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CONTINUITY IN BANACH SPACES

J. W. Burns, PhD

University of Pittsburgh, 2014

The main theme of this document and much of the author’s research so far is to use porosity (as well

as category) to describe how typical a variety of continuity conditions are within certain collections

of functions. The intuition behind the work is that “most things should behave according to a

pattern or principle of action”. The pattern that the author has in mind is that things should: flow,

be localized, and oscillate. Indeed, this theme occurs throughout the authors included work. In

Chapter 1, we study what properties a typical bounded real valued derivative possesses, in terms

of continuity. We first prove results for finite dimensional domains. Additionally, we obtain some

results when the domain is a subset of a general Banach space with a Fréchet differentiable norm.

In Chapter 2, we study porosity in relation to bounded variation. In particular, we show that when

we suitably norm the space of functions with bounded variation, then the Cantor function becomes

the typical example of a function in that space. In Chapter 3, we study how typical (in the sense

of both category and porosity) it is for a function that is twice partial differentiable to have equal

mixed partial derivatives. As it turns out, the ability to satisfy Clairaut’s Theorem is infrequent.

In Chapter 4, we study a general condition that implies we have an open, dense, co-porous set

whenever we are looking at a set defined by a seminorm in a particular way. This allows us

to prove a number of results. In Chapter 5, we introduce a few open questions that the author

has recently been working on directly, or has formulated for further study. In the Appendix, we

introduce the concept of porosity in an easy to follow format, with illustrative diagrams to guide

the reader in their pursuit of intuition.
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PREFACE

“Imagination is the only weapon in the war against reality.”

− Lewis Carroll, Alice in Wonderland

To me, mathematics is the most beautiful of subjects in that it is a combination of art and

science, transforming imagination into methods of study... the study of the patterns of the universe.

The joy that this study has provided me is an immeasurable gift given to me by many teachers,

mentors and supporters over the years. As such, I would like to thank some of the people who

made it possible.

I would first and foremost like to thank my PhD advisor Christopher Lennard for his teaching,

support, encouragement, and friendship. I had always hoped to find an advisor brilliant enough

that I could respect, laugh with, learn from, and look-up-to, and Dr. Lennard has exceeded any

expectations I could have had in all those areas. I would not be the mathematician I am today

without his help and influence, and I cannot thank him enough for always being there for me.

Countless hours discussing mathematics, correcting my typos, helping with job interviews, endless

advice and insight; Dr. Lennard always made himself available to talk about math, my work, life,

and anything else. He is the epitome of the good natured professor that everyone wants to know,

and I am honored to have him as my “academic father”, but more importantly, I am proud to count

him as a friend.

Next I would like to thank my committee members: F. Beatrous, G. Caginalp, and J. B.

Turett. Their input and advice refined my work, and shaped the readability of this thesis, and I

am privileged to have such fine academicians on my committee. I would also like to thank Y.

Pan and J. Diestel for serving on my overview committee. I would also like to thank F. Beatrous
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for his help as Undergraduate Director, always being there when issues arose, as well as being a

Comprehensive Examiner for me. I would also like to thank P. Gartside for his advice as Graduate

Director at a time when I didn’t have a PhD advisor, as well as being a Comprehensive Examiner

for me. I am also very grateful to J. Diestel, P. Dowling, I. Sysoeva, and J. B. Turett for being refer-

ences for me, and so helping me to secure a post graduation job... something I am very glad to have!

My life as a mathematician has been influenced by many people who have taught me, but I

would like to particularly thank a few. I would like to first thank Dr. Horatio Jen, who encouraged

me to take more and more math courses as an undergraduate without a major or a plan until finally

telling me I should pursue mathematics; for without him, I would have never discovered my love

of mathematics. Dr. Jen spent many hours forming the foundations of my interest and building

my love of learning by his own enthusiasm.

Next I would like to thank my undergraduate advisor Dr. Ryad Ghanam. Without the advice,

teaching, and support of Ryad and his family, I would not have gone on to graduate school, and I

wouldn’t have pursued academia; he is a friend and mentor to me still. Ryad is one of the models

I look to for an example of a passionate teacher. Thank you for all the conversations over coffee

(and dessert) and all of the time and input you have had in my life. I wish you the very best

successes in everything, may God bless you my friend.

Next I would like to thank my graduate teachers Dr. Yibao Pan and Dr. Piotr Hajlasz, without

whom I would have never pursued analysis and found my love of functional analysis. As a

beginning graduate student still learning what real mathematics looks like, I thank you both for

your skill, precision, excitement about teaching, and personal encouragement as I studied hard to

advance my abilities and grow as a mathematician.

Next I would like to also thank L. Congelio, J Szurek, D. Swigon, A. Borisov, and P. Gartside

for fine instruction over the years. I hope to create in my students the same curiosity and skills

that you instilled in me. I would also like to thank all of the faculty and staff of the University of

Pittsburgh who I have gotten to know over the past ten years at the various campuses. Nothing
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runs without your work.

I would also like to thank all of the rest of my academic family. I would specifically like
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talks about mathematics and life; Tom and Veysel, I hope I have modeled what it means to be a

senior graduate student for Torrey and Roxanna as well as you did for me. Last but not least, thank

you to Cathy Lennard for many meals, encouraging words, advice, support and friendship. You

and Chris have truly been like a second set of parents to me, watching out for me, wanting the best

for me, encouraging me to do my best, and supporting me professionally and personally.

I would also like to thank a few of my many graduate student friends: Jonathan Holland,

Zhuomin Liu, Ana Mamatelashvili, Woden Kusner, and Sam Saiki. Thank you for many fun

lunches and coffees, and discussing interesting mathematics. Jonathan and Zhuomin, thank you

for all your help and encouragement my first two years with helping me to study real analysis and

linear algebra for the prelims.

I would also like to thank my family: my parents John and Jamie Burns; my brother Justin

and his wife Julie; my sister Jessica and her husband Brandon; my brother Jordan; my Aunt Susan
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1.0 BEHAVIOR OF TYPICAL DERIVATIVES ON CERTAIN SETS

1.1 INTRODUCTION

“Continuity is a rare property”. This is a simple statement one often hears during introductory

analysis classes. The precise statement of this notion is often repeated, and frequently treated

from different perspectives. Often we show this by classifying how typical it is for a function to be

continuous; for example, in the sense of category. Experience tells us that there is an interesting

interplay between considering fixed sets in the domain of a space of functions and the rarity of

continuity in said collections of functions.

A use of the Baire category ideas by Banach [3] (and also by S. Mazurkiewicz around the

same time), showed that the set of nowhere differentiable functions is residual in C[0, 1]. This

category result was later strengthened using the notion of porosity.

The idea of porosity was first used by Dolzhenko [11] as a way of describing the boundary

behavior of certain functions. Since then, this concept has shown itself to be useful in the study of

quasiconformal mappings, functional analysis, harmonic analysis, and topology. As we will see

later in our introduction and explanation of the topic, porosity is a way of combining the notions

of “nowhere dense” and “measure zero” into one sharper notion. A great overview and treatment

of the topic can be found in Zajı́ček’s survey paper [28]. Porosity and σ-porosity, are often used to

sharpen results that previously were proved only for sets of first category or sets of measure zero.

For example, Banach’s result has been strengthened by Gandini and Zucco [14] (also later by V.

Anisiu) to show that the set of nowhere differentiable functions in C[0, 1] is the complement of a

σ-porous set.
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Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be Banach spaces. Let (D(X; Y), ‖ · ‖D) be the Banach space of

functions f : Bo(X) → Y with everywhere (on Bo(X)) existing derivatives such that for any

f ∈ D(X; Y), ‖ f ‖D := ‖ f ‖∞ + ‖ f ′‖∞ = sup
x∈B(X)

‖ f (t)‖Y + sup
t∈B(X)

‖ f ′(t)‖L(X,Y) < ∞. Let (DN , ‖ · ‖DN ) be

the Banach space of functions f : [0, 1]N → R with everywhere (on [0, 1]N) existing derivatives

such that for any f ∈ DN , ‖ f ‖DN := ‖ f ‖∞ + ‖ f ′‖∞ = sup
x∈[0,1]N )

‖ f (t)‖Y + sup
t∈[0,1]N

‖ f ′(t)‖L(X,Y) < ∞.

We can also consider D[0, 1] := { f ∈ C[0, 1] : f ′ exists and f ′ is bounded on [0, 1]} with

norm ‖ f ‖D[0,1] = ‖ f ‖∞ + ‖ f ′‖∞ as a space of differentiable functions that are “well behaved”.

Furthermore, let Λ( f ′, a) := limδ→0+ suph,k∈Bo(a;δ) ‖ f
′(h)− f ′(k)‖L(X,Y) be the tangential oscillation of

the function f at the point a. Recall that f ′ is continuous at the point a if and only if Λ( f ′, a) = 0.

Note that f ′ above may not be everywhere continuous, but that by a well known result of Baire

we have that the set of these continuities is a dense Gδ set. In particular, A is the set of positive

tangential oscillation of a real function if and only if A is a Fσ set (see [7]).

If we define D](R) := { f : R → R | sup
t∈R
| f (t)| < ∞ and ∃F such that F′(t) = f (t),∀t ∈ R},

then (D](R, d(·, ·)) is a complete metric space with metric d( f , g) := sup
t∈R
| f (t) − g(t)|. Then let

A := { f ∈ D](R) : m({x : f is continuous at x}) > 0}. In 1978, Clifford Weil [26] proved A is a

first category set in D](R). Weil’s work is an extention of work done by Casper Goffman [16] in

1977, that gave existence of the generating function used in Weil’s proof. However, much more

can be said.

We proved the following result:

Theorem 1.1.1. Let {xn : n ∈ N} be a countable (possibly finite) set in Banach space (X, ‖ · ‖) and

(Y, ‖ · ‖) another Banach space. Then let G := { f ∈ D(X,Y) : Λ( f ′, xn) > 0 for all n ∈ N} is a dense

Gδ set in D(X,Y) that is co-σ-porous, and if N is finite, then G is open and co-porous.

Yet, we can in fact get much more when we restrict the domain of our functions to Rn. In

particular, we proved the following:

Theorem 1.1.2. Let E ⊂ [0, 1]N be a closed, nowhere dense set. Then G := { f ∈ DN :

infx∈E Λ( f ′, x) > 0} is a dense, open, co-porous set in DN .

2



One of our first results is that if E is an arbitrary closed nowhere dense subset of [0, 1], then

GE := { f ∈ D[0, 1] : infx0∈E Λ( f ′, x0) > 0} is a dense open subset of D[0, 1]; and furthermore,

GE is co-porous in D[0, 1]. This result came about through asking the following question: “How

typical is the Volterra-Cantor Function?”. The Volterra-Cantor function, is often used as an

example in analysis classes, but is it truly odd, or is it the type of function that we should expect?

As our result shows, this example is actually what we should be thinking of when we think of an

arbitrary function with bounded derivative.

Throughout the course of our research we had interesting conversations with many people.

Specifically, the we would like to thank J. Holland for his initial conversations about the Volterra-

Cantor type functions, as well as J. Sivek for useful discussions and ideas about differentiable

norms as well as alerting us to Cartan’s result [9]. We would also like to thank J.B. Turret for

alerting us to the work of Weil, as well as pointing out some of the differences in the definitions

and work.
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1.2 PRELIMINARIES AND DEFINITIONS

We start with some definitions and preliminary theorems.

Definition We begin in the interval [0, 1]:

• C[0, 1] := {The set of continuous functions on [0, 1]}.

• C(1)[0, 1] := { f ∈ C[0, 1] : f ′ exists, and f ′ is continuous on [0, 1]}

• D[0, 1] := { f ∈ C[0, 1] : f ′ exists and f ′ is bounded on [0, 1]}

If (X, ‖·‖) is any normed space, then we define the following subsets in the usual way for x ∈ X:

• B(x; r) := Br(x) = {y ∈ X : ‖x − y‖ ≤ r}

• Bo(x; r) := Bo
r (x) = {y ∈ X : ‖x − y‖ < r}

Further, define ‖ f ‖D := ‖ f ‖∞ + ‖ f ′‖∞ for all f ∈ D[0, 1].

Theorem 1.2.1. Suppose that fn → f uniformly on a set E ⊆ M in a metric space (M, d), for fn, f

real functions (for all n). Let x be a limit point of E, and suppose that

lim
t→x
t∈E

fn(t) = an for all n ∈ N. (1.1)

Then, an converges, and

lim
t→x
t∈E

f (t) = lim
t→x
t∈E

lim
n→∞

fn(t) = lim
n→∞

lim
t→x
t∈E

fn(t) = lim
n→∞

an (1.2)

Proof. (See [22, p.152])

Fix ε > 0. By the uniform convergence, ∃N ∈ N such that ∀n,m ≥ N, ∀t ∈ E,

| fn(t) − fm(t)| < ε (1.3)

| fn(t) − f (t)| < ε. (1.4)
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Letting t → x in 1.3, we get |an − am| < ε. Thus {an} is a Cauchy sequence in R, converging to

some a ∈ R. Also, [|an − a| ≤ ε] ,∀n ≥ N. So, ∀t ∈ E,

| f (t) − a| ≤ | f (t) − fN(t)| + | fN(t) − aN | + |aN − a| ≤ ε + | fN(t) − aN | + ε.

Now by 3.1, there exists an open set V ⊂ M such that ∀t ∈ E ∩ V with t , x, | fN(t) − aN | < ε. So

∀t ∈ E ∩ V with t , x, | f (t) − a| ≤ 3ε. Therefore, lim
t→x
t∈E

f (t) = a, and the conclusion holds. �

Theorem 1.2.2. Fix −∞a < b < ∞. Let {gn} be a sequence of functions such that for all n ∈ N

we have gn : [a, b] → R, gn is differentiable on [a, b], and such that α := lim
n→∞

gn(x0) exists in

R for some x0 ∈ [a, b]. Also, suppose that {g′n} converges uniformly on [a, b] to some function

h : [a, b] → R. Then {gn} converges uniformly on [a, b] to some function g : [a, b] → R, and we

have for all x ∈ [a, b]:

g′(x) = lim
n→∞

g′n(x) = h(x)

Proof. (See [22, p.153]) Fix ε > 0. Then, ∃N ∈ N such that ∀n,m ∈ N, |gn(x0) − gm(x0)| < ε; and

also ∀n,m ≥ N, ∀x ∈ [a, b], |g′n(x) − g′m(x)| < ε. So, fix x ∈ [a, b] arbitrary. For all n,m ≥ N, we

have (using the Mean Value Theorem, for some η between x0 and x):

|gn(x) − gm(x)| ≤ |gn(x) − gm(x) − (gn(x0) − gm(x0))| + |gn(x0) − gm(x0)|

≤
∣∣∣(g′n(η) − g′m(η)

)
(x − x0)

∣∣∣ + ε =
∣∣∣g′n(η) − g′m(η)

∣∣∣ |x − x0| + ε ≤ ε(b − a) + ε.

So, for some g(x) ∈ R, we have gn −→
n

g uniformly on [a, b]. Fix x ∈ [a, b] arbitrary, and let

E := [a, b] \ {x}. Then for all n ∈ N, for all t ∈ E, define:

φn(t) :=
gn(t) − gn(x)

t − x

φ(t) :=
g(t) − g(x)

t − x
.

Then, for any n ∈ N we have φn : E → R and φ : E → R. Observe that φn −→
n
φ uniformly on E.

Indeed, ∀t ∈ E, ∀n,m ≥ N as above, using the Mean Value Theorem with ξ between x and x0:

|φn(t) − φm(t)| =
|(gn(t) − gm(x)) − (gm(t) − gm(x))|

|t − x|

=

∣∣∣(g′n(ξ) − g′m(ξ)
)

(t − x)
∣∣∣

|t − x|
=

∣∣∣g′n(ξ) − g′m(ξ)
∣∣∣ ≤ ε.

5



Thus, an := lim
t→x
t∈E

φn(t) = g′n(x) exists in R, for all n ∈ N. Therefore, by 3.1,

g′(x) = lim
t→x
t∈E

φ(t) = lim
n→∞

an = lim
n→∞

g′n(x) = h(x)

�

Proposition 1.2.1. As defined above, (D[0, 1], ‖ · ‖D) is a Banach space.

Proof. That ‖ · ‖D is a norm is clear. In particular, we note that if ‖ f ‖D := ‖ f ‖∞ + ‖ f ′‖∞ = 0, then

clearly f (t) = 0,∀t ∈ [0, 1]. Thus, we need only discuss completeness. Let { fn} be a ‖ · ‖D-Cauchy

sequence in D[0, 1]. Then { fn} is a ‖·‖∞-Cauchy sequence in (C[0, 1], ‖·‖∞). So, as (C[0, 1], ‖·‖∞) is

complete (see [22]), then there exists f ∈ C[0, 1] such that ‖ fn− f ‖∞ −→
n

0. Also, { f ′n} is a uniformly-

Cauchy sequence, i.e. ‖ fk − fm‖∞ −−−−−→
k,m→∞

0. Thus, there exists a function h : [0, 1] → R such that

f ′n −→n
h uniformly on [0, 1]. Then by theorem 1.2.2, f is differentiable on [0, 1] and f ′(x) = h(x)

for all x ∈ [0, 1]. So, f ∈ D[0, 1]. Also, ‖ fn − f ‖∞ = ‖ fn − f ‖∞ + ‖ f ′n − f ′‖∞ −→
n

0 + 0 = 0. Thus,

(D[0, 1], ‖ · ‖D) is complete. �

Remark We note here that the space we are using is a different space then the one that was used

historically. Historically (as mentioned in Weil [26]), derivatives spaces don’t include a norm of

the primary function, only the derivative. Also, historically the spaces are just complete metric

spaces, not Banach spaces. Our space uses both the primary function and its derivative in its norm.

Remark What if we had gone with defining our space as D(0, 1) := { f ∈ C(0, 1) : f ′ exists

and f ′ is bounded on (0, 1)}? Let’s investigate details of an interesting example. Let f (0) := 0

and
[
f (x) := sin (ln(x)) + cos (ln(x)) , for all x ∈ (0, 1]

]
. Note that f is differentiable, and therefore

continuous at every x ∈ (0, 1]. An interesting thing happens if we let xn := e−(π+2πn) ∈ (0, 1] and

yn := e−2πn ∈ (0, 1]. Note that xn, yn → 0 as n→ ∞. However, for any n ∈ N:

f (xn) = sin
(
ln(e−(π+2πn))

)
+ cos

(
ln(e−(π+2πn))

)
= sin (−(π + 2πn)) + cos (−(π + 2πn))

= sin (−π − 2πn) + cos (−π − 2πn) = 0 + −1 = −1.
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and

f (yn) = sin
(
ln(e−2πn)

)
+ cos

(
ln(e−2πn)

)
= sin (−2πn) + cos (−2πn) = 0 + 1 = 1.

Therefore, we can see that f is not continuous at zero, yet it is also a bounded func-

tion that is continuous at all but a finite set in [0, 1] and is therefore Riemann-integrable in

[0, 1] (a fact we don’t need, but is fun to note). Now define the function F(0) := 0 and

[F(x) := x sin (ln(x)) , for all x ∈ (0, 1]]. Now, we have F′(x) = f (x) for any x ∈ (0, 1]. Therefore,

F ∈ D(0, 1).

However, an interesting thing happens if we let xn := e−( π2 +2πn) ∈ (0, 1] and yn := e−(− π2 +2πn) ∈

(0, 1]. Note that xn, yn → 0 as n → ∞. Let’s investigate F(xn)−F(0)
xn−0 and F(yn)−F(0)

yn−0 . However, for any

n ∈ N:

F(xn) − F(0)
xn − 0

=
e−( π2 +2πn) sin

(
ln(e−(π+2πn))

)
− 0

e−( π2 +2πn)

= sin
(
−(
π

2
+ 2πn)

)
= −1.

and

F(yn) − F(0)
yn − 0

=
e−(− π2 +2πn) sin

(
ln(e−(π+2πn))

)
− 0

e−( π2 +2πn)

= sin
(
−(−

π

2
+ 2πn)

)
= 1.

Therefore, we see that F′ does not exist at zero. What does this give? Well, it gives that F ∈ D(0, 1),

but F < D[0, 1]. Hence, D[0, 1] $ D(0, 1) as sets. Note that both D[0, 1] and D(0, 1) with the norm

‖ · ‖D are Banach spaces. However, it would seem to us as if the more intuitive notion of a D type

space for R is to use D[0, 1], therefore, it is the one that we use.

Proposition 1.2.2. C(1)[0, 1] is a closed vector subspace of D[0, 1].
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Proof. Let g ∈ D[0, 1] be arbitrary, and suppose there exists ( fn)n∈N ⊆ C(1)[0, 1] such that

lim
n→∞
‖ fn − g‖D = 0.

Therefore, lim
n→∞
‖ fn − g‖D = lim

n→∞

(
‖ fn − g‖∞ + ‖ f ′n − g′‖∞

)
= 0. Now, each f ′n is continuous, and

convergence in ‖ · ‖∞ is uniform convergence. So we have ( f ′n)n∈N ⊆ C[0, 1] converging uniformly

to g′. Therefore, g′ must be continuous. �

We now define the oscillation of a function on a normed space.

Definition Let (X, ‖ · ‖) be a normed space. For any bounded functions S : X → R, define for

δ > 0 the function Λδ(S , x0) := sup
h,k∈Bo

δ(x0)
‖S (h)−S (k)‖, and Λ(S , x0) := lim

δ→0+
Λδ(S , x0), for all x0 ∈ X.

Note the following fact.

Lemma 1.2.1. Let (X, ‖ · ‖) be a normed space with A ⊆ X, and let S : X → R and T : X → R be

functions. Then the following holds true:

• sup
x∈A

(S (x) + T (x)) ≤ sup
x∈A

S (x) + sup
x∈A

T (x)

• inf
x∈A

S (x) + inf
x∈A

T (x) ≤ inf
x∈A

(S (x) + T (x))

We now state a proposition that we use later.

Proposition 1.2.3. Let (X, ‖ · ‖) be a normed space with A ⊆ X, and let Q : X → R,S : X → R and

T : X → R be functions. Further, let Λ be the oscillation function. Then the following holds true:

1. Λ(Q, t) ≥ 0.

2. |Λ(S , t) − Λ(T, t)| ≤ Λ(S + T, t) for all t ∈ A.

Proof. Let X, A, S ,T,Q be as above. Then (1) is clear from the definition, so we will prove (2).

Let δ > 0, and t ∈ A. So we have that for h, k ∈ Bo
δ(t) then by the triangle inequality:

‖S (h) − S (k)‖ = ‖(S (h) − S (k)) + (T (h) − T (k)) − (T (h) − T (k))‖

≤ ‖(S (h) − S (k)) + (T (h) − T (k))‖ + ‖(T (h) − T (k))‖

Thus, by applying Lemma (1.2.1), we get Λδ(S , t) ≤ Λδ(S + T, t) + Λδ(T, t). Therefore, we

may now take a limit as δ → 0+, and get Λ(S , t) ≤ Λ(S + T, t) + Λ(T, t) which easily implies the

inequality in (2), and we are done. �
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Consider now the case where (X, ‖ · ‖) = (R, | · |) and A = [0, 1]. Let S ∈ D[0, 1]. We may refer

to Λ(S ′, a) as the tangential oscillation at a ∈ [0, 1].

We now summarize the facts we know by observing that S 7→ Λ(S ′, a) has

seminorm properties. In particular:

1. Λ(cS ′, t) = |c|Λ(S ′, t) for any t ∈ [0, 1] and some c ∈ R

2. Λ(S ′, t) ≥ 0 for all t ∈ [0, 1].

3. Λ(S ′ + T ′, t) ≤ Λ(S ′, t) + Λ(T ′, t) for any t ∈ [0, 1]

4. |Λ(S ′, t) − Λ(T ′, t)| ≤ Λ(S ′ + T ′, t) for all t ∈ [0, 1].

5. Also, Λ(S ′, t) ≤ 2‖S ‖D

1.3 AN INTERESTING COLLECTION OF FUNCTIONS

We now define a certain auxiliary function, that we shall denote by F(x, α), which is often called

the dampened topological sine function.

Definition Let α ∈ R and let

F(x, α) :=

 (x − α)2 sin( 1
x−α ) : x , α

0 : x = α
,∀x ∈ R
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Figure 1: Dampened Topological Sine Between 2 Parabolas.

Proposition 1.3.1. As defined above, F(x, α) is continuous and differentiable in x onR. Moreover,

we also have that F ∈ D[0, 1], i.e. F and it’s derivative (which exists) are bounded on [0, 1].

Proof. It is clear that F(x, α) is a continuous bounded function, and that it is differentiable away

from x = α. In fact, when x , α we see that F′(x, α) = 2(x − α) sin( 1
x−α ) − cos( 1

x−α ). So the only

non-obvious thing to check is differentiability at x = α. So we have

lim
|h|→0+

F(α + h, α) − F(α, α)
h

= lim
|h|→0+

h sin
(
1
h

)
= 0.

Thus, F′(α, α) = 0. �

1.3.1 The Yo-Yo

We can use this function to define a second auxiliary function F(a,b)(x) on the interval (a, b) ⊆ [0, 1]

which we call the “Yo-Yo function”, for reasons that shall become obvious. It is a smooth double-

ending of the dampened topological sine. We develop this method from the classical example of

Volterra, used in the construction of the Volterra function.
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Definition We notice that F′(x, a) has an infinite number of zeros in the interval (a, a+b
2 ], so let

a + γ be the largest such value in (a, a+b
2 ], where γ ∈ R, γ ≥ 0. We may now define

F(a,b)(x) :=



F(x, a) : a < x ≤ a + γ

F(a + γ, a) : a + γ ≤ x ≤ b − γ

−F(x, b) : b − γ ≤ x < b

0 : x ∈ R \ (a, b)

Now, by examining the definition of F(a,b)|[0,1], we see that it is continuous, differentiable, and in
D[0, 1]. To understand this definition, it is helpful to consider a typical Yo-Yo function, taken in
the interval (0, 1), i.e. to consider the graph of F(0,1).

Figure 2: Typical Yo-Yo Function In An Interval.

1.3.2 Oscillation Theorem At A Point in R1

We are now ready to begin pursuing some interesting applications of these results. We start with

an interesting result about what a “typical” function in D[0, 1] really looks like.

Proposition 1.3.2. Fix x0 ∈ [0, 1]. Let G := { f ∈ D[0, 1] : Λ( f ′, x0) > 0}. Then G is open and

dense in D[0, 1].
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Proof. First we prove open. To do so, we will show that Gc := D[0, 1]\G = { f ∈ D[0, 1] :

Λ( f ′, x0) ≤ 0} = { f ∈ D[0, 1] : Λ( f ′, x0) = 0} is closed. Therefore, let f ∈ D[0, 1] and

( fn)n∈N ⊆ Gc such that ‖ fn − f ‖D −→
n

0. Thus, (‖ fn − f ‖∞ + ‖ f ′n − f ′‖∞) −→
n

0, and Λ( f ′n , x0) = 0 for

all n ∈ N.

Let ε > 0 be arbitrary. There exists N0 ∈ N such that (‖ fn − f ‖∞ + ‖ f ′n − f ′‖∞) < ε
3 , for

all n ≥ N0. Then there exists δ0 > 0 such that Λδ( fN0 , x0) < ε
3 for all δ ≤ δ0. Now then, let

h, k ∈ (−δ0, δ0) for δ0 above. Then,

| f ′(x0 + h) − f ′(x0 + k)|

≤ | f ′(x0 + h) − f ′N0
(x0 + h)| + | f ′N0

(x0 + h) − f ′N0
(x0 + k)| + | f ′N0

(x0 + k) − f ′(x0 + k)|

<
2ε
3

+ | f ′N0
(x0 + h) − f ′N0

(x0 + k)| < ε.

Now, apply the supremum within (−δ0, δ0), and take the limit and we get lim
δ≤δ0

sup
h,k∈(−δ,δ)

| f ′(x0 + h) −

f ′(x0 + k)| ≤ ε for any ε > 0. Therefore, Λ( f ′, x0) = 0, and so Gc is closed... i.e. G is open.

