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MANIPULATION OF CELL AND PARTICLE TRAJECTORY IN

MICROFLUIDIC DEVICES

Collin David James Edington, PhD

University of Pittsburgh, 2014

Microfluidics, the manipulation of fluid samples on the order of nanoliters and picoliters,

is rapidly emerging as an important field of research. The ability to miniaturize existing

scientific and medical tools, while also enabling entirely new ones, positions microfluidic

technology at the forefront of a revolution in chemical and biological analysis. There re-

main, however, many hurdles to overcome before mainstream adoption of these devices is

realized. One area of intense study is the control of cell motion within microfluidic channels.

To perform sorting, purification, and analysis of single cells or rare populations, precise and

consistent ways of directing cells through the microfluidic maze must be perfected. The

aims of this study focused on developing novel and improved methods of controlling the

motion of cells within microfluidic devices, while simultaneously probing their physical and

chemical properties. To this end we developed protein-patterned smart surfaces capable

of inducing changes in cell motion through interaction with membrane-bound ligands. By

linking chemical properties to physical behavior, protein expression could then be visually

identified without the need for traditional fluorescent staining. Tracking and understanding

motion on cytotactic surfaces guided our development of new software tools for analyzing

this motion. To enhance these cell-surface interactions, we then explored methods to adjust

and measure the proximity of cells to the channel walls using electrokinetic forces and 3D

printed microstructures. Combining our work with patterned substrates and 3-dimensional

microfabrication, we created micro-robots capable of rapid and precise movements via mag-

netic actuation. The micro-robots were shown to be effective tools for mixing laminar flows,
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capturing or transporting individual cells, and selectively isolating cells on the basis of size.

In the course of development of these microfluidic tools we gained valuable new insights into

the differences and limitations of planar vs. 3D lithography, especially for fabrication of

magnetic micro-machines. This work as a whole enables new mechanisms of control within

microfluidics, improving our ability to detect, sort, and analyze cells in both a high through-

put and high resolution manner.
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The following passage is taken from pages 279-280 of Robert M. Pirsig’s Zen and the Art

of Motorcycle Maintenance. It has resonated with my experiences on a number of levels,

and I thought it important to include here as a reminder that roadblocks on the way from

point A to point B are perhaps the most important part of science. I believe a PhD teaches

you, among other things, the intangible skills needed to navigate those obstacles, and true

discovery often occurs during the journey, not at the destination.

A screw sticks, for example on a side cover assembly. You check the manual to see
if there might be any special cause for this screw to come off so hard, but all it says is
‘Remove side cover plate’ in that wonderful terse technical style that never tells you what
you want to know. Theres no earlier procedure left undone that might cause the cover
screws to stick.

If you’re experienced you’d probably apply a penetrating liquid and an impact driver
at this point. But suppose you’re inexperienced and you attach a self-locking plier wrench
to the shank of your screwdriver and really twist it hard, a procedure you’ve had success
with in the past, but which this time succeeds only in tearing the slot of the screw. Your
mind was already thinking ahead to what you would do when the cover plate was off, and
so it takes a little time to realize that this irritating minor annoyance of a torn screw slot
isn’t just irritating and minor. You’re stuck. Stopped. Terminated. It’s absolutely stopped
you from fixing the motorcycle.

This isn’t a rare scene in science or technology. This is the commonest scene of all.
Just plain stuck. In traditional maintenance this is the worst of all moments, so bad that
you have avoided even thinking about it before you come to it.

The book’s no good to you now. Neither is scientific reason. You don’t need any
scientific experiments to find out what’s wrong. It’s obvious what’s wrong. What you need
is an hypothesis for how you’re going to get that slotless screw out of there and scientific
method doesn’t provide any of these hypotheses. It operates only after they’re around. This
is the zero moment of consciousness. Stuck. No answer. Honked. Kaput. It’s a miserable
experience emotionally. You’re losing time. You’re incompetent. You don’t know what
you’re doing. You should be ashamed of yourself. You should take the machine to a real
mechanic who knows how to figure these things out.

It’s normal at this point for the fear-anger syndrome to take over and make you want
to hammer on that side plate with a chisel, to pound it off with a sledge if necessary. You
think about it, and the more you think about it the more you’re inclined to take the whole
machine to a high bridge and drop it off. It’s just outrageous that a tiny little slot of a
screw can defeat you so totally. What you’re up against is the great unknown, the void of
all Western thought. You need some ideas, some hypotheses. Traditional scientific method,
unfortunately, has never quite gotten around to say exactly where to pick up more of those
hypotheses. Traditional scientific method has always been at the very best, 20-20 hindsight.
It’s good for seeing where you’ve been. It’s good for testing the truth of what you think
you now, but it can’t tell you where you ought to go, unless where you ought to go is a
continuation of where you were going in the past. Creativity, originality, inventiveness,
intuition, imagination- ‘unstuckness,’ in other words- are completely outside its domain.

[...]
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To put it in more concrete terms: If you want to build a factory, or fix a motorcycle, or
set a nation right without getting stuck, then classical, structured, dualistic subject-object
knowledge, although necessary, isn’t enough. You have to have some feeling for the quality
of the work. You have to have a sense of what’s good. That is what carries you forward.
This sense isn’t just something you’re born with, although you are born with it. It’s also
something you can develop. It’s not just ‘intuition,’ not just unexplainable ‘skill’ or ‘talent.’
It’s the direct result of contact with basic reality, Quality, which dualistic reason has in the
past tended to conceal.
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1.0 INTRODUCTION

The medical field has advanced at an increasingly rapid pace in recent centuries. This ad-

vancement is largely thanks to our ability to probe the inner workings of biology at increas-

ingly smaller scales. In the past, physicians and scientists could only observe symptomatic

relationships between diseases and treatments. Beginning with the invention of the micro-

scope (disputably sometime around the late 1500s), and accelerating in the 19th and 20th

centuries, new and increasingly high resolution methods have been developed to observe and

understand the cellular and molecular mechanisms of the human body. This in turn has

driven the development of new diagnostics and clinical treatments for disease and dysfunc-

tion that would not have been possible without the considerable insight that comes from

direct observation.

Only in the past few decades has our ability to physically manipulate biology gradually

approached the resolution of our imaging capabilities. Advances in chemistry, biology, engi-

neering, and computation have enabled numerous new technologies such as high-throughput

DNA sequencing, designer drugs, in-vitro fertilization, and single cell analysis. New materi-

als and manufacturing methods have played a considerable role in this revolution. Thanks in

large part to advances made in the semiconductor industry, we are now able to manufacture

electrical, mechanical, chemical, and optical devices at the micrometer and nanometer size

range. Collectively known as MEMS devices (Micro Electro-Mechanical Systems), these tiny

machines are capable of performing tasks far too delicate for human hands.

A subclass of MEMS, known as microfluidic devices, are tiny fluid handling systems

designed to operate on nanoliters and picoliters of liquid. Born from the convergence of

molecular analysis, genomics, and microelectronics, the rapid growth of microfluidic R&D

was stimulated by a series of DARPA and DoD programs in the 1990s aimed at developing
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field-deployable sensors for chemical and biological threats in the wake of the cold war [23].

Thanks to those early developments, the manipulation of fluids in miniscule channels has

emerged as a distinct new field. Channels, valves, reaction vessels, heaters, filters, mixers,

pumps, and other integrated MEMS components can be used to recapitulate laboratory

tests and medical assays on a single chip, dramatically reducing the necessary volumes (and

thereby cost) of samples and reagents, as well as reducing the need for expensive laboratory

equipment [23, 24, 25, 26, 27, 28, 29, 30]. The benefits of miniaturization are abundant: high

surface area, rapid diffusion, reduced contamination, massively parallel testing, portability,

low cost. Microfluidics have already found commercial application for screening protein

crystallization conditions [31, 32], single cell [33, 34] and single molecule [35, 36, 37] analysis,

and high-throughput screening for drug development [38, 39].

With all the great promise that microfluidics hold, routine commercial adoption has

been slower than anticipated due to a number of limitations. One revolves around sample

handling and preparation. Converting biological samples, such as blood, feces, or soil to a

microfluidic-compatible format often requires preparation steps outside the device. Pumping,

valving, and on-chip reagent storage also require improvement over existing solutions [23].

Cell handling, the act of controlling cell motion in channels by passive or active means, is

also an important challenge for single and multi-cell analyses. To enable massively parallel

study of cell-to-cell variations in phenotype, stiffness, protein expression, or metabolism,

there must also be ways of moving and positioning cells with sub-micron accuracy. Doing

so rapidly and efficiently, thousands of times per second, is a considerable and enticing

challenge. With this challenge in mind, we were motivated to investigate a number of new

techniques for manipulating cells within microfluidic devices. While the methods are varied,

they are linked by the common goals of continuous operation under fluid flow and specificity

toward cellular properties.

Specific Aim 1: Microfluidic cell manipulation by differential rolling adhe-

sion on cytotactic surfaces. We hypothesized that an appropriately patterned surface

containing the adhesion protein P-selectin would invoke a 2-dimensional rolling response

in leukocytes expressing the membrane-bound P-selectin Glycoprotein Ligand-1 (PSGL-1).

This behavior could then be quantified and ultimately used to isolate rolling cells from a
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heterogeneous sample. To test this hypothesis, we designed and built microfluidic channels

with chemically distinct regions. Immobilization of P-selectin to these regions allowed us

to test a theoretical model of rolling behavior against observational results. Collection and

analysis of large volumes of data were expedited by the development of custom tracking

program.

Specific Aim 2: Control and measure the location of cells relative to the

solid/liquid interface. We hypothesized that passive or active means of focusing cells

would be beneficial to improving cell-surface interactions. Two approaches were explored.

First, modeling was used to guide the design of external electrodes to induce an electric field

within a microfluidic chamber. This field could then be used to impose electrokinetic forces

on the negatively charged cell membrane. In addition, we also explored a newly available

microfabrication technique, 3D laser lithography, to craft passive structures to move cells

and query their location within the channel.

Specific Aim 3: Explore a non-contact method for size-specific cell manipula-

tion using vortex capture. Capture of spherical particles in the rotational flow surround-

ing a spinning object has been demonstrated with magnetic micro-robots. We hypothesized

that extending this technique to laminar flow conditions would result in size-specific sorting

of particles in a continuous fashion. We fabricated multiple varieties of tethered micro-robots

using 3D lithography and traditional lithography, comparing and contrasting the two meth-

ods. Successfully crafted devices were able to distribute mixtures of polystyrene beads into

gradients of increasing size.

1.1 CELL ROLLING AND RELATED BIOLOGY

The first, and perhaps foremost way in which we study biology today is by dividing it at

the cellular level into identifiable lineages. Nearly all cell phenotypes are identified by the

complex matrix of proteins and carbohydrates decorating the cell membrane, primarily be-

cause they are easily accessible and appear in distinct combinations that can be identified

with fluorescent staining. The biological function of many of these molecules is still poorly
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understood. Adhesion receptors are of particular interest because they mediate the attach-

ment of cells to other cells or the extracellular matrix, and often perform double duty as

signal transducers. In the late 80s and early 90s, a new family of adhesion molecules was

discovered when three vascular proteins were successfully cloned [40, 41, 42]. Known as the

selectin family of adhesion molecules, they are responsible for adhesive interactions between

hematopoietic cells and the vascular endothelium. Selectins govern a physical phenomenon

known as cell rolling, wherein a free flowing cell tethers to the endothelium and begins to

roll along the vascular wall.

1.1.1 The selectin family of adhesion molecules

Selectins are expressed on most leukocytes (L-selectin), activated endothelial cells, and

platelets (E- and P-selectin). They share a common N-terminal C-type lectin domain, fol-

lowed by an epidermal growth factor (EGF)-like domain, a series of short consensus repeats,

a transmembrane domain, and a cytoplasmic tail [1]. A schematic of this arrangement for

P-selectin and one of its ligands, PSGL-1, can be seen in Figure 1.1. Selectins have a par-

ticular affinity for sialylated, fucosylated oligosaccharides, such as sialyl-Lewisx (sLex) and

certain sulfated glycoproteins and proteoglycans [43, 44].

Selectin binding is calcium dependent, and rolling is a result of transient adhesion caused

by rapid bond formation and dissociation with a high tensile strength [45]. Perhaps one of

the most interesting properties of the selectin bond is its unique reaction kinetics. Up to a

certain limit, the bond lifetime of the selectin-ligand system actually increases with applied

force, resulting in stronger adhesion. Such systems are known as catch-bonds [46]. Both P-

and L-selectin are also known to behave like traditional “slip” bonds above a critical force,

resulting in a biphasic “catch-slip” response to increasing shear forces [47]. E-selectin has

been shown to follow an even more complex “slip-catch-slip” motif, resulting in a triphasic

rolling response to increasing flow rates [48].
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Figure 1.1: PSGL-1 and P-selectin molecules. A, schematic diagram of PSGL-1. SH indicates

the location of a cysteine that forms a disulfide bond with the corresponding cysteine on

another PSGL-1 molecule to create the PSGL-1 homodimer. The epitopes for the anti-

PSGL-1 mAbs PL1 and PL2 are marked. Not shown are the post-translationally added O-

glycans, N-glycans, and tyrosine sulfates. B, schematic diagrams of native and recombinant

P-selectin. mP-selectin contains an N-terminal C-type lectin domain, followed by an EGF-

like domain, nine consensus repeats (CR), a transmembrane domain (TM), and a cytoplasmic

domain (cyto). sP-selectin contains all of the extracellular domains. Lec-EGF contains only

the lectin and EGF domains, plus a C-terminal extension that includes a factor Xa cleavage

site and the epitope for the mAb HPC4. The epitopes for the anti-P-selectin mAbs G1 and

S12 are shown. Reprinted with permission from ASBMB [1].
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Figure 1.2: Illustrations of white blood cell rolling under shear flow. Rapid association and

dissociation of bonds allow transient tethering as the cell rolls along activated endothelial

cells. Selectins and their ligands exhibit both “catch” and “slip” type bond formation de-

pending on applied force. Reprinted from [2], copyright 2000, with permission from Elsevier.
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1.1.2 Leukocyte rolling

Cell rolling is a common and important physiological process in inflammation, wound heal-

ing, cell homing, and cancer metastasis [49, 50, 51, 52, 53]. During the course of normal

inflammation, cytokines and histamine are released by damaged tissues and promote the

rapid expression of the adhesion proteins E- and P-selectin on vascular endothelial cells.

Selectin family molecules bind weakly to carbohydrate ligands on the surface of leukocytes,

such as PSGL-1 [54]. These weak bonds rapidly form and dissociate, causing leukocytes

to roll along the endothelium. Expression of immunoglobulin ligands, such as ICAM-1 and

VCAM-1, on the endothelium eventually halts the motion of rolling leukocytes. Chemokine

gradients then cause them to transmigrate through the endothelium, a process also known

as extravasation [55]. By this mechanism, leukocytes are able to rapidly localize to the site

of injury and exit the blood flow.

Rolling behavior was first observed more than 150 years ago by Henri marquis Du Trochet

in 1824 [56], and later illustrated by Dr. Augustus Waller during his intravital microscopy

observations of frogs and toads in 1846 (see Figure 1.3). Since then, leukocyte-endothelial

interactions have been identified as a key component in the inflammatory response, with

implications in a wide array of medical disorders such as adult respiratory distress syn-

drome (ARDS) [57], immune vasculitis, cancer metastasis [58], transplant rejection[59], and

autoimmune disorders [60].

Since cell rolling precedes neutrophil infiltration, understanding and controlling it can

have valuable applications in controlling the inflammatory response. One such application

has been demonstrated in the ischemia/reperfusion model of kidney and liver transplantation

in rats [61, 62]. In these studies, soluble PSGL-1 was used to inhibit neutrophil infiltration

in response to ischemia/reperfusion, a common issue associated with organ transplantation.

The treatment resulted in considerably reduced organ injury, increased blood flow, and

improved organ function/survival. A better understanding of cell rolling is therefore valuable

for developing new clinical treatments.
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Figure 1.3: Illustrations by A. Waller (c. 1846). The tongue of a frog was spread thin to

allow observation of blood capillaries via transmission microscopy. In these experiments he

observed cell sticking, rolling, and extravasation, laying the groundwork for later studies on

cell motility across the endothelium. Reprinted from [3], public domain.

1.1.3 Parallel plate flow is commonly used to study cell rolling

The study of cell rolling in-vitro has been conducted primarily in parallel plate flow cham-

bers, a sort of macroscopic precursor to microfluidic devices [63]. Selectins are adsorbed or

covalently bound to one or both of the plates, and cells expressing ligands are introduced

into the chamber at a steady flow rate. Cell rolling can then be observed with traditional

microscopy. These experiments have been used to identify new ligands for selectins, thereby

identifying potential therapeutic targets for anti-inflammatory therapies. Aigner et al., for

example, identified CD24 as a mediator of rolling of PSGL-1 negative breast carcinoma cells

on P-selectin [64], subsequently leading to the use of CD24 as a new prognostic marker

in breast cancer and its association with multiple properties linked to tumor growth and

metastasis [65, 66].

Tumor infiltration by neutrophils is often necessary for the acquisition of a metastatic

phenotype, and chronic inflammation has a strongly carcinogenic effect on tissues due to

the development of reactive oxygen species [67]. Studies have also shown that some cancer

cells have the ability to roll on activated endothelium [68], or piggyback on leukocytes and

use them as a vehicle for extravasation [49, 50, 51]. Therefore, studying cell rolling and
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leukocyte behavior in association with tumor cells is extremely important for developing

improved treatments and limiting metastatic potential.

Rolling on activated endothelium is also being leveraged for improved cell therapy by

engineering the cell membrane with small peptides that bind to selectins, mimicking the

natural ligands expressed on leukocytes [52]. Attachment of these peptides to stem cells has

been shown to induce rolling, and might enhance their delivery to areas of injury following

systemic injection, hopefully increasing their engraftment, survival, and efficacy.

1.2 MICROFLUIDICS AND MEMS DEVICES

1.2.1 Traditional photolithography

As previously mentioned, microfluidics and MEMS devices are built using lithographic manu-

facturing methods borrowed from the semiconducter industry. Lithography typically involves

the transfer of a pattern, called a mask, onto a wafer of silicon or glass coated in a thin layer

of UV curable photoresist. The mask can either be written via laser ablation onto a chrome

coated glass plate, or for low resolution applications, printed on a plastic sheet with a printer.

The pattern is exposed using a controlled dosage of light, typically in the UV spectrum, and

the resist is developed to reveal the pattern. The resist layer is then used to protect the un-

derlying substrate in some areas, while exposing it in others. A wide variety of processes are

then available to etch, oxidize, and coat the wafer with metals, oxides, and polymers. Using

multiple masks and patterns, nearly any conceivable combination of disparate materials can

be built up in a planar fashion to create solid structures, such as transistors, conductive

traces, cantilevers for AFM tips, combs for gyroscopes and accelerometers, or molds for soft

lithography.

1.2.1.1 Soft lithography for microfluidics Soft lithography borrows the high res-

olution patterning from regular lithography to create negative impression molds for soft

polymers. By either etching the molds into silicon or embossing them on its surface with
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raised photoresist, the shapes can then be transferred into the cured polymer. By far the

most popular polymer used in soft lithography, especially in microfluidic applications, is

poly(dimethylsiloxane) or PDMS. It is transparent, gas permeable, and reproduces molded

patterns with a high degree of accuracy and minimal shrinkage. Figure 1.4 shows the basic

process of creating microfluidic channels using soft lithography.

By combining hard and soft lithography, microfluidic devices can be crafted to perform

a wide array of functions and apply differential forces on cells using fluidic, acoustic, electri-

cal, magnetic, and optical means. These forces are most commonly applied to methods of

separating cells based on differences in mechanical, chemical, or electrical properties.

1.2.2 Microfluidic methods of continuous separation

Traditional methods of sorting cells use fluorophores and antibodies to selectively label them.

Fluorescent activated cell sorting (FACS) or its magnetic counterpart MACS are then used to

isolate the cells of interest based on this labeling. These methods can have high startup costs

($250,000 for FACS systems) and require milliliters of samples and reagents. Fluid shear

stresses and the use of fluorophores and antibodies can also influence cell fate and function

[69]. Other macroscale methods, like centrifugation, can also be incompatible with small

sample volumes. Separation of leukocytes from whole blood, one of the most common uses

of centrifugation, still introduces chemical agents such as Ficoll even though labeling is not

used. Because leukocytes are highly sensitive to their environment, centrifugation or FACS

sorting might alter their immunophenotype or change surface marker expression [70, 71, 72].

Consequently, microfluidic methods of cell sorting may allow reduced costs, lower sample

volumes, and gentler methods of label free separation. Figure 1.5 shows generalizations of

the three basic ways of performing separation using gradient force fields.

1.2.2.1 Mechanical forces Some of the earliest microfluidic devices performed func-

tions that were intrinsic to the physical design of the channel, and therefore required no

additional features to accomplish tasks such as size sorting, mixing, and particle concentra-

tion. Hydrodynamic forces induced by streamline manipulation have been used to arrange
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Figure 1.4: The basic concept of soft lithography. A photo-mask is used to transfer a pattern

to a layer of photoresist on a silicon wafer. After development, that resist can be used to

form the microfluidic channels when PDMS is poured over the mold, or the wafer can be

etched to create a negative impression of the pattern in the silicon. The cured PDMS can

be peeled off of the mold, oxidized, and bonded to an additional piece of PDMS or glass

to form closed channels. Reproduced with permission from [4]. Copyright 2001, American

Institute of Physics.
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Figure 1.5: Microfluidic technologies for cell sorting and separation take advantage of in-

trinsic differences in their biopyhsical properties. (a) Continuous kinetic methods depend on

the rate of cell deflection perpendicular to the channel. (b) Continuous equilibrium methods

involve migration to property-dependent equilibrium positions. (c) Elution methods depend

on forces antiparallel to flow to create differential retention. Reprinted with permission from

[5]. Copyright 2010, Analytical and Bioanalytical Chemistry.
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cells by size and shape [73, 74], while inertial lift forces and secondary flow have achieved

100-300 fold enrichment of cells and bacteria from dilute samples [75, 76, 77].

Other methods of flow disruption, such as micropost arrays, herringbone shapes, and

other microstructures can be directly integrated into the channel using soft lithography

[78, 79, 80]. For example, Huang et al. used migration of blood through a micropost array

to isolate nucleated red blood cells [81]. Hsu et al. have used herrinbone shapes to induce

micro-vortices that improve capture of rare circulating tumor cells [80].

While flow forces are very efficient and simple to incorporate, they often cannot differ-

entiate between important properties of different types of cells. More complex methods of

force generation are needed to act on those cells not suited to hydrodynamic separation.

1.2.2.2 Acoustic forces Acoustic radiation forces, applied by a microfabricated ultra-

sonic transducer, can generate differential acoustic radiation forces that separate cells and

particles by size, density, and compressibility [82]. Lenshof et al. have used this force to

perform whole blood plasmapheresis [83], and Petersson et al. have performed continuous,

size-based particle separation [84]. Like hydrodynamic forces, acoustic forces act on me-

chanical properties of cells and particles, and are therefore limited in many of the same

ways.

1.2.2.3 Electrical forces Electrical forces are an attractive way to measure certain prop-

erties of cells and isolate them from one another. Almost all biological cells are charged or

exhibit an electrical dipole thanks to the concentration of charged species in the glycocalyx

surrounding the cell and the ion pumps incorporated into the membrane [85]. Electrophore-

sis, the application of a DC electrical field to cell-containing fluids, has been used to study

cell surface charge for decades, and can be applied within microfluidics to perform similar

functions [86].

The use of AC fields, especially in the kHz and MHz frequencies, can be used to in-

duce a dipole moment in cells and generate force fields based on their dielectric properties.

Dielectrophoresis (DEP) has several advantages over electrophoresis (EP): it reduces elec-

trochemistry at the electrode surface, reduces Joule heating and gas formation in the fluid,
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can be more gentle to cells, and can separate cells with no net charge, as long as they have

differing dielectric properties [87, 88]. DEP has been used to for live/dead separations of

cells of the same phenotype [89, 90], as well as for separating different phenotypes from one

another [91].

1.2.2.4 Chemical forces Small samples can be probed for rare and specific types of

cells by using high affinity species, such as antibodies and adhesion proteins, patterned into

microfluidic chambers or contained in different flow streams [72]. These chemical methods

are often combined with some of the mechanial methods mentioned earlier, such as micropost

arrays and herrinbone shapes, to increase the rate of cell interaction with the surface-bound

molecules [92]. New models of adhesive affinity kinetics indicate that adhesive patterns can

be used not just for capture, but also in a continuous manner via transient adhesion [8].

1.2.2.5 Optical forces Optical forces are a relatively newer method of cell handling

that use radiation pressure to perform optical trapping, force measurements, and single cell

manipulation via optical tweezers [93]. Optical bars and lattices have been used to trap,

manipulate, and continuously sort cells and colloids based on their optical polarizability

[94, 95, 96]. The primary disadvantage of optical methods of manipulation is that they

require an unobstructed path through the microfluidic channel, which can be difficult or

impossible to achieve in combination with integrated MEMS and other handling methods.

1.2.2.6 Magnetic forces Magnetic forces for cell manipulation have emerged as partic-

ularly attractive options in recent years. Traditional microfluidic devices are transparent to

magnetic fields, allowing long-distance application of forces with external electromagnetic

coils. Magnetism has almost no physical effects on biological cells and proteins, and the

forces that can be generated on magnetic particles and MEMS components within microflu-

idic channels are extremely large relative to the volume of material being used.

Attachment of magnetic particles to cells, similar to MACS, is still the most common

way of magnetic sorting. Saliba et al. used biofunctionalized magnetic beads, in self-

assembled columns within a microfluidic device, to capture B-lymphocyte subpopulations
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Figure 1.6: General concept of 3D printing two-photon polymerization. The area in which

the laser power is high enough to initiate polymerization is known as the voxel. Typically

ellipsoid in shape, the height dx and cross-section dxy of the voxel depend on laser power and

beam focus. Adapted from [6], open source license under Creative Commons 3.0.

for immunophenotyping and in-situ culture [97]. Sitti et al. have proposed non-contact

methods of magnetic manipulation using tiny, magnetic “robots” that can be moved at will

with an external field [98, 99, 100, 19].

1.2.3 Two photon polymerization enables three-dimensional lithography

Two photon polymerization (TPP), also known as direct laser writing (DLW) is a recently

commercialized tool for mask-free prototyping and fabrication of polymer structures [101,

102, 103]. In contrast to traditional, planar photolithograpy, TPP operates on the principal

of two photon absorption to polymerize photoresist structures. Two photon polymerization

uses a tightly focused, femtosecond pulsed laser spot that is scanned through a volume of

unpolymerized thick film resist.

