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N-Myristoyltransferase inhibition as a tool for antileishmanial drug discovery: Use in high-

throughput, de novo, and piggyback strategies for drug development 

John Anthony Kavouris M.S. 

University of Pittsburgh, 2014 

Leishmaniasis is a disease caused by the Leishmania genus of protozoan parasites, and 

spread by the phlebotomine genus of sandfly. The disease is caused by at least 20 different 

species of Leishmania parasites, and manifests itself in three forms: cutaneous, mucocutaneous, 

and most severely, visceral leishmaniasis. Current chemotherapeutic treatments for leishmaniasis 

are limited by parasite resistance to existing drugs, highly toxic side effects, and high cost of 

treatment.  As a neglected tropical disease, there has been relatively little research toward new 

drugs, despite a large need, comprising 1.3m new cases and 20,000-50,000 deaths annually. 

Fortunately, although there is a wide variety in species causing the disease, visceral 

leishmaniasis is largely caused by a single species of parasite, Leishmania donovani, greatly 

simplifying the search for drugs against the most dangerous form of the disease. The whole 

genome of the species has been sequenced, and many crystal structures of key proteins have been 

elucidated. Specifically, N-myristoyltransferase (NMT) has emerged as a promising enzyme for 

target-based antileishmanial drug development, with a wide array of tools available for any level 

of drug discovery: in silico modeling and docking, enzyme specific assays for protozoan and 

human isoforms, high throughput in vitro assays against both the parasite itself and infected host 

cells, and animal models of the disease. However, with L. donovani NMT as a newer target, 

research has yet to utilize all of these individual elements synergistically with themselves, or 
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with related studies in different parasite species. Combined analysis of these methods can yield a 

more efficient search for antileishmanials, regardless of screening type. 
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1.0  LEISHMANIASIS: DISEASE OVERVIEW AND NEED FOR TREATMENT 

Leishmaniasis is a disease caused by the Leishmania genus of protozoan parasites and spread by 

the phlebotomine genus of sandfly. The disease is endemic to tropical and sub-tropical countries, 

predominantly affecting the developing world.
1
 Major risk factors of the disease include negative 

socioeconomic conditions, malnutrition, population mobility and environmental changes, all 

conditions frequently encountered in the tropics. 

1.1.1 Disease burden 

 Leishmaniasis affects approximately 12 million people worldwide, with approximately 2 

million new cases and 20-50 thousand deaths annually. After malaria, it is the second highest 

parasitic killer. The disease manifests itself in a variety of forms: cutaneous, mucocutaneous, and 

visceral. Cutaneous results in open sores that eventually heal on their own within a few months 

to a year and a half, but scarring can occur. Mucocutaneous can affect the skin and mucous 

membranes (nose, mouth, throat), yielding sores that typically heal, with scarring and potential 

tissue damage. Visceral leishmaniasis (VL, also known as ‘kala-azar’), the most serious form, is 

caused by parasite migration to internal organs and is fatal if left untreated.
2
 Even with treatment, 

visceral leishmaniasis can result in organ damage. Further complications can also arise from 

leishmaniasis infection, including post kala-azar dermal leishmaniasis (PKDL) in which the 
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parasite infection recurs affecting the skin and co-infection in patients with HIV. Leishmaniasis 

is recognized as a neglected tropical disease (NTD).
3-4

 While the definition criteria vary among 

different health organizations, NTDs are generally endemic to low-income areas of the tropics, 

and that lack adequate available treatments. 

 Current treatments for leishmaniasis have improved in the last decade with the introduction 

of Miltefosine as the first orally-available therapy, but existing treatments are limited by factors 

of cost, oral availability, toxicity, and parasite resistance.
5
 Unfortunately, parasite resistance is 

not only a problem of older treatments such as pentavalent antimonials, but instances of 

resistance have also been shown for more recently developed treatments as well.
6-9

 The Drugs 

for Neglected Disease Initiative (DNDi) is non-profit organization devoted to developing 

treatments for neglected diseases, and includes a large variety of industry, governmental, and 

academic partners, with a focus on collaborative projects. Based on DNDi efforts, the treatment 

options for leishmaniasis are improving, but slowly.
10

 Currently, the most advanced therapies 

focuses on combination of existing drugs.
11

 Only one novel chemotheraputic, sitamiquine, is 

currently in development through GSK/Walter Reed Army Institute that is currently in phase II 

clinical trials. Other treatments under development are oral and topical formulations of existing 

drug amphotericin B, which has previously only available via IV therapy and is highly toxic. 

Also, fexinidazole, a human African trypanosomaisis inhibitor, is beginning phase II trials as a 

treatment for L. donovani infection as well.
12

 

 Palatnik-de-Sousa and Kedzierski have both proposed that the parasite’s biology may 

provide a route to vaccination and there is one candidate vaccine currently in Phase I trials. 
13-15

 

Nevertheless, until a range of treatments is approved for use, a need persists for the pre-clinical 

development of antileishmanials that meet all the desired criteria for safety, efficacy, and cost. 
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1.1.2 Complications to developing treatments  

Leishmania parasites are transferred to mammalian hosts via the bite of infected female 

phebotomine sandflies, depicted in Figure 1.
16

 Within the sandfly midgut, the parasites exist as 

motile metacyclic promastigotes, eventually migrating to the stomodeal valve. When the fly bites 

a host, promastigote transmission occurs, however, the vector is not yet infective. Promastigotes 

invade mammalian macrophages where they are phagocytized into amastigotes, the spread of 

which by infection and replication within host cells affects the surrounding tissue. If transmitted 

back to the sandfly, the amastigotes revert back to procyclic promastigotes in the absence of host 

macrophage cells. Undergoing cell division, parasites are considered metacyclic promastigotes, 

thereby restarting the cycle. 

 

Figure 1. Leishmania parasite life cycle. 

Image used from public domain. 
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 In addition to the multiple parasite forms, the number of Leishmania species that 

cause the disease complicates disease progression, expression, and treatment development; over 

20 species of parasite have been shown to cause the differing forms of the disease. This 

biological diversity accounts for the phenotypic differences in disease manifestation. Most 

species are associated with a specific form of illness, but occasionally, individual species 

themselves will cause different manifestations.
17

 Fortunately, a wide array of genomic and 

proteomic data is known for leishmania parasites, including completely sequenced genomes of 

several species, the characterization of many proteins necessary for parasite function, and the 

solution of several crystal structures of relevant proteins.
18-20

 The wealth of data regarding 

protein structure and function offers some mechanistic insight into known NMT inhibitors that 

are effective across multiple Leishmania species.
21

 However, the number and variety of species 

also illustrates the complexity of generating broad-spectrum antileishmanial theraputics. 

