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Chronic elevated nitrogen (N) deposition can lead to ecosystem N saturation, which is theorized 

to occur when N supply exceeds biological demand and excess N leaches to receiving waters.  

This research examined the post-depositional fate and transport of atmospheric nitrate in 

Appalachian forests across spatial and temporal scales by characterizing the nitrate stable 

isotopic composition (δ15N, δ18O, and Δ17O) of precipitation, soil water, and streams.  D ata 

indicate that elevated N deposition does not saturate biological demand; rather, N processing 

becomes more extensive as N availability increases.  Along a regional N deposition gradient 

(North Carolina to New Hampshire), mean proportions of atmospheric nitrate in streams were 

inversely related to long-term annual average nitrate deposition.  Stream nitrate concentrations 

were also negatively correlated to the proportion of atmospheric nitrate in streams (R2=0.23; 

p<0.05).  Similar relationships occurred along an N saturation gradient in four watersheds at 

Fernow Experimental Forest (West Virginia).  The most N-saturated watershed had the highest 

stream nitrate concentrations (mean=3.7 mg L-1) but the lowest proportions of atmospheric 

nitrate in the stream (mean=5%).  C onversely, the stream in the N-limited watershed had the 

lowest nitrate concentrations (mean=0.0 mg L-1) and the highest proportions of atmospheric 

nitrate (mean=42% among samples with sufficient nitrate for isotope analysis).  H igh spatial 

variability of nitrate sources in one watershed at Fernow (WS4) suggests a decoupling of source 
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dynamics across spatial scales.  Proportions of atmospheric nitrate in soil solution ranged from 

zero to 96% across WS4, but consistently low proportions of atmospheric nitrate in the stream 

suggest that watershed areas with high proportions of atmospheric nitrate may not contribute 

significantly to the stream.  S torm event water and nitrate isotope data support this idea, 

indicating transient hydrologic flowpaths from hillslopes to the stream during storms.  Although 

these transient flowpaths resulted in a wide range of mean event water contributions to 

stormflow (6% to 34%) during events, the maximum proportion of atmospheric nitrate in 

stormflow was only 8%.  These trends in nitrate source contributions to streams along gradients 

of space, time, N deposition, and N saturation suggest that the widely-accepted mechanisms of 

nitrogen saturation require reevaluation.   
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1.0  INTRODUCTION 

Forested watersheds worldwide are currently exhibiting symptoms of nitrogen (N) saturation, 

largely due to decades of chronic elevated atmospheric N deposition [Flum and Nodvin, 1995; 

Mitchell et al., 1997; Aber et al., 2003; Van der Salm et al., 2007; Dise et al., 2009; Koba et al., 

2012].  As nitrogen oxides (NOx= NO + NO2) from coal-fired power plants and vehicles are 

emitted to the atmosphere, oxidation reactions convert this NOx to atmospheric nitrate (NO3
-) 

which is deposited onto landscapes as wet and dry atmospheric deposition [Elliott et al., 2007, 

2009].  Deposition of atmospheric nitrate is particularly prevalent in the eastern U.S., as NOx 

emissions from coal-fired power plants concentrated in the Midwest and Ohio River Valley are 

oxidized to nitrate and carried eastward.  Although atmospheric N deposition rates have been 

declining in recent decades (Figure 1.1), the legacy effects of long-term elevated N deposition 

can be significant.  Indeed, while surface water acidity has decreased in some parts of the eastern 

U.S., surface water in other areas remains acidic despite significant reductions in sulfate and 

nitrate deposition [Dewalle et al., 1988; Driscoll et al., 2001; Webb et al., 2004].   
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Figure 1.1. Annual average wet nitrate (a, b, c) and inorganic nitrogen (d, e, f) deposition rates at National 

Atmospheric Deposition Program monitoring sites from 1985 to 2012. 

 (maps accessed on 19 June 2014 [National Atmospheric Deposition Program, 2014]). 