Within a small region at the focal point of the beam, the intensity is high enough for

two photon absorption to occur. This phenomenon occurs in a non-linear fashion, with a

specific energy threshold below which no polymerization occurs [20]. The non-linear nature
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Figure 1.7: Miniature of the Brandenburg Gate, written by means of Nanoscribe’s Photonic

Professional GT system. c© Nanoscribe. Image reprinted with permission [7].

of TPP makes it possible to write within a 3-dimensional volume without causing partial

polymerization of the resist as the unfocused portion of the laser passes through the material.

Two-photon polymerization can achieve resolutions below 100 nm, and is rapidly being

applied to overcome many of the limitations of traditional lithography. While the process is

still less than a decade old, and widespread availability of TPP equipment remains a factor

limiting its adoption, there are now commercially available options that allow researchers

without extensive knowledge of optical physics to utilize TPP for their research. The future

of lithography and microfluidics look extremely bright, and many exciting new technologies

are just over the horizon.
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2.0 TAILORING THE TRAJECTORY OF CELL ROLLING WITH

CYTOTACTIC SURFACES

The work presented in this chapter is adapted from a peer reviewed publication from the

journal Langmuir (Edington et al. 2011) [9].

2.1 INTRODUCTION

The ability to separate specific populations of cells from a heterogeneous sample is a funda-

mental requirement for studying cell biology. Medical diagnostics and cell-based therapies

also rely on cell separation technologies to ensure safe and effective treatment. Since the

1970s, fluorescent activated cell sorting (FACS) has been the workhorse of cell separation

techniques due to the high specificity, rapid separation, and wide range of commercially

available fluorescent markers [104, 105]. While FACS has evolved considerably over the past

40 years to increase specificity, efficiency, and speed, it still remains an expensive and often

timeconsuming process that relies on covalently bound or antibody conjugated markers to

identify specific cell populations. As a result, the technique is not ideal for sensitive cell

populations or applications where cell phenotype must be preserved. The additional cost

and complexity of cell labeling also limits the use of FACS and similar techniques in point-

of-care diagnostics. The limitations of label-based cell separation techniques have inspired

the development of numerous label-free methods, many of which are based on microflu-

idic manipulation of cell solutions. These methods rely primarily on physical properties,

such as dielectric charge, cell size, and autofluorescence to separate different populations

[106, 107, 108, 109, 110, 111, 112]. However, many cell phenotypes are exclusively defined
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by their expression of specific membrane proteins, rather than electrical or mechanical prop-

erties. There exists a need for a device capable of continuous, label-free separation of cells

based on the expression of surface proteins.

By rationally tailoring the microenvironment of a cell, it may be possible to manipulate

and characterize the cell without attaching ligands to its surface. As cells pass over surfaces,

there is an opportunity to deliver signals to the cell from the surface that cause the cell to

alter its behavior. Surfaces that can deliver a stimulus that directs cells toward or away

from the surface are known as cytotactic surfaces. Indeed, in biology, such surfaces already

exist. Following tissue injury, one of the earliest steps of the inflammatory response is the

recruitment of white blood cells (leukocytes) from nearby vasculature. Leukocyte extrava-

sation is initiated by the expression of cell adhesion molecules, including E- and P-selectin,

on the surface of activated endothelial cells, which causes free floating leukocytes expressing

P-selectin Glycoprotein Ligand-1 (PSGL-1) to adhere to the vessel walls and roll to the site

of injury before escaping the blood vessel [113]. Selectin mediated rolling has been studied

extensively,[113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125] and a number

of attempts have been made to purify hematopoietic cells based on this unique interaction

[126, 127, 128]. Some of these methods are based on differential rolling adhesion in one

dimension or static adhesion, but they are not continuous and require careful collection of

samples at specified time points.

A recent computational model reveals an improved method of adhesion-based separa-

tion by incorporating arrays of chemically and mechanically patterned surface features [129].

The model suggests that passive, label-free cell separation could be accomplished in a mi-

crofluidic package by utilizing smart surfaces to identify differences in cell surface ligands

or cell membrane stiffness. The virtual surface utilizes angled stripes of variable stiffness

or adhesiveness. As cells roll along the virtual surface under laminar flow, they can obtain

a net displacement perpendicular to the direction of flow upon interacting with a diagonal

stripe that has a higher adhesive interaction or lower modulus than the bulk material. This

predicted displacement results from a change in shear forces as laminar flow pushes the cap-

sule across each stripe, and is also a function of the capsules stiffness, meaning that two

capsules with different compliances or adhesive properties will exhibit different amounts of
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displacement, effectively sorting them. The capsule’s path is altered as it passes from the

weakly adhesive bulk material to the “sticky” stripe, and after exposure to multiple stripes

the compliant capsules gain displacement perpendicular to the direction of flow The strain

modeling and predicted paths of rolling cells are illustrated in Figures 2.1 and 2.2 [8].

Control of cell motion in two dimensions would allow for the physical segregation of

interacting and noninteracting cells in a continuous manner, making such a sorting method

attractive. Consequently, experimentally verifying and understanding this prediction is an

important step toward the practical development of an adhesion based sorting device. Results

from experimental manipulations of leukocytes appear to support the Balazs model, including

the observation of lateral displacement on stripes of P-selectin and the absence of the effect

in the case of rigid microspheres [130, 131]. Only the macroscopic behavior of cells in these

systems has been investigated, and therefore, the data lack the necessary resolution to verify

the model. In order to more fully understand cellular motion across patterned surfaces, we

developed a system in which we could observe these interactions on a submicrometer scale.

A mechanistic understanding of this effect would be important in the successful development

of adhesion-based methods of cell sorting.

We designed a microfluidic device to study the directed rolling of cells using a cytotactic

surface of covalently immobilized P-selectin. We patterned this surface to the dimensions

outlined in the Balazs model and observed the response of rolling HL-60 cells [132]. HL-60

cells are a human myeloid cell line expressing high levels of PSGL-1 that are commonly

used in leukocyte rolling experiments [113, 115, 130, 132, 133]. The paths of the cells were

recorded using a customized MATLAB tracking program and compared to the theoretical

response predicted by the model. The device represents a foundation that can be adapted

to any transiently binding cell/ligand combination. With improvements in micropatterning

technology, cytotactic microfluidic devices could be designed to screen for the presence of

many different surface markers simultaneously, without the obligatory attachment of a po-

tentially disruptive chemical tag to the cell. For the scope of this study, however, we are

concerned primarily with characterizing the specific response of HL-60 cells to patterned

stripes of P-selectin. The philosophy of this approach is outlined in Figure 2.3.
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Figure 2.1: Modeling by Alexeev et al. indicates that chemically or mechanically patterned

substrates (left and right respectively) with regions of sharply distinct adhesiveness can

redirect rolling vessicles by generating asymmetrical strains that alter the energy landscape,

leading to motion toward the centerline of the stripes and perpendicular to the direction

of flow. Snapshots above show strain on a capsule and substrate as the capsule encounters

sticky areas. Lines on the substrate indicate the boundary of an adhesive patch. Deformation

of the capsule at the boundary enhance the contact area with the substrate. Adapted with

permission from [8]. Copyright 2007 American Chemical Society.
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Figure 2.2: Predicted trajectories of the centers of mass for capsules of differing compliancy

on (a) chemically and (b) mechanically patterned substrates. Stripe angle is 45◦ and rolling

direction is left to right. Adapted with permission from [8]. Copyright 2007 American

Chemical Society.
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Figure 2.3: Artistic rendition of the microfluidic device used in this study. The device was

designed with the capability to sort cells using patterned stripes of P-selectin, although

sorting effectiveness has not yet been studied. Angled stripes on either side of the channel

direct rolling cells (blue) toward the center pathway where they are collected as they exit the

device. Cells that do not interact with the surface or do not express P-selectin glycoprotein

ligand-1 (red) follow the direction of flow and exit through the two side channels. Reprinted

with permission from [9]. Copyright 2011 American Chemical Society.
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2.2 MATERIALS AND METHODS

2.2.1 Investigation of P-selectin activity and immobilization techniques using

surface plasmon resonance

Direct observations of P-selectin immobilization and activity were performed using a Bia-

core T100 surface plasmon resonance (SPR) system, using methods partially adapted from

Mehta et al. [1]. Protein immobilization experiments were performed on plain gold surfaces

(Biacore SIA Au Kit, BR-1004-05). All immobilization steps were performed at flow rates

of 5 µL/min and kinetic assays were performed at 50 µL/min unless otherwise noted. Gold

sensor surfaces were modified with a carboxylic acid-functionalized thiol monolayer; 10 mM

11-mercaptoundecanoic acid (MUA, Sigma 674427) in ethanol, for 1 hour.

2.2.1.1 Direct amine coupling After assembling and loading the sensor chip into the

SPR, 10 mM MES running buffer (2-(N-morpholino)ethanesulfonic acid) was used to sta-

bilize the surface and establish a baseline. Freshly made activation solutions of 50 mM

N-hydroxysuccinimide (NHS) and 200 mM N-ethyl-N’-(dimethylaminopropyl) carbodiimide

(EDC) in DI water were then injected over the surface for 10 minutes to form NHS ester

leaving groups. After a 60 second buffer rinse, 70 nM recombinant P-selectin Fc chimera

(R&D Systems, 137-PS-050) in 10 mM pH 6 MES buffer was injected until a baseline shift of

∼3500 RU was achieved (roughly 20 minutes). After rinsing, unreacted groups were capped

with ethanolamine (1 M, pH 8 in water, 10 min reaction) to prevent non-specific binding to

the analyte.

2.2.1.2 Streptavidin/Biotin coupling Sensor chips were prepared as described above,

with 200 µg/mL streptavidin (Sigma 4762) in 10 mM, pH 4.5 sodium acetate buffer used in

place of P-selectin (6,00-8,000 RU). After capping with ethanolamine, the surface was reacted

with biotinylated P-selectin (25 nM in PBS, 2 µL/min flow rate). P-selectin was conjugated

using a Pierce EZ-LinkTM Sulfo-NHS-LC-Biotinylation kit (Pierce 21435) according to the

included instructions.
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2.2.1.3 Fc/Protein A coupling Protein A (Pierce 21184) sensors were made in a sim-

ilar fashion, with 2 µM protein A in 10 mM, pH 5 sodium acetate buffer. After rinsing and

capping with ethanolamine, P-selectin (25 nM) was then injected, allowing the Fc-chimerized

regions to bind to the protein A surface (3,500 RU).

2.2.1.4 Control surfaces In all three immobilization chemistries, control surfaces were

run in parallel during kinetic tests to to determine the background signal that should be sub-

tracted from the experimental channel readings. Antibody control surfaces were immobilized

with P-selectin in an identical fashion to the experimental regions, but were then blocked

to saturation with 250 nM Human P-Selectin/CD62P Antibody (R&D Systems BBA30) to

prevent PSGL-1 binding. Control data were adjusted for antibody drift by assuming equal

signal gain for every RU of antibody lost. BSA control surfaces were also prepared by im-

mobilizing BSA in place of P-selectin in the same manner as the experimental chamber,

however direct amine coupling was also used for BSA controls in protein A experiments, as

a BSA/Fc chimera was not readily available.

2.2.2 Kinetic assays

After P-selectin functionalization, surfaces were stabilized for 1 hour at flow rates of 50

µL/min, then overnight in standby mode to prevent signal drift. To evaluate the density

and activity of surface-bound P-selectin, the binding response to PSGL-1 in solution was

compared for each immobilization method. Serial dilutions of recombinant Human PSGL-

1/CD162 Fc chimera (R&D Systems 3345-PS-050) in DPBS with calcium and magnesium

(Sigma D8662) were prepared. Samples ranged from 32 nM to 3.2 µM in ten-fold increments,

including a zero concentration control sample. PSGL-1 was perfused over experimental and

control channels simultaneously at 50 µL/min for 30 seconds, followed by running buffer.

Bound PSGL-1 was removed by injection of 10 mM EDTA between samples.
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2.2.3 Synthesis and fabrication of a rationally designed cytotactic surface

To generate a surface that could influence the direction in which cells rolled over it, we

selected a foundation layer of glass upon which we could fabricate the necessary synthetic

elements. Using the Balazs/Alexeev model to define the geometry, we designed a network

of gold stripes on glass slides. Gold stripes were chosen in lieu of microcontact printing

because they provided a substrate for the covalent immobilization of the P-selectin and

provided greater visual contrast for image tracking purposes [131, 10]. The stripes were

arranged in two rows along the sides of the fluid channel, with an unpatterned region in the

middle. The individual stripes were 5 µm wide with a space of 10 µm between each stripe,

and were angled at 45 with respect to the direction of flow in order to direct cells towards

the center channel. A diagram of the fabrication procedure is shown in Figure 2.4.

A 4-inch polished glass wafer was patterned using image reversal of AZ5214-E photore-

sist (Microchemicals Inc.) and a bright field chrome photomask of the stripe pattern (Photo

Sciences Inc). A sputtered titanium underlayer (5 nm) was subsequently coated with sput-

tered gold (20 nm) and the gold-striped glass wafer was then diced into individual units that

would form the bottoms of the flow chambers. The quality of the patterned surface was

characterized by scanning electron microscopy (SEM, FEI Sirion).

The sidewalls and ceiling of the fluid channels (1.2 mm wide by 10 mm long) were

made from poly(dimethyl siloxane) (PDMS). A silicon mold for the PDMS top layer was

prepared by traditional lithographic techniques and anisotropic reactive ion etching to a

depth of 30 µm. After etching, the wafers were cleaned and treated with trichloro(1,1,2,2

perfluorooctyl)silane vapor to facilitate PDMS release from the mold. The polymer was made

using a SYLGARD 184 silicone elastomer kit (Dow Corning Corporation). After combining

the base and curing agent (10:1), the mixture was degassed under vacuum for 45 minutes.

Degassed PDMS was poured evenly over the mold and allowed to cure overnight at room

temperature, then baked at 70 C for 1 hour. After curing, the PDMS was cut into individual

units and holes were punched at the inlets and outlets.

In order to achieve a strong mechanical seal and prevent leaks between the cytotactic

surface and the chamber walls, the PDMS and glass were bonded using an oxygen plasma
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Figure 2.4: An overview of the process for fabricating the microfluidic cell sorter shown in

Figure 2.3. Striped patterns are achieved by depositing gold using sputtering and a negative

photoresist lift-off technique. Oxygen plasma bonding is then used to seal a PDMS channel

to the glass substrate. After applying a fluorinated agent to block non-specific interactions,

P-selectin is covalently attached to the gold stripes [10]. Reprinted with permission from [9].

Copyright 2011 American Chemical Society.
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treatment.32,33 The layers were activated in a plasma barrel etcher (International Plasma

Corporation, O2 plasma, 18 sec, 50 W, 1 Torr). Following plasma activation, the layers were

heated to 75 C for 5 minutes. They were then mounted in a Karl Sss MJB3 Contact Aligner

and brought into light contact to initiate bonding.

A rational design of the cytotactic surface requires that the non-biologically active part of

the surface is inert. We therefore blocked the glass surface within one hour of plasma treat-

ment using a 1% solution of (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethyl-chlorosilane

(Gelest, Inc.) in filtered acetonitrile. A micropipette was used to inject 10 µL of blocking so-

lution into the sealed chambers. After incubation at room temperature for 1 hour, chambers

were rinsed repeatedly with acetonitrile and dried with nitrogen.

Our next step was to introduce the cytotactic element onto the gold stripes by chemical

modification.31 A 11-mercaptoundecanoic acid (MUA) solution was prepared by combining

MUA (11 mg), pure ethanol (10 mL), and HCl (50 µL). The solution was then filtered with

a PTFE syringe filter and infused with argon gas for 10 minutes. MUA solution (10 µL)

was injected into the flow chambers and the tray holding the chambers was charged with

argon and sealed. After incubation for 1 hour at room temperature the flow chambers were

washed 3 times with ethanol and dried with nitrogen.

To prepare the MUA-modified gold stripes for attachment to a biomolecule, an EDC-

NHS solution was prepared by combining N-(3-Dimethylaminpropyl)-N-ethylcarbodiimide

hydrochloride (EDC, 20 mg) with N-Hydroxysuccinimide (NHS, 12 mg) in acetonitrile (10

mL). The EDC-NHS solution (10 µL) was injected into the chambers using a micropipette.

After incubating for 30 minutes at room temperature, the chambers were washed with ace-

tonitrile and dried with nitrogen.

Finally a P-selectin solution was prepared by combining P-selectin stock solution (ADP3-

200, R&D Systems, 10 µL of 200 µg/mL) with filtered Dulbeccos Phosphate Buffered Saline

(DPBS, Fischer-Scientific BW17-512F, 90 µL) for a final concentration of 20 µg/mL of P-

selectin. The chambers were injected with P-selectin (10 µL) solution and incubated for

1 hour at room temperature. After incubation the chambers were rinsed repeatedly with

DPBS and dried with nitrogen. After P-selectin modification, chambers were stored at 4 C

until use.
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P-selectin site density was determined using mouse anti-human P-selectin (R&D Systems,

ADP3) followed by goat anti-mouse IgG-HRP (R&D Systems, HAF007) and a spectropho-

tometric assay. P-selectin density was determined to be 1300 molecules/µ m2. Additionally,

the stability of P-selectin on gold-coated surfaces was tested in dry and wet (PBS) condi-

tions. P-selectin activity decreased after 32 days of storage (4 oC) in dry and wet conditions

by 25% and 70%, respectively.

P-selectin modification was verified by labeling with fluorescent polystyrene microbeads

(0.5 µm diameter, Invitrogen F-8813) that were functionalized with human P-selectin mAb

(R&D Systems, BBA30). Briefly, carboxylate modified polystyrene microspheres were incu-

bated in a solution of EDCHCl (4 mg), NHS (2.2 mg) and DI water (1 mL) for 30 minutes.

After rinsing with DI water, the microspheres were then incubated with human P-selectin

mAb (100 µg/mL) reconstituted in phosphate buffer (10 mM, pH 8.5) for 1 hour before be-

ing washed with DPBS. A 1:9 solution of microspheres (15 mg/mL) and DPBS was injected

into the flow chambers and incubated at room temperature for 1 hour, then rinsed with

DPBS and dried with nitrogen. Fluorescence imaging was used to visualize the quality of

the chemical modification.

2.2.4 Tracking and analysis of HL-60 cell rolling on a patterned surface

Human leukocyte cells (HL-60, ATCC #CCL-240) were cultured in polystyrene tissue culture

flasks (DB Falcon, 75 cm2) under recommended ATCC conditions (37 C, 5% CO2) with a

growth medium consisting of ATCC-formulated Isocoves Modified Dulbeccos Medium with

20% Fetal Bovine Serum. Cell concentration was maintained between 105-106 cells/mL.

Flow experiments were performed using a solution of PBS with 1 mM CaCl2 and 1 mM

MgCl2. Consistent flow rates were achieved using a Harvard Apparatus PHD2000 infuser

with 3 microsyringes (Hamilton Co. GASTIGHT #1802). In parallel with the microsyringes

was a microinjector (Narishige, IM-9A) for manual infusion, flushing of the chambers, and

introduction of cells. After priming the system with liquid, a small volume of cells (10-15 µ

L) was introduced to the lower inlet tube at a concentration of 1x105 cells/mL.
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Images and videos were acquired using a Leica DM-IRB inverted microscope with a 40x

objective, a Leica DFC480 C-mount 5 megapixel camera, and the Leica Application Suite

(Ver. 3.3.0). A range of flow rates from 0.03 µL/min to 0.24 µL/min were evaluated. Fluid

velocities and shear stress were calculated for each flow rate [134].

Tracking data were acquired from the recorded video segments using a custom, GUI-

based MATLAB tracking software. The software estimates the background and subtracts it

from each frame. Then, ring shaped templates of different sizes (Laplacian filters of varying

standard deviation) are applied to the subtracted image to identify cells. A one-to-one

assignment algorithm is then used to connect the detected cells across multiple frames for

continuous tracking.

Before tracking, the software located the edges of the stripes to allow analysis of cell

motion at four different regions: within stripes, within gaps, in the gap-to-stripe transition

region, and in the stripe-to-gap transition region. Measuring motion in each of these regions

provided the necessary resolution to compare experimental data to the model predictions.

The necessary factor to convert pixels to distance was determined to be 0.5 microns/pixel.

The frame rate was 10.0 frames per second, and was verified with a recording of a timed

LED circuit board.

A more comprehensive discussion of the tracking software and improvements made after

this work are given in the next chapter.

2.3 RESULTS

2.3.1 Investigating methods of P-selectin immobilization using SPR

Increased baseline response values indicated that P-selectin immobilization was successful

for all 3 chemistries tested. Kinetic analysis of the binding response to PSGL-1 yielded

dissociation constants ranging from 67.9 nM to 314.4 nM, which agree well with reported

values ranging from 46 nM by Ushiyama et al. [135] to 334 nM by Mehta et al. [1]. We found

that direct amine coupling resulted in the most consistent responses in both immobilization
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and kinetic activity; most likely a result of the reduced number of steps and reagents required.

Test chambers constructed using streptavidin/biotin and protein A/Fc methods were found

to cause cell rolling, but results were not significantly different from those using amine

coupling. Therefore all experimental rolling data shown below was collected using amine

coupling of P-selectin.

2.3.2 Synthesis and fabrication of a rationally designed cytotactic surface

The Balazs model predicts that a glass surface with an appropriate array of bioactive stripes

would alter the trajectory of cells rolling over it. As described above, we used sputtered

gold deposition and custom designed masks to deposit a foundation for the attachment of

a bioactive molecule. The physical dimensions of the resultant stripes were measured using

a mechanical stylus profilometer. Stripe width was 6.6 ± 0.2 µm, spacing between stripes

was 8.0 ± 0.1 µm, and vertical thickness of the gold was approximately 29 nm. Scanning

electron microscopy was used to visualize the profile of the stripes and verify the accuracy

of the gold patterning.

The glass surfaces were then bonded to PDMS channels using oxygen plasma as described

above. Plasma bonding was performed prior to chemical immobilization of P-selectin to avoid

the harmful effects of high-energy plasma on the deposited protein, and to ensure a strong,

continuous seal around the channels and inlets. Once the sealed chamber was established,

the blocking agent was applied through the inlet ports, followed by the chemical species

necessary to immobilize P-selectin to the gold stripes.

To examine the effectiveness of chemical patterning, fluorescent polystyrene microspheres

conjugated with anti-P-selectin mAb were exposed in flow to the surface. The data reveal

that P-selectin was immobilized almost exclusively on the striped regions, with minimal

non-specific binding when the blocking agent had been applied (Figure 2.6). Flow chambers

without blocking agent showed much less contrast between stripes and bulk material.

30



Figure 2.5: The normalized binding response of PSGL-1 to P-selectin covalently bound to the

gold surface of a surface plasmon resonance sensor. Binding was performed with EDC/NHS

chemistry (direct amine coupling), and nonlinear curve fitting was used to calculate the

predicted response based on a 334 nM KD from literature [1]. Calculated KD was 314.4 nM.

31



(a) (b)

(c) (d)

200 μm 200 μm

Figure 2.6: Characterization of the physical and chemical patterning of the cytotactic sur-

face. Scanning electron microscopy (a,b) shows that the stripes are patterned at a high

resolution with well-defined edges. Control chambers (c) exhibit high amounts of nonspecific

binding in the central channel. Chambers modified with blocking agent and P-selectin (d)

demonstrated a significant reduction in nonspecific binding and visible patterning of the flu-

orescent microspheres, indicating that P-selectin was confined to the gold stripes. Reprinted

with permission from [9]. Copyright 2011 American Chemical Society.
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2.3.3 Tracking and analysis of HL-60 cell rolling on patterned surfaces

Previous studies in cell rolling have either normalized velocity for all cells or used velocity

changes to differentiate between floating and rolling cells [122, 131]. In order to study indi-

vidual interactions, however, a more precise approach was necessary. First, cells exhibiting

velocities below 50% of the hydrodynamic velocity were identified using the tracking data.

Cell paths were then manually examined for irregularities that might inhibit analysis. Any

cells exhibiting permanent adhesion or paths perturbed by other cells were excluded. Cells

exhibiting velocities consistent with the predicted hydrodynamic velocity were assumed to

be non-interacting and were also excluded.

The fraction of all cells exhibiting cytotactic interactions reaches a maximum when block-

ing agent and P-selectin are used concurrently (Figure 2.7). Cells interacting with multiple

stripes were not observed in control chambers without P-selectin, and a higher frequency of

stripe interactions was observed when blocking agent was used. Flow rate (within the range

tested) did not have any significant effect on the frequency of interactions observed. The

fraction of cells exhibiting permanent adhesion was about 23% in the blocking+P-selectin

experiments. We found that incubation concentrations of P-selectin below 1-2 nM were in-

sufficient to induce stable rolling of HL-60s. Concentrations above 36 nM no longer reduced

the average rolling speed, indicating that all available sites on the substrate were populated,

or that the surface concentration of P-selectin was dense enough to saturate all available

PSGL-1 molecules at the cell/surface interface.

Detachment of HL-60 cells from P-selectin surfaces has been shown to be a random,

history independent process that occurs when new adhesive bonds fail to form [131]. As

a result, it can be difficult to determine precisely when and where a cell detaches from

the surface, and behavior across any single stripe may not effectively capture the complete

interaction. Therefore, we isolated paths in which cells interacted with at least 3 consecutive

stripes, and averaged their motion over those specific stripes. An example of a cell exhibiting

multiple interactions is shown in Figure 2.8 (a). An averaged path of multiple interacting

cells is shown below exhibiting an average displacement of approximately 10% (Figure 2.8c,

n=6 cells). The same form of analysis is shown for non-interacting cells from the same video

file, demonstrating an absence of lateral displacement (Figure 2.8b/d, n=9 cells).
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Figure 2.7: Percentage of cells exhibiting cytotactic behavior, defined as a velocity below

50% of the hydrodynamic velocity. Because many of the interacting cells only appeared to

interact with a single stripe before detaching and becoming free-flowing, we also classified

the subset of cells that interacted multiple times. The percentage of total cells exhibiting

behavior indicative of a single cytotactic interaction (black) was higher in chambers modified

with P-selectin. Chambers with blocking agent showed an increased likelihood of repeated

interactions (gray). Almost no instances of multiple interactions were observed on chambers

without P-selectin. (N = 3477 cells). Reprinted with permission from [9]. Copyright 2011

American Chemical Society.
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For each cell included in Figure 2.8, the net vertical displacement was calculated as the

difference between the starting and ending positions. An independent means t-test revealed

that the average displacement of the interacting cells (27.3 ± 8.8 µm) was significantly

different (p=0.001) from that of the non-interacting cells (2.7 ± 2.8 µm). The slight positive

displacement of the interacting cells can easily be attributed to the marginal error of aligning

the chambers manually under the microscope. Assuming that the slope of the chamber

introduces an artificial displacement of 2.7 microns across the field of view ( 500 microns),

we can estimate the actual displacement to be approximately 25 microns, or 5% displacement,

across the entire length of the chamber.