 Drug development for leishmaniasis has been assisted by related research on other 

trypanosomatid diseases that include Trypanosoma brucei, (human African trypanomaisis, 

“sleeping sickness”), and T. cruzi (South American trypanosomiasis, “Chagas diease”).
22

 Similar 

drugs/targets have also been identified in certain fungal and bacterial infections, and in the 

Plasmodium genus, responsible for malaria.
23

 These species share biological similarities with 

Leishmania spp. and offer a large dataset related to development of antileishmanials, including 

crystal structures of related target proteins, and examples of cross-species inhibition by single 

compounds.
24

 Again, the additional information helps the understanding of existing cross-species 

drug efficacy, but only further convolutes an effort for development of novel broad-spectrum 

antitrypanosomal drugs. It is worth noting that, despite certain macromolecular similarities 
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between species, species pathology ultimately affects drug development as well. Considerations 

for HAT drug development must account for blood-brain-barrier penetration to treat the infected 

host. Under similar preliminary screening conditions, this would be an added complication for 

HAT inhibitors, but is absent from Leishmania inhibitor design considerations. 

 The number and complexity of leishmaniasis manifestations renders the disease 

an incredibly difficult candidate for rational drug design. Although a potent treatment against all 

forms of the disease may be unlikely, visceral leishmaniasis infection is both a major contributor 

to the global mortality and morbidity, and surprisingly well suited for rational drug design. Of 

the global leishmaniasis disease burden, visceral leishmaniasis accounts for approximately 

200,000-400,000 new infections, and 20,000-40,000 deaths per year.
25-26

 

1.1.3 Visceral leishmanias as focus for treatment 

 Treatment of visceral leishmaniasis is aided by the high degree of similarity 

between causative species. Visceral leishmaniasis is largely cited as caused by the species L. 

donovani, and occasionally, by L. infantum. In fact, four individual Leishmania species have 

been proposed as causes for VL: L. donovani, L. infantum, L. chagasi, and L. archibaldi.
27

 

Despite the general classification as separate species, the distinction largely arises from 

geographic origins of each sample. The perceived differences between these taxons are so minute 

that markers of differentiation are often unreliable.
28-29

 As such, these four species are broadly 

referred to as the ‘donovani complex.’ Analysis of the species has accounted for small genetic 

differences and has been used to trace disease spread and evolution, however, researchers 

concluded that not enough genetic variation is present within current available data to warrant 

this species differentiation. Instead, a corrected differentiation of only two species is proposed: 
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donovani and infantum.
30

 While differences in pathology between the two species have been 

studied, many considerations for rational drug design remain largely similar.
31

 Structural 

characteristics of drug target enzymes are highly conserved across reported species, typically 

with >95% sequence or structure similarities, as applicable. As such, inhibitors of both species 

are likely viable through a single drug discovery campaign. However, given similar species with 

same clinical outcome of VL, cross-validation of known inhibitors on both species is currently 

limited. 

 Elements are currently in place to facilitate scalable, target-based, rational drug 

design toward inhibitors of visceral leishmaniasis. Several proteins of the Leishmania donovani 

complex have been investigated as potential therapeutic targets and, in particular, N-

myristoyltransferase (NMT) has emerged as a promising one. This target offers multiple design 

motifs such as in silico methods using crystallographic data, enzymatic assay, in vitro assays, 

and availability of in vivo disease models. The three screening methods (in silico, enzymatic, in 

vitro) may be run in high-throughput or high-content applications, aided by automation to 

facilitate the screening of large sized compound libraries. Furthermore, techniques relevant to 

NMT-based drug development may be arranged for de novo drug design specifically targeting L. 

donovani NMT, as an additional element of ‘target-free’
*
 screening to identify an affected target 

and improve hit optimization, or as a ‘piggyback’ approach based on existing NMT inhibitors in 

other species. Despite the availability and scope of these methods, their combined use is 

surprisingly limited. A discussion of available methods for drug development, their existing 

applications, and prospective improvements or combinations is presented herein.  

                                                 

*
 ‘Target-free,’ or phenotypic screening tests potential inhibitors for protozoan growth 

inhibition and limited human toxicity, irrespective of molecular targets affected. 
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2.0  N-MYRISTOYLTRANSFERASE 

Protein myristoylation is an essential function in eukaryotes that occurs via the addition 

of a myristoyl group to the N-glycine terminus of a set of proteins.
32-33

 The myristoyl group, 

derived from myristic acid (n-tetradecanoic acid), is a 14-carbon saturated fatty acid serving as a 

long, hydrophobic tail in a variety of functions, including protein-protein interactions, membrane 

targeting, signal transduction, and apoptosis.
34-35

 The amide bond formation is catalyzed by the 

enzyme myristoyl-CoA protein N-myristoyltransferase (NMT) that occurs as both a post- and, 

more typically, co-translational modification.
36
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Figure 2: Protein mryistoylation as a co-translational process. 

Image used under Creative Commons license.
37

 

 

The binding events required for protein substrate myristoylation have been thoroughly 

characterized and includes an understanding of substrate specificities for both the myristoyl and 

protein binding sites. The mechanism proceeds via an “ordered bi bi mechanism,” in which 

myristoyl-CoA first binds to the apo-enzyme.
38

 The myristoyl-CoA binding induces an allosteric 

effect on the enzyme that positions the CoA as a functional part of the protein binding site. The 

myristoyl group transfer is facilitated by the attack of the incoming N-terminal glycine on the 

myristoyl-CoA thioester, shown in Figure 2. After the transfer, the free CoA is released first, 

allowing the enzyme conformation to relax and release the myristoylated substrate protein; the 
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full catalytic cycle is depicted in Figure 3. As a treatment for disease, cell death is the desired 

response, achieved through inhibition of the enzyme and disrupting critical cellular processes.  

 

Figure 3: Myristoylation catalytic cycle. 

Reprinted with permission from Bowyer, P. W.; Tate, E. W.; Leatherbarrow, R. J.; Holder, A. A.; Smith, D. 

F.; Brown, K. A., N-Myristoyltransferase: A prospective drug target for protozoan parasites. ChemMedChem 2008, 

3 (3), 402-408. 

