
 
DEMENTIA, BRAIN STRUCTURE, AND VASCULAR RISK FACTORS IN VERY OLD 

BLACKS AND WHITES 
 
 
 
 
 
 
 
 
 

by 

Ge Liu 

BMed, Shandong University, China, 2005 

MS, Fudan University, China, 2008 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

Graduate School of Public Health in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2014 

 



  

UNIVERSITY OF PITTSBURGH 

Graduate School of Public Health 
 

This dissertation was presented 

 
by 

Ge Liu 
 

It was defended on 

June 26th, 2014 

and approved by 

Dissertation Advisor:  
Caterina Rosano, MD, MPH 

Associate Professor, Department of Epidemiology 
Graduate School of Public Health, University of Pittsburgh 

 
Committee Members: 
Thomas Songer, PhD 

Assistant Professor, Department of Epidemiology 
Graduate School of Public Health, University of Pittsburgh 

 
Akira Sekikawa, MD, PhD 

Associate Professor, Department of Epidemiology 
Graduate School of Public Health, University of Pittsburgh 

 
Robert Boudreau, PhD 

Assistant Professor, Department of Epidemiology 
Graduate School of Public Health, University of Pittsburgh 

 
Howard Aizenstein, MD, PhD 

Associate Professor, Department of Psychiatry 
School of Medicine, University of Pittsburgh 

 
Oscar Lopez, MD 

Professor, Department of Neurology,  
School of Medicine, University of Pittsburgh 

 ii 



 

 

ABSTRACT 

Dementia is a disease of old age, and a major cause of disability and mortality in the elderly. 

African American or blacks have higher dementia prevalence and incidence than Caucasians or 

whites, and such racial disparities tend to be largest in the oldest old (≥ 85 years of age). Moreover, 

the oldest old is the fastest growing segment of the elderly population in US. Therefore, reducing 

racial disparities in dementia in the oldest old is of high public health relevance.  

Racial differences in dementia should have neurological correlates on racial differences in 

brain structure. However, among previous studies examining racial differences in brain structure, 

most applied neuroimaging methods with low resolution, and detected only brain macro-structural 

characteristics in cohorts of young old adults. Moreover, the sample sizes of oldest old blacks in 

previous works were too small to draw final conclusions.  

In this dissertation, a review of dementia, brain structure, and vascular risk factors is 

conducted first (Section 2), followed by an overview of their racial differences between elderly 

blacks and whites (Section 3). Gaps in knowledge and a proposal to address these gaps are 

presented in Section 4 and Section 5. The proposal involves leveraging an existing cohort of 

community-dwelling black and white adults (≥ 79 years of age) into an evaluation of brain 
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structure and dementia. In this cohort, cutting-edge and high resolution neuroimaging modalities 

have been applied to obtain measures of brain structure at baseline and three years after, and data 

on vascular risk factors have been recorded at regular intervals in the previous decade.  

This dissertation work will not only provide estimates of dementia prevalence rates in very 

old blacks and whites in the context of other important determinants of dementia, but also offer 

new evidence for the pathophysiology of the association between race and dementia. The primary 

hypothesis is that racial differences in dementia or cognition is related to racial differences in 

vascular risk factors, and this is explained by racial differences in brain structural abnormalities. 
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1.0  INTRODUCTION 

African Americans or blacks are the largest minority among the adults ≥ 65 years of age in the 

United States (US) 1. From 2010 to 2030, elderly blacks in the US are projected to increase by 

114%, as compared to an increase of 59% in their white counterparts 2. Older age is one of the 

strongest risk factors for dementia, and dementia risk increases exponentially with age in the 

elderly. Another strong risk factor for dementia is race. Compared to whites of similar age, elderly 

blacks have lower cognitive functions and higher dementia risk, and such racial disparities are 

largest in the oldest old (≥ 85 years of age) 3,4. This racial disparity is of very high public health 

relevance, because the oldest old is the fastest growing segment of the US elderly population 5, 

and because medical care of patients with dementia has imposed huge economic and psychological 

burdens on our society and caregivers 6. 

What can explain the racial differences in dementia and cognitive function between elderly 

blacks and whites? Previous brain imaging studies show that both macro- and micro-brain 

structural characteristics predict cognitive decline 7-10. Compared to brain macro-structural 

measures, such as brain atrophy and white matter hyperintensities (WMHs), brain micro-structural 

measures are even stronger predictors of memory, executive function, information processing 

speed, and global cognition 9-13.  Therefore, racial differences in cognitive impairments may be 

explained by racial differences in brain structure.  
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Previous studies suggest a vascular pathogenesis for both structural brain impairment and 

dementia development. A higher burden of vascular risk factors, such as hypertension and 

diabetes, is associated with greater brain atrophy 14,15, a higher grade of WMHs 16,17, worse brain 

micro-structural integrity 18-21, and consequentially higher dementia risk (Dickstein, 2010). 

Moreover, previous literature has shown a greater burden of vascular risk factors in blacks 

compared to whites of similar age 22-25. Therefore, racial differences in vascular risk factors may 

contribute to racial differences in cognitive impairment through their impact on brain structure. 

Another important domain of factors contributing to higher dementia risk is lower 

socioeconomic status, such as education and family income, which have been reported to be lower 

in blacks than in whites 23,24, and which are also related to brain structure and dementia risk 26-28. 

Therefore, studies of racial differences in dementia also need to account for racial differences in 

socioeconomic status.  

The central goal of this dissertation is to test the hypothesis that racial differences in brain 

MRI measures explain the associations between racial differences in vascular risk factors and 

dementia, and to explore to what extent these relationships are independent of socioeconomic 

status. First, I conducted a review of the literature pertaining racial differences in dementia, 

cognitive function, brain structure and vascular risk factors with a specific focus on blacks and 

whites. Interrelationships among vascular risk factors, brain structure, and cognitive function were 

also reviewed. Since racial differences in dementia are largest in the oldest old, results in adults 

older than 85 were given special attention. Based on this literature review, several gaps in 

knowledge were identified, and a conceptual model (Figure 1) is proposed to generate hypotheses 

for further studies. On the basis of this conceptual model, new studies are proposed to address the 

major gaps in knowledge. These studies focus on a cohort of very old (≥ 79 years of age) subjects 
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of two races (white and black), which was examined at baseline and three years later to identify 

important brain structural risk factors for dementia by race. Results of these studies, discussion, 

and directions for further research are outlined in detail in later sections of this document.  

 

Figure 1 Conceptual model of racial differences in dementia 

Worse brain 
structure profiles 

in African-
Americans

Cerebrovascular risk factors: 
hypertension, diabetes, heart 
disease, metabolic syndrome

Lifestyles & Socioeconomic status: 
education, family income, 
smoking, drinking, obesity, 

physical activity

Age

Whites

Blacks

Higher burden of risk factors 
for brain damage in African-

Americans than in Whites

Higher prevalence 
of dementia in 

African-Americans 
than in Whites

Shorter time to dementia 
in African-Americans than 

in Whites

Blacks

Whites

3 



2.0  DEMENTIA, BRAIN STRUCTURE, AND VASCULAR RISK FACTORS 

2.1 EPIDEMIOLOGY AND PATHOPHYSIOLOGY OF DEMENTIA 

In the elderly, dementia is one of the most common diseases and a major cause of disability and 

mortality 29.  It is characterized by memory loss and impairments of other cognitive functions, 

which interfere significantly with social activities or relationships with others 30. The prevalence 

of dementia is 0.7% to 1.8% among those aged 60-64, starts to increase exponentially with older 

age 29, and is 29% to 64% among those aged above 90 across global burden of disease regions 31. 

In addition to geographic variation, the range of values is in part related to differences in 

classification criteria. Moreover, such an increase with older age is more striking in elderly blacks 

than in whites 3,32. For example, in Northern Manhattan residents, the prevalence of dementia in 

blacks increased from 9.1% (age: 65-74) to 19.9% (age: 75-84) and to 58.6% (age: ≥ 85), whereas, 

in the same age ranges of whites, it increased from 2.9% to 10.9% and to 30.2% 3. Therefore, the 

oldest old, especially the oldest old blacks, bear the highest burden of dementia in the U.S. 

population.  

The most common subtypes of dementia are Alzheimer’s disease (AD) and vascular 

dementia (VaD), which account for 50-80% and 10-30% of prevalent dementia cases respectively 

29. Compared to whites, blacks are more likely to have VaD 33. The age-adjusted incidence of VaD 

was almost two times higher in blacks than in whites (2.72% vs. 1.46%) in the Cardiovascular 

Health Study 32. It is estimated that there were 35.6 million dementia cases worldwide in 2010, 

with numbers expected to almost double every 20 years, to 65.7 million in 2030 and 115.4 million 

in 2050 31. 
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Clinically, AD is associated with more memory impairments, whereas VaD patients have 

milder impairment of memory and stronger impairments in executive function such as judgment. 

34. However, the clinical classification of VaD and AD is still controversial, and can mask common 

vascular pathological mechanisms underlying the two main subtypes of dementia 35. The emerging 

concept of mixed dementia refers to a broad spectrum of conditions in which cognitive declines 

may be attributable to the presence of both AD and vascular-related alterations 36 . However, 

generally accepted and validated neuropathological criteria for the diagnosis of mixed dementia 

AD are not available, and its true prevalence is not known 37. Brain autopsy is necessary to 

determine the coexistence of Alzheimer’s and vascular pathologies. According to a review of 

autopsy studies, the prevalence of mixed dementia varied from 2% to 58% 37, depending on the 

diagnostic criteria, autopsy sample size, and population characteristics.  

Post-mortem studies of AD-related pathology have been very helpful to clarify some of the 

main factors in the pathogenesis of AD. Amyloid plaques of amyloid-β (Aβ) and neurofibrillary 

tangles (NFTs) of hyperphosphorylated tau, are two hallmarks of the AD brain 38. The 

conventional hypothesis for the etiology of AD is the amyloid cascade hypothesis 39, which states 

that the accumulation of brain Aβ deposition triggers the production of NFTs, cell death, and 

ultimately the clinical symptoms of AD. However, controversies have arisen regarding this 

hypothesis because there is a lack of associations between amounts of Aβ deposition and AD 

severity, and Aβ deposition has never been found to be neurotoxic in vivo 40.  

Neurofibrillary tangles (NFTs) of hyperphosphorylated tau are the second pathological 

hallmark of the AD brain. When tau is abnormally hyperphosphorylated, it loses its biological 

activity, becomes resistant to degradation, and may go through conformational changes that render 

its aggregation into paired helical filaments (PHFs) 41. Studies on correlation between pathological 
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hallmarks and clinical symptoms of AD have demonstrated that neurofibrillary pathology and not 

Aβ plaques correlate with the presence of dementia in humans 42. Nonetheless, the pathogenetic 

relationship between Aβ and tau hyperphosphorylation is still unclear 43.  

Apolipoprotein E (ApoE) expression in the brain is only secondary to liver. Astrocytes, 

and to some extent microglia, are the major cell types that express ApoE in the brain 44. In humans 

the ApoE gene shows polymorphism which results in three different alleles ε2, ε3 and ε4. ApoE 

may facilitate the clearance of Aβ (ε2 > ε3 > ε4) and mediate tau hyperphosphorylation (ε2 < ε3 < 

ε4) in an isoform-dependent manner 45,46. The presence of at least one ε4 allele on the ApoE 

genotype is considered the main genetic risk factor for sporadic AD 47, and those homozygous for 

the ApoE ε4 allele have a 12-fold increase in the risk for AD 48.  

Recent evidence from epidemiological, pathological, and neuroimaging studies implicates 

neurovascular dysfunction as an integral part of AD, and has given rise to the vascular hypothesis 

36. These studies revealed distinct associations between AD and various vascular risk factors, such 

as hypertension, total cholesterol, type II diabetes mellitus, hypotension, and smoking 36. A number 

of vascular lesions have also been found in AD brains, such as blood-brain barrier dysfunction, 

small vessel diseases, atherosclerotic plaques, and cerebral amyloid angiopathy (CAA) 49. CAA is 

defined as the deposition of Aβ peptide within the walls of the leptomeninges and parenchymal 

arteries, arterioles, and capillaries with a concomitant thickening of arteriole walls and formation 

of microaneurysms 50. Actually, a very high percentage (70%-90%) of AD patients shows amyloid 

pathology in their brain vessels, which narrows the vessels and produces hypoperfusion 51.  

Pathologically, brain infarction and cerebral hemorrhage, especially multiple silent 

infarcts, are major characteristics of VaD 34. However, “pure” VaD is rare, and common vessel 

disorders and lesions are shared by AD and VaD. VaD is most frequently caused by degenerative 
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vessel disorders, such as atherosclerosis and small vessel disease (including small vessel 

arteriosclerosis, arteriolosclerosis, lipohyalinosis, and CAA) 52. Meanwhile, atherosclerosis, silent 

infarcts, small vessel disease and CAA are prevalent in the AD brain too 52.  Previous brain imaging 

studies showed that brain small vessel diseases, measured by WMHs, silent infarcts and lacunar 

infarcts, are more prevalent in blacks than in whites 53-57.  

Why is it important to examine this problem in the context of older age? As described 

above, dementia is a disease of old age. The dementia prevalence is very low before age 60, and 

increases exponentially thereafter 31.  Macro- and micro-structural integrity of brain white matter 

and gray matter decline with advanced age 58. Moreover, the prevalence of key risk factors for 

dementia, such as hypertension and diabetes, also increases with older age. 59 60, and these also 

contribute to the increase of dementia risk with older age. Therefore, older age is a major 

precipitating factor of dementia epidemic in the population.  

Recent reviews 40,61 have proposed that aging, amyloid deposition, and vascular risk factors 

may play synergistic roles in the pathogenesis of dementia. Distinguishing these roles in the 

possible etiology of dementia is very important because these vascular factors are more prevalent 

in blacks than in whites, which may explain the racial differences in dementia prevalence and 

incidence. The conceptual model for dementia pathophysiology is illustrated in Figure 2. 
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Figure 2 Pathophysiology of dementia 
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sample tests for each of those cognitive domains that are typically examined in the 

neuropsychological battery for dementia diagnosis. 

In typical AD patients, the entorhinal cortex is the earliest site of atrophy, closely followed 

by the hippocampus, amygdala, and parahippocampus, and then the temporal neocortex and all 

neocortical association areas, usually in a symmetrical fashion 63. Hippocampal atrophy is 

associated with the early symptoms of memory loss 64. Previous brain MRI studies showed that 

hippocampal and medial temporal lobe atrophies were the most consistent predictors of future 

dementia 65,66. In addition to the temporal lobe, the frontal lobe is another brain region predicting 

dementia development 66. In particular, the prefrontal cortex is critical for the performance of 

executive functions 67. One longitudinal study found that prefrontal cortex atrophy was better than 

medial temporal lobe atrophy in distinguishing those with cognitive decline from those with 

incident dementia 68. Nonetheless, atypical AD cases with language difficulties may have left 

temporal atrophy, and those with visual-spatial dysfunctions may have posterior cortical atrophy 

63. 

Table 1 Typical tests of cognitive domains in dementia diagnosis 

Domain Sample Test 

Global Cognition Mini-Mental State Examination (MMSE), Clinical Dementia 
Rating (CDR) 

Verbal Memory California Verbal Learning Test; CERAD Word List 
Learning; WMS-R Logical Memory 

Visual Memory Rey Osterrieth Figure; WMS-R Visual Reproduction 

Language Boston Naming Test; verbal fluency (category and initial 
letter); Token Test 

Visual-Spatial Skills Rey Osterrieth Figure Copy; Benton Line Orientation; Block 
Design 

Executive Functions Digit Span backward; Trail Making Test B; Stroop Color-
Word Test; Clock Drawing 
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Neuroimaging Correlates of Cognitive Function: Studies of Brain Macro-Structure Brain 

atrophy and white matter hyperintensities (WMHs) are common features observed on brain images 

by Magnetic Resonance Imaging (MRI) of the elderly 69. MRI scans weighted by T1 relaxation 

properties of protons (1H nuclei) in water molecules (T1-weighted MRI) of brain tissue are used 

to estimate brain atrophy because they provide appreciable contrast of brain gray matter, white 

matter, and cerebrospinal fluid (CSF). T2-weighted and fluid attenuated inversion recovery 

(FLAIR) scans can suppress CSF so as to bring out hyperintense lesions in white matter, which 

may reflect demyelination and gliosis 70.  

In the cross-sectional analysis of brain MRI data, brain atrophy can be measured by brain 

parenchymal fraction (BPF), gray matter fraction (GMF), ventricular enlargement, and sulcal 

width 53,57,71,72. BPF, an indicator of total brain atrophy, represents the percentage of the 

intracranial volume (ICV) that is occupied by brain tissue. Ventricular enlargement, an indicator 

of subcortical brain atrophy, can be assessed with the ventricular fraction (VF) as the percentage 

ventricular volume of the total ICV, or be assessed with the visual grading of ventricular size by 

neuroradiologists. Cortical atrophy can be assessed with the cortical gray matter fraction (GMF) 

as the percentage cortical gray matter volume of the total ICV, or be assessed with the visual 

grading of sulcal width by neuroradiologists. Lower BPF indicates more total brain atrophy, higher 

VF or larger ventricular size indicates more subcortical brain atrophy, and lower GMF or wider 

sulcus indicates more cortical brain atrophy.  

Cross-sectional measures of brain atrophy are valid only when their normal values were 

the same among different study subjects. However, such assumption may not hold in the real 

world, especially in populations of high heterogeneity. Therefore, it is methodologically superior 

to measure brain atrophy in longitudinal settings. With longitudinal brain MRI data, brain atrophy 
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can be measured by the absolute change or the percentage change of brain volume, such as brain 

parenchymal volume, gray matter volume, or the volume of a specific brain region 73-75. Compared 

to the cross-sectional measure, the longitudinal measure of brain atrophy does not rely on the 

assumption of same normal value, and therefore should have higher measurement validity. On the 

other hand, the variation of brain MRI measurements over time may reduce the reliability of the 

longitudinal measure of brain atrophy 76. 

Previous brain MRI studies have shown that brain atrophy and WMHs are associated with 

impairments of various cognitive functions. Atrophy in different brain regions is associated with 

the decline of different cognitive functions. For instance, hippocampal atrophy is an independent 

predictor of memory decline 7, and prefrontal cortex atrophy is associated with executive function 

decline 77. White matter hyperintensities are usually considered as a marker of cerebral small vessel 

diseases 70. In a meta-analysis of 17 pertinent studies 8, the presence of WMHs increased the overall 

risk of dementia by 90% (Hazard Ratio=1.9, CI: 1.3 to 2.8) and was also consistently associated 

with declines in executive function and information processing speed across studies.  

2.3 NEUROIMAGING CORRELATES OF COGNITIVE FUNCTION: STUDIES OF 

BRAIN MACRO-STRUCTURE 

Brain atrophy and white matter hyperintensities (WMHs) are common features observed on brain 

images by Magnetic Resonance Imaging (MRI) of the elderly 69. MRI scans weighted by T1 

relaxation properties of protons (1H nuclei) in water molecules (T1-weighted MRI) of brain tissue 

are used to estimate brain atrophy because they provide appreciable contrast of brain gray matter, 

white matter, and cerebrospinal fluid (CSF). T2-weighted and fluid attenuated inversion recovery 
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(FLAIR) scans can suppress CSF so as to bring out hyperintense lesions in white matter, which 

may reflect demyelination and gliosis 70.  

In the cross-sectional analysis of brain MRI data, brain atrophy can be measured by brain 

parenchymal fraction (BPF), gray matter fraction (GMF), ventricular enlargement, and sulcal 

width 53,57,71,72. BPF, an indicator of total brain atrophy, represents the percentage of the 

intracranial volume (ICV) that is occupied by brain tissue. Ventricular enlargement, an indicator 

of subcortical brain atrophy, can be assessed with the ventricular fraction (VF) as the percentage 

ventricular volume of the total ICV, or be assessed with the visual grading of ventricular size by 

neuroradiologists. Cortical atrophy can be assessed with the cortical gray matter fraction (GMF) 

as the percentage cortical gray matter volume of the total ICV, or be assessed with the visual 

grading of sulcal width by neuroradiologists. Lower BPF indicates more total brain atrophy, higher 

VF or larger ventricular size indicates more subcortical brain atrophy, and lower GMF or wider 

sulcus indicates more cortical brain atrophy.  

