and

techniques of modeling the field show results that are highly correlated and in agreement

(Zaroubi, 2002; Hudson, 2003; Hudson et al., 2004; Radburn-Smith et al., 2004a; Pike &

Hudson, 2005; Sarkar et al., 2007; Watkins & Feldman, 2007). However, when the data

sets from different surveys are combined (namely Feldman et al. (2010), but Watkins et al.

(2009) and Ma et al. (2010) also combine data sets) they are in disagreement with Nusser

& Davis (2011). Errors in distance measurements are only part of the problem. The non-

uniform sampling of objects across the sky due to the Galactic disk (affecting ∼40% of

the sky) aggravate the systematic errors (Zaroubi, 2002). Such systematic errors cause

inconsistencies among the different models. Fortunately the amount of SN Ia data continues

to grow and modeling can be done with better precision allowing for investigation of the

systematic errors that limit our measurements.

With the future influx of SN Ia data, statistical errors will be reduced but an understand-

ing of systematic errors is required to make improvements on cosmological measurements

(Albrecht et al., 2006a) and flow models.
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1.5 DISSERTATION OVERVIEW

For my dissertation I have utilized the unique properties of SNe Ia coupled with modern

statistics to address a variety of problems in astrophysics. These include improving flow

models in the local Universe and demonstrating how Approximate Bayesian Computation

(ABC) can tackle complicated likelihood functions in supernova cosmology. I also present

the first results of a new near-infrared SN Ia survey called “SweetSpot.”

The standard nature of SNe Ia and our ability to derive accurate distances to them make

them ideal for developing peculiar velocity models. The motions of individual galaxies are

perturbed from the overall smooth Hubble expansion due to Inhomogeneities in the matter

distribution of our universe. From an accurate measurement of these motions, generally

referred to as peculiar velocities or redshift space distortions, we can directly probe the

dark matter distribution, the bias parameter β which specifies how galaxies follow the total

underlying matter distribution, and improve cosmological measurements by reducing scatter

in the Hubble Diagram at low redshift. Accurate distances, which result from accurate

peculiar velocity models, are also important for studies of galaxy evolution – particularly at

the low mass end where objects are only accessible in the very local universe. How well we

model the local peculiar velocity field depends on how well we derive redshift-independent

distances to objects and the sky and redshift coverage of the measurements we obtain. SNe Ia

have a standardizeable luminosity from which we can derive redshift independent distances

to with ∼ 6% uncertainty making them ideal candidates to model local flows with. We have

used the latest sample of SNe Ia to develop a method of modeling the local peculiar velocity

field which accounts for the non-uniform distribution of objects across the sky. This work is

presented in Chapter 2.

Cosmological inference becomes increasingly difficult when complex data-generating pro-

cesses cannot be modeled by simple probability distributions. With the ever- increasing size

of data sets in cosmology, there is increasing burden placed on adequate modeling; system-

atic errors in the model will dominate where previously these were swamped by statistical

errors. For example, Gaussian distributions are an insufficient representation for errors in

quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the
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distribution of errors that are introduced in complex fitting codes. Without a simple form for

these distributions, it becomes difficult to accurately construct a likelihood function for the

data as a function of parameters of interest. ABC provides a means of probing the posterior

distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC

allows one to bypass direct calculation of the likelihood but instead relies upon the ability

to simulate the forward process that generated the data. These simulations can naturally

incorporate priors placed on nuisance parameters, and hence these can be marginalized in a

natural way. I will present and discuss ABC methods in the context of supernova cosmology

in Chapter 3

Recent work has suggested that SNe Ia are superior distance indicators in the NIR, with

more standard peak JHKs magnitudes and relative insensitivity to reddening (Meikle, 2000;

Krisciunas et al., 2004a, 2007). As a result, unlike optical SNe Ia, which are standardizeable

candles, NIR SNe Ia appear to be truly standard candles at the ∼ 0.15 − 0.2 mag level (∼

7−9% in distance) (Krisciunas et al., 2004a; Wood-Vasey et al., 2008a; Folatelli et al., 2010).

However the NIR observations to date have been limited by the power of the PAIRITEL

and Swope telescopes to cz < 10, 000 km s1 where distance measurements are sensitive to

peculiar velocity uncertainties, adding noise to the determination of the intrinsic dispersion

of SNe Ia in the NIR. We have been awarded 7 nights during the 2011B semester to take

observations of SNe Ia out to z = 0.1 where we are less sensitive to the effects of peculiar

velocities.

Our focus is on improving our ability to standardize the SN Ia’s total luminosity. We

want to examine the intrinsic colors of the event at different times. We want to see if there

is any correlation between the supernova event and the galaxy it resides in. We want to

study dust in other galaxies and how that affects the brightness of the event. And most

importantly, we want to provide a well-calibrated sample that will act as a stepping stone

for more distant, space-based surveys. I will discuss our observations, data reduction, and

the science we have and hope to accomplish with our observations in Chapter 4.

25



2.0 AN UNBIASED METHOD OF MODELING THE LOCAL PECULIAR

VELOCITY FIELD WITH TYPE IA SUPERNOVAE

We apply statistically rigorous methods of non-parametric risk estimation to the problem of

inferring the local peculiar velocity field from nearby SNe Ia. We use two non-parametric

methods - Weighted Least Squares (WLS) and Coefficient Unbiased (CU) - both of which

employ spherical harmonics to model the field and use the estimated risk to determine at

which multipole to truncate the series. We show that if the data are not drawn from a

uniform distribution or if there is power beyond the maximum multipole in the regression,

a bias is introduced on the coefficients using WLS. CU estimates the coefficients without

this bias by including the sampling density making the coefficients more accurate but not

necessarily modeling the velocity field more accurately. After applying non-parametric risk

estimation to SN Ia data, we find that there are not enough data at this time to measure

power beyond the dipole. The WLS Local Group bulk flow is moving at 538 ± 86 km s−1

towards (l, b) = (258◦± 10◦, 36◦± 11◦) and the CU bulk flow is moving at 446± 101 km s−1

towards (l, b) = (273◦ ± 11◦, 46◦ ± 8◦). We find that the magnitude and direction of these

measurements are in agreement with each other and previous results in the literature.

2.1 INTRODUCTION

Inhomogeneities in the matter distribution of our universe perturb the motions of individual

galaxies from the overall smooth Hubble expansion. These motions, called peculiar velocities,

result from gravitational interactions with the spectrum of fluctuations in the matter-density

and are therefore a direct probe of the distribution of dark matter. The peculiar velocity of
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an object is influenced by matter on all scales and modeling the peculiar velocity field allows

one to probe scales larger than the sample. Calculating the dipole moment of the peculiar

velocity field, or bulk flow, is an example of a measurement which helps us investigate

the density fluctuations on large scales. Fluctuations in density on many Mpc scales are

well described by linear physics and can be used to probe the mass power spectrum while

fluctuations on small scales become highly non-linear and difficult to model.

From an accurate measurement of the local peculiar velocity field we can infer the prop-

erties of the dark matter distribution. On scales ∼ 10 Mpc and greater we can use linear

perturbation theory to estimate the bias free mass power spectrum directly from

U(r) =
H0Ω0.6

m

4π

∫
d3r′

δm(r′)(r′ − r)

| r′ − r |3
(2.1)

where δm(r) is the density contrast defined by (ρ − ρ̄)/(ρ̄), ρ̄ is the average density, and

Ωm is the matter density parameter (Peebles, 1993). In the past, measurements of the

matter power spectrum using galaxy peculiar velocity catalogs consistently produced power

spectra with large amplitudes (Zaroubi et al., 1997; Freudling et al., 1999; Zaroubi et al.,

2001). A renewed interest in bulk flow measurements has recently produced power spectra

with lower amplitudes, which is often characterized by σ8, which are consistent with the

Wilkinson Microwave Anisotropy Probe (Park & Park, 2006; Feldman & Watkins, 2008;

Abate & Erdoğdu, 2009; Song et al., 2010; Lavaux et al., 2010) and some which challenge

the ΛCDM cosmology (Kashlinsky et al., 2008; Watkins et al., 2009; Feldman et al., 2010;

Macaulay et al., 2010).

Peculiar velocity measurements also enable one to measure the matter distribution inde-

pendent of redshift surveys. This allows for comparison between the galaxy power spectrum

and matter power spectrum to probe the bias parameter β which specifies how galaxies fol-

low the total underlying matter distribution (Pike & Hudson, 2005; Park & Park, 2006;

Davis et al., 2010a). In addition to measuring β, this comparison can also be used to test

the validity of the treatment of bias as a linear scaling (Abate et al., 2008).

By accurately measuring the local velocity field, it is possible to limit its effects on de-

rived cosmological parameters (Cooray & Caldwell, 2006; Hui & Greene, 2006; Gordon et al.,

2007; Neill et al., 2007; Davis et al., 2010b). The basic cosmological utility of SNe Ia comes
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from comparing an inferred luminosity distance with a measured redshift. This redshift is

assumed to be from cosmic expansion. However, on smaller physical scales where large scale

structure induces peculiar velocities that create large fluctuations in redshift, this measured

redshift becomes a combination of cosmic expansion and local bulk motion and thus of lim-

ited utility in inferring cosmological parameters from the corresponding luminosity distance.

While traditionally this troublesome regime has been viewed to extend out to z < 0.05,

recent work has shown significant effects out to z < 0.1 (Cooray & Caldwell, 2006; Hui &

Greene, 2006). Hence peculiar velocities from SNe Ia add scatter to the Hubble diagram

in the nearby redshift regime which adds uncertainty to derived cosmological parameters,

including the dark energy equation-of-state parameter. In an ongoing effort to probe the

nature of dark energy, surveys such as the CfA Supernova Group1 (Hicken et al., 2009b),

SNLS2 (Astier et al., 2006), Pan-STARRS3, ESSENCE4 (Miknaitis et al., 2007), Carnegie

Supernova Project (CSP) 5 (Hamuy et al., 2006; Folatelli et al., 2010), the Lick Observatory

Supernova Search KAIT/LOSS (Filippenko et al., 2001; Leaman et al., 2010), Nearby SN

Factory6 (Aldering et al., 2002), SkyMapper7 (Murphy et al., 2009), Palomar Transient

Factory8 (Law et al., 2009) hope to obtain tighter constraints on cosmological parameters.

With the future influx of SN Ia data, statistical errors will be reduced but an understand-

ing of systematic errors is required to make improvements on cosmological measurements

(Albrecht et al., 2006a). Averaging over many SN Ia reduces scatter caused by random

motions but not those caused by coherent large scale motions. One expects these bulk mo-

tions to converge to zero with increasing volume in the rest frame of the cosmic microwave

background (CMB) with the rate of convergence depending on the amplitude of the matter

perturbations. This fact motivates determining both the monopole and dipole component

of the local peculiar velocity field (Zaroubi, 2002).

To model the local peculiar velocity field or flow field requires a measure of an object’s

1http://www.cfa.harvard.edu/supernova/SNgroup.html
2http://cfht.hawaii.edu/SNLS/
3http://pan-starrs.ifa.hawaii.edu/public/
4http://www.ctio.noao.edu/essence/
5http://csp1.lco.cl/~cspuser1/PUB/CSP.html
6http://snfactory.lbl.gov/
7http://www.mso.anu.edu.au/skymapper/
8http://www.astro.caltech.edu/ptf/
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peculiar velocity and its position on the sky. The peculiar velocity of an object, such as a

galaxy or SN Ia, given the redshift z and cosmological distance d is

U = H0dl(z)−H0d (2.2)

where H0 is the Hubble parameter and H0dl(z) is the recessional velocity described by

H0 dl(z) = c(1 + z)

∫ z

0

[
ΩM(1 + z′)3 + ΩΛ

]−1/2
dz′. (2.3)

Redshifts to galaxies can be measured accurately with an error σz ∼ 0.001. Therefore, the

accuracy of a measure of an object’s peculiar velocity rests on how well we can determine

its distance.

A variety of techniques exist to determine d. Distances to spiral galaxies can be measured

through the Tully-Fisher (TF) relation (Tully & Fisher, 1977) which finds a power law

relationship between the luminosity and rotational velocity. This method has been one of

the most successful in generating large peculiar velocity catalogs. The SFI++ data set

(Masters et al., 2006; Springob et al., 2007) for example, is one of the largest homogeneously

derived peculiar velocity catalog using I-band TF distances to ∼ 5000 galaxies with ∼ 15%

distance errors. This catalog builds on the Spiral Field I-band (SFI; Giovanelli et al. (1994,

1995); da Costa et al. (1996); Haynes et al. (1999b,a)), Spiral Cluster I-band (SCI; Giovanelli

et al. (1997b,a)) and the Spiral Cluster I-band 2 (SC2; Dale et al. (1999a,c)) catalogs. The

Two Micron All-Sky Survey (2MASS) Tully-Fisher (2MTF) survey (Masters et al., 2008)

aims to measure TF distances to all bright spirals in 2MASS in the J, H, and K bands. The

Kinematics of the Local Universe catalog (KLUN)9 (Theureau, 1998), which is the only

catalog to exceed SFI++ in number of galaxies, consists of B-band TF distances to 6600

galaxies. The velocity widths in this catalog are not homogeneously collected and measured

adding to the errors. Additionally, the B-band TF relationship exhibits more scatter –

which translates to larger distance errors – than the I, J, H, and K bands due to Galactic

and internal extinction, making the SFI++ arguably the best galaxy peculiar velocity catalog

currently available. Finally, with the Square Kilometer Array (SKA) (Dewdney et al., 2009)

we expect TF catalogs to grow out to larger distances using less HI in the near future. Using

9http://klun.obs-nancay.fr/
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TF derived peculiar velocities, measurements of the bulk flow and shear moments have been

made (Giovanelli et al., 1998; Dale et al., 1999b; Courteau et al., 2000; Kudrya et al., 2003;

Feldman & Watkins, 2008; Kudrya et al., 2009; Nusser & Davis, 2011) and cosmological

parameters have been constrained (da Costa et al., 1998; Freudling et al., 1999; Borgani

et al., 2000; Branchini et al., 2001; Pike & Hudson, 2005; Masters et al., 2006; Park & Park,

2006; Abate & Erdoğdu, 2009; Davis et al., 2010a).

Fundamental Plane (FP) distances (Djorgovski & Davis, 1987) which express the lumi-

nosity of an elliptical galaxy as a power law function of its radius and velocity dispersion

also enable one to generate large peculiar velocity catalogs. Several smaller data sets utilize

this distance indicator. The Streaming Motions of Abell Clusters (SMAC) project (Smith

et al., 2000; Hudson et al., 2001; Smith et al., 2001) is an all-sky FP survey of 699 galaxies

with ∼ 20% distance errors. The EFAR project (Wegner et al., 1996; Colless et al., 2001)

studied 736 elliptical galaxies in clusters in two regions on the sky to improve distance es-

timates to 85 clusters. Larger FP programs include the NOAO Fundamental Plane Survey

(Smith et al., 2004) which will provide FP measurements to ∼4000 early-type galaxies and

the 6 Degree Field Galaxy Survey (6dFGS) (Wakamatsu et al., 2003; Jones et al., 2009); a

southern sky survey which, in combination with 2MASS, hopes to deliver more than 10,000

peculiar velocities using near infrared FP distances. The increase in the number of objects

makes this catalog competitive even though individual distance errors are greater than TF

errors. The Dn − σ relation is a reduced parameter version of FP with typical errors of

∼ 25% (Dressler et al., 1987b). The Early-type NEARby galaxies (ENEAR) (da Costa

et al., 2000b; Bernardi et al., 2002) project measured galaxy distances based on DN − σ

and FP to 1359 and 1107 galaxies and the Mark III Catalog of Galaxy Peculiar Velocities

(Willick et al., 1995, 1996, 1997) contains 3300 galaxies with estimated distances from TF

and Dn − σ. Global features of large-scale motions (Dressler et al., 1987a; Hudson et al.,

1999; Dekel et al., 1999; da Costa et al., 2000a; Hudson et al., 2004; Colless et al., 2001) and

derived parameters have been measured using these catalogs (Davis et al., 1996; Park, 2000;

Rauzy & Hendry, 2000; Zaroubi et al., 2001; Nusser et al., 2001; Hoffman et al., 2001).

Other distance measurements to galaxies are more difficult to make or not as precise.

Tonry et al. (2001) report distances to 300 early type galaxies using Surface Brightness
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Fluctuations (SBF) whose observations were obtained over a period of ∼ 10 years. This

method measures the luminosity fluctuations in each pixel of a high signal-to-noise CCD

image of a galaxy where the amplitude of these fluctuations is inversely proportional to the

distance. A ∼ 5% distance uncertainty can be obtained under the best observing conditions

(Tonry et al., 2000) making SBF a useful method for cz < 4000 km/s. Although it is

difficult to create a large catalog of objects, Blakeslee et al. (1999) used SBF distances to

put constraints on H0 and β. Tip of the Red Giant Branch (TRGB) (Madore & Freedman,

1995) and Cepheid distances are challenging to obtain as one must have resolved stars which

limits observations to the local Universe.

SNe Ia are ideal candidates to measure peculiar velocities because they have a standard-

izable brightness and thus accurate distances can be calculated with less than 7% uncertainty

(e.g. Jha et al., 2007b). Only recently through the efforts like the CfA Supernova Group,

LOSS, and CSP have there been enough nearby SNe Ia (∼ 400) to make measurements of

bulk flows. Measurements of the monopole, dipole, and quadrupole have been made which

find dipole results compatible with the CMB dipole (Colin et al., 2010; Haugbølle et al., 2007;

Jha et al., 2007b; Giovanelli et al., 1998; Riess et al., 1995). Measurements of the monopole

as a function of redshift have been used to test for a local void (Zehavi et al., 1998; Jha

et al., 2007b). SN Ia peculiar velocity measurements have also been used to put constraints

on power spectrum parameters (Radburn-Smith et al., 2004a; Watkins & Feldman, 2007).

Hannestad et al. (2008) forecast the precision with which we will be able to probe σ8 with

future surveys like LSST. Following up on Cooray & Caldwell (2006); Hui & Greene (2006),

Gordon et al. (2008) and Davis et al. (2010b) investigated the effects of correlated errors

when neighboring SN Ia peculiar velocities are caused by the same variations in the density

field. Not accounting for these correlations underestimates the uncertainty as each new SN Ia

measurement is not independent. Recent investigations in using near-infrared measurements

of SNe Ia to measure distances have shown promise for better standard candle behavior

and the potential for more accurate and precise distances to galaxies in the local Universe

(Krisciunas et al., 2004b; Wood-Vasey et al., 2008b; Mandel et al., 2009).

A wide range of methods have been developed to model the local peculiar velocity field.

Nusser & Davis (1995) present a method for deriving a smooth estimate of the peculiar
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velocity field by minimizing the scatter of a linear inverse Tully-Fisher relation η where the

magnitude of each galaxy is corrected by a peculiar velocity. The peculiar velocity field is

modeled in terms of a set of orthogonal functions and the model parameters are then found

by maximizing the likelihood function for measuring a set of observed η. This method was

applied to the Mark III (Davis et al., 1996) and SFI (da Costa et al., 1998) catalogs.

Several other methods have been developed and tested on e.g., SFI and Mark III catalogs

to estimate the mass power spectrum and compare peculiar velocities to galaxy redshift

surveys which utilize or compliment rigorous maximum likelihood techniques (Willick &

Strauss, 1998; Freudling et al., 1999; Zaroubi et al., 1999; Hoffman & Zaroubi, 2000; Zaroubi

et al., 2001; Branchini et al., 2001). Non-parametric models (Branchini et al., 1999) and

orthogonal functions (Nusser & Davis, 1994; Fisher et al., 1995) have been implemented to

recover the velocity field from galaxies in redshift space. Smoothing methods (Dekel et al.,

1999; Hoffman et al., 2001) have also been used to tackle large random errors and systematic

errors associated with nonuniform and sparse sampling. More recently, Watkins et al. (2009)

introduce a method for calculating bulk flow moments which are comparable between surveys

by weighting the velocities to give an estimate of the bulk flow of an idealized survey. The

variance of the difference between the estimate and the actual flow is minimized. Nusser &

Davis (2011) present ACE (All Space Constrained Estimate), a three dimensional peculiar

velocity field constrained to match TF measurements which is used to reconstruct the bulk

flow.

Comparisons between different SN Ia and galaxy surveys and methods show that mea-

surements of the local velocity field are highly correlated and in agreement (Zaroubi, 2002;

Hudson, 2003; Hudson et al., 2004; Radburn-Smith et al., 2004a; Pike & Hudson, 2005;

Sarkar et al., 2007; Watkins & Feldman, 2007). However, peculiar velocity data sets which

have recently been combined (namely Feldman et al. (2010), but Watkins et al. (2009) and

Ma et al. (2010) also combine data sets) are in disagreement with Nusser & Davis (2011).

Errors in distance measurements and the non-uniform sampling of objects across the sky

due to the Galactic disk (∼40% of the sky) aggravate the systematic errors (Zaroubi, 2002).

These systematic errors cause inconsistencies among the different models and must be dealt

with in a statistically sound fashion. Since the field is at a point where rough agreement
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exists between the different methods, and modeling can be done with better precision as

the amount of data continues to increase, it is time to investigate the systematic errors that

limit our measurements.

In this paper we present a statistical framework that can be used to properly extract the

available flow field from observations of nearby SNe Ia, while avoiding the historical pitfalls

of incomplete sampling and over-interpretation of the data. In particular, we emphasize the

distinction between finding a best overall model fit to the data and finding the best unbiased

value of a particular coefficient or set of coefficients of the model, e.g., the direction and

strength of a dipole term due to our local motion. The first task is to provide a framework

for modeling the peculiar velocity field which adequately accounts for sampling bias due to

survey sky coverage, galactic foregrounds, etc. These methods are discussed in Section 2.2.

We then introduce risk estimation as a means of determining where to truncate a series of

basis functions when modeling the local peculiar velocity field, e.g., should we fit a function

out to a quadrupole term. Risk estimation is a way of evaluating the quality of an estimate of

the peculiar velocity field as a function of l moment, whose minimum determines the optimal

balance of the bias and variance. These methods are outlined in Section 2.3. In Section 2.4

and Section 2.5 we apply these methods to a simulated data set and SN Ia data pulled from

recent literature and discuss our results. We then apply our methods to simulated data

modeled after the actual data and examine their performance as we alter the direction of the

dipole in Section 2.6. In Section 2.7 we conclude and present suggestions for future work.

2.2 NON-PARAMETRIC ANALYSIS OF A SCALAR FIELD

A peculiar velocity field at a given redshift can be written as

Un = f(xn) + εn (2.4)

where Un is the observed peculiar velocity at position xn = (θn, φn) on the sky, εn is the

observation error, and f is our peculiar velocity field. Since we expect f to be a smoothly
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varying function across the sky, it can be decomposed as

f(x) =
∞∑
j=0

βjφj(x) (2.5)

where φj, [j = 0, 1, 2...] forms an orthonormal basis and βj is given by

βj =

∫
φj(x)f(x)dx. (2.6)

In this work we apply the real spherical harmonic basis as we are physically interested in

a measurement of the dipole and follow a procedure similar to Haugbølle et al. (2007). The

radial velocity field on a spherical shell of a given redshift can be expanded using spherical

harmonics:

f =
∞∑
l=0

l∑
m=−l

almYlm (2.7)

=
∞∑
l=0

{
l∑

m=1

(al,−mYl,−m + almYlm) + al0Yl0

}
. (2.8)

Using al,−m = (−1)ma∗lm and Yl,−m = (−1)mY ∗lm the expansion for the real radial velocity

can be rewritten as

f =
∞∑
l=0

{
l∑

m=1

[2<(almYlm)] + al0Yl0

}
(2.9)

=
∞∑
l=0

{
l∑

m=1

[2<(alm)<(Ylm)− 2=(alm)=(Ylm)] + al0Yl0

}
. (2.10)

Our real orthonormal basis is then [Yl0,
√

2<(Ylm),−
√

2=(Ylm),m = 1, ..., l].

We have peculiar velocity measurements for a finite number of positions on the sky and

therefore cannot fit an infinite set of smooth functions. We estimate f 10 by

f̂(x) =
J∑
j=0

βjφj(x) (2.11)

where J is a tuning parameter, more precisely the lth moment that we fit out to. By

introducing a tuning parameter our methods are non-parametric; we do not a priori decide

where to truncate the series of spherical harmonics but allow the data to determine the

tuning parameter. Our task is now to estimate β and determine J .

10Following statistical practice we denote an estimated quantity with a hat.
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2.2.1 Weighted Least Squares Estimator

Consider an ideal case where the 2D peculiar velocity field can be represented exactly as a

finite sum of spherical harmonics, plenty of uniformly distributed data are sampled, and the

true J is chosen as a result. The Gauss-Markov theorem (see, e.g., Hastie et al. 2009) tells us

that the best linear unbiased estimator with minimum variance for a linear model in which

the errors have expectation zero and are uncorrelated is the weighted least squares (WLS)

estimator. If we define YJ as the N × J matrix

YJ =


φ0(x1) φ1(x1) · · · φJ(x1)

φ0(x2) φ1(x2) · · · φJ(x2)
...

... · · · · · ·

φ0(xN) φ1(xN) · · · φJ(xN)

 (2.12)

and the column vectors βJ = (β0, ..., βJ), U = (U1, ..., UN) and ε = (ε1, ..., εN) we can then

write

U = YJβJ + ε. (2.13)

The WLS estimator, β̂J , that minimizes the residual sums of squares is

β̂J = (Y T
J WYJ)−1Y T

J WU (2.14)

where the diagonal elements of W are equal to one over the variance and the off-diagonal

elements are zero.

Any estimate for f̂ which truncates an infinite series of functions will produce the same

overall bias on the peculiar velocity field, namely

f − 〈f̂〉 =
∞∑

j=J+1

βjφj (2.15)

where “〈 〉” denotes the ensemble expectation value. However, in the case we are considering

there is no power at multipoles beyond j = J so this bias will go to zero.

The estimates of the coefficients β̂J are also unbiased if the correct tuning parameter is

chosen. If Y∞ and β∞ are defined over the range [J+1,∞) then the bias on β̂J (Appendix A.1)

βJ − 〈β̂J〉 =
〈
(Y T

J WYJ)−1Y T
J W (Y∞β∞)

〉
(2.16)
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is a function of all the β’s beyond the tuning parameter, i.e., the lower-order modes are

contaminated by power at higher l’s. For this case there is no power at multipoles beyond

j = J , β∞ = 0 and our coefficients are unbiased.

2.2.2 Coefficient Unbiased Estimator

If our data are not well-sampled, i.e., not drawn from a uniform distribution, or if spherical

harmonics are not a good representation of the true velocity field then it is possible that

there will be power beyond the best tuning parameter. This does not indicate a failure in

determining the tuning parameter via risk (see Section 2.3) but is a consequence of the data.