 



   

 

 3 

In forested systems, the two main sources of nitrate are atmospheric deposition and 

nitrate produced in the soil through microbial nitrification.  Nitrate produced through nitrification 

does not necessarily represent a s ource of new N to ecosystems; rather, it r esults from the 

microbial conversion of organic N (from vegetation and microbial pools) to inorganic forms— 

first through mineralization to ammonium, then through subsequent oxidation to nitrate during 

nitrification.  In contrast, atmospheric deposition constitutes a source of external N to an 

ecosystem, as it is  derived from allochthonous sources (with the exception of biogenic NOx 

emissions, which may also undergo oxidation to form atmospheric nitrate).  While the addition 

of N via atmospheric deposition has been linked to elevated stream nitrate export in forested 

systems [Aber et al., 2003], mineralization of organic N can be substantial, resulting in greater 

nitrate concentrations in streams relative to deposition [Stoddard, 1994].  The ability to 

distinguish between microbial and atmospheric contributions to stream nitrate export is therefore 

critical to understanding the biological and physical processes that affect N transport within 

terrestrial systems and from terrestrial to aquatic systems [Sebestyen et al., 2008]. 

When vegetation and soil sinks cannot fully assimilate ecosystem N supply, nitrogen 

saturation can result, with excess nitrate leaching to streams [Ågren and Bosatta, 1988; Church, 

1997; Aber et al., 1998; Lovett and Goodale, 2011].  The early stages of N saturation can result 

in a “f ertilizer effect”, yielding increased net primary productivity, increased foliar N 

concentrations, and increased N mineralization rates [Ågren and Bosatta, 1988; Aber et al., 

1998].  However, more severe symptoms of N saturation may develop as continued deposition 

adds more N to the system, including reduced soil C:N ratios and increased nitrification rates; 

these have been linked to elevated nitrate leaching to streams [Ågren and Bosatta, 1988; Aber et 

al., 1998].  Increasing concentrations and decreased seasonality of stream nitrate are 
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characteristic signals that an ecosystem is approaching or has already become N-saturated 

[Stoddard, 1994].   

Numerous studies have attempted to characterize ecosystem responses to chronic 

elevated N inputs [Mitchell et al., 1997; Aber et al., 2003; Driscoll et al., 2003; Pardo et al., 

2006; Dise et al., 2009; Argerich et al., 2013].  These studies generally reported higher stream 

nitrate concentrations at sites receiving elevated rates of atmospheric N deposition.  Long-term 

records of atmospheric N inputs at National Atmospheric Deposition Program (NADP) sites 

across the U.S. (e.g., Figure 1.1), paired with long-term records of watershed discharge and 

stream chemistry from a variety of long-term monitoring sites such as USDA Forest Service 

Experimental Forests have been essential to improving our understanding of watershed-scale 

biogeochemical responses to anthropogenic N inputs.  In addition, intensive research at 

numerous sites has focused on N biogeochemical dynamics at the sub-watershed scale such as N 

mineralization and nitrification rates, soil C:N ratios, and N cycling in vegetation [Todd et al., 

1975; Peterjohn et al., 1996; Gilliam et al., 2001; Christ et al., 2002; Magill et al., 2004; Britto 

and Kronzucker, 2006; Clark and Tilman, 2008; Janssens et al., 2010; Brookshire et al., 2011; 

Argerich et al., 2013].   While these studies and others have produced a wealth of information on 

biological nitrogen cycling in N-affected systems, fewer studies have focused on the processing 

and export of nitrate from different sources to aquatic systems.  Characterization of atmospheric 

nitrate processing across spatial scales— and the biological and physical drivers affecting it— is 

necessary to accurately understand the effects of anthropogenic contributions to ecosystem N 

cycles.  Clarification of these relationships has important implications for the mitigation of 

nutrient export from landscapes and the protection of sensitive receiving waters. 
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1.1 STABLE ISOTOPES AS TRACERS OF BIOGEOCHEMICAL CYCLING 

Stable isotopes are often used in ecosystem studies to track the fate and transport of elements in 

natural systems.  Small mass differences between isotopes of an element cause different reaction 

rates during physical (e.g., evaporation), chemical (e.g., precipitation reactions), and biological 