Cross-sectional measures of brain atrophy are valid only when their normal values were 

the same among different study subjects. However, such assumption may not hold in the real 

world, especially in populations of high heterogeneity. Therefore, it is methodologically superior 

to measure brain atrophy in longitudinal settings. With longitudinal brain MRI data, brain atrophy 

can be measured by the absolute change or the percentage change of brain volume, such as brain 

parenchymal volume, gray matter volume, or the volume of a specific brain region 73-75. Compared 

to the cross-sectional measure, the longitudinal measure of brain atrophy does not rely on the 

assumption of same normal value, and therefore should have higher measurement validity. On the 

other hand, the variation of brain MRI measurements over time may reduce the reliability of the 

longitudinal measure of brain atrophy 76. 
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Previous brain MRI studies have shown that brain atrophy and WMHs are associated with 

impairments of various cognitive functions. Atrophy in different brain regions is associated with 

the decline of different cognitive functions. For instance, hippocampal atrophy is an independent 

predictor of memory decline 7, and prefrontal cortex atrophy is associated with executive function 

decline 77. White matter hyperintensities are usually considered as a marker of cerebral small vessel 

diseases 70. In a meta-analysis of 17 pertinent studies 8, the presence of WMHs increased the overall 

risk of dementia by 90% (Hazard Ratio=1.9, CI: 1.3 to 2.8) and was also consistently associated 

with declines in executive function and information processing speed across studies.  

2.4 NEUROIMAGING CORRELATES OF COGNITIVE FUNCTION: STUDIES OF 

BRAIN MICRO-STRUCTURE 

Compared to the brain macro-structural measures generated by MRI, Diffusion Tensor Imaging 

(DTI) can identify markers of brain micro-structure for normal-appearing tissue. Water diffusion 

in brain tissue is not random, but interacts with many obstacles, such as cell membranes, myelin 

sheaths and white matter fiber tracts 78. Therefore, the diffusion pattern of water molecules can 

reveal microscopic details of brain structural architecture 78. DTI models the diffusion of water 

molecules in each voxel using a single ellipsoid, and three eigenvalues can be calculated for 

diffusivity along the three primary axes of the ellipsoid 79. The average of these three eigenvalues 

is denoted as mean diffusivity (MD). Specifically, MD is an estimate of the average magnitude of 

water diffusion and in grey matter and it represents the density of the molecular structure. Greater 

structural density results in greater restriction of water diffusion and a lower MD value. By 

contrast, fractional anisotropy (FA) is a composite measure of pairwise differences of the three 
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eigenvalues, and is particularly useful to depict directionality of water diffusion in anisotropic 

tissues, such as white matter tracts. Lower FA values in white matter may indicate a loss of myelin 

sheaths, axons, and oligodendrocytes 80.  

Overall, MD is considered a marker of abnormalities of the brain parenchyma that precede 

measurable changes to grey matter macrostructure 81,82. The pathological correlates of mean 

diffusivity of gray matter include neuronal degeneration, amyloid plaque deposition, cerebral 

amyloid angiopathy, and perivascular space enlargement. Higher MD in the grey matter is also 

related to cortical thinning and lower tissue density 82,83. Most of the evidence of histological 

correlates of MD is, however, from animal studies.  For example, one study of an APP/PS1 mouse 

model of Alzheimer’s disease 84 found higher mean diffusivity values in bilateral neocortext in 

APP/PS1 mice than in controls. MD has also been studied in few human neurologic diseases, and 

it is found to increase in multiple sclerosis 85 and Parkinson’s disease  86.  

Previous studies in older adults have shown that higher mean diffusivity of gray matter is 

associated with older age and greater brain atrophy 87,88, and hippocampal MD explains higher 

percentage of age variability than hippocampal volume or fractional anisotropy in healthy adults 

9. Mean diffusivity of hippocampus associates almost linearly with higher memory test scores, 

whereas hippocampal volume and fractional anisotropy do not associate with memory in the 

elderly 9,89. Moreover, mean diffusivities of total gray matter and hippocampus increase 

progressively across normal controls,  MCI patients, and AD patients 80,90, while such changes are 

not found in fractional anisotropy of hippocampus90.  

Previous studies have also shown that mean diffusivities of total gray matter and 

hippocampus are better discriminators of MCI to AD converters versus non-converters than 

volumetric measures 80. Therefore, compared to volumetric measures or factional anisotropy, mean 
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diffusivity of gray matter, especially of hippocampus, is a better marker of aging, memory, and 

dementia.  However, most previous studies are cross-sectional, and longitudinal studies are needed 

to further verify the superiority of gray matter mean diffusivity in predicting memory decline and 

dementia risk than volumetric measures or fractional anisotropy. Furthermore, hippocampal mean 

diffusivity starts to increase exponentially after age 60 9, and the associations between 

hippocampal mean diffusivity and memory test scores seem to be greatest in the oldest old group 

89,  therefore study of gray matter mean diffusivity in the oldest old might be of the most value.  

In addition to DTI indices of gray matter, DTI indices of white matter also have stronger 

associations with cognitive functions, as compared to the MRI measures. Compared to WMHs, 

DTI indices of white matter had stronger correlations with global cognition, executive function, 

memory, and information processing speed 10-13. One study in healthy older adults showed that the 

FA of white matter alone explained 25%, 33% and 45% of the variances in executive function, in 

episodic memory, and in information processing speed, respectively 10. 

2.5 VASCULAR RISK FACTORS AND DEMENTIA  

Vascular risk factors, such as hypertension, smoking, hyperlipidemia, and diabetes mellitus, are 

also risk factors for dementia 36. Hypertension is the biggest risk factor of stroke and hence a cause 

of VaD 91. Moreover, hypertension is also associated with increased risk for AD in the elderly 92. 

Hypertension is involved in the pathogenesis of dementia through a variety of mechanisms, 

including atherosclerosis, small vessel disease, cerebrovascular dysfunction, silent infarcts, and 

microbleeds 91. Nonetheless, the relationship between blood pressure and cognitive function might 

be age dependent 93,94. Hypertension in mid-life is a risk factor of cognitive impairment in late-life 
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in various longitudinal studies 93, however the association between late-life blood pressure and 

cognitive function seem to be opposite in the older old (age ≥ 75), especially in the oldest old 94. 

The positive association between low blood pressure and cognitive impairment in the oldest old is 

reported in both cross sectional and prospective studies 95-98. There is a need to verify such 

associations through study of hypertension and brain structure in the oldest old.  

Type 2 Diabetes is another important risk factor for dementia. Two recent reviews have 

suggested that the risk of VaD is increased by 2- to 3-fold in people with type 2 diabetes, and with 

a 1.5- to 2.0-fold increased risk of AD 99,100. The etiology of dementia in patients with type 2 

diabetes is probably multifactorial, including hyperglycemia, hypoglycemia, cerebrovascular 

disease, inflammation, and dysregulation of hypo-thalamic-pituitary-adrenal axis 101.  

2.6 VASCULAR RISK FACTORS AND BRAIN STRUCTURE 

Previous brain MRI studies found associations between vascular risk factors and brain macro-

structural lesions, such as brain atrophy and WMHs. Hypertension and stroke are associated with 

increased burden of WMHs 16,17, and brain ischemia is probably the intermediate pathway 70,102. 

However, associations between hypertension and brain atrophy are more complicated. Some 

studies show that high midlife blood pressure is related to brain atrophy in later life 103,104, while 

others show that in older adults, low blood pressure levels lead to an increased risk for brain 

atrophy 96,105. These inconsistencies may be related to the crossover of blood pressure in the elderly 

population, i.e. mean systolic and diastolic blood pressure increases up to age 75 years but 

decreases thereafter 106, because studies suggested that a certain level of blood pressure is 

necessary to maintain adequate cerebral perfusion in the oldest old 94,95. In addition to 
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hypertension, diabetes is another important risk factor for brain atrophy and WMHs. Compared to 

non-diabetic controls, diabetic patients have greater progressions in both brain atrophy and WMHs 

in longitudinal studies 14,107.  

Likewise, previous brain DTI studies have shown associations between vascular risk 

factors and micro-structural integrity in normal-appearing brain parenchyma (see Appendix C). 

For instance, hypertension is associated with lower micro-structural integrity in corpus callosum, 

frontal lobe, temporal lobe, and total white matter 18,19,108,109. Type 2 diabetes is associated with 

lower micro-structural integrity in hippocampus, cingulate cortex, prefrontal cortex, superior 

longitudinal fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus 20,21,110. Metabolic 

syndrome tends to impair the micro-structural integrity of white matter more in anterior regions 

than in posterior regions, especially in the prefrontal lobe 111-113.  

In sum, previous studies strongly suggest a vascular pathogenesis for both brain macro- 

and micro-structural changes. Therefore, if there were any racial differences in brain structure, 

racial differences in vascular risk factors may be important contributors.  

17 



3.0  RACIAL DIFFERENCES IN DEMENTIA, BRAIN STRUCTURE, AND 

VASCULAR RISK FACTORS 

3.1 RACIAL DIFFERENCES IN DEMENTIA PREVALENCE AND INCIDENCE IN 

THE ELDERLY 

A synopsis of previous studies on racial differences in dementia is included in Appendix A. A 

summary of this synopsis is provided here, and highlights the frequency of dementia in blacks. In 

the North Manhattan Aging Project (NMAP) and the Washington Heights and Inwood Study 

(WHI), the prevalence of dementia and incidence of AD were two to three times higher in elderly 

blacks than in whites of similar age 3,4. According to the NMAP, the prevalence of dementia in 

three age strata (65-74, 75-84, 85+) was 9.1%, 19.9% and 58.6% in blacks, and was 2.9%, 10.9% 

and 30.2% in whites.  

Among 4 US communities (Forsyth County, North Carolina; Washington County, 

Maryland; Sacramento County, California; and Pittsburgh, Pennsylvania), in the Cardiovascular 

Health Study (CHS), a nearly 1.5-times higher dementia incidence in elderly blacks than in elderly 

whites 32. Specifically, the age-adjusted incidence (per 100 person-years) was 5.88% in black 

women versus 3.47% in white women, and was 5.30% in black men versus 3.53% in white men. 

However, in the Established Populations for Epidemiologic Studies of the Elderly (EPESE) 

conducted in one urban and four rural counties of North Carolina, neither dementia prevalence nor 

3-year incidence significantly differed between elderly blacks and whites 33. Likewise, the Einstein 

Aging Study (EAS) conducted in Bronx County of New York also failed to find overall significant 

racial differences in dementia incidence during 4 years of follow-up 114.  
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A possible explanation for discrepancies in these study results is that the dementia 

ascertainment methods varied across these studies. In the EPESE study, the determination of 

dementia was done retrospectively by interviewing survivors or proxies. By contrast, the NMAP 

and CHS ascertained dementia based on prospectively collected data, and therefore their dementia 

diagnosis would be more reliable than that of the EPESE study. In the EAS study, memory loss 

was a required criterion to make diagnosis of dementia, while there was no such requirement in 

the CHS study.  

Another explanation for the discrepancy in study results may be the differences in study 

sampling and hence in characteristics of the respective study populations. For example, 

institutionalized subjects were excluded from both the EPESE and the EAS studies. The EPESE 

study was conducted largely in rural counties as compared to urban counties in other studies, and 

the EAS study pre-screened willing-to-participate subjects by phone.  Exclusion of 

institutionalized subjects and multiple screening procedures might be reasons for the much lower 

dementia incidence in the EAS study than that in other studies. Moreover, the adjustment of 

education in the analysis of the EAS study might also contribute to its non-significant test result 

of racial differences in dementia.  

The frequency of dementia appears to be most pronounced among blacks over age 85 years. 

Dementia prevalence was 58.6% vs. 30.2% and AD incidence (per 100 person-years) was 11.4% 

vs. 4.2% for blacks and whites in the oldest old northern Manhattan residents (NMAP and WHI 

studies). Although the EAS study did not find significant racial differences in dementia incidence 

in all age groups, it did detect a 1.5 times higher incidence in oldest old blacks than in whites 

(black: 8.34% vs. white: 5.85% per 100 person-years).  
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In the oldest old, sex may be a modifier for racial differences in dementia. Although the 

EPESE study did not find racial differences in overall dementia incidence, it did find that blacks 

were nearly 5 times more likely to develop dementia in men (black: 23% vs. white:4.7% per 100 

person-years), while racial differences of inverse direction were found in women (black; 4.4 % vs. 

white: 12.8% per 100 person-years). Similar results were also found in the oldest old of the CHS 

study: Black men had a five times higher dementia incidence than white men (black: 40.4% vs. 

white: 8.4% per 100 person-years), but black women had lower dementia incidence than white 

women (black: 8.7% vs. white: 10.8% per 100 person-years).  

In summary, compared to the younger old, racial differences in dementia tend to be larger 

in the oldest old, especially in the oldest old men. In the oldest old women, the two studies with 

data stratified by sex (EPESE and CHS) observed lower dementia risk in blacks than in whites. 

However, none of above results in the oldest old formally tested racial differences in dementia 

rates, and sample sizes of this age group were usually small, especially for blacks (person years 

for oldest old blacks: 54 in CHS, 216 in EAS and 149 in WHI; person years for oldest old whites: 

532 in CHS, 820 in EAS and 166 in WHI). Therefore, further studies in the oldest old with larger 

sample sizes of blacks and with inferential statistical tests are warranted. 

3.2 RACIAL DIFFERENCES IN MORTALITY RATE IN THE ELDERLY  

Although racial differences in dementia tend to be largest among the oldest old, racial differences 

in all-cause mortality reverse around age 80 115-118. Specifically, the black-white mortality 

crossover refers to the elevated mortality rate in blacks relative to whites up to age 78 with an 

inversion of this pattern after age 78 119. This crossover effect is usually thought to be a product of 
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selective mortality, in which high mortality rates among young, disadvantaged blacks, results in a 

more robust group of survivors which compose the oldest old population, thus contributing to 

phenomenon of survival bias 120,121. 

Among those aged 80 or older in the North Carolina EPESE study, blacks had significantly 

lower risk of all-cause mortality (HR=0.75) and of CHD mortality (HR=0.44) than whites 119. 

Further analyses of elderly subjects in 4 waves showed that the adjustment of income-related terms 

(including income, income*race, and income*age) altered the black-white mortality crossover in 

men but not in women 120. However, analyses in the Americans Changing Lives study showed that 

family income did not alter the black-white mortality crossover 121.  Therefore, further studies are 

still needed to clarify the black-white mortality crossover around oldest ages, and potential 

contributors with differential effects on the mortality crossover by sex should also be considered.  

Although studies have repeatedly shown associations between brain structural 

abnormalities and mortality 122,123, previous studies on racial crossover of mortality did not account 

for brain structural measures. It is possible that very old blacks would have healthier brains 

compared to the whites of similar age, and that these differences may either explain the racial 

mortality crossover or be one of the results of survivor bias among very old blacks. Therefore, it 

is worthwhile to study whether racial differences in brain structure and function contribute to the 

mortality crossover in the oldest old. 

What about racial differences in survival after AD or dementia diagnosis? Results of 

previous studies are mixed. Studies regarding survival after AD diagnosis found longer or similar 

survival time in elderly blacks than in whites 124,125. Regarding racial differences in survival after 

dementia diagnosis, the CHS cognition study 126 suggested a shorter survival time in blacks than 

in whites, because demented blacks had a higher proportion of VaD than demented whites and the 
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median survival time for patients with VaD (3.9 years) was shorter compared to those with AD 

(7.1 years). However, another study conducted at Baylor Alzheimer’s Disease Center 127 did not 

find racial differences in survival time after dementia diagnosis, which was probably due to the 

similar proportions of VaD among dementia patients of the two races in its sample.  Therefore, 

racial differences in AD prevalence might be overestimated or not affected by racial differences 

in AD survival, while racial differences in dementia prevalence might be underestimated by shorter 

dementia survival in blacks than in whites. 

3.3 RACIAL DIFFERENCES IN COGNITIVE FUNCTION IN THE ELDERLY 

A synopsis of previous studies on racial differences in cognitive functions is included in Appendix 

B. Previous cross-sectional analyses consistently reported worse cognitive functions in elderly 

blacks than in their white counterparts 128-133. Compared to whites of similar age, elderly blacks 

had lower performances in memory 128-130, in information processing speed 128,129,133, and in global 

cognition 128-133. In the Chicago Health and Aging Project (CHAP), the Mini-mental State Exam 

(MMSE) mean score and the Symbol Digit Modalities Test (SDMT) mean score were 2.6 points 

(24.4 in blacks vs. 27 in whites) and 13 points (21 in blacks vs. 34 in whites) lower respectively in 

elderly blacks than in whites 129. Likewise, in the Health, Aging and Body Composition Study 

(Health ABC), the Modified Mini-mental State Exam (3MS) mean score and the Digital Symbol 

Substitution Test (DSST) score were 7 points (86 in blacks vs. 93 in whites) and 14 points (28 in 

blacks vs. 42 in whites) lower respectively in elderly blacks than in whites 133. Therefore, compared 

to racial differences in global cognition (measured by the MMSE or the 3MS), racial differences 

in information processing speed (measured by the SDMT or the DSST) seem to be more striking.  
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What about racial differences in rates of cognitive decline over time in the elderly? My 

literature review of longitudinal studies revealed mixed results (see Appendix B). The Texas study 

131 found a much higher risk of cognitive impairment in elderly blacks than in whites (Odds 

Ratio=3.52, significant after multivariate adjustment). Both the Health Retirement Study (HRS) 

and the EPESE study observed greater declines in global cognition in blacks than in whites, but 

these differences were not significant 128,132. Results of non-significant racial differences may be 

due to a relatively young population (mean age=60) in the HRS study, or due to the exclusion of 

institutionalized subjects in the EPESE study. In contrast, during four consecutive interview waves 

in 8 years, the study of Asset and Health Dynamics Among the Oldest Old (AHEAD) showed 

significantly lower rates of memory and global cognition decline in elderly blacks than in whites. 

Cognition in the HRS and AHEAD studies were both measured by the Telephone Interview of 

Cognitive Status (TICS), which has a lower reliability than cognitive tests done by face-to-face 

interview 134. Moreover, institutionalized subjects were also excluded from the AHEAD study, and 

its attrition rate was unneglectable (about 17% between two consecutive waves) and higher in 

blacks than in whites. Therefore, the atypical results in the AHEAD study may arise from multiple 

study limitations: low reliability of the telephone cognitive test, exclusion of institutionalized 

subjects, and differential loss-to-follow-up bias.  

Nevertheless, no studies have analyzed racial differences in the cognitive functions in the 

oldest old. Since racial differences in cognitive functions may be much larger in the oldest old, 

further studies in older populations and with more reliable and highly discriminative tests of racial 

differences in cognition are warranted.  
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3.4 RACIAL DIFFERENCES IN BRAIN STRUCTURE IN THE ELDERLY 

Since cognitive functions are correlated with brain structure, racial differences in cognitive 

impairments may be attributable to racial differences in brain structure. A literature review (see 

below) of racial differences in brain structure between older blacks and whites was conducted.  

In sum, older blacks seem to have lower total brain atrophy (higher brain parenchymal 

volume/ICV) than whites; however, the racial differences are only significant in one study in non-

demented subjects 55 and not in other two studies that included demented subjects 135,136. In 

addition, both relative ventricular size and sulcal width, markers of subcortical and cortical atrophy 

respectively, tend to be smaller in older blacks than in whites 53,55,57. Results regarding the indicator 

of cerebral small vessel diseases-WMHs are quite consistent across studies. Significantly a greater 

relative volume of WMHs (volume of WMHs/ICV) or grade of WMHs is found in older blacks 

than in whites 53,55,137.  

Another marker of brain ischemic lesions-infarct tends to be more prevalent in older blacks 

than in whites; however, the racial differences are only significant in one out of six pertinent 

studies 54,56,57,135,136,138. Therefore, previous studies have shown a higher burden of WMHs and a 

trend of lower brain atrophy and higher infarcts prevalence in older blacks than in whites. The 

majority non-significant results of racial differences in brain infarcts might be due to its semi-

quantitative method of infarct counting or due to the adjustment of vascular risk factors in analysis. 

