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ABSTRACT 

Influenza is one of re-emerging infectious disease in Thailand. The true burden of influenza is 

not known and is needed for influenza preparedness. Thailand has a vaccine policy targeted at 

healthcare workers (HCWs), people aged 6-24 months or >65 years, people with chronic 

medical condition (CMC), and pregnant women. However, amount of vaccine is limited and 

policy planners need information for vaccine prioritization. The government also promotes 

non-pharmaceutical interventions, but their impact is not well studied. This research aimed to 

use agent-based model (ABM) to estimate influenza burden in Thailand and assess impact of 

control measures. The basic reproductive number (R0) based on Thailand's context is unknown 

and should be estimated for further studies of influenza dynamics. The R0 was estimated using 

a formula relating the epidemic growth rate (r) and generation time. The projection of influenza 

burden was studied by fitting an ABM. The model contains a 58,354,744 synthetic Thai 

population and incorporates people with CMC and HCWs. At start, 100 agents were randomly 

assigned for initial infection. The model simulated the interactions of individuals with others 

over 180 days. Impacts of influenza vaccine were simulated at 50%, 75% and 100% coverage. 

Impacts of face mask wearing and hand washing were simulated at 10%, 25%, 50%, 75% and 

100% coverage. The R0 estimates ranged from 1.11 to 1.77 (median 1.39). The highest attack 
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rate occurs in school-age children and adolescents (15.32%). One Hundred percent coverage of 

target population policy can avoid morbidity and mortality by 47.06% and 59.61% in total 

population respectively. However, the benefit is very small for HCWs (3.75% case reduction). 

The extended policy to include children aged 2-18 years old can avoid >99% of cases. 

For non-pharmaceutical interventions, at least 50% compliance of the combined face mask use 

and hand washing policy can avoid morbidity and mortality >98% for all adherence of mask 

wearing. The public health significance of this research is that it provided information for 

health policy makers to guide optimized target population for vaccine, and to encourage non-

pharmaceutical interventions for controlling influenza outbreak. 

Key words: Reproductive number, Influenza, Vaccine, Mask, Hand washing, Thailand, 

Computer simulation 
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1.0  INTRODUCTION 

1.1 OVERVIEW 

Influenza is a contagious respiratory illness caused by ribonucleic acid (RNA) influenza viruses 

in members of Orthomyxoviridae. The disease is characterized by fever, headache, myalgia, 

malaise, sore throat, cough and rhinitis. Influenza in individuals may be indistinguishable from 

disease caused by other respiratory viruses. The clinical picture may range from the common 

cold, croup, bronchiolitis, viral pneumonia and undifferentiated acute respiratory diseases.  

The virus is transmitted easily from person to person.  One method of transmission is via 

large droplets (>5 µm) that are produced when infected people cough or sneeze.1 The virus can 

also be spread by contact transmission. Infected people will often touch their mucus membranes 

or respiratory secretions before direct interpersonal contact such as hand shaking, or indirect 

contact such as touching common surfaces. For example, influenza virus was detected on over 

50% of the fomites tested in homes and day care centers during influenza season.2 Uninfected 

individuals touch these surfaces causing hands contaminated with infected secretions, then touch 

their mucous membranes and get infection. The incubation period is short, usually 1 - 3 days. 

Period of communicability is approximately 3-5 days from clinical onset in adults, up to 7 day in 

young children. 
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Most people who get the influenza will have mild illness and will recover within one to 

two weeks without requiring any medical treatment. However, some people are more likely to 

get influenza complications and require hospitalization. People at high risk for developing 

complications including children younger than 5 years old (especially children younger than 2 

years old), adults 65 years of age and older, pregnant women, and people suffering from medical 

conditions (such as lung diseases, diabetes, cancer, kidney or heart problems). In these people, 

the infection may lead to severe complications of underlying diseases, pneumonia and death. 

In April 2009, a novel swine-origin influenza A (H1N1) virus was identified and caused 

outbreaks of influenza in at least 74 countries. It was at this time that the World Health 

Organization (WHO) declared the start of a new pandemic influenza. These events raised 

concern and increased interest in better understanding the potential impact of the flu and possible 

strategies for control measures.  Crucial in this planning is an understanding of the basic 

epidemiology and the transmission dynamics of the disease in various settings, thus leading to 

potential methods of control for a future pandemic. 

Computational models have been used to understand the transmission dynamics of 

influenza.3-5 They have also been used as health policy tools to predict the effect of public health 

interventions on mitigating future epidemics or pandemics.6-8 The models can project plausible 

scenarios, compare and guide control strategies. Many studies generated models in developed 

countries or in developing countries using basic reproductive number (R0) which was estimated 

from influenza outbreak in these countries. However, there are limited information of influenza 

transmissibility in social contact pattern of Southeast Asia countries including Thailand. 

Thailand needs reliable information of influenza burden that specific to Thailand disease 

dynamics for influenza preparedness. The understanding of transmission dynamics and 
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determinants of seasonality should assist in developing better-focused prevention and control 

strategies for annual endemic outbreaks and influenza pandemics. 

This study will determine influenza burden in no-intervention scenario, intervention to 

prevent outbreak, and intervention to control outbreak. 

1.2 EPIDEMIOLOGY OF INFLUENZA 

Three types of influenza virus are recognized: A, B and C. Influenza A is associated with 

widespread epidemics and pandemics; Influenza B is infrequently associated with regional or 

widespread epidemics; Influenza C is associated with sporadic cases and minor localized 

outbreaks. Influenza A viruses can be subtyped according to the antigenic and genetic nature of 

their surface glycoproteins; 16 hemagglutinin (HA) and 9 neuraminidase (NA) subtypes have 

been identified to date.9 Viruses bearing all known HA and NA subtypes have been isolated from 

avian hosts, but only viruses of the H1N1, H2N2, and H3N2 subtypes have been associated with 

widespread epidemics in humans. Different subtypes have not been identified among influenza B 

and C viruses. 

 The long-term maintenance of influenza viruses in the human population is due to 

antigenic variation that takes place in the HA and NA surface glycoproteins of the virus. 

Antigenic variation causes an individual susceptible to new strains despite previous infection by 

influenza viruses or previous influenza vaccination. There are two type of the variation, antigenic 

drift and antigenic shift. A first type of variation, antigenic drift, is a process by which the 

accumulation of point mutations in the HA and NA genes in influenza A. During antigenic drift, 

a variety of mutations including substitutions, deletions, and insertions produce genetic variation 
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in influenza viruses. These mutations occur because a viral RNA polymerase that lacks 

proofreading activity transcribes the influenza genome. Thus, non-deleterious errors that occur 

during genome replication may be preserved and subsequently amplified if conditions favor their 

survival. These genetic changes often encode amino acid changes in the surface proteins that 

permit the virus to escape neutralization by antibody generated to previous strains. This type of 

variation is responsible for frequent epidemics and regional outbreaks and necessitate annual 

reformulation of influenza vaccine.  

A second type of variation, antigenic shift, occurs at irregular intervals and only among 

influenza A viruses and describes a major antigenic change whereby a virus with a new HA 

(with or without a new NA) is introduced into the human population. Antigenic shift occurs in at 

least two ways. It may occur when an animal or avian influenza A virus is transmitted without 

reassortment from an animal reservoir to humans or when a progeny virus with a new HA (with 

or without a new NA) arises as a result of genetic reassortment between animal and human 

influenza A viruses. This type of variation is responsible for pandemics influenza. 

 Influenza occurs in both pandemic and interpandemic forms. Pandemics, defined as 

sustained spread of new influenza shift variants in at least 2 WHO regions. There were three 

pandemics in the 20th century. Morbidity and mortality due to influenza are usually particularly 

high during the occasional global pandemic.  The mortality burden of the 1918 A(H1N1) 

pandemic or 'Spanish flu' was estimated at least 20 million deaths, globally;10 followed by the 

1957 H2N2 'Asian flu' and 1968 H3N2 'Hong Kong flu' pandemics which had less severity. On 

the other hand, in the years between influenza pandemics, which are called interpandemic 

periods, influenza epidemics occur almost every year, following a regular seasonal pattern in 

temperate zones and are called seasonal influenza. The seasonal influenza is usually less severe 
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in its impact compared to pandemic influenza, but can also show considerable between-year 

variation. 

1.2.1 Influenza seasonality 

Each year, influenza A and/or B viruses circulate during winter months in the temperate climates 

of the Northern and Southern hemispheres, overtly causing extensive epidemics of acute 

respiratory infections (ARI) in 5%-15% of the total population. The WHO estimates the average 

global burden of seasonal influenza comes to be on the order of 600 million cases, 3 million 

cases of severe illness and 250,000 - 500,000 deaths per year.11  Most seasons dominated by 

influenza A(H3N2), while influenza A(H1N1) and influenza B seasons are usually less prevalent 

and less severe.12 Localized epidemics within a community often have a characteristic pattern in 

which the epidemic begins abruptly, peaks within 2 to 3 weeks, and has a total duration of 5 to 

10 weeks.13 

The influenza seasonal pattern varies depending on the region in the world. In temperate 

climate zones, influenza epidemic is generally seasonal: the disease is thought to exist at a low 

level throughout the year, with activity increasing in the late fall and peaking in mid-winter. In 

the Northern Hemisphere, influenza outbreaks and epidemics typically occur between November 

and March, whereas in the Southern Hemisphere, influenza activity occurs between April and 

September.14 For the tropical zones, seasonal patterns are less pronounced and influenza virus 

can be more easily identified throughout the year, with a possible peak in June to August during 

the hot rainy season.15,16   
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To date, mechanisms contribute to influenza seasonality remain unclear. Some 

mechanisms have been proposed to explain the seasonality including contact rates, virus 

survival, and host immunity. 

• Contact rates 

Increased proximity between susceptible and infected individuals is frequently suggested to be 

an important factor of influenza virus transmission. The person-to-person spread of aerosol 

particles is greatly enhanced by crowding of susceptible individuals around each infective 

subject, thereby maximizing the potential for the spread of infection.  

Increasing risk of disease transmission has been observed among group of travelers. 

Baker et al. investigated pandemic influenza A/H1N1 2009 influenza outbreak on passenger 

aircraft and considered 107 passengers seated in the rear section of the plane to be susceptible 

cohort. They estimated the overall risk of in-flight infection in the rear section of the plane to be 

1.9% (95% confidence interval 0.3% to 6.0%). For the 57 passengers sitting within two rows of 

the laboratory confirmed symptomatic cases the risk was higher at 3.5% (0.6% to 11.1%).17 Han 

et al. investigated an outbreak of influenza A pandemic (H1N1) 2009 occurred among 31 

members of a tour group in China. They found that for the 16 tourists who had talked with the 

index influenza case-patient from close range (<2 m) for >2 minutes, the attack rate was 56%, 

whereas none of the 14 tourists who did not talk with the index case became ill. Members of the 

tour group who had talked with the index influenza case-patient for >10 minutes were almost 5 

times as likely to become ill than those who had talked with her for 2–9 minutes.18 

People may spend more time indoor together when weather is not good, such as cold or 

rainy days, this will increase contact rate among individuals. Graham et al. conducted a study 

using the US Environmental Protection Agency's Consolidated Human Activity Database 
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(CHAD) for various locations in the United States and demonstrated that individuals spend on 

average 51 - 86 more minutes indoors during cold weather and spend on average 36 minutes 

more time indoors during rainy weather.19  

• Virus survival 

Influenza virus can be transmitted through several modes including droplet, aerosols, and contact 

transmission (both direct and indirect contact). The virus must be able to survive in a variety of 

environmental conditions for effective transmission among hosts. Several conditions were 

considered as important factors related to virus survival and seasonality. The high level of 

humidity, high temperature, and solar radiation demonstrated decreasing of influenza virus 

survival.20-22 

Lowen et al. experimented the effect of temperature and relative humidity on aerosol 

transmission among guinea pigs. They found that aerosol spread of influenza virus was 

dependent upon both ambient relative humidity and temperature. The low relative humidities of 

20% - 35% were most favorable for transmission, while transmission was completely blocked at 

a high relative humidity of 80%. Furthermore, when guinea pigs were kept at 5°C, transmission 

occurred with greater frequency than at 20°C, while at 30°C, no transmission was detected.20 

These finding implicate low relative humidities produced by indoor heating and cold 

temperatures as features of winter that favor influenza virus spread. However, it is unlikely this 

finding can explain influenza seasonality in the tropics because those regions are typically humid 

year-round, and epidemics tend to occur during the rainy season, when humidity is typically at 

maximal levels. Lowen et al. also reported that the lack of aerosol transmission among guinea 

pigs at 30°C at all humidities and transmission via the contact route was equally efficient at 30°C 

and 20°C. This implies that contact or short-range spread predominates in the tropics and offers 
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an explanation for the lack of a well-defined, recurrent influenza season affecting tropical and 

subtropical regions.21                                      

 Sagripanti et al. calculated the expected inactivation of influenza A virus by solar 

ultraviolet radiation in several cities of the world during different times of the year. The 

inactivation rates indicated that influenza A virions should remain infectious after release from 

the host for several days during the winter “flu season” in many temperate-zone cities, with 

continued risk for human infection.22 This might explain increasing of influenza burden during 

seasons with reduced sun activity, such as winter season in temperate regions and rainy season in 

tropics. 

• Host immunity 

Evidence for seasonal triggers of host immunity suggesting that respiratory infections including 

influenza are more frequent in individuals with known vitamin D deficiencies.23 Human vitamin 

D levels are generally dependent upon exposure to solar radiation. Vitamin D deficiencies are 

common in temperate populations during the winter when solar radiation is lowest. Large 

seasonal variations in vitamin D levels have been found in some studies. Guillemant et al. found 

a difference between after summer and after winter 25-hydroxyvitamin D (25(OH)D) levels to be 

around 30 nmol/l in French male adolescents.24 Vieth et al. found an average difference between 

summer and winter 25(OH)D levels at 18 nmol/l in a study among Canadian women; and 

prevalence of vitamin D insufficiency was higher in winter time, especially among Asian 

ethnics.25 

One observational study has shown that individuals with lower vitamin D levels are 

significantly more likely to report respiratory infections. Ginde et al. performed a secondary 

analysis of the Third National Health and Nutrition Examination Survey (NHANES), a 
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probability survey of the US population conducted between 1988 and 1994. They examined the 

association between 25(OH)D levels and recent upper respiratory tract infections (URIs) in 

18,883 participants 12 years and older. They found that lower 25(OH)D levels were 

independently associated with recent URTI (compared with 25[OH]D levels of ≥30 ng/mL: odds 

ratio [OR], 1.36; 95% CI 1.01 to 1.84 for <10 ng/mL and 1.24; 1.07 to 1.43 for 10 to <30 

ng/mL).26 This association was supported by a recent clinical trial. Urashima et al. conducted a 

randomized control trial to test the effect of vitamin D supplementation on influenza A and B 

incidence in school children in Japan. The study indicated that the experimental group were 

significantly less likely to become infected with influenza A than the controls. Influenza A 

occurred in 18 of 167 (10.8%) children in the vitamin D group compared with 31 of 167 (18.6%) 

children in the placebo group [relative risk (RR), 0.58; 95% CI: 0.34 to 0.99; p = 0.04]. 

However, the incidences of influenza B and rapid influenza diagnostic test-negative influenza-

like illness were not significantly different between the vitamin D and placebo groups.27 Another 

randomized controlled trial found no benefit of vitamin D supplementation in decreasing the 

incidence or severity of symptomatic URTIs during winter. Li-Ng et al. conducted a control trial 

to determine whether vitamin D supplementation during the winter season prevents or decreases 

URI symptoms in 162 adults who were randomly assigned to receive 50 μg vitamin D3 (2000 

IU) daily or matching placebo for 12 weeks. A bi-weekly questionnaire was used to record the 

incidence and severity of URI symptoms. There was no difference in the incidence of URIs 

between the vitamin D and placebo groups (48 URIs vs. 50 URIs, respectively, p = 0.57). There 

was no difference in the duration or severity of URI symptoms between the vitamin D and 

placebo groups [5.4 ± 4.8 days vs. 5.3 ± 3.1 days, respectively, p = 0.86 (95% CI for the 

difference in duration −1.8 to 2.1)].28 
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1.2.2 Populations at risk for influenza transmission and disease burden 

• People who are at high risk of getting influenza illness 

The disease can affect all age groups; however, influenza infection is higher among young 

children and elderly.  

o Children 

 Attack rate and hospitalization of influenza are higher among pre-school and school-age 

children. Data collected using medical records identification confirm that younger children are at 

elevated risk of influenza hospitalization; especially to those under 2 years of age, and the 

highest risk is in children under age 6 months.29-32   

o People who live with or care for others who are high risk of contracting influenza, 

such as healthcare workers 

 Healthcare workers are at risk of acquiring influenza and spread the contagious influenza 

virus to patients under their care and can be key cause of outbreak in healthcare settings. This is 

particular troubling for many patients at high risk for influenza-related complications such as 

those who have chronic medical conditions. Cross-transmission of influenza infection from 

healthcare workers to patients has been described.33-36 

• People who are at high risk of developing serious complications if they get sick with 

influenza 

o Elderly 

 Influenza morbidity is also higher among elderly. Thompson et al. studied influenza-

associated hospitalizations in the United States and reported that persons 85 years or older had 

the highest rates of influenza-associated primary respiratory and circulatory hospitalizations 
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(1,194.9 per 100,000 persons), followed by children younger than 5 years (107.9 primary 

respiratory and circulatory hospitalizations per 100,000 persons).37  

 Similar incident pattern was observed in developing countries. Simmerman et al. 

analyzed data from identified all hospitalized pneumonia patients form a population-based 

surveillance system in 2 provinces of Thailand and reported the average annual incidence of 

influenza pneumonia was greatest in persons age 75 or older (375 per 100,000) and in children 

less than 5 years of age (236 per 100,000).38 The elderly suffer by far the highest serious illness 

from influenza. The influenza-associated mortality was highest in persons aged 65 years and 

older, who account for about 90% of deaths attributable to influenza.39,40  

o People who have certain medical conditions   

 Influenza also can make chronic diseases worse. These medical conditions include 

chronic lung diseases (such as chronic obstructive pulmonary disease (COPD)), and heart disease 

(such as congenital heart disease, congestive heart failure and coronary artery disease), asthma, 

and endocrine disorders (such as diabetes mellitus (DM)). 