2.4 DISCUSSION

The design of the microfluidic device was driven by a desire to observe, at high resolution,

how cell motion is impacted by patterned surfaces. The data clearly demonstrated that not

only do the average paths of interacting cells differ from those of non-interacting cells, but

more importantly, cell motion entering, on, and leaving the patterned stripes bore remarkable

similarities to the motions predicted by the Balazs model. The Balazs model predicts an

initial downward motion as the cell enters an adhesive stripe. The path of cell #81 (expanded

in Figure 2.8) provides a compelling example of such behavior in our microfluidic device.

The repetition of this behavior on the same length scale as the stripes further verifies the

successful patterning of the surface and the interaction of the cells with that surface.

The Balazs model next predicts a change in direction as the cell becomes localized within

the stripe. Because the system was designed at sufficient resolution, we were able to observe

this transition experimentally in almost every case where a cell was shown to be interacting

with the surface. The final element of the Balazs model predicts the path that a cell would

take as it exits an adhesive stripe. As shown in Figure 2.8, the data fit the model.

In addition to demonstrating the existence of a behavior analogous to the one described

by the Balazs model, our observations also support the conclusions of a computational model

by Chang et al., in which a state diagram was developed to predict the adhesive interactions
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a)

b)

d)c)

Fluid Flow

Figure 2.8: Behaviors of interacting and noninteracting cells were visibly different. A rep-

resentative path of an interacting cell (a) and a noninteracting cell (b) are magnified to

demonstrate the rolling behavior and direction of fluid flow (left to right), respectively. By

combining the paths of multiple cells from a single video file, the average path they take

over a single stripe can be plotted. The mean of this path is shown in red, with black lines

representing one standard deviation from the mean. Average paths for interacting (c) and

noninteracting (d) cells are shown ((c) n = 6 cells, 92 data points; (d) n = 9 cells, 96 data

points). Reprinted with permission from [9]. Copyright 2011 American Chemical Society.
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between leukocytes and surfaces expressing selectin molecules.[11] In the state diagram, the

rolling behavior of cells is divided into five distinct states. Each state is characterized by a

unique profile of displacement versus time, and is determined by the rate of shear, density

of ligand-receptor pairs, dissociation rate, and bond interaction length. In addition to ”firm

adhesion” and ”no adhesion”, there exist three unique states of rolling adhesion, termed ”fast

adhesion”, ”transient adhesion”, and ”saltation”. Over the range of shear rates tested by

Chang et al. (30 400 s−1), cell rolling only occurred within a particular region of the state

diagram, demonstrating that leukocyte rolling requires a delicate balance between ligand

density, shear stress, and dissociation rate.

We were able to identify representative paths for each state of adhesion, the profiles

of which are shown next to their corresponding graphs from Chang et al. (Figure 2.9).

These graphs represent the entire tracked path of a cell, and were not cropped to show

only a portion of the path. The existence of all five states indicates that our experiments

successfully captured a wide range of potential leukocyte behaviors within our shear stress

range (0.29-2.2 dynes/cm2). However, we were also able to observe more than one state of

adhesion within each set of experimental parameters, indicating a considerable variability

in the factors described above. The agreement between our observed data and the model

proposed by Chang et al. support the view that our cytotactic surface promotes leukocyte

rolling.

In 2008, Karnik et al. observed the interaction of rolling HL-60 cells with a single

patterned edge of P-selectin and a PEG-based blocking agent [130]. They found that rolling

HL-60 cells were displaced orthogonal to the direction of flow when P-selectin edges were

patterned at appropriate angles. A continuation of the 2008 study by the Karnik group

recently suggested that patterned stripes may provide a label-free method of continuous

cell separation [131]. The study was conducted under similar shear rates and P-selectin

concentrations, but with larger stripe and chamber geometry, and at lower angles (leq20◦).

Karnik also used micro-contact printing instead of covalent immobilization for P-selectin

patterning. It was found that cell detachment was a random, history independent event,

and that the rolling length could be modeled as a Poisson process. Additionally, Karnik

found that edge inclination angle had a larger effect on cell displacement than P-selectin
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Figure 2.9: Plots of displacement versus time for the five states of adhesion identified by

Chang (left) and sample plots of similar behavior identified in our cell tracking videos (right).

The five states are no adhesion (a), fast adhesion (b), transient adhesion (c), firm adhesion

(d), and saltation (e). These behaviors represent different dynamic states of adhesion me-

diated by the biophysical and kinetic properties of the system. Left figure copyright (2000)

National Academy of Sciences, U.S.A. [11]. Reprinted with permission from [9]. Copyright

2011 American Chemical Society.
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concentration (at low shear rates). Based on the displacements achieved, they predicted

that a device on the length scale of 1 cm would be sufficient to sort a heterogeneous mixture

of cells [131]. The study, however, did not utilize an experimental setup that was capable

of sorting cells (GlycoTech parallel flow chambers, with only a single inlet and outlet, were

used). Additionally, the fraction of cells interacting with the surface in their system was not

reported. The microfluidic device that we describe herein will enable many of the limitations

of first generation devices to be overcome. When our data are viewed at low resolution, our

results parallel many of the findings from Lee and Karnik that show that patterned cytotactic

surfaces displace the paths of rolling cells.

Following our work, Choi et al. demonstrated sorting of HL-60 cells from K562 cells

using a combination of chemical and mechanical patterning. They used indiscriminate P-

selectin adsorption in combination with hydrophoresis to improve cell-surface interactions.

By patterning large ridges on the channel floor, they altered the axial flow pattern to increase

cell-substrate collisions. This approach yielded sorting efficiency up to 95% [136]. Soon

thereafter, another publication from the same group showed sorting with a flat substrate that

was chemically patterned using our procedure from above [137]. They used very long channel

lengths to increase cell interactions by sedimentation. While this method was effective,

achieving a 400,000-fold depletion of red blood cells from whole blood, it is also limited in

throughput by the slow flow rates necessary to allow sedimentation to be used effectively.

Even more recently, Wang and Alexeev et al. confirmed that mechanical patterning can also

be used to sort cells by variations in their stiffness [12]. Figure 2.10 shows a schematic of

stiffness based sorting, which yielded cell enrichment up to 6.3-fold with a throughput of 250

cells/sec. Choi et al. have also demonstrated that MSC differentiation state is correlated

with rolling behavior on E-selectin [138], which may indicate that E-selectin plays a role

in the recruitment of undifferentiated MSCs to areas of injury and inflammation. These

publications further support the utility of smart surfaces as separation tools in microfluidic

devices, but their limited efficiencies and throughputs suffer from the methods used to force

cell interaction.
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Figure 2.10: Schematic of a channel used for sorting cells based on membrane stiffness. The

stripes patterned in the PDMS ceiling of the channel forced cells though a gap of height h

that was varied depending on stiffness. SEM images and experimental setup are also shown.

(E) shows sorting of untreated K562 cells (green) and 2 µM cytochalasin D softened K562

cells (blue). Adapted from [12], open access PLOS ONE.
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2.5 CONCLUSION

In conclusion, we have demonstrated the ability of smart surfaces to instruct specific be-

haviors in cell populations. The behaviors observed under these experimental conditions

supported the predictions of two independent models of ligand binding and patterned sur-

face interaction, including the Balazs model, which had not been previously validated with

in-vitro experimentation. By validating the predictions of this effect on chemically patterned

surfaces, we have demonstrated the validity of the model and thus demonstrated its util-

ity as a predictive tool. Hence, researchers can reliably use these predictions as guidelines

for carrying out completely new experiments using chemically and mechanically patterned

surfaces.

Because the motion of cells within our device can be predicted computationally, we are

also in a position to rationally design improvements to the system, including physical and

chemical changes to reduce permanent adhesions and increase the probability of cytotactic

interactions. Presently the low rate of cytotactic interactions (<20%) is a limiting factor to

the translation of this technique to practical application, but optimization of the channel

geometry could yield significant improvements in efficiency. Reducing the channel height,

recirculating unsorted cells, or introducing areas of turbulent flow to redistribute cells within

the flow profile could all yield dramatic improvements in cell-surface interactions. More

active approaches using electrokinetic forces might also be effective at increasing the local

concentration of cells near a substrate.

The ability to direct cell motion within a microfluidic device is an important tool for

advanced diagnostics and experimental methods. The patterned substrate evaluated herein

represents a new addition to those existing methods of cell control and is unique in its ad-

vantages and capabilities. The facile, label-free identification of specific cell types could lead

to a myriad of advances in laboratory and clinical techniques that require fast, inexpensive

cell purification.
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3.0 CELL TRACKING AND REGISTRATION

The work presented in this chapter is adapted from a publication currently in press at IEEE

Transactions on Biomedical Engineering (Edington et al. 2014) [139].

3.1 INTRODUCTION

Fully understanding the interactions between living cells and their surroundings requires

more than just a detailed knowledge of their anatomical composition. Direct observation

is often necessary for researchers to investigate the cumulative, dynamic output of complex

signaling and adhesion pathways. Experiments involving live cell imaging have been invalu-

able to advancing our understanding of cellular dynamics, but have been hindered by the

painstaking nature of collecting and analyzing large sets of visual data.

Live-cell segmentation and tracking dates back to the 1970’s when early computer-based

methods of cell tracking were developed to automate the tedious process of following cell

motion and morphology over extended periods of time [140]. Since then, automated cell

tracking has become an important and sophisticated tool for measuring cell motility, building

lineage trees, following neurite outgrowth, and a myriad of other applications [141, 142, 143,

144, 145].

The basic approach to cell tracking has not changed considerably over the past 40 years.

A digital image is acquired, filtered, and modified to enhance the contrast between the cells

and the image background. Based on predefined knowledge of what a cell should look like

(shape, color, size, etc.), an algorithm is used to mathematically identify the locations of

cells and record them in a data file. This detection routine is repeated for each frame, and
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then a second algorithm is used to link the location of individual cells across multiple frames,

building a record of their motion over time.

Despite 40 years of research, cell tracking is still a challenging problem that continues

to nourish a growing field of study. Accurate, automated cell tracking is complicated by a

number of factors, precluding a ‘’one size fits all” solution. Some of these factors include:

• Background and foreground artifacts [146]

• Imaging modalities with a low signal to noise ratio [145]

• Moving frames of reference [147, 148]

• Low or inconsistent frame-rates [149]

• Variable lighting or exposure

• Dense cell crowding [149]

• Inconsistent cell morphology

• Cell mitosis or apoptosis [145]

A large number of new algorithms for detection, tracking, and background elimination

have been proposed, each tailored to a particular use, or to overcome a particular weakness

of its predecessors. Meijering et al. provide an excellent summary of the wide variety of

methods being used for cell and particle tracking, and compare the commercial and open

source tools currently available to researchers [150, 151]. Over half of these tools run on

either the ImageJ or MATLAB platforms, while the other half are written predominantly

in a windows-compatible programming language, such as C/C++. This divide is the result

of the trade-off between speed and ease of use with compiled and interpreted languages.

MATLAB is easier for prototyping new algorithms, as changes to the code are reflected in

real-time as the program runs. C++ is much faster and more resource efficient when it comes

to executing those algorithms. Further discussion of existing methods illuminates the work

described herein.

3.1.1 Segmentation

In the first step of cell tracking, image transformations are applied to a captured frame, with

the aim of increasing the signal to noise ratio until cells or particles can be reliably isolated
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from the background. Thresholding is the simplest method of segmentation, and is most

reliable in cases of high contrast between cells and background. As the experimental noise

and variability increases, due to photobleaching, autofluorescence, poor contrast, etc., the

methods of segmentation must become more complex to cope with these variations. Template

matching is a popular segmentation method which fits predefined models or patches to the

image data. This method is much more resilient to background artifacts, but fails when

the shape or size of the cells changes dramatically. Watershed transformations and contour

delimiting are slightly more intricate, but resistant to the morphology weaknesses of template

matching. At the more complex end of the segmentation spectrum, deformable models

can rely on both image information and prior shape information [151]. When choosing a

segmentation method, researchers must weigh the complexity and reliability of a particular

approach to its flexibility. It is generally advisable to identify the simplest algorithm that

provides suitable results.

3.1.2 Linking

Knowing the locations of cells in a given frame is of limited value if they cannot be joined with

past and future locations. Connecting cells across multiple frames enables the construction

of a spatio-temporal pathway, and is crucial for inferring meaningful conclusions about cell

behavior. As with segmentation, linking methods fall along a spectrum of complexity that

is governed by the experimental needs of each particular study. Nearest-neighbor linking

is the most basic approach, and simply assigns new observations to the most proximate

locations from the previous frame. Nearest-neighbor linking only works well when cell density

is low, and the frame-to-frame displacement (instantaneous velocity) is considerably less

than 50% of the average nearest-neighbor distance [152]. When cells or particles split,

merge, disappear, or otherwise introduce ambiguities that nearest-neighbor linking cannot

resolve, global linking methods yield more consistent results [150]. Global methods such

as spaciotemporal tracing [153], graph-based optimization [149], and Bayesian estimation

[154, 155] have been explored in recent years, and are often combined with Kalman filtering

[156] or more advanced motion models [143] to smooth trajectories and predict locations
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during gaps in observation. As with segmentation, more complicated linking strategies are

sometimes more difficult to adapt to new situations.

3.1.3 Cell rolling

One of the main driving forces for the development tracking applications has been the study

of cell rolling. A number of myeloid cell types, including macrophages and neutrophils,

exhibit rolling behavior on the surface of activated endothelium. When an inflammatory

response is triggered, endothelial cells will express selectin family adhesion molecules (E-,

P-, and L-selectin). Leukocytic cells constitutively display ligands for selectins, and will

adhere and roll along selectin coated blood vessels. Rolling slows the cells to a fraction of

the hydrodynamic velocity, allowing other adhesion molecules such as ICAM-1, ICAM-2,

and VCAM-1 to arrest cell motion and continue the process of extravasation [157, 54].

Cell rolling has been studied with great interest since the identification of the selectin

molecules in the late 1980’s [158]. Investigating the physical and molecular basis of tran-

sient adhesion pathways has provided valuable insight into the inflammatory response. For

example, Sawaya et al. identified P-selectin as a therapeutic target for reducing damage to

transplanted livers during ischemia/reperfusion [159]. P-selectin KO mice, and those treated

with blocking antibodies to P-selectin, demonstrated improved survival rates following liver

transplantation. P-selectin is also thought to play an important role in tumor growth and

metastasis. The production of selectin-binding tumor mucins has been independently cor-

related with the metastatic progression of epithelial carcinomas, and P-selectin deficient

mice show reduced metastatic seeding and growth of subcutaneous implants of human colon

carcinoma cells [160].

With the importance of cell rolling in mind, Alexeev et al. predicted that micro-scale

patterns of transient adhesion molecules could be used to direct cell rolling perpendicular

to the direction of flow [8]. Their model was concurrently investigated and independently

verified by our group [161] and Lee et al. [162]. Some practical applications of patterned

substrate microfluidics include leukocyte enrichment, inflammatory drug screening tools, and

diagnostic tests for tumor metastatic potential [137, 160]. The model, however, is not lim-
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ited to the selectin family of adhesion molecules, and may hold for any transient adhesion

molecules with kinetic parameters within a target range [163]. During our studies, we rec-

ognized the need for a tracking program tailored to this particular type of flow experiment.

With no commercially available product that met our needs, we decided to develop a custom

solution. Even though the code was written with a particular set of experimental needs in

mind, great effort was made to design the package in such a way that it could be easily

modified for new applications.

3.2 METHODS

3.2.1 Microfluidic channel fabrication

The tracking program was used to collect data on cell motion within custom made microflu-

idic devices, similar to those previously described [161]. Briefly, the device consisted of a

glass bottomed chamber with a polydimethylsiloxane (PDMS) top to form the fluid chan-

nels. The glass substrate was patterned with gold stripes, which were sputter-deposited using

conventional photolithographic techniques. The gold features allowed us to target protein

attachment using carboxylate terminated thiols that self-assemble into a dense monolayer

on the gold surface. Areas without gold were blocked using a fluorinated silane to reduce

protein adsorption. The cell adhesion protein P-selectin was chosen because it is well char-

acterized and frequently used in cell rolling studies [54, 164, 165, 162, 161]. Fc-chimeric

P-selectin was covalently linked to the carboxyl end groups of the thiol monolayer using

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS).

EDC/NHS coupling generated an ester-linked leaving group at the carboxyl group, which

was then replaced by covalent attachment to primary amines on the lysine side chains of the

protein. The microfluidic chamber was secured in a custom microscope stage and perfused

with human promyeloblast leukocytes (HL–60, ATCC) resuspended in PBS containing Ca2+

and Mg2+ (selectin binding is calcium dependent). Flow rates were controlled using a syringe

pump, and shear rates were calculated from flow rate and channel dimensions.
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3.2.2 Equipment

All experiments were performed on a desktop computer with an Intel Core i7 2600K processor

(3.4 GHz), 16 Gb of DDR3 RAM, and two GeForce GTX 570HD graphics cards. Data

could either be analyzed in real-time, or recorded to a solid state drive during experiments,

then offloaded to a hard disk drive for storage and offline analysis. A Leica DFC 480 (5.0

megapixels) microscope camera was used to capture images (at a resolution of 1280 x 960

pixels) over a Firewire 400 connection at 10.0 FPS and 20x magnification.

3.2.3 Software overview

Our tracking software was originally written entirely in MATLAB to allow rapid develop-

ment and easy debugging. The flexibility gained by using an interpreted language such as

MATLAB, however, is offset by its lack of speed and efficiency. One of the main goals in

developing the software described herein was to enable real-time tracking on the order of

10-30 frames per second. In order to reach this goal using only commercially available PC

components, it was necessary to rewrite some portions of the program in C++. Figure 3.1

describes the structure of the tracking software, with major components indicated in bold,

and arrows describing the flow of information from one subroutine to another.

3.2.4 Background removal

In order to identify the outlines of cells in each image, static elements of the background

must first be identified and subtracted from the incoming information. In offline mode, this

is accomplished by averaging the entire image set to generate a mean background image.

The OpenCV accumulator() function is used to sum the image set, and is then divided by

the total number of frames. In real-time mode, background subtraction is only performed

using the first frame, because tracking must begin immediately. While theoretically more

prone to errors, this method has provided more than acceptable results in practice.
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Figure 3.1: Flowchart of the different components of the tracking program, with subroutines

grouped by language. Arrows indicate the flow of information, and main processes are

bolded.
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3.2.5 Cell detection

To rapidly identify all cells in a given image, a series of circular and ring shaped filters are

generated from the configuration file, which provides user defined values for minimum and

maximum cell radius (in pixels), grayscale thresholds, and acceptable noise levels. The ring

filters are generated by creating matrices of appropriate size for all integer values between the

minimum and maximum radius. Each matrix undergoes a distance transformation, followed

by binary thresholding to create a binary ring with a thickness equal to 30% of it’s radius.

This ring represents an appoximation of the dark outline around a cell when viewed with

a phase contrast microscope. The matrices containing the ring filters are then loaded into

the GPU memory, where they can be quickly accessed for parallel template matching. The

detection program takes advantage of the built-in matchTemplate() function in OpenCV,

and implements the CV TM CCORR NORMED method of comparison. This algorithm

finds the normalized cross correlation between the template ring filters and a section of the

source image.

R(x, y) =

∑
x′,y′(T (x′, y′) · I ′(x+ x′, y + y′))√∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
(3.1)

Normalization reduces errors caused by variations in lighting or exposure, and is typically

more robust than regular cross correlation. In Equation 3.1, R represents the result matrix,

which contains a “score” for each point on the image. The score indicates the similarity

between the source image I and the template T. Local maxima indicate the most likely

locations of template matches. The summation is performed over the width and height of

template (x′ = 0 . . . w − 1, y′ = 0 . . . h− 1) as it is translated across the target image. Once

a score matrix has been generated for each ring filter, local maxima above the user defined

threshold are identified and saved to a data file as an (x,y) location, cell radius, and value

(from 0 to 1) of the score at that location.
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3.2.6 Cell tracking

Temporal linking of successive cell candidates is performed by a global nearest neighbor

association technique, which uses a scoremap to identify the most likely cell candidates to

connect to existing cell tracks. During real-time mode, the tracking routine will load data

files as they are created by the detection program. After loading the information about the

potential cell candidates, the tracking program will then attempt to fit those observations

to the list of existing cell tracks. Candidates that are not matched will either initiate new

tracks, or be discarded if they are determined to be anomalous.

In order to determine which track each cell belongs to, there must be a quantitative

method of scoring how likely each cell is to belong to each track. The region around a given

cell that is subject to scoring is determined by a gating size Gs. Gate size is a user defined

variable (in pixels) that is multiplied by a weighting factor W from 0.2–1 as a function of

the angle θ between the previous location and the current location. This creates a “bubble”,

resembling the reflection of a nautilus spiral, around each cell (Figure 3.2). Beyond this region

all scores are given a value of −∞. Because the region is non-circular, and is weighted by

angle, it gives higher preference to locations immediately in front of the previous track (to

the right, positive x-direction), and scales back to a minimum immediately behind the track

(to the left, negative x-direction). The angled weighting factor allows us to take advantage of

the a-priori knowledge of flow direction to reduce tracking errors. For applications in which

fluid flow is not left-to-right, this weighting can be adjusted by modifying the MATLAB

script that calculates the association matrix.

S =


−∞ if d2 > G2

s + ∆Gi

or d2 > G2
sW

G2
s + ∆Gi − d2 − αRij otherwise

(3.2)

W = 1− (1− 0.2)θ

180
(3.3)

∆Gi = 2 ln((1− pd)nu) (3.4)
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Figure 3.2: Scoring region around a cell located at index (x, y) = (0, 0), giving preference

to cells moving from left to right with the direction of fluid flow. Units for both axes are in

pixels.
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The score (Equation 3.2) is determined based on the gate size, detection probability,

distance, radius mismatch, and consecutive missed frames. The gate size, Gs is a user-

determined variable, while ∆Gi is a function of the detection probability pd and the number

of consecutive missed frames, nu, as shown in Equation 3.4. The detection probability can be

modified in the code, but is typically set to 0.9 to indicate that we desire a 90% certainty of

detection. Increasing pd or nu reduces ∆Gi, lowering the overall score and making selection

of cell candidates more strict. This means that a cell candidate is more likely to be assigned

to a track that has fewer missing frames, all other factors being equal. The score also

diminishes with the square of the distance between the current and previous location, as

well as with the mismatch in cell radius from one frame to the next. Rij is the square of the

difference between the current and previous cell radii, and α is a weighting factor applied to

Rij. In summary, the scoring system prioritizes matching new cell candidates with existing

tracks that have similar radii, fewer missing data points, and are physically closer. This is

similar to the nearest neighbor linking method, but utilizes global attributes such as prior

cell radius and number of missed frames to reduce errors (hence ‘Global Nearest-Neighbor

Association’).

After the scoremap is computed, the observations from the current frame are assigned

to existing tracks using the built in “assignmentOptimal()” function, which is based on the

Munkres (aka Hungarian) algorithm for minimal cost assignment [166]. Preference is given to

confirmed tracks before assignment to tentative tracks is performed, reducing the likelihood

of premature termination of an established track. Once observations in the scoremap have

been assigned to confirmed and tentative tracks, any unaccounted observations are used to

create a new tentative track. We were able to further reduce any accidental new tracks by

limiting the final assignment step to observations with x-values less than 100 pixels, so that

only cells entering from the left-hand side of the screen could generate new tracks.

3.2.7 Analysis tools

Once data collection is complete, there are a number of built-in tools that we designed to

simplify the process of analyzing large volumes of tracking information. Figure 3.3 shows the
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tracking interface with a sample video and tracking file loaded. The home interface displays

the video file in the center of the window, with menu options along the top and a selection

pane on the right-hand side. The top of the selection pane allows the user to load or delete

tracking files, which can be useful for comparing the tracking results obtained from different

threshold parameters. The lower half of the selection pane displays a numbered list of all

cells in the tracking data file. Here, the user can select or deselect individual cells. Only

selected cells have their tracks overlaid on the video file, and any analyses performed by the

software will use only the current selection.

By modifying a threshold value under the Parameters menu, the user can automatically

select subpopulations of cells with a net lateral displacement above, below, or within that

parameter. For example, if the parameter is set to 20, the “Lat Disp” buttons above the

track list will automatically select cells with a start-to-end lateral displacement above 20 µm,

below -20 µm, or within ±20 µm. Custom selections of cell tracks can be saved as a new

tracking file to make it easy for a researcher to return to a list of cells of particular interest.

Under the Analysis menu, a number of our custom made analysis tools can be found,

including plotting tools, speed and displacement statistics, and a tool to show the average

trajectory of one or more cells in relation to the patterned stripes. Detailed descriptions of

the analysis tools are found with accompanying figures in the results section.

3.3 RESULTS

3.3.1 Performance evaluation

To evaluate the differences between automatically and manually derived tracking data, 14

cells were tracked for 150 frames, or until each cell was no longer visible. Manual tracking was

performed three times, each by a different volunteer. Cell X and Y position was compared

to the automatic tracking for each frame, and the root mean squared error (RMSE) for each

track was found using Equation 3.5. The RMSE of two data sets, A and B (each of length

n), is the standard deviation of the residuals between the two groups. This method has been

applied to tracking validation in similar studies [148].
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Figure 3.3: Screenshot of the tracking and analysis interface, with cell number and path

overlaid onto the video file, selection tools (right-hand column), and analysis tools (top

menus). Cell tracks and labels have been enhanced for readability.
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√∑n
t=1(At −Bt)2

n
(3.5)

Automatically tracked data were exported directly from the MATLAB matrices used

to store them during analysis, while manual tracking was conducted using the “Manual

Tracking” plugin for ImageJ, obtained from the NIH ImageJ website [167]. All data collection

and analyses were performed in pixels to avoid cumulative rounding errors, and final values

were converted to micrometers using a conversion factor of 1.856 pixels/micrometer. The

conversion factor was calculated with ImageJ, using a scale bar image taken at the same

objective and resolution as the experimental data.

