
UNIFYING QUALITATIVE AND QUANTITATIVE

DATABASE PREFERENCES TO ENHANCE QUERY

PERSONALIZATION

by

Roxana Gheorghiu

B.Sc. in Computer Science, University of Bucharest, 2004

M.Sc. in Computer Science, University of Bucharest, 2005

M.Sc. in Computer Science, University of Pittsburgh, 2013

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2014

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Roxana Gheorghiu

It was defended on

May 30, 2014

and approved by

Alexandros Labrinidis, Associate Professor, University of Pittsburgh

Panos K. Chrysanthis, Professor, University of Pittsburgh

Adam J. Lee, Computer Science Department

Vladimir I. Zadorozhny, School of Information Sciences

Dissertation Advisors: Alexandros Labrinidis, Associate Professor, University of Pittsburgh,

Panos K. Chrysanthis, Professor, University of Pittsburgh

ii

Copyright c© by Roxana Gheorghiu

2014

iii

UNIFYING QUALITATIVE AND QUANTITATIVE DATABASE PREFERENCES TO

ENHANCE QUERY PERSONALIZATION

Roxana Gheorghiu, PhD

University of Pittsburgh, 2014

Data drives all aspects of our society, from everyday life, to business, to medicine, and science.

It is well-known that query personalization can be an effective technique in dealing with the data

scalability challenge, primarily from the human point of view. In order to personalize their query

results, user’s need to express their preferences in an effective manner. There are two types of pre-

ferences: qualitative and quantitative. Each preference type has advantages and disadvantages with

respect to expressiveness. The most important disadvantage of the quantitative model is that it can-

not support all types of preferences while the qualitative model can only create a partial order over

the data, which makes it impossible to rank all the results. The hypothesis of this dissertation is that

it is possible to overcome the disadvantages of each preference type by combining both of them, in

a single model, using the notion of intensity. This dissertation presents such a hybrid model and a

practical system that has the ability to convert the intensity values of qualitative preferences into in-

tensity values of quantitative preferences, without losing the qualitative information. The intensity

values allow to create a total order over the tuples in the database that match a user’s preferences

as well as to significantly increase the coverage of preferences. Hence, the proposed model elim-

inates the disadvantages of the existing two types of preferences. This dissertation formalizes the

hybrid model using a preference graph and proposes an algorithm for efficient preference combi-

nation, which is evaluated in an experimental prototype. The experiments show that: (1) intensity

plays a crucial role in determining the order of selecting and applying the preferences, and simply

ordering the preferences based on the intensity value is not necessarily sufficient; (2) the model

can achieve three orders of magnitude increase in coverage compared to other alternatives; (3) the

iv

solution proposed outperforms other Top-k algorithms by being able to use both qualitative and

quantitative preferences at the same time, and (4) the algorithm proposed is efficient in terms of

time complexity, returning tuples ordered by the intensity value in a matter of seconds.

Keywords Qualitative Preferences, Quantitative Preferences, Top-K Ranking.

v

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Qualitative vs. Quantitative Preferences . 2

1.3 State of The Art and its Limitations . 5

1.4 The Proposed Hybrid Model . 7

1.5 Contributions . 7

1.6 Outline . 8

2.0 BACKGROUND AND RELATED WORK . 10

2.1 Quantitative Preferences . 10

2.2 Qualitative Preferences . 11

2.3 Preference Composition . 13

2.3.1 Quantitative Composition . 13

2.3.2 Qualitative Composition . 14

2.4 Preference Graphs and Preference Granularity . 14

2.4.1 Preference Graph Definitions . 14

2.4.2 Levels of Granularity for Preferences . 18

2.5 Current Support for Hybrid Preferences and Preference Graphs 18

2.6 Summary . 20

3.0 UNIFIED PREFERENCE GRAPH MODEL . 22

3.1 Why is a Unified Database Preferences model necessary ? 22

3.2 Unified Model for Preferences . 23

3.2.1 Tuple-based vs. Predicate-based Preference Graph 24

vi

3.2.2 Attribute-based Preference Graph . 25

3.3 Specifying Preferences in HYPRE Graph . 25

3.3.1 Quantitative Preferences in the HYPRE Graph 26

3.3.2 Qualitative Preferences in the HYPRE Graph 28

3.4 Summary . 30

4.0 HYPRE GRAPH – FROM THEORY TO IMPLEMENTATION 32

4.1 Graph representations . 32

4.2 HYPRE Representation . 34

4.3 Neo4j – A Scalable Graph Database System . 35

4.4 Essential Functions to (Re-)Compute Intensity Values 38

4.5 Algorithm for HYPRE Graph Generation . 41

4.6 Preference Aware Query Enhancement . 42

4.6.1 Preference Combination and the Combined Intensity Value 45

4.7 Summary . 49

5.0 TOWARDS A PRACTICAL AND EFFICIENT ALGORITHM FOR GENERAT-

ING BEST PREFERENCE COMBINATIONS . 50

5.1 Utility and Coverage Metrics . 50

5.1.1 Utility Metric . 50

5.1.2 Coverage Metric . 51

5.2 Theoretical Upper Bound Complexity for Preference Combination 52

5.3 Algorithms to Generate Preference Combinations 54

5.3.1 Combine-Two Algorithm . 55

5.3.2 Partially-Combine-All Algorithm . 59

5.4 Bias-Random-Selection Algorithm . 64

5.5 An Algorithm for a Practical and Efficient Preference Selection 67

5.5.1 The Complete PEPS Algorithm . 67

5.5.2 The Approximate PEPS Algorithm . 69

5.6 Summary . 71

6.0 EXPERIMENTAL WORKLOAD . 72

6.1 DBLP Citation Network . 72

vii

6.2 Preference Extraction . 73

6.2.1 Quantitative Preferences . 74

6.2.2 Qualitative Preferences . 76

6.2.3 Conflict Resolution . 77

6.3 The Time Complexity of Creating the HYPRE Graph 79

6.3.1 Default Value Selection . 81

6.4 Summary . 82

7.0 EXPERIMENTAL RESULTS . 84

7.1 Experimental Results Based on Utility and Coverage Metrics 84

7.1.1 Experimental Results for Utility Metric . 84

7.1.2 Experimental Results for Coverage Metric 87

7.2 Determining the Best Combination of Preferences 89

7.3 Experimental Results for Combine-Two Algorithm 90

7.4 Experimental Results for Partially-Combine-All Algorithm 93

7.5 Experimental Results for Bias-Random Algorithm 94

7.6 Experimental Results for PEPS Algorithm . 96

7.6.1 Top-K Baseline Algorithm . 97

7.6.2 Similarity and Coverage Metrics . 99

7.6.3 Top-K Comparison Evaluation . 99

8.0 CONCLUSIONS AND FUTURE WORK . 104

8.1 Summary of Contributions . 104

8.2 Future Work . 106

8.3 Impact of this Dissertation . 106

BIBLIOGRAPHY . 108

viii

LIST OF TABLES

1 Existing Preference Representations, as Presented in Pitoura et al. [40] 3

2 Qualitative, Quantitative and the Hybrid Model . 4

3 The Movie Relation . 12

4 Intensity . 12

5 Dealership Relation . 20

6 The DBLP Relation . 26

7 List of Preferences for uid=2 . 44

8 Dealership Relation . 48

9 Intensities Values for Tuples in Dealership Relation 49

10 Statistics for the DBLP Database . 73

11 Insertion Time . 79

12 Possible DEFAULT VALUEs . 82

ix

LIST OF FIGURES

1 Personalization Graph Example as Presented in Pitoura et. al [40] 15

2 Pitoura et. al [35] – Context Information Enhanced Personalization Graph 17

3 Pitoura et. al [40] – Personalization Graph Enhanced with Conditional Preference

Tables . 17

4 Quantitative Preferences . 27

5 HYPRE Graph After All Quantitative Preferences are Inserted 28

6 HYPRE Graph with Relative Preference . 29

7 HYPRE Graph with Relative Preference and Set Preference 30

8 Final Version of HYPRE Graph . 31

9 Relative Preferences Specifications (a) Graph Representation; (b) Adjacency Matrix 33

10 Quantitative Preference Storage . 34

11 Qualitative Preference Storage . 34

12 Example of a Vertex in the HYPRE Graph . 36

13 Node Insertion Time for 7 Billion Nodes, in 1 Million Batch Size. 37

14 In degree=0 for Node P1 . 41

15 Out degree=0 for Node P2 . 41

16 Bias-Random Algorithm Representation . 64

17 Distribution of Number of Preferences . 77

18 Utility Value (uid=2) . 85

19 Utility Value (uid=38437) . 85

20 Number of Tuples for All Combinations of 2 Preferences 86

21 Intensity Value for All Combinations of 2 Preferences 86

x

22 Number of Tuples for All Combinations of 5 Preferences 86

23 Intensity Value for All Combinations of 5 Preferences 86

24 Number of Tuples for All Combinations of 10 Preferences 87

25 Intensity Value for All Combinations of 10 Preferences 87

26 Variation of Number of Quantitative Preferences for uid=2 88

27 Variation of Number of Quantitative Preferences for uid=38437 88

28 The Coverage Over the Dataset for uid=2 and uid=38437 89

29 Variation of Intensity Value (uid=2) – Combine-Two Algorithm 91

30 Variation of Intensity Value (uid=38437) – Combine-Two Algorithm 91

31 Intensity Value Variation for First 20 Combinations (uid=2) – Combine-Two Algo-

rithm . 92

32 Intensity Value Variation (uid=2) -Partially-Combine-All Algorithm -All 2, 5 and

10 preferences . 94

33 Intensity Value Variation (uid=38437) -Partially-Combine-All Algorithm -All 2, 5

and 10 preferences . 94

34 Intensity Value Variation (uid=2) -Partially-Combine-All Algorithm – 10 pref. or

more . 95

35 Number of Solutions vs. the Number of Different Combinations Checked (uid=2) . 96

36 Number of Solutions vs. the Number of Different Combinations Checked (uid=38437) 97

37 Variation of Intensity Value (uid=2) -PEPS vs. TopK FA Algorithm 100

38 Variation of Intensity Value (uid=38437) -PEPS vs. TopK FA Algorithm 101

39 Time variation when size of K changes (uid=2) -TopK PEPS Algorithm 102

40 Time variation when size of K changes (uid=38437) -TopK PEPS Algorithm 103

xi

LIST OF ALGORITHMS

1 Create Preference Graph . 43

2 Combine-Two Algorithm with AND OR sematics 57

3 Combine-Two Algorithm with AND sematics . 58

4 Partially-Combine-All Algorithm . 61

5 Bias-Random-Selection . 66

6 PEPS Algorithm with AND semantics . 70

7 Check conflict . 79

8 Compute Intensity Value . 80

xii

LIST OF EQUATIONS

4.1 Equation (4.1) . 38

4.2 Equation (4.2) . 38

4.3 Equation (4.3) . 46

4.4 Equation (4.4) . 46

5.1 Equation (5.1) . 51

5.2 Equation (5.2) . 51

5.3 Equation (5.3) . 52

5.4 Equation (5.4) . 53

5.5 Equation (5.5) . 53

5.6 Equation (5.6) . 54

6.1 Equation (6.1) . 76

6.2 Equation (6.2) . 76

xiii

1.0 INTRODUCTION

1.1 MOTIVATION

The supply and demand of data is becoming commonplace in all aspects of our society; from ev-

eryday life (e.g., picking movies or restaurants), to business (e.g., advertising and marketing cam-

paigns), to medicine (e.g., high-throughput sequencing), and science in general (i.e., The Fourth

Paradigm [18]). The term “Big Data” [30] has been used to describe the challenges and op-

portunities from such a ubiquity of data, while also considering its volume, velocity, and variety

characteristics. Although some may argue that Big Data is currently entering the Trough of Disil-

lusionment, after following the typical “Hype Cycle”1, the reality of the matter remains that there

are still many technical challenges, as more and more people are accustomed to using data in their

lives (for personal, business, or scientific reasons), making scalability a major challenge.

In the database domain we distinguish two types of scalability related to the Big Data Paradigm:

• scalability from a systems point of view – this refers to traditional challenges due to the volume

of data (and the rate of increase) and limitations in network bandwidth, processing, memory,

and storage capacity. For example, how to make a single user query return all the results as

fast as possible.

• scalability from a human point of view – given the volumes of data, new paradigms to aid in

search are needed so that users do not get lost in a sea of data. For example, how to make a

single user query return only the most relevant results for that user.

It is well-known([29], [15], [33]) that query personalization can be an effective technique in

dealing with the scalability challenge, primarily from the human point of view. In order to person-

1http://en.wikipedia.org/wiki/Hype cycle

1

alize their query results, users need to provide their preferences in an effective manner (essentially

letting the system form user profiles). These preferences are then used when users submit queries

in order to only return the results that are most relevant to them. Cutting down the result set in this

way improves both types of scalability, mentioned above.

There are two main types of user preferences defined in the literature [40]: quantitative and

quantitative.

• Quantitative preferences are described by scores attached to each tuple that matches a prefer-

ence. For example, consider the following preference: “I like comedies very much”. This can

be translated in the following quantitative preference: (“I like comedies”, score =1). The score

denotes users’ interest in one or multiple data tuples. Using these scores we can define a total

order over the database tuples, e.g., from the most preferred to the least preferred.

• Qualitative preferences are expressed as pairs of tuples. As an example, consider the prefer-

ence “I like comedies more than dramas”. This can be translated into the following qualitative

preference: (“comedies”, preferred over, “dramas”). When put together, these pairs generally

create only a partial order over database tuples, since some are incomparable.

While qualitative preferences are more user-friendly because it allow preferences described by

comparison, quantitative preferences are easier to use by a system since a ranking of the tuples

that mach any preferences is done automatically using the attached score.

Due to the importance of preferences, especially in the context of Big Data, a plethora of

alternatives have been proposed. Table 1 contains a summary of the most important preference

solutions and their main characteristics. The majority of the work done so far can handle only one

preference type (mostly qualitative since is the most general approach), and at the tuple granularity

level (i.e., preferences expressed on the value of the tuples’s attribute) [40].

1.2 QUALITATIVE VS. QUANTITATIVE PREFERENCES

Each type of preferences – quantitative and qualitative – has its advantages over the other. There

are examples when a user’s preference can be conveniently expressed using one approach but not

2

Table 1: Existing Preference Representations, as Presented in Pitoura et al. [40]

Formulation Granularity Context

Q
ua

lit
at

iv
e

Q
ua

nt
ita

tiv
e

Tu
pl

e

A
ttr

ib
ut

e

R
el

at
io

ns
hi

p

C
on

te
xt

-f
re

e

In
te

rn
al

E
xt

er
na

l

1 Lacroix and Lavency 1987 [27] X X X

2 Agrawal and Wimmers 2000 [2] X X X

3 Kießling 2002 [21] X X X X

4 Chomicki 2002 [8]; 2003 [9] X X X X

5 Holland and Kißling 2004 [19] X X X

6 Koutrika and Ioannidis 2004 [24]; 2005 [25] X X X X

7 Agrawal et al. 2006 [1] X X X

8 Endres and Kißling 2006 [13] X X X

9 Bunningen et al. 2006 [46] X X X

10 Stefanidis et al. 2006 [41]; 2007 [42] X X X X

11 Mindolin and Chomicki 2007 [32] X X X X

12 Ciaccia 2007 [10] X X X

13 Georgiadis et al. 2008 [16] X X X X

14 Miele et al. 2009 [31] X X X X

the other. For example, it is very easy to express a negative preference in the quantitative model, by

assigning a negative score to that particular tuple or to a set of tuples that match a given predicate.

However, there is no easy way to express a negative preference in the qualitative model, since this

will require, for example, to explicitly list all tuples that are preferred over the non-preferred ones.

In fact, this would need to happen for all tuples currently in the database and also for all tuples

added later.

The basic idea of the use of preferences is to generate an order over the database tuples, ranking

3

Table 2: Qualitative, Quantitative and the Hybrid Model

Dimension Qualitative Model Quantitative Model Hybrid Model
Generality Mostly general Less general As general as possible

Intuitiveness User friendly Not easy to decide Any form can be
Easy and intuitive how to assign values used

Negative preference Not intuitively Using negative Using negative
support values values

Order created by Partial Total Total
the use of preferences

Combining preferences By the use of Easily accessible Can use both aggregation
different rules using aggregation functions functions and rules

them from the most preferred to the least preferred with respect to a user. Tuples that do not match

any preference can be divided into two categories: equally preferred and incomparable. In the case

of quantitative preferences, tuples that are equally preferred can be seen as having the same score,

whereas, in the case or qualitative preferences, tuples that are incomparable cannot be included in

the partial or total order defined by the preferences.

Another important aspect of preferences comes from the fact that they can be expressed with

different intensity levels. Preferences should not be seen as a binary option; instead, a system

should allow every user to express his/hers preferences along with the intensity of that particular

preference, i.e., how ”strongly” he/she feels about that preference. This intensity value can be seen

as a score attached to each tuple and it can easily be applied to a quantitative preference. But in

the case of a qualitative preference, the intensity suggests the strength between two different tuples

and cannot be associated, individually, to any of the two tuples involved in the preference; it should

instead be linked with the pair of tuples.

This intensity can also change given the query context. For example, during a rainy day some-

one will be very happy with a movie recommendation but during a sunny day, the same person

may be more interested in outdoor activities and less interested in movies.

Table 2 summarizes the key the positive and negative features of the two type of preferences

that motivated our work to seek a user-friendly way to express preferences which enables the

creation of total order over the tuples.

4

The most important negative aspects of the Qualitative Model are:

• Inability to easily express a negative preference.

• It can only create a strict partial order between tuples (i.e., a partial order that is irreflexive).

• It can be seen as supporting only local preferences since a qualitative preference expresses

the selection of one set of tuples, when compared with another set of tuples. A qualitative

preference does not make any statement about a user’s willingness of selecting one particular

tuple out of all database tuples.

Although the Quantitative Model can be seen as supporting global preferences, it is less general

than a qualitative model therefore it cannot express all preferences that a qualitative model can. For

example, it cannot express the following preference: “Given two movies with the same genre, I

prefer the longer one”. Moreover, although this model is very intuitive and easy to use after scores

have been attached to each tuple, there is no intuitive way to define how these scores should be

assigned.

1.3 STATE OF THE ART AND ITS LIMITATIONS

Given the complementary advantages of the qualitative and quantitative models an attempt was

made by Kiessling et al. [23], in Preference SQL (see Table 1) to combine qualitative and quan-

titative preferences. Preference SQL is a framework that can support a hybrid version of both

qualitative and quantitative preferences. Each preference is submitted by the user at the query

time in a special clause called PREFERRING and can be seen as a local view of preferences,

since for each query submitted, the user needs to define their preferences. All preferences are con-

nected with an AND operator except for the case when a qualitative preference is defined, in which

case an ELSE operator is used (e.g., “PREFERRING venue IN (’CIKM’) ELSE (’SIGMOD’)”).

Moreover, to set a priority between two different preferences, a new operator, PRIOR TO, is used

(e.g., “PREFERRING venue IN (’CIKM’) ELSE (’SIGMOD’) PRIOR TO year > 2010”). In this

framework users need to fully describe their preferences for each query.

The Preference SQL system also allows users to define their own scoring function that will

5

virtually assign a score to all tuples returned by the query. This feature gives users the chance to

define their own quantitative preference and their own scale for preference intensity. However, this

does not capture the strength of a qualitative preference and therefore it cannot be used to define a

qualitative preference.

Preference SQL is the first system that combines the two different types of preferences but it

does not completely solve the problem because:

(a) Preferences need to be manually introduced by each user every time a query is submitted. Al-

though there are multiple features that can be used to create a query that will combine user’s

preferences, one can easily see that it can quickly become cumbersome, when many preferen-

ces are used. Not only that user needs to remember all the preferences, but also, enhancing a

query with many preferences, every time the query is ran, is a task that is time consuming and

prone to errors.

(b) In the case of a qualitative preference, there is no solution to capture the preference’s strength.

The Preference SQL system allows users to define which tuples are preferred but it cannot

capture the strength of that preference. Qualitative preferences can define an equally preferred

set of tuples or a ranking of one set over the other. For example,

P1: “Color red is much more preferred than color blue”. This is a preference that ranks tuples

with color=’red’ over tuples with color=’blue’. In Preference SQL this can be express as:

“PREFERRING color in (’red’) ELSE color in (’blue’)”.

P2: “I like color blue and red equally”. This is a preference that defines an equality in pref-

erence between tuples with color=’blue’ and color=’red’. In Preference SQL this can be

express as “PREFERRING color=’red’ AND color=’blue’ ”.

P3: “I like slightly better the color red then color blue”. This is, again, a preference that

ranks tuples with color=’red’ over tuples with color=’blue’ however, there is no difference

in the way the clause is defined in Preference SQL, when compared with P1. However,

preference P1 expresses a strong preference whereas this preference is a weaker preference

and the tuples that match it can be almost seen as equally preferred. Because of the lack

of intensity support, this information will be lost.

This lack of scoring of a binary relation when describing a qualitative preference, can lead to

an unexpected ordering of query results.

6

1.4 THE PROPOSED HYBRID MODEL

The hypothesis of this work is that a hybrid model, which integrates qualitative and quantitative

preferences by means of preference strength or intensity and user profiles, is both user-friendly and

creates a global view of preferences that can be effectively used to rank the query results.

In this dissertation we present a hybrid preference model and a prototype system that combine

quantitative and qualitative preferences using their intensity values, providing a better approach

then Preference SQL. The formal underpinning of our proposed unified model is a preference

graph. Each node in the graph represents a query predicate. We express quantitative preferences

using edges that have the same starting and ending point. Qualitative preferences are represented

by edges between two different nodes. Each edge is labeled with a value that represents the in-

tensity of the preference. Users submit both qualitative and quantitative preferences along with an

intensity value. In this way, users create their own profile by incrementally adding or removing

preferences over the database tuples. When a query is submitted, the system effectively selects the

best combination of preferences from the users profile to filter and rank the query results.

Although we define only predicate-based preferences, is interesting to see that attribute-based

preferences can be used to support skyline queries by defining a preferences on the attribute with a

function associated. For example, the following preference “I want the cheapest hotel that is close

to the beach” can be express by using two attribute nodes (i.e.,<distance, min> and<price, min>)

where min is the function associated with the attribute. Also, we can create qualitative preferences

by assigning an order over the attribute nodes, and decide which one is more important (e.g., price

is more important than distance).

1.5 CONTRIBUTIONS

In this dissertation we create a new and holistic model to capture database preferences. Our model

combines qualitative and quantitative preferences; stores, combines and assigns intensity values

7

for each preference; provides a new algorithm that is guaranteed to return a list of combined pre-

ferences that can be further used to retrieve tuples in descending order of intensity.

