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 Genome stability is vital to the survival and health of eukaryotic organisms. Consequently, 

many complex mechanisms coordinate with each other in an intricate fashion to ensure that 

genomes are preserved during duplication and its subsequent propagation. Despite the vast number 

of factors involved in these processes, their coordinated regulation hinges on a few key 

components. One such factor is the eukaryotic replicative helicase Mcm2-7, which is a multi-

subunit enzyme complex that unwinds DNA during S-phase and paves the way for nascent DNA 

synthesis by the polymerases. As an essential and highly versatile replisome component, Mcm2-7 

is well-suited as the ideal hub for the regulation of not only DNA replication but other fork-related 

activities such as S-phase checkpoints and sister chromatid cohesion. While all members of the 

Mcm2-7 complex are highly conserved and essential in all eukaryotes, their contributions towards 

DNA unwinding are unequal and distinct, and the in vivo functions of most of the Mcm ATPase 

active sites has remained largely unknown. We conducted an in vivo analysis of a viable mcm2 

ATPase active site allele in Saccharomyces cerevisiae and found that under conditions of 

genotoxic stress it is deficient in the DNA replication checkpoint (DRC) activation, upstream of 

the Rad53/CHK2 effector kinase. Furthermore, this allele also exhibited a peculiar cell-cycle 

specific DNA damage phenotype and defective sister chromatid cohesion (SCC) under conditions 
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that are normally conducive to growth. Importantly, these phenotypes manifest from an apparent 

defect in ATP hydrolysis rather than a qualitative reduction in Mcm2 protein abundance, stability 

or complex integrity. Therefore, our study demonstrates for the first time that Mcm2-7 can 

coordinate DNA replication with genome stability through discrete ATPase active sites. Curiously, 

these functions appear to be separable from general replication defects as shown through a different 

subset of mcm mutants, indicating that different active sites of Mcm2-7 pleiotropically coordinate 

various aspects of genome integrity during S-phase.  
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1.0  INTRODUCTION 

The precise duplication, maintenance and propagation of genetic material are fundamental 

events that are indispensable for survival across all domains of life. Most organisms possess 

elaborate, multi-component pathways that act in a highly coordinated fashion to faithfully preserve 

their respective genomes. Eukaryotic organisms, in particular, have additionally evolved complex 

regulatory mechanisms to supervise the manipulation of their genome. Over the years, tremendous 

progress has been made towards the identification of various factors that play key roles during 

DNA replication and segregation, even as novel components are consistently being discovered and 

investigated. Therefore, it has become increasingly important to identify the mechanistic links that 

connect multiple factors, and ask if there is a unifying mechanism that connects DNA replication 

to its global maintenance and ultimately its accurate segregation to daughter cells. 

 

The following sections are dedicated to reviewing our current understanding of the overall 

process of DNA replication in eukaryotes, with special emphasis on the eukaryotic replicative 

helicase Mcm2-7. Most of the research summarized in these sections focuses on studies done in 

the budding yeast Saccharomyces cerevisiae, with specific references to our knowledge of 

replication gathered from other model systems as indicated.  
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Eukaryotic DNA replication- an overview 

 

Although the basic mechanism and components of semiconservative DNA replication are 

similar in prokaryotes and eukaryotes, DNA replication is a spatiotemporally regulated process in 

the latter and involves contributions from several additional and novel replication fork 

components. Additionally, owing to the large sizes of typical eukaryotic genomes, replication 

occurs at a much slower rate and is strictly monitored by various quality control mechanisms 

(discussed later). Moreover, in order to preserve genome stability, replication is coordinated with 

several other cell-cycle specific processes including replication checkpoints and sister chromatid 

cohesion.  

 

The process of eukaryotic DNA replication can be broadly divided into three main events 

(details provided throughout the chapter):  

1) Initiation 
2) Elongation 
3) Termination 

 

1) Initiation – During the G1 phase of the cell cycle, Origin recognition complex (ORC) 

associates with origins of replication. Subsequently, essential factors Cdc6 and Cdt1 promote the 

loading of the Mcm2-7 helicase at origins through an ATP-hydrolysis dependent mechanism. The 

origin-loaded Mcm2-7, along with Cdt1, Cdc6 and ORC constitute the pre-replicative complex 

(pre-RC) (reviewed in [1], Figure 1). Notably, to assist in bidirectional replication, two Mcm2-7 

hexamers are loaded at each replicative origin. At this stage, the helicase is catalytically inactive 

and therefore cannot initiate DNA unwinding during G1. 
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Upon entry into S-phase, the pre-RC undergoes extensive remodeling in a manner 

dependent on cell cycle kinases. Subsequently, helicase loaders dissociate from the pre-RC, and 

several additional accessory replication factors (e.g. Sld proteins, GINS, Cdc45) associate with, 

and aid in the activation of Mcm2-7. The helicase becomes competent to unwind double-stranded 

DNA at this stage (Figure 1). 

 

2) Elongation –The complete replisome progression complex (RPC) is assembled by the 

inclusion of the replicative DNA polymerases (Pol δ and Pol ϵ), primase/Pol α, sliding clamp 

(PCNA), topoisomerase, and several fork-stabilizing factors (listed in Table 1) that coordinate 

with Mcm2-7 to synthesize nascent double-stranded DNA throughout replication bidirectionally.  

 

3) Termination – Replication termination, while poorly understood, is believed to occur 

through several independent mechanisms, including collisions between two opposing forks, 

passage of forks through replication barriers, or simply by reaching the end of linear DNA 

molecules [2-5]. The Mcm2-7 complex, along with other replisome components presumably 

dissociate from DNA and are not loaded until the next cell cycle,  thereby limiting replication to 

once per cell cycle. Additional events such as replication of ends by telomere-associated 

complexes and resolution of concatenated DNA by Type II-toposisomerases ensure the complete 

duplication of the genome [6, 7]. 
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Figure 1. Schematic of eukaryotic DNA replication during initiation and elongation 

Refer to text for details. (adapted with permission from [8] ). 
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1.1 PRE-RC FORMATION AND THE MCM2-7 HELICASE 

1.1.1 Origins of replication and ORC 

DNA replication across all domains of life is initiated at discrete focal points within their 

genomes called origins of replication, which vary in composition and frequency among different 

organisms. Typical bacterial genomes initiate bidirectional replication from a singular ori; E. coli 

finishes replication of its 4.6 Mb genome in 20 minutes, with replication occurring at a rate of 

nearly 1kb/sec [9]. In contrast, the larger eukaryotic genomes replicate at a much slower rate (50 

bases/sec), but are nevertheless coordinated in a highly time-regulated manner. This is made 

possible by the presence of numerous origins of replication interspersed throughout their genome 

at defined intervals. In the budding yeast Saccharomyces cerevisiae, there are approximately 400 

origins of replication that are spaced on average 35 Kb apart throughout the 12 Mb genome. 

Human genomes have been reported to carry nearly a hundred times as many origins as yeast [10]. 

 

Although the simultaneous firing of all origins may appear to be the optimal mechanism to 

replicate chromosomes in eukaryotes, this is seldom observed. Instead, origins display a strict 

spatio-temporal firing pattern, with some functioning early in S-phase (early origins), while others 

functioning during the latter half of DNA replication (late/dormant origins). Besides the timing of 

their activation, this classification of origins is additionally based on several factors including the 

chromosomal context of the DNA regions surrounding the origins. This includes the nucleosome 

occupancy and the presence of transcribed genes, which evidently play a crucial role in allowing 

access to origins of various replication factors, and additionally coordinate with replication forks 

to avoid frequent replication-transcription clashes [11, 12]. Multiple origins confer distinct 
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advantages upon regulation of DNA replication in eukaryotes by allowing large genomes to 

replicate in a finite time within the normal span of the cell cycle. The presence of numerous origins 

offsets the slow rate of fork progression from a single origin and allows timely genome duplication. 

If too few origins are licensed to be activated during S-phase, certain replication forks may 

terminate before they could fuse with forks from such inactive origins and result in large 

unreplicated regions. Furthermore, in the presence of fork impediments or DNA damage at one or 

more regions in the genome, activation of previously dormant origins ensures the continuation of 

replication, thus permitting timely duplication of the genome [13, 14].  

 

Origin structure and context: The original replicon model put forth by Jacob and Brenner suggested 

that replication is regulated by binding of an initiator (i.e., a trans-acting factor) to a single 

replicator (i.e., DNA sequence bound by initiator) [15]. Although proposed initially to explain 

replication of circular bacterial genomes, the subsequent extension of this model to the more 

complex eukaryotic genomes allowed the search for multiple such sequences that can direct 

replication of the entire genome as discrete, coordinated units. Although origins are typically AT-

rich sequences, a broad consensus on what defines a eukaryotic origin is still a matter of debate, 

with significant differences observed between lower eukaryote and metazoan origins. In budding 

yeast, origins are referred to as Autonomous Replicating Sequences (ARS), initially named for 

their ability to allow yeast plasmids to stably propagate [16]. These sequences are defined by 

several conserved structural elements [17]. The ACS (ARS Consensus Sequence) element is AT-

rich and is defined by a 11 bp consensus sequence that serves as the primary ORC-binding site 

(see below) [18]. There are several other proximal elements (B1-B3) that play an important, but 

not individually essential, role in ORC assembly as well as in binding proteins of the pre-RC 
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including the replicative helicase and helicase loaders (see below) [19, 20]. The multiple elements 

within ARS regions are also through to contribute to the efficiency of origin usage, as not all origin 

sequences fire during each cell cycle [21]. In contrast to yeast origins, metazoan origins do not 

possess any defined consensus sequences and may instead be more structurally related through 

either repeat elements that allow formation of unusual DNA conformers such as G-quadruplexes, 

or specific histone modification marks [22, 23]. In Drosophila, origin identity has been frequently 

attributed to regions of the genome that are actively transcribed and are relatively nucleosome free, 

or bear specific histone variants like H2A.Z [24]. Moreover, ChIP-seq analyses have also found 

increased abundance of proteins such as the acetylase HBO1 at these regions, which indicates these 

sites are the preferred choice for formation of the pre-replicative complex [25]. 

 

ORC proteins: In eukaryotes, replication origins are bound by the Origin recognition complex 

(ORC), which is a complex of six distinct AAA+ family ATPases (ORC1-6). ORC was initially 

identified in budding yeast through glycerol gradient experiments and DNase footprinting assays 

as a protein that binds the ACS in vitro [18]. Paralogs of ORC are found in both prokaryotes, e.g. 

DnaA [26, 27], as well as in archaea, e.g. ORC1 (reviewed in [28]). Through the course of 

evolution, most ORC subunits in yeast, with the exception of ORC1 and ORC5, lost the ability to 

bind ATP, and only ORC1 is capable of hydrolyzing ATP [29, 30]. ORC1,-2,-4 and-5 additionally 

contain Winged-helix (WH) domains at their C-termini that assist in DNA binding. ORC6 is the 

smallest protein in the complex and is related to the transcription factor TFIIB [31]. In terms of 

activity, ATP hydrolysis by ORC1 is crucial for the initial recruitment of licensing factors such as 

Cdc6 to origins [32]. Regardless of their position on the chromosomes, ORC is initially recruited 

to all origins in the genome and remains associated through most of the cell cycle. Although the 
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dynamics of ORC-DNA association are still much-debated, there is emerging evidence that ORC 

show a preference for negatively supercoiled DNA [33] and rely on specific chromatin cues (e.g. 

the presence of histone modifications) to interact with origin DNA [34].  

1.1.2 The eukaryotic replicative helicase Mcm2-7 

DNA replication is crucially dependent on the precise regulation of DNA unwinding, as 

misregulation of this process can result in the generation of excessive single-stranded DNA 

without any corresponding DNA synthesis and drastically hamper genome stability. The 

replicative helicase is the main molecular motor that drives replication fork progression. In 

eukaryotes, the Mcm2-7 complex acts as the core of the replicative helicase to unwind dsDNA 

during S-phase. The Mcm2-7 holoenzyme is a heterohexameric complex comprised of six distinct 

subunits arranged in a toroidal fashion, which give rise to six different AAA+ ATPase active sites 

at their inter-subunit junctions (Figure 2). 

 

 

 

 

 

 

 

 

 

Figure 2. Mcm2-7 helicase ATPase active site organization 
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a, b) Canonical ATPase active site arrangement at inter-subunit junctions (R- arginine finger, A-Walker A,B-

Walker B). c) Cross section of Mcm2-7 showing β-hairpins in the Mcm2-7 central channel. EX- External 

hairpin, H2I-Helix-2 insert, PS1-pre-sensor 1, NH- N-terminal hairpin. (adapted with permission from [8] ). 

 

 

Discovery and organization - Many of the genes comprising Mcm2-7 were initially discovered in 

a yeast genetic screen to find mutants defective in plasmid stability (hence the name 

Minichromosome maintenance) [35]. The primary motivation for the screen was to search for 

replication proteins that can act as initiators and participate in the usage of replicative origins 

(replicators). The screen additionally revealed other MCM factors that are not a part of the core 

replicative helicase but are associated with various aspects of replication (e.g., Mcm1, Mcm10).  

While Mcm2, 3 and 5 were identified from the initial screen, subsequently, other members of the 

complex were identified in a screen for cdc mutants (Mcm 4, 5, 7 as cdc mutants cdc54, cdc46 and 

cdc47, respectively) or in S. pombe as segregation mutants (Mcm6 (mis5+), reviewed in [36]). 

These genes were eventually related as members of the same complex by comparing conserved 

structural motifs (Mcm box) within their sequences, and because of their ability to cause 

minichromosome maintenance and S-phase defects. Additionally, Mcms were identified as the key 

replication licensing components in Xenopus egg extracts by their ability to associate with and 

support replication of salmon sperm DNA in a cell cycle specific manner [37, 38]. The interactions 

among the six proteins has been determined in numerous ways, both genetically through 

suppression analyses and two-hybrid assays, as well as biochemically through 

immunoprecipitation and affinity chromatography. Gel filtration experiments have shown that the 

proteins co-migrate as a hexameric complex of ~600kDa, and additionally as several smaller 

subcomplexes [39, 40](see below). The precise order of the proteins in the complex was deduced 



 10 

in later biochemical studies through pairwise dimer-association analyses, the arrangement being 

Mcm 2-6-4-7-3-5, with Mcm2 and Mcm5 positioned adjacently in the closed ring (Figure 2. [41, 

42]).  

 

Structure of Mcm2-7- All proteins of the Mcm2-7 complex belong to the diverse AAA+ ATPase 

family of nucleotide hydrolases (reviewed in [43, 44]). Several other replicative factors including 

Cdc6, ORC, bacterial DnaA, and the clamp loader RF-C belong to the same class of proteins [45-

47]. Member of the AAA+ ATPase family are characterized by a conserved P-loop domain 

containing Walker A and Walker B motifs in the C-terminal region, which assist in ATP binding 

and positioning of a nucleophilic water molecule for ATP hydrolysis, respectively [44]. 

Additionally, the Arginine finger element, present C-terminal to the P-loop contacts the γ-

phosphate of ATP and mainly assists in ATP hydrolysis. Some additional features of the Mcm 

proteins include a zinc finger motif N-terminal to the Walker boxes as well as conserved pre-sensor 

1 (PS-1) and pre-sensor-2 (PS-2) loops that are involved in various aspects of MCM-DNA 

association, including moving the duplex through the central channel (Figure 2). Characteristic of 

ring-shaped AAA+ proteins, ATPase active sites within Mcm2-7 are formed at dimer interfaces; 

one subunit contributes the Walker A and B motifs, while the adjacent subunit provides the 

arginine finger to constitute a fully functional active site at inter-subunit junctions. The active sites 

follow the nomenclature Mcm X/Y, with Y being the subunit providing the Walker A and B motifs 

to the active site, and X being the arginine finger-contributing subunit (e.g. Mcm6/2). 
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1.1.3 Mcm2-7 loading and pre-RC assembly 

In eukaryotes, the assembly of multi-protein complexes such as the Mcm complex and ORC at 

origins commences towards the end of telophase and during early G1, whereby replication origins 

are bound by ORC-Cdc6 (ORC refers to the six subunit ORC complex) [48]. Following this 

association, origins become competent to recruit the replicative helicase Mcm2-7. This process 

additionally depends on the association of Mcm2-7 with Cdt1 [49, 50]. Together, these events 

assist in the loading of inactive Mcm2-7 head-to-head double hexamers to origins of replication 

that encircle double stranded origin DNA with opposite polarities. The final Cdc6-ORC MCM2-7 

assembly at origins in G1 phase is referred to as the pre-replicative complex (pre-RC, see below). 

It should be noted that helicase loaders such as Cdc6 are AAA+ proteins homologous to the 

bacterial DnaC [51]. The temporal separation of pre-RC formation and initiation of replication is 

crucial to ensure that Mcm complexes are not repeatedly loaded during the same cell cycle and 

trigger re-replication. Details of the above steps are presented below (Figure 3).  

 

Formation of the OCM complex - In order to function in replication as a processive 

helicase, Mcm2-7 rings must be stably loaded on DNA so that they can participate in DNA 

unwinding over an extended period of time. This process is mediated by a group of closely related 

proteins including ORC, Cdc6 and Cdt1 (Figure 3). In early G1 phase, multiple molecules of the 

helicase loader Cdt1 associate with individual Mcm2-7 hexamers and assist in their loading at 

replicative origins [50, 52]. A survey of the role of Cdt1 from multiple systems has demonstrated 

that Cdt1 is critical for the recruitment of the double hexamers to origins, a role that requires the 

C-terminal of Cdt1 [53-55]. While initially identified in S. pombe, the conserved role of Cdt1  in 

replication has been studied in various eukaryotes, including Drosophila, where DUP (double 
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parked) encodes the Cdt1 homolog [56], and Xenopus [53]. This initial loading requires the 

association of ORC-Cdc6 complex with the replicative origins. Cdt1 is crucial in this process as 

depletion of Cdt1 from cell extracts eliminates Mcm loading at origins without affecting ORC or 

Cdc6 loading on origin DNA [29, 57, 58]. However, the formation of stable double hexamers on 

the origin is a complex process that requires ATP hydrolysis by Cdc6 and release of Cdt1 [29]. It 

should be noted ATP hydrolysis by ORC or Cdc6 is not required for the mere association (defined 

biochemically as salt-sensitive Mcm complexes) of Mcm2-7 complex with origins. However, ATP 

hydrolysis is required for the stable loading of the helicase, with a ‘loaded complex’ biochemically 

defined as a salt-resistant protein-DNA complex [57, 59, 60]. The resulting DNA-associated OCM 

(ORC-Cdc6-Mcm2-7) complex is biochemically resistant to high-salt washes and is capable of 

forming stable Mcm2-7 double hexamers on origin DNA [32, 61]. This group of origin-bound 

proteins that are stably loaded on DNA during G1 is referred to as the pre-replicative complex 

(pre-RC) (Figure 1,3, reviewed in [1]). Notably, both ORC and Cdc6 are critically dependent on 

ATP in order to bind the origin and initiate pre-RC formation [62]. Eliminating Cdc6 ATP 

hydrolysis stabilizes Mcm2-7–Cdt1 complexes and precludes their loading at origins [29].   
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Figure 3. Current model of Mcm2-7 during licensing and pre-RC formation 

(Top) Schematic of pre-RC formation. OCCM- ORC/Cdc6/Cdt1/Mcm2-7. See text for details. Adapted 

with permission from [63]. (Bottom) Cryo-EM reconstruction of the OCCM complex from yeast. Mcm subunits are 

labeled M2-M7, ORC subunits are denoted as O1-O5. Question mark indicates unknown density that likely 

corresponds to DNA within the central channel. Adapted with permission from [64]. 

 

Stable loading of Mcm double hexamers:   Upon departure of Cdc6 and Cdt1 from the initial pre-

RC complex, Mcm2-7 loads on double stranded DNA as double hexamers that are aligned in a 

head-to-head fashion through their N-terminal regions [59, 65]. Because single Mcm2-7 hexamers 
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have not been observed on DNA, the double hexamers likely load in a concerted manner, with 

ORC-Cdt1 interactions possibly mediating this loading. Once loaded, these hexamers retain the 

ability to slide non-directionally on dsDNA and were found to be resistant to salt and DNase, 

indicating that loaded double hexamers are highly stable [65]. Analogous to the archael double-

hexameric Mcm complexes, the N-terminal zinc finger domains of Mcm2-7 are proposed to play 

a potential role in stabilizing interactions between the double hexamers [66]. The double 

hexameric Mcm2-7 configuration on DNA has been observed in other eukaryotic systems, 

including Xenopus [67]. While the double hexamers serve an obvious purpose in bidirectional 

replication via uncoupled sister replisomes, other groups have also proposed the notion of loading 

several hexamers on origins, which are subsequently shifted away from origins as replication 

progresses (see Figure 1, [65]). Such molecules do not disassemble from DNA but rather have 

been proposed to come in handy during replicative stress, possibly to aid in fork restart, obviating 

the need to re-load Mcms [57]. It is worth noting that both the helicase loading factors (Cdc6 and 

Cdt1) are inactivated prior to S-phase entry, and therefore cells can no longer use them to reload 

Mcm complexes onto collapsed forks.  Therefore, extra pre-loaded Mcm2-7 complexes might be 

a mechanism to obviate the need for helicase loaders during replication stress, once S-phase is in 

progress. 

 

How Mcm2-7 complexes transform from being merely associated with origin DNA to 

being stably loaded double hexamers has been a long-debated issue in the field. However, recent 

biochemical and structural studies of pre-RC formation has shed new light on the mechanism of 

Mcm loading. Using an in vitro system to study DNA-protein complexes in the presence of various 

salt concentrations, researchers found that the loading of two Mcm2-7 complexes at origins could 
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be a sequential process [61]. Initially only a single Cdt1-complexed Mcm2-7 hexamer is loaded 

on to ORC-Cdc6 bound origins. Cdt1 release upon Cdc6 ATP hydrolysis makes this initial 

hexamer competent for binding a second Mcm2-7 hexamer. It is currently assumed that this 

process requires a conformational change within ORC–Cdc6–Mcm2-7 that may arise from DDK-

dependent phosphorylation (discussed below, Figure 3). Subsequently a second Cdt1-bound Mcm 

complex may then be recruited to the origin where it stably loads on DNA and associates tightly 

with the first hexamer possibly after another round of ORC/Cdc6 ATP hydrolysis and Cdt1 release. 

Similar to the initial loading reaction, the absence of Cdc6 ATP hydrolysis does not preclude the 

association of the second hexamer with origins but prevents its stable loading. The various 

intermediate complexes described above that are formed during the pre-RC assembly have also 

been recently observed structurally through cryo-EM studies of the yeast OCCM complex (Figure 

3, [64]) The process of replication initiation (discussed below) is also contingent upon Cdt1 

recruitment to ORC, as ablating this association results in the failure of Mcm2-7 recruitment to 

origins [50]. This interaction also requires Cdc6; it has been suggested that Cdc6 binding imparts 

a conformational change within ORC6 which allows it to bind Cdt1 and subsequently recruit 

Mcm2-7.  

 

Despite the above studies, the current model of Mcm2-7 loading remains a contentious 

subject. In slight contrast to the above reported role of Cdt1 for licensing, it has been recently 

demonstrated that the initial recruitment of Mcm2-7-Cdt1 to ORC-Cdc6 at origins is mediated 

through the C-terminus of Mcm3, an event that also promotes ORC-Cdc6 ATP hydrolysis [68]. 

Moreover, this interaction plays a significant role in detecting incomplete Mcm-Cdt1 complexes 

and restricts the assembly of non-productive pre-RCs. According to this idea, any sub-optimal 
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Mcm complexes interacting with ORC-Cdc6 still triggered ATP hydrolysis, which in turn 

mediated disassembly of such Mcm complexes. Therefore, ATP hydrolysis during origin licensing 

acts as an internal quality control mechanism that ensures that only fully assembled components 

participate in pre-RC assembly.  

 

Several recent studies have identified the precise roles of ORC, Cdc6 and Mcm2-7 ATP 

hydrolysis at various steps in pre-RC formation [63, 69]. While Mcm2-7 ATP hydrolysis being 

important for the final stages of pre-RC assembly such as double hexamers formation and Cdt1 

release [63, 69], Cdc6 ATP hydrolysis helps release non-productive intermediates in the licensing 

process [69]. A recent model of origin licensing and pre-RC assembly is shown in Figure 3 (top). 

1.2 MCM2-7 ACTIVATION AND THE BEGINNING OF S-PHASE 

S-phase is triggered by cell cycle specific kinases that activate numerous replication factors and 

make them competent for participation in replication. Two basic processes that mark S-phase are 

the unwinding of double stranded DNA by Mcm2-7, which provides the single-stranded templates 

for the leading and lagging strand polymerases for DNA synthesis. CDK (cyclin-dependent kinase) 

and DDK (Dbf4-dependent kinase) activate a plethora of factors including the replicative helicase 

Mcm2-7 [70-72] and several additional initiator proteins such as Sld2 and Sld3 (see below, 

‘regulation of replication section’). Another key feature of S-phase is the dramatic transformation 

of Mcm2-7 into a higher order structure called the CMG complex, which is characterized by the 

association of Cdc45 and the GINS complex with the Mcm2/5 subunits (Figure 4,see section on 
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gate below). The CMG helicase functions as a very robust helicase compared to Mcm2-7 alone 

and likely functions as the in vivo replicative helicase. 

1.2.1 Discovery of the CMG helicase  

While Mcm2-7 from at least some organisms has demonstrable DNA unwinding activity 

in the absence of additional factors, it is a weak helicase in isolation [73]. Therefore, it was 

proposed that additional factors may be required to enhance the robustness of Mcm2-7. The focus 

of the replication field subsequently centered on Cdc45 and the heterotetrameric GINS complex 

(Go-ichi-ni-san, Japanese for 5-1-2-3, and refers to Sld5, Psf1-3) [74, 75]. Preliminary studies in 

yeast demonstrated the importance of these factors to the formation of stable replisome progression 

complexes (RPC) and S-phase progression, as inactivation of either component led to considerable 

delays in fork progression, thereby prolonging S-phase [74, 76]. Similarly, depletion of Cdc45 

from Xenopus extracts was observed to impair elongation [76-80]. While initial attempts at 

isolating the CMG complex from yeast were precluded by modest protein yields [74], subsequent 

work with Drosophila embryonic extracts successfully led to the isolation of a stable 11-member 

complex comprising of Mcm2-7 complexed with Cdc45 and GINS through stringent 

immunoaffinity and fractionation approaches (Figure 4) [81]. Biochemical analysis of 

recombinant mutant CMG complexes also confirmed that the helicase activity of the complex 

specifically required Mcm2-7 [73]. Overall, these experiments clearly demonstrated a universal 

requirement for Cdc45 and GINS for replication progression during S-phase.  
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Figure 4. Mcm/5 ATP-dependent gate and CMG helicase 

Mechanism of Mcm2-7 gate regulation by ATP binding, Cdc45 and GINS (refer text for details). Adapted 

with permission from [8]. 

1.2.2 Mcm2/5 gate opening and closing– implications for helicase loading and activation 

Non-equivalence of McmATPase active sites–implications for helicase activity regulation 

Although similar in organization to bacterial DnaA and archaeal Mcm helicases, which are also 

hexameric AAA+ATPase complexes, the eukaryotic Mcm2-7 has several unique qualities that 

make it a particularly interesting enzyme complex. At present, Mcm2-7 is the only known 

heterohexameric replicative helicase, while both bacterial and archael replicative helicases are 

formed from six identical copies of the same protein. Though Mcm2-7 is comprised of six active 

sites that are formed by a group of very similar proteins, the active sites are not functionally 

identical (reviewed in [41]). If  bacterial, viral and archael replicative helicases are fully capable 

of unwinding dsDNA using six copies of the same subunit, then why does Mcm2-7 have six 

different subunits? Extensive mutational analysis of budding yeast Mcm2-7 complexes outlined 

the nonequivalence of Mcm ATPase active sites.  
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Using ATP hydrolysis and ssDNA association analyses as a metric for Mcm biochemical activity, 

it was determined that Mcm2,3,5 make very little contributions to these activities(reviewed in 

[43]). Furthermore, Mcm3/7 and 7/4 were observed to make the largest contribution to ATP 

hydrolysis within the complex [41]. Although only two out of the six active sites contribute 

significantly to the bulk ATP hydrolysis, there is functional inter-dependence among all active 

sites, as mutating the ATP binding motif (Walker A) in any of the six active sites completely 

inactivates ATP hydrolysis in Mcm2-7 [82]. On the other hand, DNA unwinding by Mcm2-7 

primarily centers on the Mcm4, 6 and 7 subunits, with Walker A mutations in any of these subunits 

completely eliminating helicase activity [82]. A subcomplex made of Mcm467 was biochemically 

shown to be able to unwind duplex DNA with a 3’5’ polarity in an ATP-dependent manner [83], 

an activity that was surprisingly found absent from Mcm2-7 holocomplexes in initial biochemical 

studies. Therefore, it was inferred that Mcm2,3 and 5 were involved in some unknown regulatory 

aspect of DNA unwinding. Consistent with this notion, addition of either the Mcm5/3 dimer or 

Mcm2 monomer was shown to negatively affect the helicase activity of Mcm467 [84]. 

Furthermore, Mcm4 and 7 were found to be sufficient for DNA unwinding by analysis of Mcm4/7 

hexameric complexes [85]. Analysis of Mcm complexes with Walker A mutations in Mcm6 and 

7 from Xenopus have also been shown to display elongation defects [86], further corroborating the 

involvement of these subunits in DNA binding. The biochemical studies presented above were 

paradoxical to several in vivo studies proposing the requirement for all the six subunits throughout 

replication [78, 87-89]. 
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Discovery of Mcm2-7 helicase activity– The functional differences between Mcm467 and Mcm2-

7 biochemical activities were a puzzle in the field for a long time. To solve this issue, the effect of 

ATP on ssDNA association rates were analyzed for the two complexes. It was found that the 

Mcm467 and Mcm2-7 complexes significantly differ in their on-rate towards circular ssDNA, with 

the Mcm2-7/ssDNA association occurring much more slowly [90]. Interestingly, in the case of 

Mcm2-7 this slow association rate can be relieved by pre-incubation with ATP, resulting in an 

increase of the on-rate to levels identical to that observed for Mcm467 [90]. In addition, pre-

incubation with ATP abolished Mcm2-7 binding to circular ssDNA completely, while 

simultaneously incubating the purified complex with ATP and DNA drastically increased the 

association rate [90].  Other groups have also demonstrated that Mcm 467 has >20 times lesser 

affinity for circular ssDNA than Mcm2-7 [85]. Based on the above DNA binding studies, and by 

analogy to studies done with archael Mcms  [66, 91, 92],  it was inferred that Mcm2-7 complex 

binds DNA via the regulation of a specific active site only present in the holocomplex (discussed 

below, [90]).   

 

Biochemical and structural analysis of the Mcm ‘gate’ - The Mcm2/5 gate was biochemically 

identified based on differences in ATP incubation-dependent DNA binding between Mcm467 and 

Mcm2-7 [90]. Because Mcm467 poorly bound circular ssDNA regardless of ATP pre-incubation, 

it was proposed that the differences in Mcm-circular ssDNA association involve the regulation of 

the remaining subunits Mcm2, 3 and 5. Subsequently, ATPase active site mutations in Mcm2 

(mcm2RA) and Mcm5 (mcm5KA) were found to abolish the ATP incubation dependence of Mcm2-

7 for circular ssDNA binding, albeit with opposite effects– the mcm5KA mutation causes Mcm2-

7 to bind circular ssDNA regardless of ATP pre-incubation, while the mcm2RA mutation was seen 
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to completely block Mcm-7 circular ssDNA association [90, 93]. These results hinted at a putative 

regulatory ‘switch’ controlling the open and closed topologies of the Mcm complex. Additionally, 

dimer association studies showed weak association between Mcm2 and 5 [41, 42]. In combination, 

these studies provided the primary confirmation for an ATP-dependent ‘gate’ within Mcm2-7 at 

the Mcm2/5 junction (Figure 4).  

 

With regards to DNA unwinding, Mcm2-7 activity is strongly augmented by large anions such as 

acetate and glutamate [94]. Addition of these anions seemed to mimic the effects of ATP pre-

incubation on Mcm2-7–circular ssDNA association. The fact that this effect was anion-dependent 

suggested that it most likely occurred through a change within the Mcm2-7 complex and not 

through an alteration of poly-anionic DNA. The stimulation of helicase activity in the presence of 

these anions in vitro possibly mimics subtle conformational changes that lead to helicase activation 

in vivo, such as the association of Mcm2-7 with accessory factors such as GINS and Cdc45 (Figure 

4, see below), or those imparted by CDK/DDK phosphorylation of Mcm2-7. 

 

The observation of an ATP-dependent gate within the Mcm complex clearly suggested a 

mechanistic basis for helicase regulation. While Mcm complexes with an open gate are incapable 

of unwinding DNA, helicase activity is restored by shutting the gate in an ATP-dependent manner. 

How is the status of the gate communicated to the Mcm4/7 motor domain? Analysis of the ATPase 

active sites immediately flanking the Mcm2/5 gate provided important clues towards solving this 

problem. While the 5/3 and 6/2 (and additionally, the Mcm4/6) active sites have low intrinsic ATP 

turnover rates, conserved ATPase mutations within these active sites differentially affect the ability 

of the Mcm complex to interact with ssDNA [93]. Similar to Mcm2/5 mutations, some arginine 
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finger and Walker B mutations within the 6/2 and 5/3 active sites affect, albeit weakly, the ability 

of Mcm 2-7 to interact with closed DNA substrates and the ssDNA association rate [93]. 

Additionally, a MCM2 Walker B mutation (mcm2DENQ) has defective ATP hydrolysis, but is 

nevertheless viable, suggesting that the 6/2 active site probably lacks a catalytic role towards DNA 

unwinding [41]. Rather, these sites could potentially be important for communicating the status of 

the gate to the motor domain allosterically through subtle conformation changes [93]. 

 

Because regulation of DNA unwinding is a critical feature of eukaryotic replication, the 

control of Mcm2-7 activation through an ATP-dependent gate is an attractive model. This has 

several vital implications– a) Gate opening and closing is directly tied to helicase activation, as 

mutants that interfere with these directly misregulate DNA unwinding in vitro, b) The presence of 

such a gate may allow the helicase to load on dsDNA during pre-RC formation. This has been 

recently observed via biochemical analysis of Mcm2-7 complexes in which Mcm2 and 5 were 

artificially linked to block the gate and analyzed for pre-RC assembly and initiation [95], c) 

Temporary opening and closing of the gate may allow subtle remodeling of the helicase that would 

allow it to transition from a dsDNA-bound to its 35’ unwinding competent ssDNA-bound 

complex (Figure 1), d) Gate regulation is likely involved in unloading of the complex from DNA 

upon termination of replication, and stalling of the replication fork upon encountering replicative 

stress or DNA damage.  