Now we prove density of the set. Let f ∈ D[0, 1] be arbitrary. If f ∈ G, there is nothing to do.

So without loss of generality, assume that f ∈ Gc. We wish to find ĝε ∈ G such that ‖ f − ĝε‖D < ε

for any ε > 0 with ε small. As such, we will define the following auxiliary function for ν ∈ R, ν > 0

small:

fβ,ν(x) := βF(0,ν)(x).

It is clear that fβ,ν(x) is just a β scaling of our Double Yo-Yo type function, so fβ,ν(x) ∈ D[0, 1].

Thus, we can say the following:

f ′β,ν(x) =


0 : x = 0

βF′(0,ν)(x) : 0 < x < ν

0 : ν ≤ x ≤ 1

It will be useful to get a bound on Λ( f ′β,ν, 0). Fix ν > 0, arbitrary. While there is a best bound,

we will be satisfied with a bound showing positivity of Λ( f ′β,ν, 0). Let xn := 1
2πn , yn := 1

(2n+1)π so

that {xn}, {yn} are real sequences. Eventually these sequences are entirely in (0, ν2 ], so eventually
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fβ,ν(xn), fβ,ν(yn) behave as F(xn, 0), F(yn, 0), where we recall that for z > 0, F(z, 0) = z2 sin( 1
z ).

Then the following is true for any n large enough:

1. 0 < yn < xn

2. xn, yn −→
n

0

3. f ′β,ν(xn) = −β, f ′β,ν(yn) = β

Therefore, for any δ > 0 there exists N0 ∈ N such that ∀n > N0,

0 < yn < xn < δ and | f ′β,ν(xn) − f ′β,ν(yn)| = 2β. (1.5)

Hence, we can conclude 2β ≤ Λ( f ′β,ν, 0), which is good enough for our purposes.

Now, we will use fβ,ν(x) to construct the required hε(x) to prove the density. First recall the

Reverse Triangle Inequality:

||a| − |b|| ≤ |a − b| for all a, b ∈ R.

Define (for x0 ∈ [0, 1), where the case x0 = 1 is similar) gβ,ν(x) := f (x) + fβ,ν(x − x0).

Now we are legitimately prepared to go about showing density for the still fixed f . Let ε > 0

be small and arbitrary. Then let β := ε
4 , ν = ε

6 . We will show that ĝε = gβ,ν “works”. First,

‖ f − gβ,ν‖D = ‖ f − gβ,ν‖∞ + ‖ f ′ − g′β,ν‖∞ ≤
ε
4

(
ε
6

)2
+ ε

2 < ε. So gβ,ν is “close”, and it is also clear that

gβ,ν ∈ D[0, 1].

Now we want to show that gβ,ν ∈ G. Well, using the above,

0 <
ε

2
= 2β = 2β − 0 ≤ lim

δ→0+
sup

h,k∈(−δ,δ)
| f ′β,ν(h) − f ′β,ν(k)| − sup

h,k∈(−δ,δ)
| f ′(x0 + h) − f ′(x0 + k)|

= lim
δ→0+

sup
h,k∈(−δ,δ)

| f ′β,ν(h) − f ′β,ν(k)| − lim
δ→0+

sup
h,k∈(−δ,δ)

| f ′(x0 + h) − f ′(x0 + k)|

≤ lim
δ→0+

sup
h,k∈(−δ,δ)

∣∣∣| f ′β,ν(h) − f ′β,ν(k)| − | f ′(x0 + h) − f ′(x0 + k)|
∣∣∣

≤ lim
δ→0+

sup
h,k∈(−δ,δ)

|g′β,ν(x0 + h) − g′β,ν(x0 + k)|

= Λ(g′β,ν, x0).

(1.6)

Thus, gβ,ν ∈ G and so then G is open and dense in D[0, 1]. �
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By the Baire Category theorem, we get a theorem as an easy corollary.

Theorem 1.3.1. Fix E a countable subset of [0, 1]. Then G := { f ∈ D[0, 1] : Λ( f , x0) > 0,∀x0 ∈ E}

is a dense Gδ set in D[0, 1].

1.4 WHAT IS A TYPICAL FUNCTION?

We would like to begin to answer in some sense, the following question: what is the behavior of a

typical function in D[0, 1]?

If we labor a little more, we will receive an interesting reward in the way of an answer to the

above question. In particular, we would like to know about having our oscillation points as before

be some arbitrary nowhere dense set instead of just a countable set.

Definition We recall that a set A a subset of a topological space (T, τ) is nowhere dense if

intT (clT (A)) = ∅.

1.5 VOLTERRA EXAMPLE

We start with a lemma that will lend itself to gaining intuition regarding the next problem. We will

use some of our previously defined functions.

Lemma 1.5.1. (A Generalization of the Volterra Function) Let E be an arbitrary nowhere dense

subset of [0, 1]. Let GE := { f ∈ D[0, 1] : infx0∈E Λ( f ′, x0) > 0}. The set GE is non-empty.

Proof. (Lemma 1.5.1) We will use a generalization of an example of a function created by

Volterra. Without loss of generality, we may take E to be closed. For if not, then we may let

A := cl(E), and show that GA , ∅, for then as GA ⊆ GE we know that GE , ∅. So assume that E is

closed.
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Recall the fact that every closed, nowhere dense set is the boundary of an open set ([0, 1] \ E).

Furthermore, recall that any open set in R can be written as the disjoint countable union of open

intervals. So, let J := [0, 1] \ E with J = (
⋃

n∈Γ In) ∩ [0, 1] where each In = (an, bn) such that

an < bn for any n ∈ Γ, and for any neighborhood N about a point x ∈ E ∃k ∈ N such that ak ∈ N or

bk ∈ N. Here we have that Γ , ∅, where either Γ = {1, ..., t} for some t ∈ N, or else Γ = N. Now,

if Γ is finite, then it is easily seen to be similar to our earlier work. So without loss of generality,

assume that Γ = N.

Now, we will define our function V(x) as follows:

V(x) :=

 0 : x ∈ [0, 1] \ J

F(an,bn)(x) : x ∈ In,∀n ∈ N

Figure 3: An Illustration Of A Typical V.

We shall now show that V(x) has a derivative everywhere, as in [15, 107-108] and similar to

[25, 165-166]. If x is any point of E and if y is any other point of [0, 1], then either V(y) = 0 or y

is a point of some removed interval In = (an, bn). In the former case,∣∣∣∣∣V(y) − V(x)
y − x

∣∣∣∣∣ =

∣∣∣∣∣ 0
y − x

∣∣∣∣∣ = 0 < |y − x| .

In the latter case, let d be the endpoint of In nearer to y, and in particular |x− d| ≤ |x− y|. Then, we

observe that V(x) = 0 and V(y) = F(an,bn)(y) to get:∣∣∣∣∣V(y) − V(x)
y − x

∣∣∣∣∣ =

∣∣∣∣∣ V(y)
y − x

∣∣∣∣∣ ≤ ∣∣∣∣∣ V(y)
y − d

∣∣∣∣∣ =

∣∣∣∣∣F(an,bn)(y)
y − d

∣∣∣∣∣ (1.7)
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Now, we recall the definition of F(an,bn):

F(an,bn)(x) :=



F(x, an) : an < x ≤ an + γn

F(an + γn, an) : an + γn ≤ x ≤ bn − γn

−F(x, bn) : bn − γn ≤ x < bn

0 : x ∈ R \ (an, bn)

Therefore, as the derivative is zero in the interval [an +γn, bn−γn], we can assume our y ∈ (an, an +

γn] ∪ [bn − γn, bn). Thus, F(an,bn)(y) =
∣∣∣∣(y − d)2 sin( 1

y−d )
∣∣∣∣ ≤ |y − d|2. Hence, we have:

∣∣∣∣∣F(an,bn)(y)
y − d

∣∣∣∣∣ ≤
∣∣∣∣∣∣ |y − d|2

y − d

∣∣∣∣∣∣ = |y − d| ≤ |y − x|. (1.8)

Therefore, in either case,
∣∣∣∣V(y)−V(x)

y−x

∣∣∣∣ ≤ |y − x|, and consequently V ′(x) = 0 for any x ∈ E.

Furthermore, as we have a uniform lower bound on the oscillation Λ(V ′, an) ≥ 2 and Λ(V ′, bn) ≥ 2

at every endpoint, we can see that for every x ∈ E (by taking neighborhoods about x and noting

that in that neighborhood there is an endpoint whose tangential oscillation is at least 2), then we

actually have Λ(V ′, x) ≥ 2.

On the other hand, if x belongs to any removed interval In = (an, bn),

|V ′(x)| ≤ |2zsin(1/z) − cos(1/z)| ≤ 3

for some z between 0 and 1, so that V(·) is everywhere differentiable on [0, 1], and it’s derivative is

bounded everywhere. �
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1.5.1 Category Results for Our Derivative Sets

Theorem 1.5.1. Let E be an arbitrary nowhere dense subset of [0, 1]. Let GE := { f ∈ D[0, 1] :

infx0∈E Λ( f ′, x0) > 0}. Then GE is a dense open subset of D[0, 1].

Proof. (Theorem 1.5.1) Now, by the previous lemma, we know that the set GE is non-empty.

Therefore, the question of open and density “makes sense”. We prove open first, and do so directly.

Let f ∈ GE be arbitrary, and δ := inf
x0∈E

Λ( f ′, x0) > 0. Now choose ε arbitrary such that 0 < ε ≤ δ/4.

Then let s ∈ D[0, 1] such that ‖s‖D < ε, and h := f + s. We will show that h ∈ GE. Well, for any

x ∈ E,

δ/2 < δ − 2ε < Λ( f ′, x) − 2‖s′‖∞ < Λ( f ′, x) − Λ(s′, x) < Λ( f ′ + s′, x) =: Λ(h′, x).

Therefore, 0 < δ/2 ≤ infx∈E Λ(h′, x), and so h ∈ GE. Therefore, GE is open.

Remark We comment that the above is equally easy to prove using sequences of functions.

Now we prove density of the set. Let ε > 0, and f ∈ D[0, 1]. We will show that there exists

a function g such that g ∈ GE, and ‖ f − g‖D < ε, by creating a modified version of one of our

previously defined auxiliary functions.
We can unevenly pair 2 Yo-Yo functions inside any interval, giving uneven tangential oscilla-

tion at the endpoints.

Figure 4: Unevenly Scaled Paired Yo-Yo’s In A Interval.

Let w := w(
⋃

n∈N(an,bn),ν,−→η ,
−→
β ) where 0 < ν and −→η = (ηn)n∈N,

−→
β = (βn)n∈N be defined in the

following way: let an + γn be the largest value in (an,min(an+bn
4 , ν)) such that F′(an + γn, an) = 0,
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and

w(x) :=



0 : x ∈ [0, 1] \ E

ηnF(an,an+γn)(x) : an < x ≤ an + γn

0 : an + γn ≤ x ≤ bn − γn

−βnF(bn−γn,bn)(x) : bn − γn ≤ x < bn.

Then this is just a scaled “Volterra”, where instead of putting in oscillations at just the endpoints,

we put in a Yo-Yo function at the endpoints. We will soon use this function w(x) to create our

function for density by choosing particular −→η = (ηn)n∈N,
−→
β = (βn)n∈N.

Thus we let:

ηn :=

 0 : ε
8 ≤ Λ( f ′, an)

ε
4 : 0 ≤ Λ( f ′, an) < ε

8

βn :=

 0 : ε
8 ≤ Λ( f ′, bn)

ε
4 : 0 ≤ Λ( f ′, bn) < ε

8

Then ηn we use as the left scaling and βn as the right scaling of a pairing of Yo-Yo’s on In = (an, bn).

Furthermore, let ν := ε
4 . Then we let g := f + w(E,ν,−→η ,

−→
β ) = f + w, and we will show that g ∈ GE.

Remark What are we doing? We can think of w as a sum of functions with disjoint support on
each In that looks like unevenly paired Yo-Yo’s. So let’s look at an example of our functions on an
interval In:

0.05 0.10 0.15 0.20

-0.15

-0.10

-0.05

0.05

0.10

Figure 5: Example v on In

0.05 0.10 0.15 0.20

-0.015

-0.010

-0.005

0.005

0.010

0.015

Figure 6: Example Uneven Scaled Yo-Yo’s

on In

So we want to perturb the tangential oscillation of v by adding a Yo-Yo on the left, as the
tangential oscillation of v on the right is positive, so we don’t want to cancel that out. Thus, we
scale a Yo-Yo on the left and add it to our v.
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0.05 0.10 0.15 0.20

-0.15

-0.10

-0.05

0.05

0.10

Figure 7: z = w + v On In.

We see that we can maintain “closeness” to the original form of v with our perturbation, while

still having tangential oscillation at both endpoints.

In fact we will show that Λ(g′, x) > ε
8 for all x ∈ E, but first, we will prove that Λ(g′, an) ≥ ε

8 ,

and Λ(g′, bn) ≥ ε
8 , for all n ∈ N.

Let n ∈ N be arbitrary. We prove for an first:

Case 1: Suppose 0 ≤ Λ( f ′, an) < ε
8 . Then using Proposition 1.2.3:

0 <
ε

8
≤ 2(

ε

4
) −

ε

8
< Λ(w′, an) − Λ( f ′, an) ≤ Λ(w′ + f ′, an) = Λ(g, an) (1.9)

Case 2: Suppose Λ( f ′, an) ≥ ε
8 . Then using Proposition 1.2.3:

0 <
ε

8
≤ Λ( f ′, an) − 0 = Λ( f ′, an) − Λ(w′, an) ≤ Λ(w′ + f ′, an) = Λ(g, an) (1.10)

The proof for bn is very similar:

Case 1: Suppose 0 ≤ Λ( f ′, bn) < ε
8 . Then using Proposition 1.2.3:

0 <
ε

8
≤ 2(

ε

4
) −

ε

8
< Λ(w′, bn) − Λ( f ′, bn) ≤ Λ(w′ + f ′, bn) = Λ(g, bn) (1.11)
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Case 2: Suppose Λ( f ′, bn) ≥ ε
8 . Then using Proposition 1.2.3:

0 <
ε

8
≤ Λ( f ′, bn) − 0 = Λ( f ′, bn) − Λ(w′, bn) ≤ Λ(w′ + f ′, bn) = Λ(g, bn) (1.12)

Now, let x ∈ E, and δ > 0 be arbitrary. Then within Bo(x; δ) there exists an endpoint of an

interval, which without loss of generality, we say is an (as it would be similar if bn instead), and

there exists δ0 > 0 such that Bo(an; δ0) ⊆ Bo(x; δ). Then, as ε
8 < Λ(g′, an) := lim

δ̃→0+

sup
h,k∈Bo(an ;̃δ)

|g′(h) −

g′(k)| ≤ sup
h,k∈Bo(an;δ0)

|g′(h) − g′(k)|. Therefore, we have the following:

0 <
ε

8
≤ sup

h,k∈Bo(an;δ0)
|g′(h) − g′(k)| ≤ sup

h,k∈Bo(x;δ)
|g′(h) − g′(k)|. (1.13)

Now, as δ is arbitrary, and we may always find such an endpoint as an, then 0 < ε
8 ≤

lim
δ→0+

sup
h,k∈Bo(x,δ)

|g′(h) − g′(k)| =: Λ(g′, x).

Now, we’ll prove density. Well,

‖ f − g‖D := ‖ f − g‖∞ + ‖ f ′ − g′‖∞ = ‖ f − ( f + w)‖∞ + ‖ f ′ − ( f ′ + w′)‖∞ = ‖w‖∞ + ‖w′‖∞

<
(
ε

4

)3
+

(
ε

4

) [
sup

x∈[0,1]
|2x sin(1/x) + cos(1/x)|

]
<
ε

4
+ 3

ε

4
= ε.

(1.14)

Thus, we have that GE is indeed dense in D[0, 1]. �

This leads to an additional result that further generalizes the ideas we are getting.

Theorem 1.5.2. Let E be an arbitrary nowhere dense subset of [0, 1]. Let HE := { f ∈ D[0, 1] :

Λ( f ′, x0) > 0,∀x0 ∈ E}. Then HE is second category in D[0, 1], and is indeed, residual.

Proof. Let E be given. As GE ⊆ HE, and GE is a dense open set, we then have that HE is residual,

and so second category. �

From this, we can extend further in order to get the result we have been after the whole time.

Theorem 1.5.3. Let E be an arbitrary meagre (first category) set in [0, 1]. Let HE := { f ∈ D[0, 1] :

Λ( f ′, x0) > 0,∀x0 ∈ E}. Then, HE is residual (and so second category) in D[0, 1].

Proof. (Theorem 1.5.3) Well, we may write E =
⋃

n∈N En where each En is a nowhere dense set.

Let An := cl(En) for all n ∈ N. Then GAn is a dense open set, and so J :=
⋂

n∈NGAn is a dense Gδ

set in D[0, 1]. So, as J ⊆ HE, then HE is residual, and so second category. �
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1.6 POROSITY AND OSCILLATIONS OF DERIVATIVES

We now turn to a different way of looking at things... by introducing the concept of porosity. We

first learned of porosity from a paper of Domı́nguez Benavides [12] regarding porosity of certain

fixed point properties.

Remark Recall that in a metric space (M, d), a subset A is nowhere dense if its closure has empty

interior. Note that A is nowhere dense if and only if A = cl(A) is nowhere dense. So a key case to

consider is where A is closed. Assume that A is also closed. Then A is nowhere dense means that

for every r > 0 and x ∈ A, there exists z ∈ Ac such that z ∈ Bo(x; r). Further, as A is closed, then

for all w in Ac, there exists t ∈ (0,∞) such that Bo(w; t) ⊆ Ac. Therefore, for the particular z ∈ Ac,

there exists s ∈ (0,∞) such that Bo(z; s) ⊆ Ac. So by shrinking s if necessary, then we can in fact

guarantee that Bo(z; s) ⊆ Bo(x; r), and so Bo(z; s) ⊆ Bo(x; r) ∩ Ac.

Now notice that without loss of generality, as we really only care about small r to begin with,

we could say that the condition on A is that there exists some r0 ∈ (0,∞) such that for all x ∈ A

and for all r ∈ (0, r0], there exists z ∈ Ac and there exists s > 0 such that Bo(z; s) ⊆ Bo(x; r) ∩ Ac.

Note that s ≤ r. We can therefore rephrase this condition using β := s
r ∈ (0, 1], to say: a closed set

A ⊆ (M, d) is nowhere dense if and only if

(F)
[
∃r0 ∈ (0,∞) such that ∀x ∈ A,∀r ∈ (0, r0],∃β ∈ (0, 1]

∃z ∈ Ac such that Bo(z; βr) ⊆ Bo(x; r) ∩ Ac]
Again, if S is an arbitrary set, then we see that it is nowhere dense precisely if A := S obeys

the above condition (F). So we wonder about the following: what if there was a uniformity to

the selection of β? In fact, let’s look at the following definition (which turns out to be a strictly

stronger statement then (F)).

Definition of Porosity Let (M, d) be a metric space, and A ⊆ M such that A is closed. We say

that A is porous if ∃r0 ∈ (0,∞) and ∃β ∈ (0, 1] such that ∀x ∈ A, ∀r ∈ (0, r0], ∃z ∈ Ac such that
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Bo(z; βr) ⊆ Bo(x, r) ∩ Ac. Moreover, for arbitrary S ⊆ M, we say that S is porous if S is porous.

Furthermore, we say that a set J is co-porous if Jc is porous.

Note that the uniformity in the definition of porosity compared to statement (F) comes in choosing

the same β ∈ (0, 1], for all x ∈ A and for all r ∈ (0, r0].

Definition of σ-Porosity A set S is σ-porous if and only if S =
⋃

n∈N
S n such that each S n is porous.

A set A is co-σ-porous if and only if A := S c where S =
⋃

n∈N
S n such that each S n is porous.

Domı́nguez Benavides comments that this implies that a σ-porous set is first category, and that

when M = Rn, a σ-porous set is Lebesgue measure zero. This latter statement follows from the

Lebesgue Density Theorem.

Theorem 1.6.1. (See [27] for details and references) Each σ-porous subset of Rn is of the First

category and of Lebesgue measure zero.

Theorem 1.6.2. (See [27] for details and references) There exists a closed nowhere dense set

F ⊆ Rn which is not σ-porous

Theorem 1.6.3. (See [27] for details and references) There exists a non-σ-porous set P ⊆ Rn

which is of the First category and is null for the Lebesgue measure µ.

An Example: Let Q := Q ∩ [0, 1]. Then Q is not porous in [0, 1], nor is [0, 1] \ Q. However,

as every singleton set (or in fact finite set) can be seen to be porous, then it is clear that Q is in fact

σ-porous.

Please see the appendix for more information regarding porosity.

1.6.1 Porosity Applied to Volterra Example

Now, let’s look at our set G from Theorem 1.5.1, and see what we can say about porosity of such

a set.

Lemma 1.6.1. For G := { f ∈ D[0, 1] : Λ( f ′, x0) > 0} for some fixed x0 ∈ [0, 1], G is co-porous.

Proof. (Lemma 1.6.1) We will be using our previously defined auxiliary function fβ,ν(x). Let β = 1
8

and r0 = 1/2. Furthermore, take any v ∈ D[0, 1] \ G := {u ∈ D[0, 1] : Λ(u′, x0) = 0} and let
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r ∈ (0, r0]. We take z(x) := v(x) + fr/4,r/4(x − x0). Then just as in the proof of Proposition (1.3.2),

we have that:

0 < r/2 = 2(r/4) − 0

≤ lim
δ→0+

sup
h,k∈(−δ,δ)

| f ′r/4,r/4(h) − f ′r/4,r/4(k)| − lim
δ→0+

sup
h,k∈(−δ,δ)

|v′(x0 + h) − v′(x0 + k)|

≤ lim
δ→0+

sup
h,k∈(−δ,δ)

|z′(x0 + h) − z′(x0 + k)| = Λ(z′, x0).

(1.15)

So z ∈ G. Now to show that Bo(z; βr) ⊆ Bo(v, r) ∩G. Let g ∈ D[0, 1] such that ‖g‖D ≤ βr. Then,

0 < r/4 = 2(r/4) − 2(r/8) < Λ(z′, x) − 2‖g′‖∞ < Λ(z′, x) − Λ(g′, x) ≤ Λ(z′ + g′, x).

This proves that z + g ∈ G, as needed.

Now to show that B(z; βr) ⊆ B(v, r). Well, let s ∈ D[0, 1] such that ‖s‖D ≤ r
4 . Then,

‖(z + s) − v‖D := ‖(v + fr/4,r/4 + s) − v‖D = ‖ fr/4,r/4 + s‖D ≤ ‖ fr/4,r/4‖D + ‖s‖D

≤ ‖ fr/4,r/4‖D +
r
8
≤ ‖ fr/4,r/4‖∞ + ‖ f ′r/4,r/4‖∞ +

r
4

≤

( r
4

)2
+

3r
4

+
r
8
≤

r
8

+
3r
4

+
r
8

= r.

(1.16)

Thus Bo(z; βr) ⊆ Bo(v, r), and so then Bo(z; βr) ⊆ Bo(v, r) ∩ G. Therefore, G is co-porous as

claimed. �

Therefore, we get something for “free” from our proof above:

Corollary 1.6.1. (To Lemma 1.6.1) Let E be any countable set in [0, 1]. Then G := { f ∈ D[0, 1] :

Λ( f ′, x0) > 0,∀x0 ∈ E} is co-σ-porous.
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1.6.2 Porosity Theorems for Our Derivative Sets

It would be interesting to reach results like the ones before regarding porosity, and in fact we are

about to see that this is possible.

Theorem 1.6.4. Let E ⊆ [0, 1] be a closed nowhere dense set. Then GE := { f ∈ D[0, 1] :

inf
x0∈E

Λ( f ′, x0) > 0} is co-porous.

Proof. (Theorem 1.6.4) Fix a nowhere dense set E ⊆ [0, 1] (which WLOG we assume to be closed),

and similar to before, we take E := [0, 1]\(
⋃

n∈N
In) = [0, 1]\(

⋃
n∈N

(an, bn)). Just as in Theorem (1.5.2),

we will use one of our auxillary functions in the proof, specifically, the function w := w(E, r
4 ,
−→η ,
−→
λ ).

Let β = 1
32 and r0 = 1/2. Furthermore, take any v ∈ D[0, 1]\GE := {u ∈ D[0, 1] : inf

x0∈E
Λ(u′, x0) = 0}

and let r ∈ (0, r0]. We now define our sequences −→η = {ηn},
−→
β = {βn}

ηn :=

 0 : r
8 ≤ Λ(v′, an)

r
4 : 0 ≤ Λ(v′, an) < r

8

βn :=

 0 : r
8 ≤ Λ(v′, bn)

r
4 : 0 ≤ Λ(v′, bn) < r

8 .

So let w := w(E,ν,−→η ,
−→
β ). We take z(x) := v(x)+w(x). Then we proceed with the proof in a manner

similar to the proof of Proposition (1.3.2). In fact we will show that Λ(z′, x) > r
8 for all x ∈ E,

but first, we will prove that Λ(z′, an) ≥ r
8 , and Λ(z′, bn) ≥ r

8 , for all n ∈ N. As such, let n ∈ N be

arbitrary. We prove for an first:

Case 1: Suppose 0 ≤ Λ(v′, an) < r
8 . Then using Proposition 1.2.3:

0 <
r
8
≤ 2(

r
4

) −
r
8
≤ Λ(w′, an) − Λ(v′, an) ≤ Λ(w′ + v′, an) = Λ(z′, an) (1.17)

Case 2: Suppose Λ(v′, an) ≥ r
8 . Then using Proposition 1.2.3:

0 <
r
8
≤ Λ(v′, an) − 0 = Λ(v′, an) − Λ(w′, an) ≤ Λ(w′ + v′, an) = Λ(z′, an) (1.18)

The proof for bn is very similar:

Case 1: Suppose 0 ≤ Λ(v′, bn) < r
8 . Then using Proposition 1.2.3:

0 <
r
8
≤ 2(

r
4

) −
r
8
≤ Λ(w′, bn) − Λ(v′, bn) ≤ Λ(w′ + v′, bn) = Λ(z, bn) (1.19)

Case 2: Suppose Λ(v′, bn) ≥ r
8 . Then using Proposition 1.2.3:

0 <
r
8
≤ Λ(v′, bn) − 0 = Λ(v′, bn) − Λ(w′, bn) ≤ Λ(w′ + v′, bn) = Λ(z, bn) (1.20)
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Now, let x ∈ E, and δ > 0 be arbitrary. Then within Bo(x; δ) there exists an endpoint of an

interval, which without loss of generality, we say is an (as it would be similar if bn instead), and

there exists δ0 > 0 such that Bo(an; δ0) ⊆ Bo(x; δ). Then, as ε
8 ≤ Λ(z′, an) := lim

δ̃→0+

sup
h,k∈Bo(an ;̃δ)

|z′(h) −

z′(k)| ≤ sup
h,k∈Bo(an;δ0)

|z′(h) − z′(k)|. Therefore, we have the following:

0 <
r
8
≤ sup

h,k∈Bo(an;δ0)
|z′(h) − z′(k)| ≤ sup

h,k∈Bo(x;δ)
|z′(h) − z′(k)|. (1.21)

Now, as δ is arbitrary, and we may always find such an endpoint as an, then 0 < r
8 ≤

lim
δ→0+

sup
h,k∈Bo(x,δ)

|z′(h) − z′(k)| =: Λ(z′, x).

So z ∈ G. Now to show that Bo(z; βr) ⊆ Bo(v, r) ∩G. Let g ∈ D(X) such that ‖g‖D ≤ βr = r
32 .

Then,

0 <
r

16
=

r
8
− 2(

r
32

) < Λ(z′, x) − 2‖g′‖∞ < Λ(z′, x) − Λ(g′, x) ≤ Λ(z′ + g′, x).