Ideally we would like to obtain the unbiased coefficients because we tie physical meaning

to the monopole and dipole. Suppose our data set x is sampled according to a sampling

density h(x) which quantifies how likely one is to sample a point at a given position on the

sky, then

〈
Uφj(x)

h(x)

〉
=

〈
(f(x) + ε)φj(x)

h(x)

〉
(2.17)

=

〈
f(x)φj(x)

h(x)

〉
(2.18)

=

∫
f(x)φj(x)

h(x)
h(x)dx (2.19)

= βj. (2.20)

A weighted unbiased estimate of βj is therefore (see Appendix A.2)

β̂∗j =

N∑
n=1

Unφj(xn)

h(xn)σ2
n

N∑
n=1

1

σ2
n

(2.21)

where σn is the uncertainty on the peculiar velocity. We will call this our coefficient-unbiased

(CU) estimate, β̂∗j .

Although the CU estimate is unbiased, its accuracy depends on the sampling density.

The sampling density in most cases is unknown and must be estimated from the data.
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2.2.2.1 Estimating h(x) The sampling density is a normalized scalar field which can

be modeled several ways. We outline the process using orthonormal basis functions and will

continue to use the real spherical harmonic basis, φ. We decompose h as

h(x) =
∞∑
i=0

αiφi(x) '
I∑
i=0

Ziφi(x) (2.22)

where I is the tuning parameter. We estimate αi by

Zi =
1

N

N∑
n=1

φi(xn) (2.23)

since

〈Zi〉 =

∫
φi(x)h(x)dx = αi. (2.24)

It is difficult to create a normalized positive scalar field using a truncated set of orthogonal

functions. In practice there may be patches on the sky which have negative ĥ. Since a

negative sampling density has no physical meaning, we set all negative regions to zero, add a

small constant offset component to the sampling density and renormalize. This will prevent

division by zero when a data point lies in a negative ĥ region. This procedure adds a small

bias but is a standard practice when using orthogonal functions and small data sets (see,

e.g., Efromovich 1999).

Is a spherical harmonic decomposition of the sampling density appropriate? While using

an orthogonal basis is desirable, the choice of spherical harmonics to model a patchy sampling

density is clearly non-ideal. Smoothing the data with a Gaussian kernel or using a wavelet

decomposition to model h would be a good alternative, especially when the distribution

of data are sparse or if there are large empty regions of space. We merely present the

formalism to determine h with orthonormal functions and encourage astronomers to use

sampling density estimation with any basis set.
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2.3 DETERMINING TUNING PARAMETER VIA RISK ESTIMATION

Recall that the tuning parameter determines at which l moment to truncate the series of

spherical harmonics. We determine this value by minimizing the estimated risk. The risk

is a way of evaluating the quality of a non-parametric estimator by balancing the bias and

variance (Appendix A.3) which determines the complexity of the function we fit to the data.

If the bias is large and the variance is small, the function will be too simple, under-fitting

the data. This would be analogous to only using a monopole term when there is power at

higher l. If the opposite is true, the data are over-fitted, similar to fitting many spherical

harmonics in order to describe noisy data.

2.3.1 Risk Estimation for WLS

Recall the estimated peculiar velocity field

f̂ = YJ β̂J ≡ LU (2.25)

where we introduce the smoothing matrix L

L = YJ(Y T
J WYJ)−1Y T

J W. (2.26)

Note that the nth row of the smoothing matrix is the effective kernel for estimating f(xn).

The risk is the integrated mean squared error

R(J) =

〈
1

N

N∑
n=1

(f(xn)− f̂(xn))2

〉
(2.27)

and can be estimated by the leave-one-out cross-validation score

R̂(J) =
1

N

N∑
n=1

(Un − f̂(−n)(xn))2 (2.28)

38



where f̂(−n) is the estimated function obtained by leaving out the nth data point (see, e.g.,

Wasserman 2006a). For a linear smoother in which f̂ can be written as a linear sum of

functions, the estimated risk can be written in a less computationally expensive form

R̂(J) =
1

N

N∑
n=1

(
Un − f̂(xn)

1− Lnn

)2

(2.29)

where Lnn are the diagonal elements of the smoothing matrix.

There are a few important things to note. First, the risk gives the best tuning parameter

to use in order to model the entire function, e.g., the peculiar velocity field over the entire

sky for a given set of data. This is different than claiming the most accurate component

of the field, e.g., the best measurement of the dipole. Secondly, the accuracy to which

Equation 2.29 estimates the risk depends on the number of data points used and will be

better estimated with larger data sets. Finally, the value of the estimated risk changes for

different data sets. What is important for comparison are the relative values of the risk

for different tuning parameters. Although not explored in this paper, one can also use the

estimated risk to compare bases with which one could model the peculiar velocity field.

2.3.2 Risk Estimation for CU

We start by calculating the variance and bias on h. The variance on ĥ is the estimated

variance on the coefficients Zi given by

σ̂2
i =

1

N2

N∑
n=1

(φi(xn)− Zi)2. (2.30)

The bias on h by definition is

h− 〈ĥ〉 =
∞∑

i=I+1

αiφi. (2.31)

We can only calculate the bias out to the maximum number of independent basis functions,

L, less than the number of data points. For spherical harmonics, this is given by

L∑
l=0

2l + 1 ≤ N. (2.32)
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The risk of the estimator is then the variance plus the bias squared

R̂(I) =
I∑
i=0

σ̂2
i +

L∑
i=I+1

(Z2
i − σ̂2

i )+ (2.33)

where we have used Equation 2.30 to replace the bias squared α2
i with Z2

i − σ̂2
i and + denotes

only the positive values.

Estimating the risk for CU is similar to WLS using Equation 2.29. f̂(xi) must now

be calculated with the unbiased coefficients β̂∗j and the diagonal elements of the smoothing

matrix Lnn (see Appendix A.4) are

Lnn =

J∑
j=0

φ2
j(xn)

ĥ(xn)σ2
n

N∑
n=1

1

σ2
n

. (2.34)

2.4 APPLICATION TO SIMULATED DATA

To compare WLS and CU we created a simulated data set with a non-uniform distribution

and a known 2D peculiar velocity field. We discuss how the data set is created followed by

an application of each regression method and a discussion comparing the methods.

2.4.1 Simulated Data

We built the data set with a non-uniform h using rejection sampling. To do this we start with

a uniform distribution of points over the entire sky and evaluate a non-uniform sampling

density at each point according to

h = NY20+ (2.35)

where N is a normalization factor and + indicates only positive values. This has the effect

of “masking” a region of the sky. We then choose the 1000 most likely points given some

random “accept” parameter. If the accept value is less then the sampling density value, that
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Figure 4 2D distribution of 1000 simulated data points. All plots are in galactic coordinates.

The distribution was created from the sampling density h = NY20+ where N is a normal-

ization factor and + indicates positive values. All negative values in the sampling density

are set to zero. Although this h is not physical, the large empty galactic plane is ideal for

testing the methods.

point is selected. A typical distribution of data points is shown in Figure 4. This pathological

sampling density provides a useful demonstration of the methods.
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Figure 5 2D simulated peculiar velocity field in km/s, described by Equation 2.36.
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The simulated real 2D peculiar velocity field is described by

V = 180Y00 − 642Y10 − 1000Y20 + <(−38Y11 + 1061Y22 + 150Y86 + 300Y76)

−=(1146Y11 + 849Y21 + 707Y83) (2.36)

and is shown in Figure 5. We assign an error to each data point of 350 km s−1 and Gaussian

scatter the peculiar velocity appropriately. This error includes the error on the measurement

of the magnitude, σµ, the redshift error, σz, and a thermal component of σv = 300 km s−1

attributed to local motions of the SN Ia (Jha et al., 2007b).

2.4.2 Recovered Peculiar Velocity Field from WLS

To model the peculiar velocity field with non-parametric WLS methods we first determine

the tuning parameter from the estimated risk. The risk is plotted in Figure 6 as the solid

black line. In all estimated risk curves we determine the minimum by adding the error to the

minimum risk and choosing the left-most l less than this value, i.e., we choose the simplest

model within the errors. The minimum is at l = 6; as there is power beyond this multipole

(see Equation 2.36), we know the coefficient estimator will be biased.

The results from WLS are in the left column in Figure 7. The effects of the bias are

clearly evident. Artifacts appear in the galactic plane where we are not constrained by any

data and are not accounted for by the standard deviation; it is not wide enough or deep

enough. To determine if the power in the galactic plane is a consequence of a specific data

set, we perform 100 different realizations of the data. If the artifacts are a function of a

specific data set, we would expect after doing many realizations that the combined results,

plotted on the right side in Figure 7, would recover the true velocity field or that the standard

deviation would be large enough to account for any discrepancies. The plots in the right

column demonstrate that this is not merely a result of one realization of the data, but a

result of the underlying sampling density and power beyond the tuning parameter.

For comparison, we force the tuning parameter to be l = 8 and perform the same analysis

in Figure 8. We confirm that there is no bias, even if the sampling density is non-uniform.

WLS now recovers the entire velocity field well and has a standard deviation large enough
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to account for any power fit in the galactic plane. By combining many realizations (right)

we see the anomalous power in the galactic plane average out, doing a remarkable job of

recovering the true velocity field.
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Figure 6 Estimated risk for WLS (black-solid) and CU (red-dashed). The estimated risk

for a single l is the median value from a distribution of 1000 bootstraps. As l increases,

the distribution becomes skewed and the estimated risk becomes unstable. We choose the

median to be robust against outliers. This is crucial for CU as choosing many points with

small sampling density in the bootstrap can make the risk very large. The error on the

estimated risk is the interquartile range (IQR) divided by 1.35 such that at low l when

the distribution is normal, the IQR reduces to the standard deviation. To determine the

minimum l in all estimated risk curves we choose the simplest model by finding the minimum,

adding the error to the minimum, and choosing the left-most l less than this value. The

minima occur at l = 6 for WLS and l = 8 for CU. There is power beyond the tuning

parameter for WLS and so there is a bias on the coefficients. However, the minimum risk is

lower for WLS than CU indicating that our estimate of f(x) is more accurate using WLS.
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Figure 7 Recovered velocity field (top), standard deviation (middle), and residuals (bottom)

in km s−1 for WLS for one realization of the data (left) and the combined results of 100

realizations of the data (right). The left plots were generated by bootstrapping a single

data set 1000 times using the tuning parameter J = 6. We calculate the velocity for a set

of 10,000 points distributed across the sky based on the derived alm coefficients for each

bootstrap. These were averaged to create a contour plot of the peculiar velocity field (top)

and standard deviation (middle). Finally, to create the residual plot, we took the difference

between the averaged peculiar velocity at each point and the peculiar velocity calculated from

Equation 2.36. We perform the same analysis but combine the results of 100 realizations of

the data on the right. It is clear that the power in the galactic plane is not merely a function

of one data set but a result of power beyond the tuning parameter and the underlying

sampling density.
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Figure 8 Results for WLS forcing the tuning parameter to be J = 8 created in an identical

manner to the plots presented in Figure 7. We see that for one realization of the data the

standard deviation is sufficient to account for all of the power in the galactic plane which is

not real. The combined results from 100 realizations of the data (right) show the artifacts

in the galactic plane do go away, confirming that they are due to the bias on the coefficients

as a result of power beyond the tuning parameter in Figure 7.

2.4.3 Recovered Peculiar Velocity Field from CU

Removing the bias on the coefficients requires reconstructing the sampling density from the

data. The estimated risk for the sampling density is shown in Figure 9 with a minimum

at l = 4. Using this tuning parameter we reconstruct the sampling density according to

§2.2.2.1. A contour plot of the sampling density is plotted in the top of Figure 10 with the

data points overlaid as black circles. To investigate how well h is estimated, we combine

the sampling density from 100 realizations of the data and calculate the mean (middle) and

standard deviation (bottom) in Figure 10. The standard deviation is about a factor of 20
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smaller than the sampling density and so the sampling density is well recovered using 1000

data points.
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Figure 9 Estimated risk for the sampling density with a minimum at l = 4. It is difficult

to estimate the mean and standard deviation of the risk for the sampling density via boot-

strapping because duplicates and removing points will change the inherent distribution of

the data. We therefore must use the entire data set to estimate the risk. This is in contrast

to Figure 6, where we take the median of 1000 bootstrap resamples. The errors are esti-

mated by dividing the data into two equal subsets, using one to calculate Zi and the other

to calculate the estimated risk. This is done 500 times. The estimated errors are then the

standard deviation at each l scaled by 1/2 due to the decrease in the number of points used

to estimate the risk.

Having found the sampling density, we estimate the risk for CU as we did for WLS.

These results are shown in Figure 6 (red-dashed) with a minimum at l = 8. Note that the

estimated risk at l = 6 for WLS is lower than at l = 8 for CU. From this we expect WLS

to be more accurate modeling f(x) where we have data even though there is a bias on the

coefficients.
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Figure 10 Typical recovered sampling density for one realization of the data using the tuning

parameter I = 4 (top). Over-plotted are the simulated data points. To ensure a positive

definite sampling density, we calculate h according to Equation 2.22, set all negative values to

zero, add a small constant to the entire field, and then renormalize. The mean (middle) and

standard deviation (bottom) of the sampling density are plotted for 100 different realizations.

For each realization, the sampling density was calculated using the best tuning parameter

for that data set. Over-plotted are the simulated data points from one realization. The

standard deviation is roughly factor of 20 lower and so h is well estimated using 1000 data

points.
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The results for CU using J = 8 are plotted in Figure 11. CU does not allow power to be

fit in regions where there are few data points by accounting for the underlying distribution

of the data. The standard deviation also accounts for most of the discrepancies seen in the

residual plot. We also find this method to be robust against the choice of tuning parameter.

In Figure 12 we force the tuning parameter to be J = 6 and still do not see any artifacts

in the galactic plane, although we have sacrificed some in overall accuracy. This is expected

since the estimated risk is larger at J = 6.

In Figure 13 we show distributions of the residuals for each method using the tuning

parameters JWLS = 6 and JCU = 8. On the top row are the residuals defined as the

difference between the velocity obtained from the regression f̂(x) and the velocity V given

by Equation 2.36. These plots tell us how well the method is recovering the true underlying

velocity field. On the bottom, the residuals are the difference between f̂(x) and the velocity

scattered values Vscat. These plots tell us how well the method is fitting simulated data.

The narrower spread in WLS in the top plots tell us it is estimating the velocity field more

accurately where we have sampled. We expect this result because the risk for WLS is lower

than for CU. Both models are fitting the simulated data similarly and have comparable

spreads in their distribution (bottom plots).
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Figure 11 Recovered velocity field (top), standard deviation (middle), and residuals (bottom)

in km s−1 for CU for one realization of the data (left) and the combined results of 100

realizations of the data (right). These were generated in an identical manner as those in

Figure 7. By weighting by the sampling density, CU does not allow for any power in the

galactic plane where there are no constraining data.
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Figure 12 Results for CU forcing the tuning parameter to be J = 6. These were generated

in an identical manner as those in Figure 8. The CU method is more robust to our choice

of tuning parameter. There is power beyond l = 6 but it is not biasing our coefficients as it

did for WLS (Figure 7).
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Figure 13 Distributions of the residuals for each method using the tuning parameters JWLS =

6 and JCU = 8. On the top row are the residuals calculated from the difference between the

velocity obtained in the regression f̂(x), and the velocity V given by Equation 2.36. On the

bottom, the residuals are the difference between f̂(x) and the velocity scattered values Vscat.

The bottom plots show us how well our methods are fitting the data. The top plots show us

how well we are recovering the true underlying peculiar velocity field where we have data.

We see that WLS models the true velocity field better as evidenced by the narrower spread

in the distribution but that both methods fit the “data” equally well.
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2.5 APPLICATION TO OBSERVED SN IA DATA

With our framework established and tested, we now analyze SN Ia data. We introduce the

data set, apply each regression method, and present a comparison of the two methods.

2.5.1 SN Ia Data

Our data consist of SNe Ia published in Hicken et al. (2009b) (hereafter H09a); Jha et al.

(2007b); Hamuy et al. (1996); Riess et al. (1999) using the distance measurements published

in Hicken et al. (2009a) (hereafter H09b). Not all of the SNe Ia published in H09a have

distance measurements published in H09b. The rest were obtained from private communi-

cation with the author. We use their results from the Multicolor Light Curve Shape method

(MLCS2k2) (Jha et al., 2007b) with an RV = 1.7 extinction law. The positions of the SNe Ia

are publicly available.11 H09b provide the redshift and distance modulus µ with an assumed

absolute magnitude of MV = −19.504. The peculiar velocity, U , is calculated according to

(see Jha et al. 2007b)

U = H0 dl(z)−H0 dSN (2.37)

where H0dl(z) and H0dSN are given by

H0 dl(z) = c(1 + z)

∫ z

0

[
ΩM(1 + z′)3 + Ωλ

]−1/2
dz′. (2.38)

H0 dSN = 65
[
100.2(µ−25)

]
(2.39)

Here z is the redshift in the rest frame of the Local Group12 and we assume that ΩM = 0.3,

Ωλ = 0.7, and H0 = 65 km s−1 Mpc−1. Our results are independent of the value we choose

for H0 as there is a degeneracy between H0 and MV . The error on the peculiar velocity is

the quadrature sum of the error on µ, a recommended error of 0.078 mag (see H09b), σz,

and a peculiar velocity error of σv = 300 km s−1 attributed to local motions of the SN Ia

which are on scales smaller than those probed in this analysis (Jha et al., 2007b).

11http://www.cfa.harvard.edu/iau/lists/Supernovae.html
12http://nedwww.ipac.caltech.edu/help/velc_help.html
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We eliminate objects which could not be fit by MLCS2k2, whose first observation occurs

more than 20 days past maximum B-band light, or which showed evidence for excessive host

galaxy extinction (AV < 2). We choose one redshift shell for our analysis due to the relatively

small number of objects and consider the same velocity range adopted by Jha et al. 2007b

of 1500 km s−1 ≤ H0dSN ≤ 7500 km s−1. One object, SN 2004ap, has a particularly large

peculiar velocity of 2864 km s−1. Further examination reveals that this supernova, when

modeled with MLCS2k2 with RV = 3.1, has its first observation at 20 days past maximum

B-band light. To be conservative, we exclude this object. This leaves us with 112 SNe Ia

whose peculiar velocity information is recorded in Table 1. In this table we include all SNe Ia

with H0dSN ≤ 7500 km s−1 for completeness.

In Figure 14 we plot the distribution of the data. One can clearly see the dipole with

significant concentrations of negative peculiar velocities around (l, b) = (260◦, 40◦) and posi-

tive peculiar velocities around (l, b) = (100◦,−40◦). As we will explore in future figures this

dipole structure is consistent with the dipole in the temperature anisotropy of the CMB.

210 240 270 300 330 30 60 90 120 150

-60

-30

0

+30

+60

Figure 14 Sky distribution of 112 SNe Ia taken from Hicken et al. (2009b) in Galactic lon-

gitude and latitude. The velocity range considered is 1500 km s−1 ≤ H0dSN ≤ 7500 km s−1

where dSN is the luminosity distance. The color/shape of the points indicates positive (red-

triangle) and negative (blue-square) peculiar velocities and the size corresponds to the mag-

nitude of the peculiar velocity. From this figure one can clearly see a dipole signature between

the upper-left and lower-right quadrants.
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Table 1: SN Ia Data

Name RA Decl.a zb µ AV U c

mag mag km s−1

1986G 13:25:36.51 -43:01:54.2 0.003 28.012±0.081 1.221±0.086 . . .

1990N 12:42:56.74 13:15:24.0 0.004 32.051±0.076 0.221±0.051 -793±557

1991bg 12:25:03.71 12:52:15.8 0.005 31.728±0.063 0.096±0.057 . . .

1991T 12:34:10.21 02:39:56.6 0.007 30.787±0.062 0.302±0.039 . . .

1992A 03:36:27.43 -34:57:31.5 0.006 31.540±0.072 0.014±0.014 . . .

1992ag 13:24:10.12 -23:52:39.3 0.026 35.213±0.118 0.312±0.081 224±612

1992al 20:45:56.49 -51:23:40.0 0.014 33.964±0.082 0.033±0.027 337±458

1992bc 03:05:17.28 -39:33:39.7 0.020 34.796±0.061 0.012±0.012 106±505

1992bo 01:21:58.44 -34:12:43.5 0.018 34.671±0.100 0.034±0.029 122±548

1993H 13:52:50.34 -30:42:23.3 0.025 35.078±0.102 0.029±0.026 353±556

1994ae 10:47:01.95 17:16:31.0 0.005 32.508±0.067 0.049±0.032 -872±541

1994D 12:34:02.45 07:42:04.7 0.003 30.916±0.068 0.009±0.009 . . .

1994M 12:31:08.61 00:36:19.9 0.024 35.228±0.104 0.080±0.055 -317±606

1994S 12:31:21.86 29:08:04.2 0.016 34.312±0.085 0.047±0.034 -190±491

1995ak 02:45:48.83 03:13:50.1 0.022 34.896±0.105 0.259±0.072 806±549

1995al 09:50:55.97 33:33:09.4 0.006 32.658±0.074 0.177±0.049 -748±542

1995bd 04:45:21.24 11:04:02.5 0.014 34.062±0.120 0.462±0.159 183±501

1995D 09:40:54.75 05:08:26.2 0.008 32.748±0.073 0.068±0.044 -513±439

1995E 07:51:56.75 73:00:34.6 0.012 33.888±0.092 1.460±0.064 -211±520

1996ai 13:10:58.13 37:03:35.4 0.004 31.605±0.083 3.134±0.056 . . .

1996bk 13:46:57.98 60:58:12.9 0.007 32.393±0.108 0.260±0.098 208±414

1996bo 01:48:22.80 11:31:15.8 0.016 34.305±0.096 0.626±0.071 674±492

1996X 13:18:01.13 -26:50:45.3 0.008 32.341±0.070 0.031±0.024 -80±359

1997bp 12:46:53.75 -11:38:33.2 0.009 32.923±0.068 0.479±0.048 -196±395

Continued on Next Page. . .
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Table 1 – Continued

Name RA Decl.a zb µ AV U c

mag mag km s−1

1997bq 10:17:05.33 73:23:02.1 0.009 33.483±0.102 0.380±0.055 -257±520

1997br 13:20:42.40 -22:02:12.3 0.008 32.467±0.067 0.549±0.054 -124±371

1997do 07:26:42.50 47:05:36.0 0.010 33.580±0.096 0.262±0.061 -263±496

1997dt 23:00:02.93 15:58:50.9 0.006 33.257±0.115 1.138±0.074 -445±702

1997E 06:47:38.10 74:29:51.0 0.013 34.102±0.090 0.085±0.051 -79±517

1997Y 12:45:31.40 54:44:17.0 0.017 34.550±0.096 0.096±0.050 -298±544

1998ab 12:48:47.24 41:55:28.3 0.028 35.268±0.088 0.268±0.047 1009±549

1998aq 11:56:26.00 55:07:38.8 0.004 31.909±0.054 0.011±0.011 -292±498

1998bp 17:54:50.71 18:19:49.3 0.010 33.175±0.065 0.025±0.020 545±412

1998bu 10:46:46.03 11:50:07.1 0.004 30.595±0.061 0.631±0.040 . . .

1998co 21:47:36.45 -13:10:42.3 0.017 34.476±0.119 0.123±0.087 548±543

1998de 00:48:06.88 27:37:28.5 0.016 34.464±0.063 0.142±0.061 225±519

1998dh 23:14:40.31 04:32:14.1 0.008 32.962±0.090 0.259±0.060 371±489

1998ec 06:53:06.11 50:02:22.1 0.020 34.468±0.084 0.041±0.036 1042±450

1998ef 01:03:26.87 32:14:12.4 0.017 34.095±0.104 0.068±0.050 1339±446

1998es 01:37:17.50 05:52:50.3 0.010 33.220±0.063 0.207±0.042 475±444

1998V 18:22:37.40 15:42:08.4 0.017 34.354±0.090 0.145±0.071 721±480

1999aa 08:27:42.03 21:29:14.8 0.015 34.426±0.052 0.025±0.021 -701±512

1999ac 16:07:15.01 07:58:20.4 0.010 33.320±0.068 0.244±0.042 -78±457

1999by 09:21:52.07 51:00:06.6 0.003 31.017±0.053 0.030±0.022 . . .

1999cl 12:31:56.01 14:25:35.3 0.009 30.945±0.079 2.198±0.066 . . .±. . .

1999cp 14:06:31.30 -05:26:49.0 0.010 33.441±0.108 0.057±0.045 -410±475

1999cw 00:20:01.46 -06:20:03.6 0.011 32.753±0.105 0.330±0.076 1599±322

1999da 17:35:22.96 60:48:49.3 0.013 33.926±0.067 0.066±0.049 136±488

Continued on Next Page. . .
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Table 1 – Continued

Name RA Decl.a zb µ AV U c

mag mag km s−1

1999dk 01:31:26.92 14:17:05.7 0.014 34.161±0.076 0.252±0.058 278±503

1999dq 02:33:59.68 20:58:30.4 0.014 33.705±0.062 0.299±0.051 893±411

1999ee 22:16:10.00 -36:50:39.7 0.011 33.571±0.058 0.643±0.041 130±476

1999ek 05:36:31.60 16:38:17.8 0.018 34.379±0.125 0.312±0.156 406±516

1999gd 08:38:24.61 25:45:33.1 0.019 34.970±0.102 0.842±0.066 -872±607

2000ca 13:35:22.98 -34:09:37.0 0.024 35.182±0.071 0.017±0.015 -98±537

2000cn 17:57:40.42 27:49:58.1 0.023 35.057±0.085 0.071±0.060 717±543

2000cx 01:24:46.15 09:30:30.9 0.007 32.554±0.067 0.006±0.005 446±444

2000dk 01:07:23.52 32:24:23.2 0.016 34.333±0.084 0.017±0.015 745±486

2000E 20:37:13.77 66:05:50.2 0.004 31.788±0.102 0.466±0.122 . . .

2000fa 07:15:29.88 23:25:42.4 0.022 34.987±0.104 0.287±0.056 -43±573

2001bf 18:01:33.99 26:15:02.3 0.015 34.059±0.086 0.170±0.068 737±452

2001bt 19:13:46.75 -59:17:22.8 0.014 34.025±0.089 0.426±0.063 158±468

2001cp 17:11:02.58 05:50:26.8 0.022 34.998±0.190 0.054±0.047 448±741

2001cz 12:47:30.17 -39:34:48.1 0.016 34.260±0.088 0.200±0.070 -237±475

2001el 03:44:30.57 -44:38:23.7 0.004 31.625±0.073 0.500±0.044 . . .