In the database domain preferences are seen as soft criteria and are used to filter the data to

avoid information the starvation problem (no tuples returned) or the flooding problem (too many

tuples returned). In contrast, predicates in the SQL WHERE clause are seen as hard constraints

and a non-empty result is returned only when all conditions are met.

In summary, the key contributions of this dissertation are:

1. A theoretical model, called HYPRE ([‘haip@]), that describes the preference graph and how

different types of preferences can be specified.

2. A method to convert qualitative preferences to quantitative preferences which are incorporated

into SQL statements as both hard and soft constraints and a Top-K algorithm which utilizes

this method.

3. An experimental evaluation of the time complexity to create the preference graph and a theo-

retical proof of the complexity of preference combination problem.

4. Evaluation of our solution and validation of two different hypotheses. First, a unified model

significantly increases the number of quantitative preferences available and it allows to totally

order the tuples in the database based on the intensity of preferences. Second, the order in

which the preferences are combined is very important.

5. Evaluation of our system in comparison with a well known Top-K algorithm that shows that our

system consistently order the tuples as the Top-K algorithms, without a performance penalty.

Moreover, we show that our model covers more tuples in the database by having access simul-

taneously to both qualitative and quantitative preferences.

1.6 OUTLINE

The rest of this dissertation is structured as follows: In Chapter 2 we provide the necessary

background for Database Preferences and Graph Preferences and describe the characteristics of

database preference systems that already exist in the literature. In Chapter 3 we describe our theo-

retical model for unifying qualitative and quantitative preferences followed by a discussion about

8

how we support and implement this model in a real system, in Chapter 4. In Chapter 5 we intro-

duce three approximation algorithms that are used to extract and combine preferences followed by

two practical and efficient preference combination algorithms – the complete and the approximate

versions. In Chapter 6 we discuss about the preference extraction process and the two metrics –

utility and coverage – we defined to characterize the results and we present the findings of run-

ning different experiments on a real dataset in Chapter 7. Finally this dissertation is concluded in

Chapter 8 by a guideline for future improvements and feature enhancements of the model and the

system, as well as a summary of the overall work.

9

2.0 BACKGROUND AND RELATED WORK

In this section we first describe the two different types of database preferences known in the liter-

ature in terms of representation and composition, with the emphasis on their positive and negative

aspects. Then we take a closer look at different models defined in the literature, showing how our

work differs and why it is an improvement over the existing work.

In the following two sections we will make use of the following notations: R (A1, A2, . . . , An)

is a relational schema with n attributes denoted by A1, A2, . . .An. For each attribute, we define the

space of possible values of that particular attribute by dom(Ai). Moreover, a tuple t, in R, is defined

as t=(a1, a2, . . . , an) where ai ∈ dom(Ai). Using these notations, we next define quantitative and

qualitative preferences.

2.1 QUANTITATIVE PREFERENCES

Let us consider the relational schema and the tuples given in Table 3 with their associated intensity

values given in Table 4.

Definition 1. Quantitative preferences – Given a relational schema R and D, a subdomain of the

real numbers set R, a quantitative preference is defined as a function p:dom(A1) x dom(A2) x . . . x

dom(An) → D. Given tuple t ∈ R, p(t) represents the score (or the intensity) associated with the

tuple t.

Intuitively, a score1 attached to one tuple describes a quantitative preference. As an example,

consider the preference statement: “I like comedies very much” and D=[-1,1]. This can be trans-

1We use score and intensity interchangeable.

10

lated in the following quantitative preference: (“I like comedies”, score =1). The score denotes

users’ interest in one or multiple data tuples that match a specified condition. Using these scores

we can easily define a total order over the set of tuples that have a score attached. All other tuples

cannot be considered for the total order until they also get a score (e.g., tuple m6 in Table 4).

Example 1. Using the values provided in Table 4 we can see that tuple m2 is preferred over tuple

m5 which, in turn, is preferred over tuples m1 and m4.

In the example above, tuples m4 and m1 have the same intensity values whereas there is no

intensity value defined for tuple m6. When we discuss about preferences, some tuples in the

database will be equally preferred whereas for other tuples the user will have an indifferent attitude.

Definition 2. Equally preferred – Given a relational schema R and D, a subdomain of the real

numbers set R, a quantitative preference p and two tuples, t1 and t2 ∈ R (or two sets of tuples in

R), we say that t1 is equally preferred to t2 if and only if p(t1)= p(t2).

Example 2. In Table 4, tuples m4 and m1 have the same intensity value therefore they are equally

preferred.

Definition 3. Indifference – Given a quantitative preference p and a set of tuples T={ t, t ∈ R}, we

say that any t ∈ T is in an indifference preference relation if and only if p(t) is equal to zero.

Example 3. In Table 4, tuple m3 has an intensity value equal to zero. This value is used to mark

an indifference towards a particular tuple or set of tuples.

2.2 QUALITATIVE PREFERENCES

Definition 4. Qualitative preferences.

Given a relational schema R, a tuple-level qualitative preference is defined as a binary re-

lation �p over
∏n

i=1 dom(Ai) x
∏n

j=1 dom(Aj). Given tuples t1 ∈
∏n

i=1 dom(Ai) and t2 ∈∏n
j=1 dom(Aj), t1 6= t2, the pair (t1, t2) represents a single qualitative preference, t1 �p t2,

and is read as t1 is preferred over t2.

Intuitively, qualitative preferences are expressed as pairs of tuples where the first tuple in the

11

Table 3: The Movie Relation

movie id title year director genre

m1 Casablanca 1942 M. Curtiz drama

m2 Psycho 1960 A. Hitchock horror

m3 Schindler’s List 1993 S. Spielberg drama

m4 White Christmas 1954 M. Curtiz comedy

m5 The Adventures of Tintin 2011 S. Spielberg comedy

m6 The Girl on the Train 2013 L. Brand thriller

Table 4: Intensity

movie id score

m1 0.3

m2 0.9

m3 0

m4 0.3

m5 0.6

m6

pair is the one preferred when compared to the second tuple in the pair. As an example, consider

the preference “I like comedies more than dramas”. This can be translated into the following qual-

itative preference: (“comedies”, “dramas”) or “comedies” � “dramas”. Following the relational

schema in Table 3, the same preference can be stated as: {m5, m4} �p {m1, m3}.

In the literature there is no clear definition for specifying an equality preference. In principle,

two tuples are equally preferred if they are equivalent to each other and they can substitute each

other in the list of results without changing the semantics. Usually tuples that are not compared to

each other in any preference are considered to be equally preferred but there are cases when they

are instead incomparable and they cannot, in some fundamental sense be compared to each other.

Unless is otherwise stated, it is very hard to distinguish between these two cases and most of the

time an a-priori assumption is made in terms of how these tuples will be treated.

Definition 5. Indifference preference relation – Given a tuple t in R, we say that t is in an indiffer-

ence preference relation with any other tuple in R if and only if ∀ti ∈ R 6 ∃ preference p such that

(t �p tj or tj �p t). In other words, tuple t is not part of any preference relation.

Example 4. A user defines the following preferences: P1:“Given two drama movies, I prefer

the most recent one.” , P2: “I prefer a comedy movie directed by Curtiz to a comedy directed

by Spielberg” and P3: “If two movies are directed by Curtiz, I prefer the newer one”. Using

the relational schema shown in Table 3, these preferences are translated into: P1: (m3, m1) or

12

m3 �P1 m1, P2: (m4, m5) or m4 �P2 m5 and P3: (m4, m1) or m4 �P3 m1.

Moreover, tuples m3 and m4 can be seen as equally preferred whereas tuple m2 is in an

indifference preference relation with all other tuples in the database.

2.3 PREFERENCE COMPOSITION

Preferences affect one or more tuples in the database. When two different preferences act on the

same set of tuples, different composition mechanisms can be used to determine a single preference

relation.

One way to distinguish between different composition methods is based on attitude [40].

• Overriding attitude: one of the preference is given priority over the other and the second prior-

ity can be used only when the first one does not hold.

• Combinatory attitude: both preferences participate to the final ranking of the tuples.

Preference composition can be also classified as qualitative composition -when two qualita-

tive preferences are combined -or quantitative composition -when two quantitative preferences are

combined. In the qualitative case the final result is a pair-wise order of tuples, whereas in the

quantitative case an aggregate score is attached to all affected tuples.

2.3.1 Quantitative Composition

In the quantitative case, an aggregation function is used in order to combine values assigned to a

tuple by each preference.

Definition 6. Quantitative preference combination function – Let P1 and P2 be two quantitative

preferences over a relational schema R defined by the preference functions p1 and p2. Also, let

F : R x R → R be the combining function. In this case, ∀ti, tj ∈ R, ti �p1 x p2 tj if and only if

F (p1(ti), p2(ti)) > F (p1(tj), p2(tj)).

Commonly used quantitative preference composition functions include weighted summation,

average, minimum, and maximum.

13

Koutrika and Ioannidis [25] distinguish three different categories of quantitative preference

compositions functions based on the final value assigned:

• inflationary functions: when the final score has a larger value than the two given values.

• dominant functions: when the final score is dominated by the score assigned by one preference.

• reserved function: when the final score lies between the two given preference scores.

2.3.2 Qualitative Composition

In the case of a qualitative composition we can define the mechanism in two different ways based

on the attitude towards the preference domination.

In the first case, one of the preferences takes priority, as follows.

Definition 7. Prioritized preferences composition – Given two preference relations, P1 and P2,

over a relational schema R, the prioritized preference composition relation �P1&P2 is defined over∏n
i=1 dom(Ai) x

∏n
j=1 dom(Aj) such that ∀ti, tj ∈R, ti �P1&P2 tj if and only if (ti �P1 tj) ∨

(¬(ti �P1 tj) ∧ (ti �P2 tj)).

In the second case, both preferences are considered equally important, as explained next.

Definition 8. Pareto preference composition – Given two preference relations, P1 and P2 over a re-

lational schema R, the pareto preference composition relation�P1⊗P2 is defined over
∏n

i=1 dom(Ai)

x
∏n

j=1 dom(Aj) such that ∀ti, tj ∈R, ti �P1⊗P2 tj if and only if (ti �P1 tj∧¬(tj �P2 ti))∨(ti �P2

tj ∧ ¬(tj �P1 ti)).

Intuitively, under Pareto composition, a tuple is better than another if it is at least as good as

the other one under one preference and strictly better under the other preference.

2.4 PREFERENCE GRAPHS AND PREFERENCE GRANULARITY

2.4.1 Preference Graph Definitions

A preference relation can be depicted as a directed graph, called a preference graph. The literature

describes a few types of preference graphs, according to their purpose or the different levels of

14

movies

play

actor

mid

title

year

director

genre

director

genre

aid

dob

genre

J.Roberts

0.2
1 1

1
1 0.9

0.8

Figure 1: Personalization Graph Example as Presented in Pitoura et. al [40]

granularity a preference can be expressed. Stefanidis et. al. [40] give the following definition for a

preference graph.

Definition 9. Preference graph – A preference graph is a representation of a preference relation

over an instance r of a relational schema R. In a preference graph, there is one node for each tuple

t in r and there is a directed edge from the node representing tuple ti to the node representing tuple

tj , if and only if ti �P tj .

Moreover, Koutrika and Ioannidis [24] introduce the notion of a preference graph – for express-

ing preferences over attributes – seen as an extension to the database schema graph, and defined

as:

Definition 10. Preference graph as schema extension – Let G=(V,E) be a directed graph (V is the

set of nodes, E is the set of edges) that is an extension of the traditional schema graph. The set of

nodes contains three types of nodes:

• relation nodes, one for each relation in the schema.

• attribute nodes, one for each attribute of each relation in the schema.

• value nodes, potentially one for each possible value of each attribute of each relation in the

schema but only those that have any interest to a particular user are specified.

Likewise, there are two types of edges in E:

15

• selection edges, from an attribute node to a value node.

• join edges, from an attribute node to another attribute node.

Moreover, a user’s interest is expressed in the form of degree of interest, which is a real number in

the range [0,1]. 0 indicates lack of any interest, while 1 indicates extreme (’must-have’) interest.

These values are labels on the graph’s edges.

Figure 1 is an example of such graph; it contains preferences at different granularity levels.

First, we have a quantitative preference described as a selection preference (i.e., <actor.name=‘J.

Roberts’, 0.8>). Second, we have a join preference (i.e.,<movie.mid = actor.aid, 1> and<play.aid

= actor.aid, 1>) which state that movies preferences are determined by actor preferences.

Aside from capturing a tuple-based or predicate-base preference relation, preference graphs

have been also used to capture the relationship between different entities in the database [24] or

the hierarchy of contextual preferences [35]. In the later case, a node in the contextual preference

graph contains the preference along with the context where the preference holds. Moreover, it is

assumed that a context is defined over a hierarchical domain and, therefore, an edge in this graph

will capture this hierarchy.

Pitoura et.al. [35] have introduced the preference graph that focuses on preferences enhanced

with context information. Context expresses conditions on situations external to the database or

related to data stored in the database. Below we give the definition for this type of preference graph

and in Figure 2 there is an example of such a graph, as presented in [35].

Definition 11. Contextual preference graph – The preference graph PGPr=(VPr, EPr) of a profile

Pr is a directed acyclic graph such that there is a node v ∈ VPr for each context state cs ∈ Con-

text(Pr) and an edge (vi, vj) ∈ EPr, if the context state that corresponds to vi is a tight cover of

the context state that corresponds to vj .

Contextual preference graphs have been intensively studied in AI domain and they are known

as conditional preference networks or CP-nets [6]. In the database domain limited work has been

done on hierarchical CP-nets [32], incomplete CP-nets [10] and CP-nets translated into an expres-

sion in the formal preference language over strict partial orders [13].

Definition 12. Conditional Preference Network – Let A={A1, A2, . . . , Ad} be a set of attributes. A

Conditional Preference Network (i.e., CP-net) is defined over A as a directed graph in which there

16

p1: ((friends, good, holidays), P1)
p2: ((friends, good, ALL), P2)
p3: ((friends, good, Easter), P3)
p4: ((friends, ALL, Christmas), P4)
p5: ((ALL, ALL, Easter), P5)
p6: ((family, ALL, Easter), P6)
p7: ((ALL, ALL, ALL), P7)

(ALL, ALL, ALL)
P7

(friends, good, ALL)
P2

(friends, ALL,
Christmas) P4

(ALL, ALL, Easter)
P5

(friends, good,
holiday) P1

(friends, good,
Easter) P3

(friends, ALL,
Easter) P6

v1

v2 v3 v4

v5
v6 v7

(a) (b)

Figure 2: Pitoura et. al [35] – Context Information Enhanced Personalization Graph

genre

director

comedy > drama

comedy: W.Allen > M.Curtiz
drama: M.Curtiz > W.Allen

Figure 3: Pitoura et. al [40] – Personalization Graph Enhanced with Conditional Preference Tables

is a node for each attribute in A. If an edge from an attribute Aj to an attribute Ai exists in the

graph, then Aj is an ancestor of Ai. Each node in the graph is annotated with a conditional prefer-

ence table, CPT, describing the preferences over Ai’s values given a combination of its ancestors

values.

An example of this type of graph is given in Figure 3. Let Zi be the set of all ancestors of Ai.

Semantically, the preferences over Ai depend on the attributes Zi. In this example, preferences

over director depend on genre. For two tuples, a1 and a2 ∈ dom(Ai), and a context zi ∈ dom(Z1)

– with Ai=‘director’ and Zi=‘genre’ – we say that tuple a1 is preferred over tuple a2 under the

context zi. In Figure 3, W. Allen is preferred over M. Cutiz under the comedy context and M. Curtiz

is preferred over W. Allen under the drama context.

17

2.4.2 Levels of Granularity for Preferences

In terms of granularity, a preference can be expressed at the tuple level, where each preference

affects just a tuple. The following preferences are express at a tuple level:

• Quantitative preference: “I like the actress J. Roberts.”

• Qualitative preferences: “I like J. Roberts more than D. Moore.”

Attribute preferences express preferences between attributes. This type of preference can be

used to rank tuples based on the priority of attributes involved in the preference relation. Alter-

natively, it can be used to capture priorities over preferences when composition techniques are

applied. For example:

• Quantitative preference: “I prefer the director of a movie.”

• Qualitative preference: “I prefer the genre more than the duration of a movie.”

Relationship preferences are preferences based on the relationship of two entity types (i.e.,

generic relationship preference) or two particular entities (i.e., instance relationship preference).

For example:

• General relationship: “A director directed a movie.”

• Instance relationship: “A particular actor played in a particular movie.”

2.5 CURRENT SUPPORT FOR HYBRID PREFERENCES AND PREFERENCE

GRAPHS

Many solutions have been proposed for working with preferences [40]. In most of the cases the

designed systems can handle only one type of preference (e.g., qualitative or quantitative). Our

proposed model combines these two different approaches into a unified model. We propose a new

type of graph that handles preferences and describes both qualitative and quantitative preferences

with their associated intensity. To the best of our knowledge, there is no prior work that handles

qualitative preferences in conjunction with quantitative preferences with the exception of Prefer-

ence SQL [22] as mentioned in the Introduction.

18

The work done by Koutrika and Ioannidis [26] is the most related work to ours, which makes

use of a preference graph. In their work the preferences are kept as query predicates with intensity

values attached. In contrast to our work, they only record quantitative preferences and they are

using them to create a preference network (i.e., a directed acyclic graph) that will allow an efficient

identification of relevant preferences. This graph is used to depict the relation between preferences

(i.e., each node in the network refers to a subclass of entities that its parent refers to) whereas in

our case the graph’s edges depict the flow of the preferences from the most preferred ones to the

least preferred.

The Preference SQL system introduces a new clause, PREFERRING, in which the user can

state her preferences relative to the current query. All preferences are connected with an AND

operator except for the case when a qualitative preference is defined, when is connected with an

ELSE operator to suggest that if the first criteria is not met, then the second one should be used.

Also, in order to put a priority on preferences over different attributes, a PRIOR TO operator

is provided. In this framework users need to fully describe their preferences for each query, in

contrast to our approach, in which preferences are stored in user profiles and the system decides

their applicability for each query. Because of this difference we refer to Preference SQL as a local

approach and ours as a global one. To illustrate the difference between these approaches, consider

the following example with a snapshot of the dealership relation given in the Table 5.

Example 5. Assume the three preferences over car entities:

P1: “I like a car with the price between $7,000 and $16,000”.

P2: “I prefer car with a mileage between 20,000 and 50,000”.

P3 : “I prefer a BMW or a Honda”.

Also, we know that preference P2 is more important than preference P3.

In Preference SQL we have two ways to write this preference, in the PREFERRING clause.

First way is to state that all preferences are equally important, which results in the following pre-

ferring clause: PREFERRING (price between 7000 AND 16000) AND (mileage between 20000

and 50000) AND make IN (‘BMW’, ‘Honda’) Top 3, where Top 3 specifies how many tuples to

return.

Another way is to consider one preference more important than the other. For example, as this

19

Table 5: Dealership Relation

id price mileage make

t1 $7,000 43,489 Honda

t2 $16,000 35,334 VW

t3 $20,000 49,119 Honda

example states, the preference on mileage should be more important than the preference on make.

In this case the preferring clause has the following form: PREFERRING price between 7000 AND

16000 AND mileage between 20000 and 50000 PRIOR TO (make IN (‘BMW’, ‘Honda’). In both

cases, the results returned are: t1, t3 and t2, in this order.

However when submitting this query, we expect {t2} to be the second most preferred tuple

because tuple t2 matches the preference on price and mileage and the preference on make is not

of high priority. On the other hand, tuple t3 does not match the preference on price. As explained

in the previous sections, the meaning of intensity score in a qualitative preference is to express the

strength of the relationship between two basic preferences, in this case preference on mileage and

preference on make. The user specified that the mileage of the car is more important than the make.

Although Preference SQL can attach a score to each tuple, this score will refer to that particular

tuple in respect to all other tuples in the database and, therefore, will not be able to capture the

connection between two tuples as a qualitative preference does. Our system can rank tuple t1 as

the first tuple, followed by tuple t2 and t3 as explained later, in Section 4.6.1, which is the expected

result.

2.6 SUMMARY

This section overviewed the theoretical background of our work that describes the different types

of preferences and preference graphs defined in the literature. Moreover, we discussed Preference

SQL, which is the only system that works on combining qualitative and quantitative preferences but

20

with a semantical limitation and the lack of a user profile. In the next chapter we are introducing our

new model that overcomes Preference SQL limitations and combines qualitative and quantitative

preferences in the same graph.

21

3.0 UNIFIED PREFERENCE GRAPH MODEL

In the previous chapter we defined database preferences and we described the state of the art in

terms of preference representation and query personalization. We also emphasized the positive and

negative aspects of both types of preferences in Table 2. In the following chapter we present our

hybrid preference model, which is formalized using a labeled and acyclic graph representation and

examples, followed by a discussion about how this model can be used and improved.

3.1 WHY IS A UNIFIED DATABASE PREFERENCES MODEL NECESSARY ?

We argue that is necessary to have a hybrid model that supports both types of preferences along

with their intensity value because such a system will be able to support all possible preferences,

rank tuples from the most preferred to the least preferred based on the total order created, and store,

along with the predicate (or set of predicates), the strength of each preference.

More specific, we need a hybrid model because:

(1) The qualitative preference approach is the most general model that can support all types of

preferences a user may wish to specify.

(2) The quantitative preference approach returns a total order of the tuples that match a user’s

preferences.

(3) When the intensity of a preference is not captured, an unexpected order of the tuples may be

returned.

22

3.2 UNIFIED MODEL FOR PREFERENCES

As discussed in Chapter 2, a graph representation is the most natural way of exemplifying the

connections between tuples in a database and visually depicting their relationships. The purpose

of our preference graph is to connect two different preference approaches into a unified model, and

to record the strength/intensity of each preference for future use.

Definition 13. Preference Intensity – Intensity represents the strength of a preference and can be

expressed as a decimal point value between −1 and 1 with the following meaning:

1. All negative values are used to express negative preferences,−1 being used to express complete

dislike.

2. All positive values are used to express positive preferences and 1 is used to capture the most

preferred tuple.

3. Zero is a special value used to express equally preferred tuples, in the case of qualitative

preferences, and indifference, in the case of quantitative preferences.

For a quantitative preference, the intensity value expresses the preference strength for one

particular tuple (or set of tuples) over all other tuples in the database. In this case, intensity has

the semantics of the score, and a large intensity value describes a strong preference towards that

particular tuple (or set of tuples).