This proves that z + g ∈ G, as needed.

Now to show that Bo(z; βr) ⊆ Bo(v, r). Well, let s ∈ D[0, 1] such that ‖s‖D ≤ βr = r
32 . Then,

‖(z + s) − v‖D := ‖(v + w + s) − v‖D = ‖w + s‖D ≤ ‖w‖D + ‖h‖D

≤ ‖w‖D +
r

32
≤ ‖w‖∞ + ‖w′‖∞ +

r
32

≤

( r
4

)2
+

3r
4

+
r

32
<

r
32

+
3r
4

+
r

16
< r.

(1.22)

Thus Bo(z; βr) ⊆ Bo(v, r), and so then Bo(z; βr) ⊆ Bo(v, r) ∩ GE. Therefore, GE is co-porous as

claimed. �

Now, utilizing the fact that porous sets are nowhere dense, we get the following corollary:

Corollary 1.6.2. (To Theorem 1.6.4) Let E be a closed porous set. Then GE := { f ∈ D[0, 1] :

infx0∈E Λ( f ′, x0) > 0} is co-porous.
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1.7 ONWARD AND UPWARD - EXAMPLE SPACES AT A POINT

We shall now seek out some generalizations of the above to higher dimensional spaces. In

particular, let’s go to [0, 1]N , but we first need some definitions. We start with some definitions

and preliminary theorems.

Definition If (X, ‖ · ‖) is any normed space, then we define the following:

• C(X;R) := {The set of continuous functions on X into R}.

• C(1)(X) := { f ∈ C(X) : f ′ exists, and f ′ is continuous on X into R}

Hence, if (X, ‖ · ‖) is any normed space, then we define the following subsets in the usual way:

• S (X) := {x ∈ X : ‖x‖ = 1}

• B(X) := {x ∈ X : ‖x‖ ≤ 1}

• Bo(X) := {x ∈ X : ‖x‖ < 1}

We will be using the idea of Fréchet derivative, so we will now define the topic.

Definition (See [18]) Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be Banach spaces. For a function f : X → Y , the

Gâteaux derivative at a point x0 ∈ X is by definition a bounded linear operator T : X → Y such

that for every u ∈ X,

lim
t→0

f (x0 + tu) − f (x0)
t

= Tu.

The operator T is called the Fréchet derivative of f at x0 if it is a Gâteaux derivative of f at x0

and the limit above holds uniformly in u for all u ∈ B(X) (or sometimes alternately defined for just

S (X), and extended to B(X)). We will identify T as either f ′ or d f for notation.

1.7.1 DN Space Definition

So in particular, we can define a D space on a unit cube:

Definition Let N ∈ N be fixed. Then we define DN where:

DN := { f ∈ Cb([0, 1]N;R) : f ′ exists, and ‖ f ‖DN < ∞}

Here ‖ f ‖DN := ‖ f ‖∞ + ‖ f ′‖∞, where f ′ is the Fréchet or total derivative.
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1.7.2 D(X; Y) Space Definition

Now, we can see that similar to before, the space DN is indeed a Banach space, and in fact we can

see that D(X) is a Banach space, where X is any Banach space.

Definition Let (X, ‖ · ‖X) be a non-trivial Banach space. Then we define the Banach space D(X) in

the following way:

D(X) := { f ∈ C(Bo(X);R) : f ′ (the Fréchet derivative) exists, and ‖ f ‖D := (‖ f ‖∞ + ‖ f ′‖∞) < ∞}

But we can in fact extend this definition to functions that map into another Banach space,

which also follows by the above theorems.

Definition Let (X, ‖ · ‖X) be a non-trivial Banach space, and (Y, ‖ · ‖Y) be a non-trivial Banach space.

Then we define D(X; Y) in the following way:

D(X; Y) := { f ∈ C(Bo(X),Y) : f ′ (the Fréchet derivative) exists, and ‖ f ‖D := (‖ f ‖∞ + ‖ f ′‖∞) < ∞}

When Y = R, then we write D(X; Y) = D(X).

Remark Please see the remark 1.2 where we discussed openness of the domain space of the func-

tions we are using. The same idea seems to apply here in that we have a choice in whether we want

to define the space on the open or closed ball. We used the open ball, as it seems more intuitive

for general Fréchet differentiation in these cases. We will make no comparison on the possible

definition of

D(X; Y) := { f ∈ C(B(X),Y) : f ′ (the Fréchet derivative) exists, and ‖ f ‖D := (‖ f ‖∞ + ‖ f ′‖∞) < ∞}

Instead, we continue from here using the fact that openness works.

We now need to know about some definitions and theorems to work towards our primary general-

ization lemma.

Definition Let (X, ‖ · ‖) be a Banach space. Then we say that X has Fréchet differentiable norm if

for all x ∈ B(X), x , 0 we have limt→0
‖x+ty‖−‖x‖

t exists uniformly for each y ∈ B(X).

The differentiability of the norm away from zero is a prerequisite for how we would like to

proceed to a generalization, and we are now ready to do so in the following part. However, we are

going to start with some examples to build up to what we want.
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1.7.3 Example Case: lp
n , 1 ≤ p ≤ ∞, n ∈ N Oscillation Theorem At A Point

Theorem 1.7.1. Let 1 < p < ∞ be a real number, and n ∈ N, and 1
p + 1

q = 1. Then (X, ‖ · ‖) :=

(lp
n , ‖ · ‖p) which has a Fréchet differentiable norm, is a Banach space such that if G := { f ∈ D(X) :

Λ( f ′, x0) > 0} for some fixed x0 ∈ B(X), then G is co-porous.

Note that here Λ(u, a) := lim
δ→0+

sup
h,k∈Bo

δ(a)
‖(u(h) − u(k)‖.

Proof. We check that ‖ · ‖ : B(X)→ R is differentiable. Let x = (x1, ..., xn) ∈ B(X), such that x , 0,

then

d(‖x‖p) = Grad(‖x‖p) =

(|x1|
p + ... + |xn|

p)1/p−1(|x1|
p−1sgn(x1), ..., |xn|

p−1sgn(xn)) =

(|x1|
p + ... + |xn|

p)1−p(|x1|
p−1sgn(x1), ..., |xn|

p−1sgn(xn)) =
1

‖x‖p−1
p

(|x1|
p−1sgn(x1), ..., |xn|

p−1sgn(xn)).

(1.23)

Now, let’s also look at the norm (i.e. the X∗-norm) of d(‖x‖) : B(X)→ R for x , 0:

‖d(‖x‖p)‖X∗ = ‖d(‖x‖)‖lqn = ‖Grad(‖x‖p)‖

= ‖
1

‖x‖p−1
p

(|x1|
p−1sgn(x1), ..., |xn|

p−1sgn(xn))‖q

=
1
‖x‖p

· ‖(|x1|
p−1sgn(x1), ..., |xn|

p−1sgn(xn))‖q

=
1
‖x‖p

·

 n∑
j=1

(|x j|
p−1)q


1
q

=
1
‖x‖p

· ‖x‖p/q
p = ‖x‖1−p

p · ‖x‖p−1
p = 1.

(1.24)

Now something we will need:

Definition Let s ∈ (1,∞). Let Ns : B(X)→ R be a function defined by Ns(x) := ‖x‖s.
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Remark Let’s check that Np is differentiable. Well as a composition of Fréchet differentiable

functions away from zero, Np is differentiable away from zero. So we only need to check differen-

tiability at zero. Well,

lim
‖z‖→0

Np(0 + z) − Np(0)
‖z‖

= lim
‖z‖→0

Np(z)
‖z‖

= lim
‖z‖→0

‖z‖p

‖z‖
= lim
‖z‖→0

‖z‖p−1 = 0.

Notice that Np(x) and N′p(x) are both bounded on B(X). Indeed, Np(·) ≤ 1 and N′p is bounded

by definition of Fréchet differentiable norm also by 1.

Thus, we are now ready to define a new auxiliary function.

F(x, α) :=

 [N3(x − α)] sin( 1
N2(x−α) ) : x , α, x ∈ B(X)

0 : x = α, x ∈ B(X)

Now the Fréchet differentiability of F(x, α) is obvious, as it is the composition of Fréchet differ-

entiable functions. Furthermore, we find that if y(x) is the Fréchet derivative of ‖x‖ away from

zero,

F′(x, α) :=

 3N2(x − α)y(x − α) sin( 1
N2(x−α) ) − 2 cos( 1

N2(x−α) )y(x − α) : x , α, x ∈ B(X)

0 : x = α, x ∈ B(X)

Therefore, we see that F′(x, α) ≤ 5, and so we indeed have that F(·, α) ∈ D(X). As we did before,

we will use this type of function to define a second auxiliary function Fr(x) on the ball B(x; r)

which we call the “Yo-Yo Function”, similar to what we did before.

Definition Fix an r̃ > 0. We notice that F′(x, α) has an infinite number of zeros in the ball B(α; r̃
2 )

occurring on spheres S (α; λ), so let γ be the largest such value of λ in (0, r̃
2 ]. We may now define

Fr̃,α(x) :=



F(x, α) : 0 ≤ ‖x − α‖ ≤ γ, x ∈ B(X)

γ3 sin( 1
γ2 ) : γ ≤ ‖x − α‖ ≤ r̃ − γ, x ∈ B(X)

(r̃ − ‖x − α‖)3 sin( 1
(‖x−α‖−r̃)2 ) : r̃ − γ ≤ ‖x − α‖ ≤ r̃, x ∈ B(X)

0 : x ∈ B(X) \ B(α; r̃)
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Let’s look at F′(·, 0) in more detail. In particular, let’s examine the oscillation of F′(·, 0) at zero,

where it will be Λ(F′(·, 0), 0) := lim
δ→0+

sup
h,k∈Bo

δ(a)
‖(F′(h, 0) − F′(k, 0)‖X∗ = lim

δ→0+
sup

h,k∈Bo
δ(a)
‖(F′(h, 0) −

F′(k, 0)‖lqn . Let un := ( 1
√

2πn
, 0, ..., 0), zn := ( −1

√
2πn
, 0, ..., 0) ∈ B(X) for any n ∈ N. Notice that

N2(un) = N2(zn) = 1
2πn for any n ∈ N.

Now, for n large enough, we have the following: F′(xn, 0) = −2 cos(2πn)y(xn) = −2y(xn) and

F′(zn, 0) = −2 cos(2πn)y(zn) = −2y(zn). Thus,

‖F′(un, 0) − F′(zn, 0)‖X∗ = ‖2y(zn) − 2y(un)‖lqn =

= 2

∥∥∥∥∥∥∥ 1

‖un‖
p−1
p

∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

sgn
(

1
√

2πn

)
, 0, ..., 0

 − 1

‖zn‖
p−1
p

∣∣∣∣∣∣ −1
√

2πn

∣∣∣∣∣∣p−1

sgn
(
−1
√

2πn

)
, 0, ..., 0


∥∥∥∥∥∥∥

q

= 2

∥∥∥∥∥∥∥(
√

2πn)p−1

∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

, 0, ..., 0

 − (
√

2πn)p−1

− ∣∣∣∣∣∣ −1
√

2πn

∣∣∣∣∣∣p−1

, 0, ..., 0


∥∥∥∥∥∥∥

q

= 2

∥∥∥∥∥∥∥(
√

2πn)p−1

2 ∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

, 0, ..., 0


∥∥∥∥∥∥∥

q

= 2‖(2, 0, ..., 0)‖q = 4.

(1.25)

Therefore,Λ(F′(·, 0), 0) := lim
δ→0+

sup
h,k∈Bo

δ(a)
‖(F′(h, 0) − F′(k, 0)‖lqn ≥ 2 as ‖un‖X, ‖zn‖X → 0 as n → ∞.

Hence, F′r̃,α has oscillation of at least 2 as well, as it is just a scaling and alteration.

Now, by examining the definition of Fr̃,α, we see that it is continuous, Fréchet differentiable,

and in D(X). We note that to understand this definition, it is helpful to consider the graph of a

typical Yo-Yo Function for D2 := D(R2).

Now we are ready to talk about porosity. We want to show Gc is porous by showing ∃β ∈ (0, 1]

and ∃r0 ∈ (0,∞) such that ∀x ∈ Gc, ∀r ∈ (0, r0], ∃y ∈ G such that Bo(y; βr) ⊆ Bo(x, r) ∩G.

Let β = 1
16 and r0 = 1/2, and let α := x0. Furthermore, take any v ∈ D(X) \G := {u ∈ D(X) :

Λ(u′, x0) = 0} and let r ∈ (0, r0]. Let r
8 > 0. We take z(x) := v(x) + r

8 F r
8 ,x0 . Then by Proposition

(1.2.3), we have that:

0 < 2
r
8

= 2(
r
8

) − 0

≤ Λ(
r
8

F′r
8 ,x0
, x0) − Λ(v′, xo) ≤ Λ(v′ + εF′ε,x0

, x0) = Λ(z′, x0).
(1.26)
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Figure 8: Typical Function

Figure 9: Contour Graph
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So z ∈ G. Now to show that Bo(z; βr) ⊆ Bo(v, r)∩G. Let g ∈ D(X) such that ‖g‖D ≤ βr = r
16 . Then,

0 < 2(
r
8

) − 2(
r

16
) < Λ(z′, x) − 2‖g′‖∞ < Λ(z′, x) − Λ(g′, x) ≤ Λ(z′ + g′, x).

This proves that z + g ∈ G, as needed.

Now to show that Bo(z; βr) ⊆ Bo(v, r). Well, let s ∈ D(X) such that ‖s‖D ≤ βr = r
16 . Then, (we

will use the inequality:

‖(z + s) − v‖D := ‖(v +
r
8

F r
8 ,α

+ s) − v‖D = ‖
r
8

F r
8 ,α

+ s‖D ≤ ‖εFε,α‖D + ‖s‖D

≤ ‖
r
8

F r
8 ,α
‖D + βr ≤ ‖

r
8

F r
8 ,α
‖∞ + ‖

r
8

F′r
8 ,α
‖∞ + βr

≤

( r
8

)3
+ 5

r
8

+
r

16
< r.

(1.27)

Thus Bo(z; βr) ⊆ Bo(v, r), and so then Bo(z; βr) ⊆ Bo(v, r) ∩ G. Therefore, G is co-porous as

claimed. �

1.7.4 An Auxiliary Function And Definitions

It will now be helpful to come up with some general results, as we will be using some ideas

repeatedly. So for all of the following, we let (X, ‖·‖) be a Banach space with Fréchet Differentiable

Norm.

Definition Let s ∈ (1,∞). Let Ns : B(X)→ R be a function defined by Ns(x) := ‖x‖s.

Remark Let’s check that Np is differentiable. Well as a composition of Fréchet differentiable

functions away from zero, Np is differentiable away from zero. So we only need to check differen-

tiability at zero. Well,

lim
‖z‖→0

Np(0 + z) − Np(0)
‖z‖

= lim
‖z‖→0

Np(z)
‖z‖

= lim
‖z‖→0

‖z‖p

‖z‖
= lim
‖z‖→0

‖z‖p−1 = 0.

Notice that Np(x) and N′p(x) are both bounded on B(X). Indeed, Np(·) ≤ 1 and N′p is bounded

by definition of Fréchet differentiable norm.

32



Thus, we are now ready to define a auxiliary function.

F(x, α) :=

 [N3(x − α)] sin( 1
N2(x−α) ) : x , α, x ∈ B(X)

0 : x = α, x ∈ B(X)

Now the Fréchet differentiability of F(x, α) is obvious, as it is the composition of Fréchet differ-

entiable functions. Furthermore, we find that if y(x) is the Fréchet derivative of ‖x‖ away from

zero,

F′(x, α) :=

 3N2(x − α)y(x − α) sin( 1
N2(x−α) ) − 2 cos( 1

N2(x−α) )y(x − α) : x , α, x ∈ B(X)

0 : x = α, x ∈ B(X)

Therefore, we see that F′(x, α) ≤ 5, and so we indeed have that F(·, α) ∈ D(X).As we did before,

we will use this type of function to define a second auxiliary function Fr(x) on the ball B(x; r)

which we call the “Yo-Yo Function”, similar to what we did before.

Definition Fix an r̃ > 0. We notice that F′(x, α) has an infinite number of zeros in the ball B(α; r̃
2 )

occurring on spheres S (α; λ), so let γ be the largest such value of λ in (0, r̃
2 ]. We may now define

Fr̃,α(x) :=



F(x, α) : 0 ≤ ‖x − α‖ ≤ γ, x ∈ B(X)

γ3 sin( 1
γ2 ) : γ ≤ ‖x − α‖ ≤ r̃ − γ, x ∈ B(X)

(r̃ − ‖x − α‖)3 sin( 1
(‖x−α‖−r̃)2 ) : r̃ − γ ≤ ‖x − α‖ ≤ r̃, x ∈ B(X)

0 : x ∈ B(X) \ B(α; r̃)

we will use these definitions in the soon to follow examples and general result.
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1.7.5 Example Case: lp, 1 ≤ p ≤ ∞ Oscillation Theorem At A Point

Theorem 1.7.2. Let 1 < p < ∞ be a real number, and 1
p + 1

q = 1. Then (X, ‖ · ‖) := (lp, ‖ · ‖p) which

has a Fréchet differentiable norm, is a Banach space such that if G := { f ∈ D(X) : Λ( f ′, x0) > 0}

for some fixed x0 ∈ Bo(X), then G is co-porous.

Proof. We see that ‖ · ‖ : B(X)→ R is differentiable, and for x =
∑∞

j=1 x je j ∈ B(X), such that x , 0,

then

d(‖x‖p) = (
∞∑
j=1

|x j|
p)1/p−1

 ∞∑
j=1

|x j|
p−1sgn(x j)e j


=

1

‖x‖p−1
p

 ∞∑
j=1

|x j|
p−1sgn(x j)e j


(1.28)

Now, let’s also look at the norm (i.e. the X∗-norm) of d(‖x‖) : B(X)→ R:

‖d(‖x‖p)‖X∗ = ‖d(‖x‖)‖lq

=

∥∥∥∥∥∥∥ 1

‖x‖p−1
p

 ∞∑
j=1

|x j|
p−1sgn(x j)e j


∥∥∥∥∥∥∥

q

=
1

‖x‖p−1
p

∥∥∥∥∥∥∥
∞∑
j=1

|x j|
p−1sgn(x j)e j

∥∥∥∥∥∥∥
q

=
1

‖x‖p−1
p

 ∞∑
j=1

||x j|
p−1sgn(x j)|q


1/q

=
1

‖x‖p−1
p

 ∞∑
j=1

(|x j|
p


1/q

=
1

‖x‖p−1
p

‖x‖p/q = ‖x‖1−p
p · ‖x‖p−1

p = 1.

(1.29)

As before, we have Ns and F and Fr,α. Furthermore, as the derivative of ‖ · ‖ is bounded

1 on B(X) \ {0}, then Ns and N′s are bounded by the definition of the norm deriva-

tive, giving that ‖Fr,α‖∞ ≤ r and ‖F′r,α‖∞ ≤ 4. Let’s look at the tangential oscilla-

tion of F at zero in more detail, in order to describe the tangential oscillation of Fr,α

at zero. In particular, let’s examine the oscillation of F′(·, 0) at zero, where it will be

Λ(F′(·, 0), 0) := lim
δ→0+

sup
h,k∈Bo

δ(a)
‖(F′(h, 0) − F′(k, 0)‖X∗ = lim

δ→0+
sup

h,k∈Bo
δ(a)
‖(F′(h, 0) − F′(k, 0)‖lq . Let
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un := 1
√

2πn
e1, zn := −1

√
2πn

e1 ∈ B(X) for any n ∈ N. Notice that N2(un) = N2(zn) = 1
2πn for any n ∈ N.

Now, for n large enough, we have the following: F′(xn, 0) = −2 cos(2πn)y(xn) = −2y(xn) and

F′(zn, 0) = −2 cos(2πn)y(zn) = −2y(zn). Thus,

‖F′(un, 0) − F′(zn, 0)‖X∗ = ‖2y(zn) − 2y(un)‖lq =

= 2

∥∥∥∥∥∥∥ 1

‖un‖
p−1
p

∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

sgn
(

1
√

2πn

)
e1 −

1

‖zn‖
p−1
p

∣∣∣∣∣∣ −1
√

2πn

∣∣∣∣∣∣p−1

sgn
(
−1
√

2πn

)
e1

∥∥∥∥∥∥∥
q

= 2

∥∥∥∥∥∥∥(
√

2πn)p−1

∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

e1 + (
√

2πn)p−1

∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

e1

∥∥∥∥∥∥∥
q

= 2

∥∥∥∥∥∥∥(
√

2πn)p−1

∣∣∣∣∣∣ 2
√

2πn

∣∣∣∣∣∣p−1

e1

∥∥∥∥∥∥∥
q

= 2 ‖2e1‖q = 4.

(1.30)

Therefore,Λ(F′(·, 0), 0) := lim
δ→0+

sup
h,k∈Bo

δ(a)
‖(F′(h, 0) − F′(k, 0)‖lqn ≥ 2 as ‖un‖X, ‖zn‖X → 0 as n → ∞.

Therefore, the tangential oscillation of Fr,α is also at least 2 at zero, as it has the same behavior as

F at the origin.

Now we are ready to talk about porosity. We want to show Gc is porous by showing ∃β ∈ (0, 1]

and ∃r0 ∈ (0,∞) such that ∀x ∈ Gc, ∀r ∈ (0, r0], ∃y ∈ G such that Bo(y; βr) ⊆ Bo(x, r) ∩G.

Let β = 1
16 and r0 = 1/2, and let α := x0. Furthermore, take any v ∈ D(X) \G := {u ∈ D(X) :

Λ(u′, x0) = 0} and let r ∈ (0, r0]. Let r
8 > 0. We take z(x) := v(x) + r

8 F r
8 ,x0 . Then by Proposition

(1.2.3), we have that:

0 < 2
r
8

= 2(
r
8

) − 0

≤ Λ(
r
8

F′r
8 ,x0
, x0) − Λ(v′, xo) ≤ Λ(v′ + εF′ε,x0

, x0) = Λ(z′, x0).
(1.31)

So z ∈ G. Now to show that Bo(z; βr) ⊆ Bo(v, r)∩G. Let g ∈ D(X) such that ‖g‖D ≤ βr = r
16 . Then,

0 < 2(
r
8

) − 2(
r

16
) < Λ(z′, x) − 2‖g′‖∞ < Λ(z′, x) − Λ(g′, x) ≤ Λ(z′ + g′, x).

This proves that z + g ∈ G, as needed.
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Now to show that Bo(z; βr) ⊆ Bo(v, r). Well, let s ∈ D(X) such that ‖s‖D ≤ βr = r
16 . Then, (we

will use the inequality:

‖(z + s) − v‖D := ‖(v +
r
8

F r
8 ,α

+ s) − v‖D = ‖
r
8

F r
8 ,α

+ s‖D ≤ ‖εFε,α‖D + ‖s‖D

≤ ‖
r
8

F r
8 ,α
‖D + βr ≤ ‖

r
8

F r
8 ,α
‖∞ + ‖

r
8

F′r
8 ,α
‖∞ + βr

≤

( r
8

)3
+ 5

r
8

+
r

16
< r.

(1.32)

Thus Bo(z; βr) ⊆ Bo(v, r), and so then Bo(z; βr) ⊆ Bo(v, r) ∩ G. Therefore, G is co-porous as

claimed. �

1.7.6 Example Case: Lp, 1 ≤ p ≤ ∞ Oscillation Theorem At A Point

Theorem 1.7.3. Let 1 < p < ∞ be a real number, and 1
p + 1

q = 1. Then (X, ‖ · ‖) := (Lp[0, 1], ‖ ·

‖p) which has a Fréchet differentiable norm, is a Banach space such that if G := { f ∈ D(X) :

Λ( f ′, x0) > 0} for some fixed x0 ∈ Bo(X), then G is co-porous.

Proof. We see that ‖ · ‖ : B(X)→ R is differentiable, and for x ∈ B(X), such that x , 0 a.e., then

d(‖x(s)‖p) =
1

‖x‖p−1
p

(|x(s)|p−1sgn(x(s))) (1.33)

Now, let’s also look at the norm (i.e. the X∗-norm) of d(‖x‖) : B(X)→ R, for x , 0:

‖d(‖x‖p)‖X∗ = ‖d(‖x‖)‖Lq

=

∫ 1

0

∣∣∣∣∣∣∣ 1

‖x‖p−1
p

(|x(s)|p−1sgn(x(s)))

∣∣∣∣∣∣∣
q

ds

1/q

=
1

‖x‖p−1
p

(∫ 1

0

∣∣∣(|x(s)|p(1−1/p))
∣∣∣q ds

)1/q

=
1

‖x‖p−1
p

(∫ 1

0
(|x(s)|

p
q )qds

)1/q

=
1

‖x‖p−1
p

(∫ 1

0
|x(s)|pds

)1/q

=
1

‖x‖p−1
p

‖x‖p/q
p =

1

‖x‖p−1
p

‖x‖p/q = ‖x‖1−p
p · ‖x‖p−1

p = 1.

(1.34)

As before, we have Ns , F and Fr,α. Therefore, as the derivative of ‖·‖ is bounded by 1 on B(X)\{0},

then we have that Ns and N′s are both bounded, and in fact Fr,α ≤ r and F′r,α ≤ 5. Let’s look at

the tangential oscillation of F at zero in more detail in order to get a bound on the tangential
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oscillation of Fr,α. In particular, let’s examine the oscillation of F′(·, 0) at zero, where it will be

Λ(F′(·, 0), 0) := lim
δ→0+

sup
h,k∈Bo

δ(a)
‖(F′(a + h, 0) − F′(a + k, 0)‖X∗ = lim

δ→0+
sup

h,k∈Bo
δ(a)
‖(F′(a + h, 0) − F′(a +

k, 0)‖Lq[0,1]. Let un := 1
√

2πn
1, zn := −1

√
2πn
1 ∈ B(X) for any n ∈ N. Notice that N2(un) = N2(zn) = 1

2πn

for any n ∈ N.

Now, for n large enough, we have the following: F′(xn, 0) = −2 cos(2πn)y(xn) = −2y(xn) and

F′(zn, 0) = −2 cos(2πn)y(zn) = −2y(zn). Thus,

‖F′(un, 0) − F′(zn, 0)‖X∗ = ‖2y(zn) − 2y(un)‖Lq =

= 2

∥∥∥∥∥∥∥ 1

‖un‖
p−1
p

∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

sgn
(

1
√

2πn

)
1 −

1

‖zn‖
p−1
p

∣∣∣∣∣∣ −1
√

2πn

∣∣∣∣∣∣p−1

sgn
(
−1
√

2πn

)
1

∥∥∥∥∥∥∥
q

= 2

∥∥∥∥∥∥∥(
√

2πn)p−1

∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

1 + (
√

2πn)p−1

∣∣∣∣∣∣ 1
√

2πn

∣∣∣∣∣∣p−1

1

∥∥∥∥∥∥∥
q

= 2

∥∥∥∥∥∥∥(
√

2πn)p−1

∣∣∣∣∣∣ 2
√

2πn

∣∣∣∣∣∣p−1

1

∥∥∥∥∥∥∥
q

= 2‖2 · 1‖q = 4.

(1.35)

Therefore,Λ(F′(·, 0), 0) := lim
δ→0+

sup
h,k∈Bo

δ(a)
‖(F′(a + h, 0) − F′(a + k, 0)‖Lq[0,1] ≥ 2 as ‖un‖X, ‖zn‖X → 0

as n → ∞. Thus, the tangential oscillation of Fr,α is also at least 2, as Fr,α has the same behavior

as F at the origin.

Now we are ready to talk about porosity. We want to show Gc is porous by showing ∃β ∈ (0, 1]

and ∃r0 ∈ (0,∞) such that ∀x ∈ Gc, ∀r ∈ (0, r0], ∃y ∈ G such that Bo(y; βr) ⊆ Bo(x, r) ∩G.