 

Structural validation of the Mcm2/5 gate was obtained from EM reconstruction studies of 

Mcm2-7 in the presence or absence of ATP analogs (Figure 5, [96]). While addition of the ATP 

analog ADP.BeF3 was seen to cause a subtle shift in the population of Mcm2-7 hexamers to a 
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constricted gate form (notched), this effect was significantly more pronounced in the context of 

the CMG helicase. Cdc45 and GINS were found to bind at the Mcm2/5 active site and constrict 

the opening to more significant degree than was observed with the Mcm2-7 hexamer alone (Figure 

5). These observations provide a persuasive mechanistic explanation for why the CMG complex 

functions as a more robust helicase compared to Mcm-7 alone. The interaction of Cdc45 and GINS 

with the 2/5 gate allows the complex to bind more stably to DNA and likely activates the helicase 

in S-phase (Figure 5). The presence of the gate was more recently confirmed in a recent structural 

and biochemical analysis of the yeast Mcm2-7 complex, in which Rapamycin-induced Mcm2-

Mcm5 fusions were assayed for their ability to participate in pre-RC formation, Mcm loading, cell 

cycle progression [95].  

  

 

Figure 5. Structural analysis of the CMG complex from Drosophila  

EM 3D reconstructions showing open and locked forms of the MCM complex in presence and absence of 

an ATP analog. White density at Mcm2/5 gate correspond to Cdc45 and GINS. Interactions between Mcm subunits, 

GINS subunits and Cdc45 are shown on the right. Adapted with permission from [8, 97].  

 

Physical contacts among various components of the CMG complex were defined from the 

above EM studies (Figure 5). Both GINS and Cdc45 are situated at the Mcm2/5 gate, where they 

physically contact Mcm2,3 and 5 subunits [96]. Specifically, GINS associates with Mcm3 and 5 
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through its Psf2 and Psf3 subunits while contacting Cdc45 through Sld5 and Psf2. While initial 

contacts between GINS and Mcm2-7 are limited to the N-termini of the Mcm subunits, addition 

of an ATP analog was seen to extend these interactions to the C-terminal halves of Mcm3 and 

Mcm5. Together, Cdc45 and GINS serve to bridge the Mcm2-5 gate within Mcm2-7 and in the 

presence of ATP, shut the gate and activate the helicase (Figures 4, 5).  

1.2.3 Mechanism of DNA unwinding by Mcm2-7  

Various mechanisms have been proposed for the mode of DNA unwinding by Mcm2-7. 

Analysis of replicative helicases from various prokaryotic and viral replication systems have 

brought forth three general models (reviewed in [98]):  

 

1) The strand-exclusion model, which proposes the extrusion of one strand of the duplex 

DNA through the outside of the ring and tracking of the helicase ring along the complementary 

strand. The papillomavirus helicase E1 is an example of such a mechanism where single bases are 

extruded in a stepwise fashion through the central channel of the complex. This model is supported 

by the observation that most hexameric helicases tend to prefer binding ssDNA over dsDNA (also 

see Figure 1).  

 

2) A derivation of the strand exclusion model is the ploughshare model, that proposes that 

an element within the helicase acts like a wedge or a ‘ploughshare’ to separate two strands of DNA 

ahead of the replication fork as the helicase tracks along single stranded DNA. The evidence for 

this mechanism can be found in the recBCD helicase of E. coli which functions during 

recombinational repair.  
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3) Double stranded pump model, which proposes that when double hexamers are loaded 

on DNA, the torsional force generated by the helicases pulls dsDNA through their central channel 

and the resulting unwound ssDNA is extruded laterally from between the helicases. EM studies 

carried out with the well-studied SV40 T-Antigen (Tag) helicase support such a model, with 

micrographs displaying the characteristic ‘bunny ears’ conformation of the extruded DNA between 

helicase hexamers [99]. 

 

Elegant single molecule studies have recently provided valuable insight into the putative 

mechanism of DNA unwinding by Mcm2-7. Using the established Xenopus cell free replication 

system, embryo extracts were incubated with flow-cell bound lambda DNA to analyze DNA 

replication at the single molecule level [100]. By monitoring fluorescently-labeled replicated 

molecules through TIRF microscopy, the authors were able to effectively rule out the pump model. 

When both ends of the DNA molecule were tethered to the flow cell, thereby disallowing 

‘pumping’ through the helicase, efficient DNA replication could still be observed, as measured by 

UTP-digoxigenin incorporation. Under the pump model, no replication would have been possible 

if both ends of the DNA remain tethered to a surface, which would prevent active pumping of 

DNA towards and through the helicase. Additionally, shortening of the unreplicated DNA would 

be observed. Thus, it was effectively demonstrated that sister replisomes, while initially held 

together, can functionally uncouple during bidirectional eukaryotic replication, which favors the 

strand exclusion model as the likely mechanism of action for Mcm2-7. Therefore, the requirement 

for the double hexameric Mcm configuration during replication elongation is unlikely (refer to 

Figure 1). 
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On a similar theme, subsequent single molecule assays utilizing strand-specific blocks to 

fork progression unequivocally demonstrated that Mcm2-7 operates as a 3’5’ helicase through 

strand displacement [101]. Xenopus extracts were incubated with DNA substrates containing inter-

strand crosslinks to monitor converging replication forks. Specific ‘roadblocks’ to fork progression 

were either placed on the leading or lagging strands in the form of either Biotin-SA molecules or 

Q-Dots on either side of the crosslink and both replication and helicase movement were tracked. 

In good agreement with earlier studies, Mcm2-7 was found to specifically stall in the presence of 

the leading strand roadblocks, while preferentially bypassing lagging strand blocks, clearly 

demonstrating that it functions as a leading strand helicase. Moreover, it further strengthens the 

case for Mcm2-7 being a strand displacing helicase because a dsDNA pump would be unable to 

track on DNA in the presence of blocks, regardless of whether they are placed on the leading or 

the lagging strand. 

 

How are ATP binding and hydrolysis coordinated with DNA unwinding? Although the 

mechanistic basis of this process is obscure, sequence comparison of Mcm2-7 with other closely 

related helicases such as the archeael MCM complex suggests that this process may involve several 

positively charged β-hairpin ‘fingers’ that extend from each subunit into the Mcm2-7 central 

channel ([102, 103], Figure 2)). In particular, the pre-sensor1(PS1) hairpin and the helix-2 insert 

(H2I) hairpin that reside within the Mcm C-terminal ATPase active site domain are thought to play 

a likely role in coupling ATP binding and hydrolysis to DNA binding by the Mcm complex within 

its central channel ([103, 104], Figure 2). In fact, studies with the closely related helicase SV40 

Large T-Antigen indicates that pre-sensor 1 hairpin can undergo a striking (~17A°) conformational 

change in the presence of ATP [102, 105].  
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Despite the substantial progress made toward understanding the unwinding mechanism of 

Mcm2-7, it is unclear whether unwinding is solely dependent on the helicase or whether additional 

replisome components assist the helicase in the process. Some recent studies have closely analyzed 

the contribution of Cdc45 to active DNA unwinding.  Structurally, Cdc45 shows close homology 

to the bacterial protein RecJ which is a 5’3’ exonuclease [106]. Though Cdc45 does not possess 

any demonstrable nuclease activity, recent biochemical investigations have shown that Cdc45 has 

a predilection for long ssDNA tracts (>80 nt), apparently with little sequence specificity [107, 

108]. This feature of Cdc45 is particularly important in replication stress where it can bind ssDNA 

and help the helicase to stall. Cdc45 mutants have been reported to uncouple CMG from the 

polymerase, resulting in long RPA-coated ssDNA tracts [107]. Moreover, Cdc45 can efficiently 

bind ssDNA-dsDNA junctions as are observed in branched replication intermediates. Additionally, 

Cdc45 is capable of sliding on DNA with a 3’5’ polarity, akin to the polarity of CMG [108]. 

These data imply that Cdc45 may contribute to DNA unwinding by acting as a wedge to pry apart 

ssDNA tracts generated by the ATP-dependent motor activity of Mcm2-7.  

 

Role of the Sld proteins in helicase activation- From studies in budding yeast, it was found that 

one of the earliest events in S-phase is phosphorylation of the Sld2 and Sld3 proteins by the cyclin 

dependent kinase CDK, also known as  Cdc28 in budding yeast [109]. During helicase activation, 

the Sld proteins essentially play the role of chaperones to assist in the assembly of the pre-initiation 

complex consisting of the CMG helicase and several other proteins needed for elongation. Sld3 is 

a homolog of the Treslin/Ticrr protein found in vertebrates [110]. Sld3, along with its partner Sld7 

binds Cdc45 and initially recruits it to Mcm2-7 in form an intermediate complex called CMS 

(Cdc45/Mcm2-7/Sld3) (Figure 1) [111]. The Sld2 protein on the other hand interacts with GINS. 
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Upon phosphorylation, both Sld2 and Sld3 undergo similar conformational changes that expose 

domains which are bound by tandem BRCT repeats of the protein Dpb11, which is a homolog of 

the human TopBP11 protein [112-114]. While this interaction disrupts Sld3-Cdc45 binding, it 

helps guide Sld2-GINS to the Cdc45-bound Mcm2-7 and promotes assembly of the CMG 

replicative helicase. Additionally Dpb11 further binds additional factors such as the leading strand 

polymerase Polε. The quarternary complex formed by Sld2, Dpb11, GINS and Polε is also referred 

to as the pre-loading complex (pre-LC) (Figure 1) [115]. In combination with Sld3-Cdc45-Mcm2-

7, this multi-protein assembly constitutes the pre-initiation complex (pre-IC) (Figure 1)  [116]. 

CDK phosphorylation of Sld3-Sld7 and Sld2 lead to their dissociation from this complex and the 

assembly of CMG (Figure 1, see below).  

 

Biochemically, Sld2 and Sld3 have ssDNA binding activities, which have important 

implications in their role during initiation of DNA unwinding in the following manner: Sld2 and 

Sld3 bind with high affinity to ssDNA at early origins of replication ARS and ARS305, and 

importantly, they bind to complementary DNA strands [117]. In vitro, Sld3-ssDNA association 

weakens the interactions between Sld3 and Cdc45 and Mcm2-7 which may help destabilize CMS 

and allow CMG formation, since the dissociation of Sld3 from CMS is a pre-requisite for GINS 

binding. Therefore, Sld2 and Sld3 seemingly play key roles in Mcm2-7 remodeling during S-

phase, allowing both assembly of the active CMG helicase, and limited unwinding at origins 

(origin melting, Figure 1) that permits the helicase to transition from a dsDNA-bound form to an 

ssDNA-bound form. 
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A unifying model for DNA unwinding by Mcm2-7- In light of the above recent findings, 

it is necessary to revisit the mechanism of DNA unwinding by the Mcm complex. Though strand 

exclusion is the most likely mechanism for helicase progression, the mechanism that converts the 

dsDNA bound CMG to its ssDNA-bound unwinding competent form remains under investigation. 

The intriguing possibility is that CMG assembly occurs on partially melted origin DNA which 

may be generated through a particular conformation of Mcm2-7 within alternative complexes like 

the pre-LC. Alternatively, it can be speculated that the initial phosphorylation and activation of 

Mcm2-7 may briefly allow it to unwind origin DNA (origin melting) by a limited, pump-like 

mechanism, which then generates two complementary single DNA strands (Figure 1). It should 

be mentioned that in the E. coli replication system, limited origin unwinding is initially performed 

by the activity of the origin-binding DnaA initiator proteins themselves [118], whereas a similar 

role for ORC-Cdc6 has not been observed in eukaryotes. Sld2 and Sld3 might associate with their 

respective complementary ssDNA strands and help to laterally extrude them. This produces 

additional conformational changes that allow CMG assembly and, ultimately, separation of the 

double hexamers.  During this process, the Mcm2-7 complex presumably opens and reseals its 

‘gate’ active site transiently to encircle ssDNA (Figure 1). Newer studies have also linked other 

proteins to the limited DNA unwinding activity observed during origin firing, such as Mcm10 

which is an essential replisome component that is required to stabilize Polα/primase at the 

replication fork [119, 120]. 
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1.2.4 Additional members of the eukaryotic replisome 

Eukaryotes additionally assemble a vast number of proteins at active replication forks, 

which all closely coordinate with the DNA unwinding components discussed above (reviewed in 

[1]). The eukaryotic replisome consists of leading and lagging strand polymerases, the clamp and 

clamp loader, PCNA and RFC, respectively, topoisomerases I and II, primase/Polα, ssDNA 

binding protein RPA, DNA ligase and numerous other factors. Notably, many factors with roles 

beyond replication also closely associate with replication forks, such as proteins involved in the 

intra-S phase checkpoint Mrc1,Tof1 and Csm3 (Claspin, Tim, Tipin in higher eukaryotes) [121-

124], the cohesin complex that is involved in sister chromatid cohesion [125], and DNA repair 

factors such as Fen1 that help in fork recovery when DNA damage is encountered during 

elongation [126]. Although there is broad conservation among eukaryotes with regards to the main 

replisome components, higher eukaryotes have evolved additional factors which help in replisome 

maintenance and stability. A summary of various factors involved at the different steps of 

eukaryotic replication can be found in Table 1. While most of the proteins found in yeast are 

conserved across Eukarya, additional factors that are only found in higher metazoans are also listed 

in Table 1.  
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Yeast Higher 
eukaryotes 

Functi
on 

Selected references 

Mcm2-7 MCM2-7 

Core of the 
replicative 
helicase, 
unwinds DNA in 
S-phase 

[39, 43, 94] 

    
pre-RC formation 

ORC 1-6 ORC1-6 
Origin-binding, 
pre-RC 
formation 

[18, 127] 

Cdc6 CDC6 Helicase 
loading,  [29, 61, 128, 129] 

Cdt1 CDT1 
Mcm2-7 
recruitment to 
origins 

[49, 50, 54] 

 Geminin Cdt1 inhibition [130, 131] 

Dia2 ? 

F-box protein, 
binds to origins 
and regulates S-
phase entry 

[132] 

Initiation and Elongation 
    

Sld2 RECQ4? 

Interacts with 
GINS and Pol E 
through Dpb11 
and recruits them 
to site of 
initiation, 
activated by 
CDK 

[112, 114, 133] 

Sld3 Treslin/Ticrr 

Interacts with 
Cdc45 and 
recruits to 
Mcm2-7, 
activated by 
CDK 

[107, 134, 135] 

Sld7 ? 
Partners Sld3 in 
recruiting Cdc45 
to Mcm2-7 

[136, 137] 

Dpb11 TOPBP1 

Interacts with 
Sld2 and Sld3 
through BRCA 
repeats  

[138-140] 

    
Pre-initiation complex  and fork progression 

GINS GINS 

Accessory 
subunit of 
helicase, binds to 
Mcm2-7 and 
activates it 

[74, 80, 141, 142] 
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Cdc45 CDC45 

Accessory 
subunit of 
helicase, binds to 
Mcm2-7 and 
activates it 

[77, 142, 143] 

Pol ε POLϵ  Leading strand 
polymerase [144, 145] 

Pol δ POLδ  Lagging strand 
polymerase 

Primase/Polα POLα  

Synthesis of 
short RNA 
primers during 
replication 

[146] 

 DUE-B pre-IC formation [147] 
 GEMC1 TopBP1 loading [148] 

Mcm10 MCM10 

Bridges primase 
and helicase, 
potentially 
involved in 
helicase 
unloading at the 
end of S-phase 

[119, 149-151] 

 Mcm8-9 
Implicated in 
helicase loading, 
elongation 

[152, 153] 

Ctf4 AND-1 

Recruits primase 
to DNA along 
with Mcm10, 
assists in 
primase-helicase 
interaction 

[154, 155] 

S-phase regulatory kinases   

Cdc28 CDK1 

Main S-phase 
cyclin (CDK), 
activates many 
replication 
factors 

[109, 114, 139, 156, 
157] 

Clb5 Cyclin B2/B1 
B-type cyclin, 
activates Cdc28 
during initiation 

[158, 159] 

Cdc7 CDC7 

Kinase subunit 
of DDK, 
involved in 
Mcm2-7 
activation in S-
phase [70, 160-165] 

Dbf4 DBF4 

Regulatory 
subunit of DDK, 
involved in 
Mcm2-7 
activation in S-
phase 

Additional elongation factors   

Yra1 THOC4 Interacts with 
Pol δ, Dia2. [166] 
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Required for S-
phase entry 

RPA (RFA1-3) RPA 70,32,14 
Single-stranded 
DNA binding 
protein 

[167] 

Pol30 PCNA 
Sliding clamp 
for replicative 
polymerases [168-170] 

RF-C RFC Clamp loader 
Elg1 ELG1 Clamp 'unloader' [171] 

Ctf18 CTF18 

alternative 
clamp loader, 
also functions in 
SCC and 
checkpoint 

[172, 173] 

Top1,2 TOPO1,2 

Topoisomerases, 
relieve torsional 
stress during 
unwinding, 
function during 
elongation and  
termination 

[6, 174, 175] 

Mcm10 MCM10 

Bridges primase 
and helicase, 
potentially 
involved in 
helicase 
unloading at the 
end of S-phase 

[119, 149, 150] 

 Mcm-BP 
Implicated in 
helicase 
unloading 

[176] 

Fen1 FEN-1 

Flap 
endonuclease, 
processes 
Okazaki 
fragments 

[177, 178] 

Checkpoint factors 

Mrc1 Claspin 

Part of the MTC 
mediator 
complex that 
senses 
replication 
stress, also 
bridges Pole and 
Mcm2-7 [121, 123, 179, 180] 

Tof1 Tim 

Part of the MTC 
mediator 
complex that 
senses 
replication stress 

Csm3 Tipin 
Part of the MTC 
mediator 
complex 
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Table 1. Eukaryotic replication factors 

1.3 REGULATION OF DNA REPLICATION 

1.3.1 Replication regulation by CDK and DDK  

A strict temporal regulation of eukaryotic DNA replication is compulsory for avoiding 

genomic instability. The bacterial replication machinery initiates the next round of nucleoid 

duplication before completion of cytokinesis [187]. In contrast, eukaryotes carefully separate DNA 

replication (S-phase) from chromosome segregation (M-phase) to prevent errors in either process 

and ensure that each daughter cell receives one and only one complete genome per cell cycle. 

Mec1 ATR 

Sensor kinase in 
checkpoint 
response, takes 
part in Mcm2-7 
activation during 
S-phase, 
mediates 
replication fork 
termination 

[3, 181] 

Sister chromatid cohesion 

SMCs/cohesin 
(Smc1,3) SMCs 

Maintenance of 
sister chromatid 
cohesion during 
S- and G2 phase 

[182-186] 

α-Kleisin (Scc1) SCC1 

Connects Smc1 
and 3 to make 
the tripartite 
cohesin ring 

Scc2,4 SCC2,4 

Loading of 
cohesin on 
chromosomes in 
G1 

Eco1 Esco1 
Acetylates Smc3 
and establishes 
cohesion 
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Accordingly, Mcm2-7 activity is heavily targeted by multiple regulatory mechanisms due to its 

vanguard role at the replication fork.   

 

As previously stated, eukaryotes harbor complex genomes distributed across multiple 

chromosomes, with each of these units containing several active origins of replication. Cells are 

only allowed to load pre-RCs on origins during the G1 phase and ‘fire’ these origins in S-phase. 

This temporal sequestration of loading and activation events ensures that multiple replication 

factors work in perfect synchrony in a mutually exclusive manner and restrict replication to only 

one round per cell cycle. How do cells maintain this temporal order of events? S-phase specific 

cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinases (DDK) play a major role in 

implementing this temporal program (Figure 1).  

 

In eukaryotes, an increase in cyclin-dependent kinase activity signals the start of S-phase 

and triggers DNA replication. In yeast, Cdc28 is the predominant S-phase CDK. Along with cyclin 

Clb5, it primarily phosphorylates Sld2 and Sld3, which promotes their interaction with Dpb11 and 

assists in the subsequent assembly of the CMG and other replicative factors such as Polε on DNA 

(Refer to Figure 1) [112]. The association of the S-phase CDK with specific cyclins precludes 

RPC assembly in G1. A similar mode of S-CDK action is also observed in the fission yeast S. 

pombe [188]. As a further means to prevent reloading of Mcm complexes on origins during S-

phase, CDK associates with ORC6 via a conserved RXL motif which prevents recruitment of 

Cdt1-Mcm2-7 in a phosphorylation-independent manner, possibly through steric interference 

[189]. Subsequent phosphorylation of Orc2 and Orc6 then leads to inhibition of Mcm2-7 loading 

[190]. CDK mediated phosphorylation of Cdc6 results in its degradation, mediated by the SCF 
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family of E3 ubiquitin ligases [191]. Moreover, CDK phosphorylation also occurs on unbound 

Mcm2-7, which leads to their nuclear export [192]. Therefore, CDK utilizes multiple means to 

control replication timing and activation (also see [190, 193]).  

 

Phosphorylation of specific pre-RC components by the Dbf4-dependent kinase (DDK) 

represents an indispensable step in S-phase initiation. DDK is a heterodimeric enzyme complex 

consisting of Cdc7 and Dbf4 [161, 162, 194]. In budding yeast, various DDK-phosphorylation 

sites have been described on the N-terminal tails of Mcm2, Mcm4 and Mcm6, which become 

phosphorylated in S-phase [195, 196]. Interestingly, there are additional phosphorylation sites on 

these proteins which are required for pre-RC ‘priming’ by different kinases prior to DDK 

activation. Although the identity of such priming kinases is still under investigation, the ATR 

homolog Mec1 as well as CDK are the prime candidates for this regulatory event [181]. In terms 

of its role in helicase activation, DDK phosphorylation likely produces conformational changes 

within Mcm2-7 that either alleviate inhibitory interactions or promote favorable association of the 

helicase with other replisome components such as Cdc45 and GINS (Figure 1, [70, 165]). To 

ensure DDK activation is limited to S-phase, the regulatory Dbf4 subunit is specifically targeted 

for ubiquitylation and subsequently, proteasomal degradation by APC/C in G2/M [197]. 

 

In summary, CDK and DDK-mediated phosphorylation of various replication factors in S-

phase prevent re-replication and ensures genomic stability through multiple means.  
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1.3.2 S-phase DNA replication checkpoints  

The replication fork frequently encounters impediments during the process of elongation. 

These are typically in the form of fork stress such as nucleotide depletion, or because of physical 

damage to the DNA ahead of the replication fork, which may be in form of ssDNA– or dsDNA 

breaks.  Misregulated replication through such types of damage would be detrimental to the repair 

process and likely lead to the irreversible loss of genetic information. Eukaryotic cells have 

evolved various mechanisms to deal with such fork impediments. First and foremost, fork 

progression must be completely halted so as to prevent it from continuing past a lesion or another 

fork obstacle. Secondly, repair mechanisms that process the challenge(s) presented to fork 

progression and repair them before replication restart must be activated in a timely manner. If left 

unrectified, fork-related damage is severely detrimental to the integrity of the genome. Genomic 

instability and segregation errors arising from fork misregulation are often the underlying source 

for a wide range of human diseases, including cancer. 

 

How are these processes coordinated? Our best understanding of this process comes from 

S. cerevisiae, where genotoxic signals are sensed by an intra-S phase checkpoint mechanism. Upon 

encountering replication stress, a signaling cascade is activated that senses stress through a 

concerted kinase activation cascade. Stress signals in this pathway are initially sensed and relayed 

downstream by phosphoinositide-3’-kinases (PI3K) Mec1–which is the yeast homolog of the well-

known metazoan protein ATR, as well as the closely related Tel1–the yeast homolog of the 

mammalian ATM kinase [198, 199]. In budding yeast, the intra-S-phase checkpoint is further 

divided into two partially redundant sub-pathways that differentially sense replication fork stress 

(Figure 6): a) the DNA replication checkpoint (DRC) is specifically involved in sensing stress 
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arising from nucleotide shortage, such as that induced by drugs like hydroxyurea (HU)[200], b) 

the DNA damage checkpoint (DDC) monitors DNA lesions that are generated by endogenous 

forces, or through exogenous stressors such as the DNA alkylating chemical methyl 

methanesulfonate (MMS) [201, 202]. The DRC pathway involves activation of Mrc1 (Claspin in 

vertebrates) [203], which once phosphorylated triggers downstream factors that eventually activate 

the effector kinase Rad53 (CHK2 in mammals). Hyperphosphorylated Rad53 can, in turn, activate 

numerous factors related to cell cycle control, transcription and DNA repair, in addition to 

stabilizing replication forks [204, 205]. For its role in transducing the signal between Mec1 and 

Rad53, Mrc1 is considered a mediator protein in the checkpoint signal transduction cascade. 

Similarly, the DDC pathway utilizes a mediator protein called Rad9 which binds to and activates 

Rad53, leading to analogous downstream responses seen with the DRC pathway (Figure 6, [206]).  

 

Figure 6. Intra-S phase checkpoints in different organisms  

(Adapted with permission from [203] ). 

 

Mrc1- dual role in replication and checkpoint activation– Despite their overlapping roles 

in the checkpoint response, there is a key difference between the mediators of DRC and DDC. 

Unlike Rad9, Mrc1 also travels with the replication fork as part of a heterotrimeric complex 
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consisting of Mrc1, Tof1 and Csm3 [179]. As part of this complex, Mrc1 associates with key 

components of the replisome such as Mcm2-7 and the leading strand polymerase Polε [121]. In 

fact, Mrc1 is required to couple the helicase and polymerase, because absence of MRC1 results in 

continued unwinding in the absence of DNA synthesis, which eventually results in fork collapse 

[123]. Importantly, the role of Mrc1 during normal DNA replication and during checkpoint 

activation are separable, as was demonstrated by mutating Mec1 phosphorylation SQ/TQ sites on 

Mrc1 [123]. Although this mutant (mrc1AQ) failed to activate Rad53, it associated with replication 

forks normally and progressed through S-phase with wild type kinetics, clearly showing that Mrc1 

plays a checkpoint-independent role during unchallenged growth conditions. Regardless of the 

role of Mrc1 in replication, Mec1-dependent phosphorylation of Mrc1 is necessary for an 

appropriate response to replication stress; mrc1AQ mutants not only lack phosphorylation but 

additionally fail to recruit Mec1 to replication forks during replication stress [207]. While this 

indicates that phosphorylated Mrc1 somehow manages to stabilize Mec1 at replication forks, these 

observations imply additional roles for Mec1 during replication other than simply acting as a 

sensor kinase (refer to section on replication termination). 

 

Analysis of checkpoint mutants under challenging growth conditions with HU or MMS 

treatments typically demonstrates aberrant fork structures, accumulation of ssDNA tracts, and 

failure to complete replication, all of which cumulatively contribute to elevated cell death in such 

mutants [200, 208]. Under these conditions, failure to activate the Rad53 effector kinase severely 

affects replication due to an inability to mount a checkpoint response; Rad53 in part seems to 

primarily stabilize replication forks through a mechanism that depends on the DSB repair 

exonuclease Exo1 [209, 210], as deleting EXO1 in a rad53-null background can completely 
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suppress the lethality of this strain over a wide range of DNA-damaging treatments [211]. 

Importantly, this effect is not observed in the presence of HU, with exo1rad53 double mutants 

exhibiting an inability to restart stalled forks similar to rad53 alone. Therefore, Rad53 additionally 

has an Exo1-independent function at replication forks. 

 

On the other hand, Mec1 serves a more important role in replication fork dynamics in the 

presence of exogenous stress, as is evident with the more severe phenotypic defects seen with mec1 

mutants. While mec1 mutants fail to finish replication in the presence of HU much like rad53 

mutants, they display much more severe fork defects and are more sensitive to genotoxic agents 

compared to rad53 mutants. Moreover, in contrast to rad53, deletion of exo1 does not rescue mec1 

lethality in the presence of DNA damaging agents [211]. These observations further supports a 

Rad53-independent role for Mec1 at the replication fork. 

 

Multiple targets of Mec1 in replication- Even though certain targets of Mec1-dependent 

phosphorylation are well-characterized (e.g., Mrc1), it is conceivable that additional replisome 

components are subject to Mec1 and/or Rad53-mediated phosphorylation under different 

genotoxic challenges. Various proteome-wide searches have been conducted to identify targets of 

checkpoint kinases in yeast [212, 213], with specific studies focusing on  Mec1 targets having 

identified >300 putative substrates that carry the canonical SQ/TQ phosphorylation sites [214]. 

Further functional classification of these targets identified multiple putative Mec1 (and Tel1) 

substrates at the replication fork [215], which supports a broader role for Mec1 in stabilizing the 

replication fork during challenged growth. A list of the various targets of Rad53 and Mec1-

mediated phosphorylation is reviewed in [216]. 
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1.3.3 The role of Mcm2-7 in replication checkpoint 

As described above, the main purpose of the checkpoint machinery is likely to halt 

replication fork progression in the presence of replication stress or DNA damage. Therefore, it is 

conceivable that such regulation involves interaction of checkpoint factors with the molecular 

motors that power fork progression. A prime candidate for regulation is the replicative helicase 

Mcm2-7, as unregulated DNA unwinding can lead to the generation of long tracts of ssDNA which 

may potentially give rise to DNA damage. However, the involvement of Mcm2-7 in checkpoint 

response is only marginally understood. Many studies support the idea that Mcm2-7 and its 

associated factors are directly regulated by checkpoint kinases. Mec1 can specifically 

phosphorylate Mcm4, which is important for S-phase activation of Mcm2-7 and is potentially 

crucial for regulating replication in the event of DNA damage or fork stalling [217]. Furthermore, 

in vitro phosphorylation of Mcm3 and Mcm4, as well as the GINS subunit Psf2 by Chk2 (yeast 

Rad53 homolog in metazoans) in Drosophila was seen to inhibit CMG helicase activity, indicating 

that the mechanism of helicase regulation by checkpoint kinases could be conserved among yeast 

and higher eukaryotes [218].  

 

Previous studies have shown association between Mcms and checkpoint factors Mrc1, 

Tof1 and Csm3 (MTC complex, refer to Table 1) both in the presence and absence of replication 

stress [179]. In particular, a detailed analysis of Mcm-Mrc1 interaction in budding yeast identified 

Mcm6 as the major binding partner of Mrc1 [219]. This interaction is physiologically important, 

as mcm mutants ablated for the Mrc1-interacting domain were found to poorly mount the 

checkpoint response in the presence of DNA damaging chemicals, in addition to displaying 

multiple cell cycle defects. It could be inferred from these observations that Mcm2-7 may have a 
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role in sensing DNA damage and/or coordinating an appropriate checkpoint response through 

interactions with specific checkpoint mediators. Mrc1 has been further documented to stabilize 

Polε during replication stress through direct interactions with the C-terminus of Pol2, which is the 

largest subunit of Polε [220]. Furthermore, a recent study suggested that components of the DNA 

repair machinery can regulate the temporary dissociation and reassembly of the CMG complex 

during replicative stress, particularly through their interactions with GINS [221]. Overall these 

studies suggest that proper checkpoint response relies on the coordination between DNA 

unwinding and synthesis through precise protein-protein interactions at the replication fork.  

1.4 REPLICATION ELONGATION AND TERMINATION 

1.4.1 Replication elongation and Mcm2-7 

Replication progression requires coordination among the different molecular motors at the 

replication fork to ensure synchronous unwinding and DNA synthesis. As a bona fide member of 

the replisome progression complex, Mcm2-7 is precisely coordinated during S-phase to ensure 

proper elongation. Initial insights into the role of Mcm2-7 in elongation emerged from chromatin 

immunoprecipitation (ChIP) studies of Mcm4 that demonstrated association with intra-origin 

regions in a cell cycle specific manner (reviewed in [1, 222]. Additionally, CMG constituents have 

been found associated with artificially paused replication forks using the Xenopus replication 

system, and the Replisome Progression Complex (RPC) that includes Mcm2-7, isolated from yeast 

was shown to be obligatorily dependent on all its constituents for fork progression [74, 87, 223]. 

Moreover, inactivation of Mcm2-7 using mcm degron alleles during initiation was sufficient to 
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block replication fork progression in yeast, further demonstrating that Mcm2-7 plays a vital role 

in elongation [88]. Such observations imply that Mcm2-7 likely coordinates with other replisome 

components such as polymerases to control fork progression. An inter-dependence between 

polymerases and replicative helicases has been studied biochemically in many other systems 

including T7 phage and E. coli [224, 225], and has been recently elucidated through a structural 

analysis of different replisome components in yeast [226]. It is conceivable that coupled motors 

would be more processive on DNA in comparison to individual ones. For example the DnaB 

helicase unwinds dsDNA at a ~20-fold faster rate as a part of the PolIII-DnaB-Tau complex than 

DnaB alone [227]. 

 

As mentioned earlier, Mcm2-7 and the leading strand polymerase Polε are coupled through 

Mrc1. Removal of Mrc1 physically compromises replication forks, which manifests as DNA 

double strand breaks during S-phase (see below, [203]). The CMG complex and the leading strand 

polymerase Polε have also been shown to directly interact via binding of the Dpb2 subunit of Polε 

to the Psf1 subunit of GINS [228]. It is less clear whether there is a similar association between 

the lagging strand polymerase Polδ and the CMG complex; addition of purified Polε but not Pol δ 

to the CMG complex significantly increases its processivity [229]. 

 

Additionally, the helicase is coupled to the primase/Polα via Mcm10 [149]. In addition to 

stabilizing primase-helicase association by interacting with the catalytic subunit of Polα, along 

with Ctf4, Mcm10 has been proposed to play a limited but important role during initiation, possibly 

by contributing to origin unwinding [150]. However, Mcm10, while associated with loaded Mcm2-

7 complexes during initiation, is not associated with the replisome progression complex (RPC) 



 44 

during elongation, as demonstrated by using degron alleles of Mcm10 in yeast and subsequently 

analyzing RPC components. Additional evidence for the role of Mcm2-7 in elongation comes from 

the analysis of Mcm10-Polα interactions, as an elongation defect in a mcm10 mutant was shown 

to be suppressed by an mcm7 mutation [149]. 