What about racial differences in brain structure in the oldest old? Unfortunately, It is not 

possible to draw any conclusions in this regard because the majority participants in previous MRI 

studies were young old. In the two studies with the oldest populations (mean age=80 in both 

studies), one found less brain atrophy and higher WMHs in blacks than in whites 55, while the other 

found no significant racial differences in brain atrophy, WMHs, or brain infarcts 136.  
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There are a number of limitations in these studies. Firstly, comparing brain MRI measures 

between blacks and whites was not a main objective in most studies, and hence only a few studies 

conducted formal statistical tests for racial differences in brain structure and very few examined 

these differences adjusting for other determinants of brain structure (e.g., socioeconomic and 

vascular risk factors). Secondly, since young old subjects have much lower dementia risk than the 

oldest old, racial differences in brain structure might be underestimated in previous studies because 

the majority of their participants were young old. Thirdly, all previous studies used 1.5-Tesla MRI 

scans, which have lower resolution than 3.0-Tesla MRI scans and cannot detect brain micro-

structural characteristics as can DTI scans. Of note, only one study had longitudinal brain MRI 

data 57, but there were no formal tests of racial differences in longitudinal brain structural changes. 

Therefore, neuroimaging studies with MRI scans of greater resolution and DTI scans in 

populations older than 75 years of age are needed to clarify controversies in the literature. 
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3.5.1 Abstract 

Background: The population of elderly blacks in US is projected to increase at a double rate of 

their white counterparts from 2010 to 2030, and they are also at a much higher risk of dementia. 

Racial differences in brain structure might contribute to racial differences in dementia.  

Methods: Direct key words were used to search all relevant articles in “Ovid MEDLINE(R)”. The 

algorithm to combine different key words was: ‘brain’ and (‘MRI’ or ‘Magnetic Resonance’ or 

‘DTI’ or ‘Diffusion Tensor’) and (‘white$’ or ‘Caucasian$’) and (‘black$’ or ‘African 

American$’), and the limitation ‘Human’ was applied. 227 articles yielded from the search 

algorithm, and 9 of them were chosen as the most relevant for review. 

Results: In older adults, relative brain volume (brain parenchymal volume/intracranial volume) is 

significantly higher in blacks than in whites (1.6% higher) in only one out of three pertinent studies. 

Relative ventricular size or grade is significantly smaller in blacks than in whites, while sulcal 

width tends to be larger in blacks than in whites in the younger old (mean age < 70) but smaller in 

blacks than in whites in the older old (mean age ≥ 70). The relative volume or grade of white 

matter hyperintensities (WMHs) is significantly higher in blacks than in whites in three out of six 

studies, while racial differences in brain infarcts prevalence is significant (about 10% higher in 

blacks than in whites) in only one out of six pertinent studies. 

Conclusions: Among brain macro-structural measures, only the results of racial differences in 

WMHs were consistent with the higher burden of vascular risks in blacks than in whites. Both 

brain atrophy and infarcts in older blacks show resilience to their higher burden of vascular risks 

compared to whites, especially in the older old.  
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3.5.2 Introduction 

Mild cognitive impairment and dementia are two major mental health problems in the elderly (age 

≥ 65). Compared to their white counterparts, blacks are at higher risks of cognitive impairment 

and dementia 139,140. According to the Washington Heights-Inwood Columbia Aging Project, 

prevalence of dementia in the three age strata (65-74, 75-84, 85+) was 2.9%, 10.9% and 30.2% in 

whites, while was 9.1%, 19.9% and 58.6% in blacks 6. Blacks were the largest minority (8.4% of 

40.4 million) in the US elderly in 2010, and the population of elderly blacks was projected to 

increase by 114% from 2010 to 2030, as compared to an increase of 59% of their white counterpart 

2. 

Higher risk of cognitive impairments in blacks compared to whites should have its 

corresponding worse profiles in brain structure in blacks than in whites, because brain structural 

measures generated by Magnetic Resonance Imaging (MRI), like volumetric atrophy and white 

matter hyperientensities (WMHs), are associated with various cognitive functions 7,8,77. However, 

up to date, racial differences between blacks and whites on brain structure are still inconclusive. 

Among seven studies with comparison of brain volumetric atrophy between blacks and whites, 

four of them did not find any significant racial differences 26,135,136,141, while other three studies 

55,57,142 reported significant results. Volume of WMHs seemed to be greater in blacks than in whites 

in some studies 55,57,142-145, but not in others 26,135,141. Reasons for these inconsistent results are not 

clear, and therefore an insightful review of these publications is necessary to clarify their 

seemingly inconsistent results and resolve the controversy. 

This review examined racial differences between blacks and whites in brain structural 

measures in the elderly with or without dementia. Except for brain MRI studies, studies using 

Diffusion Tensor Imaging (DTI) were also searched.  Results in similar populations and of similar 
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structural measures (brain atrophy, WMHs, and brain infarcts) were compared, and reasons for 

inconsistency if any were discussed. Finally, this review summarized the limitations of previous 

studies and provided directions for further research. 

3.5.3 Methods 

The database ‘Ovid MEDLINE(R) 1946 to June Week 2 2013’ was used for the literature search. 

Instead of mapping the key words to subheadings, the direct key words search was used to obtain 

all relevant articles. The first key word ‘brain’ was used, and there were 972,173 hits. The second 

set of key words was ’MRI’ or ‘Magnetic Resonance’ or ‘DTI’ or ‘Diffusion Tensor’, and there 

were 498,599 hits in total. The third set of key words was ‘black$’ or ‘African American$’, there 

were 158,067 hits. The fourth set of key words was ‘white$’ or ‘Caucasian$’, and there were 

255,408 hits. The algorithm to combine all these results was: ‘brain’ and (‘MRI’ or ‘Magnetic 

Resonance’ or ‘DTI’ or ‘Diffusion Tensor’) and (‘white$’ or ‘Caucasian$’) and (‘black$’ or 

‘African American$’), and the limitation ‘Human’ was applied. This ended up yielding 227 

articles. Limiting publications to the last 20 years did not change the search results. We chose not 

to limit the age group of search as “65 years or older”, otherwise nearly half of the targeted articles 

would be lost. The title and abstract of each article among the 227 was read, and 9 most relevant 

with samples of community-dwelling older adults were chosen for review. The flow diagram for 

the literature search can be found in Figure 3.   
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3.5.4 Results 

3.5.4.1 Racial Differences in Brain Atrophy 

Relative brain volume (brain parenchymal volume/intracranial volume) in all three relevant studies 

55,135,136 was reported slightly higher in blacks than in whites, with a racial difference ranging from 

0.9% to 1.6% (Appendix D). However, racial differences were significant in only one of the three 

studies, and this study was done in the non-demented elderly 55. All three studies 53,55,57 with 

ventricular size data reported smaller relative ventricular size or grade in blacks than in whites 

(two of them were significant, and one had no statistical test). There is only one relevant 

longitudinal study 57, and no statistical tests were performed to compare longitudinal changes in 

brain structure between the two races. Longitudinally, proportion of subjects with ventricular grade 

worsening was reported lower in black females than in white females (74% vs. 79%) but higher in 

black males than in white males (80% vs. 75%) during ten years of follow-up from their 60s to 

70s 57. Sulcal width was reported larger in blacks in the younger old 57 (no statistical test and mean 

age=62), and significantly smaller in blacks in the older old 53 (mean age=72). In ten years of 

follow-up of the longitudinal study 57, proportion of subjects with sulcal grade worsening was 

reported higher in whites (77% in females and 79% in males) than in blacks (64% in females and 

63% in males). 

Only two studies 55,135 have examined racial differences in volume of brain sub-regions, i.e. 

in hippocampus and entorhinal cortex, and none of them found significant racial differences.  

3.5.4.2 Racial Differences in WMHs 

Among six studies with WMHs data (Appendix D)., three studies in the older old (mean age≥72) 

53,55,137 found significantly greater relative WMHs volume or higher WMHs grade in blacks than 
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in whites with 55,137 or without 53 adjustment of vascular risk factors. However, in other two studies 

135,136 in the older old, racial differences of WMHs were not significant with 135 or without 136 

multivariate adjustment. The single longitudinal study 57 found that WMHs grade was lower in 

black females than in white females but higher in black males than in white males at the baseline 

(mean age=62), whereas the proportion of subjects with WMHs grade worsening during 10 years 

post baseline was higher in blacks (70.0% in both females and males) than whites (56.4% in 

females and 50.9% in males) in both sexes. However, there was no statistical test for the racial 

differences in longitudinal WMHs changes.  

3.5.4.3 Racial Differences in Brain Infarcts 

Among six studies with brain infarcts data (Appendix D), two studies 54,57 were done in younger 

old cohorts (mean age=62). One found significantly higher prevalence of both brain infarcts (21% 

vs. 10%) and lacune (17% vs. 9%) in blacks than in whites. The other 57 reported similar infarcts 

incidence rates between the two races in females (21% in both races) and slightly higher incidence 

rate in black males than in white males (20% vs 18%); however, there were no statistical tests of 

racial differences in this study. All three studies 135,136,138 in the older old (mean age ≥ 72) did not 

find significant racial differences in prevalence of brain infarcts (25% to 31% in blacks and 30% 

to 31% in whites). The last study 56 in subjects of wider age range (age>55) and without stoke 

found that higher subclinical infarcts prevalence in blacks than in whites was more prominent in 

the younger (age: 55-75) than in the older (age >75) age group, i.e. significant interaction between 

age and race, however the main effect of race was not significant after multivariate adjustment. 
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3.5.5 Discussion 

There is a weak trend of less brain atrophy in blacks compared to whites in the older adults, but 

such racial differences are only significant in some studies using different brain atrophy indices. 

Volume of WMHs is significantly higher in older blacks than in older whites in general, while 

racial differences in prevalence of brain infarcts seem to be only significant (higher in blacks) in 

the younger old populations (mean age < 70) and not in the older old populations (mean age ≥ 70). 

Among different indices of brain atrophy, ventricular size is usually considered as a 

measure of subcortical brain atrophy, while sucal width is a measure of cortical atrophy. 

Subcortical brain atrophy is lower in blacks than in whites in the younger old 57, in the older old 

53, and in the non-demented 55. Longitudinally, there might be a qualitative interaction between 

sex and race in ventricular enlargement 57, however such interaction effect was not tested and 

hence need further study. With regard to cortical atrophy, its racial difference was reversed from 

the younger old 57 (higher in blacks) to the older old 53 (higher in whites), and higher rate of cortical 

atrophy in whites than in blacks from their 60s to 70s might account for the reversion 57. However, 

such racial differences in cortical atrophy rate are not adequately studied, and the apparently higher 

rate of cortical atrophy in whites needs further examination. 

Since both cortical and subcortical brain atrophy are lower in blacks than whites in the 

older old, total brain atrophy in the older old should have similar racial differences. However, only 

a weak trend of lower total brain atrophy in blacks was observed in the older old, suggesting the 

complexity of brain atrophy measured from different perspectives. Moreover, relative brain 

volume (brain parenchymal volume/intracranial volume), relative ventricular size, or sucal width 

may not be valid measures of brain atrophy, because they are all cross-sectional and are assumed 
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to have the same normal values in blacks and whites. In contrast, the longitudinal change in brain 

volume should be a better measure reflecting the “real” atrophy rate of the brain. To better assess 

racial differences in brain atrophy, further longitudinal data of brain MRI in biracial populations 

are needed. 

In the older adults, blacks tend to have greater relative WMHs volume (WMHs/ICV) or 

higher WMHs grade than whites. WMHs is usually considered as a neuroimaging marker for small 

vessel diseases in white matter, and is related to vascular risk factors, like hypertension, diabetes, 

and stroke. Consistent with the higher burden of vascular risks in older blacks than older whites 

22-25, most studies in the older old found significantly higher relative WMHs volume or grade in 

blacks than in whites. Moreover, such racial differences were significant even after adjustment of 

vascular risk factors 55,137.  Even though directions of racial differences in the 10-years rate of 

white matter grade are opposite between males and females in the younger old, they are higher in 

blacks than whites in both sexes 57. Therefore, like the interaction between sex and race in the 

longitudinal ventricular enlargement, similar qualitative interaction seems to exist for WMHs in 

the younger old 57. In both interactions, brain structural profiles were more favorable in blacks than 

in whites in females but less favorable in blacks than in whites in males, and hence older black 

females might be more resilient than older black males to their higher burden of vascular risks 

compared to older whites. 

Racial differences in prevalence of brain infarcts between blacks and whites are not yet 

conclusive. Brain infarcts are actually brain ischemic lesions, which can be atherothrombotic or 

embolic, and therefore higher vascular risks in older blacks should cause higher prevalence of 

brain infarcts among them. However, there are no significant racial differences in the older old 

135,136,138, and the over adjustment of vascular risk factors may only account for part of the reasons 
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136. Actually, significant racial differences in brain infarcts prevalence (higher in blacks) are only 

found in one younger old study cohort 57, and there are similar infarcts incidence in the two races 

longitudinally. Therefore, non-significant racial differences in brain infarcts in the older old are 

not consistent with the higher vascular risk burdens in blacks compared to whites, which may be 

due to the selection bias in MRI studies in the older old. The older old with severer brain infarcts 

may be less likely to participate or more likely to die before ancillary MRI studies, and therefore 

only those without severe brain infarcts or with mild brain infarcts were enrolled in ancillary MRI 

studies.  

3.5.6 Conclusions 

In sum, among the three major brain macro-structural measures, only the results of racial 

differences in WMHs are consistent with the higher vascular risk burden in blacks than in whites 

in older adults. Both brain atrophy and infarcts in older blacks show resilience to their higher 

burden of vascular risks, especially in the older old. Therefore, vascular pathogenesis should not 

be the only mechanism considered for the racial differences in brain structure, and other 

mechanisms of brain structural impairments should also be examined in further studies. For 

example, there might be different aging physiology and neurological degeneration processes 

between blacks and whites. Moreover, racial differences of brain structure characteristics need to 

be explored with higher resolution methodologies to capture more subtle differences in micro-

structure and also to explore the spatial distribution of such differences. Comparison of brain MRI 

measures between blacks and whites was not a main objective of most studies, and only some of 

the studies had statistical tests of racial differences in brain MRI measures, and did not formally 

test for confounding of socioeconomic status and vascular risk factors. Another limitation of 
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previous studies is that for the most part they were cross-sectional analyses. Longitudinal brain 

structural changes are more preferable than cross-sectional measures to study the underlying 

mechanisms of racial differences. 

Therefore, racial differences in brain structure between older blacks and whites are not 

conclusive to a great extent, and further studies, especially longitudinal studies, to systematically 

compare brain structure measures between the two races are needed. Moreover, in addition to 

vascular pathogenesis, further studies should also explore other pathophysiological mechanisms 

to explain the racial differences in brain structure.  

 

Figure 3 Flow chart of literature search in Ovid MEDLINE 
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3.6 RACIAL DIFFERENCES IN VASCULAR RISK FACTORS IN THE ELDERLY 

Previous studies have consistently found higher hypertension rates or blood pressure, higher 

diabetes rates or glucose levels, higher high-density lipoprotein cholesterol (HDL-C), lower 

triglyceride levels, and lower levels of physical activity in blacks than in whites 22-25. Moreover, 

such racial differences exist in both young and older populations. However, conclusions about 

racial differences in smoking, drinking, body mass index (BMI), low-density lipoprotein 

cholesterol (LDL-C), and total cholesterol have been less consistent. This may be because of a 

higher heterogeneity in behavioral and dietary habits across study populations.  

Overall, hypertension and diabetes are among the most important vascular risk factors for 

brain structural and cognitive impairments. According to the National Health and Nutrition 

Examination Survey (NHANES) during 1999-2004 146, prevalence of hypertension in those aged 

60-69 was 18% (74.2% vs. 56.0%) higher in black wen than in white men, and was 26% (84.1% 

vs. 58.4%) higher in black women than in white women; prevalence of hypertension in those aged 

≥ 70 was 20% (83.4% vs. 63.3%) higher in black men than in white men, and was 4% (83.1% vs. 

78.8%) higher in black women than in white women (Figure 4). According to the National Health 

Interview Survey (NHIS) in 2011 147, prevalence of diabetes in those aged 65-74 was 8% (30.7 % 

vs. 22.8 %) higher in black men than in white men, and was 13% (31.2% vs. 18.4%) higher in 

black women than in white women; prevalence of diabetes in those aged ≥ 75 was 16% (38.1 % 

vs. 21.7 %) higher in black men than in white men, and was 9% (25.9% vs. 16.6%) higher in black 

women than in white women (Figure 4).  

Therefore, racial differences in hypertension and diabetes exist in both young old and older 

old populations, although they become less evident for women. In regard to racial differences in 

vascular risk factors in the oldest old, there is a paucity of data and statistical reporting. Therefore, 
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it remains to be studied whether a higher prevalence of diabetes and hypertension still exists in the 

oldest old blacks than in whites.  

Figure 4 Prevalence of hypertension and diabetes by race and age group in the NHANES and 
NHIS studies
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4.0  SUMMARY OF LITERATURE REVIEW AND GAPS IN KNOWLEDGE  

The key results of this literature review on racial differences in dementia, cognition, hypertension 

and diabetes are summarized in Table 2. In general, elderly blacks have a higher burden of 

dementia and cognitive impairments than their white counterparts. However, available data on 

racial differences in dementia incidence and/or cognitive decline may be affected by 

methodological differences in the studies, including relatively young study populations, exclusion 

of institutionalized subjects, less reliable ascertainment of dementia or cognition, and differential 

loss-to-follow-up bias.  

Racial differences in dementia prevalence and incidence in the oldest old tend to be larger 

than in the younger old; however, racial differences in dementia incidence in the oldest old might 

be modified by sex, because some studies observed lower dementia incidence in oldest old black 

women than in white women. Due to the small sample sizes of oldest old blacks (N<60), it is 

still premature to draw any conclusions for this age group. Since the oldest old, especially the 

oldest old blacks, bear the highest burden of cognitive impairments in the population, further 

studies with larger sample sizes of oldest old blacks and more reliable assessment of dementia 

and cognition are warranted. 

What can explain the higher burden of cognitive impairments in elderly blacks than in 

whites? Previous MRI and DTI studies have shown consistent associations between brain macro- 

or micro- structural measures and cognitive functions. However, results regarding racial 

differences in brain structure are still inconclusive. Even though elderly blacks have a higher 

burden of WMHs than their white counterparts in various studies, racial differences in brain 

atrophy and infarcts seem to be non-significant. Non-significant findings in previous MRI studies 
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may be due to their young old study populations and low resolution brain images. Therefore, 

further brain MRI studies with older subjects from both races and high-resolution images 

are needed. Even though brain micro-structural integrity measures generated by DTI are better 

predictors of cognitive functions than brain MRI measures, no studies have employed DTI scans 

to detect racial differences in brain micro-structural integrity. Racial differences in brain micro-

structural characteristics need to be explored with higher resolution methodologies to 

capture more subtle differences in micro-structure and also to explore the spatial 

distribution of such differences. 

Previous studies have also suggested a vascular pathogenesis for both brain macro- and 

micro-structural impairments. Elderly blacks have a higher burden of vascular risk factors, like 

hypertension and diabetes, than elderly whites. Therefore, the higher burden of vascular risk 

factors might contribute to the higher burden of WMHs and other brain structural impairments in 

elderly blacks than in whites, and finally lead to their higher dementia risk and worse cognitive 

functions. Nonetheless, previous studies have also shown the resilience of brain atrophy in older 

blacks to their higher burden of vascular risk factors because there is a trend of higher relative total 

brain volume, smaller relative ventricular size, and narrower sulcus in older blacks than in whites. 

Therefore, vascular pathogenesis may not be the only mechanistic pathway for the racial 

differences in brain structure, so other mechanisms of brain structural impairment should 

also be examined to explain racial differences in brain structure. For example, brain aging 

pathology and neurological degeneration process might be different in elderly blacks and whites.  