2001ep 04:57:00.26 -04:45:40.2 0.013 33.893±0.085 0.259±0.054 -67±478

2001fe 09:37:57.10 25:29:41.3 0.014 34.102±0.092 0.099±0.049 -349±490

2001fh 21:20:42.50 44:23:53.2 0.011 33.778±0.109 0.077±0.062 335±515

2001G 09:09:33.18 50:16:51.3 0.017 34.482±0.089 0.050±0.035 08±506

2001v 11:57:24.93 25:12:09.0 0.016 34.047±0.067 0.171±0.041 349±418

2002bo 10:18:06.51 21:49:41.7 0.005 32.185±0.077 0.908±0.050 -579±475

2002cd 20:23:34.42 58:20:47.4 0.010 33.605±0.110 1.026±0.132 04±544

2002cr 14:06:37.59 -05:26:21.9 0.010 33.458±0.085 0.122±0.063 -465±472

Continued on Next Page. . .
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Table 1 – Continued

Name RA Decl.a zb µ AV U c

mag mag km s−1

2002dj 13:13:00.34 -19:31:08.7 0.010 33.104±0.094 0.342±0.078 -93±401

2002do 19:56:12.88 40:26:10.8 0.015 34.340±0.110 0.034±0.034 336±539

2002dp 23:28:30.12 22:25:38.8 0.010 33.565±0.091 0.268±0.090 449±490

2002er 17:11:29.88 07:59:44.8 0.009 32.998±0.083 0.227±0.074 99±452

2002fk 03:22:05.71 -15:24:03.2 0.007 32.616±0.073 0.034±0.023 50±452

2002ha 20:47:18.58 00:18:45.6 0.013 34.013±0.086 0.042±0.032 450±490

2002he 08:19:58.83 62:49:13.2 0.025 35.250±0.131 0.031±0.026 317±662

2002hw 00:06:49.06 08:37:48.5 0.016 34.330±0.095 0.605±0.099 754±497

2002jy 01:21:16.27 40:29:55.3 0.020 35.188±0.079 0.103±0.056 -441±620

2002kf 06:37:15.31 49:51:10.2 0.020 34.978±0.089 0.030±0.025 -468±587

2003cg 10:14:15.97 03:28:02.5 0.005 31.745±0.085 2.209±0.053 . . .

2003du 14:34:35.80 59:20:03.8 0.007 33.041±0.062 0.032±0.022 -558±579

2003it 00:05:48.47 27:27:09.6 0.024 35.282±0.120 0.083±0.055 548±657

2003kf 06:04:35.42 -12:37:42.8 0.008 32.765±0.093 0.114±0.080 -267±447

2003W 09:46:49.48 16:02:37.6 0.021 34.867±0.077 0.330±0.050 -157±516

2004ap 10:05:43.81 10:16:17.1 0.025 34.093±0.174 0.375±0.088 . . .

2004bg 11:21:01.53 21:20:23.4 0.022 35.096±0.096 0.067±0.052 -553±588

2004fu 20:35:11.54 64:48:25.7 0.009 33.137±0.197 0.175±0.123 336±524

2005am 09:16:12.47 -16:18:16.0 0.009 32.556±0.097 0.037±0.033 161±337

2005cf 15:21:32.21 -07:24:47.5 0.007 32.582±0.079 0.208±0.070 -250±446

2005el 05:11:48.72 05:11:39.4 0.015 34.243±0.081 0.012±0.013 -156±501

2005hk 00:27:50.87 -01:11:52.5 0.012 34.505±0.070 0.810±0.044 -1093±672

2005kc 22:34:07.34 05:34:06.3 0.014 34.084±0.090 0.624±0.074 527±498

2005ke 03:35:04.35 -24:56:38.8 0.004 31.920±0.054 0.068±0.040 -194±500

Continued on Next Page. . .

57



Table 1 – Continued

Name RA Decl.a zb µ AV U c

mag mag km s−1

2005ki 10:40:28.22 09:12:08.4 0.021 34.804±0.088 0.018±0.015 -138±519

2005ls 02:54:15.97 42:43:29.8 0.021 34.695±0.094 0.750±0.064 980±505

2005mz 03:19:49.88 41:30:18.6 0.017 34.298±0.087 0.266±0.089 796±468

2006ac 12:41:44.86 35:04:07.1 0.024 35.256±0.091 0.104±0.047 -360±599

2006ax 11:24:03.46 -12:17:29.2 0.018 34.594±0.067 0.038±0.029 -542±497

2006cm 21:20:17.46 -01:41:02.7 0.015 34.578±0.115 1.829±0.079 -199±607

2006cp 12:19:14.89 22:25:38.2 0.023 35.006±0.101 0.440±0.064 207±554

2006d 12:52:33.94 -09:46:30.8 0.010 33.027±0.089 0.076±0.042 -214±409

2006et 00:42:45.82 -23:33:30.4 0.021 35.065±0.112 0.328±0.074 172±614

2006eu 20:02:51.15 49:19:02.3 0.023 34.465±0.141 1.208±0.119 2423±492

2006h 03:26:01.49 40:41:42.5 0.014 34.259±0.084 0.287±0.125 -207±545

2006ke 05:52:37.38 66:49:00.5 0.017 34.984±0.128 1.006±0.203 -1068±698

2006kf 03:41:50.48 08:09:25.0 0.021 34.961±0.113 0.024±0.024 135±596

2006le 05:00:41.99 63:15:19.0 0.017 34.633±0.092 0.076±0.060 -03±545

2006lf 04:38:29.49 44:02:01.5 0.013 33.745±0.123 0.095±0.074 487±468

2006mp 17:12:00.20 46:33:20.8 0.023 35.259±0.104 0.166±0.068 -69±633

2006n 06:08:31.24 64:43:25.1 0.014 34.174±0.083 0.027±0.023 53±500

2006sr 00:03:35.02 23:11:46.2 0.023 35.280±0.098 0.085±0.053 305±624

2006td 01:58:15.76 36:20:57.7 0.015 34.464±0.136 0.171±0.079 -56±606

2006x 12:22:53.99 15:48:33.1 0.006 30.958±0.077 2.496±0.043 . . .

2007af 14:22:21.06 00:23:37.7 0.006 32.302±0.082 0.215±0.054 -303±433

2007au 07:11:46.11 49:51:13.4 0.020 34.624±0.081 0.049±0.039 667±479

2007bc 11:19:14.57 20:48:32.5 0.022 34.932±0.108 0.084±0.059 -64±564

2007bm 11:25:02.30 -09:47:53.8 0.007 32.382±0.101 0.975±0.073 -320±390

Continued on Next Page. . .
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Table 1 – Continued

Name RA Decl.a zb µ AV U c

mag mag km s−1

2007ca 13:31:05.81 -15:06:06.6 0.015 34.622±0.096 0.580±0.069 -1337±599

2007ci 11:45:45.85 19:46:13.9 0.019 34.290±0.090 0.074±0.063 690±434

2007cq 22:14:40.43 05:04:48.9 0.025 35.085±0.101 0.109±0.059 1399±558

2007s 10:00:31.26 04:24:26.2 0.014 34.222±0.074 0.833±0.054 -942±523

2008bf 12:04:02.90 20:14:42.6 0.025 35.174±0.078 0.102±0.049 271±535

2008L 03:17:16.65 41:22:57.6 0.019 34.392±0.193 0.036±0.033 1117±602

2.5.2 WLS and CU Regressions on SN Ia Data

The first step in estimating the field with CU is to calculate the sampling density. We follow

the procedure described in §2.4.3 and plot the results in Figure 15. Choosing the simplest

model gives us a tuning parameter of I = 6. The high l moment is necessary to describe

the patchiness of the data distribution. The sampling density field is shown in Figure 16.

While it should be unlikely that we sample many data points in regions with low sampling

density, there are some regions of the sky where the sampling density is very low and we

have a data point. This discrepancy, in combination with a relatively flat estimated risk

function is an indication that there are likely better basis functions than spherical harmonics

to use to estimate h. However, as discussed in §2.2.2.1 they will serve for the purposes of

demonstrating our method.

aSN Ia RA and Dec [J2000] from http://www.cfa.harvard.edu/iau/lists/Supernovae.html
bRedshift in the rest frame of the Cosmic Microwave Background. We assume a redshift uncertainty of

0.001.
cIncludes the error on µ, a recommended error of 0.078 mag (see H09), σz, and a peculiar velocity error

of σv = 300 km s−1 due to local motions on scales smaller than those probed by this analysis.
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Figure 15 Estimated risk for sampling density with a minimum at l = 6 generated in a

similar fashion to Figure 9. The high l moment results from the lumpiness in our sampling

density.
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Figure 16 Recovered sampling density using I = 6 as the tuning parameter. After calculating

h according to Equation 2.22, the negative values were set to zero, a small constant of

0.05 was added, and the sampling density was renormalized. Data points residing in low

sampling density regions may be an indication that spherical harmonics are not the best way

to decompose h. Same as Figure 2.5.1.
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Figure 17 Estimated risk from the mean and standard deviation of 10,000 bootstraps as a

function of l moment for WLS (solid-black) and CU (dashed-red) using 112 SNe Ia. We find

the minimum to be at l = 1 for both methods, suggesting that the data are inadequate for

detecting the quadrupole. We expect the velocity fields derived from CU and WLS to be

consistent as indicated by the similar risk values.
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Table 2. Summary of Results

WLS CU

Monopole 149±52 km s−1 Monopole 98±45 km s−1

Dipole 538±86 km s−1 Dipole 446±101 km s−1

Galactic l 258◦±10◦ Galactic l 273◦±11◦

Galactic b 36◦±11◦ Galactic b 46◦±8◦

The estimated risk for CU and WLS are plotted in Figure 17. We find the tuning

parameter to be J = 1 for both methods and the risk values to be very similar. From this

we expect that the two methods will be consistent and recover the velocity field with similar

accuracy. The current SN Ia data are insufficient to detect power beyond the dipole. Using

this tuning parameter we calculate the alm coefficients and the monopole and dipole terms

from the following equations

Monopole =
a00√
4π

(2.40)

Dipole =

√
3

4π

√
a2

10 + <(a11)2 + =(a11)2 (2.41)

φ = −arctan

(
=(a11)

<(a11)

)
(2.42)

θ = arccos

(
a10√

a2
10 + <(a11)2 + =(a11)2

)
(2.43)

These results are summarized in Table 2.

The velocity fields from WLS and CU are plotted in Figure 18. The magnitudes are

comparable between the two methods, with WLS being slightly larger. The direction of the

CU dipole points more toward a region of space which is well sampled. The WLS dipole is

pulled toward a less sampled region which may be why the bulk flow measurement is larger

in magnitude. This is explored more in §2.6.
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Figure 18 Peculiar velocity field for WLS (top) and CU (bottom) using the tuning parameter

J = 1. The solid white circle marks the direction of the regression dipole, the white asterisk

marks the CMB dipole in the rest frame of the Local Group, and the black triangles and

squares mark the data points with positive and negative peculiar velocities. Contours are

given to mark the 65% and 95% confidence bands of the direction of the dipole. The color

scale indicates the peculiar velocity in km s−1. We see that WLS and CU are in 95%

agreement with the direction of the CMB dipole.
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Table 3. Paired t-test results

a00 a10 <(a11) =(a11)

1.50 0.23 1.72 1.66

To compare the CU and WLS bulk motions, we use a paired t-test. Because the coeffi-

cients were determined from the same set of data there is covariance between the parameters

estimated from the two methods. Consider bootstrapping the data N times. For a single

bootstrap let X be a coefficient from CU and Y be the same coefficient but derived from

WLS. The paired t-statistic comes from the distribution of X − Y

t =
〈X − Y 〉
σX−Y

(2.44)

where σX−Y is the standard deviation of the X−Y distribution and 〈X−Y 〉 is the mean. Ac-

cording to the central limit theorem, for large samples many test statistics are approximately

normally distributed. For normally distributed data, t < 1.96 indicates that the values being

compared are in 95% agreement. Performing a paired t-test on the measurements finds that

the coefficients are in 95% agreement with the results summarized in Table 3. Because the

risk values are so similar (Figure 17), we expect the methods to model the peculiar velocity

field equally well and therefore expect the values to be statistically consistent.

To compare two independent measurements we perform a two-sample t-test, which gives

us a statistical measure of how significant the difference between two numbers are. We

first calculate the standardized test statistic t = (x1 − x2)/
√
σ2

1 + σ2
2, where x1 and x2 are

the mean values of two measurements to be compared and σ1 and σ2 are the associated

uncertainties. This statistic is suitable for comparing the CU or WLS bulk motion with the

CMB dipole. We find the WLS Local Group bulk flow moving at 538± 86 km s−1 towards

(l, b) = (258◦ ± 10◦, 36◦ ± 11◦) which is consistent with the magnitude of the CMB dipole

(635 km s−1) and direction (269◦, 28◦) with an agreement of tdip = 1.12, tl = 1.1, and tb =
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Table 4. Summary of Dipole Results

Method # Redshift Range Depth Magnitude Direction
SN Ia CMB km s−1 km s−1 Galactic (l, b)

WLS 112 0.0043-0.028 4000 538± 86 (258◦, 36◦)± (10◦, 11◦)
CU 112 0.0043-0.028 4000 446± 101 (273◦, 46◦)± (11◦, 8◦)

Haugbølle et al. (2007) 74 0.0070-0.035 4500 516± 57
79 (248◦, 51◦)± (15

◦

20◦ ,
15◦

14◦ )

Jha et al. (2007b) 69 0.0043-0.028 3800 541± 75 (258◦, 51◦)± (18◦, 12◦)

0.73. The CU bulk flow is moving at 446±101 km s−1 towards (l, b) = (273◦±11◦, 46◦±8◦).

The CU bulk flow is in good agreement with the CMB dipole with tdip = 1.88, tl = 0.36,

and tb = 2.25.

There is no strong evidence for a monopole component of the velocity field for either

method. This merely demonstrates that we are using consistent values of MV and H0. For

this analysis to be sensitive to a “Hubble bubble” (e.g., Jha et al., 2007b), we would look

for a monopole signature as a function of redshift.

We can directly compare our results to those obtained in Jha et al. (2007b) using a

two-sample t-test as our analysis covers the same depth and is in the same reference frame.

They find a velocity of 541 ± 75 km s−1 toward a direction of (l, b) = (258◦±18◦, 51◦±12◦).

Our results for WLS and CU are compatible with Jha et al. (2007b) with t < 1 in magnitude

and direction. We can also compare our results to those in Haugbølle et al. (2007) for their

4500 sample transformed to the Local Group rest frame. They find a velocity of 516 km s−1

toward (l, b) = (248◦, 51◦). Their derived amplitude is slightly lower as their fit for the

peculiar velocity field includes the quadrupole term. We note from the estimated risk curves,

that it is not unreasonable to fit the quadrupole as the estimated risk is similar at l = 1 and

l = 2. However, it is unclear if fitting the extra term improves the accuracy with which the

field is modeled. Our results for CU and WLS agree with Haugbølle et al. (2007) with t ≤ 1.

Note that these t values may be slightly underestimated as a subset of SNe Ia are common

between the two analyzes. A summary of dipole measurements is presented in Table 4.
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2.6 DEPENDENCE OF CU AND WLS ON BULK FLOW DIRECTION

The WLS and CU analyses on real SN Ia data give dipole directions that follow the well-

sampled region. This may raise suspicion that the CU method is following the sampling

when determining the dipole. In this section we examine the behavior of our methods on

simulated data as we vary the direction of the dipole.

We create simulated data sets from the sampling density derived from the actual data

to verify the robustness of our analysis. We test two randomly chosen bulk flows which vary

in magnitude and direction and sample 200 SNe Ia for each case. One dipole points toward

a well-populated region of space and the other into a sparsely sampled region. A weak

quadrupole is added such that the estimated risk gives a minimum at l = 1. There is power

beyond the tuning parameter so we expect a bias to be introduced onto the coefficients for

WLS. The velocity fields for the two cases are given by

Case 1 : V = 400Y01 + 590<Y11 + 830=Y11

−100Y20 + 200<Y21 + 250=Y21 − 175<Y22 + 140=Y22

Case 2 : V = −642Y01 +−38<Y11 + 810=Y11

−100Y20 + 200<Y21 + 250=Y21 − 175<Y22 + 140=Y22

For Case 1 the true dipole points along a sparsely sampled direction (Figure 19). In

the top row are the simulated velocity field and the dipole component of that field. On the

bottom are the results for CU and WLS. In all plots the true direction of the dipole is shown

as a white circle. As WLS is optimized to model the velocity field, it is no surprise that

WLS overestimates the magnitude of the dipole (bottom left) to better model the simulated

velocity field (top left). This behavior is very similar to what we saw in §2.4. WLS is aliasing

power onto different scales to best model the field, sacrificing unbiased coefficients. If we

compare the CU velocity field to the simulated velocity field we see that it is less accurate but

that CU’s estimate of the dipole is a more accurate measure of the true dipole (top right).

Both methods are recovering the direction of the dipole at roughly the 2σ level, leading us to

conclude that it is the magnitude of the dipole which is most variable between the methods

for this case.
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Figure 19 Simulated velocity field for Case 1 (top left), dipole component of that field

(top right), WLS dipole result (bottom left) and CU dipole result (bottom right) for a

typical simulation of 200 data points. Data points are overlaid as triangles (positive peculiar

velocity) and squares (negative peculiar velocity). Error contours (68% and 95%) are marked

as black lines. The 95% contour for CU and WLS enclose the direction of the true dipole,

marked as a white circle. The WLS result is more representative of the actual field while

CU has a more accurate dipole.

One may more easily see the difference in WLS and CU determined coefficients in Fig-

ure 20, where we plot the difference distributions (regression determined coefficients minus

the true coefficients) for 770 simulations of 200 data points. Ideally these distributions would

be centered at zero with a narrow spread. The distance the mean of the distribution is from

zero is an indication of the bias. The spread is an indication of the error. We see that WLS

is more biased than CU but the uncertainty in CU is much larger.

In Case 2 the true dipole points along a region of space which is densely sampled (Fig-

ure 21). In the bottom left plot we see the direction of the dipole for WLS is pulled down

toward a region of space which is less sampled. Since the true direction of the dipole is well

constrained by data, to more accurately model the flow field WLS must alter the direction
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Table 5. Probability of the 95% confidence interval containing the truth

a00 a10 <(a11) =(a11)

Case 1
WLS 0.50 0.88 0.86 0.88
CU 0.93 0.90 0.89 0.92

Case 2
WLS 0.49 0.88 0.86 0.88
CU 0.93 0.94 0.94 0.91

of the dipole toward a less sampled region. This is necessary as WLS is trying to account for

power which is really part of the quadrupole with the dipole term. As a result, WLS misses

the true direction of the dipole at the 95% confidence level. This may be similar to what we

see in Figure 18 where the WLS dipole points more along the galactic plane when compared

to CU. CU is less sensitive to this affect as it is optimized to find unbiased coefficients.

Correspondingly, CU encloses the true direction of the dipole at the 95% confidence level.

In Figure 22 we plot the difference distributions as we did for Case 1. It is clear that the

WLS coefficients are more biased than CU but that the uncertainty in CU is much larger.

We can explicitly check the bias of the methods using the simulated data of Section

2.6. The important calculation is the probability that the 95% confidence interval for a

given simulation includes the true value. For an accurately determined confidence interval,

this should happen 95% of the time. We start with one simulated data set and perform

1000 bootstrap resamples. This gives us distributions of the coefficients from which we can

determine the confidence intervals. We then determine if the true values falls within this

interval. After doing this for all of the simulations from §2.6, we can measure how often the

true value falls within the confidence interval. These probabilities are summarized in Table

5.

CU is more accurate in its estimate of the 95% confidence interval for both cases. The

lower probabilities for WLS are a result of the bias in the method. By construction, the

WLS confidence intervals are centered about the regression-determined coefficients. If the

coefficients are biased, the WLS intervals are shifted and the true value will lie outside this

interval more often than expected.
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Figure 20 Distribution of CU (WLS) coefficients minus the true values for Case 1 in red (blue)

for 770 simulated data sets. The vertical lines indicate the mean of the distribution. The

distance the mean is from zero is an indication of the bias. The spread in the distributions

indicates the uncertainty. WLS is more biased than CU but CU has larger uncertainties.
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Figure 21 Simulated velocity field for Case 2 (top left), dipole component of that field (top

right), WLS dipole result (bottom left) and CU dipole result (bottom right) for a typical

simulation. Data points are overlaid as triangles (positive peculiar velocity) and squares

(negative peculiar velocity). In this scenario, the 95% contour for WLS, marked in black,

completely misses the direction of the true dipole, marked as the white circle. The WLS

dipole is pulled toward a region of space less sampled.

70



-600 -400 -200 0 200 400 600
a00 Residuals

0
20
40
60
80

100

F
re

q
u

en
cy CU

WLS

-600 -400 -200 0 200 400 600
a10 Residuals

0
20
40
60
80

100

F
re

q
u

en
cy

-600 -400 -200 0 200 400 600
Re(a11) Residuals

0
20
40
60
80

100

F
re

q
u

en
cy

-600 -400 -200 0 200 400 600
Im(a11) Residuals

0
20
40
60
80

100

F
re

q
u

en
cy

Figure 22 Distribution of CU (WLS) coefficients minus the true values for Case 2 in red

(blue) for 874 simulated data sets. The vertical lines indicate the mean of the distribution.

WLS is consistently more biased than CU
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2.7 CONCLUSION

In this work, we applied statistically rigorous methods of non-parametric risk estimation

to the problem of inferring the local peculiar velocity field from nearby SNe Ia. We use

two non-parametric methods - WLS and CU - both of which employ spherical harmonics

to model the field and use the risk to determine at which multipole to truncate the series.

The minimum of the estimated risk will tell one the maximum multipole to use in order

to achieve the best combination of variance and bias. The risk also conveys which method

models the data most accurately.

WLS estimates the coefficients of the spherical harmonics via weighted least squares. We

show that if the data are not drawn from a uniform distribution and if there is power beyond

the maximum multipole in the regression, WLS fitting introduces a bias on the coefficients.

CU estimates the coefficients without this bias, thereby modeling the field over the entire

sky more realistically but sacrificing in accuracy. Therefore, if one believes there is power

beyond the tuning parameter or the data are not uniform, CU may be more appropriate

when estimating the dipole, but WLS may describe the data more accurately.

After applying non-parametric risk estimation to our sample we find that there are not

enough data at this time to measure power beyond the dipole. There is also no significant

evidence of a monopole term for either WLS or CU, indicating that we are using consistent

values of H0 and MV . The WLS Local Group bulk flow is moving at 538±86 km s−1 towards

(l, b) = (258◦± 10◦, 36◦± 11◦) and the CU bulk flow is moving at 446± 101 km s−1 towards

(l, b) = (273◦ ± 11◦, 46◦ ± 8◦). After performing a paired t-test we find that these values are

in agreement.

To test how CU and WLS perform on a more realistic data set, we simulate data similar

to the actual data and investigate how they perform as we change the direction of the dipole.

We find for our two test cases, that CU produces less biased coefficients than WLS but that

the uncertainties are larger for CU. We also find that the 95% confidence intervals detemined

by CU are more representative of the actual 95% confidence intervals.

We estimate using simulations that with ∼200 data points, roughly double the current

sample, we would be able to measure the quadrupole moment assuming a similarly dis-

72



tributed data set. Nearby SN Ia programs such as the CfA Supernova Group, Carnegie

Supernova Project, KAIT, and the Nearby SN Factory will easily achieve this sample size in

the next one to two years. The best way to constrain higher-order moments however, would

be to obtain a nearly uniform distribution of data points on the sky. Haugbølle et al. (2007)

estimate that with a uniform sample of 95 SNe Ia we can probe l = 3 robustly.

With future amounts of data the analysis can be expanded not only out to higher mul-

tipoles, but to modeling the peculiar velocity field as a function of redshift. This will enable

us to determine the redshift at which the bulk flow converges to the rest frame of the CMB.

Binning the data in redshift will also allow one to look for a monopole term that would

indicate a Hubble bubble.

As there is no physical motivation for using spherical harmonics to model the sampling

density, future increased amounts of data will also allow us to use non-parametric kernel

smoothing both to estimate h and the peculiar velocity field; this would be ideal for distri-

butions on the sky which subtend a small angle, like the SDSS-II Supernova Survey sample

(Sako et al., 2008; Frieman et al., 2008).
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3.0 LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE IA

SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A

COMPLETE TREATMENT OF UNCERTAINTY

Cosmological inference becomes increasingly difficult when complex data-generating pro-

cesses cannot be modeled by simple probability distributions. With the ever-increasing size

of data sets in cosmology, there is increasing burden placed on adequate modeling; system-

atic errors in the model will dominate where previously these were swamped by statistical

errors. For example, Gaussian distributions are an insufficient representation for errors in

quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically

the distribution of errors that are introduced in complex fitting codes. Without a simple

form for these distributions, it becomes difficult to accurately construct a likelihood function

for the data as a function of parameters of interest. Approximate Bayesian computation

(ABC) provides a means of probing the posterior distribution when direct calculation of a

sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation

of the likelihood but instead relies upon the ability to simulate the forward process that

generated the data. These simulations can naturally incorporate priors placed on nuisance

parameters, and hence these can be marginalized in a natural way. We present and discuss

ABC methods in the context of supernova cosmology using data from the SDSS-II Super-

nova Survey. Assuming a flat cosmology and constant dark energy equation of state, we

demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that

ABC can still produce an accurate posterior distribution when we contaminate the sample

with Type IIP supernovae.

74



3.1 INTRODUCTION

Since the discovery of the accelerated expansion of our Universe (Riess et al., 1998; Perlmut-

ter et al., 1999), the quality of SN Ia data sets has improved and the quantity has grown to

thousands through individual efforts with the Hubble Space Telescope (Knop et al., 2003;

Riess et al., 2004; Amanullah et al., 2010) and surveys such as the Supernova Legacy Survey

(Astier et al., 2006; Conley et al., 2011), the ESSENCE Supernova Survey (Miknaitis et al.,

2007; Wood-Vasey et al., 2007), the CfA Supernova group (Hicken et al., 2009a, 2012), the

Carnegie Supernova Project (Contreras et al., 2010; Stritzinger et al., 2011), the Sloan Dig-

ital Sky Survey-II (SDSS-II; Lampeitl et al. (2010)), and the Lick Observatory Supernova

Search (Ganeshalingam et al., 2010). Additional current and near-future surveys such as the

Palomar Transient Factory1 (Law et al., 2009), the Panoramic Survey Telescope and Rapid

Response System (Pan-STARRS)2, SkyMapper3, and the Dark Energy Survey4 will increase

the sample by another order of magnitude with the goal of obtaining tighter constraints on

the nature of dark energy. The Large Synoptic Survey Telescope (LSST) anticipates observ-

ing hundreds of thousands of well-measured SNe Ia (LSST Science Collaborations et al.,

2009).

In this new regime of large numbers of SNe Ia the weaknesses and limitations of our

current χ2 likelihood approach to estimating cosmological parameters are becoming apparent.

For example, with limited spectroscopic follow-up, we must rely on light-curve classification

codes and photometric redshift tools to maximize the scientific potential of SN Ia cosmology

with LSST and near-future surveys. These two crucial steps alone introduce a nontrivial

component to our probability models from which we construct the likelihood. Additionally,

there are significant systematic uncertainties including errors from calibration, survey design

and cadence, host galaxy subtraction and intrinsic dust, population evolution, gravitational

lensing, and peculiar velocities. All of these uncertainties contribute to a probability model

which simply cannot be accurately described by a multivariate normal distribution.