For a qualitative preference, the intensity value expresses the preference strength for one tuple

(or set of tuples) over another tuple (or set of tuples). In this case, a small positive value will

express a similarity on preferences (i.e., one tuple is almost as preferred as the other tuple).

Moreover, intensity can be seen as a constant value or as a function to allow dynamic ranking

of preferences. As an example, consider the preference: “I like recent comedies”, where recent can

be expressed as a function on the year a movie was released and normalized in the proper range

(i.e., [-1, 1]).

HYPRE (read [‘haip@]) Graph, is our proposed hybrid graph model defined to support both

qualitative and quantitative preferences along with their intensity value, if any value is provided.

23

Definition 14. Hybrid Preference (HYPRE) Graph – We define a hybrid preference graph PG

=(PV,PE) as a labeled directed and acyclic graph where:

1. PV is a set of vertices where each vertex represents a tuple in the database or a query predicate.

2. PE is a set of edges where each edge (vi, vj , s), vi, vj ∈PV, defines a direction (i.e., from vertex

vi to vertex vj), and is labeled with a score s. An edge from vi to vj captures a qualitative

preference (i.e., the tuple(s) in vertex vi is preferred over the tuple(s) in vertex vj) whereas an

edge from vi to itself will describe a quantitative preference.

3. The score s captures the preference intensity and is a value between -1 and 1, for the quantita-

tive preferences, and between 0 and 1 for the qualitative preferences.

Our unified model uses a HYPRE Graph to record users’ preferences that can be viewed as

triplets (vi,vj ,s). When i 6=j, the triplet (vi, vj , s) represents a qualitative preference, and when i=j,

it represents a quantitative preference.

3.2.1 Tuple-based vs. Predicate-based Preference Graph

A vertex in the graph can represent a single tuple in the database (tuple preference graph), or a set

of tuples if it is defined as a query predicate (predicate preference graph).

A tuple-based preference graph holds a single tuple in each vertex. Because of that, this pref-

erence graph can be seen as a materialized view and there is a direct access to the intensity value

of each tuple. However, a tuple-based preference graph is usually not scalable. For each tuple that

matches a preference, a new vertex needs to be created in the preference graph. However, this type

of preference graph can be seen as a materialized database view and is useful especially in cases

when the preference has a low probability of changing.

A predicate-based preference graph is a scalable version of the tuple-based one, since a vertex

matches multiple tuples, and it is used for preferences that apply to a large set of tuples. This type

of preference graph is also useful for preferences that are removed and reinserted often because

it is much easier and efficient to add/remove only one vertex in the graph rather than all vertices

that represent tuples that match a particular preference. However, queries enhanced with one or

more predicate need to be run to determine the tuples that match them and to assign an intensity to

these tuples. This process is time consuming, comparing with the tuple-based model. Nonetheless,

24

the scalability aspect of the model and the fact that the time overhead introduced by the query

enhancement and running is not significant, makes this model an ideal way to store preferences.

From the representation point of view, both types of graphs are similar. Moreover, the predicate-

based graph representation subsumes the tuple-based graph representation because we can always

define a predicate that only return one tuple. For of this reason, we only focus on the predicate-

based preference graph in the rest of this dissertation.

3.2.2 Attribute-based Preference Graph

In addition to tuple-based and predicate-based, an attribute-based preference graph can be defined.

Each type of graph differs from the other on the information hold in each vertex. In the attribute-

based preference graph, each vertex holds a preference on an attribute, rather than an attribute

value. Even though an attribute-based graph is not implemented in this work, any tuple-based

and predicate-based preference graph can be easily extended to include attribute-based vertices.

However, applying the attribute-based predicates to a user-submitted query necessitates more work

to translate the selected attribute and the associated function into an SQL predicate.

A preference defined on an attribute should be accompanied by a function that determines the

order of tuples. For example, an attribute-based preference can be : “When I search for hotels, I

prefer the price”. The preferred attribute in this case is price but this preference is not complete if

the user does not specify the function to be applied over this attribute. A complete attribute-based

preference is: “When I search for hotels, I prefer the cheaper rooms”. In this case, the attribute is

price and the function is minimum.

3.3 SPECIFYING PREFERENCES IN HYPRE GRAPH

Based on the definition presented in the previous section, we can now illustrate how one can

create a preference graph to support different types of preferences. We are using an instance of

the DBLP-Citation-network V4 dataset [44] (see Table 6) and we show how different types of

preferences can be represented in the same preference graph. We start with an empty preference

25

graph and we incrementally add new preferences in this graph, one preference type at a time.

We organize the presentation of the examples using the two main types of preferences:

• quantitative preferences – used to express a positive or negative preference towards an item

• qualitative preferences – involving two different nodes

Table 6: The DBLP Relation

pid Title Year Venue

t1 Automated Selection of Materialized Views and Indexes in 2000 VLDB

SQL Databases

t2 Composite Subset Measures 2006 VLDB

t3 Keymantic: Semantic Keyword-based Searching in 2010 PVLDB

Data Integration Systems

t4 Proximity Rank Join 2010 PVLDB

t5 iNextCube: Information Network-Enhanced Text Cube 2009 PVLDB

t6 Processing Proximity Relations in Road Networks 2010 SIGMOD

t7 Relational Joins on Graphics Processors 2008 SIGMOD

t8 Refresh: Weak Privacy Model for RFID Systems 2010 INFOCOM

t9 Congestion Control in Distributed Media Streaming 2007 INFOCOM

3.3.1 Quantitative Preferences in the HYPRE Graph

Let PV be the set of nodes, and PE the set of edges in the preference graph. Initially, the preference

graph is empty therefore PV= ∅ and PV= ∅.

Assume we have the following four preferences.

• P1: “I prefer papers published between 2000 and 2005, with intensity 0.3”

• P2: “I prefer papers published between 2005 and 2009, with intensity 0.5”

• P3: “I like papers published after 2009 with intensity 0.8”

26

P1

0.3

a) HYPRE Graph after preference P1 is
created

P1

0.3

P2

0.5

b) HYPRE Graph after preference P1 and
P2 are created

Figure 4: Quantitative Preferences

All these preferences are examples of quantitative preferences, with different level of intensity

values. They refer to a set of tuples, out of all the tuples in the database and can be translated in

the following preference nodes:

– P1 ∈ PV: { the predicate =“year≥2000 AND year≤2005” } , and e1 =(P1, P1, 0.3) ∈ PE.

– P2 ∈ PV: { predicate=“year≥2005 AND year≤2009” } and e2 =(P2, P2, 0.5) ∈ PE.

– P3 ∈ PV: { the predicate=“year≥2009” } and e3 =(P3, P3, 0.8) ∈ PE .

In order to add these preferences in the graph we will need to create a node for each preference

defined above. Since initially the graph is empty, we do not need to verify if a node with the same

predicate is already inserted in the graph.

Fig.4 shows the state of the graph after (a) preference node P1 is inserted and (b) preference

node P2 is inserted in the graph.

Also, assume the following preference:

• P4 (Negative Preference): “I am not interested in papers published in INFOCOM.”

This is an example of a negative preference and it will be translated in the following preference

node:

– P4 ∈ PV: { predicate=“venue=INFOCOM” } and e4=(P4, P4, -1) ∈ PE.

All these preferences are examples of quantitative preferences and a node for each preference

is created in the preference graph. Fig 5 shows the entire graph, after all these preferences are

inserted in the preference graph. For the negative preference we can see that only tuples p8 and p9

27

P1

0.3

P2

0.5

P3

0.8

P4

-1

Figure 5: HYPRE Graph After All Quantitative Preferences are Inserted

match predicate P4 and there are no tuples matching preference P3. However, if more values are

added into the database, the preference graph does not need any modification.

3.3.2 Qualitative Preferences in the HYPRE Graph

For qualitative preferences we need to connect two different nodes. If the nodes are already part of

the graph, we just add the directed edge to connect them. Else, if one or both nodes are not already

part of the graph, we create the necessary node(s) and connect them with a directed edge.

Qualitative preferences can express multiple forms of preferences as illustrated in the following

examples.

• Relative Preferences: “If two papers are published in VLDB, I prefer, with intensity 0.8, the

one published in the last 4 years.”

A relative preference relates two tuples or two disjoint sets of tuples belonging to the same set.

For this preference we create two different nodes:

– P5 ∈ PV: { predicate = “venue=VLDB AND year≥2010”} and e5 =(P5, P5, N/A) ∈ PE

– P6 ∈ PV: { predicate = “venue=VLDB AND year<2010”} and e6 =(P6, P6, N/A) ∈ PE

and an additional edge:

– e7 = (P5, P6, 0.8) ∈ PE.

The qualitative and quantitative cases are differentiating in two aspects:

1. The nodes created in the qualitative case do not have an intensity value initially assigned,

unless the node was already defined in the graph as a quantitative preference

28

P1

0.3

P2

0.5

P3

0.8

P4

-1

P5 P60.8

Figure 6: HYPRE Graph with Relative Preference

2. Inserting a qualitative preference implies inserting an extra directed edge co connect the

two nodes that make the qualitative preference.

Fig. 6 is the new HIPI Graph, after this qualitative preference is inserted.

• Preference Set: “From a list of papers, I prefer papers published in VLDB and as many papers

as possible published after 2009.”

A preference set relates two or more not necessarily disjoint set of tuples, from which one is a

subset of the other.

This preference can be seen as a qualitative preference with papers published in VLDB slightly

more preferred than papers published after 2009. Using the qualitative preference definition,

the comparative expression slightly more preferred can be translated into a small intensity

value for the entire qualitative preference (e.g., 0.2). Moreover, we can see that a node having

the predicate=“year≥2009” is already defined in out graph (i.e., node P3) therefore there is

no need to create a new node for this preference. We only need to use this node in the new

qualitative preference.

With this in mind, we can now formally define the new preference:

– P7 ∈ PV: { predicate = “venue=VLDB”} ; e8 =(P7, P7, N/A) ∈ PE

– e9 = (P7, P3, 0.2) ∈ PE

The graph representation is given in Fig 7.

29

• Different Levels of Intensity: “I really like papers published in SIGMOD but I prefer the pa-

pers published in VLDB a bit more than papers published in SIGMOD”

The different levels of intensity relates two disjoint tuples or set of tuples and the intensity value

captures how much more is one preferred over the other.

In the preference graph, we already have node P7 with the {predicate = “venue=VLDB”}. We

are going to use this node for the left part of the qualitative preference. For the right part we

need to create a new node and a new edge to actually create the qualitative preference:

– P8 ∈ PV: { predicate =“venue = SIGMOD” }; e10 =(P8, P8, 0.8) ∈ PE.

– e11 = (P7, P8, 0.3) ∈ PE. As in the previous example, we map the expression “a bit more”

to a small intensity value (e.g., 0.3).

3.4 SUMMARY

This chapter introduced formally our hybrid preference model. We defined two possible types of

preference graphs – tuple-based and predicate-based preference graphs – and illustrate how one

can create a preference graph to support different types of preferences. Predicate-based model

subsumes the tuple-based model and there is no change between the two from the presentation

point of view. In the tuple-based case we need to replace the nodes that contain a predicate with

P1

0.3

P2

0.5

P3

0.8

P4

-1

P5 P60.8 P7

0.2

Figure 7: HYPRE Graph with Relative Preference and Set Preference

30

P1

0.3

P2

0.5

P3

0.8

P4

-1

P5 P60.8 P7

0.2

P8

0.8

0.3

Figure 8: Final Version of HYPRE Graph

nodes that only contain a tuple, or a set of tuples. However, when the database changes, the tuple-

based preference graph needs to change too, which will require a lot of time overhead, as we

expect the data to change in a real situation (e.g., more papers are added in the DBLP dataset; new

information is added for the incomplete entries; year published is updated for the wrong entries).

31

4.0 HYPRE GRAPH – FROM THEORY TO IMPLEMENTATION

In terms of representation, the HYPRE Graph, introduced in the previous chapter, is sufficient to

store for each user, their list of preferences. However, we also need to be able to easily traverse

the graph, find paths between nodes, order nodes in terms of their intensity values, and detect

nodes that represent the same preference. In this chapter, after examining different alternatives, we

propose a graph-based implementation of HYPRE which stores both qualitative and quantitative

database preferences in the same graph, as SQL predicates, along with the intensity or the strength

of each preference.

4.1 GRAPH REPRESENTATIONS

The most common representation for graphs is an adjacency matrix. For each new node introduced

in the graph, we need to create one row and one column in the associated adjacency matrix. More-

over, each cell (i,j) contains a value that expresses if there is an edge between node i and node j.

For our preference graph, in order to use this representation we need to create one row and one

column for each preference and we record the intensity value in the adjacency matrix. For each cell

(i,j), if i 6= j then the value represents the intensity of a qualitative preference, whereas, if i = j,

the value stored in cell (i,i) represents the intensity of a quantitative preference. For any two nodes

in the graph, if there is no edge connecting them then we use the NULL value in the corresponding

cell in the adjacency matrix or an empty cell. Figure 9 shows an example of such graph, and its

associated adjacency matrix. In this representation, m1 . . . m5 represents either a single tuple or

an SQL predicate.

Although there are a number of solutions suited for graphs represented as adjacency matrices

32

m2

-1
m3

m1

0.8

m4

m5

0.8 m2
m3
m4

m1 m2 m5

-1
0.8

0.8

(a) (b)

Figure 9: Relative Preferences Specifications (a) Graph Representation; (b) Adjacency Matrix

and many optimized algorithms to traverse these graphs have been implemented, in our case such

solutions would not be efficient. First, we would need to store an m×m matrix, with m being the

number of preferences for one particular user, although we expect that a node would be connected

with at most k nodes, where k is much smaller than m. Because of that, most of the cells would

contain NULL values, i.e., the adjacency matrix would be quite sparse. Second, we need to have

an additional data structure to hold the actual preference predicates, since the associated matrix

will only contain information on the intensity values based on the node id and not the value of

the predicate. Moreover, every time we introduce a new node we need to perform a search on the

preference storing structure to make sure the node does not already exist, which implies that we

need to build an index structure. Finally, since we are building user profiles, we would need to

store many preference graphs, one for each user (i.e., many adjacency matrices).

Since each preference in our graph is a predicate and each predicate will be used to enhance

an SQL query at query time, another way to store the preference graph will be in a relational

database. We can create two tables for preferences, qualitative (see Figure 11) and quantitative (see

Figure 10). With an index on the preference value in the quantitative table we can guarantee fast

searches on preexisting preference predicates and there will be no space overhead, since we only

store the preference predicates. Also, for each preference we can store the user id which allows

33

pfid uid preference intensitypfid uid preference intensity
1 1 dblp.venue="SIGMOD Conference" 0.476190476190476
2 1 dblp.venue="ICDE" 0.238095238095238
3 1 dblp.venue="Modern Database Systems" 0.0952380952380952
4 1 dblp.venue="VLDB" 0.0952380952380952
5 1 dblp.venue="Inf. Syst." 0.0952380952380952
6 2 dblp.venue="SIGMOD Conference" 0.285714285714286
7 2 dblp.venue="INFOCOM" 0.238095238095238

Page number: 1/1

Figure 10: Quantitative Preference Storage

pfid uid leftPref rightPref intensitypfid uid leftPref rightPref intensity
1 1 dblp_author.aid=3706 dblp_author.aid=6 0.0098
8 1 dblp_author.aid=61511 dblp_author.aid=8 0.0097

15 1 dblp_author.aid=617772 dblp_author.aid=10 0.0097
19 1 dblp_author.aid=4103 dblp_author.aid=12 0.0097
44 1 dblp_author.aid=1714100 dblp_author.aid=9 0.0097

194 2 dblp_author.aid=169 dblp_author.aid=788 0.0288
195 2 dblp_author.aid=788 dblp_author.aid=11 0.0206

Page number: 1/1

Figure 11: Qualitative Preference Storage

us to keep together all users’ profiles. However, we still need to find efficient ways to traverse

the graph, find paths and cycles, which is well-known to be very inefficient within traditional

relational database system since it involves recursion. Typically, a recursive join is implemented

using adjacency matrices or a graph structure.

The third solution, and the most efficient way to store preferences that will eliminate the over-

head introduced by the graph traversals and search is, after all, a graph representation where each

node represents a quantitative preference characterized by different attributes as the preference

predicate, the intensity value and any other necessary information. Moreover, an edge in the graph

will connect two nodes and, therefore, will create a qualitative preference.

4.2 HYPRE REPRESENTATION

Our solution to implement a hybrid preference graph is to use a graph database system which is

designed to provide efficient graph traversal and graph manipulation.

Node: In this implementation, a node contains three properties : (user id, predicate, inten-

sity value), where intensity value is the quantitative intensity. Moreover, a node can have one ore

more labels attached, depending on the what metadata is necessary (e.g., label used for indexes,

label for intensity value provenance).

Edge: An edge in this graph needs to store only one property, the intensity value, to capture

a qualitative preference intensity. Moreover, we use a label for each edge in the graph, and there

are three different edge types, classified based on this label. The most important one is PREFERS,

34

which specifies a valid qualitative preference. each edge has associated a label used to support

graph traversals. The most common label is PREFERS, used to traverse the graph based on the

partial order given by the qualitative preferences. Additionally, we use labels CYCLE and DIS-

CARD to mark conflicts and inhibit traversal. We use CYCLE when a new inserted edge creates a

cycle in the graph. We use DISCARD when a new edge causes the intensity value in the left node

to become smaller than the intensity value in the right node and the system cannot recompute this

value.

This way, we can easily create only one graph and, using the user id property of a node, select

all the nodes for a particular user, as needed.

4.3 NEO4J – A SCALABLE GRAPH DATABASE SYSTEM

We decided to use Neo4j1, a graph database engine to store the preference graph. All preferences

and their associated intensity values, for all users, are stored in one single graph. Each node in the

graph has four properties:

• node id: an internal id, automatically generated by the graph database when the node is cre-

ated,

• user id: the id of the user for whom the preference is created,

• predicate: the SQL predicate that represents a preference, and

• intensity: the intensity value of the preference.

Fig. 12 shows, for the node with node id=33, the values of the properties described above, as

returned when the Neo4j graph database is queried.

Scalability. Neo4j is a scalable graph database that can be used both as a server or embedded

in different programing languages. In our stress tests we were able to insert 7 billion nodes before

we intentionally stopped the node insertion process. The test was set up to insert 1 million tuples

at a time and report back the time necessary to do the insertion. As expected, the more nodes we

have in the graph, the longer it takes to do the insertion. However, even when we inserted the

1http://www.neo4j.org/

35

	

 Node[33] { uid: 2, predicate: "author.aid=2222", intensity: 0.6155722066724582 }

label	
 =	
 "uidIndex"	
 	

Figure 12: Example of a Vertex in the HYPRE Graph

last million tuples, the system needed less than 70 sec to finish the insertion. These results are

presented in Fig. 13.

Efficient Search. When dealing with user profiles, we need to be able to quickly retrieve all

the preferences for one particular user. For example, to retrieve all nodes for user id=2, with the

intensity value greater than zero, without any indexes, the system needs around 3600 sec, which

is very inefficient if it is to be implemented in an interactive system. However, Neo4j provides

indexing which we utilize to support interactive search.

The best indexing scheme, with the best retrieval time, is based on the label of the node and the

value of one property. When searching for preferences, we are interested in all nodes created for

one particular user. Because of that we indexed the graph using the user id property. In addition,

since all nodes in our graph are preference nodes, we marked all of them with the label uidIndex and

created the index uidIndex(uid). With this indexing scheme, the system needs less than one second

to return all the nodes for user id = 2 (i.e., down from 60 sec for the case with a simple index).

Cypher. In order to create, update and query the database graph we use CYPHER, a declarative

query language for Neo4j 2. CYPHER is the Neo4j’s query language that allows fast retrieval of

nodes along a path, with a particular property or with a specified label. The select query structure

in CYPHER has the following general form:

START [MATCH] [WHERE]

RETURN [ORDER BY] [SKIP] [LIMIT];

The START clause specifies the starting point. This can be a single node identified by its id,

multiple nodes, all nodes (e.g., n=node(*)) or nodes specified by a parameter that will be substi-

2http://www.neo4j.org/learn/cypher

36

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000 7000

In
se

rti
on

 T
im

e
(in

 se
c)

Number of Nodes (in mil.)

Figure 13: Node Insertion Time for 7 Billion Nodes, in 1 Million Batch Size.

tuted with a given value at the query time in an application.

The MATCH clause specifies what type of relationships (i.e., edges) should be traversed. As

explained earlier, in our graph, there are three possible edges: PREFERS, CYCLE and DISCARD.

As an example of how a MATCH clause can be used to find all qualitative preferences that

start at a particular node (i.e., all nodes that are connected with an edge of type PREFERS to a

particular node) we use the following CYPHER query:

START n = node(id)

MATCH n -[:PREFERS]→ m

RETURN id(n) as leftId, id(m) as rightId;

The WHERE clause introduces additional selection constrains. For example, when we query

the graph we want to return nodes for a particular user only. Because of that, we need to specify the

value for the user id property in the WHERE clause of the query. The following example returns

a list of all preferences and their associated intensity value, for one particular user, in descending

order, based on their intensity values.

37

START n=node(*)

WHERE n.uid=uid

RETURN n.preference, n.intensity

ORDER BY n.intensity desc;

Using CYPHER we query the graph database to return, based on the user’s preferences, a list

of SQL predicates in descending intensity order, excluding preferences with negative values. This

list will then be used to enhance a user-provided query and account for the user’s preferences.

4.4 ESSENTIAL FUNCTIONS TO (RE-)COMPUTE INTENSITY VALUES

The mechanism of computing/recomputing the intensity value is one key aspect of our unified

model. Being able to assign intensity values to nodes that do not have one given (i.e., qualitative

preferences only have an intensity assigned to the edge) allows us to increase the number of quan-

titative preferences and, therefore, increase the “coverage” over all data of interest to the user. As a

reminder, quantitative preferences allow for a total order and a qualitative preference in our model,

can be seen as two quantitative preferences (one stored in the left node and one stored in the right

node) connected by a directed edge, from the left node to the right node. The directed edge – from

left to right – expresses the preference: Tuples returned by the preference stored in the left node

are more preferred than tuples returned by the preference stored in the right node.

We defined two functions, in Equation (4.1) and Equation (4.2), to compute a meaningful in-

tensity value, based on the intensity value or strength of the qualitative preference and one existing

quantitative preference intensity value. Intensity Left (Equation (4.1)) computes the value of the

intensity for the Left node, and Intensity Right (Equation (4.2)) computes the intensity value of the

Right node.