Let β = 1
16 and r0 = 1/2, and let α := x0. Furthermore, take any v ∈ D(X) \G := {u ∈ D(X) :

Λ(u′, x0) = 0} and let r ∈ (0, r0]. Let r
8 > 0. We take z(x) := v(x) + r

8 F r
8 ,x0 . Then by Proposition

(1.2.3), we have that:

0 < 2
r
8

= 2(
r
8

) − 0

≤ Λ(
r
8

F′r
8 ,x0
, x0) − Λ(v′, xo) ≤ Λ(v′ + εF′ε,x0

, x0) = Λ(z′, x0).
(1.36)

So z ∈ G. Now to show that Bo(z; βr) ⊆ Bo(v, r)∩G. Let g ∈ D(X) such that ‖g‖D ≤ βr = r
16 . Then,

0 < 2(
r
8

) − 2(
r

16
) < Λ(z′, x) − 2‖g′‖∞ < Λ(z′, x) − Λ(g′, x) ≤ Λ(z′ + g′, x).
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This proves that z + g ∈ G, as needed.

Now to show that Bo(z; βr) ⊆ Bo(v, r). Well, let s ∈ D(X) such that ‖s‖D ≤ βr = r
16 . Then, (we

will use the inequality:

‖(z + s) − v‖D := ‖(v +
r
8

F r
8 ,α

+ s) − v‖D = ‖
r
8

F r
8 ,α

+ s‖D ≤ ‖εFε,α‖D + ‖s‖D

≤ ‖
r
8

F r
8 ,α
‖D + βr ≤ ‖

r
8

F r
8 ,α
‖∞ + ‖

r
8

F′r
8 ,α
‖∞ + βr

≤

( r
8

)3
+ 5

r
8

+
r

16
< r.

(1.37)

Thus Bo(z; βr) ⊆ Bo(v, r), and so then Bo(z; βr) ⊆ Bo(v, r) ∩ G. Therefore, G is co-porous as

claimed. �

1.8 GENERAL FRÉCHET NORM OSCILLATION AT A POINT

Well, we will need to look at the Fréchet differentiable norm in a little more details. In particular,

we are going to need a few of the properties that the derivative has, in order to use them for our

proofs.

Norm Derivative Properties(NDP): As a reference for the following, please see [4, Part 3 Ch. 1]

or [10, Ch. 2].

1. Let H(x, h) := limt→0
‖x+th‖−‖x‖

t , where h ∈ B(X). Then for every fixed x ∈ B(X), H(x, ·) is a

norm-1 linear functional on B(X).

2. For κ ∈ R, H(x, κh) = κH(x, h).

3. H(x, x
‖x‖ ) = 1 for every x , 0.

4. For all x, h ∈ X, |H(x, h)| ≤ ‖h‖.

Theorem 1.8.1. Let (X, ‖ · ‖) be a Banach space with a Fréchet differentiable norm. If G := { f ∈

D(X) : Λ( f ′, x0) > 0} for some fixed x0 ∈ Bo(X), then G is co-porous.
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Proof. As before, we have Ns, F and Fr,α as previously defined. Now, as ‖ · ‖ is bounded by 1 on

B(X) \ {0} then Ns,N′s are both bounded, and Fr,α ≤ r and F′r,α ≤ 4. Let’s look at the tangential

oscillation of F at zero in more detail, in order to describe the tangential oscillation at zero of the

similar function Fr,α. In particular, let’s examine the oscillation of F′(·, 0, h) at zero, where it will

be:

Λ(F′(·, 0, ·), 0) := lim
δ→0+

sup
u,k∈Bo

δ(0)
‖(F′(u, 0, h) − F′(k, 0, h)‖X∗

= lim
δ→0+

sup
u,k∈Bo

δ(0)
sup

h∈B(X)
|(F′(u, 0, h) − F′(k, 0, h)|.

We will prove that Λ(F′(·, 0, ·), 0) > 0 by using sequences to show a lower bound.

Let c ∈ B(X) such that c , 0. Let xn := 1
√

2πn
c
‖c‖ , yn := −1

√
2πn

c
‖c‖ , hn := xn

‖xn‖
∈ B(X) for any n ∈ N.

Notice that ‖xn‖ = ‖yn‖ = 1
√

2πn
−→
n

0 and ‖hn‖ = 1 for any n ∈ N.

Now, for n large enough, we have the following: F′(yn, 0, hn) = −2 cos(2πn)H(yn, hn) =

−2H(yn, hn) and F′(xn, 0, hn) = −2 cos(2πn)H(xn, hn) = −2H(xn, hn). Now, −H(yn, hn) =

H(yn,−hn) = H(yn,
−xn
‖xn‖

) = H(yn,
yn
‖yn‖

) by NDP 2, and H(yn,
yn
‖yn‖

) = 1 by NDP 3. Also,

H(xn, hn) = H(xn,
xn
‖xn‖

) = 1 by NDP 3.

Thus,

|F′(yn, 0, hn) − F′(zn, 0, hn)| = |−2H(yn, hn) − (−2H(xn, hn))|

= 2 |H(xn, hn) − H(yn, hn)| = 2 |H(xn, hn) − H(yn, hn)|

= 2 |H(xn, hn) + H(yn,−hn)| = 2|1 + 1| = 4.

(1.38)

What does this mean? Well, it means that

Λ(F′(·, 0, ·), 0) := lim
δ→0+

sup
u,k∈Bo

δ(a)
sup

h∈B(X)
|(F′(u, 0, h) − F′(k, 0, h)| ≥ 2.

Therefore, the tangential oscillation of Fr,α at zero is also at least 2, as Fr,α has the same

behavior as F close to zero. Furthermore, we see that for any a ∈ B(X), as we are now just

translating our function, we have that

Λ(F′r̃,a(·, a, ·), a) := lim
δ→0+

sup
u,k∈Bo

δ(a)
sup

h∈B(X)
|(F′(u, a, h) − F′(k, a, h)| ≥ 2.
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Now we are ready to talk about porosity. We want to show Gc is porous by showing ∃β ∈ (0, 1]

and ∃r0 ∈ (0,∞) such that ∀x ∈ Gc, ∀r ∈ (0, r0], ∃y ∈ G such that Bo(y; βr) ⊆ Bo(x, r) ∩G.

Let β = 1
16 and r0 = 1/2, and let α := x0. Furthermore, take any v ∈ D(X) \G := {u ∈ D(X) :

Λ(u′, x0) = 0} and let r ∈ (0, r0]. Let r
8 > 0. We take z(x) := v(x) + r

8 F r
8 ,x0 . By Proposition (1.2.3),

we have that:

0 < 2
r
8

= 2(
r
8

) − 0

≤ Λ(
r
8

F′r
8 ,x0
, x0) − Λ(v′, xo) ≤ Λ(v′ + εF′ε,x0

, x0) = Λ(z′, x0).
(1.39)

So z ∈ G. Now to show that Bo(z; βr) ⊆ Bo(v, r)∩G. Let g ∈ D(X) such that ‖g‖D ≤ βr = r
16 . Then,

0 < 2(
r
8

) − 2(
r

16
) < Λ(z′, x) − 2‖g′‖∞ < Λ(z′, x) − Λ(g′, x) ≤ Λ(z′ + g′, x).

This proves that z + g ∈ G, as needed.

Now to show that Bo(z; βr) ⊆ Bo(v, r). Well, let s ∈ D(X) such that ‖s‖D ≤ βr = r
16 . Then, (we

will use the inequality:

‖(z + s) − v‖D := ‖(v +
r
8

F r
8 ,α

+ s) − v‖D = ‖
r
8

F r
8 ,α

+ s‖D ≤ ‖εFε,α‖D + ‖s‖D

≤ ‖
r
8

F r
8 ,α
‖D + βr ≤ ‖

r
8

F r
8 ,α
‖∞ + ‖

r
8

F′r
8 ,α
‖∞ + βr

≤

( r
8

)3
+ 5

r
8

+
r

16
<

r
8

+
3r
4

+
r
8

= r.

(1.40)

Thus Bo(z; βr) ⊆ Bo(v, r), and so then Bo(z; βr) ⊆ Bo(v, r) ∩ G. Therefore, G is co-porous as

claimed. �

We can reach a extension for functions mapping into another Banach space, but let’s first

extend the general definition of Λ.

Definition Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be normed space. For any bounded function S : X → Y , define

for δ > 0 the function Λδ(S , x0) := sup
h,k∈Bo

X(x0;δ)
‖S (h) − S (k)‖Y , and Λ(S , x0) := lim

δ→0+
Λδ(S , x0), for all

x0 ∈ X.

Now we can state another theorem.
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Corollary 1.8.1. Let (X, ‖ · ‖) be a Banach space with Fréchet differentiable norm, and let (Y, ‖ · ‖Y)

be a nontrivial Banach space. Then fix some x0 ∈ Bo(X). Then for G := { f ∈ D(X; Y) : Λ( f ′, x0) >

0}, G is co-porous.

The proof is a slight modification of the previous one, where we do the following: let y ∈ S (Y).

Recall that for any x ∈ B(X), we have that Fr̃,a ∈ R. Therefore, z := y · Fr̃,a : B(X) → Y . Then the

proof proceeds similar to the above, using z as the generating function.

We may now state the following result, which is now clear by the above:

Theorem 1.8.2. Let {xn : n ∈ N} be a countable (possibly finite) set in Banach space (X, ‖ · ‖) and

(Y, ‖ · ‖) another Banach space. Then let G := { f ∈ D(X,Y) : Λ( f ′, xn) > 0 for all n ∈ N} is a dense

Gδ set in D(X,Y) that is co-σ-porous, and if N is finite, then G is open and co-porous.

1.9 OSCILLATION ON THE BOUNDARY OF A CUBE

We would like to start getting some stronger results in higher dimensions. We have our “one-

point” example in any Fréchet Differentiable norm Banach space, and we would like to get at least

something more in higher dimensions.

Well, we first need a result:

Theorem 1.9.1. [Dyadic Cube Theorem] Let d ∈ N. Let U be an open set in Rd. Then U is the

countable union of disjoint half-open cubes of the form [x1 − λ, x1 + λ) × ... × [xd − λ, xd + λ) for

λ > 0. i.e. U =
⋃∞

j=1[x( j)
1 − λ

( j), x( j)
1 + λ( j)) × ... × [x( j)

d − λ
( j), x( j)

d + λ( j)), so that (x1, ..., xd) is the

center of the cube and 2λ is the side length. Furthermore, we will guarantee that λ is at most 1
2 .

So we will use this to try and get a stronger theorem for Rn, but first we are going to build up

some necessarily results and lemmas. This next lemma is not used in our work, but we discuss it

because it is one of the intuitive ideas that might be tried, so we feel it is important to comment of

the problem with this example.

Lemma 1.9.1. Let C := [x0
1−λ, x

0
1 +λ]× ...× [x0

n−λ, x
0
n +λ] be a cube with center x0 := (x0

1, ..., x
0
n)

and radius λ > 0 inRn. Then there exists a ball A = B(x0; λ) inside C, and a function sA such that:
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1. sA|∂A = sA|∂C = 0

2. sA ∈ Dn

3. Λ([sA]′ , u) ≥ 2λ > 0 for any u ∈ ∂A

Proof. (1.9.1) We will be using ‖ · ‖ := ‖ · ‖l2 . We can now define a function sA : Rn → R:

Definition (Wiggle Function)

sA(x) :=

 (‖x − x0‖
2 − λ2)2 sin

[
1

(‖x−x0‖2−λ2)

]
: ‖x − x0‖ < λ

0 : ‖x − x0‖ ≥ λ

By our previous work, we know that ‖x − x0‖
2 − λ2 is Fréchet differentable, thus as a composition,

we see that sA is as well. Thus, it is clear that sA ∈ Dn, and so condition 1 and 2 in the lemma are

easily seen to hold. Thus, we only need to show condition 3.

From here on out, we will suppress the input of λ. Furthermore, WLOG, x0 =
−→
0 . Let’s look at

the derivative, where y(x) is the derivative of the norm:

[sA]′ (x) :=


(
2(‖x‖2 − λ2) sin

[
1

(‖x‖2−λ2)

]
− cos

[
1

(‖x‖2−λ2)

])
(2‖x‖)y(x) : ‖x‖ < λ

0 : ‖x‖ ≥ λ

Remark It can be shown that this function in fact has oscillation of 2λ, then we are done (minus

certain details we skip).

�

Now this wasn’t very optimal, and it won’t lead us to what we want, because the oscillation

lower bound of the family of functions may tend to zero. However, it is inspiring enough to get us

started.
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1.9.1 Saturn Ball Function

This next function is the real one to get us started.

Lemma 1.9.2. Let 0 < λ < 1. Let C := [−λ, λ]×...×[−λ, λ] be a n-cube with center ~0 := (0, ..., 0) ∈

Rn and radius λ > 0. Then there exists a ball A = Bo(~0; λ) inside C, and a function gλ such that:

1. supp(gλ) ⊆ A

2. gλ ∈ Dn

3. ‖gλ‖∞ ≤ λ2 < 1 and ‖g′λ‖∞ ≤ 2λ + 1 < 3

4. Λ(g′λ, u) ≥ 1 for any u ∈ ∂A

Proof. (1.9.2) We will be using ‖·‖ := ‖·‖l2 . We can now define a preliminary function g̃ : Rn → R,

that will be useful in getting our main function:

Definition (Pogo Function)

g̃(x) :=

 (λ − ‖x‖)2 sin
[

1
(λ−‖x‖)

]
: ‖x‖ < λ

0 : ‖x‖ ≥ λ

By our previous work, we know that λ−‖x‖ is Fréchet differentable away from the origin, thus as a

composition, we see that g̃ is as well. So the only thing that is holding us back from differentiability

everywhere is the center of our ball. Let’s look at the derivative, where y(x) is the derivative of the

norm away from zero:

[̃
g
]′ (x) :=


(
2(λ − ‖x‖) sin

[
1

(λ−‖x‖)

]
− cos

[
1

(λ−‖x‖)

])
(−y(x)) : 0 < ‖x‖ < λ

0 : ‖x‖ ≥ λ

We are now ready for our primary function:

Definition (Saturn Ball Function) We notice that
[̃
g
]′ (x) has an infinite number of zeros in [λ2 , λ),

so let γ > 0 be the smallest such value. We may now define

gλ(x) :=

 g̃(x) : ‖x‖ ≥ γ

g̃(γ) : 0 ≤ ‖x‖ < γ
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Let’s look at the derivative of gλ, where y(·) : Rn → L(Rn;R) is the Fréchet derivative of the

norm:

g′λ(x) :=


0 : 0 ≤ ‖x‖ ≤ γ(
2(λ − ‖x‖) sin

[
1

(λ−‖x‖)

]
− cos

[
1

(λ−‖x‖)

])
(−y(x)) : γ < ‖x‖ < λ

0 : ‖x‖ ≥ λ

Let’s check out y(x) a little more carefully. We see that ‖ · ‖ : X → R is differentiable, and for

x =
∑n

j=1 x je j ∈ X, such that x , 0, then

d(‖x‖2) = (
n∑

j=1

|x j|
2)1/2−1

 n∑
j=1

|x j|
2−1sgn(x j)e j


=

1
‖x‖2−1

2

 n∑
j=1

|x j|
2−1sgn(x j)e j


(1.41)

Now, let’s also look at the norm (i.e. the X∗-norm) of d(‖x‖) : X → R, for x , 0:

‖d(‖x‖2)‖X∗ = ‖d(‖x‖)‖l2

=

∥∥∥∥∥∥∥ 1
‖x‖2−1

2

 n∑
j=1

|x j|
2−1sgn(x j)e j


∥∥∥∥∥∥∥

2

=
1

‖x‖2−1
2

∥∥∥∥∥∥∥
n∑

j=1

|x j|
2−1sgn(x j)e j

∥∥∥∥∥∥∥
2

=
1

‖x‖2−1
2

 n∑
j=1

||x j|
2−1sgn(x j)|2


1/2

=
1

‖x‖2−1
2

 n∑
j=1

|x j|
2


1/2

=
1

‖x‖2−1
2

‖x‖2/2 = ‖x‖1−2
2 · ‖x‖2−1

2 = 1.

(1.42)

So we now see that Conditions (1) and (2) are clear from our work... for gλ,
[
gλ

]′ are clearly

bounded. In fact, ‖gλ‖∞ ≤ λ2 < 1, and ‖ f ′R‖∞ ≤ 2λ + 1. Now, we need to know about the tangential

oscillation of gλ. Let z be such that ‖z‖ = λ, and define the sequences w(k) :=
(
λ − 1

2πk

)
z
λ
, v(k) :=

(λ − ak) z
λ

where {ak} is a sequence of positive terms tending to zero that are critical points of the

function Q : R → R defined by x2sin(1/x) away from zero. Now, ‖w(k)‖ =
(
λ − 1

2πk

)
−→
n
λ and
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‖v(k)‖ = (λ − ak) −→
n
λ. Therefore, g′λ(v

(k)) = 0 for all k ∈ N, and g′λ(w
(k)) = −y(w(k)). Therefore,

‖g′λ(w
(k))‖l2 = ‖y(w(k))‖l2 = 1. Thus, for any z ∈ ∂B(0; λ) we have

Λ(g′λ(·), z) := lim
δ→0+

sup
u,q∈Bo

δ(z)
‖g′λ(u) − g′λ(q)‖l2 ≥ lim

k→∞
‖g′λ(w

(k)) − g′λ(v
(k))‖l2 = lim

k→∞
‖y

(
w(k)

)
‖l2 ≥ 1.

We have shown condition (3) in the lemma as well, and hence gλ works.

�

Figure 10: The Zero Set Of A Typical R2 − D2 Saturn Ball

We can also shift the cube, and get a similar results.

Lemma 1.9.3. Let 0 < λ < 1.Let C := [x0
1 −λ, x

0
1 +λ]× ...× [x0

n −λ, x
0
n +λ] be a n-cube with center

x0 := (x0
1, ..., x

0
n) and radius λ > 0 in Rn. Then there exists a ball A = Bo(x0; λ) inside C, and a

function Jλ such that:

1. supp(Jλ) ⊆ A

2. Jλ ∈ Dn

3. ‖Jλ‖∞ ≤ λ2 < 1 and ‖J′λ‖∞ ≤ 2λ + 1 < 3

4. Λ(J′λ, u) ≥ 1 for any u ∈ ∂A

Proof. (1.9.3) Let gλ be the function as defined above. We define Jλ(x) := gλ(x − x0), and the rest

follows. �
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1.9.2 Subdivisions and Partitions

The Saturn Ball function is an interesting function because we may define it in exactly the same

way as we did for any Banach space with a Fréchet differentiable norm, including infinite dimen-

sional. We only used finite dimensions to describe the function inside an n-cube.

That means that we should be getting more out of the finite dimensionality for proving

something, and in fact we do. Consider the following partitioned divisions of a cube, where we

will describe the subdivision for the cube C := [−1, 1]× ...× [−1, 1] with all others being a scaling

and/or translation.

Let K0 := {x ∈ C : ‖x‖∞ ≤ 1/2}, K1 := {x ∈ C : ‖x‖∞ ≤ 1/2 + 1/4}, and in general

Kn := {x ∈ C : ‖x‖∞ ≤
∑n+1

i=1
1
2i }.

Let C0,1 := K0, and k0 = 1. Now, let C̃1 := K1 \ K0, which can be written as the finite union of

uniform cubes C1, j that are translations of the cube [0, 1/4] × ... × [0, 1/4], so C̃1 = ∪
k1
j=1C1, j where

k1 ∈ N. Likewise, C̃2 := K2 \K1, which can be written as the finite union of uniform cubes C2, j that

are translations of the cube [0, 1/8] × ... × [0, 1/8], so C̃2 = ∪
k2
j=1C2, j where k2 ∈ N. So in general,

we define C̃n := Kn \ Kn−1, which can be written as the finite union of uniform cubes Cn, j that are

translations of the cube [0, 1
2n+1 ] × ... × [0, 1

2n+1 ], so C̃n = ∪
kn
j=1C1, j where kn ∈ N. Then the complete

partition of C involves writing C =
⋃∞

n=0 ∪
kn
j=1Cn, j, where we notice that the radius of the partition

cubes goes to zero as we head towards the boundary of C.
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Figure 11: 0th Stage

Figure 12: 1st Stage of the Subdividing
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Figure 13: 2nd Stage

Figure 14: 3rd Stage of the Subdividing
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Figure 15: Another Stage of the Subdividing

We will call these partitions of the cube Mayan subdivisions, as in 2-dimensions they resemble
a bird’s eye view of the Mayan pyramids.

Figure 16: Illustration Of Mayan Step Pyramid.

1.9.3 Generating Function On The Boundary Of A Cube

It would be interesting to reach results like the ones before regarding porosity, and in fact we are

about to see that this is possible.

Lemma 1.9.4. Let 0 < λ < 1. Let C ⊆ [0, 1]n be an n-cube with center x0 and radius λ. Then there

exists a function TC such that:
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1. supp(TC) ⊆ C and TC = 0 on ∂C

2. TC ∈ Dn

3. ‖TC‖∞ ≤ λ
2 and ‖T ′C‖∞ ≤ 2λ + 1

4. Λ(T ′C, x) ≥ 1 for all x ∈ ∂C

Furthermore, we will call such a function a Mayan function.

Proof. We will prove this in a few steps using our previous work. Let gλ be the Saturn ball function

for λ. First, we observe that C =
⋃∞

i=1 Ci where the {Ci}
∞
i=1 are a Mayan subdivision of the cube,

with each Cn having radius λn, and center xn. Now, define TC : Rn → R as TC(u) :=
∞∑

i=1
gλi(u − xi),

where gλi(· − xi) is the Saturn Ball function for the ball Bo(xi; λi) within the n-cube Ci. Fix x ∈ ∂C.

Let δ > 0. Then within Bo(x; δ) there exists a cube, say Ck within the ball, as by construction, the

size of the cubes goes to zero out to the boundary. Recall the tangential oscillation of gλi is at least

1 on ∂Bo(xi; λi) for any i ∈ N. Now, TC(x) agrees with gλk(x− xk) on Ck, so within Bo(x; δ) we have

that TC attains a tangential oscillation of at least 1. Now, as this is a uniform lower bound for all

such δ > 0, we can see that the tangential oscillation of TC is at least 1 at the point x. Thus (1),(2),

(3) and (4) above clearly follow for TC. �

Lemma 1.9.5. Let E be a closed nowhere dense subset of [0, 1]n. Then there exists a function fE

such that:

1. fE = 0 on E

2. fE ∈ Dn

3. ‖ fE‖∞ ≤
1
2 and ‖ f ′E‖∞ ≤ 3

4. Λ( f ′E, x) ≥ 1 for all x ∈ E

Proof. We will prove this in a few steps using our previous work. Let gλ be the Saturn ball function

for λ. We mention that from here on, when we are defining our functions, we will not distinguish

between half-open and closed n-cubes. The reason is that our functions are defined to be zero

on the boundary of the cubes, therefore it doesn’t matter. First, we observe that by the Dyadic

Cubes Theorem, the open set C := Ec =
⋃∞

i=1 Ki where the {Ki}
∞
i=1 are half-open cubes at center zi

with radii di for each Ki. Furthermore, each Ki =
⋃
j∈N

Ai, j where the A js are a Mayan subdivision.

Therefore, we may re-enumerate all the Ai, js as the union C =
⋃

n∈N
Cn where the Cn are cubes at
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center xn with radii rn for each Cn. We here make the important comment that because we have

first done a dyadic subdivision, we have assured that the largest value of some rn is 1
2 ... therefore

‖grn(· − xn)‖∞ ≤ 1
2 .

Now, define fE(x) :=
∞∑

i=1
gri(x − xi), where gri is the Saturn Ball function for the cube Ci. Fix

x ∈ ∂C. Let δ > 0. Then within Bo(x; δ/2) there is an edge of a dyadic cube. Furthermore, by the
definition of the Mayan subdivision, there is a Mayan cube within Bo(x; δ), say Ck. Then fE agrees
with gri(x− xi) on Ck. Now as the tangential oscillation of gri(· − xi) is at least 1 on the boundary of
the ball Bo(xk; rk), and as Bo(xk; rk) ⊆ Bo(x; δ), we have 1 ≤ sup

h,k∈Bo(x;δ)
‖ f ′E(h) − f ′E(k)‖. Now as δ > 0

is arbitrary and we can uniformly bound below by 1, then taking a limit as δ→ 0+, we get that the
tangential oscillation of fE is at least 1 at x. Furthermore, (1),(2), and (3) above clearly follow for
fE.

Figure 17: Illustration Of Density of Mayan Cube

�

1.10 CATEGORY RESULTS IN N-DIMENSIONS

Theorem 1.10.1. Let N ∈ N. Let E be an arbitrary closed nowhere dense subset of [0, 1]N . Let

GE := { f ∈ DN : infx0∈E Λ( f ′, x0) > 0}. Then GE is a dense open subset of DN .
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Proof. (Theorem 1.10.1) Let ‖ · ‖ := ‖ · ‖l2 . We prove open first, and do so directly. First we note

that GE is non-empty, by the above lemma and scaling of the example function. Let F ∈ GE be

arbitrary, and δ := inf
x0∈E

Λ(F′, x0) > 0. Now choose ε arbitrary such that 0 < ε ≤ δ/4. Then let

s ∈ DN such that ‖s‖D < ε, and h := F + s. We will show that h ∈ GE. Well, for any x ∈ E,

δ/2 < δ − 2ε ≤ Λ(F′, x) − 2‖s′‖∞ ≤ Λ(F′, x) − Λ(s′, x) ≤ Λ(F′ + s′, x) =: Λ(h′, x).

Therefore, 0 < δ/2 ≤ infx∈E Λ(h′, x), and so h ∈ GE. Therefore, GE is open.

Now we prove density of the set. Let ε ∈ (0, 1), and F ∈ DN . We will show that there exists

a function g such that g ∈ GE, and ‖F − g‖DN < ε, by creating a modified version of one of our

previously defined auxiliary functions.

We will prove this in a few steps using our previous work. First, we observe that by the

Dyadic Cubes Theorem, the open set Ec =
⋃∞

i=1 Ki where the {Ki}
∞
i=1 are half-open cubes at center

zi with radii di for each Ki. Furthermore, each Ki =
⋃
j∈N

Ai, j where the A js are a Mayan subdivision.

Therefore, we may re-enumerate all the Ai, js as the union Ec =
⋃

n∈N
Cn where the Cn are cubes

at center xn with radii rn for each Cn. Now again we will not distinguish between half-open and

closed n-cubes because our functions are zero on the boundaries of the n-cubes.

Now, let gλ be the Saturn Ball function for λ. Then we define the following function with

α := {αn} a sequence of real scalars:

w(x) :=
∑
n∈N

αngrn(x − xn)

We will soon use this function w(x) to create our function for density by choosing particular −→α =

(αn)n∈N.

Thus we let:

αn :=


ε
4 : 0 ≤ Λ(g′rn

(· − xn), x) < ε
8 ,∀x ∈ ∂Bo(xn; rn)

0 : ∃zn ∈ ∂Bo(xn; rn) such that ε
8 ≤ Λ(g′rn

(· − xn), zn)

Then the sequences just defined are sequences for scaling the tangential oscillations.
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Then we let L := F + w, and we will show that L ∈ GE. We will first show that ∀n ∈ N there

exists yn ∈ ∂Bo(xn; rn) such that Λ(L′, yn) ≥ ε
8 . We will use this to show that Λ(L′, x) ≥ ε

8 for all

x ∈ E.

As such, let k ∈ N be fixed, we show existence of yk.

Case 1: Suppose 0 ≤ Λ(F′, x) < ε
8 ,∀x ∈ ∂Bo(xk; rk). Then using Proposition 1.2.3, for any

y ∈ ∂Bo(xk; rk):

0 <
ε

8
=

(
ε

4

)
−
ε

8
≤ Λ(αkg′rn

(· − xn), y) − Λ(F′, y) ≤ Λ(w′ + F′, y) = Λ(L′, y) (1.43)

So choose any yk ∈ ∂Bo(xk; rk).