1http://www.astro.caltech.edu/ptf/
2http://pan-starrs.ifa.hawaii.edu/public/
3http://www.mso.anu.edu.au/skymapper/
4http://www.darkenergysurvey.org/
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In this paper we describe how the statistical technique of approximate Bayesian compu-

tation (ABC) can be used to overcome these challenges and explore the space of cosmological

parameters in the face of non-Gaussian distributions of systematic uncertainties, complicated

functional priors, and large data sets. We encourage the reader to read the recent paper by

Cameron & Pettitt (2012) for an introduction to and application of ABC in the context of

galaxy evolution. We here focus on supernova cosmology, but ABC has applicability in a

wide range of forward-modeling problems in astrophysics and cosmology.

3.1.1 Classical Estimation of Cosmological Parameters from SN Ia Data

Cosmological inference with SNe Ia is a classical statistical estimation problem. We have

data, our set of supernova light curve observations, and we seek to infer something about

the Universe in which we live. It is standard in cosmology to adopt a Bayesian approach

to inference. To clarify our basic conceptual and notational framework, we review Bayes

theorem, a simple identity which relates the posterior probability distribution–the probability

of a set of model parameters given the data–to the probability of the data given the model,

the likelihood. More precisely, the posterior probability distribution is derived as

π(θ | x) =
p(x| θ)π(θ)

p(x)
, (3.1)

where p(x|θ) is the likelihood, π(θ) is the prior on the vector of model parameters θ, and p(x)

is the marginal probability of the data x (p(x) =
∫

Θ
p(x|θ)π(θ)dθ). The Bayesian framework

is powerful in that it allows evidence and experience to modify the prior. The approach is

challenging, however, in that standard computation methods rely upon full specification of

the likelihood p(x| θ); this can be challenging in applications of interest.

For example, consider a cosmological model for which the distance modulus can be

written as µmodel = µmodel(ΩM ,ΩΛ, w, z). If we assume that each measured µ has a probability

distribution function (PDF) described by a Gaussian with standard deviation σ we can write

the likelihood for a single observation as

p(µi, zi|ΩM ,ΩΛ, w) ∝ exp

[
−(µi − µmodel(zi,ΩM ,ΩΛ, w))2

2σ2
i

]
. (3.2)
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If the distance observations are independent after calibration such that there are no correlated

uncertainties we can simply multiply the likelihood of each observation together. By taking

the logarithm, we can write a more convenient form of the likelihood as follows

−2 ln (p(µ, z|ΩM ,ΩΛ, w)) = K +
N∑
i=1

(µi − µmodel(zi,ΩM ,ΩΛ, w))2

σ2
i

, (3.3)

where K is an unimportant constant, giving us the familiar χ2 statistic. Note that the

use of this form of the likelihood function and χ2 statistic is based on the assumption of

independent data with normally distributed uncertainties.

Traditionally when making cosmological inference with SNe Ia one calculates the χ2

statistic (Conley et al., 2011; Kessler et al., 2009a; Wood-Vasey et al., 2007; Astier et al.,

2006; Riess et al., 2004). One method of including systematic uncertainties in such a frame-

work is to use the “quadrature” method, accurately named by Conley et al. (2011). System-

atic errors which are not redshift dependent and add scatter to the overall Hubble diagram

are added in quadrature to the statistical uncertainties. For other sources of systematic

uncertainty it is typical to perform the analysis with and without including the systematic

effect on the data. The difference in inferred cosmological parameter is then a measure of the

systematic uncertainty. All systematic effects are then added in quadrature as the quoted

total systematic uncertainty. This method has been used in recent cosmological analyses

by Kessler et al. (2009a); Wood-Vasey et al. (2007) and Astier et al. (2006). It has the ad-

vantage of being simple to implement but the disadvantage of missing correlations between

systematic uncertainties, not producing the full likelihood, and could be inappropriate for

asymmetric error distributions (Barlow, 2003). One also has the difficult task of estimating

the size of the systematic uncertainty and implementing its effect in the analysis.

Conley et al. (2011) presented a more thorough approach to incorporating systematic

uncertainties into a χ2 analysis using a covariance matrix. By implementing a covariance

matrix one can drop the assumption of independent data in Equation 3.3. The covariance

matrix can be decomposed into a diagonal, statistical component and two off-diagonal ma-

trices which include statistical and systematic uncertainty. These off-diagonal covariance

matrices include uncertainties from, e.g., uncertainty in the supernova model which is sta-

tistical in nature but could be correlated between different SNe Ia and uncertainty in zero
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points which would systematically affect all SNe Ia. Kowalski et al. (2008) and Amanullah

et al. (2010) present similar methods which are approximations to Conley et al. (2011)’s

covariance matrix approach. However, the overall approach must be modified for uncertain-

ties due to, e.g., type contamination and Malmquist bias. They have the effect of adding

or removing supernovae from the sample which is difficult to represent in a covariance ma-

trix. For systematic effects such as these the field of supernova cosmology is moving toward

calculating the corrections to the data using artificial SNe Ia generated from Monte Carlo

simulations.

Bayesian inference becomes increasingly difficult as we depart from normal error distribu-

tions or when the likelihood function is not analytically or computationally tractable. Direct

calculation of the likelihood may involve many integrations over systematic uncertainties,

nuisance parameters, and latent variables. These integrations can make the use of standard

Markov Chain Monte Carlo (MCMC) techniques very challenging and computational ex-

pensive. It may also be incredibly difficult to construct an analytic probability model over

which to marginalize.

ABC allows one to bypass direct calculation of the likelihood by simulating data from the

posterior distribution. The posterior distribution is then constructed from the model param-

eters necessary to simulate data which resemble the observed data. By incorporating into

the simulation all of the statistical and systematic uncertainties for which we have models

and priors, the simulation knows about the complicated probability model even thought the

observer may not be able to have the model written out as a set of equations or numerical

integrals. By simulating many realistic data sets one can marginalize over the nuisance pa-

rameters and systematic uncertainties such that high-dimensional marginalization problems,

as in population genetics for which ABC techniques were first developed, are now compu-

tationally feasible. ABC is a consistent framework to incorporate systematic uncertainties

with the cosmological model and more clearly defines what it means to use Monte Carlo

simulations of artificial SNe Ia to quantify systematic uncertainty.

We begin in Section 3.2 by motivating the general problem and discussing the breakdown

of current cosmological inference methods using a simple example. In Section 3.3 we outline

three separate ABC algorithms and discuss their merits. To provide the reader with an
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introductory example of using ABC, we then illustrate how one might perform cosmological

inference with sequential Monte Carlo (SMC) ABC using the simple model discussed in

Section 3.2. In Section 3.4 we present a more sophisticated analysis using SNe Ia from the

SDSS-II Supernova Survey and demonstrate how one might perform cosmological inference

with a tool like the SuperNova ANAlysis (SNANA) (Kessler et al., 2009c) software using

SMC ABC techniques. We compare our results to the cosmological analysis performed in

Kessler et al. (2009a) using statistical errors only. At the end of this section we show that

ABC can recover the full posterior distribution when we contaminate the data with simulated

Type IIP supernovae. We discuss directions for future work in Section 3.5 and conclude in

Section 3.6.

3.2 GENERAL PROBLEM FORMULATION

Here we establish notation that we will use in discussing the SN Ia inference problem. Below

we explain how this framework could be extended to other cosmological inference challenges.

Let µi be the measured distance modulus of the ith SN Ia in our sample, τi be its true distance

modulus, zi be the estimated redshift, and θ be the vector of cosmological parameters. We

will use bold faced variables to indicate a set of n supernovae, e.g., z = {z1, ..., zn}. Here,

we stress that the “estimated redshift” will be, in practice, the redshift as estimated from

photometry, i.e., the photometric redshift.

The underlying objective is to determine the posterior of the cosmological parameters θ

given the observed data (µ, z). There are two natural analytical routes, both of which lead

to the same challenges. The first route is to note that the posterior of θ can be decomposed

as

π(θ | µ, z) = Kp(µ| θ, z)π(θ, z) (3.4)

where K is a constant that does not depend on θ and

p(µ| θ, z)π(θ, z) =

[∫
p(µ| θ, z, τ ) p(τ | θ, z) dτ

]
π(θ, z) (3.5)

=

[∫
p(µ| θ, τ ) p(τ | θ, z) dτ

]
π(θ, z). (3.6)
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Note that in this last step, the density of µ conditional on θ and z is replaced with the

density of µ conditional only on θ. Here we are assuming that µ and z are independent

given τ : once τ is known, the information in z does not affect the distribution of µ. We

note that this assumption is not true if one is using the photometric redshift determined

from the supernova light curve.

We could pose this problem in general statistical terms as follows. Assume that µ =

{µ1, µ2, . . . , µn} are random variables such that the distribution of µi is determined by pa-

rameters θ and τi. Here, θ represents the unknown parameters common to the µi while τi are

the object-specific parameters. We further assume the existence of additional data, denoted

zi, which have the property that µi and zi are independent conditional on τi. The quantities

zi can be thought of as properties that help in the estimation of τi, but would not be useful

for estimating θ if τi were known.

Note that each of µi and τi could be vectors. For example, in Mandel et al. (2011),

µi stores the full observed light curve of the supernova and τi comprises not only the true

distance modulus, but also parameters that capture the effect of extinction and dust and

that define the true, underlying light curve. As mentioned above, these have the property

that, if τi were known, zi would not provide useful additional information for the estimation

of θ.

The second route is to rewrite the posterior as

π(θ | µ, z) =

∫
p(θ, τ | µ, z) dτ (3.7)

and then rely upon the fact that, as derived above,

p(θ, τ | µ, z) = p(µ| θ, τ ) p(τ | θ, z)π(θ, z) (3.8)

to construct a hierarchical Bayesian model for the unknown “parameters” which now consist

of both θ and τ . To analytically obtain the posterior in terms of only θ, one must integrate

over τ , i.e., find ∫
p(µ| θ, τ ) p(τ | θ, z) dτ . (3.9)
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This is exactly the form of the challenging integral that was confronted above in Equation

(3.6). One can often justify further conditional independence assumptions and write

∫
p(µ| θ, τ ) p(τ | θ, z) dτ =

∫ n∏
i=1

p(µi | θ, τi) p(τi | θ, zi) dτ (3.10)

=
n∏
i=1

∫
p(µi | θ, τi) p(τi | θ, zi) dτi. (3.11)

Still, the computational feasibility of using analytical approaches to finding the posterior for

θ will depend on the form of

p(µi | θ, zi) =

∫
p(µi | θ, τi) p(τi | θ, zi) dτi. (3.12)

In practice, the complex nature of photometric redshift estimators will yield a complex form

for the distribution p(τi | θ, zi).

An alternative is to adopt the “second route” described above but instead utilize MCMC

methods to simulate from the posterior for both (θ, τ). This is the approach taken in Mandel

et al. (2011). This avoids the integral over τi, but it is still apparent that practical implemen-

tation of analytical or MCMC methods when n is large (and hence τ is of high-dimension)

forces one to make choices for p(µi | θ, τi) and p(τi | θ, zi) which may not be realistic. Un-

fortunately, as n gets large, even small mistakes in the specification of these densities could

lead to significant biases in the estimates of the parameters. This is one of the fundamental

challenges facing cosmology as we are presented with ever-larger data sets. In what follows

we will develop an example that illustrates this point.

3.2.1 A Simple Example

To begin, note that in the present example µi is the measured distance modulus, zi is the

measured redshift, τi is the true distance modulus, and θ represent the set of cosmological

parameters. We ignore for the moment all parameters which affect the measured distance

modulus except zi and θ. The measured redshift zi may differ from the true redshift of the

supernova, which we will denote ζi. Consider the following three scenarios:
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1. zi = ζi, i.e., the redshift is known exactly. In this case, and under our simplifying

assumptions, we know exactly the value of τi, and hence the “density” p(τi | θ, zi) is a

delta function at this known value.

2. The redshift is observed with some normal error. We model ζi with a Gaussian PDF

with mean zi and variance σ2
z,i. In this case we can apply the so-called delta method

and state that p(τi | θ, zi) is approximately Gaussian with mean µ(zi, θ). This scenario is

analogous to measuring a spectroscopic redshift with a small error such that a Gaussian

approximation for the PDF of ζi is sufficient or a photometric redshift which has a PDF

which can be modeled well by a Gaussian.

3. zi is observed with some complicated uncertainty. The PDF is not described by a simple

function although p(τi | θ, zi) may be estimated using observed data. This is the case for

most photometric redshifts.

Of course, the first case is unrealistic. In order to demonstrate the pitfalls of making un-

warranted assumptions regarding the likelihood function, we will first focus on the second

case, in particular assume that p(τi | θ, zi) is a Gaussian density with mean µ(zi, θ). The

rationale for this approximation relies on the assumption that the true redshift ζi also has a

Gaussian distribution, in this case with mean zi and variance σ2
z,i. The true distance mod-

ulus is τi = µ(ζi, θ), so, using the standard linear approximation, we can argue that τi is

approximately normal with mean µ(zi, θ) and variance

(
σzµ,i
)2

=

[
∂µ(zi, θ)

∂zi

]2

σ2
z,i. (3.13)

Then, the observed distance modulus can be modeled as the true distance modulus plus

some additional Gaussian error; this is taken to have mean zero and variance (σµ,i)
2. In a

real-life application this variance includes uncertainty from the observed intrinsic dispersion

in distance modulus and uncertainty from fitting the light curve.

This is the current approach in most cosmological analyses where one has spectroscopic

redshifts for each SN Ia (Conley et al., 2011; Kessler et al., 2009a; Wood-Vasey et al., 2007;

Astier et al., 2006). The uncertainty in redshift is transferred to the uncertainty in measured

distance modulus and one can find an analytic solution to Equation 3.12 by noting that the

integral is simply the convolution of two normal densities. Hence the result of Equation 3.12
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is another normal density, but now with mean µ(zi, θ) and variance
(
σzµ,i
)2

+ (σµ,i)
2. This

approach is also possible for larger uncertainties like those from photometric redshifts, but

the concern becomes the fact that the linear approximation utilized does not extend to larger

ranges of redshift. In what follows we examine the consequences of making this Gaussian

assumption for photometric redshift uncertainties when the approximation is not valid, i.e.,

we treat scenario 3 as if it were scenario 2.

Figure 23 shows the photometric versus spectroscopic redshift for a sample of 1744 SNe Ia

generated using SNANA5 version v9 32 and smoothed with a Gaussian kernel. To make this

figure, light curves were simulated and fit from the MLCS2k2 model (Jha et al., 2007a) as

described in Section 3.4 with the following changes; we fix the cosmology to ΩΛ = 0.73,

ΩM = 0.27, and w = −1, and we estimate photometric redshifts when we fit the light curves

without using a host galaxy photo-z prior.6 We use this sample to represent a realistic joint

distribution between the spectroscopic and photometric redshifts. We further assume that

the spectroscopic redshift is equal to the true redshift ζ = zspec and the observed redshift is

the photometric redshift z = zphot.

Figure 24 shows three cross-sections of the joint distribution of spectroscopic and photo-

metric redshifts, comparing the photometric redshift distribution with the assumed Gaussian

PDF. Our proposed model assumes that the horizontal cross-section of this distribution at

zphot is Gaussian with mean equal to zspec. This figure demonstrates that the Gaussian

approximation to the distribution of zspec is not terrible. Further, under this Gaussian ap-

proximation µ(zphot
i , θ) should be approximately normal with mean τi, i.e., under the linear

approximation the distance modulus estimated using the photometric redshift has mean

equal to the true distance modulus. Figure 25 uses boxplots to show the distribution of

τi − µ(zphot
i , θ) at various values of zphot for the simulated data. This plot reveals that there

are significant deviations from the expected difference of zero.

The effect of this bias is made clear in Figure 26. This figure shows the 95% credible

region as constructed by two different methods, which will be described below. In both cases,

the data set utilized is the same. To construct this data set we simulated a sample of 200

5http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/
6Please see Section 4.9 of the SNANA manual for details on measuring SN Ia redshift from photometry

http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/doc/snana_manual.pdf
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Figure 23 Photometric vs. spectroscopic redshift for 1744 simulated SNe Ia using SNANA

and smoothed with a Gaussian kernel. Note the complex structure and asymmetry about

the one-to-one line indicating departures from Gaussianity. This sample is used to represent

a realistic joint distribution between the spectroscopic and photometric redshifts.
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Figure 24 Comparison between the assumed Gaussian joint distribution between z and ζi

(dashed) and non-parametric fits (solid) through the simulated data shown in Figure 23.

Three cross-sections are shown, one at each of photometric redshifts of 0.1, 0.2, and 0.3. In

each case, a bin of width 0.02 is constructed, centered on these values, and the observations

which fall into this bin are used to estimate the distribution for spectroscopic redshift. A

Gaussian is not a terrible approximation to these cross-sections, but is it far from ideal.
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Figure 25 Distance modulus residual defined as µ(ζi, θ)−µ(zi, θ) as a function of photometric

redshift zi. Under the described Gaussian approximation, these distributions should all have

mean zero. The boxplots compare the distribution in different narrow redshift bins. The

top and bottom of the box indicate the 25th and 75th percentile, the center line marks

the median, and the “whiskers” mark 1.5 times the inter-quartile range. Points outside

the whiskers are considered outliers. The “notch” in each boxplot allows for comparison

to determine statistical significance: If the notches of two boxes do not overlap, then there

is a statistically significant difference between the medians of the populations. Hence, it

is evident that there is a bias introduced; the centers of these distributions are not always

zero. This bias indicates that the Gaussian model for the joint distribution of (ζ, z) is

inappropriate.
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SNe Ia by drawing with replacement from the (zspec, zphot) sample shown in Figure 23. We

then calculated τ = µ(zspec, θ), where θ consists of w = −1 and ΩM = 0.27 and assumed a

flat Universe. Finally, the observed distance modulus µ is constructed by adding mean-zero

Gaussian error onto τ with variance σ2
µ,i = 0.04. The posterior for θ is found for this data

set in two ways, and the 95% credible region7 is displayed for each.

1. The solid line shows the credible region if the posterior is constructed using zspec. It will

serve as the fiducial reference for comparisons to the other region.

2. The dashed line is the credible region that results from using the approximation described

above, i.e., assuming that the observed distance modulus has a Gaussian PDF with

variance [
∂µ(zphot

i , θ)

∂zphot
i

]2

σ2
zphot,i + σ2

µ,i. (3.14)

The point of emphasis here is that the additional uncertainty in the redshift is now taken

into account and reflected in the extra width of the region as compared to the solid

region. The shift from the solid region to the dashed region is the result of a bias.

The bias shown in Figure 26 is much like the attenuation bias that results from inap-

propriately taking into account the errors in the predictor variables in a regression setting:

Simply adding more error into the response will not adequately account for this additional

error. There are methods for dealing with this additional error, but these are not practical

in this setting because of another fundamental challenge: the variance of the error in redshift

cannot be assumed to be constant, it needs to be modeled as a function of redshift. This

heteroskedastic error introduces significant obstacles to any method that would seek to “back

out” its effect on the estimates. In the next section we will instead consider approaches that

exploit our ability to model and/or simulate the forward process that generated the data,

and hence allow us to incorporate in a natural way the errors due to the use of photometric

redshifts.

7The region which comprises 95% of the probability under the posterior is referred to as a credible region
to distinguish it from a frequentist confidence region.

87



ΩM

w

0.0 0.2 0.4 0.6 0.8 1.0

−
3

.0
−

2
.5

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

*

Figure 26 Comparison between the 95% credible regions for a simulated set of supernova

formed by taking two approaches: (1) where the true redshift is known (black-solid line) and

(2) where the approximation described in Section 2.1 is utilized (blue-dashed line). The star

is at the true value of the parameters used in the simulation. The increased width of the

confidence region is natural, given the use of photometric redshifts instead of spectroscopic

redshifts, but the bias is a result of the inadequacy of the assumed Gaussian model.
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3.3 APPROXIMATE BAYESIAN COMPUTATION

ABC methods simulate observations from the posterior distribution via algorithms that

bypass direct calculation of the likelihood. This is done by drawing model parameters from

some distribution, generating simulated data based on these model parameters and reducing

the simulated data to summary statistics. Summary statistics are measures of the data

designed to reduce the dimensionality of the data: they represent the maximum amount of

information in the simplest form. Model parameters that generate data sufficiently similar

to the observed data are drawn from the posterior distribution. This procedure allows one

to simulate the complicated integral in Equation 3.12 rather than evaluate it but instead

relies upon the ability to simulate the forward process that generated the observed data.

Here we review two classes of ABC algorithms; ABC rejection samplers and adaptive

ABC algorithms. The roots of ABC techniques lie in the first class while the goal of adaptive

ABC algorithms is to efficiently determine the relevant regions of parameter and probability

space to sample from. In this section we will adopt a Bayesian approach and endeavor to

determine (approximately) the posterior distribution of model parameters θ given observed

data x. The posterior is given by

π(θ | x) =
p(x| θ)π(θ)

p(x)
, (3.15)

where p(x| θ) is the likelihood function and p(x) is a normalization constant. For a review

on ABC algorithms we refer the reader to Marin et al. (2011).

3.3.1 ABC Rejection Samplers

The basic ABC prescription is best considered for a situation in which the data x are discrete:

Rejection Sampler: Discrete Case

1. Draw candidate θ∗ from π(θ),

2. Simulate data x∗ ∼ p(x∗ | θ∗)
3. Accept θ∗ if x∗ = x,

Repeat these steps until N candidates are accepted.
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Under this algorithm, the probability that θ∗ is accepted is exactly π(θ | x). Hence, it is

simple in principle to generate a sample of size N from the posterior distribution. This

sample is then used to estimate properties of the posterior distribution such as the 95%

credible region.

In practice, however, most data are continuous, and we must instead decide to accept θ∗

if x∗ is suitably “close to” x; hence, a metric or distance ∆(x∗,x) must be chosen. Under

this setup, the accepted parameter vectors θ∗ are drawn from the posterior distribution con-

ditioned on the simulated data being sufficiently close to the observed data. More precisely,

the result will be a sample from the joint distribution p(x, θ | ∆(x,x∗) ≤ ε) where ε > 0 is

a fixed tolerance. If ε is small and one marginalizes over x, then p(θ | ∆(x,x∗) ≤ ε) is a

reasonable approximation to π(θ | x) (Sisson et al., 2007). Note that if ε is very large the

sample will be effectively drawn from the prior. The continuous version of the ABC rejection

sampler, introduced by Tavare et al. (1997) and Pritchard et al. (1999), is built upon this

idea:

Rejection Sampler: Continuous Case

1. Draw candidate θ∗ from π(θ)

2. Simulate data x∗ ∼ p(x∗ | θ∗)
3. Accept θ∗ if ∆(x∗,x) ≤ ε

Repeat these steps until N candidates are accepted.

If the data have many dimensions, requiring that ∆(x∗,x) ≤ ε may be impractical. For

example, it would be nearly impossible to simulate 103 supernovae to within ε of the observed

data even with the correct cosmology due to random photometric error, let alone population

variance in realizations of stretch and color distribution.

Fu & Li (1997) and Weiss & von Haeseler (1998) improved Step 3 by instead making the

comparison between lower-dimensional summaries of the data; here these will be denoted

s(x), or just s. The ideal choice for s would be a summary statistic that is a sufficient statis-

tic for estimating θ. Technically, a vector s is sufficient if p(x| s, θ) is not a function of θ,

and hence the posterior conditioned on s is the same as the posterior conditioned on x, i.e.,

π(θ | s) = π(θ |x). Of course, one cannot expect to derive an exactly sufficient statistic when
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the form of the likelihood is not known. Hence, much current research in ABC is focused

on the derivation of approximately sufficient statistics or, more generally, summary statis-

tics that preserve important information regarding the parameters of interest. Blum et al.

(2012) provide an excellent overview and comparison of methods for constructing summary

statistics. These methods generally fall into two categories: those that sift through a list

of candidate summary statistics to find the “best” summary statistic as measured by some

optimality criterion, and those that utilize the ability to simulate data sets under different

parameter values as part of a process of fitting a regression where the responses are the

parameters, and the predictors are the simulated data. This mapping is then used to trans-

form observed summary statistics to parameters. For example, an early such example was

Beaumont et al. (2002), who fit local linear regression to simulated parameter values on sim-

ulated summary statistics. The regression approach can be justified on theoretical grounds,

see Fearnhead & Prangle (2012), and Cameron & Pettitt (2012) used this approach for their

astronomical application. In our work, the relatively simple structure of the relationship

between the simulated data and the parameters of interest leads to a natural approach to

constructing a summary statistic: exploiting the known smooth distance modulus/redshift

relationship. In other applications, there will not exist such a simple one-dimensional repre-

sentation of the data, and these sophisticated approaches must be utilized.

There are advantages to the general ABC rejection sampler approach. Since each ac-

cepted parameter represents an independent draw from p(θ |∆(s∗, s) ≤ ε), properties of the

posterior distribution are easily estimated from the accepted sample. There are no problems

with such estimation due to dependence in the sample. Also, the ABC rejection sampler is

simple to code and trivial to parallelize. However, the success of this method depends on how

easy it is to simulate data from the model. If the model is complicated or if the acceptance

rates are small, then the algorithm can be very expensive or inefficient. A low acceptance

rate can be caused by a diffuse prior relative to the posterior or by a poor choice for the

summary statistic. It is natural to consider approaches that do not rely upon independent

sampling from the prior. In particular, one would anticipate that it would be possible to

“learn” from the parameter values that have been accepted in the past to determine where

good choices for future candidates θ∗.
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3.3.2 Adaptive ABC Algorithms

The aforementioned challenges are the major motivations for the use of MCMC techniques:

instead of relying on random draws from a distribution to produce candidates, random walks

are taken in parameter space. Marjoram et al. (2003) presented an MCMC version of ABC

as follows.

ABC MCMC

Initialize θi, i = 1

For i=1 to i=N do:

1. Propose a move to θ∗ according to a transition kernel q(θi → θ∗)

2. Simulate x∗ ∼ p(x∗ | θ∗)
3. Measure s∗ from x∗

4. If ∆(s∗, s) ≤ ε proceed, else go to Step 1

5. Set θi+1 = θ∗ with probability

h(θi, θ
∗) = min

(
1,
π(θ∗)q(θi → θ∗)

π(θi)q(θ∗ → θi)

)
and otherwise, θi+1 = θi

6. i = i+ 1

Here q(θi → θ∗) is a proposal density, h(θi, θ
∗) is the Metropolis-Hastings acceptance proba-

bility and N is the chain length. The chain length is determined after meeting some conver-

gence criterion (see, e.g., Cowles & Carlin (1996)). As is proved in Marjoram et al. (2003),

the posterior distribution of interest π(θ | x) is the stationary distribution of the chain.