(e.g., nitrification and denitrification) processes.  These differences affect the relative abundance 

of isotopes in substrates and their products.  For example, nitrifying bacteria preferentially 

assimilate the lighter 14N isotope of nitrogen rather than 15N because the smaller mass is less 

energetically expensive to biologically process.  This results in an isotopic fractionation between 

the ammonium substrate (which becomes enriched in 15N) and the nitrate product (which 

becomes enriched in 14N).  Based on such mass-dependent fractionations, stable isotopic analysis 

is used to evaluate ecosystem processes and track changes across environmental gradients 

[Kendall et al., 2007].  Stable isotopic compositions are typically reported as delta (δ) values (in 

parts per thousand, denoted by ‰) relative to a standard of known isotopic composition.  Delta 

values for nitrogen and oxygen are calculated as: 

 

δ N, δ O, and δ17O (‰) =  ��
Rsample

Rstandard
� −  1�  × 1000                              (Eq. 1) 

18
 

15  

 

where R is the ratio of the heavy isotope to the light isotope (e.g., 15N/14N, 18O/16O, and 17O/16O).  

As different sources often fractionate isotopes in unique ways, the isotopic composition of an 

element can be used alone or in combination with other elements to distinguish contributions 

from various sources (Figure 1.2).    
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Stable isotopes can also be fractionated via processes not dependent on mass; one such 

example is the anomalous enrichment of ozone (O3) in the 17O isotope [Cliff and Thiemens, 

1997].  This enrichment, which deviates from the expected mass-dependent relationship between 

Δ17O and δ18O (Δ17O = 0.52* δ18O), is denoted by Δ17O (Figure 1.3).  When NOx is oxidized to 

nitric acid via ozone, the anomalous 17O enrichment of ozone is passed on t o the nitric acid 

product.  T he mass-independent Δ17O isotope anomaly thus enters the nitrogen cycle through 

atmospheric nitrate, which has positive Δ17O values.  W hen atmospheric nitrate is affected by 

mass-dependent fractionating processes (such as biological uptake and cycling), the anomalous 

enrichment in 17O is lost and the Δ17O of nitrate value becomes 0‰ (or less).  Thus, positive 

Δ17O of nitrate values in natural waters indicate the presence of atmospheric nitrate that has not 

been biologically processed, making Δ17O an unambiguous and conservative tracer of 

unprocessed atmospheric nitrate in terrestrial systems.  
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Figure 1.2.  Commonly reported values of δ15N and δ18O of nitrate for various sources.   

Isotopic enrichment of the residual nitrate pool is depicted by the denitrification arrow.  The δ18O ranges for 

nitrified ammonium and organic N are shown as “nitrification” (modified from Kendall et al. [2007]). 
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Figure 1.3.  Triple isotope plot of δ18O, δ17O, and Δ17O. 

The mass-dependent and mass-independent relationships between δ18O and δ17O are shown for different 

nitrate sources (modified from Michalski et al. [2004]). 

1.2 STUDY SITE 

The research presented in this dissertation was conducted at the USDA Forest Service Fernow 

Experimental Forest near Parsons, West Virginia (39°05’ N, 79°40’ W).  T his site has an 

extensive history of hydrological and ecological research, including numerous studies examining 

N dynamics across spatial scales.  Fernow is located in the Allegheny Mountains portion of West 

Virginia (Figure 1.4), and elevations range from 670 t o 930 m with slopes averaging ~20% 

[Taylor, 1999].  Bedrock on the western side of Fernow is primarily composed of hard sandstone 

and softer shale of the Upper Devonian Hampshire Formation; little water storage occurs in these 

strata [Reinhart et al., 1963; Taylor, 1999; Kochenderfer, 2007].  Soils are channery silt loams of 
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the Calvin series (loamy-skeletal, mixed active, mesic typic Dystrudept), averaging 1 m in depth 

[Kochenderfer, 2007].  Infiltration rates in these soils are high and most precipitation reaches 

streams via subsurface flow [Reinhart et al., 1963].  On the eastern side of Fernow, bedrock is 

composed of non-marine sandstone and shale of the Mauch Chunk Group and limestone of the 

Greenbriar Formation.  The karst topography characterizing this portion of the Experimental 

Forest is unsuitable for watershed-scale water balance studies; the experimental watersheds are 

therefore concentrated on the western side of Fernow [Kochenderfer, 2007] (Figure 1.4).   