2.1 NMT STRUCTURE, FUNCTION, AND SUBSTRATES 

The effects of different coenzymes on substrate binding have not been thoroughly studied, but 

myristate substitutions have been investigated in different species.
39

 Generally, specific 

recognition of myristoyl-CoA has been shown, but the specific acyl-CoA bound to the enzyme 

has been shown to affect substrate peptide binding. Chain length has been implicated as the 

major driving force for this specificity, followed by hydrophobicity. For example, 13- and 15-

carbon fatty acid substrates have been shown to bind competitively with myristoyl-CoA, but this 

is largely irrelevant in vivo, as these fatty acids are rarely found in eukaryotes.
40

 The closest 

natural/commonly occurring fatty acid, the 16-carbon chain palmitoyl-CoA, can compete with 
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the myristate binding.
41

 While a poor substrate, it is found in much greater intracellular 

concentrations, yet NMT function is still determined by the myristate. Overall, the enzyme 

shows little tolerance for alternate acyl-CoA substrates in vivo, and the myristoyl-CoA binding 

site is highly conserved across species studied. 

 Unlike the myristoyl-CoA binding site, the protein binding site is not highly conserved 

across species, allowing for substrate specificity for protein myristoylation and species-specific 

inhibition of the NMT enzyme. Substrate specificity is accomplished by recognition of N-

terminal amino acid residues within the substrate protein with as many as 17 terminal residues 

responsible for substrate recognition.
42-43

 These 17 residues are split into three regions; region 1 

consists of the first 6 residues, which fit within the binding pocket, and must terminate with a 

glycine; region 2 consists of the next 6 residues, interacting with the surface of the protein 

adjacent to the binding pocket, typically consisting of smaller, polar residues; region 3 consists 

of the final 5 amino acids typically recognized by the enzyme, and is usually comprised of 

increasingly hydrophilic residues. The enzyme’s broader recognition of several substrate 

residues allows for specificity of proteins to be myristoylated, but the existence of a specific, 

well-defined binding pocket allows for enzyme inhibition by small molecules. Competitive 

inhibition of protein myristoylation by small molecule binding to the substrate pocket has been 

confirmed by kinetic studies, suggesting the viability of NMT inhibition as a therapeutic 

target.
44-45

  

2.2 NMT UTILITY AS A LEISHMANIASIS DRUG TARGET 

 Several distinctions between mammalian and protozoan NMTs have been identified and 
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may be exploited for the treatment of protozoan diseases, such as leishmaniasis. Mammals all 

possess two NMT isozymes, NMT1, and NMT2, each exhibiting slightly different protein 

substrate specificity, but both are highly similar to one-another and highly conserved across 

species. For example, human NMT1 (Hs1NMT), and Hs2NMT share 77% sequence identity. 

Homologues are, of course, expressed in mice, and the mouse NMT1 and NMT2 share 97% and 

96% sequence identity with the respective human isozyme.
46

 This sequence homology allows for 

accurate modeling of NMT inhibition in mouse models of infection. 

 The genus Leishmania only synthesizes one NMT isozyme which is sufficiently different 

from the human forms to allow for specific inhibition. For example, the L. donovani NMT 

(LdNMT) only shares 42% sequence identity with Hs1NMT and highly selective inhibition of 

LdNMT over both human NMTs has been demonstrated. The NMTs of leishmania parasites are 

highly conserved across different parasite species with L. major sharing 97, 96, and 96% 

sequence identity with L. donovani, L. infantum, and L. mexicana, respectively. Residues 

associated with the predicted peptide binding groove are fully conserved between L. donovani, L. 

major, L. infantum and L. braziliensis.
47

 The combined similarities of parasite NMTs and 

differences from host NMTs suggest that, despite a focus on treatment of visceral leishmaniasis, 

expansion of a drug discovery program to successfully combat more forms of the disease may be 

within reach.  

 N-Myristoyltransferase inhibition has been demonstrated in a variety of other organisms, 

typically as a means to treat infectious disease. Closely related to antileishmanial drug 

development, NMT inhibition is also currently under investigation as a treatment for other 

trypanosomal diseases.
24, 48-49

 Initial determinations of NMT structure and function was 

performed in yeasts, such as Candida albicans, commonly responsible for infection in the 
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immunocompromised. Several anti-fungal NMT inhibitors have been identified.
50

 NMT over 

expression has also been linked to certain cancers, and NMT enzyme suppression has been 

proposed as a treatment.
51-53

 However, cancer treatments via NMT inhibition is distinct from 

other NMT inhibitor studies in that cancer cell inhibition would rely on selectivity between the 

two individual human NMT isozymes, rather than selectivity between human and infection 

forms. Ultimately, a continually expanding portfolio of known NMT inhibitors offers structure-

based insight toward the design of novel inhibitors and starting points for piggyback drug design. 

 Aside from the enzyme’s mechanism and function, a great deal of structural 

information is known about NMTs beyond basic sequence information. A large number of NMT 

enzyme structures have been elucidated by X-ray crystallography, most in high resolution 

(~1.5Å resolution, high degree of completeness). A large majority of the crystal structures 

include myristoyl-CoA bound to the protein, offering the allosteric conformation relevant for 

inhibitor binding, rather than the apo-enzyme. Many species include multiple PDB entries, with 

one structure crystallized with an empty binding pocket, and at least one entry with a known 

small molecule NMT inhibitor bound, including Leishmania major (Figure 4), human NMT1, 

Saccharomyces cerevisiae,  and Candida albicans.
50, 54-55

 With respect to visceral leishmaniasis, 

the Leishmania donovani NMT has been crystallized with a myristoyl-CoA analog (S-(2-

oxo)pentadecyl-CoA) to avoid hydrolysis, however no structure with a bound inhibitor has yet 

been crystallized (PDB: 2WUU).
47

 Accurate structural data, allows for easily accessible in silico 

studies of protein-inhibitor interaction. Furthermore, known inhibitors bound to the crystal 

structures serve as means to validate computational docking models. NMT inhibition has been 

biologically validated as a target in the Plasmodium genus.
56

 In L. donovani NMT is not fully 

biologically validated, as sufficient data regarding myristoylated proteins within the parasite, or 
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specific downstream effects of NMT inhibition. Nevertheless, NMT has been shown to be an 

essential enzyme for parasite survival, and inhibition of the enzyme is toxic to kinetoplastid 

parasites.  