The MCMC ABC algorithm can be much more efficient than the ABC rejection sampler,

especially when the posterior and prior distributions are very different. This efficiency is

gained, however, at the cost of highly correlated θi. Additionally, the MCMC ABC sampler

can become inefficient if it wanders into a region of parameter space with low acceptance

probability with a poor perturbation kernel. Successive perturbations have a small chance

or being accepted and the chain can get “stuck.” It is worth noting that this algorithm is

replacing the likelihood ratio present in standard MCMC techniques with a one or zero based

on whether or not ∆(s∗, s) ≤ ε. This is a significant loss of resolution in the information
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that was present in the likelihood ratio.

Sisson et al. (2007) (improved upon by Beaumont et al. (2009)) overcome the inefficiencies

of an MCMC ABC algorithm via a method which they term Population Monte Carlo or SMC

ABC. The SMC ABC approach adapts the SMC methods developed in Moral et al. (2006)

to ABC. The algorithm learns about the target distribution using a set of weighted random

variables that are propagated over iterations, similar to running parallel MCMC algorithms

which interact at each iteration. The basic recipe of the SMC ABC algorithm is to initializeN

points in parameter space according to π(θ). Points or particles are drawn from this sample,

slightly perturbed, and are accepted for the next iteration if they meet the ε criterion. For

each iteration, the tolerance ε is decreased, slowly migrating the N particles into the correct

region of parameter space when we have reached a pre-specified tolerance threshold.

SMC ABC

Fix a decreasing sequence of tolerances ε = ε1, ε2, ..., εT
For the first iteration, t=1:

For i=1 to i=N do:
1. Draw θti from π(θ)
2. Simulate xti ∼ p

(
xti | θti

)
3. Measure sti from xti
4. Proceed if ∆(sti, s) < εt, else return to Step 1
5. Set wi = 1/N
6. i = i+ 1

Take τ2
t+1 equal to twice the weighted variance of the set {θti : i = 1, ..., N}.

For t=2 to t=T do:

For i=1 to i=N do:

1. Draw θ∗ from {θt−1
j : j = 1, ..., N} with probabilities {wt−1

j }
2. Generate θti from K(θ∗, τ2

t )
3. Simulate xti ∼ p

(
xti | θti

)
4. Measure sti from xti
5. Proceed if ∆

(
sti, s

)
< εt else return to Step 1

6. Set

wti ∝
π(θti)∑N

j=1w
t−1
j K

(
τ−1
t

(
θti − θ

t−1
j

))
7. i = i+ 1

Take τ2
t+1 equal to twice the weighted variance of the set {θti : i = 1, ..., N}

Here, K(x) is a kernel which could be, e.g., a Gaussian kernel such that K(x) ∝ exp (−x2/2)
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and the weights are normalized after N points have been selected. Following Beaumont

et al. (2009), each particle is perturbed using a multivariate normal distribution with mean

centered on the particle’s current position θ∗ and variance equal to twice the weighted em-

pirical covariance matrix of the previous iteration N(θ∗, τ 2
t ). Some work has been invested

determining the most efficient method of perturbing points and includes implementing a

locally adapted covariance matrix and incorporating an estimate of the Fisher information

(see Filippi et al. (2011)).

Since the target distribution is approximated by a random sample of N particles that

have migrated over iterations, properties of the posterior distribution are again properties

of the sample, i.e., there is no covariance between the points as in the MCMC case. Using

the importance weighting scheme in Beaumont et al. (2009) along with the distribution of

particles in parameter space allows one to construct an estimate of the posterior distribution

and derive estimates of parameters of interest based on this posterior.

SMC ABC has some distinct advantages over the other ABC methods. Both the ABC

rejection sampler and the MCMC ABC scheme become very inefficient when the tolerance

is small. SMC ABC derives its efficiency instead from sequentially learning about the target

distribution by decomposing the problem into a series of simpler sub-problems. The sequence

of ε’s can be chosen such that the acceptance rates are never too poor and the algorithm

converges at a reasonable rate. However, if the sequence of ε decreases too slowly the

algorithm will be too computationally expensive and if it decreases too rapidly the acceptance

rates will be too small. An inefficient perturbation kernel will also result in a poor exploration

of the space and similarly poor acceptance rates as many simulated data sets will be generated

before ∆(sti, s) < εt is reached.

ABC is an active field of research. Recent improvements have been made by Barnes

et al. (2011), who employ an information-theoretical framework to construct approximately

sufficient statistics and Blum & Francois (2008), who introduce a machine learning approach

to estimate the posterior by fitting a nonlinear conditional heteroscedastic regression of the

parameters on the summary statistics. The estimation is then adaptively improved using

importance sampling. For a review and study of the improvements made in ABC methods

in recent years we refer the reader to Marin et al. (2011).
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3.3.3 Example: Revisited

Here, we apply SMC ABC to the stylized SN Ia inference example introduced in Section 3.2.

The model is the same as was specified in that section. The “observed data” are simulated

by constructing a sample of 200 SNe Ia under a flat cosmology with ΩM = 0.27 and w = −1.

For this toy example, H0 is assumed to be perfectly known as 72 km s−1 Mpc−1.

Figure 27 depicts key steps in the SMC algorithm as applied to this situation. The

prior is chosen to be uniform over the region 0 < ΩM < 1 and −3 < w < 0. A collection

of 500 (ΩM , w) pairs, often called particles in the context of SMC methods, is migrated

through the iterations of the algorithm. Figure 27a shows the collection of 500 particles at

the conclusion of one of the early time steps. One of these particles is chosen at random

and perturbed a small amount; the parameter combination is ΩM = 0.11 and w = −1.21,

and is shown as the star in the plot. This parameter combination in denoted θti in the

algorithm above. Simulated data are created by drawing a collection of 200 (z, z′) pairs,

sampling with replacement, from the collection shown in Figure 23. With θti specified and

the 200 true redshifts, it is trivial to calculate the distance modulus of each SN Ia, and then

add uncertainty using a Gaussian PDF with variance (σµ,i)
2 = 0.04. Figure 27b shows the

resulting simulated distance moduli plotted against the photometric redshifts z. The point

is that this is a plot that can be created using observable data: these data comprise the xti

that appear in the algorithm above.

A key step in any implementation of SMC ABC is the choice of the summary statistic.

Here, the summary statistic sti is found by applying a non-parametric regression smoother

through these data; this curve is shown in Figure 27b. (The approach used to perform this

smooth is briefly presented in the Appendix.) The motivation for this choice is as follows:

as stated above, ideally we would choose a sufficient statistic as our summary statistic. A

sufficient statistic is a summary that separates out from the full data that portion which is

useful for estimating θ. In this case, we know that the relationship between redshift and

distance modulus for fixed θ is a smooth curve. The deviation of the data from a smooth

curve can be solely attributed to random error in the measurements, error which is not all

informative of the value of θ. For this reason, it is reasonable to believe that a smoothed
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Figure 27 Illustration of key steps of the SMC ABC algorithm in the example. Panel (a):

a collection of 500 particles plotted in the relevant parameter space from an intermediate

iteration of the SMC ABC algorithm. A random particle is selected, plotted as the star, and

perturbed a small amount. Panel (b): the simulated data set corresponding to the perturbed

particle from panel a. The line is a non-parametric smooth of the data and represents the

summary statistic. Panel (c): “Observed” data. The dashed line represents a non-parametric

smooth of the observed data. Panel (d): a comparison between the simulated and observed

data sets via the sum of squared deviations across the length of the curve. The particle

is accepted in this iteration even though the curves are discrepant at high redshift as the

tolerance is not small enough to reject it. Such a point would likely be rejected in a future

iteration as the tolerance is decreased (see Figure 28).
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version of the points shown in Figure 27b captures all of the useful information for estimating

θ.

The comparison between the real and simulated data will be done via these smooth

curves. Figure 27c shows the observed data, along with the result s of applying the same

smoothing procedure to these data. Finally, in Figure 27d, these two curves are compared via

a simple distance calculation between these curves, namely, the sum of squared deviations

across the length of the curve. The particle is accepted in this iteration, because even though

the curves differ at high redshift, the tolerance is not sufficiently small yet to reject at this

difference. Figure 28 shows how the collection 500 particles evolves over the steps of the

algorithm. As the steps progress, the particles converge in and approximate a sample from

the posterior. The notable feature of this result is that this posterior is centered on the solid

contours. Just as in Figure 26, these contours represent the posterior as derived by someone

who had full knowledge of the redshifts. It is clear that by avoiding the unjustified Gaussian

assumptions made in Section 3.2, the bias that was present in the previous posterior based

on photometric redshifts has been removed.
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Figure 28 Progress of the ABC SMC algorithm in estimating the posterior distribution for

the toy example. As ε decreases, the collection of particles converges to a sample from the

posterior (when the weights are taken into account.) The solid contour is the 95% credible

region that would have been formed by someone who had knowledge of the spectroscopic

redshifts. The dashed contours result from fitting to the output of the ABC algorithm.

Compare with Figure 26 to note the reduction of the bias that resulted from the Gaussian

approximation. Note that it is not expected that these contours will be the same, as the

ABC simulations are built upon data using photometric redshifts; hence, there is additional

uncertainty in the parameter estimates.
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3.4 SMC ABC COSMOLOGY WITH SDSS-II SUPERNOVAE

In this section we apply SMC ABC to first year data from the SDSS-II Supernova Sur-

vey (Holtzman et al., 2008; Kessler et al., 2009a). The development of the sophisticated

supernova simulation and analysis software SNANA (Kessler et al., 2009c) has made possi-

ble the comparison between the SDSS-II supernova sample and simulated data sets and is

a natural first choice to test ABC methods in cosmology. The purpose of this section is to

demonstrate that ABC can be used to estimate an accurate posterior distribution. We use

the spectroscopically confirmed sample to estimate cosmological parameters from assuming

a spatially flat universe and a constant dark energy equation of state parameter, w. In this

section we discuss how we create simulated data sets, our ABC setup, and compare our pos-

terior distributions for the matter density ΩM and the equation of state parameter w with

those from a χ2 analysis using statistical errors only. We close this section demonstrating

the full utility of ABC by including Type IIP supernovae contamination to the SDSS sample

and estimating the correct posterior distribution with ABC.

3.4.1 Simulation Setup

For this analysis we will use data from the fall 2005 SDSS-II Supernova Survey which were

published in Holtzman et al. (2008). For detailed information regarding the scientific goals

and data processing for the survey we refer the reader to Frieman et al. (2008), to Sako et al.

(2008) for details of the supernova search algorithms and spectroscopic observations and to

Section 2 of Kessler et al. (2009a) for a brief summary of the survey.

Our goal is to compare the derived posterior distributions for ΩM and w using ABC

with those from Kessler et al. (2009a) which were done using a more traditional χ2 analysis.

To make this comparison as meaningful as possible we apply the same relevant selection

cuts to the data. Therefore, defining t0 as the time of peak brightness in rest-frame B

according to MLCS2k2 such that t − t0 = 0, we require for each SN Ia light curve, one

measurement before peak brightness and one measurement more than 10 days after peak

brightness. Additionally we require five measurements with −15 < t− t0 < 60 days. These
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requirements ensure adequate time sampling to yield a robust light-curve model fit. Kessler

et al. (2009a) additionally require one measurement in gri with a signal-to-noise ratio greater

than 5 to put a floor on the quality of data and require Pfit > 0.001, where Pfit is MLCS2k2

light curve fit probability based on χ2. This requirement is designed to remove obvious

peculiar SNe Ia in an objective fashion.

All supernovae in this sample have unambiguous spectroscopic confirmation and we use

photometry in g, r, and i bands. This leaves us with 103 SDSS SNe Ia. This sample is

identical to Kessler et al. (2009a)’s sample A and can be taken from their Table 10.

We can broadly separate the treatment of variables in the likelihood into two categories:

(1) those which are of cosmological interest and (2) nuisance parameters. One will be able

to construct posterior distributions for all parameters in the first category, in this case

θ = [ΩM , w], while sampling from the probability space spanned by the set of nuisance

parameters when generating simulated data sets.

We use SNANA to simulate sets of supernovae from different cosmologies. The idea is to

randomly sample from the probability distributions of each nuisance parameter every time a

simulated set of supernovae is generated. If we were to fix the cosmology and simulate many

data sets, the probability space spanned by the nuisance parameters should be reflected in

the variance of the sets of simulated data.

Within SNANA we will use the MLCS2k2 model (Jha et al., 2007a) to simulate SN Ia

light curves. We use the same modified version of MLCS2k2 that was developed and trained

in Kessler et al. (2009a). In this model the observed model magnitudes corrected for Galactic

extinction, K-correction, and time dilation, for each passband, X, are given by

mX(t− t0) = M0
X + µ0 + ξX

(
αX +

βX
RV

)
A0
V ,

+PX∆ + QX∆2 (3.16)

where M0
X are the fiducial absolute magnitudes, µ0 is the distance modulus, RV and A0

V are

the host galaxy extinction parameters, and PX and QX describe the change in light-curve

shape as a quadratic function of ∆. Quantities that are functions of phase are in bold. M0
X ,

PX , and QX are estimated from a training set leaving t0, µ0, ∆, A0
V , and RV as the free

parameters.
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The distance modulus can be related to the luminosity distance for a flat universe with

a constant dark energy equation of state parameter of w = −1 in the following way

µ0 = 5 log (dL/10pc) (3.17)

= 5 log

(
c(1 + z)

∫ z

0

[
ΩM(1 + z′)3 + ΩΛ

]1/2
dz′
)

−5 logH0 + 25. (3.18)

Note that a change in H0 simply scales the distance modulus. It is easy to see that if one

rewrites Equation 3.16 in terms of luminosity distance that a degeneracy arises between H0

and MV . Even if H0 is known from some other experiment, MV would still need to be

marginalized over.

ξX is defined as

ξX =
AX
A0
X

(3.19)

and is equal to unity at maximum light. This framework allows one to separate out the time

dependence of the extinction while being insensitive to the total extinction E(B − V ) and

the extinction law RV .

A major advantage of MLCS2k2 is that it allows one to separate reddening resulting

from dust in the host galaxy (third term in Equation 3.16) from intrinsic color variations

of the supernova which are captured by ∆. The validity of this approach depends on how

separable these two terms are, how well intrinsic color is predicted by light curve shape, and

relies on accurate models of the distribution of extinction with redshift (Wood-Vasey et al.,

2007).

To generate a simulated set of data, we assume a flat universe and choose ΩM and

w from flat priors over the range [0, 1] and [−3, 0] respectively. One could instead draw

cosmological parameters from priors based on the SDSS detection of the baryon acoustic

oscillations (Eisenstein et al., 2005) and the five-year Wilkinson Microwave Anisotropy Probe

observations (WMAP-5) of the cosmic microwave background (Komatsu et al., 2009). A

random supernova redshift is selected from a power law distribution given by dn
dz
∼ (1 + z)β

where β = 1.5 ± 0.6 (Dilday et al., 2008). ∆ and AV are then drawn from empirical

distributions determined in Section 7.3 of Kessler et al. (2009a). Using the parameterization
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of Cardelli et al. (1989) to describe the extinction with RV = 2.18 (as determined from

Section 7.2 in Kessler et al. 2009a), the MLCS2k2 light curve model can now be used to

generate supernovae magnitudes which are then K-corrected using spectral templates from

Hsiao et al. (2007) into observer frame magnitudes.

SNANA then chooses a random sky coordinate consistent with the observed survey area

and applies Galactic extinction using the Schlegel et al. (1998) dust maps, chooses a random

date for peak brightness, and selects observed epochs from actual SDSS survey observations.

Noise is simulated for each epoch and filter and includes Poisson fluctuations from the SN Ia

flux, sky background, CCD read noise, and host galaxy background.

The simulation allows one to add additional intrinsic variations in SN Ia properties to

better match the observed scatter in the Hubble diagram. We do this by “color smearing.”

A magnitude fluctuation drawn from a Gaussian distribution is added to the rest-frame

magnitude for each passband leading to a change in model colors of ∼ 0.1 mag. SNANA

also includes options to model the search efficiency of the survey.

The aforementioned selection cuts on the observed data are then applied to the simulated

data. This process is done for a selected cosmology for ∼ 100 SN Ia over the redshift range

of [0.02, 0.45], similar to the SDSS data, assuming a redshift uncertainty of 0.0005. Finally,

the distance modulus is measured by performing an MLCS2k2 light curve fit assuming the

same prior on AV and ∆ from which the data were simulated.

In Figure 29 we plot the distance modulus as a function of redshift for the SDSS data in

blue and a simulated data set in red. For the simulated data set we assume that ΩM = 0.3

and w = −1.0. The simulated data have been offset by 1 mag for clarity. The distance

modulus uncertainties, intrinsic scatter, and redshift distributions are similar between the

simulated and observed data sets.

3.4.2 SMC ABC Implementation

To calculate the measure of similarity between the observed and simulated data sets, ∆(sti, s),

we turn to the Hubble diagram. In the top panel of Figure 30 we show µ versus z for our

observed data and a simulated data set with ΩM = 0.1, and w = −2.0. A reasonable distance
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Figure 29 Hubble diagram for the observed data in blue and a simulated data set in red. The

simulated data set is offset from the observed data by 1 mag and was generated assuming

ΩM = 0.3 and w = −1.0. The distance modulus uncertainties, intrinsic scatter, and redshift

distributions are well reproduced in the simulated data. Simulated data sets like this one

with different cosmologies are used in our ABC analysis.
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measure could be the Euclidean distance between the data sets at the redshifts of the observed

data. However, in keeping with the notion of summary statistics, we would like to compare

a smooth representation of the two data sets rather than the data themselves. In the bottom

panel of Figure 30 we show a non-parametric smooth of the simulated and observed data.

The details on how we perform the non-parametric smooth are in the Appendix B. We opt

for a non-parametric smooth in the interests of efficiency and to prevent inserting additional

assumptions about the data in an intermediate step in contrast to fitting the data with a

cosmology fitter. We now define ∆(sti, s) to be the median absolute deviation between the

smoothed data sets evaluated at the observed redshifts. We choose this because it is simple, it

is robust to poor smoothing at high and low redshifts, and allows for a physical interpretation

of the minimum tolerance. Since we are basically measuring the distance between the two

data sets in distance modulus, we consider our minimum tolerance to be equal to the median

uncertainty in the smoothed observed data, i.e., we declare the observed data and simulated

data sets sufficiently similar when the simulated data are within the error of the observed

data.

For simplicity in this analysis we fix the value of H0 to 65 km s−1 Mpc−1 to restrict the

relevant region of parameter space. This improves the efficiency of the ABC algorithm and

more importantly, makes the comparison between ABC and χ2 more striking. However, we

note that for this particular definition of the distance metric the simulated value ofH0 directly

scales ∆(sti, s) in a trivial manner. One could naively treat H0 as a nuisance parameter

and randomly sample H0 from a flat prior over some range. Since H0, w, and ΩM are

correlated, a faster approach would be to add H0 as another cosmological parameter, adding

a third dimension to the parameter space. The particles would then trace out the three-

dimensional posterior distribution from which one could marginalize over H0 to obtain the

two-dimensional projection. Given the simulation expense, one would like to take advantage

of the simple relationship between H0 and ∆(sti, s). To this end one could calculate a set

of ∆(sti, s)s corresponding to a range of Hubble parameter values for a given w and ΩM .

The particle is then accepted with a percentage based on the number of ∆(sti, s) elements

that meet the tolerance criterion. This avoids re-simulating data sets a given number of

times over a range of H0 values while still sampling the probability space fully and thus
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Figure 30 Illustration of the distance metric using SDSS data and simulated data from

SNANA. Top: Hubble diagram for the observed data in blue and simulated data in red.

The simulated data were generated assuming ΩM = 0.1 and w = −2.0. Bottom: non-

parametric smooth of the two data sets. The distance metric is defined to be the median

absolute deviation between the smoothed curves which is equal to 0.402 for this case. Our

final tolerance is 0.033.
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marginalizing over H0.

We choose εt according to the distribution of {∆(st−1
i , s) : i = 1, ..., N} instead of having

a predefined sequence of tolerances to walk though. For the first iteration, we accept all

points, i.e., the tolerance is infinite. For the next iteration, t = 2, the tolerance εt=2 is set to

the 25% percentile of {∆(s1
i , s)}. All subsequent εs are the 50% percentile of the previous

iteration. A percentile which is too large allows for many acceptances and will not localize

into the correct region until T is large. Conversely, if one is too strict in their sequence of

tolerances, many simulations are required before a point is accepted. We found that putting

a stricter cut on what ε should be early on helps concentrate quickly into the correct area of

parameter space, requiring fewer simulations in future iterations.

We define ε to be sufficiently small when it is less than the uncertainty on the non-

parametric smooth of the observed data, which we estimate via bootstrap. The median

uncertainty on the non-parametric smooth for the SDSS data set is 0.033. We require

∆(sti, s) for each particle to be less than this value at the final iteration.

We choose N = 150 particles and run the code on eight different processors. As the initial

particles are independently drawn between the three runs, the results can be combined to

better estimate the posterior distribution. However, the sequence in ε is slightly different

for each run. In practice one should parallelize the code at the level of accepting N points

so that there is just one sequence of tolerances. Ours do not vary significantly and is not a

concern for our demonstration.

Properties of the posterior distribution are then drawn from the final sample of particles

and their weights which meet the minimum tolerance criteria.

3.4.3 Results and Discussion

It is useful to first review the cosmological analysis performed in Kessler et al. (2009a).

MLCS2k2 provides an estimate of the distance modulus for each supernova. The χ2 statistic

is then calculated over a grid of model parameters and used to derive cosmological parameter

estimates. Recall that −2 ln(π(θ | x)) = χ2. The χ2 statistic for the SDSS supernova sample
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is calculated according to

χ2 =
∑
i

[µi − µmod(zi | w,ΩM , H0)]2

σ2
µ

(3.20)

where µi and zi are the distance modulus returned from MLCS2k2 and measured redshift of

the supernova, and µmod is the model magnitude. The distance modulus uncertainties are

given by

σ2
µ =

(
σfit
µ

)2
+
(
σint
µ

)2
+
(
σzµ
)2

(3.21)

where σfit
µ is the statistical uncertainty reported by MLCS2k2, σint

µ = 0.16 is additional

intrinsic error, and

σzµ = σz

(
5

ln 10

)
1 + z

z(1 + z/2)
. (3.22)

The posterior distributions for ΩM and w assuming a flat universe can then be found by

marginalizing over H0. Recall for our comparison that we are fixing the value of H0 and do

not need to marginalize over H0.

In Figure 31 we compare our posterior distribution to that found using the approach

described above. The top plot has the particles from the final iteration of the SMC ABC

algorithm. The area of the particle symbol represents the weight. These points and their

weights represent a sample from the posterior distribution. We estimate the 95% credible

region from this sample and compare with the 95% confidence region from a χ2 analysis

in the bottom plot. Overall the contours are well matched. The weights on the particles

become large just inside the hard boundaries set by the priors on ΩM and w. The algorithm

is accounting for the fact that there is parameter space beyond the boundary which it cannot

explore. This is similar to an MCMC algorithm running into a boundary and sampling more

in that region because it cannot cross the boundary. As a result the ABC contours become

wider than those from χ2 near the boundaries.

We reiterate that the goal of this exercise was not to derive new cosmological constraints

but merely to see how well we can recover the likelihood contours presented in Kessler et al.

(2009a) using a simple implementation of SMC ABC. We demonstrate that we can recover the

posterior distribution derived from current analysis techniques with the hope of convincing

the reader this approach will be useful in the near future. We do note that the A in ABC
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Figure 31 Comparison of SMC ABC with a χ2 analysis. Top: particles from the final ABC

iteration. Bottom: the 95% credible regions from ABC (blue-solid) and χ2 (red-dashed).

The contours between ABC and χ2 are well matched except near the boundaries. The

discrepancy results from the sharp boundaries of our prior. ABC is attempting to account

for the fact that there is relevant parameter space which it cannot explore.
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stands for “Approximate.” One should expect slight differences in the estimated posterior

distributions due to choices of distance metric, summary statistics, and final tolerance.

3.4.4 Type IIP Contamination

We add 34 simulated Type IIP supernovae to the SDSS sample so that the overall type

contamination is 25%. While the amount and type are a bit extreme it is useful for illustrative

purposes. We use SNANA to simulate the data which uses spectral templates and smoothed

light curves of well observed supernovae. We use the “NONIa” option which computes the

observer magnitudes from the spectral energy distribution and we set MAGOFF=-0.6 and

MAGSMEAR=0.9. For details on these keywords and additional information on simulating

non-Ia light curves we refer the reader to Section 3.5 of the SNANA manual.8 The selection

cuts, other observing parameters, and fitting procedure remain as described in Section 3.4.1.

Our new sample is plotted in Figure 32.

We modify our SMC ABC analysis as follows; after drawing cosmology parameters from

π(θ), we simulate and fit additional Type IIP light curves in the aforementioned manner and

add those to our simulated Type I data. From this point the SMC ABC algorithm proceeds

as before. Our new final tolerance has increased to 0.038 due to the additional scatter in the

Hubble diagram.

The resulting 95% credible region is plotted in Figure 33 as the blue-solid line along with

the 95% confidence regions from χ2 with (red-dashed) and without (black-dotted) type con-

tamination. The contours from the χ2 analysis have shifted due to the type contamination.

One can attempt to fix this bias with simulations about the best fit value but one can use

SMC ABC to reproduce the full bias-correct contours. The ABC contours are 42% larger in

area than the χ2 uncontaminated contours, but cover essentially the same area as the original

ABC contours from the uncontaminated sample. If contamination is properly modeled the

ABC method is robust against these effects that can only be applied on a population basis

rather than as a per-object correction.

It is worthwhile to note that while the division between statistical and systematic errors

8http://sdssdp62.fnal.gov/sdsssn/SNANA-PUBLIC/doc/snana_manual.pdf
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Figure 32 SDSS sample plus 34 Type IIP supernovae simulated with SNANA. This combined

data set is our “observed” sample for the type contamination analysis.
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Figure 33 95% credible region from ABC (blue-solid) and the 95% confidence interval from

χ2 for the SDSS sample with type contamination (red-dashed) and the original SDSS sample

(black-dotted). The type contamination biases the χ2 result. ABC reproduces the entire

credible region without this bias and reflects additional uncertainty due to increased scatter

in the Hubble diagram.
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is often loosely used to make a distinction between uncertainties that will decrease with

more data of the same form versus uncertainties that will not decrease with larger sample

sizes, the benefit of a forward-modeling framework is that they can be treated consistently

and simultaneously. To create a simulation model one is forced to make choices regarding

the distributions of all statistical and systematic uncertainties through either analytic or

empirical methods. Systematic errors come in at least three flavors: (1) effects that we know

and understand and have a reasonable understanding of the relevant input distribution;

(2) effects we qualitatively understand, but for which we do not have a good input prior

distribution: e.g., RV values in host galaxies. We can compute the effect on a supernova

lightcurve, but we are relatively uncertain about the correct distribution of RV in galaxies

in the Universe; (3) effects that we lose sleep over but that we have so little understanding

of that we cannot model their effects at all, although we may have some purely empirical

guidance: spectroscopic selection biases; evolving metallicity content of stars over the last 8

billion years. Systematic errors of type 1 are easy to include in ABC. One can use ABC to

examine the effects on the posterior distribution from different choices of distributions for

systematic errors of type 2. One may be able to include empirical distributions for systematic

errors of type 3. Otherwise ABC can not tell you something about these systematic errors

unless they are treated as model parameters. Forward modeling with an SMC ABC approach

provides a powerful way to fully incorporate all available knowledge and ignorance.