1.4.2 Replication termination and Mcm2-7 regulation  

Despite the advances made in elucidating the molecular mechanism of the early steps of 

replication and elongation, termination in eukaryotic replication remains a poorly-understood 

process. Unlike E. coli, where specific Tus-ter sites mediate replication termination from 

bidirectional forks emerging from a single origin [230], there are no consensus eukaryotic 

termination sites. Early studies in yeast identified a limited number of genomic loci corresponding 

to termination sites, e.g., the rDNA locus on Chr XII, which tends to make replication forks 

unstable [231]. Such stretches of DNA can inherently act as replication fork barriers (RFBs) and 

may also represent sites of converging replication forks [232]. In addition, forks are frequently 

seen to stall at other chromosomal regions such as CEN sequences present at centromeres, and Ty 

elements [233, 234]. Other groups have identified Replication slow zones (RSZs) that halt 

replication forks passing through them. Mec1, which is the ATR homolog of yeast, is proposed to 

play an important role in regulating fork passage through such RSZs, as mec1 mutants accumulate 

considerable replication-dependent DNA damage at these loci, presumably from an inability to 

stall forks at RSZs [3]. However, the nature of the relationship between putative fork-pausing sites 

and replication termination remains controversial.  
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A recent genome-wide survey of replication fork stalling loci revealed a number of 

potential termination regions in the yeast genome [2]. By monitoring convergent BrdU peaks from 

neighboring origins in synchronized yeast populations, researchers were able to estimate the extent 

of termination events throughout the yeast genome. These potential termination sites spanned an 

average of 5kb of DNA. More than half of the sites identified corresponded to previously-recorded 

replication pause sites, as observed by Polε occupancy, and many sites were frequently associated 

with high transcriptional activity. The latter could represent another mode of replication 

termination, mediated by collisions between the replication forks and the transcription machinery.  

 

Merging replication forks would result in the formation of distinct X-shaped DNA 

structures, which represent replicated catenanes, structures that are considered obligatory 

intermediates for termination [7, 235]. In order to resolve these structures and separate the newly 

replicated molecules, additional factors are involved during termination. Such catenated double 

stranded structures are exclusively resolved by Type-II topoisomerases [6, 236].  In yeast, Top2 is 

an essential Type II topoisomerase that travels with the replication fork to relieve supercoils 

generated from DNA unwinding and has been shown to play a role in resolution of catenated DNA 

molecules during replication termination [6]. Top2 was found to be necessary for the fork breakage 

observed in mec1 mutants at Chromosome III fragile sites/RSZ [236]. Through analysis of 

replication intermediates via 2D gel electrophoresis, Top2 mutants were further found to 

accumulate X-shaped structures at numerous putative termination sites [2]. Furthermore, top2 

mutants arrest in G2, accumulate catenated DNA in S-phase that progresses into mitosis and 

accrues significant chromosome segregation defects [175]. Together, these experiments strongly 
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imply a crucial role for Top2 in replication termination and fork pausing, possibly by coordinating 

with additional fork-related factors such as the replicative helicases and checkpoint proteins. 

 

How may Mcm2-7 be regulated during termination? In this context, the Mcm2/5 gate plays 

an obvious role. As discussed earlier, the 2/5 gate acts in an ATP-dependent manner to close the 

toroidal Mcm ring and activate the helicase in S-phase (Figure 4). It is conceivable that at the end 

of replication, Mcm2-7 hexamers undergo similar conformational changes that allow them to re-

open the ring and unload from merging replication forks. It is currently unclear if there are 

additional factors that assist in Mcm2-7 unloading during termination. Studies in higher eukaryotes 

have shown that MCM-BP is a novel Mcm-interacting factor that plays a role during helicase 

unloading at the end of replication [237, 238]. Alternatively, it is possible that the torsional forces 

generated upon the merger of two convergent forks somehow destabilizes the helicases and cause 

them to unload. Because Mcm2-7 hexamers tend to stall ~40 nucleotides from inter-strand 

crosslinks [101], Mcm2-7 hexamers would probably be incapable of unwinding unreplicated DNA 

at the junction of converging forks. In this scenario, it is possible that additional helicases might 

perform the residual unwinding after unloading of Mcm2-7. The DNA helicase Rrm3 might be an 

obvious candidate, as Δrrm3 mutants have been shown to accumulate X-shaped structures [239, 

240].  
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1.5 COORDINATING REPLICATION WITH SISTER CHROMATID COHESION 

In addition to precisely duplicating chromosomes, cells have the added responsibility 

of segregating the newly-replicated genome equally between their daughter cells. Any errors 

in this process can create genomic instability, as is frequently observed in cancer cells. 

Therefore, genomes rely upon special factors that oversee the distribution of duplicated 

genomes.  

 

Two key processes need to be coordinated with DNA replication in order to maintain 

ploidy – sister chromatid cohesion (SCC), a process by which the newly replicated 

chromosomes are held together via cohesin proteins through S- and G2 phases of the cell cycle, 

followed by chromosome segregation in the M-phase of the cell cycle (reviewed in [241]). 

While physically restraining sister chromatids during replication, SCC additionally creates a 

force opposite to that generated by spindle attachment to centromeres [242]. Such forces are 

indispensable for the proper bi-alignment of sister chromatids at the metaphase plate, as 

premature termination of SCC invariably results in genome mis-segregation.  

 

The precise coordination of these events is necessary to divide the replicated genome 

equally between two daughter cells. Most of our current understanding of these processes is 

derived from elegant studies done in budding yeast using clever and informative genetic 

assays. Results demonstrate that cohesins and replication factors often show a regulatory inter-

dependence.  
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1.5.1 Factors involved in sister chromatid cohesion  

In yeast cohesion is mediated by conserved proteins that belong to the group known as the 

SMCs (Structural maintenance of chromosomes). Of these Smc1 and Smc3 form the core cohesin 

ring that encircle DNA [182, 243]. This structure is comprised of antiparallel coiled coils that fold 

upon itself to generate a hinge point and two free termini that juxtapose to give rise to the ATPase 

domain (Nucleotide-binding domain, NBD), with the final ‘ring’ essentially being a V-shaped 

structure (Figure 7, [244]). A smaller protein termed kleisin, or Scc1 forms a bridging subunit 

within the cohesin ring, binding between the two NBDs of the cohesin ring [245]. While cohesins 

are not present in bacteria, similar complexes are observed [246]. Finally, an additional protein 

Scc3 is required for stable association of the cohesin rings with DNA to complete the core cohesive 

structure [182]. Biochemical studies provide direct evidence that the cohesins can bind and hold 

together sister chromatids through direct topological interaction between DNA and cohesins 

(Figure 7, reviewed in [183]). 

 

 

 

 

 

 

 

                                                 

                                                Figure 7. Cohesin ring architecture 

  (adapted with permission from [247]) 
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A complex of Scc2/Scc4 is necessary to initially recruit and load cohesins on DNA [186, 

248]. Importantly, the loading of cohesins seems to be site-specific, with preferred loading at 

numerous, regularly spaced 1-4kb regions termed cohesion-associated regions (CARs) [248]. 

Although found at an interval of every 20-25 kb, CARs are particularly abundant around 

centromeres, which leads to an enrichment of cohesins at this region. CARs do not, however, 

represent the final binding sites for the cohesins, which slide into neighboring regions once loaded 

on to DNA. The timing of cohesin loading is controlled by the availability of Scc1 only during late 

G1, which can then associate with and trigger the ATP hydrolysis at the NBDs of cohesins (Figure 

8, [249, 250]). This is an important step, as it results in a conformational change at the distal hinge 

domain of the cohesion ring that allows the ring to open and entrap DNA. Additionally, certain 

kinetochore components such as Ctf19 are also known to play a role in cohesin loading, especially 

in the pericentromeric regions [251].  

 

1.5.2 Cohesion establishment and timing  

Another critical event in the proper association of cohesion with the replicating DNA is the 

‘establishment’ of cohesion, which further stabilizes cohesin-DNA binding at sister chromatids 

(Figure 8). The Eco1 acetyltransferase acts on Smc3 by adding acetyl marks to conserved lysine 

residues in its NBD [184, 252, 253]. Mutations in ECO1 lead to severe loss of cohesion, implying 

that this establishment activity is critical for the proper generation of cohesion on replicating DNA 

[184]. Mechanistically, Eco1-mediated acetylation is thought to close the DNA exit gate on the 

cohesin ring, as artificial fusion constructs of Scc1 and Smc3– subunits participating in closing the 
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DNA exit and entry gate–can rescue the deleterious effects of eco1 mutations. Interestingly, 

mutations in certain genes such as the cohesion antagonist WPL1 can rescue the cohesion defects 

of eco1, suggesting that Wpl1 acts as to destabilize cohesion, mainly through increased Smc3 

turnover [254, 255]. 

 

So how is the precise timing of cohesion determined? Eco1 is active during S-phase, during 

which it is presumed to travel with the replication fork. Through cell-cycle arrest experiments, 

Eco1 has been shown to be dispensable during G2/M, which is consistent with the timing of sister 

chromatid separation [184]. At the same time, high Wpl1 activity in G2 assists in the 

destabilization of cohesins, and concomitantly counteracts the establishment of other loaded 

cohesin complexes. Moreover, the loaded cohesin complexes are deacetylated through the activity 

of Hos1 and are recycled to be used in the subsequent cell cycle (Figure 8, [256]). 

1.5.3 Condensins and the Spindle Assembly Checkpoint (SAC)  

In addition to cohesins, special factors help in the compaction of metaphase chromosomes 

and prepare them for spindle orientation and subsequent segregation to daughter cells. Condensins 

are another class of SMC proteins that perform this function. In yeast, a single condensin complex 

(Condensin I) composed of Smc2 and Smc4, the kleisin subunit Brn1 and Ycs4/Ycs5 subunits 

participate in chromosome condensation [257-259].  Condensins are primarily thought to assist in 

chromosome compaction via topological induction of positive supercoils in the newly replicated 

chromatids, as well as by compaction of additional structures such as chromatin loops. Finally, the 

correct resolution of the duplicated genome into compacted metaphase structures relies on 



 51 

Topoisomerase II (Top2 in yeast), as inactivation of Top2 results in hemicatenated structures and 

anaphase bridges during anaphase that ultimately lead to ploidy defects [236, 260]. 

 

Importantly, SCC is required for chromosome bi-orientation at the metaphase plate, 

through which spindles from the opposite poles of the cell attach to each sister chromatid and 

generate correct tension on the chromosomes. Cohesin complexes loaded both at the centromeric 

region, and the surrounding (pericentromeric) regions are thought to contribute to bi-orientation. 

Improper attachment of spindles to kinetochores from a single spindle pole body (Syntely) or non-

attachment of microtubules to kinetochores can both trigger the spindle assembly checkpoint 

(SAC) which blocks mitosis, corrects the chromosome orientation, restores tension at the 

centromeres and helps in correct chromosome segregation (reviewed in [261]).  

 

 

Figure 8. Mechanism of sister chromatid cohesion 

                (adapted with permission from [241]).  
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1.6 OVERVIEW OF THESIS GOALS  

 

Although Mcm2-7 has six unique ATPase active sites, in principle, mutations in each of these sites 

can be tested in vivo for specific defects to elucidate their functions. As described earlier, while 

this approach has been successfully used for the biochemical analysis of these active sites, a 

majority of these ATPase active site mutations are lethal in yeast, including all Walker A 

substitutions. Therefore, we are limited to three viable mutants for our in vivo analysis.  

 

Among the viable mcm mutants, mcm4RA and mcm6DENQ both contain mutations within the 

Mcm4/6 active site. Similarly, the mcm2DENQ mutant, which is the focus of chapters 3 and 4 

resides within the Mcm6/2 active site. Notably, both these active sites reside between the Mcm2/5 

‘gate’ and the Mcm7/4 ‘motor’ domain of the Mcm2-7 helicase, and presumably play roles in 

either regulating the gate and the motor, or facilitating communications between these domains by 

transmitting conformational changes across the complex. These mcm mutants, therefore, 

potentially provide a great tool to elucidate the in vivo functions of regulatory Mcm active sites.  

 

This dissertation primarily focuses on the in vivo analysis of the mcm2DENQ mutant with limited 

comparison to other mcm mutants. The purpose of the dissertation is to identify novel features 

associated with Mcm2-7 regulation, and to expand the knowledge of Mcm2-7 participation in 

processes beyond DNA replication. Additionally, this study aims to explore whether specific 

ATPase active sites within Mcm2-7 have overlapping or distinct in vivo functions. Besides DNA 

replication, two other processes closely coordinate with the replisome— intra S-phase checkpoints 

(see next chapter) and sister chromatid cohesion (SCC).  
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We limited our analyses of mcm mutant phenotypes to these processes for several reasons. First, 

like DNA replication, replication checkpoints and SCC are primarily observed during S-phase, 

where they closely interact with many replication factors. Secondly, there are several well-

established assays to study these processes in detail using budding yeast. This allowed us to 

quickly test several factors under a variety of different conditions within a reasonable time span.  

 

Lastly, it is known that several human diseases are inherently associated with defects in genome 

stability, including most types of cancer. As Mcm2-7 misregulation is commonly observed in 

many proliferative diseases, this study provides a rationale to explore the mechanistic link between 

replication and processes that govern genome stability such a checkpoints and SCC. We sought to 

test whether Mcm2-7 is the key factor whose regulation lies at the heart of all of these processes. 

Above all, we have aimed to elucidate precise functions of some of the lesser-known Mcm active 

sites in vivo, which would provide us deeper insight into the mechanism, and physiological 

relevance of a complex enzyme with multiple functionally distinct ATPase active sites.  

 

The main thesis is formally divided into three subsections. The first one (Chapter 3) details 

the discovery of a novel in vivo regulatory function for the Mcm6/2 active site through genetic 

analysis of the mcm2DENQ mutant. Here, we show that the Mcm2-7 complex is a part of the DNA 

replication checkpoint, whereby it mediates a response to replicative stress through the Mcm6/2 

active site. In the second part (Chapter 4), we describe how the Mcm complex is involved in the 

maintenance of genome stability, focusing mainly on DNA damage phenotypes of the mcm2DENQ 

mutant under conditions that generally support normal growth. Lastly, we discuss some intriguing 
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observations from the in vivo analysis of the Mcm4/6 active site mutants (Appendix A&B), and 

show that the multiple roles associated with Mcm2-7 are genetically separable through distinct 

ATPase active sites. 
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2.0  MATERIALS AND METHODS 

2.1 LIST OF STRAINS AND PLASMIDS 

Unless mentioned otherwise, all strains listed below are isogenic derivatives of W303 [262] 

2.1.1 Yeast strains 

 

strain genotype reference 

UPY110 
MATa, ade2-1, ura3-1, his3-11, 15, leu2-3, 12, 
can-100, trp1-1, Δmcm2::hisG/pAS404 
(ARS/CEN URA+ PMCM5-MCM2). This study 

UPY464 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100,bar1::hisG This study 

UPY499 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100,bar1::hisG,mcm2DENQ This study 

UPY525 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm6DENQ This study 

UPY529 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm4RA This study 

UPY537 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm4RA, ade3Δ This study 

UPY541 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm6DENQ, 
ade3Δ This study 

UPY553 MATa his1 N.Kleckner 
UPY554 MATα his1 N.Kleckner 

UPY606 
MATa, ade2-1, ura3-1, his3-11,15∷ HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
mcm2DENQ, ade3Δ, lacO-ChrIV(932137) This study 

UPY 610 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG,, ade3Δ This study 
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UPY613 
MATa, ade2-1, ura3-1, his3-11,15::HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
ade3Δ,  lacO-ChrIV(932137) This study 

UPY630 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, Δrad9::HIS3-lox This study 

UPY634 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, Δrad9::HIS5+-lox, 
mcm2DENQ This study 

UPY638 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm4Chaos3 This study 

UPY646 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112∷LEU2-MRC1-3XHA, can1-100, 
bar1::hisG This study 

UPY647 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112∷LEU2-MRC1-3XHA, can1-100, 
bar1::hisG, mcm2DENQ This study 

UPY648 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, LEU2::RAD9-
3XHA This study 

UPY649 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112∷LEU2-RAD9-3XHA, can1-100, 
bar1::hisG, mcm2DENQ This study 

UPY666-1 MATa, cdc6-1, ade2-1, ura3-1, his3-11,15, trp1-
1, leu2-3,112, can1-100, bar1::hisG, ade3Δ This study 

UPY667-1 MATa, cdc9-1, ade2-1, ura3-1, his3-11,15, trp1-
1, leu2-3,112, can1-100, bar1::hisG, ade3Δ This study 

UPY670 MATα can1::PSTE2-HIS3, lyp1,his3-1,leu2-
0,ura3-0 (S288C) This study 

UPY706 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, bub1::HIS5+-lox This study 

UPY707 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, bub1::HIS5+-
lox,mcm2DENQ This study 

UPY713 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mrc1::HIS5+-lox This study 

UPY715 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, rad9::HIS5+-lox, 
sml1::URA3-lox, mrc1Δ This study 

UPY739 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, cdc15-2  This study 

UPY740 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, cdc15-2, 
mcm2DENQ This study 

UPY744 
MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
ade3Δ, mrc1::URA3-lox, lacO-ChrIV(932137) This study 
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UPY811 
MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
ade3Δ , mcm4RA, lacO-ChrIV(932137) This study 

UPY812 
MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
ade3Δ , mcm6DENQ, , lacO-ChrIV(932137) This study 

UPY826 
MATa, ade2-1, his3-11,15, trp1-1, leu2-3,112, 
can1-100,cdc16-123, GAL, 
psi+CFIII(CEN3.L.YPH278)URA3-SUP11 This study 

UPY827 MATa, ade2-1, his3-11,15, trp1-1, leu2-3,112, 
ura3, can1-100, smc3-42,GAL,psi+ Kim Nasmyth 

UPY828 MATa, ade2-1, his3-11,15, trp1-1, leu2-3,112, 
ura3, can1-100, scc2-4, GAL, psi+ Kim Nasmyth 

UPY831 
MATa, ura3::3XURA3tet O-112, leu2::LEU2- 
tetR-GFP, his3-11,15, eco1-1, trp1-1∷PDS1-
myc18-TRP1 Kim Nasmyth 

UPY837 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, sml1::loxP-HIS5+-
loxP, mec1::loxP-URA3-loxP This study 

UPY838 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, sml1::loxP-HIS5+-
loxP, rad53::loxP-URA3-loxP This study 

UPY860 
MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
cdc15-2 , lacO-ChrIV(932137) This study 

UPY865 
MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
cdc15-2, mcm2DENQ, , lacO-ChrIV(932137) This study 

UPY888 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm6DENQ- HYG 
MX4 This study 

UPY889 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm4RA-HYGMX4 This study 

UPY902 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, CPY*-3XHA This study 

UPY909 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, SMC1-HIS3MX-
3XHA This study 

UPY910 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm2DENQ  This study 

UPY911 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, SCC1-3XHA-
KANMX This study 

UPY912 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG,mcm2DENQ, 
SCC1-3XHA-KanMX This study 
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UPY918 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm4RA, 
rad9::loxP-HIS5+-loxP This study 

UPY919 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm6DENQ, 
rad9::loxP-HIS5+-loxP This study 

UPY920 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm4RA, 
mrc1::loxP-HIS5+-loxP This study 

UPY921 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm6DENQ, 
mrc1::loxP-HIS5+-loxP This study 

UPY925 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2-mrc1AQ, can1-100, bar1::hisG, 
mcm6DENQ, mrc1::loxP-HIS5+-loxP This study 

UPY926 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2-mrc1AQ, can1-100, bar1::hisG, 
mcm4RA, mrc1::loxP-HIS5+-loxP This study 

UPY936 

MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, leu2-3,112,lys2::hisG can1-100, 
mcm6DENQ, cdc15-2, pUP1108 (LEU2, lacO-
ChrIV) This study 

UPY937 
MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, leu2-3,112,trp1-1, can1-100, mcm4RA, 
cdc15-2, pUP1108 (LEU2, lacO-ChrIV) This study 

UPY938 MATa. bar1::LEU2, trp1-1, RAD52-YFP , ura3-
1, his3-1,2 Kara Bernstein 

UPY956 

MATa, ade2-1, ura3-1, his3-11,15, leu2-
3,112,can1-100, bar1::hisG, sml1::loxP-HIS5+-
loxP, mec1::loxP-URA3-loxP, leu2-
3,112::MRC1-3XHA-LEU2 This study 

UPY967 

MATα, ade2-1, ura3-1, his3-11,15, leu2-3,112, 
can1-100, TRP1, bar1::hisG, mcm2DENQ, 
tel1::loxP-LEU2-loxP, leu2-3,112::MRC13XHA-
LEU2, sml1::loxP-HIS5+-loxP This study 

UPY968 

MATa, ade2-1, ura3-1, his3-11,15, leu2-3,112, 
can1-100, bar1::hisG, tel1Δ::loxP-LEU2-
loxP,leu2-3,112::MRC1-3XHA-LEU2, 
sml1Δ::loxP-his3-loxP This study 

UPY980 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2-PGAL1-MRC1-3XHA, can1-100, 
bar1::hisG, mcm2DENQ This study 

UPY981 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2- PGAL1-MRC1-3XHA, can1-100, 
bar1::hisG This study 
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UPY982 
MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, leu2-3,112,lys2::hisG can1-100, mcm4RA, 
cdc15-2, pUP1108 (LEU2, lacO-ChrIV) This study 

UPY983 

MATa, ade2-1, ura3-1, his3-11,15::HIS3-LACI-
GFP, leu2-3,112,lys2::hisG can1-100, 
mcm6DENQ, cdc15-2, pUP1108 (LEU2, lacO-
ChrIV) This study 

UPY985 

MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, sml1Δ::loxP-
HIS5+-loxP, tel1Δ::loxP-leu2-loxP, 
mec1Δ::loxP-URA33-loxP, leu2-3,112::MRC1-
3XHA-LEU2 This study 

UPY988 
MATα, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, sml1::loxP-HIS5+-
loxP, mcm2DENQ-NATMX4 This study 

UPY998 

MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
mcm2DENQ, ade3Δ, lacO-ChrIV(932137), 
cdc16-123 This study 

UPY1014 MATa, trp1-1,RAD52-YFP, ura3-1, his3-
1,2,bar1::LEU2, mcm2DENQ This study 

UPY1017 MATa,ade2-1, Rad52-YFP mcm6DENQ, ura3-
1,his3-1,2, lys2:;hisG, trp1-1, bar1::LEU2 This study 

UPY1020 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm2DENQ, 
pGAL-MRC1:KANMX This study 

UPY1022 MATa, RAD52-YFP, ura3-1, his3-1,2, 
lys2::hisG, trp1-1, mcm4RA This study 

UPY1042 

MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
mcm2DENQ, ade3Δ, lacO-ChrIV(932137), 
sml1::loxP-LEU2-loxp This study 

UPY1044 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2- PGAL1-MRC1-3XHA, can1-100, 
bar1::hisG, MCM4-3XFLAG-KANMX This study 

UPY1045 

MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2- PGAL1-MRC1-3XHA, can1-100, 
bar1::hisG, mcm2DENQ Mcm4-3XFLAG-
KANMX This study 

UPY1046 MATa, trp1-1,RAD52-YFP , ura3-1, his3-
1,2,bar1::LEU2, sml1::loxP-URA3-loxP This study 

UPY1048 
MATa, ade2-1, his3-11,15, trp1-1, leu2-3,112, 
can1-100, smc3-42, GAL, psi+, SMC1-3XHA-
HIS3MX This study 
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UPY1049 

MATa, ura3::3XURA3-tet O-112, leu2::LEU2 
tetR-GFP, his3, eco1-1, 
PDS1myc18::TRP(K.lactis), SMC13XHA-
HIS3MX This study 

UPY1053 

MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2- PGAL1-MRC1-3XHA, can1-100, 
bar1::hisG, MCM4-3X FLAG-KANMX, 
tof1::loxP-HIS5+-loxP This study 

UPY1054 

MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2- PGAL1-MRC1-3XHA, can1-100, 
bar1::hisG, MCM4-3X FLAG-KANMX, 
csm3::loxP-HIS5+-loxP This study 

UPY1057 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112:: PGAL1-CSM3-3XHA-LEU2, can1-100, 
bar1::hisG This study 

UPY1058 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::pGal-CSM3-3XHA-LEU2, can1-100, 
bar1::hisG,mcm2DENQ This study 

UPY1060 
MATa ura3-1,his-1,2,trp1-1,leu2-
3,112,bar1::LEU2, mcm2DENQ,RAD52-YFP, 
sml1Δ::loxP-His5-loxP This study 

UPY1064 
MATα can1::PSTE2-HIS5+, lyp1,his3-1,leu2-
0,ura3-0, met15-0, mcm2DENQ-NATMX4 
(S288C) This study 

UPY1077 MATa, bar1:LEU2, RAD52-YFP,trp1-1,ura3-1, 
mrc1::loxP-HIS5+-loxP This study 

UPY1079 MATa, bar1:LEU2, RAD52-YFP,trp1-1, ura3-
1,mcm2-1 This study 

UPY1085 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, MCM7-3XFLAG-
HIS3 This study 

UPY1087 MATα can1::PSTE2-HIS5+, lyp1Δ, mcm4RA-
NATMX4 (S288C) This study 

UPY1089 
MATa, ade2-1, his3-11,15, trp1-1, leu2-3,112, 
can1-100, smc3-42, GAL, psi+, SCC1-3XHA-
KANMX This study 

UPY1090 
MATa, ade2-1, his3-11,15, trp1-1, leu2-3,112, 
can1-100, scc2-4, GAL, psi+, SCC1-3XHA-
KANMX This study 

UPY1091 
MATa, ura3::3XURA3-tet O-112, leu2::LEU2 
tetR-GFP, his3, eco1-1, PDS1myc18::TRP(K. 
lactis), SCC1-3XHA-KANMX This study 

UPY1092 MATa, ade2-1, ura3-1, his3-11,15, trp1-1, can1-
100, bar1::LEU2 This study 
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UPY1094 
MATα can1::PSTE2-HIS5+, lyp1,his3-1,leu2-
0,ura3-0, met15-0, mcm6DENQ-NATMX 
(S288C) This study 

UPY1101 

MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2- PGAL1-MRC1-3XHA, can1-100, 
bar1::hisG, MCM4-3XFLAG-KANMX, CDC45-
3XHA-HIS3MX This study 

UPY1102 

MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112::LEU2- PGAL1-MRC1-3XHA, can1-100, 
bar1::hisG, MCM4-3XFLAG-KANMX, CDC45-
3XHA-HIS3MX, mcm2DENQ This study 

UPY1103 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm4Chaos3, 
MCM7-3XFLAG-HIS3 This study 

UPY1114 MATa cdc14-3 ura3, trp1,leu2,his3 This study 

UPY1119 

MATα, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, sml1::loxP-HIS5+-
loxP, rad53::loxP-URA3-loxP, mcm2DENQ-
NATMX4 This study 

UPY1124 

MATa, ade2-1, ura3-11, his3-11,15, leu2-3,12, 
can-100, trp1-1, sml1::His-lox, mcm2Δ::hisG, 
pAS404 (ARS/CEN, URA3 PMCM5-MCM2, 
rad53::loxP-LEU2-loxP This study 

UPY1125 

MATa, ade2-1, ura3-11, his3-11,15, leu2-3,12, 
can-100, trp1-1,sml1::His-lox, 
mcm2::hisG/pAS404 (ARS/CEN URA+ 
MCM5promoter-MCM2wt, mec1::loxP-LEU2-
loxP This study 

UPY1135 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, sml1::loxP-HIS5+-
loxP, mec1::loxP-URA3-loxP, RAD52-YFP This study 

UPY1137 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, sml1::loxP-HIS5+-
loxP, rad53::loxP-URA3-loxP, RAD52-YFP This study 

UPY1141 MATα, bar1::LEU2,lys2Δ, RFA1-8ala-RFP, 
RAD5,ura3-1 Kara Bernstein 

UPY1148 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, wpl1::loxP-URA3-
loxP This study 

UPY1149 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm2DENQ, 
wpl1::loxP-URA3-loxP This study 

UPY1150 MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, This study 
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mcm2DENQ, ade3Δ, lacO-ChrIV(932137), 
wpl1::loxP-URA3-loxP 

UPY1151 

MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
ade3Δ, lacO-ChrIV(932137), wpl1::loxP-URA3-
loxP This study 

UPY1152 MATa. bar1::LEU2, trp1-1,RAD52-YFP , ura3-
1, his3-1,2, wpl1::loxP-URA3-loxP This study 

UPY1153 MATa. bar1::LEU2, trp1-1,RAD52-YFP , ura3-
1, his3-1,2, wpl1::loxP-URA3-loxP, mcm2DENQ This study 

UPY1154 
MATa, ura3::3XURA3tet O 112, leu2::LEU2 
tetR-GFP, his3, eco1-1, PDS1myc18::TRP(K. 
lactis), wpl1::loxP-HIS5+-loxP This study 

UPY1157 
MATa, ade2-1, ura3-1, his3-11,15, trp1-1, leu2-
3,112, can1-100, bar1::hisG, mcm2DENQ, 
MCM7-3XFLAG-HIS3 This study 

UPY1168 MATa RFA1-YFP, his3-11,15, mcm2DENQ, 
leu2-3,112, lys2Δ, trp1-1, ura3-1, bar1∷hisG This study 

UPY1169 MATa RFA1-YFP, leu2-3,112, his3,lys2Δ, 
bar1::LEU2, trp1-1, ura3-1 This study 

UPY1172 
MATa, ade2-1, ura3-1, his3-11,15∷HIS3-LACI-
GFP, trp1-1, leu2-3,112, can1-100, bar1::hisG, 
cdc15-2, lacO-ChrIV(932137) This study 

UPY1174 MATa. bar1::LEU2, trp1-1,RAD52-YFP, ura3-1, 
his3-11,15, sac3::KANMX This study 

UPY1177 MATa. bar1::LEU2, trp1-1,RAD52-YFP , ura3-
1, his3-11,15, sac3::KANMX, mcm2DENQ This study 

UPY 1239 MATa, RFA1-YFP, leu2-3,112,bar1∷LEU2, trp1-
1, ura3-1, sac3∷KANMX This study 

UPY1240 MATa, RFA1-YFP, leu2-3,112,bar1∷hisG, trp1-
1, lys2Δ, ura3-1, sac3∷KANMX, mcm2DENQ This study 

 

Table 2. List of yeast strains used in this study 
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2.1.2 Plasmids 

 

     

Plasmid 
name Alternate name Description Reference 

pUP169 pAS436 Amp, TRP1, ARS/CEN, PMCM5. C-term HA/His10 [82] 

pUP207.2 2534-1 Amp,  TRP1(ARS/CEN) PMCM5-mcm4RA-His10/HA [82] 

pUP215 pAS823 Amp,  TRP1(ARS/CEN) PMCM5-mcm6DENQ-His10/Ha [82] 
pUP223 pAS787 Amp, LEU2 (Integrating vector) PGAL1-mcm2DENQ [82] 
pUP233.2 2535-1 Amp,  LEU2(Integrating vector) PGAL1-mcm4RA-3xHA [82] 

pUP240 pAS813 Amp,  LEU2(Integrating vector) PGAL1-mcm6DENQ-
FLAG [82] 

pUP464 pDK368-1 LEU2 ARSH4 [263] 

pUP465 pDK368-7 LEU2 ADE3 ARSH4-7X [263] 

pUP577 pAG25 Amp, NATMX4  [264] 

pUP607 pFA6a-KANMX6 Amp, G418   [265] 

pUP608 pFA6a-3XHA-
KANMX6 Amp. G418 C-term 3XHA  [265] 

pUP616 pFA6a-3XHA-
HIS3MX6 Amp, HIS3 C-term 3XHA [265] 

pUP618 pFA6a-13MYC-
His3MX6 Amp HIS3 C-term 13XMYC [265] 

pUP622 pFA6a-KANMX- PGAL1 Amp, N-terminal  PGAL1-KANMX  

pUP641 pAG32 Amp, HPHMX, tef  [264] 

pUP650 pUG27 Amp HIS5+, lox [266] 

pUP652 pUG72 Amp URA3, lox [266] 

pUP653 pUG73 Amp LEU2, lox [266] 

pUP809 619-3XFLAG-LEU2 Amp, LEU2 (K. lactis) 3XFLAG This study 

pUP951 pCM46 Amp, NAT lacO-ChrIV(932137) Doug 
Koshland 

pUP954 pDB030 Amp,HIS3,KANMX, LACI-GFP Doug 
Koshland 

pUP985 176 961 Amp, LEU2 MRC1-3XHA This study 

pUP986 176 966 Amp, LEU2 RAD9-3XHA This study 
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Table 3. List of plasmids used in this study 

2.2 METHODS 

2.2.1 Yeast methods  

All the yeast strains used in this study are isogenic to the W303 background [262], unless specified 

otherwise. Strains were grown at 30°C for all experiments, unless specified otherwise.  

 

Cell cycle synchronization- Mid-log phase yeast were treated with α-factor (5mg/mL in DMSO) 

at a final concentration of 30nM and grown at 30°C for 3 hours. For temperature sensitive strains, 

a similar scheme was followed, except that strains were arrested at either permissive (typically 

pUP987 147 197 Amp, URA3,  PGAL1-MCM2 This study 

pUP988 162 197 Amp, TRP1,  PGAL1-MCM2 This study 

pUP989 147 199 Amp, URA3  PGAL1-mcm2DENQ This study 

pUP990 162 199 Amp, TRP1  PGAL1-mcm2DENQ This study 
PUP991 169-1 new Amp, TRP1 mcm4Chaos3 This study 

pUP1106 CPY* yeast shuttle 
vector, ERAD Amp,URA3 CPY* Jeff 

Brodsky 

pUP1127 pFA6a-6xGLY-
3XFLAG-HIS3MX6 Amp,HIS3 C-terminal 3X-FLAG [267] 

pUP1143 PGAL1-MRC1-3XHA Amp, LEU2 PGAL1-MRC1-3XHA This study 

pUP1163 PGAL1-mcm4RA  TRP1 
integrating Amp,TRP1 mcm4RA This study 

pUP1165 PGAL1-mcm6DENQ  
TRP1 integrating Amp,TRP1 mcm6DENQ This study 

pUP1167 PMCM5-MCM4  TRP1 
integrating Amp,TRP1 MCM6 This study 

pUP1169 PMCM5-MCM6  TRP1 
integrating Amp,TRP1 MCM6 This study 

pUP1172 PGAL1-CSM3-3XHA Amp, LEU2  PGAL1-CSM3-3XHA This study 
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25°C) or non-permissive (typically 37°C) temperatures. Cells arrested in α-factor were monitored 

periodically for the unbudded ‘shmoo’ phenotype, with >95% G1 arrest considered as optimal.  

To release G1-arrested cells, cells were spun down and washed thrice in culture volume of YP 

without dextrose, with 50ug/mL Pronase E included in the first wash to degrade excess α-factor. 

Cells were then resuspended in the desired volume of YPD and monitored for progress through 

the cell cycle.  

 

S-phase arrest- Cells were arrested in G1 as described above and after the requisite washes, 

released into YPD supplemented with 200mM hydroxyurea and grown for two hours at 30°C. The 

arrest was monitored by counting the proportion of cells with small buds, which is typical of cells 

in S-phase.  

 

G2/M arrest- Cells arrested in α-factor were washed and released into YPD supplemented with 

15ug/mL nocodazole, which is a microtubule-depolymerizing drug, and grown for 2 hours at 30°C 

(unless specified otherwise). Arrest was monitored by counting the proportion of cells with large 

buds and through DAPI staining of large budded cells with a single nucleus, typical of cells 

entering metaphase.  