 

Figure 4: Representative NMT inhibitor and crystal structure. 

a) Inhibitor. b) L. major NMT crystal structure and computed surface. Myristoyl-CoA (blue C atoms), 

inhibitor (orange C atoms). Reprinted with permission from David Robinson, University of Dundee.
57
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3.0  SCREENING METHODS 

3.1 IN VITRO METHODS 

A variety of in vitro cell culture and analysis methods have been shown as useful model systems 

for leishmaniasis infection.
58-59

 These methods are scalable, enabling large compound libraries to 

be assayed via high throughput screening.
60

 Further analysis of hit compound viability as a lead 

is possible through related assays, such as toxicity and metabolic stability.  

3.1.1 Enzymatic assays 

 For direct quantification of NMT-specific inhibition, many enzymatic assays are available. 

Most assays rely on the detection of radio-labeled material incorporated into the product, through 

techniques such as scintillation proximity assays (SPA).
61

 For this assay and others, recombinant 

NMT proteins can be over-expressed and purified from E. coli. Myristoyl-CoA is introduced to 

the purified protein, wherein the myristoyl group has been modified by tritiation (replacement of 

hydrogen with radioactive tritium). Instead of a complete protein to be myristoylated, a model 

peptide substrate is constructed by solid-phase peptide synthesis (SPPS). The sequences of these 

model peptides are designed based on N-terminal (~8-residue) segments from known protein 

substrates of NMT. Biotin is applied to the C-terminus of the chain as an affinity tag. Both 

modified substrates (radio-labeled myristoyl-CoA and biotinylated peptide) are mixed with the 
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enzyme, and myristoylation occurs. A streptavidin tag held on a solid support encapsulating a 

scintillant is then added to the reaction. After this addition, the now radio-labeled peptide will 

migrate to the solid-support as a result of biotin-streptavidin binding, and result in the emission 

of photons by the scintillant; the full assay scheme is shown in Figure 5. Tritium is well suited 

for this task, as the path-length of the emitted ß-particle is short enough (1.5 µm) that non-

specific emission from unreacted starting material will not reach the scintillation bead, meaning 

the reaction does not have to be purified before measuring enzyme activity. The emitted photons, 

and thereby reaction progress, can be monitored via scintillation counter. This process has been 

used for a wide variety of NMT isozymes, including human NMT1 and 2, L. donovani, L. major, 

T. brucei, T. cruzi, and P. falciparum.
24, 48, 62

 The process can also be automated through the use 

of 96- or 384-well plate plates for high-throughput screening. 
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Figure 5: Scintillation proximity assay.  

Step 1: Radio-labeleld myristate is added to the biotin-tagged protein mimetic. Step 2: The peptide and 

radio-label are attached to the scintillant bead by the biotin-streptavidin interaction. Step 3: The radio-label is 

sufficiently close to the scintillant to cause a photon emission. Reprinted with permission from Bowyer, P. W.; Tate, 

E. W.; Leatherbarrow, R. J.; Holder, A. A.; Smith, D. F.; Brown, K. A., N-Myristoyltransferase: A prospective drug 

target for protozoan parasites. ChemMedChem 2008, 3 (3), 402-408. 

3.1.2 Cellular assay 

 Several cellular based assays are also available to determine antileishmanial activity. These 

include culture and inhibition of promastigotes, axenic amastigotes, and intracellular 

amastigotes. Each of these methods may be used in a target-free screening of inhibitors, but they 

may also be incorporated with NMT-based drug discovery effort, as NMT is constitutively 

produced at all stages of parasite development.
48
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 Promastigote-based cellular assays are the most straightforward of the three cell-based 

assays. Promastigotes are grown in a media, potential inhibitors are introduced at suitable 

concentrations, and growth inhibition is determined.
63

 High-throughput applications are available 

utilizing a plate reader for analysis of cell growth via fluorescent staining, with positive and 

negative controls (typically amphotericin B, and 1% DMSO, respectively). While promastigotes 

are often assayed for comparative purposes, their use is waning, as techniques for the high-

throughput screening of more biologically relevant parasite forms has become commonplace. 

 Axenic amastigote screening provides a more biologically relevant assay than 

promastigotes, since the former is the active parasite found within host mammals.
64-65

 Screening 

is accomplished much the same way as with promastigotes in terms of controls, and hit 

identification by fluorescence. However, the actual growth of the parasites differs, as they must 

be chemically induced to continue multiplying as amastigotes, rather than revert to the 

promastigote form. This is accomplished via manipulation of pH to mimic macrophage 

conditions, and occasionally by the inclusion of 5% CO2 in the atmosphere, or incubation of cells 

at biologically relevant temperatures (37 ºC). 

 Screening compounds against intracellular amastigotes provides the best in vitro similarity 

to conditions found in vivo.
66-67

 In this method, promastigote cultures are allowed to infect 

macrophage differentiated host cells in growth media. After a period of initial infection, the non-

internalized promastigotes are rinsed away with a buffer, and the parasites are allowed to 

continue to grow under the presence of test compounds, or controls. Chemical differentiation of 

the host cells into macrophages is required for two reasons - first, the macrophage best mimics 

the in vivo context for a host infection, and second, without differentiation to non-dividing 

macrophages, parasitized cells would be overrun by replicating cells. THP-1 (human acute 
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leukemia monocyte) cells are most often used for this purpose. Determination of inhibitor 

activity is accomplished by visualization with a fluorescent DNA-binding stain. Areas rich in 

DNA will fluoresce, predominantly the THP-1 cell nucleus, and parasite kinetoplasts. The 

difference in size between these two structures may be exploited for high-content screening. One 

assay yields not only a ratio of parasites to host cells, but also a quantification of host cells in 

each sample well to serve as a measure of toxicity induced by the compounds. These 

measurements can be taken by automated fluorescence microscopy, but require a software suite 

for the automated/accurate image analysis.
68

 

3.1.3 Secondary screening 

 After hit compounds are identified, several other in vitro methods have been used to assist 

in lead identification as secondary screens. If not part of a the primary screen, assay hits may be 

tested independently against uninfected THP-1 cells to determine toxicity. Metabolic stability is 

also an important aspect for lead compound identification and optimization, as even the most 

potent hit is ineffective if metabolized too quickly.
69

 Preliminary metabolic data may be gathered 

by subjecting the test compound to either rat or human liver microsomal stability assay. As a 

final consideration in lead identification and optimization, hit compounds may be screened 

against cytochrome P450, to avoid potential drug-drug interactions.
70

 

3.1.4 Screen analysis and validity 

 Large scale screening methods must provide a reliable means to identify biologically active 

compounds from a large compound library, with assays performed singly (rarely in duplicate or 
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triplicate). A statistical method for determination of assay quality has been proposed, yielding a 

dimensionless coefficient called the Z-factor, or Z-score (Equation 1).
71

 A Z-factor of 1 indicates 

an ideal assay, with standard deviations of zero, and infinite dynamic range. Typically Z-factors 

between 1 and   0.5 indicate a good quality assay, with a large separation band between hits and 

inactive compounds.  