 When overall influenza attributable mortality is examined by comparing deaths above 

seasonal baseline in years of high influenza versus low influenza activity, ischemic heart disease 

account for 22.9% of the attributable excess mortality, COPD and other heart disease has been 

the cause of death in 13.8% and 9.1% respectively.41 A similar finding was reported in by Yap et 

al. who conducted a retrospective study to estimate excess hospital admissions for pneumonia, 

COPD, and heart failure during influenza seasons in Hong Kong. The adjusted rates of excess 

influenza-associated hospital admissions for the three diagnoses combined amounted to 58.5, 

20.0, 29.2, and 13.4 per 10,000 populations aged > 65 years in 1998, 1999, 2000, and 2001, 

respectively.42 
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 Several studies have revealed an association between heart diseases and severe illness of 

influenza. de Roux et al. conducted a study among patients with viral community-acquired 

pneumonia (CAP) and found that patients with chronic heart failure have an increased risk of 

acquiring a viral CAP (OR 15.3; 95% CI 1.4 to 163; p = 0.024).43 This finding was similar with 

that of a study that found influenza caused a seasonal excess mortality in patients with 

underlying cardiac illness. In this study, influenza-attributable risk of acute cardiopulmonary 

hospitalizations and death was estimated at 10.3 (95%CI 5.9 to 14.7) comparing influenza season 

to peri-influenza season.44 

o Pregnant women 

 Pregnant women have an increased risk of influenza infection and complications and lead 

to increase medical visits and hospitalizations for influenza-related illness relative to women of 

the same age.44,45 

 A large study of women aged 15–44 years who were enrolled in the Tennessee Medicaid 

program during influenza seasons between 1974 and 1993 demonstrated that pregnancy 

increased the risk of hospitalization for pneumonia, influenza and cardiopulmonary conditions; 

the risk increased during the later stages of pregnancy.45 This study reported influenza-

attributable risks for hospitalization in comparable non-pregnant and postpartum women were 

1.91 (95%Cl 1.51 to 2.31) and 1.16 (95%Cl -0.09 to 2.42) per 10,000 women-months, 

respectively. A recent 13-year (1990–2002) population-based cohort study reported similar 

findings. The rate of hospital admissions because of respiratory illness in the third trimester 

among women without co-morbidities was 7.4 per 10,000 woman-months during the influenza 

season, compared with 5.4 and 3.1 per 10,000 woman-months during the peri-and non-influenza 

seasons respectively.46 
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1.3 INFLUENZA IN THAILAND 

1.3.1 Influenza surveillance in Thailand 

There are two major surveillance systems for influenza in Thailand. The first is an influenza 

cases surveillance conducted by the Bureau of Epidemiology (BoE), Thai Ministry of Public 

Health (MoPH). The second is an influenza virological surveillance conducted by the Thailand 

National Institute of Health (NIH), Thai MoPH. 

Influenza is one disease in the National Notifiable Disease Report named Report506. The 

surveillance of influenza is hospital-based passive surveillance, mostly is governmental 

hospitals. When a patient visits a healthcare facility for medical treatment and is diagnosed with 

influenza, disease surveillance officials collect information (demographic data, diagnosis, date of 

onset, hospitalization, etc) and enter the data into Notifiable Disease Report database. The 

electronic database is sent from each hospital in that province to the Provincial Health Office. 

Then, the data are merged and sent to the BoE. The responsible officials must report even 

suspected disease or syndrome without laboratory confirmation (the system allows for a later 

revised report after laboratory result become available). A strength of this system is that it is 

quick to detect abnormal events including emerging diseases and outbreaks. However, because 

testing for influenza infection is not routinely available, very few reported cases are ever 

confirmed in the laboratory. As a result, influenza reported cases tend to be influenza-like illness 

(ILI). Because the majority of ILI cases are not caused by influenza, the lack of laboratory 

confirmation for influenza cases could result in over-estimates of influenza infections. 

Influenza virological surveillance is a sentinel laboratory-surveillance in Thailand. The 

NIH participates in the WHO influenza laboratory network as a national influenza center by 
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conducting laboratory surveillance, subtyping viruses responsible for disease outbreaks, and 

contributing strain surveillance data. Clinical samples are submitted by ten participating hospitals 

from all 4 regions (North, Northeastern, Central and South) and 1 health center in Bangkok. 

These sentinel hospitals also must send influenza cases report to the National Notifiable Disease 

Report system. However, the responsible officials are laboratory officials and this is an 

independent surveillance system. If someone is laboratory positive on the virological 

surveillance system, and is notified to surveillance officials, the case will get into the Notifiable 

Disease Report database. 

1.3.2 Incidence of influenza in Thailand 

Thailand had reported influenza cases with incidence of 2.17 per 100,000 population in year 

1971. The incidence increased gradually and peaked between 1982-1989 (120.41-178.36 per 

100,000 population). Then, the reported cases have generally declined except for the epidemic 

between year 2009-2010, a result of pandemic novel influenza A (H1N1). During the pandemic 

the incidence was 189.72 and 180.82 per 100,000 population in year 2009 and 2010 respectively 

(Figure 1). 
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Source: Bureau of Epidemiology, Thailand MoPH 

Figure 1 Reported incidence of influenza per 100,000 population, Thailand 1971-2011 

 
Typically there is a peak of reported cases during the rainy season, between July-

September (around Week 30th - 40th), except in 2009 when the epidemic came early (Figure2). 

 

Source: Bureau of Epidemiology, Thailand MoPH 

Figure 2 Reported cases of influenza, by week of onset, Thailand 2007-2011 
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Before the pandemic years, influenza incidence was high among small children. In 2007, 

the highest incidence was found in age group 0-4 years old (54.16 per 100,000 population); 

followed by age group 5-9 years old (45.32 per 100,000 population), and age group 10-14 years 

old (34.43 per 100,000 population) respectively. In 2008, the highest incidence was found in age 

group 0-4 years old (61.92 per 100,000 population); followed by age group 5-9 years old (54.95 

per 100,000 population), and age group 10-14 years old (40.06 per 100,000 population) 

respectively (Figure 3). 

 

 

Source: Bureau of Epidemiology, Thailand MoPH 

Figure 3 Reported incidence of influenza per 100,000 population, by age group, Thailand 2007-

2008 
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per 100,000 population), and age group 0-4 years old (438.46 per 100,000 population) 

respectively In 2010, the highest incidence was found in age group 0-4 years old (606.75 per 

100,000 population); followed by age group 5-9 years old (483.2 per 100,000 population), and 

age group 10-14 years old (281.33 per 100,000 population) respectively (Figure 4). 

 

 

Source: Bureau of Epidemiology, Thailand MoPH 

Figure 4 Reported incidence of influenza per 100,000 population, by age group, Thailand 2009-

2010 

 

 In 2009, Thai NIH received 3,052 clinical specimens from ILI patients, 638 (20.9%) had 

positive results. Of these, there was seasonal H1N1 88 specimens (13.79%), H3N2 80 specimens 

(12.54%), Flu B 78 specimens (12.23%), and pandemic H1N1 392 specimens (61.44%) 

(Figure5). 
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Source: Thai National Influenza Center, Thailand NIH 

Figure 5 Number of clinical specimens from ILI patients and test results, influenza virological 

surveillance, Thailand 2009 

 

In 2010, Thai NIH received 3,505 clinical specimens from ILI patients, 866 (24.7%) had 

positive results. Of these, there was H3N2 119 specimens (13.74%), Flu B 285 specimens 

(32.91%), pandemic H1N1 462 specimens (53.35%), seasonal H1N1 was not identified 

(Figure6). 
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Source: Thai National Influenza Center, Thailand NIH 

Figure 6 Number of clinical specimens from ILI patients and test results, influenza virological 

surveillance, Thailand 2010 
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1.4 INFECTIOUS DISEASE MODELING 

Mathematical models are being increasingly used to explain the transmission of infections and to 

evaluate the potential impact of control strategies in reducing morbidity and mortality. They can 

integrate epidemiological and biological data to give quantitative insights into patterns of disease 

spread and the effectiveness of interventions. Their application include predicting the impact of 

interventions against common diseases as well as determining optimal control strategies against 

emerging infectious diseases. Many models were used to make predictions about the likely 

outcome of alternative courses of public health interventions for global concerned diseases such 

as Severe Acute Respiratory Syndrome (SARS), Human Immunodeficiency Virus (HIV), small 

pox, and influenza.47-49 

The model structure reflects the natural history of the infections. In this structure, 

population categories and diseases transitions need to be described. Individuals are classified 

according to theirs infection and immune status as either susceptible, exposed, infectious, or 

recovered. 

• Susceptible (S): Initially, individual is susceptible and can get infection if they are exposed to 

pathogen of infectious individuals.  

• Exposed (E): In early stages of infection, the infected individuals may not exhibit obvious 

signs of infection and pathogen may be too low to allow further transmission. Infected 

individuals are not yet infectious.  

• Infectious (I): At this stage, the infected individuals become infectious and can spread the 

disease to any susceptible individual that they come contact with. 

• Recovered (R): The individuals have recovered from the disease and no longer infectious 
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1.4.1 Epidemic dynamics 

The growth of an epidemic is principally governed by two factors: the basic reproduction number 

(R0) and generation time. R0 determines how intensive strategies will need to be to control the 

epidemic, whereas both R0 and generation time determine the time available to implement 

suitable control measures. 

1.4.1.1 Basic reproductive number (R0) 

This number quantifies the transmissibility of any pathogen, which is defined as the average 

number of secondary infectious persons resulting from one infectious person following their 

introduction into an entirely susceptible population. A disease can spread if R0 is greater than 

one, and the transmission will be inevitably die out if R0  is less than one. The goal of control 

policies is to reduce R0 to below one by eliminating a proportion 1 - 1/ R0 of transmission. This 

can be achieved in three ways:7  

• by reducing contact rates in the population such as social distance measures 

• by reducing the infectiousness of infected individuals such as treatment of isolation 

• by reducing the susceptibility of uninfected individuals such as vaccination or antiviral 

prophylaxis 

 The value of R0 is different for different infectious agents and depends among other 

things on the characteristics of the population that the agent invades. Given this, it is not 

immediate that one can adopt previously determined values or size ranges for an outbreak in a 

new population unless many of the complicated characteristics of, for example, population 

composition and contact structure are comparable.50 
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 Many modeling studies have estimated R0 either previous influenza pandemics or 

seasonal influenza. The estimated influenza R0 range from 1.2 to 3.75 (Table 1).51-59 

 
Table 1 Summary of influenza R0 estimation 

Authors Type Country Study year R0  

Chowell (2006) Pandemic 1918 Switzerland 
1918 (spring) 

1918 (fall) 

1.49 (95% CI 1.45 - 1.53) 

3.75 (95% CI 3.57 - 3.93) 

Mills (2004) Pandemic 1918 USA 1918 Median 2.0 (IQR 1.7 - 2.3) 

White (2008) Pandemic 1918 USA 1918 Range 1.34 - 3.21 

Massad (2007) Pandemic 1918 Brazil 1918 2.68 

Vynnycky(2008) Pandemic 1957 UK 1957 1.8 

Viboud (2006) Epidemic UK 1951 Range 1.9 - 2.5 

Lessler (2007) Outbreak USA 1976 1.2 (Range 1.1 - 1.4) 

Chowell (2008) Seasonal USA, Australia, 

France 

1972 - 1997 

 

1.3 (95% CI 1.2 - 1.4) 

Range 0.9 - 2.0 

Fraser (2009) 
Novel influenza 

A (H1N1) 
Mexico 2009 1.4 - 1.6 

1.4.1.2 Generation time 

Generation time (Tg) is the time form onset of such a primary to a secondary case. It is 

determined by the duration of the pre-infectious and infectious periods (which determine when 

infection leaves the primary case) as well as the incubation period (which determines when the 

secondary case has clinical onset). The generation time also referred to as the serial interval. 

Estimates of the serial interval of human influenza are incorporated into models of influenza as 
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the generation time, which is formally defined as the average time interval between successive 

infections in a chain of transmission. Estimates of the mean serial interval range between 2 - 4 

days.57,60 

1.4.2 Models 

A models provides a convenient framework in which we can put all key factors together to make 

predictions of changes in the number of susceptible, infectious, and immune individuals and the 

likely number of cases by time of interests. There are two types of models to be considered, 

deterministic and stochastic. 

1.4.2.1 Deterministic model 

Deterministic models describe what happens, on average, in a population of interest. In these 

models, the input parameters (such as contact rate, rate of infection, duration of disease, or rate 

of recover, etc.) are fixed, and therefore the model's predictions (such as number of cases, 

number of recovery or immune) represent an average number over time.  

A commonly used deterministic model for epidemiological study, is the susceptible-

infectious-recovered (SIR) and susceptible-exposed-infectious-recovered (SEIR) compartmental 

model. This type of model categorize the host population to infection status as either susceptible, 

exposed, infectious, or recovered. Fundamental to the deterministic model are assumptions that 

all susceptible people in the population are equally at risk of infection from any infected 

individual (homogeneous mixing) and that all infected individuals have a constant and equal 

infectiousness.   
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Although compartmental SIR models have proven to be quite useful in modeling 

epidemics, they do not properly model some important aspects of disease spread. For example, 

assuming homogeneous mixing of the population is unrealistic. Individuals tend to make contact 

with household members, workplace colleagues and friends at a much higher rate than random 

strangers, and such regular contacts will also tend to be in the same geographic vicinity. Also, 

contact with infectious individuals is much higher at hospitals. One example of this limitation of 

assuming homogeneity; consider the 2002-2003 outbreak of SARS. Using a deterministic model 

to estimated R0 based on the initial outbreak of SARS would estimate a very high number of 

SARS patients, with cases numbering easily in the millions. However, the actual reported of 

SARS cases was much lower. This resulted from the estimation of R0 were based on data 

involving large numbers of transmission in hospitals, where people have usually high rate of 

contact.61  

1.4.2.2 Stochastic model 

Stochastic models allow the number of individuals who move between compartments to vary by 

chance. The input parameter may vary randomly. This is crucial when heterogeneity of key 

factors among population is expected. Also, most interventions are usually considered to be 

heterogeneous among population. Therefore, the stochastic models are more realistic than 

deterministic models. The model's prediction will give a range of output number over time. This 

feature of stochastic models is practical for decision-making purposes, for example, the range of 

number of cases (both no-intervention and intervention scenarios) is more helpful for planning 

purposes than the fixed average number of cases. 

The agent-based model is one type of stochastic model. Agent-based models keep track 

of what happens to every individual in a population and allowing chance to determine whether or 
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not an individual is infected. This approach is to draw a number at random for each individual, 

and to specify the range in which it the random value should lie for the individual to be 

considered as infected. If the number falls outside the range, then that individual remains 

susceptible. This range is based on the risk of infection at that time point. To calculate the 

outbreak size in a given population, the method would need to draw random numbers for each 

susceptible person, update the number of susceptible and infectious individuals based on the 

random number drawn, and repeat this process until there are no further infectious or susceptible 

individuals and transmission ceases. 

For many infectious diseases, transmission occurs mainly between people who are 

collocated (simultaneously in the same location), and spread is due mainly to people's 

movement. In addition, diseases often spread differently in different age groups, spread 

differently depending on the type of contact; for example, contacts at home tend to be more 

intimate than contacts at work. Also, disease spread is affected by geographic location and 

seasonality. Researchers have built very high-fidelity models using agent-based simulations, 

where each of these important characteristics is included in the model.7,62  

1.4.3 Influenza modeling 

The use of modeling and simulation for influenza is well recognized. Many models have been 

used to understand the transmission dynamics of influenza, find the optimal policies to minimize 

the mortality and morbidity of epidemic outbreaks, and as a health policy tool to predict the 

effect of public health interventions. 
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• Estimation of epidemiological parameters 

 Many modeling studies have investigated the past influenza epidemics and historical 

pandemics of the 20th century: the Spanish Flu 1918–1919 (H1N1) and Asian Flu 1957–1958 

(H2N2) and have consistently estimated that R0 was mostly in the range of 1.2–3 (Table 1).51-58  

• Assessing the effectiveness of biomedical and behavioral public health interventions 

 The potential effectiveness of antiviral agents have been modeled to assess their 

effectiveness and compare the relative effectiveness of prophylaxis versus treatment strategies  

(Table 2),7,8,63-66 and to assess the potential risk of antiviral resistance (Table 3).67-70 These 

studies consistently showed that targeting antiviral prophylaxis (that is, providing close contacts 

of suspected cases with antivirals) would be an efficient use of antiviral stockpiles in terms of 

reducing the epidemic size, compared with treatment-only strategies. These finding are crucial in 

decision making on the best use of country’s antiviral stockpiles. 
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Table 2 Studies model an effectiveness of antiviral agents 

Authors Type Findings 

Longini (2004) Treatment & 

prophylaxis 

Treating index case and prophylaxis of contacts reduce attack 

rate in the population from 33% to 2% 

Ferguson (2005) Prophylaxis • prophylaxis of an entire country or region should be able 

to eliminate a pandemic virus with an R0 > of 3.6  

• Social targeting prophylaxis that initiated after 20 or more 

cases, has a 90% probability of eliminating the pandemic 

strain if R0 < 1.25 

Longini (2005) Treatment & 

prophylaxis 

Treating index case and prophylaxis of contacts would have a 

high probability of containing influenza if   R0 < 1.25 

Ferguson (2006) Prophylaxis Antiviral prophylaxis of household members is effective in 

reducing cumulative attack rates by at least one-third and 

peak attack rates by a half 

van den Dool 

(2009) 

Prophylaxis Post-exposure and continuous prophylaxis reduced the patient 

infection attack rate from 0.19 to 0.13 and 0.05, respectively. 

McCaw (2007) Treatment & 

prophylaxis 

• Targeted post-exposure prophylaxis delays the onset of 

the pandemic  

• Treatment based strategy does not delay the onset of a 

pandemic, and is not capable of significantly reducing the 

attack rate from baseline 
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Table 3 Studies model a potential risk of antiviral resistance 

Authors 
Pattern of usage of 

antivirals 
Findings 

Furguson (2003) Treatment of 6% of 

symptomatic 

influenza infections 

Resistance will occur in 1.8% of the treated patients, or 

0.049% of all symptomatic influenza infections for the 

first 3 years after treatment is introduced in the 

population. 