Since the oldest old tend to have the largest racial differences in cognitive impairments, it 

is worthwhile to investigate any racial differences in brain structure in this age group. However, 

most previous studies were done in the young old, and there is a lack of data about racial 
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differences in vascular risk factors, brain structure, and cognition in the oldest old. Moreover, only 

some studies had statistical tests of racial differences in brain MRI measures, or formally tested 

for confounding of socioeconomic status and vascular risk factors. Therefore, studies integrating 

state of the art neuroimaging, with extensive characterization of vascular risk factors and 

the socio-economic status of oldest old blacks and whites are warranted. Also, considering 

that dementia incidence tends to be lower in the oldest old black women than in white women, the 

oldest old black women may be a particularly resilient group to be investigated. 

Another limitation of previous MRI studies is that for the most part they were cross-

sectional and did not examine each of the three main contributors to dementia, which was outlined 

in Figure 2, including brain structural abnormalities, vascular risk factors, and socioeconomic 

status. Further longitudinal MRI studies that examine each of these components are more 

preferable than cross-sectional studies to reveal the underlying mechanisms of racial 

differences in dementia.  
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Table 2 Summary of racial differences in dementia, cognition, hypertension, and diabetes  

Race/Sex Dementia prevalence Dementia incidence 
(per 100 PYs) 

Global cognition and 
processing speed 

Rate of cognitive 
decline 

Prevalence of 
hypertension Prevalence of diabetes 

Black: 
NMAP: 9.1% in 65-74, 
19.9% in 75-84, 58.6% 

in ≥ 85; 

WHI (4-year AD 
incidence): 1.7% in 65-

74, 4.4% in 75-84, 
11.4% in ≥ 85; 

EAS (4-year): 0.50% in 
70-74, 2.53% in 75-84, 

8.34% in ≥ 85; 

TICS score in HRS: 8.7 
TICS score in AHEAD: 
3.5 points lower  than 

whites 
SPMSQ score in EPES: 

one point lower than 
whites 

MMSE score in CHAP: 
24.4 

SDMT score in CHAP: 
21.09 

3MS score in HABC: 
86.0 

DSST score in HABC: 
27.9 

TICS score in HRS: 
declined 0.04 more in 

blacks every 2 year, but 
not significant*. 

TICS score in AHEAD: 
declined 0.06 less in 

blacks each year than in 
whites  

(p-value*<0.05). 
SPMSQ score in EPES: 

declined one point 
more than whites over 

3 years, but not 
significant. 

Cognitive decline 
(SPMSQ decline ≥ 2) 
in Texas study: higher 

odds of cognitive 
decline in blacks 

(OR*=3.52, CI:2.85-
4.35)  

NOMAS (mean 
age=69): 78% 

NOMAS (mean 
age=69):22% 

White: 

NMAP: 2.9% in 65-74, 
10.9%  in 75-84, 30.2%  

in ≥ 85; 
 

WHI (4-year AD 
incidence): 0.4% in 65-

74, 2.6% in 75-84, 
4.2% in ≥ 85; 

EAS (4-year): 0.53% in 
70-74, 1.89% in 75-84, 

5.86% in ≥ 85; 

TICS score in HRS: 9.5 
MMSE score in CHAP: 

27.0 
SDMT score in CHAP: 

34.08 
3MS score in HABC: 

93.0 
DSST score in HABC: 

41.5 

 NOMAS (mean 
age=69): 63% 

NOMAS (mean 
age=69):12% 

Black 
Men: 

EPESE: 5.0% in 65-74, 
10.5% in 75-84, 11.5% 

in ≥ 85; 

EPESE (3-year): 4.4% 
in 65-74, 8.1% in 75-

84, 23% in ≥ 85; 
  

NHANES 1999-2004 
(aged 60-69): 74.2% 
NHANES 1999-2004 
(aged ≥ 70): 83.4% 

NHIS 2001 (aged 65-
74): 30.7 % 

NHIS 2001 (aged ≥ 
75): 38.1 % 
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Race/Sex Dementia prevalence Dementia incidence 
(per 100 PYs) 

Global cognition and 
processing speed 

Rate of cognitive 
decline 

Prevalence of 
hypertension Prevalence of diabetes 

CHS (5.4-year): 2.11% 
in 65-74, 5.64% in 75-

84, 40.39% in ≥ 85; 

White 
Men: 

EPESE: 3.5% in 65-74, 
5.1% in 75-84, 7.2% in 

≥ 85; 
 

EPESE (3-year): 0.1% 
in 65-74, 6.0% in 75-

84, 4.7% in ≥ 85; 
CHS (5.4-year): 1.37% 
in 65-74, 3.57% in 75-

84, 8.43% in ≥ 85; 

  

NHANES 1999-2004 
(aged 60-69): 56.0%) 
NHANES 1999-2004 
(aged ≥ 70): 63.3% 

NHIS 2001 (aged 65-
74): 22.8 % 

NHIS 2001 (aged ≥ 
75): 21.7 % 

Black 
Women 

EPESE: 2.8% in 65-74, 
13.5% in 75-84, 10.8% 

in ≥ 85; 

EPESE (3-year): 2.4% 
in 65-74, 8.3%  in 75-

84, 4.4% in ≥ 85; 
CHS (5.4-year): 1.82% 
in 65-74, 5.08% in 75-

84, 8.66% in ≥ 85; 

  

NHANES 1999-2004 
(aged 60-69): 84.1% 
NHANES 1999-2004 
(aged ≥ 70): 83.1%  

NHIS 2001 (aged 65-
74): 31.2% 

NHIS 2001 (aged ≥ 
75): 25.9%  

White 
Women: 

EPESE: 1.7% in 65-74, 
10.1% in 75-84, 11.9% 

in ≥ 85; 

EPESE (3-year):: 7.9% 
in 65-74, 11.2% in 75-

84, 12.8% in ≥ 85; 
CHS (5.4-year): 1.04% 
in 65-74, 4.24% in 75-

84, 10.82% in ≥ 85; 

  

NHANES 1999-2004 
(aged 60-69): 58.4% 
NHANES 1999-2004 
(aged ≥ 70): 78.8% 

NHIS 2001 (aged 65-
74): 18.4% 

NHIS 2001 (aged ≥ 
75): 16.6% 

*Adjusted by socioeconomic status and health-related conditions.  
NOMAS=North Manhattan Study 

Table 2 Continued 
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5.0  PROPOSAL OF NEW STUDIES 

5.1 STUDY OBJECTIVES AND HYPOTHESES 

This proposal aimed to address these limitations, and would test for racial differences using 

neuroimaging data obtained with a very high resolution methodology in a cohort of very old (age 

≥ 80 years) blacks and whites, for whom extensive characterizations of socioeconomic status, 

cardiovascular diseases, cognitive functions, and other health-related conditions were obtained ten 

years prior to and four years post the baseline brain MRI scans. Moreover, follow-up brain MRI 

and dementia adjudication data are also available for these very old participants 3 years after the 

baseline MRI visit. This approach would allow for a systematic comparison of brain structural 

characteristics between very old blacks and whites in a longitudinal setting, and also to explore 

other mechanisms beyond the vascular pathway that may explain the racial differences in brain 

structural changes. 

The overall study hypotheses are as follows: 

1. Compared to very old whites, very old blacks have lower cognitive functions and worse 

brain structural profiles; lower cognitive functions in very old blacks can be explained by 

their worse brain structural profiles. 
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2. Compared to very old whites, very old blacks have higher burden of vascular risk factors; 

worse brain structural profiles in very old blacks can be explained by their higher burden 

of vascular risk factors.  

5.2 STUDY POPULATION 

The Health ABC study is a prospective observational study of older adults aimed at characterizing 

body composition and its relationship to physical changes with age. 3075 well-functioning black 

and white community-dwelling older adults were recruited from a sample of white Medicare 

beneficiaries selected at random and all age-eligible black residents in designated ZIP code areas 

in and around Memphis, Tennessee and Pittsburgh, Pennsylvania between March 1997 and July 

1998. The inclusion criteria were: 70-79 years old, not having any self-reported difficulty in 

walking one quarter mile, walking up 10 steps, or performing basic activities of daily living. 

Persons with a life-threatening cancer or plans to move out of the area within 3 years were 

excluded. Therefore, subjects in the Health ABC study were healthier than the general population 

of similar ages, in terms of physical functioning and mobility.  

During 2006-2007, 819 Health ABC study subjects were seen at the Pittsburgh site, and 

among them 339 were eligible and willing to participate in the HBP study (Figure 5). The inclusion 

criteria of the HBP study were: able to walk without assistance, completed the 6-meter walking 

test, and eligible for a MRI. In the end, 314 underwent 3-T brain MRI exams, and 283 had complete 

DTI data. Therefore, compared to the general population of similar ages, subjects in the HBP study 

should be healthier in terms of walking performance. 
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Compared to the 1.5-Tesla MRI, the 3.0-Tesla sequence enables a higher signal-to-noise 

ratio, which provides a more accurate volumetric quantification. Mean diffusivity of gray matter 

and fractional anisotropy of white matter measure the micro-structural integrity of normal 

appearing brain tissues respectively. Moreover, extensive data were also collected for cognitive 

functions and vascular risk factors in this study. Since about 40% of the 314 subjects scanned with 

3.0-Tesla brain MRI are blacks, this sample provides a unique chance of detecting racial 

differences in brain macro- and micro-structural characteristics, cognitive impairments, and 

vascular risk factors between very old blacks and whites. 

 

Figure 5 Flow chart of subject enrollment in the Healthy Brain Project 

5.3 MEASURES OF COGNITIVE FUNCTIONS  

The Modified Mini-Mental State Exam (3MS) is a revised version of the Mini-Mental State Exam 

(MMSE) 148, and is recognized as a valid tool for dementia screening in the general population 149. 
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Teng reported its test-retest reliability ranging from 0.91 to 0.93, and with a cutting score of 79/80 

it had a sensitivity of 91% and a specificity of 97% for dementia 150. Moreover, the 3MS test has 

better reliability and validity for dementia or cognitive impairment compared to the MMSE test 

149. The scoring range of the 3MS test (0 to 100 points) is much wider than the MMSE test (0 to 

30 points), and meanwhile both have strongly skewed distribution. A study in Canada 151 reported 

a median score of 85 in the overall elderly (age ≥ 65 years) and of 72 in the oldest old (age ≥ 85 

years) respectively, and also found less ceiling effect in the 3MS test than in the MMSE test.  

Digit Symbol Substitution Test (DSST) is a pencil-and-paper test of psychomotor 

performance in which participants are given a key grid of number and matching symbols and a test 

section with numbers and empty boxes. The completion time is 90 seconds, and the score is the 

number of correct number-symbol matches, which can range from 0 to 100. DSST is very simple 

to administer and has high test-retest reliability 152. It measures not only information processing 

speed, but also executive function, working memory, and visuo-spatial attention 153. Moreover, the 

adjustment of DSST can explain aging-related cognitive declines in memory and executive 

function 153,154, both of which are commonly impaired in dementia. Lower DSST scores predicted 

higher incidence of dementia in 6.5 years after baseline in the elderly 155. 

5.4 NEW STUDY: WHITE MATTER HYPERINTENSITIES, GRAY MATTER 

INTEGRITY AND COGNITION IN OCTOGENARIAN BLACKS AND WHITES  

Authors: Ge Liu a* , MS; Ben Allen b* , PhD; Howard Aizenstein c , MD; Robert Boudreau a , PhD; 

Anne Newman a, MD; Kristine Yaffed, MD; Stephen Kritchevsky e, PhD; Lenore Launer f, PhD; 

Suzanne Satterfield g, MD; Eleanor Simonsick h, PhD; Caterina Rosano a, MD. 
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5.4.1 Abstract 

Objective: To quantify racial differences in brain macro-and micro-structure in a cohort of 

octogenarians, and to examine whether these differences would contribute to racial differences in 

cognition.  

Methods: A cross-sectional study of 283 adults 79-89 years old (59.4% white; 42.0% women) 

with data on white matter hyperintensities (WMH), gray matter atrophy (GMA) and diffusion 

tensor imaging of normal appearing white and gray matter (fractional anisotropy and mean 

diffusivity). Standardized betas (sβ) of race predicting cognition (digit symbol substitution test 

(DSST), modified mini-mental state test (3MS) ) and neuroimaging markers were computed in 

multivariable regression models adjusted for age, sex, literacy, smoking, drinking, income, 

hypertension and diabetes. Bootstrapping was applied to test the hypothesis that neuroimaging 

markers would mediate racial differences in cognition.  

Results: In multivariable models, black race was associated with lower DSST (sβ=-.18, p=.01), 

lower 3MS (sβ=-.15, p=.004) and higher WMH (sβ=.15, p=.045), but also with lower mean 

diffusivity (i.e. higher gray matter micro-structural integrity, sβ=-.14, p=.047). WMH and mean 

diffusivity were each inversely associated with DSST (sβ=-.17, p=.008, sβ=-.20 p=.003) and 3MS 

(sβ=-.17, p=.004, sβ=-.16, p=.011); however, only mean diffusivity significantly changed the 

racial differences in DSST and 3MS, while WMH did not.  

Conclusions: Among adults who survive to very old age, higher microstructural integrity of gray 

matter in blacks may contribute to reduce racial differences in cognition.  Future studies should 

examine whether higher microstructural integrity of gray matter is a characteristic of blacks 
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surviving to very old age, and whether maintaining their microstructural integrity would reduce 

racial disparities in cognition.  
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5.4.2 Introduction  

Racial differences in dementia represent an urgent public health problem, though the underlying 

neural correlates are poorly understood.  Neuroimaging studies have yielded inconsistent or 

indirect evidence for these neural correlates. Several studies have found no significant racial 

differences in gray matter volume or white matter hyperintensities 56,135,136,138,156. Other studies 

report that blacks are more likely to have severe white matter lesions and greater subclinical brain 

infarcts as compared to whites,53,54 but one study reported lower brain atrophy in blacks compared 

to whites.55 

Lower cardiometabolic health and socioeconomic status in blacks than in whites have been 

suggested as explanatory factors of racial disparities in cognition, but this evidence is also 

inconsistent.  A recent longitudinal study of cognitively normal adults aged ≥ 65 years concluded 

that reducing ethnic disparities in diabetes could reduce racial differences in incident dementia by 

17%.157 Conversely, in another study of community-dwelling adults aged ≥ 70 years,158 racial 

differences in cognition were not explained by stroke, hypertension, or diabetes. Furthermore, 

studies of racial disparities in dementia have seldom applied objective neuroimaging measures.  

Many studies have relied on crude visual ratings of neuroimaging markers of macro-structural 

brain integrity, not accounting for micro-structural abnormalities in the brain’s parenchyma.  

In the current investigation, we integrate neuroimaging markers of micro- and macro-

structure in elderly blacks and whites aged 79 to 89, who have been extensively characterized as 

part of the Health, Aging and Body Composition study over the ten years preceding brain imaging. 

The goal is to identify potential contributing factors to racial differences in cognition. Specifically, 

we quantify the relative contribution of neuroimaging markers to performance on the mini-mental 

state examination test, which has been previously used as a marker of dementia in this cohort 159 
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and on the digit symbol substitution test, a well-established indicator of dementia, disability and 

mortality.155,160,161   

5.4.3 Methods 

5.4.3.1 Subjects 

Participants of the Health, ABC study have been seen at regular intervals at the Pittsburgh site 

from 1997-98 to 2011-12. Of the 1,527 participants enrolled in the study in 1997-98 at the 

Pittsburgh site, 819 were alive and 586 of these were invited in 2006-07 to participate in the 

Healthy Brain Project (HBP), a neuroimaging study of cognition and mobility, whereas the other 

233 were not invited because they were walking with a cane and/or did not have mobility 

performance measures and/or they had been hospitalized for major clinic events in the previous 3 

months (fracture, psychiatric problem). Among the 586 invited to the study, 99 were ineligible for 

a brain MRI, 145 were not interested or refused and 342 were eligible and interested. Of these, 283 

were included in this study who had complete data on Diffusion Tensor Imaging (DTI) obtained 

via 3 Tesla magnet. This study was approved by the institutional review boards of the University 

of Pittsburgh and the University of Tennessee, Memphis, and that of the Coordinating Center, the 

University of California San Francisco. All participants signed a written informed consent. 

5.4.3.2 Demographic, Cardiometabolic Conditions, and Behavioral Risk Factors  

Prevalent disease variables were computed at the time of MRI for coronary heart disease (CHD), 

hypertension, myocardial infarction, stroke and diabetes using data collected since study entry in 

1997-98. CHD was determined through self-report or Health Care Financing Administration 

(HCFA) data of myocardial infarction, angina, bypass or angioplasty.  Determination of 
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cardiovascular disease included self-reported CHD, cerebrovascular disease or HCFA report of 

stroke. Study participants with average sitting systolic blood pressure ≥ 140 mmHg or diastolic 

blood pressure ≥ 90 mmHg concurrently or before the year of MRI were classified as hypertensive. 

Myocardial infarction was determined through coronary heart disease history and 

myocardial event during Health ABC follow-up. Stroke was determined through self-reported 

stroke, transient ischemia attack, or carotid endarterectomy. Diabetes mellitus status was 

determined through self-report, use of hypoglycemia medication, a fasting glucose of ≥126 mg/dl, 

or a 2-hour glucose tolerance test ≥ 200mg/dl, in accordance with the American Diabetes 

Association criteria in 2002.  

Age was calculated as number of years from date of birth to the MRI date. Body mass 

index was calculated as weight (kg)/height2(m) at the HBP baseline. Education and family income 

were collected in the Health ABC study 1997-98, and were dichotomized at >high school 

education and at ≥ 25,000 dollars annually. Health literacy was quantified in 2006 using the score 

from the Rapid Estimate of Adult Literacy in Medicine, and was dichotomized at literacy level ≥ 

9th grade. Serum creatinine, smoking status, drinking status, and physical activities (kcal/kg/week, 

including walking and stairs climbing) were collected in the Health ABC study in 2006 or 2007, 

whichever was concurrent with year of MRI scanning.   
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5.4.3.3 Cognitive Assessment 

The DSST was administered to all participants at regular intervals from study entry to time of MRI 

in 2006-07 according to a protocol previously described.161 The DSST is a pencil-and-paper test 

of psychomotor performance162, in which the subject is given a key-grid of numbers and matching 

symbols and a test section with numbers and empty boxes. The test consists of filling in as many 

empty boxes as possible with a symbol matching each number. The testing time is 90 seconds.  

The score is the number of correct number-symbol matches. The strategy to solve the DSST 

consists of sequential encoding and retrieval of numbers and matching symbols. Short-term 

memory, perceptual organization, visuomotor coordination, and selective attention are important 

factors that determine performance. The DSST has high test-retest reliability.163 

The modified mini-mental state examination (3MS) was administered to all participants at 

regular intervals from study entry to time of MRI. The 3MS is a brief, general cognitive battery 

with components for orientation, concentration, language, praxis, and immediate and delayed 

memory.148 Possible scores range from 0 to 100, with higher scores indicating better cognitive 

function.    

5.4.3.4 Magnetic Resonance Imaging Protocol and Summary Measures  

Participants were scanned with a Siemens 12-channel head coil on a 3-T Siemens Tim Trio MR 

scanner at the Magnetic Resonance Research Center of the University of Pittsburgh, using a 

previously published protocol 164-166. Details on measurements of white matter hyperintensities 

(WMH), gray matter volume, intracranial volume (ICV) and diffusion tensor (mean diffusivity 

and fractional anisotropy) have been previously published 165. 

WMH volume was obtained from T2-weighted FLAIR image using an automated method. 

Total WMH volume was estimated by summing all voxels classified as WMH and normalized for 
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total brain volume.  WMH was highly skewed (skewness = 2.4), thus, log transformed values were 

used (skewness = -.49).   