The dominant forest type at Fernow is mixed hardwood.  C ommon species include 

northern red oak (Quercus rubra), white oak (Q. alba), red maple (Acer rubrum), sugar maple 

(A. saccharum), tulip poplar (Liriodendron tulipifera) and black cherry (Prunus serotina).  The 

growing season extends from May through October, with leaves emerging in late April.  

Precipitation is evenly distributed throughout the year, averaging 145 cm; significant snowpack 

does not accumulate over long periods.  D uring high-intensity rain events, infiltration and 

streamflow are high, and streamflow falls off quickly during periods of low-intensity or no 

precipitation [Reinhart et al., 1963].  Atmospheric deposition is an important source of nitrate at 

Fernow, and nitrate comprised approximately 60% of inorganic wet N deposition (NO3
- + NH4

+) 

in 2010 [National Atmospheric Deposition Program, 2011]. 
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Figure 1.4.  Experimental watersheds within the larger boundary of the Fernow Experimental Forest (FEF).   

Contours are at a 30-meter spacing and black dots show the locations  of weirs in experimental watersheds.  

The black dot in the inset map shows the location of FEF in West Virginia (shown in grey). 

1.3 ATMOSPHERIC NITRATE PROCESSING AND TRANSPORT IN 

APPALACHIAN FORESTS 

This dissertation presents research examining the fate and transport of atmospheric nitrate 

deposition in forested watersheds of the Appalachian Mountain Range, using chemical and stable 

isotope analysis of precipitation, soil water, and stream water.  Through a synthesis and review 

of nitrate stable isotope source apportionment studies, Chapter 2 explores the roles of hydrologic, 
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topographic, and biogeochemical processes in the cycling of atmospheric nitrate within 

watersheds.  B y influencing hydrologic flowpaths and landscape-stream connectivity, the 

hydrological and geomorphological characteristics of watersheds can play important— and 

perhaps underappreciated— roles in determining the extent to which unprocessed atmospheric 

nitrate is exported to streams.  This chapter explores explanations for the small proportions of 

unprocessed atmospheric nitrate generally observed in baseflow in watersheds worldwide, 

identifies current knowledge gaps, and highlights areas where additional research is needed.   

Chapter 3 pr esents a comparison of atmospheric nitrate export dynamics in four 

watersheds at Fernow Experimental Forest.  Three hardwood-dominated stands and one conifer-

dominated stand were compared, with each watershed representing a particular stage of nitrogen 

saturation, ranging from Stage 0 (N-limited) to Stage 3 (severely N-saturated) [Aber et al., 1989].      

In Chapter 4, spatially-distributed measurements of soil water nitrate concentration and 

isotopic composition (δ15N, δ18O, and Δ17O of nitrate) are presented for Watershed 4 (WS4) at 

Fernow Experimental Forest.  S amples collected during several months in 2010 demonstrate 

highly variable contributions from nitrate sources across this watershed.  Potential drivers of the 

heterogeneous nitrate concentrations and sources observed in WS4 are explored in this chapter.  

Chapter 5 examines the intra-storm variability of precipitation nitrate stable isotopic 

composition during six growing season storms sampled during 2010 at Fernow Experimental 

Forest.  Hourly precipitation sampling facilitated this examination of high-temporal resolution 

variability in atmospheric nitrate isotopes.  While much attention in recent decades has focused 

on the ecological effects of long-term declines and seasonal fluctuations in atmospheric 

deposition, few studies have explored event-based variability in wet nitrate deposition.  T he 
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research presented in Chapter 5 represents the first characterization of intra-event precipitation 

nitrate isotope dynamics using triple nitrate isotopes (δ15N, δ18O, and Δ17O).   