Case 2: Suppose ∃zk ∈ ∂Bo(xk; rk) such that ε
8 ≤ Λ(F′, z). Then using Proposition 1.2.3:

0 <
ε

8
≤ Λ(F′, zk)−0 = Λ(F′, zk)−Λ(αkg′rn

(·−xn), zk) ≤ Λ(αkg′rn
(·−xn)+F′, zk) = Λ(L′, zk) (1.44)

So we let yk := zk.

Now, let x ∈ E, and δ > 0 be arbitrary. We will show that there is a point within Bo(x; δ) such

that the tangential oscillation of L is at least r
8 , for then sup

h,k∈B(x;δ)
‖L′(h) − L′(k)‖ ≥ ε

8 .

Appealing again to our picture:

Figure 18: Selection Of Our Point

Then within Bo(x; δ/2) there is an edge of a dyadic cube. Furthermore, by the defi-

nition of the Mayan subdivision, there is a Mayan cube within Bo(x; δ), say Cm. So we
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have a point ym ∈ ∂Bo(xm; rm) with Bo(xm; rm) ⊆ Bo(x; δ), and ε
8 ≤ Λ(L′, ym). Therefore,

ε
8 ≤ sup

h,k∈Bo(x;δ)
‖L′(h) − L′(k)‖.

Now, as δ is arbitrary, and we may always find such a point as ym, then

0 <
ε

8
≤ lim

δ→0+
sup

h,k∈Bo(x,δ)
|L′(h) − L′(k)| =: Λ(L′, x).

Now, we’ll prove density. We here make the important comment that because we have first

done a dyadic subdivision, we have assured that the largest value of some rn is 1
2 ... therefore

‖grn(· − xn)‖∞ ≤ 1
2 . Well,

‖F − L‖D := ‖F − L‖∞ + ‖F′ − L′‖∞ = ‖F − (F + w)‖∞ + ‖F′ − (F′ + w′)‖∞ = ‖w‖∞ + ‖w′‖∞

<
(
ε

4

)2
+

(
ε

4

) [
sup

x∈[0,1]
|2x sin(1/x) + cos(1/x)|

]
<
ε

4
·

1
2

+ 3
ε

4
= ε.

(1.45)

Thus, we have that GE is indeed dense in DN . �

This leads to an additional result that further generalizes the ideas we are getting.

Theorem 1.10.2. Let E be an arbitrary closed nowhere dense subset of [0, 1]N . Let HE := { f ∈

DN : Λ( f ′, x0) > 0,∀x0 ∈ E}. Then HE is second category in DN .

Proof. Let E be given. As GE ⊆ HE, and GE is a dense open set, we then have that HE is second

category. �

From this, we can extend further in order to get the result we have been after the whole time.

Theorem 1.10.3. Let E be an arbitrary meagre set in [0, 1]N . Let HE := { f ∈ DN : Λ( f ′, x0) >

0,∀x0 ∈ E}. Then, HE is residual in DN .

Proof. (Theorem 1.10.3) Well, we may write E =
⋃

n∈N En where each En is a nowhere dense set.

Let An := cl(En) for all n ∈ N. Then GAn is a dense open set, and so J :=
⋂

n∈NGAn is a dense Gδ

set in DN . So, as J ⊆ HE, then HE is second category. �
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1.11 POROSITY RESULTS IN N-DIMENSIONS

Theorem 1.11.1. Let N ∈ N be fixed. Let E ⊆ [0, 1]N be a closed nowhere dense set. Then

GE := { f ∈ DN : inf
x0∈E

Λ( f ′, x0) > 0} is co-porous.

Proof. (Theorem 1.11.1) Let ‖ · ‖ := ‖ · ‖lN
2
. Let β = 1

32 and r0 = 1/2, for the porosity constants.

Furthermore, take any F ∈ DN \GE := {u ∈ DN : inf
x0∈E

Λ(u′, x0) = 0} and let r ∈ (0, r0].

We will not be distinguishing be half-open and closed cubes, as the functions we will be using

will be zero’d out on the boundary of all the cubes.

We will prove this in a few steps using our previous work. First, we observe that by the Dyadic

Cubes Theorem, the open set Ec =
⋃∞

i=1 Ki where the {Ki}
∞
i=1 are cubes at center zi with radii di for

each Ki. Notice that the maximum n-cube radius is 1
2 by the Dyadic cubes theorem. Furthermore,

each Ki =
⋃
j∈N

Ai, j where the Ai, j’s are a Mayan subdivision by cubes with centers si
j and radii ti

j.

So we may re-enumerate all the Ai, j’s as the union Ec =
⋃

n∈N
Cn where the Cn are cubes at

center xn with radii rn.

Now, what is the idea? Well, we are going to use all these n-cubes, and place a Saturn ball

function into each cube. These Saturn ball functions will then have positive tangential oscillation

within the n-cube where they are nonzero defined, and if we can suitably control the amplitude,

then we will have a “porously close generating function”.

Now, let gλ be the Saturn Ball function for λ > 0. Then within any neighborhood of x ∈ E

there is a translated Saturn Ball function whose derivative has oscillation of at least one along the

boundary of a ball, according to the Mayan subdivision of the cube, and the definition of a Saturn

ball. Then we define the following function with α := {αn} a sequence of real scalars:

w(x) :=
∑
n∈N

αngrn(x − xn)

We will soon use this function w(x) to create our function for porosity by choosing particular
−→α = (αn)n∈N.
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Thus we let:

αn :=


0 : rn ≥

r
4

r
4 : rn <

r
4 and 0 ≤ Λ(F′, x) < r

8 ,∀x ∈ ∂Bo(xn; rn)

0 : rn <
r
4 and ∃z ∈ ∂Bo(xn; rn) such that r

8 ≤ Λ(F′, z)

Then the sequences just defined are sequences for the scaling of the tangential oscillations. Now

let’s explain why we zero’d out our translated Saturn ball is rn ≥
r
4 . Well, if rn ≥

r
4 , then the

cube we are working in is not “close to the boundary of a dyadic cube”, therefore it’s tangential

oscillation is unimportant for our concerns.

Then we let J := F + w, and we will show that J ∈ GE. In fact we will show that Λ(J, x) ≥ r
8

for all x ∈ E.

We will first show that ∀n ∈ N such that r
4 > rn there exists yn ∈ ∂Bo(xn; rn) such that

Λ(J′, yn) ≥ r
8 . We will use this to show that Λ(J′, x) ≥ r

8 for all x ∈ E.

As such, let k ∈ N be fixed, we show existence of yk.

Case 1: Suppose 0 ≤ Λ(F′, x) < r
8 ,∀x ∈ ∂Bo(xk; rk). Then using Proposition 1.2.3, for any

y ∈ ∂Bo(xk; rk):

0 <
r
8

=

( r
4

)
−

r
8
≤ Λ(αkg′rk

(· − xk), y) − Λ(F′, y) ≤ Λ(w′ + F′, y) = Λ(J′, y) (1.46)

So choose any yk ∈ ∂Bo(xk; rk).

Case 2: Suppose ∃zk ∈ ∂Bo(xk; rk) such that r
8 ≤ Λ(F′, zk). Then using Proposition 1.2.3:

0 <
r
8
≤ Λ(F′, zk)−0 = Λ(F′, zk)−Λ(αkg′rk

(·−xk), zk) ≤ Λ(αkg′rn
(·−xn)+F′, zk) ≤= Λ(w′+F′, zk) =: Λ(J′, zk)

(1.47)

So we let yk := zk.

Now, let x ∈ E, and δ > 0 be arbitrary. We will show that there is a point within Bo(x; δ) such

that the tangential oscillation of J is at least r
8 , for then sup

h,k∈B(x;δ)
‖J′(h) − J′(k)‖L(RN ;R) ≥

r
8 .

We turn to an illustration to present clarity:
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Figure 19: Selection Of Our Point

Then within Bo(x; δ/2) there is an edge of a dyadic cube. Furthermore, by the definition of

the Mayan subdivision, there is a Mayan cube within Bo(x; δ), say Cm. Now, we may assume that

rm < r
4 , for if not, there is a closer cube within Bo(x; δ). So we have a point ym ∈ ∂Bo(xk; rk) with

Bo(xk; rk) ⊆ Bo(x; δ), and r
8 ≤ Λ(J′, ym). Therefore, r

8 ≤ sup
h,k∈Bo(x;δ)

‖J′(h) − J′(k)‖L(RN ;R).

Now, as δ is arbitrary, and we may always find such a point ym, then

0 <
r
8
≤ lim

δ→0+
sup

h,k∈Bo(x,δ)
‖J′(h) − J′(k)‖L(RN ;R) =: Λ(g′, x).

So J ∈ GC.

Now to show that Bo(J; βr) ⊆ Bo(F, r) ∩ G. Let v ∈ DN such that ‖v‖D ≤ βr = r
32 . Fix an

arbitrary x ∈ E. Then,

0 < r/16 = (r/8) − 2(r/32) < Λ(J′, x) − 2‖v′‖∞ < Λ(J′, x) − Λ(v′, x) ≤ Λ(J′ + v′, x).

This proves that J + v ∈ GE, as needed.
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Now to show that Bo(J; βr) ⊆ Bo(F, r). Well, let s ∈ DN such that ‖s‖D ≤ βr := r
32 . Then,

recalling that r ≤ 1
2 so that r2

16 ≤
r

32 :

‖(J + s) − F‖D := ‖(F + w + s) − F‖D = ‖w + s‖D ≤ ‖w‖D + ‖s‖D

≤ ‖w‖D +
r

32
= ‖w‖∞ + ‖w′‖∞ +

r
32

≤

( r
4
·

r
4

)
+

3r
4

+
r

16
≤

r
32

+
3r
4

+
r

16
< r.

(1.48)

Thus Bo(J; βr) ⊆ Bo(F, r), and so then Bo(J; βr) ⊆ Bo(F, r) ∩ GE. Therefore, GE is co-porous as

claimed. �

Now, utilizing the fact that porous sets are nowhere dense, we get the following corollary:

Corollary 1.11.1. (To Theorem 1.11.1) Let E be a porous set in [0, 1]N . Then GE := { f ∈ DN :

infx0∈E Λ( f ′, x0) > 0} is co-porous.

We can also get another corollary of the above theorem for functions mapping into another

Banach space.

Corollary 1.11.2. Let N ∈ N be fixed. Let (Y, ‖ · ‖Y) be a non-trivial Banach space. Let E ⊆ [0, 1]N

be a closed nowhere dense set. Then GE := { f ∈ D([0, 1]N; Y) : inf
x0∈E

Λ( f ′, x0) > 0} is co-porous.

Here, we have that if f : [0, 1]N → Y , then ‖ f ′‖∞ := sup
x∈[0,1]N

‖ f ′(x)‖L(RN ;Y). Also, Λ( f ′, x) :=

lim
δ→0+

sup
h,k∈Bo

[0,1]N
(x;δ)
‖ f ′(h) − f ′(k)‖L(RN ;Y).

The proof uses the following: let y ∈ S (Y). Then we take s := wy : (0, 1)N → Y as our

generating function. Then, s′ = w′y : [0, 1]N → L(RN; Y), as w′ : [0, 1]N → L(RN;R), and the

proof proceeds as before.
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Figure 20: Saturn Ball Function
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2.0 BOUNDED VARIATION AND POROSITY

2.1 INTRODUCTION

In the present article, we look at a way of describing the fundamental theorem in BV[a, b], in terms

of how typical the property of the fundamental theorem is within BV[a, b] (sometimes referred to

as the genericity of the property).

The history of the Fundamental Theorem of Calculus (FTC) is hard to precisely pinpoint.

As noted in [5], contributions to the development of the FTC stretches at least as far as Eudoxus

of Cnidus and has continued through Euler, Cauchy, and Weierstrass and includes modern day

generalizations of the results. Many students are taught the FTC in their calculus class in the

setting of Riemann Integrals, with a simple proof using partitions of the given interval. However,

as they hopefully continue on in their studies, they eventually see the FTC again in a measure

theoretic setting (see for instance [21]). There are also a number of generalizations of the FTC

that the curious reader may investigate (See for example [13]).

We look within the space of bounded variation, and take this as a reasonable setting, as every

function of bounded variation is differentiable almost everywhere (see [21]). Therefore, we may

ask the question: How typical it is for a function u of bounded variation to satisfy u(x) − u(a) =
t=x∫

t=a
u′(t)dm(t)?

60



2.2 THE SETTING

Definition of Porosity Let (M, d) be a metric space, and A ⊆ M such that A is closed. We say

that A is porous if ∃r0 ∈ (0,∞) and ∃β ∈ (0, 1] such that ∀x ∈ A, ∀r ∈ (0, r0], ∃z ∈ Ac such that

Bo(z; βr) ⊆ Bo(x, r) ∩ Ac. Moreover, for arbitrary S ⊆ M, we say that S is porous if S is porous.

Furthermore, we say that a set J is co-porous if Jc is porous.

A set S is σ-porous if and only if S =
⋃

n∈N
S n such that each S n is porous. A set A is co-σ-

porous if and only if A := S c where S =
⋃

n∈N
S n such that each S n is porous.

We are now prepared to start towards our result, and now define the space we will be working

in for the present article.

Definition Let F(R,R) := {functions g : R → R}. Let f ∈ F(R,R). Let a < b with a, b ∈ R.

Let P be the set of all Riemann partitions of [a, b], such that if P ∈ P, then P = {t0 = a, t2, t3, · ·

·, tm−1, tm = b} is a partition of [a, b]. Then we define the variation of f for P:

Vb
a ( f ; P) :=

m∑
n=1

| f (tn) − f (tn−1)| .

Then, we define the total variation of f .

Vb
a ( f ) := sup

P∈P
Vb

a ( f , P).

Now, we can define the following linear vector space:

BV[a, b] := { f ∈ F(R,R) : Vb
a ( f ) < ∞}

Given the above, we now define a norm on BV[a, b]:

‖ f ‖ := | f (a)| + Vb
a ( f ).

Theorem 2.2.1. (See [1] for information) Under the above definitions, (BV[a, b], ‖·‖) is a complete

normed vector space over R, therefore, it is a Banach space.
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2.3 CONTINUITY IN BV[A, B]

We start with an important example that we need in our work.

Cantor-Staircase/Cantor-Lebesgue Function, (See [13] among many others) Let C be the

middle thirds Cantor set. Let x be a real number in [0, 1] with the ternary expansion 0.a1a2a3 . . .,

then let N be ∞ if no an = 1 and otherwise let N be the smallest value such that an = 1. Next

let bn = 1
2an for all n < N and let bN = 1. We define the Cantor function (or the Cantor ternary

function) as the following:

f (x) =

N∑
n=1

bn

2n .

This function can be checked to be continuous and monotonic on [0, 1], and f ′(x) = 0 almost

everywhere. Furthermore, f (0) = 0 and f (1) = 1.

As f is monotonic, we can see that f ∈ BV[0, 1], as V1
0 ( f ) is finite.

Proposition 2.3.1. Define the function Ψ : BV[a, b]→ [0,∞) by

Ψ(u) := sup
x∈[a,b]

∣∣∣∣∣∣∣∣(u(x) − u(a)) −

t=x∫
t=a

u′(t)dm(t)

∣∣∣∣∣∣∣∣ .
Then for any f , g ∈ X and c ∈ R we have the following:

(a) Ψ(c f ) = |c|Ψ( f )

(b) Ψ( f + g) ≤ Ψ( f ) + Ψ(g)

(c) |Ψ( f ) − Ψ(g)| ≤ Ψ( f + g)

(d) Ψ( f ) ≤ 2Vb
a ( f ) ≤ 2‖ f ‖

Proof. (a) Let c ∈ R, and f , g ∈ X. Then Ψ(c f ) = sup
x∈[a,b]

∣∣∣∣∣∣(c f (x) − c f (a)) −
t=x∫

t=a
c f ′(t)dm(t)

∣∣∣∣∣∣
= |c| sup

x∈[a,b]

∣∣∣∣∣∣( f (x) − f (a)) −
t=x∫

t=a
f ′(t)dm(t)

∣∣∣∣∣∣ = |c|Ψ( f ).

(b) Furthermore, we investigate Ψ( f + g):

Ψ( f + g) = sup
x∈[a,b]

∣∣∣∣∣∣∣∣(( f + g)(x) − ( f + g)(a)) −

t=x∫
t=a

( f + g)′(t)dm(t)

∣∣∣∣∣∣∣∣
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≤ sup
x∈[a,b]


∣∣∣∣∣∣∣∣( f (x) − f (a)) −

t=x∫
t=a

f ′(t)dm(t)

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣g(x) − g(a) −

t=x∫
t=a

g′(t)dm(t)

∣∣∣∣∣∣∣∣


≤ sup
x∈[a,b]

∣∣∣∣∣∣∣∣( f (x) − f (a)) −

t=x∫
t=a

f ′(t)dm(t)

∣∣∣∣∣∣∣∣ + sup
x∈[a,b]

∣∣∣∣∣∣∣∣g(x) − g(a) −

t=x∫
t=a

g′(t)dm(t)

∣∣∣∣∣∣∣∣ = Ψ( f ) + Ψ(g)

(c) This is standard from the existence of the triangle inequality.

(d) For this, we will use some results from Royden (Ch. 5.2-3 [21]). First, we observe:

sup
x∈[a,b]

∣∣∣∣∣∣∣∣( f (x) − f (a)) −

t=x∫
t=a

f ′(t)dm(t)

∣∣∣∣∣∣∣∣
≤ sup

x∈[a,b]
| f (x) − f (a)| + sup

x∈[a,b]

∣∣∣∣∣∣∣∣
t=x∫

t=a

f ′(t)dm(t)

∣∣∣∣∣∣∣∣ .
Now, let Px := {a = x0, x1, ..., xn−1, xn = x} be a partition of [a, x]. Then by the triangle

inequality,

| f (x)− f (a)| = | f (xn)− f (x0)| ≤ | f (xn)− f (xn−1)|+ | f (xn−1)− f (x0)| ≤ ... ≤
n∑

i=0

| f (xi)− f (xi+1)|.

Therefore, we can see that | f (x)− f (a)| ≤ V x
a , and so sup

x∈[a,b]
| f (x) − f (a)| ≤ sup

x∈[a,b]
V x

a ( f ) ≤ Vb
a ( f ).

Recall that f (x) = Px
a( f ) − (N x

a( f ) − f (a)) is the Jordan decomposition of f . Also, recall that

V x
a ( f ) = Px

a( f ) + N x
a( f ). Additionally, h1(x) := Px

a( f ) and h2(x) = (N x
a( f ) − f (a)) are both

monotone increasing, and therefore differentiable. Furthermore, a version of the Fundamental

Theorem of Calculus holds for h1, h2, i.e. for i = 1, 2, we have:

hi(x) ≥

t=x∫
t=a

h′i(t)dm(t) + hi(a).

Therefore,

sup
x∈[a,b]

∣∣∣∣∣∣∣∣
t=x∫

t=a

f ′(t)dm(t)

∣∣∣∣∣∣∣∣ ≤ sup
x∈[a,b]

t=x∫
t=a

| f ′(t)| dm(t)

= sup
x∈[a,b]

t=x∫
t=a

∣∣∣V t
a
′( f )

∣∣∣ dm(t) = sup
x∈[a,b]

t=x∫
t=a

∣∣∣Pt
a
′( f ) − N t

a
′( f )

∣∣∣ dm(t)
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≤ sup
x∈[a,b]

t=x∫
t=a

Pt
a
′( f ) + N t

a
′( f )dm(t) = sup

x∈[a,b]
Px

a( f ) + N x
a( f ) ≤ sup

x∈[a,b]
V x

a ( f ) ≤ Vb
a ( f ).

Therefore in sum we have that Ψ( f ) ≤ 2Vb
a ( f ) ≤ 2 | f (a)| + 2Vb

a ( f ), and Ψ( f ) ≤ 2Vb
a ( f ) ≤

2‖ f ‖∞ + 2Vb
a ( f ). Therefore, Ψ( f ) ≤ 2‖ f ‖

�

Theorem 2.3.1. Let BV[a, b] be the Banach space of functions of bounded variation with norm

‖ f ‖ := | f (a)| + Vb
a ( f ). Define G := {v ∈ BV[a, b] : Ψ(v) > 0}. Then G is a dense, open, Co-Porous

set in BV[a, b].

Proof. We will prove the theorem for BV[0, 1] for we may compose the usual Cantor function with

a translation and scaling function to accomplish the same result for BV[a, b]. Let f : [0, 1]→ [0, 1]

be the Cantor function. So 0 < ‖ f ‖ ≤ 1. Additionally, we know that

Ψ( f ) := sup
x∈[0,1]

∣∣∣∣∣∣∣∣ f (x) − f (0) −

t=x∫
t=0

f ′(t)dm(t)

∣∣∣∣∣∣∣∣ = 1.

So 0 < Ψ( f ) ≤ 2‖ f ‖ < ∞ is true, and in fact we have Ψ( f ) = ‖ f ‖, but we will only use

Ψ( f ) ≤ 2‖ f ‖. Let δ := Ψ( f ) > 0, γ := ‖ f ‖ > 0. We will use this later as our “generating function”.

We will prove open first. Let g ∈ G be arbitrary, and α := Ψ(g) > 0. Now choose ε > 0 such

that 0 < ε ≤ α
4 . Then let s ∈ BV[0, 1] such that ‖s‖ < ε, h := g + s, and we show that h ∈ G. Note

that we know that Ψ(s) ≤ 2‖s‖. Now we have the following:

0 <
α

2
= α −

α

2
≤ Ψ(g) − 2‖s‖ ≤ Ψ(g) − Ψ(s) ≤ Ψ(g + s) =: Ψ(h).

Now we need to show the porosity conditions. Let’s see what we need to prove:

We need to show ∃β ∈ (0, 1] and ∃r0 ∈ (0,∞) such that ∀v ∈ Gc, ∀r ∈ (0, r0], ∃S ∈ G such that

Bo(S ; βr) ⊆ Bo(v, r) ∩G.
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Let β = 1
600 and r0 = 1/2. Furthermore, take any v ∈ Gc := {u ∈ BV[0, 1] : Ψ(u) = 0} and let

r ∈ (0, r0]. Let c := r
6 > 0. We take S := v + c f , where f is the generating function. Then, we have

that:

0 <
r
6

= cΨ( f ) − 0 = Ψ(c f ) − Ψ(v) ≤ Ψ(v + c f ) = Ψ(S ). (2.1)

So S ∈ G. Now to show that Bo(S ; βr) ⊆ Bo(v, r) ∩G. Let s ∈ BV[0, 1] such that ‖s‖ ≤ βr = r
600 .

Then, using r
6 ≤ Ψ(S ) and ‖s‖ ≤ r

600 :

0 <
r
6
−

r
300
≤

r
6
− 2

r
600

<
r
6
− 2‖s‖ ≤ Ψ(S ) − 2‖s‖ < Ψ(S ) − Ψ(s) ≤ Ψ(S + s).

(2.2)

This proves that S + s ∈ G, as needed.

Now to show that Bo(S ; βr) ⊆ Bo(v, r). Well, let s ∈ BV[0, 1] such that ‖s‖ ≤ βr = r
600 . Then,

using ‖ f ‖ ≤ 1, c = r
6 :

‖(S + s) − v‖ := ‖(v + c f + s) − v‖ = ‖c f + s‖ ≤ ‖c f ‖ + ‖s‖

= c‖ f ‖ + ‖s‖ ≤
( r
6

)
‖ f ‖ +

r
600
≤

r
6

+
r

600
< r.

(2.3)

Thus Bo(S ; βr) ⊆ Bo(v, r), and so then Bo(S ; βr) ⊆ Bo(v, r) ∩ G. Therefore, G is co-porous as

claimed.

�

Corollary 2.3.1. AC[a, b] is a meagre subset of BV[a, b].

Proof. As every function f in AC[a, b] satisfies Ψ( f ) = 0 (see for example [21]), we are done. �

We can in fact relate our work to a different notion of porosity.
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Definition Let (X, ‖ · ‖) be a Banach space, and A ⊆ X such that A is closed. We say that A is

directionally porous if ∀a ∈ A there exists 0 , v ∈ X, p > 0 and a sequence tn → 0 of strictly

positive numbers such that Bo(a + tnv; ptn) ∩ A = ∅. Moreover, for arbitrary S ⊆ M, we say

that S is directionally porous if S is directionally porous. Furthermore, we say that a set J is

co-directionally porous if Jc is directionally porous.

A set S is σ-directionally porous if and only if S =
⋃

n∈N
S n such that each S n is directionally

porous. A set A is co-σdirectionally porous if and only if A := S c where S =
⋃

n∈N
S n such that each

S n is directionally porous.

Definition (From [18]) Let (X, ‖ · ‖) be a separable Banach space. A Borel set A ⊆ X is said to be

Haar null if there is a Borel probability measure µ on X such that

µ(A + x) = 0

for all x ∈ X. A possibly non-Borel set is called Haar null if it is contained in a Borel Haar null set.

Definition (From [18]) A Borel probability measure µ on a separable Banach space X is called

Gaussian if for every x∗ ∈ X the measure ν = x∗µ on R has a Gaussian distribution. The Gaussian

measure µ is called nondegenerate if for every x∗ , 0 the measure ν = x∗µ has positive variance or

equivalently, the measure µ is not supported on a proper closed hyperplane in X.

Definition (From [18]) A Borel set A ⊆ X is said to be Gauss null if µA = 0 for every nondegen-

erate Gaussian measure µ on X.

Theorem 2.3.2. ([18], p.14) Let E be a Borel set in X (a separable Banach space) which is

Lebesgue null on every line in the direction of a fixed vector 0 , u ∈ X. Then E is Haar null.

In particular, σ-directionally porous sets are Haar null.

Theorem 2.3.3. ([18], p.14) σ-directionally porous sets are Gauss null in a separable Banach

space.

Theorem 2.3.4. ([18], p.33) In infinite dimensional Banach spaces, porous sets are not always

null. In particular, by a result of Preiss and Tis̆er [20], porous sets are not Gauss small in any

infinite dimensional separable Banach space, as any such space can be decomposed into two sets,

one being σ-porous, and the other being Gauss null.
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Therefore, the two notions of porosity are in fact different. This provides motivation for the

following result.

Theorem 2.3.5. Let BV[a, b] be the Banach space of functions of bounded variation with norm

‖ f ‖ := | f (a)| + Vb
a ( f ). Define G := {v ∈ BV[a, b] : Ψ(v) > 0}. Then G is a dense, open, Co-

Directionally-Porous set in BV[a, b].

The proof is similar to that of Theorem 2.3.1. Also, this result follows from Theorem 4.3.1,

which we prove later.
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3.0 BEHAVIOR OF TYPICAL MIXED PARTIALS

3.1 INTRODUCTION

In many different vector calculus classes the Schwartz-Clairaut Theorem is taught, giving a

condition for when the mixed partial derivatives of a function f : R2 → R (for example) are equal.

We could in fact refer to the equality of mixed partials as the Clairaut condition, which we know to

hold when the second partial derivatives are continuous. Often we give out an example to students

that illustrates that one must be careful to check the continuity condition, as the Clairaut condition

must not always hold. A natural question which we are not aware of having been published before,

is the following: “how typical is it for the Clairaut condition to hold for a function with bounded

second derivatives”? In particular, if we address this question using the notion of porosity, does

the typical function with bounded second partial derivatives obey the Clairaut condition?

The result that we reach is that the Clairaut condition is in fact rarely (from the sense of cate-

gory and porosity) reached. Therefore, we are once again highlighting the intuition that continuity

type properties are a rare trait among functions.