           
 (     )

|     |
 

Equation 1: Z-Factor for HTS validity 

σ: standard deviation, μ: mean, p: positive control, n: negative control 

3.2 IN VIVO MODELS OF VISCERAL LEISHMANIASIS 

 After identification and optimization of hit compounds through in vitro methods, animal 

models are required to better mimic infection and treatment in mammalian hosts. For developing 

new chemotherapies, in vivo models serve to confirm compound activity determined from 

cellular and enzymatic assays, as well as provide information regarding administration routes, 

distribution, metabolism, excretion, and toxicity (ADMET). Several species have been studied as 

hosts for the L. donovani parasite as models for visceral leishmanias.
59

 Rodents, canines, and 

non-human primates have all been used for this task. 

 Rodent models are the most accessible models of L. donovani infection of a mammalian 

host. A variety of species have been studied, including C57BL/6 mouse, and Syrian golden 

hamster, but the BALB/c mouse model is most common.
72

 Canine models of the disease have 

also been used in studies of parasite biology, but with little emphasis for use on development of 

chemotheraputics.
59

 Establishing canines as accurate models is important nonetheless, as they 
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have been shown to exhibit closer disease pathology to humans than available in rodent models. 

Also, the study of leishmaniasis in canines is useful to determine their role as host reservoirs for 

certain species of the parasite.
73

 Finally, non-human primates have been studied as the most 

advanced, human-like model of leishmaniasis. Many species of primate are quite resistant to 

Leishmania infection, however, the languor (Presbytis entellus) has been identified as a 

promising model system for human leishmaniasis infection. The languor is susceptible to a 

lasting VL infection, ultimately resulting in death, and displays the same pathogenesis and 

immune response as in humans, allowing for their use in the study of antileishmanial vaccine 

candidates.
74
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4.0  LIMITED STATE OF ANTILEISHMANIAL DEVELOPMENT 

A wide array of experimental tools are available for the study and development of leishmania-

specific NMT inhibitors, yet there is a surprising lack of synergy and cross validation among 

these models. Currently, target-free screening is gerally preferred to target-based design: many 

putative targets besides NMT are characterized (albeit in less detail), and target-free screening 

allows for testing compounds ‘holistically’ focusing on overall efficacy, independant of 

knowledge about a particular molecular target.
65-66, 69, 75-77

 Choice of parasitic form 

(promastigote, and axenic or intracellular amastigote) is non-trivial, but improvements in high-

throughput assays for the later stages of the life cycle have rendered promastigote assays fairly 

obsolete.
67, 78

 Axenic and intracellular amastigote models are more biologically relevant, and are 

available in for use in high-throughput applications. To date, several target-free HTS/HCS based 

screens for Leishmania inhibitors has been performed, with z-scores > .5, indicating good quality 

screens.
79

 These efforts have resulted in the identification of novel scaffolds, but no attempt has 

been made to associate hits with a specific target (either by in silico methods, or enzymatic 

assay).  

 One NMT-based HTS has been performed utilizing the scintillation proximity assay, 

against the Pfizer global representative library (~150,000 compounds).
62

 This screen successfully 

demonstrated the ability to selectively inhibit LdNMT over Hs1NMT (Figure 7), and identified 

several scaffolds for NMT inhibition, representatives shown in Figure 6. However, this screen 
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was not without shortcomings, such as a lack of testing in cellular assays to confirm bioactivity 

and selectivity of identified hits. Also, while each scaffold generated a series of ‘local’ hits, only 

inhibition data for top hits within each family was reported, rather than observed SAR. 

 

Figure 6: LdNMT assay hits and selectivities. 

 

Figure 7: Tunable selectivity between Ld and Hs1 NMT inhibition. 

Reprinted under Creative Commons license from Bell, A. S.; Mills, J. E.; Williams, G. P.; Brannigan, J. A.; 

Wilkinson, A. J.; Parkinson, T.; Leatherbarrow, R. J.; Tate, E. W.; Holder, A. A.; Smith, D. F., Selective inhibitors 

of protozoan protein N-myristoyltransferases as starting points for tropical disease medicinal chemistry programs. 

PLoS Negl Trop Dis 2012, 6 (4), e1625.
80

 

 

 In silico analysis of antileishmanial NMT inhibitors is also limited. Despite the large 
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quantity of crystallographic data available for Leishmania spp. NMT enzymes, few detailed in 

silico docking or modeling studies have been published. Of the few studies available, many are 

not specific to NMT, but rather, focus on a cross-sectional docking study of inhibitors against a 

range of potential targets. Ogungbe, et al. have published two separate reports docking plant-

based phenolic compounds (stilbenoids, phenylpropanoids, flavonoids, quinones, etc) to a large 

series of crystal structures to determine potential targets.
81-82

 In either instance, a library of 

chemicals (some of which have shown broad antiparasitic activity) is docked to the array of 

structures, and energies reported. However, neither report offers a more in-depth analysis of the 

data, by way of rationalizing existing cellular assay data with docking results, or collaborative 

work to screen top computational hits against cellular or enzymatic assays. 

 Sobarzo-Sanchez et al. have studied a small series of oxoisoaporphine antileishmanials 

(Figure 8) in detail, providing in vitro, in vivo, and in silico analysis.
83

 Their aim was similar to 

Ogungbe’s work, but more successful in identifying potential targets. Utilizing 128 known 

Leishmania enzymes with docked ligands as the basis for a training dataset, the group utilized 

bioinformatic analysis (via ‘MARCH-INSIDE’ software) to determine 4 putative targets, 

including NMT. From these results, an NMT enzymatic assay could easily confirm 

oxoisoaporphines as NMT inhibitors, and provide a positive or negative training dataset for 

further in silico study of oxoisoaporphines. 

 

Figure 8: Oxoisoaporphine scaffold. 