As a corollary to the work presented in Chapter 5, C hapter 6 presents high-temporal 

resolution dynamics of stream nitrate export from various sources.  Stormflow was sampled 

throughout the hydrograph during three growing season events in WS4 at Fernow Experimental 

Forest during 2010.  In addition to characterizing the nitrate source dynamics in discharge during 

these storms, δ18O-H2O data provided important context on the role of hydrologic connectivity 

between watershed areas and the stream in facilitating nitrate export during storms.      

 Chapter 7 e xpands the examination of atmospheric nitrate transport and fate from the 

single-site level to a larger geographic context, spanning a ~1700 km nitrate deposition gradient 

along the Appalachian Mountain Range.  Nitrate concentrations and stable isotopic composition 

(δ15N, δ18O, and Δ17O) were measured in precipitation and streams on a monthly basis from 

August 2012 through July 2013 in reference watersheds at Coweeta (North Carolina), Fernow 

(West Virginia), and Hubbard Brook (New Hampshire) Experimental Forests.  These sites form 

a nitrogen deposition gradient with long-term (1982-2007) annual average nitrate deposition 

ranging from 11 kg ha-1 yr-1 to 17 kg ha-1 yr-1.   

 The research presented in this dissertation represents a novel examination of the effects of 

chronic elevated atmospheric nitrate deposition to forests and the variety of ecosystem responses 

observed in systems characterized as N-limited versus N-saturated.  Insights into the variability 

of atmospheric nitrate processing and transport to streams resulting from this work can 

contribute practical guidance on the relative influence of anthropogenic and natural N inputs in 

forested systems.  



   

 

 13 

2.0  DRIVERS OF ATMOSPHERIC NITRATE PROCESSING IN FORESTED 

WATERSHEDS 

2.1 INTRODUCTION 

Deposition of atmospheric nitrogen exceeds critical N loads in some ecosystems [Ågren and 

Bosatta, 1988; Fenn et al., 2008; Galloway et al., 2008; Pardo et al., 2011], which has been 

linked to elevated nitrogen export from forests worldwide [Aber et al., 1998; Galloway et al., 

2003].  Nitrogen saturation theory postulates that excess nitrate will leach from soils and 

landscapes when vegetation and soil sinks cannot assimilate additional N inputs [Ågren and 

Bosatta, 1988; Aber et al., 1989; Stoddard, 1994; Lovett and Goodale, 2011].  When ecosystem 

sinks are full, this represents capacity saturation, whereas kinetic saturation occurs when the rate 

of N delivery exceeds the ability of active sinks to take up added N [Lovett and Goodale, 2011].  

Several cross-site comparisons have examined the relationship between N deposition and nitrate 

export from forests [Mitchell et al., 1997; Aber et al., 2003; Driscoll et al., 2003; Pardo et al., 

2006; Dise et al., 2009; Argerich et al., 2013]. These studies generally have reported higher 

stream nitrate concentrations at locations where atmospheric N deposition has been elevated 

relative to minimally polluted ecosystems.  H owever, studies have rarely addressed the intra-

catchment processes that affect the transport and fate of atmospheric nitrate after deposition onto 

the landscape.  As mineralization of soil organic N is substantial in some systems, greater nitrate 
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concentrations in streams relative to deposition can occur [Stoddard, 1994], making the 

distinction between microbial and atmospheric nitrate sources in stream water important.  Such 

source differentiation has implications for nitrogen saturation theory, particularly in identifying 

capacity versus kinetic saturation.  Source differentiation can also provide novel detail about the 

biological and physical processes affecting N transport and fate within catchments [Sebestyen et 

al., 2008].  F or example, by influencing flowpaths and landscape-stream hydrologic 

connectivity, catchment structure and hydrology may play important— and perhaps 

underappreciated [Bain et al., 2012]— roles in determining the extent of atmospheric source 

contributions to stream nitrate.   