2.2.2 Double strand break assay 

Depending on the experiment, log phase (asynchronous) or synchronized cells were used for 

immunofluorescence-based analysis of phosphorylated histone H2A as a marker for DNA double 

strand breaks. The assay has been previously described in [268].  
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Fixing and spheroplasting cells: To fix cells, 3.7% formaldehyde was added to cells and tubes were 

incubated for 10 minutes with gentle rolling. Cells were subsequently spun and resuspended in 

1mL of KPO4 buffer containing 3.7% formaldehyde and further roller-incubated for an hour at 

room temperature. Thereafter, cells were washed twice in KPO4 buffer and resuspended in 0.1mL 

sorbitol buffer. Cells were then spheroplasted by the addition 6uL of 2mg/mL Zymolyase 20T and 

1μL β-mercaptoethanol followed by a 15 minute roller incubation at room temperature. 

Spheroplasts were gently washed twice in sorbitol buffer and finally resuspended in 50 μL of the 

same buffer.  

 

Permeablizing and immunostaining cells: Cells were spotted on to poly-L-lysine coated slides, and 

excess cells were aspirated from the slide. Slides were then immediately immersed in methanol 

for 6 minutes and transferred to acetone for 30 seconds at -20°C to permeablize cells. Once the 

acetone dried off, spots were incubated with 40-50μL blocking buffer (1.5% BSA, 0.5% Tween-

20, 0.1% TritonX-100 in PBS) for 15-30 minutes in a humid container. Thereafter, cells were 

treated with 12-15μL anti-phosphoH2A antibody (Personal gift from W.Bonner) overnight. After 

4-5 washes with blocking buffer, cells were treated with 12-15uL secondary antibody (Alexa Fluor 

546. Anti-rabbit), followed by a room temperature incubation for an hour in dark. Slides were 

washed as above, treated with 1μg/mL DAPI for a minute and mounted with Slowfade antifade 

(Life Technologies). Coverslips were applied and sealed with nail polish and slides were observed 

using the Zeiss AxioSkop 40L epifluorescence microscope. 
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2.2.3 Additional fluorescence microscopy 

For the analysis of strains bearing GFP or YFP-tagged proteins of interest, cells were collected at 

appropriate timepoints, washed once in double the cell volume of distilled water, and resuspended 

in distilled water for microscopy. For each sample, ~5-10 µL of the cell suspension was spotted 

on slides and analyzed as above. 

 

To observe cell nuclei, cells from appropriate timepoints were fixed with an equal volume of 100% 

cold ethanol, and DAPI (4',6-diamidino-2-phenylindole) was added to the fixed cells at a final 

concentration of 1µg/ml . Cells were washed, resuspended in water and analyzed as above.  

2.2.4 Sister chromatid cohesion assay 

To analyze sister chromatid cohesion during metaphase, strains were built so as to contain 

centromere-proximal Lac-operator construct on Chromosome IV containing 256 tandem arrays of 

the Lac operator sequence [269]. Additionally these strains were engineered to express a GFP-

tagged LacI repressor protein that has high affinity for the Lac operator array. The above strains 

were synchronized and released into media containing 15µg/ml nocodazole to arrest cells at the 

G2/M junction and conditionally block chromosome segregation. Samples were analyzed for the 

presence of GFP-dots by fluorescence microscopy as described above. Cells that erroneously 

missegregated chromosome IV despite the nocodazole block displayed two GFP dots in close 

proximity in the mother bud, whereas cells that maintained cohesion only display a single GFP dot 

that likely represents overlapping/tightly adherent sister chromatids.  
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2.2.5 Co-immunoprecipitation analysis of the Mcm2-7 complex 

Immunoprecipitation assays were carried out via modifications of the methods described in [150, 

154]. For all Mcm complex immunoprecipitation experiments, 3mM ATP was included in the lysis 

and wash buffers, as it stabilizes the Mcm complex. Cultures were grown to roughly 2X107 

cells/ml in 100-200mL rich media, harvested at 5500rpm using a GSA rotor and resuspended in 

lysis buffer for subsequent steps.  Recipe for lysis buffers were adopted from [150] and consist of 

100mM HEPES-KOH pH 7.9, 100mM potassium glutamate, 10mM Magnesium acetate, 10% 

glycerol, 0.1% NP-40. Immediately prior to lysis, the buffers were supplemented with 3mM ATP, 

1M DTT, protease inhibitors, 2mM NaF, 2mM, β-glycerophosphate.  Lysis steps were carried out 

in the cold room by mixing the cell suspension with an equal amount of pre-chilled, acid washed 

glass beads and vortexing 6-8 times , with each cycle consisting of 30s pulses followed by 30s ice 

incubations. The resulting lysate was separated from cell debris by a low speed spin, and clarified 

twice by centrifugation at 14000 rpm for 10 minutes each. To increase the probability of isolating 

‘loaded’ Mcm complexes, lysates were treated with ~500-600 Units of DNase I for one hour and 

subsequently centrifuged to pellet the digested chromatin.  Lysates containing 600μg-1mg protein 

were subsequently used for immunoprecipitations. All steps were performed at 4°C. 

 

For analyzing the interactions between Mcm2-7 and Mrc1, an Mrc1-3XHA construct was 

expressed under the GAL1 promoter and immunoprecipitations were carried out using either anti-

HA (mouse monoclonal, Covance) or anti-MCM (rabbit polyclonal, AS 1.1)  antibody treatment 

for two hours followed by incubation with protein G beads for an additional hour. A similar 

approach was used for testing Mcm-Csm3 interactions, whereby strains were engineered to express 
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a Csm3-3XHA construct under the GAL1 promoter. In order to get optimal culture growth for 

Csm3 induction, 2% raffinose was included in all the growth media.   

 

In order to test protein-protein interactions between the members of the Mcm complex, strains 

were engineered to express either Mcm4-3XFLAG or Mcm7-3XFLAG, and immunoprecipitations 

were conducted using M2 FLAG agarose beads (Mouse, Sigma) for two hours at 4°C.  

GammaBind Sepharose beads (GE Healthcare) from all the above IP experiments were ultimately 

washed thrice in lysis buffer (unless noted otherwise), resuspended in 20μL 2X SDS sample buffer 

(20% glycerol, 0.01% bromophenol blue, 6% SDS, 0.1MTris-HCl pH6.8, 0.2 volume β-

mercaptoethanol) and boiled for 3 minutes. Proteins of interest were analyzed by western blot as 

described below.  

 

To test the integrity of the CMG complex throughout the cell cycle, wildtype and mcm2DENQ 

mutant strains were engineered to express a 3XHA-tagged copy of Cdc45. Cultures were 

synchronized in G1 with α-factor, and subsequently released into fresh media containing either α-

factor, 0.2M HU or 15-30µg/ml nocodazole, and incubated with shaking for 2 hours at 30°C. IPs 

were essentially conducted as described above, with the following exceptions. The lysis buffer 

included 300mM potassium acetate in place of potassium glutamate, whereas the wash buffer 

contained 150mM potassium acetate, and lacked any glycerol.  

2.2.6 TCA extraction of proteins 

Extraction of proteins was carried out as previously described [270] . ~108 cells were harvested 

and resuspended in 1mL ice cold water. After adding 25μL of 10N NaOH and 12μL of β-
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mercaptoethanol , the cell suspension was incubated in ice for 15 minutes. Thereafter, 85μL of 

trichloroacetic acid (TCA) was added to cell suspension followed by a 10 minute ice incubation. 

Cells were pelleted and washed with ice cold acetone and resuspended in 100-150μL of HU Buffer 

mix (6M Urea, 3.75%SDS, 150mM Tris pH6.8, 0.75mM EDTA, 1X SDS sample buffer, 80mM 

DTT, 80mM Tris-Cl, pH 8.0). Samples were boiled for 5 minutes and spun down, and the clear 

supernatant was run on SDS-PAGE gels. 

2.2.7 Quantitative western blotting 

Cultures were synchronized using α-factor and released into fresh YPD, and samples were 

collected at indicated timepoints. Samples were TCA prepped as described above and western 

blotting was performed using antibodies against Mcm4 (AS 6.1) or Mcm6 (AS3.1). Blots were 

imaged using a Fujifilm imager with a CCD camera and quantified using the ImageJ software 

(NIH). Mcm signals were normalized to the loading control G6PDH to obtain the relative density 

of the Mcm signal for each sample. For quantitative analysis of the difference in protein levels 

between wildtype and mutant strains, normalized densities of Mcm signals from mutant samples 

were adjusted relative to those of the corresponding wildtype samples. 

2.2.8 Cycloheximide chase assay 

Assay was conducted as described earlier [271]. Cultures grown overnight were treated with 

cycloheximide at a final concentration of 200µg/ml, and samples were withdrawn at desired 

timepoints for subsequent western blot analyses. Prior to TCA precipitation, 0.01% sodium azide 
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was added to samples, and subsequently samples were pelleted, resuspended in ice-cold distilled 

water with protease inhibitors and flash frozen. 

2.2.9 Western blot to detect Rad53 phosphorylation 

Strains were asynchronously grown in the absence or presence of 0.2M HU or 0.033% MMS for 

2 hours and processed for western blots using the TCA extraction method as described above. 

Rad53 phosphorylation was detected with an overnight incubation of the blot in anti-Rad53 (Santa 

Cruz) at a 1:1000 dilution in TBST with 5% milk at 4°C with gentle agitation.  The primary 

antibody detects both unphosphorylated Rad53 as well as its multiple phosphorylated, super-

shifted species. Subsequently, the blot was incubated for 30 minutes at room temperature with 

anti-goat secondary antibody at 1:10000 dilution in TBST with 1% milk.  The inclusion of milk in 

the secondary antibody dilution was observed to be highly effective in drastically reducing the 

excessive background signal normally associated with the anti-Rad53 antibody, and resulted in 

significantly cleaner blots. 

 

2.2.10 Chromatin extraction for analysis of DNA-bound proteins 

The assay was conducted essentially as described in [184]. ~108 cells were harvested for each 

sample and resuspended in pre-spheroplasting buffer (100mM PIPES-KOH pH 9.4, 10 mM DTT). 

After a 10-minute incubation at 30°C, samples were spun down and pellets were resuspended in 

spheroplasting buffer (50mM KPO4, 10mM DTT, 0.6M Sorbitol). 200-300U of Zymolyase 20T 

(2mg/mL) was added to spheroplast cells for 15 minutes at 30°C. Spheroplasts were gently washed 
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thrice in lysis buffer (150 mM potassium acetate, pH7.5, 0.4M Sorbitol, 2mM Magnesium acetate, 

20mM PIPES-KOH pH 6.8, protease inhibitors) with 4000 rpm spins in between. After the final 

wash, pellets were resuspended in 250μL lysis buffer and treated with Triton X-100 at a final 

concentration of 1%.  The suspensions were incubated on ice for ~10 minutes, after which the 

suspension was overlaid on a 30% sucrose cushion and spun at 13000 rpm for 10 minutes at 4°C. 

Prior to the spin, an aliquot was taken from the sample to serve as the input. After the spin, the 

supernatant was saved and the pellet resuspended in an equal volume of lysis buffer. At this step, 

the supernatant should contain mostly cytosolic proteins, whereas chromatin-associated proteins 

should stay in the pellet fraction. To confirm this, the pellet fraction was further treated with ~300U 

of fresh DNase I (20mg/mL in 50% glycerol, 20mM sodium acetate, 5mM calcium chloride, 0.5M 

PMSF) for 15 minutes on ice, and spun down. The resulting supernatant fraction should contain 

solubilized proteins that have been liberated from chromatin after the DNase I treatment. All 

fractions were analyzed for the proteins of interest by western blot. 

 

2.2.11 Plasmid loss assay 

The assay was conducted as described earlier [263].Yeast strains bearing an ade2 ade3 double 

mutation and/or the test mcm mutation were transformed with CEN plasmids carrying either a 

single (pARS1) or seven copies (pARS7) of an early origin ARSH4. The plasmids additionally carry 

LEU2 and ADE3 markers for selection and colony color analysis, respectively. To test for plasmid 

stability, plasmid-bearing LEU+ strains were non-selectively grown in rich media by adding 200 

cells from a selectively grown early log culture (~1X 107 cells/ml) to 2ml YPD, for ~18 generations 
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and plated to rich media (~500 cells/plate) and selective media (~2500 cells/plate) , followed by 

2-3 day incubation at 30°C. Thereafter, plasmid loss was calculated according to the formula  

 

L= 1-[(S/C)(1/n)÷2], where, 

L= plasmid loss rate per generation 

n= number of generations 

S= number of cells in the 2mL YPD culture that contain the plasmid. 

C= number of cells added to the 2mL YPD culture. 

For an accurate determination of n, the formula n = (ln (F/C)) ÷ (ln 2) was used, where F is the 

number of cells after growth in 2ml YPD. 

 

 

2.2.12 Construction of mcm mutant strains for Synthetic gene array (SGA) analysis 

For mcm4RA and mcm6DENQ mutant strains, mcm4RA and mcm6DENQ mutant constructs were 

amplified from a corresponding W303 strain and integrated into the SGA ‘magic marker’ strain 

[272] in the S288C genetic background via two-step gene replacement. The latter aids in scoring 

of MATa haploids during the genetic screen as it contains a SpHIS5 gene under the MATa specific 

STE2 promoter integrated at the CAN1 locus. The mutant genes were subsequently C-terminally 

tagged with a NATMX cassette for selection of the mutant gene of interest in the SGA analysis. 

The mcm2DENQ strain was built by backcrossing a mcm2DENQ-NATMX4 strain with an S288C 

strain carrying the magic marker four times, as we were unable to generate this strain via gene 

replacement for unknown reasons. The SGA screen was performed in the Boone lab at the 
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University of Toronto, whereby the mutants were tested against the yeast knockout collection as 

well as a temperature-sensitive mutant collection. 

 

Genetic interactions were determined from a quantitative estimate of colony sizes. An epsilon 

score (ϵ-score) was assigned to each interaction for measuring the extent of the deviation in 

observed and expected colony sizes in double mutant combinations. Interactions were categorized 

as either negative (indicating putative synthetic lethality/sickness) or positive (potential genetic 

suppression or epistasis), with the strength of these interactions inferred from the magnitude of the 

epsilon score. A p-value<0.05 and epsilon score >0.08 were chosen as the default cutoff values for 

scoring the interactions (Michael Costanzo, Boone lab, personal communication). For each mutant 

analysis, functional annotations of the screen hits were performed using GO Slim-Mapper 

(Saccharomyces Genome Database). The analysis was restricted to a few closely related processes 

for the sake of presentation. 

2.2.13 Fluorescent plasmid segregation assay 

Assay was conducted as described previously [273]. To visually assay plasmid replication and 

segregation in budded cells, the cdc15-2 allele was incorporated into the test strains, which disrupts 

mitotic exit and causes a telophase arrest upon shift to non-permissive temperature (37°C). Strains 

were engineered to express LacI-GFP from an integrated construct and transformed with an 

ARS/CEN plasmid bearing the Lac-operator array on a part of Chromosome IV. Cells were 

synchronized with α-factor and released into fresh media at the non-permissive temperature to 

induce arrest and grown or 2 hours. G1 and telophase-arrested cells were then monitored by 
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fluorescence microscopy as described above to assess the distribution of plasmids among the 

dividing cells. 

2.2.14 Genomics analysis 

For ChIP-seq analyses, ChIP was performed as described [87, 180] using yeast that has the 

ability to uptake BrdU from the media [274]. For determining Mcm localization, either the pan-

Mcm2-7 antibody (UM174, S.P. Bell, MIT) or anti- Mcm2 (Santa Cruz SC6680) was used.  DNA 

ChIP-Seq was performed to analyze origin firing across the genome, using an anti-BrdU antibody 

(555627 BD Bioscience). The rest of the sample processing and statistical data analysis was 

performed in collaboration with Dr. David Mac Alpine (Duke University). Briefly, libraries were 

prepared using Illumina Sample prep kit, multiplexed, and sequenced on a GAII Illumina 

sequencer. The resulting data were processed, assembled, and normalized using SCS2.6 software, 

with roughly five million reads per experiment. All genomic experiments were performed with 

replicates, which were subsequently combined via quantile normalization for presentation 

purposes. 
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3.0  MCM2-7, VIA THE 6/2 ATPASE ACTIVE SITE, LINKS REPLICATION TO THE 

DNA REPLICATION CHECKPOINT UPSTREAM OF RAD53  

This chapter gives an overview of the DNA replication checkpoint (DRC) and describes the 

checkpoint phenotypes observed with the mcm2DENQ mutant under conditions of replication 

stress. The DNA damage checkpoint is discussed to analyze the specificity of the checkpoint 

defects. 

3.1 CO-AUTHORSHIP DISCLAIMER 

The work presented below is a collaborative effort between Sriram Vijayraghavan, Dr. Emily Tsai 

(former graduate student, Schwacha lab), and Dr. David MacAlpine (Associate Professor, Duke 

University). Data in the following figures and panels have been obtained by Dr. Emily Tsai and 

have been reproduced here with permission from Dr. Emily Tsai and Dr. Anthony Schwacha: 

Figures 5, 6, 7, 8a,b, 10a-c, 11 a, b ,d. Samples for Figure 9 were prepared by Dr. Tsai, whereas 

the analysis and images were provided by Dr. MacAlpine’s lab. The above data are being presented 

here for the sake of continuity of the discussion. A manuscript detailing the experiments listed in 

this chapter is currently being prepared for submission, with Emily Tsai as the primary author, 

Sriram Vijayraghavan as the second co-author, and Dr. Anthony Schwacha as the principal 

corresponding author. 

 



 77 

3.2 OVERVIEW OF THE INTRA S-PHASE CHECKPOINTS 

3.2.1 Intra-S phase checkpoints sense different types of genotoxic stress during 

replication 

The replication machinery often encounters various impediments during fork progression 

in S-phase. These include either exposure to genotoxic agents which may cause DNA damage, 

topological constraints resulting from excess DNA unwinding causing accumulation of large 

amounts of single stranded DNA at forks, or depletion of nucleotides which impairs the ability of 

the replicative polymerases to carry out DNA synthesis. To deal with such events cells are 

equipped with an elaborate mechanism to guard genome stability and ensure replication fidelity – 

the intra-S phase checkpoint pathway. This pathway is divided into two related but distinct sub-

networks, one termed the DNA replication checkpoint (DRC) that specifically senses replication 

stress such as nucleotide depletion [123, 275]. The other pathway is referred to as the DNA damage 

checkpoint (DDC) which, as the name implies, senses physical damage to the DNA at or ahead of 

the replication forks [276]. The relevance of these mechanisms lies in the fact that unrepaired or 

unstable forks are highly fragile structures that either fall apart (fork collapse), engage in 

illegitimate recombination events that severely compromise genome integrity (reviewed in [216]). 

Key checkpoint factors are frequently mutated in a variety of human diseases, including several 

types of cancer [277]. Therefore, understanding the mechanisms that govern checkpoint response 

and the factors that underlie checkpoint regulation are fundamental from a human health 

perspective. 
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3.2.2 Initial sensing of stress and checkpoint activation 

Initiation of the checkpoint response in cells usually takes place through activation of the 

sensor kinase Mec1 (ATR in mammals), a member of the PI3K family of kinases that 

phosphorylates a variety of replisome components [181, 278]. The related Tel1 (ATM in 

mammals) kinase can act as the apical sensor kinase under certain conditions as well [279]. Once 

activated these kinases kick start a signal transduction pathway that features mediator proteins 

such as Mrc1 (Claspin) and Rad9, which amplify the Mec1 signal in the phosphorylation cascade 

(Figure 6, [203, 206]). Other additional factors such as Ddc2 (ATRIP in mammals), and the 

ssDNA binding protein RPA assist in the recruitment and activation of Mec1 at replication forks 

[280, 281]. The pathway leads to the activation of the Rad53 (CHK2) effector kinase, which has 

multiple downstream targets including DNA repair proteins, cell cycle factors and several fork-

associated proteins [205]. Other counter-mechanisms observed as part of the checkpoint response 

involve prevention of aberrant firing of dormant replication origins (late origins) [282] and 

increased dNTP production through upregulation of the RNR (ribonucleotidyl reductase) genes, 

and also via the corresponding downregulation of  the nucleotide biosynthesis inhibitor SML1 

(discussed below) [283]. Therefore, checkpoint activation is a kinase cascade that involves an 

ordered sensing of damage or replication stress, transduction of the signal via mediators and, 

ultimately, the activation of effectors to carry out repair. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Preliminary considerations— possible role for Mcm2-7 in the DNA Replication 

Checkpoint (DRC) 

Being one of the chief molecular motor of the eukaryotic replisome, Mcm2-7 must be 

carefully regulated during the checkpoint response. Misregulated helicase activity could result in 

uncoupling of the helicase from polymerases, resulting in generation of long ssDNA tracts without 

corresponding DNA synthesis. Such an event could potentially destabilize replication forks and 

give rise to several of the defects mentioned above. Therefore, Mcm2-7 is a target of checkpoint 

proteins. Mec1 has been reported to phosphorylate Mcm6 and Mcm4 [181], and several mediator 

proteins including Mrc1, Tof1 and Csm3 bind to one or more subunits of the Mcm complex [179]. 

Additionally, Rad53 also targets the Mcm complex [213]. 

 

To investigate the role of Mcm2-7 in DRC, a specific ATPase-deficient mcm allele– 

mcm2DENQ– was analyzed in vivo. This allele was generated via mutation of two conserved acidic 

residues in the Walker B box of Mcm2 to their amide counterparts (DENQ). Biochemically, the 

mcm2DENQ mutation has been shown to ablate ATP hydrolysis at the Mcm6/2 active site, thereby 

affecting Mcm2/5 gate opening, predominantly shifting it to a more closed conformation ([41, 

284], Simon et. al (in preparation). Importantly, the mcm2DENQ mutation displays normal Mcm2-

7 in vitro helicase activity. Importantly, unlike a majority of biochemically-tractable mcm ATPase 

active site mutations, the mcm2DENQ mutation is viable in yeast despite altering ATP hydrolysis 

at an essential active site in vitro. Therefore, the allele was further investigated for any in vivo 

defects that may result from impaired active site function.  
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In examining this allele, it was noticed that mcm2DENQ mutants grew slightly slower than 

the corresponding wildtype strains, albeit with no appreciable differences in colony size and 

morphology.  However, the mcm2DENQ mutants exhibited sensitivity to moderate concentrations 

of the drug hydroxyurea (HU), which inhibits nucleotide biosynthesis, forming smaller colonies. 

Such a phenotype is characteristic of mutant alleles of the DRC including mec1 and mrc1.  

Interestingly, the mutant was relatively resistant to DNA damaging agents such as methylmethane 

sulfonate (MMS) (Figure 9), unlike mutant alleles of rad9, which is specifically involved in a 

parallel branch of the intra S-phase checkpoint that monitors DNA damage (DNA damage 

checkpoint (DDC) [285].  

  

 

 

 

 

 

 

 

 

Figure 9. The mcm2DENQ mutant is sensitive to HU but not MMS 

Wild type, (UPY464), mcm2DENQ (UPY499), rad9∆ (UPY630), mrc1∆ (UPY713), and rad9∆ mrc1∆ 

sml1∆ (UPY715), mcm2DENQ rad9∆(UPY634), mcm2DENQ rad9∆ sml1∆ (UPY732), 

mcm2DENQ mrc1AQ (UPY758), mrc1AQ (UPY773), rad9∆ mrc1AQ sml1∆ (UPY745), mcm4Chaos3 

(UPY638), and mcm4 Chaos3 rad9∆ (UPY788) were spotted onto YPD as 10-fold serial dilutions (± HU or MMS) 

to assay viability. 
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3.3.2 The mcm2DENQ mutant is specifically deficient in DNA replication checkpoint 

signaling but not the DNA damage checkpoint 

The DRC phenotype of mcm2DENQ was further investigated. As mentioned above, the 

DRC is partially redundant with the DDC, so that loss of either one of the specific mediator factors 

Mrc1 or Rad9 can be partially compensated by the other factor. Δmrc1 or Δrad9 mutants are 

individually resistant to moderate concentrations of MMS or HU. However, double mutants that 

ablate both DRC and DDC (Δrad9Δmrc1) grow poorly and are extremely sensitive to replication 

stress or DNA damaging agents. If mcm2DENQ is a DRC mutant allele, a mcm2DENQΔrad9 

double mutant should conceivably behave like the Δrad9Δmrc1 mutant. This was found to be the 

case, as the double mutant was observed to be heavily MMS-sensitive (Figure 9).  

 

Furthermore, in the presence of MMS, checkpoint activation ensures that cell cycle 

progression is halted until damage can be alleviated. Consequently, in the complete absence of 

checkpoint activation, cells continue progressing through the cell cycle, inappropriately undergo 

cell division and lose viability. Using FACS analysis to monitor cell cycle progression, and spindle 

elongation as a metric of cell division, it was observed that mcm2DENQΔrad9 double mutants 

exhibit a significant loss of checkpoint activation. The double mutants progressed through the cell 

cycle in the presence of MMS, had elongated spindles and exhibited considerable loss of viability 

upon prolonged exposure to MMS (Figure 10). Interestingly, the mcm2DENQ mutant alone 

exhibited a normal block to cell cycle progression in the presence of MMS, further suggesting that 

this allele does not have a discernable DDC defect but has a specific defect in the DRC (Figure 

11). 
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Figure 10. The mcm2DENQ rad9∆ mutant exhibit DRC-specific phenotypes  

Cells undergoing inappropriate nuclear segregation, spindle elongation and loss of viability. (Left) The 

indicated strains from Figure 9 were arrested in G1 with α-factor, released into rich media + 0.01% (v/v) MMS, and 

spindle formation was assayed using tubulin immunofluorescence after incubation with MMS for 4.5 hours, with the 

graph representing the percentage of long spindles from cells at the indicated intervals. (Right) Viability following 

MMS exposure. Strains and growth conditions are identical to those in the left panel, and the cultures plated at the 

indicated intervals on YPD without drug to measure viability. Data plotted as mean ±SD of n≥3 experiments.  

 

 

 

 

 

 

 

 

Figure 11. The mcm2DENQ mutant exhibits normal cell cycle block in the presence of DNA damage  

FACS analysis of the indicated strains from Figure 5. Briefly, synchronized cultures were released into 

fresh YPD ± 0.033% MMS, and aliquots withdrawn at the indicated times were processed for FACS.  After 45 (wild 

type) or 55 (mcm2DENQ) minutes α-factor was re-added to restrict analysis to a single cell cycle. Asterisks denote 

timepoints that represent either the apparent start (black) or end (red) [286] of S phase. 
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3.3.3 The mcm2DENQ mutant shows synthetic lethality with many DRC mutant 

alleles 

The mcm2DENQ allele was examined in synthetic combinations with various DRC alleles 

such as mrc1, tof1 and csm3. These three factors are known to function both as replication factors, 

interacting with core replisome components such as the helicase and the leading strand 

polymerase, and as mediators in the DRC [121, 179]. Double mutant combinations of either of 

these alleles with mcm2DENQ was found to be synthetically lethal (Figure 12). As noted above, 

Δrad9 mcm2DENQ double mutants did not exhibit such synthetic lethality (Figure 10). Synthetic 

lethality among checkpoint alleles is often suppressed by the deletion of SML1, an inhibitor of the 

nucleotide biosynthesis factor RNR1 [287]. A common example is the Δmrc1Δrad9 double mutant 

which is inviable unless combined with an additional deletion of SML1. Interestingly, the deletion 

of SML1 was unable to rescue the synthetic lethality of mcm2DENQ with either Δmrc1, Δtof1 or 

Δcsm3, indicating the loss of some essential function outside of the DRC, such as replication. This 

was further corroborated by the observation that a separation-of-function allele of mrc1- mrc1AQ- 

which has a compromised checkpoint function but normal replication [123], is viable in 

combination with mcm2DENQ (Figure 12). The mrc1AQ mcm2DENQ double mutant exhibits the 

same phenotypic characteristics as either of the single mutants, further indicating that the DDC 

function is likely intact and thereby able to substitute for the loss of function of DRC components 

such as Mrc1 and Mcm2-7. Interestingly, the mcm2DENQ mutant was found to exhibit synthetic 

lethality with the sensor kinase mutant mec1Δ despite the presence of an sml1Δ, but not with the 

effector kinase mutant rad53Δ (Figure 12).  
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Figure 12. Synthetic lethality between DRC alleles and the mcm2DENQ mutant  

A basic plasmid shuffle system was used. All strains used are mcm2∆ complemented a wildtype 

MCM2/URA3 plasmid (pUP191) in addition, one of the following TRP1 test plasmids: empty vector (vec, pUP169), 

MCM2 (+2, pUP197) or mcm2DENQ (+2DQ, pUP199). Growth of these strains was compared under permissive 

conditions (left, media lacking uracil) with the pUP191 providing Mcm2 function, or under non-permissive conditions 

(right, media contains 5-fluoroorotic acid (5-FOA)) with either pUP197 (MCM2, left side of plate) or pUP199 

(mcm2DENQ, right side of plate) providing the Mcm2 function. (A) Synthetic lethal interactions between the 

mcm2DENQ allele and checkpoint mediator alleles: wild type (UPY110); mrc1∆ (UPY428.1); tof1∆ (UPY631); 

csm3∆ (UPY632); rad9∆ (UPY421). (B) Test of mrc1AQ and sml1∆ to suppress the synthetic lethality between 

mcm2DENQ and mrc1∆. The analysis is similar to (A), except the parent strains contain a deletion of both Mcm2 and 

of Mrc1. Three additional derivatives of these strains that contain the following relevant genotypes were also tested: 

LEU2::MRC1 (+Mrc1, UPY781), LEU2::mrc1AQ (+AQ, UPY676), and sml1∆ (UPY636). These four strains in 

addition carry a TRP1+ plasmid containing either wild type MCM2 or mcm2DENQ as in (A). (C) Synthetic lethality 

between mcm2DENQ, mec1Δ and rad53Δ. The wild type strain (UPY629) contains a chromosomal deletion of both 

MCM2 and SML1, and a complementing MCM2+/URA3+ plasmid (pUP191). The rad53Δ (UPY1124) and mec1Δ 
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(UPY1125) strains were made by deletion of the corresponding genes using the wild type strain. The nine indicated 

strains were tested for synthetic lethality as in (A). 

3.3.4 The mcm2DENQ mutant exhibits aberrant late origin firing under replication 

stress 

In the presence of replication stress, the DRC acts to suppress late replication origins from 

firing inappropriately, possibly as a mechanism to reduce further depletion of the cellular 

nucleotide pool [288]. The specific loss of DRC components such as Mrc1 leads to widespread 

late origin firing despite the presence of HU. In contrast, the loss of DDC components (rad9Δ) 

does not lead to late origin firing defects. To examine whether the mcm2DENQ exhibits a similar 

defect, genome wide origin firing was analyzed via a ChIP-seq approach (Figure 13). We initially 

tested for Mcm-origin association in mcm2DENQ to determine whether the mutant has any defects 

in general replication such as insufficient origin loading. Using ChIP with an Mcm2-7 specific 

antibody, it was observed that mcm2DENQ and the wildtype strains exhibited similar levels of 

Mcm-origin loading in G1-arrested cells, with >90% overlap between Mcm-association peaks of 

wildtype and mcm2DENQ samples, suggesting that there was no defect in pre-RC formation 

(Figure 13). We next sought to measure origin firing in the presence of HU, using BrdU to enrich 

for nascent DNA synthesis. This was followed by anti-BrdU ChIP and subsequently massively 

parallel sequencing of the BrdU-enriched DNA. As a control, origin firing was concordantly 

measured in a Δmrc1 strain. DRC mutants have been previously published to exhibit inappropriate 

firing of a large set of late dormant replication origins [180, 289]. While there was no significant 

difference in BrdU enrichment at early origins of replication between wildtype, mcm2DENQ and 

Δmrc1, there was a marked increase in the proportion of late origin firing in the Δmrc1 mutant. 
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Interestingly, the mcm2DENQ mutant exhibited a somewhat intermediate level of late origin firing 

relative to Δmrc1 (Figure 13).  

 

Overall, these observations further substantiate the role Mcm-7 in the DNA replication 

checkpoint, suggesting that the roles of Mcm2-7 in replication and DRC are separable through the 

Mcm6/2 active site. 

Figure 13. The mcmDENQ mutant shows inappropriate late origin firing  

(A) Mcm2 ChIP-seq analysis of wild type (UPY493) and mcm2DENQ (UPY524) strains during α-factor 

arrest. A representative region of Chromosome XIV is shown, and RPKM are plotted. (B) BrdU ChIP-seq data are 
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shown for HU arrested wildtype (UPY493), mcm2DENQ (UPY524), and mrc1∆ (UPY722) and the data are plotted 

similar to (A). (C) Box and whisker plots describing the median and quartiles of BrdU enrichment for wild type 

(UPY493), mcm2DENQ (UPY524), and mrc1∆ (UPY722) at different subsets of origins. Significance was determined 

by a one-tailed Wilcoxon rank sum test to examine if the mutants have differences that are greater than wild type.  

Results for mrc1AQ are from [290]. 

3.3.5 The mcm2DENQ mutant places Mcm2-7 upstream of Rad53 in the DRC 

pathway 

We sought to establish the position of Mcm2-7 in the DRC pathway. While Δmec1 

mcm2DENQ combinations were synthetically lethal, as observed both through plasmid shuffle 

experiments and tetrad analyses, mcm2DENQ Δrad53 double mutant combinations are viable, 

albeit slightly sick (Figure 12). As mentioned previously, Mec1 acts as the initial sensor of 

replication stress and/or DNA damage in the DRC pathway, with Rad53 phosphorylation serving 

as the readout of checkpoint activation. Therefore, we sought to test whether the mcm2DENQ 

allele has any effect on Rad53 phosphorylation. Cultures of different DRC and DDC mutants were 

subjected to acute treatments of HU or MMS for two hours and analyzed for Rad53 

phosphorylation using a polyclonal anti-Rad53 antibody. As expected, most of the single mutants 

had normal relative levels of phosphorylated Rad53 in the presence of drugs, indicating the partial 

overlap between the DRC and DDC (Figure 14). However, there was a marked reduction in Rad53 

phosphorylation in mcm2DENQ Δrad9 double mutants in the presence of either HU or MMS. This 

is similar to that observed in the Δmrc1Δrad9Δsml1 mutant, which lacks any checkpoint activation 

owing to the complete loss of both the DRC and DDC. In contrast, mcm2DENQ mrc1AQ double 

mutants exhibited relatively normal Rad53 phosphorylation, lending further proof to the notion 

that Mcm2-7 functions in the same pathway as Mrc1. We further checked the status of Rad9 and 
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Mrc1 phosphorylation in the mcm2DENQ mutant (Figure 14). Neither Rad9 nor Mrc1 

phosphorylation was compromised in the presence of HU or MMS in the mcm2DENQ mutant, 

indicating that the mcm2DENQ mutation does not interfere with the relaying of signals between 

Mec1 and the checkpoint mediators, and therefore, likely functions parallel to Mrc1 and/or Rad9.  