Gray matter volume was calculated by segmenting the skull-stripped T1-weighted image 

in native anatomical space using the FAST-FMRIB's Automated Segmentation Tool 167. The total 

gray matter volume was estimated in cubic millimeters by summing all gray matter voxels. Total 

ICV was computed as the volume contained within the ‘inner skull’ using the brain extraction tool 

168. Brain atrophy index was computed as: (ICV - total gray matter volume) / ICV.  

Mean diffusivity was obtained from the diffusion weighted images as an average 

magnitude of molecular motion or measure of cell structure damage 169. DTI data was pre-

processed using the FMRIB's Diffusion Toolbox 170 to remove eddy current distortions, and the 

tensors were computed and diagonalized to determine the eigenvalues from which mean diffusivity 

(MD) maps were computed.  Following automated segmentation of white matter, gray matter, and 

cerebrospinal fluid obtained from the T1-weighted images, MD maps were restricted to normal 

appearing gray matter. Voxels with an MD > 1.3 x 10-3 mm2/s were removed from the MD maps 

to reduce any confounding partial volume effect induced from cerebrospinal fluid. 

5.4.4 Statistical Analysis 

All sample characteristics were tested for racial differences using chi-squared tests for 

dichotomous and t-tests for continuous variables. Due to the skewed distribution of 3MS, WMH, 

physical activity, and serum creatinine, medians and inter-quartile ranges were calculated, and 

median tests were used to test for racial differences.  Analyses with 3MS were conducted with 

both raw 3MS and transformed 3MS (square root of (100-3MS)). Log transformed WMH was 

used in all analyses.  
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Slopes of DSST and 3MS were computed for blacks and whites separately, using data 

obtained at all available time points in 1997-98 (study entry), 1999-2000, 2001-2002, 2004-2005, 

and 2006-2007 (time at which the MRI was obtained). Racial differences in rate of decline were 

tested using the interaction term between visit year and race in mixed effects models. 

To test for racial differences in cognitive tests scores at time of MRI and in neuroimaging 

markers, linear regression models were constructed with race as the main independent variable, 

adjusted for variables that are known to be related to race, cognition and neuroimaging: age, sex, 

literacy, smoking, drinking, income, hypertension and diabetes. To quantify the contribution of the 

neuroimaging markers in explaining the racial difference in cognition, ANCOVA models with 

cognitive test scores as the dependent variables, race as the main independent variable, and age, 

sex, literacy, smoking, drinking, income, hypertension, and diabetes as covariates were 

constructed. Then a neuroimaging marker differing by race was added to the ANCOVA model, 

and the race coefficient and its significance were compared before and after the adjustment of the 

neuroimaging marker. The mediation effects of neuroimaging markers on racial differences in 

cognition were further tested using the method proposed by Preacher and Hayes (2008).  

To appreciate the potential clinical relevance of the neuroimaging markers differing by 

race, multivariable linear regression models with DSST or 3MS as the dependent variable and a 

neuroimaging marker as the main independent variable were examined separately for blacks and 

whites. The association between the neuroimaging marker and the cognitive test score was tested 

after adjusting for age, sex, literacy, smoking, drinking, income, hypertension and diabetes. 

Rate of cognitive decline were computed for blacks and whites in HBP separately, using 

3MS and DSST data obtained at all available time points in 1997-98 (study entry), in 1999-2000, 

in 2001-2002, in 2004-2005 and in 2006-07 (time at which the MRI was offered). Racial 
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differences in rate of decline were tested using the interaction term of time by race in mixed effect 

models.  

Exploratory analyses to address selection bias included all participants who returned for 

the clinic visit in 2006-07 at the Pittsburgh site, and compared population characteristics in those 

included in the HBP to those not included. Linear regression models were built with population 

characteristics as dependent variable, and race, cohort (e.g. included in HBP or not), and the 

interaction of race by cohort as covariates. A significant interaction between race and cohort would 

be interpreted as an indication that racial differences in cognitive function among those included 

in the HBP were different from racial differences among those not included in the HBP. 

5.4.5 Results 

Compared to whites, blacks consisted of more women, reported fewer years of education, lower 

health literacy and lower family income, but were of similar age (Table 3). Racial differences in 

cardiometabolic conditions indicated a higher cardiometabolic burden in blacks compared to 

whites; however, these differences were only significant (p<0.05) for diabetes and body mass 

index, not for other measures (Table 3).  

In multivariable models adjusted for age, sex, literacy, smoking, drinking, income, 

hypertension and diabetes (Table 4), black race was associated with significantly lower DSST, 

lower 3MS and higher WMH but also with lower MD, indicating higher gray matter integrity. 

Racial differences in gray matter atrophy or fractional anisotropy were not significant (p>0.05 for 

both).  

The associations between black race with lower DSST and 3MS were robust to adjustment 

for WMH and MD (Table 5), and were also independent of other covariates. In HBP subjects, 
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racial differences in DSST were similar at study entry and at time of MRI (Figure 6), and cognitive 

declines over time were also similar in blacks compared to whites (p=0.1933 for time by race 

interaction in the mixed effect model). However, racial differences in 3MS were smaller at study 

entry than at time of MRI (Figure 7), and cognitive declines over time were faster in blacks 

compared to whites (p=0.002 for time by race interaction in the mixed effect model). 

Mediation models testing the explanatory role of neuroimaging measures on racial 

differences in cognition indicated that MD significantly suppressed the racial differences in 3MS 

(indirect effect=0.5119; 95% CI=0.1469, 1.1390) and DSST (indirect effect=1.3880; 95% 

CI=0.4502, 2.6882). By contrast, WMH did not significantly mediate or suppress the racial 

differences in 3MS (indirect effect=-0.1397; 95% CI=-0.5014, 0.0501) or DSST (indirect effect=-

0.3489; 95% CI=-1.2398, 0.1269).  

Further study of the association between neuroimaging measures and cognitive tests 

stratified by race revealed that the associations of higher MD and higher WMH with lower DSST 

and lower 3MS were stronger for blacks than for whites (Table 6) after adjustment for age, sex, 

literacy, smoking, drinking, income, hypertension and diabetes.  

Exploratory analyses to address selection bias showed that participants included in this 

study were more likely to be white, male, and have higher DSST and 3MS scores compared to the 

entire group of participants alive at time of the study (Table 7). Moreover, racial differences in 

DSST and 3MS in HBP subjects were similar to those observed in the parent cohort at time of 

MRI (interaction terms of race by cohort for DSST and 3MS: p=0.47 and 0.84, respectively).  
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5.4.6 Discussion 

In this study of very old adults living in the community, blacks who survived to a very old age had 

greater micro-structural gray matter integrity compared to whites of similar age, and such greater 

microstructural integrity appeared to explain at least some of the racial differences in cognition. 

Moreover, greater micro-structural gray matter integrity was related to higher cognitive scores in 

blacks but not in whites, even after accounting for other risk factors for lower cognition. If 

confirmed, these results would suggest that gray matter microstructure may be protective against 

cognitive decline for blacks displaying exceptional survival.  Longitudinal studies are warranted 

to determine whether gray matter micro-structure buffers the negative impact of macro-structural 

brain characteristics on dementia risk. 

Diffusion tensor imaging of gray matter has been used to uncover micro-

structural abnormalities, otherwise undetectable on conventional imaging. Specifically, mean 

diffusivity of gray matter increases with old age,87,88 development of Alzheimer’s, and 

mild cognitive impairment.80,171  Higher mean diffusivity of gray matter may indicate loss of 

neurons, dendrites, and enlargement of extracellular space84 in normal appearing gray 

matter.  Given that the progression of structural brain abnormalities can be delayed by 

interventions on cardiometabolic risk factors late in life,172-175 addressing micro-structural 

abnormalities prior to macro-structural damage may substantially impact the development of 

dementia in blacks, especially for those who survive to a very old age.  

While the determinants of gray matter micro-structural integrity are largely unknown, some 

evidence suggests that diabetes20,176 is related to lower gray matter micro-structural integrity.  

Exploratory analyses of the factors potentially contributing to mean diffusivity in this sample 
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confirm these associations (Figure 8). Given the higher prevalence of cardiometabolic conditions 

in blacks compared to white, blacks would be expected to have lower micro-structural integrity.  

However, in our sample, the higher micro-structural integrity in blacks compared to white (e.g. 

lower mean diffusivity) was robust to adjustment to cardiometabolic conditions.  Micro-structural 

abnormalities may accumulate over a long period time, whereas our measurements of 

cardiometabolic factors mostly extended to ten years prior to the neuroimaging measurements. It 

is possible that measurement of risk factors in mid-life would be more helpful to explain the racial 

differences in mean diffusivity hereby observed.  Higher gray matter micro-structural integrity in 

blacks may also be a result of survival bias. The black participants of this sample appear to have 

survived to an exceptionally old age compared to 75 years of life expectancy at birth according to 

the national vital status reports 2010. Although we cannot completely rule out this possibility, 

survival bias existed in both very old blacks and very old whites, and there is no evidence of greater 

survival bias in HBP blacks than in HBP whites (results not shown). 

Our finding of racial disparities in DSST and 3MS is congruent with previous research.136  

Severity of cognitive decline in our sample was also similar to those observed of the parent 

cohort165 However, contrary to prior reports of accelerated cognitive decline in blacks compared to 

whites131,  we found no racial differences in cognitive decline as measured via DSST (Figure 6).  

One possibility is that higher micro-structural integrity in blacks offsets an otherwise accelerated 

decline. Recently, higher DSST has been shown to be a marker of longevity among a 

predominantly white cohort (≥ 65 years old) with a high burden of WMH.160  Therefore, the 

implications of preserved microstructural integrity for exceptional longevity should also be 

explored. 
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Together, this study provides novel findings regarding racial differences in cognition and 

neuroimaging markers. However, the cross-sectional nature of this study limited our ability to 

determine whether longitudinal changes in gray matter integrity are paralleled by improved or 

stabilized cognitive performance. In addition, DSST provides a narrow index of cognitive function.  

Future work should include a more comprehensive neuropsychological assessment.  In sum, these 

findings support future work with multi-ethnic samples which examine longitudinal change in gray 

matter micro-structural integrity with multiple assessments cognitive performance. 
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Table 3 Population characteristics stratified by race. N (%) is reported unless noted otherwise 

Population characteristics White (n =168) Black (n =115) p--Valueb 
Demographic factors    
Age (year), mean (SD) 83.2 (2.84) 82.7 (2.68) 0.20 
Gender, female  84 (50) 79 (69) 0.001 
Psychosocial factors    
Health literacy: ≥ 9th grade 150 (94) 72 (67)d <.001 
Education: >high school 101 (60)d 44 (38) <.001c 
Family income: ≥ 25K annual 99 (69) 36 (34)d <.001c 
Cardiometabolic conditions    
Diabetesa 35 (20) 41 (35)d 0.005c 
Cardiovascular diseasesa 47 (28)d 36 (31) 0.60c 
Hypertensiona 134 (80) 98 (86) 0.20 
Coronary heart diseasea 38 (22)d 29 (25) 0.60c 
Myocardial infarctiona 25 (15)d 20 (17) 0.60c 
Strokea 14 (8) 11 (9) 0.70 
Body mass index (kg/m2), mean (SD) 26.7 (4.02)d 28.6 (4.77) <.001 

Serum creatinine (mg/dL), median (IQR) 0.98 (0.84, 
1.16)d 

1.03 (0.87, 
1.17)d 0.10c 

Lifestyle and other factors    
Smoker, ever 77 (46)d 57 (50)d 0.60c 
Drinker, current 106 (66) 34 (31)d <.001c 
Physical activity (kcal/kg/week), median 
(IQR) 2.7 (0.8, 7.4) 1.7 (0.4, 4.8) 0.10 

ApoE, presence of allele 4 32 (29) 36 (23)d 0.20c 
Abbreviations: IQR=inter--quartile range; SD=standard deviation 
aPrevalence at time of MRI.  
bp--Values were calculated from median test for 3MS, physical activities and serum creatinine, 
from student’s t--test for other continuous variables, and from Chi--squared test for categorical 
variables 
cStatistically significant (p<0.05) differences between males and females in the whole sample. 
dStatistically significant (p<0.05) differences between males and females within each race. 
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Table 4 Brain structural measures and cognitive test scores stratified by race 

White (n =168) Black (n =115) P Valuec 
Brain structural measures:   
White matter hyperintensities a, median (IQR) 0.0032 (0.0010, 0.0067)e 0.0041 (0.0011, 0.0124)  0.045 
Gray matter atrophy b, mean (SD) 0.72 (0.021) 0.72 (0.025)  0.5 
Mean diffusivity, mm2s-1, mean (SD) 1.32 (0.106) 1.28 (0.114) 0.047 
Fractional anisotropy, mean (SD)  0.36 (0.013) 0.36 (0.015) 0.26 
Cognitive tests: 
Digit symbol substitution test (DSST), points, mean (SD) 40 (12.56) 32 (13.49) 0.01 
Modified mini--mental state score (3MS), median (IQR), 
points 96 (93, 98) 91.5 (86, 96)  0.004 

Abbreviations: IQR=inter--quartile range; SD=standard deviation 
aWhite matter hyperintensities: total volume of white matter hyperintensities/total brain volume. 
bGray matter atrophy: (intracranial volume--gray matter volume)/ intracranial volume. 
cp-Values were calculated from linear regression models adjusted for age, sex, literacy, smoking, drinking, income, hypertension 
and diabetes. 
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Table 5 Linear regression models with race as the main independent variable and digit symbol substitution test (DDST) score and 
modified mini-mental state exam (3MS) score as dependent variables 

Model Independent variable 
Standardized coefficient (unstandardized coefficient, standard error), p 

value 
DSST 3MS* 

1 Race -.18 (-4.97, 1.90), p=.01 -.15 (-2.11,.87), p=.017 (0.004) 

2 
Race -.16 (-4.28, 1.89), p=.03 -.13 (-1.76,.87),p=.044 (0.011) 
White matter 
hyperintensities -.17(-3.55, 1.33), p=.008 -.17 (-1.78,.61), p=.004 (0.033) 

3 
Race -.21 (-5.74, 1.89), p=.003 -.18 (-2.41,.87), p=.006 (0.001) 
Mean diffusivity -.20 (-23.60, 7.84), p=.003  -.16 (-9.32,3.63), p=.011 (0.028) 

All models were adjusted for age, sex, literacy, smoking, drinking, income, hypertension, and diabetes. 
* p values in parentheses are from models using root square of (100-3MS) as dependent variables
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Table 6 Linear regression models stratified by race with neuroimaging markers as the main independent variables and digit symbol 
substitution test (DDST) score and modified mini-mental state exam (3MS) score as dependent variables 

Model Independent 
variable 

Standardized coefficient 
(unstandardized coefficient , standard 

error), p value for DSST 

Standardized coefficient ( unstandardized 
coefficient , standard error), p value* for 

3MS 
Blacks  Whites  Blacks  Whites  

1 Mean diffusivity -.20 (-21.68,12.43), 
p=.09 

 -.20 (-24.08,10.92), 
p=.03 

-.19 (-11.84, 6.18),  
p= .27 (.06) 

-.14 (-7.18,4.71), 
p= .13 (.10) 

2 White matter 
hyperintensities 

-24 (-4.07,1.74), 
p=.02 

-.10 (-2.49,2.15), 
p=.30 

-.22 (-2.20,.86),     
p=.01 (.01) 

-.10 (-1.03,.92),   
p= .27 (.20) 

All models were adjusted for age, sex, literacy, smoking, drinking, income, hypertension and diabetes. 
*  p-values in parentheses are from models using root square of (100-3MS) as main independent variables 
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Figure Legend: Black lines represent black participants and gray lines represent white participants. 
The solid lines represent participants in the Healthy Brian Projects (HBP); the dashed lines 
represent Health, Aging, and Body Composition Study (HABC) participants who were seen during 
2006-07 at the Pittsburgh site but were not enrolled in the HBP study. 

Figure 6 Mean scores of Digit Symbol Substitution Test (DSST) by study subgroup over time 

Included in HBP (alive in 2006-07, received MRI)  
Not included in HBP (alive in 2006-07, no MRI)  

1997-98 2001-02 2004-05                2006-07 

Study visit, years 

Whites 

Blacks 
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Figure Legend: Black lines represent black participants and gray lines represent white participants. 
The solid lines represent participants in the Healthy Brian Projects (HBP); the dashed lines 
represent Health, Aging, and Body Composition Study (HABC) participants who were seen during 
2006-07 at the Pittsburgh site, but were not enrolled in the HBP study. 

Figure 7 Median scores of Modified Mini-mental State Exam (3MS) by study subgroup over 
time

Whites 

Blacks 

Included in HBP (alive in 2006-07, received MRI)  
Not included in HBP (alive in 2006-07, no MRI)  

1997-98            1999-2000        2001-02           2004-05          2006-07 

Study visit, years 
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Table 7 Characteristics of 2006-07 cohort (n=819), MRI cohort (n=314), and those not enrolled 
(n=505)

N=819 N=314 N=505 
(819-314) 

P-valuea: N=314 vs. 
N=505 

Age, year, mean (SD) 82.4 (2.81) 82.0 (2.75) 82.6 (2.82) 0.0017 
Male, n (%)  385 (47.01) 133 (42.36) 252 (49.9) 0.0354 
White race, n (%) 530 (64.71) 187 (59.55) 343 (67.92) 0.0148 
Education: > high school, n 
(%) 424 (51.83) 161 (51.44) 263 (52.08) 0.8584 

Modified Mini-mental Score 
(3MS), median (IQR) 91.4 (7.94) 92.4 (7.41) 90.8 (8.21) 0.0235 

Digit Symbol Substitution 
test (DSST),,  mean (SD) 35.9 (13.31) 38.3 (12.63) 34.4 (13.52) <.0001 

Diabetes, n (%) 207 (25.31) 78 (24.84) 129 (25.6) 0.8093 
Hypertension, n (%) 580 (70.82) 213 (67.83) 367 (72.67) 0.1386 
Systolic blood pressure, 
mmHg , mean (SD) 

134.3 
(20.41) 134.6 (18.4) 134.1 

(21.59) 0.7258 

Diastolic blood pressure, 
mmHg , mean (SD) 69.1 (10.41) 69.4 (9.8) 68.9 (10.78) 0.4687 

Body mass index, kg/m2, 
mean (SD) 27.7 (4.7) 27.4 (4.5) 27.9 (4.81) 0.1509 

Abbreviations: IQR=inter-quartile range, SD=standard deviation 
a p-Values were calculated from median test for 3MS, from student’s t-test for other continuous 
variables, and from Chi-squared test for categorical variables 
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Figure 8 Mean diffusivity stratified by population characteristics and race, and significant 
associations indicated by asterisks 
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6.0  FURTHER ANALYSES AND DISCUSSION 

6.1 FURTHER ANALYSES STRATIFIED BY SEX  

To explore whether racial differences in brain structure differ by sex, Table 8 described age-

adjusted racial differences in brain imaging markers stratified by sex. Racial differences in gray 

matter atrophy and fractional anisotropy were still non-significant within either sex. However, 

white matter hyperintensities were significantly greater in black men than in white men, and racial 

differences in mean diffusivity were only significant in women but not in men. Therefore, previous 

results of lower mean diffusivity in blacks than in whites were actually driven by lower mean 

diffusivity in black women than in white women.  

To study potential reasons for better gray matter integrity in the black woman of the HBP 

study as compared to the white women, Table 9 compared a variety of health-related conditions 

between black and white women in the HBP study at the Health ABC study baseline and at the 

HBP study baseline respectively.  