Lipsitch (2007) Treatment of 30% of 

infected hosts, and/or 

prophylaxis of 30% 

of contacts 

Even if antiviral treatment or prophylaxis leads to the 

emergence of a transmissible resistant strain in as few 

as 1 in 50,000 treated persons and 1 in 500,000 

prophylaxed persons, widespread use of antivirals may 

promote the spread of resistant strains to a prevalence 

of tens of percent by the end of a pandemic 

McCaw (2008) Combined treatment 

(40%) and 

prophylaxis (30%) 

Strategies that combine treatment and prophylaxis are 

most effective at controlling transmission, at the cost 

of facilitating the spread of resistant viruses 

Arino (2009) 40% or 60% 

treatment level 

These treatment levels can result in a more rapid 

depletion of drug stockpiles, leading to run-out, by 

promoting wide-spread drug resistance 

 

 Vaccination is the long-term solution for reducing morbidity and mortality of influenza. 

A series of studied used mathematical modeling to assess the public health benefit of different 

vaccination strategies to optimize the use of a limited amount of vaccines (Table 4).71-74 Most 
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studies concluded that vaccinating school children would substantially reduce influenza 

transmission. 

Table 4 Studies model optimal vaccine distribution 

Authors Target population Findings 

Patel (2005) Age group: 0-4, 5-18, 19-

50, 51-64, 65+ years 

When there was only enough vaccine for 30% of 

the entire vaccination and the objective was to 

minimize illness, the optimal vaccination strategy 

involved concentrating vaccine in children, with 

the leftover vaccine going to middle aged adults 

Riley (2007) General population A lower (optimal) vaccine dose may be justified in 

order to increase population coverage, thereby 

reducing the infection attack rate overall 

Basta (2009) Children aged 6 months to 

18 years 

Vaccinating school-aged children against 

influenza can reduce age-specific and population-

level illness attack rates 

Lee (2010) Age group: 0-5 months, 6-

23 months, 2-4.9 years, 5-

18 years, 19-24 years, 25-

49 years, 50-64 year, 65+ 

years 

Optimal allocation is adherence to the Advisory 

Committee on Immunization Practices (ACIP) 

prioritization recommendations for the H1N1 

influenza vaccine when vaccine is in limited 

supply and that within the ACIP groups, children 

should receive highest priority 
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 The effect of public health interventions such as closing schools, quarantining infected 

individuals or imposing travel restrictions also have been modeled (Table 5).7,8,64,75 The studies 

showed that that household quarantine, and prolonged school closures, could reduce the 

cumulative number of influenza cases. 

 

Table 5 Studies model an effectiveness of public health interventions 

Authors Interventions Findings 

Ferguson (2005) School and workplace 

closure (add on 

antiviral prophylaxis 

policy) 

Adding area-based school and workplace closure to a 

antiviral drug-sparing prophylaxis policy increases 

policy effectiveness significantly, with the combined 

policy having a 90% chance of elimination for R0 = 1.7 

Longini (2005) Quarantine (add on 

antiviral prophylaxis 

policy) 

Combination of 80% targeted antiviral prophylaxis and 

quarantine is effective at an R0 as high as 2.4 

Ferguson (2006) Case isolation Isolating 90% of influenza cases can reduce cumulative 

attack rates from 34% to 27% for R0 = 2.0 

Epstein (2007) International air travel 

restrictions 

95% travel restrictions can delay the initial spread of 

the epidemic, as measured by the number of cases after 

6 months 

 

 Most of influenza modeling studies utilized compartmental models; however, some of the 

more recent studies conducted utilize agent-based simulation models.6-8,64,74,76,77 Agent-based 

simulations can easily take into account household demographics, individually targeted 
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interventions and spatial heterogeneity which are often difficult simulate using compartmental 

models. However, it needs intensive computer resources and take times to run the models, 

especially for a large-scaled simulation. 

1.4.4 Influenza modeling in Thailand 

To date, a few influenza models using Thailand data have been published.7,64,78 The first one was 

conducted by Ferguson et al. which used agent-based models to simulate disease burden and 

effect of various control strategies at national scale. They assumed that a H5N1 pandemic 

influenza would occurred by re-assortment of avian virus and human virus, generating a virus 

with increased transmissibility. They seeded simulations with a single infection in the most rural 

third of the population (that is, with the lowest population density), assuming that rural 

populations are most likely to be exposed to the avian virus. This assumption is unrealistic if a 

new pandemic influenza originate from human influenza, which often start with crowded 

population. They simulated impact of targeted mass prophylactic use of antiviral drugs and 

reinforcements of other interventions aimed at reducing population contact rates to an antiviral-

based containment policy. They reported that elimination of a pandemic may be feasible using a 

combination of geographically targeted prophylaxis and social distancing measures (school and 

workplace closure, quarantine zones in which movements in and out of the affected area are 

restricted). If the R0 of the new virus is below 1.8, they predicted that a stockpile of 3 million 

courses of antiviral drugs should be sufficient for elimination. 

 The second study was conducted by Longini et al. They used a discrete-time stochastic 

simulation model of influenza spread within a structured geographically distributed population of 

500,000 people to compare the effectiveness of various intervention strategies (antiviral 
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prophylaxis, H5N1 influenza vaccine, case quarantine) against a new strain of influenza that may 

originate from avian influenza. This study aimed to model effectiveness of those interventions 

only. Like the first study, this study is based on rural area context and was small scale model. 

This may not fit to a new pandemic influenza originate from human influenza. They reported that 

If the R0 is below 1.8, an antiviral agent stockpile on the order of 100,000 to 1 million courses for 

treatment and prophylaxis would be sufficient to contain the outbreak. If pre-vaccination 

occurred, then targeted antiviral prophylaxis could be effective for containing strains with 

an R0 as high as 2.1. Combinations of targeted antiviral prophylaxis, pre-vaccination, and 

quarantine could contain strains with an R0 as high as 2.4. 

 The third study was conducted by Krumkamp et al. who used a deterministic SEIR model 

without age structure assuming a homogeneously mixing population at 2 provinces of Thailand 

to assess health resource gap for influenza treatment in a novel influenza A (H1N1) scenario. 

This study did not cover aspect of disease prevention and control. Also, assuming a 

homogeneously mixing population might not be true, especially for intervention policy and 

control strategies. They found the differences in health outcomes between a province with 

adequate resources and a province with potential resource gaps. The province with adequate 

resources had adequate hospital beds and medical ventilators for the outbreak response.  Also the 

antiviral drugs stockpile was sufficient to treat all critical cases. However, the surplus did not 

allow for changing treatment strategies to provide to outpatients who had mild symptoms. For 

another province with resource gap, medical ventilators need to be increased by 27.3% of the 

number current available, and antiviral drugs stockpile must be more than doubled in order to 

treat all hospitalized influenza cases. 
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1.4.5 The Framework for Reconstructing Epidemic Dynamics (FRED) 

In this study, a large-scale agent-based framework of infectious diseases, namely FRED and 

developed by the University of Pittsburgh Public Health Dynamics Laboratory (PHDL) in 

collaboration with the Pittsburgh Supercomputing Center (PSC) and the School of Computer 

Science at Carnegie Mellon University, was used. FRED is a freely available open-source 

epidemic modeling system that uses census-based synthetic populations to capture the 

demographic and geographic heterogeneities of the population, including realistic household, 

school, and workplace social networks.79 Mitigation strategies in the framework include 

vaccination, anti-viral drugs, and school closure policies. FRED models are currently available 

for every state and county in the United States, and selected international locations. Public health 

planners can use FRED to explore the possible influenza epidemics and to help evaluate the 

likely effect of interventions. 

FRED was designed as a flexible framework for epidemic modeling. While originally 

designed to study influenza, FRED can be adapted to other infectious diseases, by modifying 

configuration files characterizing the natural history of the disease. Other user-modifiable 

parameters include the initial immunological profile of the population, the availability and 

efficacy of vaccine and anti-viral drugs, and a flexible set of intervention policies regarding 

vaccine distribution, school closures and other non-pharmaceutical interventions.  Disease 

parameters and assumptions followed the process described in study by Cooley et al.80 and 

systematic review of Zhou et al.81 

PHDL made significant additions to FRED (FRED/Thailand) to support particular 

simulations that were not available in existing FRED. These contributions included the addition 

of (1) hospital assignments for workplace, (2) identification of healthcare workers (HCWs), (3) 
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chronic medical conditions and pregnancy assignments for agents (4) hospital preference 

assignments for agents, (5) temporary hospitalization of agents, (6) face mask behaviors, (7) 

hand washing behavior; and getting FRED/Thailand to run efficiently on Blacklight at PSC. 

1.4.6 Synthetic population 

FRED explicitly represents every individual living in a specific geographic region. However, 

Thailand synthetic population was not available in existing synthetic population database of the 

Research Triangle Institute (RTI International). The investigators in this study in collaboration 

with RTI International had developed a new Thailand synthetic population. The synthetic 

population used an iterative fitting method82 to generate an agent population from the aggregated 

census data. Thai census data (year 2000) on household size and age distributions were used to 

generate the synthesized agents and households. 

School and workplace assignments followed the methods described by Cajka et al.83 

School data (year 2011) from the Thai Ministry of Education84 on ≈38,000 schools were used to 

determine the distribution of school sizes, number and proportions of children in school as a 

function of age for school assignment. The schools assignment method was based on the 

assumption that students are enrolled at the closest school having adequate capacity. Data of 

Thailand Industrial census in year 200785 were used for workplace assignment. The data 

indicated numbers and percentages of workers by size of work place (1 - 15, 16 - 25, 26 - 30, 31 

- 50, 51 - 200, and >200 workers). The locations (point) of workplaces were generated. Then, 

each non-school age synthetic individual was assigned to a workplace such that the distribution 

and capacity of each workplace was appropriate. 
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As original synthetic population did not have hospital assignment, the investigators in 

this study in collaboration with PHDL had created synthetic hospitals. The actual hospitals data 

of Thailand Ministry of Public Health in year 201386 were used to create synthetic hospitals. The 

method assumed that the number of HCWs who interact with patients was proportional to the 

number of beds by the value of 1 to 1 (e.g. a hospital with 100 beds would have 100 HCWs who 

interact with patients). The simulation then found a synthetic workplace with approximately the 

same number of employees and moved the assigned employees to work in the hospital as HCWs. 

To determine which hospital a family will visit, the method used a gravity model where the 

probability of going to a given hospital was determined by the (number of beds) / (distance from 

household to hospital)^2. 

Each agent has associated with its demographic information (e.g., age, sex, etc.), health 

information (e.g., current health status, date of infection, level of symptoms, infectiousness, 

susceptibility, etc.), location for social activity (e.g., household, neighborhood, school or 

workplace, etc.), and health-related behaviors (e.g., probability of staying home when sick, 

probability of getting a vaccine, etc.). 
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1.5 INFLUENZA CONTROL MEASURES 

Influenza control measures have goal to reduce the viral transmission, minimize morbidity and 

mortality. These interventions include influenza vaccines, antiviral agents, and non-

pharmaceutical interventions. 

1.5.1 Influenza vaccines 

Vaccination is at present the primary public health intervention for the reduction of disease 

seasonal influenza. Vaccines protect against influenza by stimulating an antigen-specific immune 

response in recipients. However, the antigens contained in the vaccine must match those of the 

circulating virus to be effective at reducing influenza infection. So far, development of vaccine 

against a specific type of influenza virus and its production requires several months. As a result, 

if a vaccine does not match a circulating strain, it would take months to produce the new vaccine, 

and the peak will likely have passed when the vaccine is available. 

 Vaccination has both direct and indirect effects. Direct effects occur because the person 

who is vaccinated may have reduced risk of becoming infected. Indirect effects occur because 

someone who is vaccinated will have reduced risk of spreading the pathogen to others (in part 

because they have a reduced risk of becoming infected). Close contacts of this vaccinated person 

will therefore also have reduced risk of becoming infected even if they do not receive vaccine 

themselves. 

 Two types of influenza vaccines are available: trivalent inactivated influenza vaccines 

(TIV) and live attenuated influenza virus vaccine (LAIV).  
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 The TTV vaccines are available for use among adults of all ages regardless of underlying 

medical conditions.  Efficacy is from 70 to 90% in healthy adults younger than 65 years of age 

and 30–90% in children, with lower efficacy in younger children.87 The LAIV is approved for 

use among healthy, non-pregnant adults through the age of 49. Efficacy is usually from 70% to 

90%.87  

These vaccine efficacy estimates are based on clinical trials, and usually be common 

lower efficacy in real world situations. Many factors may affect its efficacy. The vaccine is most 

effective if it contains a same antigenic strain with circulating influenza virus. However, there 

are yearly variability of influenza viral strains and vaccine manufacturing has about 1 year lag to 

justify vaccine antigenic strains and production. This does not assure that the current vaccine will 

contains exactly the same strains with current circulating virus. In addition, vaccine effectiveness 

in a population also depends on vaccine cold-chain and administration. Vaccines are 

temperature-sensitive biological products. The degradation rate of a vaccine is determined by the 

storage temperature: the higher the temperature, the more rapid and extensive is the degradation 

88. Influenza vaccine should be stored in the refrigerator at 35° to 46°F (2° to 8°C), aim for 40°F 

(4°C), and should not be frozen.  

1.5.2 Antiviral agents 

There are two classes of antiviral agents approved for the treatment and prophylaxis of influenza 

infections. The first class is M2 ion channel blockers; include Adamantanes, Amantadine and 

Rimantadine. The second class is neuraminidase inhibitors; include Oseltamivir and Zanamivir. 

For treatment purpose, both classes of drugs need to be administered within 48 hours of 

symptom onset to be effective.  
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 Amantadine and Rimantadine should no longer be used for the treatment of influenza due 

to the high incidence of resistance. Resistance to Amantadine and Rimantadine is seen with a 

frequency of ≥50% in children,36,89  the elderly and in immunocompromised patients.90,91 

Oseltamivir is the best choice for stockpiling given its efficacy,92,93 even with some degree of 

resistance.69 

 Guidelines regarding antiviral drugs use are necessary because there is only a limited 

supply of drugs during a pandemic or epidemic. Government stockpile policies are designated 

primarily for treatment. 

1.5.3 Non-pharmaceutical interventions 

Various non-pharmaceutical intervention strategies are a first line of defense against outbreak of 

infectious diseases because they can be implemented rapidly. These types of interventions seek 

to reduce the contacts between individuals or disrupt a spread of pathogen. The interventions 

have include strategies such as social distancing measures (such as closing schools and childcare 

centers, closure of public places, limit mass transit, isolation and quarantine), and personal 

protection and hygiene measures (such as mask wearing and hand washing). 

1.5.3.1 School closure 

The rationale for school closure is that children are thought to be important vectors of 

transmission and more infectious, are more susceptible to most influenza strains than adults, and 

the high contact rates in schools favor transmission. School closure is associated with decreased 

morbidity from respiratory tract infections94 including influenza.95 It has been proposed as a 

method of reducing both the total number of influenza cases and peak of attack rate during 
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pandemic.96 Epidemiological study using diseases surveillance data suggested that school 

holidays prevent 16–18% of seasonal influenza cases (18–21% in children); prolonged school 

closure during a pandemic might reduce the cumulative number of cases by 13–17% (18–23% in 

children) and peak attack rates by up to 39–45% (47–52% in children).97 However, school 

closures result in significant economic impacts because caregivers have to leave the workforce to 

care for unattended-school children.98,99 This make the school closure policy has a community 

controversial. 

1.5.3.2 Isolation and quarantine 

Isolation of the sick and quarantine of contacts measured in 1918 pandemic influenza was 

ineffective.100 After physicians reported influenza case, the patients were quarantined and their 

houses were placarded. Many citizens regarded the placard as an injustice and avoided 

quarantine. Also, many physicians hesitated to report mild symptom patients as influenza case. 

This made quarantine measure ineffective.  

 Some of the lessons learned from the 2003 SARS epidemic can be applied to influenza; 

early isolation of patients and quarantine of contacts successfully interrupted SARS transmission. 

Influenza has a serial interval of 2 to 4 days and infectivity is maximal early in illness, whereas 

for SARS the serial interval is 8–10 days and infectivity peaks during week 2 of illness. These 

factors allow little time for instituting the isolation and quarantine interventions that were 

essential in controlling SARS.101 However, Miyaki et al. conducted a study to evaluate 

quarantine measure for workplaces; asking workers whose family members developed an 

influenza-like illness (ILI) to stay at home voluntarily until 5 days had passed since the 

resolution of ILI symptoms or 2 days after alleviation of fever (The company paid full wages 

during this time). With 100% compliance to intervention, the waiting on full pay policy in the 
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workplace reduced the overall risk of influenza A H1N1 by about 20% in one influenza 

season.102 

1.5.3.3 Personal protection and hygiene measures 

Experience from previous influenza pandemic showed that wearing mask in public was 

ineffective. During the 1918 influenza pandemic, mask use was common and even required by 

law in many jurisdictions. However, the medical officer of health for Alberta, Canada, reported 

that cases of disease continued to increase after mask use was mandated.100  Recently, a limited 

controlled study evaluated the efficacy of wearing mask in preventing transmission of influenza 

virus was initiated and results have yet to be published.  

 During the SARS epidemic in 2003, surveys conducted in Hong Kong between April and 

May 2003 showed that most of the population wore a face mask (76%). In this period, influenza 

virus isolation rates decreased. However, since multiple hygienic measures were implemented 

(such as hand washing, covered their mouths when sneezing or coughing, used diluted bleach for 

household cleaning), the contribution of mask wearing was unclear.103 MacIntyre et al. 

conducted a prospective cluster-randomized trial comparing surgical masks, non-fit-tested P2 

masks, and no masks in prevention of influenza-like illness (ILI) among household members of 

ILI patients. They reported that adherent use of P2 or surgical masks significantly reduces the 

risk for ILI infection, with a hazard ratio equal to 0.26 (95% CI 0.09 to 0.77; p = 0.015).104 

Effectiveness of face mask use by index influenza cases was questionable in one study. Canini et 

al. conducted a cluster randomized intervention trial to evaluate the effectiveness of face mask 

use by index cases for limiting influenza transmission by large droplets produced during 

coughing in households. The result did not show any significant difference in ILI proportion 

among household contacts between the intervention arm and the control arm, even with a good 
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adherence to the intervention.  The multivariable adjusted odds ratio for the intervention arm 

compared  to the control arm was 0.95 (95%CI 0.44 to 2.05, p = 0.90).105  

 Many controlled studies have shown a protective effect of hand hygiene in reducing 

upper respiratory infections.106-112 Luby et al. conducted a randomized controlled trial to assess 

the effect of hand washing promotion with soap on the incidence of acute respiratory infection 

and found that children younger than 5 years in households that received plain soap and hand 

washing promotion had a 50% lower incidence of pneumonia than controls (95% CI 34% to 

65%).107 Mater et al. evaluated the effect of a scheduled hand-washing program in elementary 

school children on absenteeism due to acute communicable illness and found that respiratory 

illness was reduced at 21%(95%CI 0.02% to 0.39%).110 Talaat et al. studied the effectiveness of 

an intensive hand hygiene campaign (washing hands using soap and water at least twice during 

the school day for ≈45 seconds, followed by proper rinsing and drying with a clean cloth towel) 

on reducing absenteeism caused by ILI and laboratory-confirmed influenza and reported that 

overall absences caused by ILI and laboratory-confirmed influenza were reduced by 40% and 

50%, respectively (p<0.0001 for each illness).111 Stebbins et al. conducted a cluster-randomized 

trial in 10 elementary schools to assess efficacy of respiratory hygiene education and the regular 

use of hand sanitizer to reduce the laboratory-confirmed influenza. The interventions did not 

reduce total laboratory-confirmed influenza (A and B). However, the interventions did reduce 

school total absence episodes by 26% and laboratory-confirmed influenza A infections by 

52%.112 

 In contrast, some studies showed no protective effect of face mask use alone or hand 

washing alone on ILI or influenza, but revealed effectiveness of both interventions 

combined.113,114 Aiello et al. observed significant reductions in ILI during weeks 4–6 in the mask 
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and hand hygiene group, compared with the control group, ranging from 35% (95%CI 9% to 

53%) to 51% (95%CI 13% to 73%), after adjusting for vaccination and other covariates. 