Intensity Left (Left, ql, qt) = min(1, qt ∗ 2sign(qt)*ql) (4.1)

Intensity Right (Right, ql, qt) = max(−1, qt ∗ 2-sign(qt)*ql) (4.2)

The functions have the following parameters:

38

1. the position of the node – left or right

2. the qualitative preference’s intensity value – ql

3. one quantitative preference’s intensity value – qt.

The pair of functions defined in Equation (4.1) and Equation (4.2) are one example of such

functions. However, any other function that conserve the graph model characteristics can be used.

Any function defined with this purpose in mind should have the following properties:

1. When the function is used to compute an intensity value for the left node, it should return a

value greater or equal to the intensity value in the right node.

2. When the function is used to compute an intensity value for the right node, it should return a

value smaller or equal to the intensity value in the right node.

The first two properties comes from the definition of a qualitative preference in our preference

graph – a directed edge from the left node to the right node. This definition implies that the

intensity value in the left node is greater or equal to intensity the value in the right node.

3. The new intensity value should be proportional to the strength of the qualitative preference. If

the intensity value for the qualitative preference is zero then the two preferences are equally

preferred and the value returned by the function should be equal to the intensity of the right

node. However, if the qualitative preference’s intensity is very large, the value returned should

be much larger/smaller than the given quantitative preference’s intensity in order to capture

the meaning of the qualitative preference’s intensity – the higher the value, the stronger the

preference, and the higher the difference between the two quantitative preferences.

4. The function should not return values outside the range [-1, 1].

The -1/1 as upper-bound for Intensity Left and Intensity Right functions respectively are also

not the only possible bounds. Actually, in practice the upper-bound should be a value smaller than

the minimum/maximum value, since these are very strong negative/positive opinions and, as the

value is computed by the system, we want to avoid assigning the highest possible value except

when is explicitly assigned by one user.

This functions are applied every time a qualitative preference is created in order to compute a

new value, recompute an old one to preserve the graphs’ properties, or detect a conflict.

• Compute a new value. A new intensity value is computed in one of the following two cases:

39

– A new qualitative preference is inserted in the graph. For this preference, two new nodes

and an edge connecting them are created. The qualitative preference comes with an in-

tensity value that is assigned to the edge and which represents how much more important

one preference is over the other, but it does not indicate anything about each preference

(i.e., each node), taken separately. In this case, a default value is assigned to one of the

two nodes and a new value is computed for the other node.

– A new qualitative preference is inserted in the graph, but this preference contains only

one new node (with no intensity value) connected with an existing node. In this case, we

compute an intensity value for the node that does not have an intensity value assigned yet,

using the intensity value of the node already in the graph and the intensity value of the

qualitative preference.

• Recompute a value. When the two nodes involved in a qualitative preference are already in the

graph, a directed edge is created between them and a conflict check routine is executed. When a

conflict of incompatible values is detected (i.e., the intensity value in the left node if lower then

the intensity value in the right node) one of the two values needs to be recomputed. In order to

avoid a conflict propagation, we recompute the value for the node that has no other connection

in the graph, except for the newly introduced edge. There are two possible situations: the

node selected has either in degree=0 and out degree=1 or in degree=1 and out degree=0. In

Figure 14 we recompute the value for the node P1 and in Figure 15 we recompute the value for

the node P2.

• Mark a conflict. If both nodes are already connected to the graph, the new edge inserted to cre-

ate a qualitative preference will increase the value of in degree or out degree in which case both

these values become greater than zero. In this case, the new edge is labeled with PREFERS

only if it does not create an incompatible values conflict. Otherwise it is still inserted, but label

it as DISCARD.

40

P2P1

P3

P4

Figure 14: In degree=0 for Node P1

P1 P2

P3

P4

Figure 15: Out degree=0 for Node P2

4.5 ALGORITHM FOR HYPRE GRAPH GENERATION

As mentioned in the previous section, we store preferences in a graph, where a node is defined

by (node id, user id, predicate, intensity) that records all necessary information about each prefer-

ence. For one particular user, the user’s preference profile is represented by the subgraph generated

using the subsets of all nodes with a particular user id, and all edges that connect these nodes.

A node with no connection in graph represents a quantitative preference. Two connected nodes

creates a qualitative preference with the direction of the edge to define the prefer order between

predicates. This implies that, if intensity values of these nodes exists, then the value of the node

that has an outgoing edge (refered to as the left node) must always have a greater or equal intensity

value with respect to the node where the edge ends (refered to as the right node).

Moreover, recall that each edge has an associated label used to support graph traversals. The

most common label is PREFERS, used to traverse the graph based on the partial order given by the

qualitative preferences. Additionally, we use labels CYCLE and DISCARD to mark conflicts and

inhibit traversal. We use CYCLE when a new inserted edge creates a cycle in the graph. We use

DISCARD when a new edge causes the intensity value in the left node to become smaller than the

intensity value in the right node and the system cannot recompute this value.

The algorithm for creating the graph works incrementally.

Step 1. We create a node for each quantitative preference defined. Assuming that preferences

are unique, this will not create any conflict. In the case when the user provides a preference for the

same tuple/predicate as one already inserted, instead of creating a duplicate node in the graph, the

41

algorithm returns the node id of the node that has the same user id and preference property values

and updates the intensity value by computing the average of the two intensity values provided.

Step 2. We add all qualitative preferences. For this case, there are two possible situations:

• if the nodes are already in the graph, the algorithm adds a directed link between them and,

eventually, recomputes the intensity values, if needed

• if one or both nodes for one particular preference are not yet in the graph, the algorithm creates

the nodes, assigns default values and recomputes the intensity value for only one node given

the default intensity value and the intensity value of the qualitative preference.

Algorithm 1 shows the necessary steps taken to insert preferences into the preference graph.

The algorithm will create a node in the graph only if it does not exist already (i.e., there is no node

with the same user id and the same preference value). If the node is already in the graph then the

createOrReturnNodeId() function returns the id of that particular node and does not create another

node.

4.6 PREFERENCE AWARE QUERY ENHANCEMENT

Assume that a user with uid=2, and the user profile defined in Table 7, has submitted the following

query: “Show me all papers from the DBLP database”. Without any knowledge of preferences,

the query is submitted to the Relational Database Management System as:

SELECT * FROM dblp;

However, this query will return all 1,600,000 tuples, in a no “interesting” order for the user.

This situation is known as the information flooding problem. Any system working with large

datasets needs to alleviate this problem.

Instead of returning a list with all papers, in no particular order, we rewrite the query to enhance

it with preferences from the user profile as:

SELECT * FROM dblp

WHERE <Combined list of preference>;

Table 7 displays a snapshot of the preferences, stored in the preference graph, for our user.

42

Algorithm 1 Create Preference Graph
Input: A partial graph containing all quantitative preferences and a list of qualitative preferences.

Output: A complete preference graph with both, quantitative and qualitative preferences.

1: BEGIN

2: addAllQuantitative();

3: for (each qualitative preference QL) do

4: leftNodeId =createOrReturnNodeId(QL.leftPref);

5: rightNodeId =createOrReturnNodeId(QL.rightPref);

6: if (there is a path from rightNodeId TO leftNodeId) then

7: createEdge(leftNodeId, rightNodeId, QL.intensity, CYCLE);

8: else if (degree(leftNodeId)=degree(rightNodeId)=0 AND conflict(leftNode, rightNode) ==

FALSE) then

9: createEdge(leftNodeId, rightNodeId, QL.intensity, PREFERS);

10: leftNode.intensity =computeIntensity(LEFT, QL.intensity, rightNode.intensity);

11: else if (degree(leftNodeId) > 0 AND degree(rightNodeId) = 0 AND conflict(leftNode,

rightNode) == FALSE) then

12: createEdge(leftNodeId, rightNodeId, QL.intensity, PREFERS)

13: rightNode.intensity =computeIntensity(RIGHT, QL.intensity, leftNode.intensity);

14: else if (degree(leftNodeId) = 0 AND degree(rightNodeId) > 0 AND conflict(leftNode,

rightNode) == FALSE) then

15: createEdge(leftNodeId, rightNodeId, QL.intensity, PREFERS);

16: leftNode.intensity =computeIntensity(LEFT, QL.intensity, rightNode.intensity);

17: else

18: createEdge(leftNodeId, rightNodeId, QL.intensity, DISCARD);

19: end if

20: end for

21: END

43

In Chapter 6 we discuss how such preferences are extracted from DBLP dataset. We can see that

there are two preferences that refer to the venue where a paper was published and two preferences

related to the author of a paper.

Table 7: List of Preferences for uid=2

Node id Preference Intensity

7 dblp.venue=”INFOCOM” 0.23

10 dblp.venue=”PODS” 0.14

10372710 dblp author.aid=128 0.19

10372711 dblp author.aid=116 0.14

There are three obvious ways to combine these preferences:

1. Connect all preferences using the AND operator (conjunctive clause)

2. Connect all preferences using the OR operator (disjunctive clause)

3. Connect some preferences using AND and some preferences using OR operator (mixed clause)

44

Ideally we would like to return tuples that match all preferences, therefore connecting all pre-

ferences with an AND operator should be the preferred case. However, this is not always possible

and the user profile from Table 7 illustrates this situation (e.g., it is not possible to have a paper

that was published in two different venues3). This is the second known problem with traditional

queries – the information starvation problem. The starvation problem appears when no tuples are

returned because the condition is too selective and all tuples are filtered out.

Connecting all the preferences with an OR semantics brings more tuples in the result list,

therefore avoiding the starvation problem. But this might also return all the tuples, if the user’s

preferences cover all the tuples in the database, in which case this is not a satisfactory solution

either.

In order to avoid an empty result, we combine preferences that are referring to the same at-

tribute with OR semantics. In order to be inclusive, we connect preferences that are defined over

different attributes with AND semantics. Using this rule, we can now enhance the provided query

with the preferences defined for uid=2, above. The rewritten final query has the following form:

SELECT * FROM dblp, author

WHERE (dblp.venue="INFOCOM" OR dblp.venue="PODS")

AND (author.aid=128 OR author.aid=116);

The above idea clearly generalizes for all predicates and users in our system.

4.6.1 Preference Combination and the Combined Intensity Value

Once created, the preference graph is used to identify the relevant preferences and enhance the

user-submitted query. As discussed above, we have adopted a mixed clause scheme to combine

preferences, to verify the behavior of combined intensity value and the size of the resulted list, and

a conjunctive clause scheme to find the most preferred tuples.

Stefanidis et. al [40] describe three different ways to compute the final intensity value when two

or more quantitative preferences are combined: the inflationary strategy - the final score increases,

the reserved strategy – the final score lies between the two values, and the dominant strategy –

the highest value is used. For our model, we adopted the inflationary and reserved functions from

3Of course we assume here that both the DBLP data is accurate and that standard academic ethics apply, so that no
author is doing blatant “double-dipping” by publishing the exact same paper in two different venue!

45

Koutrika and Ioannidis’ work [24]: f∧ to calculate the combined intensity for conjunctive predicate

combinations and f∨ to compute the combined intensity for disjunctive predicate combinations

with the form given in Equation (4.3) and Equation (4.4), respectively.

f∧(p1, p2) = 1− (1− p1)(1− p2) (4.3)

f∨(p1, p2) =
p1 + p2

2
(4.4)

f∧ behaves inflationary whereas f∨ has a reserved behavior. When we combine predicates with

OR, the query returns tuples that match possibly, only the preference with the smaller intensity

value. Since we do not know which predicate is matched, we penalize the final intensity value by

assigning the average of the two. But, when we combine predicates with AND, the tuples in the

result list are guaranteed to match all predicates. Because of that, the combined intensity is larger

than the two given intensity values.

During preference selection, we order the preferences by intensity value. However, is impor-

tant to note that the value returned by the f∧ function, when composed, does not change with the

order of the preferences.

Proposition 1. Let P={p1, p2, . . ., pn} be a list of n preferences, where by p1 we denote the inten-

sity of preference P1. When predicates, selected from P, are combined using only AND operator,

the combined intensity value computed using f∧ function is independent of the order in which

preferences are selected and considered.

Proof. We will prove by induction that f∧(p1, p2 . . . pn) = 1− (1− p1) ∗ (1− p2) ∗ . . . ∗ (1− pn).

Step 1:

Let SP={p1, p2, p3}, where intensity(p1) > intensity(p2) > intensity(p3).

f∧(p1, p2) = 1− (1− p1) ∗ (1− p2), by definition.

Case 1: f∧(p1, p2, p3) = f∧(p1, f∧(p2, p3)) = f∧(p1, [1− (1− p2) ∗ (1− p3)]) =

= 1− (1− p1) ∗ [1− [1− (1− p1) ∗ (1− p2)]] = 1− (1− p1) ∗ (1− p2) ∗ (1− p3)

Case 2: f∧(p1, p2, p3) = f∧(p2, f∧(p1, p3)) = f∧(p2, [1− (1− p1) ∗ (1− p3)]) =

= 1− (1− p2) ∗ [1− [1− (1− p1) ∗ (1− p3)]] = 1− (1− p1) ∗ (1− p2) ∗ (1− p3)

46

Case 3: f∧(p1, p2, p3) = f∧(p3, f∧(p1, p2)) = f∧(p3, [1− (1− p1) ∗ (1− p2)]) =

= 1− (1− p3) ∗ [1− [1− (1− p1) ∗ (1− p2)]] = 1− (1− p1) ∗ (1− p2) ∗ (1− p3)

Induction step:

We assume that f∧(p1, p2, . . . , pn) = 1− (1− p1) ∗ (1− p2) ∗ . . . ∗ (1− pn).

We want to prove that f∧(p1, p2, . . . , pn+1) = 1− (1− p1) ∗ (1− p2) ∗ . . . ∗ (1− pn+1).

f∧(p1, p2, . . . , pn+1) = f∧(p1, p2, . . . , pn, pn+1) = f∧(pn+1, f∧(p1, p2, . . . , pn)) =

= 1− (1− pn+1) ∗ (1− f∧(p1, p2, . . . , pn)).

From the induction step we know that:

f∧(p1, p2, . . . , pn) = 1− (1− p1) ∗ (1− p2) ∗ . . . ∗ (1− pn)

⇒ f∧(p1, p2, . . . , pn+1) = 1− (1− pn+1) ∗ [1− (1− (1− p1) ∗ (1− p2) ∗ . . . ∗ (1− pn))] =

= 1− (1− pn+1) ∗ (1− p1) ∗ (1− p2) ∗ . . . ∗ (1− pn) = 1− (1− p1) ∗ (1− p2) ∗ . . . ∗ (1− pn+1).

Therefore, the order in which we apply the f∧ function does not change the final result.

Proposition 2. Let P={P1, P2, P3} be a list of three preferences, where pi is the intensity value

of preference Pi. When these preferences are combined using only OR operator, the combined

intensity value computed using f∨ function depends on the order the preferences are selected.

Moreover, we have: f∨(p1, f∨(p2, p3)) ≥ f∨(p2, f∨(p1, p3)) ≥ f∨(p3, f∨(p1, p2)).

Proof. Let us assume that the p1 ≥ p2 ≥ p3. This assumption does not influence the proof since

if there is a different order we can easily order preferences descending by their intensity value and

reassign the name of the variables representing the intensity value for each preference.

We also have:

f∨(p1, f∨(p2, p3)) =
p1 + f∨(p2, p3)

2
=
p1 +

p2+p3
2

2
=

2 ∗ p1 + p2 + p3
4

f∨(p2, f∨(p1, p3)) =
p2 + f∨(p1, p3)

2
=
p2 +

p1 + p3
2

2
=

2 ∗ p2 + p1 + p3
4

f∨(p3, f∨(p1, p2)) =
p3 + f∨(p1, p2)

2
=
p3 +

p1 + p2
2

2
=

2 ∗ p3 + p1 + p2
4

And since p1 ≥ p2 ≥ p3⇒ f∨(p1, f∨(p2, p3)) ≥ f∨(p2, f∨(p1, p3)) ≥ f∨(p3, f∨(p1, p2))

47

To show how the intensity value influences the final result, we bring back the canonical exam-

ple given in the Background section and we add the intensity values for each preference.

Example 6. Assume the three preferences over car entities:

P1: “I like a car with the price between $7,000 and $16,000 with intensity 0.8”.

P2: “I prefer car with a mileage between 20,000 and 50,000 with intensity 0.5”.

P3 : “I prefer a BMW or a Honda with intensity 0.2”.

A snapshot of the dealership relation is given in the Table 8

Table 8: Dealership Relation

id price mileage make

t1 $7,000 43,489 Honda

t2 $16,000 35,334 VW

t3 $20,000 49,119 Honda

Since all preferences are defined on different attributes, using the intensity values and the

combination function given in Equation (4.3) we can now compute a combined intensity value for

all the tuples.

Tuple t1 matches all three preferences. Therefore, the combined intensity value is:

f∧(f∧(P1, P2), P3) = f∧(f∧(0.8, 0.5), 0.2) = f∧(0.9, 0.2) = 0.92

Tuple t2 matches only first and second preference. The combined intensity value is:

f∧(P1, P2) = f∧(0.8, 0.5) = 0.9.

Tuple t3 matches only the last two preferences. The combined intensity value is:

f∧(P2, P3) = f∧(0.5, 0.2) = 0.6.

The final results are given in Table 9.

48

Table 9: Intensities Values for Tuples in Dealership Relation

t1 0.92 tuple matches all three preferences

t2 0.9 tuple matches preference P1 and P2

t3 0.6 tuple matches preference P2 and P3

4.7 SUMMARY

In this section we described the necessary steps to transition from the theoretical model to a real

system implemented in Neo4j. Although multiple options exist to store a graph, we picked the

graph database implementation to overcome the limitations provided by the other options in terms

of scalability – for the adjacency matrix model – and graph traversal – for the relational database

model.

Moreover, we showed how we can convert qualitative preferences into quantitative preferences

using one of the two functions presented in Equation (4.1) and Equation (4.2), process which allows

us to “cover”, with the existing preferences, more tuples from the dataset.

Finally, we showed how intensity value changes when the preferences are combined and we

discussed the reasoning behind selection an inflationary function – when preferences are combined

with an AND operator – and a reserved function, when preferences are combined with an OR

operator.

49

5.0 TOWARDS A PRACTICAL AND EFFICIENT ALGORITHM FOR GENERATING

BEST PREFERENCE COMBINATIONS

Given a set of preferences, each with an intensity value, we want to be able to determine the best

combination of preferences that, in one hand, maximizes the combined intensity value and, in the

other hand, still returns tuples. In that respect, we expect the intensity and the number of returned

results to play an important role in determining the best strategy for combining preferences.

In this chapter we describe an efficient algorithm for generating the best combination of pre-

ferences. In this context, and in the rest of this dissertation, we use, in many occasions, the term

applicable combination.

Definition 15. Applicable combination – Given a base select query, a preference enhanced query

is created by adding in the WHERE clause any predicate or combinations of predicates from the

user’s profile. Any such predicate combination that returns at least one tuple when is used to

enhance a base select query is called an applicable combination.

5.1 UTILITY AND COVERAGE METRICS

In the next sections we are introducing two new metrics used to evaluate the performance of dif-

ferent algorithms designed to combine preferences in our proposed framework.

5.1.1 Utility Metric

In Section 4.6.1 we define the preference composition function, when preferences are combined

with an AND operator, as a function with an inflationary behavior, given by Equation (4.3). Be-

50

cause of the way it is defined, we expect that combining preferences will give us a better intensity

value than using one preference at a time. However, it is also important to see how the number of

tuples returned varies and we cannot expect that the intensity and the number of tuples are corre-

lated (as we also confirm from our experiments). As such, it is important to come up with a metric

that combines both.

First, we need to record the number of tuples returned by using one particular preference or

one combination of preferences.

Definition 16. Preference Selectivity – The ratio between the total number of tuples returned and

the number of predicates used to enhance a base query. This predicate can be an atomic one (i.e.,

only one predicate used) or it can be a combination of multiple preference predicates.

Pref Selectivity =
#tuples

#preferences
(5.1)

Definition 17. Utility – A metric defied as a product between the preference selectivity and the

combined intensity value.

Utility = Pref Selectivity ∗ intensity (5.2)

5.1.2 Coverage Metric

Definition 18. Coverage – The total possible number of tuples “touched” when all preferences

are used independently.

We use coverage metric to record how many tuples a user can access using his/hers preferences.

When preferences are very selective, a system might want to combine preferences using an OR

semantics in order to bring as many tuples as possible into the result list.

Coverage is a useful metric that describes how selective a set of preferences is. However, there

is no obvious way to decide what is more important: a preference that returns millions of tuples or

a preference that returns only few. Moreover, if the intensity value attached to the tuples returned

is very small, then it seems reasonable to pick the preferences that return less tuples first, but with

higher intensity value.

51

5.2 THEORETICAL UPPER BOUND COMPLEXITY FOR PREFERENCE

COMBINATION

In previous chapter, Section 4.6, we discussed about three different ways to combine preferences:

conjunctive, disjunctive, and mixed clause.

In principle, instead of deciding online what is the best combination that returns a non empty

result, with the highest intensity value, we can first compute the combined intensity values for

all possible combinations and then, enhance the MySql query with one preference at a time until

enough results are returned. However, Proposition 3 and Proposition 4 show that the number of

combinations that a system needs to produce increase exponentially in number of preferences,

therefore is not a viable solution.

Proposition 3. Given a list of N preferences, the theoretical upper bound of the preference combi-

nation problem, using only the AND operator, is 2N − 1.

Proof. Assume we have the following list of preferences: P ={p1, p2, p3, p4, p5}.

In the trivial case, there are
(
N
1

)
= N possible combinations of one preference, which is, P, the

initial list of preferences.

When combining two preferences, out of all N, we have
(
N
2

)
possible ways to choose 2 prefe-

rences out of all N. Each preference is combined once with one of the preferences that succeed it

in the list of ordered preferences. Since we only combine preferences with an AND operator, for

the second step we have
(
N
2

)
number of combinations.

When combining three preferences, out of N, we have
(
N
3

)
possible combinations.

. . .

Following the same counting strategy, for all the remaining steps, we infer that the number of

all possible combinations is:

S =

(
N

1

)
+

(
N

2

)
+

(
N

3

)
+ . . .+

(
N

N

)
=

N∑
k=0

(
N

k

)
−
(
N

0

)
= 2N − 1. (5.3)

Proposition 4. Given a list of N preferences, the theoretical upper bound of the preference combi-

nation problem, using both AND and OR operators, is
3N − 1

2
.

52

Proof. As before, assume we have the following list of preferences: P ={p1, p2, p3, p4, p5}.