As shown in Table 9, black women had lower level of health literacy, higher prevalence of 

hypertension and diabetes, higher prevalence of cardiovascular disease (CVD) and coronary heart 

disease (CHD), higher BMI, lower 3MS and DSST scores, and higher percentage of ApoE allele 

4 carriers. All these racial differences indicated worse health conditions in black women than in 

white women. The only possible factors that might explain the results of racial differences in gray 

matter integrity in women are the current drinking rate and the triglyceride level, which are both 

lower in black women than in white women. However, the correlations between mean diffusivity 

and triglyceride level or current drinking status were not significant (p>0.2) in the HBP women. 
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Therefore, none of the health-related conditions examined in Table 9 explained the racial 

differences in gray matter microstructural integrity in women. 
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Table 8 Age-adjusted racial differences in brain imaging markers stratified by sex 

 Men Women 
 White (n =84) Black (n =36)   

p-
value 

White (n =84) Black (n =79)   
p-

value  LSmean* SE LSmean* SE LSmean* SE LSmean* SE 

Mean diffusivity 0.00133 0.000011 0.00134 0.0000
16 0.887 0.00131 0.000011 0.00126 0.0000

12 0.006 

Fractional 
anisotropy 

0.362 0.0015 0.359 0.0024 0.307 0.356 0.0014 0.355 0.0015 0.894 

Gray matter 
volume/ 
intracranial 
volume 

0.278 0.0026 0.273 0.0040 0.368 0.282 0.0024 0.285 0.0024 0.376 

ln(white matter 
hyperintensities) 

-6.56 
(0.00142)^ 

0.137 -6.02 
(0.00243)^ 

0.208 0.033 -6.01 
(0.00245)^ 

0.138 -6.32 
(0.00180)^ 

0.142 0.115 

*LSmeans are age adjusted least square means of outcome variable in the two races in ANCOVA models constructed for each gender 
^Retransformed value of the LSmean to its raw scale. 
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Table 9 Characteristics of HBP women subjects by race at the Health ABC study baseline and at the HBP baseline 

 HABC Baseline HBP Baseline   
Sample Characteristics White (n =96) Black (n =85) p-Value* White (n =96) Black (n =85) p-Value* 
Age (year), mean (SD) 72.8 (2.63) 72.8 (2.69) 0.9803 82.8 (2.67) 82.8 (2.74) 0.9235 
Education: >high school, n (%) 46 (47.92) 33 (38.82) 0.2183 46 (47.92) 33 (38.82) 0.2183 
Health Literacy: ≥ 9th grade, n (%) 87 (93.55) 61 (76.25) 0.0013 87 (93.55) 61 (76.25) 0.0013 
Prevalent hypertension, n (%) 40 (42.11) 49 (57.65) 0.0373 70 (72.92) 67 (79.76) 0.2826 
Prevalent diabetes, n (%) 5 (5.21) 11 (12.94) 0.0674 15 (15.63) 24 (28.24)^ 0.0395 
Prevalent CVD, n (%) 9 (9.47) 19 (22.89) 0.0142 18 (18.75) 27 (31.76) 0.0432 
Prevalent CHD, n (%) 5 (5.26) 12 (14.46) 0.0373 11 (11.46) 21 (24.71) 0.0197 
Smoker, n (%) 33 (34.38) 35 (41.18) 0.3457 33 (34.38) 35 (41.18) 0.3457 
Current Drinker, n (%) 61 (63.54) 29 (34.12) <.0001 54 (61.36) 20 (25.32) <.0001 
Body mass index (kg/m2), mean (SD) 25.7 (4.04) 29.1 (5.4) <.0001 26 (4.21) 28.8 (5.09) <.0001 
SBP (mmHg), mean (SD) 135.6 (21.37) 139.7 (19.73) 0.1796 138.6 (20.76) 132.9 (16.52) 0.0475 
DBP (mmHg), mean (SD) 71.2 (9.65) 74.6 (10.25) 0.0241 70.4 (10.69) 68.4 (10.06) 0.2006 
Fasting TC (mg/dL), mean (SD) 216.7 (36.04) 221.2 (41.26) 0.4518 208.1 (40.16) 203.4 (46.09) 0.4845 
Fasting TG (mg/dL), median (IQR) 122 (96, 152) 106 (79, 138) 0.0100 109.5 (81, 153) 92 (74.5, 142) 0.0646 
Fasting LDL (mg/dL), mean (SD) 126.7 (33.13) 133.4 (37.01) 0.2090 120.5 (33.7) 120.8 (41.84) 0.9685 
Fasting HDL (mg/dL), mean (SD) 62.5 (16.34) 63.6 (16.99) 0.6803 61.3 (17.53) 61.4 (14.01) 0.9739 
IL-6, (mg/dL), median (IQR) 1.4 (0.9, 1.9) 1.5 (1, 2.4) 0.4456 2.0 (1.4, 3.6) 2.5 (1.7, 4.8) 0.0372 
ApoE, presence of allele 4, n (%) 21 (22.11) 32 (39.51) 0.0121 21 (22.11) 32 (39.51) 0.0121 
3MS, points, median (IQR) 95 (91, 97) 92 (88, 96) 0.0207 96 (93, 98) 93 (88, 97) 0.0031 
DSST, points, mean (SD) 46.2 (10.2) 38.3 (12.81) <.0001 39.9 (12.78) 33.8 (13.76) 0.0028 
*p-Values were calculated from t-test for continuous variables, from Chi-squared test for categorical variables, and from median 
test for 3MS and IL-6 
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6.2 SELECTION BIAS IN THE HBP STUDY 

As shown in Figure 5, only 41% (339 out of 819) of those who were seen at the Pittsburgh site of 

the Health ABC study in 2006-07 were recruited by the HBP study. It is possible that subjects 

enrolled in the HBP study were healthier than those not enrolled, and hence the results of racial 

differences in brain structure in the HBP study were biased. To examine potential selection bias in 

the HBP study, we compared characteristics of the HBP subjects with those not enrolled in the 

HBP study and who were seen in 2006-07 (Table 10) at the Pittsburgh site. Compared to those not 

enrolled, HBP subjects were 0.6 years younger, 7.5% more likely to be women, 8.4% more likely 

to be blacks, had 2 points higher median 3MS score and 3.9 points higher mean DSST score. 

However, there were no significant differences in education, hypertension, diabetes, BMI, or 

walking speed.  Compared to the inter-quartile range or standard deviation, selection bias in 3MS 

or DSST was relatively small. Therefore, we did not find substantial selection bias in the 

recruitment of the HBP study from the Health ABC study. It seems unlikely that differences in 

health characteristics between those included and those excluded would have impacted the results 

of racial difference in brain structure in the HBP study.  

In addition, Table 11 and Table 12 illustrate results of similar analyses of selection bias in 

blacks and in whites separately. HBP black subjects had higher cognitive function test scores and 

faster walking speed than black subjects not enrolled, and HBP white subjects had better cognitive 

functions and younger age than white subjects not enrolled. Further analyses showed that selection 

bias in 3MS or DSST did not differ by race (p>0.50 for the interaction term of race by HBP 

inclusion). Therefore, we did not find differential selection bias by race in the HBP study.  
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Table 10 Characteristics of Health ABC subjects seen at the Pittsburgh site during 2006-07 
(n=819), those enrolled in the MRI study (n=314), and those not enrolled (n=505)

Subjects seen 
at the 

Pittsburgh 
site during 
2006-07 

Subjects 
enrolled in 
the HBP 

study 

Subjects not 
enrolled in 
the HBP 

study 

P-value: 
N=314 vs. 

N=505 

N=819 N=314 N=505 

Age, year, mean (SD) 82.4 (2.81) 82.0 (2.75) 82.6 (2.82) 0.0017 

Male, n (%)   385 (47.01) 133 (42.36) 252 (49.9) 0.0354 

White Race, n (%)  530 (64.71) 187 (59.55) 343 (67.92) 0.0148 

Education: > high school, n (%) 424 (51.83) 161 (51.44) 263 (52.08) 0.8584 

3MS, median (IQR) 94 (88, 97) 95 (89, 97) 93 (87, 97) 0.0235* 

DSST,  mean (SD) 35.9 (13.31) 38.3 (12.63) 34.4 (13.52) <.0001 

Diabetes, n (%) 207 (25.31) 78 (24.84) 129 (25.6) 0.8093 

Hypertension, n (%) 580 (70.82) 213 (67.83) 367 (72.67) 0.1386 

SBP, mmHg , mean (SD) 134.3 (20.41) 134.6 (18.4) 134.1 (21.59) 0.7258 

DBP, mmHg , mean (SD) 69.1 (10.41) 69.4 (9.8) 68.9 (10.78) 0.4687 

BMI, kg/m2, mean (SD) 27.7 (4.7) 27.4 (4.5) 27.9 (4.81) 0.1509 

Walking speed, m/sec, mean 
(SD) 1.39 (0.341) 1.41 (0.342) 1.36 (0.339) 0.0561 

*p-value was obtained from the median test.
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Table 11 Characteristics of Health ABC black subjects seen at the Pittsburgh site during 2006-07 
(n=289), those enrolled in the MRI study (n=127), and those not enrolled (n=162)

Black 
subjects seen 

at the 
Pittsburgh 
site during 
2006-07   

Black 
subjects 

enrolled in 
the HBP 

study 

Black 
subjects not 

enrolled in the 
HBP study  

P-value: 
N=127 vs. 

N=162 

N=289 N=127 
N=162 

(289-127) 

Age, year, mean (SD) 82 (2.74) 81.8 (2.61) 82.2 (2.83) 0.1902 

Male, n (%)   109 (37.72) 42 (33.07) 67 (41.36) 0.1491 

Education: > high school, n (%) 106 (36.68) 50 (39.37) 56 (34.57) 0.4005 

3MS, median (IQR) 90 (84, 95) 92 (86, 95) 89 (82, 94) 0.0381* 

DSST,  mean (SD) 30.5 (13.4) 33.3 (12.83) 28.2 (13.47) 0.0014 

Diabetes, n (%) 101 (34.95) 43 (33.86) 58 (35.8) 0.7308 

Hypertension, n (%) 230 (79.58) 97 (76.38) 133 (82.1) 0.2311 

SBP, mmHg , mean (SD) 135 (20.6) 134.5 (18.64) 135.4 (22.06) 0.7306 

DBP, mmHg , mean (SD) 70 (10.88) 69.5 (10.3) 70.3 (11.33) 0.5189 

BMI, kg/m2, mean (SD) 28.9 (5.21) 28.5 (4.7) 29.3 (5.57) 0.2288 

Walking speed, m/sec, mean 
(SD) 1.3 (0.33) 1.3 (0.32) 1.2 (0.33) 0.0341 

*p-value was obtained from the median test.
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Table 12 Characteristics of Health ABC white subjects seen at the Pittsburgh site during 2006-07   
(n=530), those enrolled in the MRI study (n=187), and those not enrolled (n=343)

White 
subjects seen 

at the 
Pittsburgh 
site during 
2006-07 

White 
subjects 

enrolled in the 
HBP study  

White subjects 
not enrolled in 
the HBP study 

P-value: 
N=187 vs. 

N=343 

N=530 N=187 
N=343 

(530-187) 

Age, year, mean (SD) 82.5 (2.83) 82.1 (2.84) 82.8 (2.81) 0.0072 

Male, n (%)   276 (52.08) 91 (48.66) 185 (53.94) 0.2456 

Education: > high school, n (%) 318 (60.11) 111 (59.68) 207 (60.35) 0.8801 

3MS, median (IQR) 95 (91, 98) 96 (92, 98) 95 (90, 97) 0.0378* 

DSST,  mean (SD) 38.8 (12.32) 41.7 (11.32) 37.2 (12.58) <.0001 

Diabetes, n (%) 106 (20.04) 35 (18.72) 71 (20.76) 0.5745 

Hypertension, n (%) 350 (66.04) 116 (62.03) 234 (68.22) 0.1505 

SBP, mmHg , mean (SD) 133.9 (20.32) 134.6 (18.28) 133.4 (21.36) 0.5282 

DBP, mmHg , mean (SD) 68.6 (10.12) 69.4 (9.47) 68.2 (10.45) 0.2009 

BMI, kg/m2, mean (SD) 27 (4.25) 26.7 (4.21) 27.3 (4.27) 0.1276 

Walking speed, m/sec, mean 
(SD) 1.4 (0.33) 1.5 (0.34) 1.4 (0.33) 0.0727 

*p-value was obtained from the median test.

Is it possible that the higher gray matter integrity in blacks than in whites in the HBP study 

was due to a higher proportion of “healthy” subjects among blacks? We calculated the proportion 

of “healthy” subjects stratified by race, based on different definitions of “healthy” (absence of 

cerebrovascular risk factors, including hypertension, diabetes, cardiovascular disease, stroke, 

smoking, and drinking) in Table 13. The white subjects in the HBP study consistently had 

significantly higher proportions of “healthy” subjects than the black subjects. Therefore, racial 

differences in the proportion of “healthy” subjects do not explain racial differences in gray matter 

integrity hereby observed.  
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Table 13 Comparisons of proportion of “healthy’ subjects between blacks and whites in the HBP 
study 

Healthy Status White (n =187) Black (n =127) p-Value 

Without hypertension or diabetes 55 (29.41) 20 (15.87) 0.0059 

Without hypertension, diabetes, 
cardiovascular disease, and stroke 43 (22.99) 14 (11.11) 0.0075 

Without hypertension, diabetes, 
cardiovascular disease, and stroke, 
and non-smoker and not current 
drinker 

21 (11.23) 6 (4.72) 0.0436 

 

There remains the possibility that the Health ABC subjects represent a unique population, 

because of the inclusion criteria of the parent study. To address this question, we compared these 

participants to very old survivors in the CHS study. The CHS cohort was a sample of individuals 

aged 65 years or olders from Medicare eligibility lists of four communities: Forsyth County, North 

Carolina; Sacramento County, California; Washington County, Maryland; and Pittsburgh, 

Pennsylvania. We compared health-related conditions between HBP subjects and 79-89 years old 

survivors in 1999-2000 (10 years after the baseline visit in 1989-1990) of the CHS study, and 

stratified the results by race (Table 14). Compared to very old Year 10 survivors of the CHS study, 

HBP subjects had higher cognitive test scores, higher education level, and higher hypertension or 

diabetes prevalence. According to the national survey data (NHANES 1999-2004 and NHIS 2001) 

in Table 2, prevalence of hypertension was about 84% and 71% in blacks and in whites older than 

70, and prevalence of diabetes was about 32% and 19% in blacks and in whites older than 75. 

Therefore, prevalence of hypertension or diabetes in the HBP study was close to the national 

survey data, while prevalence in the CHS study might be underestimated by only using self-

reported data in the analyses. Actually, the 3MS scores in the HBP study were close to older 

subjects without dementia in the Cardiovascular Health Study Cognition Study 177. Therefore, the 
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HBP subjects may represent very old subjects with high levels of education and cognitive function. 

Therefore, caution should be paid when generalizing the results of racial differences in brain 

structure to other study populations. 

.
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Table 14 Comparisons of racial differences in health-related conditions between HBP subjects and those 79-89 years of age at Year 10 
of the CHS study 

Sample Characteristics 
HBP White  

(n =187) 
CHS White  
(n =1258) 

p-
Value*  

HBP Black  
(n =127) 

CHS Black  
(n =196) 

p-
Value* 

Age (year), mean (SD) 83.1 (2.86) 82.6 (2.85) 0.0275 82.8 (2.73) 82.8 (2.87) 0.8836 

Male, n (%) 91 (48.66) 529 (42.1) 0.0883 42 (33.07) 59 (30.1) 0.5740 

3MS, median (IQR) 96 (93, 98) 93 (84, 97) <.0001 92 (87, 96) 83 (71, 93) <.0001 

DSST, mean (SD) 39.7 (12.51) 35.9 (12.88) 0.0002 32.5 (13.28) 24.8 (11.74) <.0001 

College education, n (%) 111 (59.68) 500 (39.7) <.0001 50 (39.37) 46 (23.5) 0.0023 

Prevalent hypertension, n (%) 150 (80.65) 586 (47.2) <.0001 105 (84) 118 (60.8) 0.0026 

Prevalent diabetes, n (%) 41 (21.93) 145 (11.7) <.0001 46 (36.22) 50 (25.9) 0.0489 

Body mass index (kg/m2), mean (SD) 26.7 (4.03) 25.4 (4.09) <.0001 28.5 (4.78) 27.6 (5.56) 0.1177 

Former or Current Smoker, n (%) 85 (45.5) 591 (48.3) 0.4706 64 (50.4) 88 (47.6) 0.6237 

*p-Values were calculated for the differences between HBP subjects and CHS subjects within each race, using t-test 
(continuous variables), median test (3MS), or chi-squared test (categorical variables). 
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6.3 SURVIVAL BIAS IN THE HEALTH ABC STUDY  

Since all HBP subjects were older than 79, it is possible that higher gray matter integrity in blacks 

than in whites was due to greater survival bias (as measured by differences between survivors and 

non-survivors at baseline) in blacks than in whites. To study potential survival bias between those 

who came back to the Health ABC visits during 2006-07 and those who did not, and to study 

whether such survival bias was similar between blacks and whites, Table 15 and Table 16 compare 

baseline characteristics of Health ABC subjects who were seen and those who were lost to follow-

up during 2006-07 by race and sex. Linear regression or logistic regression models were 

constructed for continuous or categorical health related conditions respectively, with health-related 

condition as outcome, race (black vs white), survival (survivor vs. non-survivor), and 

race*survival interaction as covariates. P-values of the race*survival interaction term in the models 

were shown in the last column of the two tables, which indicate whether the survival bias in health-

related conditions significantly differed by race. 

In men of both races (Table 15), survivors had younger mean age (difference in white: 1 

year; in black: 0.7 year), higher rate of college education (difference in white: 8.2%; in black: 

14.2%), higher 3MS median score (difference in white: 1 point; in black: 3 points), higher DSST 

mean score (difference in white: 5.0 points; in black: 5.2 points), lower rate of smoker (difference 

in white: 9.5%; in black: 8.0%), lower rate of pulmonary disease (difference in white: 5.0%; in 

black: 6.0%), and faster walking speed (difference in white: 0.1 m/sec; in black: 0.1 m/sec), as 

compared to those who were lost to follow-up. In addition, in whites, survivors had lower rate of 

diabetes (difference: 6.1%) and higher mean BMI (difference: 0.5 kg/m2), and in blacks, survivors 
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had lower rate of cardiovascular disease (difference: 11.3%). However, in the regression models 

for all these health-related conditions, none of the race*survival interaction terms was significant. 

Therefore, there is no evidence that survival bias differ by race in the Healthy ABC men during 

2006-07.  

In women of both races (Table 16), survivors had younger mean age (difference in white: 

0.8 year; in black: 1.1 year), higher rate of college education (difference in white: 7.2%; in black: 

11.1%), higher 3MS median score (difference in white: 2 points; in black: 4 points), higher DSST 

mean score (difference in white: 4.3 points; in black: 6.0 points), lower rate of cardiovascular 

disease (difference in white: 6.3%; in black: 10.0%), lower mean systolic blood pressure 

(difference in white: 2.9 mmHg; in black: 5.1 mmHg), and faster walking speed (difference in 

white: 0.1 m/sec; in black: 0.1 m/sec), as compared to those who lost to follow-up. In addition, in 

whites, survivors had lower rate of smoker (difference: 10.0%), higher rate of current drinker 

(difference: 9.3%), higher mean BMI (difference: 0.7 kg/m2), and in blacks, survivors had lower 

rate of diabetes (difference: 10.2%), lower rate of hypertension (difference: 8.6%), and lower rate 

of pulmonary disease (difference: 6.6%).  However, except for 3MS, the race*survival interaction 

terms in regression models of other health-related conditions were not significant. Therefore, 

survival bias in 3MS was significantly greater in black women (4 points difference) than in white 

women (2 points difference), but there is no evidence that survival bias differ by race in other 

health-related conditions in the Healthy ABC women during 2006-07.  

Therefore, there is no strong evidence that very old blacks had greater survival bias than 

very old whites in the Health ABC study. On the contrary, very old black survivors had worse 

profiles of health-related conditions than very old white survivors. Therefore, the results of higher 
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gray matter microstructural integrity in the HBP study cannot be explained by racial differences 

in survival bias.  