The validation results shown in Table 3.1 indicate a close agreement between manual

and automated tracking data. The X and Y RMSE remained significantly lower than the

cell radius across all participants.

3.3.2 Analysis tools

3.3.2.1 Plotting motion All cell paths for a given video can be plotted over the back-

ground image, with multi-colored paths for easy visualization (Figure 3.4). We found that

this view is the most useful for quickly identifying interesting cell behavior, flow profiles

around debris, and areas of high cell concentration. Another visualization method, which we

call lateral displacement, plots all cell trajectories from a common starting point to highlight

their deviation from the straight-line path that would be expected for non-adherent cells

(Figure 3.5).

3.3.2.2 Speed histogram A histogram of cell speeds can be quickly generated from a

selection, showing the distribution of instantaneous (frame-to-frame) cell velocity for a given

experiment. This particular function was designed to help us estimate the average height of

the cells within a channel of known dimensions. Well-mixed cells would be expected to have

a normal distribution, with faster cells at the center of the channel, and slower cells near the

walls.
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Table 3.1: Correlation of automatic and manual position data. Values are the root mean

squared error (RMSE), in micrometers, between each participant’s observation and the auto-

mated tracking location of the cell. All participants were given the same 150 frame sequence

and asked to track all visible cells until they left the field of view. X and Y coordinates were

compared separately to demonstrate the isotropy of the RMSE.

Cell
Participant 1 Participant 2 Participant 3

X Y X Y X Y

1 3.94 0.89 2.84 2.05 0.21 0.84

2 4.39 2.28 1.14 1.94 2.64 4.22

3 4.48 0.87 3.48 0.84 1.94 0.57

4 5.98 2.77 4.71 3.96 1.45 2.38

5 2.63 3.12 1.32 4.00 1.94 0.40

6 2.99 0.92 0.09 0.48 1.14 3.56

7 0.52 1.03 3.54 1.81 0.17 1.12

8 0.74 3.03 0.00 3.43 0.26 1.58

9 4.57 2.77 1.45 2.42 0.75 0.35

10 1.14 3.43 4.05 4.31 0.92 0.62

11 5.41 3.21 0.84 0.18 2.38 1.63

12 2.94 2.28 1.63 5.46 0.70 1.45

13 1.57 1.01 2.13 2.36 1.12 0.11

14 1.16 2.01 2.02 0.30 4.95 0.50

Mean 3.04 2.12 2.09 2.40 1.47 1.38
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Figure 3.4: Overlay of a selection of cell trajectories on the background image. Inlay shows

magnified portion of highlighted paths.
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3.3.2.3 Speed analysis A speed analysis function generates a list of properties for each

cell in the selection, including start frame, end frame, mean speed, total displacement,

min/max lateral displacement, and final lateral displacement. The table can then be easily

copied into an Excel document to facilitate further analysis or accumulation of data from

multiple experiments.

3.3.2.4 Tracklets and editing All tracking algorithms are prone to occasional error.

Most automated tracking programs (especially freeware) lack the ability to manually edit

tracks [150]. To correct for observed errors, we created a tracklet editing mode, which can

be used to manually override the tracking data. By selecting an individual cell and clicking

the “Edit” icon, the user enters the tracklet editing mode. The tracked locations of the cell

are presented as individual points, and the user can create new tracklets by designating start

and end points using the right mouse button. There is a separate analysis tool for generating

a speed report for manual tracklets, so that the original and manual tracking data can be

simultaneously preserved.

We found the tracklet editing feature especially useful for cells with unusual or deformed

morhpologies, such as mitotic and apoptotic cells. In these cases, the automated tracking

algorithm would find the location at the center of mass, resulting in oscillating lateral dis-

placement as the oblong cells tumbled forward. The resultant data from these paths would

not be representative of the trajectory of the cells, and would often misrepresent the location

of cell-substrate adhesion (stripe versus gap adhesion). Tracklet editing allowed for manual

correction of these errors.

3.3.2.5 Average trajectory One of the primary goals of our flow study was to un-

derstand cell rolling at the interface between low and high densities of adhesion molecules

(protein patterns). To easily visualize the transition from gap to stripe (low to high P-

selectin density), we developed an analysis tool to find the “average” cell trajectory over

many stripes and display it as a single path. Stripes are automatically detected based on

an approximate angle and stripe width given by the user. The location of the stripes is dis-

played in one plot, while a second plot shows the cell trajectories, with data points divided
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Figure 3.5: Sample data showing cell displacement from initial starting position. Plotting

lateral displacement from a common origin makes it easier to rapidly identify unusual be-

havior (1), interacting (14), and non-interacting cells (6, 12, 13).
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into “stripe” and “gap” regions. The motion of the cells in these regions is then averaged to

create a mean trajectory, with alternate paths showing the standard error above and below

the mean (Figure 3.6).

3.4 DISCUSSION

3.4.1 Real-time tracking in brightfield images

Data collection enabled by the tracking program allowed us to study rolling behavior, op-

timize our experimental parameters (such as P-selectin concentration and shear rate), and

identify gradual behaviors by using large data sets to increase statistical power.

We found that a minimum P-selectin incubation concentration of ∼2 nM was required to

establish stable rolling (defined as speed below 50% of the hydrodynamic velocity). Rolling

speed was minimized at ∼35 nM incubation concentration. Rolling speed did not decrease

further with increasing incubation concentrations, indicating that all available sites were

saturated or that the density of P-selectin greatly exceed the density of the PSGL-1 ligand

on the cell surface, such that no more bonds could form in a given area.

We also observed that lateral displacement in the direction of the stripes appeared to

reach a maximum at shear stresses near 0.5 dynes/cm2, however this was not statistically

significant from other shear stresses where stable rolling occurs. Cell detachment and a high

displacement variability from one stripe to another was most likely responsible for the large

standard deviations in lateral displacement.

3.4.2 Triphasic rolling behavior

When cell rolling velocity was examined as a function of wall shear stress, we discovered

that it appears to follow a triphasic trend with increasing shear stress (Figure 3.7). Previous

literature indicates this may be due to a transition from slip bonds to catch bonds, and then

back to slip bonds as shear stress progressively increases. This behavior is similar to the

triphasic response observed by Wayman et al. [48] on E-selectin, but the rolling velocity of
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Figure 3.6: Automatic detection of gold/protein stripes is used to generate an averaged

trajectory for one or more cells. Path in red shows the mean location of the cell on stripe

and gap regions. Green lines show ± SE.
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our HL-60 cells was approximately half that of Wayman et al. This may be a result of the

differences in site density and ligand kinetics between our experimental setup and Wayman

et al..

Data was found to be non-normally distributed (failed the Kolmogrov-Smirnov test), as

the hydrodynamic velocity generated a hard shoulder on one side of the data distribution.

We also found that the data contained a number of outliers in velocity, which appeared to

be a result of cells that did not roll for the duration of the time they were tracked. Outliers

were removed using the interquartile method, eliminating values above or below 2.2x the

interquartile range. While 1.5 is often used as the multiplier, or “g-value”, for determining

outliers, the more conservative value of 2.2 is recommended by Hoaglin et al.[168], building

off the original method from Tukey et al. in 1977 [169].

Previously, triphasic behavior has not been observed for P-selectin mediated rolling.

Flow chamber experiments with similar shear stresses were conducted for L-selectin and did

not seem to exhibit triphasic behavior [170, 171]. Wayman et al. hypothesized that prior

studies had simply not tested the necessary range and resolution of shear rates to observe

the initial, low-stress slip regime for P-selectin. This idea is reinforced by the relative lack of

data points at shear stresses below 1 dyne/cm2 in existing studies of cell rolling on P-selectin

coated substrates [172, 54, 173].

3.4.3 Automated feature detection

The ability to automatically register physical features of the substrate, rather than simply

subtracting them as background noise, provides valuable functionality to researchers. In

our particular case, it allows us to more easily correlate changes in cell velocity to physical

location, allowing us to easily link motion data to substrate properties.

One might envision the use of an active, rather than passive, microfluidic device that

reacts to particular cell behaviors. Observed changes in speed or direction could trigger

computer controlled actuation of valves, laser tweezers, electrophoretic pads, or other various

MEMS components that would act on the cell through a vision-based feedback loop. There

are already examples of vision-aided manipulation, such as the automated tracking and laser
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Figure 3.7: Velocity of HL-60 cells rolling on variable density (striped) patterns of P-selectin.

Response appears triphasic with increasing shear stress. P-selectin incubation concentration

was 70 nM. Data points are mean velocity ± SE. N ≥ 42 cells for each data point.
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micromanipulation of cells by Stuhrmann et al., who used automated tracking to guide

neuronal growth [174]. This particular application took place on a timescale of 1 s−1, and

did not register to any background features.

Automated identification of these features would negate the tedious registration and

alignment steps that would otherwise be required to establish repeatability and precision

on such a small scale. In this study we have used the simple example of patterned stripes,

which are easily visible to the computer tracking system. In the case of more complicated

structures, visual alignment marks could be used instead.

3.4.4 Equipment limitations

The camera firmware was ultimately the limiting factor in our experiments, capping the

image capture rate at 10.0 FPS. We periodically compared the timestamps on captured

images to ensure that processing overhead was not altering our results. If the time required

to capture, write, and analyze each image was longer than 100 milliseconds, the true frame

rate would drop below 10. This was never the case during experiments with the final version

of the software, therefore we believe that much lower computing power would likely be

sufficient to capture and analyze video in real-time.

3.4.5 Target areas for improvement

Even though the tracking program runs effectively in real-time, the speed can be hindered

by the specific range of cell radii that are being searched for. The more ring filters that

are created (one for each integer between the min and max size), the longer it takes for the

algorithm to apply template matching across the whole image. Even with GPU acceleration

of the template matching, the effective frame-rate can decrease rapidly as the radius range

increases. Fortunately most populations of cells fall within a relatively narrow range of sizes,

especially homogeneous cultures. Nevertheless, it is important to have a priori knowledge

of the mean and standard deviation of cell size in order to maximize segmentation speed.

Using the current method of background subtraction, the software can be very sensitive

to background motion in the experiment. Accidental movement of the microscope stage can
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result in high numbers of false positives as the background subtraction begins to generate

image artifacts. A dynamic background estimation might mitigate or resolve these problems,

but the computational costs associated with continuously averaging the background may

outweigh the tracking benefits.

Cell density and velocity play a major role in the error rate of the tracking algorithm. As

the number of cells in the field of view increases, the resource use rises along with the time

required to segment, track, and display cell locations. The selection of an optimal gating

parameter depends on the video frame-rate, cell density, and cell velocity. All three affect

the average distance between cells from one frame to the next.

3.5 CONCLUSION

In summary, we have developed a hybrid MATLAB/C++ tracking program that can be used

for both real-time and offline tracking of fast-moving cells. The program is uniquely suited

for analyzing motion in relation to patterned substrates, and provides a combination of

automated and manual tracking options not found in existing freeware solutions. Validation

has indicated that automated tracking is accurate to within a single cell radius, and can

reduce hours or days of manual labor to minutes or seconds.

3.5.1 Software download

The tool described herein is available by download to streamline the study of cell motion

against patterned substrates. We hope that it will provide a flexible framework that can be

easily adapted to a wide variety of needs, including real-time control of cell manipulation.

The source, binary, and script files (including some revision history) are freely available for

download from our lab website (http://dhti.cmu.edu/dhti/russell-lab/) and is distributed

under the GNU General Public License.
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4.0 CELLULAR FOCUSING AND LOCALIZATION

4.1 INTRODUCTION

The primary challenge for improving cell rolling, as with many other microfluidic techniques

reliant upon cell-surface interactions, is the initiation and maintenance of those adhesive

interactions. Generous channel dimensions are required in many cases, because constraining

the cells’ motion via physical barriers can interfere with their behavior, cause damage, or

trap larger cells and obstruct the flow path. Consequently, many cells (over 80%) float

above the surface and never interact with the substrate [1, 9]. At long time points, some cell

types will settle due to sedimentation forces [137], but these forces are insufficient to establish

practical throughput, even in a channel with low to modest flow rates. It is therefore desirable

to explore other methods of promoting cell-surface interaction via externally applied forces.

4.1.1 Existing methods of cell focusing

Electrical, optical, acoustic, mechanical, and hydrodynamic methods of manipulating the

location of cells within microfluidic devices have been demonstrated[13, 5]. We wanted to

explore focusing methods that would be compatible with our existing cell rolling experiments,

and would not interfere with the effects of cell rolling on lateral motion. After careful

examination of the available literature, we decided to use two different approaches that were

readily available to us.

Modern flow cytometry uses a strong electric field between parallel conducting plates to

rapidly direct cells into different collection vessels after they have been interrogated. We

sought to imitate this effect using transparent, conductive plates of indium tin oxide (ITO)
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placed above and below the flow channel, but situated externally from the device to avoid

complex fabrication steps and electrochemistry issues commonly associated with integrated

electrodes [13].

We also tested an emerging method of nanofabrication, known as two-photon polymer-

ization, to print three dimensional structures for cell focusing. By incorporating the physical

structures upstream of the target substrate, we could isolate any flow artifacts to a linear

segment of the channel, leaving the downstream flow unaffected.

4.1.1.1 Electrophoresis Electrophoresis (EP) and dielectrophoresis (DEP) are elec-

trokinetic phenomena that act on different properties of particles suspended in fluid en-

vironments. Electrophoresis is the force exerted by a uniform electric field on a charged

particle or cell in an electrolyte solution [175, 13]. The charge on the cell is strongly depen-

dent on its surface adsorbed species, which can give it a positive or negative charge. The

force that an electric field applies to a charged particle is given by F = qE, where q is the net

charge on the particle and E is the magnitude of the electric field. According to the double

layer theory, the particle’s surface charges will be screened by a diffuse layer of ions in the

liquid, which have an equal and opposite charge. When a uniform electric field is applied,

it exerts a force on the charged particle and the diffuse layer surrounding it. These forces

manifest in opposing directions, and the cell will begin to move toward the electrode with

the charge opposite that of its membrane. The opposing force caused by the double layer

is known as the electrophoretic retardation force. As velocity increases, the drag force on

the cell also increases until the net force becomes zero and a constant velocity is achieved

(Ftot = Felec+Fdrag+Fret = 0). The mobility of a cell in response to a given field is generally

quantified in terms of electrophoretic mobility (µ = εm
ξ
η
) where εm is the permittivity of the

liquid, η is the viscosity, and ξ is the zeta potential of the cell. The typical electrophoretic

mobility of a biological cell is ∼ 10−4 cm2

V ·s , or 1 µm/s in a field of 1 V/cm, but values can vary

considerably from one cell type to another [176]. Some experimentally determined properties

of HL60 cells are shown in Table 4.1.
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Table 4.1: Electric and dielectric properties of HL-60 cells

Parameter Value Units Source

Net Charge (undiff. HL60) +12 mV C. J. Park 2009 [177]

Net Charge (diff. HL60-PMN) -16 mV C. J. Park 2009 [177]

Membrane Capacitance (live) 15.6 ± 0.9 mF
m2 Huang 2007 [178]

Membrane Capacitance (live) 17.5 ± 0.8 mF
m2 Wang 2002 [179]

Membrane Capacitance (apoptotic) 9.1 ± 0.5 mF
m2 Wang 2002 [179]

DEP Crossover Frequency ∼ 80 → 130 kHz Wang 2002 [179]

Membrane Conductance (live) 2.25 ± 1.1 103 S
m2 Huang 2007 [178]

Membrane Conductance (live) 2.5 ± 1.1 103 S
m2 Wang 2002 [179]

Membrane Conductance (apoptotic) 4.2 ± 1.0 103 S
m2 Wang 2002 [179]

Electrophoretic Mobility (non-synched) 0 → -2.75 10−4 cm2

V ·s Akagi 2008 [175]

Electrophoretic Mobility (G1 synched) -0.25 → -1.5 10−4 cm2

V ·s Akagi 2008 [175]

4.1.1.2 Dielectrophoresis Dielectrophoresis arises from the interaction of a particle’s

dipole with the spatial gradient of a non-uniform electric field (see Figure 4.1) [13]. When

placed in an electric field, an induced dipole is formed from free charge in the cell, polariza-

tion charge in the liquid, or a combination of the two. Even if the cell has no net charge, the

gradient of the electric field creates a greater force on one of the dipoles, resulting in cell mo-

tion up the field gradient. As a result, DEP has the advantage of being able to separate cells

with no charge or the same charge, as long as there is a difference in their dielectric proper-

ties, such as membrane capacitance and membrane conductance. Additionally, polarization

has been shown to be a more specific indicator of phenotype than net charge [13].

Because DEP relies on a non-uniform field gradient, which generates a force on dipoles

that is independent of the direction of the electric field polarity, AC electric fields can be

used. Alternating fields have a reduced physiological impact on cells, and greatly reduce any

electrochemical reactions at the electrodes (two common problems with EP). AC fields also

dampen any EP-induced motion, making the technique more sensitive to differences in cell
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Figure 4.1: EP and DEP. (a) Charged and neutral particle in a uniform electric field. The

charged particle (left) feels an EP force, whereas the dipole induced in the uncharged particle

(right) will not result in a net force (F=F+). (b) A neutral particle in a nonuniform electric

field. The particle will experience a net force toward the electric-field maximum because the

field magnitude is different at each end of the particle (F <F+). Reprinted with permission

from [13]. Copyright 2006 Annual Reviews.
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properties other than surface charge. Unfortunately, the equations governing AC-DEP are

considerably more complex. The general equation governing DEP is: Fdep = p · ∇E where

p is the particles dipole moment, and ∇E is the field gradient. For a uniform sphere placed

into a sinusoidal electric field, the overall induced dipole is given by Equation 4.1 [13].

p(r) = 4πεmR
3

(
εp − εm
εp − 2εm

)
E(r) = 4πεmR

3 ·K(ω) · E(r) (4.1)

In this equation, εm is the permittivity of the medium, εp is the permittivity of the

particle, R is the particle radius, and E(r) is the complex electric field phasor, which gives

spatial information on field intensity and polarization. The simplified version combines the

permittivity values into a single factor K(ω), also known as the Clausius-Mossatti (CM)

factor. This factor is important because it defines the direction and intensity of the DEP

forces. If the relative polarizability of the cell is greater than that of the medium, then the

real part of the CM factor, Re[K(ω)], will be positive, and the cell will be directed up the

field gradient (known as positive DEP, or pDEP). If Re[K(ω)] is negative, then the force

will be directed down the field gradient, and the cell will experience negative DEP (nDEP)

forces. Because the CM factor is a complex function of the dielectric properties of a cell,

different phenotypes can have different CM factors for portions of the frequency spectrum.

The point at which the CM factor is zero, as it passes from negative to positive, is known as

the “cross-over frequency”. In order to separate two different cell phenotypes, the frequency

and solution conductivity can be manipulated to achieve a pDEP force for one phenotype,

and an nDEP force for the other, by working in the region between the cross-over frequencies

of the two phenotypes (see Figure 4.2). This approach has been used to separate live/dead

cells [180], cancer cell lines from dilute whole blood [181], and even to enrich hematopoietic

stem cells from whole blood [182].

4.1.2 Two-photon polymerization

Two-photon polymerization (often called TPP or DLW for direct laser writing) is a litho-

graphic fabrication technique that uses a focused, pulsed laser beam to selectively polymerize

shapes within small volumes of UV curable photoresist. To limit repetition, please refer to
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Figure 4.2: Mathematical modeling of the Claussius-Mossatti factor as a function of fre-

quency for THP-1 cells and red blood cells. Unique CM-factor curves allow the two cell

types to be separated in regions where the CM-factor is positive for THP-1 cells and nega-

tive for RBCs (white arrows). Reprinted from [14], with permission from Elsevier.

Sections 1.2.3, 5.1.2, and 5.4.2 for more in-depth background and discussions about TPP.

4.2 MATERIALS AND METHODS

4.2.1 Microfluidic channels within conductive parallel plates

Microfluidic channels were fabricated in the same manner as previously described. In order

to minimize the dielectric capacitance of our microfluidic chambers, the PDMS layer was

reduced to a thickness of 1.5 mm (total device thickness 2 mm). Channels were sandwiched

between two glass plates coated with indium tin oxide (Aldrich 703176), with the coated layer

in contact with the outside surface of the device. The ITO layer was 15-30 nm thick, with a

transmittance of 86% and a surface resistivity of 70-100 Ω. The sandwich of materials was

gently clamped together in a custom acrylic stage mount to maintain distance and physical

contact between the plates and the device. A Mastech HY3003D power supply was used to

apply constant potential of up to 30V across the plates during experiments. Copper wire
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Figure 4.3: Three dimensional model of the simple microfluidic channel being modeled in IES

COULOMB (left). Gray area represents PDMS (1.5 mm thick), light blue is pyrex glass (0.5

mm thick), and dark blue is fluid (30 µm channel height). The internal channel is visible

in the translucent wireframe cross-section on the right. Automatic meshing of boundary

elements in preparation for modeling (right).

connected the power supply to the backside of the glass plates, which was in turn connected

to the ITO by a silver glue bandbus that wrapped around the edges of the plate. Prior to

flow experiments, all connections were verified with a digital multimeter.

4.2.2 Modeling

Modeling was conducted using the COULOMB 3D electric field design and analysis software

package (Integrated Engineering Software). The software can calculate electric field strength,

force, torque, and capacitance using both the Finite Element Method (FEM) and Boundary

Element Method (BEM). A true-to-size, 3-dimensional model of the experimental setup

was constructed in COULOMB using the integrated drawing tools (Figure 4.3). Material

properties (conductivity and relative permittivity) were then assigned to the discrete volumes

representing PDMS, pyrex glass, and fluid within the channel (modeling was conducted with

both DI water and PBS values).

Modeling was conducted in both BEM and FEM modes to verify the similitude of the

predicted field strengths. Global physics settings were adjusted to simulate a static, balanced-

charge initial condition in permittivity mode at 20◦C. The automatic matrix generator was

used to mesh the 3D model, with a minimum 25,000 polygons. The solver was run with an
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accuracy/speed factor of 1, with an iterative accuracy of 1×10−6 and a material non-linear

convergence factor of 0.01. These settings were developed and verified in collaboration with

a technical support representative from IES.

4.2.3 Testing the effect of uniform applied DC fields on cell velocity

Experiments were conducted using HL-60 cells resuspended in either standard PBS, or low

ionic strength PBS, which was diluted with DI water and made isotonic with the addi-

tion of sucrose. Isotonic strength was calculated using Equation 4.2, where ci is the molar

concentration of ion i and zi is the charge number of i.

I =
1

2

n∑
i=1

ciz
2
i (4.2)

Π = iMRT (4.3)

Osmotic pressure was determined with Equation 4.3, in which i is the van ’t Hoff factor,

indicating the dissociation fraction of dissolved species, and M is the molarity of the dissolved

species. For example, a 10-fold dilution of PBS results in an ionic strength of 0.019, and

requires the addition of 100.63 g/L of sucrose to return to isotonic conditions (∼330 mOsm).

Flow experiments were conducted at flow rates of 0.25 or 0.5 µL/min, with applied

potentials of 30V or 15V applied for either 1 or 3 minutes, with equal intervals without field

(all permutations of the parameters were performed). To eliminate residual charge between

plates when the field was removed, both plates were shorted to ground after the power supply

had been turned off. Videos of cell motion for at least 3 on/off cycles were recorded for each

experiment. Cells were tracked using the automated software described in Chapter 3, and

speeds were exported to an excel file with corresponding time stamps for analysis.

Analysis was performed by comparing histograms of instantaneous cell speed for groups

with and without electric field. Velocity over time was also plotted continuously to determine

if cell speed changed within groups over time, which would indicate a considerable lag time

between field and response.
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4.2.4 3D printed filters

Two different structures were designed in Autodesk Inventor to act as directional filters for

cells in laminar flow. Shown in Figure 4.4, the hydrodynamic cross-sections of the directional

filters were intended to exclude cells or particles above a 5 µm diameter while still allowing

partial fluid flow through the network of channels. The vertical filter blocked 36.95% of

the channel cross-section (54.8% in the top half of the channel, 17.3% in the bottom half),

while the horizontal filter obstructed 54.4% of the channel uniformly in both top and bottom

halves.

Filters were scaled to fit within the maximum writing field of the Nanoscribe Photonic

Professional GT, a region of approximately 140×140 µm2 in galvo mode. Stage movements

were then used to stitch together multiple filters to create a line of four copies across the

channel. Three lines of four filters each were patterned in IP-G resist on glass substrates,

using a one hour prebake at 100◦C and 45 minute development in PGMEA, followed by 20

minute rinse in IPA before drying with N2. Total printing time was 14 hours per substrate.

Substrates with printed filters were then bonded to a PDMS channel with a depth of

30 µm using 24 seconds of oxygen plasma at 50 W, 1 Torr O2. Filters visually appeared

to fill the entire depth of the channel, but no significant deformation of the structures was

observed. After bonding, the devices were glued to a microscope slide with clear acrylic glue

to reinforce the thin TPP glass substrate against damage.

To test the filters, 5 µm polystyrene beads in ethanol were pumped through the channels

at low to moderate flow rates. Videos were recorded and converted to virtual stacks in

ImageJ, then overlayed using the z-projection feature to create a single image of the minimum

pixel values at each point. This method makes the particle streamlines plainly visible and

easy to assess visually.
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Figure 4.4: Models of 3D printed filters designed to concentrate cells toward the substrate

(left, vertical filter) or move cells horizontally in response to their height in the channel

(right, horizontal filter). The interior of the vertical filter slopes downward to guide particles

too large to fit through the 5x5 µm rectangular channels. The horizontal filter makes it

easier to query the height of cells when viewing from overhead.
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Figure 4.5: Isocontours of the z-component of electric field (V/cm) within the channel.

Strong geometric effects occur in the corners of the channel, but the field remains highly

uniform across the middle 90%.

4.3 RESULTS

4.3.1 Modeling indicates uniform field generation throughout channel

Modeling results indicated that the electric field strength within the channel was approxi-

mately 7 V/cm with an applied potential of 30 V (150 V/cm) across the ITO plates. The

field was highly uniform within the volume of the fluid channel, with the exception of ∼ 5%

of the channel near the sidewalls (Figure 4.5).

The field was also predominantly oriented in the z-direction, with the z-component of the

field comprising 99.998% of the total magnitude (200-fold higher than y-component, 400-fold

higher than x-component), as shown in Figure 4.6.