 

It is known that in addition to Mec1, Tel1 (ATM in mammals) functions as a parallel sensor 

to activate downstream mediators under certain conditions [279] . To determine whether or not the 

observed Mrc1 phosphorylation was occurring via Tel1, Mrc1 phosphorylation was analyzed in 

tel1Δ mutants. We observed that while deletion of TEL1 had no apparent effect on Mrc1 

phosphorylation, a Δtel1Δmec1Δsml1 triple mutant lost Mrc1 phosphorylation, suggesting 

strongly that the phosphorylation of Mrc1 occurs through Mec1 (Figure 14). 

 

Overall, the above observations imply that Mcm2-7 functions upstream of Rad53 

activation, and possibly in parallel with Mrc1 in the DRC pathway. 
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                              Figure 14. Mcm2-7 is a part of the DRC phosphorylation cascade  

 (A-B) Rad53 phosphorylation.  Representative quantitative Western blots of Rad53 are shown from 

asynchronous cultures using the indicated strains from Figure 5 grown ± 200 mM HU or 0.033% MMS for 90 minutes 

as indicated.  Induced phosphorylation % = ((slow mobility Rad53p) ÷ (total Rad53p)) X 100. Values were corrected 

for any phosphorylation observed in the absence of exogenous DNA damage (C) Rad9 or (D) Mrc1 phosphorylation 

was measured (Rad9-3xHA: wild type (UPY648), and mcm2DENQ (UPY649); and Mrc1-3xHA: wild type 

(UPY646), mcm2DENQ (UPY647), rad9∆ (UPY659), mcm2DENQ rad9∆ (UPY660), tel1∆ sml1∆ (UPY968), 

mcm2DENQ tel1∆ sml1∆ (UPY967) and tel1∆ mec1∆ sml1∆ (UPY985) as in (A) except that a C-terminal 3xHA 

epitope tag was engineered into each protein, and anti-HA (HA11, Covance) was used for Western blots. The epitope-

tagged Mrc1 and Rad9 are functional and partially alleviate the MMS sensitivity of a rad9∆ mrc1∆ sml1∆ strain (data 

not shown). *As previously observed [203], HU causes minimal Rad9 phosphorylation in wild type and mrc1∆ (and 

apparently mcm2DENQ). 

3.3.6 The mcm2DENQ mutation has minimal secondary effects on Mcm2 protein or 

Mcm2-7 complex stability 

Because the mcm2DENQ mutation interferes with ATP hydrolysis at the Mcm6/2 active 

site, the defects observed with this mutant strongly imply that regulation of this active site is critical 

for the role of Mcm2-7 in the DRC pathway. However, it formally remains possible that the 

mcm2DENQ mutation results in some gross conformational change that leads to either a decrease 

in Mcm2 expression or stability, or may cause the whole complex to become unstable. In other 

words, mcm2DENQ could behave as a hypomorphic mutation. Such a mcm allele has been 

previously isolated from a genetic screen in mice, and characterized both in vivo and biochemically 

(mcm4Chaos3) [291, 292]. In order to test this, Mcm2 protein levels were assayed in the 

mcm2DENQ mutant and were found to be comparable to wildtype, indicating that the mutation 

does not simply result in reduced Mcm levels. Similarly, protein stability was also tested by 
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treating cells with cycloheximide to arrest protein synthesis, followed by a timecourse analysis of 

Mcm2 levels (Figure 15, panel B). Again, no significant difference in Mcm2 stability was 

observed between wildtype and mcm2DENQ strains. Limited proteolysis of purified Mcm2-7 

complexes containing wildtype Mcm2 or Mcm2DENQ mutant subunit, either in the presence or 

absence of ATP yielded similar profiles, suggesting that the mcm2DENQ mutation does not cause 

gross structural changes within the Mcm complex (Figure 15, panel D). Finally, through co-

immunoprecipitation experiments with yeast lysates using Mcm4-3XFLAG as the bait, it was 

further determined that the mcm2DENQ mutation had a minimal effect on the integrity of the Mcm 

complex, as we were able to pull down the remaining five subunits in both wildtype and 

mcm2DENQ strains (Figure 15, panel C). These data strongly suggest that mcm2DENQ is not 

merely a hypomorphic allele, but rather represents a specific change that selectively misregulates 

the Mcm6/2 active site. 

 

As mentioned above, many DRC factors are bona fide replication proteins that travel with 

the replication fork and physically interact with core members of the replisome. Notably the MTC 

(Mrc1/Tof1/Csm3) has been shown to directly bind to both Mcm2-7 and Polε, and likely serves to 

couple the two molecular motors during fork progression [179, 220]. The physical proximity of 

these factors to replication proteins likely assists in an expedited checkpoint response in event of 

replication stress, allowing stalling of forks and recruitment of additional checkpoint and/or repair 

factors. Therefore, a checkpoint defect could possibly arise from loss of physical association 

between the Mcm complex and one or more members of the MTC complex. To test this, we first 

checked interactions between Mcm2-7 and Mrc1 in wildtype and mcm2DENQ strains, using either 

a 3XHA-tagged Mrc1 or the Mcm2-7 complex as baits and probing for co-precipitation of the 
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other protein. We noticed that Mrc1-Mcm2-7 interactions were intact in both wildtype and mutant 

strains. Csm3 was also found to interact with Mcm2-7 similarly between mcm2DENQ and 

wildtype strains, using a similar approach as the one adopted for Mrc1 co-immunoprecipitations 

(Figure 15).  

 

It has been reported that Tof1 and Csm3 are both required for Mrc1 to interact with the 

Mcm complex [179]. We confirmed this by checking Mcm-Mrc1 interactions in Δtof1 and Δcsm3 

backgrounds. Mrc1-Mcm2-7 interactions were lost in the absence of Tof1 as reported earlier, 

suggesting that in both wildtype and mcm2DENQ strains, Tof1 is likely interacting normally with 

the Mcm complex.  However, we noted that in our hands the loss of Csm3 had no effect on Mcm-

Mrc1 interactions (Figure 15), suggesting, contrary to previous observations [219], that Mrc1 

binding to the Mcm complex does not necessarily rely on Csm3–Mcm2-7 interactions. 

 

Overall, these results strongly imply that the DRC defects observed in the mcm2DENQ 

mutant likely result from a specific ATP hydrolysis-related defect, not from off-target effects of 

either decreased protein expression, stability or complex integrity. 
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 Figure 15. The mcm2DENQ mutant shows minimal off-target defects  

(A) Wildtype or mcm2DENQ cell extracts were analyzed by quantitative Western blotting using antibodies 

either to Mcm2 or to the loading control G6PDH. (B) In vivo Mcm2 stability. Cycloheximide was added to 

asynchronous cultures of wild type and mcm2DENQ strains from (A), and the wildtype strain transformed with an 
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ARS/CEN plasmid encoding carboxypeptidase Y (CPY*) (pUP1106) fused to a 3XHA epitope tag (CPY* is a well-

characterized ER associated degradation substrate [271]). Protein extracts were analyzed by Western blotting similar 

to (A), except that anti-HA antibodies were used to probe for CPY*. (C) Co-IPs of Mcm subunits.  UPY1044 (wild 

type) and UPY1045 (mcm2DENQ) each contain the Mcm4-3xFlag epitope tag. Western blots were probed with the 

indicated Mcm subunit-specific antibodies. Rec = recombinant purified Mcm2-7. (D) Limited proteolysis of Mcm2-

7 complexes. Silver stained SDS-PAGE of both purified wild type [293] and mcm2DENQ (bottom) Mcm2-7 hexamers 

treated with trypsin; numbers represent minutes digested in the presence of active trypsin. Note that the Mcm2, 4, and 

7 subunits co-migrate in the S. cerevisiae Mcm2-7 complex on SDS-PAGE.  MW= molecular weight. ATP makes 

wild type Mcm2-7 relatively resistant to proteolysis as shown, and the digests shown were conducted in both the 

presence (+) and absence (-) of 10 mM ATP.  (E) Mcm2-7-Mrc1 co-IPs. Yeast cell extracts of wild type (UPY1044) 

or mcm2DENQ (UPY1045) strains were immunoprecipitated using antibodies specific to either Mrc1-3xHA or 

Mcm2-7 as indicated. Mrc1 and Mcm6 are visualized by Western blotting using either anti-HA or anti-Mcm6. (F) 

Similar to (E), interactions between Mcm2-7 and Csm3 were tested by reciprocal pulldowns using strains carrying C-

terminally 3XHA tagged Csm3 in a wildtype (UPY1057) or mcm2DENQ background (UPY1058). Mcm2-7 in this 

experiment was visualized using antibody UM174.  (G) Immunoprecipitation experiments analogous to (E) were 

conducted on wild type (UPY1044), tof1∆ (UPY1053) and csm3∆ (UPY1054) strains that all contained the Mrc1-

3xHA construct. 

3.3.7 Discussion 

We have presented evidence supporting a bona fide role for Mcm2-7 in the DNA 

replication checkpoint (DRC) pathway. The DRC pathway is complex with numerous participating 

factors. Although the checkpoint machinery has been known to interact with replication factors, 

the molecular details of many of these interactions have remained obscure. Through this work, we 

have shown that Mcm2-7 is involved in the regulation of a part of the checkpoint response through 

one of its discrete ATPase active sites.  



 94 

Other groups have previously reported that specific mcm alleles can give rise to checkpoint 

defects, similar to the ones observed with the mcm2DENQ mutant. Particularly, the mcm4Chaos3 

mutant, which was obtained from a forward genetic screen in mice, has been associated with a 

high incidence of mammary adenocarcinomas in mice, with the corresponding yeast mutation 

giving rise to genomic instability [291, 292]. Similarly, a mutation in Mcm6 (mcm6IL) has been 

shown to disrupt the interactions between Mcm2-7 and Mrc1 in yeast, and additionally makes the 

strains sensitive to genotoxic agents such as MMS [219].  Other mcm alleles (mcm2-1) have also 

been shown to have defects in Rad53 phosphorylation (Emily Tsai, data not shown). However, 

these alleles are hypomorphic, whereby the defects likely arise from a significant change in the 

protein structure or stability, rather than from a specific loss of a specific enzymatic function.  

 

The mcm2DENQ allele on the other hand disrupts the Walker B motif of the Mcm6/2 active 

site. In AAA+ ATPases, the active site is typically constituted in trans between two subunits, with 

one of the subunits contributing the Walker A and Walker B motifs, while the adjacent subunit 

contributes an Arginine finger motif. Walker B boxes play a crucial part in coordinating the 

nucleophilic water molecule necessary for ATP hydrolysis at these active site junctions [44]. In 

vitro, the mcm2DENQ mutant complexes lack ATPase activity, but are relatively efficient at DNA 

unwinding. Biochemically, mcm2DENQ mutant complexes have the propensity to force the 

complex into a more closed conformation by narrowing the Mcm gate, an observation that is 

further supported by EM analyses (Simon et. al., in preparation). In vivo, the mcm2DENQ mutation 

does not seem to have any noticeable defects in complex oligomerization and stability, or protein 

expression, allowing us to rule out that it could be a hypomorphic allele like other mcm mutants 

mentioned above. Combined with the biochemical data, we propose that the Mcm6/2 active site 
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plays a vital role during checkpoint responses by temporally controlling Mcm gate dynamics, 

thereby allowing the helicase to slow down/pause when the replication fork encounters 

downstream obstacles. 

 

Furthermore, the mcm2DENQ mutant exhibits a wide variety of classical DRC defects, 

including slow progression through S-phase, heightened drug sensitivity and loss of drug induced 

cell cycle block in combination with Δrad9, and misregulated late origin firing. These observations 

suggest that ATP hydrolysis at Mcm6/2 active site is required for proper checkpoint regulation. 

As mentioned earlier, this active site is located adjacent to the Mcm2/5 ‘gate’. The opening and 

closing of this gate in an ATP-dependent manner is directly linked to helicase activation [94, 97]. 

Through electron microscopy, it has been demonstrated that in the context of the CMG complex, 

Cdc45 and GINS have been shown to bind Mcm2-7 around the gate and constrict it [97]. Assuming 

a similar role for the gate in vivo, it is not difficult to envision various circumstances under which 

gate regulation would be vital. For example, during a checkpoint response, the helicase must be 

prevented from carrying out spurious unwinding. ATP hydrolysis at the Mcm 6/2 active site may 

serve to modulate the gate under such circumstances by forcing it to stay open, thereby temporarily 

inactivating the helicase. This seemingly small change could therefore have vital in vivo 

implications. Under more normal circumstances, for instance upon completion of replication, 

similar mechanisms might be utilized to inactivate and/or unload the helicase from DNA. 

 

Also, we observed normal association between various DRC mediators and Mcm2-7, 

clearly suggesting that the DRC phenotypes do not simply appear due to compromised physical 

interactions among checkpoint and replisome factors. While, we have not tested a direct 
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association between Mec1 and/Tel1 and Mcm2-7, we think that this association is probably also 

maintained similarly in the mcm2DENQ mutant and wildtype strains, because normal Mrc1 

phosphorylation is observed under checkpoint activating conditions in both these strains. 

Combined with the observation that the mcm2DENQ mutants have normal pre-RC formation, these 

results further underscore the notion that the involvement of Mcm6/2 active site in the DRC is 

likely specific and presumably, separate from the role of Mcm2-7 during DNA replication. 

 

While ATP hydrolysis at the Mcm6/2 active site is seemingly involved in modulating the 

checkpoint response, we are still speculative about factors that in turn modulate ATP hydrolysis 

at Mcm6/2. The mediator proteins that travel with replication forks seem like good candidates, as 

they directly interact with the Mcm complex. We have shown that Mrc1 is still able to bind the 

Mcm complex even in our ATPase-defective mutant, which implies that perhaps Mrc1 binding 

itself is not sufficient to regulate the helicase. Rather, factors such as Mrc1 probably modulate 

ATP turnover at this active site, possibly through less-understood allosteric mechanisms. 

Alternatively, the Mcm active sites may be regulated directly by Mec1. It is worth noting that 

Mcm2-7 is phosphorylated on various subunits by Mec1 during replication initiation, and much 

like mrc1, tof1 and csm3, mec1 mutations are synthetically lethal with mcm2DENQ, indicating that 

Mcm2-7 is playing an essential role in the DRC. Other groups have shown that many checkpoint 

mutants exhibit changes in the phosphorylation status of many replisome components, rather than 

physical alterations of forks [294]. Such observations lend further credence to the assumption that 

discrete factors could regulate the Mcm6/2, and possibly other regulatory active sites, not just by 

physically interacting with Mcm2-7, but through temporal modulation of their enzymatic activity. 
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Based on our observations, there are a couple of different scenarios for how Mcm2-7 may 

be involved in the DRC. First, it is possible that much like Mec1, Mcm2-7 may be acting early in 

the DRC pathway as a sensor of replication stress. Because Mcm2-7 is physically connected to the 

replication fork, it is ideally suited to sense any changes that occur in its immediate vicinity. 

Moreover, with six distinct ATPase active sites that have variable rates of ATP turnover, Mcm2-

7 can potentially undergo subtle conformational changes under conditions that physiologically 

stress replication forks. Such changes could alter its interactions with, or even create novel 

interactions with additional checkpoint factors and may assist in mounting a swift checkpoint 

response. However, it is unlikely that Mcm2-7 acts redundantly as a primary sensor like 

ATM/ATR kinases, as Mrc1 phosphorylation was found to be relatively normal in the mcm2DENQ 

mutant (Figure 14).  

 

Alternatively, Mcm2-7 may be acting as a modulator of the checkpoint signals transmitted 

through Mec1. In such a role, Mcm2-7 may specifically interact with activated Mrc1 during a 

checkpoint response, which in turn could influence ATP hydrolysis at the 6/2 active site and help 

stall the helicase during a checkpoint response (Figure 16). The stalling of the helicase would then 

stabilize the replication fork and could in turn, help in the stable recruitment of other checkpoint 

factors like Rad53. We favor this model, as it provides a logical explanation for many of our 

observations. In the absence of Mcm6/2 ATP hydrolysis, the checkpoint response, although active, 

probably loses its robustness, which explains why the mcm2DENQ mutant DRC phenotypes are 

similar but weaker than other checkpoint mutants like Δmrc1 or mrc1AQ. Because the combination 

of different DRC alleles and mcm2DENQ are synthetic lethal, it suggests that these factors likely 

interact to facilitate the downstream activation of Rad53. Therefore, we propose that Mcm2-7 acts 
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within the DRC pathway to potentiate signals transmitted to Mrc1 through Mec1, and amplify the 

Rad53 response.  

   

We have shown that Mcm2-7 is an active participant in activating the DRC pathway when 

cells are placed under a genotoxic environment, such as those used for assaying checkpoint 

responses in a majority of experiments. What may be the role of the DRC and the contribution of 

Mcm2-7 to this pathway under physiological growth conditions? As previously mentioned, 

replication forks locally encounter a multitude of barriers to fork progression even during 

unchallenged growth conditions. These range from nucleotide exhaustion, excessive ssDNA 

accumulation, collisions with transcription bubbles and replication fork barriers such as genes 

tethered to the nuclear pore (gene gating, see next chapter [295]). When faced with such obstacles, 

the Mcm2-7 and other checkpoint factors likely coordinate to temporarily pause DNA unwinding 

but might not immediately mount a full-fledged checkpoint response. However, if such events 

occur genome-wide, a complete checkpoint response is warranted, which involves robust Rad53 

activation. Similar models have been proposed for the regulation of DNA polymerase during S-

phase by Mrc1 [296]. 
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Figure 16. Model for Mcm2-7 role in DRC activation.  

Refer to text for details. 
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4.0  REGULATION OF MCM2-7 VIA A SPECIFIC ACTIVE SITE IS A KEY   

DETERMINANT OF GENOME STABILITY DURING NORMAL GROWTH 

This chapter describes the role of the Mcm2-7 complex in the maintenance of genome 

stability. The discussion is based on the phenotypic analysis of primarily the mcm2DENQ mutant 

under unchallenged growth conditions, mainly focusing on its peculiar DNA damage phenotypes. 

Additionally, we present evidence here describing the involvement of the Mcm2-7 complex in the 

establishment of proper sister chromatid cohesion (SCC). To assist in the interpretation of the data, 

an overview of the DNA double strand break (DSB) repair pathway in yeast is included, with 

special emphasis on homologous recombination. For the same purpose, we also briefly review 

specific aspects of SCC in the context of DNA replication. 

4.1 CO-AUTHORSHIP DISCLAIMER 

The work presented below is a collaborative effort between Sriram Vijayraghavan and Dr. Emily 

Tsai (former graduate student, Schwacha lab). A manuscript detailing the experiments listed in 

this chapter is currently being prepared for submission, with Sriram Vijayraghavan as the primary 

author, Emily Tsai as the second co-author, and Dr. Tony Schwacha as the principal corresponding 

author. Data in the following figures and panels have been obtained by Dr. Emily Tsai and have 

been reproduced here with permission from Dr. Emily Tsai and Dr. Anthony Schwacha: Figures 

13 (upper panel) and Figure 25. As with the previous chapter, the above data are being presented 

here for the sake of continuity. 
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4.2 OVERVIEW OF DOUBLE STRAND BREAK REPAIR IN YEAST 

4.2.1 Two pathway choices are commonly available for DSB repair in yeast 

Double strand breaks (DSBs) present a potent threat to genome integrity in eukaryotes. If 

left unattended, DSBs can be lethal, owing to their ability to spawn wide-ranging genome 

aberrations including mutations, large deletions, and chromosome segregation errors. 

Interestingly, certain types of DSBs are physiologically relevant, like the ones mediated by Spo11 

during meiosis to initiate homologous recombination [297]. Therefore, the timing and occurrence 

of DSBs are critical to the well-being of the genome.  

 

Eukaryotes have evolved elaborate mechanisms to counter DNA damage. Homologous 

recombination (HR) is one of the well-studied processes that mediate DNA double strand break 

repair occurring during DNA replication and in the later stages of the cell cycle (reviewed in 

[298]). As the name implies, this process relies on repairing damage by utilizing a homologous 

DNA substrate in a series of steps that involve searching for the correct template, strand invasion 

and DNA synthesis, and finally correct ligation and separation of newly synthesized molecules 

(Figure 17). This is the preferred mode of DNA damage repair because the sequence information 

of the repaired substrate is conserved. In certain cases, eukaryotic cells repair DSBs through a 

mechanism called non-homologous end joining (NHEJ), which involves the re-ligation of the 

broken ends present at a DSB [299]. This process is heavily mutagenic, as it occurs at the expense 

of substrate information; joining of the broken ends occurs after initial processing of the ends by 

exonucleases, although it is much more common in higher eukaryotes with larger genomes [300].   
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4.2.2 Homologous recombination-mediated DSB repair 

The process of HR relies on a precise sequence of interactions between checkpoint and 

recombination proteins at the site of break. Together, these proteins constitute ‘foci’ or localized 

areas of DNA repair [301, 302]. The focus-based repair module is important in several ways. 

Firstly, a single focus can represent the simultaneous processing of more than one DSB within any 

given cell. This means that multiple DNA damage events can be concomitantly repaired using the 

same set of proteins within a short time span, thereby increasing the efficiency of this process. 

Secondly, by maintaining a high local concentration of repair proteins at the site of the DSB, the 

machinery ensures that spurious recombination events do not occur elsewhere in the genome at 

undamaged templates, thereby greatly reducing the likelihood of random mutagenesis. 

Additionally, the presence of many redundantly acting factors in this process, both in yeast and 

humans, ensures that the broken DNA ends are properly tethered before undergoing 

recombinatorial repair, because failure to do so can potentially hamper proper homology search 

and the subsequent strand invasion processes [303]. Because many of the factors involved in HR-

based DSB repair are only active in S- and G2 phases of the cell cycle [304], the system is biased 

towards repair using a duplicate template as opposed to non-homologous sequences within the 

genome. Therefore, HR permits the cells to carry out DSB repair in a streamlined and efficient 

manner. 

 

 

 

 

 



 103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Mechanism of DSB repair by homologous recombination 

Refer to text for details. Adapted with permission from [305]. 
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4.2.3 DSB repair foci form in multiple waves of protein recruitment and dissociation at the 

sites of DNA damage 

The first step in DSB repair is recognition of the broken DNA ends, which in yeast is 

carried out by the Mre11-Rad50-Xrs2 (MRX) complex (MRE11-RAD5-NBS1 (MRN complex) 

in humans)[306-308]. This represents an important first step in DSB repair, as factors involved in 

NHEJ often compete for the same DNA ends. In yeast, yKu70-yKu80 heterodimers bind to broken 

DNA ends and initiate NHEJ-based repair [309], and the ability of MRN to outcompete these 

factors is what biases the repair in favor of HR. In order to initiate DNA repair during HR, the 5’ 

ends on either side of the DSB must first be chewed away, a process termed as end resection, with 

many redundant nucleases participating in this process including Mre11, Exo1 and Dna2 and Sae2 

[303, 310, 311]. In many cases, the nucleolytic activities of these proteins are capable of acting on 

many different types of DNA substrates, including branched structures such as cruciform DNA 

[308].  Additionally, the Sgs1 (BLM in human) helicase assists nucleases such as Exo1 in this 

process [311]. The resulting exposed single stranded 3’ end overhangs act as substrate to load 

additional repair factors (see below, Figure 17).  

 

Additionally, Mre11 binding to the DNA ends helps to recruit the Tel1 kinase (ATM in 

humans) to the DSB site, where it phosphorylates the histone variant H2A (H2AX in humans) on 

a conserved serine residues to yield the so-called γH2A mark [312]. The γH2A signal can be spread 

over many kilobases of DNA surrounding the break site and facilitates binding of the Rad9 (53BP1 

in humans) mediator protein to other nearby chromatin marks such as histone H3 methylated at 

lysine 79 [313]. As mentioned in the previous chapter, Rad9 is a constituent of the S-phase DNA 

damage checkpoint, whereby it can activate the effector kinase Rad53 (CHK2) upon 
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phosphorylation. Once resection is complete, the MRX complex can dissociate from DNA, 

allowing the single stranded DNA binding protein RPA to coat the ssDNA carrying exposed 

3’ends [314]. RPA binding acts as a signal to recruit additional checkpoint factors such as Mec1-

Ddc2 (ATR-ATRIP in humans) and the Rad24-RF-C clamp loaders at the sites of breakage [281, 

315]. As a sensor kinase, Mec1 can additionally phosphorylate Rad9 similar to Tel1 and contribute 

to the activation of the DNA damage response through the subsequent activation of Rad53. A 

complex of Ddc1-Mec3-Rad17 (RAD9-HUS1-RAD1, the so-called 9-1-1 complex in humans) is 

also seen to load at the sites of Mec1-Ddc2 recruitment, probably as a means to stabilize the 

binding of Ddc2 to DNA [316]. 

 

Finally, RPA can direct the recruitment of the Rad52 protein to the repair foci (Figure 17). 

This multifaceted factor is crucial in HR repair, as it mediates the annealing of strands after strand 

exchange and recombination [317].  Rad52 activity is temporally controlled by cell cycle specific 

kinases such as CDK, and also checkpoint kinases like Mec1, which can phosphorylate Rad52 

during S-phase [318].  Furthermore, Rad52 additionally recruits the recombinase Rad51 and the 

strand annealing factor Rad59 to damage sites [301, 319]. Higher eukaryotes have additional 

factors that are involved in Rad51 recruitment to ssDNA such as BRCA2. Many additional factors 

such as Rad54 and Rad55 are further required for the proper formation of the Rad51 nucleoprotein 

filament that eventually facilitates pairing between the ssDNA and the homologous dsDNA 

template and the subsequent strand exchange [320]. 
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While the mechanism described above is sufficient to repair most cellular DSBs arising 

either spontaneously or through exogenous sources such as ionizing radiation, it is possible that 

certain cells may acquire breaks that remain unrepaired. Recent work has further shown that sites 

of the genome carrying rDNA (ribosomal DNA) have a tendency to localize to nuclear pores as 

extra-chromosomal elements in a checkpoint-dependent manner [321]. Such DNA elements also 

have a high tendency to accumulate DNA damage owing to a large number of damage-prone 

repetitive elements within these regions. Interestingly, during cell division, the nuclear pores from 

the mother cell are actively prevented from diffusing to the daughter cells via septin-mediated 

barriers, and as such the daughter cells establish de novo nuclear pores. Therefore, the rDNA, at 

the pre-existing nuclear pore complexes, and by extension DNA damage, have the potential to act 

as markers for the age of mother cells and be important determinants of replicative senescence 

[322]. 

4.3 SISTER CHROMATID COHESION AND GENOME STABILITY 

4.3.1 SCC timing is carefully coordinated with the DNA replication machinery 

How does the replication machinery modulate sister chromatid cohesion? Through work 

in budding yeast, although it is known that Eco1 plays an important role in the establishment of 

cohesion, yeast eco1wpl1 double mutants can still carry on relatively normal cohesion, suggesting 

that the process of SCC may not be completely Eco1-dependent (also refer to Chapter1, section 

1.5). In fact, many factors that constitute the replisome have been associated with varying levels 

of cohesion defects, including the PCNA clamp loader Ctf18, members of the MTC 
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(Mrc1/Tof1/Csm3) complex, and the Chl1 DNA helicase, with Ctf18 and Chl1 acting in an Eco1-

independent manner [323, 324]. While their exact role in cohesion is still under investigation, it 

has been proposed that these factors possibly help in remodeling the cohesin complex or 

modulating cohesin-DNA interactions when the replication fork passages through the cohesin 

rings, and additionally to reconfigure the cohesion apparatus in wake of the replication fork. 

4.3.2 Damaged-induced cohesion 

It is worth mentioning that under special circumstances, cohesion can be established outside S-

phase. This is most commonly observed if DNA damage occurs during G2/ M phase through a 

process termed as damage-induced cohesion (DIC) [325, 326]. Surprisingly, this process involves 

Eco1-mediated acetylation of Scc1, and establishes cohesion not just at the site of the DNA 

damage, but in a genome wide manner, possibly to limit segregation errors. Eco1 activation in this 

situation depends on the activation of the DNA damage checkpoint, which by the means of Rad53 

activation, inhibits factors such as CDK and DDK that counteract Eco1. DIC therefore not only 

helps prevent improper chromosome segregation, but possibly serves to increase the efficiency of 

HR-mediated repair of damaged DNA by keeping sister chromatids in close proximity in a proper 

orientation. 

 

Furthermore, this coordination between cohesion on damaged as well as unbroken 

chromosomes is dependent on the sensor kinases Mec1 and Tel1, as well as repair proteins such 

as Mre11 [325-327]. It has frequently been suggested that cohesion merely requires the passive 

movement of the replication fork through cohesin rings. However, DIC contradicts this notion by 

showing that not only is it possible to generate cohesion outside S-phase, cells can do so without 
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the need for a replication fork. Induction of just one double strand break through targeted HO 

endonuclease expression was found to be sufficient to establish cohesion even on undamaged 

chromosomes [325]. To further demonstrate that replication forks are dispensable for this process, 

deletion of Rad52, which is necessary for homologous recombination, was found to cause no 

apparent defects in DIC [325]. This is surprising, as homologous recombination-mediated repair 

involves the generation of replication forks, and therefore knocking out Rad52 should eliminate 

this process.  

4.3.3 Cohesin disassembly 

How are cohesins removed from DNA upon the onset of anaphase? The multi-subunit 

Anaphase Promoting Complex / cyclosome (APC/C) is the chief regulator of this process 

(reviewed in [328]), that ubiquitylates several substrates, including Securin (Pds1) for proteasomal 

destruction. Pds1 is an inhibitor of separase (Esp1 in yeast), which once activated, can cleave Scc1 

and physically unload cohesin rings from chromatin. Separase cleavage of Scc1 requires prior 

phosphorylation of the cleavage site by the polo-like kinase Cdc5 [329]. Additionally, Cdc20 acts 

as a co-activator of APC/C in this process. In the event of improper spindle attachment and bi-

orientation errors, the APC/C is inhibited by the Spindle Assembly Checkpoint (SAC), which in 

yeast consists of many different members including Bub1, Bub3, Mad1-3 and Mps1, with initial 

inputs from the yeast Aurora B kinase homolog Ipl1 [330]. These factors influence spindle 

attachment by either preventing securin inhibition, or by directly sequestering APC/C activators, 

and possibly by enabling recruitment of other checkpoint factors at the kinetochore that aid in 

kinetochore-microtubule attachment.  
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4.4 RESULTS AND DISCUSSION 

As previously discussed, the ATPase-deficient mcm2DENQ allele exhibits a wide variety 

of checkpoint defects when presented with challenging growth conditions, such as treatment with 

HU or MMS. However, based on the hypothesis that the replication checkpoint has probably 

evolved to monitor replication forks during S-phase even under normal growth,  we asked whether 

this allele has any characteristic phenotypes during unchallenged growth conditions. This may 

provide further insight into how Mcm2-7 can participate in coordinating diverse processes during 

replication. Specifically, if Mcm2-7 participates as a Mec1-dependent checkpoint factor, then 

misregulation of Mcm2-7 may lead to defects in processes that are regulated by Mec1 during 

unchallenged growth conditions, including replication progression through fragile sites, 

replication termination, and post-replicative DNA damage repair. 

4.4.1 The mcm2DENQ mutant exhibits several abnormal phenotypes under 

unchallenged growth conditions 

In a preliminary analysis of growth defects of the mcm2DENQ mutant, we previously 

observed that this mutant exhibited a roughly 2.5 fold higher cell death than the corresponding 

wildtype strain, in addition to the slow growth phenotype (also observed as slightly prolonged S- 

and G2-phases as measured by FACS) mentioned in the previous chapter. Additonally, the 

mcm2DENQ mutant exhibited a significant increase in gross chromosomal rearrangements (>100-

fold) over wildtype, indicating that the mutation is associated with considerable genomic 

instability (data not shown). Most of these phenotypes are often shared by a variety of checkpoint 

mutants such as Δmrc1, and the hypomorphic mcm allele mcm4Chaos3 [123, 291].  
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4.4.2 The mcm2DENQ mutant has multiple double strand breaks 

To investigate the molecular basis of these defects, we assayed the mcm2DENQ mutant for 

the presence of DNA double strand breaks (DSBs), which are a common occurrence underlying 

many of the above phenotypes. As noted above, DSBs are accompanied by phosphorylation of 

histone H2A (γH2A) around the site of damage, and is therefore a well-established marker of DSBs  

both in yeast and mammalian cells. Using indirect immunofluorescence assays, it was observed 

that ~25% cells had γH2A foci in asynchronously growing cultures of the mcm2DENQ mutant, 

while less than 1% of wildtype cells had the same phenotype (Emily Tsai, data not shown). This 

DNA damage phenotype was also independently observed through Rad9 phosphorylation western 

blots (Figure 14, Rad9 phosphorylation panel); as mentioned previously, Rad9 gets 

phosphorylated as a part of the DNA damage checkpoint. A similar level of defect is observed in 

Δmrc1 mutants, likely as a result of damage resulting from the collapse of replication forks (see 

below). 

4.4.3 The mcm2DENQ DSB phenotype is cell-cycle specific 

To investigate the DSB phenotype more thoroughly, a timecourse analysis was carried out,  

whereby cultures were synchronized in G1, and released into fresh media with samples withdrawn 

at roughly every 15 minutes up to 2 hours for the analysis of γH2A foci.We observed that  the 

levels of DSBs peaked at a time corresponding to entry into G2 in the mcm2DENQ mutant (Figure 

18). This was surprising because if DSBs were arising simply as a consequence of replication 

defects, then the phenotype would be expected to overlap with S-phase. The latter phenotype was 

observed, as expected, for the  Δmrc1 mutant (see below, Figure 22), in which replication forks 
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collapse as a consequence of losing an essential replisome component [123]. This observation 

further demonstrated that the DNA damage foci appear as soon as damage occurs, therefore the 

G2 DSBs do not merely represent persistent foci that appeared during S-phase. The presence of 

phosphorylated histone H2A in mcm2DENQ samples was additionally confirmed via western blot 

analysis (data not shown). 

 

To further explore the timing of DSBs, synchronized cells were released into media 

containing 200mM HU and grown for two hours, with regular sampling throughout the time course 

for DSB analysis. As expected, the Δmrc1 mutant accumulated γH2A foci in HU, possibly due to 

a combination of an unstable fork and a concomitant depletion of nucleotides (Figure 22). In 

contrast, HU completely suppressed the formation of γH2A foci in the mcm2DENQ mutant 

(Figure 18). This phenotype was further dissected by the following means– Sml1 is an inhibitor 

of the ribonucleotide reductase enzyme, and therefore downregulates dNTP production. 