However, adherence to the interventions varied and there was contamination between groups, 

with noncompliance in the intervention group and some practicing the intervention in the control 

group.113 Cowling et al. reported that effect attributable to fewer infections among participants 

using facemasks plus hand hygiene was OR= 0.33 (95%CI 0.13 to 0.87).114 
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1.6 SUMMARY 

There are 3 types of influenza virus: A, B and C. Only influenza A is associated with widespread 

epidemics and pandemics. Influenza is generally seasonal in temperate climate zones but is less 

pronounced in tropical zones. Mechanisms contribute to influenza seasonality remain unclear. 

Some mechanisms have been proposed to explain the seasonality including contact rates, virus 

survival, and host immunity. Populations at risk for influenza are children, elderly, healthcare 

workers, people with chronic medical conditions, and pregnant women. 

Mathematical and computational simulation models are being increasingly used to 

estimated a burden and evaluate impact of control strategies of influenza. One important disease 

transmission parameter is R0. However, this number was often estimated using developed 

countries data. 

Most models of influenza utilize compartmental models. A few studies have used agent-

based simulation models than can take into account heterogeneity in population.  

Several control measures can be implemented to prevent and control influenza. These 

intervention include vaccination, antiviral treatment and prophylaxis, non-pharmaceutical 

interventions (such as school closure, isolation, face mask wearing, and hand washing). 

Vaccination and antiviral prophylaxis have clear evidences of their efficacy, but has resource 

limitations on large-scale use in developing country like Thailand. Optimal influenza vaccine 

allocation simulations showed great benefit if is prioritized to children and elderly. However, 

there is no model assessing impact of vaccine prioritization to other risk population such as 

healthcare workers and people with chronic medical conditions. Some non-pharmaceutical 

interventions such as school closure and case isolation were often assessed for their impact and 
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have agreement on their effectiveness. However, a few study assess impact of face mask wearing 

and hand washing.  

There are some questions need to be answered: what is R0 estimate base on Thai 

population's context, how vaccine allocation policy affect influenza burden if it is prioritized to 

other risk population (healthcare workers and people with chronic medical conditions), are face 

mask wearing and hand washing effective on influenza control. 

This study used agent-based model to estimated influenza burden in Thailand and assess 

impact of vaccine allocation policy and non-pharmaceutical interventions (mask wearing and 

hand washing). This study did not simulate effect of antiviral prophylaxis as this is not Thailand 

policy and its effectiveness was well documentation in other model studies.  

The FRED was used to run simulation on Blacklight at PSC. A new synthetic Thai 

population with hospital assignment was developed for this study. 
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2.1 ABSTRACT 

Many studies of influenza modeling have estimated basic reproductive number (R0) using 

previous influenza pandemics in developed countries. The R0 based on Thailand's context is 

unknown and should be estimated for further studies of influenza dynamics and burden which 

may lead to better health resources allocation. Numbers of influenza case by week were obtained 

to estimate epidemic growth rate (r). The R0 was estimated using formula relating the r and 

generation time. The projection of influenza burden was studied by fitting an agent-based 

computer simulation model. The model containing a 58,354,744 synthetic Thai population. At 

start, 100 agents were randomly assigned for initial infection. The model simulated the 

interactions of individuals with others at household, school and workplace over 120 days. The R0 

estimates ranged from 1.11 to 1.77 (median 1.39).  For a R0 = 1.4 and no any intervention, the 

overall attack rate was estimated to be 49.9% (symptomatic attack rate 33.4%). Incidence rates 

began rising at week 4th (0.05%), peaked at week 9th (10.5%), and subsided at week 17th 

(0.05%). During the same period simulation, Thailand had reported influenza cases with attack 

rate 0.04%. For R0s equal 1.2, 1.6, 1.8 and 2.0; overall attack rates were 37.1%, 58.8%, 65.9%, 

and 71.7% respectively. The estimated Thailand R0 is comparable to R0 of developed countries. 

The results reveal that Thailand's surveillance report may have underestimated influenza's 

incidence. Effective control measures should be taken place within the first two weeks of 

outbreak to minimize number of cases. 

 

Key words: Reproductive number, Influenza, Thailand, Computer simulation 
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2.2 INTRODUCTION 

The important parameters for understanding disease transmission are the basic reproductive 

number (R0) and serial interval.115 The R0 is defined as the average number of secondary 

infections created from a primary infection in an entirely susceptible population. If R0 is greater 

than one, the disease has the potential to spread. If it is less than one, the disease will die out 

after only a few generations. The next influenza pandemic will start when a novel strain of 

influenza evolves with R0 > 1 in humans. Control strategies are typically targeted to drive this 

number below one and maintain it there, as this will lead to eventual extinction of the epidemic. 

 Many modeling studies have estimated R0 either from previous influenza pandemics or 

seasonal influenza. The estimated influenza R0 range from 1.2 to 3.75.51-59 Most of these studied 

used epidemiologic data from previous influenza pandemic years. However, the R0 in seasonal 

years is relatively scarce.   In addition, even when the information is available the most common 

countries studied were developed countries such as Switzerland, USA, England and Canada.51-

53,56,57 There have been  a few studies about the transmissibility in developing countries, one in 

Brazil,54 another in Mexico.59 There is limited knowledge of R0 in developing countries in Asia 

including Thailand.  

 Thailand may have difference social contacts and lifestyles compare to developed 

countries, or developing countries in South America. The R0 based on Thailand's context should 

be estimated and used to further studies of influenza dynamics and control strategies.  

In the case of seasonal influenza, it is less likely that people are entirely susceptible. A 

fraction of individuals may be effectively protected against infection, because of residual 

immunity from previous exposure to influenza or vaccination. So, a more practical quantity is an 

effective reproductive number (Rt), which is defined as the number of secondary infections that 
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arise from a typical primary case. Nevertheless, Rt can be approximate to R0, especially when a 

proportion of immune individual is small. 

 The government of Thailand needs to understand the role of influenza in Thailand for 

policy planning purposes. Thailand-specific influenza R0 can be used to estimate burden of 

influenza. This may lead to better health resources allocation and influenza preparedness.  

 This study will focus at human influenza strains that spread widely. We aim to estimate 

Rt of seasonal influenza, and model influenza to address the burden of disease in Thailand. 

2.3 METHODS 

2.3.1 Influenza Rt estimation 

Influenza cases surveillance of the National Notifiable Disease Report was used to obtain 

influenza incidence. Bangkok, the capital city of Thailand, was selected as a sample for influenza 

incidence because there were outbreak every year and is a high risk area to spread influenza to 

other provinces. Bangkok is the biggest tourist city in Thailand and has crowded population. 

Bangkok has 5.6 million population. Approximately 36 million tourists (both Thais and 

foreigners) annually travel to Bangkok.   

 The numbers of influenza cases by week from 2003 to 2012 were obtained.  An epidemic 

curve with logarithm scale for each year was plotted. Linear increase in cases on a logarithmic 

scale indicates exponential increase in the number of cases. The epidemic growth rate (r) was 

estimated during this exponential growth phase using the formula relating the number of cases(I) 
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at two time points t1 (start) and t2 (stop) of the growth phase. The calculated r per week was 

divided by 7 to obtain daily value. 

𝑟𝑟 =  
1

𝑡𝑡2 − 𝑡𝑡1
𝑙𝑙𝑙𝑙 �

𝐼𝐼(𝑡𝑡2)
𝐼𝐼(𝑡𝑡1)� 

 The generation time (Tg) was estimated at 2.6 days.7 The Rt was estimated using formula 

relating the epidemic growth rate and generation time.7,116  

𝑅𝑅𝑡𝑡 = 1 + 𝑟𝑟𝑇𝑇𝑔𝑔 

2.3.2 Modeling influenza burden of Thailand 

Synthetic population data 

A synthetic population (with school and workplace assignments) of Thailand was developed by 

the Research Triangle Institute (RTI International).83 In summary, RTI International used a 

proportional iterative method82 to generate an agent population from aggregated census data. 

Thai census data (year 2000) on household size and age distributions were used to generate the 

synthesized agents and households. Each agent had a set of socio-demographic characteristics 

that included age, sex, employment status, occupation, and household location. School data (year 

2011) from the Thai Ministry of Education84 on ≈38,000 schools were used to determine the 

distribution of school sizes, number and proportions of children in school as a function of age for 

school assignment. The schools assignment method was based on the assumption that students 

are enrolled at the closest school having adequate capacity. Data of Thailand Industrial census in 

year 200785 were used for workplace assignment. The data indicated numbers and percentages of 

workers by size of work place (1 - 15, 16 - 25, 26 - 30, 31 - 50, 51 - 200, and >200 workers). The 

locations (point) of workplaces were generated. Then, each non-school age synthetic individual 
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was assigned to a workplace such that the distribution and capacity of each workplace was 

appropriate. Agents move among their households, assigned workplaces (for employed adults), 

schools (for school-aged children) and various locations in the community, where they interact 

with other agents who were household members, workplace mate, and classmate. 

Disease and model parameterization 

Disease parameters and assumptions follow the process described in a study by Cooley et al.80 

and systematic review of Zhou et al.81 Individuals are classified according to their infection and 

immune status as either susceptible (S), latent or exposed (E), infectious (I), or recovered (R). 

All individuals are initially susceptible to influenza until infectious individuals are introduced 

into the model. Each newly infected individual enter a latent state. During this time, the agent is 

infected but not yet infectious to others. We assume that infectiousness and symptoms begin at 

the same time as the viruses are shed via droplets produced when infected people cough or 

sneeze. Thus latent period (the time from infection to when a host is able to transmit the 

pathogen) was approximate to incubation period. Then, the agent moves to the infectious state, in 

which the agent may infect others. Two-third of infected individuals develop symptoms.64,76,117 

Finally, the individual enters the recovered state and remains immune to subsequent infections. 

 The projection of influenza burden was studied by fitting an agent-based computer 

simulation model (ABM). This study used a Framework for Reconstructing Epidemiological 

Dynamics (FRED) for modeling. FRED is an open source, modeling system developed by the 

University of Pittsburgh Public Health Dynamics Laboratory in collaboration with the Pittsburgh 

Supercomputing Center (PSU) and the School of Computer Science at Carnegie Mellon 

University.79 The model is a stochastic, spatially structured, individual-based discrete time 

simulation. Individuals are co-located in households, with households being constructed to 
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reflect typical generational structure while matching empirical distributions of age structure and 

household size for Thailand. 

 The probability that an infected individual transmits influenza to susceptible persons 

depended on the rate of potentially infectious contacts, and the probability per contact of 

transmitting influenza. Every susceptible individual who contacts an infectious individuals had a 

probability of disease transmission (per contact), derived from prior studies of the 1957–1958 

Asian influenza pandemic.7,64,76 As in Cooley et al.80, we assumed that 50% of sick individual 

stay at home and do not interact with any agents outside of the household. Additionally, we 

assume that all community contacts increase by 50% on weekends. The model was calibrated 

using the Ferguson et al. approach from historical (1957–1958, 1968–1969) influenza 

pandemics.7 We specifically used the 30–70 rule developed in which 30% of all transmission 

occurred in the household and 70% of all transmission occurred outside the household (33% in 

the general community, and 37% in schools and workplaces).7 The strategy was to estimate mean 

contact rate per day at each location that produced and epidemic that satisfied the 30-70 rule 

calibration criteria. To achieve this rule, within household contacts were treated differently than 

other locations. We assumed that each pair of agents within a household make contact each day 

with a specified probability. This probability is tunes as part of the calibration step to achieve the 

30-70 target distribution. At the start of each simulation, 100 agents were randomly assigned for 

initial infection. The individuals interact daily with others in the same household, school and 

workplace with a fixed mean number of people that they contact per day (from calibration step). 

The simulations were run over 120 days. Each presented result is the average of 10 simulation 

runs for one experiment (one R0 value).  
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Computational specifics 

Simulations were performed on Blacklight at PSU. Blacklight is an SGI servers, clusters and 

supercomputers, shared-memory system comprising 256 blades. Each blade holds 2 Intel Xeon 

X7560 (Nehalem) eight-core processors, for a total of 4096 cores across the whole machine. 

Each core has a clock rate of 2.27 GHz. Each experiment (10 simulation runs in parallel) is run 

using parallel computing over 16 computer nodes, taking an average of 3.5 hours on each 

experiment (17.5 hours of total computer time). 

2.4 RESULT 

2.4.1  Influenza Rt estimation 

From 2003 to 2012 influenza incidence throughout the year with multiple peaks between year 

2003 - 2008 and observed prominent peak between year 2009 – 2012 were reported in Bangkok.  

The number of reported cases by year ranged from 914 cases in year 2003 to 4,195 cases in 

2008. The reported cases increased to 19,185 and 22,387 cases in year 2009 and 2010, 

respectively. The number of cases declined slightly to 14,335 and 16,639 cases in year 2011 and 

2012, respectively. The highest incidence was usually identified during the rainy season (June to 

September). Epidemic curves were ploted to identify the highest linear increase in cases on a 

logarithmic scale. The annual epidemic growth rates ranged from 0.042 to 0.297 per day and the 

annual Rt estimations ranged from 1.11 to 1.77 (median 1.39) (Table 6). If data between year 

2010 - 2012 were excluded, The Rt estimations ranged from 1.3 to 1.77 (median 1.49). Based on 
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these Rt values with median 1.39 and Rt can be approximate to R0, R0 was estimated to 1.4 for 

further influenza modeling. 

2.4.2 Modeling influenza burden of Thailand 

A synthetic population size of 58,354,744 was created to represent Thai population. We 

considered the scenario that no any intervention to control influenza transmission and assume 

influenza R0 = 1.4. When 100 randomly infected individuals were introduced, incidence of 

infection gradually increased and peaked on day 59 (Figure 7). At the end of day 120, there were 

29,120,708 cumulative new infected individuals. The overall attack rate was estimated to be 

49.9% (Figure 8). Of all infection, 19,509,482 infected individuals were symptomatic case. 

Symptomatic attack rate was 33.4%.  The simulation showed that 56.1% of infected individuals 

were adult, followed by children age <12 years old (24.7%), adolescent age 12-18 years old 

(14.7%) and elderly (4.5%) respectively. Incidence by week ranged from 0.55 to 11,118.11 per 

100,000 population (Table 7). Incidence rates began rising at week 4 (0.05%), peaked at week 9 

(10.5%), and subsided at week 17 (0.05%) (Figure 9). 

We compared the influenza incidence of the simulation study to reported influenza case 

from the Thailand Notifiable Disease Report. The report is hospital-based passive surveillance; 

mostly is governmental hospitals, clinical diagnosis with some laboratory confirmation. During 

the same period simulation, Thailand had reported influenza cases with attack rate 0.04%, while 

the simulation showed symptomatic attack rate was 33.4%. 

 Accounting for uncertainty of R0, we modeled influenza incidence with R0 ranged 1.2 - 

2.0. The higher R0, the higher overall attack rate. For R0s equal 1.2, 1.4, 1.6, 1.8 and 2.0; overall 

attack rates were 37.1%, 49.9%, 58.8%, 65.9%, and 71.7% respectively. The lowest R0 (1.2), 
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attack rate began rising at week 5 and peaked at the end of simulation, week 17. For R0 between 

2.0 and 1.6, attack rate began rising around week 2 - 3 and peaked around week 6 - 8 (Figure 10). 

2.5 DISCUSSION 

It is known that Rt is always less than R0 because not everyone is susceptible at beginning of 

outbreak due to a vaccination or prior infection. However, protective immunity to influenza virus 

often decline after vaccination or infection. The immunity is quite strain specific, but influenza 

viruses are constantly changing. In addition, influenza vaccine was not widely used in Thailand 

before 2010. So, Rt should be properly approximate to R0. Rt median in this study is based on 

situation that no or low level of immunity in population, similar to other pandemic R0. 

Rt values after 2010 were a little lower than before 2010. This might be a result of 

vaccine program. However, if Rt values after 2010 were excluded, the median Rt would be 1.49 

and did not change much from original estimation. Our study showed that the estimated Thailand 

influenza Rt is lower than previous influenza pandemics,51-56 is comparable to the range of those 

estimated seasonal influenza R0 from developed countries58 and is similar to R0 of pandemic 

influenza A(H1N1) either in Thailand118 or other countries.59,119 This finding is in close 

agreement with a prior study which used a R0 from 1.4 - 1.5 to model influenza in Thailand.7  

The increasing number of reported influenza cases between 2009-2012 is due to outbreak 

of pandemic influenza A(H1N1) and a strengthening of the surveillance system. Unfortunately, 

the surveillance system had no information to separate pandemic influenza cases form seasonal 

influenza cases. This was less likely to affect Rt estimation, as R0 of pandemic influenza 

approach to R0 of seasonal influenza. Also, when we exclude data between 2010 - 2012, the 
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estimated Rt did not change much. After 2009, the influenza vaccine was more available. This 

increased a proportion of immune individuals and resulted in decline of estimated Rt in later 

years. 