In the trivial case, there are
(
N
1

)
= N possible combinations of one preference, which is, P, the

initial list of preferences.

When combining two preferences, out of all N, we have
(
N
2

)
possible combinations. Each

preference is combined once with one of the preferences that succeed it in the list of ordered

preferences. However, since each combination can be created using an AND or an OR operator,

there are twice as many possible combinations making a total of 2×
(
N
2

)
possible combinations. In

our example, the resulted list is P2 = P2a ∪ P2b where :

• P2a ={(p1 AND p2), (p1 AND p3), (p1 AND p4), (p1 AND p5)}

• P2b ={(p1 OR p2), (p1 OR p3), (p1 OR p4), (p1 OR p5)}

When combining three preferences, out of all N, we have
(
N
3

)
possible combinations. Same as

before, because we can combine the third preferences with an AND or an OR, there are twice as

many preference combination possible. Moreover, the previous combinations of two can be again

made using an AND or an OR therefore there are in total 22×
(
N
3

)
possible combinations. In our

example, the resulted list of all possible combinations of three preferences is P3 =P3a ∪ P3b ∪ P3c

∪ P3d where:

• P3a ={(p1 AND p2 AND p3), (p1 AND p3 AND p4), (p1 AND p4 AND p5) }

• P3b ={(p1 AND p2 OR p3), (p1 AND p3 OR p4), (p1 AND p4 OR p5) }

• P3c ={(p1 OR p2 AND p3), (p1 OR p3 AND p4), (p1 OR p4 AND p5) }

• P3d ={(p1 OR p2 OR p3), (p1 OR p3 OR p4), (p1 OR p4 OR p5) }

Following the same reasoning, we have 2N−1
(
N
N

)
combinations when all the preferences are

combined.

The total number of combination is given by the sum S in Equation (5.4).

S =

(
N

1

)
+ 21 ×

(
N

2

)
+ 22 ×

(
N

3

)
+ . . .+ 2N−1 ×

(
N

N

)
(5.4)

We also have that Equation (5.5) holds for every x.

N∑
k=0

xk ×
(
N

k

)
= (x+ 1)N (5.5)

53

In order to use Equation (5.5), we need to add to S the missing binomial term,
(
N
0

)
=1. In this

case, using Equation (5.4) and Equation (5.5) we have that:

2× S +

(
N

0

)
= (2 + 1)N ⇒ S =

3N − 1

2
. (5.6)

To eliminate the exponential complexity we need to be able to decide, beforehand, which

combinations are applicable and which combinations return a better combined intensity value.

This will allow us to reduce the space of combinations that should be executed at the running

time. In the next sections we show how we can identify a pruning mechanism to alleviate the time

complexity problem.

5.3 ALGORITHMS TO GENERATE PREFERENCE COMBINATIONS

To show what happens with the intensity value when we combine preferences, we designed three

algorithms that combine a list of preferences. For all algorithms:

• Input: a list of preferences, for one particular user, in descending order of intensity value

• Output: a list L that records, for each preference combination created:

<number of predicates used, number of tuples returned, combined intensity value>

The first algorithm – Combine-Two – combines only two preferences and its design and be-

havior is explained in Section 5.3.1. The second algorithm – Partially-Combine-All – combines

all available preferences, one at a time, using a mixed clause semantic and outputs the number of

preferences used, the number of tuples returned and the combined intensity value. More details

about this algorithm are presented in Section 5.3.2. Finally, the last algorithm designed to show the

difficulties in determining the best combination – Bias-Random-Selection – combines all available

preference and decides, using a biased coin flip, if the preference should be included or not. More

details about this algorithm are presented in Section 5.4.

54

5.3.1 Combine-Two Algorithm

The Combine-Two algorithm is an exhaustive combination of two preferences, with one preference

kept fix, and a different preference selected at every step from the remaining list. This algorithm

takes as input a list of preferences ordered descending by intensity value and returns a list of pref-

erence combinations along with theirs combined intensity value and the number of tuples returned.

The Combine-Two Algorithm makes combinations that contain only two preferences. At every

step, the current preference is combined with all the remaining preferences in the input list, one at

a time.

In Section 4.6 we defined the conjunctive, disjunctive and mixed clause when we discussed

about the three obvious ways to combine predicates. In this chapter we are using the following

notations:

• AND semantics: creates a conjunctive clause and all predicates are connected using only an

AND operator

• OR semantics: creates a disjunctive clause and all predicates are connected using only an OR

operator

• AND OR semantics: creates a mixed clause and all predicates that refer to the same attribute

are combined using an OR operator, whereas all predicates that contain different attributes are

combined using an AND operator

Algorithm description. The Combine-Two algorithm starts with the preference with the highest

intensity value and appends next available preference from the remaining list, using AND OR

semantics, Algorithm 2 or AND semantics, Algorithm 3 . Then it continues with the second most

preferred and one preference from the remaining list of preferences.

In the case of AND semantics, some of the combinations will not return any tuples (e.g.,

venue=‘SIGMOD’ and venue=‘VLDB’). To eliminate the cases where no tuples are returned, the

AND OR semantics combine two preferences on the author attribute with OR semantics and two

preferences, one preferences on author attribute and the other on the venue, with AND semantics.

In Algortithm 3, AND () function takes as arguments two preferences, given as a pair<predicate,

intensity value> and returns a combined predicate using an AND operator, with the combined in-

tensity value computed using Equation (4.3) attached.

55

In Algortithm 2, AND () function behaves in the same ways as explained before. The OR ()

function takes, again as arguments, two preferences given as a pair <predicate, intensity value>

and returns a combined predicate using an OR operator, with the combined intensity value com-

puted using Equation (4.4) attached. The OR () function is applied when the two predicates refer to

the same attribute, whereas the AND () function applies when the two predicates refer to different

attributes (e.g., one predicate is on the venue and the other one is on the author).

The runQuery () function is called after a predicate combination is created (i.e, predicates

are combined using AND or OR operators and the combined intensity value is computed). This

function perform three tasks:

1. It enhances the base query with the predicate stored in the preference argument

2. It runs the new query over the database tuples

3. Returns the results as: <2, #tuples, combine intensity value>. The combined intensity value

is previously computed and stored in the preference argument of this function

Example 7. Let P ={ P1, P2, P3} be a list of preferences for one particular user, order descending

by intensity value. Also, we assume the following predicates for each preference:

• P1: { predicate: “dblp.venue = INFOCOM”}

• P2: { predicate: “dblp author.aid = 2222”}

• P3: { predicate: “dblp author.aid = 4787”}

With the preferences listed in the Example 7, on one hand, Combine-Two algorithm with

AND OR semantics will run queries like:

SELECT count(distinct dblp.pid)

FROM dblp join dblp_author on dblp.pid =dblp_author.pid

WHERE dblp.venue="INFOCOM’’ AND dblp_author.aid=2222;

SELECT count(distinct dblp.pid)

FROM dblp join dblp_author on dblp.pid =dblp_author.pid

WHERE dblp.venue="INFOCOM’’ AND dblp_author.aid=4787;

SELECT count(distinct dblp.pid)

56

Algorithm 2 Combine-Two Algorithm with AND OR sematics
Input: allPref – list of preferences, for one particular user, ordered descending by intensity value

Output: L={ p, p=<2, #tuples, combined intensity value>}.

1: BEGIN

2: L← ∅;

3: base query = “SELECT count(distinct dblp.pid)” +

4: + “FROM dblp join dblp author on dblp.pid=dblp author.aid ” +

5: + “WHERE ”

6: while (there are more preferences left) do

7: p1 = allPref.readNextAvailablePreference();

8: nextPrefList← allPref - p1;

9: while (there are more preferences left in nextPrefList) do

10: p2 = nextPrefList.readNextAvailablePreference();

11: if (p1 and p2 have the same attribute) then

12: preference = OR (p1, p2);

13: else

14: preference = AND (p1, p2);

15: end if

16: L← =runQuery (base query, preference)

17: end while

18: end while

19: RETURN L;

20: END

57

Algorithm 3 Combine-Two Algorithm with AND sematics
Input: allPref – list of preferences, for one particular user, ordered descending by intensity value

Output: L={p, p=<2, #tuples, combined intensity value>}

1: BEGIN

2: L← ∅;

3: base query = “SELECT count(distinct dblp.pid)” +

4: + “FROM dblp join dblp author on dblp.pid=dblp author.aid ” +

5: + “WHERE ”

6: while (there are more preferences left) do

7: p1 = allPref.readNextAvailablePreference();

8: nextPrefList← allPref - p1;

9: while (there are more preferences left in nextPrefList) do

10: p2 = nextPrefList.readNextAvailablePreference();

11: preference = AND (p1, p2);

12: L← =runQuery (base query, preference)

13: end while

14: end while

15: RETURN L;

16: END

58

FROM dblp join dblp_author on dblp.pid =dblp_author.pid

WHERE dblp_author.aid=2222 OR dblp_author.aid=4787;

As explained before, we modified the Algorithm 2 to combine all the preferences only with

the AND operator, in Algorithm 3. To do that, we eliminate the extra step that checks if the two

preferences refer to the same attribute and the call of OR() function. Other than these modifications

the algorithm is the same and, using the preferences given in Example 7, this algorithm will run

queries like:

SELECT count(distinct dblp.pid)

FROM dblp join dblp_author on dblp.pid =dblp_author.pid

WHERE dblp.venue="INFOCOM’’ AND dblp_author.aid=2222;

SELECT count(distinct dblp.pid)

FROM dblp join dblp_author on dblp.pid =dblp_author.pid

WHERE dblp.venue="INFOCOM’’ AND dblp_author.aid=4787;

SELECT count(distinct dblp.pid)

FROM dblp join dblp_author on dblp.pid =dblp_author.pid

WHERE dblp_author.aid=2222 AND dblp_author.aid=4787;

Complexity. This algorithm computes all combinations of two in O(N2), where N is the size

of the preference list given as input, because there are
(
N
2

)
= N !

(N−2)!∗2! = (N−1)∗N
2

.

5.3.2 Partially-Combine-All Algorithm

The Partially-Combine-Two algorithm takes as input a list of preferences ordered descending by

intensity value. As before, the algorithm returns a list L of pairs: L={ p, p=<#predicates, #tuples,

combined intensity value>}. The purpose of this algorithm is to combine as many preferences

as possible, since this process will return the most preferred tuples, customized based on a user

profile. However, some combination as not applicable and to avoid creating combinations that do

not return anything we combine all predicates that refer to the same attribute using an OR operator

and all predicates that refer to different attributes using an AND operator. Moreover, because any

59

combination with an AND operator has an inflationary behavior (i.e., the combined intensity value

is greater that any intensity value participating in the combination) we want to run as many queries

with AND as possible.

Algorithm description.The Partially-Combine-All algorithm, presented in Algorithm 4, starts

with an empty preference predicate and appends, one at a time, a preference retrieved from the

ordered list. For each predicate retrieved, this algorithm stores in attributesUsed list any attribute

that was not used before. Moreover, the algorithm stores in queriesRan all predicates combination

made so far for future references.

When predicates are combined, there are three possible conditions to be verified in order to

decide how should the predicates be combined.

• Condition 1: if the new predicate contains an attribute that was not used before in any com-

binations, we rerun all the queries we ran before, appending the new preference to the query

predicate, using an AND operator. The idea behind this behavior comes from the fact that we

want to create as many combinations as possible using AND operator.

• Condition 2: If the new preference contains an attribute that was already used, but the query

contains only one attribute type, we append the new predicate to the last query created, using

OR. In this case, because the combined intensity value will decrease, we only want to append

the new predicate to the last combination.

• Condition 3: If the new preference contains a predicate that was already used, and there are at

least two different attributes used in the last combination of preferences (i.e., there is an AND

between two preferences) then:

– the algorithm runs all the queries ran before, that do not contain the new attribute, inserting

the new predicate with an AND operator (i.e., AND(queriesRan, pi) function call)

– the algorithm adds the new predicate into the appropriate clause of the last combination,

using an OR operator.

60

Algorithm 4 Partially-Combine-All Algorithm
Input: allPref -a list of all preferences for one particular user

Output: L = {p, p=<#predicates, #tuples, combined intensity value>}.

1: BEGIN

2: L← ∅ ; query← ∅ ; attributesUsed← ∅ ; queriesToRan← ∅ ; queriesRan← ∅ ;

3: base query = “SELECT count(distinct dblp.pid)” +

4: + “FROM dblp join dblp author on dblp.pid=dblp author.aid WHERE ”

5: while (there are more preferences in allPref list) do

6: pi =allPref→read and remove a pref

7: if (query is empty) then

8: query =base query + pi

9: attributesUsed← pi.attribute

10: else if (pi.attribute 6∈ attributesUsed) then

11: for (all combinations already created) do

12: queriesToRan← AND(queriesRan, pi)

13: end for

14: attributesUsed← pi.attribute

15: else

16: lastCombination← queriesRan→last

17: if (pi.attribute ∈ attributesUsed and lastCombination does NOT contain AND) then

18: queriesToRan← OR(lastCombination, pi)

19: else if (pi.attribute ∈ attributesUsed and lastCombination contains AND) then

20: queriesToRan← OR(queriesRan, pi)

21: queriesToRan← AND(queriesRan, pi)

22: end if

23: end if

24: L← runQuery(queriesToRun, queriesRan);

25: queriesToRun← ∅

26: end while

27: RETURN L

28: END

61

Using again the list of preferences given in Example 7, the Partially-Combine-All algorithm

creates the following predicates combinations:

Start: empty string

Combination 1: dblp.venue=”INFOCOM”

Combination 2: dblp.venue=”INFOCOM” AND dblp author.aid=2222

Combination 3: dblp.venue=”INFOCOM” AND dblp author.aid=4787

Combination 4: dblp.venue=”INFOCOM” AND (dblp author.aid=4787 OR dblp author.aid=2222)

Complexity.

Proposition 5. Complexity of Partially-Combine-All algorithm – Given a list of N preferences, in

the best case, the Partially-Combine-All algorithm runs in O(N) time, when no previously made

combinations are used. However, when the algorithm uses previous combinations, the running

time is O(N2).

Proof. Best Case

[1] In the case when all preferences defined in a user profile contain only one attribute, the

algorithm appends to the last combination the new predicate using an OR operator. In this case,

the algorithm runs N queries, therefore there is a O(N) running time.

[2] In the case when all preferences contain one specific attribute except for the first one, the

algorithm still runs in O(N). Let us assume P={v, a1, a2, . . ., aN−1} be the list of predicates where

v contains one attribute which is different than the attribute contained in ai∀i <= N − 1. In this

case, we will have the following combinations:

1. for v, creates combination: v

2. for a1 creates combination: v AND a1

3. for a2 creates combination:

• v AND a2

• v AND (a1 OR a2)

4. for a3 creates combination:

• v AND a3

• v AND (a1 OR a2 OR a3)

62

5. . . .

6. for aN−1 creates combination:

• v AND aN−1

• v AND (a1 OR a2 OR a3 OR . . . aN−1)

In this case, the algorithm runs one query for first and second predicate and two queries for all

the remaining predicates. This creates 2*N-2 operations which will be executed in O(N) time.

[3] In the case when all preferences contain one specific attribute except for the last one, the

algorithm still runs in O(N). Let us assume P={a1, a2, . . ., aN−1, v} be the list of predicates where

v contains one attribute which is different than the attribute contained in ai ∀ i ≤ N − 1. In this

case, we will have the following combinations:

1. for a1 creates combination: a1

2. for a2 creates combination: a1 OR a2

3. for a3 creates combination: a1 OR a2 OR a3

4. . . .

5. for aN−1 creates combination: a1 OR a2 OR . . . aN1

6. for v creates combinations:

• a1 AND v

• a1 OR a2 AND v

• . . .

• a1 OR a2 OR . . . aN1 AND v

In this case, the algorithm runs N-1 steps for all ai preferences and another N-1 steps for

preference v⇒ O(N) running time.

Worst Case

In the case when the list of preferences contain two different predicates, the worst case comes

when there are
N

2
predicates of one type and

N

2
predicates of the other type. In this case, the

algorithm combines the first
N

2
predicates that have the same attribute using and OR operator

which is executed in
N

2
steps. Then, for the remaining

N

2
preferences, all with the same attribute

but different that the first attribute, the algorithm creates
N

2
combinations using AND operator plus

63

another
N

2
combinations using OR operator. In this case, the running time is

N

2
+
N

2
*(
N

2
+
N

2
)

⇒ O(N2)

5.4 BIAS-RANDOM-SELECTION ALGORITHM

The last algorithm randomly selects a predicate to be included in the predicate combination. Bias-

Random-Selection algorithm, Algorithm 5, decides with a biased coin flip if a given preference

should be included or not in the generated preference combination. We bias the coin flip towards

the preferences with higher intensity values, since this will give us a better combined intensity

value for the returned tuples.

Algorithm description. The algorithm takes as input a list of all preferences for one particular

user, ordered descending by intensity values, The output of this algorithm is represented by a list

that contains records of the form: <#predicates combined, #tuples returned, combined intensity

value>.

pref =get first preference

next = flipCoin(bias)

pref &
next is
valid

NO YES
pref =pref AND next

next = flipCoin(bias)

pref &
next is
valid

YES
HOLD pref

NO

STOP

Figure 16: Bias-Random Algorithm Representation

64

The main part of the algorithm is described in Figure 16. These steps are executed for all

the preferences stored in a user profile and every time the subroutine is execute, the initialization

“pref=get first preference” will select the next available preference in the list. The pseudocode of

Bias-Random-Selection algorithm is given in Algorithm 5.

The predicate combination subroutine has six steps:

• Step 1: With the fist preference already selected, the algorithm looks in the list of remaining

preferences, and it decides to keep or to skip a preference based on a biased coin flip. When

one preference is selected, it is returned to the subroutine.

• Step 2: The first combination is created by connecting the first preference and the preference

selected in Step 1 with an AND operator. If this combination is applicable (i.e., it returns

tuples), then the algorithm temporary stores this combination as the current preference.

• Step 3: From the remaining list of preferences (i.e., all preferences that follow the last prefer-

ence selected) the algorithm picks another randomly selected preference and check the appli-

cability of the new combination.

• Step 4: If the new combination is not applicable, then the algorithm runs the previous com-

bination and adds to the output list the results (i.e., number of predicates in the combination,

number of tuples returned and the combined intensity value) and executes again Step 1.

• Step 5: If the new combination is applicable, the algorithm creates a new temporary predicate

combination and returns to Step 3.

• Step 6: If the flipCoin() function does not return any preference because there are no more

preferences left, the algorithm behaves as in Step 4.

• Step 7: The algorithm stops when there are no more preferences that can be selected.

Complexity. The complexity of this algorithm depends on the number of preferences selected

using the biased coin flip. In the worst case, when all preferences are selected, and all combinations

are applicable, the algorithm creates, for each preference, K2 combinations, where K is the size of

the remaining list of preferences. For example, for the third preference, there are N-3 preferences

left that can be combined with the third preference. Because of this, the running time of this

algorithm is O(N3).

65

Algorithm 5 Bias-Random-Selection
Input: allPref – a list of all preferences for one particular user

Output: orderedL = {p, p=<#predicates, #tuples, combined intensity value >}

1: BEGIN

2: oderedL← ∅ ; nextL← ∅ ;

3: for (all preference ids) do

4: first = allPref→ preference id;

5: while (there are more preferences left) do

6: preference id =flipCoin(bias)

7: second = allPref→ preference id;

8: if (“first AND second” does not return any tuple) then

9: continue; {/* first combination is not applicable. Try a new combination */}

10: else

11: pref = “first AND second”;

12: end if

13: while (there are preferences left) do

14: next preference id =flipCoin(bias)

15: next =allPref→ next preference id;

16: if (“pref AND next” does not return any tuple) then

17: orderedL← runQuery(pref)

18: break; {/* exit the inner loop. No more applicable combinations can be created */}

19: else

20: pref = “pref AND next”

21: end if

22: end while

23: end while

24: end for

25: END

66

5.5 AN ALGORITHM FOR A PRACTICAL AND EFFICIENT PREFERENCE

SELECTION

All previous algorithms demonstrate the difficulties related to preference combinations. Our Prac-

tical and Efficient Preference Selection (PEPS) algorithm is created to overcome these difficulties

and return a sorted list of preferences based on the combined intensity value.

The Practical and Efficient Preference Selection (PEPS) algorithm is our Top-K algorithm that

returns the first k tuples selected by the best combinations of preferences in terms of combined

intensity value.

To create applicable combinations of predicates we have implemented a first and complete

version of the PEPS algorithm and an approximation version for the same algorithm. Both versions

make use of a pre-computed list of combinations of two predicates, which is updated when the

preference graph is updated. Each item in this list contains the pair of predicates that are AND

combined, the pre-computed combined intensity value, and a count of number of tuples returned

when the predicate combination is used. The PEPS algorithms use this list to retrieve all the valid

combinations that start with a particular predicate.

5.5.1 The Complete PEPS Algorithm

The Complete PEPS algorithm, Algorithm 6 uses AND semantics to combine as many predicates

as possible.

The algorithm iterates over the list of preferences and for a given preference p, selects all

the items from list of combinations of two predicates, with the combined intensity value greater

than the intensity value of p. Next, it also selects all other combinations, that do not have the

combined intensity value greater than the intensity value of p, but given enough extra predicates,

the final value can still be greater than p. We based our algorithm on Proposition 6. This list is

the starting point of the PEPS algorithm to expand them into multi-predicate AND-combinations.

If the generated multi-predicate combinations do not retrieve all k tuples, the PEPS algorithm is

invoked again with the next available preference, until all k tuples are retrieved.

67

Proposition 6. Let P = { P1, P2, P3, . . ., Pn } be a list of preferences, ordered descending by their

intensity value, and intensity(P) = { p1, p2, p1, . . ., pn } be their associated intensity values. If the

combined intensity value of P2 and P3 is not greater than p1 then it can only be greater if there are

at least K =
log(1− p1)
log(1− p2)

more preferences in the list, with intensity value equal to p2.

Proof. The combined intensity value for P2 and P3 is given by:

f∧(p2, p3) = 1− (1− p2) ∗ (1− p3)

But since p2 ≥ p3 ⇒ f∧(p2, p3) ≤ 1− (1− p2)2 ⇒ f∧(p2, p3) ≤ 1− (1− p2)K

We are looking for a K value such that f∧(p2, p3) ≥ p1

f∧(p2, p3) ≥ p1 ⇒ 1 − (1 − p2)K ≥ p1 ⇒ 1 − (1 − p2)K ≥ 1 − (1 − p1) ⇒ (1 − p2)K ≤

(1− p1)⇒ K ≥ log(1− p1)
log(1− p2)

The previous proposition is an optimistic approximation of the number of preferences that need

to be combined in order to have a combination with intensity value greater than p1. This is because

it assumes that all preferences, except the first one, have the intensity value equal to p2. However,

the intensity value might decrease for each preference that follow p2 in the list of preferences. This

proposition gives us a lower bound on the number of predicates that need to be combined in order

to have a combination with an intensity value as good as the intensity value of p1.