Accordingly, deletion of sml1 drastically upregulates dNTP prodution. Furthermore, an sml1 

deletion is necessary to rescue the lethality of several checkpoint mutants such as mec1Δ and 

rad53Δ  (see previous chapter). We tested whether deleting sml1 had any effect on the DSBs 

observed with the mcm2DENQ mutant (Figure 18). We observed no change between DSB levels 

upon this treatment, suggesting that low nucleotide levels are probably not a contributing factor 

towards this particular type of DNA damage.  

 

The above observations suggests two things– firstly, the DSBs associated with the 

mcm2DENQ mutant are unlikely to result from a mere instability of the replication fork, as is seen 

with Δmrc1 mutant. Secondly, it suggests that DSBs in the mcm2DENQ mutant rely on replication 
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fork progression. Therefore, DNA damage in the mcm2DENQ mutant is likely to be of post-

replicative origin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. The mcm2DENQ mutant displays G2 DSBs  

Cultures of mcm2DENQ (UPY499), mrc1Δ (UPY713), or mcm2DENQ sml1Δ (UPY948) were 

synchronized with α-factor, released into fresh YPD ± nocodazole or HU as indicated, and samples were processed 

for γ-H2AX immunofluorescence. Cell cycle transitions noted are derived from a parallel FACS analysis of the 

indicated strains (data not shown). Data plotted as mean ±SEM of n≥3 experiments. 
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4.4.4 Late breaks in the mcm2DENQ mutant are correlated with entry into G2, not 

spindle tension 

To further investigate the cause of G2 breaks, several additional possibilities were 

explored. In order to test whether these breaks occur from the tension of the spindles on duplicated 

chromosomes during metaphase, synchronized cultures were released into media containing the 

microtubule-depolymerizing drug nocodazole. It was observed that this treatment suppressed the 

formation of DSBs in the mcm2DENQ mutant, but not in Δmrc1. While this experiment suggests 

that the metaphase spindle may be playing a role in the appearance of the breaks, additional 

explanations were considered. nocodazole not only destabilizes microtubules, but also blocks entry 

into anaphase by triggering the spindle assembly checkpoint (SAC) as mentioned earlier . 

Therefore, we checked whether inactivating this pathway would continue to suppress breaks in the 

presence of nocodazole (Figure 19). In cells lacking the critical SAC factor BUB1, both the 

presence and absence of nocodazole had minimal effects on the generation of DSBs. However in 

an mcm2DENQΔbub1 double mutant, DSBs reappeared in the presence of nocodazole, suggesting 

that the generation of DSBs in mcm2DENQ is independent of spindle tension but correlated with 

entry into the G2/M phase of the cell cycle.  
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Figure 19. mcm2DENQ DSBs are not caused by spindle forces 

 γH2AX immunofluorescence of bub1Δ (UPY706) and mcm2DENQ bub1Δ (UPY 707) + nocodazole (2 

hours) after α-factor release. Data plotted as mean ±SEM of n≥3 experiments. 

 

4.4.5 G2 breaks in the mcm2DENQ mutant are preceded by excessive ssDNA 

formation in late S-phase  

Although the formation of γH2A foci is among the primary response to DSBs, it does not 

allow us to properly determine whether the lesions arise from an earlier precursor, such as ssDNA 

lesions. As mentioned previously, the DSB response in yeast primarily relies on homologous 

recombination, which involves the temporal binding and dissociation of many different factors at 

the site of damage. We first checked the localization of Rad52 in our mutant strains. For this 

purpose, a previously-described fluorescently tagged construct of Rad52 (Rad52-YFP, [301]) was 

chosen, as it forms distinct subnuclear foci during DNA damage. We found that in the mcm2DENQ 
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mutant, the timing of appearance of the Rad52 foci was similar in timing to that of γH2A (Fig 20), 

with levels peaking around 60-80 minutes after release from α-factor mediated G1 arrest. Notably 

though, the number of cells with Rad52 foci was considerably higher (peak at ~70%) than the 

corresponding percentage of  cells with yH2A foci.  This could result from differences in the 

sensitivity of the basic fluorescence assays (indirect IF vs GFP analysis). However, it is also 

possible that the Rad52 phenotype is at least partially separable from that of γH2A, insofar as the 

type of damage being reported could be different (discussed below).    

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. The mcm2DENQ mutant displays multiple Rad52 foci 

 Cultures of wild type (UPY938) treated with various drugs to show induction of Rad52-YFP fluorescence. 

(Bottom panel) Wildtype and mcm2DENQ (UPY1014) were either grown asynchronously (left panel) or 

synchronized with α-factor, released into fresh YPD, and samples were processed for Rad52-YFP fluorescence. 

Data plotted as mean ±SEM of n≥3 experiments. 
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To further explore the cell-cycle dependencies of Rad52-YFP appearance, synchronized 

cells were monitored for the appearance of foci after treatment with HU or nocodazole (Figure 

21). Similar to the γH2A experiment, HU treatments considerably reduced the number of 

observable Rad52-YFP foci, indicating that the mcmDENQ mutant accrues DNA damage only 

later in the cell cycle. However, in contrast to the earlier γH2A analysis, nocodazole treatment had 

a much less drastic effect in reducing the number of Rad52-YFP foci in the mcm2DENQ mutant. 

Therefore, although DSBs seem to depend on passage through G2 in order to manifest, they are 

likely preceded by an appearance of a different lesion, possibly ssDNA. 

Figure 21. Rad52 foci in the mcm2DENQ mutant are reduced by HU but not nocodazole treatment  

Strains from Figure 15 were synchronized as earlier indicated and released into YPD containing either 

0.2M HU or 15μg/ml nocodazole and samples were analyzed at indicated timepoints for Rad52-YFP foci. Data 

plotted as mean ±SEM of n≥3 experiments. 

 

Similar to our analysis of γH2A foci, we asked whether the mcm2DENQ mutant has a different 

pattern of expression of  Rad52-YFP compared to the mrc1Δ  mutant. As expected , we noticed a 

surge in the appearance of Rad52 foci early in S-phase in the mrc1Δ mutant (Figure 22). 

Interestingly, the absolute levels of this defect remained lower compared to the mcm2DENQ 
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mutant. We further analyzed th mrc1Δ mutant for Rad52-YFP foci in the presence of cell cycle 

blocking drugs. However, in contrast to the IF analysis, mrc1Δ mutants showed a significant 

decrease in the percentage of Rad52-YFP+ cells both upon HU and nocodazole treatments (Figure 

22). This suggests several things: firstly, it appears that mrc1 mutants fail to properly signal Rad52 

recruitment to stalled/damaged forks under replication stress, resulting in a reduction of Rad52 

foci. Similarly, mrc1 mutants either fail to properly recruit Rad52 to sites of DNA damage in 

nocodazole, or the breaks observed in this mutant in nocodazole are repaired independent of the 

Rad52-mediated HR pathway. Despite the presence of DSBs, it is worth noting that the pattern of 

appearance of Rad52-YFP foci look similar in the presence or absence of nocodazole treatments, 

although the magnitude of the effect seems significantly different. This bears resemblance to the 

appearance of γH2A foci under similar treatment conditions for the mrc1Δ mutant (Compare ‘no 

drug’ and nocodazole data in top and bottom panels of Figure 22). This might also reflect a 

difference in the relative stabilities of Rad52 on DNA under different treatment conditions in the  

Δmrc1 mutant. Therefore, although mcm2DENQ and mrc1Δ mutants both negatively affect 

genome stability, their phenotypes probably differ in the underlying mechanistic basis. 
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Figure 22. The mcm2DENQ mutant DNA damage likely has a different basis than mrc1Δ 

Top left panel- mrc1Δ (UPY 1077) cultures were processed for Rad52-YFP foci analysis as described earlier 

in the presence of either no drug, 0.2M HU or 15μg/ml nocodazole. Data represents Mean and SD of 3 independent 

samples. Top right panel- mrc1Δ (UPY713) cultures were analyzed in a similar manner to Panel A, except that samples 
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were processed for γH2A IF. Data plotted as mean ±SEM of n≥3 experiments. Bottom panel- representative images 

from the Rad52-YFP analysis of mrc1Δ. Images were acquired at 120 minutes after release from α-factor arrest under 

the various conditions listed. PC-Phase contrast. 

 

To determine whether there is excessive ssDNA generation in the mcm2DENQ mutant,  

strains were analyzed for the appearance of RPA foci. Rfa1 is a subunit of the heterotrimeric RPA 

complex of single stranded DNA binding proteins in yeast, and is normally associated with 

replication forks during DNA unwinding to protect ssDNA from unwarranted processing [331]. 

However, upon induction of DSBs, or during events where the polymerase gets uncoupled from 

the helicase, there is excessive generation of ssDNA either through 5’ resection (in case of DSBs) 

or from futile DNA unwinding without any corresponding DNA synthesis (uncoupling) [122]. 

Under these circumstances, RPA accumulates at high concentrations on single stranded DNA . 

Similar to Rad52, an RFA1-YFP construct was used to fluorescently monitor RPA foci during 

different parts of the cell cycle, as previously described [304]. We noticed a sharp increase in the 

incidence of RPA foci in the mcm2DENQ mutant, concordant with the end of S-phase (Figure 

23). We further noted that the proportion of cells with RFA1-YFP foci was generally lower 

compared with Rad52-YFP, with levels peaking at roughly 30%. We think that this difference may 

be due to the dynamic nature of processing of ssDNA within cells, as RPA is generally displaced 

by Rad52 during HR-mediated repair (see previous chapter). As mentioned previously, RPA 

accumulation signals the  further recruitment of additional repair factors inluding Mec1/Ddc2, and 

eventually Rad51/Rad52 (Figure 17). Interestingly, the proportion of RPA-positive cells remained 

similar upon nocodazole treatement but substantially decreased with HU, similar in kinetics to the 

appearance of Rad52 foci  (Figure 24, compare with Figure 21). The correlation between these 

observations could be interpreted as follows: while G2/M entry is required for the mcm2DENQ 
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mutant cells to generate DSBs, it is not necessary for the production of ssDNA lesions, which 

explains why nocodazole fails to lower the levels of Rad52 and RPA accumulation despite 

suppressing γH2A foci.  

 

 

Figure 23. The mcm2DENQ mutant accumulates substantial ssDNA 

Synchronized wildtype (UPY1169) and mcm2DENQ (UPY1168) cells were analyzed for the presence of 

RFA-YFP foci to monitor ssDNA generation during the cell cycle.  Data plotted as mean ±SEM of n≥3 experiments. 

 

 

Figure 24. RPA accumulation during cell cycle arrests 
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 Indicated strains (same as Figure 17) were synchronized and released into YPD containing 0.2M HU or 

30μg/ml nocodazole. Samples were analyzed at indicated timepoints for the appearance of RFA1-YFP foci. Data 

plotted as mean and SEM of n≥3 experiments. 

4.4.6 The DNA damage phenotype in mcm2DENQ is likely independent of Rad53 

effector kinase activity 

We previously demonstrated that the mcm2DENQ mutant has intrinsic defects in the DNA 

replication checkpoint. Within the DRC pathway, we proposed that Mcm2-7 was probably 

working upstream of Rad53 during a checkpoint response. Because Rad53 is the primary effector 

kinase in this pathway, ablation of Rad53 function could be expected to give rise to many of the 

phenotypes associated with its activators, even during unchallenged growth conditions. To test 

whether Rad53 also functions similar to Mcm2-7 during unchallenged growth conditions, we 

tested a rad53Δsml1Δ for a variety of DNA damage-related phenotypes. In the absence of drugs, 

rad53Δsml1Δ mutants exhibited moderate levels of Rad52-YFP foci, with similar kinetics as the 

mcm2DENQ mutant (Figure 25). A similar effect was seen with the analysis of γH2A foci, with 

levels peaking at ~18%. In both analyses (Figure 26), however, the frequency of foci appearance 

seemed lesser than the mcm2DENQ mutant, suggesting that not all of the breaks seen with the 

mcm2DENQ mutant are related directly to its role as an upstream modulator or Rad53 in the 

checkpoint pathway. A similar analysis of mec1Δsml1Δ mutants for Rad52-YFP foci under 

unchallenged conditions yielded almost identical profiles as the rad53Δsml1Δ mutant (Figure 25), 

further highlighting the phenotypic similarities between various DRC alleles. mec1 mutants have 

previously also been observed to give rise to multiple Rad52 foci throughout the cell cycle [301]. 

Unlike the mcm2DENQ mutant, rad53 mutants displayed elevated levels of DNA damage 
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regardless of cell cycle blocks, as measured by both γH2A and Rad52-YFP analyses (Figure 26), 

likely due the role of Rad53 in stabilizing stalled replication forks along with it several other 

checkpoint-specific roles.   

 

 

 

 

 

 

 

 

 

 

Figure 25. rad53Δsml1Δ mutants also exhibit DNA damage phenotypes 

 rad53Δsml1Δ (UPY 1137) and mec1Δsml1Δ mutants (UPY 1135) were synchronized and released into 

fresh YPD for a timecourse analysis of Rad52-YFP foci. Representative images of wildtype (UPY938), mcm2DENQ 

(UPY1014), mec1Δsml1Δ   and rad53Δsml1Δ are shown. PC- phase contrast. Data plotted as mean and SEM of n≥3 

experiments. 
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Figure 26. DNA damage analysis of the Δrad53 mutant 

 Similar to the analysis in Figure 19, rad53Δsml1Δ mutants were synchronized and released into YPD±HU 

or nocodazole and samples were analyzed at indicated time points for appearance of γH2A foci(top) and Rad52-YFP   

(bottom). Data plotted as mean and SEM of n≥3 experiments. 

 

We then asked if the mcm2DENQ DSB phenotype is directly linked to a checkpoint-

dependent activation of Rad53. We tested mcm2DENQΔsml1Δ as well as mcm2DENQ 

rad53Δsml1Δ mutants for the appearance of Rad52 foci, and found that both strains had strikingly 
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similar levels of Rad52-YFP induction, albeit the kinetics of the triple mutant seemed to be faster 

than the mcm2DENQ sml1Δ double mutant, possibly resulting from subtle differences in their cell 

cycle progression rates (Figure 27). We conclude that Rad53 activity is not a significant 

determinant of the cell-cycle specific DNA damage phenotype of the mcm2DENQ mutant. Rather, 

events in the mcm2DENQ mutant seem to be correlated with a Rad53-independent progression 

through the cell cycle. 

 

 

 

 

 

 

 

 

 

Figure 27. mcm2DENQ DSBs are independent of Rad53 

mcm2DENQ sml1Δ (UPY1060) and mcm2DENQ rad53Δsml1Δ (UPY1179) mutants were tested for Rad52 

foci appearance similar to the analysis in Figure 20, albeit in the absence of any drugs. Data is represented as mean 

and SEM of >3 independent experiments. Data plotted as mean ±SEM of n≥3 experiments. 

4.4.7 mcm2DENQ DNA damage is unlikely to arise from misregulated CMG dynamics 

during the cell cycle 

While Mcm2-7 loads on DNA during G1, it is not activated for DNA unwinding until early 

S-phase when cell cycle specific kinases phosphorylate Mcms and allow additional factors to bind 

to it. Of these, the GINS complex and Cdcd45 associate directly with the Mcm2/5 gate, allowing 
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it to close more tightly, and increasing the robustness of the helicase [96]. This CMG complex 

(Cdc45/Mcm2-7/GINS) acts as the principal unwinding machine during DNA replication. 

Previous work has shown that the CMG complex dissociates at the end of S-phase, possibly 

inactivating the helicase and allowing it to unload from DNA upon replication termination [74]. 

Because the mcm2DENQ mutation has the propensity to force the Mcm complex into a closed 

conformation (Simon et. al., in preparation; [93]), we hypothesized that the DNA damage 

phenotype seen with this mutant may result from the activity of an intact, hyperactive CMG 

complex in G2 phase. To test this, we checked the integrity of the Cdc45-Mcm2-7 association 

throughout the cell cycle via co-immunoprecipitation analysis. Cultures for these experiments 

were synchronized in G1, and were either maintained in G1 arrest or released into either HU or 

nocodazole, for arresting cultures in S-phase or G2/M, respectively (Figure 28). From these 

samples,we performed Mcm pulldowns and checked for co-precipitating Cdc45 (Cdc45-3XHA), 

and found that an intact Mcm2-7-Cdc45 association was only observed in HU-arrested cultures in 

both wildtype and mcm2DENQ samples. Although we did not test interactions among GINS and 

Mcm2-7, we infer that CMG dynamics during the cell cycle are normal and likely make little or 

no contribution to the DNA damage phenotypes seem with the mcm2DENQ mutant. 
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Figure 28. CMG integrity is maintained in the mcm2DENQ mutant 

Wildtype (WT, UPY1101) and mcm2DENQ (UPY1102) were synchronized and either maintained in α-

factor arrest or released into YPD ± HU or nocodazole for 2 hours to arrest cells in either G1, S- or G2 phases, 

respectively. CoIPs were performed as described in methods, using anti-MCM polyclonal to pull down the Mcm 

complex and test for co-precipitating Cdc45-3XHA. 

 

4.4.8 A gene gating factor partially contributes to mcm2DENQ DNA damage 

phenotypes 

Transcriptionally active regions within the genome are often tethered to the Nuclear Pore 

Complexes (NPCs) through scaffolding proteins that aid in the contranscriptional export of mRNA 

into the cytoplasm. This phenomenon, termed gene gating, poses a challenge to any replication 

forks that approach tethered genes, as it increases the probability of collisions between an incoming 

replication fork and transcription ‘bubbles’ at the tethered regions [295, 332]. Additionally, such 

a mechanism is predicted to act as a hindrance to the free rotation of DNA molecules, which makes 

it difficult to accommodate any torsional stress generated by polymerase-or helicase-mediated 
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supercoiling [5]. In yeast, checkpoint proteins such as Rad53 have been reported to play a role in 

gene gating during a checkpoint response, possibly by allowing the temporary dissociation of gated 

genes to allow the completion of replication, and additionally, to assist in the repair of any DNA 

damage that may occur near the tethered regions [5]. In support of this, the sensitivity of rad53 

mutants to replication stress was shown to be alleviated by mutants of the the THO/TREX-2 

complex that constitute the gene gating/mRNA export machinery [5]. 

 

We hypothesized that if gene gating is contributing to the mcm2DENQ breaks, then analogous to 

the rad53 mutant experiments described above, THO/TREX-2 mutants should suppress the DNA 

damage phenotype. We tested several combinations of mcm2DENQ with gene gating complex 

mutants of THP2, SAC3 and MFT1 (the choice of mutants was based on an SGA screen of 

mcm2DENQ mutant carried out in collaboration with Dr. Charlie Boone’s lab. Refer to Appendix 

B for details). In our preliminary analysis, under asynchronous conditions only sac3Δ was seen to 

significantly suppress the appearance of Rad52 foci in mcm2DENQ mutants. Furthermore, sac3Δ 

was seen to significantly reduce the percentage of Rad52 foci+ cells at several points within the 

cell cycle. Similarly, Δsac3mcm2DENQ had significantly lower levels of RPA foci, indicating that 

the sac3 deletion likely suppresses generation of ssDNA in the mcm2DENQ mutant through a gene 

gating-related mechanism (Figure 29). However, we could not see an appreciable reduction in the 

number of DSBs, as measured by γH2A immunofluorescence experiments, with sac3Δ mutants 

themselves accruing significant DNA damage (Figure 29, bottom panel). 
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Figure 29. Gene gating partially contributes to mcm2DENQ lesions 

sac3Δ (UPY1174), mcm2DENQ (UPY104), and mcm2DENQsac3Δ (UPY1177) were synchronized and 

released into the cell cycle to analyze Rad52-YFP foci. Additionally, sac3Δ (UPY1239), mcm2DENQ (UPY1168), 
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and mcm2DENQsac3Δ (UPY1240) were synchronized and released into the cell cycle to analyze RPA-YFP foci. 

Bottom panel- corresponding γH2A analysis. Data plotted as mean and SEM of n≥3 experiments. 

 

We conclude that gene gating at least partially contributes to the DNA damage phenotype 

in mcm2DENQ mutants, possibly as a function of a checkpoint-related defect in this mcm mutant.                 

4.4.9 The mcm2DENQ mutant displays sister chromatid cohesion defects 

As mentioned earlier, the replication machinery interfaces with cohesins during S-phase in 

order to ensure smooth fork progression and promote proper cohesion establishment. We therefore 

asked whether there are SCC defects in the mcm2DENQ mutant. Using the well-established SCC 

cytological assay (see Methods), we observed a significant loss in SCC in the mcm2DENQ mutant, 

at levels ~4-fold higher than wildtype (Figure 30). This defect seems unrelated to Mcm2DENQ 

protein level, as overexpression of mcm2DENQ from a GAL1 promoter failed to suppress the SCC 

defect (Figure 30). Several other checkpoint factors have been known to play a role in the 

establishment of cohesion. Consistent with these observations, we also noticed a significant SCC 

defect in many checkpoint mutants including mrc1Δ and mec1Δsml1Δ strains. Interestingly, we 

failed to observe any SCC defects in rad53 mutants, suggesting that SCC can occur in a Rad53-

independent manner.  
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Figure 30. The mcm2DENQ mutant has SCC defects  

SCC was assayed in synchronized cells arrested in G2 for 120 minutes with nocodazole for the following strains: wild 

type (UPY613), eco1-1 (K7542), mcm2DENQ (UPY606), mcm2DENQ sml1Δ (UPY1042), mrc1Δ (UPY744), 

mrc1AQ (UPY822), mcm2DENQ mrc1AQ (UPY951), and mcm2DENQ/ pGAL1-mcm2DENQ (UPY884). For 

UPY884, results are shown following growth in glucose (+Glu, normal Mcm2DENQ levels) and galactose (+Gal, 

over-expressed mcm2DENQ). 

 

We further asked if the appearance of the SCC defect in the mcm2DENQ mutant correlated 

with timing of cohesin establishment or maintenance. To assay this, cultures were synchronized 

and released into nocodazole for a timecourse analysis of SCC (Figure 31). We observed that the 

characteristic 2-dot phenotype starts to appear as early as 30 minutes into the cell cycle, suggesting 

that a significant population of cells start to incorrectly segregate their chromosomes as soon as 

they replicate their DNA. The early occurrence of the SCC defect points towards a likely defect in 

cohesion establishment in the mcm2DENQ mutant. On the other hand, the Δmrc1 mutants showed 

a late onset of the SCC phenotype that correlated with entry into G2, which indicates that mrc1 

mutants fail to maintain cohesion as they approach the end of S-phase. However, the magnitude 
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of the defect seen with mcm2DENQ and other other checkpoint mutants was was much lower in 

comparison to the establishment-deficient eco1-1 mutant, which, as previously reported, displayed 

a large SCC defect (in ~50% cells) (Figure 30). 

 

 

 

 

 

 

 

 

 

Figure 31. SCC defect of mcm2DENQ correlates with defective cohesion establishment 

The assay was conducted with indicated strains (same as listed in Figure 25) similar to the previous figure, 

except SCC was assayed at specific timepoints after nocodazole arrest. Data plotted as mean ±SEM of n≥3 

experiments. 

4.4.10 The mcm2DENQ SCC defect does not arise from insufficient cohesin loading 

While the SCC defect likely appears to arise from an establishment problem during S-

phase, another possible interpretation of the early SCC defect could be failure to load cohesins 

properly in G1. To test this, we carried out a modified chromatin extraction assay to look for DNA 

bound cohesin ring subunits, as previously described [184]. For this assay, chromatin pellets were 

treated with Dnase I to release any chromatin-associated proteins into the supernatant, thereby 

confirming that the pellet is indeed enriched in chromatin. Using a Smc1-3XHA construct, we 
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were able observe equal amounts of loaded Smc1 between wildtype and mcm2DENQ strains in 

both G1 and G2/M arrested cultures (Figure 32).  

 

Having determined that the nuclear extraction method works efficiently, we then 

additionally tested for binding of a different cohesin subunit-Scc1, to DNA using an Scc1-3XHA 

construct. In this assay, pre-Dnase I treatment chromatin pellet and supernatnant fractions were 

tested to compare the amount of chromatin loaded vs soluble Scc1 among different strains. Once 

again, no observable differences could be found between wildtype and mcm2DENQ samples 

(Figure 32). The scc2-4 mutant has been previously demonstrated to be defective in cohesin 

loading, and we confirmed this in our assay, thereby validating the assay conditions. Similarly, the  

eco1-1 mutant, although defective in SCC establishment, was found to be normal for cohesin 

loading, as reported previously[184]. Therefore, the mcm2DENQ SCC defect likely emanates from 

faulty cohesin establishment, probably during passage of the replication fork through loaded 

cohesins. We additionally observed synthetic lethality between mcm2DENQ and eco1 but not smc3 

mutants (defective in loading) through genetic analyses, indicating that Mcm2-7 is likely involved 

in establishing cohesion in a parallel pathway with Eco1 (Figure 33). Furthermore, deletion of 

wpl1 failed to rescue the SCC defect or DNA double strand breaks in the mcm2DENQ mutant (data 

not shown). As mentioned earlier, wpl1 deletions have been previously shown to suppress the SCC 

defect in eco1-1 mutants [253, 333], which suggests that the SCC defect in mcm2DENQ, although 

likely to be an establishment problem, is independent of Eco1, and hints towards a parallel 

pathway. 
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Figure 32. The mcm2DENQ mutant has normal cohesion-DNA association  

 (Top panel) Chromatin enrichment assay of Smc1-3xHA in wildtype (UPY909) and mcm2DENQ (UPY910) 

backgrounds. Supernatant and pellet fractions of initial pellet extensively treated with DNase I. Samples shown were 

grown at 24°C, and treated with either α-factor or nocodazole as indicated. (Bottom panel) Chromatin enrichment 

assay of SCC1-3xHA in wildtype (UPY911), mcm2DENQ (UPY912), scc2-4 (UPY1090) and eco1-1 (UPY1091) 

backgrounds. Supernatant (S) and pellet (P) fractions from initial spin are shown (refer to Methods for details). 

Samples shown were grown at 25°C, arrested with α-factor for 3 hours, then released into nocodazole at 35.5°C for 

2.5 hours and extract made as described previously [128]. Scc1-3xHA was visualized by Western blot analysis using 

the HA-11 antibody, ORC refers to a doublet of ORC2 and ORC3 subunits following similar visualization using an 

ORC polyclonal antibody.  

  

 

Figure 33. The mcm2DENQ mutation is synthetically lethal with the eco1 mutation 
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 Tetrad analysis from crosses between mcm2DENQ-NATMX (UPY627) and eco1-1 (UPY831, left) and 

smc3-42 (UPY1089, right) are shown. Red circles denote viable double mutant spore clones. 

 

4.4.11 Discussion 

In this study we further described the in vivo characteristics of an mcm2 mutation that 

biochemically biases the Mcm2-7 complex into an open conformation. We demonstrate that during 

unchallenged growth conditions, this mutant exhibits a wide variety of defects related to genomic 

instability. This includes gross chromosomal rearrangements, cell-cyle specific spontaneous DNA 

damage, and sister chromatid cohesion defects. A subset of these phenotypes has previously been 

observed in a hypomorphic mcm4 allele (mcm4Chaos3, [291, 292]) that was isolated from a mouse 

forward genetics screen, and correlated with a high incidence of mammary adenocarcinomas. In 

general, the range of genomic defects seen in the mcm2DENQ mutant are often observed in a 

variety of cancers (refer to Conclusions section).  

 

In the previous chapter, we proposed that the Mcm2-7 complex can function as a modulator 

of the checkpoint response upstream of Rad53, and possibly in parallel with Mrc1. In the current 

study, we investigated the role of the Mcm complex in the maintenance of genomic integrity as a 

part of the normal replication machinery. First, we show that misregulating a specific ATPase 

active site within the Mcm complex can lead to cell cycle specific DNA damage and increase in 

gross chromosomal rearrangements. Furthermore, the same mcm allele concommitantly affects 

other processes that are important for genome stability, such as sister chromatid cohesion. Cell 
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cycle-specific DNA damage has similarly been observed previously with several checkpoint 

factors, suggesting that there may be a common basis for these phenotypes [334]. 

 

Mcm2-7 acts as the chief molecular motor of the CMG replicative helicase in all 

eukaryotes. While DNA unwinding is its primary role, its precise coordination with many other 

factors is required during replication to ensure the stability of replication forks. For instance, 

uncoupling between the replicative helicase and DNA polymerases can result in excessive 

generation of single-stranded DNA, which makes replication forks asymmetrical, highly unstable 

and susceptible to varying degrees of damage [335, 336]. Furthermore, a steady inflow of 

nucleotides is required by rapidly replicating forks during S-phase. Checkpoint-defective mutants 

often fail to finish replication due to insufficient nucleotide production [287]. Addtionally, the 

timing of DNA unwinding is also subject to precise regulation to ensure that DNA replication can 

only occur during S-phase. Beyond this point in the cell cycle, the helicase needs to be inactivated 

and unloaded from DNA, either through the dissociation of its activators (Cdc45,GINS)(K.Labib, 

unpublished observations), or through topological impediments such as the merging of forks from 

opposing  directions [337]. Therefore, failure to regulate the helicase during the cell cycle can lead 

to several defects. When unrepaired, such genome stability issues are often highly deleterious.  

 

We have explored several of the above possibilities to tease apart the DNA damage 

phenotype associated with the mcm2DENQ mutant. In contarst to mrc1 mutants, the mcm2DENQ 

mutant does not seem to generate breaks as a result of collapsed forks, as the presence of HU seems 

to suppress the DNA damage phenotype. Additionally, we have shown that DSBs do not seem to 

depend on spindle forces, as forced entry into G2 in the absence of spindles was also able to 
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generate DSBs in our mutant. There are several regions of the genome that inherently slow down 

replication forks (RSZs), and are thought to represent sites of potential replication termination [3]. 

We failed to observe a break phenotype at one such RSZ (Schwacha, data not shown), which has 

previously been shown to accumulate DSBs in a MEC1-dependent manner [3]. The mec1 mutant 

used in this study showed some of the same phenotypes as the mcm2DENQ insofar as it 

accumulated G2 DNA damage which seemed to be independent of spindle tension [236]. However, 

it remains to be tested whether DNA damage occurs at other such sites spread throughout the 

genome [2], and it remains likely that the G2 DSBs observed in the mcm2DENQ mutant emanate 

from termination errors. Furthermore, in contrast to the DSB phenotypes seen with several 

checkpoint mutants such as mec1 and rad53, mcm2DENQ breaks do not seem to be correlated 

with insufficient nucleotide levels, as we were unable to see a change in the frequency of DSBs in 

the mcm2DENQ mutant upon the deletion of SML1. 

 

The lag in S-phase passage of the mcm2DENQ mutant, as well as its slow growth 

phenotype likely have their molecular basis in DNA damage and SCC defects. Both of these 

defects can significantly impede normal passage of the replication fork and trigger the activation 

of checkpoint responses in S-phase or G2 phase. Furthermore, the SCC defect seen with 

mcm2DENQ is frequently observed with other replication factors such as mrc1 and ctf18 [323]. 

These factors serve to couple the helicase with replicative polymerases physically, and have been 

shown to lack any enzymatic activity. Therefore one possible function for these factors may be to 

coordinate sister chromatid cohesion with replication forks via the regulation of Mcm2-7. Other 

groups have also demonstrated the coordination between lagging strand replication and 
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establishment of SCC. Therefore, we hypothesize that Mcm2-7 may also be playing a role in this 

process by helping in reestablishing SCC in the wake of replication forks. 

 

Additional mcm mutants were analyzed to check whether the defects listed above result as  

a general consequence of mcm mutations. Significantly, we found that the various genome stability 

defects are separable–an mcm6DENQ mutant, which is an ATPase defective allele of Mcm6, 

residing in the 6/2 active site, does not display a DNA damage phenotype. However, it shows an 

enhanced sister chromatid cohesion defect, suggesting that DNA damage is not obligatorily linked 

to Mcm misregulation (See Appendix A). Similarly, we found that the mrc1AQ allele also has a 

significant SCC defect without a corresponding DSB defect, suggesting that checkpoint 

misregulation does not necessarily lead to chromosome instability. 

 

Various groups have demonstrated that DNA damage acquired during G2 promotes sister 

chromatid cohesion in an Eco1-dependent manner. This process, termed damage-induced cohesion 

(DIC), occurs genome-wide even in reponse to localized DNA damage. DIC also seems to operate 

independently of the DNA damage checkpoint (DDC), as rad9 mutants lack an obvious SCC 

defect. We observe both G2 DSBs and an SCC defect in the mcm2DENQ mutant, with the 

magnitude of the SCC defect much lesser than that of establishment mutants such as eco1. It is, 

therefore, possible that the DSBs partially mask the SCC defect in the mcm2DENQ mutant on a 

genome-wide scale. However, as mentioned above, an mcm6DENQ mutant also possesses an SCC 

defect without any corresponding DSBs, which suggests that these processes are genetically 

separable to a certain extent.  
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Mechanistically we propose that both DSB production and SCC misregulation are linked 

to defective ATP hydrolysis at the Mcm6/2 active site. As previously mentioned, the 

heterohexameric Mcm2-7 complex has functionally distinct ATPase active site, with some playing 

a role in actively unwinding DNA, (Mcm4/7), and others regulating the motor activity. Of the 

latter, the Mcm2/5 site has been proposed to act as an ATP-dependent gate, which can directly 

determine the activity of the complex based on its topological state, with an open gate resulting in 

an inactive complex, and a closed gate activating the helicase. Additonal factors such as GINS and 

Cdc45 further aid in closing the gate and activating the helicase during elongation.  

 

While biochemical and structural studies have confirmed the presence of a gated complex 

in both yeast and Drosophila Mcm complexes, much less is understood about the true in vivo 

implications of the gate [95, 97]. Initial biochemical studies and more recent EM analysis (Simon 

et.al., in preparation) have indicated that the mcm2DENQ complexes have a propensity to close 

the Mcm 2/5 gate. We propose that in vivo, the mcm2DENQ mutation might have a similar effect 

on the Mcm complex. This has several interesting implications: if gate regulation is necessary 

during a checkpoint response or during temporary fork stalling, then failure to do so may result in 

a hyperactive Mcm complex. In such a conformation, the Mcm complex might initiate rounds of 

futile DNA unwinding without associated DNA synthesis. This would explain the generation of 

excess ssDNA seen during S-phase in this mutant. Additonally, helicase inactivation is a likely 

prerequisite for replication termination, and a hyperactive complex may associate with DNA for a 

prolonged amount of time. In this scenario, the helicase may pose a barrier to factors such as TopII 

that play a role in catenane resoluion and proper termination [175]. Such topological impediments 

could potentially impose structural constraints on DNA, which may result in DNA damage. 
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Likely scenarios for DNA damage in mcm2DENQ –different avenues for genome regulation 

There are several interesting possibilities regarding the origin of G2 DSBs in the 

mcm2DENQ mutant. As previously mentioned, fork passage is inherently slow at certain regions 

within the genome (Replication Slow Zones (RSZs)), notably fragile sites, which are large regions 

of DNA consisting of sequences such as palindromic repeats that inherently tend to form secondary 

structures. Replication passage through such regions has been previously shown to rely on Mec1-

dependent mechanisms [3]. Following from our previous findings that the Mcm2-7 complex is a 

part of the DRC pathway downstream of Mec1, we speculate that defective checkpoint control 

might result in the failure of the mcm2DENQ mutants to slow down sufficiently at RSZs. This in 

turn could be putting a topological constraint on the DNA at these regions, resulting in DNA 

damage. 