88 



 

Table 15 Characteristics of Health ABC men at baseline in those who were still seen during 2006-07 and those who were lost-to-
follow-up  

 White 
survivor 

White non-
survivor 

Survivor 
vs. non-
survivor 
in whites 

Black 
survivor 

Black non-
survivor 

Survivor 
vs. non-
survivor 
in blacks 

Survival bias 
in whites vs. 

in blacks 

 N=528 N=411 P-value* N=220 N=332 P-value* P-value^ 

Age, year, mean (SD) 73.5 (2.82) 74.5 (2.94) <.0001 73.1 (2.69) 73.8 (2.81) 0.0063 0.2683 

Education: > high school, 
n (%) 334 (63.38) 227 (55.23) 0.0116 75 (34.09) 66 (19.94) 0.0002 0.1008 

3MS, median (IQR) 94 (90, 97) 93 (88, 96) <.0001 88 (82, 93.5) 85 (76, 91) 0.0035 0.3071 

DSST,  mean (SD) 41.4 (11.83) 36.4 (11.42) <.0001 27.2 (13.33) 22.0 (13.18) <.0001 0.9137 

Smoker, n (%) 352 (66.92) 314 (76.4) 0.0015 142 (64.55) 240 (72.51) 0.0471 0.6777 

Current Drinker, n(%) 342 (65.14) 255 (62.35) 0.3774 105 (47.73) 148 (45.26) 0.5704 0.9218 

Diabetes, n (%) 59 (11.17) 71 (17.27) 0.0072 45 (20.45) 75 (22.59) 0.5514 0.1822 

Hypertension, n (%) 217 (41.41) 181 (44.36) 0.3663 113 (51.6) 193 (58.84) 0.0945 0.4330 

Cardiovascular Disease, n 
(%)   171 (32.63) 146 (36.14) 0.2643 53 (24.77) 117 (36.11) 0.0056 0.1096 

Pulmonary Disease, n 
(%)  44 (8.33) 58 (14.15) 0.0046 21 (9.55) 51 (15.5) 0.0428 0.9044 

SBP, mmHg , mean (SD) 132.8 (19.88) 133.4 (19.75) 0.6456 138.6 (20.36) 139.1 (23.09) 0.7929 0.9658 

DBP, mmHg , mean (SD) 71.1 (10.64) 71.2 (10.83) 0.8531 74.9 (11.86) 75.7 (12.34) 0.4602 0.4258 

BMI, kg/m2, mean (SD) 27.2 (3.61) 26.7 (3.76) 0.0310 27.5 (4.35) 27 (4.43) 0.2395 0.8671 

Walking speed, m/sec, 
mean (SD) 1.5 (0.25) 1.4 (0.23) <.0001 1.4 (0.22) 1.3 (0.21) <.0001 0.3841 
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*p-Values were calculated from median test for 3MS, from student’s t-test for other continuous variables, and from Chi-
squared test for categorical variables. 
^p-Values were calculated for the race*survivor interaction term in the linear regression or logistic regression models. For 
3MS, the transformed value as square root (100-3MS) was used as the outcome in the model. 
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Table 16 Characteristics of Health ABC women at baseline in those who were still seen during 2006-07 and those who were lost to 
follow-up  

 White 
survivor 

White non-
survivor 

Survivor 
vs. non-
survivor 
in whites 

Black 
survivor 

Black non-
survivor 

Survivor 
vs. non-
survivor 
in blacks 

Survival bias 
in whites vs. 

in blacks 

 N=538 N=317 P-value* N=353 N=376 P-value* P-value^ 

Age, year, mean (SD) 73.3 (2.79) 74.1 (2.73) <.0001 72.8 (2.75) 73.9 (3.05) <.0001 0.4667 

Education: > high school, 
n (%) 267 (49.63) 134 (42.41) 0.0411 112 (31.82) 77 (20.7) 0.0007 0.1945 

3MS, median (IQR) 96 (92, 98) 94 (90, 96) <.0001 91 (85, 95) 87 (81, 92) <.0001 0.0197 

DSST,  mean (SD) 44.7 (11.44) 40.4 (11.56) <.0001 32.9 (14.73) 26.9 (13.57) <.0001 0.2093 

Smoker, n (%) 201 (37.36) 150 (47.32) 0.0043 146 (41.48) 177 (47.2) 0.1207 0.3926 

Current Drinker, n(%) 299 (55.78) 147 (46.52) 0.0089 109 (30.97) 112 (29.79) 0.7296 0.1416 

Diabetes, n (%) 33 (6.15) 31 (9.78) 0.0513 56 (15.91) 98 (26.13) 0.0007 0.7035 

Hypertension, n (%) 225 (41.98) 153 (48.57) 0.0616 218 (62.29) 263 (70.89) 0.0143 0.5684 

Cardiovascular Disease, n 
(%)   87 (16.48) 71 (22.76) 0.0244 74 (21.7) 116 (31.78) 0.0025 0.6344 

Pulmonary Disease, n (%)  58 (10.86) 37 (11.71) 0.7047 31 (8.81) 57 (15.41) 0.0067 0.0915 

SBP, mmHg , mean (SD) 133.0 (19.37) 135.9 (20.21) 0.0421 136.6 (20.46) 141.7 (24.09) 0.0025 0.3071 

DBP, mmHg , mean (SD) 68.6 (10.83) 68.6 (11.76) 0.9784 71.7 (11.58) 72.4 (13.11) 0.4369 0.5653 

BMI, kg/m2, mean (SD) 26.3 (4.49) 25.6 (4.59) 0.0340 29.9 (5.96) 29.5 (5.76) 0.3600 0.5946 

Walking speed, m/sec, 
mean (SD) 1.4 (0.21) 1.3 (0.21) <.0001 1.2 (0.22) 1.1 (0.22) <.0001 0.5448 
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*p-Values were calculated from median test for 3MS, from student’s t-test for other continuous variables, and from Chi-squared 
test for categorical variables. 
^p-Values were calculated for the race*survivor interaction term in the linear regression or logistic regression models. For 
3MS, the transformed value as square root (100-3MS) was used as the outcome in the model. 
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7.0  PUBLIC HEALTH IMPLICATION AND DIRECTION OF FURTHER 

RESEARCH 

7.1 PUBLIC HEALTH IMPLICATION 

The oldest old is the fastest growing segment of the elderly population, and also has the largest 

racial disparities in dementia between blacks and whites. This dissertation has shown that very old 

blacks have worse profiles in vascular risk factors and cognition, but higher gray matter 

microstructural integrity than very old whites. Further analyses comparing the HBP subjects and 

very old survivors of the CHS study indicated that the HBP subjects might represent very old 

subjects with high levels of education and cognitive function. Therefore, one should be cautious 

when generalizing results of HBP to other populations. 

Previous studies have also shown that mean diffusivity of gray matter is a stronger marker 

of aging and cognitive impairment, as compared to other markers of gray matter integrity 80. As 

shown in a paper of Dr. Carlesimo, et al.9, the hippocampal mean diffusivity increased steeply in 

those older than 80 years of age, but the changes of hippocampal volume or fractional anisotropy 

were less striking. The mediation analyses showed that higher mean diffusivity in blacks partially 

attenuated racial differences in cognition. Therefore, maintaining gray matter microstructural 

integrity in blacks would help to reduce racial differences in cognition or dementia.  
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Among the candidate factors to improve mean diffusivity, diabetes seems to play an 

important role. Moreover, our analyses showed that very old blacks had higher prevalence of 

diabetes than very old whites. Therefore, reducing racial differences in diabetes may further 

improve gray matter integrity in blacks, and thus reducing racial differences in cognitive function 

and/or dementia.   

7.2 DIRECTION OF FURTHER RESEARCH 

I have identified two potential directions for future research to further our understanding of the 

mechanisms underlying racial differences in dementia.  

First, studies may be conducted in South Africa, which has the highest proportion of older 

population in southern Africa, and a population of diverse ethnic composition 178. As the ethnic 

and demographic distributions are changing in the world, Africa will have the largest population 

growth from now to 2050 179. Now, Africa is passing through both the demographic transition 

(population aging) and epidemiological transition (non-infectious disease becoming leading cause 

of death) in just a few decades 180. It is estimated that elderly could account for 4.5% of the 

population by 2030 and nearly 10% of the population by 2050 181 . In most African countries, 

cardiovascular disease is now the second most common cause of death 180. It is also estimated that 

about 2.76 million people were living with dementia in Africa in 2010 182. However, the research 

of racial differences in dementia in Africa is still limited. Therefore, South Africa provides a 

unique opportunity of studying the dynamic between cardiovascular disease and population aging 

on brain structure and dementia, as well as their racial differences.  
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A second line of research could focus on racial differences in brain structure between 

blacks and whites in the Europe.  However, only one relevant study was conducted in older adults 

(mean age=70) in London 183. The study found greater proportions of subjects with multiple brain 

infarcts or with severe WMH in African Caribbeans than in Caucasian Europeans, but did not find 

racial differences in proportions of subjects with any brain infarct or with mild to moderate WMH. 

Nonetheless, there were no DTI measures in this study, and therefore racial differences in brain 

microstructural integrity could not be explored.  

Therefore, both Africa and Europe can provide opportunities to study racial differences in 

brain structure and dementia, in diverse contexts other than the US. Future studies in these regions 

will be able to provide new perspectives and inputs to this research question.  
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APPENDIX A: SYNOPSIS OF RACIAL DIFFERENCES IN DEMENTIA 

 

First Author, 
Year 

Study and Design Sampling Sample size and 
mean age 

Outcome 
Diagnosis 

Prevalence or Incidence Test of Racial Differences 

Tang, 2001 Washington 
Heights and 
Inwood Study 
(WHI), prospective 
study (about 4 
years) 
 

Probability sample 
of Medicare 
beneficiaries 
residents 

610 blacks (mean 
age=75.8) and 
418 whites (mean 
age=76.9), not 
demented at 
baseline  

Clinical 
diagnosis of 
probable and 
possible AD 

Incident rate per 100 person-years: 
65-74: 1.7% in blacks and 0.4 in whites 
75-84: 4.4% in blacks and 2.6% in 
whites 
≥85: 11.4% in blacks and 4.2% in whites 

Significant higher risk of AD 
in blacks: HR (black vs. 
white)=2.4, adjusted for 
education, stroke, diabetes, 
heart disease and 
hypertension. 

Gurland, 1998 North Manhattan 
Aging Project 
(NMAP), 
prospective study 
(18 months on 
average) 
 

Random sample of 
Medicare 
beneficiaries (≥ 65 
years old), 
including nursing 
home residents 

729 blacks and 
432 whites at 
baseline; 454 
blacks and 267 
whites at follow-
up 

Cognitive 
screen and then 
clinical 
diagnosis of 
dementia 

Prevalence of dementia: 
65-74: 9.1% in blacks and 2.9 in whites 
75-84: 19.9% in blacks and 10.9% in 
whites 
≥85: 58.6% in blacks and 30.2% in 
whites 
Incidence of dementia during 18 months: 
8.2% in blacks and 3.1% in whites 
 

blacks had significantly higher 
prevalence of dementia in all 
age groups, and had 
significantly higher incidence 
in all ages combined. 

Fillenbaum, 
1998 

Duke Established 
Populations for 
Epidemiologic 
Studies of the 
Elderly (EPES), 
prevalence study 
(as of Jan 1990) 

Multistage 
probability sample 
of community 
residents aged 65 
and older (1 urban 
and 4 rural 

188 blacks and 
175 whites for 
prevalence study; 
622 blacks and 
471 whites for 
incidence study 

Cognitive 
screen and then 
clinical 
diagnosis of 
dementia 

Prevalence of dementia in men: 
65-74: 5.0% in blacks and 3.5% in 
whites 
75-84: 10.5% in blacks and 5.1% in 
whites 
≥85: 11.5% in blacks and 7.2% in whites 
Prevalence of dementia in women: 

There were no racial 
differences in dementia 
prevalence or incidence 
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First Author, 
Year 

Study and Design Sampling Sample size and 
mean age 

Outcome 
Diagnosis 

Prevalence or Incidence Test of Racial Differences 

and 3-year 
retrospective 
incidence 
study.(1987-1989)  

counties in North 
Carolina). 
Prevalence study: 
10% of original 
cohort were 
random selected 
by 12 strata 
(n=363). 
Incidence study: 
All screened 
positive (n=1117) 
were interviewed 
and 10% of 
screened negative 
(n=294) were 
interviewed 

65-74: 2.8% in blacks and 1.7% in 
whites 
75-84: 13.5% in blacks and 10.1% in 
whites 
≥85: 10.8% in blacks and 11.9% in 
whites 
3-year Incidence of dementia in men: 
65-74: 4.4% in blacks and 0.1% in 
whites 
75-84: 8.1% in blacks and 6.0% in 
whites 
≥85: 23% in blacks and 4.7% in whites 
3-year Incidence of dementia in women: 
65-74: 2.4% in blacks and 7.9% in 
whites 
75-84: 8.3% in blacks and 11.2% in 
whites 
≥85: 4.4% in blacks and 12.8% in whites 

Katz, 2012 Einstein Aging 
Study (EAS), 
prospective study 
(3.9 years of 
follow-up on 
average) 

Systematically 
recruited 
community-based 
cohort of 1944 
adults (1168 
dementia free) 
aged 70 or older in 
Bronx County 
(urban), NY. 

300 blacks and 
818 whites 
Mean age=78.8 
years at baseline 
for the whole 
cohort 

Clinical 
diagnosis of 
dementia and 
AD 

Dementia incidence per 100 person-
years: 
70-74: 0.50% in blacks and 0.53% in 
whites 
75-79: 1.75% in blacks and 1.22% in 
whites 
80-84: 3.41% in blacks and 2.47 in 
whites 
85-89: 7.41% in blacks and 4.55% in 
whites 
90+: 12.35% in blacks and 11.17% in 
whites 

Race is not a significant risk 
factor for dementia, AD or 
aMCI in the COX proportional 
hazard model.  
Blacks are twice as likely as 
whites (HR=2.04) to develop 
naMCI. 

Fitzpatrick, 
2004 

Cardiovascular 
Health Study 
(CHS), prospective 
study (5.4 years of 
follow-up on 
average) 

5201 whites and 
687 blacks 
randomly recruited 
from Medicare 
eligibility lists in 
four US 
communities 

492 blacks and 
2865 whites free 
of dementia 
between 1992 and 
1994 

All blacks were 
evaluated for 
dementia, while 
51% whites 
were screened 
as high risk and 
then further 
evaluated. 

Dementia incidence per 100 person-
years in men: 
<75: 2.11% in blacks and 1.37% in 
whites 
75-79: 4.23% in blacks and 2.67% in 
whites 
80-84: 7.81% in blacks and 5.84% in 
whites 

Age-adjusted incidence of 
dementia scaled to age 80 was 
significantly higher in blacks: 
5.88% in blacks woman and 
5.30% in blacks men; 3.47% 
in white women and 3.53% in 
white men. 
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First Author, 
Year 

Study and Design Sampling Sample size and 
mean age 

Outcome 
Diagnosis 

Prevalence or Incidence Test of Racial Differences 

≥ 85: 40.39% in blacks and 8.43% in 
whites 
Dementia incidence per 100 person-
years in women: 
<75: 1.82% in blacks and 1.04% in 
whites 
75-79: 2.89% in blacks and 3.62% in 
whites 
80-84: 9.33% in blacks and 5.70% in 
whites 
≥ 85: 8.66% in blacks and 10.82% in 
whites 

Ascertainment bias and age 
adjusted incidence of dementia 
did not differ significantly by 
race: 5.64% in blacks and 
5.88% in whites 
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APPENDIX B: SYNOPSIS OF RACIAL DIFFERENCES IN COGNITIVE FUNCTION 

 

First Author, 
Year 

Study and Design Sampling Sample size and 
mean age 

Outcome Diagnosis Racial Differences in 
Cognition at Baseline 

Racial Differences in Rate 
of Cognitive Decline 

Masel, 2009 Health and 
Retirement Study 
(HRS), prospective 
study (9 years: 
1996-2004) 
 

A nationally 
representative 
sample of US 
adults ≥ 51 years 
of age 

1324 blacks 
(mean age=60) 
and 5918 whites 
(mean age=60)  
 

Mental status and 
memory measured by 
Telephone Interview 
of Cognitive Status 

Mental status (0-10) is 
significantly lower in blacks: 
8.7 in blacks and 9.5 in 
whites  
Memory (0-20) is 
significantly lower in blacks: 
9.9 in blacks and 11.5 in 
whites 

Mental status: no significant 
racial differences in the slope 
of mental status change over 
time after multivariate 
adjustment. 
Memory Score: worsened 
slightly faster in blacks over 
time after multivariate 
adjustment. 

Skarupski, 
2006 

Chicago Health and 
Aging Project 
(CHAP), cross-
sectional study at 
baseline 

A complete census 
of three 
contiguous 
neighborhoods on 
the south side of 
Chicago for 
Medicare 
beneficiaries (≥ 65 
years old) 

3707 blacks 
(mean age=73.8) 
and 2279 whites 
(mean age=76.7) 

Four cognitive tests  Blacks had significantly 
lower performance in all four 
cognitive tests: 
East Boston Story: 
Immediate recall: 7.50 in 
blacks and 8.75 in whites 
East Boston Story: 6.81 in 
blacks and 8.23 in whites. 
Symbol Digit Modalities 
Test: 21.09 in blacks and 
34.08 in whites  
Mini-Mental State Exam: 
24.41 in blacks and 27.00 in 
whites 

 

Sloan, 2005 The study of Asset 
and Health 
Dynamics Among 
the Oldest Old 


A national panel 
survey of US 
nonstitutionalized 
persons aged 70+ 
years and their 

A sample of 7433 
at wave 1, and 
over 10% of 
respondents 
typically died 

Telephone Interview 
of Cognitive Status 
(TICS), Word recall 
test, 7s subtraction 
test, and a test of 

At wave 1, all cognitive tests 
were significantly lower in 
blacks than in whites after 
multivariate adjustment: 
TICS: 3.5 points difference 

Waves 1-4: 
TICS score declined at an 
annual rate of 0.06 less in 
blacks than in whites 
(p<0.05). 
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First Author, 
Year 

Study and Design Sampling Sample size and 
mean age 

Outcome Diagnosis Racial Differences in 
Cognition at Baseline 

Racial Differences in Rate 
of Cognitive Decline 

Prospective study 
(4 waves)  

spouses or 
partners. 
Four consecutive 
interview waves in 
1993, 1995, 1998, 
and 2000. 

between two 
consecutive waves 

knowledge, language 
and orientation 

Word recall: 1.3 points 
difference 
Subtraction test: 1.11 points 
difference 
Knowledge, Language and 
Orientation: 1.06 points 
difference 

The word recall test score 
declined at an annual rate of 
0.08 less in blacks than in 
whites (p<0.001). 
There were no significant 
racial differences in the 
annual decline the other two 
tests. 

 
Black, 2002 Prospective study 

(two years between 
baseline and 
follow-up surveys)   

A longitudinal 
survey of 
community-
dwelling residents 
of Galveston 
County, Texas, 
who were aged 75 
and older as of 
1995 

112 blacks 
(44.1% were aged 
≥ 82) and 125 
whites (25.6 % 
were aged ≥ 82) 
 

Cognitive 
impairment and 
cognitive decline 
based on the Short 
Portable Mental 
Status Questionnaire 
and corrected for 
education and 
minority status 

Blacks had significantly 
higher percentage of 
cognitive impairment than 
whites (25.3% vs. 6.2%) at 
baseline 

Blacks had significantly 
higher risk of cognitive 
decline than whites. 
(OR=3.52) after multivariate 
adjustment. 

Bohannon, 
2002 

Duke Established 
Populations for 
Epidemiologic 
Studies of the 
Elderly, 
prospective study 
(3 years between 
the baseline and 
second in-home 
interviews) 

Multistage 
probability sample 
of community 
residents aged 65 
and older (1 urban 
and 4 rural 
counties in North 
Carolina). 
 

1768 blacks 
(mean age=73.2) 
and 1434 whites 
(mean age=72.8)                                                                                         

Short Portable 
Mental Status 
Questionnaire 
(SPMSQ) 
Score is in terms of 
errors and can range 
from 0 to 10. 

Blacks made approximately 
one error more on the 
SPMSQ than did whites (2.1 
vs. 1.2) at baseline 

The average increased in 
errors of SPMSQ in blacks 
over 3 years was not 
significantly greater than in 
whites (0.29 vs. 0.19). 

Mehta, 2004 Health ABC study, 
cross-sectional 
analysis of baseline 
data (1997-98) 

Random sample of 
well-functioning 
Medicare 
beneficiaries aged 
70 to 79 in 
Pittsburgh, 
Pennsylvania, and 
Memphis, 
Tennessee. 