 This is a second national scale simulation of influenza in Thailand.  This study reported a 

higher attack rate than the previous study (49.9% versus 33%).7 Our study randomly seeded 100 

infected individuals at beginning as we aimed to model human seasonal influenza that typically 

occur throughout the country, while the previous model seeded 1 infected individual in the rural 

population as an assumption of reassortment of avian virus and human virus. The incidence in 

our model was markedly higher than reported case in surveillance. There were several 

explanations; (1) majority of influenza had mild symptoms, they might seek self-medication and 

did not visit healthcare facilities, or visited hospital but were diagnosed to be common cold or 

flu-liked illness that will not be reported to the surveillance, (2) the surveillance was under-

report,120 (3) limitation of the surveillance that mainly based on clinical diagnosis and collected 

data only from governmental hospitals, (4) there was an effect of some protective interventions 

in population such as vaccination, personal protection and hygiene. Since 2010, influenza 

vaccine became more available but is provided only in some population at risk and has limited 

amount. Also, personal protection was not well practiced in general population.  So, the finding 

reveal that Thailand's surveillance report may have underestimated influenza's incidence. Case-

based surveillance usually represented the tip of iceberg phenomenon. There was high rate of 

asymptomatic infection and most symptomatic cases were self-managing without medical 

consultation.121  

 We observed four weeks period before rising of incidence. This is too short period for 

vaccination after an outbreak occurs, as the influenza vaccine takes about two weeks after 
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vaccination for antibodies to develop in the body and provide protection against influenza virus 

infection. The proper strains of influenza vaccine should be identified before the influenza 

season and vaccination should occur prior to the start of the influenza season.  During the 

influenza season effective control measures should be implemented to minimize number of 

cases. Non pharmaceutical interventions (such as mask wearing, hand washing) may be 

recommended. Antiviral prophylaxis may be alternative intervention but needs high medication 

resource and risks to drug resistance for treatment. 

This study has some strengths. We used Thailand-specific R0 to model influenza burden. 

Even the R0 does not differ from literature, we have more confidence that influenza transmission 

in the model represent to influenza dynamic in Thailand. We conducted a national-scale study 

which epidemiological studies may be difficult to perform. This allows us to estimate influenza 

incidence of the country, especially when asymptomatic infection play some role in disease 

transmission. Our study has some limitations. We assumed no immunity or any intervention. 

This made the simulation had higher attack rate than reality. However, the model can be used as 

baseline for no-intervention scenario, and add other interventions in further simulation to 

measure their effectiveness. The model did not take into account long distance travelling. This 

may increase time of disease's spread, but this is not a major concern as we randomly seeded 100 

infected individuals at beginning. They spread to the whole country and should account for long 

distance travelling. Because of the computational costs involved, the current results do not 

include a sensitivity analysis that involved the underlying transmission parameters. 

In conclusion, the estimated Thailand Rt is comparable to R0 of developed countries. 

Influenza burden may be under recognized in Thailand. Modeling is a tool to provide decision 

makers with information for influenza preparedness and control. 
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2.6 TABLES 

Table 6 The epidemic growth and R0 estimation between year 2003 - 2012 

Year Epidemic growth rate (per day) Rt Predominant subtype in Thailand * 

2012 0.051 1.13 B 

2011 0.042 1.10 A/H3 

2010 0.044 1.11 A/H1 pandemic 2009 

2009 0.189 1.49 A/H1 pandemic 2009 

2008 0.255 1.66 B 

2007 0.141 1.36 A/H3 

2006 0.117 1.30 A/H1 

2005 0.297 1.77 A.H3 

2004 0.224 1.58 Not available 

2003 0.156 1.40 Not available 

* Source: Influenza virological surveillance, the Thailand National Institute of Health (NIH) 
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Table 7 Incidence of influenza by week 

Week Incidence per 100,000 population 

1 0.55 

2 2.36 

3 10.80 

4 49.96 

5 227.36 

6 952.49 

7 3,259.12 

8 7,696.79 

9 11,118.11 

10 10,520.85 

11 7,589.19 

12 4,504.02 

13 2,282.74 

14 1,048.06 

15 430.92 

16 151.13 

17 48.34 

18 10.11 
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2.7 FIGURES 

 
Figure 7 Daily incidence of influenza infection for R0 = 1.4 in the absence of control measures 

 

 

Figure 8 Overall attack rate (all infection) of influenza 
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Figure 9 Attack rate (%) of influenza by week 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 Incidence of influenza infection over time by R0 in the absence of control measures 
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3.1 ABSTRACT 

Many studies reported that influenza vaccination was associated with reduction in hospitalization 

or death from influenza in both healthy and at-risk medical conditions. Thailand has a current 

vaccine policy targets at healthcare worker (HCWs), people aged 6-24 months or >65 years, 

people with chronic medical condition (CMC), and pregnant women. However, with a limited 

resource, information of optimizing vaccine allocation is needed. The projection of influenza 

burden was studied by fitting an agent-based computer simulation model. The model contains a 

58,354,744 synthetic Thai population, incorporates people with CMC and HCWs. At start, 100 

agents were randomly assigned for initial infection. The model simulated the interactions of 

individuals with others at household, school, workplace, and hospitals over 180 days. Impacts of 

influenza vaccine on morbidity and mortality were simulated at 50%, 75% and 100% coverage.   

The highest attack rate occurs in school-age children and adolescent (15.32%). 100% coverage 

of target population policy can avoid morbidity and mortality by 47.06% and 59.61% in total 

population respectively. However, the benefit is very small for HCWs (3.75% case reduction). 

The most extended policy to include children aged 2-18 years old can avoid >99% of cases. 

Decrement of vaccine coverage from 100% to 75% and 50% coverage has much impact on both 

target population and target population plus children 2-5 years old vaccine policy. Extended 

policy to vaccinate preschool and school-aged children is optimizing strategy. Vaccination alone 

may not prevent influenza outbreak in healthcare settings. Modeling is a tool to provide decision 

makers with information for influenza preparedness and control. 

 

Key words: Influenza, Vaccine, Thailand, Computer simulation 
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3.2 INTRODUCTION 

Vaccination is the principle strategy for reducing the disease burden of many infectious diseases 

such as polio, diphtheria, pertussis, tetanus, measles, rubella, and mumps. Vaccination has both 

direct and indirect effects. Direct effects occur because the person who is vaccinated may have 

reduced risk of becoming infected. In addition, it has the indirect benefit of decreasing 

transmission of the disease, thereby reducing the infection risk even for those who have not been 

vaccinated.  

 Influenza vaccination has been an effective intervention against influenza in developed 

countries. For example, influenza vaccination in the United States has long been recommended 

for all elderly, younger children, pregnant women, persons who have chronic medical conditions, 

with the recent expansion of recommendations to include all children up to age 18 years.122 

Influenza vaccine can prevent influenza-specific illness by 70% to 90% in healthy adults and 

30% to 90% in children.87 Retrospective cohort studies have shown a surprisingly large 

protective effect of influenza vaccination against deaths from any cause, especially among 

elderly.123-125 These studies consistently reported that influenza vaccination was associated with 

reduction in hospitalization or death for pneumonia, influenza, all respiratory conditions, cardiac 

diseases and stroke in both healthy and at-risk medical conditions.  

 The impact of influenza vaccine is greater in persons with high-risk medical groups. 

Influenza vaccination is most effective when circulating viruses are well-matched with vaccine 

viruses. However, influenza viruses are constantly changing, and the vaccine will not prevent 

disease from other strains of influenza viruses not contained in the vaccine. Each year scientists 

try to match the viruses in the vaccine to those most likely to cause flu that year. So annual 

vaccination is recommended.  
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 Thailand has a policy to use influenza vaccine to prevent and control influenza outbreak. 

However, with a limited resource, information of optimizing vaccine allocation is needed to 

guide the policy. The general problem is how to choose groups of the population that should 

receive priority in getting the intervention. In 2013, Thailand Ministry of Public Health 

recommended that the following groups should have higher priority to receive the seasonal 

influenza vaccine based primarily on their occupational risk to transmit influenza, increased risk 

of infection or experiencing more severe influenza-related disease complications: (1) healthcare, 

outbreak investigation and laboratory personnel, (2) persons aged 2 through 65 years who have 

health conditions associated with higher risk of medical complications from influenza, (3) all 

persons aged > 65 years, (4) all children from 6 months through 2 years of age, (5) pregnant 

women with gestational age > 4 months, (6) persons with mental retardation, (7) persons with 

thalassemia or immuno-compromised, (8) obese people (body weight > 100 Kg or body mass 

index > 35 Kg/m2). However, vaccine supply may be limited and may not cover 100% of the 

target population. 

 As a result some key questions need to be answered: which sub-group should receive 

greatest priority, and how strictly (or vaccine coverage) should this recommendation be adhered 

to prioritized group. The evaluation of vaccination policies for their implementation is essential 

to allocate resources and to minimize disease burden. This study has aim to address the potential 

benefit on various vaccine allocation scenarios in a limited resource situation. 
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3.3 METHODS 

Synthetic population data 

A synthetic population (with school and workplace assignments) of Thailand was developed by 

the Research Triangle Institute (RTI International).83 In summary, RTI International used a 

proportional iterative method82 to generate an agent population from census aggregated data. 

Thai census data (year 2000) on household size and age distributions were used to generate the 

synthesized agents and households. Each agent had a set of socio-demographic characteristics 

that included age, sex, employment status, occupation, and household location. School data (year 

2011) from the Thai Ministry of Education84 on ≈38,000 schools were used to determine the 

distribution of school sizes, number and proportions of children in school as a function of age for 

school assignment. The schools assignment method was based on the assumption that students 

are enrolled at the closest school having adequate capacity. Data of Thailand Industrial census in 

year 200785 were used for workplace assignment. The data indicated numbers and percentages of 

workers by size of work place (1 - 15, 16 - 25, 26 - 30, 31 - 50, 51 - 200, and >200 workers). The 

locations of workplaces were generated. Then, each non-school age population was assigned to a 

workplace such that the distribution and capacity of each workplace was appropriate.  

 We used data of the actual hospitals in Thailand86 to create synthetic hospitals with 

estimated number of HCWs. The method assumed that the number of HCWs who interact with 

patients was proportional to the number of beds by the value of 1 to 1 (e.g. a hospital with 100 

beds would have 100 HCWs who interact with patients). The simulation then found a synthetic 

workplace with approximately the same number of employees and moved the assigned 

employees to work in the hospital as healthcare workers (HCWs). To determine which hospital a 
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family will visit, we used a gravity model where the probability of going to a given hospital was 

determined by the (number of beds) / (distance from household to hospital)^2. 

 We randomly assigned synthetic population to had chronic medical condition (CMC) 

based on the 4th National Health Examination Survey of Thailand (year 2008 - 2009). The survey 

reported that among people age > 15 years old, prevalence of asthma was 3%, chronic 

obstructive pulmonary disease (COPD) was 0.4%, chronic renal disease was 0.8%, diabetes was 

6.9%, and coronary heart disease (CHD) was 1.4%. Prevalence of diabetes and CHD was 

stratified by age group. The point prevalence of pregnant women was estimated from average of 

age-specific fertility rate year 2002 - 2011. We assumed people with CMC will visit hospital 

once a month for disease follow up and getting drugs. 

 Agents move among their households, assigned workplaces or hospitals (for employed 

adults), schools (for school-aged children) and various locations in the community, where they 

interact with other agents who were household members, workplace mate, and classmate. 

Disease and model parameterization 

Disease parameters and assumptions followed the process described in study by Cooley et al.80 

and systematic review of Zhou et al.81 Individuals are classified according to theirs infection and 

immune status as either susceptible (S), latent or exposed (E), infectious (I), or recovered (R). 

All individuals are initially susceptible to influenza until infectious individuals are introduced 

into the model. Each newly infected individual entered a latent state. During this time, the agent 

was infected but not yet infectious to others. We assumed that infectiousness and symptoms 

began at the same time as the viruses are shed via droplets produced when infected people cough 

or sneeze. Thus latent period (the time from infection to when a host is able to transmit the 

pathogen) was approximate to incubation period. Then, the agent moves to the infectious state, in 
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which the agent may infect others. Two-third of infected agents develop symptoms.64,76,117 

Finally, the agent enters the recovered state and remains immune to subsequent infections. 

We assumed the following base probability values for hospitalization, outpatient-care and 

case fatality: outpatient-care probability = 0.88,126 hospitalization probability = 0.22 (from 

database of Thailand Notifiable Disease Report, that was a proportion of inpatient among 

reported influenza cases), case fatality probability = 0.0000715.127 Risk factors for severe 

outcomes following pandemic influenza A (H1N1) infection are similar to those for seasonal 

influenza.128 We applied risk ratios of hospitalization or death from Van Kerkhove et al.128 to 

those influenza cases who had chronic medical condition(s) or pregnancy in our simulations. We 

assumed that if an agent is hospitalized, then others in their household may visit them with a 

probability of 0.25 on each day that they remain hospitalized. 

 The projection of influenza burden was studied by fitting an agent-based computer 

simulation model (ABM). This study used a Framework for Reconstructing Epidemiological 

Dynamics (FRED) for modeling. FRED is an open source, modeling system developed by the 

University of Pittsburgh Public Health Dynamics Laboratory in collaboration with the Pittsburgh 

Supercomputing Center (PSU) and the School of Computer Science at Carnegie Mellon 

University.79 The model was a stochastic, spatially structured, individual-based discrete time 

simulation. Individuals are co-located in households, with households being constructed to 

reflect typical generational structure while matching empirical distributions of age structure and 

household size for Thailand. 

 The probability that an infected agent transmitted influenza to susceptible agent depended 

on the rate of potentially infectious contacts, and the probability per contact of transmitting 

influenza. Every susceptible agent who contacted an infectious agents had a probability of 
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disease transmission (per contact), derived from prior studies of the 1957–1958 Asian influenza 

pandemic.7,64,76 As in Cooley et al.80, we assumed that 50% of sick agents stay at home and do 

not interact with any agents outside of the household. Additionally, we assumed that all 

community contacts increase by 50% on weekends. The model was calibrated using the 

Ferguson et al. approach from historical (1957–1958, 1968–1969) influenza pandemics.7 We 

specifically used the 30–70 rule developed in which 30% of all transmission occurred in the 

household and 70% of all transmission occurred outside the household (33% in the general 

community, and 37% in schools and workplaces).7 The strategy was to estimate mean contact 

rate per day at each location that produced and epidemic that satisfied the 30-70 rule calibration 

criteria. To achieve this rule, within household contacts were treated differently than other 

locations. We assumed that each pair of agents within a household make contact each day with a 

specified probability. This probability is tunes as part of the calibration step to achieve the 30-70 

target distribution. At the start of each simulation, 100 agents were randomly assigned for initial 

infection. The individuals interact daily with others in the same household, school and workplace 

with a fixed mean number of people that they contact per day (from calibration step). We 

considered influenza R0 = 1.4. The simulations were run over 180 days. Each presented result is 

the average of 7 simulation runs for one experiment (one vaccine strategy). 

Vaccine efficacy and vaccine strategies 

We assumed a vaccine efficacy by age groups as follows: children age 6 months to 18 years old 

is 0.62 129, adults age 19 to 64 years old is 0.73 130, adults age 65 and over is 0.58 131. We 

assumed that individuals are vaccinated at a sufficient time prior to the epidemic to allow for full 

immunity to develop (base on its efficacy). Five vaccine policy schemes were modeled: (1) no 

vaccination, (2) 100% vaccination coverage in the entire Thai population, (3) 100% vaccination 
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coverage in the target population (healthcare personnel, persons who have chronic health 

conditions, all persons aged > 65 years, all children from 6 months through 2 years of age, 

pregnant women), (4) 100% vaccination coverage in the target population plus children age 2 to 

5 years old, (5) 100% vaccination coverage in the target population plus children age 2 to 18 

years old. We also repeated vaccine strategies with both 50% and 75% vaccine coverage. 

Computational specifics 

Simulations were performed on Blacklight at PSU. Blacklight is an SGI servers, clusters and 

supercomputers, shared-memory system comprising 256 blades. Each blade holds 2 Intel Xeon 

X7560 (Nehalem) eight-core processors, for a total of 4096 cores across the whole machine. 

Each core has a clock rate of 2.27 GHz. Each experiment (7 simulation runs in parallel) is run 

using parallel computing over 16 computer nodes, taking an average of 8 hours on each 

experiment (104 hours of total computer time). 

3.4 RESULT 

A synthetic population size of 58,354,744 was created to represent the Thai population; 2.55% 

were <2 years, 6.36% were 2-5 years, 22.43% were 6-18 years, 62.54% were 19-65 years, and 

6.11% were > 65 years old. There were 4,926,876 people with CMC (8.44%) and 55,550 HCWs 

(0.1% of adults).  

No vaccination scenario 

At baseline, incidence of infection gradually increases and peaks on day 127 after the initiation 

of the first 100 infected agents. At the end of day 180, there are 7,109,427 cumulative new 
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infected agents. The overall attack rate is estimated to be 12.18%. Of all infection, 4,730,594 

infected agents are symptomatic case. Symptomatic attack rate is 8.11%. About 36% of cases 

occurs in those < 18 years, 59% in 19–64 year olds, and 5% in those >65 years old. The highest 

attack rate occurs in school-age children and adolescent (15.32%) and healthcare workers 

(76.67%). There are 2,219 influenza deaths.  

The overall mortality rate is 3.8 per 100,000 population. The highest death rate occurs in 

elderly (11.54 per 100,000 population), and healthcare workers (27.52 per 100,000 population). 

Overall case fatality rate (CFR) is 0.03%, and the highest is found among elderly (0.12%), and 

people with CMC (0.12%). Specific morbidity and mortality rates are listed in Table 8. 

Impact of 100% vaccine coverage for different strategies 

Vaccination can reduce influenza incidence and defers the peak of outbreak; the more extended 

policy, the higher benefit (Figure 11). On day 180 after the initiation of the 100 agents with an 

infection; vaccination among target population and extended policies has cumulative attack rate 

range from 0.08% to 6.45%, mortality rate ranges from 0.02 to 1.54 per 100,100 population, 

depending on the vaccine policy chosen (Table 9). The extended policy to cover children age 2-

18 years old provides as much benefit close to 100% vaccine coverage in the total population.  