Previous studies have applied dual isotope (δ15N and δ18O) approaches to assess 

catchment-scale processing of atmospheric nitrate.  A s significant overlap exists between the 

ranges of δ15N values for microbial and atmospheric nitrate (the two main sources of nitrate to 

most forested systems), it has not been as useful in source apportionment [Kendall et al., 2007].  

Rather, δ15N-NO3
- has helped elucidate the importance of biological N processing (e.g. 

nitrification, denitrification, and uptake).  In contrast, the oxygen isotopic signatures of microbial 

and atmospheric nitrate are more distinct, making δ18O-NO3
- a valuable tool for distinguishing 

between sources [Kendall et al., 2007; Burns et al., 2009; Ohte et al., 2010].  Atmospheric δ18O-

NO3
- can range from +45‰ to +100‰, whereas values from nitrification range from -10‰ to 

+15‰ [Kendall et al., 2007].  When δ18O-NO3
- values in streams approach the range of δ18O-

NO3
- in precipitation, this indicates that deposition inputs are not biologically cycled prior to 

export from the terrestrial system [Kendall et al., 2007].  T he proportion of unprocessed 

atmospheric nitrate in stream water can be calculated using a two end-member mixing model 
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% NO3
−
atm =

δ O 18 − NO3 str
− −  δ O − NO3 nit

−
 

18

δ O − NO3 atm
−

 
18 −  δ O − NO3 nit

−
 

18  × 100                                    (Eq. 1) 

 

where the subscripts str, nit, and atm refer to nitrate in the stream, from the nitrification end-

member, and from the atmospheric end-member, respectively.  In addition, a newer isotopic 

technique exploits inherent differences in Δ17O (the 17O isotope excess) of nitrate from 

atmospheric and terrestrial sources; this technique is increasingly being adopted in terrestrial N 

cycling studies [Michalski et al., 2004; Tsunogai et al., 2010; Costa et al., 2011].   

Previous studies of forested catchments in the U.S., Asia, and Europe have demonstrated 

positive relationships between stream nitrate concentrations and atmospheric N deposition 

[Mitchell et al., 1997; Aber et al., 2003; Dise et al., 2009].  A t some sites in the northeastern 

U.S., nitrate concentrations in streams and lakes increased significantly when N deposition rates 

exceeded 8 kg N ha-1 yr-1 [Aber et al., 2003], whereas throughfall N in excess of 5 kg N ha-1 yr-1 

resulted in elevated N leaching at 50 sites across China [Fang et al., 2011a].  Higher thresholds 

were observed for European and Japanese forests, where N deposition rates in excess of ~10 kg 

N ha-1 yr-1 resulted in elevated nitrate leaching at some sites [Grennfelt and Hultberg, 1986; 

Mitchell et al., 1997].  While these relationships between N deposition and stream nitrate are 

noteworthy, these studies typically have not differentiated the contributions of atmospheric and 

microbial sources to stream nitrate.   

In contrast to mass balance-based approaches, stable isotope-based investigations have 

not demonstrated the same association between atmospheric nitrate inputs and outputs at the 

catchment scale.   Indeed, most isotope-based studies report only minor contributions of 

atmospheric nitrate to stream N export despite wide ranges in deposition fluxes (from 4 to 13 kg 
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N ha-1 yr-1), stream nitrate fluxes [Spoelstra et al., 2001; Williard et al., 2001; Burns and 

Kendall, 2002; Ohte et al., 2004; Pardo et al., 2004; Barnes et al., 2008; Tobari et al., 2010] and 

large proportions of atmospheric N observed in soil water [Templer and McCann, 2010].  These 

observations have implications for the current conceptualization of nitrogen saturation, as one of 

its central ideas holds that saturation occurs when N supply exceeds ecosystem demand [Aber et 

al., 1989; Stoddard, 1994].  Thus, an examination of the factors driving nitrate export from 

forested catchments that considers both biological and physical processes is warranted.  T his 

review focuses primarily on nitrate export from forest ecosystems, as the N saturation concept 

has been most widely addressed in studies of forested catchments (this is particularly true of 

isotope-based studies).  While the importance of biological factors (i.e. mineralization and 

nitrification rates, species composition, stand age) is well recognized, less emphasis has been 

placed on ot her potential drivers of atmospheric N export to streams including catchment 

hydrology, landscape characteristics, and the synchrony of atmospheric N inputs and exports.  