3.2 MIXED PARTIAL DERIVATIVES

We recall a previous result that we need again in order to move things further:

Theorem 3.2.1. Suppose that fn → f uniformly on a set E ⊆ M in a metric space (M, d), for fn, f
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real functions (for all n). Let x be a limit point of E, and suppose that

lim
t→x

fn(t) = an for all n ∈ N. (3.1)

Then, an converges, and

lim
t→x

f (t) = lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t) = lim
n→∞

an (3.2)

Theorem 3.2.2. Suppose that {gn} is a sequence of functions such that for any n ∈ N, gn :

[−1, 1]2 → R, and {gn} converges uniformly to some function g : [−1, 1]2 → R. Also, sup-

pose that {∂gn
∂x } converges uniformly on [−1, 1]2 to some function h : [−1, 1]2 → R. Then for all

(a, b) ∈ [−1, 1]2,
∂g(a, b)
∂x

= lim
n→∞

∂gn(a, b)
∂x

= h(a, b)

Proof. Fix (a, b) ∈ [−1, 1]2, arbitrary. Let E := [−1, 1]\{a} ⊂ [−1, 1]. Then we define for all n ∈ N

and for all t ∈ E the following:

φn(t) :=
gn(t, b) − gn(a, b)

t − a

φ(t) :=
g(t, b) − g(a, b)

t − a
.

Then, ∀n ∈ N, φn : E → R and φ : E → R. Now, fix n ∈ N,m ∈ N, t ∈ E. By the Mean Value

Theorem, for some ξ between t and a, we have:

|φn(t) − φm(t)| =
|(gn(t, b) − gm(t, b)) − (gn(a, b) − gm(a, b))|

|t − a|

=

∣∣∣∣(∂gn(ξ,b)
∂x −

∂gm(ξ,b)
∂x

)
(t − x)

∣∣∣∣
|t − x|

=

∣∣∣∣∣∂gn(ξ, b)
∂x

−
∂gm(ξ, b)

∂x

∣∣∣∣∣
≤ sup

(s,t)∈[−1,1]2

∣∣∣∣∣∂gn(s, t)
∂x

−
∂gm(s, t)
∂x

∣∣∣∣∣ =: γn,m.

Now, as {∂gn
∂x } is uniformly convergent, then it is Cauchy, thus lim

m,n→∞
γn,m = 0. Hence,

|φn(t) − φm(t)| −−−−−→
n,m→∞

0. Therefore, we get that φn −→
n
φ uniformly on E. Also, an := lim

t→a
t∈E

φn(t) =

∂gn(a,b)
∂x exists in R, for all n ∈ N. �
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3.2.1 Completeness of P

We recall the following space, where f ′ denoted the Fréchet derivative:

D2 := { f ∈ Cb([−1, 1]2;R) : f ′ exists, and ‖ f ‖D2 := ‖ f ‖∞ + ‖ f ′‖∞ < ∞}

We now recall a theorem. The space was defined a little differently before, but the proof is the

same.

Theorem 3.2.3. As defined above, (D2, ‖ · ‖D2) is a Banach space.

Theorem 3.2.4. Let

P := { f ∈ D2 : fxx, fyy, fxy, fyx all exist and are bounded}.

Also, let ‖ · ‖P be defined as ‖ f ‖P := ‖ f ‖D + ‖ fxx‖∞ + ‖ fyy‖∞ + ‖ fxy‖∞ + ‖ fyx‖∞. Then P is a Banach

space.

Proof. Let N ∈ N. Suppose that f : [−1, 1]N → R, then we note here that ‖ f ′‖∞ :=

sup
x∈[−1,1]N

‖ f ′(x)‖L(RN ,R). We also note the following for any x ∈ RN and for some K ∈ R:

‖ f ′(x)‖L(RN ,R) :=
[(

fx1(x)
)2

+ . . . +
(
fxN (x)

)2
] 1

2
≤ K

[∣∣∣ fx1(x)
∣∣∣ + . . . +

∣∣∣ fxN (x)
∣∣∣]

Thus, ‖ f ′‖∞ ≤ K
[
‖ fx1‖∞ + . . . + ‖ fxN‖∞

]
. But we also know that ∀ j ∈ N and ∀x ∈ [0, 1]N we have

‖ f ′‖L(R,R) ≥ | fx j(x)|. Therefore, ‖ f ′‖∞ ≥ ‖ fx j‖∞ for any j ∈ N. Hence, for some K̃ ∈ R we know:

K̃
(
‖ fx1‖∞ + . . . + ‖ fxN‖∞

)
≤ max

1≤ j≤N
‖ fx j‖∞ ≤ ‖ f

′‖∞.

Thus, ‖ f ‖∗DN
:= ‖ f ‖∞ +

N∑
j=1
‖ fx j‖∞ is an equivalent norm on DN . We will use this fact shortly. Let

‖ f ‖∗P := ‖ f ‖∞+ ‖ fx‖∞+ ‖ fy‖∞+ ‖ fxx‖∞+ ‖ fyy‖∞+ ‖ fxy‖∞+ ‖ fyx‖∞, an equivalent norm on P. Suppose

that { fn} is a sequence in P such that ‖ fn − fm‖P −−−−−→
m,n→∞

0. Well, for all f ∈ P, using our equivalent

renorming of D2 with the ‖ · ‖D∗2-norm

‖ fx‖D∗2 = ‖ fx‖∞ + ‖ fxx‖∞ + ‖ fxy‖∞

‖ fy‖D∗2 = ‖ fy‖∞ + ‖ fyx‖∞ + ‖ fyy‖∞

‖ f ‖D∗2 = ‖ f ‖∞ + ‖ fx‖∞ + ‖ fy‖∞
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Clearly,

∃h ∈ D2 such that ‖( fn)x − h‖D∗2

∃k ∈ D2 such that ‖( fn)y − k‖D∗2

∃g ∈ D2 such that ‖ fn − g‖D∗2

Now, ‖( fn)x − gx‖∞ −→
n

0 and ‖( fn)y − h‖∞ −→
n

0 we get gx = h. Similarly, we get gy = k. But,

h, k ∈ D2, so:

gxx = hx

gxy = hy

gyx = kx

gyy = ky

Putting this all together, we see that g ∈ P and ‖ fn − g‖∗P −→n
0, so P is complete. �

Now we need a definition for a new functional that we will use shortly.

Definition Fix z0 = (x0, y0) ∈ R2. Let Γ(·, z0) : P2 → R+ be defined by Γ( f , z0) :=
∣∣∣ fxy(z0) − fyx(z0)

∣∣∣
3.2.2 A Generating Function

Lemma 3.2.1. Fix z0 ∈ [−1, 1]2. Then there is a function f ∈ P such that Γ( f , z0) = 2. In particular,

‖ f ‖P ≤ 96 < 100. We shall call this function the unmixed function at z0.

Proof. Without loss of generality, we can assume that z0 = (0, 0), for if not, we can translate the

example we are about to give. Let

f (x, y) :=

 xy x2−y2

x2+y2 : (x, y) , (0, 0)

0 : (x, y) = (0, 0)
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Figure 21: The Unmixed Function

Then,

fy(x, y) :=


x5−4x3y2−xy4

(x2+y2)2 : (x, y) , (0, 0)

x : x , 0, y = 0

lim
k→0

f (0,k)
k = 0 : (x, y) = (0, 0)

and

fx(x, y) :=


y(x4+4x2y2−y4)

(x2+y2)2 : (x, y) , (0, 0)

−y : y , 0, x = 0

lim
h→0

f (h,0)
k = 0 : (x, y) = (0, 0)

Hence, we have the following:

fxy(x, y) = [ fx]y(x, y) =


lim
k→0

fx(0,k)− fx(0,0)
k = lim

k→0

−k
k = −1 : (x, y) = (0, 0)

x6+9x4y2−9x2y4−y6

(x2+y2)3 : (x, y) , (0, 0)

.
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fyx(x, y) = [ fy]x(x, y) =


lim
h→0

fy(h,0)− fy(0,0)
h = lim

h→0

h
h = 1 : (x, y) = (0, 0)

x6+9x4y2−9x2y4−y6

(x2+y2)3 : (x, y) , (0, 0)

Also,

fxx(x, y) = [ fx]x(x, y) =

 0 : (x, y) = (0, 0)
−4xy3(x2−3y2)

(x2+y2)3 : (x, y) , (0, 0)

fyy(x, y) = [ fy]y(x, y) =

 0 : (x, y) = (0, 0)
4x3y(−3x2+y2)

(x2+y2)3 : (x, y) , (0, 0)

The function f is continuously differentiable, since both ∂ f
∂x and ∂ f

∂x are continuous everywhere.

In particular, ∂ f
∂x is continuous at the origin since, for x2 + y2 , 0, using polar coordinates of

x = r cos(θ), y = r sin(θ):

| fx| =

∣∣∣x4y + 4x2y3 − y5
∣∣∣

(x2 + y2)2

=
r5| cos4(θ) sin(θ) + 4 cos2(θ) sin3(θ) − sin5(θ)|

r4 ≤
6(x2 + y2)5/2

(x2 + y2)2

= 6
√

x2 + y2 ≤ 6
√

2

and

∣∣∣ fy

∣∣∣ =

∣∣∣x5 − 4x3y2 − xy4
∣∣∣

(x2 + y2)2

r5| cos5(θ) − 4 cos3(θ) sin2(θ) − cos(θ) sin4(θ)|
r4 ≤ 6

√
x2 + y2

≤ 6
√

2.

Now, we observe that ‖ f ‖∞ ≤ 1, ‖ f ′‖∞ =
∥∥∥∥( fx, fy

)∥∥∥∥
∞
≤

∣∣∣∣(6√2, 6
√

2
)∣∣∣∣ =

√
2
√

36 + 36 < 23.

Using polar coordinates, x = r cos(θ) and y = sin(θ), we have:
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| fxx| ≤

∣∣∣∣∣∣−4xy3(x2 − 3y2)
(x2 + y2)3

∣∣∣∣∣∣
=

4r6| cos3(θ) sin3(θ) − 3 cos(θ) sin5(θ)|
r6

= 4
∣∣∣cos3(θ) sin3(θ) − 3 cos(θ) sin5(θ)

∣∣∣
≤ 4 · 4 = 16

and ∣∣∣ fyy

∣∣∣ ≤ ∣∣∣∣∣∣4x3y(−3x2 + y2)
(x2 + y2)3

∣∣∣∣∣∣
=

4r6|3 cos5(θ) sin(θ) − cos3(θ) sin3(θ)|
r6

= 4
∣∣∣3 cos5(θ) sin(θ) − cos3(θ) sin3(θ)

∣∣∣
≤ 4 · 4 = 16.

Also, ∣∣∣ fxy

∣∣∣ ≤ ∣∣∣∣∣∣ x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

∣∣∣∣∣∣
=

r6| cos6(θ) + 9 cos4(θ) sin2(θ) − 9 cos2(θ) sin4(θ) − sin6(θ)|
r6

=
∣∣∣cos6(θ) + 9 cos4(θ) sin2(θ) − 9 cos2(θ) sin4(θ) − sin6(θ)

∣∣∣
≤ 20

and

∣∣∣ fyx

∣∣∣ ≤ ∣∣∣∣∣∣ x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

∣∣∣∣∣∣
=

r6| cos6(θ) + 9 cos4(θ) sin2(θ) − 9 cos2(θ) sin4(θ) − sin6(θ)|
r6

=
∣∣∣cos6(θ) + 9 cos4(θ) sin2(θ) − 9 cos2(θ) sin4(θ) − sin6(θ)

∣∣∣
≤ 20

Observe that ‖ f ‖P : ‖ f ‖∞+‖ f ′‖∞+‖ fxx‖∞+‖ fyy‖∞+‖ fxy‖∞+‖ fyx‖∞ ≤ 1+23+16+16+20+20 =

96 ≤ 100

Thus, we see the last condition by examining that Γ( f , (0, 0)) :=
∣∣∣ fxy(0, 0) − fyx(0, 0)

∣∣∣ = 2.

Hence the claim has been proved. �
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Proposition 3.2.1. Let Q,T ∈ P. Then the following holds true:

1. Γ(Q, t) ≥ 0 for all t ∈ [−1, 1]2, and Γ(Q, t) is a function of t.

2. Γ(aQ, t) = aΓ(Q, t) for any a ∈ [0,∞) and any t ∈ [−1, 1]2.

3. Γ(Q + T, t) ≤ Γ(Q, t) + Γ(T, t) for all t ∈ [−1, 1]2.

4. |Γ(Q, t) − Γ(T, t)| ≤ Γ(Q + T, t) for all t ∈ [−1, 1]2.

Proof. 3.2.1 Let T,Q be as above, and fix t ∈ [−1, 1]2. Then (1) and (2) are clear from the

definition, so we will prove (3), and leave (4) to the reader. By the triangle inequality in (R, ‖ · ‖):

Γ(T + Q, t) =
∣∣∣(T + Q)xy (t) − (T + Q)yx (t)

∣∣∣ =
∣∣∣Txy(t) + Qxy(t) − Tyx(t) − Qyx(t)

∣∣∣
≤

∣∣∣Txy(t) − Tyx(t)
∣∣∣ +

∣∣∣Qxy(t) − Qyx(t)
∣∣∣

= Γ(T, t) + Γ(Q, t).

Therefore, the desired inequality is now obvious. �

3.2.3 Unmixed At A Point

Theorem 3.2.5. Fix z0 ∈ [−1, 1]2. Let G := {u ∈ P : Γ(u, z0) > 0}. Then G is open and dense in P,

in fact it co-porous in P.

Proof. Without loss of generality, we may assume that z0 = (0, 0), for if not, then we use

translations of the functions we will be discussing. We know by the previous theorem that G is

non-empty, so it makes sense to discuss openness.

Let g ∈ G be arbitrary, and δ := Γ(g, z0) > 0. Now choose ε > 0 such that 0 < ε ≤ δ/4. Then

let s ∈ P such that ‖s‖P < ε, h := g + s, and we show that h ∈ G. Note that we can see directly that

Γ(s, z0) ≤ 2‖s‖P. Now we have the following:

0 <
δ

2
≤ δ − 2ε < Γ(g, z0) − 2‖s‖P ≤ Γ(g, z0) − Γ(s, z0) ≤ Γ(g + s, z0) =: Γ(h, z0).

Now we prove density of the set. Let ε ∈ (0, 1) be arbitrary, and g ∈ P be arbitrary. Without loss

of generality, we assume that g ∈ P \ G. We will show that there is a function h such that h ∈ G

and ‖h − g‖P < ε, by creating a modified version of our unmixed function. Let J := ε
100 f where

f is the unmixed function. Then, ‖J‖P = ε
100‖ f ‖P ≤ ε, and Γ(J, z0) = 2ε

100 > 0. Now recall that
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P \ G = {v ∈ P : Γ(v, z0) = 0}, so then we know that Γ(g, z0) = 0. Then let h := g + J, which we

claim is the dense function we need.

Well, ‖h − g‖P = ‖J‖P < ε. Also, 0 ≤ 2ε
100 − 0 = Γ(J, z0) − Γ(g, z0) ≤ Γ(h, z0). Therefore the

claim is proved.

Now we need to show the porosity conditions. We want to prove that Gc is porous by

showing that ∃β ∈ (0, 1] and ∃r0 ∈ (0,∞) such that ∀x ∈ Gc, ∀r ∈ (0, r0], ∃y ∈ G such that

Bo(y; βr) ⊆ Bo(x, r) ∩G.

Let β = 1
4 and r0 = 1/2. Furthermore, take any v ∈ P \ G := {u ∈ P : Γ(u, z0) = 0} and let

r ∈ (0, r0]. Let c := r
100 > 0. We take S := v + c f , where f is the unmixed function. Then, we have

that:

0 <
r

50
= 2c = 2(c) − 0

≤ Γ(c f , z0) − Γ(v, zo) ≤ Γ(v + c f , z0) = Γ(S , z0).
(3.3)

So S ∈ G. Now to show that Bo(S ; βr) ⊆ Bo(v, r) ∩G. Let g ∈ P such that ‖g‖P ≤ βr = r
400 . Then,

0 <
3r

200
=

r
50
−

r
200

= 2(
r

100
) − 2(

r
400

) < Γ(S , z0) − 2‖g‖P < Γ(S , z0) − Γ(g, z0) ≤ Γ(S + g, z0).

This proves that S + g ∈ G, as needed.

Now to show that Bo(S ; βr) ⊆ Bo(v, r). Well, let s ∈ P such that ‖s‖P ≤ βr = r
400 . Then:

‖(S + s) − v‖P := ‖(v + c f + s) − v‖P = ‖c f + s‖P ≤ ‖c f ‖P + ‖s‖P

= c‖ f ‖P + ‖s‖p ≤

( r
100

)
‖ f ‖P +

r
100
≤

96r
100

+
r

400
< r.

(3.4)

Thus Bo(S ; βr) ⊆ Bo(v, r), and so then Bo(S ; βr) ⊆ Bo(v, r) ∩ G. Therefore, G is co-porous as

claimed.

�

Corollary 3.2.1. Let E be a countable subset of [−1, 1]2. Let GE := {u ∈ P : Γ(u, z0) > 0,∀z0 ∈ E}.

Then GE is a dense Gδ set in P, and if E is in fact finite, then GE is co-porous in P.
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Proof. This is an easy modification of the above if E is finite, and if not, then we apply the Baire

Category Theorem to get the first result using the above theorem. �
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4.0 SEMI-NORMS AND DENSE OPEN CO-POROUS SETS

4.1 INTRODUCTION

The present article is a result of observations made during research regarding derivatives and

porosity of functions on certain sets (See for example [8]). In particular, we noticed that there

was a general result that could be made on Banach spaces when we are looking at the set where a

seminorm is positive when we have said seminorm is continuous with respect to the norm of the

space.

Interestingly we did not need this result in their proof, however, they are unaware of the result

being published, and find it interesting and useful for proving a number of related results. The

result allows us to consider how typical a given condition is from the perspective of category and

porosity, so long as we can phrase it within the perspective of a seminorm on a Banach space.

The idea of porosity was first used by Dolzhenko [11] as a way of describing the boundary

behavior of certain functions. Since then, the definition and principle notions have shown them-

selves useful in the study of quasiconformal mappings, functional analysis, harmonic analysis,

as well as topology. Porosity is a way of combining the ideas of category and measure into one

notion. A great overview and treatment of the topic can be found in Zajı́čeks survey paper [28].

Porosity (specifically σ-porosity, is often used as a way of sharpening results that previously only

used sets of First Category or sets of measure zero.
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4.2 SEMINORM DEFINED SET

We begin with some definitions to start things moving.

Definition Let V be a vector space, and N(·) be a real function on V over the field K such that:

1. N(v) ≥ 0 for all v ∈ V .

2. N(cv) = |c|N(v) for all v ∈ V and for any c ∈ K.

3. For any w, v ∈ V we have that N(w + v) ≤ N(w) + N(v).

Then we say that N(·) is a seminorm on V .

We may also define the concept of Strong-Porosity. Throughout this paper for convenience we

shall interchangeably use the term Porosity and Strong-Porosity, as Strong-Porosity is the only one

we will be referencing.

Definition Let (U, d) be a metric space, and A ⊂ U. We say that A is porous if ∃β ∈ (0, 1] and

∃r0 ∈ (0,∞) such that ∀x ∈ A, ∀r ∈ (0, r0], ∃y ∈ Ac := U \ A such that B(y; βr) ⊆ B(x, r)∩ (U \ A).

We say that a set J is Co-Porous, if Jc is Porous.

We are now ready for our result to be stated and proved.

Theorem 4.2.1. Let (X, ‖ · ‖) be any Banach space, and let N(·) be any seminorm on X that is

continuous with respect to ‖ · ‖. i.e. There exists C ∈ (0,∞) such that N(x) ≤ C‖x‖ for all x ∈ X.

Define G := {x ∈ X : N(x) > 0}. If G , ∅, then G is a dense, open, Co-Porous set in X.

Proof. Assume the hypotheses of the theorem. Thus, we assume that G , ∅, so fix some f ∈ G.

So by definition, 0 < N( f ) ≤ C‖ f ‖ < ∞. Let δ := N( f ) > 0, γ := ‖ f ‖ > 0. We will use this later as

our “generating function”.

We will prove open first. Let g ∈ G be arbitrary, and α := ‖g‖ > 0. Now choose ε > 0 such

that 0 < ε ≤ α
2C . Then let s ∈ X such that ‖s‖ < ε, h := g + s, and we show that h ∈ G. Note that

we know that N(s) ≤ C‖s‖. Now we have the following:

0 <
α

2
= α −

α

2
≤ N(g) −C‖s‖ ≤ N(g) − N(s) ≤ N(g + s) =: N(h).
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Now we prove density of the set. Let ε ∈ (0, 1) again be arbitrary, and g ∈ G again be arbitrary.

Without loss of generality, we assume that g ∈ X \G. We will show that there is a function h such

that h ∈ G and ‖h − g‖ < ε, by creating a modified version of our generating function.

By assumption we have N(g) = 0, and then we take h := ε
2γ f + g. For h ∈ G since we have

that 0 < ε
2γN( f ) = ε

2γN( f ) − N(g) ≤ N( ε
2γ f + g) =: N(h). Furthermore, ‖h − g‖ = ‖ ε2γ f ‖ = ε

2 < ε.

Now we need to show the porosity conditions. Let’s see what we need to prove:

We need to show ∃β ∈ (0, 1] and ∃r0 ∈ (0,∞) such that ∀x ∈ Gc, ∀r ∈ (0, r0], ∃y ∈ G such that

B(y; βr) ⊆ B(x, r) ∩G.

Let β = δ
100(1+δ)(1+C) and r0 = 1/2. Furthermore, take any v ∈ Gc := {u ∈ X : N(u) = 0} and let

r ∈ (0, r0]. Let c := r
2(δ+1) > 0. We take S := v + c f , where f is the generating function. Then, we

have that:

0 <
r

2(δ + 1)
δ = cN( f ) − 0 = N(c f ) − N(v) ≤ N(v + c f ) = N(S ). (4.1)

So S ∈ G. Now to show that B(S ; βr) ⊆ B(v, r) ∩G. Let g ∈ P such that ‖g‖P < βr. Then,

0 <
rδ

2(δ + 1)
−

δr
100(1 + δ)

≤
rδ

2(δ + 1)
−

Cδr
100(1 + δ)(1 + C)

<
rδ

2(δ + 1)
−C‖g‖ < N(S ) −C‖g‖ < N(S ) − N(g) ≤ N(S + g).

(4.2)

This proves that S + g ∈ G, as needed.

Now to show that B(S ; βr) ⊆ B(v, r). Well, let s ∈ X such that ‖s‖ < βr. Then:

‖(S + s) − v‖ := ‖(v + c f + s) − v‖ = ‖c f + s‖ ≤ ‖c f ‖ + ‖s‖

= c‖ f ‖ + ‖s‖ ≤
(

r
2(δ + 1)

)
‖ f ‖ +

δr
100(1 + δ)(1 + C)

≤
r
2

+
r

100
≤ r.

(4.3)

Thus B(S ; βr) ⊆ B(v, r), and so then B(S ; βr) ⊆ B(v, r) ∩G. Therefore, G is co-porous as claimed.

�
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4.3 DIRECTIONALLY POROUS

We now define a different notion of porosity (see [28] for details, also [18, 29]).

Definition Let (X, ‖ · ‖) be a Banach space, and A ⊆ X such that A is closed. We say that A is

directionally porous if ∀a ∈ A there exists 0 , v ∈ X, p > 0 and a sequence tn → 0 of strictly

positive numbers such that Bo(a + tnv; ptn) ∩ A = ∅. Moreover, for arbitrary S ⊆ M, we say

that S is directionally porous if S is directionally porous. Furthermore, we say that a set J is

co-directionally porous if Jc is directionally porous.

A set S is σ-directionally porous if and only if S =
⋃

n∈N
S n such that each S n is directionally

porous. A set A is co-σ-directionally porous if and only if A := S c where S =
⋃

n∈N
S n such that

each S n is directionally porous.

Now, one of the interesting things about directionally porous sets is that they are Aronszajn

null, Haar null, and Γ-null in a separable Banach space (again see [28] and [18, 29] and others for

details). We will however mention that a Borel subset A of a separable Banach space X is said to

be Haar null if there is a Borel probability measure µ on X so that µ(A + x) = 0 for every x ∈ X.

We extend this definition to a general A ⊂ X and say that it is Haar null if it is a subset of a Borel

set with the same property. This gives the following theorem and interesting result.

Theorem 4.3.1. Let (X, ‖ · ‖) be any Banach space, and let N(·) be any seminorm on X that is

continuous with respect to ‖ · ‖. i.e. There exists C ∈ (0,∞) such that N(x) ≤ C‖x‖ for all x ∈ X.

Define G := {x ∈ X : N(x) > 0}. If G , ∅, then G is a dense, open, Co-Directionally-Porous

set in X.

Proof. As G , ∅, there exists v ∈ X, such that N(v) > 0 and so without loss of generality, we

assume that N(v) = 1. Let x ∈ Gc := {y ∈ X : N(y) = 0}. Now, there exists C > 0 as above, so let

0 < p < 1
C , and tn := 1

2n . Then we need to show that Bo(x + tnv; ptn) ∩ {z ∈ X : N(z) = 0} = ∅.

Fix n ∈ N. Then, let s ∈ X such that ‖s‖ < ptn. Then we will show that N(x + tnv + s) > 0.
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Well, we have the following:

0 < (1 −Cp)tn = tn −Cptn

≤ tn −C‖s‖ ≤ tnN(v) − N(s) = N(tnv) − (N(x) + N(s))

≤ N(tnv) − N(x + s) ≤ N(x + tnv + s).

Therefore, G is co-directionally porous as claimed. �

4.4 APPLICATIONS

We begin with some definitions to start things moving.

Definition Let (X, ‖ · ‖) be a Banach space overK = R or C, and N(·) be a real function on X over

the field K such that:

(I) N(v) ≥ 0 for all v ∈ X.

(II) N(cv) = |c|N(v) for all v ∈ X and for any c ∈ K.

(III) For any w, v ∈ X we have that N(w + v) ≤ N(w) + N(v).

Then we say that N(·) is a seminorm on X. Furthermore, if ∃c ∈ [0,∞) such that ∀x ∈ X,N(x) ≤

c‖x‖, then we say that N(·) is continuous with respect to ‖ · ‖.

Proposition 4.4.1. Let us consider the Banach space (C[−1, 1], ‖ · ‖∞). Then the following are

seminorms on (C[−1, 1], ‖ · ‖∞) that are continuous with respect to ‖ · ‖∞:

1. N1( f ) := sup
t,s∈[−1,1]

∣∣∣∣ f (
s+t
2

)
−

(
f (s)+ f (t)

2

)∣∣∣∣, for all f ∈ C[−1, 1].

2. N2( f ) := sup
t∈[−1,1]

| f (−t) − f (t)|, for all f ∈ C[−1, 1].

3. N3( f ) := sup
t∈[−1,1]

| f (−t) + f (t)|, for all f ∈ C[−1, 1].

Note that a function g ∈ C[−1, 1] is affine if and only if N1(g) = 0 (i.e. g ((1 − λ)s + λt) =

(1 − λ)g(s) + λg(t) for any λ ∈ [0, 1],∀s, t ∈ [−1, 1]).

Also note that a function g ∈ C[−1, 1] is even if and only if N2(g) = 0 (i.e. g(−s) = g(s)

∀s ∈ [−1, 1]).
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Further note that a function g ∈ C[−1, 1] is odd if and only if N3(g) = 0 (i.e. g(−s) = −g(s)

∀s ∈ [−1, 1]).

Proof of Proposition 4.4.1 Part 1. We will show the necessary properties systematically.