Algorithm description. Complete PEPS uses two stacks. First stack, CombStack is initialize

with all the combinations of two predicates found in a previous step or all combinations of two

preferences with combined intensity value greater than the intensity value of p for the first time

(i.e., line 2 in Algorithm 6) or with possibility of being greater if enough predicates are com-

bined. Second stack, PrefStack, is initially empty and it will be used to store all partial predicate

combinations.

The algorithm starts by extracting one item from CombStack (i.e., a pair (pi, pj) where pi and

pj each represents a different predicate). Then, if the PrefStack is empty, the algorithm creates a

new partial combination by joining the two predicates with AND, computes a combined intensity

value, and adds on the CombStack all valid combinations (pj , X), where X is any predicate in the

user’s profile. When the PrefStack is not empty, the algorithm extracts the top predicate combi-

nation, appends the pj predicate using AND and checks the applicability of the new combination

by verifying that there is an applicable combination between all predicates already used and pj . If

68

the new combination is applicable, then this combination is added to the PrefStack and all valid

combinations of two predicates that start with pj are also added to the CombStack.

If the new combination does not return any tuple, and the top of the CombStack does not

contain a pair (pi, Y), for any preference Y in the user profile, then the algorithm removes the

last preference from the PrefStack and saves it in the ORDER list. However, if the CombStack

does contain a valid pair (pi, Y), then this pair will be used to create a partial combination and

its applicability is checked again, as explained before. The algorithm continues until there are no

more combinations left in CombStack.

Complexity. The complexity of this algorithm depends on the number of applicable pairs of

predicates combinations. In the worst case, this algorithm behaves as the exhaustive search, as

stated in Proposition 3.

5.5.2 The Approximate PEPS Algorithm

The second version of PEPS Algorithm, Approximate PEPS, differs from the Complete PEPS al-

gorithm only at the first step when the combinations of two preferences are selected. The Complete

PEPS algorithm keeps in the working set all combinations that might be useful later, to make sure

no possible combination is lost. The Approximate PEPS algorithm removes this requirement for a

faster tuple retrieval. The algorithm store in the working set only these combinations of predicates

that have the combined intensity value greater than p1. The Algorithm 6 is still applicable for

the Approximate PEPS algorithm because the list of combinations of two preferences, the starting

point of the algorithm, is pre-computed before this routine is called.

The benefit of the Approximate PEPS Algorithm comes from the fact that the algorithm is cut-

ting out combinations that are probably not useful (i.e., they will not create an applicable predicate

combination with the combined intensity value as large as required). However, this algorithm is

only an approximate Top-K algorithm because it is possible to miss tuples that would have been

returned by one of the combinations pruned.

69

Algorithm 6 PEPS Algorithm with AND semantics
Input:

CombsOfTwo -a list of valid combinations ordered by the combined intensity value

p -the next preference with highest intensity value

Output: ORDER -a list of predicate combinations ordered by the combined intensity value

1: BEGIN

2: CombStack← CombStack ∪ CombsOfTwo(p) ; PrefStack← ∅

3: while (CombStack NOT ∅) do

4: (pi, pj) =CombStack.removeFirst()

5: lastPref =PrefStack.readFirst()

6: if (lastPref does NOT exist) then

7: newPref =AND(pi,pj)

8: else

9: if (lastPref AND pj NOT applicable and CombStack does NOT contain (pi, Y)) then

10: ORDER← lastPref ; PrefStack← remove last

11: CombStack.removeAll(pi)

12: go to LINE 4

13: end if

14: newPref =AND(lastPref, pi)

15: end if

16: nextApplicableCombs← CombsOfTwo(pj)

17: if (nextApplicableCombs is ∅) then

18: ORDER← newPref

19: else

20: CombStack← CombStack ∪ nextApplicableCombs

21: PrefStack← PrefStack ∪ newPref;

22: end if

23: end while

24: RETURN ORDER

25: END

70

5.6 SUMMARY

In this chapter we presented three different algorithms that can be used to combine preferences,

each of them with their advantages and disadvantages. The Combine-Two algorithm is a very

intuitive one but it limits the combinations to two predicates at a time. It was implemented in two

different versions, one with conjunctive clauses only and the other version with mixed clauses. The

Partially-Combine-All algorithm uses mixed clauses and creates as many combinations as possible

with conjunctive clauses. Bias-Random-Selection algorithm is designed to study the behavior of

predicate combination if predicates are selected randomly, where the bias is given by the intensity

value of each preference – higher the intensity, higher the chances of the predicate to be selected.

Finally, we closed this chapter with our Top-K efficient and practical algorithm, PEPS algorithm.

Moreover, we discussed about the utility and coverage metric used to characterize the impact

of the preferences over the final result.

71

6.0 EXPERIMENTAL WORKLOAD

To experimentally and fully evaluate our system, we need a large workload consisting of data and

associated user preferences, and we need to have both types of preferences defined – qualitative

and quantitative preferences. Since such a workload is not available, to the best of our knowledge,

we create one by utilizing the DBLP citation dataset and we extract user preferences from the data

itself. We describe this process in the next sections.

6.1 DBLP CITATION NETWORK

The DBLP Citation Network V4 dataset [44] contains both the DBLP dataset (2011 version) and

information about citations. Data is organized in blocks, one block for each paper, which contains

the title, author(s), venue, abstract, citations and paper id). By parsing this dataset, we create a

relational database with four tables:

• Dblp (pid, title, venue, year, abstract) – contains basic information about one paper (title, year

published, venue) along with a paper id (pid)

• Author (aid, full name) – contains the full name extracted from the dataset and an author id

(aid) automatically generated at insertion time

• Citation (pid, cid) – contains the citations references, extracted from the DBLP dataset, as a

pair of paper ids (i.e., pid, cid). The meaning of an entry in this table is that paper with a given

id (i.e., pid) cites the paper with another id (i.e., cid)

• Dblp Author (pid, aid) – contains the links between paper ids (i.e., pid) and the author ids (i.e.,

aid). This table records what authors published what papers

72

Table 10: Statistics for the DBLP Database

Relation Arity Cardinality

dblp 5 1,614,306 papers

author 2 1,033,111 authors

citation 2 2,327,450 total entries

316,562 distinct papers

dblp author 2 4,265,164 entries

quantitative pref 4 10,361,592 entries

1,033,010 distinct users

qualitative pref 5 7,901,874 entries

462,843 distinct users

In addition to the relations given by the DBLP dataset, we create two relations to temporary

store preferences:

• quantitative pref (pfid, uid, preference, intensity)

• qualitative pref (pfid, uid, leftPref, rightPref, intensity)

In both of these tables, the attributes preference, leftPref and rightPref represent the preference

stored as an SQL predicate, uid represents the author id and intensity is the value of intensity

towards that particular preference. In the next section we discuss how we have populated these

two preference tables whose arity and cardinality are also shown in Table 10 .

6.2 PREFERENCE EXTRACTION

We extract preferences for multiple users. We define a user as an existing author from the dataset

and we use author and user interchangeably. However, new users can be created anytime and

inserted in the author table, although they might not have any papers published.

73

To cover all possible types of preferences described in Section 3.3.1 and Section 3.3.2, we

designed the following preference extraction queries:

1. Venue Preference (quantitative preference): User’s preference, on a venue, based on the venues

where he/she published in the past. We create this preference because we assume that someone

would prefer to read papers that were published in venues where he/she has published in the

past.

2. Author Preference (quantitative preference): User’s preference for an author based on the co-

author information. This preference implies that someone would prefer to read papers pub-

lished by his/hers coauthors.

3. Preference of one author over another (qualitative preference): For one user, we define the

preference on author: “Author A is preferred over author B”, meaning that some author is

more preferred than other author, for that particular user.

4. Preference of one venue over another (qualitative preference): For one user, we define a pref-

erence over some venue, when compared with other venue – “Venue X is preferred over venue

Y.”

5. Negative Venue Preference (quantitative preference): For one user, we define a negative pref-

erence towards the venues where he/she did not publish but other authors that were cited by

the user did publish.

We describe the preference extraction process and the formulas used to compute intensity

values next. The purpose of this extraction step is to generate meaningful preferences that can be

used to test our system; however, the preference extraction problem is orthogonal to this work.

6.2.1 Quantitative Preferences

We extract three types of quantitative preferences.

Preference towards a particular venue. The intensity is computed by, first, computing the total

number of papers published by an author in one particular venue; then selecting the Top-5 most

preferred venues and, finally, dividing the number of papers per venue to the total number of

papers published in any of the Top-5 venues. We retained only the Top-5 results because the

dataset contains, for each author, many singular papers per conference and, because of this long

74

tail behavior, the intensity value becomes very small, close to zero, for most of the entries. As a

reminder, a quantitative preference with intensity value equal to zero is equivalent with the user’s

indifference towards that particular set of tuples. Therefore, the system cannot benefit from having

quantitative preferences with intensity equal to zero, and creating a user preference workload with

them would be a meaningless exercise.

Preference towards a particular author. Given the Citation relation, we find all authors that are

cited by a given author. For each user/author, we add one preference for each author cited. The

intensity value for each preference is computed by dividing the total number of citations of that

particular author over the total number of papers cited. At the end, we filter out the preferences with

intensity lower than 0.1, since a quantitative preference with intensity value equal to zero means

the user is indifferent towards that particular tuple or set of tuples and therefore the preference does

not contribute any meaningful information.

Negative preference. For each user, we insert a negative preference towards a venue if the

user never published in that particular venue but he cited authors that did publish in it. Given two

authors, A and B, where author A cites author B, we extract a negative preference for author A,

towards a venue where B published but A did not. The intensity value is computed as

(−1) ∗ intensityA(B)*intensityB(V enue)

where: intensityA(B) is A’s preference intensity for author B and intensityB(V enue) is B’s

preference intensity for a particular venue. The reasoning behind this formula comes from the fact

that if author A cited author B many times, and author B published in a venue multiple times (i.e.,

the intensity for that venue is close to 1) but author A never published in that venue, then author

A should have a strong negative preference towards that venue1. On the other hand, if author

B published a lot in a venue where author A did not publish, but author A is almost indifferent

towards author B (i.e., intensity value is close to 0) then the intensity of the preference should be a

small negative value (close to zero).

1Of course, there is also the explanation that the venue where A never published is extremely selective and author
A’s paper were just never accepted there. Both explanations are plausible but, since we do not have any information
regarding the rejected submissions, we chose the one that can create negative preferences, in order to get a richer test
workload.

75

6.2.2 Qualitative Preferences

We create qualitative preferences over the authors (e.g., author A is preferred over author B) or

over the venues (e.g., venue X is preferred over venue Y) using the already defined quantitative

preferences over the authors and venues. For each user, we first select the list of authors and

then we create, for each consecutive two preferences, one qualitative preference with intensity

equal to the difference between the two quantitative preferences intensities. This mechanism will

create qualitative preferences with negative, zero or positive intensity values. A zero intensity

value for the qualitative preference means that the tuples resulted by applying any of the two

preferences, that produce the qualitative preference, are equally preferred. The cases where the

resulted intensity is a negative value are taken into account when we insert the preference in the

preference graph. To avoid any negative intensity value in our preference graph, we reverse the

order of the preferences and use the positive value instead. This is a perfectly correct mechanism

since the strictly negative and strictly positive values are symmetric.

Proposition 7. Let α > 0 be the intensity value for the following qualitative preference: “A is

preferred over B”. Then the intensity value for the qualitative preference: “B is preferred over A”

is −α.

Proof. Preference “A is preferred over B” with intensity > 0⇒

intensity(A) > intensity(B) (6.1)

and the strength of the preference is equal to α.

Let us assume that preference “B is preferred over A” has an intensity value, β > 0⇒

intensity(B) > intensity(A),∀β > 0 (6.2)

and the strength of the preference is β.

However, Equation (6.2) contradicts the results given in Equation (6.1) which is the hypothesis.

In this case, the assumption made is incorrect, therefore @ β > 0 such that “B is preferred over

A” holds ⇒ β < 0 and, since the negative values and the positive values are symmetric, we can

conclude that β = −α and preference “B is preferred over A” holds with intensity= −α.

76

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

0	
 20000	
 40000	
 60000	
 80000	
 100000	
 120000	
 140000	
 160000	

N
um

be
r	
 o

f	
 P
re
fe
re
nc
es
	

Number	
 of	
 Users	

Figure 17: Distribution of Number of Preferences

To create these qualitative preferences we used the larger dataset of quantitative preferences

(i.e., before removing the author preferences with intensity lower than 0.1). We made this decision

because, in the case of qualitative preference, a zero intensity value means the tuples are equally

preferred which is a valuable information.

The distribution of number of preferences extracted is presented in Figure 17. For all the prefe-

rences created we display on the Ox axis the number of users with the same number of preferences.

The graph shows that there are only few users with a very high number of preferences, between

200 and 1500, and also with a very low number of preferences (i.e., 1, 2 preferences).

6.2.3 Conflict Resolution

When the preference graph is created, a new edge is introduced only if this does not create a

conflict.

In our preference graph model there are two possible conflicts:

1. Conflicting behavior - Refers to the conflict that appears in the cases of the non-contextual

preference representation, when the system inserts, in the graph, a new edge that creates a

77

cycle. In the base case, a cycle can be created between two nodes A, B if there is a directed

edge from A to B and a new, directed edge from B to A is inserted. In order to see why

this is considered a conflict, let us assume we have an edge, A → B, where A and B are

two nodes in the graph. This edge means that the user prefers A more than B which implies

that intensity(A) > intensity(B). If there is another edge, B→ A then, following the previous

reasoning, intensity(B) > intensity(A) in which case we reached a contradiction.

In a real system, this type of conflict can be solved in different ways.

• If the preference is provided online, the system can ask the user to specify which prefer-

ence is more important.

• If user’s feedback is not available, the edge can be marked as a conflict-edge until the

conflict can be resolved (e.g., user provides a feedback or an intensity value is modified).

• The values provided by the user can be subtracted and the new value will be used to resolve

the conflict.

In our model, we insert the conflicting edge but it labels it as CYCLE. When the graph is

traversed, this edge is not taken into consideration.

2. Incompatible intensities – Refers to the conflict that appears in the case when an edge, A→B,

is introduced in the graph but nodes A and B already had assigned quantitative intensities and

intensity(A)< intensity(B). This is a conflict because the directed edge implies that intensity(A)

> intensity(B).

In the case when both nodes, A and B, are connected to the graph we avoid this type of conflict

by inserting the edge and labeling it DROPPED. In this case the edge will not be used when

the graph is traversed, but it can be relabeled, and used later, if the preference intensities of the

two involved nodes change.

When one of the nodes has the in degree (i.e., number of directed edges that comes into the

node) or out degree (i.e., number of directed edges that leave the node) equal to zero, we solve

this conflict by re-computing the intensity value of this node and this way, we do not propagate

the conflict.

78

Algorithm 7 Check conflict
Input: Left node reference , Right node reference.

Output: FALSE, if no conflict is created by adding a new edge between leftNode and rightNode

and both intensities are user provided; TRUE otherwise.

1: BEGIN

2: if (leftNode.intensity > rightNode.intensity AND (both intensities are user provided)) then

3: return FALSE

4: else

5: return TRUE

6: end if

7: END

6.3 THE TIME COMPLEXITY OF CREATING THE HYPRE GRAPH

The Unified Preference Graph is created in two steps using the Algorithm 1. For each step, the

system reads all preferences from the relational database and creates the necessary nodes and edges

in the preference graph. When the list of quantitative preferences contains only unique preferences

(i.e., unique SQL predicates), for each user we can insert all quantitative preferences in a batch,

and there is no need to verify if there is a node, with that particular preference, inserted already in

the graph. However, for the qualitative preferences, some of the nodes would have already been

created (as quantitative preference) and therefore we need first to extract a reference to the node(s)

in order to insert the qualitative preference. Because of that, we cannot take advantage of the batch

insertion for the qualitative preference insertion step.

Table 11: Insertion Time

Insertion Type Number of preference Time (sec)

Quantitative Preferences 10,361,592 256.61

Qualitative Preferences 7,901,874 3680.26

79

Algorithm 8 Compute Intensity Value
Input:

LEFT/RIGHT : the position of the node for which the algorithm computes an intensity value, based

on the direction of the edge

QT : intensity of a quantitative preference

QL : intensity of a qualitative preference

Output: System computed intensity value

1: BEGIN

2: if (LEFT) then

3: return min(1, QT ∗ 2[sign(QT)∗QL]) {/*compute intensity for the LEFT node*/ }

4: end if

5: if (RIGHT) then

6: return max(-1, QT ∗ 2[−sign(QT)∗QL]) {/*compute intensity for the RIGHT node*/ }

7: end if

8: END

Step1. The first step of the algorithm is to create all quantitative preferences. For this step,

the algorithm reads preferences from the relational database and creates nodes in the preference

graph in batch, reading 100,000 preferences at a time. Since we know that quantitative preferences

are uniquely defined for each user, being able to create a batch insert into the preference graph

speeds up significantly the time needed to create the graph. We limited the batch size to 100,000

tuples because every batch insertion is considered one transaction and is kept in memory until the

insertion is complete. Without this limit, the system runs out of memory because nothing is written

on the disk until the transaction ends.

Step2. In the second step of the algorithm, the system inserts all qualitative preferences, for

one user at a time, from the qualitative pref table. Each row in this table contains a leftPref and

a rightPref which are translated into two nodes in the preference graph, connected with a directed

edge – from the left node to the right node. The left node receives the preference stored in leftPref

attribute, and the right node acquires the preference stored in the rightPref attribute.

80

Each qualitative preference insertion is executed in one transaction. The “insertion” of one

qualitative preference follows one of the three possible scenarios:

Scenario 1: Two nodes containing the leftPref and rightPref respectively are already in the user’s

subgraph. In this case, the algorithm only needs to insert an edge between the two nodes, and

run a conflict check subroutine to ensure that no conflict in created by the new edge.

Scenario 2: Only one node containing one of the predicates is already in the user’s subgraph. In

this case, the algorithm creates a new node, adds an edge between the two nodes and computes

an intensity value for the newly created node using the Algorithm 8 (based on Equation (4.1)

and Equation (4.2)).

Scenario 3: The two new predicates are not already part of the user’s subgraph. In this case, the

algorithm creates the two nodes, adds the edge between them, assigns a DEFAULT VALUE

to one of the nodes and computes the value of the second one, using Algorithm 8. For this

scenario we create two new nodes, that are not connected to any other nodes in the graph.

Therefore, assigning a DEFAULT VALUE to any of the two nodes will not create any conflict.

However, if we assign the default value to the left node, the right node will receive a lower a

value, computed using the Algorithm 8. In contrast, if we assign the default value to the right

node, the left node will receive a value greater than the default value. The way a particular

DEFAULT VALUE is chosen is discussed later in Section 6.3.1.

Table 11 shows the time necessary to create the preference graph for all users. As expected,

the insertion time for the quantitative preferences is much smaller than the insertion time for the

qualitative preferences since the system can benefit from the batch insertion. However, for inserting

almost 8 million qualitative preferences the system requires about an hour to finish.

6.3.1 Default Value Selection

The DEFAULT VALUE in Algorithm 1 is used to generate the missing intensities for all the

qualitative preferences and can be seen as a seed of the entire process. We only use this DE-

FAUL VALUE if no other value is available. In the process of generating the preference graph

we experimented with different values for this seed, as shown in Table 12. The first column con-

81

Table 12: Possible DEFAULT VALUEs

Computing Values Values

Algorithm Considered Picked

default no condition 0.5

min no condition

min pos ≥ 0 0

max no condition

max pos ≥ 0 and < 1 0

avg no condition 0.98

avg pos ≥ 0 0

tains the name of the aggregate function we used to compute the DEFAULT VALUE, the second

column contains the values considered for one particular algorithm and, finally, the last column

contains the value we assigned when none of the exiting intensity values matched the condition in

the second column or if the returned value was equal to 1 (for avg case). Since the default value is

a starting point, if this value is one, all values computed with this seed will be equal to one.

Except for the “default” algorithm that simply assigns a 0.5 value to the intensity, the DE-

FAULT VALUE is computed for each user, individually, using the intensity values from his/her

preference, therefore we are treating all users equally and there will be no user for whom the

DEFAULT VALUE will be outside of the range of values that he/she already provided.

6.4 SUMMARY

In this chapter we described the preprocessing steps necessary to convert DBLP dataset into a list

of user profiles in order to test our theoretical model. Our objective was to define preferences that

are covering the qualitative and quantitative spectrum and are also meaningful.

We implemented our preference graph in an interactive system, using real data, in order to

82

evaluate its practicality and usefulness under realistic conditions. We store the preference graph

using the Neo4j 2.0 engine and we use Java 1.7 to query both the graph database and the MySql

database.

We used Java for both creating and querying the graph database, and reading preferences and

sending the enhanced query to the relational database. To communicate with RDBMS, we used a

classical JDBC connection, whereas to query the graph database we used the embedded Java ver-

sion of Neo4j and we sent Cypher queries to find the matching nodes and preferences respectively.

In the next chapter, we present the our system’s behavior and we discuss the benefits and

draw-backs of each algorithm designed in the previous chapter using the preferences extracted

from DBLP-Citation-network dataset.

83

7.0 EXPERIMENTAL RESULTS

In this chapter we present the our system’s behavior and we discuss the benefits and draw-backs of

each algorithm, with emphasis on the variation of utility metric.

We implemented our preference graph in an interactive system, and we evaluate its practicality

and usefulness under realistic conditions using the preferences generated in Chapter 6. We store

the preference graph using the Neo4j 2.0 engine and we use Java 1.7 to query both the graph

database and the MySql database.

The motivation of running each algorithm is to show the common difficulties that appear in a

system that handles preferences. We show that intensity value plays a crucial role in determining

the predicate combination order and we evaluate PEPS, our Top-K algorithm that selects the most

preferred tuples based on the user profile.

7.1 EXPERIMENTAL RESULTS BASED ON UTILITY AND COVERAGE METRICS

In the next sections we apply the Utility and Coverage metrics defined in Section 5.1 to evaluate

the performance of our proposed framework. Moreover, we show, by comparison, the behavior of

different algorithms defined to combine preference predicates.