 While NMT has been studied in leishmaniasis, and its inhibition has been shown as a 

means to combat parasite growth, the discovery of corresponding Leishmania NMT inhibitors is 

N

O
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limited. Simple efforts to utilize existing methods synergistically can increase the efficiency in 

which NMT inhibitors are discovered and optimized. 
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5.0  NMT STUDIES IN RELATED ORGANISMS 

As described previously, NMT enzyme activity has been proposed as a target for a variety of 

fungal and protozoan diseases, and a number of compounds have been reported to inhibit the 

NMT enzyme and disease growth. However, in comparison to Leishmania NMT inhibitors, 

NMT inhibition in other species has been studied in much greater detail, with inclusion of SAR, 

in silico, and crystallographic supporting data. Some relevant data with regard to cross-inhibition 

of Leishmania NMTs is occasionally discussed within these studies, but is rarely presented in 

context of SAR studies focusing on improving antileishmanial potency. It is not uncommon for 

large swaths of medicinal chemistry data to go unreported in scientific journals and only 

published in patents.
84

 This is no different for NMT inhibitors: while there is a lack of SAR data 

and discussion for antileishmanials presented within journal articles, certain data-sets can be 

found in related patents, but without relevant discussion. A variety of compound classes have 

been reported as NMT inhibitors in other species with some crossover studies on Leishmania 

spp, including benzofurans and similar heterocycles, pyrazole sulfonamides, quinolines, and 

peptides/peptidomimetics. These scaffolds and associated analyses can serve as starting points 

for piggyback drug development strategies.
85
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5.1.1 Benzofurans 

 Benzofurans, and associated compounds (benzothiazoles, benzothiophenes, indoles) are 

amongst the most studied NMT inhibitors, and this broad group of compounds has been used for 

piggyback hit generation/optimization across several species.
86-94

 QSAR studies have been 

performed on existing hit datasets to determine pharmacophore models, which have been 

computationally used to generate new prospective hits.
95-96

 In terms of activity-based SAR, a 

piggyback approach using the same or similar heterocyclic core is common amongst other types 

of disease, which is visually apparent between studies on different species.
97-98

 Despite the core 

similarities between inhibitors, each subsequent study has expanded around existing SAR 

(species specific), in continually good detail.
99

 Furthermore, many papers include 

crystallography data showing the binding pose of their top hit(s). However, no journal articles 

discuss the implications of these results with respect to the development of antileishmanials. 

 Benzofurans and furan-like compounds have been patented for use as NMT inhibitors of 

P. falciparum, and L. donovani. Despite a lack of reporting in primary literature sources, the 

patent features a SAR of 140 compounds with similar heterocyclic cores, and relevant IC50 

concentrations (SPA or fluorescence assay) for both L. donovani and P. falciparum.
100

 Of the 

compounds screened, 74 have been identified by the authors as ‘hits’ (< 5 µM IC50) against 

LdNMT. The most potent, shown below (Figure 9), possesses an IC50 of 0.01 µM. Unfortunately 

this hit was not screened against human NMT1 to determine selectivity. The most potent 

inhibitor with selectivity data displays 0.027 µM IC50 against LdNMT, and 1.00 µM IC50 

inhibition against Hs1NMT, roughly 40-fold selectivity favoring parasite isozyme inhibitions. 
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Figure 9: Benzofurans as NMT inhibitors. 

The most recently published study of this class of compounds investigated the use of 

substituted  benzothiophenes as inhibitors of P. falciparum and P. vivax (Figure 10). The study 

proposes ‘ligand efficiency dependent lipophilicity’ (LELP) as a single metric to assist in triage 

of molecules, and as a strong predictor of drug-likeness, utilizing compounds from the previous 

patent. Included are crystal structures of two inhibitors bound to P. vivax NMT, displaying 

complementary binding modes to previous characterizations. LELP optimization resulted in 

~100-fold increase in enzyme affinity.
101

 

 

Figure 10: LELP-optimized Plasmodium inhibitors and crystal structure with ligand. 

(PDB: 4CAF) Reprinted with permission from Rackham, M. D.; Brannigan, J. A.; Rangachari, K.; Meister, 

S.; Wilkinson, A. J.; Holder, A. A.; Leatherbarrow, R. J.; Tate, E. W., Design and synthesis of high affinity 

inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferases directed by ligand efficiency 

dependent lipophilicity (LELP). J Med Chem 2014, 57 (6), 2773-2788. Copyright 2014 American Chemical Society. 

 

LELP is calculated as cLogP/LE. Ligand efficiency, LE = [−RTlog(Ki)]/(no. of heavy 

atoms). Ki values are calculated from the experimentally determined IC50 values, the substrate 
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concentration ([S]), and the Michaelis–Menten constant (Km) as described by the Cheng–Prusoff 

equation (Equation 2).
102

 Km values are used from previously experimentally determined 

constants. 

   
    

  
[ ]
  

 

Equation 2: Cheng-Prusoff equation 

[S] = substrate concentration 

5.1.2 Pyrazole sulfonamides 

 

Figure 11: Pyrazole sulfonamide NMT inhibitors and representative crystal structure. 

Reprinted with permission from Brand, S.; Cleghorn, L. A.; McElroy, S. P.; Robinson, D. A.; Smith, V. C.; 

Hallyburton, I.; Harrison, J. R.; Norcross, N. R.; Spinks, D.; Bayliss, T.; Norval, S.; Stojanovski, L.; Torrie, L. S.; 

Frearson, J. A.; Brenk, R.; Fairlamb, A. H.; Ferguson, M. A.; Read, K. D.; Wyatt, P. G.; Gilbert, I. H., Discovery of 

a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J Med Chem 2012, 55 (1), 140-152. 

Copyright 2011 American Chemical Society. 

 

Pyrazole sulfonamides are less ubiquitous than benzofuran-like molecules for NMT 

inhibition, but nevertheless, extensive SAR studies have been performed towards the inhibition 

of T. brucei, and T. cruzi parasites.
103-104

 Screening of ~60,000 compounds yielded an initial hit, 

and subsequently over 200 analogs were synthesized for further analysis.
103
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binding pose in a crystal structure, and optimized compound are shown in Figure 11. Studies on 

these analogs include corresponding selectivity data between TbNMT and Hs1NMT via SPA 

assay, and in vitro activity against T. brucei parasites. Beginning with an initial hit of 21 μM 

(IC50) against the T. brucei parasite, the optimizations culminated in a compound with 0.002 μM 

potency. The paper indicates cross-inhibition of L. major, however only inhibition by the 

optimized compound (optimized specifically for T. brucei inhibition) has been reported 

(LmNMT IC50, 0.002 µM), rather than data from the series of compounds. 