(I) Let f ∈ C[−1, 1]. Then clearly N1( f ) ≥ 0

(II) Let f ∈ C[−1, 1] and c ∈ K. Then:

N1(c f ) := sup
t,s∈[−1,1]

∣∣∣∣∣∣c f
( s + t

2

)
−

(
c f (s) + c f (t)

2

)∣∣∣∣∣∣
= |c| sup

t,s∈[−1,1]

∣∣∣∣∣∣ f ( s + t
2

)
−

(
f (s) + f (t)

2

)∣∣∣∣∣∣ = |c|N1( f )

(III) Let f , g ∈ C[−1, 1]. Then fix s, t ∈ [−1, 1]:∣∣∣∣∣∣( f
( s + t

2

)
+ g

( s + t
2

))
−

[(
f (s) + f (t)

2

)
+

(
g(s) + g(t)

2

)]∣∣∣∣∣∣
=

∣∣∣∣∣∣
[

f
( s + t

2

)
−

(
f (s) + f (t)

2

)]
+

[
g
( s + t

2

)
−

(
g(s) + g(t)

2

)]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ f ( s + t
2

)
−

(
f (s) + f (t)

2

)∣∣∣∣∣∣ +

∣∣∣∣∣∣g ( s + t
2

)
−

(
g(s) + g(t)

2

)∣∣∣∣∣∣
Now, taking the supremum of both sides of the above:

N1( f + g) ≤ N1( f ) + N1(g)

(IV) Let f ∈ C[−1, 1]. Then:

N1( f ) := sup
t,s∈[−1,1]

∣∣∣∣∣∣ f ( s + t
2

)
−

(
f (s) + f (t)

2

)∣∣∣∣∣∣ ≤ 2‖ f ‖∞

�

Proof of Proposition 4.4.1 Part 2. We will show the necessary properties systematically.

(I) Let f ∈ C[−1, 1]. Then clearly N2( f ) ≥ 0
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(II) Let f ∈ C[−1, 1] and c ∈ K. Then:

N2(c f ) := sup
t∈[−1,1]

|c f (−t) − (c f (t))|

= |c| sup
t∈[−1,1]

| f (−t) − ( f (t))| = |c|N2( f )

(III) Let f , g ∈ C[−1, 1]. Then fix t ∈ [0, 1]:

∣∣∣( f (−t) + g (−t)) −
[
( f (t)) + (g(t))

]∣∣∣
=

∣∣∣[ f (−t) − ( f (t))
]
+

[
g (−t) − (g(t))

]∣∣∣
≤ | f (−t) − ( f (t))| + |g (−t) − (g(t))|

Now, taking the supremum of both sides of the above:

N2( f + g) ≤ N2( f ) + N2(g)

(IV) Let f ∈ C[−1, 1]. Then:

N2( f ) := sup
t∈[−1,1]

| f (−t) − ( f (t))| ≤ 2‖ f ‖∞

�

Proof of Proposition 4.4.1 Part 3. We will show the necessary properties systematically.

(I) Let f ∈ C[−1, 1]. Then clearly N3( f ) ≥ 0

(II) Let f ∈ C[−1, 1] and c ∈ K. Then:

N3(c f ) := sup
t∈[−1,1]

|c f (−t) + (c f (t))|

= |c| sup
t∈[−1,1]

| f (−t) + ( f (t))| = |c|N3( f )
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(III) Let f , g ∈ C[−1, 1]. Then fix t ∈ [0, 1]:

∣∣∣( f (−t) + g (−t)) +
[
( f (t)) + (g(t))

]∣∣∣
=

∣∣∣[ f (−t) + ( f (t))
]
+

[
g (−t) + (g(t))

]∣∣∣
≤ | f (−t) + ( f (t))| + |g (−t) + (g(t))|

Now, taking the supremum of both sides of the above:

N3( f + g) ≤ N3( f ) + N3(g)

(IV) Let f ∈ C[−1, 1]. Then:

N3( f ) := sup
t∈[−1,1]

| f (−t) + ( f (t))| ≤ 2‖ f ‖∞

�

Proposition 4.4.2. Let us consider the Banach space (C[−1, 1], ‖ · ‖∞). Then,

(I) There exists f1 ∈ C[−1, 1] such that N1( f1) > 0.

(II) There exists f2 ∈ C[−1, 1] such that N2( f2) > 0.

(III) There exists f3 ∈ C[−1, 1] such that N3( f3) > 0.

Proof. We provide just the examples, as the details are easy to check.

(I) Let f1 ∈ C[−1, 1] such that N1( f1) > 0 to be f1(t) := t2.

(II) Let f2 ∈ C[−1, 1] such that N2( f2) > 0 to be f2(t) := t3.

(III) Let f3 ∈ C[−1, 1] such that N3( f3) > 0 to be f3(t) := t2.

�

Corollary 4.4.1. The following holds:

(I) The continuous affine functions on [−1, 1] are null in the sense of Haar, Gauss, and Γn.

(II) The continuous even functions on [−1, 1] are null in the sense of Haar, Gauss, and Γn.

(III) The continuous odd functions on [−1, 1] are null in the sense of Haar, Gauss, and Γn.

We now have enough that we may state the following theorem:
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Theorem 4.4.1. Let (C[−1, 1], ‖ · ‖) be the Banach space of continuous functions on [−1, 1]. There

exists two sets, E,O ⊂ C[−1, 1] that are null in the sense of Haar and Gauss such that for all

f ∈ C[−1, 1], we have that f = fe + fo with fe ∈ E and fo ∈ O.

Proof. Let E be the even functions and O be the odd functions, then set

fe(t) =
1
2

( f (t) + f (−t))

fo(t) =
1
2

( f (t) − f (−t)).

The rest follows from straightforward checking. �

4.5 LOCAL CONDITIONS

We now extend some generalizations of ideas that we used directly in previous work. By way of

working on related problems, we noticed a possible generalization, and what follows is the result

of that work.

Definition Let p ∈ N be fixed. Let (X, ‖ · ‖) be a Banach function space on J := [−1, 1]p, such that

if F ∈ X, then F : J → R and ‖F‖ < ∞ for the norm ‖ · ‖.

Furthermore, suppose that N(·, ·) : X × J → [0,∞] is a function such that N(·, x) is a seminorm

on X over R that is uniformly continuous with respect to ‖ · ‖. In particular, for some A ∈ [1,∞),

we have for any x ∈ J:

1. N(v, t) ≥ 0 for all v ∈ X.

2. N(cv, t) = |c|N(v, t) for all v ∈ X and for any c ∈ R.

3. For any w, v ∈ V we have that N(w + v, t) ≤ N(w, t) + N(v, t).

4. N(v, t) ≤ A‖v‖ for all v ∈ X.

Define the following:

Θδ( f , x) := sup
t∈BJ(x;δ)

N( f , t)

Observe that Θδ( f , x) ≤ A‖ f ‖. Suppose that for some ε ∈ (0, 1), and for all x ∈ J, λ ∈ (0, 1)

there exists fB(x;λ) ∈ BX such that supp( f ) ⊂ BJ(x; λ), and we have Θλ( f , x) > ε. We will call such
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a function the local seminormed (LS) function at the ball B(x; λ).

Then let Θ( f , x) := lim sup
δ→0+

Θδ( f , x) ≤ A‖ f ‖.

Under all the above assumptions, we will say that (X, ‖ · ‖) is Locally Continuously seminormed

with respect to N(·, ·). We may say that N is a Locally Continuous seminorm (LCS) for (X, ‖ · ‖).

We will call Θ the local gauge.

Theorem 4.5.1. Let E be a closed dense set in J. Then GE := { f ∈ X : inf
x∈E

Θ( f , x) > 0} is an open

porous set in (X, ‖ · ‖).

Proof. (Theorem 4.5) Let ε ∈ (0, 1) be given, and β = 1
32A and r0 = 1/2, for the porosity constants.

Furthermore, take any f ∈ X \GE := {u ∈ X : inf
x0∈E

Θ(u, x0) = 0} and let r ∈ (0, r0].

We will prove this in a few steps using our previous work. First, we observe that by the Dyadic

Cubes Theorem, the open set Ec =
⋃∞

i=1 Ci where the {Ci}
∞
i=1 are cubes at center ci with radii di for

each Ci. Furthermore, each Ci =
⋃
j∈N

Ai, j where the A js are a Mayan subdivision. Therefore, we

may re-enumerate all the Ai, js as the union E =
⋃

n∈N
S n where the S n are cubes at center zn with

radii rn for each S n.

Now, let fn := fB(zn;,rn) be the LS function for the ball B(zn; rn). Then within any neighborhood

of x ∈ E there is a LS function, according to the Mayan subdivision of the cube, and the definition

of LS functions. Then we define the following function with α := {αn} a sequence of real scalars:

w(x) :=
∑
n∈N

αn fn(x)

We will soon use this function w(x) to create our function for density by choosing particular
−→α = (αn)n∈N.

Thus we let:

αn :=


rε
4 : 0 ≤ Θ( f , y) < rε

8 ,∀y ∈ Bo(zn; rn)

0 : ∃z0 ∈ Bo(zn; rn) such that rε
8 ≤ Θ( f , z0)
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Then the sequences just defined are sequences for the scaling of the tangential oscillations. Then

we let g := f + w, and we will show that g ∈ GE. In fact we will show that Θ(g, z) ≥ rε
8 for all

x ∈ E.

We will first show that ∀n ∈ N there exists sn ∈ Bo(zn; rn) such that Θ(g, sn) ≥ rε
8 . We will use

this to show that Θ(g, z) ≥ rε
8 for all x ∈ E.

As such, let k ∈ N be fixed, we show existence of sk.

Case 1: Suppose 0 ≤ Λ( f , z) < rε
8 ,∀z ∈ Bo(zk; rk). Then using the seminorm properties of Θ,

for any s ∈ Bo(zk; rk):

0 <
rε
8

=

(rε
4

)
−

rε
8

= Θ(αk fR,S k , s) − Θ( f , s) ≤ Θ(w + f , s) = Θ(g, s) (4.4)

So choose any sk ∈ Bo(zk; rk).

Case 2: Suppose ∃tk ∈ Bo(zk; rk) such that rε
8 ≤ Θ( f , tk). Then using the seminorm properties

of Θ:

0 <
rε
8
≤ Θ( f , tk) − 0 = Θ( f , tk) − Θ(αk f ′R,S k

, tk) ≤ Θ(αkv′k + f ′, tk) = Θ(g, tk) (4.5)

So we let sk := tk.

Now, let z ∈ E, and δ > 0 be arbitrary. We will show that there is a point within Bo(z; δ) such

that Θ(g, ·) is at least rε
8 .

We turn to an illustration to present clarity:

Figure 22: Selection Of Our Point
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Within Bo(z; δ/2) there is an edge of a dyadic cube. Furthermore, by the definition of

the Mayan subdivision, there is a Mayan square within Bo(x; δ), say S m. So we have a point

sm ∈ Bo(zk; rk) with Bo(zk; rk) ⊆ Bo(z; δ), and rε
8 ≤ Θ(g, sm). Therefore, rε

8 ≤ sup
u∈Bo(z;δ)

N(g, u).

Now, as δ is arbitrary, and we may always find such a point sm, then

0 <
r
8
≤ lim

δ→0+
sup

u∈Bo(z,δ)
N( f , u) =: Θ(g, z).

So g ∈ GE.

Now to show that Bo(g; βr) ⊆ Bo( f , r) ∩G. Let v ∈ X such that ‖v‖ ≤ βr = r
32 . Fix an arbitrary

x ∈ E. Then,

0 <
rε
16

=
rε
8
−

r
32

< Θ(g, z) − A‖v‖ < Θ(g, z) − ‖v‖ < Θ(g, z) − Θ(v, z) ≤ Θ(g + v, z).

This proves that z + g ∈ GC, as needed.

Now to show that Bo(z; βr) ⊆ Bo(v, r). Well, let s ∈ P such that ‖s‖ ≤ rε
32A . Then,

‖(z + s) − v‖ := ‖(v + w + s) − v‖ = ‖w + s‖ ≤ ‖w‖ + ‖s‖ ≤
rε
4

+
rε

32A
≤

r
4

+
r

32
≤ r. (4.6)

Thus Bo(z; βr) ⊆ Bo(v, r), and so then Bo(z; βr) ⊆ Bo(v, r) ∩ GC. Therefore, GC is co-porous as

claimed. �
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5.0 OPEN QUESTIONS

The following sections are questions that the author has been considering recently, some of which

the author is actively investigating, some of which are designed by the author for future study. The

author is not aware of these questions having been answered, and as such believes them to be open

and related to the author’s research and interests.

5.1 HP-SMALL AND POROUS EXTENSIONS

The first collection of questions comes from a paper that the author found recently ([17]). The

paper utilizes some different definitions of porosity (as discussed in the main work, there are many

notions of porosity), and as such stronger notions are also developed in this work. For our theorems

on D(X),DN , P, etc., we showed that certain sets are porous. There is a notion called HP-small,

that would strengthen the results in the authors work, if they prove useful for the setting.

Definition Let A be a subset of (X, ‖ · ‖) a Banach Space, and c ∈ (0, 1]. We say that A is c-globally

very porous if every c′ ∈ (0, c), ∀x ∈ X and r > 0 there is a ball B = Bo(y, c′r), y ∈ B(x; r), such

that B ∩ A = ∅. A set A is σ-c-globally very porous if it is a countable union of c-globally porous

sets.

Definition Let A be a subset of a Banach Space (X, ‖ · ‖) and c ∈ (0, 1]. We say that A has property

HP(c) if for every c′ ∈ (0, c) and r > 0 there exists K > 0 and a sequence of balls {Bi} = {Bo(yi; c′r)‖

with ‖yi‖ ≤ r, i ∈ N such that for every x ∈ X,

card{i ∈ N : (x + Bi) ∩ A , ∅} ≤ K.
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The set A is said to be HP-small if there is a porosity constant c ∈ (0, 1] such that A is a countable

union of sets with property HP(c).

We will say that a subset A of a Banach space is co-HP-small, or HP-large, if Ac is HP-small.

Definition A Borel subset A of s separable Banach Space X is said to be Haar null if there is a

Borel probability measure µ on X so that µ(A + x) = 0 for every x ∈ X. We extend this definition

to a general A ⊂ X and say that it is Haar null if it is a subset of a Borel set with the same property.

Theorem 5.1.1. Every HP-small subset of a Banach space is σ-c-globally very porous, and hence

meager. Furthermore,every HP-small subset of a separable Banach space is Haar Null.

Now that the framework is laid out, we may now consider the following questions.

Question 5.1.1. Can we find specific examples of sets that demonstrate the differences between the

multiple definitions of porosity? i.e. can we find a set A that is porous, but not Globally-porous?

Can we find a set that is porous, but not HP-null? Additionally can we do the above for the various

notions of σ-porosity?

Question 5.1.2. Let (X, ‖·‖) which is a Banach space and has Fréchet differentiable norm. Then for

G := { f ∈ D(X) : Λ( f ′, x0) > 0} for some fixed x0 ∈ B(X), G is Globally-co-porous or HP-large?

Do we need to restrict to particular Banach spaces (Separable or Hilbert)?

Question 5.1.3. Let N ∈ N be fixed. Let E ⊂ (0, 1)N be a closed nowhere dense set. Then is

GE := { f ∈ DN : inf
x0∈E

Λ( f ′, x0) > 0} Globally-co-porous or HP-large? Is this even true in R?

Question 5.1.4. Let (X, ‖ · ‖) be a Banach space such that X∗ is separable. Is there an extension

of our finite dimension domain results to closed nowhere dense sets in X? In other words, can we

get any results for our GE set? The most pressing question is does there even exist a Volterra type

function in this case?

Question 5.1.5. Can we define and use a space Dn(X) to be the n-times bounded everywhere

differentiable functions (where all n derivative are bounded)? So can we have a result like our

results holding for the nth-tangential oscillation? Also, if the previous questions holds, can we

have Dn(X; Y) work out as well?
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5.2 NEW AREAS FOR POROSITY

The following are a few of the questions that the author has been considering recently that seem

to have interesting answers and appear to be questions that would make good use of the idea of

porosity.

5.2.1 Bounded Variation

Question 5.2.1. Let (BV[0, 1], ‖ · ‖) be the Banach space of functions of bounded variation with

norm ‖ f ‖ := | f (0)| + V1
0 ( f ). Let C be the usual cantor 1/3 set, and x ∈ C.

Here is an idea related to self-similar fractal sets (such as C := the usual middle-thirds Cantor

set), and fractional derivatives.

Let α be the Hausdorff dimension of the Cantor set; i.e.,

α :=
ln(2)
ln(3)

≈ 0.63093 .

Also, for all u ∈ R\{0} and for all β ∈ R, we define

uβ := |u|β sgn(u) .

Here, sgn(u) := u/|u|. Further, if β > 0, we set 0β := 0.

For every function g ∈ BV[0, 1], for every x ∈ C, we define

Q(g; x) := lim
δ−→0 +

sup
y,z∈(x−δ,x+δ)∩[0,1]

∣∣∣∣∣∣g(z) − g(y)
(z − y)α

−
1

(z − y)α

∫ z

y
g ′(t) dt

∣∣∣∣∣∣ .
Note that the function Q(g; ·) maps C into the interval [0,∞]. Also note that for all h ∈ AC[0, 1],

Q(h; x) = 0, for all x ∈ C.

Now, let f : [0, 1] −→ R be the usual Cantor function. We claim the following.

Lemma 5.2.1. The function Q( f ; ·) maps C into the interval (0,∞). Moreover,

Q( f , x) ≥
1
2
, for all x ∈ C .
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Now, let’s define the subset W of BV[0, 1] by

W :=
{
g ∈ BV[0, 1] : inf

x∈C
Q(g; x) > 0

}
.

Is W a co-porous set in BV[0, 1]?

Question 5.2.2. What about if we define a function similar to Q for other closed nowhere dense

sets?

5.2.2 Other Topics

Question 5.2.3. Are most (in the sense of category and porosity) series divergent? If yes, is there

a stronger condition?

Question 5.2.4. Do most (in the sense of category and porosity) absolutely converging series fail

the root test? i.e. Series an such that
∑∞

n=1 |an| < ∞ and yet lim sup
n→∞

n√
|an| ≥ 1. We know that∑∞

n=1
1
n2 is absolutely convergent, yet it fails the root test, is this common? If yes, is there a stronger

condition?

Question 5.2.5. Can we use the notion of porosity to either define a new notion of integration,

or to develop a strong notion of integration, or to reach some sort of strengthening of integration

results for porous sets?

Question 5.2.6. Is the limit of most sequences of bounded functions (in the sense of category and

porosity) discontinuous? If yes, is there a stronger condition?

Question 5.2.7. Let I := [0, 1], and #(·) be the counting measure. Consider the Banach space

(X, ‖ · ‖X) = (C(I; I), ‖ · ‖∞). In 1967, S. Sawyer proved [23] (among other things) that for a

certain set A residual in X, we have that for any f ∈ A there exists an interval (a, b) such that

#
(

f −1(y)
)

= ∞ for any y ∈ (a, b). Then we ask the following question: Do most functions f ∈ X ,

in the sense of directional porosity, possess a subinterval (a, b) ⊂ [0, 1] such that J := f −1 ((a, b))

is uncountable? A positive answer would include measure theoretic notions, because X here is

separable, therefore directionally porous sets are Haar, Gauss, etc. null.
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Question 5.2.8. In the sense of Category and Porosity, is it typical that functions with proper

iterated integrals (Riemann, or others) do not possess a double integral? i.e. Is Fubini’s Theorem

rare?

Definition A function f on an open interval J is of the Pompeiu type if f has a bounded derivative

and the sets on which f ′ is zero or does not vanish, respectively, are both dense in J. We let ∆ be

the collection of all bounded Pompeiu derivatives on [0, 1].

Theorem 5.2.1. (See [6]) (∆, d(·, ·)) is a complete metric space with metric d(g, f ) :=

sup
t∈[0,1]

|g(t) − f (t)|.

Question 5.2.9. Is a p-typical (in the sense of porosity) Pompeiu derivative in (∆, d) is such that

there are dense sets A1, A2 ⊂ [0, 1] with
[
f (x) ≥ 0,∀x ∈ A1

]
and

[
f (x) ≤ 0,∀x ∈ A2

]
.

Question 5.2.10. Can we make the set of Pompeiu derivatives a Banach space as a subset of

D[0, 1] a Banach space, and label it ∆∗. If yes, can we then say that a p-typical (in the sense of

porosity) Pompeiu derivative in (∆∗, ‖ · ‖D[0,1] such that there are dense sets A1, A2 ⊂ [0, 1] with[
f (x) ≥ 0,∀x ∈ A1

]
and

[
f (x) ≤ 0,∀x ∈ A2

]
.

Question 5.2.11. Are most (in the sense of category and porosity) multiplicatively-integrable func-

tions also integrable in the standard definition? What about if we use different notions of integra-

bility (Riemann, Lebegue, etc.)?

5.3 OTHER QUESTIONS OF IMMEDIATE INTEREST TO THE AUTHOR

There are additionally many questions that the author has been considering in other areas as well.

The following are a few of the more recent ideas for research.

Question 5.3.1. In recent work, Lennard and Dahma have proved that certain generalizations of

Lp spaces for p ∈ (−∞, 0) are in fact F-spaces. Can some of the techniques used in the proof of

this fact be used to define any additional integration methods analogous to product integration,

such as what appears in the work of Dr. Pesi Masani?
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Question 5.3.2. Let γ(·) be the measure of noncompactness. Let (X, ‖ · ‖) be a Banach space, and

K ⊂ X be norm closed and bounded. Let f : [0,∞)→ [0,∞) with f (0) = 0 such that for all ε > 0

the following are equivalent:

1. γ(K) < ε

2. There exists a sequence {xn}n in X such that K ⊂ co{xn : n ∈ N} and lim supn→∞ ‖xn‖ < f (ε).

Does there exist a strictly increasing continuous function f such that the above holds? What is the

best f that works? What are possible extensions if this holds?

Question 5.3.3. Are there generalizations of the work of Grafakos/Lennard and Gröchenig/Heil on

Frame Analysis to other functions spaces; in particular Hardy Spaces and Lorentz Spaces. Some

work has been done is this area by others to extend in certain spaces and certain conditions, but

I seek further generalizations and tightening of the bounds. In particular I seek a direct extension

of the techniques used in the works above.
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APPENDIX

BACKGROUND: INVESTIGATING DEFINITIONS

We use this section to illustrate and compare porosity.

A.1 ILLUSTRATIVE DEFINITIONS

Porosity Let (M, d) be a metric space, and A ⊆ M such that A is closed. We say that A is porous if

and only if

(♣)
[
∃r0 ∈ (0,∞) and ∃β ∈ (0, 1] such that ∀x ∈ A,∀r ∈ (0, r0]

∃z ∈ Ac such that Bo(z; βr) ⊆ Bo(x, r) ∩ Ac]

Moreover, for arbitrary S ⊆ M, we say that S is porous if S is porous. Furthermore, we say that a

set J is co-porous if Jc is porous.

Example of porous set:
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Figure 23: Porous Set “A” (the space is the whole slide, and “A” is the three points)

Example of porous set:

Figure 24: Ball around a point “x” of “A”
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Example of porous set:

Figure 25: Value “z” inside the ball

Figure 26: Sub-ball about “z” inside original ball
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Figure 27: Moving the balls

Note the original ball can be moved to any other point of “A”, and the same sub-ball radius

works uniformly.
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Figure 28: Moving the balls

Note the original ball can be moved to any other point of “A”, and the same sub-ball radius

works uniformly.

Definition of σ-Porosity A set S is σ-porous if and only if S =
⋃

n∈N
S n such that each S n is porous.

A set A is co-σ-porous if and only if A := S c where S =
⋃

n∈N
S n such that each S n is porous.

Note: Porosity was first used by Dolzhenko in 1967 [11]. Also, see Zajı́ček [27, 28] for a thorough

explanation of porosity.

Examples:

• Any finite set A is porous.

• If xn → x then A := {xn : n ∈ N} ∪ {x} is σ-porous.

• The 1/3 Cantor set C 1
3

is σ-porous.

We can think of porous sets as being “sponge-like”, or “having no bulk to them”.
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Figure 29: A Seasponge
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Figure 30: A Typical Porous set In R2
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Figure 31: A Typical Porous set In R3

A.2 POROUS SETS ARE MEASURE ZERO

So if a set is closed and porous, then it is closed nowhere dense. However, more is true. As such

we recall a consequence of the Lebesgue Density Theorem:

Lemma A.2.1. Let S ⊆ Rn be a measure set. Then the following is true:

1. dL(x) := lim
r→0+

mn(Bo(x;r)∩S )
mn(Bo(x;r)) = χS (x) for a.a. x ∈ S .

2. If mn(S ) > 0, then for a.a. x ∈ S , dL(x) = 1.

Let’s apply this to the next lemma:
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Lemma A.2.2. Let A ⊆ Rn. Then if A is closed and porous, then it is measure zero for mn the

n-dimensional Lebesgue measure.

Proof. Let β ∈ (0, 1], r0 ∈ (0,∞) such that ∀r ∈ (0, r0],∀x ∈ A,∃z ∈ Ac such that

Bo(z; βr) ⊆ Bo(x; r) ∩ Ac. Suppose to get a contradiction that mn(A) > 0, then ∃T,N such

that mn(N) = 0, A = T ∪ N (with mn(T ) = mn(A) > 0) and for all x ∈ T , dL(x) = 1.

Fix x ∈ T . Then ∃z ∈ Rn such that Bo(z; βr) ⊆ Bo(x; r) ∩ Ac.

Notice that:

mn(Bo(x; r)) = mn(Bo(x; r) ∩ A) + mn(Bo(x; r) ∩ Ac)

mn(Bo(x; r)) − mn(Bo(x; r) ∩ Ac) = mn(Bo(x; r) ∩ A)

And mn(Bo(z; βr) ≤ mn(Bo(x; r) ∩ Ac).

Therefore,

mn(Bo(x; r) ∩ A) ≤ mn(Bo(x; r)) − mn(Bo(z; βr))

Hence,

dL(x) := lim
r→0+

mn(Bo(x; r) ∩ A)
mn(Bo(x; r))

≤ lim
r→0+

[
1 −

mn(Bo(z; βr))
mn(Bo(x; r)

]
= lim

r→0+

[
1 − βn] < 1.

Thus we have a contradiction, and so mn(A) = 0. �

A.3 DIFFERENT DEFINITIONS

The reader may be familiar with porosity through the work of a number of different researchers.

Unfortunately, for as many researchers as there are in this area, there are that many definitions

given of porosity. Not every notion of porosity is the same as all of the others. In this appendix,

we comment on a few of the more commonly used definitions. We will state the definitions used

by some of the more active researchers in the area, then we will compare which are known to

be equivalent, and state a few results that point out some of the differences between a few of the

definitions.
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A.3.1 Lindenstrauss’s Definitions and Results

We take the following definitions from Lindenstrauss ([18], p. 10):

Definition (Lindenstrauss) A set E in a Banach space (X, ‖ · ‖) is called L-porous if there is 0 <

c < 1 such that for every x ∈ E and every ε > 0, there is a y ∈ X with 0 < ‖x − y‖ < ε and

Bo(y; c ‖x − y‖) ∩ E = ∅

In this situation, we say that E is L-porous with constant c.

Definition (From [18]) If Y is a subspace of X, then E is called porous in the direction of Y if there

is 0 < c < 1 such that for every x ∈ E and ε > 0 there is y ∈ Y so that 0 < ‖y‖ < ε and

Bo(x + y; c‖y‖) ∩ E = ∅

We notice that the above definitions could be stated purely symbolically, and we would say that

E ⊂ X is L-porous if:

∃c ∈ (0, 1), ∀x ∈ X, ∀ε > 0, ∃y ∈ X such that Bo(y; cε) ⊆ Bo(x; ε) \ E

and E is directionally L-porous in the Y direction if:

∃c ∈ (0, 1), ∀x ∈ X, ∀ε > 0, ∃y ∈ X such that Bo(x + y; cε) ⊆ Bo(0; ε) \ E

We also say that E ⊆ X is directionally L-porous if it is porous in some direction.

A set is σ-(L-porous), (L-directionally porous), or (L-porous in the direction of Y) if it is the

union of sets that are either (L-porous), (L-directionally porous), or (L-porous in the direction of

Y).