Here we explore major drivers that influence atmospheric nitrate transport in catchments via a 

review of the literature on ni trate source apportionment, and address knowledge gaps and 

highlight prospects for future experiments, observations, and interdisciplinary research. 
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2.2 MAJOR DRIVERS INFLUENCING ATMOSPHERIC NITRATE TRANSPORT 

IN WATERSHEDS 

A number of isotope-based studies have examined nitrogen biogeochemical cycling in forests 

worldwide (Table 2.1; Table 2.2).  Many of these studies have demonstrated that unprocessed 

atmospheric nitrate constitutes only a small proportion of the total nitrate (grand mean of all 

mean atmospheric nitrate percentages reported in Table 2 = 10%) measured in streams primarily 

during baseflow, regardless of deposition rates, nitrate export rates, or presumed degree of forest 

N saturation (Figure 2.1; Table 2.2).  Notable exceptions to these low proportions of atmospheric 

nitrate in streams have been reported during sampling of higher streamflows such as snowmelt 

and storms [Williard et al., 2001; Ohte et al., 2004; Pellerin et al., 2012; Sebestyen et al., 2014].  

The high retention of atmospheric deposition indicated by baseflow nitrate isotopic composition 

suggests that:  1 ) nitrate isotope data can be used to assess the extent of atmospheric N 

processing by biota with far less sampling and on much shorter time scales than traditional mass 

balance approaches; and 2) factors other than biological processing can influence atmospheric 

nitrate export to streams.  While biological drivers do play an important role in determining the 

proportion of atmospheric nitrate present in streams, other influential factors include physical 

characteristics of catchments and methodological biases related to particular isotope analysis 

approaches.   
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Table 2.1.  Site descriptions, nitrogen deposition and precipitation characteristics, and methods of nitrate isotope determination.   
NA= data not available 

Study Site Forest Type Analytical Method for 
Isotope 

Determination 

Total Wet NO3
--N 

Deposition 
(kg ha-1yr-1) 

Total Annual  
Average  

Precipitation (mm) 

% of Precip  
as Snow 

Barnes 
2008 

CT & MA 
(USA) 

HW/Conif 
 

Denitrifier 1.4 1140 10 

Buda 
2009 

Central PA 
(USA) 

Mixed HW Silver nitrate NA 1043 NA 

Burns 
2002 

Catskills 
NY (USA) 

HW/Conif Silver nitrate 4.2 1530 20-25 

Campbell 
2006 

Adirondacks 
NY (USA) 

Mixed HW Silver nitrate 3.2 1035 47 

Goodale 
2009 

Upper Susquehanna  
NY (USA) 

HW/Conif Denitrifier 3.6 932 NA 

Mitchell 
2006 

Adirondacks 
NY (USA) 

HW/Conif Silver 
Nitrate 

3.2 1010 47 

Ohte 
2004 

Sleepers River 
VT (USA) 

Mixed HW Denitrifier 3.5 1323 20-30 

Pardo 
2004 

Hubbard Brook 
NH (USA) 

Mixed HW Silver nitrate 3.6 1395 25-33 

Pellerin 
2012 

Sleepers River 
VT (USA) 

Mixed HW Denitrifier 3.3 1323 20-30 

Piatek 
2005 

Adirondacks 
NY (USA) 

HW/Conif Silver 
nitrate 

3.2 1010 47 

Sebestyen 
2008 

Sleepers River 
VT (USA) 

Mixed HW Denitrifier 3.5 1323 20-30 

Sebestyen 
2014 

Sleepers River 
VT (USA) 

Mixed HW Denitrifier 3.5 1323 20-30 

Spoelstra 
2001 

Turkey Lakes 
(Canada) 

Mixed HW Silver nitrate NA 1239 35 
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Table 2.1 (continued) 

Study Site Forest Type Analytical 
Method 

Total Wet NO3
--N 

Deposition  
(kg ha-1yr-1) 

Total Annual 
Average 

Precipitation (mm) 

% of Precip  
as Snow 

Tobari 
2010 

Gomadansan 
Exper. For. 