 

Furthermore, we observed that gene gating can at least partially contribute to DNA damage 

observed with mcm2DENQ. While we have not tested the effects of the sac3Δ mutation on other 

checkpoint-related phenotypes of mcm2DENQ, we presume that as replication forks approach 

tethered genes, misregulated Mcm activity results in the failure to mount a checkpoint response in 

a timely manner. Presumably, a combination of misregulated DNA unwinding and opening of 

chromatin structures near transcription bubbles creates a local area of negative supercoiling, 

generating excess single stranded DNA. This would explain why sac3Δmcm2DENQ double 

mutants have considerably less Rad52 accumulation, but stll retain the DSB phenotype. Rad52 is 

capable of binding ssDNA without an obvious prior need for a DSB lesion, and once associated 

with ssDNA is capable of initiating an HR-mediated DNA synthesis. Our results hint at a novel 
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role for the Mcm complex in the control of replication fork progression through highly transcribed 

genes. 

 

Because we observe DNA DSBs specifically towards the end of replication but rarely in 

the earlier stages of the cell cycle, it is tempting to speculate that some factor that is specifically 

active during G2/M might be responsible for physically creating breaks. The structure-specific 

endonuclease Mus81 is a strong candidate for such a role. Mus81 complexes with the Mms4 

subunit and is responsible for cleaving a variety of structures including branched DNA, Holliday 

junctions and D-loops that are frequently formed during homologous recombination [338]. 

Importantly, to ensure integrity of replication forks, Mus81 is usually only active in G2/M. Work 

in S. pombe has demonstrated that the checkpoint kinase Cds1 (homolog of  S. cerevisiae Rad53) 

regulates Mus81 to preserve the genome by aiding in the removal of chromatin-bound Mus81 from 

regions of stalled forks upon HU treatment in a phosphorylation-dependent manner [339], which 

could also explain why HU suppresses the γH2A phenotype in the mcm2DENQ mutant. The 

abundance of Rad52 and RPA foci late in the cell cycle in the mcm2DENQ mutant indicates 

frequent homologous recombination, which would be expected to generate structures that can act 

as substrates for Mus81. More interestingly, S. pombe Mus81 is also associated with DSBs in 

checkpoint-defective mutants[340]. Inability to enter G2/M during a nocodazole arrest then 

presumably blocks Mus81 activation, and therefore gets rid of DSBs but not ssDNA (as indicated 

by Rad52 and RPA foci). Alternatively, other nucleases such as Exo1, which play a role in cleaving 

ssDNA at telomeres and stalled forks may also contribute to mcm2DENQ DNA DSBs. As 

mentioned in the first chapter, exo1 deletion suppresses the growth defects of checkpoint mutants 

such as rad53.  It would be interesting to test for similar effects in our mcm mutant.  



 141 

 

How then is excess ssDNA being generated specifically late in the cell cycle?  As 

mentioned earlier, many regions of the genome are replicated late in the cell cycle. Of particular 

significance are the telomeres, which are one of the last segments of the genome to be replicated. 

Telomere maintenance requires capping proteins, as well as formation of special secondary 

structures called T-loops in order to prevent end-to-end fusions and to protect telomeres from being 

recognized by repair proteins as regular DNA damage (reviewed in [341]). Capping proteins 

including Cdc13/Tem1/Stn1, helicases Pif1 and Rrm3, and additional telomere-binding proteins 

such as Trf1 and Trf2 play various roles in this process. It is not improbable that misregulated 

Mcm complexes may invade telomeric regions, generating excess DNA unwinding, leading to 

ssDNA-binding proteins such as RPA and later, Rad52 to recognize and bind them. This 

potentially also makes telomeres susceptible to nucleases such as Mus81 and Exo1.  It should be 

mentioned that double mutants of the checkpoint factor mrc1 and capping protein cdc13 often 

accumulate excessive ssDNA at telomeres [342]. From our SGA analysis of the mcm2DENQ 

mutant (Appendix B), we noted synthetic lethality between cdc13 and mcm2DENQ, raising the 

possibility that Mcm2-7 is also somehow connected to the stability of telomeres. Future work 

would address how Mcm 2-7 can specifically interact with the telomere-regulating machinery and 

contribute to their maintenance. Given the extreme importance of telomere maintenance in the 

process of cellular aging, such studies would also be extremely valuable from a human health 

perspective.  
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APPENDIX A– IN VIVO ANALYSIS OF MCM4/6 ACTIVE SITE MUTANTS  

A.1 INTRODUCTION 

A biochemical survey of helicase activity associated with various mcm ATPase mutants 

previously revealed that the mcm4RA and mcm6DENQ mutant complexes fail to unwind DNA in 

vitro. Intriguingly, these mutant complexes tested normal or relatively normal for various other 

biochemical attributes, including ssDNA binding and ATPase activity [41]. Although, these 

studies suggest that the Mcm4/6 active site plays an important role in DNA unwinding, in vivo 

analyses present a slightly more complex view. When introduced into yeast, not only are mcm4RA 

and mcm6DENQ mutants viable, they exhibit fairly wildtype growth characteristics. Similar to the 

mcm2DENQ mutant, these mutants have changes to conserved residues within their ATPase active 

site domains. Specifically, mcm4RA was created by mutating a conserved arginine within the 

Arginine finger domain of Mcm4 to alanine (mcm4RA), and mcm6DENQ has two conserved 

acidic residues substituted for their amide counterparts within the Walker B domain of Mcm6 

(mcm6DENQ).  

 

It is also worth mentioning that the Mcm4/6 active site is situated adjacent to the Mcm6/2 

active site within Mcm2-7, and both these active sites are situated between the Mcm2/5 ‘gate’ and 

the Mcm7/4 ‘motor’ domains in the complex. It is imaginable that similar to the Mcm6/2 site, 

Mcm4/6 may play a role in the regulation of Mcm2-7 by relaying signals from the gate to the 

motor. Therefore, ablation of the Mcm4/6 active site may result in at least a subset of the defects 

seen with the mcm2DENQ mutant. Presumably, such defects are partially obscured in a simple 
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growth analysis and by some functional redundancy among various active sites. Both the mcm4RA 

and mcm6DENQ mutants additionally allow us to compare the in vivo functions of different Mcm 

ATPase active sites and check if they behave similarly or differently. 

A.2 RESULTS 

 

We conducted a limited comparative phenotypic analysis of mcm4RA and mcm6DENQ 

yeast mutants. The results are presented below. 

A.2.1  mcm4RA, but not mcm6DENQ has a replication defect 

We first checked these mutants for any defects during normal replication. Using the 

plasmid stability assay [263], we found that, the mcm4RA had a high rate of plasmid loss that could 

not be suppressed by additional origins of replication, indicating defective replicative initiation 

(Figure 34). This was an interesting observation, considering the lack of any obvious growth 

phenotypes for this mutant. In contrast, the mcm6DENQ mutant exhibited intermediate to low 

levels of plasmid loss, implying that replication is largely normal in this mutant (Figure 34). Both 

these observations were further corroborated in our plasmid segregation analysis (discussed 

below), with the small plasmid loss defect in the mcm6DENQ mutant appropriately explained as a 

segregation problem rather than a defect in replication (see below).  
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Figure 34. The mcm4RA mutant exhibits defective replication initiation  

Wildtype (UPY610), mcm4RA (UPY537) and mcm6DENQ (UPY541) transformed with a single origin 

ARS/CEN plasmid (pARS1/pUP464) or multi-origin ARS/CEN plasmid (pARS7/pUP465) were tested for plasmid 

loss per generation. 

 

A.2.2   The mcm4RA plasmid loss phenotype results from defective initiation rather than 

defective segregation 

Although the plasmid stability assay is a standard metric of replication defects, it is insufficient to 

distinctly tell the difference between replication and segregation problems. To circumvent this 

problem, we used a previously-described assay to directly monitor plasmid segregation in daughter 

cells [273], whereby our mutant strains were engineered to carry CEN plasmids with integrated 

lac operator arrays, which bind with high affinity to LacI-GFP molecules expressed from a 
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separate construct integrated in the same strain [343]. Additionally, strains for this assay carried a 

background cdc15-1 mutation that arrests cells in telophase under non-permissive conditions 

(37°C), and therefore allow us to monitor plasmid division and segregation from G1 to the end of 

M-phase without cytokinesis. In G1, most cells should have a single copy of the plasmid, and 

should therefore have one visible GFP dot in each cell. Subsequently, after DNA replication and 

plasmid segregation, each of the buds in telophase arrested double budded cells should carry a 

copy of the replicated plasmid (counted as 1:1 species in our assay). A significant proportion of 

mcm4RA cells (~35%) exhibited a 1:0 ratio in telophase, indicating defective replication (Figure 

35). In contrast, a large proportion of mcm6DENQ cells had a 2:0 distribution of plasmids in 

telophase, suggesting that although plasmids were able to replicate, they failed to properly 

segregate into daughter cells (Figure 35). This was further corroborated in our assay for 

monitoring sister chromatid cohesion (Figure 36, see below). 

 

Therefore, mcm4RA mutants, but not mcm6DENQ have defects in DNA replication. 

Intriguingly, the mcm6DENQ mutant, despite being an ATPase-defective mutant of the same 

active site (Mcm4/6) exhibits qualitative phenotypic differences from mcm4RA. 
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Figure 35. The mcm4RA mutant has defective initiation while the mcm6DENQ mutant has errors in 

segregation  

Wildtype (UPY 860), mcm2DENQ (UPY865), mcm4RA (UPY 937), and mcm6DENQ (UPY935) strains 

were monitored for plasmid loss by visual analysis of plasmid-bound LacI-GFP in G1 and in telophase as described 

in Methods. ‘Others’ category includes all non-typical plasmid segregation patterns such as 3:0, or 1:2. Data plotted 

as mean and SD of n≥3 experiments. 
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A.2.3  The mcm6DENQ mutant has defective sister chromatid cohesion  

We further explored the apparent segregation defects in the mcm6DENQ mutants by asking 

if mutants also had a corresponding defect in normal chromosome segregation. We hypothesized 

that segregation errors would probably result from errors in the process of sister chromatid 

cohesion (SCC). We monitored cells for SCC defects using the assay described earlier, we 

observed that the mcm6DENQ has a significant cohesion defect (Figure 36). The magnitude of 

the defect seen in the mcm6DENQ mutant seemed similar to that observed in the mcm2DENQ 

mutant described earlier, as well as to that seen in a Δmrc1 mutant. In contrast, we could not 

observe an appreciable change in SCC in the mcm4RA mutant (Figure 36). The above results 

further confirm the earlier observations made from our plasmid-based assays, indicating that the 

mcm4RA and mcm6DENQ mutations differentially affect DNA replication and chromosome 

segregation. 

 

 

 

 

 

 

 

 

 

Figure 36. The mcm6DENQ mutant has defective SCC 
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Wildtype (UPY 613), mcm4RA (UPY 811), and mcm6DENQ (UPY812)  and mrc1Δ(UPY744) strains were 

monitored for plasmid loss by visual analysis of chromosome-bound LacI-GFP in metaphase after nocodazole arrest 

for two hours, as described in Methods. Data plotted as mean and SD of n≥3 experiments. 

A.2.4  The mcm4RA mutants have varying sensitivity to genotoxic agents 

As mentioned earlier, intra-S-phase checkpoints monitor replication in events of 

unwarranted fork stalling or DNA damage via two parallel and partially redundant pathways. As 

shown earlier, the mcm2DENQ mutant implicates the Mcm complex in the DNA replication 

checkpoint (DRC) upstream of Rad53.  

 

To check if the mcm4RA and mcm6DENQ mutants have similar checkpoint phenotypes, 

we tested combinations of mcm4RA and mcm6DENQ with several mutant checkpoint alleles 

including Δrad9, Δmrc1 or mrc1AQ. In contrast to the mcm2DENQ mutant, we did not observe 

any synthetic lethality or synthetic sickness between mcm4RA and the mcm6DENQ mutants and 

other checkpoint alleles. We then tested double mutants on media containing either 0.01% methyl 

methanesulfonate (MMS) or 50mM hydroxyurea (HU). We did not observe any appreciable 

increase in sensitivity of the mcm6DENQ mutants to either treatment (Figure 37). In contrast, 

mcm4RA mutants show varying degrees of sensitivity to both HU and MMS treatments. While the 

mcm4RAΔrad9 and mcm4RAmrc1AQ mutants displayed appreciable sensitivity to HU, they seem 

to be fairly tolerant to MMS; the mcm4RA Δmrc1 displayed heightened MMS sensitivity (Figure 

37).  
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Sensitivity to genotoxic agents such as HU and MMS generally reflects a failure to properly 

initiate a checkpoint response. As mentioned earlier, the standard metric of checkpoint activation 

is the phosphorylation of the effector kinase Rad53. Asynchronous cultures of the above mutants 

were treated with either 0.033% MMS or 0.2M HU for two hours and tested for Rad53 activation 

(Figure 38). Surprisingly, all of the mcm4RA and mcm6DENQ mutants showed Rad53 

phosphorylation in the presence of HU or MMS. However, we noted that the levels of 

phosphorylated Rad53 differed considerably between the single mutants and the various double 

mutants, suggesting that perhaps the double mutants are partially defective in activating the 

checkpoint response (Figure 38). In summary, the above analyses indicate that mcm4RA, and to a 

limited extent the mcm6DENQ mutant might be defective in checkpoint activation, although it is 

undetermined whether it functions specifically in the DRC or the DNA damage checkpoint (DDC).  

 

This raises the possibility that perhaps replication forks are less stable in mcm4RA, and 

knocking out specific components of the checkpoint pathway in these mutants further exacerbates 

this defect in the presence of replicative stress.  The data also seem to be consistent with a previous 

studies that have suggested Mcm4 as a target for checkpoint control in HeLa cells [344, 345]. 
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Figure 37. Sensitivity of the mcm4RA and mcm6DENQ mutants to genotoxic agents 

Log phase cultures of the indicated strains were spotted on YPD± 40mM HU or 0.01% MMS in 10-fold 

dilutions. Images were taken after two days of incubation at 30°C. Strains used are wildtype (UPY464), mcm4RA 

(UPY529), mcm6DENQ (UPY525), rad9Δ (UPY 630), mrc1Δ (UPY 713), rad9Δmrc1Δsml1Δ (UPY 715), 

mcm4RArad9Δ (UPY 918), mcm4RAmrc1Δ (UPY 920), mcm4RAmrc1AQ (UPY924), mcm6DENQrad9Δ (UPY 

919), mcm6DENQmrc1Δ (UPY 921), and mcm6DENQmrc1AQ (UPY925). 
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Figure 38. Rad53 phosphorylation in mcm4RA and mcm6DENQ mutants is normal 

Same strains as Fig. 37, assayed for Rad53 phosphorylation after growing cultures ±0.2M HU or 

0.033%MMS. Additional strains analyzed were mcm2DENQ (UPY499) and mcm2DENQ rad9Δ (UPY634). 

 

A.2.5  Neither the mcm4RA nor the mcm6DENQ mutant has an appreciable DNA damage 

phenotype 

We tested the mcm4RA and 6DENQ mutants for additional defects during unchallenged 

growth conditions. As mentioned earlier, the mcm2DENQ mutant accrues DNA damage in the G2 

phase of the cell cycle, even in the absence of any chemical treatments. We similarly asked if the 

mcm4RA and mcm6DENQ had a DNA damage phenotype. We first tested asynchronous cultures 

for the presence of yH2A foci, which is a marker of DNA double strand breaks (DSBs). However, 
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we did not observe any enrichment in γH2A foci in either of these mutants, indicating that these 

mutations probably do not cause DSBs (Figure 39). We subsequently tested these mutants for 

Rad52-YFP foci to check if other types are damage are present in these mutants. As noted earlier, 

although Rad52 is recruited to DSBs, it can bind to ssDNA, and is therefore additionally useful for 

the analysis of non-DSB related DNA damage phenomena. We could not observe any significant 

Rad52 foci formation in these mutants from either asynchronous or synchronized cultures, 

indicating these mutants do not grossly affect genome integrity.  

 

        

Figure 39. Neither of the Mcm4/6 active site mutants have a strong DNA damage phenotype 

 Wildtype (UPY938), mcm2DENQ (UPY1014), mcm4RA (UPY1022) and mcm6DENQ (UPY1017) strains 

were analyzed for Rad52-YFP foci in either asynchronous (left panel) or synchronized cultures. Data plotted as 

mean and SEM of n≥3 experiments. 

A.2.6  mcm4RA and mcm6DENQ mutations do not affect protein levels or stability 

It is reasonable to assume that the phenotypes seen with the above mcm mutants may occur 

if the mutant proteins are less stable or less abundant than wildtype proteins. This may further lead 

to the formation of less-productive Mcm complexes, which could result in Mcm misregulation. 
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We checked mcm4RA and mcm6DENQ mutants for protein stability by cycloheximide 

chase analysis and found that Mcm4RA and Mcm6DENQ proteins are relatively stable over the 

course of a cell cycle (Figure 40). We additionally performed timecourse quantitative western 

blots on samples from synchronized mutant cultures (Figure 40) and observed no quantitative 

differences in protein levels over time, indicating that the mutations do not result in hypomorphic 

defects. 

 

 

Figure 40. mcm4RA and mcm6DENQ mutations do not affect protein levels or stability 

 (Top panel) Cycloheximide chase analysis of wildtype (UPY 464), mcm4RA (UPY529) and mcm6DENQ 

(UPY525) strains. (Bottom panel)- strains from top panel synchronized in α-factor, released into YPD and samples 

from indicated timepoints  analyzed through quantitative Western blots. Antibodies used were mouse anti-Mcm4 

(AS 6.1) and mouse anti-Mcm6 (AS 3.1). Data plotted as mean and SEM of n≥3 experiments. 
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A.3 DISCUSSION 

Mcm2-7 is a key player in eukaryotic DNA replication. It associates with replicative 

origins at the beginning of G1 phase, where it is maintained in an inactive state until S-phase. 

During S-phase, cell-cycle specific kinases activate the helicase, and allow it to bind several 

accessory factors which convert Mcm2-7 into a robust DNA unwinding motor as part of the CMG 

complex. Mcm regulation is crucial throughout the cell cycle to ensure that the genome replicates 

once and only once during each cell cycle. Consequently, misregulation of the Mcm complex can 

often lead to replicative defects. Following from this, one assumption underlying many of the 

defects seen with the above mcm mutants is that such defects arise simply as secondary 

consequences of inefficient DNA replication.  

 

The mcm2DENQ mutant has a variety of in vivo phenotypes that implicate Mcm2-7, 

particularly the 6/2 active site, in various processes in addition to DNA unwinding during S phase, 

including the replication checkpoint and sister chromatid cohesion. Although most of our evidence 

suggests that these defects are specific to ATP hydrolysis at the 6/2 site, we sought separation-of-

function mutants of the Mcm2-7 complex that can uncouple some of the mcm2DENQ defect. 

While the mcm2DENQ mutant has genomic instability, cell death, spontaneous DNA damage, 

improper checkpoint activation and aberrant sister chromatid cohesion, mcm4RA and mcm6DENQ 

show defects in only a subset of these processes. Therefore, we infer that it is possible to formally 

separate DNA replication defects from sister chromatid cohesion defects. While the mcm6DENQ 

mutant displays an SCC defect similar to mcm2DENQ and mrc1 mutants, it displays relatively 

normal DNA replication. Conversely, the mcmRA mutant demonstrates a significant defect in 

replication initiation but no apparent SCC defects. Additionally, in contrast to mcm2DENQ 
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phenotypes, mcm4RA and mcm6DENQ strains do not seem to accumulate spontaneous DNA 

damage to any significant extent as measured by γH2AX immunofluorescence or Rad52-YFP 

assays, neither do they seem to overtly affect checkpoint activation in the presence or absence of 

genotoxic stress, as measured by Rad53 phosphorylation assays. 

 

It should be noted that Mcm2-7 interacts with a plethora of factors during S-phase, and 

undergo cell-cycle specific phosphorylation on different subunits [29]. The multifactorial 

regulation of Mcm2-7 in vivo may, therefore, partially explain the discrepancies observed between 

the biochemical and genetic analyses of these mutants. A recent study also shows the involvement 

of Mcm4 in the DNA damage response [346]. In this study, the authors have shown the 

involvement of an N-terminal serine-rich domain within Mcm4 in restricting origin firing and fork 

progression under replication stress, and in activating the checkpoint response. Mutations within 

this domain resulted in aberrantly fired late origins and defective in Rad53 phosphorylation. 

Interestingly, this domain is targeted by many different cell cycle kinases such as CDK and DDK. 

Our study similarly shows that perturbations within Mcm4 in the C-terminal ATPase active site 

domains can lead to similar phenotypes, including defective initiation and sensitivity to genotoxic 

agents. Other studies have similarly found in vivo defects associated with mutating conserved 

domains within the ATPase active site of Mcm4 in S. pombe [347]. The analysis of Mcm6 Walker 

B mutants has also been previously shown to abolish in vitro helicase activity without affecting 

viability [348]. Our results are in good agreement with the above studies, and demonstrate specific 

ablation of ATPase active sites can give rise to many individually separable defects, highlighting 

the role of ATP hydrolysis at this active site in regulation of these processes.  
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We also show that a specific Mcm6 allele can destabilize sister chromatid cohesion without 

significantly affecting either DNA replication or checkpoint function. Interestingly, a previous 

study showed that Mcm6 can directly bind Mrc1 to coordinate checkpoint function and replication, 

with mutations in the Mrc1-binding domain resulting in sensitivity to DNA damaging agents [219]. 

It is possible that the mcm6DENQ mutant might also be partially compromised for certain 

interactions at the replication fork which may result in an SCC defect. More importantly, such 

interactions again seem to hinge on ATP hydrolysis at the Mcm4/6 active site, further outlining 

the in vivo importance of low turnover ATPase active sites in Mcm regulation. 

 

It is possible that ATPase active sites might be coordinately regulating some of the same 

processes, which might explain similarities between the mcm2DENQ and mcm4RA/6DENQ 

mutant phenotypes. In this case, mutations at one active site might be causing an allosteric 

perturbation of the neighboring active site function. Alternatively, there might exist a certain level 

of functional pleiotropy within the Mcm complex in vivo, which probably allows various active 

sites to partially compensate for the loss of neighboring ATPase active site function. It should be 

pointed out that both the mcm4RA and mcm6DENQ mutations affect the same active site 

(Mcm4/6). However, the phenotypes associated with them are dissimilar. There could be several 

explanations for this discrepancy. Firstly, the various motifs within AAA+ ATPase active sites 

have subtle functional differences. Biochemically, it has been observed that Walker B mutant 

active sites usually behave as substrate traps that have the ability to bind substrates but are unable 

to release them. While arginine finger is also necessary for ATP hydrolysis, it is additionally 

required to propagate energy-dependent conformational changes to neighboring subunits 

(reviewed in[349]). Therefore, within the context of the Mcm complex, the mcm4RA mutation 
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could potentially affect communications between the gate and motor subunits. Secondly, it is 

possible that the mutations have similar effects on ATP hydrolysis, but different effects on protein 

conformation of Mcm4 and Mcm6, which may differentially alter their respective interactions with 

other factors, and give rise to different phenotypes.  

 

Interestingly, we also noticed that it is possible to create mcm4RA/mcm6DENQ double 

mutants without losing viability (data not shown). Both the Mcm 4/6 active site mutants do 

however exhibit synthetic lethality with the mcm2DENQ mutation (data not shown). Although this 

indicates that the ATPase activity of the Mcm4/6 active site might be functionally redundant either 

with other sites in the complex or with other cellular factors, we have so far not tested the double 

mutants for any other informative phenotypes. Further work would be required to directly 

determine how the Mcm4/6 site regulates interactions of the Mcm2-7 complex with other cellular 

factors at replication forks. 
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APPENDIX B-  EXPLORING THE GENETIC INTERACTIONS OF MCM MUTANTS 

VIA SGA ANALYSIS 

As discussed in the previous sections, the Mcm2-7 complex is a central component of the 

replisome and its regulation is key to the precise coordination of not just replication during S-

phase, but for other activities that occur in conjunction with replication such as sister chromatid 

cohesion and checkpoint activation. With its six distinct ATPase active sites, the Mcm complex 

can in theory serve as a portal for multifaceted regulation of several different processes 

coordinately. For example, we have already established that the Mcm6/2 active site and the 

Mcm4/6 active sites are playing key roles in coupling the replication machinery to checkpoint 

control, genome stability and sister chromatid cohesion. Because the above conclusions were 

derived from the analysis of ATPase active site mutants, it is assumed that ATP turnover at the 

listed active sites is key for coupling different processes through Mcm2-7. However, whether ATP 

hydrolysis is the sole determinant of Mcm regulation is a matter of speculation.  

 

It is reasonable to assume that several additional factors may either directly or indirectly 

regulate ATP hydrolysis at one or more Mcm active sites, or may function redundantly with the 

Mcm complex under specific conditions. We have observed several synthetic lethal interactions 

have between our mcm mutants and other alleles including cohesion factors (eco1-1), checkpoint 

factors (mrc1, tof1,csm3, mec1), and transcription-related factors (spt16). Furthermore, as noted 

previously, the Mcm4RA and Mcm6DENQ mutant complexes lack in vitro helicase activity, 

suggesting that they play a role in DNA unwinding. However, these mutants are viable in vivo, 
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albeit with many subtle molecular phenotypes. This further raises the possibility that this active 

site might be functioning redundantly with other cellular factors. 

 

Because the above studies were performed with a small set of mutants, we were interested 

in exploring the full range of genetic interactions of the Mcm complex on a genome-wide scale. 

Using our three viable mcm alleles (mcm2DENQ, mcm4RA and mcm6DENQ), we conducted a 

genome-wide synthetic lethal analysis using the synthetic genetic array (SGA) methodology [350]. 

The mutants were tested against two different mutant collections- the first set included knockouts 

of all non-essential yeast genes, and contains ~4600 mutants. The second collection consisted of 

temperature-sensitive alleles of a subset of all essential genes in yeast. Details of strain 

construction, screening and interaction scoring methodologies have been described in Methods.  

 

Several interactions obtained from our screen results validate our previous observations. 

For example, as noted previously, the list of mcm2DENQ negative interactions included mrc1Δ, 

AND csm3Δ strains.  The SCC establishment factor Eco1 (eco1-1) was also observed among the 

negative interactions with the mcm2DENQ mutant. However, we also obtained several 

contradictory results from the screen compared to our earlier observations. Many of the mutants 

listed under negative interactions (e.g., cdc16, rad9, cdc15) are viable in combination with 

mcm2DENQ in our hands. In other cases, the screen failed to pick up mutants such as mec1 and 

tof1Δ which are synthetically lethal with mcm2DENQ in our analyses. We attribute many of these 

discrepancies to the methodology of scoring interactions (colony size), strain background 

differences (BY4741 vs W303) or on the effect of dominant marker cassettes on our genes of 

interest (all mcm mutants were marked with a C-terminal NATMX4 cassette). The large number of 
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hits obtained from the mcm2DENQ screen could be attributed to the hybrid nature of the mutant 

strain, which may have resulted in more background noise. As mentioned previously, we were 

unable to introduce the mcm2DENQ mutation into the ‘magic marker’ strain background using the 

traditional pop-in/pop-out approach even after repeated attempts. Therefore, we created the 

appropriate test strain via several rounds of backcrossing between a mcm2DENQ mutant strain in 

a W303 background and the S288C magic marker strain. In contrast, we were easily able to 

introduce mcm4RA and mcm6DENQ mutations in the magic marker strains, which resulted in a 

cleaner strain background and presumably resulted in lesser hits on their respective screens. 

 

Despite the vast scale of genetic interactions observed in all the seen outputs, certain unifying 

trends were observed among all mutants. We conducted Gene ontology (GO) searches on the 

results from the deletion collection and the temperature-sensitive (ts) mutant collection analyses 

to check which major categories of processes do the genetic interactions fall under. To further 

refine our search, we specified the categories in our ontology search to only include processes 

closely associated with chromatin metabolism (e.g. DNA replication, DNA repair, cohesion, 

transcription, DNA damage response, telomere processing), or the cell cycle (e.g. mitosis, 

regulation of cell cycle) (Tables 4-7). 

 

We noticed that a high percentage of results from all the screens contained genes that were 

involved in DNA repair and the cellular response to DNA damage. (17% of the ~1100 hits in both 

deletion and ts screens for mcm2DENQ, negative interactions; 18% of the ~280 hits for 

mcm6DENQ; ~17% of the ~380 hits for mcm4RA) (Tables 8-11). This further highlights the 

involvement of Mcm ATPase active sites in regulating diverse nuclear processes that are closely 
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coordinated with replication. A significantly higher number of genes (>100) were observed in this 

category for mcm2DENQ, which is a good proof-of-principle for some of the results discussed in 

earlier chapters implicating the Mcm 6/2 active site in coordinating the DRC with replication.  

 

Future directions: In line with the phenotypic characteristics of the various mcm mutants described 

in the earlier sections, we found that the Mcm2-7 complex has a broad range of genetic 

interactions, especially with factors that are involved in various forms of chromatin regulation 

(Tables 4-7). An obvious next step would be to test a subset of these genetic combinations 

individually to determine the precise nature of the process that is affected by such interactions. For 

example, among the positive interactions identified for mcm2DENQ, EXO1, which encodes a 

repair endonuclease, is an interesting candidate for further analysis, as it could provide a reasonable 

explanation for the DSB phenotypes seen in the mcm2DENQ mutant. Notably, as mentioned 

earlier, exo1 mutations can suppress several growth defects associated with mutations of rad53, 

therefore studying these interactions may help us define some common mechanistic basis for 

various checkpoint mutant phenotypes. A preliminary analysis using this approach has already 

provided some promising results, whereby the sac3 mutation–reported in this screen–was seen to 

suppress the induction of Rad52 foci in the mcm2DENQ mutant (Chapter 4). It is conceivable that 

many other interactions could be similarly useful in delineating the molecular basis of other mcm 

mutant phenotypes, especially the poorly-understood but intriguing SCC defects. Finally, many 

human diseases, especially cancer, contain mutations in multiple genes related to genome 

surveillance and DNA replication. A knowledge of specific Mcm negative interactions could be 

exploited to define the underlying molecular basis of disease susceptibility, by asking if specific 

combinations of such mutations are required for developing the disease. 
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Table 4. Gene Ontology (GO) term classification of mcm negative interactions with genes from YKO 

collection, sorted by processes 

 

Non essential genes-
negative interactions mcm2DENQ mcm4RA mcm6DENQ

GO term

 Cellular response to 
DNA damage stimulus

FUN30,MCM2,RAD16,DPB3,MRC1,MSH3,NHP10,BRE1
,RAD28,PPH3,UBC13,BMH2,DPB4,RAD9,DIN7,RTT103
,XRS2,DOT1,PTC2,MAG1,RAD24,BMH1,MMS2,SHU1, 
CSM2,RRD1,MPH1,RAD26,POL32,TOR1,IXR1,APN1, 
PCD1,RAD33,SUB1,CSM3,PSO2,MLH1,RAD14,YKU70,
MSH2,ELG1,WTM2,RAD17,CHL1,RMI1,ELC1,DDC1, 
NHP6A

DCC1,MRC1,MSH3,NHP10,BRE1,RAD9
,RTT103,MUS81,DOT1,PTC2,RAD24, 
BMH1,SAE2,RTF1,WSS1,SRS2,POL32, 
TOR1,EAF6,RAD27,APN1,NUP133, 
RTT109,CSM3,CTF18,MLH1,MRE11, 
SIN3,ELG1,ULS1,RAD17,DDC1,MCM4,
CTF4

NUP60,MRC1,BRE1,RAD9,HTA1,
RTT103,RAD24,BMH1,MCM6,SRS
2,POL32,TOR1,IXR1,SUB1,CSM3,
CTF18,MKT1,SIN3,ELG1,RAD17, 
CHL1,DDC1,CTF4

 DNA repair

FUN30,MCM2,RAD16,DPB3,MRC1,MSH3,NHP10,BRE1
,RAD28,PPH3,UBC13,DPB4,RAD9,DIN7,XRS2,DOT1, 
MAG1,RAD24,MMS2,SHU1,CSM2,RRD1,MPH1,RAD26,
POL32,IXR1,APN1,PCD1,RAD33,SUB1,CSM3,PSO2, 
MLH1,RAD14,YKU70,MSH2,ELG1,RAD17,CHL1,ELC1,
DDC1,NHP6A

MRC1,MSH3,NHP10,BRE1,RAD9, 
MUS81,DOT1,RAD24,SAE2,RTF1,SRS2,
POL32,EAF6,RAD27,APN1,NUP133, 
RTT109,CSM3,CTF18,MLH1,MRE11, 
SIN3,ELG1,ULS1,RAD17,DDC1,MCM4,
CTF4

NUP60,MRC1,BRE1,RAD9,HTA1,
RAD24,MCM6,SRS2,POL32,IXR1, 
SUB1,CSM3,CTF18,SIN3,ELG1, 
RAD17,CHL1,DDC1,CTF4

 Chromatin 
organization

SWC3,FUN30,MSI1,SWC5,DPB3,SGF29,NHP10,BRE1, 
PAA1,DPB4,CPR1,HST4,SWR1,DOT1,VPS72,JHD1,SPT
2,CHD1,PUF4,SET2,RAD26,MSN4,ARP6,SWC7,VPS71, 
IOC4,RKR1,YKU70,FKH2,FPR1,HTZ1,YNG1,NHP6A, 
HPA2

MRC1,MSH3,NHP10,BRE1,RAD9,MUS8
1,DOT1,RAD24,SAE2,RTF1,SRS2,POL3
2,EAF6,RAD27,APN1,NUP133,RTT109,
CSM3,CTF18,MLH1,MRE11,SIN3,ELG1,
ULS1,RAD17,DDC1,MCM4,CTF4

SWC3,SIF2,BRE1,HTA1,SWR1, 
SPT3,VPS72,SPT2,CHD1,VPS71, 
SIN3,HTZ1,HST3,LGE1

 Regulation of cell 
cycle

LTE1,AMN1,PCH2,KCC4,MRC1,BRE1,PCL2,RAD61, 
PPH3,CPR1,RAD9,DOT1,PTC2,DBF2,GIC1,PCL7,HOP1
,MAD3,MAD2,FAR1,SET2,SWE1,BFA1,TOR1,IME1,SIS
2,DCR2,BUB2,DMA2,MEK1,DDC1,OPY2,CLB2