We can easily calculate the anticipated cell velocity from the known electrophoretic

mobility of HL-60 cells found in Table 4.1. For a best-case scenario, cells with an EPM of

-2.75 cm2

V ·s , the velocity would be 19.25 µm/s, requiring only 1 second to move a 10 µm cell

from the top of a 30 µm channel to the substrate. Field strength within the channel scales
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Figure 4.6: The total E-field magnitude (black) and x-, y-, z-components (red, blue, green,

respectively) along the length of the channel. Measured along a line equidistant between the

channel walls, floor, and ceiling. The z-component is the primary contributor to the total

field magnitude, and maintains a consistent strength of ∼7 V/cm between D = 2 mm and

D = 10 mm, which is the area beneath the plates, and encompasses most of the channel

length.
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linearly with applied field, as does cell speed, so even with EPM values or field strengths

1/60th of the ideal, we would expect complete localization of cells to the channel bottom

within 1 minute. We would also expect minimal motion of cells in the x-y plane due to the

low field components in those directions.

4.3.2 Electrophoretic focusing results are inconsistent

Early attempts to focus cells to the microfluidic substrate yielded promising results. In

Figure 4.7, the application of electric field appears to reduce the velocity of cells from the

predicted hydrodynamic velocity at the center of the channel, to the predicted flow velocity

one cell radius from the channel bottom.

Another experiment (data not shown) also yielded significant shifts in cell velocity

(p<0.001). Positive results were isolated, however, and over 90% of experiments did not

produce a significant change in cell velocity with the application of a field, including at-

tempts to exactly recreate the conditions of the positive results (see Figure 4.8).

The curiously binary nature of these results made troubleshooting extremely difficult.

The nature of working with microfluidic devices, their size and closed channels, precludes

the direct measurement of electric field within the channels.

4.3.3 3D printed filters

Printed filters were successfully patterned and showed only minor warping due to resist

shrinkage after development. Scanning electron microscopy in Figure 4.9 shows the vertical

filter entrance. Bonding of channels over the printed structures did not appear to cause

damage.

After introduction of liquid to the bonded channels, it became apparent that most of

the narrow channels still contained unpolymerized IP-G. Diffusion of the resist during de-

velopment appeared to be inhibited by the channel dimensions and IP-G viscosity. Longer

development times yielded insignificant improvements. The unwanted resist blocked flow

through the narrow channels, creating 100% obstruction of flow in most of the filter regions.

The resultant flow rates through the unobstructed regions were much higher than desired,
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Figure 4.7: Histogram of cell velocity distribution. Cell velocities without an applied field

(blue) were distributed around the predicted maximum hydrodynamic velocity (B) that was

calculated in APPENDIX C. Green and orange regions show the shift in predicted velocity

in the event of ±10% error in flow rate or channel height (respectively). With an applied

potential of 30 V, predicted to generate a field of ∼7 V/cm inside the channel, cell velocities

(red) were significantly slower and more tightly grouped, as would be expected for a focused

distribution. They also centered nicely around the predicted hydrodynamic velocity 5 µm

(or 1 cell radius) from the channel floor (A).
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Figure 4.8: Smoothed histogram of average cell speed with (red dashed line) and without

(black solid line) an electric field. Experiment was conducted with 10-fold diluted PBS,

made isotonic with sucrose. Flow rate is 0.5 µL/min, plate potential 30 V. This data is

representative of ∼90% of results.

Figure 4.9: SEM image of the entry way of the particle filter designed to force cells closer to

the substrate. Entrance is ∼28 µm in height, and exit is ∼12 µm tall, the average diameter

of an HL-60 cell.
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and caused “blooming” of streamlines at the filter outlets, as seen in the highlighted regions

A, B, and C in Figure 4.10.

The polystyrene beads in Figure 4.10 have a density of 1.05 g/cm3, whereas the ethanol

carrier fluid has a density of 0.789 g/cm3. We would expect that most of the beads would

sediment toward the bottom of the channel. Because the filter is oriented for left-to-right flow,

and the image is obtained from an inverted microscope, the upper outlet of the horizontal

filter (region C in Figure 4.10) should indicate particles in the top half of the channel,

and the lower outlet (region A in Figure 4.10) should indicate particles near the bottom.

Counterintuitively, the majority of particles appeared to be in the top half of the channel.

When the experiment was repeated with HL-60 cells (Figure 4.11), a similar result was

obtained. Some nonspecific adhesion of cells to the filters was observed, but many cells were

still able to pass through them unimpeded.

4.4 DISCUSSION

Many attempts were made to improve the consistency and results of the field focusing ex-

periments, but variations in field strength, ionic strength, osmotic pressure, flow rate, and

cell passage all yielded results similar to those in Figure 4.8, leading us to believe that the

results shown in Figure 4.7 were anomalous.

At the onset of the aforementioned experiments, there was little to no available literature

on long range capacitive coupling in microfluidic devices. Retrospective examination of the

timeline of electrokinetic literature reveals insights into the physics of our experimental

procedure. Starting with the use of hybrid EP/DEP devices, the evolution of DEP practices

up to the current day demonstrates that DEP can succeed in situations similar to our setup,

which we believe was ultimately unsuitable for EP.
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Figure 4.10: Time-lapse projection of 5 µm polystyrene beads flowing through printed filters.

Fluid flow is left-to-right. Lower outlets show particles in the upper half of the channel (A).

Some particles are small enough to exit prematurely through the printed channels (B). The

majority of particles appear to exit through the upper outlets, indicating that they are in

the bottom 50% of the channel (C).
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Figure 4.11: Time-lapse projection of HL-60 cells flowing through printed filters. Fluid flow

is left to right. The visible bubbles were trapped during gluing of the thin glass substrate to

a microscope slide, and are not inside the fluid channel. Cells flowing through the horizontal

filter are concentrated into discrete flow lines.
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4.4.1 Promising new forms of electrokinetic manipulation

Hybrid devices incorporating both DC and AC fields, known as insulator based DEP (iDEP),

started to appear around 2003 [183]. These devices use electrodes at the ends of the channels

to produce an electrophoretic flow, while insulating posts along the channel distort the field

to create DEP forces. In the past few years, completely contactless dielectrophoresis been

experimentally demonstrated for the first time [184]. Contactless DEP (cDEP) mitigates

some of the challenges associated with traditional DEP, such as surface fouling, bubble

formation, and electrode delamination [185]. Microfluidics for cDEP typically use patterned

metal or high conductivity liquid electrodes, isolated from the fluid flow by a thin PDMS

membrane as shown in Figure 4.12.

Contactless DEP works through an electrical property known as capacitive coupling, an

electrical phenomenon in which energy is transferred between nodes of a circuit through a

capacitive element [186]. Coupling is used in electronics to filter out the DC bias from one

circuit while passing along the AC signal to the next. The charging time of a capacitor is

dictated by its capacitance and the applied voltage, as well as the resistance of the circuit.

As the capacitor charges and stores energy in the electric field between plates, the charging

current drops as the capacitor becomes charged up to the voltage of the power source. Charge

on the plates is dictated by Q = CVb[1 − e
−t
RC ], where charge Q asymptotically approaches

the charging voltage Vb as time t increases. The time constant, RC, used to describe the

charging rate of the capacitor, increases with capacitance. For typical circuits the charging

time is very small, meaning that capacitive coupling is severely degraded at low frequencies

approaching 1
RC

. In this scenario, capacitive coupling acts as a high band-pass filter, which

can be beneficial or detrimental depending on the desired application. Closely spaced traces

on a printed circuit board, or parallel buses on a breadboard can often cause accidental

coupling that leads to noise in the circuit. Parasitic coupling, as the noise is often referred,

is mitigated with appropriate spacing of elements or the inclusion of a grounded plate or

trace between the interfering elements, which will preferentially couple with the induced

field.
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Figure 4.12: Microfluidic channel for contactless dielectrophoretic separation of cells. Fluidic

electrodes are isolated from sample flow by 20 µm PDMS walls. Sawtooth geometry increases

capacitively coupled electric field, thereby increasing cDEP forces on cells. Reprinted from

[15], open access JOVE Creative Commons.
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By using frequencies much higher than the capacitive charging time, cDEP can transfer

energy into the fluid channel and maintain a non-uniform electric field to induce cell motion.

The primary challenge for cDEP is that the crossover frequency of most cells is on the order

of 1-100 kHz, where capacitive coupling can weaken the DEP force. Recent work has sought

to optimize channel and electrode geometry to improve the low frequency response of these

devices [14]. Others have combined cDEP and iDEP, utilizing both external electrodes and

internal dielectric geometry to synergistically enhance DEP forces in a technique coined

OπDEP [187]. By transitioning to long range coupling, in which electrodes are patterned

outside the microfluidic device itself, the electrodes can be reused indefinitely, significantly

lowering the cost and complexity of the disposable portion of the device.

Less than six months ago, Chen et al. published a cDEP design that exemplifies the

properties that will make microfluidics a low cost replacement for laboratory tests [16].

They created a low voltage, long-range cDEP chip that could effectively separate red blood

cells from plasma in whole blood (separation quality 89.4%). The electrodes were patterned

on the outside surfaces of two glass slides with a polymer channel sandwiched between them,

making the electrode separation distance >2 mm (Figure 4.13). Even with such a large

separation distance, they were able to achieve separation using applied voltages of just 1-3 V

(100 kHz - 1 MHz). The chip also utilized capillary force to drive fluid through the channel,

eliminating the need for a flow pump. In this case, high frequency waveform generation

is the only remaining barrier to creating a cheap, hand-held, battery powered microfluidic

cDEP device.

In the context of the above discussion, the physics preventing a DC, uniform electric field

from inducing cell motion can be more easily understood. The modeling prediction of field

strengths on the order of 7-10 V/cm would only be applicable for the t=0 condition when

the voltage is first applied to the ITO plates. Shortly after capacitive coupling, the induced

surface charge would reach a maximum and be quickly screened by the formation of an elec-

trical double layer within the channel. The double layer effect occurs as ionic species in the

fluid migrate to the channel surface, forming an ordered layer of oppositely charged polarity

with a single layer of solvent molecules separating them from the electrode. The solvent

layer acts like the dielectric material in a traditional capacitor, allowing extremely high field
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Figure 4.13: Fabrication and operation of the first long-range, low-voltage, contactless DEP

device. Electrodes are not integrated into the channel layer, and operate with electrode

spacing of more than 2 mm, using 1-3 V. Frequencies of 100 kHz to 1 MHz were used to

successfully separate red blood cells from whole blood in a capillary driven flow channel.

Adapted from figures 1 and 2 from [16] with permission of the Royal Society of Chemistry.
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strengths to exist within the 0.1-10 nm thickness of the charged layer. In their discussion

of equilibrium DC electrokinetics, Ben et al. describe the rapid formation of this polarized

Debye layer, in which the electrostatic force is much greater than the applied electric field

(Es � E∞), with a layer thickness λ described by Equation 4.4, where C∞ is electrolyte

concentration and ε̂ is electrolyte permittivity (R, T, and F are standard constants) [188].

λ =
√
RT ε̂/F 2C∞ (4.4)

Outside of this layer, Es approaches zero as the potential difference drops to zero, typi-

cally within a range of 10-100 nm [188]. In this range, the inward electrostatic flux of ions

is balanced by the outward diffusive flux, resulting in zero net flux and the formation of an

equilibrium Boltzmann distribution of co-ions and counterions [188]. At typical flow rates

and electrolyte concentrations, the resultant Péclet number (the ratio of advective transport

to diffusive transport) is high enough to effectively guarantee steady state screening of the

applied electric field. Extremely low ionic strength buffers or higher fields and flow rates

might be able to establish a weak field within a channel, but the necessary parameters are

more likely outside the realm of practicality. Therefore, without the benefit of a frequency

generator, we would not be able to create a penetrating electric field using our described

experimental setup.

We attribute the few, seemingly positive experimental results to human error, such as the

clamping pressure of the parallel plates deforming the channels, flow pump inconsistencies

due to unseen bubbles, or increasing outlet pressures. It is also possible that moisture on

the surface of the PDMS could create a conductive path to the channel inlet, resulting

in electro-osmotic flow which, working against the flow pump, would reduce the apparent

speed of flowing cells. Ambient humidity might even be a potential factor in this regard,

but humidity was not recorded during experiments. We believe this story highlights the

importance of establishing experimental repeatability; appropriate skepticism and rigor led

to the understanding necessary to explain the results in a productive manner.
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4.4.2 Printed filters enable easy interrogation of particle location

Incomplete removal of undeveloped resist inside long filter elements remains an issue with the

geometries discussed earlier. Even with increased development times, there appears to be a

critical channel length (>50-60 µm) that inhibits removal of the viscous resist. Incorporation

of small through-holes in the channels did not significantly improve diffusion, and caused

increased warping and longer print times. Future work will require an improved design that

takes this challenge into consideration.

Even with these challenges, the horizontal filters successfully identified particle height

within the channel, inducing an easily observable reaction. It does appear, however, that

the leading edge of the horizontal filters may have sagged toward the surface due to surface

tension during drying. A sloping edge would direct more flow to the top half of the channel,

directing a disproportionate amount of particles toward the upper half of the channel. Future

designs should include more support structures to prevent collapse of the leading edge, and

use a more open geometry to allow full development and removal of bulk resist.

Similar in-channel structures have been created by other groups recently, but not with

the intent of locally concentrating particles or cells. Wang et al. used TPP to create size

cutoff filters and one-way valves in etched glass channels, using direct in-channel printing

(Figure 4.14) [17].

They were able to successfully sieve particles with a 4 µm cutoff diameter, and create

unidirectional motion of particles using fish-scale shaped pores that prevent backward motion

through the sieve. Amato et al. improved upon this microseive design by using cross-flow

washing to remove captured debris from the front of the filter, making it reusable and robust

[189].

Lim et al. used a combination of planar lithography and TPP to create an SU-8 channel

with incorporated crossing manifold micromixers (CMMs) as shown in Figure 4.15. These

manifolds are similar in design to our filters, but do not have size-specific features. As a

result, they can only be used for mixing laminar flows to accelerate diffusion of neighboring

chemicals [18].
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Figure 4.14: Microsieves printed in etched glass channels with pore diameters of 5.5 m (a),

5 m (b), 4 m (c), and 3.5 m (d) respectively. Results of microparticle sieving with the 4 µm

pore size shown in (e), (f), and (g). Adapted from [17] with permission of the Royal Society

of Chemistry (RSC).
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Figure 4.15: Crossing manifold micromixers (CMMs) in microchannels, both fabricated from

SU-8 resist. Adapted from [18] with permission of the Royal Society of Chemistry (RSC).

4.5 CONCLUSION

In summary, our modeling results indicated what was most likely an accurate representation

of the electric field at t = 0, but did not account for the rapid formation of an ionic double

layer that completely screened the field on very short time scales. Sporadic false-positives

were most likely caused by unintentional electro-osmotic flow or some other human error.

The voltage range and electrode separation we chose were later shown to be reasonable in

cDEP literature [16], indicating that relevant sorting can be achieved at such ranges, but

only with the use of asymmetric electrodes and high frequency fields. The application of

cDEP or OπDEP remains a relevant mode of enhancing cell substrate interactions in future

work.

The use of two-photon polymerization allowed for easy fabrication of printed microfilters

for redirecting cell paths under flow. Cells and particles could be queried for vertical location,

and were organized into discrete and overlapping flow paths. This organizational filtering

could be valuable for downstream concentration, measurement, or analysis. Future work will

incorporate design changes to prevent the horizontal filters from sagging, and to allow the

complete development of all features. Coating resist structures with bovine serum albumin

should prevent non-specific adhesion. With improved focusing filters, we should be able to
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increase cell substrate adhesion and dramatically improve the throughput of devices that

rely on cell-surface interactions.
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5.0 MAGNETIC MICRO-ROBOTS FOR NON-CONTACT

MANIPULATION OF CELLS AND PARTICLES

The work presented in this chapter is the subject of a publication currently in preparation

for Lab on a Chip (Edington and Ye et al. 2014) [190].

5.1 INTRODUCTION

Manipulation of objects at the micro- and nano-scale is becoming increasingly important in

applications for MEMS, microfluidics, microscale assembly of complex systems, and lab-on-a-

chip technologies. To this end, existing methods either act upon an intrinsic property of the

agent being manipulated (size, charge, density, etc.), or introduce man-made manipulators

(end effectors) into the system. Electrophoresis [175, 13], dielectrophoresis [191, 192], flow

fractionation [193, 194], and acoustic forces [195, 196] fall into the first category. Methods

requiring the introduction of an artificial effector typically include optical tweezers [197, 198],

micro-grippers [199, 200, 201], and micro-robots [98, 202, 203, 204, 19].

Magnetic methods of manipulation are particularly attractive because they can be ap-

plied at relatively large distances, through insulating, opaque materials, and selectively gen-

erate large forces on magnetic materials with no deleterious effects on biological entities.

Magnetic forms of control are already widely used in biological science, especially in magnet-

ically activated cell sorting (MACS) [205, 206], purification of DNA, proteins, and peptides

[207, 208], and immunoassays [209]. These methods typically attach a magnetic particle to

a cell or protein via high specificity ligands or covalent immobilization. While excellent for

high-throughput capture of species of interest, these contact-based manipulation methods
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are typically an interim step, and must be removed from their targets afterwards. More re-

cently, non-contact magnetic micro-robots have been developed to circumvent some of these

issues [19, 202]. These methods use magnetic particles to induce a rotational fluid flow,

which can be crafted to redirect particle motion in low Reynolds number (Re) regimes.

Here we report the development of magnetic docking substrates and rotating magnetic

microsphere systems at an order of magnitude smaller than previously reported [19]. We also

investigate the use of a new method of nanofabrication, two-photon polymerization (TPP),

for crafting magnetic micro-robots from UV curable photoresist polymers containing mag-

netic nanoparticles (MNPs). We discuss the advantages and limitations of both approaches,

and demonstrate a microfluidic device capable of generating size gradients of particles under

continuous flow.

5.1.1 Magnetic micro-robots for control of micro-object motion

A magnetic micro-robot is capable of generating rotational flows in close vicinity by high-

speed rotation. When the micro-robot spins about an axis perpendicular to the underlying

substrate, it generates a rotational flow field around the same rotation axis in an otherwise

quiescent fluid (Figure 5.1). Such a flow field applies drag forces to other micro-objects in

the disturbed fluid, pushing them to follow the local streamlines. Meanwhile, the induced

rotational flow also provides centric forces pointing towards the rotation axis, which act to

trap the moving objects on stable orbits around the rotating micro-robot. Both the drag

force and the centric forces are highly dependent on the size of the objects. The forces

experienced by a spherical micro-object inside the induced rotational flow is analyzed in

[19].

When such a micro-robot system is placed in laminar flow, the induced rotational flow

can be superimposed onto the background flow given the linear nature of the flows at very

low Re. When any micro-objects that are originally following the background flow enter the

region significantly disturbed by the induced rotational flow, they begin to experience the

forces arising from the induced rotational flow. In this region, not only do these forces change

the speed of the objects, but they can also cause migration of objects between streamlines.
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Figure 5.1: Tangential fluid velocity around a rotating microsphere. Adapted with permis-

sion from [19]. Copyright 2012, AIP Publishing LLC.

Since these forces are dependent on object’s size, the degree of migration is also associated

with object’s size. Therefore, such a system enables the generation of size-gradients of

micro-objects at the exit of the disturbed region.

5.1.2 Two photon polymerization for micro-robot fabrication

Two photon polymerization (TPP) is an extension of traditional photolithography, which

uses light to selectively excite a photosensitive resist and initiate polymerization [210, 211,

212, 213, 214]. The unusual and defining feature of two photon absorption is the non-linear

nature of initiator activation. Rather than polymerization occurring in a linear fashion

with increasing power, no polymerization takes place until a critical threshold is exceeded.

When a laser is tightly focused into a diffraction-limited spot within a volume of photoresist,

photon density exceeds the activation threshold only in that focal region. This restricts

polymerization to a small volume typically referred to as a “voxel” [20], without causing

partial polymerization in areas just outside the focal region. The voxel can be likened to a

three dimensional pixel, which can then be scanned through the photoresist to polymerize

structures with resolutions below the diffraction limits normally imposed by one photon

lithography [211]. Figure 5.3 shows the typical size and shape of a TPP voxel, and Figure
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Figure 5.2: Free body diagram of a spherical micro-object in contact with the substrate,

within the rotational flows induced by a spinning micro-robot. Viewed along the radial axis,

ignoring radial and vertical fluidic drag forces. The microscopic roughness on the object

and the substrate is enlarged. Adapted with permission from [19]. Copyright 2012, AIP

Publishing LLC.

5.4 shows a schematic and resultant structures of TPP printing.

Two photon lithography presents numerous potential applications, including improved

photonics for telecommunications and computing [215], invisibility cloaking meta-materials

[216, 217], micro-needles for transdermal drug delivery [218], and 3D printable bioscaffolds

and vasculature [219]. Recently, incorporation of magnetic nanoparticles into TPP resists

has yielded magnetically controllable structures that could be used to manipulate cells, carry

drug payloads, or otherwise allow precise actuation at the micron scale [220, 221].

5.2 MATERIALS AND METHODS

5.2.1 Electromagnetic-coil system

The magnetic micro-robots were driven by a magnetic field that was remotely applied by

an electromagnetic-coil system (Figure 5.5). The system consists of three sets of electro-

magnets for in-plane and out-of-plane fields. Two pairs of iron-core electromagnets arranged
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Figure 5.3: Calculated focal intensity distribution of a typical writing spot. (a) Iso-intensity

surfaces. The profiles along the two black lines are depicted in b) and c). (b) Lateral

profiles of |
−→
E |

2
(red) and |

−→
E |

4
(purple) correspond to one-photon exposure and two-photon

exposure, respectively. (c) Axial profiles of |
−→
E |

2
(red) and |

−→
E |

4
(purple). The horizontal

lines in b) and c) correspond to the iso-intensity values of the surfaces in a). Adapted with

permission from [20]. Copyright 2013, John Wiley and Sons.
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Figure 5.4: Schematic of TPP operation using ORMOCOMP photoresist to fabricate helical

microstructures. Adapted from [21] with permission of the Royal Society of Chemistry.
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perpendicular to each other were used to generate in-plane fields, while the out-of-plane field

was generated by a third, vertically placed solenoid. The coil system was built into a mi-

croscope stage insert so that it could be placed into an inverted microscope (Axio Observer,

Carl Zeiss). Each pair of the iron-core electromagnets was powered by a Syren 10 motor

driver (Dimension Engineering LLC), while the vertically placed solenoid was powered by

a third motor driver of the same type. Motor drivers were controlled by an Arduino Uno

R3 microcontroller with a customized PC software interface for real-time adjustments of the

magnetic field parameters. The magnetic field strength was calibrated using a gauss meter

probe (Model 410, Lake Shore Cryotronics, Inc.). A maximum in-plane magnetic field of

3.5 mT could be achieved, with a maximum out-of-plane magnetic field of 8 mT. The in-plane

magnetic field was measured to be uniform within 7.5% of the nominal value. The details of

the electromagnetic-coil system is listed in Table 5.1.

5.2.2 Magnetic microspheres

Magnetic neodymium alloy microspheres (NdPrFeCoTiZrB alloy) were obtained from Mag-

nequench International Inc. (MQP-S-11-9-20001-070). Properties of these particles can be

found in Table 5.2. The microspheres were provided unmagnetized and ranging in size from

2-100 µm in diameter.

We separated the particles by size using a stack of four high precision, stainless steel sieves

(H&C Sieving Systems) with cutoff mesh sizes of 63, 45, 32, and 20 µm (U.S. #230, 325, 450,

and 625 respectively). During experiments, the unmagnetized microspheres could be easily

handled and placed onto the substrates or injected into the microfluidic devices. They could

then be manipulated into place using the helmholtz coils described earlier, which can induce

weak magnetization and motion without causing the microspheres to agglomerate. Once

positioned, the particles were magnetized by placing the substrate or microfluidic device

into a stationary field with a strength of 100-200 mT. After magnetization the particles

were far more responsive to external magnetic fields, but also tended to irreversibly attach

to nearby particles unless held in place using a magnetic dock built into the surface of the

substrate.
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Figure 5.5: (a) Four orthogonally oriented iron-core electromagnets are used to generate

an in-plane uniform magnetic field. (b) A vertically placed solenoid is used to generate an

out-of-plane uniform magnetic field. (c) The workspace in the center of the solenoid is 40

mm in diameter. (d) The coil current is controlled with an Arduino Uno microcontroller

board. (e) The samples are imaged using a 20x or 32x objective in an inverted phase contrast

microscope (Axio Observer, Carl Zeiss). (f) Images of the samples were captured at 19 frames

per second with a CCD digital camera (QICAM 12-bit, QImaging). (g) A desktop computer

with the custom user interface communicates with the microcontroller board for real-time

adjustment of magnetic field parameters. Reproduced from [22] with permission of the Royal

Society of Chemistry.
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Table 5.1: Parameters of the electromagnetic-coil system for actuation of micro-robots.

Property In-plane Coils Out-of-plane Coil

Number of turns 120 90

Resistance (Ω) 0.3 0.2

Wire diameter (mm) 1.024 1.024

Coil length (mm) 28 40

Inner diameter (mm) 23 35

Maximum driving current (A) 9 9

Maximum field at the center (mT) 3.5 8.0

Table 5.2: Material properties of NdPrFeCoTiZrB alloy microspheres, adapted from the

Magnequench material data sheet available online (MQP-S-11-9-20001-070).

Material Property (NdFeB Microspheres) Value Units

Residual Induction, Br 730-760 mT

Energy Product, (BH)max 80-92 kJ/m3

Intrinsic Coercivity, Hci 670-750 kA/m

Coercive Force, Hc 440 kA/m

Magnetizing Field to >95% Saturation, Hs ≥1600 kA/m

Density (theoretical) 7.43 g/cm3

Apparent Density 3.6-4.2 g/cm3
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Table 5.3: Material properties of magnetite nanoparticles used to create composite resists

for two photon polymerization. Adapted from materials specifications sheet from Chemicell.

Material Property (Fe3O4 MNPs) Value Units

Particle size (metallic core) 110-130 nm

Particle size (hydrodynamic) 150 nm

Concentration 125 mg/mL

Particle number 5.2x1014 g−1

Ferrorfluid density 1.25 g/cm3

5.2.3 Magnetic nanoparticle composite resist

Magnetite nanoparticles (Fe3O4) were obtained from Chemicell GmbH in a pre-made fer-

rofluid suspension. Particles were coated in a block copolymer dispersant and suspended

in γ-butyrolactone. Nanoparticles were added to IP-G resist (Nanoscribe) to make 6x1 mL

samples in a range of concentrations (0%, 0.1%, 0.5%, 1%, 2%, and 4% by volume). Com-

positions were calculated using Equation 5.1 with constants from Table 5.3.