 Vaccinating children can reduces influenza morbidity and mortality for both children and 

adults. In sub-population, for 100% target population policy, the proportions of total cases that 

can be avoided range from 3.75% to 84.17%. The highest reduction is observed among people 

with CMC, follow by elderly. The benefit is very small for HCWs (3.75%), compared with other 

groups that also had influenza vaccine. Those who did not get vaccination has burden reduction 

almost half. We observe higher vaccine impact with similar pattern when the policy extend to 

cover children aged 2 to 5 years old. The most extended policy to include children aged 2 to 18 
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years old can avoid >99% of cases except HCWs (about 77%), adults are prevented even they 

were not vaccinated (Table 10). 

One hundred percent target population policy can prevent death 29.91% to 85.39%. 

Similar to case reduction; the highest reduction is observed among people with CMC, and lowest 

among HCWs. Impact of vaccine to prevent death among HCWs is not as high as other groups in 

all vaccine policies (Table 11). 

Impact of vaccine coverage 

We show in Figures 12 and 13 the proportion of cases and deaths reduction caused by various 

vaccine coverage versus no vaccination. The decrement of vaccine coverage from 100% to 75% 

and 50% coverage has much impact on both target population and target population plus children 

2-5 years old vaccine policy. About 40% of the prevented burden are removed if vaccine 

coverage drops from 100% to 50%. Vaccine coverage has less impact on target population plus 

children 2-18 years old vaccine policy. The proportion of prevention is still above 90% for both 

case and deaths even with 50% coverage.  We observe similar pattern of decreasing prevention 

in all sub-population except HCWs, which has low benefit with low vaccine coverage for all 

vaccine policies. 

3.5 DISCUSSION 

Our study results are similar to other modeling studies of optimizing influenza vaccine 

allocation. These studies had consistent results that prioritization of children age 5-19 years old 

leads to the greatest reduction of the influenza incidence.74,132-135 However, in term of cost 

effectiveness, the benefit is greatest for strategy that prioritize to population with a high risk of 
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complications. This depend on age-structure, if a country has a high proportion of elderly, it 

would be most cost effective to vaccinate elderly people.74,135 

 Children play a primary role in influenza transmission because they have a tendency to 

acquire and shed influenza. Our study is in agreement with those of influenza's spread, where 

school-aged children and youths were identified as the age group most likely to transmit 

influenza because of the nature of their contact networks.136-138 We also found that preschool age 

children are an important role of the transmission, similar to study of identifying pediatric age 

groups for influenza vaccination.139 There may be benefit in vaccinating children older than the 

current targeted age of 6 months through 2 years of age. Vaccinating preschool and school-aged 

children yields a substantial reduction of influenza morbidity and mortality. Vaccinating children 

produces both direct prevention in the children vaccinated and indirect prevention in the rest of 

the population as a result of herd protection.73,140,141 The obvious benefit is observed from 

vaccine scenario that include school-aged children because this age group has the highest attack 

rate and would be the source of secondary infections to other household members. The vaccine's 

impact is still impressive even the vaccine coverage drops to 50%. This is a more practical 

strategy because it is less likely that a vaccine policy can achieve 100% coverage. Also, a school-

based vaccination program is a feasible strategy that can enhance the current influenza 

vaccination program administered at the healthcare settings. 

 The results of our simulation model demonstrate that the current Thailand influenza 

vaccine has moderate effect to reduce influenza morbidity (about 47%), with a little higher 

reduction of mortality (about 60%). This is because the policy targets those who are likely to 

have severe complications if they got influenza (such as infant, elderly and people with medical 

condition), rather than those people who are likely to transmit the disease (such as school-aged 
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children). With this level of burden reduction, this policy seems to be not effective enough to 

prevent influenza in Thailand. In 2014, the Thailand Ministry of Public Health prepared 

influenza vaccines for current vaccine policy approximately 3,400,000 doses, which cover about 

60% of target population. This may not achieve 47% morbidity and 60% mortality reduction as 

we assumed 100% vaccine coverage in our simulation. To reach 100% coverage, Thailand has to 

prepare about 6,000,000 doses of vaccine, but this cost may limit the policy. 

 Base on Thailand's population registration in year 2013, children aged 2-5 years old are 

4.8% of total population. If the vaccine policy extend to cover these children (assumed 100% 

coverage), Thailand has to prepare an additional 78% of vaccine (about total 10.5 million doses), 

and can avoid influenza cases and deaths 73% and 79% respectively. However, it is difficult to 

reach that such high vaccine coverage. Then, the mitigation of influenza burden would decrease. 

Considered school-aged children, they are 17.4% of total population. If the policy extend to 

cover this age group (assumed 100% coverage), Thailand has to prepared additional 168% of 

vaccine (about total 15.7 million doses), and can avoid influenza cases and deaths  >99%. 

Alternatively, if this policy aims at 50% coverage of all target population, this will requires 7.8 

million doses of vaccine, but still can avoid about 93% of cases and 94% of deaths.  

 Vaccinating healthcare workers seems to be not effective intervention. This is because we 

assumed 88% of sick people visit healthcare settings,126 that means hospitals will pool with many 

influenza cases. When patients visit healthcare facilities, they will interact closely with HCWs. 

Assuming vaccine efficacy at 73%, even 100% vaccine coverage among HCWs will has little 

benefit when they have high number of effective contact to infected individuals. Efficacy of 

influenza vaccine is not quite high because antigenic drift of influenza viruses allows the 

seasonal viruses to escape the neutralizing activity of antibodies induced by previous infections 
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or vaccination.142 This is confirmed by vaccine policy that includes all children and youths, it 

lower the incidence amongst HCWs significantly. Healthcare workforce is very crucial in 

medical care. If HCWs are infected, they will not be able to perform their services and could 

infect other patients and colleagues. Cross-transmission of influenza infection from healthcare 

workers to patients has been described.33-36 To prevent outbreak in healthcare settings, we should 

not rely on only vaccine strategy, we need to consider additional intervention such as personal 

protection and hygiene.  

This study has some strengths. We conducted a national-scale study which clinical trials 

and epidemiological studies may be difficult to perform. Including people with CMC and 

pregnant women makes more complete picture of influenza burden and allow us to evaluate 

impact of vaccine on all target populations in the vaccine policy. Our study has some limitations. 

All computer models are simplification of reality and cannot account for every possible factor or 

interaction. We considered all HCWs as a uniform group. In fact, they may have different chance 

of contacting patients based on their duties. Our model only included HCWs in secondary and 

tertiary care hospitals and did not include sub-district health promoting hospitals (primary care 

centers) in the country. Because of the computational costs involved, the current results do not 

include a sensitivity analysis that involved the underlying transmission parameters and case 

fatality parameters.  

In conclusion, current Thailand's vaccine policy and coverage may not effective enough 

to control influenza. Extended policy to vaccinate preschool and school-aged children is 

optimizing strategy. Vaccination alone may not prevent influenza outbreak in healthcare settings. 

Modeling is a tool to provide decision makers with information for influenza preparedness and 

control. 
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3.6 TABLES 

Table 8 Specific morbidity and mortality rate of influenza in no vaccination scenario 

Population Number 

Case Death 

Number Attack rate 

(%) 

Number Death rate 

(per 100,000) 

All 58,354,744 7,109,427 12.18 22,219 3.80 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

1,489,947 

3,709,878 

13,091,312 

36,495,519 

3,568,088 

 

161,669 

422,586 

2,005,482 

4,179,841 

339,850 

 

10.85 

11.39 

15.32 

11.45 

9.52 

 

47 

80 

382 

1,299 

412 

 

3.15 

2.14 

2.92 

3.56 

11.54 

People with CMC 4,926,876 544,238 11.05 659 13.38 

Pregnant women 720,069 86,850 12.06 27 3.67 

Healthcare workers 55,550 42,590 76.67 16 27.52 
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Table 9 Morbidity and mortality rate of influenza by different vaccine policy 

Vaccine policy 

Case Death 

Number Attack rate 

(%) 

Number Death rate 

(per 100,000) 

No vaccination 7,109,427 12.18 22,219 3.80 

100% of total population 63 <0.01 0 0.00 

100% of target population* 3,763,862 6.45 897 1.54 

100% of target population* 

+ children age 2-5 yrs old 

1,948,694 3.34 460 0.79 

100% of target population* 

+ children age 2-18 yrs old 

44,504 0.08 100 0.02 

* Target population: healthcare personnel, persons who have chronic health conditions, all 

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women 
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Table 10 Proportion of cases prevented, by different vaccine policy (100% coverage) 

Population 

% of cased that can be avoided (95%CI) 

Target population* Target population* plus 

children 2-5 years old 

Target population* plus 

children 2-18 years old 

Total population 47.06% (46.97, 47.15) 72.59% (72.51, 72.67) 99.37% (99.30, 99.44) 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

62.62% (62.08, 63.17) 

45.12% (44.76, 45.48) 

41.86% (41.70, 42.02) 

46.57% (46.46, 46.68) 

78.74% (78.38, 79.09) 

 

84.11% (83.61, 84.61) 

89.90% (89.60, 90.20) 

68.99% (68.85, 69.14) 

70.81% (70.71, 70.91) 

88.70% (88.36, 89.04) 

 

99.65% (99.19, 100.11) 

99.76% (99.48, 100.05) 

99.78% (99.65, 99.91) 

99.10% (99.01, 99.19) 

99.71% (99.39, 100.03) 

People with CMC 84.17% (83.90, 84.44) 91.60% (91.34, 91.86) 99.78% (99.53, 100.03) 

Pregnant women 66.35% (65.62, 67.08) 81.24% (80.55, 81.92) 99.50% (98.88, 100.13) 

Healthcare workers 3.75% (3.09, 4.41) 7.28% (6.60, 7.95) 76.60% (75.98, 77.22) 

* Target population: healthcare personnel, persons who have chronic health conditions, all 

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women 

  % of cases that can be avoided = (attack rate of no vaccination - attack rate of vaccine 

policies) x 100 ÷ attack rate of no vaccination 
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Table 11 Proportion of deaths prevented, by different vaccine policy (100% coverage) 

Population 

% of death that can be avoided (95%CI) 

Target population Target population + 

children 2-5 years old 

Target population + 

children 2-18 years old 

Total population 59.61% (54.68, 64.54) 79.27% (74.70, 83.85) 99.47% (95.29, 103.64) 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

57.14% (22.97, 91.31) 

44.86% (17.45, 72.28) 

43.85% (31.31, 56.38) 

57.93% (51.44, 64.41) 

82.66% (72.20, 93.12) 

 

82.07% (51.02, 113.11) 

89.73% (66.62, 112.84) 

71.90% (60.55, 83.26) 

77.02% (70.99, 83.05) 

90.88% (80.79, 100.97) 

 

99.39% (70.72, 128.07) 

99.82% (77.79, 121.85) 

99.85% (89.81, 109.89) 

99.26% (93.80, 104.72) 

99.69% (90.02, 109.36) 

People with CMC 85.39% (77.22, 93.56) 92.22% (84.29, 100.14) 99.67% (92.03, 107.32) 

Pregnant women 72.97% (30.00, 115.94) 87.57% (47.14, 127.99) 98.92% (60.59, 137.25) 

Healthcare workers 29.91% (-35.47, 95.28) 28.97% (-36.58, 94.53) 82.24% (27.85, 136.64) 

* Target population: healthcare personnel, persons who have chronic health conditions, all 

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women 

  % of deaths that can be avoided = (mortality rate of no vaccination - mortality rate of vaccine 

policies) x 100 ÷ mortality rate of no vaccination 
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3.7 FIGURES 

 

Figure 11 Daily incidence of influenza infection for different vaccine policies 

 

 

Figure 12 Proportion of cases that can be avoided for three vaccine coverage 
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Figure 13 Proportion of deaths that can be avoided for three vaccine coverage 
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4.1 ABSTRACT 

Some non-pharmaceutical interventions such as mask wearing or hand washing have been shown 

protective effect in reducing influenza illness. They are inexpensive and can be implemented 

widely even in limited healthcare resource settings. However, there was a few study that model 

their impact on influenza burden on population. The projection of influenza burden was studied 

by fitting an agent-based computer simulation model. The model contains a 58,354,744 synthetic 

Thai population, incorporates people with CMC and HCWs. At start, 100 agents were randomly 

assigned for initial infection. The model simulated the interactions of individuals with others at 

household, school, workplace, and hospitals over 180 days. Impacts of face mask wearing and 

hand washing on morbidity and mortality were simulated at 10%, 25%, 50%, 75% and 100% 

coverage. 100% compliance of combined policy can avoid morbidity and mortality >99% in total 

population. The benefit is slightly small for HCWs (97.19% case reduction). If the population 

can afford >50% compliance of the intervention, the proportion of cases reduction still >98% for 

all adherence of mask wearing. Face masks and hand washing are effective strategies for 

countries with limited supplies of vaccines and antiviral drugs. Modeling is a tool to provide 

decision makers with information for influenza preparedness and control. 

 

Key words: Influenza, Mask, Hand washing, Thailand, Computer simulation 
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4.2 INTRODUCTION 

Influenza vaccination and antiviral drugs have been effective interventions against seasonal 

influenza outbreaks in developed countries.123-125 In order for vaccines to provide protection 

against infections, the vaccine strain must be antigenically similar to the epidemic or pandemic 

strain. Consequently, vaccine production cannot begin until the circulated viral strain has been 

isolated and the lead time for vaccine production is typically 4–6 months or more. So, 

vaccination is not a prompt intervention if an outbreak of new viral strains occur. Antiviral drug 

might be effective to reduce influenza burden,6,8 but its stockpiling is very expensive and might 

not be practical to many countries. As a result antiviral prophylaxis is not a standard policy in 

developing countries including Thailand. Instead, non-pharmaceutical interventions are more 

common; such as social distancing, isolation and quarantine, personal protection and hygiene 

measures (hand washing and face mask wearing).  

In the event of an influenza pandemic, effective vaccine and antiviral drugs may be 

lacking. Disrupting environmental transmission of the influenza virus using non-pharmacological 

interventions will be the only viable strategy to protect the public.143 However, delayed 

implementation of these interventions might provide less benefit.144,145 

 Various non-pharmaceutical intervention strategies are a first line of defense against 

outbreak of infectious diseases because they can be implemented rapidly,146 and not depend on 

influenza viral strains like vaccination. Many studies model effect of social distancing such as 

school closure and travel restriction. School closure has been considered a useful strategy to 

control the spread of influenza; however, its effect was not consensus. Some of these studies 

demonstrated school closure are capable of mitigating influenza overall attack rate.145,147,148 

Several studies demonstrated small or no reduction in the overall attack rate but can delay the 
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peak of epidemic.149-152 These studies showed that to gain benefit either attack rate reduction or 

delay the epidemic, duration of closing school should be maintained relatively long (about 4-8 

weeks). This makes school closure policy a significant economic impact and community 

controversial as parent have to leave form work to care for unattended-school children.98,99 

 Some non-pharmaceutical interventions such as mask wearing or hand washing have 

been shown protective effect in reducing influenza illness and upper-respiratory tract infections 

from many controlled trials.104,106-114 Adherent use of surgical masks significantly reduces the 

risk for influenza-like illness (ILI) infection among household members of ILI patients, with a 

hazard ratio equal to 0.26.104 Hand washing program can reduce respiratory illness 21%-52%.106-

112 In contrast, some studied showed no protective effect of face mask use alone or hand washing 

alone on ILI or influenza, but revealed effectiveness of both interventions combined. The 

combined intervention can reduce respiratory illness range from 35%-51%.113,114 Face masks are 

used to limit influenza transmission by minimizing the distribution of large secretion droplets 

produced during sneezing or coughing.  Hand washing can reduce the transmission by indirect 

contact with contaminated common surfaces. They are non-invasive interventions and do not 

depend on healthcare personnel. Both interventions are inexpensive and can be implemented 

widely even in limited healthcare resource settings.  

Face masks have been stockpiled for influenza preparedness and are currently 

recommended to prevent influenza infection in several countries, including Thailand. The 

effective management and control of infectious disease is increasingly done with substantial 

input from mathematical models and simulations, which are used to provide predictions about 

the likely success of public health measures.47 Therefore, it is becoming increasingly important 

that epidemiological models produce accurate quantitative prediction of disease and impact of 
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control measures. There are a few study which use computer simulation model the impact of face 

masks on influenza burden on population. These studied reported that face mask use is an 

effective intervention strategy in delaying and influenza pandemic and reducing the spread of 

influenza.153-155  However, there is no published study that simulate impact of hand washing 

alone or combined face mask wearing and hand washing at population level. In practice, it is less 

likely that a public health campaign will suggest a single intervention, neither face mask use nor 

hand washing. Instead, both intervention often be recommended together.   

 The role of prompt non-pharmaceutical interventions on influenza outbreak control is not 

well understood in Thailand.  The modeling of face mask use and hand washing interventions 

can be used as evidence for introduction for new intervention policies. This study has aim to 

identify effect of promoting health behavior interventions (hand washing and face mask wearing) 

on influenza outbreak control.  

4.3 METHODS 

Synthetic population data 

A synthetic population (with school and workplace assignments) of Thailand was developed by 

the Research Triangle Institute (RTI International).83 In summary, RTI International used a 

proportional iterative method82 to generate an agent population from census aggregated data. 

Thai census data (year 2000) on household size and age distributions were used to generate the 

synthesized agents and households. Each agent had a set of socio-demographic characteristics 

and that included age, sex, employment status, occupation, and household. School data (year 

2011) from the Thai Ministry of Education84 on ≈38,000 schools were used to determine the 
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distribution of school sizes, number and proportions of children in school as a function of age for 

school assignment. The schools assignment method was based on the assumption that students 

are enrolled at the closest school having adequate capacity. Data of Thailand Industrial census in 

year 200785 were used for workplace assignment. The data indicated numbers and percentages of 

workers by size of work place (1 - 15, 16 - 25, 26 - 30, 31 - 50, 51 - 200, and >200 workers). The 

locations of workplaces were generated. Then, each non-school age population was assigned to a 

workplace such that the distribution and capacity of each workplace was appropriate.  

 We used data of the actual hospitals in Thailand86 to create synthetic hospitals with 

estimated number of HCWs. The method assumed that the number of HCWs who interact with 

patients was proportional to the number of beds by the value of 1 to 1 (e.g. a hospital with 100 

beds would have 100 HCWs who interact with patients). The simulation then found a synthetic 

workplace with approximately the same number of employees and moved the assigned 

employees to work in the hospital as healthcare workers (HCWs). To determine which hospital a 

family will visit, we used a gravity model where the probability of going to a given hospital was 

determined by the (number of beds) / (distance from household to hospital)^2. 