1271 blacks 
(mean age=73) 
and 1791 whites 
(mean age=74) 

Modified Mini-
Mental State 
Examination (3MS) 
and Digital Symbol 
Substitution Test 
(DSST) 

Blacks had significantly 
lower unadjusted scores on 
cognitive function tests than 
white participants: 3MS 
scores were 7 points lower in 
blacks, and DSST scores 
were 14 points lower in 
blacks 
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APPENDIX C: SYNOPSIS OF VASCULAR RISK FACTORS FOR BRAIN MICRO-STRUCTURAL INTEGRITY 

 

First 
Author, 

Year 

Study 
Design 

Sample 
Characteristics DTI Measures Risk 

Factor Covariates Major Results 

Smoking 

Fuchun Lin, 
2013 

Cross 
sectional 

Sixty-eight subjects (34 
heavy cigarette smokers 
and 34 healthy non-
smoking control 
subjects, 33–58 years of 
age). All recruited 
participants were 
healthy and had no 
history of medical or 
neurological disorders. 

FA of whole brain 
and regions of 
interest (ROI) 

Heavy 
smoker vs. 
nonsmoker 

Age, 
gender and 
education 

Compared with non-smokers, heavy smokers had lower 
FA in the left anterior corpus callosum while exhibiting 
no areas of higher FA. In the affected region, FA 
reduction was accompanied by a significantly decreased 
axial diffusivity and increased radial diffusivity, which 
suggests that axonal damage and disrupted myelin 
integrity may be associated with the degraded white 
matter integrity in heavy smokers. 

Xiaochu 
Zhang, 2011 

Cross 
sectional 

48 cigarette smokers 
and 48 healthy non-
smoking controls 
matched by age, gender 
and education years 

White matter 
integrity (fractional 
anisotropy (FA)) and 
gray matter density 
(voxel-based 
morphometry) 

High vs. 
low 
dependence 
and high 
vs. low 
pack-years 
smokers 

None Gray matter density was lower in left prefrontal cortex 
(PFC) in high pack-years smokers and was inversely 
related to pack-years. In contrast, left insular cortex gray 
matter density was higher in smokers. Further, the most 
highly dependent smokers showed lower prefrontal FA. 

Rob Gons, 
2011 

Cross 
sectional 

503 subjects with small-
vessel disease, aged 
between 50 and 85 
years 

Diffusion tensor 
imaging parameters 
in both normal-
appearing white 
matter and white 
matter lesions 

smoking 
behavior 
(never, 
former, 
current) 

Age, sex, 
alcohol 
intake, 
education 
and 
cardiovasc
ular risk 
factors  

A history of smoking was associated with significant 
higher values of mean diffusivity in normal-appearing 
white matter and white matter lesions and with poorer 
cognitive functioning compared with those who never 
smoked. Associations with smoking and loss of 
structural integrity appeared to be strongest in normal-
appearing white matter.  
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First 
Author, 

Year 

Study 
Design 

Sample 
Characteristics DTI Measures Risk 

Factor Covariates Major Results 

Matthew 
Hudkins, 
2012 

Cross 
sectional 

Eighteen smokers (ten 
male; age=33.7±7.9 
years) and 18 
nonsmokers (nine male; 
age=33.3±10.1 years)  

FA and apparent 
diffusion coefficient 
(ADC, a measure of 
random diffusion) 

smoking Age and 
years of 
education 

ADC showed no group difference, but smokers had 
higher (4.3–21.1%) FA than nonsmokers. The 
differences were significant in right prefrontal white 
matter, cingulum, and genu corpus callosum. FA in 
several regions was negatively correlated with nicotine 
dependence or cigarettes/day. 

Hypertension 
Saartje 
Burgmans, 
2010 

Case-
control 

93 adult volunteers (age 
50–77 years; 36 with 
diagnosis of 
hypertension or 
elevated blood pressure) 

FA and WMH in 
seven brain regions: 
frontal, temporal, 
parietal and occipital 
white matter, and the 
genu, body and 
splenium of the 
corpus callosum 

Hypertensi
on, age, 
and 
age×hypert
ension 

Sex and 
intracranial 
volume 

Hypertension was associated with decline in fractional 
anisotropy (frontal lobe, temporal lobe and total FA), 
and exacerbated age differences in fractional anisotropy 
more than those in the volume of WMH. 

Elizabeth 
Leritz,, 2010  

Case-
control 

52 middle-older aged 
African Americans 
without diagnosed 
history of CVD 

FA in anterior corpus 
callosum (genu), 
posterior corpus 
callosum (splenium), 
and across the whole 
brain 

mean 
arterial 
blood 
pressure 
(MABP)  

Age When controlling for age, higher MABP was associated 
with lower FA in the genu, and there was a trend for this 
sample relationship with regard to whole brain FA. 
When the sample was broken into groups based on 
treatment for BP regulation (medicated / nonmedicated), 
MABP was related to genu and whole-brain FA only in 
the non-medicated group. 

Rob Gons, 
2010 

Cross 
sectional 

In 503 patients with 
small vessel disease, 
aged between 50 and 85 
years 

Fractional anisotropy 
and mean diffusivity 
in both normal-
appearing white 
matter (NAWM) and 
WMLs 

Blood 
pressure 
and 
hypertensio
n 

Age, sex, 
and 
cardiovasc
ular risk 
factors 

Increased blood pressure and hypertension were 
significantly related to lower fractional anisotropy in 
both NAWM and WMLs and to higher mean diffusivity 
in WMLs. For hypertensives, odds ratios for the risk of 
impaired microstructural integrity (fractional 
anisotropy) were 3.1 (95% CI: 1.8 to 5.7) and 2.1 (95% 
CI: 1.2 to 3.5) in NAWM and WMLs, respectively, 
compared with normotensives.  

Alasdair 
MacLullich, 
2009 

Cross 
sectional 

45 community-dwelling 
male and normal 
cognition volunteers 
aged from 71 to 76 

MD and fractional 
anisotropy were 
measured in 6 regions 
of interest in normal-

SBP and 
DBP 

None  Systolic BP was positively and significantly correlated 
with MD in all 6 regions (r=0.31 to 0.45; P=0.037 to 
0.002). (frontal, temporal, parietal, occipital, genu, and 
splenium). MD was also correlated with diastolic BP in 
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First 
Author, 

Year 

Study 
Design 

Sample 
Characteristics DTI Measures Risk 

Factor Covariates Major Results 

without history of 
stroke, cancer, 
depression, or dementia. 

appearing white 
matter. 

the genu of the corpus callosum (r=0.34, P=0.018). 
Fractional anisotropy did not correlate significantly with 
blood pressure. 

Kristen 
Kennedy, 
2009 

Cross 
sectional 

77 healthy adults (19–
84 years old). 

Regional FA and 
ADC 

hypertensio
n 

Age, sex Clinically diagnosed and treated arterial hypertension 
was associated with reduced white matter anisotropy 
and increased ADC beyond the effects of age. In the 
normotensive participants, elevation of arterial pulse 
pressure (a surrogate of arterial stiffness) was linked to 
deterioration of the white matter integrity in the frontal 
regions. 

Diabetes 

Cherie 
Falvey, 
2013 

Cross-
sectional 

308 elders (mean age 
83.3 years; n = 85 with 
diabetes) from the 
Health ABC Healthy 
Brain Substudy 

 (mean diffusivity 
[MD] and fractional 
anisotropy [FA]) 
measures for the total 
brain and ROIs 

diabetes Age, race, 
and sex 

On microstructural measures, diabetes was associated 
with reduced FA for total white matter (P = 0.006) and 
greater MD for the hippocampus (P = 0.006 left; P = 
0.01 right), dorsolateral prefrontal cortex (P = 0.0007, 
left; P = 0.002, right), left posterior cingulate (P = 0.02), 
and right putamen (P = 0.02). Further adjustment for 
stroke, hypertension, and myocardial infarction 
produced similar results. 

Yael 
Reijmer, 
2013 

Case 
control 

Thirty-five non-
demented older 
individuals with type 2 
diabetes (mean age 71 ± 
5 years) and 35 age-, 
sex-, and education-
matched controls. 

Fractional anisotropy 
(FA) and mean 
diffusivity (MD) 

Type 2 
diabetes 

None Significant between-group differences in MD values 
were observed in the SLF, UF, and ILF in both the left 
and right hemisphere and in the splenium of the CC 
demonstrating microstructural white matter 
abnormalities in patients compared with control 
subjects. A between- group difference in FA was found 
in the right UF. 
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First 
Author, 

Year 

Study 
Design 

Sample 
Characteristics DTI Measures Risk 

Factor Covariates Major Results 

Jens Frokjer, 
2013 

Case-
control 

Twenty-six patients 
with DM (21 T1 DM 
and 5 T2 DM) and 
gastrointestinal 
symptoms (mean 
age=45.8) and 23 
healthy control subjects 
(mean age=43.8) 

The apparent 
diffusion coefficient 
and fractional 
anisotropy (FA) were 
assessed in the 
“sensory matrix” 
(cingulate cortex, 
insula, prefrontal and 
secondary sensory 
cortex, amygdala, and 
corona radiata) and in 
corpus callosum. 

diabetes None Patients had decreased FA values compared with control 
subjects in 1) all areas (P= 0.025); 2) anterior (P<0.001), 
mid- (P = 0.001), and posterior (P<0.001) cingulate 
cortex; 3) prefrontal cortex gray matter (P=0.001); 4) 
corona radiata (P<0.001); 5) secondary sensory cortex 
(P= 0.008); and 6) anterior white matter (P= 0.045), 
anterior gray matter (P= 0.002), and posterior gray 
matter (P= 0.002) insula. No difference was found in 
corpus callosum (P<0.05). Overall, no difference in 
ADC values was found between the patients and control 
subjects. 

C-reactive Protein 

Heike 
Wersching, 
2010 

Cross-
section 

321 community-
dwelling and stroke-free 
individuals from the 
Systematic Evaluation 
and Alteration of Risk 
Factors for Cognitive 
Health Study (mean age 
63 years, 248 female).  

FA, WMH, brain 
atrophy 

hs-CRP Full set of 
risk factors 

Higher hs-CRP was related to reduced global fractional 
anisotropy (β = -0.237, p < 0.001), as well as regional 
FA scores of the frontal lobes (β= -0.246, p< 0.001), the 
corona radiata (β= -0.222, p < 0.001), and the corpus 
callosum (β= -0.141, p= 0.016), in particular the genu 
(β= -0.174, p= 0.004). We did not observe a significant 
association of hs-CRP with measures of white matter 
hyperintensities or brain atrophy. 

Julia 
Miralbell, 
2012 

Cross 
sectional 

Subjects were 50–65 
years old, free from 
dementia and without 
history of vascular 
disease. 

Fractional anisotropy 
(FA); regional gray 
matter (GM) volumes 

CRP  Age, sex 
and 
vascular 
risk factors 

Increasing levels of C-reactive protein were associated 
with white matter (WM) integrity loss in 
corticosubcortical pathways and association fibers of 
frontal and temporal lobes, independently of age, sex 
and vascular risk factors. CRP was not related to gray 
matter volume changes. 

Peter 
Gianaros, 
2012 

Cross 
sectional 

155 community-
dwelling adults (78 
men, 77 women; 
age=40.7 ± 6.2, range = 
30–50 years) 

White matter 
fractional anisotropy 
and radial diffusivity 

CRP and 
socioecono
mic status 

 Measures of tract integrity followed a socioeconomic 
gradient: individuals completing more schooling, 
earning higher incomes, and residing in advantaged 
neighborhoods exhibited increases in white matter 
fractional anisotropy and decreases in radial diffusivity, 
relative to disadvantaged individuals. Moreover, 
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First 
Author, 

Year 

Study 
Design 

Sample 
Characteristics DTI Measures Risk 

Factor Covariates Major Results 

analysis of indirect paths showed that adiposity, 
cigarette smoking, and CRP partially mediated these 
effects. 

Physical Activity 
Alan Gow, 
2012  

Cross 
sectional 

Lothian Birth Cohort 
1936 in their 70s (n= 
691) 

Fractional anisotropy 
(FA) and mean 
diffusivity. atrophy, 
gray and normal-
appearing white 
matter (NAWM) 
volumes, and WML 
load 

Physical 
activities 

Age, social 
class, and 
health 
status 

A higher level of physical activity was associated with 
higher FA, larger gray and NAWM volumes, less 
atrophy, and lower WML load. The physical activity 
associations with atrophy, gray matter, and WML 
remained significant after adjustment for covariates, 
including age, social class, and health status. 

Bonita 
Marks, 2007 

Cross 
sectional  

Twenty-eight healthy 
subjects (13 younger 
adults, 24±3 years; 15 
older adults, 69.6±4.7 
years);  

Regional FA Aerobic 
fitness 

Age and 
gender 

After controlling for age and gender, significant 
(P<0.05) positive correlations remained between aerobic 
fitness and FA in two regions, the uncinate fasciculus 
(UNC) and the cingulum (CIN). Regression analyses 
revealed that the unique contribution of aerobic fitness 
to the FA variance was 15% for the UNC and 13% for 
the CIN. 

Metabolic Syndrome 

Barbara 
Segura, 
2010 

Case-
control 

19 patients with 
metabolic syndrome 
aged between 50 and 80 
years and 19 age-
matched controls 
without any vascular 
risk factors for the 
syndrome 

fractional anisotropy 
(FA) and apparent 
diffusion coefficient 
(ADC) 

metabolic 
syndrome 

 Patients with metabolic syndrome showed an anterior-
posterior pattern of deterioration in WM with reduced 
FA and increased ADC values compared with controls. 
WM changes were not related to any isolated vascular 
risk factor. 

Keigo 
Shimoji, 
2013 

Case-
control 

Seven Japanese middle-
aged men with 
metabolic syndrome 
and seven without 
metabolic syndrome. 
All subjects are healthy 
otherwise. 

FA Metabolic 
syndrome, 
BMI 

none In the whole-brain analysis, subjects with metabolic 
syndrome had significantly lower FA values than 
control subjects in part of the right inferior fronto-
occipital fasciculus (IFOF), the entire corpus callosum, 
and part of the deep white matter of the right frontal 
lobe. A significant negative correlation was observed 
between BMI and FA values in the right IFOF (r= 
20.56, P = 0.04). 
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APPENDIX D: SYNOPSIS OF RACIAL DIFFERENCES IN BRAIN STRUCTURE 

 

First 
Author, 

Year 

Study 
Design 

Age 
Group 

Sample 
Size 

Sample 
Characteristics MRI Measures  

Racial Differences in 
Brain Atrophy 

Indices 

Racial 
Differences in 

WMH 

Racial 
Differences in 
Brain Infarcts 

Adjustment 

Bryan, 
1997 

Cross- 
sectional 

65-97, 
mean=
72  

562 B, 
and 
3073 W  

Cardiovascular 
Health Study 
cohort: (four 
communities in 
US)  

Infarct-like 
lesion (ILLs) 

  Prevalence of 
ILLs: NS 
(31% vs 31%) 
in Χ2 test. 

None 

Yue, 
1997 

Cross- 
sectional 

≥65 566 B 
and 
3073 W  

Cardiovascular 
Health Study 
cohort: (four 
communities in 
US) 

Graded (0-9) 
sulcal width, 
ventricular 
enlargement and 
WMH 

Sucal and ventricular 
grades: B<W (sig. in 
without adj.) 

White matter 
grade: B>W (sig. 
without adj.) 

 None 

Bryan, 
1999 

Cross- 
sectional 

55-72 926 B 
and 964 
W 

A substudy of 
Atherosclerosis 
Risk in 
Communities 
(probability 
samples in 4 US 
communities 

Infarct-like 
lesions (ILLs) 
and lacune (3-
20mm in 
subcortical 
regions)  

  Prevalence of 
ILLs: B>W 
(20.7% vs 
10.2%, sig. in 
Χ2 test) 
prevalence of 
lacune: B>W 
(16.8% vs 
8.6%, sig. in 
Χ2 test) 

None 

DeCarli, 
2008 

Cross-
sectional 

≥60, 
mean=
75 

103 B 
and 191 
W 

Convenient 
sample from AD 
center and 
community in 
California 

TCBV=brain 
parenchymal 
volume/ICV 
LWMH=log(W
MH/ICV) 
brain infarcts 
(cortical or 
subcortical) 

TCBV: NS after adj. 
(78.5% in B, and 
77.6% in W)  
 

LWMH: NS 
after adj. 

Infarcts 
prevalence: 
NS after adj. 

Age, sex, 
education, 
diagnosis 
(normal, MCI  
or dementia) 
and vascular 
risk factors 
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First 
Author, 

Year 

Study 
Design 

Age 
Group 

Sample 
Size 

Sample 
Characteristics MRI Measures  

Racial Differences in 
Brain Atrophy 

Indices 

Racial 
Differences in 

WMH 

Racial 
Differences in 
Brain Infarcts 

Adjustment 

Brickma
n, 2008 

Cross-
sectional 

≥65, 
mean=
80 

243 B 
and 203 
W 

Northern 
Manhattan 
residents (not 
demented) 

Total brain 
parenchymal 
volume/ICV, 
lateral 
ventricular 
volume/ICV, 
and WMH/ICV 
 

Total brain 
parenchymal 
volume/ICV: B>W 
(diff=1.6%, sig. after 
adj.) 
lateral ventricular 
volume/ICV: B<W 
(sig. after adj.) 

WMH/ICV:  
B>W (sig. after 
adj.) 
 

 Age, sex, 
vascular 
disease 
history 

Prabhaka
ran, 2008 

Cross- 
sectional  

>55, 
mean=
71 

144 B 
and 171 
W 

MRI substudy of 
Northern 
Manhattan Study 
(stroke-free and 
random sample) 

Subclinical brain 
infarcts (SBI) 

  SBI 
prevalence: 
B>W (24.5% 
vs 17.6%), but 
NS after adj. 

Age, sex, 
education and 
vascular risk 
factors 

Aggarwa
l, 2010 

Cross-
sectional  

Mean=
80 

335 B 
and 240 
W 

Chicago Health 
and Aging 
Project 
(community 
based) 

WMHV=natural 
log [WMH/ICV] 
relative TBV = 
total brain 
parenchymal 
volume/ICV 
brain infarcts  

Relative TBV: NS in 
t-test (74.94% in B 
and 74.00% in W) 

WMHV: NS in t-
test (−5.16 in B 
and −5.09 in W) 

Brain infarcts: 
NS in Χ2 test 

None 

Knopma
n, 2011 

Cohort, 
10 years 
between 
initial 
and 
follow-
up scans 

≥55, 
,mean=
62 

585 B 
and 527 
W  

Substudy of 
Atherosclerosis 
Risk in 
Communities 
(probability 
samples in 4 US 
communities) 

Graded (0-9) 
ventricle size, 
sulcal width and 
WMH 
brain infarcts 
 

Ventricular grade: B < 
W in both M and F  
ventricular widening 
worsening of one 
grade or more: B 
F<W F but B M>W 
M 
sulcal grade: B M>W 
M, but similar in B F 
and W F 
sucal widening 
worsening of one 
grade or more: W>B 
in both M and F  

White matter 
grade: B F<W F, 
but B M>W M  
WMH worsening 
of one grade or 
more: B>W in 
both M and F 

Infarcts 
prevalence: 
B>W in both 
M and F. 
incident 
infarcts: 
similar in B F 
and W F, but 
B M>W M 
 

No statistical 
test for racial 
differences 

Gardener
, 2012 

Cross- 
sectional 

>55, 
mean 
=72 

169 B 
and 151 
W 

MRI substudy of 
Northern 
Manhattan Study 

WMHV=log(W
MH/ICV) 

 WMHV: B>W 
(sig. after adj.) 

 Age, 
sociodemogr
aphic, and 
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First 
Author, 

Year 

Study 
Design 

Age 
Group 

Sample 
Size 

Sample 
Characteristics MRI Measures  

Racial Differences in 
Brain Atrophy 

Indices 

Racial 
Differences in 

WMH 

Racial 
Differences in 
Brain Infarcts 

Adjustment 

(stroke-free and 
random sample) 

vascular risk 
factors. 

B=blacks; W=whites; ; M=male; F=female; NS=not significant (P>0.05) ; sig.=significant (P<0.05) ; adj.=adjustment; WMH=white matter hyperintensities; 
ICV=intracranial volume; AD=Alzheimer’s Disease;  
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