Desired%

100
· 1 mL stock

125 mg MNP
· 1000 mg

g
· 1 g

5.2× 1014 MNP
· 1 MNP

1.8× 10−15 cm3
· 1 cm3

1 mL
=

mL MNP

mL Total
(5.1)

Mixtures were created by adding the appropriate volume of stock ferrofluid to photoresist

for 1 mL total volume. The composite was mixed for 15 minutes with a handheld sonication

probe, pulsed at an on/off rate of 10% to prevent heat buildup. Samples were stored at 2-8◦C

until use. Visual observation indicated that the composites remained in stable suspension

for over 25 days, but for consistency the suspensions were always resonicated for 2 minutes

immediately prior to use.
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Table 5.4: Laser properties of the Toptica NIR FemtoFiber Pro Erbium fiber laser used for

two photon polymerization.

Laser Property Value Units

Calibration Power (100%) 50 mW

Wavelength 780 nm

Pulse Duration 80-100 fs

Pulse Frequency 80 MHz

Energy per pulse 0.625 nJ

Photons per pulse 2.45 billion

5.2.4 3D printing of MNP-composite resist

Samples of each composite mixture were drop-cast onto TPP glass substrates (20 µL, 1 cm

droplet diam.) and baked on a hotplate. IP-G samples were baked at 100◦C for 1.5 hours

(ramp rate 20◦C/min) to drive out excess solvent and gel the PMMA component ( 3 vol.%).

PMMA gelation provides physical support for printed structures that are not attached to the

substrate, or have large horizontal overhangs. Without this gelation step, loose structures

would drift through the resist during printing, pushed by the momentum imparted on them

by absorbed photons near the focal point of the laser. The same effect is utilized in optical

tweezers, but in this case creates undesirable results.

A Photonic Professional GT (Nanoscribe GmbH) with a FemtoFiber Pro NIR laser (Top-

tica Photonics, Table 5.4) was used for all two-photon polymerization of resists. Printing

was performed using a 63x objective (NA=1.4) in oil immersion mode. After TPP, IP-

G samples were developed in propylene glycol monomethyl ether acetate (PGMEA 99.5%,

Sigma-Aldrich) for 15-20 minutes to remove undeveloped resist. Samples were then sub-

merged in 2-propanol to rinse away the PGMEA. Samples intended for SEM imaging were

then dried with gentle N2, while samples intended for magnetic field experiments were main-

tained in propanol until use. Storage in propanol helps to prevent stiction between the
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mobile and stationary components of the printed features, which is caused by the surface

tension between microstructures during drying. Critical point drying with supercritical CO2

can also be used to limit stiction from electrostatic forces, hydrogen bonding, and Van der

Waals forces [222].

5.2.5 Sputtered nickel docks

Nickel docking substrates were fabricated using traditional lithographic techniques and RF

plasma sputtering. Glass wafers (4 in. diameter, 0.5 mm thickness, roughness <20 Å) were

cleaned with acetone and 2-propanol prior to oven-based application of an HMDS adhesion

promoter. A negative photoresist (AZ-5214E, MicroChemicals GmbH) was spun on the

treated wafer at 6000 rpm for 45 seconds to create a 1.1 µm thick film. After a 2 minute,

95◦C softbake, the wafer was exposed on a Karl Süss MA6 aligner for 50 seconds in vacuum

contact mode, using a chrome photomask of the desired dock geometries (Photosciences

Inc.). Immediately after exposure, the wafer was baked at 105◦C for 30 seconds and 115◦C

for 2 minutes to crosslink the exposed regions (bulk field). Following a 150 second flood

exposure (no mask), the wafer was developed in a 1:4 solution of AZ-400K developer diluted

in DI water, with gentle agitation for 0.8 minutes (48 seconds), then rinsed thoroughly in

DI water and dried. Oxygen plasma (100W forward power, 1 minute) was used to descum

the exposed regions before sputtering. RF sputtering of metallic nickel was performed in a

Perkin Elmer 8L, using an argon pressure of 12.5 mTorr and 100W forward power for 60

minutes (with a 10 minute presputter). The resulting nickel features, after acetone lift-off of

the resist layer, were measured with a contact profilometer.

Dock features were fabricated in 3 geometries (circle, square, and donut) with diameters

of 10-40 µm (circle and square) or 5:15-30:90 µm (donut, inner:outer diameter). Docks were

arranged in regularly spaced arrays with spacing between docks at 1, 3, 5, and 10 times

the diameter, such that all permutations of shape, size, and spacing were represented on

each substrate fabricated (see Figure 5.18). Additional substrates were fabricated in the

same manner with docks positioned appropriately for bonding of a PDMS channel such that

microparticle spinning could be evaluated under flow (see Figure 5.6).
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5.2.6 Electroplated nickel docks

Using sputtering to create magnetic features imposes some undesireable limitations that

we sought to overcome as we further explored the use of docking substrates. Sputtering

is expensive and slow, depositing approximately 8 nm/min. Above thicknesses of 500 nm,

the stress generated within the deposited film can cause cracking and delamination, making

lift-off resists an ineffective approach. We therefore concomitantly fabricated electroplated

versions of the magnetic docking arrays to overcome the thickness limitations associated with

sputtering.

Glass wafers were cleaned and coated with a 100 nm copper seed layer (CVC Connexion

Sputtering System, 250 W forward power). The copper layer was then masked with a thick

(∼15 µm) layer of AZ-4620 photoresist, spun at 1000 rpm for 120 seconds, and softbaked

for 5 minutes at 95◦C. The wafer was exposed in vacuum contact mode with the chrome

photomask for 135 seconds at 5 mW/cm2, then developed in 1:4 AZ-400K developer solution

for 5 minutes. Prior to electroplating, a 1 minute, 100 W plasma descum was performed to

remove any remaining residue and ensure good electrical conduction in the exposed regions.

Electroplating was performed using a commercially available nickel electroplating kit

(Caswell #NP3). The prepared wafer was attached to an acrylic holder using copper tape.

Tape was applied to the edges of the wafer where the protective resist layer had been removed

with an acetone soaked cotton swab. A digital multimeter was used to confirm good electrical

contact between the copper seed layer on the wafer and the power supply connector. Before

introducing the wafer to the electroplating solution, it was sonicated in DI water for 3 minutes

to remove air bubbles trapped in the resist features and ensure uniform plating. After

sonication, the wet wafer was transferred to the electroplating bath, which was maintained

at 50◦C during plating. A sacrificial nickel anode was submerged on the opposite side of the

bath, and connected to the positive terminal. The wafer was then connected to the negative

terminal of the power supply. Electroplating of the docks was performed at 100 mA forward

current and a voltage of 1.52 V for 10 minutes. After plating, the wafer was removed and

rinsed thoroughly with DI water, then dried with nitrogen.
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The plated wafer was rinsed in acetone to remove the photoresist layer. The copper layer

was then removed by etching for 20 seconds in Aluminum A Transene etchant. The etch

time was formulated to completely remove the copper seed layer around the nickel docks,

but avoid undercutting them and compromising their adhesion. After etching, the wafer was

rinsed with DI water, dried, and diced into individual substrates for use in experiments.

5.2.7 Microfluidic channels

Microfluidic channels were molded in polydimethylsiloxane (PDMS) using the same proce-

dures as in previous work [161]. Briefly, a silicon wafer was patterned with a protective

photoresist, and reactive ion etching was used to create a negative impression of the channel

geometry. After etching, the mold was coated in a flourinated silane to facilitate release of

cured PDMS. Sylgard 184 (Dow Corning) was mixed in a 10:1 ratio, degassed, and poured

over the mold. After curing for 24 hours, the mold was baked for 1 hour at 75◦C. The cured

channels were diced and removed from the mold prior to bonding. Bonding was performed

using 24 seconds of oxygen plasma (International Plasma Corporation, IPC Barrel Etcher)

with a forward power of 50 W and 1 Torr O2. After carefully bringing the PDMS channels

into contact with the glass substrates, the bonded devices were heated to 75◦C for 2 minutes

to strengthen the bond.

Channels were secured in a removable, non-magnetic clamping sandwich that fit snugly

into the central helmoltz coil on the microscope stage. A 20x objective was used for all

flow experiments. Samples were introduced through polyether etherketone (PEEK) tubing

inserted into the inlets and outlets of the channel, and flow rates were controlled with two

separate syringe pumps (KDS Legato 110, BS-8000 DUAL, Braintree Scientific). Separate

pumps allowed us to control the ratio of inlet flow rates and adjust the location of the

interface between the particle and buffer streams (see Figure 5.7).

5.2.7.1 Lateral migration of micro-particles between streamlines When a par-

ticle is exposed to a unidirectional shear flow, two kinds of forces can act on the object

surfaces. The first force is parallel to the direction of the flow, which is the drag force that
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Figure 5.6: AutoCAD design of masks for microfluidic channel (blue outline) and magnetic

docks (red circles). The narrow inlet (upper left inlet) concentrates particles along the top

of the channel. The docks are arranged to allow spinning microrobots to hand off captured

particles, moving them through the buffer flow (lower left inlet) and toward successively

lower outlets (right).
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Figure 5.7: Plot of the lateral location of the fluid interface between the wide and narrow

inlets. The narrow inlet was designated the “top” of the channel, with the wide, buffer inlet

at the “bottom”. A power fit shows good agreement with the experimental data, allowing us

to predict the inlet flows needed to locate the interface at any given dock on the substrate.
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acts to accelerate the particle inside the flow until it is force-free in the same direction. The

other force is perpendicular to the direction of the flow, which is usually referred to as the

“lift force”. This force would cause lateral migration of the particle between streamlines.

However, such lift forces do not always exist. In fact, a theoretical study has shown that

under Stokes flow conditions where inertial effects are completely negligible, no lateral force

would exist in any unidirectional flow due to the linearity of the system [223]. Therefore,

inertial effects are necessary for inducing lateral migration of particles between streamlines

in shear flows.

Many studies have been carried out on the lateral migration of particles inside confined

environments such as microfluidic channels. Typically, the inertial lift forces experienced by

a particle arises from two sources: wall effects and the interaction between the particle and

the shear gradient of the flow. The former always acts to push the particle away from the

wall, while the direction of the latter is more complicated. Two effects can contribute to

this part of the lift force. The first effect arises from any simple shear component of the flow

velocity and follows the observation by Saffman [224, 225] that if the the particle lags behind

the local undisturbed flow, such a force acts to push the particle up the shear gradient. The

second effect is due to the curvature of the velocity profile and exists only when there is a

gradient of shear [226]. Therefore, the lift force ultimately experienced by the particle would

be the total balance between these three effects. Figure 5.8 shows how these three effects

alter the lateral migration of a particle in the presence of a 2D quadratic flow near a wall.

In a simple shear flow, the lift forces arising from the Saffman effect can be calculated by

Equation 5.2.

Flift(saff) = 6.46ρa2ν0.5vpf γ̇
0.5, (5.2)

where a is the radius of the particle, ρ is the density of the fluid, ν is the viscosity of the

fluid, vpf is the particle’s velocity relative to the local velocity of the undisturbed flow at its

center, and γ̇ is the shear rate. The total lift force of a particle immersed in Poiseuille flow

in a straight channel has been found to be [227]:

Flift =
6a4ρUf

2

πH2
f(d/H), (5.3)
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where Uf is the center flow velocity, H is the width of the channel, d is the distance of

the particle from bottom wall and f(d/H) is a coefficient associated with particle’s lateral

position inside the channel. Such a force is hard to observe when Re is very small.

When a micro-robot spins inside a microfluidic channel in the presence of background

flow, it still generates a local rotational flow field around it (Figure 5.1). The disturbed flow

region can be treated as the linear superposition of the background flow and the induced

rotational flow due to the linearity of the system at very small Re. The inertial lift force

on particles still exists inside the disturbed flow region, but could be significantly different

than anywhere else inside the channel due to the local rotational flow. The presence of

the induced rotational field could generate a large shear gradient inside the flow region,

which could significantly amplify the inertial effects, and hence the lift force. In addition, if

the micro-robot is placed close to the wall, it also concentrates the streamlines in the gap

between it and the wall. Therefore, particles could migrate to another streamline inside the

gap much more easily. Such migration would be more observable when the particles leave

the disturbed flow region, as the flow cross-section widens and returns to normal speeds.

When the particles are traveling inside the rotational flow region, they also experience a

centrifugal force due to angular acceleration as they orbit around the rotating robot. Such

force acts to push the particles away from the rotating robot. Therefore, the net lateral

force the particles experience inside the rotational flow region would be the combination of

all previously introduced inertial lift effects plus the centrifugal force. The final migration

of particles is determined by this net lateral force.

5.2.7.2 Rotational flow induced by spinning spherical micro-robots inside a mi-

crofluidic channel Numerical simulations were carried out to understand the flow pattern

inside a microfluidic channel in the presence of a spinning spherical micro-robot. A commer-

cial finite-element software COMSOL Multiphysics 4.3 with the laminar flow interface was

used for the simulations. The microfluidic channel was modeled as a rectilinear block with

dimensions of 1000µm (length) × 100µm (width) × 60µm (height) with three spheres each

of a diameter of 20µm located at the center of its length. Figure 5.9 shows the established

model. An average flow velocity of 100µm/s was specified on one end of the block as the
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Figure 5.8: Diagram of the different forces influencing the motion of a microparticle under

laminar flow (Uf ).
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Figure 5.9: The microfluidic channel was modeled as a rectilinear block with dimensions of

1000µm (length) × 100µm (width) × 60µm (height) with three spheres each of a diameter

of 20µm located at the center of its length.

inlet, while the other end was specified as the outlet with zero normal stress. Modeling of

rotation of the spheres was achieved by specifying the linear velocities on the surfaces of the

three spheres according to the desired rotation speed of 15 Hz. A total of 366,957 tetrahedral

elements were used in the simulations.

The first set of simulations was to study the influence of gap distance between the sidewall

and the nearest robot on the flow pattern. The streamlines of the flow inside the channel for

different gap sizes on the equatorial plane of the spheres (z = 10µm) are shown in Figure

5.10. It was observed that as the gap size increases, the portion of flow that is compressed

through the gap increases as well. When the gap is too small, vortices could form in front

of the gap, which are undesirable for the purpose of sorting. To further examine the flow

velocity profile at the gap, we plotted the velocities at the gap along the width of the channel

on z = 10µm (Figure 5.11). The velocity profiles indicate that a narrower gap would result

in a larger shear gradient at the gap, which could lead to a more significant lateral force

for particle migration. Therefore, there exists an optimal range of gap size for the purpose

of sorting. Such range is expected to be around 0.7–1 times the radius of the spherical

micro-robot according to the simulation results.

The second set of simulations studied the influence of separation between robots. The

streamlines of the flow inside the channel for different gap sizes on the equatorial plane of
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Figure 5.10: Streamlines were taken on the equatorial plane of the spheres at z = 10µm. a)

Gap size = 0.3 radius of sphere (R). b) Gap size = 0.5R. b) Gap size = 0.7R. b) Gap size

= 0.9R. b) Gap size = 1.1R. b) Gap size = 1.3R. The short blue solid dash indicates how

much flow is compressed through the gap.
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Figure 5.11: Profile of fluid velocity at z = 10µm, with varying gap-to-wall ratios as a

function of microsphere radius R.
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the spheres (z = 10µm) are shown in Figure 5.12. As the separation decreases, the overlap

between individual rotational flow fields induced by each micro-robot increase, which make it

easier for micro-particles to be conveyed down the width of the channel with the streamlines

once they pass the gap between the first robot and the top wall and get trapped by the

rotational flow induced by the first robot. However, since the micro-robots are magnetic, they

would attract to each other if the separation was too small. From experimental observation,

the minimum separation that could still prevent attraction between robots was about 4R,

depending on how strong the robots were magnetized. A separation of 4.5R or above should

be used to achieve stable, separate rotation of each micro-robot inside the channel.

5.2.7.3 Magnetic docking Magnetic micro-docks were made of Nickel, which is a soft

magnetic material. Such soft magnetic material could only be magnetized when exposed to an

external magnetic field, applied by a nearby magnetic micro-robot or by the electromagnetic

coil system in this case. To examine whether or not such magnetic docks are capable of

holding the magnetic micro-robots in place under a strong background flow when global

magnetic field is applied by the coils, numerical simulations were carried out using the same

finite-element package COMSOL Multiphysics 4.3 with the AC/DC module. The micro-robot

was modeled as a 30µm diameter sphere placed on top of a dock with an outer diameter

of 30µm and a thickness of 500 nm. Two types of dock shape were examined: disk-shaped

and donut-shape with an inner diameter of 10µm. Figure 5.13 shows the established model.

A downward magnetic field (Bz) was applied in the whole space filled with non-magnetic

material, while the magnetization of the micro-robot was specified in the negative z-direction

as the magnetic micro-robot would always tend to align its magnetization with the external

field. The relative magnetic permeability of both the Nickel dock and the NdFeB micro-robot

was also specified. A total of 1,881,243 tetrahedral elements were used in the simulations.

In the first set of simulations, the influence of three different parameters on the interac-

tive forces on the micro-robot applied by the micro-dock in z-direction (Fz) were examined:

field strength of Bz, relative permeability of the docking material, and the strength of mag-

netization of the micro-robot. The results are plotted in Figure 5.14. It is observed that

the disk-shaped docks can generally provide stronger holding force Fz than donut-shaped
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Figure 5.12: Streamlines were taken on the equatorial plane of the spheres at z = 10µm.

For a)–c), the vertical separation was fixed at 2.5R while horizontal separation varied from

1.5R for a), 2R for b) to 2.5R for c). For d)–f), the horizontal separation was fixed at 1R

while vertical separation varied from 2.5R for d), 3R for e) to 3.5R for f).
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Figure 5.13: The micro-robot was modeled as a 30µm-in-diameter sphere placed on top of

a dock with an outer diameter of 30µm and a thickness of 500 nm.
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dock, because the former has more magnetic material in the same volume. Another general

observation is that all three parameters have a positive effect on Fz. While Fz increases

linearly with Bz, it first increases rapidly with an increasing relative permeability, and then

approaches saturation after a relative permeability of 1000. The magnetization of the micro-

robot has a much stronger effect on Fz than the other two parameters.

In the second set of simulations, we examined how the lateral misalignment between the

robot and the dock would affect Fz and the lateral interactive force - the centric force (Fct).

In these simulations, all the parameters were kept constant except for the lateral position

of the micro-robot on the dock. The results are plotted in Figure 5.15. Unlike in the zero-

misalignment case where Fz remains attractive, Fz shifts between attractive and repulsive

in the non-zero misalignment case. The attractive Fz peaks at a relative misalignment of

around 0.6R, and then drops till it becomes repulsive as misalignment increases for both

disk-shaped and donut-shaped dock. For the centric force Fct, it remains repulsive when

the relative misalignment is smaller than 0.6R, and shifts to attractive as misalignment goes

above 0.6R. These results indicate that there could be two possible positions for the micro-

robot to stay on the dock in steady state, one is at the center of the dock where the holding

force Fz is at its maximum, and the other is at a distance of about 0.6R from the dock center.

However, the robot cannot stay stably on the first position as any small perturbation would

results in a radial force that pushes the robot away from this position.

Now it is possible to compare the drag force experienced by a spherical micro-robot under

a strong background flow. Under the Stokes drag assumption, the drag force experienced by

a sphere in a unidirectional flow can be calculated by:

Fdrag(stokes) = 6πρνRvpf . (5.4)

For a fixed 30µm spherical robot under a very strong flow of 1 mm/s flow rate in water,

the drag force is estimated by Equation 5.4 to be approximately 0.3 nN, which is less than

5% of Fz on a weakly magnetized micro-robot placed at the center of the dock. Therefore,

such a robot can stay at the center of the dock as long as the friction coefficient between

the robot and the dock is greater than 0.05. In real experiments, the flow rate would not

reach the value of 1 mm/s, and hence the nickel docking should be functional. Increasing the
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Figure 5.14: a) Bz varied while magnetization of the micro-robot and the relative permeabil-

ity of dock were kept constant at 50 kA/m and 100, respectively. b) The relative permeability

of dock varied while Bz and magnetization of the micro-robot were kept constant at 4 mT

and 50 kA/m, respectively. c) Magnetization of the micro-robot varied while Bz and relative

permeability of the dock were kept constant at 4 mT and 100, respectively.
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Figure 5.15: Bz, relative permeability of the dock and magnetization of the micro-robot

were kept constant at 4 mT, 100 and 50 kA/m, respectively. Lateral misalignments were

normalized by radius of the robot. a) Influence on the interactive force in z-direction (Fz)

b) Influence on the interactive force in radial direction (Fct).
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magnetization of micro-robot would be the most practical way to secure the functionality of

the nickel docking.

5.3 RESULTS

5.3.1 Composite resist characterization

Characterization of printing parameters was performed using line tests, as seen in Figure

5.16. The TPP laser is rapidly scanned through a wide range of power and speed parameters,

creating narrow lines of polymerized resist on the glass surface that can be imaged via SEM.

Line tests for scan speeds from 100-10,000 µm/s and powers from 0-100% were performed

for all 6 concentrations of IP-G composite to indicate the range of feasible parameters for

printing. We found SU-8 adhesion to glass too weak to reliably perform and image line tests

or print 3-dimensional structures. We therefore chose to perform the remaining experiments

using IP-G composites.

5.3.2 3D printed microrobots

A variety of magnetic IP-G composite structures were fabricated using TPP. Printed struc-

tures were well-formed and structurally sound in resist composites up to 1 vol% (Figure

5.17). At concentrations of 2 and 4 vol%, the viable range of printing parameters narrowed

considerably, resolution dropped, and layer-to-layer as well as structure-to-glass adhesion

was substantially reduced.

Rotation of 1% structures in applied fields up to 8 mT were limited to ∼1 Hz, with no

rotation observed for 0.5% and 0.1% composites. Stiction occurred in the majority of 3D

prints, even when post-development drying was avoided, requiring physical detachment by

force applied with a glass needle micromanipulator.

121



Figure 5.16: Sample SEM image of the line test used to characterize writing parameters.

Sample is IP-G resist containing 1 vol.% magnetite MNPs. Lines are written with increasing

power from left to right, bottom to top, in a snaking fashion, with power changing in 2%

increments from 0-100%. On the left-hand side, lines are missing (A) or poorly polymerized

(B) due to insufficient power and poor adhesion. On the right, excessive power caused local-

ized heating, monomer degradation, and gas formation that destroyed the feature resolution

(C).
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Figure 5.17: Brightfield microscopy of 3D printed microrobots in water. Various structures

were designed: (A) corkscrew, (B) spinning disk, (C) spinning bar, and (D) flagella/sputnik.

Structures are printed in IP-G resist with 1 vol% Fe3O4 MNPs. Structures were well formed

but could only spin at ≤1 Hz. Structures with 2% MNPs were poorly formed and failed to

adhere properly to the substrate.
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5.3.3 Magnetic docking substrates

Docking substrates were well formed and consistent in thickness when patterned with RF

sputtering. One hour of sputtering time yielded film thicknesses of 490-500 nm, and ap-

proached the limitations of lift-off resist patterning with nickel. Longer times often resulted

in film cracking or delamination due to internal stress. Electroplated docks were less uni-

form, and exhibited thicknesses ranging from 1.2 to 3.5 µm within single docks. Thickness

was greater at the edges of the features, creating a concave structure that might beneficially

“cradle” the microspheres by conforming to a semispherical shape.

In practice, we found little difference between sputtered and electroplated docks. Stable

docking appeared to be more dependent on the structure and magnetization of individual

microspheres placed on the docks, with some microspheres performing well on all dock sizes

and shapes, while others exhibited poor attraction and spinning, even when magnetized

in the same field. Microstructural differences are likely responsible for the inconsistent

magnetization of the spinners.

Magnetic microspheres could be successfully localized to individual docks by rolling them

along the substrate using rotational fields parallel to the substrate. Movements in the x-y

plane were mapped to the arrow keys of a computer keyboard for easy manual control. Once

positioned, the microsphere exhibited a natural tendency toward the dock. The downward

force applied by the dock on the particle (holding force) could be increased using a vertically

oriented electromagnetic coil. Stable rotational speeds of ≥ 40 Hz could be obtained in static

fluid environments using field strengths of only 1 mT. Higher speeds are likely possible, but

could not be visually confirmed due to the frame rate of the camera used. Under fluid

flow, higher vertical fields were required to keep the microspheres on the docks. Increased

downward force, and therefore surface friction, reduced the maximum rotation to ∼ 20 Hz

with 1.5-3.0 mT rotational field strength.

5.3.4 Size-dependence of micro-particle trajectory in microfluidic channels

One microsphere was placed on the topmost nickel dock within the microfluidic channel,

and polystyrene beads of 5µm, 10µm, and 20µm were injected through the top inlet in
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Figure 5.18: AutoCAD model of subsection of magnetic docking arrays, showing donut

shaped docks with 1 diameter spacing. Diameters are labeled on the substrate as inner/outer

diameter in microns. Brightfield microscope inset of sputtered nickel dock with 30/90 µm

dimensions (lower right).
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separate experiment runs. Buffer flow through the bottom inlet was adjusted to locate

the interface of the two inlet flows just above the midpoint of the micro-robot, ensuring

that most particles passed between the micro-robot and the channel wall when no magnetic

field was applied. After establishing stable flow, a rotational field was applied and the

rotational flow around the microsphere was induced. The polystyrene beads passing through

the disturbed flow region displayed different responses to the induced rotational flow based

on their sizes and left the flow region with distinguishable differences on their displacements

along the width direction of the channel from the their original trajectories. Results of

analysis of videos taken from experiments are summarized in Figure 5.19 to show the size-

dependence of vertical displacement ∆y of particles before entering and after leaving the

region significantly disturbed by induced rotational flow. Both 5µm and 10µm polystyrene

beads exhibited positive ∆y’s, meaning that they were pulled away from the channel sidewall

in the rotational flow region, while the 20µm beads exhibited a negative ∆y, which means

they were pushed closer to the sidewall. The size-dependent displacement of particle via

induced rotational flows potentially enables separation of particles with different sizes in

continuous flow.