Definition (From [18]) Let (X, ‖ · ‖) be a separable Banach space. A Borel set A ⊆ X is said to be

Haar null if there is a Borel probability measure µ on X such that

µ(A + x) = 0

for all x ∈ X. A possibly non-Borel set is called Haar null if it is contained in a Borel Haar null set.
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Definition (From [18]) A Borel probability measure µ on a separable Banach space X is called

Gaussian if for every x∗ ∈ X the measure ν = x∗µ on R has a Gaussian distribution. The Gaussian

measure µ is called nondegenerate if for every x∗ , 0 the measure ν = x∗µ has positive variance or

equivalently, the measure µ is not supported on a proper closed hyperplane in X.

Definition (From [18]) A Borel set A ⊆ X is said to be Gauss null if µA = 0 for every nondegen-

erate Gaussian measure µ on X.

Theorem A.3.1. ([18], p.14) Let E be a Borel set in X (a separable Banach space) which is

Lebesgue null on every line in the direction of a fixed vector 0 , u ∈ X. Then E is Haar null. In

particular, σ-L-directionally porous sets are Haar null.

Theorem A.3.2. ([18],p.14) σ-L-directionally porous sets are Gauss null in a separable Banach

space.

Claim A.3.3. ([18],p.33)

(I) The closure of a L-porous set is obviously nowhere dense, and thus σ-L-porous sets are of

the first category.

(II) In a finite dimensional space, L-porous sets are, by the Lebesgue Density Theorem, sets of

measure zero.

Claim A.3.4. ([18],p.33) In infinite dimensional Banach spaces, L-porous sets are not always null.

In particular, by a result of Preiss and Tis̆er [20], L-porous sets are not Gauss small in any infinite

dimensional separable Banach space, as any such space can be decomposed into two sets, one

being σ-L-porous, and the other being Gauss null.

A.3.2 Zajı́ček’s Equivalent Definitions and Results

Now we use some definitions from Zajı́ček.

Definition Let x ∈ M. Then for R > 0, let

γ(x,R,M) := sup{r ≥ 0 : ∃y ∈ X such that Bo(y; r) ⊆ Bo(x; R) \ M}
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Definition Let c > 0. M is called c-lower Z-porous if for any x ∈ M, we have that

2 lim inf
R→0+

γ(x,R,M)
R

≥ c

Definition We say that M is lower Z-porous if for any x ∈ M, we have that

lim inf
R→0+

γ(x,R,M)
R

> 0

Definition Let c > 0. M is called c-upper Z-porous if for any x ∈ M, we have that

2 lim sup
R→0+

γ(x,R,M)
R

≥ c

Definition We say that M is upper Z-porous if for any x ∈ M, we have that

lim sup
R→0+

γ(x,R,M)
R

> 0

Theorem A.3.5. [28] Let X be a metric space, and A ⊆ X.

(I) A is σ-lower Z-porous [which is the same as ball-small].

(II) A = ∪n∈NPn, where each P := Pn has the following property:

∃α > 0, ∃R0 > 0, ∀x ∈ X, ∀R ∈ (0,R0), ∃y ∈ X such that Bo(y;αR) ⊆ Bo(x; R) \ P

(III) A = ∪n∈NPn where each P := Pn has the following property:

∃α > 0, ∀x ∈ X, ∀R > 0, ∃y ∈ X such that Bo(y;αR) ⊆ Bo(x; R) \ P

Then (I)⇔ (II). Also, if X is a normed linear space, then (I)⇔ (II)⇔ (III).

We now have enough that the following result can be checked:

Proposition A.3.1. Let X be a metric space, and A ⊆ X as above.

(a) ∃α > 0, ∃R0 > 0, ∀x ∈ X, ∀R ∈ (0,R0), ∃y ∈ X such that Bo(y;αR) ⊆ Bo(x; R) \ P.

(b) ∃β > 0, ∃R1 > 0, ∀x ∈ X, ∀R ∈ (0,R1], ∃y ∈ Pc such that Bo(y; βR) ⊆ Bo(x; R) \ P.

(c) ∃β ∈ (0, 1], ∃R0 > 0, ∀x ∈ X, ∀R ∈ (0,R0), ∃y ∈ Pc such that Bo(y;αR) ⊆ Bo(x; R) \ P.

(d) For any x ∈ P, we have that

lim inf
R→0+

γ(x,R, P)
R

> 0

Then (a)⇒ (b)⇒ (c)⇒ (d).
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A.3.3 Strobin’s Comparisons

We now investigate some results from a paper of Filip Strobin [24], that compares two of the main

notions of porosity.

Definition [24] Let (X, ‖ · ‖) be a Banach space, and M ⊆ X. Then the following are equivalent:

(I) Let R > 0. We say that M is R-ball porous if

∀x ∈ M, ∀α ∈ (0, 1), ∃y ∈ X (‖x − y‖ = R and Bo(y;α‖x − y‖) ∩ M = ∅)

(II) Let R > 0. We say that M is R-ball porous if

∀x ∈ M, ∀ε ∈ (0,R), ∃y ∈ X (‖x − y‖ = R and Bo(y; R − ε) ∩ M = ∅)

We say that a set A is ball small if it is the countable union of ball porous sets. i.e. A := ∪n∈NS n

where each S n is Rn ball porous.

Definition Let (X, ‖ · ‖) be a Banach space, and M ⊆ X. We say that M is O-porous if

∀α ∈ (0, 1), ∃R0 > 0, ∀x ∈ M, ∀R ∈ (0,R0), ∃y ∈ X (‖x − y‖ = r and Bo(y;αR) ∩ M = ∅)

Definition Let x ∈ M. Then for R > 0, let

γ(x,R,M) := sup{r ≥ 0 : ∃y ∈ X such that Bo(y; r) ⊆ Bo(x; R) \ M}

Definition Let c > 0. M is called c-lower porous if for any x ∈ M, we have that

2 lim inf
R→0+

γ(x,R,M)
R

≥ c

Definition We say that M is lower porous if for any x ∈ M, we have that

lim inf
R→0+

γ(x,R,M)
R

> 0

Definition Let c > 0. M is called c-upper porous if for any x ∈ M, we have that

2 lim sup
R→0+

γ(x,R,M)
R

≥ c
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Definition We say that M is upper porous if for any x ∈ M, we have that

lim sup
R→0+

γ(x,R,M)
R

> 0

Theorem A.3.6. [24] The following implications hold:

(I) c-lower porosity⇒lower porosity⇒upper porosity

(II) c-lower porosity⇒c-upper porosity⇒upper porosity

Theorem A.3.7. Let M ⊆ X and c > 0. The following conditions are equivalent:

(I) M is c-lower porous;

(II) ∀x ∈ M, ∀β ∈ (0, 1
2c), ∃R0 > 0, ∀R ∈ (0,R0), ∃y ∈ X, (Bo(y; βR) ⊆ B(x; R) \ M)

A set C is σ-K-porous if C := ∪S n and each S n is K-porous, where we use Kto stand for a type

of porosity.

Theorem A.3.8. [24] Let (X, ‖ · ‖) be a Banach space (or just a normed linear space). If M ⊆ X is

R-ball porous, then M is r-ball porous for all r ∈ (0,R].

Corollary A.3.1. [24] Any R-ball porous subset of a Banach space (or just a normed linear space)

is O-porous.

Theorem A.3.9. [24] Every O-porous subset M of a Banach space is 1-lower porous.

Lemma A.3.1. [24] There exists a 1-lower porous subset of R which is not O-porous.

Proposition A.3.2. [24] Any R-ball porous subset of R is countable.

Proposition A.3.3. [24] Let M ⊂ R. Then M is ball small if and only if it is countable.

Theorem A.3.10. [24] In any nontrivial Banach space, there exists an O-porous subset which is

not ball small.

Lemma A.3.2. [24] Let (X, ‖ · ‖) be a normed linear space, and R > 0. If M ⊆ X is R-ball porous,

so is it’s closure M.
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A.3.4 Observations on Porosity

Now, we have moved through a number of author’s definitions of porosity, let’s bring it all together.

Proposition A.3.4. We may now make the following 2 observations of the collected data:

1. Let A be a subset of Banach space X.

(a) A is R-ball porous.

(b) A is O-porous.

(c) A is Z-porous.

(d) A is L-porous

(e) A is 1-lower porous.

(f) A is lower porous.

(g) A is upper porous.

Then a ⇒ b ⇒ c ⇔ d ⇒ e ⇒ f ⇒ g. No claim is made of additional strictness of

implications.

2. Let A be a subset of Banach space X.

(a) A is σ-Z-porous.

(b) A is σ-L-porous

(c) A is σ-1-lower porous.

(d) A is σ-lower porous.

Then a⇔ b⇔ c⇔ d.

A.3.5 Interesting Porosity Results

There are two results that the author finds particularly interesting in terms of expressing the intu-

ition behind the occurrence of porous sets. We quote these results here for the reader:

Theorem A.3.11. [19] Every convex nowhere dense subset of a Banach space is O-porous.

Theorem A.3.12. [28] A convex nowhere dense subset of a Banach space is R-ball porous for

every R > 0
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A.4 COMPLETENESS OF DN

Let N ∈ N. Suppose that f : [0, 1]N → R, then we note here that ‖ f ′‖∞ := sup
x∈[0,1]N

‖ f ′(x)‖L(RN ,R).

We also note the following for any x ∈ RN and for some K ∈ R:

‖ f ′(x)‖L(RN ,R) :=
[(

fx1(x)
)2

+ . . . +
(
fxN (x)

)2
] 1

2
≤ K

[∣∣∣ fx1(x)
∣∣∣ + . . . +

∣∣∣ fxN (x)
∣∣∣]

Thus, ‖ f ′‖∞ ≤ K
[
‖ fx1‖∞ + . . . + ‖ fxN‖∞

]
. But we also know that ∀ j ∈ N and ∀x ∈ [0, 1]N we have

‖ f ′‖L(R,R) ≥ | fx j(x). Therefore, ‖ f ′‖∞ ≥ ‖ fx j‖∞ for any j ∈ N. Hence, for some K̃ ∈ R we know:

K̃
(
‖ fx1‖∞ + . . . + ‖ fxN‖∞

)
≤ max

1≤ j≤N
‖ fx j‖∞ ≤ ‖ f

′‖∞.

Thus, ‖ f ‖∗DN
:= ‖ f ‖∞ +

N∑
j=1
‖ fx j‖∞ is an equivalent norm on DN . We will use this fact shortly.

Theorem A.4.1. Let (X, ‖ · ‖X) be a normed linear space, and (Y, ‖ · ‖Y) a Banach space. Then

define:

C(X; Y) := { f : X → Y such that f is ‖ · ‖X to ‖ · ‖Y continuous function}.

Furthermore, define ‖ f ‖∞ := sup
x∈X
‖ f (x)‖Y . Let Cb(X; Y) := { f ∈ C(X; Y) : ‖ f ‖∞ < ∞}, then

Cb(X; Y) is a Banach space.

Theorem A.4.2. Let (X, ‖ · ‖X) be a normed linear space, and (Y, ‖ · ‖Y) a Banach space. Then

define:

L(X; Y) := {A : X → Y such that A is ‖ · ‖X to ‖ · ‖Y bounded linear function}.

Furthermore, define ‖A‖L(X,Y) := sup
x∈Bo(X)

‖Ax‖Y . Then (L(X; Y), ‖ · ‖L(X;Y) is a Banach space.

Theorem A.4.3. (See among others, [2] p.272) Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be Banach spaces. Let

f : X → Y be Gâteaux differentiable on convex set U ⊂ X, i.e. D f (x, h) the Gâteaux derivative of

f at x in the direction of h exists for any x ∈ U. Then, for any x, y ∈ U:

‖ f (x) − f (y)‖Y ≤ sup
0≤t≤1
‖D f (xt + (1 − t)y, ·)‖L(X,Y) · ‖x − y‖X
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Corollary A.4.1. Let (X, ‖·‖X), (Y, ‖·‖Y) be Banach spaces. Let f : X → Y be Fréchet differentiable

on convex set U ⊂ X, i.e. f ′(x) the Fréchet derivative of f at x exists for any x ∈ U. Then, for any

x, y ∈ U:

‖ f (x) − f (y)‖Y ≤ sup
u∈U
‖ f ′(u)‖L(X;Y) · ‖x − y‖X

Theorem A.4.4. (Cartan version 1)[9, p.44] Let U be an open convex set in a Banach space X,

and let { fn} be a sequence of functions such that fn : U → E where E is a Banach space, and fn is

Fréchet differentiable. We make the following assumptions:

(a) There exists a point a ∈ U such that the sequence { fn(a)} ⊆ E has a limit (call it f(a)).

(b) The sequence of mappings { f ′n : U → L(X; E)} converges uniformly to g : U → L(X; E)

Then, for any x ∈ U the sequence { fn(x)} ⊆ E converges to the limit function f (x); further the

convergence of fn is uniform on each bounded subset of U; additionally, the function f is Fréchet

differentiable, and f ′(x) = g(x).

Theorem A.4.5. (DN , ‖ · ‖DN ) is a Banach space.

Proof. Clearly DN is a normed linear space over R with respect to ‖ · ‖DN . Let { fn} be a ‖ · ‖DN -

Cauchy sequence in DN , i.e. ‖ fn − fm‖∞ −−−−−→
n,m→∞

0. So there exists f ∈ C([0, 1]N;R) such that

‖ fn − f ‖∞ −→
n

0. Now, { f ′n} is uniformly Cauchy: ∀ε > 0, there exists M ∈ N such that ∀n,m ≥ M,

‖ f ′n − f ′m‖∞ := sup
x∈[0,1]N

‖ f ′n(x)− f ′m(x)‖L(RN ;R) ≤ ε. So, for all x ∈ [0, 1]N , there exists L(x) ∈ L(RN;R)

such that ‖ f ′n − L‖∞. Now, we would like to say that f ′(x) = L(x) for any x ∈ [0, 1]N . We will show

this through the following segment. Fix ε > 0. Fix x ∈ [0, 1]N . Fix h ∈ RN \ {0}. Fix m, n ∈ N. Let

‖ · ‖X := ‖ · ‖RN , and ‖ · ‖Y := ‖ · ‖R.

112



∥∥∥ fm(x + h) − fm(x) −
(
f ′m(x)

)
h
∥∥∥

Y

‖h‖X

≤

∥∥∥[ fm(x + h) − fm(x) −
(
f ′m(x)

)
h
]
−

[
fn(x + h) − fn(x) −

(
f ′n(x)

)
h
]∥∥∥

Y

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

=

∥∥∥[ fm(x + h) − fn(x + h)
]
−

[
fm(x) − fn(x)

]
−

[
f ′m(x) − f ′n(x)

]
h
∥∥∥

Y

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x) − f ′m(x)

)
h
∥∥∥

Y

‖h‖X

≤

∥∥∥[ fm(x + h) − fn(x + h)
]
−

[
fm(x) − fn(x)

]∥∥∥
Y

‖h‖X
+

∥∥∥[ f ′m(x) − f ′n(x)
]
h
∥∥∥

Y

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

≤ (using A.4.1)
‖ fm − fn‖∞ ‖h‖X

‖h‖X
+

∥∥∥[ f ′m(x) − f ′n(x)
]
h
∥∥∥

Y

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

≤
‖ fm − fn‖∞ ‖h‖X

‖h‖X
+

∥∥∥ f ′m − f ′n
∥∥∥
∞
‖h‖X

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

≤ 2 ‖ fm − fn‖∞ +

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

Now, for any j ∈ N, define Q j(·, ·) : [0, 1]N × [0, 1]N → [0,∞) as Q j(x, h) := ‖
fn(x+h)− fn(x)−( f ′n(x))h‖Y

‖h‖X
.

Therefore, our above inequalities can be rephrased to say:

Qm(x, h) ≤ 2‖ f ′m − f ′n‖∞ + Qn(x, h). (A.4.1)

So, as { f ′n} is a ‖ · ‖∞-Cauchy sequence, then for the fixed ε > 0, there exists K ∈ N such that

∀n,m ≥ K, ‖ f ′n − f ′m‖∞ := sup
x∈[0,1]N

‖ f ′n(x) − f ′m(x)‖L(RN ;R) ≤ ε. So, in A.4.1, we take n = K,m ≥ K to
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get Qm(x, h) ≤ 2ε + QK(x, h). Now, we have the following as m→ ∞:

fm(x + h) −−−−→
m→∞

f (x + h) in Y

fm(x) −−−−→
m→∞

f (x) in Y

f ′m(x)h −−−−→
m→∞

L(x)h in Y

Therefore, E(x, h) := ‖ f (x+h)− f (x)−(L(x))h‖Y
‖h‖X

= lim
m→∞

Qm(x, h) ≤ 2ε + QK(x, h). Now, we consider the

fact that f ′K exists, and thus lim
‖h‖X→0

QK(x, h) = 0. Therefore, ∃δ > 0 such that if 0 < ‖h‖X < δ, then

QK(x, h) < ε and so:

E(x, h) ≤ lim
‖h‖X

2ε + QK(x, h) = 2ε + ε = 3ε.

Hence, we have shown that E(x, h)
h,0
−−−−−→
‖h‖X→0

0, ∀x ∈ [0, 1]N . Thus, f ′(x) exists in L(RN;R), and

f ′(x) = L(x) = lim
n→∞

f ′n(x). Therefore, (DN , ‖ · ‖DN ) is complete. �

Definition Let (X, ‖ · ‖X) be a non-trivial Banach space, and (Y, ‖ · ‖Y) be a non-trivial Banach. Then

we define D(X; Y) in the following way:

D(X; Y) := { f ∈ C(Bo(X); Y) : f ′ exists, and ‖ f ‖D(X;Y) := (‖ f ‖∞ + ‖ f ′‖∞) < ∞}

When Y = R, then we write D(X; Y) = D(X).

Theorem A.4.6. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y) be Banach spaces. Then D(X; Y) is a Banach space.

Proof. (Method 1) Clearly D(X; Y) is a normed linear space over R with respect to ‖ · ‖D(X;Y).

Let { fn} be a ‖ · ‖D(X;Y)-Cauchy sequence in D(X; Y), i.e. ‖ fn − fm‖∞ −−−−−→
n,m→∞

0. So there exists

f ∈ Cb(Bo(X); Y) such that ‖ fn − f ‖∞ −→
n

0. Now, { f ′n} is uniformly Cauchy: ∀ε > 0, there exists

M ∈ N such that ∀n,m ≥ M, ‖ f ′n − f ′m‖∞ := sup
x∈Bo(X)

‖ f ′n(x) − f ′m(x)‖L(X;Y) ≤ ε. So, for all x ∈ Bo(X),

there exists L(x) ∈ L(X; Y) such that ‖ f ′n − L‖∞. Now, we would like to say that f ′(x) = L(x) for

any x ∈ Bo(X). We will show this through the following segment. Fix ε > 0. Fix x ∈ [0, 1]N . Fix

h ∈ X \ {0}. Fix m, n ∈ N.
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∥∥∥ fm(x + h) − fm(x) −
(
f ′m(x)

)
h
∥∥∥

Y

‖h‖X

≤

∥∥∥[ fm(x + h) − fm(x) −
(
f ′m(x)

)
h
]
−

[
fn(x + h) − fn(x) −

(
f ′n(x)

)
h
]∥∥∥

Y

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

=

∥∥∥[ fm(x + h) − fn(x + h)
]
−

[
fm(x) − fn(x)

]
−

[
f ′m(x) − f ′n(x)

]
h
∥∥∥

Y

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x) − f ′m(x)

)
h
∥∥∥

Y

‖h‖X

≤

∥∥∥[ fm(x + h) − fn(x + h)
]
−

[
fm(x) − fn(x)

]∥∥∥
Y

‖h‖X
+

∥∥∥[ f ′m(x) − f ′n(x)
]
h
∥∥∥

Y

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

≤ (using A.4.1)
‖ fm − fn‖∞ ‖h‖X

‖h‖X
+

∥∥∥[ f ′m(x) − f ′n(x)
]
h
∥∥∥

Y

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

≤
‖ fm − fn‖∞ ‖h‖X

‖h‖X
+

∥∥∥ f ′m − f ′n
∥∥∥
∞
‖h‖X

‖h‖X

+

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

≤ 2 ‖ fm − fn‖∞ +

∥∥∥ fn(x + h) − fn(x) −
(
f ′n(x)

)
h
∥∥∥

Y

‖h‖X

Now, for any j ∈ N, define Q j(·, ·) : B0(X) × X → Y as Q j(x, h) := ‖
fn(x+h)− fn(x)−( f ′n(x))h‖Y

‖h‖X
. Therefore,

our above inequalities can be rephrased to say:

Qm(x, h) ≤ 2‖ f ′m − f ′n‖∞ + Qn(x, h). (A.4.2)

So, as { f ′n} is a ‖ · ‖∞-Cauchy sequence, then for the fixed ε > 0, there exists K ∈ N such that

∀n,m ≥ K, ‖ f ′n − f ′m‖∞ := sup
x∈Bo(X)

‖ f ′n(x) − f ′m(x)‖L(X;Y) ≤ ε. So, in A.4.2, we take n = K,m ≥ K to
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get Qm(x, h) ≤ 2ε + QK(x, h). Now, we have the following as m→ ∞:

fm(x + h) −−−−→
m→∞

f (x + h) in Y

fm(x) −−−−→
m→∞

f (x) in Y

f ′m(x)h −−−−→
m→∞

L(x)h in Y

Therefore, E(x, h) := ‖ f (x+h)− f (x)−(L(x))h‖Y
‖h‖X

= lim
m→∞

Qm(x, h) ≤ 2ε + QK(x, h). Now, we consider the

fact that f ′K exists, and thus lim
‖h‖X→0

QK(x, h) = 0. Therefore, ∃δ > 0 such that if 0 < ‖h‖X < δ, then

QK(x, h) < ε and so:

E(x, h) ≤ lim
‖h‖X

2ε + QK(x, h) = 2ε + ε = 3ε.

Hence, we have shown that E(x, h)
h,0
−−−−−→
‖h‖X→0

0, ∀x ∈ Bo(X). Thus, f ′(x) exists in L(X; Y), and

f ′(x) = L(x) = lim
n→∞

f ′n(x). Therefore, (D(X; Y), ‖ · ‖D(X;Y)) is complete. �

We provide a second proof, as each proof gives a different type of intuition.

Proof. (Method 2) Clearly D(X; Y) is a normed linear space over R with respect to ‖ · ‖D(X;Y).

Thus, we need only discuss completeness. Let { fn} be a ‖ · ‖D(X;Y)-Cauchy sequence in D(X; Y).

Then { fn} is a ‖ · ‖∞-Cauchy sequence in (Cb(Bo(X); Y), ‖ · ‖∞). So, as (Cb(Bo(X); Y), ‖ · ‖∞) is

complete (see [22]), then there exists f ∈ Cb([0, 1]N ,R) such that ‖ fn − f ‖∞ −→
n

0. We also have

‖ f ′k − f ′m‖∞ −−−−−→k,m→∞
0, where here ‖g′‖∞ := sup

x∈Bo(X)
‖g′(x)‖L(X;Y).

Fix x ∈ Bo(X). Then ‖ f ′m(x)− f ′n(x)‖L(X;Y) −−−−−→
m,n→∞

0. So { f ′n(x)} is a Cauchy sequence inL(X; Y),

which is complete, so there exists h̃x ∈ L(X; Y) such that ‖ f ′n(x) − h̃x‖L(X;Y,R) −−−→
n→∞

0. Now, define

h(x) := h̃x. Thus, ∀x ∈ Bo(X) we have ‖ f ′n(x)−h(x)‖L(RN ,R) −−−→
n→∞

0, and so ‖ f ′n −h‖∞ −−−→
n→∞

0. Then

by theorem A.4.4, f is differentiable on Bo(X) (which is a convex and open subset of a Banach

space) and f ′(x) = h(x) for all x ∈ Bo(X). So, f ∈ D(X; Y). Also, ‖ fn − f ‖∞ = ‖ fn − f ‖∞ + ‖ f ′n −

f ′‖∞ −→
n

0 + 0 = 0. Thus, (D(X; Y), ‖ · ‖D(X;Y)) is complete. �
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A.5 SEPARABILITY

Theorem A.5.1. (BV[0, 1], ‖ · ‖BV) is not separable.

Proof. Suppose not for a contradiction. Suppose that there is a countable dense subset of A ⊂

BV[0, 1]. Then define a subset of BV[0, 1] in the following way: C := { ft := χ[0,t] ∈ BV[0, 1] : t ∈

[0, 1]}. Furthermore, we claim that if t , s, then ‖ ft − fs‖BV[0,1] ≥ 1. Why? Well, let s, t ∈ [0, 1]

with s , t and we have two cases.

1. Suppose that one of s or t is zero. Without loss of generality, s = 0. Then fs = f0 = 0 and so

‖ ft − fs‖BV[0,1] = | fs(0)− f0(0)|+ V1
0 ( fs − f0) = | fs(0)|+ V1

0 ( fs) = χ[0,t](0) + V1
0 (χ[0,t]) ≥ 1 + 1 = 2.

2. Suppose that neither of s, t are zero. Without loss of generality t > s, and so ft − fs = χ[s,t]. So

‖ ft − fs‖BV[0,1] = |χ[s,t](0)| + V1
0 (χ[0,t] ≥ 0 + 1.

So, in any case, we have ‖ ft − fs‖BV[0,1] ≥ 1 whenever t , s. Also, note that C is uncountable. Now,

fix s, t ∈ [0, 1] such that s , t. Then, by density of A there exists a ∈ A such that ‖ ft − a‖BV[0,1] <
1
2 .

Then, 2 ≤ ‖ ft − fs‖BV[0,1] ≤ ‖ ft − a‖BV[0,1] + ‖a − fs‖BV[0,1] < 1
2 + ‖ fs − a‖BV[0,1]. Therefore,

3
2 < ‖ fs − a‖BV[0,1] and as s ∈ [0, 1] is arbitrary, ft is the unique element “close” to a ∈ A. But, for

all w ∈ [0, 1] there must exist a unique b ∈ A within 1
2 , and so we have shown that A is uncountable

as it is in relation to uncountable set C. This is a contradiction, so BV[0, 1] is not separable. �
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[3] S. Banach. Über die Baire’sche Kategorie gewisser Funktionenmengen. Studia Math, 3:174–
179, 1931.

[4] B. Beauzamy. Introduction to Banach Spaces and their Geometry. North-Holland, Amster-
dam, Netherlands, 1982.

[5] D. M. Bressoud. Historical reflections on teaching the fundamental theorem of integral cal-
culus. The American Mathematical Monthly, 118(2):99–115, 2011.

[6] A. Bruckner. Differentiation of Real Functions. AMS, Providence, R.I., 1991.

[7] A. Bruckner and J. L. Leonard. Derivatives. Amer. Math. Monthly, 73:38–41, 1966.

[8] J. Burns and C. Lennard. Behavior of typical derivatives on certain sets. Preprint, 2013.

[9] H. Cartan. Differential Calculus. Herman, 1971.

[10] J. Diestel. Geometry of Banach Spaces - Selected Topics. Springer, Berlin, Germany, 1975.

[11] E. Dolzhenko. Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR, Ser. Matem.,
31:3–14, 1967.

[12] T. Domı́nguez Benavides and S. Phothi. The fixed point property under renorming in some
classes of Banach spaces. Nonlinear Analysis, 72:1409–1416, 2010.

[13] G. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, U.S.A., 1999.

[14] P.M. Gandini and A. Zucco. Porosity and typical properties of real-valued continuous func-
tions. Abh. Math. Sem. Univ. Hamburg, 59:15–22, 1989.

[15] B. Gelbaum and Olmsted J. Counterexamples In Analysis. Dover, Mineola, New York, 1965.

118



[16] C. Goffman. A bounded derivative which is not Riemann integrable. Amer. Math. Monthly,
84:205–206, 1977.

[17] Jan Kolár. Porous sets that are Haar null, and nowhere approximately differentiable functions.
Proceedings Of The AMS, 129(5):1403–1408, 2000.
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