Included in the study, 5 crystal structures with bound pyrazole sulfonamides inhibitors 

are reported. However, T. brucei crystallization has not been reported, and the authors utilized 

LmNMT as a surrogate model for TbNMT, but did not discuss SAR implications of these 

compounds regarding antileishmanial development. Nevertheless, a wide range of analogs has 

been studied, and a close correlation between NMT inhibition and T. brucei parasite inhibition 

has been established (Figure 12). 

 

Figure 12: TbNMT inhibition correlates to T. brucei parasite inhibition. 

Image used with permission from Frearson, J. A.; Brand, S.; McElroy, S. P.; Cleghorn, L. A.; Smid, O.; 

Stojanovski, L.; Price, H. P.; Guther, M. L.; Torrie, L. S.; Robinson, D. A.; Hallyburton, I.; Mpamhanga, C. P.; 

Brannigan, J. A.; Wilkinson, A. J.; Hodgkinson, M.; Hui, R.; Qiu, W.; Raimi, O. G.; van Aalten, D. M.; Brenk, R.; 
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Gilbert, I. H.; Read, K. D.; Fairlamb, A. H.; Ferguson, M. A.; Smith, D. F.; Wyatt, P. G., N-Myristoyltransferase 

inhibitors as new leads to treat sleeping sickness. Nature 2010, 464 (7289), 728-732. 

 

Much like the benzofuran NMT inhibitors, the series of pyrazole sulfonamides inhibitors 

has also been patented.
105

 Similar to benzofurans, the pyrazole sulfonamides have been tested 

against LmNMT via SPA assay, as described in the patent, yet these results are unreported in the 

original paper. Inclusion of LmNMT inhibition data is far more limited than corresponding 

TbNMT data - only ~40 compounds of the total screen were also assayed for LmNMT inhibition. 

5.1.3 Quinolines 

Recently, a novel series of quinoline compounds has been discovered to inhibit P. vivax via high 

throughput screening. Structurally similar hits within the original screening set were tabulated, 

and yielded a concise SAR. This study culminated in a PvNMT inhibitor with a 2.9 µM IC50 in 

the enzymatic assay. A binding mode has also been elucidated via crystallography (PDB: 4A95, 

Figure 13). In comparison with other known inhibitors of CaNMT and TbNMT, the quinoline 

series occupies a slightly different area of the binding pocket. 
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Figure 13: Structure overlay of inhibitor species. 

Quinoline shown in green, benzofuran in orange, pyrazole sulfonamide in blue.  

Image used with permission from Goncalves, V.; Brannigan, J. A.; Whalley, D.; Ansell, K. H.; Saxty, B.; Holder, A. 

A.; Wilkinson, A. J.; Tate, E. W.; Leatherbarrow, R. J., Discovery of Plasmodium vivax N-myristoyltransferase 

inhibitors: Screening, synthesis, and structural characterization of their binding mode. J Med Chem 2012, 55 (7), 

3578-3582. Copyright 2012 American Chemical Society. 

5.1.4 Peptide/peptidomimetics 

Peptide-based and peptidomimetic NMT inhibitors have been reported for C. albicans, and P. 

falciparum.
106-109

 Detailed SAR is more limited than for small molecule inhibitors, yet activity is 

similarly impressive, with as low as 0.04 µM IC50 against CaNMT. Notably, peptide and 

peptidomimetic inhibitors can take advantage of the high degree of NMT substrate specificity, 

with a maximum selectivity of 2200-fold demonstrated in CaNMT over Hs1NMT. Structural 
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characterization of a peptide bound to S. cerevisiae  (PDB: 1IID) has been achieved, and analysis 

of >100 synthetic peptides has been performed to determine preferred amino acid composition 

for binding affinity along an 8 residue synthetic peptide. 
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6.0  FUTURE PROSPECTS IN ANTILEISHMANIAL DEVELOPMENT 

Existing infrastructure for design, synthesis, and screening of L. donovani inhibitors can be better 

utilized for NMT-inhibitor-based drug discovery. A simple, comprehensive improvement to 

existing antileishmanial design would be the addition of NMT assay screening of target-free hits. 

By testing a greatly reduced number of compounds, a minimal amount of complexity is added to 

an existing screening campaign. Compounds that do not inhibit NMT may be studied and 

optimized as with any other target-free screening. Targets shown to inhibit NMT activity may be 

better optimized using target-based methodologies. In either case, further use of secondary 

screening can be carried out to better identify lead-like compounds. 

 The relevance of a target-based drug development methodologies for antileishmanials 

warrants discussion.
110-112

 Historically, the increase in computational power, and knowledge of 

genetics and proteomics has made target-based screening appear as an encouraging method for 

drug discovery. However, in practice, target-based drug design involves assumptions about 

mechanism of action, identification and validation of a drug target, and sometimes complex 

interactions between a disease and the body. Target-free screening avoids these pitfalls by 

exclusively focusing on the observed drug efficacy. In the case of N-myristoyltransferase as a 

target for visceral leishmaniasis treatment, the enzyme sidesteps these barriers. Crystal structures 

with known inhibitors and enzymatic assay provide an immediate link to compare results of the 

two methods between themselves, and between data associated with cellular assays. Transgenic 
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parasites null for the NMT-encoding gene in both L. major and L. donovani have demonstrated 

the necessity for NMT enzyme expression. The parasite biology with respect to NMT inhibition 

is well understood, and selective inhibition over human isozymes has been demonstrated. As an 

additional metric for compound screening and triage, LELP considerations may be applied to 

compound-sets. Overall, NMT presents itself as a well characterized enzyme, suitable for target-

based development.  

 Optimization of existing NMT inhibitors via a piggyback approach is the most immediately 

accessible option for antileishmanial development. Existing SAR and crystallographic data for 

other species provide a comparable framework for antileishmanial design and synthesis.  