7.1.1 Experimental Results for Utility Metric

Equation (5.2) defines Utility metric as a product that depends on the number of tuples and the

combined intensity value. Combinations that return significantly more tuples than any other com-

bination but with a very small combined intensity value are considered outliers since the Utility

84

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ut
ili

ty
 v

al
ue

combination order

2 preferences
5 preferences

10 preferences

Figure 18: Utility Value (uid=2)

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5

ut
ili

ty
 v

al
ue

combination order

2 preferences
5 preferences

10 preferences

Figure 19: Utility Value (uid=38437)

metric is high for these tuples. To alleviate this problem we only took into account the first twenty-

five tuples (i.e., the first page) from the result list.

Figure 18 and Figure 19 show the variation of the preference Utility for all combinations of two,

five, and ten preferences for user with id=2 and id=38437, respectively. Because our algorithm re-

runs some of the preferences when a new preference is introduced with an AND operator, we have

multiple times when we see a combination of 5 or 10 preferences. Moreover, more preferences

we combine, more combinations we will have. Because of that, the X axis labeled “combination

order” represents the order in which a combination of 2, 5 or 10 preferences was seen.

We can see that, as expected, there is an overall descending trend in utility value. However, al-

though combining two preferences gives us the highest overall combined intensity value, in terms

of utility, combination of two preferences is quickly topped by the combination of five preferen-

ces. In this case there is a tradeoff between the number of tuples returned and the intensity value

attached to each tuple.

To better understand how the utility is changing we present next the variation of intensity and

the number of tuples returned by each preference enhanced query for user with id=2.

In Figure 20, Figure 22, and Figure 24 we show the number of tuples returned for each combi-

85

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nu
m

be
r o

f t
up

le
s

combination order

Figure 20: Number of Tuples for All Combina-

tions of 2 Preferences

 0.48

 0.485

 0.49

 0.495

 0.5

 0.505

 0.51

 0.515

 0.52

 0.525

 0.53

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

in
te

ns
ity

 v
al

ue

combination order

Figure 21: Intensity Value for All Combina-

tions of 2 Preferences

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

nu
m

be
r o

f t
up

le
s

combination order

Figure 22: Number of Tuples for All Combina-

tions of 5 Preferences

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

in
te

ns
ity

 v
al

ue

combination order

Figure 23: Intensity Value for All Combina-

tions of 5 Preferences

nation of 2, 5 and 10 preferences respectively. Then, we show variation of the combined intensity

value for the same combinations in Figure 21, Figure 23, and Figure 25, respectively.

86

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14

nu
m

be
r o

f t
up

le
s

combination order

Figure 24: Number of Tuples for All Combina-

tions of 10 Preferences

 0.32

 0.325

 0.33

 0.335

 0.34

 0.345

 0.35

 0.355

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

in
te

ns
ity

 v
al

ue

combination order

Figure 25: Intensity Value for All Combina-

tions of 10 Preferences

7.1.2 Experimental Results for Coverage Metric

Our model is using intensity values to combine the two preference types which, in the end, gen-

erates significantly more quantitative preferences, as presented in Figure 26 and 27. For user with

id=2, chosen at random, the graph shows that initially there are 36 quantitative preferences, but af-

ter inserting all qualitative preferences, the preference graph will contain 172 nodes. Similarly, for

another randomly selected user, with id=38437, Figure 27 shows that the number of quantitative

preferences, for user with uid=38437, increases from 24 to 50.

By using the formulas presented in Section 4.4, we are able to assign an intensity value to all

nodes that are part of the qualitative preference by either generating a carefully selected default

value or computing a value given the intensity value of the qualitative preference and an existing

intensity value for one of the predicates (i.e., the left or the right node that creates the qualitative

preference). This way we can transform all qualitative preferences into quantitative preferences,

without losing the underlining information provided by a qualitative preference, that will still be

stored in the graph.

With more quantitative preferences we can cover overall more tuples in the database. Figure 28

87

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

 1
10

 1
20

 1
30

 1
40

 1
50

 1
60

 1
70

 1
80

in
te

ns
ity

 v
al

ue

preferences

preferences from graph
preferences from quantitative table

Figure 26: Variation of Number of Quantitative

Preferences for uid=2

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

in
te

ns
ity

 v
al

ue

preferences

preferences from graph
preferences from quantitative table

Figure 27: Variation of Number of Quantitative

Preferences for uid=38437

shows the number of distinct tuples returned if we run:

1. Only original preferences:

– (QT) only quantitative preferences

– (QL) only qualitative preferences

– (QT+QL) both qualitative and quantitative preferences.

2. All preferences extracted from our UPG model

For the first case, qualitative preferences in the original form have only information about the

intensity of the preference (i.e., about how much one set of tuples is preferred over the other).

Because of that, if the intensity provided was strictly greater than zero we ran only the left prefer-

ence since we only know that left is preferred over right. However, when intensity is equal to zero

we ran both left and right preferences since zero intensity, in the case of a qualitative preference,

means that both set of tuples are equally preferred. Figure 28 shows that, for both users, our model

can cover significantly more tuples from the database due to our mechanism that transforms a

qualitative preference into two different quantitative preferences. This improvement is from 120%

compared to both quantitative and qualitative (uid=388437) up to 336% compared to just quanti-

88

 0

 10000

 20000

 30000

 40000

 50000

QT QL QT+QL HYPRE_Graph

nu
m

be
r o

f t
up

le
s r

et
ur

ne
d

preference type

coverage for uid=2
coverage for uid=38437

Figure 28: The Coverage Over the Dataset for uid=2 and uid=38437

tative preferences (uid=2). Of course, more results in this case means better results because we are

able to order them according to the users’ preferences.

7.2 DETERMINING THE BEST COMBINATION OF PREFERENCES

Quantitative preferences are very important in any system that tracks user’s preferences because

they facilitate ranking of tuples, from the most preferred to the least preferred, by assigning a

score to each tuple that matches the user’s preference. However, quantitative preferences are not

as general as possible and, as we highlighted in Chapter 2, some cases cannot be supported by

quantitative preferences only, and instead require qualitative preferences to express them. Our

system uses intensity values to combine qualitative and quantitative preferences which not only

creates a unified platform to store preferences, but also assigns intensity values for nodes that do

not have any value (as in the qualitative case). In this way, all nodes in our graph can now be

89

seen as quantitative preferences that, in turn, can be used to return tuples that match one or more

preferences.

Ideally, we want to return tuples in descending intensity order. To do that, we can order the

preferences based on their intensity and pick one or more preferences from this list. However,

strictly ordering the preferences by their intensity value is not enough to return the set of tuples

with the highest combined intensity as we illustrate in the following sections.

Before we provide an efficient solution to combine preferences such that the tuples with the

highest intensity value will be returned first, we want to demonstrate the difficulty of determining

such an order of combination. For this reason we designed three different types of algorithms.

Clearly, the preference with the highest intensity will return the most preferred tuples. More-

over, when one tuple matches two different preferences, the final intensity value is a combination

of the two individual intensity values. In Section 4.6 we discussed about the combination function

used to compute the final intensity value and we mentioned that in the disjunctive combination

case we use a reserved approach whereas, in the conjunctive combination case we consider the

inflationary approach.

7.3 EXPERIMENTAL RESULTS FOR COMBINE-TWO ALGORITHM

We created the Combine-Two algorithm, described in Section 5.3.1, to demonstrate the complexity

of preference combination along with the influence of intensity values on each combination. There

are two flavors for this algorithm, however in both versions the algorithm combines only two

preferences at a time.

• Version 1: It combines two preferences with an AND operator

• Version 2: It combines two preferences using AND operator for predicates with different at-

tributes (e.g., venue and author) and OR operator for predicates referring to the same attributes

The results of running this algorithm are displayed in Figure 29 and Figure 31, for user with

id=2 and Figure 30 for the user with id=38437, after all the combinations that return no tuples

have been removed. In Figure 29 and Figure 30 we choose to display only the first three sets of

90

 0.2

 0.3

 0.4
 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

 1
10

 1
20

 1
30

 1
40

 1
50

 1
60

 1
70

in
te

ns
ity

 v
al

ue

preference_id

first preference AND_OR
first preference AND

second preference AND_OR
second preference AND

third preference AND_OR
third preference AND

Figure 29: Variation of Intensity Value (uid=2)

– Combine-Two Algorithm

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

in
te

ns
ity

 v
al

ue

preference_id

first preference AND_OR
first preference AND

second preference AND_OR
second preference AND

third preference AND_OR
third preference AND

Figure 30: Variation of Intensity Value

(uid=38437) – Combine-Two Algorithm

combinations, first, second and third preference, respectively, combined with all preferences that

follow. That is, the first preference AND OR and first preference AND line in the graph represents

the combination of the first preference with all the remaining preferences. The second preference

AND OR and second preference AND line represents the variation of intensity when combining the

second preferences with the remaining preferences. Since preferences are presented in descending

order by their intensity values, the overall intensity value decreases for every new step. The inten-

sity variation is clear in the first 20 combinations and a closer look of this behavior is shown in

Figure 31 for user with id=2.

There are two important things to see in this graph:

1. Combining the first preference with the third one returns tuples with a better intensity value

than combining the first preference with the second one from the list, although the intensity

value of the second preference is higher than the intensity value of the third preference (since

preferences are sorted by intensity value). In the same way, combining the first preference with

the eighth one returns a better intensity value than combining the first preference with all other

preferences in between.

91

 0.2

 0.3

 0.4

 0 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

in
te

ns
ity

 v
al

ue

preference_id

first preference AND_OR
first preference AND

second preference AND_OR
second preference AND

third preference AND_OR
third preference AND

Figure 31: Intensity Value Variation for First 20 Combinations (uid=2) – Combine-Two Algorithm

2. Although AND semantics result in better intensity values when used, there are cases when

the combined preference will not return anything (e.g., combining the first preference with the

forth, sixth or seventh preference or combining the second and the third preference with al

the preferences from 15 to 40). This happens either because the combinations of two given

preferences do not return anything (e.g. the user has two author preferences, but this two

authors never published together) or because of the information starvation problem discussed

in Section 4.6.

This experiment shows that strictly ordering the preferences, in terms of their intensity values,

is not enough to decide the order in which they should be combined. When we combine prefe-

rences using an AND operator, the final intensity value is larger than the two intensity values of

the preferences that are combined. However, the combination might not return any tuple because

the preference predicates are not compatible (e.g., two preferences on different venues) or because

there is not enough data to satisfy the given preferences together (e.g., two preferences on different

92

authors that have not published together, yet). On the other hand, when we combine preferen-

ces with an OR operator we are guaranteed to have tuples in the result (assuming the preferences

do match at least one tuple in the database). However, the final intensity value lies between the

two given intensity values. Because of this issues, the system cannot only look at the first few

preferences, or all preferences with intensity value higher than a threshold, because an AND com-

bination between the first preference and one of the last preference is still better than using the first

preference alone.

7.4 EXPERIMENTAL RESULTS FOR PARTIALLY-COMBINE-ALL ALGORITHM

A preference-aware system needs to be able to combine all available preferences in order to decide

which set of tuples are the most preferred, and not only two at a time. Partially-Combine-All

algorithm, described in Section 5.3.2, is combining all preferences starting with the first one, using

an AND operator between preferences for different attributes and an OR operator for preferences

on the same attribute. Another important characteristic of this algorithm is that it reruns some old

preferences with an addition of a new preference, as long as the new preference is introduced using

an AND operator. We want to do this step because a combination with an AND operator always

returns a combined intensity value higher than the two intensity values involved in the combination.

Figure 32 and Figure 34 show the results of this experiment for the user with uid=2, and Fig-

ure 33 shows the results for user with id=38437. Figure 32 shows the variation of intensity for

all the times when the algorithm combines 2, 5 and 10 preferences whereas Figure 34 shows the

variation of intensity for all combinations of 10 or more preferences. It is interesting to see that

combining the first two preferences, with the highest intensity score does not return the highest

combined intensity value, therefore is not the best option that one should pick for ranking the

tuples. The same behavior can be seen for the 5 and 10 preferences combination which strength-

ens our hypothesis that intensity value and order of preference combination play a crucial role in

determining which tuples are the most preferred. However, choosing to combine the preferences

with the highest intensity values first does not necessarily return the most preferred tuples since

combining the second best and the third best preference, with an AND operator, might return a

93

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

in
te

ns
ity

 v
al

ue

combination order

2 predicates
5 predicates

10 predicates

Figure 32: Intensity Value Variation (uid=2) -

Partially-Combine-All Algorithm -All 2, 5 and

10 preferences

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 1 2 3 4 5

in
te

ns
ity

 v
al

ue

combination order

2 preferences
5 preferences

10 preferences

Figure 33: Intensity Value Variation

(uid=38437) -Partially-Combine-All Algo-

rithm -All 2, 5 and 10 preferences

higher intensity value then combining the first preference and the second, with an OR operator.

With this experiment, we showed that no matter how many preferences we combine – two at

a time like in Combine-Two algorithm or more than two, like in Partially-Combine-All algorithm

– there is still a problem of deciding which preferences to combine in order to maximize the

combined intensity value and create applicable predicate combination.

7.5 EXPERIMENTAL RESULTS FOR BIAS-RANDOM ALGORITHM

The utility metric defined in Section 7.1.1 shows us that even though some combinations have high

intensity value, because they do not return anything, their utility is equal to zero. Our system needs

to be able to create combinations that will return tuples, without the need to explicitly run each

combination, in order to optimize the running time of the algorithm. But without knowing which

combinations return data, there is no efficient option to determine which partial combination is

94

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 200 400 600 800 1000 1200 1400 1600

in
te

ns
ity

 v
al

ue

Figure 34: Intensity Value Variation (uid=2) -Partially-Combine-All Algorithm – 10 pref. or more

a solution that should be further pursued and which one should be dropped. We will show the

difficulty of this selection later in this section.

To eliminate the run of each partial combination over the tuples in the dataset, the only solution

is to create a list of all possible combinations, order them descending on their combined intensity

value and use this list in order to filter the data. However, Proposition 4 from Section 5.2 proves

that this solution is not feasible since it creates an exponential number of combinations.

We created the Bias-Random algorithm in order to show the complexity of deciding what

combinations should be picked, and we described it in Section 5.4. The algorithm picks randomly

a preference to be used in the preference combination. The selection is biased towards preferences

with higher intensity values since these preferences are more important for a user. If the partial

combination is a valid one (i.e., the cardinality of the result set is greater than zero) then the

algorithm attempts to add a new randomly selected preference from the remaining set until nothing

is returned anymore.

Since the algorithm has a random selection step, we ran the algorithm ten times, and we dis-

95

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170

 0 1 2 3 4 5 6 7

nu
m

be
r o

f c
om

bi
na

tio
ns

 in
va

lid

number of combinations valid

Figure 35: Number of Solutions vs. the Number of Different Combinations Checked (uid=2)

played for each run the number of non-valid combinations (i.e., those that return no results) along

with the number of valid combinations. In Figure 35 and Figure 36 we present these results ordered

by the number of valid solutions found for user with id=2 and id=38437, respectivelly.

In Figure 35, out of all 100 experiments ran, the best case happened when the algorithm tried

around 30 non-valid combinations and 2 valid ones. However, in the worst case the algorithm tried

160 non-valid combinations and only 3 valid. Because a lot of combinations do not return anything,

we need to efficiently pick only the valid ones, and we implemented a solution for this problem in

our Practical and Efficient Preference Selection (PEPS) algorithm, presented in Section 5.5.

7.6 EXPERIMENTAL RESULTS FOR PEPS ALGORITHM

The Practical and Efficient Preference Selection (PEPS) algorithm, described in Section 5.5, is

created, as the name states, to identify the preferences that return the best combined intensity value,

96

 0

 10

 20

 30

 0 1 2 3

N
um

be
r o

f c
om

bi
na

tio
ns

 in
va

lid

Number of combinations valid

Figure 36: Number of Solutions vs. the Number of Different Combinations Checked (uid=38437)

in an efficient way, since this will also return the most preferred tuples when the query is enhanced

with that particular preference. In order to evaluate our Top-K (PEPS) algorithm’s correctness, we

implemented the well-known Fagin’s TA algorithm ([14]) by generating the combined intensity

value for each paper, per user.

7.6.1 Top-K Baseline Algorithm

Fagin’s TA algorithm assumes there are different scores (between 0 and 1) given for each tuple in

the database, one score for each attribute. For m different attributes, the algorithm stores the tuples

in m different list, ordered by their score on that particular attribute.

97

Definition 19. TA intensity value – Let R be an object (i.e., tuple) in the database. If x1, . . . , xm

(each in the interval [0,1]) are the grades of object R under the m attributes, then t(x1, . . . , xm) is

the (overall) grade of object R.

Definition 20. Fagin’s TA Algorithm – To retrieve the Top-K tuples based on their combined in-

tensity value the algorithm executes the following steps:

1. Do sorted access in parallel to each of the m sorted lists Li. As an object R is seen under sorted

access in some list, do random access to the other lists to find the grade xi of object R in every

list Li. Then compute the grade t(R)=t(x1, , xm) of object R. If this grade is one of the k highest

we have seen, then remember object R and its grade t(R) (ties are broken arbitrarily, so that

only k objects and their grades need to be remembered at any time).

2. For each list Li, let xi be the grade of the last object seen under sorted access. Define the

threshold value τ to be t(x1, . . . , xm). As soon as at least k objects have been seen whose

grade is at least equal to τ , then halt.

3. Let Y be a set containing the k objects that have been seen with the highest grades. The output

is then the graded set {(R, t(R)), whereR ∈ Y }.

In our test dataset, we have “grades” on the venue and author attributes. Because of that,

we created two different tables intensity author and intensity venue with three attributes: (user id,

paper id, combined intensity). The combined intensity values, in both tables, were computed using

Equation (4.3).

For the intensity venue, we selected all quantitative preferences that refer to the venue attribute,

and we extracted all tuples that match any of these preferences.

For the author attribute, because one paper usually has multiple authors, we computed a com-

posite grade, using the f∧(p1, p2) formula for combining preferences with an AND operator, de-

fined in Equation (4.3). In this way, we created an aggregate score for the author attribute.

The final step is to combine the two lists, and the final score for each tuple that is in both lists

is again computed using the f∧(p1, p2) formula. Moreover, we also added all the tuples that are in

only one list.

Before we present our comparison results, is it interesting to note that this algorithm is not

scalable, since it necessitates a list of tuples for each attribute that has a preference defined on.

98

A system that is using this type of algorithm can be easily overwhelmed by the number of tables

created (or by the number of times a pair <paper id, intensity> is stored) since this process should

be done for each user.

7.6.2 Similarity and Coverage Metrics

In order to better understand the similarities and differences between the results given by PEPS

algorithms and the Fagin’s TA algorithm we made use of two metrics, Similarity and Overlap

defined below.

Definition 21. Similarity – Given two lists of tuples, the similarity metric returns the percentage

of tuples that are common in the two lists.

The Similarity is the metric used to compare how close two lists are to each other. When the

two lists contain all different tuples, the similarity is 0%, whereas when they contain exactly the

same tuples, abstraction of the order, the similarity is 100%.

Definition 22. Overlap – Given two lists with the same tuples, L1 and L2, the overlap metric

returns the percentage of tuples that are in the same order in both lists.

The Overlap metric is used to check the relative order of the tuples, when only the tuples that

match in the two lists are compared. When the tuples appear in the same order in both lists, the

overlap is 100%

7.6.3 Top-K Comparison Evaluation

The previous sections demonstrate the obstacles a system faces when it needs to decide which pre-

ferences, and in which order should be combined. Our Practical and Efficient Preference Selection

Algorithms eliminate or alleviate some of these difficulties by using a pre-computed table of all

combinations of two preferences.

Quantitative-only preferences: Because Top-K algorithms work only for the quantitative pre-

ferences, we first create a HYPRE graph that incorporates only the quantitative preferences. We

ran our PEPS algorithm over this graph and we compared our results against those of the TA al-

gorithm. The results show 100% similarity (i.e., the paper ids in the two lists with their combined

99

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

In
te

ns
ity

Tuples in Top-K order

PEPS Algorithm
TA Algorithm

Figure 37: Variation of Intensity Value (uid=2) -PEPS vs. TopK FA Algorithm

intensity value match completely) and 100% overlap (i.e., the order of the paper ids in the final

ranking match completely).

Both quantitative and qualitative preferences: In order to assess the advantages of PEPS when

qualitative preferences are considered, we ran PEPS over the large HYPER Graph, containing

both qualitative and quantitative preferences. This time, we looked at the ranking of tuples with

combined intensity value at least as high as the maximum preference intensity value for user with

uid=2 (i.e., 0.5) and user with uid=38437 (i.e., 0.4). The results depicted in Figure 37 and Figure 38

show the two major advantages of our Top-K algorithm.

1. The PEPS algorithm offers better coverage, i.e., finds more tuples than the TA algorithm with

intensity value higher or equal to 0.5.

2. Overall, the PEPS algorithm returns tuples with higher intensity value than the TA algorithm.

These advantages are a result of the fact that PEPS has access to more preferences than the

TA algorithm and since these preferences are derived from both quantitative and qualitative pref-

100

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

In
te

ns
ity

Tuples in Top-K order

PEPS Algorithm
TA Algorithm

Figure 38: Variation of Intensity Value (uid=38437) -PEPS vs. TopK FA Algorithm

erence our system is assigning higher intensity values to the retrieved tuples than the quantitative

preferences used by the TA algorithm.

When looking at the similarity between the two Top-K lists returned, we can see that there are

only 37% matching tuples in the two lists, mostly because our system has access to more prefe-

rences (both qualitative and quantitative preferences) therefore can rank tuples that TA algorithm

cannot (since the TA algorithm only works with quantitative preferences).

To measure the overlap between the two lists, we first extracted the 37% of matching tuples

from the two lists and then we count the number of tuples for which the order is preserved across

the two lists. We found that there is a 100% match between the two lists which allows us to say

that, for the tuples that are common in the two list, both algorithms (PEPS and TA) are ordering

them in the same way.