FUS3,MRC1,BRE1,RAD9,GIC2,DOT1, 
PTC2,KIP3,DBF2,BUB1,KEL1,TOR1, 
BUD2,SIC1,VRP1,NUP53,BUB3,DDC1

FUS3,SIF2,MRC1,BRE1,RAD9, 
BUB1,STE20,TOR1,NUP53,BUB3,
DDC1

 DNA recombination

MCM2,PCH2,MSH3,NHP10,BRE1,MSH5,VMA1,PPH3, 
XRS2,DOT1,IES5,RAD51,RAD24,SHU1,REC104,CSM2,
MPH1,SET2,NUC1,POL32,CST9,MLH1,YKU70,MSH2, 
ELG1,RAD17,HHO1,DDC1,REC8

MSH3,NHP10,BRE1,MUS81,DOT1,IRC4
,RAD24,MSH4,SAE2,SRS2,POL32,RAD2
7,CST9,CTF18,MLH1,MRE11,HST1, 
ELG1,RAD17,DDC1,MCM4,CTF4

BRE1,RAD24,MCM6,SRS2,POL32,
CTF18,ELG1,RAD17,DDC1,CTF4

 DNA replication
MCM2,SLX1,DPB3,MRC1,BRE1,BMH2,DPB4,SUM1, 
CHD1,MPH1,SET2,POL32,CSM3,FKH2,ELG1,RFM1

MRC1,BRE1,CHD1,RRM3,POL32,RAD2
7,CSM3,CTF18,SIN3,DIA2,ELG1,MCM4,
CTF4

MRC1,BRE1,CHD1,MCM6,POL32,
CSM3,CTF18,SIN3,DIA2,ELG1, 
LGE1,CTF4

 Chromosome 
segregation

GIP4,MRC1,RAD61,CSM2,MAD3,TUB3,CSM3,GLC8, 
ELG1,CHL1,RMI1,GIP3,VIK1,REC8

DCC1,MRC1,CSM1,MUS81,BUB1,RTT1
02,CTF8,CSM3,CTF18,ELG1,CTF4

MRC1,BUB1,CSM3,CTF18,ELG1, 
CHL1,CTF4

 Telomere organization
PBP2,MRC1,NHP10,BRE1,XRS2,IES5,RAD51,YKU70 
,ELG1

MRC1,NHP10,BRE1,SAE2,ELG1 MRC1,BRE1,ELG1
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Non essential 
genes-positive 

interactions mcm2DENQ mcm4RA mcm6DENQ

GO term

 Cellular response 
to DNA damage 

stimulus

SAW1,NUP60,RDH54,TDP1,HSM3, 
SNF5,POL4,SLX5,RPN4,SAC3, 
RAD34,ESC2,RAD30,SLX8,RAD4 
,RAD6,SOH1,SNF6,SAE3,RTT107, 
CKA1,RTT101,SRS2,DOA1,MLH2, 
MMS22,RAD10,YKU80,TPP1,PMS1,
EAF7,SIN3,DDR2,DNL4,EXO1,ULS
1,RAD1,MLH3

APN2,TDP1,CHK1,SNF5,
SLX5,SAC3,ESC2,SLX8, 
MMS22,MSH2,EXO1, 
MCM4

RFA1,MCM2,MCM7, 
MRC1,PDS1,CDC1,ACT1,
NUP145,MCM6,SWC4, 
DNA2,MCM10,DPB11, 
POL32,TAH11,IXR1, 
RAD27,MCM5,SFH1, 
PDS5,CTF18,LEO1,ESA1,
MCM4,CTF4

 DNA repair

SAW1,NUP60,RDH54,TDP1,HSM3, 
SNF5,POL4,RPN4,SAC3,RAD34, 
ESC2,RAD30,RAD4,RAD6,SOH1, 
SNF6,SAE3,RTT107,SRS2,DOA1, 
MLH2,MMS22,RAD10,YKU80,TPP1
,PMS1,EAF7,SIN3,DNL4,EXO1,ULS
1,RAD1,MLH3

APN2,TDP1,SNF5,SAC3,
ESC2,MMS22,MSH2, 
EXO1,MCM4

CDC28,NSE4,RPO21, 
CDC1,NSE3,TFB1,ACT1,
RPT6,MCM6,SSL1,NSE1,
NSE5,RPT4

 Chromatin 
organization

ACS1,SIF2,SWD3,HPC2,SHG1,SNF5
,AHC2,BDF2,HMO1,UME6,PHO4, 
RAD6,SGF73,RTG2,SNF6,SDS3, 
HOS4,ASF1,CBF1,UTH1,NAP1, 
BUD6,YKU80,PHO23,EAF7,SIN3, 
TOP1,ULS1,HOS1

SWD3,SNF5,SIR1

ORC2,CKS1,SWR1,SPT3,
RSP5,SPT2,ACT1,SWC4, 
SWD2,RSC58,MCM5, 
SFH1,VPS71,RCO1, 
LEO1,ESA1,LGE1,SGV1

 Regulation of cell 
cycle

CLN3,SIF2,ASM4,UME6,ESC2, 
RIM15,RAD6,YBP2,RCK1,XRN1, 
RME1,CLB6,BUB1,SMI1,SPO13, 
SPO12,SPO16,HOS4,RTT101,ELM1,
HSL1,SIC1,SWI6,VRP1,MIH1,GID8,
CLN1,PHO80,RTS1,UME1

ESC2,XRN1,IME2,SWI6, 
DMA2,PHO80,ASE1, 
UME1

CDC24,CKS1,MRC1, 
MPS1,DBF4,CDC37,SKP1
,CDC14,DBF2,ZPR1, 
MOB1,DPB11,SFH1,PSE1
,CDC33,ESA1

 DNA 
recombination

SAW1,RDH54,SNF5,RPS16B,EBS1, 
ZIP1,ESC2,RAD6,SOH1,SKI8,UPF3,
MSC7,SAE3,SPO16,THP2,IRC8, 
SRS2,MLH2,SWI6,MMS22,MFT1, 
RAD10,YKU80,REC114,TOP1,IRC1
1,EXO1,IRC14,MSC6,RAD1,MLH3

SNF5,ESC2,SWI6,MMS22,
MSH2,EXO1,MCM4

RFA1,MCM2,MCM7, 
PDS1,MCM6,MCM10, 
DPB11,POL32,TAH11, 
RAD27,MCM5,CTF18, 
MCM4,CTF4

 DNA replication
RIM1,HUR1,CLB6,RRM3,RTT101, 
SBA1,MMS22,RIF2,SIN3,TOP1,TGS
1

CHK1,HUR1,MMS22, 
MCM4

RFA1,MCM2,ORC2, 
MCM7,MRC1,POL3,DBF
4,MCM6,ORC6,DNA2, 
MCM10,DPB11,CDC6, 
POL32,TAH11,RAD27, 
ORC3,MCM5,SFH1, 
ORC1,RCO1,CTF18,LGE1
,MCM4,CTF4,ORC4

 Chromosome 
segregation

KIN3,RDH54,IML3,MCM21,ESC2, 
RAD30,LRS4,MAM1,SOH1,BUB1, 
SPO13,CBF1,NKP2,MMS22,TOP1, 
RTS1

ESC2,MMS22
MRC1,MPS1,CDC48, 
PDS1,CDC14,DUO1,SFH1
,PDS5,CTF18,CIK1,CTF4

 Telomere 
organization

SWD3,GBP2,SLX5,SLX8,RAD6, 
SBA1,STM1,RIF2,YKU80,EXO1, 
TGS1

SWD3,SLX5,SLX8,EXO1
RFA1,MRC1,DNA2, 
SWD2
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Table 5. Gene Ontology (GO) term classification of mcm positive interactions with genes from YKO 

collection, sorted by processes 

 

 

 

 

Table 6. Gene Ontology (GO) term classification of mcm negative interactions with genes from temperature-

sensitive collection, sorted by processes 

 

 

 

ts  alleles-positive 
interactions mcm2DENQ mcm4RA mcm6DENQ

GO term

 Cellular response 
to DNA damage 

stimulus

CDC28,SUB2,NSE4,RPO21,CDC1, 
NSE3,TFB1,TFB3,SLX8,GLC7,ACT1,
RPT6,STH1,SSL2,MCM10,RTT101, 
ABF1,SSL1,NSE1,SMC6,SPT5,NSE5,
POL1,EAF7,RPT4

CDC28,NSE4,RPO21, 
CDC1,NSE3,TFB1,SLX8, 
SMC1,ACT1,RPT6,SSL2, 
SSL1,NSE1,SPT5,MCM4

CDC28,NSE4,RPO21, 
CDC1,NSE3,TFB1,SLX8, 
ACT1,RPT6,MCM6,SSL1,
NSE1,NSE5,RPT4

 DNA repair

CDC28,SUB2,NSE4,RPO21,CDC1, 
NSE3,TFB1,TFB3,ACT1,RPT6,STH1,
SSL2,MCM10,ABF1,SSL1,NSE1, 
SMC6,SPT5,NSE5,POL1,EAF7,RPT4

CDC28,NSE4,RPO21, 
CDC1,NSE3,TFB1,SMC1,
ACT1,RPT6,SSL2,SSL1, 
NSE1,SPT5,MCM4

CDC28,NSE4,RPO21, 
CDC1,NSE3,TFB1,ACT1,
RPT6,MCM6,SSL1,NSE1,
NSE5,RPT4

 Chromatin 
organization

DEP1,CDC28,MSI1,TAF5,SGF29, 
TAF12,GLC7,ACT1,RPT6,SGF73, 
TAF6,STH1,ASF1,SWD2,ABF1, 
POB3,RNT1,EAF7,SGF11,RVB2, 
SGV1

CKS1,CDC28,TAF5,NOP1
,TAF12,ACT1,RPT6,POB3

CDC28,TAF5,NOP1, 
TAF12,ACT1,RPT6, 
POB3,ARP7

 Regulation of cell 
cycle

CDC24,CDC28,CDC39,DBF4,SKP1,
GLC7,DBF2,ZPR1,SDA1,RTT101, 
ELM1,TOR2,CDC123,PHO80,CDC3
3,SGT1,IPL1

CKS1,CDC28,MPS1,DBF4
,DBF2,CDC25,PSE1, 
PHO80,SGT1

CDC28,MPS1,DBF4, 
CDC14,DBF2,SDA1, 
CDC123,TEM1,PSE1, 
PHO80,SGT1

 DNA 
recombination

CDC28,SKI8,SSL2,MCM10,SMC6
CDC28,SSL2,MSC1, 
MCM4

CDC28,MCM6

 DNA replication

DEP1,CDC28,DBF4,GLC7,NOP7, 
IPI1,MET30,MCM10,RTT101,ABF1,
NOC3,SMC4,CLF1,POB3,MCM1, 
POL1,TBF1

BRN1,CDC28,DBF4, 
MET30,SMC4,POB3, 
MCM1,TBF1,MCM4

BRN1,CDC28,DBF4, 
MCM6,NOP7,MET30, 
NOC3,SMC4,POB3, 
MCM1

 Chromosome 
segregation

MTW1,CDC28,CDC48,YCG1,GLC7, 
SMC2,IRR1,STH1,CSE4,SMC4,YCS4
,SMC6,NUF2,GPN2,IPL1

BRN1,CDC28,MPS1, 
CDC48,YCG1,SMC1,IRR1
,SMC4,YCS4,SPC24,NUF
2

BRN1,CDC28,MPS1, 
CDC48,YCG1,CDC14, 
SMC2,DSN1,SMC4,SPC24
,NUF2

 Telomere 
organization

SLX8,SWD2,TBF1 SLX8,TBF1 SLX8
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Table 7. Gene Ontology (GO) term classification of mcm positive interactions with genes from temperature-

sensitive collection, sorted by processes 

 

 

 

 

ts  alleles- negative 
interactions

mcm2DENQ mcm4RA mcm6DENQ
GO term

 Cellular response to 
DNA damage stimulus

RFA1,CDC28,MCM7,DCC1,MRC1,NHP10,MCD1,CDC7,
RPN4,NSE4,CDC9,PSF1,PDS1,NSE3,SLD5,GLC7,RAD3,
SMC1,ACT1,ECO1,RSC8,NUP145,SLD3,RAD54,SWC4,
DNA2,MCM10,PSF2,ARP4,DPB11,POL31,POL32,TAH1
1,RFC2,PRI2,ABF1,RAD27,RAD5,CDC45,MCM5,SFH1,S
EN1,TSA1,RAD52,PDS5,CTF18,SGS1,MRE11,POL1, 
RFC4,LEO1,ESA1,MCM4,EAF3,CTF4,DPB2

RFA1,MCM2,MCM7,MRC1,PSF1,PDS1,
CDC1,SLD5,ACT1,NUP145,SLD3,DNA2
,MCM10,DPB11,POL32,TAH11,RFC2, 
IXR1,RAD27,NUP133,MCM5,SFH1,SEN
1,PDS5,POL1,LEO1,ESA1,MCM4,CTF4

HHT1,SLX5,ESC2,SLX8,MCM6, 
REV7,YLR235C,EXO1

 DNA repair

RFA1,CDC28,MCM7,MRC1,NHP10,MCD1,CDC7,RPN4,
NSE4,CDC9,PSF1,PDS1,NSE3,SLD5,RAD3,SMC1,ACT1,
ECO1,RSC8,NUP145,SLD3,RAD54,SWC4,DNA2,MCM1
0,PSF2,ARP4,DPB11,POL31,POL32,TAH11,RFC2,PRI2,
ABF1,RAD27,RAD5,CDC45,MCM5,SFH1,RAD52,PDS5,
CTF18,SGS1,MRE11,POL1,RFC4,LEO1,ESA1,MCM4, 
EAF3,CTF4,DPB2

RFA1,MCM2,MCM7,MRC1,PSF1,PDS1,
CDC1,SLD5,ACT1,NUP145,SLD3,DNA2
,MCM10,DPB11,POL32,TAH11,RFC2, 
IXR1,RAD27,NUP133,MCM5,SFH1,PDS
5,POL1,LEO1,ESA1,MCM4,CTF4

HHT1,ESC2,MCM6,REV7,EXO1

 Chromatin 
organization

SWC3,CKS1,CDC28,TAF5,NHP10,NOP1,RSC3,SWR1,S
PT3,RSP5,GLC7,SPT2,ACT1,CDC26,RSC8,RAD54,SPT1
6,SWC4,SPT6,ARP4,SET2,ESS1,SWD2,ABF1,RSC58,MC
M5,SFH1,VPS71,POB3,RSC9,RCO1,RNT1,HDA1,LEO1,
ESA1,APC5,LGE1,RLF2,EAF3,SPN1,SGV1,DPB2,HDA3

ORC2,CKS1,SWR1,SPT3,RSP5,SPT2, 
ACT1,SDS3,SET2,SWD2,RSC58,MCM5, 
SFH1,POB3,RCO1,LEO1,ESA1,APC5

NUP170,HHT1,SHG1,HMO1,SIR1,
TOP1

 Regulation of cell 
cycle

CDC24,CKS1,SLI15,CDC28,MRC1,CDC7,MPS1,DBF4,C
DC37,RSC3,GLC7,ECO1,CDC14,SPC105,CDC20,DBF2,E
SP1,SMI1,MOB1,DPB11,SET2,CDC25,SFH1,SGS1,ESA1

CDC24,CKS1,MRC1,MPS1,DBF4,CDC3
7,CDC14,CDC20,DBF2,MOB1,DPB11, 
SET2,SFH1,ESA1

NUP170,HHT1,ESC2,IME2,SIC1, 
SWI6,ASE1

 DNA recombination

RFA1,CDC28,MCM7,NHP10,CDC7,CDC9,PSF1,PDS1,S
LD5,IES5,RAD3,SLD3,RAD54,MCM10,PSF2,SMC3,DPB
11,SET2,POL32,TAH11,RAD27,CDC45,MCM5,RAD52,C
TF18,SGS1,MRE11,MCM4,CTF4

RFA1,MCM2,MCM7,PSF1,PDS1,SLD5, 
SLD3,MCM10,DPB11,SET2,POL32,TAH
11,RAD27,MCM5,MCM4,CTF4

ESC2,MCM6,SWI6,TOP1,EXO1

 DNA replication

RFA1,RFC5,CDC28,MCM7,MRC1,MCD1,CDC7,POL3, 
CDC9,CDC13,PSF1,DBF4,RSC3,SUM1,SLD5,GLC7, 
ECO1,SLD3,SPT16,DNA2,MCM10,PRI1,PSF2,DPB11, 
SET2,CDC6,POL31,POL32,TAH11,RFC2,CDC16,PRI2, 
ABF1,RAD27,ORC3,CDC45,MCM5,SFH1,SEN1,ORC1, 
POB3,RCO1,CTF18,SGS1,POL1,RFC4,LGE1,MCM4, 
EAF3,CTF4,ORC4,DPB2

RFA1,MCM2,POL12,ORC2,MCM7, 
MRC1,POL3,PSF1,DBF4,SLD5,SLD3, 
ORC6,DNA2,MCM10,DPB11,SET2, 
CDC6,POL32,TAH11,RFC2,RAD27, 
ORC3,MCM5,SFH1,SEN1,ORC1,POB3, 
RCO1,POL1,MCM4,CTF4,ORC4

MCM6,RRM3,TOP1

 Chromosome 
segregation

RFC5,SLI15,CDC28,AME1,DCC1,MRC1,MCD1,MPS1, 
DAD1,PDS1,SPC19,GLC7,SMC1,TUB2,ECO1,CDC14, 
DUO1,SPC105,ESP1,DAM1,CBF2,OKP1,CTF8,STS1, 
MPS3,SMC3,RFC2,NNF1,SDS22,SPC34,DAD2,SFH1, 
PDS5,CTF18,SPC24,SGS1,NUF2,RFC4,NSL1,CTF4, 
HDA3

MRC1,MPS1,CDC48,PDS1,CDC14, 
DUO1,DAM1,CTF8,MPS3,RFC2,SPC34, 
SFH1,PDS5,CTF4

NUP170,ESC2,TOP1

 Telomere organization
RFA1,MRC1,NHP10,CDC13,IES5,ECO1,RAD54,DNA2, 
SWD2,RAD52,SGS1

RFA1,POL12,MRC1,DNA2,SWD2 SLX5,SLX8,EXO1
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Table 8. Gene Ontology (GO) term frequency analysis of mcm negative interactions with genes from YKO 

collection, sorted by processes 

 

Table 9. Gene Ontology (GO) term frequency analysis of mcm negative interactions with genes from 

temperature-sensitive collection, sorted by processes 

 

Non essential genes-
negative interactions

GO term
Cluster 

frequency
Genome 
frequency

Cluster 
frequency

Genome 
frequency

Cluster 
frequency

Genome 
frequency

 Cellular response to 
DNA damage stimulus

49 out of 801 
genes, 6.1%

292 of 6335 
genes, 4.6%

34 out of 235 
genes, 14.5%

292 of 6335 genes, 
4.6%

23 out of 142 
genes, 16.2%

292 of 6335 
genes, 4.6%

 DNA repair
42 out of 801 
genes, 5.2%

239 of 6335 
genes, 3.8%

28 out of 235 
genes, 11.9%

239 of 6335 genes, 
3.8%

19 out of 142 
genes, 13.4%

239 of 6335 
genes, 3.8%

 Chromatin organization
34 out of 801 
genes, 4.2%

238 of 6335 
genes, 3.8%

24 out of 235 
genes, 10.2%

238 of 6335 genes, 
3.8%

14 out of 142 
genes, 9.9%

238 of 6335 
genes, 3.8%

 Regulation of cell cycle
33 out of 801 
genes, 4.1%

184 of 6335 
genes, 2.9%

18 out of 235 
genes, 7.7%

184 of 6335 genes, 
2.9%

11 out of 142 
genes, 7.7%

184 of 6335 
genes, 2.9%

 DNA recombination
29 out of 801 
genes, 3.6%

174 of 6335 
genes, 2.7%

22 out of 235 
genes, 9.4%

174 of 6335 genes, 
2.7%

10 out of 142 
genes, 7.0%

174 of 6335 
genes, 2.7%

 DNA replication
16 out of 801 

genes, 2%
151 of 6335 
genes, 2.4%

13 out of 235 
genes, 5.5%

151 of 6335 genes, 
2.4%

12 out of 142 
genes, 8.5%

151 of 6335 
genes, 2.4%

 Chromosome 
segregation

14 out of 801 
genes, 1.7%

146 of 6335 
genes, 2.3%

11 out of 235 
genes, 4.7%

146 of 6335 genes, 
2.3%

7 out of 142 
genes, 4.9%

146 of 6335 
genes, 2.3%

 Telomere organization
9 out of 801 
genes, 1.1%

76 of 6335 genes, 
1.2%

5 out of 235 
genes, 2.1%

76 of 6335 genes, 
1.2%

3 out of 142 
genes, 2.1%

76 of 6335 
genes, 1.2%

mcm2DENQ mcm4RA mcm6DENQ

ts  alleles- negative 
interactions

GO term
Cluster 

frequency
Genome 
frequency

Cluster 
frequency

Genome 
frequency

Cluster 
frequency

Genome 
frequency

 Cellular response to 
DNA damage stimulus

56 out of 294 
genes, 19.0%

292 of 6335 
genes, 4.6%

29 out of 141 
genes, 20.6%

292 of 6335 genes, 
4.6%

8 out of 162 
genes, 4.9%

292 of 6335 
genes, 4.6%

 DNA repair
52 out of 294 
genes, 17.7%

239 of 6335 
genes, 3.8%

28 out of 141 
genes, 19.9%

239 of 6335 genes, 
3.8%

5 out of 162 
genes, 3.1%

239 of 6335 
genes, 3.8%

 Chromatin organization
43 out of 294 
genes, 14.6%

238 of 6335 
genes, 3.8%

18 out of 141 
genes, 12.8%

238 of 6335 genes, 
3.8%

6 out of 162 
genes, 3.7%

238 of 6335 
genes, 3.8%

 Regulation of cell cycle
25 out of 294 
genes, 8.5%

184 of 6335 
genes, 2.9%

14 out of 141 
genes, 9.9%

184 of 6335 genes, 
2.9%

7 out of 162 
genes, 4.3%

184 of 6335 
genes, 2.9%

 DNA recombination
29 out of 294 
genes, 9.9%

174 of 6335 
genes, 2.7%

16 out of 141 
genes, 11.3%

174 of 6335 genes, 
2.7%

5 out of 162 
genes, 3.1%

174 of 6335 
genes, 2.7%

 DNA replication
52 out of 294 
genes, 17.7%

151 of 6335 
genes, 2.4%

32 out of 141 
genes, 22.7%

151 of 6335 genes, 
2.4%

3 out of 162 
genes, 1.9%

151 of 6335 
genes, 2.4%

 Chromosome 
segregation

41 out of 294 
genes, 13.9%

146 of 6335 
genes, 2.3%

14 out of 141 
genes, 9.9%

146 of 6335 genes, 
2.3%

3 out of 162 
genes, 1.9%

146 of 6335 
genes, 2.3%

 Telomere organization
11 out of 294 
genes, 3.7%

76 of 6335 genes, 
1.2%

5 out of 141 
genes, 3.5%

76 of 6335 genes, 
1.2%

3 out of 162 
genes, 1.9%

76 of 6335 
genes, 1.2%

mcm2DENQ mcm4RA mcm6DENQ
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Table 10. Gene Ontology (GO) term frequency analysis of mcm positive interactions with genes from YKO 

collection, sorted by processes 

 

Table 11. Gene Ontology (GO) term frequency analysis of mcm positive interactions with genes from 

temperature-sensitive collection, sorted by processes 

 

ts  alleles-positive 
interactions

GO term Cluster 
frequency

Genome 
frequency

Cluster 
frequency

Genome 
frequency

Cluster 
frequency

Genome 
frequency

 Cellular response to 
DNA damage stimulus

25 out of 357 
genes, 7.0%

292 of 6335 
genes, 4.6%

15 out of 181 
genes, 8.3%

292 of 6335 genes, 
4.6%

14 out of 177 
genes, 7.9%

292 of 6335 
genes, 4.6%

 DNA repair
22 out of 357 
genes, 6.2%

239 of 6335 
genes, 3.8%

14 out of 181 
genes, 7.7%

239 of 6335 genes, 
3.8%

13 out of 177 
genes, 7.3%

239 of 6335 
genes, 3.8%

 Chromatin organization
21 out of 357 
genes, 5.9%

238 of 6335 
genes, 3.8%

8 out of 181 
genes, 4.4%

238 of 6335 genes, 
3.8%

8 out of 177 
genes, 4.5%

238 of 6335 
genes, 3.8%

 Regulation of cell cycle
17 out of 357 
genes, 4.8%

184 of 6335 
genes, 2.9%

9 out of 181 
genes, 5%

184 of 6335 genes, 
2.9%

11 out of 177 
genes, 6.2%

184 of 6335 
genes, 2.9%

 DNA recombination
5 out of 357 
genes, 1.4%

174 of 6335 
genes, 2.7%

4 out of 181 
genes, 2.2%

174 of 6335 genes, 
2.7%

2 out of 177 
genes, 1.1%

174 of 6335 
genes, 2.7%

 DNA replication
17 out of 357 
genes, 4.8%

151 of 6335 
genes, 2.4%

9 out of 181 
genes, 5%

151 of 6335 genes, 
2.4%

10 out of 177 
genes, 5.6%

151 of 6335 
genes, 2.4%

 Chromosome 
segregation

15 out of 357 
genes, 4.2%

146 of 6335 
genes, 2.3%

11 out of 181 
genes, 6.1%

146 of 6335 genes, 
2.3%

11 out of 177 
genes, 6.2%

146 of 6335 
genes, 2.3%

 Telomere organization
3 out of 357 
genes, 0.8%

76 of 6335 genes, 
1.2%

2 out of 181 
genes, 1.1%

76 of 6335 genes, 
1.2%

1 out of 177 
genes, 0.6%

76 of 6335 
genes, 1.2%

mcm2DENQ mcm4RA mcm6DENQ

Non essential genes-
positive interactions

GO term Cluster 
frequency

Genome 
frequency

Cluster 
frequency

Genome 
frequency

Cluster 
frequency

Genome 
frequency

 Cellular response to 
DNA damage stimulus

38 out of 1124 
genes, 3.4%

292 of 6335 
genes, 4.6%

12 out of 215 
genes, 5.6%

292 of 6335 genes, 
4.6%

25 out of 135 
genes, 18.5%

292 of 6335 
genes, 4.6%

 DNA repair
33 out of 1124 

genes, 2.9%
239 of 6335 
genes, 3.8%

9 out of 215 
genes, 4.2%

239 of 6335 genes, 
3.8%

25 out of 135 
genes, 18.5%

239 of 6335 
genes, 3.8%

 Chromatin organization
29 out of 1124 

genes, 2.6%
238 of 6335 
genes, 3.8%

3 out of 215 
genes, 1.4%

238 of 6335 genes, 
3.8%

18 out of 135 
genes, 13.3%

238 of 6335 
genes, 3.8%

 Regulation of cell cycle
30 out of 1124 

genes, 2.7%
184 of 6335 
genes, 2.9%

8 out of 215 
genes, 3.7%

184 of 6335 genes, 
2.9%

16 out of 135 
genes, 11.9%

184 of 6335 
genes, 2.9%

 DNA recombination
31 out of 1124 

genes, 2.8%
174 of 6335 
genes, 2.7%

7 out of 215 
genes, 3.3%

174 of 6335 genes, 
2.7%

14 out of 135 
genes, 10.4%

174 of 6335 
genes, 2.7%

 DNA replication
11 out of 1124 

genes, 1%
151 of 6335 
genes, 2.4%

4 out of 215 
genes, 1.9%

151 of 6335 genes, 
2.4%

26 out of 135 
genes, 19.3%

151 of 6335 
genes, 2.4%

 Chromosome 
segregation

16 out of 1124 
genes, 1.4%

146 of 6335 
genes, 2.3%

2 out of 215 
genes, 0.9%

146 of 6335 genes, 
2.3%

11 out of 135 
genes, 8.1%

146 of 6335 
genes, 2.3%

 Telomere organization
11 out of 1124 

genes, 1%
76 of 6335 genes, 

1.2%
4 out of 215 
genes, 1.9%

76 of 6335 genes, 
1.2%

4 out of 135 
genes, 3%

76 of 6335 
genes, 1.2%

mcm2DENQ mcm4RA mcm6DENQ
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CONCLUSIONS AND FUTURE PERSPECTIVES 

Regulation of genome stability is crucial for survival. Eukaryotes have consequently evolved 

multiple mechanisms to deal with situations that pose a threat to the integrity of their DNA. 

Obviously, regulation of factors that directly interact with DNA during specific times during a cell 

cycle is a common mechanism. The process of DNA replication is even more stringently 

controlled, as it involves processing of the entire genome within a limited time with great accuracy. 

Such a necessity puts added burden on the cells to ensure that errors in the process are kept to a 

minimum. While a large number of proteins are involved in this process, in some ways the 

regulation of this entire process critically hinges on the spatiotemporal control of the replicative 

helicase. As a factor that partakes in the licensing of replicative origins in G1, the initiation of 

DNA replication in early S-phase, and in elongation as an unwinding machine throughout S-phase, 

Mcm2-7 is an essential component of eukaryotic DNA replication. 

 

We have shown that misregulation of the Mcm complex via perturbations to specific active 

sites is detrimental to many closely-related processes such as checkpoint signaling and 

chromosome segregation. We have further demonstrated that mcm mutations can affect many 

processes without overtly affecting DNA replication. The initial screen from which many members 

of the Mcm complex were first identified relied on using plasmid stability as a metric for 

determining that the Mcms had a role in replication. Since then, many studies have similarly shown 

that mutations in mcm subunits affect either complex assembly, helicase activity, or DNA 

replication [88, 291, 347, 351]. Other studies have similarly looked at segregation defects in mcm 

mutants [352]. These effects are almost invariably due to hypomorphic mutations that reduce Mcm 
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function. On the other hand, we were able to identify a mutant which has several specific defects 

in vivo without overt replication defects. Specifically, we show that the mcm2DENQ mutant, while 

having negligible effects on in vitro DNA unwinding, and in vivo complex assembly, protein 

stability or protein abundance, and early origin firing, can still short circuit the DNA replication 

checkpoint, and additionally lead to DNA damage  even under unchallenged growth conditions. 

Additionally, with other mcm alleles, we were able to show that it is possible to genetically 

separate some of these defects. Therefore, unlike the previously held view in the field that most 

mcm mutations invariably affect DNA replication, and therefore spawn secondary defects, we 

show through our studies that this is not necessarily the case. In this manner, we identify novel in 

vivo roles for different ATPase active sites.  

 

Because the mutants examined map to low turnover ATPase active sites, it explains why 

certain mutations do not affect bulk DNA unwinding in in vitro assays and permit viability but 

nevertheless are associated with many in vivo defects. This suggests that ATP turnover at these 

active sites is likely associated with key regulatory functions. In vivo, other factors associating 

with specific Mcm subunits might also be playing a role in regulating ATP hydrolysis at the 

Mcm6/2 and Mcm4/6 active sites. As mentioned previously, proteins such as Mrc1 directly 

associate with Mcm6 and seem like good candidates for such regulation. It is worth mentioning 

that nucleotide turnover of GTPases such as Ras are analogously regulated by proteins such as 

GAPs and GEFs [353]. 
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While prokaryotic helicases (e.g. E. coli DnaB), and archael replicative helicases 

(Sulfolobus Mcm) usually rely on homohexameric complexes to unwind their DNA, the eukaryotic 

Mcm2-7 is unique as the only known heterohexameric replicative helicase. These multiple 

subunits offer Mcm2-7 several advantages over its primitive counterparts, including the ability to 

differentially control ATP hydrolysis at specific active sites, providing multiple points of 

regulation within the same complex, and the potential to interact with multiple additional factors 

at replication forks. As is apparent in the genetic screens of our ATPase active site mutants, the 

Mcm complex can functionally interface with a wide range of factors involved not just in 

replication but in cell cycle control, chromosome segregation and DNA repair to list a few 

examples. 

 

Our findings also hold significance from a clinical point of view. We show that that the 

misregulation of specific mcm ATPase active sites give rise to phenotypes such as genomic 

instability, loss of sister chromatid cohesion, DNA damage and aberrant firing of dormant 

replication origins under conditions where the cell cycle should arrest. Almost all of these 

phenotypes are common features of different cancers [354, 355]. mcm4Chaos3 is a well-studied 

recent example, whereby a change in a conserved amino acid (F345I) results in an unstable Mcm4 

protein [356]. While mice bearing this mutation show an elevated incidence of adenocarcinomas, 

yeast strains engineered to contain the corresponding allele (resulting in an F391I change) also 

display a classical plasmid loss phenotype and severe genome instability.  There are a variety of 

studies that further show how misregulation of Mcms either as overexpression, impaired 

subcellular localization, or decreased gene dosage can confer cancer susceptibility and cause 

chromosome instability [357, 358]. Additionally, monitoring Mcm2 and Mcm5 expression have 
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been proposed as a prognostic technique in colon cancer [359]. In the latter example,  

misregulation of Mcm subunits that constitute the regulatory ‘gate’ within the Mcm complex can 

have unfavorable consequences for cells, leading us to speculate that regulatory subunits play a 

key part in ensuring normal Mcm function. Furthermore, many cancer studies have shown the 

selective misregulation of specific Mcm subunits but not others. Notably, Mcm7 overexpression 

is correlated with various types of cancer include prostate and non-small lung cancer [360, 361]. 

Interestingly, Mcm7 has been known to bind several tumor suppressor proteins, most notably 

retinoblastoma protein Rb, and p130 [362], suggesting that selective overexpression of only certain 

Mcms may serve as a mechanism to titrate anti-cancer factors to allow proliferation. 

 

Based on the above studies, Mcm regulation seems like an attractive target for designing 

cancer chemotherapeutics. While Mcms are expressed both by normally proliferating cells and 

cells with cancer potential, phenotypes arising from Mcm misregulation create basic physiological 

differences between such cells. For example, a study showed that a reduction of Mcm levels in 

human cell lines was still able to support replication for a considerable length of time. However, 

upon induction of replicative stress such cells became highly sensitive to replication inhibitors and 

showed genetic instability and DNA damage [363]. In principle, cancer cells represent ‘stressed’ 

replication environments and therefore it is possible to selectively target Mcms in cancer cells with 

minimal injury to normal cells. Future studies could also be aimed at exploring the wide range of 

Mcm interactions and design strategies to selectively target pathways involving Mcm 

misregulation rather than focusing on one or few factors. Our studies showing Mcm regulation as 

a common denominator of multiple genomic processes provide a sound theoretical framework for 

pursuing such avenues.  
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