5.3.5 Manipulation in microfluidic channels with multiple micro-robots

Microspheres were arranged consecutively onto the nickel docks within microfluidic channels,

and polystyrene beads of varying sizes were injected through the top inlet. Buffer flow

through the bottom inlet was controlled to adjust the interface of the two inlet flows just

above the midpoint of the first micro-robot. By ensuring that most particles passed between

the micro-robot and the channel wall when no field was applied, we ensured that the particles

would be forced to pass within capture range. After establishing stable flow, a rotational

field was applied, and particles were deflected from their normal paths, with some particles

exchanging orbits from one micro-robot to the next (hand-off).

Analysis of the flow videos revealed that hand-off occurred more frequently with larger

sized particles, and created an overall gradient of particle sizes. Figure 5.20 shows analysis

of a 3,654 frame video, with automated particle detection (ImageJ) in the rightmost 40 µm
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Figure 5.19: Size-dependent vertical migration of particles in induced rotational flow. Flow

rate is 4.5 µL/min (channel height 76 µm). Field strength = 1.5 mT, rotation frequency =

15 Hz. Magnetic micro-robot size was 56µm in diameter.
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Figure 5.20: Freezeframe of high-speed footage of spinning microspheres (white dotted out-

line) on magnetic docks (black dotted outline) with polystyrene beads of various sizes. Ver-

tical distribution (in 5 µm increments) of particle sizes are shown for bins around discrete

microsphere diameters. Distributions are normalized to the total number of particles in each

bin. Flow rate is 3.03 µL/min (channel height 76 µm), number of frames combined = 3,654.

Field strength 1.5 mT, rotation frequency = 20 Hz.
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of the images. Median particle distance from the top of the channel increased with particle

size in all but the 10 µm group.

5.4 DISCUSSION

5.4.1 IP-G composites exhibit superior patterning, adhesion, and consistency

Much of the existing work involving TPP with and without MNP composites uses SU-8

resist [228, 229, 221, 230, 213], which is widely used in the MEMS field for its many favorable

properties, including excellent chemical and thermal stability and good mechanical properties

[231, 230]. We began our tests with SU-8 2010 (Microchem), but found the adhesion to

glass substrates be poor, and most structures printed in SU-8 were detached during the

development process. Weak adhesion to glass is a known issue with SU-8, though other

studies had either used structures with large surface footprints [229] or structures that were

not designed to detach from the surface [221], so adhesion had not been a limiting factor.

Pretreatment of the glass wafers with HMDS adhesion promoter yielded little improve-

ment in quality. Some successful structures were patterned using a hard-baked adhesion

layer of SU-8 spun over the wafer surface, similar to Witzgall et al. [101] (our procedure can

be found in APPENDIX D). Bonding SU-8 to PDMS then becomes an additional challenge,

as silanol groups do not react with SU-8, so the PDMS must instead be treated with nitrogen

plasma, generating amino groups on the PDMS surface. This method, however, can only

bond to SU-8 layers that have not been cured above 95◦C, leading circularly back to the SU-

8/glass adhesion issue [232]. We also found SU-8 to be much more sensitive to laser power

than IP-G, with ionization of the resist occurring at approximately 1/2 the power used for

IP-G. This difference in sensitivity is most likely due to chemical differences between the ini-

tiators and polymerization mechanisms of IP-G (photo-initiated free radical polymerization)

and SU-8 (cationic chain growth by photoacid generated ring opening polymerization). Due

to these challenges, the majority of tests were performed using IP-G composites.
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5.4.2 Limitations imposed by the physics of TPP

We found that degradation of SU-8 seemed to occur independently of scan speed above

powers of ∼ 20% (10 mW), indicating that a critical pulse energy (roughly 0.125 nJ/pulse in

our case) might have been reached. IP-G exhibited similar behavior at MNP concentrations

above 1 vol%, and either adhesion or structural integrity resulted in the loss of features

from the glass surface during development. Previous work with MNP composites has only

reported scan speeds in the range of 5-100 µm/s [221], which can take hours to print a

single structure with dimensions in the 10-20 µm range. Here we investigated scan speeds

up to 10,000 µm/s; the galvo-driven version of the Phototonic Professional GT can reach

scan speeds above 40,000 µm/s. In some of the earliest demonstrations of TPP, Witzgall et

al. reported an exposure threshold of 3.2 TW/cm2 and a damage threshold of 8.1 TW/cm2

for SU-8, a 2.5-fold window for exposure [101]. Differences in experimental variables (laser

wavelength, focal area, pulse time, SU-8 composition) make for a difficult comparison to

Suter et al. [221], but agree generally with the idea that the window of exposure dictates

the possible excitation parameters.

Using values from Suter et al. [221], which indicated that a laser power of 2.0 mW and

50 µm/s scan speed resulted in a line width of 295 nm, we find that the average power

within the cross-sectional area of the voxel is 0.93 TW/cm2. While lower than the predicted

threshold of 3.2 TW/cm2, the scan speed is much slower than would be expected. The

energy carried by the upper limit, 8.1 TW/cm2, 120-fs pulse in Witzgall et al. delivers 9.72

nJ/µm2, whereas the 780 nm, 80 fs, 2.0 mW pulse in Suter et al. should deliver 0.35 nJ/µm2.

If polymerization were purely dependent on cumulative energy delivered, then ∼ 28 pulses

would approach the damage limit of a single voxel of SU-8. This, however, would dictate a

scan speed over 430,000 µm/s to avoid damage, about 4 orders of magnitude higher than

the 50 µm/s used by Suter. This simple calculation highlights the complexity of two-photon

polymerization, especially below the single-shot threshold, and the challenges associated with

comparing data across publications. Serbin et al. indicated a polymerization threshold of 27

KJ/cm2, delievered in 1.5× 106 pulses, which matches more closely with the estimated 5.94

KJ/cm2 delivered over 1.68× 105 pulses by Suter [215, 221]. Liu et al. used a model of TPP
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to experimentally fit their experimental setup to a simple exposure equation, P 2

v
≥ 3.6mW

2

µm/s
,

defining the exposure threshold for SU-8 wall structures in terms of laser power P and scan

speed v [233]. This relation is only applicable for their specific setup, and is a function of

peak intensity, pulse duration, repetition rate, exposure time, focal spot radius, focal spot

aspect ratio, Rayleigh range, and an experimentally determined constant. The addition of

metallic nanoparticles would only further complicate such calculations. While Yasui and

Ikuta have proposed a general 3D model for photocurable resins that accounts for scattering

and absorption when microparticles are added to the resin, it is unlikely that this model will

extend to nanoparticle composites, where the particle diameter is less than the excitation

wavelength [234].

While more investigation is needed to elucidate the exact mechanisms controlling TPP,

it is clear that differences in optical and chemical properties of the resist play a large part

in the limitations of nanoscale 3D printing. New advances in chemistry and optics will be

needed to make the technology commercially practical, but many promising applications

have already been demonstrated to date. There are a number of excellent reviews detailing

the state-of-the art in TPP chemistry, physics, and applications [103, 20, 235, 236].

5.4.3 3D printing magnetic micro-robots

Line tests, when compiled into a contour plot (Figure 5.21), indicate the effects of resist

composition on ideal printing parameters. There is a general trend toward a narrowing of

parameter space as increased volume fractions of magnetic nanoparticles are used. This is

to be expected, as scattering, absorption, and localized heating increase along with particle

concentration. Slight inconsistencies of this pattern are likely attributable to high variability

when working near the limits of speed and power, as well as run-to-run variability in substrate

cleanliness and surface adhesion. Fischer et al. performed similar characterization plots of

polymerization and damage thresholds, comparing pulse energy and repetition rates for a

number of other photoresists [237].

While line tests provide a good starting point for identifying viable parameter spaces, the

printing of large structures requires consideration of additional variables: vertical spacing
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Figure 5.21: Polymerization threshold of IP-G magnetic nanoparticle composite. Colored

regions highlight combinations of laser power and scan speed that create well-formed lines on

the surface of glass substrates. Parameters above these contours result in localized heating,

monomer degradation, and gas evolution. Parameters below the contours result in insufficient

polymerization and/or weak adhesion. Increasing concentrations of magnetic nanoparticles

(vol.%) are shown in successively darker shades.
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between layers (“slicing”), horizontal spacing between lines in the x-y plane (“hatching”), and

the physical dimensions of the structure (especially height in the z-direction). The horizontal

and vertical spacing determines the amount of overlap between neighboring voxels, and

therefore controls the integrity of the printed structure and the aggregate amount of energy

absorbed by the resist and nanoparticles. The height of the structure in the z-direction also

plays an important role in the selection of speed and power parameters. As the focal point

passes deeper into the resist, more photons are absorbed or scattered by MNPs, reducing the

apparent energy reaching the voxel until the power falls below the polymerization threshold.

Structure height also determines how many times the laser will pass over a given point,

increasing the net energy absorbed and contributing to local heating. This is especially

problematic in structures with narrow x-y dimensions, as the laser will pass over the same

area more frequently when layer writing time is short. In practice, we found the actual

parameter space for writing multi-layer structures to be shifted downward in both power

and speed, with much narrower ranges than the single line tests suggest.

The application of 3D lithography for MEMS devices, particularly those intended for use

in microfluidic devices, is still limited in large part by materials issues. Printed structures are

inherently delicate and susceptible to damage during the channel bonding process. The most

ideal solution to this problem is to print the structures within an established channel, which

we implemented with very limited success. Both IP-G and SU-8 structures were successfully

patterned into pre-bonded PDMS channels (data not shown), but complete removal of un-

polymerized resist proved to be time consuming and prohibitive. The standard developer for

IP-G and SU-8, PGMEA, swells PDMS, leading to high stresses on the glass substrate and

channel collapse, both of which contribute to detachment and damage of printed structures.

Furthermore, preheating of the resists to remove solvent requires prebaking times over 24

hours. The effect on properties of glass and PDMS surfaces after long-term contact with

resists at elevated temperatures has not been investigated to the best of our knowledge.

In-channel printing has been reported by Wu et al. earlier this year, but required the use

of all-glass microfluidics to avoid swelling issues [238]. They also used laser lithography

to pattern their channels, using a photosensitized Foturan glass (Schott Glass Corp.) that

could be annealed and selectively etched following lithography. Long bake times were still

133



necessary due to diffusion-limited solvent removal from within the glass channels, and bake

times increased with channel length. Increased adoption of TPP for microfluidics applica-

tions, particularly in biomedical fields, would benefit from two-photon compatible resists

that require minimal solvent removal and develop in a PDMS-compatible agent.

5.4.4 Spinning microspheres can generate particle size gradients in laminar flow

We observed a gradual increase in mean and median translation with increase in particle

size. Two tailed student t-tests assuming equal variances indicated that the mean particle

displacement of all groups were statistically different from one another (p<0.01) with the

exception of the comparisons between the 15, 20, and 25 µm size groups. This may be

the result of lower particle counts for larger polystyrene beads, or binning selection. The

improvement in capture with increasing particle size agrees well with earlier predictions that

stable vortex capture occurs for objects in the size range 0.5 <
robj

rmanip
< 1, where the radius

of the object being manipulated (robj) should be similar to the radius of the manipulator

(rmanip), which in the case of Figure 5.20 sees particle diameters approaching 1/2 the size of

the 45-65 µm spinners [19].

Interestingly, separate experiments with a single micro-robot indicated different size-

dependent effects (Figure 5.19). These experiments used higher flow rates, so inertial forces

would have a larger impact on particle trajectory, reducing the effective size of the vortex

around the robot. More work is needed to definitively characterize the complex effects of

manipulator size, gap size, flow rate, and rotation frequency, but they all appear to factor

into the resulting displacement of captured particles. It is encouraging to see that although

the results are different, we consistently see distinct groupings of displacement with regard

to particle size, further confirming the size effect.
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5.5 CONCLUSION

In conclusion, we developed microrobots on patterned substrates using two distinct ap-

proaches. Two photon polymerization promises flexibility, rapid prototyping, and easy de-

sign of any 3D structure, but ultimately proved insufficient due to our specific needs and

the physical limitations of the materials. These limitations illuminated valuable information

about the nature to two-photon absorption and the effects of opaque particle incorporation.

Traditional lithography allowed us to generate a working system in which to validate

the concept of size sorting with microvortex generation in laminar flow. This method was

effective, but will be difficult to scale up, as each additional microsphere that must be docked

adds setup time and complexity to the system, whereas TPP fabrication would not suffer

such limitations.

Future work will involve stable dispersion of magnetic nanoparticles with much smaller

core diameters, on the order of 10 nm, to allow TPP at increased vol%s that will yield stronger

magnetic forces. Once this challenge is overcome, we plan to create a size sorting channel

containing large numbers of spinners to perform more complex tasks. We also envision a

narrow channel with vortex generators arranged in configurations that might allow a single

cell to be circulated continuously while moderate flow introduces nutrients and chemical

signals, creating a nanobioreactor to study single cell growth in suspension. More aggressive

speeds and shapes might also allow on-chip mechanical cell lysis to be incorporated into

lab-on-a-chip operations. Magnetic micromanipulation will undoubtedly play an important

role in future advances and applications of microfluidics.
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6.0 SUMMARY AND FUTURE DIRECTIONS

In summary, this work has advanced microfluidic cell handling in a number of fields, and pro-

vided useful information about others. We successfully demonstrated differential adhesion

as a method for cell sorting, revealing leukocyte deflection on stripes of P-selectin. Other

publications reaffirmed this work and also identified the potential for sorting by mechanical

patterning [131, 136, 137, 12, 138]. This technique possesses strong advantages over tradi-

tional methods like FACS, such as label free sorting and cost savings. It can also be easily

integrated into lab-on-a-chip devices as a sample preparation tool, or used for cancer and

disease diagnostics.

We also created a freely available, open-source software tool for tracking cells and par-

ticles in relation to patterned substrates. We found it to be a highly accurate and efficient

way of tracking cells and condensing large amounts of tracking data into meaningful and un-

derstandable formats. We think this tool could be a valuable resource for other researchers

that need to analyze large amounts of similar data but may not have the resources available

to buy a commercial tracking tool or develop their own.

In efforts to focus cells toward the bottom substrate to enhance rolling, we developed two

methods of redirecting cell motion within microfluidic channels. Although our results using

electrical fields were not conclusive, publications after the work was performed confirmed our

modeling results as reasonable and allowed us to identify the physical limitations preventing

success.

Printed filters used to redirect cells and particles proved much more successful. We could

definitively query the vertical location of the particles by an imposed horizontal motion, and

improvements in geometry should allow us to use them to force cells into contact with the

surface of the channel. We think the side-to-side motion of the horizontal filters may prove
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valuable in other applications as well, such as compressing streamlines into a smaller local

region to promote hydrophoresis and concentrating diffuse cells into discrete flow paths for

downstream functions.

Finally, we developed a completely new method of size-based sorting by non-contact

manipulation with magnetic micro-robots. We fabricated rotating magnetic structures us-

ing both traditional and two-photon lithography. New challenges for TPP fabrication of

magnetic structures were identified, along with possible solutions. The relationship between

exposure parameters and nanoparticle incorporation was characterized for photoresist com-

posites. We also characterized soft magnetic substrate features for use as docks to localize

untethered robots under laminar flow, and modeled the flow effects of particles spinning on

those docks. Experimental confirmation of the modeling was ultimately achieved, creating

particle size gradients in a continuous fashion under flow.

Figure 6.1 shows this author’s qualitative assessment of the benefits and drawbacks of

a number of microfluidic methods beyond those studied in this work. A researcher looking

to implement one of these techniques into his or her microfluidic device might find such a

broad visualization useful for narrowing the selection process.

When comparing the methods listed, the first and most important distinction is that

microfluidic methods of discrimination between different cell populations are predominantly

label free and operate in a continuous manner, without requiring interruptions in fluid flow.

Avoiding labels or tags is useful for downstream applications where extra steps would be

required to remove them, for example in cell therapies where the output of the device would

eventually be reintroduced to the patient’s bloodstream.

Cost is a major factor for many of these techniques, especially those tied to complex

external equipment. Optical sorting techniques still require expensive light sources and

focusing optics, and dielectrophoresis needs frequency generators that can operate in the

kHz and MHz range. Technological advances outside the microfluidic realm may bring these

costs down in the near future, but in the mean time, hydrodynamic forces remain the least

expensive by far. Unfortunately, the cost benefits of hydrodynamic sorting are offset by the

lack of specificity to relevant cell properties.
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Figure 6.1: A comparison of different methods of force application and cell/particle sorting

across various metrics. These ratings are the author’s subjective opinion and serve more as

a general guide to the relative strengths and weaknesses of each method. Properties such

as efficiency, reliability, and cost can vary wildly within each technique, depending on the

complexity of the fabrication process and the supporting equipment required.
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The challenges associated with scaling up and mass producing microfluidic devices may

explain the slower than expected adoption of microfluidic devices in commercial settings.

While not insurmountable, more work is clearly needed to develop cost-effective and flexible

fabrication methods more varied than the traditional glass/PDMS architectures common

today. The Whitesides group, and the corresponding spin-off company Diagnostics for All,

have been developing paper-based microfluidics for a number of years, which promise to

bring the cost of many tests down to a few dollars or even cents.

Cytotactic rolling is the only continuous method of microfluidic cell isolation that pro-

vides specificity at the molecular level. Protein recognition is critical in a scientific field

that predominantly identifies cell phenotype by surface chemistry. Cytotactic devices (and

microfluidics in general) may soon find commercial application as inexpensive alternatives

to traditional lab tests in third world countries and consumer products. Recent years have

seen an explosion in health and fitness tracking devices that log physical activity, measure

heart rate, and track food intake (products from FitBit, Jawbone, Samsung, and Apple to

name a few). Affordable home testing is on the horizon for measuring more complex health

indicators. The Cue, for example, is a device available for preorder from a group of UCLA

and UCSD entrepreneurs that detects testosterone, the flu, inflammation, fertility, and vi-

tamin D using disposable cartridges. A cytotactic white blood cell counter or circulating

tumor cell detector are not outside the realm of possibility, and could even interface directly

with a smartphone for control and measurement.

6.1 FUTURE DIRECTIONS

In the years since the start of this work, cell rolling on patterned substrates has advanced

from theory to a proven method of cell isolation [131, 136, 137, 138]. It has not, however, been

demonstrated for non-selectin adhesion molecules and their ligands, despite indications that

such systems should be possible based on the range of adhesion kinetics favorable for rolling

[11] and observed physiological rolling behavior of lymphocytes with CD44/hyaluronate [63].

Future work is needed to test new protein/ligand combinations. We would also like to use
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dielectrophoretic or mechanical flow focusing to improve the rate of interactions between the

cells and the patterned substrates, although some work has already been accomplished in

this area by other researchers.

Changes to the tracking program are needed to make it more adaptable to other substrate

patterns and easier to integrate with a wider variety of MEMS devices. It is our hope that

other researchers will use and build upon this platform.

Cell sorting and focusing using contactless electrokinetic forces will be another area of

future work. We would first attempt to reproduce the false-positive results by intentionally

creating electro-osmotic flow. We would then want to incorporate asymmetrical electrodes

for contactless DEP to achieve the original goal of cell localization to the surface. The use

of these forces was only recently introduced, and we have not found evidence of their use

in combination with protein coated surfaces. Therefore, it remains unknown if they would

viably enhance cell interaction without interfering with the structure and function of bound

proteins on the channel surface. Improvements in the 3D printed filters will also be pursued

in order to make them easier to fabricate, more robust, and less likely to create streamline

blooming at the outlets.

Finally we wish to improve our TPP methodology for easier incorporation of printed

microrobots into microfluidic devices. We would then determine size-based sorting efficiency

when using tens or hundreds of micro-robots in unison. We believe the stable suspension of

smaller magnetite cores in resist should allow higher volume fractions to be printed, which

would lead to stronger magnetic manipulation forces. We would also like to test different

arrangements of these devices for non-contact manipulation of cells to craft nano-bioreactors,

on-chip mechanical shearing chambers, and particle trapping tools. Development of improved

substrates for the untethered micro-robots will also be pursued, to allow easier scaling of

these devices for larger applications. The dynamic, reconfigurable nature of the magnetic

micro-robots will make them versatile tools for future microfluidic technologies.
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APPENDIX A

CHAMBER BOTTOM FABRICATION WORKFLOW

Materials

• 4 Glass wafers (as of 6/1, new wafers are Pyrex 0.5mm thck, roughness <20A, scratch/dig

60/40 double side polished, global flatness <40um)

• AZ5214-E photoresist

• AZ400K developer

• Eye dropper(s)

Procedure for Patterning Gold

1. Wash/dry wafer in washing machine

2. Run 2-minute HMDS vapor prime (instructions on machine)

3. Spin AZ5214-E resist (6000rpm for 45 seconds)

4. Soft bake at 95C for 2 min (program 2)

5. Expose on MA6 aligner for 50 seconds in vacuum contact mode (see MA6 procedure)

6. Bake at 105C for 30 seconds (ensure good contact and uniform heating!)

7. Bake at 115C for 120 seconds (ensure good contact and uniform heating!)

8. Flood expose on MA6 for 150 seconds

9. Develop completely submerged in 1:4 AZ400K developer solution with slight agitation

for 0.8 min (800 mL water, 200 mL developer)

10. Rinse immediately with DI water gun, then run through wash/dry cycle

11. Plasma descum with O2 plasma (100W forward power, 1 minute)
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12. Sputter (see sputtering procedure)

a. Ti presputter - 200W, 10 minutes

b. Ti sputter - 100W, 12 seconds

c. Au presputter - 50W, 2 minutes

d. Au sputter - 50W, 24 seconds

13. Submerge in acetone in a sealed container

a. Leave overnight.

b. Remove bulk gold and replace acetone. Sonicate 5 minutes and remove quickly.

c. Use an acetone soaked q-tip to gently wipe away any gold residue on back of wafer or

near stripes. NEVER wipe over stripes. Ultrasonicate in fresh acetone if necessary.

14. Spin junk photoresist (program 2) to protect from dicing debris

15. Give coated wafer to clean room staff (Chris Bowman) for dicing

16. Clean diced glass bottoms in acetone and store in clean plate

MA6 Aligner Procedure

1. Fill out log sheet and record lamp time

2. Check that micromanipulators are centered at 10 on both sides, and rotation (small black

tab) is at zero

3. Turn on all 4 gas lines

4. Flip the lamp power switch on the black box below the machine. Lamp will run diag-

nostics and then display rdy when finished.

5. Once the lamp is ready, press the start button, and lamp will begin to warm up to 275W

6. Twist the green power switch on the MA6

7. Once startup is complete, press Load to begin

8. When prompted for configuration choose MA6 and press enter

9. Set the program to vacuum contact mode by pressing Edit Program, selecting Vac mode,

then pressing Edit Program again

10. Set the time to 50 seconds by pressing Edit Parameter, setting time with the arrow keys

(hold Fast when pressing arrows to jump 10 seconds at a time)

11. Place the mask, chrome up, in the mask holder, clipping it into place
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12. Press Change Mask and press enter to toggle the vacuum on

13. Carefully slide the mask onto the rails, until it clicks into place

14. Press the Change Mask button again to lock the mask in place

15. Press Load to begin loading procedure

16. When prompted, slide out the tray, align wafer to flat markers, slide into machine, and

confirm with Enter

17. Wait for WEC to complete, then, when ready, press Exposure

18. After exposure, slide tray out and bake wafer (see above)

19. Set program to Flood expose and time to 150 seconds using above procedure

20. Press Change Mask and remove the mask for the flood exposure. Enter to confirm.

21. When flood exposing, completing the Load procedure will initiate exposure, so make sure

everything is set correctly before loading wafer.

22. After exposure, remove wafer, unload mask, and shutdown machine and lamp

23. Close 3 gas lines, leave Nitrogren on for 5 minutes to cool the lamp.

Perkin-Elmer 6J Sputtering Procedure

1. Turn off the ion gauge to prevent damage as pressure increases during venting

2. Close Hi-Vac valve (red switch), and once closed, open Vent valve

3. Wait for chamber to vent (fill out log sheet)

4. Once green up to air light indicates chamber is vented, use HOIST-UP switch to raise

the chamber lid until the stage is accessible

5. Place the wafer face up in the center of the front stage

6. Lower chamber lid, making sure that lid seals evenly around the entire rim. Multiple

attempts may be necessary to properly align lid

7. Turn off the vent switch, then open the roughing valve (rough vac to 7.5x100−2)

8. Close the roughing valve, open the High-Vac valve, and turn on the ion gauge

9. Wait approximately 1 hour, until the chamber reaches 7.5x10−2 on ion gauge (7.5E-5)

10. Turn the ion gauge off.

11. On the left middle panel, toggle the 3-way exhaust valve switch to the closed position.

12. Flip the toggle switch to the center position, then turn the knob to S.S. (Steady State).
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13. Turn on gas #1 using the black valve on the chamber lid, then the flow controller toggle

switch #1 to on (careful, 3-way toggle)

a. The red readout should level out around 5. If not, check the set point knob to see if

someone changed the setting.

14. Flip the yellow power switch on the top left panel.

15. Presputter

a. Settings for lid: etch / sputter deposit / target #1 / DC

b. Watch wall clock for presputter timing (10 min. Ti, 2 min Au)

c. Use the power controller on the far right to set the power to about 25W

d. Press Start on the power controller, then slowly raise the power to desired wattage

(200W for Ti PS, 50W for Au PS)

e. Record presputter parameters on log sheet

f. Prepare for sputter by setting clock with blue knobs

16. Sputter

a. Turn power down to desired sputtering power (100W Ti, 50W Au)

b. Turn knob on lid to move sample stage to desired target

c. As soon as the movement light goes out, flip the silver toggle switch to start the

timer.

d. Once the timer ends, the power will automatically be cut. Turn the knob to zero.

e. Move the sample back to the front stage, reset the timer, and repeat presput-

ter/sputter if necessary. Make sure power and time settings are changed appro-

priately

17. When finished, turn off gas toggle (middle position) and gas valve on lid.

18. Turn the exhaust valve controller knob to the toggle setting, then flip the toggle to open

19. Once gas diminishes, power down (yellow switch) and close hi vac valve

20. Open vent valve and remove sample once chamber fully vents.

21. Pump chamber back up using roughing/high-vac procedure from above.
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APPENDIX B

PSGL-1 BIOTINYLATED MICROSPHERES

PSGL-1 was conjugated to microspheres using a Pierce EZ-LinkTM Sulfo-NHS-LC Biotinyla-

tion kit (Pierce 21435) according to the included instructions. Biotinylation was confirmed by

modifying superavidin functionlatized polystyrene microspheres (Bangs Labs CP01N) with

the conjugated protein. Microspheres were then labeled with Anti-human PSGL-1/CD162-

Alexa Fluor 488 (R&D Systems FAB9961G) and quantified using flow cytometry.