These two experiments (show that our solution is not only performing as good as the TA algo-

rithm - we have a perfect match when only quantitative preferences are used - but it also performs

better overall because it has the advantage of using the qualitative preferences too. Furthermore,

101

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

10 100 200 300 400 500 600 700 800

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

K value

all preferences used
only quantitative preferences

all preferences, complete algorithm used

Figure 39: Time variation when size of K changes (uid=2) -TopK PEPS Algorithm

it does not incur any performance penalty. To measure the time complexity of our algorithm, we

vary the size of K, from 10 to 800, in 100 increments, and record the execution time. We repeated

this process 10 times and we averaged the response time for each K value in order to eliminate any

time variations due to I/O requests. We ran both the Approximate and Complete PEPS algorithm

and even though the complete version is keeping all combinations that might create a valid com-

bination, the execution time does not increase considerably. The averaged results are presented in

Figure 39, for user with id=2 and in Figure 40 for user with id=38437, and we can see that for

800 tuples the Approximate PEPS algorithm only needs 2 seconds to run and the Complete PEPS

algorithm only needs 2.2 seconds to run, for user with id=2 and 170 preferences and less than a

second for the user with id=38437 and 50 preferences.

102

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

10 100 200 300 400 500 600 700 800

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

K value

all preferences used
only quantitative preferences

all preferences, complete algorithm used

Figure 40: Time variation when size of K changes (uid=38437) -TopK PEPS Algorithm

103

8.0 CONCLUSIONS AND FUTURE WORK

8.1 SUMMARY OF CONTRIBUTIONS

In this dissertation we presented a new framework that incorporates qualitative and quantitative

preferences in a hybrid, unified model using the notion of intensity. The notion of intensity captures

the strength of a preference. Our model, HYPRE (Hybrid Preference) Graph, not only supports

both types of preferences at the same time, but also associates intensity with both quantitative,

as well as, qualitative preferences. The intensity value is used in two ways: on the one hand, it

determines the order over the database tuples that matches different preferences, and, on the other

hand, it is used to convert qualitative preferences into quantitative preferences without loosing the

qualitative information. In this dissertation, we describe, in details, the theoretical model providing

examples on how different types of preferences are supported. We also provide a special set of

functions used to compute missing intensities values, which generate new intensity values based

on the qualitative preference intensity value.

List of contributions:

1. In Chapter 3 we present our new model that incorporates qualitative and quantitative prefe-

rences into a unified hybrid preference framework which is based on a preference graph. A

HYPRE Graph is a collection of user profiles that hold information about each user’s prefer-

ence. One preference can be one single node, in the case of quantitative preferences or a pair

of nodes and a directed edge that connects them, for a qualitative preference. Moreover, any

node in the graph holds information about the user id, the preference predicate and the intensity

value associated with this predicate.

2. In Chapter 4 we describe the design and implementation of a real system prototype for our

104

hybrid model with the emphasis on the necessary functions designed to either assign intensity

value to the nodes that do not have any value provided or (re-)compute intensity values to avoid

any representational conflicts. Moreover, we describe the algorithms used to create and update

the unified preference graph, while also detect and mark the conflicts.

3. In Chapter 5 we first introduce the Coverage and Utility metrics that are used to characterize

the system’s overall coverage over the tuples in the database and the influence of the individual

intensity value and predicate selectivity over the final ranking of tuples based on the computed

combined intensity value when predicates are combined either with OR operator or AND op-

erator. Second, we discuss about different algorithms to combine preferences’ predicates in

terms of efficiency and time complexity. Our optimized Practical and Efficient Preference Se-

lection algorithm overcomes the drawbacks introduced by randomly selecting preferences, or

combining only two preferences at a time, or combining all available preferences and returns

applicable predicate combinations in a relatively small amount of time.

4. In Chapter 6 we explain in-depth the necessary steps taken to convert a DBLP dataset with

citation information into meaningful user profiles that cover both qualitative and quantitative

preferences in different aspects.

5. Chapter 7 we show that:

• Our hybrid model can successfully map qualitative preferences into quantitative ones,

using intensity values, hence allowing for significantly better “coverage” (up to 336%) of

the database tuples.

• We experimentally show that our Practical and Efficient Preference Selection (PEPS) al-

gorithm returns Top-K results correctly, while it also covers more tuples in the database

that cannot be “seen” by Fagin’s TA algorithm.

• We demonstrate that intensity plays a key role in determining the final ranking of the

tuples and simple ordering the preferences by their intensity value is not enough to return

a list of tuples ordered from the most to the least preferred.

105

8.2 FUTURE WORK

The work presented in this dissertation can be extended on different levels.

First, we can combine a predicate-based preference graph with an attribute-based preference

graph. This way, using appropriate algorithms that converts an attribute-based preference into

an SQL query, we will be able to run Skyline queries over the database that will return a better

approximation of “the best” tuples when an exact result does not exist.

Second, each preference is stronger if the context for which it was define is collected and

used. A context based preference graph is a natural extension to HYPRE graph introduced in this

dissertation. Moreover, having context information, some of the conflicts will be resolved since

a conflicting situation in HYPRE graph can be break into multiple non-conflicting preferences

depending on the context when they are applicable.

Third, our system can be enhanced with different algorithms that extract and collect preferen-

ces to alleviate the burden on the user side. Combining multiple profiles into a group (e.g., all users

working in the database group at University of Pittsburgh) a system can have access to more prefe-

rences and recommend items using the collective list of preferences. This is especially important

in the case when a user does not have too many preferences. Moreover, a system could possibly

watch user’s behavior and use the feedback received to update some of the intensity values already

defined.

8.3 IMPACT OF THIS DISSERTATION

The impact of this dissertation can be characterized based on two different areas:

1. Impact in the science and technology. The solution provided in this dissertation creates the

base of a new model that combines and extends different previously studied areas like database

preference, graph preferences and ranking. From this point of view, this dissertation advances

in three different aspects:

• New paradigm: This dissertation introduces a new, hybrid preference graph model that

combines two different type of preferences – qualitative and quantitative preferences by

106

converting qualitative preferences into quantitative ones without losing the qualitative in-

formation. The new model and records, for each preference, its intensity value and uses

these values to assign intensity values to preferences that do not have a predefined value.

Any preference system works better when the strength of the preference is provided, that

is why the quantitative model is used more in real life applications.

• Information overloading: With our model we attempt to give a solution for the personal-

ization problem that allows a system to rank the tuples based on a predefined user profile.

In an era of Big Data, being able to extract fast, and filter out tuples that important for one

particular user are mandatory characteristics for any system that deals with continuously

increasing amount of data.

• Preference representation: Using the basic definition of a preference graph previously

introduced in the literature, we were able to expend it into a new model that stores together

all user profiles with a fast insertion and retrieval of all preferences for one particular user.

2. Impact to society. Our society is strongly connected to data and retrieval of meaningful in-

formation from a sea of available options is a requirement in every aspect of our life. Many

times users find themselves in an uncomfortable position. They want or need to find a piece

of information but they end up “asking” many questions in order to find what they are looking

for or, in the worst case, they end up with an empty list because their questions were too strict.

Being able to store a user profile in a HYPRE Graph, a system can have a fast access to the

most preferred tuples and less effort is requested from the user, if any. This will impact the

user-friendliness of any application that deals with big amount of data.

107

BIBLIOGRAPHY

[1] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of data, SIGMOD’06, pages
383–394, 2006.

[2] R. Agrawal and E. L. Wimmers. A framework for expressing and combining preferences. In
SIGMOD 2000, pages 297–306, 2000.

[3] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, D. On, N. Polyzotis, and
J. S. V. Varman. Sql querie recommendations. Proc. VLDB Endow., 3:1597–1600, September
2010.

[4] L. Bellatreche, A. Giacometti, P. Marcel, H. Mouloudi, and D. Laurent. A personalization
framework for olap queries. In Proceedings of the 8th ACM international workshop on Data
warehousing and OLAP, DOLAP ’05, pages 9–18. ACM, 2005.

[5] J. Bentham. An Introduction to the Principles of Morals and Legislation (Collected Works of
Jeremy Bentham). Clarendon Press, 1996.

[6] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Cp-nets: a tool for
representing and reasoning with conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21(1):135–191, feb 2004.

[7] J. Cho and S. Roy. Impact of search engines on page popularity. In WWW’04, Proceedings
of the 13th international conference on World Wide Web, pages 20–29. ACM, 2004.

[8] J. Chomicki. Querying with intrinsic preferences. In Proceedings of the 8th International
Conference on Extending Database Technology: Advances in Database Technology, EDBT
’02, pages 34–51, 2002.

[9] J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst.,
28(4):427–466, Dec. 2003.

[10] P. Ciaccia. Querying databases with incomplete cp-nets. In Multidisciplinary Workshop on
Advances in Preference Handling, M-PREF’07, 2007.

[11] S. Cohen and M. Shiloach. Flexible xml querying using skyline semantics. ICDE 2009,
0:553–564, 2009.

108

[12] C. Domshlak, E. Hüllermeier, S. Kaci, and H. Prade. Preferences in ai: An overview. Artificial
Intelligence, 175(7-8):1037–1052, 2011.

[13] M. Endres and W. Kiessling. Transformation of tcp-net queries into preference database
queries. In Proceedings of the ECAI 2006 Multidisciplinary Workshop on Advances in Pref-
erence Handling, pages 23–30, 2006.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. Journal
of Computer and System Sciences, 66(4):614 – 656, 2003. Special Issue on {PODS} 2001.

[15] P. W. Foltz and S. T. Dumais. Personalized information delivery: An analysis of information
filtering methods. Commun. ACM, 35(12):51–60, Dec. 1992.

[16] P. Georgiadis, I. Kapantaidakis, V. Christophides, E. M. Nguer, and N. Spyratos. Efficient
rewriting algorithms for preference queries. In Proceedings of the 24th International Confer-
ence on Data Engineering, ICDE’08, pages 1101 –1110, 2008.

[17] R. Gheorghiu, A. Labrinidis, and P. K. Chrysanthis. Database preferences -a unified model.
PersDB, 2012.

[18] A. Hey, S. Tansley, and K. Tolle. The fourth paradigm: data-intensive scientific discovery.
Microsoft Research, 2009.

[19] S. Holland and W. Kiessling. Situated preferences and preference repositories for personal-
ized database applications. In Proceedings of the 23rd International Conference on Concep-
tual Modeling, volume 3288 of Lecture Notes in Computer Science, pages 511–523, 2004.

[20] R. Kambalakatta, M. Kumar, and S. K. Das. Profile based caching to enhance data availability
in push/pull mobile environments. Mobile and Ubiquitous Systems, Annual International
Conference on, 0:74–83, 2004.

[21] W. Kiessling. Foundations of preferences in database systems. In Proceedings of the 28th
international conference on Very Large Data Bases, VLDB’02, pages 311–322, 2002.

[22] W. Kiessling. Foundations of preferences in database systems. In VLDB 2002, pages 311–
322, 2002.

[23] W. Kiessling and G. Köstler. Preference sql: design, implementation, experiences. In VLDB
2002, pages 990–1001, 2002.

[24] G. Koutrika and Y. Ioannidis. Personalization of queries in database systems. In Data Engi-
neering, 2004. Proceedings. 20th International Conference on, pages 597 – 608, 2004.

[25] G. Koutrika and Y. Ioannidis. Personalized queries under a generalized preference model. In
ICDE 2005, pages 841–852, 2005.

[26] G. Koutrika and Y. Ioannidis. Personalizing queries based on networks of composite prefe-
rences. ACM Trans. Database Syst., 35(2):13:1–13:50, May 2010.

109

[27] M. Lacroix and P. Lavency. Preferences; putting more knowledge into queries. In Proceedings
of the 13th International Conference on Very Large Data Bases, VLDB’87, pages 217–225,
1987.

[28] J. J. Levandoski, M. F. Mokbel, and M. Khalefa. Flexpref: A framework for extensible
preference evaluation in database systems. In ICDE 2010, pages 828 –839, march 2010.

[29] F. Liu, C. Yu, and W. Meng. Personalized web search for improving retrieval effectiveness.
IEEE Trans. on Knowl. and Data Eng., 16(1):28–40, Jan. 2004.

[30] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big
data: The next frontier for innovation, competition, and productivity. McKinsey Global Insti-
tute, May 2011.

[31] A. Miele, E. Quintarelli, and L. Tanca. A methodology for preference-based personaliza-
tion of contextual data. In Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, EDBT’09, pages 287–298, 2009.

[32] D. Mindolin and J. Chomicki. Hierarchical cp-networks. In Proceedings of the Third Multi-
disciplinary Workshop on Advances in Preference Handling, M-PREF’07, 2007.

[33] S. Mobasher and B. Lytinen. Concept Based Query Enhancement in the ARCH Search Agent.
In Proceedings of the 4th International Conference on Internet Computing (IC’03), June
2003.

[34] P. Neophytou, R. Gheorghiu, R. Hachey, T. Luciani, D. Bao, A. Labrinidis, E. G. Marai, and
P. K. Chrysanthis. Astroshelf: Understanding the universe through scalable navigation of a
galaxy of annotations. Proceedings of Special Interest Group of Management of Data, pages
pp. 1–4, 2012.

[35] E. Pitoura, K. Stefanidis, and P. Vassiliadis. Contextual database preferences. IEEE Data
Eng. Bull., 34(2):19–26, 2011.

[36] P. Roocks, M. Endres, S. Mandl, and W. Kiessling. Composition and efficient evaluation of
context-aware preference queries. In DASFAA (2), pages 81–95, 2012.

[37] D. Skoutas, M. Alrifai, and W. Nejdl. Re-ranking web service search results under diverse
user preferences. In PersDB 2010, Personalized Access, Profile Management and Context
Awareness in Databases, 2010.

[38] D. Souravlias, M. Drosou, K. Stefanidis, and E. Pitoura. On novelty in publish/subscribe
delivery. In ICDEW 2010, pages 20–22, 2010.

[39] K. Stefanidis, M. Drosou, and E. Pitoura. Perk: personalized keyword search in relational
databases through preferences. In EDBT 2010, 13th International Conference on Extending
Database Technology, Lausanne, Switzerland, March 22-26,, pages 585 –596. ACM, 2010.

110

[40] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and
application of preferences in database systems. ACM Trans. Database Syst., 36(3):19:1–
19:45, 2011.

[41] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Modeling and storing context-aware preferences.
In Advances in Databases and Information Systems, pages 124–140, 2006.

[42] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding context to preferences. In ICDE, pages
846–855. IEEE, 2007.

[43] J. Stoyanovich, W. Mee, and K. A. Ross. Semantic ranking and result visualization for life
sciences publications. In ICDE 2010, pages 860–871, 2010.

[44] J. Tang, J. Zhang, R. Jin, Z. Yang, K. Cai, L. Zhang, and Z. Su. Topic level expertise search
over heterogeneous networks. Machine Learning Journal, 2011.

[45] A. Tversky and D. Kahneman. The framing of decisions and the psychology of choice.
Science, 211(4481):453–458, 1981.

[46] A. H. van Bunningen, L. Feng, and P. M. Apers. A context-aware preference model for
database querying in an ambient intelligent environment. In Database and Expert Systems
Applications, pages 33–43, 2006.

[47] A. Ventresque, S. Cazalens, T. Cerqueus, P. Lamarre, and G. Pasi. Personalization through
query explanation and document adaptation. In PersDB 2010, Personalized Access, Profile
Management and Context Awareness in Databases, 2010.

[48] M. Yakout, A. K. Elmagarmid, and J. Neville. Ranking for data repairs. In ICDEW 2010,
pages 23–28, 2010.

111

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Existing Preference Representations, as Presented in Pitoura et al. pitoura11
	2. Qualitative, Quantitative and the Hybrid Model
	3. The Movie Relation
	4. Intensity
	5. Dealership Relation
	6. The DBLP Relation
	7. List of Preferences for uid=2
	8. Dealership Relation
	9. Intensities Values for Tuples in Dealership Relation
	10. Statistics for the DBLP Database
	11. Insertion Time
	12. Possible DEFAULT_VALUEs

	LIST OF FIGURES
	1. Personalization Graph Example as Presented in Pitoura et. al pitoura11
	2. Pitoura et. al vassiliadis11 – Context Information Enhanced Personalization Graph
	3. Pitoura et. al pitoura11 – Personalization Graph Enhanced with Conditional Preference Tables
	4. Quantitative Preferences
	5. HYPRE Graph After All Quantitative Preferences are Inserted
	6. HYPRE Graph with Relative Preference
	7. HYPRE Graph with Relative Preference and Set Preference
	8. Final Version of HYPRE Graph
	9. Relative Preferences Specifications (a) Graph Representation; (b) Adjacency Matrix
	10. Quantitative Preference Storage
	11. Qualitative Preference Storage
	12. Example of a Vertex in the HYPRE Graph
	13. Node Insertion Time for 7 Billion Nodes, in 1 Million Batch Size.
	14. In_degree=0 for Node P1
	15. Out_degree=0 for Node P2
	16. Bias-Random Algorithm Representation
	17. Distribution of Number of Preferences
	18. Utility Value (uid=2)
	19. Utility Value (uid=38437)
	20. Number of Tuples for All Combinations of 2 Preferences
	21. Intensity Value for All Combinations of 2 Preferences
	22. Number of Tuples for All Combinations of 5 Preferences
	23. Intensity Value for All Combinations of 5 Preferences
	24. Number of Tuples for All Combinations of 10 Preferences
	25. Intensity Value for All Combinations of 10 Preferences
	26. Variation of Number of Quantitative Preferences for uid=2
	27. Variation of Number of Quantitative Preferences for uid=38437
	28. The Coverage Over the Dataset for uid=2 and uid=38437
	29. Variation of Intensity Value (uid=2) – Combine-Two Algorithm
	30. Variation of Intensity Value (uid=38437) – Combine-Two Algorithm
	31. Intensity Value Variation for First 20 Combinations (uid=2) – Combine-Two Algorithm
	32. Intensity Value Variation (uid=2) -Partially-Combine-All Algorithm -All 2, 5 and 10 preferences
	33. Intensity Value Variation (uid=38437) -Partially-Combine-All Algorithm -All 2, 5 and 10 preferences
	34. Intensity Value Variation (uid=2) -Partially-Combine-All Algorithm – 10 pref. or more
	35. Number of Solutions vs. the Number of Different Combinations Checked (uid=2)
	36. Number of Solutions vs. the Number of Different Combinations Checked (uid=38437)
	37. Variation of Intensity Value (uid=2) -PEPS vs. TopK FA Algorithm
	38. Variation of Intensity Value (uid=38437) -PEPS vs. TopK FA Algorithm
	39. Time variation when size of K changes (uid=2) -TopK PEPS Algorithm
	40. Time variation when size of K changes (uid=38437) -TopK PEPS Algorithm

	LIST OF ALGORITHMS
	1. Create Preference Graph
	2. Combine-Two Algorithm with AND_OR sematics
	3. Combine-Two Algorithm with AND sematics
	4. Partially-Combine-All Algorithm
	5. Bias-Random-Selection
	6. PEPS Algorithm with AND semantics
	7. Check conflict
	8. Compute Intensity Value

	LIST OF EQUATIONS
	4.1. Equation (4.1)
	4.2. Equation (4.2)
	4.3. Equation (4.3)
	4.4. Equation (4.4)
	5.1. Equation (5.1)
	5.2. Equation (5.2)
	5.3. Equation (5.3)
	5.4. Equation (5.4)
	5.5. Equation (5.5)
	5.6. Equation (5.6)
	6.1. Equation (6.1)
	6.2. Equation (6.2)

	1.0 INTRODUCTION
	1.1 Motivation
	1.2 Qualitative vs. Quantitative Preferences
	1.3 State of The Art and its Limitations
	1.4 The Proposed Hybrid Model
	1.5 Contributions
	1.6 Outline

	2.0 BACKGROUND AND RELATED WORK
	2.1 Quantitative Preferences
	2.2 Qualitative Preferences
	2.3 Preference Composition
	2.3.1 Quantitative Composition
	2.3.2 Qualitative Composition

	2.4 Preference Graphs and Preference Granularity
	2.4.1 Preference Graph Definitions
	2.4.2 Levels of Granularity for Preferences

	2.5 Current Support for Hybrid Preferences and Preference Graphs
	2.6 Summary

	3.0 UNIFIED PREFERENCE GRAPH MODEL
	3.1 Why is a Unified Database Preferences model necessary ?
	3.2 Unified Model for Preferences
	3.2.1 Tuple-based vs. Predicate-based Preference Graph
	3.2.2 Attribute-based Preference Graph

	3.3 Specifying Preferences in HYPRE Graph
	3.3.1 Quantitative Preferences in the HYPRE Graph
	3.3.2 Qualitative Preferences in the HYPRE Graph

	3.4 Summary

	4.0 HYPRE GRAPH – FROM THEORY TO IMPLEMENTATION
	4.1 Graph representations
	4.2 HYPRE Representation
	4.3 Neo4j – A Scalable Graph Database System
	4.4 Essential Functions to (Re-)Compute Intensity Values
	4.5 Algorithm for HYPRE Graph Generation
	4.6 Preference Aware Query Enhancement
	4.6.1 Preference Combination and the Combined Intensity Value

	4.7 Summary

	5.0 TOWARDS A PRACTICAL AND EFFICIENT ALGORITHM FOR GENERATING BEST PREFERENCE COMBINATIONS
	5.1 Utility and Coverage Metrics
	5.1.1 Utility Metric
	5.1.2 Coverage Metric

	5.2 Theoretical Upper Bound Complexity for Preference Combination
	5.3 Algorithms to Generate Preference Combinations
	5.3.1 Combine-Two Algorithm
	5.3.2 Partially-Combine-All Algorithm

	5.4 Bias-Random-Selection Algorithm
	5.5 An Algorithm for a Practical and Efficient Preference Selection
	5.5.1 The Complete PEPS Algorithm
	5.5.2 The Approximate PEPS Algorithm

	5.6 Summary

	6.0 EXPERIMENTAL WORKLOAD
	6.1 DBLP Citation Network
	6.2 Preference Extraction
	6.2.1 Quantitative Preferences
	6.2.2 Qualitative Preferences
	6.2.3 Conflict Resolution

	6.3 The Time Complexity of Creating the HYPRE Graph
	6.3.1 Default Value Selection

	6.4 Summary

	7.0 EXPERIMENTAL RESULTS
	7.1 Experimental Results Based on Utility and Coverage Metrics
	7.1.1 Experimental Results for Utility Metric
	7.1.2 Experimental Results for Coverage Metric

	7.2 Determining the Best Combination of Preferences
	7.3 Experimental Results for Combine-Two Algorithm
	7.4 Experimental Results for Partially-Combine-All Algorithm
	7.5 Experimental Results for Bias-Random Algorithm
	7.6 Experimental Results for PEPS Algorithm
	7.6.1 Top-K Baseline Algorithm
	7.6.2 Similarity and Coverage Metrics
	7.6.3 Top-K Comparison Evaluation

	8.0 CONCLUSIONS AND FUTURE WORK
	8.1 Summary of Contributions
	8.2 Future Work
	8.3 Impact of this Dissertation

	BIBLIOGRAPHY