 We randomly assigned synthetic population to had chronic medical condition (CMC) 

based on the 4th National Health Examination Survey of Thailand (year 2008 - 2009). The survey 

reported that among people age > 15 years old, prevalence of asthma was 3%, chronic 

obstructive pulmonary disease (COPD) was 0.4%, chronic renal disease was 0.8%, diabetes was 

6.9%, and coronary heart disease (CHD) was 1.4%. Prevalence of diabetes and CHD was 

stratified by age group. The point prevalence of pregnant women was estimated from average of 

age-specific fertility rate year 2002 - 2011. We assumed people with CMC will visit hospital 

once a month for disease follow-up and getting drugs. 
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 Agents move among their households, assigned workplaces or hospitals (for employed 

adults), schools (for school-aged children) and various locations in the community, where they 

interact with other agents who were household members, workplace mate, and classmate. 

Disease and model parameterization 

Disease parameters and assumptions followed the process described in study by Cooley et al.80 

and systematic review of Zhou et al.81 Individuals are classified according to theirs infection and 

immune status as either susceptible (S), latent or exposed (E), infectious (I), or recovered (R). 

All individuals are initially susceptible to influenza until infectious individuals are introduced 

into the model. Each newly infected individual entered a latent state. During this time, the agent 

was infected but not yet infectious to others. We assumed that infectiousness and symptoms 

began at the same time as the viruses are shed via droplets produced when infected people cough 

or sneeze. Thus latent period (the time from infection to when a host is able to transmit the 

pathogen) was approximate to incubation period. Then, the agent moves to the infectious state, in 

which the agent may infect others. Two-third of infected agents develop symptoms.64,76,117 

Finally, the agent enters the recovered state and remains immune to subsequent infections. 

We assumed the following base probability values for hospitalization, outpatient-care and 

case fatality: outpatient-care probability = 0.88,126 hospitalization probability = 0.22 (from 

database of Thailand Notifiable Disease Report, that was a proportion of inpatient among 

reported influenza cases), case fatality probability = 0.0000715.127 Risk factors for severe 

outcomes following pandemic influenza A (H1N1) infection are similar to those for seasonal 

influenza.128 We applied risk ratios of hospitalization or death from Van Kerkhove et al.128 to 

those influenza cases who had chronic medical condition(s) or pregnancy in our simulations. We 
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assumed that if an agent is hospitalized, then others in their household may visit them with a 

probability of 0.25 on each day that they remain hospitalized. 

 The projection of influenza burden was studied by fitting an agent-based computer 

simulation model (ABM). This study used a Framework for Reconstructing Epidemiological 

Dynamics (FRED) for modeling. FRED is an open source, modeling system developed by the 

University of Pittsburgh Public Health Dynamics Laboratory in collaboration with the Pittsburgh 

Supercomputing Center (PSU) and the School of Computer Science at Carnegie Mellon 

University.79 The model was a stochastic, spatially structured, individual-based discrete time 

simulation. Agents are co-located in households, with households being constructed to reflect 

typical generational structure while matching empirical distributions of age structure and 

household size for Thailand. 

 The probability that an infected agent transmitted influenza to susceptible agent depended 

on the rate of potentially infectious contacts, and the probability per contact of transmitting 

influenza. Every susceptible agent who contacted an infectious agents had a probability of 

disease transmission (per contact), derived from prior studies of the 1957–1958 Asian influenza 

pandemic.7,64,76 As in Cooley et al.80, we assumed that 50% of sick agents stay at home and do 

not interact with any agents outside of the household. Additionally, we assumed that all 

community contacts increase by 50% on weekends. The model was calibrated using the 

Ferguson et al. approach from historical (1957–1958, 1968–1969) influenza pandemics.7  

We specifically used the 30-70 rule developed in which 30% of all transmission occurred 

in the household and 70% occurred outside the household (33% in the general community, and 

37% in schools and workplaces)7. The strategy was to estimate mean contact rate per day at each 

location that produced and epidemic that satisfied the 30-70 rule calibration criteria. To achieve 
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this rule, within household contacts were treated differently than other locations. We assumed 

that each pair of agents within a household make contact each day with a specified probability. 

This probability is tuned as part of the calibration step to achieve the 30-70 target distribution. At 

the start of each simulation, 100 agents were randomly assigned for initial infection. The 

individuals interact daily with others in the same household, school and workplace with a fixed 

mean number of people that they contact per day (from calibration step). We considered 

influenza R0 = 1.4. The simulations were run over 180 days. Each presented result is the average 

of 7 simulation runs for one experiment (one intervention strategy). 

Efficacy and strategies of face mask use plus hand washing   

When infected agents had symptom of influenza, they had to wear a standard surgical mask and 

changed daily. We assumed that they wore face mask at all time according to their adherence. 

The adherence was assumed for 3 durations; only the first day of symptom, first 2 days of 

symptoms, and entire period of symptoms. Hand washing was defined as washing hands using 

soap and water for ≈45 seconds before and after meals, after using the bathroom, and after 

coughing or sneezing on hands. We modeled the combined intervention and used an efficacy 

value of 0.33 derived from the Cowling et al.’s study.114 This means the combined intervention 

can reduce influenza infection by 33%. 

In reality, compliance to a control measure may be less than 100%, especially for the 

health behavior, a series of compliance levels (10%, 25%, 50%, 75% and 100%) were simulated 

for both face mask use and hand washing. 
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Computational specifics 

Simulations were performed on Blacklight at PSU. Blacklight is an SGI servers, clusters and 

supercomputers, shared-memory system comprising 256 blades. Each blade holds 2 Intel Xeon 

X7560 (Nehalem) eight-core processors, for a total of 4096 cores across the whole machine. 

Each core has a clock rate of 2.27 GHz. Each experiment (7 simulation runs in parallel) is run 

using parallel computing over 16 computer nodes, taking an average of 8 hours on each 

experiment (128 hours of total computer time). 

4.4 RESULTS 

A synthetic population size of 58,354,744 was created to represent the Thai population; 2.55% 

were <2 years, 6.36% were 2-5 years, 22.43% were 6-18 years, 62.54% were 19-65 years, and 

6.11% were > 65 years old. There were 4,926,876 people with CMC (8.44%) and 55,550 HCWs 

(0.1% of adults).   

No intervention scenario 

At baseline, incidence of infection gradually increases and peaks on day 127 after the initiation 

of the first 100 infected agents. At the end of day 180, there are 7,109,427 cumulative new 

infected agents. The overall attack rate is estimated to be 12.18%. Of all infection, 4,730,594 

infected agents are symptomatic case. Symptomatic attack rate is 8.11%. About 36% of cases 

occurs in those < 18 years, 59% in 19–64 year olds, and 5% in those >65 years old. The highest 

attack rate occurs in school-age children and adolescent (15.32%) and HCWs (76.67%). There 

are 2,219 influenza deaths. The overall mortality rate is 3.8 per 100,000 population. The highest 

death rate occurs in elderly (11.54 per 100,000 population), and healthcare workers (27.52 per 

 91 



100,000 population). Overall case fatality rate (CFR) is 0.03%, and the highest is found among 

elderly (0.12%), and people with CMC (0.12%). Specific morbidity and mortality rates are listed 

in Table 12. 

Impact of combined face mask and hand washing, 100% coverage 

On day 180 after the initiation of the hundred agents with an infection; combined face mask 

wearing and hand washing policies has number of cases range from 1,811 to 4,090 cases 

(cumulative attack rate <0.01%), number of deaths range from 1 to 2 deaths (mortality rate <0.01 

per 100,100 population), depending on the adherence of face mask wearing (Table 13). 

In sub-population, for 100% compliance of combined policy with 1 day wearing mask, 

the proportions of total cases that can be avoided are >99.9% except among HCWs that is 

97.19%. This is because majority of cases is observed among HCWs (29.3%). If compliance of 

wearing mask increase, we observe similar pattern of increasing prevention in all sub-population. 

Wearing mask for whole period of symptom can avoid case among HCWs up to 98.62%. 

In case the population cannot achieve 100% coverage of the combined intervention, the 

protective effect decline, especially when the coverage drops to 10% (Table 14).  However, if the 

population can achieve >50% compliance of the interventions, the proportion of cases reduction 

still >98%.  

4.5 DISCUSSION 

Our results suggest that face mask use among symptomatic influenza cases combined with hand 

washing at population level can decrease transmission significantly to contain the outbreak. Even 

its efficacy is much smaller than influenza vaccine, but these interventions can be applied to 
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broader population and provides similar benefit to the population. These hygiene interventions 

are intended to reduce the density of virus and infectiousness along routes of transmission 

sources, thus reducing virus exposure and infection risk within the population. Our findings are 

in agreement with study of Brienen et al.154 and Tracht et al.155, that face mask use is effective 

strategy to mitigate influenza transmission. There are some differences in detail of intervention; 

combined face mask use and hand washing versus only face mask use,  face mask use among 

symptomatic individuals versus  the use in general population-both healthy and infected people). 

However, using mask only in infected individuals is still effective.155  

Impact of hygiene interventions are usually depend on the compliance in the population. 

We often found that willingness to use these intervention is low unless there are some threat; for 

example, the 2003 Severe Acute Respiratory Syndrome (SARS) epidemic. In Hong Kong, the 

residents reported high proportion of using masks and washing their hands after contact with 

potentially contaminated objects during the SARS outbreak.103,156,157 Similarly, during influenza 

outbreak, people might have greater concern. So, outbreak investigation and control team can 

encourage people to have higher compliance to hygiene interventions. We observed that even 

compliance of the intervention is low, the impact of intervention is still high, similar to study of 

Tracht et al.155 However, their study reported smaller case reduction, with compliance 10%-50%, 

the face mask intervention can reduce attack rate 5.2%-8.1% (compare with 40.9%-98.0% in our 

study). This may due to a very low effectiveness they used in their models (0.05). 

The adherence of face mask use does not significantly affect proportion of case reduction 

unless the compliance of mask wearing is <25%. This might be because viral shedding peak on 

day 2 after infection (about first day of symptom).117 This can be inferred that wearing mask at 
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least first 2 days of symptoms is recommended, but wearing for the whole period of symptom 

would be the best. 

Impact of intervention among HCWs is slightly lower than other groups. This is because 

we assumed 88% of sick people visit healthcare settings,126 that means hospitals will pool with 

many influenza cases. When patients visit healthcare facilities, they will interact closely with 

HCWs and cause HCWs have repeated exposures. Cross-transmission of influenza infection 

from healthcare workers to patients has been described.33-36 To prevent outbreak in healthcare 

settings, we may consider vaccine intervention combined with personal protection and hygiene. 

We caution to not overinterpret the modeling results. Assuming 88% of sick people visit 

healthcare settings and about 20% of them are hospitalized, this added some level of isolation in 

a background. So, interventions are in addition to standard physician visits and hospitalization. 

Isolation and quarantine are also effective intervention. Halloran et al. simulated the 

effectiveness of a set of intervention strategies; combinations called targeted layered containment 

(TLC) of influenza antiviral treatment and prophylaxis and non-pharmaceutical interventions of 

quarantine, isolation, school closure, and social distancing. They suggested that timely 

implementation of the TLC could substantially lower the influenza attack rate.76 The results in 

this study need to be viewed more as helping to influenza outbreak preparedness, rather than 

being predictive of the precise effectiveness of the interventions.  

 Our study has some limitations. All computer models are simplification of reality and 

cannot account for every possible factor or interaction. We considered all HCWs as a uniform 

group. In fact, they may have different chance of contacting patients based on their duties. Our 

model simply use a same compliance for both face mask wearing and hand washing. Because of 
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the computational costs involved, the current results do not include a sensitivity analysis that 

involved the underlying transmission parameters and case fatality parameters. 

In conclusion, face masks and hand washing are effective strategies (in addition to case 

isolation) for countries with limited supplies of vaccines and antiviral drugs. Modeling is a tool 

to provide decision makers with information for influenza preparedness and control. 
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4.6 TABLES 

Table 12 Specific morbidity and mortality rate of influenza in no intervention scenario 

Population Number 

Case Death 

Number Attack rate 

(%) 

Number Death rate 

(per 100,000) 

All 58,354,744 7,109,427 12.18 22,219 3.80 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

1,489,947 

3,709,878 

13,091,312 

36,495,519 

3,568,088 

 

161,669 

422,586 

2,005,482 

4,179,841 

339,850 

 

10.85 

11.39 

15.32 

11.45 

9.52 

 

47 

80 

382 

1,299 

412 

 

3.15 

2.14 

2.92 

3.56 

11.54 

People with CMC 4,926,876 544,238 11.05 659 13.38 

Pregnant women 720,069 86,850 12.06 27 3.67 

Healthcare workers 55,550 42,590 76.67 16 27.52 
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Table 13 Morbidity and mortality rate of influenza in combined fask mask and hand washing 

policy by different adherence of face mask wearing 

Vaccine policy 

Case Death 

Number Attack rate 

(%) 

Number Death rate 

(per 100,000) 

No Intervention 7,109,427 12.18 22,219 3.80 

100% of combined intervention (1 day 

wearing mask) 

4,090 0.01 2 <0.01 

100% of combined intervention (2 days 

wearing mask) 

2,199 <0.01 1 <0.01 

100% of combined intervention (wearing 

mask for whole period of symptom) 

1,811 <0.01 1 <0.01 

 
 

 

 

 

 

 

 

 

 

 

 97 



Table 14 Morbidity rate of influenza in combined fask mask and hand washing policy by 

coverage and adherence 

Coverage 1 day wearing mask 2 day wearing mask Wearing mask for whole 

period of symptom 

Number of 

case 

Attack rate 

(%) 

Number of 

case 

Attack rate 

(%) 

Number of 

case 

Attack rate 

(%) 

100% 4,090 0.01 2,199 <0.01 1,811 <0.01 

75% 22,601 0.04 18,197 0.03 7,972 0.01 

50% 140,124 0.24 106,313 0.18 66,745 0.11 

25% 1,224,912 2.10 1,067,708 1.83 755,206 1.29 

10% 4,202,914 7.20 3,950,843 6.77 3,577,559 6.13 
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5.0  CONCLUSIONS 

Modeling is a tool to provide decision makers with information for influenza preparedness and 

control. This dissertation used a large-scale agent-based framework of infectious diseases, 

namely FRED, to simulate agent-based models to estimated influenza burden in Thailand and 

assess impact of vaccine allocation policy and non-pharmaceutical interventions (mask wearing 

and hand washing). A new Thai synthetic population was created for this study, and is available 

for researchers who interest to model infectious disease in Thailand (Contact: Dr.Yongjua 

Laosiritaworn (yongjua@gmail.com), Dr. John Grefenstette (gref@pitt.edu), or the University of 

Pittsburgh Public Health Dynamics Laboratory (https://www.phdl.pitt.edu/)). This dissertation 

estimated influenza burden in Thailand and assessed impact of vaccine allocation policy and 

non-pharmaceutical interventions (mask wearing and hand washing). 

Many modeling studies estimated influenza R0 using epidemiologic data from previous 

influenza pandemic or seasonal influenza in developed countries. Despite Thailand had different 

social contacts and lifestyles compare to developed countries, this dissertation found that 

Thailand influenza R0 is comparable to the range of those estimated seasonal influenza R0 from 

those countries. This finding is in agreement to use R0 value 1.4 - 1.5 to model influenza in 

Thailand. Modeling results of no-intervention scenario found that influenza incidence from 

simulation was markedly higher than reported case in the National Notifiable Disease Report. 

This represented a tip of iceberg phenomenon of case-based surveillance. 
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Influenza vaccination has been an effective intervention against influenza illness. This 

dissertation modeled impact of various vaccine strategies to find optimal vaccine policy for 

Thailand. The simulation results demonstrated that the current Thailand influenza vaccine policy 

(year 2014) can reduce influenza morbidity and mortality about 47% and 60% respectively 

(assumed 100% coverage). However, availability of vaccine in 2014 (approximately 3,400,000 

doses) cover about 60% of target population and may reduce the benefit of burden reduction. To 

reach 100% coverage, Thailand has to prepare about 6,000,000 doses of vaccine, but this cost 

may limit the policy. Extended policy to vaccinate preschool and school-aged children yields a 

substantial reduction of influenza morbidity and mortality and is an optimal vaccine strategy. 

Even 50% coverage of this extended policy can avoid about 93% of cases and 94% of deaths, but 

will requires 7,800,000 doses of vaccine. In case of many influenza patients visit hospitals, single 

intervention of vaccinating HCWs seems not effective enough to prevent outbreak in healthcare 

settings. This is because influenza vaccine efficacy is not quite high and cannot provide effective 

prevention if there are high number of contact between infected individuals and HCWs. To 

prevent outbreak in healthcare settings, intervention such as personal protection and hygiene 

should be considered add on vaccine strategy. 

In the event of an influenza pandemic, effective vaccine and antiviral drugs may be 

lacking. Various non-pharmaceutical intervention strategies are a first line of defense against the 

outbreak. This dissertation modeled impact of face mask use plus hand washing intervention on 

outbreak control. The simulation based on scenario that 88% of symptomatic influenza cases will 

visit hospitals and about 22% of them have probability to be hospitalized, this results in some 

level of case isolation in healthcare settings. The results suggested that face mask use among 

symptomatic influenza cases combined with hand washing at population level can decrease 
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transmission significantly to contain the outbreak. Wearing mask at least first 2 days of 

symptoms is recommended, but wearing for the whole period of symptom would be the best. 

Face masks plus hand washing (and case isolation) are effective strategies for countries with 

limited supplies of vaccines and antiviral drugs.  

This study has some strengths. Investigators conducted a national-scale study which 

clinical trials and epidemiological studies may be difficult to perform. Including people with 

CMC and pregnant women makes more complete picture of influenza burden and allow us to 

evaluate impact of vaccine on all target populations in the vaccine policy. The study has some 

limitations. All computer models are simplification of reality and cannot account for every 

possible factor or interaction. Because of the computational costs involved, the current results do 

not include a sensitivity analysis that involved the underlying transmission parameters and case 

fatality 

5.1 PUBLIC HEALTH SIGNIFICANCE 

Influenza is one of re-emerging infectious disease in Thailand. Influenza modeling provides 

information of probable true burden of disease and impact of various control measures. These 

can help in planning of influenza preparedness. This dissertation provided information for health 

policy makers to guide optimized target population for vaccine, and budget allocation for face 

mask, and hand sanitizer campaigns. To prevent influenza outbreak in healthcare settings, triage 

for respiratory diseases and strengthening hygiene and personal protection are recommended.  