Figure B1: Flow cytometry of Alexa Fluor 488 anti-PSGL-1 labeled microspheres shows

strong signal from PSGL-1 modified microspheres, indicating that the ligand is successfully

bound to the beads in high concentrations.
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Procedure for Conjugation of Biotinylated PSGL-1 to Streptavidin Beads

(C. Edington - 5/1/13)

Biotinylation of Protein (PSGL-1/Fc Chimera - R&D Systems)

1. Refer to the instructions from ThermoScientific for the EZ-LinkTM Sulfo-NHS-LC Bi-

otinylation Kit (#21435) for calculations and warnings. Read this document thoroughly.

Refer to Excel Document Superavidin Microsphere Coverage.xlsx for calculations.

2. 50 µg of PSGL-1/Fc Chimera can coat:

a. 2.63 mL of 10.14 µm beads at complete coverage (6.3M sites/bead)

b. 1,650 mL of 10.14 µm beads at 10,000 sites/bead

c. 11.6 µL of 0.22 µm beads at complete coverage (14.6K sites/bead)

d. 16.9 µL of 0.22 µm beads at 10,000 sites/bead

e. The volumes above are for 1%wt solids (original concentration)

3. Remove the vial of Sulfo-NHS-LC-Biotin from freezer and equilibrate it to room temper-

ature before opening in step 5.

4. Remove the vial of PSGL-1/Fc chimera from the freezer and equilibrate to room tem-

perature.

5. Buffer Exchange (small volumes)

a. For small volumes (10-150 µL), use a 7k MW cutoff mini Slide-a-lyzer tube, and per-

form buffer exchange and reactions in the same tube. For larger volumes (0.5-2mL)

use Zeba Spin desalting columns included with the biotinylation kit (see Section C

for Zeba instructions).

b. Presoak the dialysis tube in 1 L of MiliQ water for 15 minutes to remove any glycerol

and other contaminants.

c. Reconstitute the 50 µg vial of PSGL-1/Fc in 100 µL of sterile filtered PBS (pH

7.2-8.0) to achieve 0.5 mg/mL concentration. Transfer entire volume to the dialysis

tube.

d. Dialyze for 60 minutes in 250 mL of sterile PBS by suspending the Slide-a-Lyzer

above the dialysate with the bottom membrane in contact with the solution. This

can be done with a plastic float or by clamping the tube in place with a ring stand.

The buffer exchange is needed to remove the Tris and NaCl in the lyophilized protein.
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If the volume level of the sample is lower than the level of dialysate, hydrostatic

pressure will force dialysate into the unit, diluting the sample.

6. Immediately before use, prepare 10mM Sulfo-NHS-LC-Biotin by dissolving 4.4 mg in 800

µL ultrapure water.

7. Add the appropriate volume of Sulfo-NHS-LC-Biotin solution

a. For 50 µg of 105.2 kDa MW homodimer PSGL-1/Fc, use 1.5 µL of Sulfo-NHS solu-

tion is required to achieve the recommended 20-fold molar excess.

b. Incubate reaction for 60 minutes at room temperature (or 2 hr on ice)

8. Repeat the buffer exchange from step 4 to remove excess biotin reagent. Collect sample

from dialysis unit and store at 2-8 degrees until use.

9. Estimation of biotin incorporation can be performed following the instructions from the

biotinylation kit, but this will consume at least 20 µL of biotinylated protein.

Combination with streptavidin coated microspheres

1. Allow microsphere suspension to come to room temperature, then vortex for 20 seconds

prior to use.

2. Prepare wash buffer: 0.1M PBS, pH 7.4 (same buffer as used in biotinylation procedure)

3. Wash an aliquot of microspheres (see above) 3 times with a 10x volume of wash buffer

each time.

a. Centrifuge 10 µm microspheres at 1,200 x g for 15 minutes

b. Remove supernatant and resuspend pellet in appropriate volume of wash buffer

c. For 0.2 µm beads, centrifugation is not possible. These beads should be dialyzed

overnight using 100K MWCO dialysis tubing or a Slide-a-lyzer cassette. Wash the

membrane thoroughly in ultrapure water prior to use.

4. Resuspend the final pellet in wash buffer to a concentration of 0.05% solids (0.5 mg/mL)

which is 20x the original volume.

5. To this solution, add your biotinylated IgG that has been dissolved in the same buffer.

See above for appropriate volumes.

6. Incubate at room temperature (22◦C) for 60 minutes with gentle mixing.

7. Wash the particles 3 times with another 10X volume of wash buffer (step 3)
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8. Resuspend antibody-coated beads in 0.1 M PBS, pH 7.4, to desired storage concentration

(often 0.5 mg/mL).

9. Store at 2-8◦C

Technical Resources

• ThermoScientific Instructions for EZ-Link Sulfo-NHS-LC-Biotinylation Kit (#21435)

• Bangs Labs Product Data Sheet 721 - ProActive Streptavidin Coated Microspheres

• Bangs Labs TechNote 203 - “Washing Microspheres”

• Excel Document - “Superavidin Microsphere Coverage.xlsx”

• Certificates of Analysis for microspheres, PSGL-1/Fc (R&D #3345-PS-050), and biotiny-

lation kit.
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APPENDIX C

CALCULATION OF THE VELOCITY PROFILE IN A LAMINAR FLOW

MICROFLUIDIC CHANNEL

Calculation of the velocity profile within the microfluidic channel was critical to determining

cell height. Overhead brightfield imaging did not allow quantitative determination of cell

position, but velocity was easily acquired using automated tracking. By calculating the

predicted hydrodynamic velocity for a given height, we could correlate cell speed with vertical

position.

Using an online pressure drop calculator (www.pipeflowcalculations.com) we established

that the pressure drop in the channel is 174.55 Pa when flow rate Q = 0.25 µL/min. Channels

were rectangular in cross-section, with dimensions 12 mm long, 0.03 mm high, and 1.2 mm

wide. For laminar, no slip, incompressible flow, the hydrodynamic velocity vx(y) as a function

of height is given by:

vx(y) =
G

2µ
y(d− y) (C.1)

with G = dP
dx

= 174.55 Pa
12mm

, viscosity µ = 0.001006 Pa · s and d = 0.03 mm. The maximum

hydrodynamic velocity, for a flow rate of 0.25 µL/min, is thus found to be 162.7 µm
s

, with a

distribution according to Figure C1.
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Figure C1: MATLAB plot of velocity profile within a laminar flow channel.
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APPENDIX D

TWO PHOTON POLYMERIZATION OF SU-8 MNP COMPOSITES

For SU-8 samples, poor adhesion to the glass substrates posed a serious challenge, and we

obtained the best results using an adhesion layer of hard-baked SU-8 2000.5. The adhesion

layer was spun at 3000 rpm for 30 seconds, then baked for 10 minutes at 200◦C (10◦C/min

ramp). SU-8 composites were then drop-cast onto the surface and soft-baked for 25 minutes

at 95◦C. Following TPP they were post-baked for 20 minutes at 95◦C and developed for 10

minutes in PGMEA. Developed samples were submerged in 2-propanol for 1 minute to rinse,

then dried with N2.
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APPENDIX E

PARTICLE TRACKING AROUND SPINNING MICROSPHERES

Figure E1: Overlay of manually tracked particle paths on video frame of spinning micro-

spheres under flow.
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	1.1. PSGL-1 and P-selectin molecules. A, schematic diagram of PSGL-1. SH indicates the location of a cysteine that forms a disulfide bond with the corresponding cysteine on another PSGL-1 molecule to create the PSGL-1 homodimer. The epitopes for the anti-PSGL-1 mAbs PL1 and PL2 are marked. Not shown are the post-translationally added O-glycans, N-glycans, and tyrosine sulfates. B, schematic diagrams of native and recombinant P-selectin. mP-selectin contains an N-terminal C-type lectin domain, followed by an EGF-like domain, nine consensus repeats (CR), a transmembrane domain (TM), and a cytoplasmic domain (cyto). sP-selectin contains all of the extracellular domains. Lec-EGF contains only the lectin and EGF domains, plus a C-terminal extension that includes a factor Xa cleavage site and the epitope for the mAb HPC4. The epitopes for the anti-P-selectin mAbs G1 and S12 are shown. Reprinted with permission from ASBMB mehta1998affinity.
	1.2. Illustrations of white blood cell rolling under shear flow. Rapid association and dissociation of bonds allow transient tethering as the cell rolls along activated endothelial cells. Selectins and their ligands exhibit both ``catch'' and ``slip'' type bond formation depending on applied force. Reprinted from dong2000biomechanics, copyright 2000, with permission from Elsevier.
	1.3. Illustrations by A. Waller (c. 1846). The tongue of a frog was spread thin to allow observation of blood capillaries via transmission microscopy. In these experiments he observed cell sticking, rolling, and extravasation, laying the groundwork for later studies on cell motility across the endothelium. Reprinted from waller1846xliv, public domain.
	1.4. The basic concept of soft lithography. A photo-mask is used to transfer a pattern to a layer of photoresist on a silicon wafer. After development, that resist can be used to form the microfluidic channels when PDMS is poured over the mold, or the wafer can be etched to create a negative impression of the pattern in the silicon. The cured PDMS can be peeled off of the mold, oxidized, and bonded to an additional piece of PDMS or glass to form closed channels. Reproduced with permission from whitesides2001flexible. Copyright 2001, American Institute of Physics.
	1.5. Microfluidic technologies for cell sorting and separation take advantage of intrinsic differences in their biopyhsical properties. (a) Continuous kinetic methods depend on the rate of cell deflection perpendicular to the channel. (b) Continuous equilibrium methods involve migration to property-dependent equilibrium positions. (c) Elution methods depend on forces antiparallel to flow to create differential retention. Reprinted with permission from gossett2010label. Copyright 2010, Analytical and Bioanalytical Chemistry.
	1.6. General concept of 3D printing two-photon polymerization. The area in which the laser power is high enough to initiate polymerization is known as the voxel. Typically ellipsoid in shape, the height dx and cross-section dxy of the voxel depend on laser power and beam focus. Adapted from jipa2013femtosecond, open source license under Creative Commons 3.0.
	1.7. Miniature of the Brandenburg Gate, written by means of Nanoscribe's Photonic Professional GT system. © Nanoscribe. Image reprinted with permission NanoscribeGate.
	2.1. Modeling by Alexeev et al. indicates that chemically or mechanically patterned substrates (left and right respectively) with regions of sharply distinct adhesiveness can redirect rolling vessicles by generating asymmetrical strains that alter the energy landscape, leading to motion toward the centerline of the stripes and perpendicular to the direction of flow. Snapshots above show strain on a capsule and substrate as the capsule encounters sticky areas. Lines on the substrate indicate the boundary of an adhesive patch. Deformation of the capsule at the boundary enhance the contact area with the substrate. Adapted with permission from Alexeev2007. Copyright 2007 American Chemical Society.
	2.2. Predicted trajectories of the centers of mass for capsules of differing compliancy on (a) chemically and (b) mechanically patterned substrates. Stripe angle is 45 and rolling direction is left to right. Adapted with permission from Alexeev2007. Copyright 2007 American Chemical Society.
	2.3. Artistic rendition of the microfluidic device used in this study. The device was designed with the capability to sort cells using patterned stripes of P-selectin, although sorting effectiveness has not yet been studied. Angled stripes on either side of the channel direct rolling cells (blue) toward the center pathway where they are collected as they exit the device. Cells that do not interact with the surface or do not express P-selectin glycoprotein ligand-1 (red) follow the direction of flow and exit through the two side channels. Reprinted with permission from edingtontailoring2011. Copyright 2011 American Chemical Society.
	2.4. An overview of the process for fabricating the microfluidic cell sorter shown in Figure 2.3. Striped patterns are achieved by depositing gold using sputtering and a negative photoresist lift-off technique. Oxygen plasma bonding is then used to seal a PDMS channel to the glass substrate. After applying a fluorinated agent to block non-specific interactions, P-selectin is covalently attached to the gold stripes patelimmobilization1997. Reprinted with permission from edingtontailoring2011. Copyright 2011 American Chemical Society.
	2.5. The normalized binding response of PSGL-1 to P-selectin covalently bound to the gold surface of a surface plasmon resonance sensor. Binding was performed with EDC/NHS chemistry (direct amine coupling), and nonlinear curve fitting was used to calculate the predicted response based on a 334 nM KD from literature mehta1998affinity. Calculated KD was 314.4 nM.
	2.6. Characterization of the physical and chemical patterning of the cytotactic surface. Scanning electron microscopy (a,b) shows that the stripes are patterned at a high resolution with well-defined edges. Control chambers (c) exhibit high amounts of nonspecific binding in the central channel. Chambers modified with blocking agent and P-selectin (d) demonstrated a significant reduction in nonspecific binding and visible patterning of the fluorescent microspheres, indicating that P-selectin was confined to the gold stripes. Reprinted with permission from edingtontailoring2011. Copyright 2011 American Chemical Society.
	2.7. Percentage of cells exhibiting cytotactic behavior, defined as a velocity below 50% of the hydrodynamic velocity. Because many of the interacting cells only appeared to interact with a single stripe before detaching and becoming free-flowing, we also classified the subset of cells that interacted multiple times. The percentage of total cells exhibiting behavior indicative of a single cytotactic interaction (black) was higher in chambers modified with P-selectin. Chambers with blocking agent showed an increased likelihood of repeated interactions (gray). Almost no instances of multiple interactions were observed on chambers without P-selectin. (N = 3477 cells). Reprinted with permission from edingtontailoring2011. Copyright 2011 American Chemical Society.
	2.8. Behaviors of interacting and noninteracting cells were visibly different. A representative path of an interacting cell (a) and a noninteracting cell (b) are magnified to demonstrate the rolling behavior and direction of fluid flow (left to right), respectively. By combining the paths of multiple cells from a single video file, the average path they take over a single stripe can be plotted. The mean of this path is shown in red, with black lines representing one standard deviation from the mean. Average paths for interacting (c) and noninteracting (d) cells are shown ((c) n = 6 cells, 92 data points; (d) n = 9 cells, 96 data points). Reprinted with permission from edingtontailoring2011. Copyright 2011 American Chemical Society.
	2.9. Plots of displacement versus time for the five states of adhesion identified by Chang (left) and sample plots of similar behavior identified in our cell tracking videos (right). The five states are no adhesion (a), fast adhesion (b), transient adhesion (c), firm adhesion (d), and saltation (e). These behaviors represent different dynamic states of adhesion mediated by the biophysical and kinetic properties of the system. Left figure copyright (2000) National Academy of Sciences, U.S.A. changstate2000. Reprinted with permission from edingtontailoring2011. Copyright 2011 American Chemical Society.
	2.10. Schematic of a channel used for sorting cells based on membrane stiffness. The stripes patterned in the PDMS ceiling of the channel forced cells though a gap of height h that was varied depending on stiffness. SEM images and experimental setup are also shown. (E) shows sorting of untreated K562 cells (green) and 2 M cytochalasin D softened K562 cells (blue). Adapted from wang2013stiffness, open access PLOS ONE.
	3.1. Flowchart of the different components of the tracking program, with subroutines grouped by language. Arrows indicate the flow of information, and main processes are bolded.
	3.2. Scoring region around a cell located at index (x,y)=(0,0), giving preference to cells moving from left to right with the direction of fluid flow. Units for both axes are in pixels.
	3.3. Screenshot of the tracking and analysis interface, with cell number and path overlaid onto the video file, selection tools (right-hand column), and analysis tools (top menus). Cell tracks and labels have been enhanced for readability.
	3.4. Overlay of a selection of cell trajectories on the background image. Inlay shows magnified portion of highlighted paths.
	3.5. Sample data showing cell displacement from initial starting position. Plotting lateral displacement from a common origin makes it easier to rapidly identify unusual behavior (1), interacting (14), and non-interacting cells (6, 12, 13).
	3.6. Automatic detection of gold/protein stripes is used to generate an averaged trajectory for one or more cells. Path in red shows the mean location of the cell on stripe and gap regions. Green lines show  SE.
	3.7. Velocity of HL-60 cells rolling on variable density (striped) patterns of P-selectin. Response appears triphasic with increasing shear stress. P-selectin incubation concentration was 70 nM. Data points are mean velocity  SE. N42 cells for each data point.
	4.1. EP and DEP. (a) Charged and neutral particle in a uniform electric field. The charged particle (left) feels an EP force, whereas the dipole induced in the uncharged particle (right) will not result in a net force (Fâ‹™=F+). (b) A neutral particle in a nonuniform electric field. The particle will experience a net force toward the electric-field maximum because the field magnitude is different at each end of the particle (Fâ‹™ <F+). Reprinted with permission from voldman2006electrical. Copyright 2006 Annual Reviews.
	4.2. Mathematical modeling of the Claussius-Mossatti factor as a function of frequency for THP-1 cells and red blood cells. Unique CM-factor curves allow the two cell types to be separated in regions where the CM-factor is positive for THP-1 cells and negative for RBCs (white arrows). Reprinted from sano2011modeling, with permission from Elsevier.
	4.3. Three dimensional model of the simple microfluidic channel being modeled in IES COULOMB(left). Gray area represents PDMS (1.5 mm thick), light blue is pyrex glass (0.5 mm thick), and dark blue is fluid (30 m channel height). The internal channel is visible in the translucent wireframe cross-section on the right. Automatic meshing of boundary elements in preparation for modeling (right).
	4.4. Models of 3D printed filters designed to concentrate cells toward the substrate (left, vertical filter) or move cells horizontally in response to their height in the channel (right, horizontal filter). The interior of the vertical filter slopes downward to guide particles too large to fit through the 5x5 m rectangular channels. The horizontal filter makes it easier to query the height of cells when viewing from overhead.
	4.5. Isocontours of the z-component of electric field (V/cm) within the channel. Strong geometric effects occur in the corners of the channel, but the field remains highly uniform across the middle 90%.
	4.6. The total E-field magnitude (black) and x-, y-, z-components (red, blue, green, respectively) along the length of the channel. Measured along a line equidistant between the channel walls, floor, and ceiling. The z-component is the primary contributor to the total field magnitude, and maintains a consistent strength of 7 V/cm between D=2 mm and D=10 mm, which is the area beneath the plates, and encompasses most of the channel length.
	4.7. Histogram of cell velocity distribution. Cell velocities without an applied field (blue) were distributed around the predicted maximum hydrodynamic velocity (B) that was calculated in APPENDIX C. Green and orange regions show the shift in predicted velocity in the event of 10% error in flow rate or channel height (respectively). With an applied potential of 30 V, predicted to generate a field of 7 V/cm inside the channel, cell velocities (red) were significantly slower and more tightly grouped, as would be expected for a focused distribution. They also centered nicely around the predicted hydrodynamic velocity 5 m (or 1 cell radius) from the channel floor (A).
	4.8. Smoothed histogram of average cell speed with (red dashed line) and without (black solid line) an electric field. Experiment was conducted with 10-fold diluted PBS, made isotonic with sucrose. Flow rate is 0.5 L/min, plate potential 30 V. This data is representative of 90% of results.
	4.9. SEM image of the entry way of the particle filter designed to force cells closer to the substrate. Entrance is 28 m in height, and exit is 12 m tall, the average diameter of an HL-60 cell.
	4.10. Time-lapse projection of 5 m polystyrene beads flowing through printed filters. Fluid flow is left-to-right. Lower outlets show particles in the upper half of the channel (A). Some particles are small enough to exit prematurely through the printed channels (B). The majority of particles appear to exit through the upper outlets, indicating that they are in the bottom 50% of the channel (C).
	4.11. Time-lapse projection of HL-60 cells flowing through printed filters. Fluid flow is left to right. The visible bubbles were trapped during gluing of the thin glass substrate to a microscope slide, and are not inside the fluid channel. Cells flowing through the horizontal filter are concentrated into discrete flow lines.
	4.12. Microfluidic channel for contactless dielectrophoretic separation of cells. Fluidic electrodes are isolated from sample flow by 20 m PDMS walls. Sawtooth geometry increases capacitively coupled electric field, thereby increasing cDEP forces on cells. Reprinted from elvington2013label, open access JOVE Creative Commons.
	4.13. Fabrication and operation of the first long-range, low-voltage, contactless DEP device. Electrodes are not integrated into the channel layer, and operate with electrode spacing of more than 2 mm, using 1-3 V. Frequencies of 100 kHz to 1 MHz were used to successfully separate red blood cells from whole blood in a capillary driven flow channel. Adapted from figures 1 and 2 from chen2014microfluidic with permission of the Royal Society of Chemistry.
	4.14. Microsieves printed in etched glass channels with pore diameters of 5.5 Î¼m (a), 5 Î¼m (b), 4 Î¼m (c), and 3.5 Î¼m (d) respectively. Results of microparticle sieving with the 4 m pore size shown in (e), (f), and (g). Adapted from wang2010embellishment with permission of the Royal Society of Chemistry (RSC).
	4.15. Crossing manifold micromixers (CMMs) in microchannels, both fabricated from SU-8 resist. Adapted from lim2011three with permission of the Royal Society of Chemistry (RSC).
	5.1. Tangential fluid velocity around a rotating microsphere. Adapted with permission from ye2012micro. Copyright 2012, AIP Publishing LLC.
	5.2. Free body diagram of a spherical micro-object in contact with the substrate, within the rotational flows induced by a spinning micro-robot. Viewed along the radial axis, ignoring radial and vertical fluidic drag forces. The microscopic roughness on the object and the substrate is enlarged. Adapted with permission from ye2012micro. Copyright 2012, AIP Publishing LLC.
	5.3. Calculated focal intensity distribution of a typical writing spot. (a) Iso-intensity surfaces. The profiles along the two black lines are depicted in b) and c). (b) Lateral profiles of E2 (red) and E4 (purple) correspond to one-photon exposure and two-photon exposure, respectively. (c) Axial profiles of E2 (red) and E4 (purple). The horizontal lines in b) and c) correspond to the iso-intensity values of the surfaces in a). Adapted with permission from fischer2013three. Copyright 2013, John Wiley and Sons.
	5.4. Schematic of TPP operation using ORMOCOMPphotoresist to fabricate helical microstructures. Adapted from qiu2014noncytotoxic with permission of the Royal Society of Chemistry.
	5.5. (a) Four orthogonally oriented iron-core electromagnets are used to generate an in-plane uniform magnetic field. (b) A vertically placed solenoid is used to generate an out-of-plane uniform magnetic field. (c) The workspace in the center of the solenoid is 40 mm in diameter. (d) The coil current is controlled with an Arduino Uno microcontroller board. (e) The samples are imaged using a 20x or 32x objective in an inverted phase contrast microscope (Axio Observer, Carl Zeiss). (f) Images of the samples were captured at 19 frames per second with a CCD digital camera (QICAM 12-bit, QImaging). (g) A desktop computer with the custom user interface communicates with the microcontroller board for real-time adjustment of magnetic field parameters. Reproduced from ye2014trap with permission of the Royal Society of Chemistry.
	5.6. AutoCAD design of masks for microfluidic channel (blue outline) and magnetic docks (red circles). The narrow inlet (upper left inlet) concentrates particles along the top of the channel. The docks are arranged to allow spinning microrobots to hand off captured particles, moving them through the buffer flow (lower left inlet) and toward successively lower outlets (right).
	5.7. Plot of the lateral location of the fluid interface between the wide and narrow inlets. The narrow inlet was designated the ``top'' of the channel, with the wide, buffer inlet at the ``bottom''. A power fit shows good agreement with the experimental data, allowing us to predict the inlet flows needed to locate the interface at any given dock on the substrate.
	5.8. Diagram of the different forces influencing the motion of a microparticle under laminar flow (Uf).
	5.9. The microfluidic channel was modeled as a rectilinear block with dimensions of 1000m (length)  100m (width)  60m (height) with three spheres each of a diameter of 20m located at the center of its length.
	5.10. Streamlines were taken on the equatorial plane of the spheres at z =  10m. a) Gap size = 0.3 radius of sphere (R). b) Gap size = 0.5R. b) Gap size = 0.7R. b) Gap size = 0.9R. b) Gap size = 1.1R. b) Gap size = 1.3R. The short blue solid dash indicates how much flow is compressed through the gap.
	5.11. Profile of fluid velocity at z =  10m, with varying gap-to-wall ratios as a function of microsphere radius R.
	5.12. Streamlines were taken on the equatorial plane of the spheres at z =  10m. For a)–c), the vertical separation was fixed at 2.5R while horizontal separation varied from 1.5R for a), 2R for b) to 2.5R for c). For d)–f), the horizontal separation was fixed at 1R while vertical separation varied from 2.5R for d), 3R for e) to 3.5R for f).
	5.13. The micro-robot was modeled as a 30m-in-diameter sphere placed on top of a dock with an outer diameter of 30m and a thickness of 500nm.
	5.14. a) Bz varied while magnetization of the micro-robot and the relative permeability of dock were kept constant at 50 kA/m and 100, respectively. b) The relative permeability of dock varied while Bz and magnetization of the micro-robot were kept constant at 4mT and 50 kA/m, respectively. c) Magnetization of the micro-robot varied while Bz and relative permeability of the dock were kept constant at 4mT and 100, respectively.
	5.15. Bz, relative permeability of the dock and magnetization of the micro-robot were kept constant at 4mT, 100 and 50 kA/m, respectively. Lateral misalignments were normalized by radius of the robot. a) Influence on the interactive force in z-direction (Fz) b) Influence on the interactive force in radial direction (Fct).
	5.16. Sample SEM image of the line test used to characterize writing parameters. Sample is IP-G resist containing 1 vol.% magnetite MNPs. Lines are written with increasing power from left to right, bottom to top, in a snaking fashion, with power changing in 2% increments from 0-100%. On the left-hand side, lines are missing (A) or poorly polymerized (B) due to insufficient power and poor adhesion. On the right, excessive power caused localized heating, monomer degradation, and gas formation that destroyed the feature resolution (C).
	5.17. Brightfield microscopy of 3D printed microrobots in water. Various structures were designed: (A) corkscrew, (B) spinning disk, (C) spinning bar, and (D) flagella/sputnik. Structures are printed in IP-G resist with 1 vol% Fe3O4 MNPs. Structures were well formed but could only spin at 1 Hz. Structures with 2% MNPs were poorly formed and failed to adhere properly to the substrate.
	5.18. AutoCAD model of subsection of magnetic docking arrays, showing donut shaped docks with 1 diameter spacing. Diameters are labeled on the substrate as inner/outer diameter in microns. Brightfield microscope inset of sputtered nickel dock with 30/90 m dimensions (lower right).
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