3.5 FUTURE WORK

We presented here a proof of concept for an SMC ABC method to infer model parameters

based on SN Ia. To fully deploy this method will require an incorporation of all data sets

and modeling relative systematics between the surveys, e.g., relative calibration. This is

tractable, if somewhat tedious, and has been done with varying degrees of completeness al-

ready in the literature. Extending this approach to explorations of time-variable dark energy

is a simple matter of implementing at different generating model for luminosity distance as

a function of redshift.
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For future photometric-focused surveys, we would explore more fully the non-Gaussianity

of photometric redshifts as derived from calibration samples. The probability distributions

for these photometric redshifts will be strongly affected by evolution of the contamination

fraction of non-SN Ia with redshift. Once that is phrased as part of the generating model,

ABC will incorporate such uncertainties on the same basis as all of the other cosmological

and astrophysical parameters.

The ABC+SNANA framework is a very suitable vehicle for testing the effects of different

lightcurve fitters on the derived cosmological parameters. ABC will help efficiently determine

what different parameter choices in the fitters should be explored.

But the real long-term goal would be to apply the summary statistic comparison at the

individual lightcurve level. This could significantly reduce the computing time. The analysis

presented in this work with ∼100 supernovae and 1200 particles required ∼600 CPU-hours.

We estimate that a realistic problem with a sample of 104 supernovae could be done on O(10)

CPU-years, which is within reasonable computing resources. Applying the summary statistic

comparison at the individual light curve level rather than in Hubble diagram space bypasses

fitting the simulated light curves which currently requires most (∼90%) of the computing

time.

Comparing the simulated and observed data at the individual lightcurve level would also

be the cleanest framework to explore agreement and evolution of systematics. The only

“training” would be in the generation of the templates that the SN Ia are derived from

in the first place. The cosmological distance and supernova property comparison would be

finally integrated in one direct comparison.

3.6 CONCLUSIONS

We have introduced and demonstrated the use of ABC techniques to address the requirements

for analyzing near-future SN Ia cosmological data sets. ABC presents a consistent and

efficient approach to explore multi-dimensional non-Gaussian parameter distributions with

full incorporation of systematic uncertainties.
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• Forward modeling is often the only way to correctly incorporate the full range of statisti-

cal and systematic uncertainties in some of the big astronomy questions being addressed

today.

• Calculation of likelihood functions for evaluation in a traditional MCMC approach may

not be analytically tractable.

• ABC allows for a simultaneous exploration of parameter space and tolerance to create

credible regions for physical parameters of interest without the need to construct an

explicit likelihood function.

• SMC ABC offers an efficient way to explore the full parameter space of all important

input parameters and model effects.

• The use of a summary statistic focuses attention directly on the ability to discriminate

model parameter values in the relevant space of observed values.

We encourage scientists facing similar problems to consider the use of ABC techniques

to increase their incisive power to explore the complicated parameter spaces that are sur-

rounding the key questions in astrophysics and cosmology today.
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4.0 SWEETSPOT: NEAR-INFRARED OBSERVATIONS OF THIRTEEN

TYPE IA SUPERNOVAE FROM A NEW NOAO SURVEY PROBING THE

NEARBY SMOOTH HUBBLE FLOW

We present 13 Type Ia supernovae (SNe Ia) observed in the rest-frame near-infrared (NIR)

from 0.02 < z < 0.09 with the WIYN High-resolution Infrared Camera on the WIYN 3.5-

m telescope. With only one to three points per light curve and a prior on the time of

maximum from the spectrum used to type the object we measure an H-band dispersion of

spectroscopically normal SNe Ia of 0.164 mag. These observations continue to demonstrate

the improved standard brightness of SNe Ia in an H-band even with limited data. Our

sample includes two SNe Ia at z ∼ 0.09, which represent the most distant rest-frame NIR

H-band observations published to date.

This modest sample of 13 NIR SNe Ia represent the pilot sample for “SweetSpot” –

a three-year NOAO Survey program that will observe 144 SNe Ia in the smooth Hubble

flow. By the end of the survey we will have measured the relative distance to a redshift of

z ∼ 0.05-1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the

standard nature of SNe Ia in the rest-frame NIR, allow insight into the nature of dust, and

provide a critical anchor for future cosmological SN Ia surveys at higher redshift.

4.1 INTRODUCTION

The discovery of the accelerating expansion of the Universe with SNe Ia (Riess et al., 1998;

Perlmutter et al., 1999) has sparked a decade and a half of intensive SN Ia studies to pursue

the nature of dark energy. High-redshift SN Ia surveys attempt to measure the equation-of-
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state parameter to sufficiently distinguish among dark energy models. The majority of this

work has been focused on standardizing the rest-frame optical luminosities of SNe Ia. The

goal of low-redshift surveys has been to both provide the distance anchor for high-redshift

relative distance measurements, and to better-calibrate SNe Ia as standard candles through

an improved understanding of SNe Ia themselves.

As the amount of available SN Ia data has grown dramatically, systematic uncertainties

have come to dominate cosmological distance measurements with SNe Ia (Albrecht et al.,

2006b; Astier et al., 2006; Wood-Vasey et al., 2007; Kessler et al., 2009b; Sullivan et al.,

2010; Conley et al., 2011). A well-established systematic affecting SNe Ia is dust reddening

and extinction (see, for example, Jha et al., 2007a; Conley et al., 2007; Wang et al., 2006;

Goobar, 2008; Hicken et al., 2009a; Wang et al., 2009; Folatelli et al., 2010; Foley & Kasen,

2011; Chotard et al., 2011; Scolnic et al., 2013). It is difficult to separate the effects of

reddening as a result of dust from intrinsic variation in the colors of SNe Ia. Unfortunately,

most observations of SNe Ia are made in the rest-frame optical and UV where reddening

corrections are large.

SNe Ia are superior distance indicators in the near-infrared (NIR),1 with more standard

peak JHKs magnitudes and relative insensitivity to reddening (Meikle, 2000; Krisciunas

et al., 2004a, 2007) than in the rest-frame optical passbands traditionally used in SN Ia

distance measurements. Additionally, Krisciunas et al. (2004a) found that objects that are

peculiar at optical wavelengths such as SN 1999aa, SN 1999ac, and SN 1999aw appear

normal at infrared wavelengths. Although it appears that the 2006bt-like subclass of SNe

have normal decline rates and V -band peak magnitudes but display intrinsically-red colors

and have broad, slow-declining light curves in the NIR similar to super-Chandra SNe Ia

(Foley et al., 2010; Phillips, 2012).

These early results have motivated several efforts to pursue large samples of SNe Ia

observed in the rest-frame NIR with 1.3–2.5-m telescopes: the Carnegie Supernova Project

(CSP-I,II) (Contreras et al., 2010; Folatelli et al., 2010; Stritzinger et al., 2011; Kattner

et al., 2012); Center for Astrophysics (CfA) (Wood-Vasey et al., 2008a); RAISIN (Kirshner

et al., 2012). The results from these projects to date indicate that SNe Ia appear to be

1In this paper we use the term “near-infrared” to refer to observed wavelengths from 1 < λ < 2.5 µm.
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standard NIR candles to ≤ 0.15 mag (Wood-Vasey et al., 2008a; Folatelli et al., 2010;

Kattner et al., 2012), particularly in the H band. NIR observations of SNe Ia are a current

significant focus of nearby studies of SNe Ia. Recent work by Barone-Nugent et al. (2012)

used 8-m class telescopes to observe 12 SNe Ia in the NIR from 0.03 < z < 0.08 and found

promising evidence that the H-band peak magnitude of SNe Ia may have a scatter as small

σH = 0.085 mag. This work demonstrated the benefit of using larger-aperture telescopes in

overcoming the significantly increased background of the night sky in the NIR.

In this paper we introduce a new effort to observe SNe Ia in the NIR in the nearby

smooth Hubble flow. “SweetSpot” is a 72-night, three-year National Optical Astronomy

Observatory (NOAO) Survey program (2012B-0500) to observe SNe Ia in JHKs using the

WIYN 3.5-m telescope and the WIYN High-resolution Infrared Camera (WHIRC). Our goal

is to extend the rest-frame H-band NIR Hubble diagram to z ∼ 0.08 to (1) verify recent

evidence that SN Ia are excellent standard candles in the NIR, particularly in the H band;

(2) test if the recent correlation between optical luminosity and host galaxy mass holds in the

NIR; (3) improve our understanding of intrinsic colors of SNe Ia; (4) study the nature of dust

in galaxies beyond our Milky Way; (5) provide a standard well-calibrated NIR rest-frame

reference for future higher-redshift supernova surveys.

In this paper we present results from our 2011B pilot proposal. In Section 4.2 we discuss

our data reduction and present light curves of 13 SNe Ia. To this sample we add data from the

literature (Section 4.3) and fit the light curves using SNooPy (Burns et al., 2011). Details

of how we perform the fitting are discussed in Section 4.4. We present our results, including

an H-band Hubble diagram, in Section 4.5. We discuss our overall SweetSpot program

strategy and goals along with future prospects for rest-frame H-band SN Ia observations in

Section 4.7, and conclude in Section 4.8.
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4.2 THE OBSERVATION AND PROCESSING OF THE SN IA SAMPLE

4.2.1 Observations and Sample Selection

We were awarded seven nights of NOAO time in 2011B to image SNe Ia in the NIR using

the WIYN 3.5m Observatory at Kitt Peak National Observatory (KPNO) with the WHIRC

detector. WHIRC (Meixner et al., 2010) is an NIR imager (0.9–2.5 µm) with a 3.’3 field of

view and 0.”1 pixel scale. The combination of WIYN+WHIRC allows us to observe SNe Ia

out to a redshift of ∼ 0.09.

Three and a half nights of this time were usable; the rest were lost to bad weather. Thus,

the light curves presented here typically have only 1–3 points in each filter and are sparser

than our eventual program goals of 3–10 points per light curve. Our sample (see Table 6)

was selected from SNe Ia reported in the IAU Central Bureau for Astronomical Telegrams

(CBET)2 and The Astronomers Telegram (ATel)3 that were spectroscopically confirmed as

Type Ia and were in our preferred redshift range of 0.02 < z < 0.08.

Our goal is to have the first observation in the light curve within two weeks of the

maximum. We are focused on the time from 10–20 days after B-band maximum light as the

most standard brightness for SNe Ia in the H-band. Our awarded time is typically scheduled

around the full moon and therefore spaced 2-3 weeks apart. Additionally, there is a lack of

targets at the beginning of the season until searches are up and running. When we combine

weather with these factors, we find that about 30% of our light curves from 2011B have their

first observation more than 14 days after maximum.

During the first two semesters of our SweetSpot survey, we were awarded more nights per

semester, more nights occurring later in the semester, and had better weather. Preliminary

results show that we are doing significantly better in obtaining earlier light-curve points,

with only 10% of our light curves having their first observation more than 14 days after

B-band maximum light.

Here we present J- and H-band light curves of the 13 of the 18 SNe Ia that were suf-

ficiently isolated from the background light of their host galaxy. We obtained template

2http://www.cbat.eps.harvard.edu/cbet/RecentCBETs.html
3http://www.astronomerstelegram.org/

118

http://www.cbat.eps.harvard.edu/cbet/RecentCBETs.html
http://www.astronomerstelegram.org/


Table 6. SN Ia Properties

SN Host Galaxy Spectrala ATel/b Discovery Groupc/ Disc./Spec.d

Subtype CBET Individual Reference

SN 2011hr NGC 2691 91T-like C 2901 LOSS N11, Z11b
SN 2011gy UGC 02756 Normal C 2871 Z. Jin, X. Goa JG11, Z11a
SN 2011hk NGC 0881 91bg-like C 2892 K. Itagaki Na11, MB11b

Y. Hirose
A 3798 PTF GY11b

SN 2011fs UGC 11975 Normal C 2825 Z. Jin, X. Goa J11, B11
SN 2011gf SDSS J211222.69-074913.9 Normal C 2838 CRTS D11, M11
SN 2011hb NGC 7674 Normal C 2880 CRTS H11, MB11a

A 3739 PTF GY11a
SN 2011io 2MASX J23024668+0848186 Normal C 2931 MASTER BL11, F11
SN 2011iu UGC 12809 Normal C 2939 Puckett C11, MB11c
PTF11qri LCRS B124431.1-060321 SN Ia A 3798 PTF GY11b
PTF11qmo 2MASX J10064866-0741124 SN Ia A 3798 PTF GY11b
PTF11qzq 2MASX J07192718+5413454 SN Ia A 3798 PTF GY11b
PTF11qpc SDSS J122005.46+092418.3 SN Ia A 3798 PTF GY11b
SN 2011ha PGC 1375631 Normal C 2873 MASTER LB11, O11

aSpectral classifications according to SNID (Blondin & Tonry, 2007) and PTF. Subtypes given when
provided in the original CBET or ATEL.

bA:ATEL; C:CBET

cReferences/URLs: KAIT/LOSS (Filippenko et al., 2001); CRTS (Drake et al., 2009); PTF http:

//www.astro.caltech.edu/ptf/; MASTER http://observ.pereplet.ru/sn_e.html; Puckett http:

//www.cometwatch.com

dReference Codes: N11: Nayak et al. (2011); Z11b: Zhang et al. (2011b); JG11: Jin & Gao (2011);
Z11a: Zhang et al. (2011a); Na11: Nakano (2011); MB11b: Marion & Berlind (2011b); GY11b: Gal-Yam
et al. (2011a); J11: Jin et al. (2011); B11: Balam et al. (2011); D11: Drake et al. (2011); M11: Marion
(2011); H11: Howerton et al. (2011); MB11a: Marion & Berlind (2011a); GY11a: Gal-Yam et al. (2011b);
BL11: Balanutsa & Lipunov (2011); F11: Fraser et al. (2011); C11: Cox et al. (2011); MB11c: Marion
& Berlind (2011c); LB11: Lipunov & Balanutsa (2011); O11: Ochner et al. (2011)
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Table 7. SN Ia Sample Summary I

Name R.A.(J2000) Decl.(J2000) tmax
a zhelio z from Redshift Citation

Host/SN

SN 2011hr 08:54:46.03 +39:32:16.1 55883 0.01328 Host de Vaucouleurs et al. (1991)b

SN 2011gy 03:29:35.30 +40:52:02.9 55865 0.01688 Host Falco et al. (1999)b

SN 2011hk 02:18:45.84 -06:38:30.3 ... 0.01756 Host Bottinelli et al. (1993)b

SN 2011fs 22:17:19.52 +35:34:50.0 55833 0.02091 Host Fisher et al. (1995)b

SN 2011gf 21:12:24.27 -07:48:52.0 55827 0.02766 Host Abazajian et al. (2003)b

SN 2011hb 23:27:55.52 +08:46:45.0 55872 0.02892 Host Nishiura et al. (2000)b

SN 2011io 23:02:47.59 +08:48:09.8 55894 0.04 SN Fraser et al. (2011)
SN 2011iu 23:51:02.27 +46:43:21.7 55894 0.04598 Host Bottinelli et al. (1993)b

PTF11qri 12:47:06.28 -06:19:49.7 55897 0.055 SN Gal-Yam et al. (2011a)
PTF11qmo 10:06:49.76 -07:41:12.3 55894 0.05523 Host Jones et al. (2009)b

PTF11qzq 07:19:27.24 +54:13:48.0 55905 0.06 SN Gal-Yam et al. (2011a)
PTF11qpc 12:20:05.47 +09:24:12.1 55902 0.08902 Host Abazajian et al. (2005)b

SN 2011ha 03:57:40.87 +10:09:55.2 55842 0.094 SN Ochner et al. (2011)

aTime of maximum in the B-band according to SNID/PTF reported in CBET/ATel.

bHeliocentric redshifts citations via NASA/IPAC Extragalactic Database (NED) http://ned.ipac.

caltech.edu/.

images for the other five supernovae starting in 2012B during our main NOAO Survey pro-

gram. The full host-galaxy-subtracted sample will be presented in future work. A summary

of the SNe Ia presented in this work can be found in Tables 7 and 8. We describe our data

processing in Section 4.2.2 and photometric analysis and calibration in Section 4.2.3.

A typical WIYN observation consisted of a 3 x 3 grid dither pattern with 30” spacing

with a 60 s exposure time at each pointing. For objects or conditions requiring more total

exposure time, we typically executed the dither pattern multiple times with a 5” offset

between dither sets. Our observations were conducted in both J and H with priority given

to H. We obtained calibration images consisting of a set of 10 dome flats with the flat lamp

off and another set with the flat lamp on. We used the WHIRC “high” lamps, which are the

standard KPNO MR16 halogen lamps with the reflective surface coated with aluminum by

the NOAO coatings lab. We also obtained dark images for monitoring the dark behavior of

the detector, but we do not use these dark images in our analysis.
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Table 8. SN Ia Sample Summary II

Name zCMB+VIRGO
a nobsJ nobsH mJ,max σ(mJ,max)b mH,max σ(mH,max)b

[mag] [mag] [mag] [mag]

SN 2011hr 0.01453 2 2 14.352 0.220 15.022 0.200
SN 2011gy 0.01623 2 2 15.300 0.285 15.630 0.194
SN 2011hk 0.01625 2 2 ... ... ... ...
SN 2011fs 0.01958 4 4 15.727 0.123 16.141 0.085
SN 2011gf 0.02626 2 3 16.814 0.020 16.841 0.010
SN 2011hb 0.02715 2 3 16.623 0.105 17.026 0.068
SN 2011io 0.04 ± 0.01 1 1 17.817 0.558 17.841 0.560
SN 2011iu 0.04475 2 2 17.640 0.232 18.005 0.169
PTF11qri 0.057 ± 0.001 2 2 18.769 0.122 18.689 0.147
PTF11qmo 0.05696 2 2 18.621 0.265 18.503 0.188
PTF11qzq 0.06 ± 0.01 1 1 19.122 0.377 18.634 0.383
PTF11qpc 0.09084 0 2 · · · · · · 19.687 0.082
SN 2011ha 0.093 ± 0.001 1 1 19.520 0.152 20.067 0.214

aWe follow Mould et al. (2000) to correct for the Virgo cluster and transform to the CMB
using Karachentsev & Makarov (1996) and Fixsen et al. (1996).

bError includes photometric and redshift uncertainty as well as uncertainty from the template
used to fit the data.

4.2.2 Image Processing and Coaddition

The data were reduced in IRAF4 following the steps outlined in the WHIRC Reduction

Manual (Joyce, 2009):

1. The raw images were trimmed of detector reference pixels outside the main imaging area

and corrected for the sub-linear response of the array.

2. The ON dome flats were combined; the OFF dome flats were combined; and the OFF

combined dome flat was then subtracted from the ON combined dome flat to yield the

pixel-by-pixel response.

3. The pupil ghost (an additive artifact resulting from internal reflection within the op-

tical elements of WHIRC) was removed from this response using the IRAF routine

mscred.rmpupil.

4IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Associa-
tion of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science
Foundation
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4. For each target, the set of dithered science images were used to generate a median-filtered

sky frame. The individual science images were then sky-subtracted and flat-fielded using

these median frames.

5. The geometric distortion resulting from a difference in plate scales in the x and y co-

ordinates and field distortion at the input to WHIRC was corrected using the IRAF

routine geotran and the pre-computed WHIRC geometric distortion calibration from

2009 March 055.

6. The individual science images were stacked using the IRAF routine upsqiid.xyget to

find the common stars in the images and create a registration database between the

individual images in an observation sequence. Intensity offsets were determined from

the overlap regions in the registration database and the set of individual images were

combined into a composite image using the IRAF routine upsqiid.nircombine. An

exposure map of a typical stacked observation sequence can be found in Figure 34.

Representative postage stamp images from the processed H-band composite images of our

supernovae are shown in Figure 35.

4.2.3 Photometry and Calibration

We measured the detected counts of the SNe Ia and the stars in the field with aperture pho-

tometry on the stacked images using the Goddard Space Flight Center IDL Astronomy User’s

Library routines gcntrd and aper6. We used an aperture diameter of 1.5 FWHM (FWHM

values were typically around 2”) and measured the background in a surrounding sky annulus

from 1.5 FWHM + 0.”1 to 1.5 FWHM + 0.”6. These counts in ADU/(60-second) equivalent

exposure were converted to instrumental magnitudes minst,f = −2.5 log10 ADU/60 sec.

To calibrate the instrumental magnitudes, we first define a transformation between the

WHIRC and the Two Micron All Sky Survey (2MASS; Skrutskie et al., 2006) systems using

the following equation

m2MASS
f −mWHIRC

inst,f = zptf + kf (X − 1) + cf
(
(m2MASS

J −m2MASS
H )− 0.5 mag

)
(4.1)

5http://www.noao.edu/kpno/manuals/whirc/datared.html
6http://idlastro.gsfc.nasa.gov/
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Figure 34 Exposure map of a typical WIYN+WHIRC stacked observation sequence con-

sisting of a 3 x 3 grid dither pattern with 30” spacing with a 60 s exposure time at each

pointing.

123



2011hr
z= 0.0132

2011gy
z= 0.0169

2011hk
z= 0.0176

2011fs
z= 0.0209

2011gf
z= 0.027

2011hb
z= 0.0289

2011io
z= 0.04

2011iu
z= 0.046

PTF11qmo
z= 0.055

PTF11qri
z= 0.055

PTF11qzq
z= 0.06

PTF11qpc
z= 0.091

2011ha
z= 0.094

Figure 35 Postage stamps of each of the new SNe Ia presented in this work from our

WIYN+WHIRC H-band stacked images. The postage stamps are in order of increasing

redshift. Each image is 10” square.
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Table 9. Photometric Calibration Terms

Filter Zero Point k c
[mag] [mag/airmass]

J 27.041 ± 0.012 −0.051 ± 0.020 +0.062 ± 0.035
H 27.140 ± 0.014 −0.066 ± 0.030 −0.186 ± 0.043

where f designates the filter, X is the airmass, and the 2MASS color is compared to a

reference of m2MASS
J −m2MASS

H = 0.5 mag, which represents the typical color of stars in our

fields as well as SNe Ia after maximum. We then jointly solve for the zeropoint (zpt), airmass

coefficient (k)7, and color coefficient (c) using all instrumental magnitudes measured from

2MASS stars in the fields from our 2011 November 15 and 2012 January 8 nights. This

procedure was performed separately for each filter following Equation 4.1.

Our fit for each filter is plotted in Figure 36 and our fit results are summarized in Table

9. We find non-zero color terms of cJ = 0.062± 0.035 and cH = −0.186± 0.043 between the

2MASS and WHIRC systems, and airmass coefficients of kJ = −0.051± 0.020 mag/airmass

and kH = −0.066± 0.030 mag/airmass.

Matheson et al. (2012) used the same WIYN+WHIRC system to observe the very nearby

SN 2011fe in M101, and used “canonical” values of (kJ , kH , kKs) = (−0.08,−0.04,−0.07)

mag/airmass (in our sign convention for k). These values were based on a long-term study

of kJ , kH , and kK at KPNO in the 1980s using single-channel NIR detectors. This effort found

a range of values of −0.12 < kJ < −0.07 mag/airmass, −0.08 < kH < −0.04 mag/airmass,

and −0.11 < kK < −0.07 mag/airmass with a significant seasonal variation dependent on

the precipitable water vapor (R. R. Joyce and R. Probst, private communication). The filters

used in these measurements were wider than the standard 2MASS filters or WHIRC filters

we use here. The narrow WHIRC filters do not include some of the significant water-vapor

absorption regions included in the NIR filters used in the 1980s KPNO study, and thus would

reasonably be expected to have a smaller absolute value of kJ . Our determined kJ and kH

values are thus consistent with these previous results. However, the variation of k in the NIR

7Our sign convention for k means that k should be negative. The opposite convention is also common in
the literature.
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Figure 36 The difference in 2MASS magnitude and WHIRC instrumental magnitude cor-

rected for airmass as a function of 2MASS color for the J and H filters. Fitting Equation 4.1

to these stars (over-plotted) reveals a significant color term between WHIRC and 2MASS.

The results of this fit allow us to transform between the WHIRC and 2MASS system and

are used to define our natural WHIRC system.
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Table 10. 2MASS Calibration Stars

WHIRC Natural System 2MASS Catalog Magnitudes
2MASS ID SN Field mJ σJ mH σH mJ σJ mH σH

[mag] [mag] [mag] [mag]

02184937−0637528 SN 2011hk 15.162 0.021 14.384 0.029 15.022 0.045 14.408 0.047
03293834+4051347 SN 2011gy 16.640 0.025 15.883 0.040 16.565 0.102 15.827 0.122
03573901+1009372 SN 2011ha 14.570 0.015 14.119 0.021 14.592 0.033 14.117 0.041
07192306+5414071 PTF11qzq 16.788 0.022 16.060 0.042 16.725 0.127 15.915 0.145
08544039+3933230 SN 2011hr 15.526 0.015 14.923 0.023 15.587 0.054 14.903 0.070
10064485−0740334 PTF11qmo 16.325 0.022 15.570 0.038 16.376 0.109 15.583 0.099
12200392+0925144 PTF11qpc ... ... 13.728 0.021 14.482 0.036 13.779 0.043
12470715−0620106 PTF11qri 15.019 0.019 14.770 0.030 15.017 0.029 14.673 0.060
21122081−0748443 SN 2011gf 15.131 0.020 14.317 0.029 15.171 0.052 14.389 0.062
22172193+3533349 SN 2011fs 15.708 0.020 15.423 0.032 15.686 0.056 15.517 0.113
23024227+0848225 SN 2011io 15.875 0.019 15.529 0.030 15.732 0.070 15.163 0.090
23275179+0846392 SN 2011hb 15.745 0.024 15.021 0.037 15.684 0.067 14.978 0.099
23505996+4643586 SN 2011iu 15.389 0.018 14.760 0.026 15.379 0.055 14.830 0.057

as a result of water vapor strongly motivates future improvements in tracking precipitable

water vapor and NIR extinction to improve the instantaneous determination of k.