General population should be advised for sick leave/self isolation, and encouraged hygiene and 

personal protection. 

 101 



5.2 FUTURE RESEARCH 

Future research should concentrate on further modeling the cost-effectiveness of influenza 

vaccine policy in Thailand, and impact of intervention for influenza (or infectious respiratory 

diseases) prevention in healthcare settings. Additionally, some assessment should be conducted. 

These include influenza surveillance evaluation, willingness and compliance of face mask use 

and hand washing. These will provide additional information to guide policy planners in 

influenza preparedness in Thailand.  
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APPENDIX A: SUPPLEMENTARY METHODS 

A1: SYNTHETIC POPULATION AND ALLOCATION 

1. Generating synthesized households and persons 

Thai census data (year 2000) on household size and age distributions were used to generate the 

synthesized agents and households. The household locations were generated and each household 

in the database was represented as a geographic information system (GIS) "point feature". Point 

features are unique x,y locations containing descriptive tabular attributes. Then population 

records were generated for all households. Each agent had a set of socio-demographic 

characteristics and daily behaviors that included age, sex, employment status, occupation, and 

household location and membership.  

1.1. Assigning agents to schools 

School data (year 2011) from the Thai Ministry of Education on ≈38,000 schools were used to 

determine the distribution of school sizes, number and proportions of children in school as a 

function of age for school assignment. The locations (point) of each school were generated from 

their address code (province, district, and sub-district). The schools assignment method was 

based on the assumption that students are enrolled at the closest school having adequate capacity. 

This assumption is necessary because no national data source of school catchment areas exists. 

The school allocation method assigns agents who are of school age (4 to 18 years of age) to 
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schools. The spatial allocation is based on a minimum path algorithm such that available students 

of a certain grade level will be assigned to the closest school that has capacity for students of that 

grade level. Children who are 4 to 6 years old are assigned only to schools that have kindergarten 

enrollment. The remaining children, ages 7 to 18, are assigned to appropriate schools; primary 

school (7 to 12 years old), lower-secondary schools (12 to 15 years old), and higher-secondary 

schools (15 to 18 years old). Children who enroll in the same school have the same school 

identifier; therefore, we know explicitly which children may come into contact with each other 

based on their school assignments. 

1.2. Assigning agents to workplaces 

Data of Thailand Industrial and Business/service census in year 2011 were used for workplace 

assignment. The data indicated numbers and percentages of workers by size of work place (1 - 

15, 16 - 25, 26 - 30, 31 - 50, 51 - 200, and >200 workers) for Bangkok, Bangkok vicinity, and all 

regions (central, north, northeastern, and south). The locations (point) of workplaces were 

generated. Then, each agent (non-school age population) is assigned to a workplace such that the 

distribution and capacity of each workplace was appropriate. Agents who work in the same 

workplace have the same workplace identifier; therefore, we know explicitly which workers may 

come into contact with each other based on their workplace assignments. 

2. Generating synthesized hospitals and healthcare workers 

To create synthetic Hospitals, we used the actual hospitals (the Latitude and Longitude are true) 

and number of beds in the hospital. We then assume that the number of HCWs who contact 

patients in a hospital is proportional to the number of beds by the value of 1 to 1 (e.g. a hospital 

with 100 beds would have 100 HCWs). The simulation then tries to found a synthetic workplace 

with approximately the same number of employees and then moved the assigned employees to 
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work in the hospital. To determine which hospital a family will visit, we used a gravity model 

where the probability of going to a given hospital was determined by the (number of beds) ÷ 

(distance from household to hospital)^2. Each household was mapped to a hospital randomly. If 

anyone in the household needs to be hospitalized or visits a hospital, then this is the hospital that 

they will visit. To make sure that this was consistent throughout all simulations, we stored the 

mappings of all households to hospitals after the first run of the FRED simulation to a text file 

and used that file to for each subsequent run, rather than reassigning the households each time. 

3. Assigning agents to have medical conditions 

For Chronic Conditions, we used the following age group probabilities: 

• Asthma  

a. All ages = 0.03 

• COPD 

a. Age 16 and over  = 0.004 

• Chronic Renal Disease 

a. Ages 16 and over  = 0.008 

• Diabetes 

a. Ages 15 to 29  = 0.006 

b. Ages 30 to 44  = 0.034 

c. Ages 45 to 59  = 0.101 

d. Ages 60 to 69  = 0.167 

e. Ages 70 to 79  = 0.158 

f. Ages 80 and over  = 0.115 
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• Heart Disease 

a. Ages 15 to 44  = 0.003 

b. Ages 45 to 59  = 0.021 

c. Ages 60 to 69  = 0.028 

d. Ages 70 to 79  = 0.049 

e. Ages 80 and over  = 0.058 

A2: SEVERE OUTCOMES FOLLOWING INFLUENZA 

We assumed the following base values for hospitalization, outpatient-care and case fatality: 

• Hospitalization probability = 0.22. Hospitalization probability came from database of 

Thailand Notifiable Disease Report, that was a proportion of inpatient among reported 

influenza cases. 

• Outpatient-care probability = 0.88.126  

• Case fatality probability = 0.0000715.127 The experimental parameters use a case fatality 

probability of 0.0000715 on each of four days of infection, giving a total probability of 

about 0.00026 or 26 deaths per 100,000 cases. 

We then multiplied these base values by the following assumed values for those with chronic 

Condition:128 

1) Asthma 

a. Hospitalization multiplier = 1.8 

b. Case Fatality multiplier = 1.7 
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2) COPD 

a. Hospitalization multiplier = 3.3 

b. Case Fatality multiplier = 7.8 

3) Chronic Renal Disease 

a. Hospitalization multiplier = 4.4 

b. Case Fatality multiplier = 22.7 

4) Diabetes 

a. Hospitalization multiplier = 0.9 

b. Case Fatality multiplier = 4.0 

5) Heart Disease 

a. Hospitalization multiplier = 2.0 

b. Case Fatality multiplier = 9.2 

6) Pregnancy (Not a chronic condition, but has multipliers similar to chronic conditions) 

a. Hospitalization multiplier = 6.8 

b. Case Fatality multiplier = 1.9 

Note: For simplicity, the multipliers are applied sequentially for those with multiple conditions 

(e.g. someone with Asthma and COPD would have a case fatality rate of 0.0000715 x 1.7 x 7.8 = 

0.0000948) 
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APPENDIX B: SUPPLEMENTARY TABLES 

B1: SUPPLEMENTARY TABLES FOR METHODS 

Table 15 Prevalence of diabetes and CHD by age group 

Disease Age group 

15-29 30-44 45-59 60-69 70-79 >80 

Diabetes 0.6 3.4 10.1 16.7 15.8 11.5 

CHD 0.3 0.3 2.1 2.8 4.9 5.8 

Source: The 4th National Health Examination Survey of Thailand (year 2008 - 2009) Report 

 
Table 16 Average age-specific fertility rate (per 1,000 female), year 2002 - 2001 

Age of mother (Year) Average rate  

15 - 19 47.62 

20 - 24 79.09 

25 - 29 79.18 

30 - 34 57.56 

35 - 39 27.18 

40 - 44 6.94 

45 - 49 0.6 

Source: Bureau of Health Policy and Strategy: Thailand Ministry of Public Health 
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Table 17 Risk ratios (RR) for severe outcomes following 2009 Influenza A(H1N1) infection 

Risk factors RR of hospitalization RR of death 

Respiratory disease 3.3 (2.0 - 5.8) 7.8 (4.9 - 26.6) 

Asthma 1.8 (1.2 - 2.6) 1.7 (1.5 - 2.1) 

Diabetes 0.9 (0.5 - 1.7) 4.0 (3.1 - 6.9) 

Cardiac disease 2.0 (1.5 - 2.2) 9.2 (5.4 - 10.7) 

Renal disease 4.4 (4.2 - 4.5) 22.7 (21.0 - 25.4) 

Pregnancy 6.8 (4.5 - 12.3) 1.9 (0.0 - 2.6) 

Source: Van Kerkhove et al.128 

Table 18 Age distribution of the synthetic population 

Age (years) Number Percentage 

<2 1,489,947 2.55 

2-5 3,709,878 6.36 

6-18 13,091,312 22.43 

19-65 36,495,519 62.54 

>=65 3,568,088 6.11 

Total 58,354,744 
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B2: SUPPLEMENTARY RESULTS FOR MANUSCRIPT 2 

Table 19 Proportion of cases prevented for target population vaccine policy , by different 

vaccine coverage 

Population 
% of cases that can be avoided (95%CI) 

100% Coverage 75% Coverage 50% Coverage 

Total population 47.06% (46.97, 47.14) 36.49% (36.40, 36.58) 25.70% (25.61, 25.79) 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

62.62% (62.08, 63.17) 

45.12% (44.76, 45.48) 

41.86% (41.70, 42.02) 

46.57% (46.46, 46.68) 

78.74% (78.38, 79.09) 

50.31% (49.74, 50.88) 

34.96% (34.59, 35.33) 

32.06% (31.90, 32.23) 

35.88% (35.76, 35.99) 

65.41% (65.03, 65.78) 

36.19% (35.60, 36.79) 

24.44% (24.06, 24.82) 

22.13% (21.96, 22.30) 

25.28% (25.16, 25.40) 

48.62% (48.22, 49.01) 

People with CMC 84.17% (83.90, 84.44) 69.74% (69.45, 70.02) 51.57% (51.26, 51.87) 

Pregnant women 66.35% (65.62, 67.08) 53.47% (52.71, 54.23) 38.94% (38.14, 39.74) 

Healthcare workers 3.75% (3.09, 4.41) 3.57% (2.91, 4.23) 2.56% (1.90, 3.22) 

* Target population: healthcare personnel, persons who have chronic health conditions, all

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women

 % of cases that can be avoided = (attack rate of no vaccination - attack rate of vaccine

policies) x 100 ÷ attack rate of no vaccination
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Table 20 Proportion of deaths prevented for target population vaccine policy , by different 

vaccine coverage 

Population 
% of deaths that can be avoided (95%CI) 

100% Coverage 75% Coverage 50% Coverage 

Total population 59.61% (54.68, 64.54) 47.41% (42.27, 52.55) 34.96% (29.62, 40.31) 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

57.14% (22.97, 91.31) 

44.86% (17.45, 72.28) 

43.85% (31.31, 56.38) 

57.93% (51.44, 64.41) 

82.66% (72.20, 93.12) 

 

50.15% (15.16, 85.15) 

41.98% (14.31,  69.65) 

30.75% (17.70, 43.80) 

45.96% (39.21, 52.71) 

68.19% (57.11, 79.28) 

 

41.03% (4.99, 77.08) 

29.73% (1.01, 58.45) 

25.55% (12.30, 38.80) 

32.55% (25.51, 39.59) 

51.61% (39.85, 63.38) 

People with CMC 85.39% (77.22, 93.56) 71.34% (62.68, 80.00) 54.58% (45.38, 63.79) 

Pregnant women 72.97% (30.00, 115.94) 60.54% (15.52, 105.56) 47.57% (0.50, 94.64) 

Healthcare workers 29.91% (-35.47, 95.28) 27.10% (-38.81, 93.01) 18.69% (-48.80, 86.19) 

* Target population: healthcare personnel, persons who have chronic health conditions, all 

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women 

 % of deaths that can be avoided = (mortality rate of no vaccination - mortality rate of vaccine 

policies) x 100 ÷ mortality rate of no vaccination 
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Table 21 Proportion of cases prevented for target population + children 2-5 years old vaccine 

policy , by different vaccine coverage 

Population 
% of cases that can be avoided (95%CI) 

100% Coverage 75% Coverage 50% Coverage 

Total population 72.59% (72.51, 72.67) 60.65% (60.56, 60.73) 43.19% (43.10, 43.27) 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

84.11% (83.61, 84.61) 

89.90% (89.60, 90.20) 

68.99% (68.85%, 69.14) 

70.81% (70.71, 70.91) 

88.70% (88.36, 89.04) 

 

74.26% (73.74, 74.78) 

79.48% (79.17, 79.79) 

57.08% (56.92, 57.23) 

58.50% (58.39, 58.61) 

78.15% (77.80, 78.51) 

 

57.80% (57.25, 58.36) 

61.60% (61.26, 61.93) 

40.19% (40.02, 40.35) 

40.82% (40.71, 40.94) 

60.10% (59.71, 60.48) 

People with CMC 91.60% (91.34, 91.86) 80.87% (80.59, 81.14) 62.40% (62.10, 62.69) 

Pregnant women 81.24% (80.55, 81.92) 69.47% (68.75, 70.19) 51.19% (50.42, 51.96) 

Healthcare workers 7.28% (6.60, 7.95) 8.62% (7.95, 9.30) 2.05% (1.39, 2.70) 

* Target population: healthcare personnel, persons who have chronic health conditions, all 

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women 

 % of cases that can be avoided = (attack rate of no vaccination - attack rate of vaccine policies) 

x 100 ÷ attack rate of no vaccination 
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Table 22 Proportion of deaths prevented for target population + children 2-5 years old vaccine 

policy , by different vaccine coverage 

Population 
% of deaths that can be avoided (95%CI) 

100% Coverage 75% Coverage 50% Coverage 

Total population 79.27% (74.70, 83.83) 66.78% (61.97, 71.58) 50.57% (45.48, 55.66) 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

82.07% (51.02, 113.11) 

89.73% (66.62, 112.84) 

71.90% (60.55, 83.26) 

77.02% (70.99, 83.05) 

90.88% (80.79, 100.97) 

 

71.43% (103.85, 39.01) 

82.70% (58.86, 106.54) 

58.74% (46.81, 70.66) 

64.31% (57.97, 70.64) 

78.43% (67.78, 89.07) 

 

59.88% (26.04, 93.72) 

60.18% (34.15, 86.21) 

41.11% (28.47, 53.76) 

48.08% (41.38, 54.78) 

64.27% (53.22, 75.52) 

People with CMC 92.22% (84.29, 100.14) 81.29% (72.97, 89.61) 65.16 (56.30, 74.03) 

Pregnant women 87.57% (47.14, 127.99) 81.62% (40.14, 123.10) 60.00% (14.89, 105.11) 

Healthcare workers 28.97% (-36.58, 94.53) 41.12% (-22.06, 104.30) 29.91% (-35.47, 95.28) 

* Target population: healthcare personnel, persons who have chronic health conditions, all 

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women 

 % of deaths that can be avoided = (mortality rate of no vaccination - mortality rate of vaccine 

policies) x 100 ÷ mortality rate of no vaccination 
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Table 23 Proportion of cases prevented for target population + children 2-18 years old vaccine 

policy , by different vaccine coverage 

Population 
% of cases that can be avoided (95%CI) 

100% Coverage 75% Coverage 50% Coverage 

Total population 99.37% (99.30, 99.44) 98.20% (98.13, 98.27) 92.88% (92.81, 92.96) 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

99.65% (99.19, 100.11) 

99.76% (99.48, 100.05) 

99.78% (99.65, 99.91) 

99.10% (99.01, 99.19) 

99.71% (99.39, 100.03) 

 

98.83% (98.37, 99.30) 

99.07% (98.78, 99.35) 

99.09% (98.96, 99.22) 

97.61% (97.52, 97.70) 

98.89% (98.57, 99.21) 

 

94.54% (94.06, 95.01) 

95.05% (94.76, 95.34) 

95.06% (94.93, 95.19) 

91.41% (91.32, 91.51) 

94.66% (94.33, 94.99) 

People with CMC 99.78% (99.53, 100.03) 99.03% (98.78, 99.28) 94.94% (94.69, 95.20) 

Pregnant women 99.50% (98.88, 100.13) 98.36% (97.73, 98.99) 93.10% (92.46, 93.75) 

Healthcare workers 76.60% (75.98, 77.22) 59.72% (59.04, 60.40) 32.49% (31.78, 33.20) 

* Target population: healthcare personnel, persons who have chronic health conditions, all 

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women 

 % of cases that can be avoided = (attack rate of no vaccination - attack rate of vaccine policies) 

x 100 ÷ attack rate of no vaccination 
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Table 24 Proportion of deaths prevented for target population + children 2-18 years old vaccine 

policy , by different vaccine coverage 

Population 
% of deaths that can be avoided (95%CI) 

100% Coverage 75% Coverage 50% Coverage 

Total population 99.47% (95.29, 103.64) 98.35% (94.15, 102.54) 93.83% (89.54, 98.11) 

Age (years) 

<2 

2-5 

6-18 

19-65 

>65 

 

99.39% (70.72, 100.11) 

99.82% (77.79, 121.85) 

99.85% (89.81, 109.89) 

99.26% (93.80, 104.72) 

99.69% (90.02, 109.36) 

 

96.96% (67.94, 125.98) 

99.28% (77.19, 121.37) 

98.95% (88.87, 109.03) 

98.00% (92.51, 103.49) 

98.86% (89.14, 108.57) 

 

95.74% (66.55, 124.94) 

95.32% (72.79, 117.84) 

96.56% (86.36, 106.76) 

92.52% (86.88, 98.16) 

94.90% (85.00, 104.80) 

People with CMC 99.67% (92.03, 107.32) 99.09% (91.42, 106.76) 94.99% (87.17, 102.82) 

Pregnant women 98.92% (60.59, 137.25) 100.00% (61.87, 138.13) 92.97% (53.53, 132.41) 

Healthcare workers 82.24% (27.85, 136.64) 68.22% (10.68, 125.77) 62.62% (3.86, 121.37) 

* Target population: healthcare personnel, persons who have chronic health conditions, all 

persons aged > 65 years, all children from 6 months through 2 years of age, pregnant women 

 % of deaths that can be avoided = (mortality rate of no vaccination - mortality rate of vaccine 

policies) x 100 ÷ mortality rate of no vaccination 
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APPENDIX C: SUPPLEMENTARY FIGURES 

The numbers of influenza cases by week from 2003 to 2012 were obtained.  An epidemic curve 

with logarithm scale for each year was plotted. Linear increase in cases on a logarithmic scale 

indicates exponential increase in the number of cases. The figure 14 presents 10 graphs of the 

analyzed years 
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Year 2010: wk 21 - 28 

Year 2011: wk 20 - 31 
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Year 2008: wk 22 - 24 

Year 2009: wk 21 - 23 
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Year 2006: wk 21 - 22 

Year 2007: wk 26 - 28 
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Year 2004: wk 31 - 32 

Year 2005: wk 34 - 35 
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Figure 14 Number of reported influenza case in bangkok, 2003 - 2012  

 

Year 2003: wk 19 - 20 
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