 Peptide and peptidomimetics, in particular, offer a unique route to Leishmania inhibition, 

with the potential for high specificity toward LdNMT over HsNMT, minimal toxicity, and easy 

library synthesis of analogs via peptide coupling methods. Kinetic and inhibition studies of 

known NMT-inhibiting synthetic peptides and peptidomimetics on L. donovani NMT may be a 

first step, considering similarities between studied yeast NMT and Leishmania NMT. Significant 

differences between the proteins occur on the opposite face of the protein and CoA binding sites, 

and these differences are not purported to alter protein function, offering direct comparison of 

bound ScNMT inhibiting protein with the LmNMT crystal structure (Figure 14).
47

 Secondary 

screening of drug metabolism is also necessary to help overcome rapid metabolism commonly 

associated with peptide based drugs.
113
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Figure 14: Overlay of peptide and small molecule NMT inhibitors. 

Peptide (green) from ScNMT crystal structure (PDB: 1IID), inhibitor (orange) and enzyme (pink) from 

LmNMT crystal structure (PDB: 4A2Z). Image used with permission form Brand, S.; Cleghorn, L. A.; McElroy, S. 

P.; Robinson, D. A.; Smith, V. C.; Hallyburton, I.; Harrison, J. R.; Norcross, N. R.; Spinks, D.; Bayliss, T.; Norval, 

S.; Stojanovski, L.; Torrie, L. S.; Frearson, J. A.; Brenk, R.; Fairlamb, A. H.; Ferguson, M. A.; Read, K. D.; Wyatt, 

P. G.; Gilbert, I. H., Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J Med 

Chem 2012, 55 (1), 140-152. Copyright 2011 American Chemical Society. 

 

 Quinoline-based NMT inhibitors may also serve as a promising source of piggyback 

development candidates. Initially, screening of the P. vivax hits against L. donovani NMT can 

provide the first step to understanding the efficacy of this class of compounds against the 

Leishmaniases. Synthesis of these quinolines is well established to allow for further SAR studies 

and optimization.
88

 Notably, the nitrile-bearing thioether is attached last, allowing for relatively 

easy synthesis of relevant analogs for SAR studies (Figure 15). Visually, the binding pocket is 

not fully utilized by the quinoline analogs, but the nitrile group shares some overlap with other 

inhibitor classes. Replacement of the nitrile group with other potent pharmacophores may yield 

an increase in both activity and selectivity by utilizing a larger surface of the binding site. 
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 Existing SAR and synthetic routes to benzofurans, benzothiophenes, and pyrazole 

sulfonamides are extremely well established, and offer insight towards synthesis of new analogs. 

Synthetic routes to these compounds are relatively simple, with numerous points to facilitate 

combinatorial synthesis, or substitution of bioisosteric fragments. For example, pyrazole 

sulfonamides are accessible in minimal steps, with orthogonal steps to introduce additional 

moieties or substitutions (Figure 16).
103

  

 

Figure 16: Pyrazole sulfonamide synthesis. 

 Inhibitors specific to L. donovani NMT have been identified via high throughput 

enzymatic assay. Re-assay of structurally similar hits can provide a direction for future SAR 
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study, and synthesis of analog compounds is the next logical step for development and 

optimization of these compound classes. Synthetic routes to these specific compounds are not 

available via literature methods, but adaptations of existing methodologies should suffice. 

Biphenyl derivatives are readily synthesized from Suzuki-coupling of substituted aryl groups.
114

 

Piperidinylindoles are easily synthesized from a corresponding indole starting material.
115

 Chiral 

acylpyrrolidones are commercially available with a variety of aromatic substitutions and other 

pyrrolidines may be synthesized using a variety of established procedures.
116-119

 Notably, 3,4-

disubstituted pyrrolidines may be diastereoselectively synthesized from corresponding ethyl 

cinnamate analogs,
120

 followed by mild, selective N-demethylation.
121

 Subsequent coupling with 

commercially available, or readily synthesized, amino-substitued fragments by amide bond 

formation complete the full analog synthesis (Figure 17). Similarly substituted thienopyrimidines 

have been synthesized as treatments for hematological malignancies and as calcium channel 

blockers (Figure 18).
122-124

 In all cases, synthetic methods allow for easy introduction of 

structural variety, allowing for combinatorial synthesis of a variety of analogs. 

 

Figure 17: Pyrrolidine synthesis and acylpyrrolidine retrosynthesis. 
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Figure 18: Thienopyrimidine retrosynthesis. 

 

Finally, purely in silico methods may provide the easiest route for screening large 

compound libraries. While there is currently a lack of computer based drug design toward 

antileishmanials, selecting NMT as a target offers a simple, robust approach for development. 

Preliminary screening in silico can be accomplished through tandem screening of compounds 

against Leishmania and human NMT isozymes. This can be done with relatively little computing 

power (dedicated desktop as opposed to multicore servers) and at low cost (several free docking 

programs offer comparable docking performance to commercial software suites).
125-126

 Any 

molecular library may be screened, with the substantial ZINC database being an excellent 

starting point.
127

 Docking may be validated based on comparison with ligand positions in crystal 

structures, and by NMT enzyme assay of top hits. Likewise, existing SAR studies may be 

applied to provide extensive training datasets for validation of in silico methods. Computational 

methods may be inserted at any point of NMT-based antileishmanial discovery to achieve an 

optimal relationship between screening, validation, and generation of new compounds to test. 
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7.0  CONCLUSIONS 

The global disease burden and lack of sufficient clinical treatments warrant further investigation 

of antileishmanial compounds. N-myristoyltransferase has been demonstrated as a promising 

target for development of drugs treating leishmaniasis, particularly visceral leishmaniasis. 

Unfortunately, the current body of research on NMT-specific leishmania inhibitors is limited. In 

this case, existing target-free screening techniques may be easily combined to include screening 

for NMT inhibitors. The body of research on NMT inhibition in similar parasite and fungal 

species is thorough, with detailed SAR and crystallographic supporting evidence of binding 

modes on highly similar molecular targets. This offers an excellent starting point for piggyback 

development of Leishmania-specific NMT inhibitors. Of the few specific NMT inhibitors of L. 

donovani shown, no optimization has been performed on the parent chemical scaffolds, offering 

an opportunity to determine efficient syntheses, and relevant SAR for these compounds. Finally, 

in silico methods may be applied through out, in tandem with enzymatic assay results. In this 

manner, more efficient drug discovery methods may be accomplished, regardless of initial 

development method. The currently limited state of NMT-inhibitor development has been 

discussed, within the context of more expansive methods, applications, and relevant studies. 

Although there is a noticeable gap between these similar areas of research, several solutions have 

been proposed to further study of NMT inhibition of L. donovani.  
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