We then selected a star in each field that was near the supernova and had a similar color

to the supernova at the time of our observations. These reference stars are listed in Table

10. We used the best observation of the reference star, our fit results from Table 9, and

Equation 4.1 to create a list of calibrated standard stars in the WHIRC natural system. We

note that our only observation of SN 2011io was taken under partial clouds. For a given

field, the standard star was then used to find the zeropoint for each stacked image as follows

zptf,i = mWHIRC
cal,f −mWHIRC

inst,f,i (4.2)

where the i subscript indicates stacked image and mcal is the calibrated standard star for

that field. This zeropoint was then applied to the measured instrument magnitude from the

supernovae to generate the calibrated supernova magnitude in the WHIRC natural system.

These light curves are presented in Table 11.

We report magnitudes in the WIYN+WHIRC natural system.8

8For reference, the filter transmissions for WIYN+WHIRC can be found at http://www.noao.edu/kpno/
manuals/whirc/filters.html
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Table 11: SN Ia Light Curves

Name Date Filter ma σ(m) ∆K−corr
m

b

MJD mag mag mag

SN 2011hr 55887.52 J 14.872 0.024 -0.042

SN 2011hr 55904.47 J 16.676 0.037 0.023

SN 2011hr 55887.52 H 15.056 0.036 -0.073

SN 2011hr 55904.46 H 15.325 0.037 -0.114

SN 2011gy 55881.50 J 17.036 0.040 -0.009

SN 2011gy 55904.32 J 18.237 0.051 -0.017

SN 2011gy 55881.47 H 15.879 0.045 -0.089

SN 2011gy 55904.30 H 16.879 0.057 -0.062

SN 2011hk 55881.36 J 17.572 0.024 ...

SN 2011hk 55904.28 J 19.671 0.071 ...

SN 2011hk 55881.34 H 17.027 0.033 ...

SN 2011hk 55904.26 H 18.415 0.057 ...

SN 2011fs 55860.31 J 17.209 0.038 -0.016

SN 2011fs 55881.17 J 17.804 0.029 -0.025

SN 2011fs 55904.12 J 19.087 0.045 -0.016

SN 2011fs 55935.11 J 19.975 0.185 0.000

SN 2011fs 55860.30 H 16.281 0.040 -0.072

SN 2011fs 55881.16 H 16.908 0.035 -0.063

SN 2011fs 55904.10 H 17.886 0.044 -0.063

SN 2011fs 55935.08 H 18.829 0.135 0.000

SN 2011gf 55860.22 J 18.200 0.044 -0.065

SN 2011gf 55881.08 J 19.004 0.046 -0.066

SN 2011gf 55860.23 H 17.126 0.045 -0.042

SN 2011gf 55881.07 H 17.917 0.052 -0.054

Continued on Next Page. . .
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Table 11 – Continued

Name Date Filter ma σ(m) ∆K−corr
m

b

MJD mag mag mag

SN 2011gf 55904.07 H 19.081 0.188 0.000

SN 2011hb 55881.29 J 17.927 0.035 -0.083

SN 2011hb 55904.20 J 17.888 0.025 -0.072

SN 2011hb 55881.28 H 17.536 0.043 -0.032

SN 2011hb 55904.18 H 17.166 0.038 -0.034

SN 2011hb 55935.14 H 18.542 0.111 -0.048

SN 2011io 55904.16 J 19.172 0.058 -0.124

SN 2011io 55904.14 H 18.343 0.055 0.020

SN 2011iu 55904.24 J 19.096 0.033 -0.141

SN 2011iu 55935.20 J 18.899 0.114 -0.198

SN 2011iu 55904.22 H 18.612 0.038 0.047

SN 2011iu 55935.18 H 18.362 0.104 -0.060

PTF11qri 55904.54 J 19.672 0.129 -0.147

PTF11qri 55935.47 J 19.992 0.146 -0.268

PTF11qri 55904.52 H 19.402 0.301 0.027

PTF11qri 55935.45 H 19.224 0.251 -0.039

PTF11qmo 55904.50 J 19.963 0.075 -0.175

PTF11qmo 55935.42 J 19.966 0.163 -0.275

PTF11qmo 55904.49 H 19.176 0.068 0.083

PTF11qmo 55935.39 H 18.729 0.099 -0.058

PTF11qzq 55904.36 J 19.056 0.043 -0.136

PTF11qzq 55904.34 H 18.635 0.078 -0.065

PTF11qpc 55904.56 H 19.795 0.108 -0.079

PTF11qpc 55935.50 H 20.122 0.225 0.126

Continued on Next Page. . .
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Table 11 – Continued

Name Date Filter ma σ(m) ∆K−corr
m

b

MJD mag mag mag

SN 2011ha 55881.40 J 20.434 0.130 -0.756

SN 2011ha 55881.38 H 20.627 0.191 0.018

4.3 SN IA SAMPLE FROM THE LITERATURE

To our sample of WHIRC SNe Ia we add the following data from the literature:

• A compilation of 23 SNe Ia from Jha et al. (1999), Hernandez et al. (2000), Krisciunas

et al. (2000), Krisciunas et al. (2004a), Krisciunas et al. (2004c), Phillips et al. (2006),

Pastorello et al. (2007b), Pastorello et al. (2007a), and Stanishev et al. (2007). This is

the same set that was used as the “literature” sample by Wood-Vasey et al. (2008a).

We use 22 SNe Ia from this set, one of which was observed by the CSP. We refer to

the 21 SNe Ia that are unique to this sample as K+ in recognition of the substantial

contributions by Kevin Krisciunas to this sample and the field of NIR SNe Ia.

• Wood-Vasey et al. (2008a) presented JHKs measurements of 21 SNe Ia from the CfA

Supernova Program using the robotic 1.3 m Peters Automated Infrared Imaging Tele-

scope (PAIRITEL; Bloom et al. 2006) at Mount Hopkins, Arizona. We use 17 SNe Ia

from this sample which we refer to as WV08.

aMagnitudes reported in the WHIRC natural system, which is referenced to 2MASS at (m2MASS
J −

m2MASS
H ) = 0.5 mag.
bK-correction as calculated by SNooPY (Burns et al., 2011). Subtract K-correction value (column 6)

from reported natural-system magnitude (column 4) to yield K-corrected magnitude in the CSP system
(Stritzinger et al., 2011).
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• Contreras et al. (2010) and Stritzinger et al. (2011) present 69 SNe Ia from the CSP using

observations at the Las Campanas Observatory in Chile (Hamuy et al., 2006). The CSP

observations in Y JHKs were carried out with the Wide Field Infrared Camera attached

to the du Pont 2.5 m Telescope and RetroCam on the Swope 1-m telescope supplemented

by occasional imaging with the PANIC NIR imager (Osip et al., 2004) on the Magellan

Baade 6.5-m telescope. We use 55 SNe Ia from this sample, 6 of which are also in WV08.

We refer to the 49 SNe Ia that were not observed by Wood-Vasey et al. (2008a) as CSP.

• Barone-Nugent et al. (2012) extended the rest-frame NIR sample out to z ∼ 0.08 with

12 SNe Ia observed in JH on Gemini Observatory’s 8.2m Gemini North with the NIR

Imager and Spectrometer (Hodapp et al., 2000) and on ESO’s 8.1m Very Large Telescope

using HAWK-I (Casali et al., 2006). We use these 12 SNe Ia and refer to this set as BN12.

To arrive at these samples we removed supernovae that were reported to have a spectrum

similar to the sub-luminous SN 1991bg (SN 2006bd, SN 2007N, SN 2007ax, SN 2007ba,

SN 2009F); were reported to have a spectrum that was peculiar (SN 2006bt, SN 2006ot);

were identified as possible super-Chandrasekhar mass objects (SN 2007if, SN 2009dc); were

determined to be highly reddened (SN 1999cl, SN 2003cg, SN 2005A, SN 2006X); or were

found to have a decline rate parameter ∆m15 > 1.7 (SN 2005bl, SN 2005ke, SN 2005ku,

SN 2006mr) according to the information provided in Folatelli et al. (2010); Contreras et al.

(2010); Stritzinger et al. (2011); Burns et al. (2011). We also removed SN 2002cv that

Elias-Rosa et al. (2008) found to be heavily obscured and SN 2007hx whose photometry

is unreliable (Maximilian Stritzinger, private communication). A redshift histogram of this

entire sample, which represents the currently available collection of published normal NIR

SNe Ia, is plotted in Figure 37. Note that with WIYN+WHIRC we can reach out to z ∼ 0.09

and cover the entirety of the nearby smooth Hubble flow from 0.03 < z < 0.08.

We used the quoted system transmission function reported by each survey. For SNe Ia

that were observed by multiple surveys, we fit all of the available photometry for the SN Ia.
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Figure 37 Cumulative distribution in redshift of supernovae from the K+ sample in cyan,

Contreras et al. (2010) and Stritzinger et al. (2011) in black (CSP), Wood-Vasey et al.

(2008a) in blue (WV08), Barone-Nugent et al. (2012) in green (BN12), and this present

paper in red (W14). The hatched region represents SN observed by multiple groups. With

WIYN+WHIRC we can probe a large redshift range and populate the NIR Hubble diagram

above z > 0.03 where measurements of the distance-redshift relation are less affected by

peculiar velocities.
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4.4 ANALYSIS

We fit the light-curves using the suite of supernova analysis tools developed by CSP called

SNooPy (Burns et al., 2011). We fit the data using SNooPy (version 2.0-267) “max model”

fitting that uses the following model mX :

mX(t− tmax) = TY ((t′ − tmax)/(1 + z),∆m15) +mY +RXE(B − V )Gal +

KX,Y (z, (t′ − tmax)/(1 + z), E(B − V )host, E(B − V )Gal) (4.3)

where t is time in days in the observer frame, TY is the SNooPy light-curve template, mY

is the peak magnitude in filter Y, tmax is the time of maximum in the B band, ∆m15 is the

decline rate parameter (Phillips, 1993), E(B − V )Gal and E(B − V )host are the reddening

resulting from the Galactic foreground and the host galaxy, RX is the total-to-selective

absorption for filters X, and KX,Y is the cross-band K-correction from rest-frame X to

observed Y . The free parameters in this model are tmax, ∆m15, and mY . We do not assume

any relationship between the different filters and therefore do not apply any color correction.

We generate the template T (t,∆m15) from the code of Burns et al. (2011) which generates

rest-frame templates for J and H from the CSP data (Folatelli et al., 2010).

We use SNooPy to perform the K-corrections on all of the data using the Hsiao et al.

(2007) spectral templates. We do not warp or “mangle” the spectral template to match the

observed color when performing the K-corrections. A simpler approach makes sense as we

are interested in measuring the peak brightness using one NIR band and a prior on tmax.

In Figure 38 we plot the H-band filter transmission for the different surveys in our sample.

Overlaid are synthetic spectra at various redshifts. Note the difference in widths and up to

0.05 µm shift in the positions of the blue and red edges of the different H-band filters. While

SNe Ia are standard in their rest-frame H-band brightness, there is a significant feature at

1.8 µm which moves longward of the red edge of the H-band filter quickly from just z = 0 to

z = 0.05. This feature means that it is quite important to have well-understood transmission

functions and spectral templates. However, given that the main effect is the feature moving

across the edge of the filter cutoff, knowing the filter bandpass provides most of the necessary

information without an immediate need for a full system transmission function.
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Figure 38 Filter transmission for the different instruments in our sample. The atmosphere

is included in the filter transmission curve for 2MASS and Swope, but not in the ones for

WHIRC and NIRI. Over-plotted is a synthetic spectrum for a Type Ia which is 30 days

old from Hsiao et al. (2007) at three different redshifts. Note in particular the variation in

the red edge of the filters for the different telescope+detector systems and the shifting of a

significant NIR feature (rest-frame λ ∼ 1.75 µm) from z = 0.02 to z = 0.08.
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For the 2011B data presented in this paper tmax is fixed to an estimate measured from

the spectrum as reported in the ATels/CBETs. This significant prior is necessary as our

NIR data only have a few points per light curve (see Table 7), which are not enough to

independently estimate tmax. We also fix the light-curve width parameter to ∆m15 = 1.1.

This is reasonable as we have already eliminated SNe Ia spectroscopically identified as 91bg-

like from observations in our own program and from considerations when including the

current literature sample. As a result of these priors, only the peak magnitude in each filter

(JH) is determined from fitting the light curve (see Table 8). The quoted peak magnitude

uncertainties are then determined from least-squares fitting. The light-curve fits to each of

the new SNe Ia presented here are shown in Figure 39.
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In order to use a consistent method to compare the apparent brightness of the SNe Ia

across our entire sample, we applied a similar process for the literature sample. We use a

prior on the time of maximum for the K+, CSP, and WV08 data from the SNooPy fit to

the B-band light curve alone and fixed ∆m15 = 1.1. SN 2005ch is an exception as we do

not have a B-band light curve. We fixed the time of maximum for this SN to an estimate

from the spectrum reported in Dennefeld & Ricquebourg (2005). The optical light curves

are not available for the BN12 data and not all SNe Ia in this sample were reported in ATels.

We cannot estimate tmax for a fixed value of ∆m15 as we have done for the other samples.

Therefore, we fixed the time of maximum and stretch to that reported for these SNe Ia in

Maguire et al. (2012).

The peak apparent magnitudes for the 2011B SNe Ia in JH are listed in Table 8. A

summary of the light curve fit parameters - which includes the peak apparent magnitude -

for the CSP, WV08, BN12, and the present W14 samples can be found in Table 12. The

W14 data is the same as that in Table 8, but we include it in Table 12 for the convenience

of presenting all of the Hubble diagram information in a single table.

Table 12: H-band Maximum Apparent Magnitude for

Current Sample

Name tmax
a zCMB σ(zCMB) mH,max σ(mH,max) Referenceb Samplec

[mag] [mag]

SN 1998bu 50953.4 0.0024 0.0001 11.662 0.025 J99,H00 K+

SN 1999cp 51364.2 0.0113 0.0001 14.741 0.039 K00 K+

SN 1999ee 51470.1 0.0102 0.0001 14.948 0.017 K04a K+

SN 1999ek 51482.5 0.0176 0.0001 15.885 0.027 K04b K+

SN 1999gp 51550.7 0.0258 0.0001 16.722 0.093 K01 K+

SN 2000E 51577.5 0.0045 0.0001 13.516 0.033 V03 K+

SN 2000bh 51634.5 0.0246 0.0001 16.541 0.054 K04a K+

Continued on Next Page. . .
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Table 12 – Continued

Name tmax
a zCMB σ(zCMB) mH,max σ(mH,max) Referenceb Samplec

[mag] [mag]

SN 2000bk 51645.7 0.0285 0.0001 17.151 0.072 K01 K+

SN 2000ca 51667.7 0.0251 0.0001 16.556 0.048 K04a K+

SN 2000ce 51670.6 0.0169 0.0001 15.878 0.094 K01 K+

SN 2001ba 52035.3 0.0312 0.0001 17.212 0.034 K04a K+

SN 2001bt 52064.1 0.0144 0.0001 15.643 0.030 K04a K+

SN 2001cn 52072.6 0.0154 0.0001 15.591 0.053 K04b K+

SN 2001cz 52104.9 0.0170 0.0001 15.603 0.053 K04b K+

SN 2001el 52182.3 0.0036 0.0001 12.871 0.025 K03 K+

SN 2002bo 52357.3 0.0057 0.0001 13.822 0.026 K04b K+

SN 2002dj 52450.8 0.0113 0.0001 14.669 0.021 P08 K+

SN 2003du 52768.2 0.0074 0.0001 14.417 0.050 St07 K+

SN 2004S 53040.2 0.0100 0.0001 14.693 0.040 K07 K+

SN 2004ef 53264.5 0.0294 0.0001 17.208 0.128 C10 CSP

SN 2004eo 53278.5 0.0146 0.0001 15.692 0.043 Pa07b,C10 CSP

SN 2004ey 53304.9 0.0143 0.0001 15.672 0.022 C10 CSP

SN 2004gs 53354.7 0.0280 0.0001 17.369 0.122 C10 CSP

SN 2004gu 53366.1 0.0477 0.0001 17.995 0.071 C10 CSP

SN 2005M 53406.2 0.0236 0.0001 16.570 0.022 C10 CSP

SN 2005ag 53415.1 0.0806 0.0001 18.980 0.083 C10 CSP

SN 2005al 53430.1 0.0140 0.0001 15.749 0.064 C10 CSP

SN 2005am 53435.1 0.0097 0.0001 14.144 0.056 C10 CSP

SN 2005ao 53441.2 0.0384 0.0001 17.805 0.075 WV08 WV08

SN 2005cf 53534.0 0.0067 0.0001 13.914 0.018 WV08,Pa07a WV08

SN 2005ch 53535.0 0.0285 0.0001 16.996 0.066 WV08 WV08

Continued on Next Page. . .
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Table 12 – Continued

Name tmax
a zCMB σ(zCMB) mH,max σ(mH,max) Referenceb Samplec

[mag] [mag]

SN 2005el 53648.2 0.0148 0.0001 15.647 0.039 WV08,C10 WV08

SN 2005eq 53655.9 0.0279 0.0001 17.159 0.042 WV08,C10 WV08

SN 2005eu 53665.8 0.0337 0.0001 17.167 0.066 WV08 WV08

SN 2005hc 53668.2 0.0444 0.0001 17.929 0.063 C10 CSP

SN 2005hj 53675.8 0.0564 0.0001 18.338 0.119 S11 CSP

SN 2005iq 53687.4 0.0323 0.0001 17.603 0.054 WV08,C10 WV08

SN 2005kc 53698.2 0.0134 0.0001 15.555 0.024 C10 CSP

SN 2005ki 53705.8 0.0211 0.0001 16.359 0.051 C10 CSP

SN 2005na 53741.3 0.0270 0.0001 16.829 0.040 WV08,C10 WV08

SN 2006D 53757.0 0.0085 0.0001 14.585 0.028 WV08,C10 WV08

SN 2006N 53759.2 0.0145 0.0001 16.132 0.118 WV08 WV08

SN 2006ac 53781.2 0.0247 0.0001 16.725 0.065 WV08 WV08

SN 2006ax 53827.5 0.0187 0.0001 15.971 0.021 WV08,C10 WV08

SN 2006bh 53833.4 0.0104 0.0001 15.058 0.059 C10 CSP

SN 2006br 53851.4 0.0263 0.0001 17.112 0.084 S11 CSP

SN 2006cp 53897.2 0.0241 0.0001 16.740 0.108 WV08 WV08

SN 2006ej 53975.1 0.0188 0.0001 16.397 0.069 S11 CSP

SN 2006eq 53971.4 0.0480 0.0001 18.564 0.292 C10 CSP

SN 2006et 53994.7 0.0210 0.0001 16.288 0.021 S11 CSP

SN 2006ev 53987.4 0.0272 0.0001 17.346 0.072 S11 CSP

SN 2006gj 53998.3 0.0274 0.0001 17.169 0.190 S11 CSP

SN 2006gr 54012.9 0.0331 0.0001 18.052 0.274 WV08 WV08

SN 2006gt 54000.1 0.0431 0.0001 18.226 0.254 C10 CSP

SN 2006hb 53997.3 0.0152 0.0001 15.828 0.107 S11 CSP

Continued on Next Page. . .

138



Table 12 – Continued

Name tmax
a zCMB σ(zCMB) mH,max σ(mH,max) Referenceb Samplec

[mag] [mag]

SN 2006hx 54022.6 0.0438 0.0001 17.817 0.055 S11 CSP

SN 2006is 53996.1 0.0313 0.0001 17.016 0.219 S11 CSP

SN 2006kf 54040.4 0.0205 0.0001 16.497 0.086 S11 CSP

SN 2006le 54048.1 0.0174 0.0001 16.234 0.023 WV08 WV08

SN 2006lf 54045.7 0.0130 0.0001 15.265 0.042 WV08 WV08

SN 2006lu 54037.9 0.0548 0.0001 17.693 0.219 S11 CSP

SN 2006ob 54062.0 0.0577 0.0001 18.761 0.194 S11 CSP

SN 2006os 54064.6 0.0317 0.0001 17.326 0.052 S11 CSP

SN 2007A 54113.9 0.0160 0.0001 15.957 0.049 S11 CSP

SN 2007S 54145.4 0.0158 0.0001 15.489 0.020 S11 CSP

SN 2007af 54174.8 0.0075 0.0001 13.613 0.013 S11 CSP

SN 2007ai 54174.8 0.0324 0.0001 17.078 0.036 S11 CSP

SN 2007as 54181.3 0.0180 0.0001 16.119 0.047 S11 CSP

SN 2007bc 54201.3 0.0226 0.0001 16.514 0.056 S11 CSP

SN 2007bd 54207.6 0.0322 0.0001 17.343 0.052 S11 CSP

SN 2007ca 54228.5 0.0159 0.0001 15.666 0.029 S11 CSP

SN 2007cq 54280.6 0.0246 0.0001 16.998 0.102 WV08 WV08

SN 2007jg 54366.6 0.0362 0.0001 17.873 0.051 S11 CSP

SN 2007le 54399.8 0.0051 0.0001 13.922 0.013 S11 CSP

SN 2007nq 54396.5 0.0433 0.0001 18.008 0.141 S11 CSP

SN 2007on 54419.8 0.0060 0.0001 13.293 0.092 S11 CSP

SN 2008C 54466.6 0.0173 0.0001 16.062 0.043 S11 CSP

SN 2008R 54490.6 0.0125 0.0001 15.547 0.205 S11 CSP

SN 2008bc 54550.7 0.0160 0.0001 15.744 0.023 S11 CSP

Continued on Next Page. . .
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Table 12 – Continued

Name tmax
a zCMB σ(zCMB) mH,max σ(mH,max) Referenceb Samplec

[mag] [mag]

SN 2008bq 54564.6 0.0345 0.0001 17.523 0.129 S11 CSP

SN 2008fp 54731.7 0.0067 0.0001 13.507 0.014 S11 CSP

SN 2008gp 54779.9 0.0324 0.0001 17.359 0.082 S11 CSP

SN 2008hv 54817.6 0.0143 0.0001 15.541 0.046 S11 CSP

SN 2008ia 54813.0 0.0225 0.0001 16.477 0.066 S11 CSP

PTF09dlc 55073.7 0.0662 0.0001 18.995 0.046 BN12 BN12

PTF10hdv 55344.1 0.0548 0.0001 18.608 0.016 BN12 BN12

PTF10hmv 55351.4 0.0333 0.0001 17.534 0.018 BN12 BN12

PTF10mwb 55390.7 0.0315 0.0001 17.412 0.066 BN12 BN12

PTF10ndc 55390.3 0.0820 0.0001 19.402 0.036 BN12 BN12

PTF10nlg 55391.5 0.0562 0.0001 18.655 0.040 BN12 BN12

PTF10qyx 55426.1 0.0647 0.0001 19.125 0.024 BN12 BN12

PTF10tce 55442.0 0.0392 0.0001 18.045 0.023 BN12 BN12

PTF10ufj 55456.5 0.0758 0.005 19.307 0.035 BN12 BN12

PTF10wnm 55476.5 0.0640 0.0001 18.969 0.019 BN12 BN12

PTF10wof 55474.2 0.0508 0.0001 18.587 0.020 BN12 BN12

PTF10xyt 55490.9 0.0478 0.0001 18.477 0.099 BN12 BN12

PTF11qmo 55894 0.05696 0.0001 18.503 0.188 W14 W14

PTF11qpc 55902 0.09084 0.0001 19.687 0.082 W14 W14

PTF11qri 55897 0.057 0.001 18.689 0.147 W14 W14

PTF11qzq 55905 0.06 0.01 18.634 0.383 W14 W14

SN 2011fs 55833 0.01958 0.0001 16.141 0.085 W14 W14

SN 2011gf 55827 0.02626 0.0001 16.841 0.010 W14 W14

SN 2011gy 55865 0.01623 0.0001 15.630 0.194 W14 W14

Continued on Next Page. . .
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Table 12 – Continued

Name tmax
a zCMB σ(zCMB) mH,max σ(mH,max) Referenceb Samplec

[mag] [mag]

SN 2011ha 55842 0.093 0.001 20.067 0.214 W14 W14

SN 2011hb 55872 0.02715 0.0001 17.026 0.068 W14 W14

SN 2011hr 55883 0.01453 0.0001 15.022 0.200 W14 W14

SN 2011io 55894 0.04 0.01 17.841 0.560 W14 W14

SN 2011iu 55894 0.04475 0.0001 18.005 0.169 W14 W14

atmax from B-band optical light curve fits using SNooPy for WV08 and CSP and reported B-band tmax

from Maguire et al. (2012) for BN12.
bReference codes J99: Jha et al. (1999); H00: Hernandez et al. (2000); K00: Krisciunas et al. (2000); K04a:

Krisciunas et al. (2004a); K04b: Krisciunas et al. (2004c); Ph06: Phillips et al. (2006); Pa07a: Pastorello
et al. (2007b); Pa07b: Pastorello et al. (2007a); St07: Stanishev et al. (2007); WV08: Wood-Vasey et al.
(2008a); C10: Contreras et al. (2010); S11: Stritzinger et al. (2011); BN12: Barone-Nugent et al. (2012);
W14: this present paper.

cSample name used for the divisions in the analysis. Some SNe Ia were observed by multiple projects.
We assign each SNe Ia to a single sample for the purposes of quoting dispersions and distributions in the
analysis.
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Figure 39 SNooPy light-curve fits for our 12 normal SNe Ia to our H-band (red circle)

and J-band (blue diamond) data. H-band is offset for clarity. For these fits the time of

maximum was fixed to the value estimated from the spectrum that was used to type the

event and was reported in an ATel or CBET. The decline-rate parameter is also fixed to

∆m15 = 1.1 making apparent magnitude the only free parameter in the fit. SN 2011hk is

not included because it was spectroscopically classified as a sub-luminous supernova similar

to SN 1991bg.
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4.5 RESULTS

4.5.1 Near-Infrared SN Ia Hubble Diagram

An H-band Hubble diagram for our entire sample is presented in Figure 40. The recession

velocities are based on the Virgo infall model of Mould et al. (2000) (see Table 7). For

SNe Ia within 3000 km s−1 we fix the redshifts to those summarized in Wood-Vasey et al.

(2008a). The solid line in the top panel of Figure 40 represents the observed apparent

magnitude assuming a standard, flat cosmology of ΩM = 0.28 and H0 = 72 km s−1 Mpc−1

and MH = −18.32 mag (see Section 5.2). The residuals, with respect to this line, are plotted

in the bottom panel. The highest redshift outlier from CSP is SN 2005ag at z = 0.08062.

Folatelli et al. (2010) find SN 2005ag to be a slow-decliner and therefore more luminous

than a normal SN Ia, although the luminosity versus decline-rate relationship should correct

for this. They also believe that this SN was at the detection limit of LOSS such that the

Malmquist bias could explain its over brightness.

We plot the distribution of residuals for each sub-sample in Figure 41 for the entire set

(hatched) and for z > 0.02 (solid). The standard deviation of the residuals, σ, for each

sample and for the subsample with z > 0.02 is given in each subpanel. One can clearly see

the smaller spread in the BN12 and W14 samples, a benefit of a higher redshift sample with

reduced peculiar velocity uncertainty and photometric uncertainty.

We find a dispersion for W14 of σH = 0.227 mag which reduces to σH = 0.164 mag when

we exclude SN 2011hr. SN 2011hr is 91T-like and could be expected to be over-luminous.

The dispersion is further reduced to σH = 0.138 mag if we exclude all SN with only one

H-band observation and SN 2011hr which leaves us with 8 SNe Ia.

4.5.2 Absolute H-band Magnitude of a SN Ia

We find the absolute H-band magnitude MH by calculating the weighted mean of the

difference between the peak apparent magnitude and the distance modulus evaluated at

the corresponding redshift assuming a standard flat ΛCDM cosmology of ΩM = 0.28 and

H0 = 72 km s−1 Mpc−1. The weight includes the additional uncertainty as a result of red-
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Figure 40 (Top) H-band Hubble diagram. The additional supernovae from this work (red

circles) confirm the standard nature of SNe Ia in H-band and include the two farthest

SNe Ia observed in rest-frame H to date. The open red circles indicate supernovae from our

sample which have only one observation in their light curve. The model line plotted over

the data is a standard flat ΛCDM cosmology with ΩM = 0.28. Assuming a value of H0 =

72 km s−1 Mpc−1 we measure the SN Ia H-band absolute magnitude from the entire sample

to be −18.314 ± 0.024 mag. (Bottom) Hubble residuals (data−model). The solid (dotted)

line represents the magnitude associated with a peculiar velocity uncertainty in redshift of

300 km s−1 (150 km s−1). Note that the largest statistical outlier from our sample, SN 2011hr,

is both the lowest-redshift of our sample (z = 0.01328) and is also spectroscopically classified

as 91T-like and could be expected to be over-luminous with respect to the assumption of a

fiducial SN Ia made in our fits.
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Figure 41 Distribution of the H-band residuals with respect to the global mean −18.314±

0.024 mag. organized by survey for the entire sample (hatched) and for SN Ia with z > 0.02

(solid). Supernovae observed by WV08 and CSP are included in the WV08 sample. The

weighted standard deviation is quoted in the top right corner for the whole sample (top)

and the higher redshift sub-sample (bottom). One can clearly see the benefit of obtaining

a sample in the smooth Hubble flow by the tight BN12 residual distribution and to some

extent in W14.
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shift uncertainty associated with a peculiar velocity of 150 km s−1 (Radburn-Smith et al.,

2004b). We find MH =−18.314 ± 0.024 mag for the entire sample. This value is com-

pletely degenerate with the choice of H0, in the sense that a larger H0 corresponds to a

fainter absolute magnitude. So in more generality we find MH = (−18.314 ± 0.024) +

5 log10

(
H0/(72 km s−1 Mpc−1)

)
mag.

If we analyze the measured peak H-band absolute magnitude separately for each sample

we find: −18.449± 0.056 mag for K+, −18.376± 0.040 mag for CSP, −18.317± 0.059 mag

for WV08, −18.224± 0.028 mag for BN12, and −18.375± 0.066 mag for W14 (assuming the

same ΩM = 0.28, H0 = 72 km s−1 Mpc−1 ΛCDM cosmology). Note that the uncertainties

quoted here are the standard error (i.e., the uncertainty in the determination of the mean)

rather than the standard deviation of the distribution around these absolute magnitudes

(see Figure 41). The peak magnitude uncertainty quoted for each SN Ia is underestimated

for at least two reasons: (1) SNooPy only returns the statistical uncertainty from fitting

and does not include any systematic uncertainties9 and (2) the time of maximum is fixed

such that uncertainty in the time of maximum is not propagated to the uncertainty in peak

magnitude. As a result, we cannot calculate the uncertainty in measured peak H-band

absolute magnitude as the uncertainty in the weighted mean. This would underestimate the

error in MH . Instead, we look at the spread of the distribution of residuals as a whole to

estimate the uncertainty and thus quote the standard error (σH/
√
N).

We consider a worst-case scenario to estimate the maximal contribution of uncertainty

in tmax to the uncertainty in MH by coherently shifting tmax for the entire sample by the

uncertainty in tmax. Excluding for a moment the W14 sample for which we do not have an

estimate of the tmax uncertainty, we find that MH shifts by 0.0017 mag indicating that the

contribution from tmax uncertainty is negligible. If we assume an uncertainty of ± 2 days for

the W14 sample we find a shift of 0.059 mag in the peak absolute brightness. This means

for our sample of 12 SN Ia, the maximal contribution of tmax uncertainty to our estimate for

MH is 0.059/
√

(12.) = 0.017 mag.”

To examine the error in MH incurred by fixing ∆m15, we refit the WV08, CSP, and K+

B-band light curves allowing tmax and ∆m15 to float. We then use this tmax and ∆m15 as

9For a list of systematic uncertainties that SNooPy fails to report see Section 4.4 of (Burns et al., 2011).
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fixed priors when fitting the JH-band light curves. We find shifts in the measured peak

H-band absolute magnitude of -0.031 mag, 0.019 mag, and -0.007 mag for the CSP, K+

and WV08 samples. These are well within our uncertainty on the measured peak apparent

magnitude for each sample. Additionally, we find a negligible change in the χ2 per degree

of freedom between the two approaches, and thus conclude that we are justified in using the

simpler light-curve model.

4.6 DISCUSSION

4.6.1 NIR SN Ia as Standard Candles

The dispersion of our W14 sample excluding SN 2011hr (σH = 0.164 mag) is comparable to

that of Wood-Vasey et al. (2008a) who find an rms of 0.16 mag in H and Folatelli et al. (2010)

who find an rms of 0.19 mag in H when not correcting for host galaxy extinction. Similar to

our analysis, neither result makes a correction to the absolute magnitude according to the

decline-rate.

Barone-Nugent et al. (2012) estimate that one to two points per light curve should yield

a dispersion between 0.096 and 0.116 mag. However, these results derive from a sample

with B-band stretch values ranging from 0.8 to 1.15. Greater diversity in our sample is

one possible explanation for our larger measured dispersion. Our measured dispersion may

be higher because most of our data is from +10 days after maximum and we have no pre-

maximum data. Additionally, the times of maximum for our sample came from spectroscopic

observations as reported in ATels and CBETs. Spectroscopic phase determinations are only

precise to ±2 days (Blondin & Tonry, 2007) and there is potentially the equivalent of a

couple of days of additional scatter from quick at-the-telescope reductions.

It is possible that the spectroscopic classification and reporting of the time of B-band is

systematically biased in some way. For example, while some groups report precisely the best

fit spectrum used to type the object and estimate the phase, others merely state the phase

as, e.g., “near maximum” or “several days after maximum.” We examined the implications
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of the extreme case of a coherent bias on tmax for the W14 estimate of MH by adding and

subtracting 2 days to the prior on the time of maximum to all W14 SNe Ia. We found

that systematically shifting the time of maximum results in a shift of about +0.06 mag for

+2 days and −0.06 mag for -2 days in MH . This coherent shift in apparent magnitude for

the W14 sample is because all of our data are post-maximum light where the SNe Ia are

generally fading rather than increasing in brightness.

We also note that the SNe Ia which comprise the W14 sample are not drawn from the

faint limits of their discovery surveys. Therefore, the Malmquist bias is unlikely to be a

problem with the W14 sample.

Our analysis shows that for a set of spectroscopically normal SNe Ia using limited NIR

data and a simplified light curve model which does not rely on any optical or stretch in-

formation, but rather only a prior on the time of maximum, we find an observed rms of

0.164 mag that is comparable to detailed lightcurves from optical-only surveys.

4.6.2 Absolute Brightness

Our measurement of the absolute brightness for the CSP-sample is in good agreement with

the literature. Our CSP-sample results are 0.056 mag dimmer than those of Kattner et al.

(2012) who find MH = −18.432± 0.017 mag for their CSP sample of 27 well-observed NIR

light curves. The Kattner et al. (2012) analysis included a decline-rate correction. Folatelli

et al. (2010) find MH = −18.40 ± 0.08 using the first set of CSP data and including no

decline-rate correction, which is only 0.024 mag brighter than our analysis of the full CSP

sample including up through Stritzinger et al. (2011).

We are in slight disagreement with Barone-Nugent et al. (2012) at the 1.5σ level who

find MH = −18.30± 0.04 mag as the median absolute magnitude for their sample. 10

We also note that while our measurements for MH for W14, K+, CSP, and WV08 are in

good agreement with each other, W14 and WV08 are in slight disagreement with the BN12

sample (∼ 2σ), and K+ and CSP are in poor agreement with the BN12 sample (+3σ).

10For this comparison we have adjusted the originally reported MH values of Barone-Nugent et al. (2012)
to match the common scale of H0 = 72 km s−1 Mpc−1 used in this present analysis and in Folatelli et al.
(2010) and Kattner et al. (2012).
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Our treatment of the BN12 sample is different as we do not have access to the optical

light curves. We did not determine tmax for a fixed value of stretch as we did for the other

samples, but instead used the quoted tmax and stretch from Maguire et al. (2012) as was

used in Barone-Nugent et al. (2012). This inconsistent treatment of this sample may be part

of the discrepancy with the results of other samples. To test this, we reran the analysis on

the BN12 data fixing the decline-rate parameter to ∆m15 = 1.1 and allowing the time of

maximum to float. We found MH =−18.248± 0.030 mag which is a marginal improvement

in agreement. We speculate that additional disagreement here is caused by differences in the

SNooPY (Burns et al., 2011) and FLIRT(Mandel et al., 2009) light-curve fitters.

4.7 SWEETSPOT: A 3-YEAR SURVEY PROGRAM WITH WHIRC

Building off the pilot program presented in this paper, we are currently engaged in a 3-year

72-night large-scale NOAO Survey (2012B-0500; PI: W. M. Wood-Vasey) program to image

SNe Ia in the NIR using WIYN+WHIRC. Our goal is to observe ∼ 150 spectroscopically

confirmed nearby SNe Ia in the NIR using WHIRC. We will obtain a total sample of ∼150

SN Ia light curves sampled in JH with 3–6 observations per light curve for the bulk of the

sample and a subset of 25 SNe Ia observed in JHKs out to late phases (> +30 days) with

6–10 observations per supernova. If SNe Ia are standard in the NIR with to σH = 0.1 mag

with no significant systematic bias, then 150 SNe Ia in the nearby Hubble flow will allow us

to make an overall relative distance measurement to z ∼ 0.05 to 1%. Alternatively, we will

be able to probe systematics at the few percent level, beyond what we are able to do today

in the optical due to the significant confusion from host galaxy dust extinction and greater

dispersion in the SN Ia optical luminosities.

We continue to rely on the hard work of several nearby supernovae surveys to discover

and spectroscopically-confirm the SNe Ia we observe. Specifically, we follow announcements

from the IAU/CBETs and ATels of supernovae discovered and/or classified by KAIT/LOSS

(Filippenko et al., 2001), CRTS (Drake et al., 2009) surveys, the intermediate Palomar Tran-
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sient Factory,11 Robotic Optical transient search experiment,12 the Backyard Observatory

Supernova Search,13 the Italian Supernova Search Project,14 the La Silla Quest survey,15

(Baltay et al., 2012) the CfA Supernova Group,16(Hicken et al., 2012) the Public ESO Spec-

troscopic Survey of Transient Objects,17 the Padova-Asiago Supernova Group,18 and the

Nearby Supernova Factory II19 (Aldering et al., 2002).

We would be happy to work on collaborative efforts to analyze the SNe Ia we are observing

with those who have optical lightcurves and spectra or other NIR data and invite those

interested to contact the first two authors (A.W. and M.W.V.) to pursue such opportunities.

With this sample we will extend the SNe Ia NIRH-band Hubble Diagram out to z ∼ 0.08.

This will increase the currently published sample size in this “sweet spot” redshift range by a

factor of five. The Carnegie Supernova Project II20 is currently engaged in a similar effort to

obtain optical+NIR imaging and spectroscopy for a similar sample size in this same redshift

range.

While we will obtain 6–10 light curve observations for most of the SNe Ia, we will

also explore constructing the “minimal” H-band Hubble diagram. NIR observations are

expensive to take from the ground as a result of the significant emission and absorption from

the atmosphere, and expensive from space due to the cryogenic detectors often desired. If

we could determine distances reliably with just a few NIR data points combined with an

optical light curve, we would significantly increase the number of SN Ia distances that could

be measured for a given investment of NIR telescope time. We will realistically evaluate this

“minimal” required contribution of NIR data to SN Ia cosmology by analyzing the optical

light curve with only one or two H-band observations near maximum and check this against

the luminosity distance determined from the actual full H-band light curve. The optical

light curve will give us the phase and we will measure the brightness in the NIR. If this

11http://ptf.caltech.edu/iptf/
12http://www.rotse.net
13http://bosssupernova.com
14http://italiansupernovae.org
15http://hep.yale.edu/lasillaquest
16http://www.cfa.harvard.edu/supernova/SNgroup.html
17http://www.pessto.org/pessto/index.py
18http://graspa.oapd.inaf.it
19http://snfactory.lbl.gov
20http://csp2.lco.cl/
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approach is successful it opens the window to exploring SNe Ia at higher redshift even given

the significant cost of rest-frame NIR observations. We will quantify the improvement of

adding one to three NIR observations per SN Ia and make recommendations for the most

feasible and beneficial strategy for improving SN Ia cosmology.

If modest observations of only a few rest-frame H-band points along the lightcurves of a

SNe Ia are sufficient enough to provide a robust and relatively precise distance measurement,

then there is significant potential in supplementing future large, ground-based surveys, such

as the Large Synoptic Survey Telescope (LSST Science Collaborations et al., 2009), with

space-based resources such as the James Webb Space Telescope21 to obtain rest-frame H-

band observations to check systematic effects in these large surveys and to independently

obtain reliable NIR distances to z > 0.5.

A newly identified systematic affecting inferred optical luminosity distances from SNe Ia

is the stellar mass of the host galaxy (Kelly et al., 2010; Lampeitl et al., 2010; Sullivan et al.,

2010; Gupta et al., 2011; Childress et al., 2013). These analyses show that, after light-curve

shape corrections, SNe Ia in high-stellar-mass galaxies are found to be 0.1 mag brighter

in rest-frame B than in low-stellar-mass galaxies. Recent work based on IFU observations

of the local (1 kpc) environments of SNe Ia (Rigault et al., 2013) explains this effect as a

consequence of the distribution of local star-formation conditions in nearby galaxies. They

find that a population of SNe Ia in locally passive environments is 0.2 mag brighter than

SNe Ia in locally star-forming environments. In higher-mass galaxies, there is an equal mix

of these SNe Ia, leading to a 0.1 mag bias, while in lower-mass galaxies (M� < 109.5) such a

bright population does not appear to exist.

The NIR photometry we will obtain of the SN host galaxies will provide both reference

templates for the supernova lightcurves as well as key observations to determine stellar mass.

We will explore if these mass and environmental correlations hold in the NIR by combining

our NIR supernova observations with samples from the literature together with observations

of the host galaxies.

We will finally examine the late time color evolution of SNe Ia in the NIR. SNe Ia

have a uniform optical color evolution starting around 30 days past maximum light (Lira,

21http://www.jwst.nasa.gov/
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1996; Phillips et al., 1999). The full decay rate and color evolution from maximum light

to 100 days will provide excellent calibration of the intrinsic color and dust extinction in

SNe Ia. If SNe Ia are confirmed to be standard in their NIR late-time color evolution, then

we can use a combined UV, optical, and NIR data set to make detailed measurements of the

dust extinction in the SN Ia host galaxies.

4.8 CONCLUSION

We are using the WIYN 3.5m Observatory at Kitt Peak as part of an approved NOAO

Survey to image nearby SN Ia in the NIR using WHIRC. In this paper we have presented 13

light curves for SNe Ia observed in 2011B as part of this program. Within this set we have

contributed 12 new standard SNe Ia to the current nearby NIR sample out to z ∼ 0.09.

We have presented an updated H-band Hubble diagram including the latest samples

from the literature. Considering that we have late-time sparsely sampled lightcurves and

a time of maximum that is accurate to a few days, it is remarkable that we measure a

dispersion of our sample to be 0.164 mag when excluding 91T-like SN 2011hr. With future

semesters of observing and a larger sample of SN Ia observed near maximum, we expect the

dispersion to decrease as a result of more comprehensive temporal sampling. The dispersion

will also improve as the optical counterparts of these SN Ia become available and the times

of maximum can be more accurately determined.
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5.0 CONCLUSIONS

SN Ia data sets are expected to grow to hundreds of thousands of SNe Ia over the next

decade. As a result, statistical errors on inferred model parameters from SN Ia measurements

are reduced by
√
N but systematic uncertainties will quickly come to dominate the error

budget. For my dissertation I have applied modern statistical methods to several problems

in astrophysics which rely on accurate distance measurements from SNe Ia. I here summarize

the results of my dissertation and include suggestions for future directions.

• I have provided a method for modeling the local peculiar velocity field which accounts

for the non-uniform sampling of objects across the sky and produces less biased model

coefficients.

• I have presented an ABC method to infer cosmological parameters from SNe Ia which

bypasses direct calculation of the inherently complicated likelihood function but relies

on accurately simulating systematic uncertainties and nuisance parameters.

• I introduce a new NOAO survey to image SNe Ia in the NIR with the major goals of

improving our ability to standardize the total luminosity of SNe Ia and provide a well

calibrated sample to anchor a future, space-based survey.

Modeling the Local Peculiar Velocity Field We address a bias common to local peculiar

velocity field models resulting from the non-uniform distribution of data on the sky. We

model the field with spherical harmonics and employ non-parametric risk estimation to

determine at which multipole to truncate the series. The minimum of the estimated risk

reveals the multipole which achieves an optimum balance of variance and bias.

We show using simulations that if there is power beyond the maximum multipole used

in a regression analysis, a bias is introduced on the coefficients if the data are not uniformly
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distributed. One can estimate multipole coefficients without this bias by accurately modeling

and accounting for the non-uniform distribution of data. This method, which we called

Coefficient Unbiased, can return a more accurate measure of the e.g. dipole but sacrifices in

overall accuracy of an all-sky model.

After applying non-parametric risk estimation to current SN Ia data sets we find that

there are not enough data to measure power beyond the dipole. There is also no significant

evidence for a monopole term, indicating that we are using consistent values of H0 and MV .

We measure the bulk flow to be moving at 446±101 km s−1 towards (l, b) = (273◦±11◦, 46◦±

8◦). We estimate using simulations that with ∼200 SNe Ia, roughly double the sample at

the time of this analysis, we would be able to probe the quadrupole moment.

This analysis can be expanded to higher multipoles and to three dimensions as data sets

continue to grow. Modeling the peculiar velocity field as a function of redshift would enable

one to determine the redshift at which the bulk flow converges to the rest-frame of the CMB

and allow one to look for a local void or Hubble bubble.

Cosmological Inference with Approximate Bayesian Computation We have demon-

strated the use of ABC techniques to address the requirements for analyzing near-future

SN Ia cosmological data sets when calculation of a sufficiently accurate likelihood function

is no longer computationally or analytically tractable. These techniques rely on accurately

forward modeling the full range of statistical and systematic uncertainties to bypass di-

rect calculation of the likelihood. Sequential Monte Carlo ABC efficiently explores multi-

dimensional parameter distributions. This method uses a summary statistic to aid in our

ability to discriminate model parameter values in the relevant space of observed values.

Presented here is an implementation of the SMC ABC algorithm to infer model parame-

ters based on SNe Ia from SDSS. To fully deploy this method will require an incorporation of

all SN Ia data sets and modeling relative systematics between the surveys. ABC also allows

for easy incorporation of priors on model parameters from e.g. CMB or BAO constraints.

One key future implementation of ABC will be for photometric-based surveys when

there simply is not enough follow-up time to spectroscopically confirm all SNe Ia. One

would explore and model more fully the non-Gaussianity of photometric redshifts as derived

from calibration samples. ABC easily incorporates such uncertainties when generating the
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model.

A more immediate goal would be to apply the summary statistic comparison at the

individual light curve level rather than in Hubble diagram space. Fitting the simulated

light curves currently requires most (∼90%) of the computing time but is a necessary step

to creating a Hubble diagram. Directly comparing the simulated and observed data could

significantly reduce computing time. It would also be a cleaner implementation of the ABC

method. The only “training” would be in the generation of the templates that the SNe Ia

are derived from in the first place.

SweetSpot We have presented 13 light curves for SNe Ia observed during the pilot program

of an approved NOAO Survey to image nearby SNe Ia in the NIR using the WHIRC camera

at the WIYN 3.5m Observatory at Kitt Peak. Within this set we have contributed 12 new

standard SNe Ia out to z ∼ 0.09 to the current NIR sample.

We measure a dispersion in peak luminosity for our sample to be 0.164 mag when ex-

cluding the over-luminous, 91T-like SN 2011hr. This is impressive considering that our light

curves are sparsely sampled and observed at late times as a result of classical scheduling

of telescope time and loss of time due to inclement weather. With the completion of the

SweetSpot survey, we expect the dispersion to decrease with more comprehensive tempo-

ral sampling. The dispersion will also improve as the optical counterparts of these SNe Ia

become available and the times of maximum can be more accurately determined.

We are continuing to build off of the presented pilot program with the goal of observing

∼ 150 spectroscopically confirmed nearby SNe Ia in the NIR as part of a 3-year 72-night

large-scale NOAO Survey. This will increase the currently published sample in this “sweet

spot” redshift range by a factor of five. If SNe Ia are standard in the H-band with a

dispersion of 0.1 mag then 150 SNe Ia in the nearby Hubble flow will allow us to make an

overall relative distance measurement to z ∼ 0.05 to 1%. Alternatively, we will be able to

probe systematics at the few percent level, avoiding significant confusion from host galaxy

dust extinction and peculiar velocities.

As we enter the next era of precision cosmology, it becomes increasingly important and

beneficial to pursue statistical methods like those outlined in this work.
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APPENDIX A

CHAPTER 1 APPENDICES

A.1 BIAS ON WLS COEFFICIENTS

To determine the bias on the estimated coefficients, β̂J , recall that we can model any velocity

field with an infinite set of spherical harmonics

U = Y β + ε (A.1)

where β is the column vector given by β = (β0...β∞) and

Y =


φ0(x1) φ1(x1) · · · φ∞(x1)

φ0(x2) φ1(x2) · · · φ∞(x2)
...

... · · · · · ·

φ0(xN) φ1(xN) · · · φ∞(xN)

 (A.2)

If we substitute U into Equation 2.14 we get

β̂J = (Y T
J WYJ)−1 Y T

J W (Y β + ε) (A.3)

If we decompose Y β into

Y β = YJβJ + Y∞β∞ (A.4)
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where β∞ = (βJ+1...β∞)T and

Y∞ =


φJ+1(x1) φJ+2(x1) · · · φ∞(x1)

φJ+1(x2) φJ+2(x2) · · · φ∞(x2)
...

... · · · · · ·

φJ+1(xN) φJ+2(xN) · · · φ∞(xN)

 (A.5)

then

β̂J = (Y T
J WYJ)−1 Y T

J W (YJβJ + Y∞β∞ + ε) (A.6)

= βJ + (Y T
J WY T

J )−1 Y T
J W (Y∞β∞ + ε) (A.7)

The bias on β̂J is

βJ −
〈
β̂J

〉
= βJ −

〈
βJ + (Y T

J WYJ)−1 Y T
J W (Y∞β∞ + ε)

〉
(A.8)

=
〈
(Y TWY )−1 Y T W (Y∞β∞)

〉
. (A.9)

A.2 BIAS ON CU COEFFICIENTS

To determine the bias for the weighted coefficients β̂∗ we first multiply the top and bottom

of Equation 2.21 by 1/N

β̂∗j =

1
N

N∑
n=1

Unφj(xn)

h(xn)σ2
n

1
N

N∑
n=1

1

σ2
n

(A.10)

=

〈
Unφj(xn)

h(xn)σ2
n

〉
〈

1
σ2
n

〉 (A.11)
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If U(xn), φj(xn), and h(xn) are all independent of σn, then

〈
β̂∗j

〉
=

〈
Unφj(xn)

h(xn)σ2
n

〉
〈

1
σ2
n

〉 (A.12)

=

〈
Unφj(xn)

h(xn)

〉〈
1
σ2
n

〉
〈

1
σ2
n

〉 (A.13)

=

〈
U(xn)φj(xn)

h(xn)

〉
(A.14)

= βj (A.15)

So our bias is β − 〈β∗j 〉 = 0.

A.3 RISK ESTIMATION

The risk is a way of determining how many basis functions should be in f(x) and can be

written as

R =
〈

(θ̂ − θ)2
〉

(A.16)

where θ̂ is the estimated or measured value of some true parameter, θ. The expectation

value of θ̂ is the mean, θ̄

θ̄ ≡ 〈θ̂〉 (A.17)

By adding and subtracting the mean from (θ̂− θ) in Equation A.16, the risk can be written

in terms of the variance and the bias.

R =
〈

(θ̂ − θ̄ + θ̄ − θ)2
〉

(A.18)

=
〈

(θ̂ − θ̄)2
〉

+ (θ̄ − θ)2 + (θ̄ − θ)
〈

(θ̂ − θ̄)
〉

(A.19)

=
〈

(θ̂ − θ̄)2
〉

+ (θ̄ − θ)2 (A.20)

= Var(θ̂) + bias2 (A.21)
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A.4 SMOOTHING MATRIX FOR CU REGRESSION

f̂(xi) =
J∑
j=0

β̂∗jφj(xi) (A.22)

=
J∑
j=0

φj(xi)

N∑
n=1

Unφj(xn)

h(xn)σ2
n

N∑
n=1

1

σ2
n

(A.23)

=
N∑
n=1

Un

J∑
j=0

φj(xi)φj(xn)

h(xn)σ2
n

N∑
n=1

1

σ2
n

(A.24)

= LU (A.25)
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APPENDIX B

NON-PARAMETRICALLY SMOOTHING THE SIMULATED AND

OBSERVED DATA

To perform a non-parametric smooth we use a robust locally weighted regression (Cleveland,

1979). This routine smooths the data by iteratively fitting a local d-order polynomial to the

data using a tricube weighting function. We use a quadratic polynomial and, for the observed

data, add an additional weight according to the uncertainty in µ given by Equation 3.21.

We choose the size of the window to locally smooth over by minimizing the risk or the

sum of the variance and bias squared. We estimate the risk using the leave-one-out cross

validation score

R(h) =
1

N

I∑
i=0

(f(xi)− f(−xi)(xi))
2 (B.1)

where f(x) is the smoothed function using a smoothing window given by h and f(−xi) is

the smooth obtained leaving out the ith data point (see, e.g., Wasserman (2006b)). The

smoothing window goes from zero to one with zero being no smooth and one resulting in a

line. Using the SDSS data we find the minimum risk to yield a smoothing window of 0.52.

As estimating the risk is somewhat computationally intensive, we determine the smoothing

window using the observed data and use the same window to smooth the simulated data in

the ABC algorithm.
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