(Japan) 

Japanese 
cedar/cypress 

Denitrifier 7.0 2650 NA 

Tsunogai 
2010 

Rishiri Island 
(Japan) 

HW/Conif Cd/azide  
reduction to N2O 

4.5 NA NA 

Williard 
2001 

Fernow 4 
WV (USA) 

Mixed HW Silver 
nitrate 

4.6 1458 14 

Williard 
2001 

Fernow 10 
WV (USA) 

Mixed HW Silver 
nitrate 

4.6 1458 14 

Williard 
2001 

Otter Run 
WV (USA) 

Mixed HW Silver 
nitrate 

4.6 1458 14 

Williard 
2001 

Salamander Run 
WV (USA) 

Mixed HW Silver 
nitrate 

4.6 1458 14 

Williard 
2001 

W. Three Spring 
WV (USA) 

Mixed HW Silver 
nitrate 

4.6 1458 14 

Williard 
2001 

Karly Spring 
WV (USA) 

Mixed HW Silver 
nitrate 

4.6 1458 14 
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Table 2.2.  Nitrate end-member δ15N and δ18O values and estimation methods, and fraction of atmospheric nitrate in streams.   
Values represent reported mean (range);  NA = data not available 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Nitrification End-member Atmospheric End-
member 

   δ15N-NO3
- (‰) δ18O-NO3

- (‰)  

Study δ18O-NO3
- 

Value (‰) 
Estimation  

Method 
δ18O-NO3

-  
Estimation Method 

Atm Stream Atm Stream % NO3
-
atm 

in streams 
Barnes 
2008 

-4 
 

Lowest baseflow 
NO3

-value 
Avg. of storm  

event precipitation 
-2 NA 

(0 to +6) 
+71 

(+50 to +84) 
NA 

(-4 to +10) 
12 

(0 to 25) 

Buda 
2009 

+5 
(0 to +14) 

Mean baseflow 
NO3

-value 
Avg. of storm  

event precipitation 
0 NA +44 

(+12 to +70) 
NA NA 

(0 to 33) 

Burns 
2002 

+15 
(+13 to 

+16) 

Incubated 
soil cores 

Avg. of snowmelt, 
throughfall, wet 

deposition 

0 +2 
(-1 to +4) 

+51 
(+35 to +70) 

+18 
(+8 to +30) 

8 
(1 to 55) 

Campbell 
2006 

0 to +3 δ18O of soil  
water and O2  

Avg. of biweekly  
bulk precipitation  

0 +1 
(0 to +2) 

+80 
(+66 to +90) 

NA 
(0 to +14) 

<10 

Goodale 
2009 

-6 to +2 δ18O of soil  
water and O2  

Avg. of weekly  
bulk precipitation 

-1 
(-3 to +2) 

NA 
(-2 to +6) 

+77 
(+71 to +81) 

NA 
(-7 to +34) 

NA 
(4 to 53) 

Mitchell 
2006 

NA NA Throughfall NA 
(-6 to +6) 

NA 
(+1 to +4) 

NA 
(+58 to +77) 

NA 
(-5 to +4) 

0 

Ohte 
2004 

-11 to +21 Groundwater 
NO3

- value 
Weekly & event  

wet-only precipitation 
NA NA 

(+1 to +4) 
NA 

(+78 to +89) 
NA 

(-8 to +18) 
9 

(0.5 to 26) 

Pardo 
2004 

-5 to +15 δ18O of soil  
water and O2  

Weekly bulk  
precipitation 

-2 
(-5 to +2) 

0 
(-3 to +6 ) 

+62 
(+46 to +75) 

+18 
(+12 to +33) 

NA 
(0 to 45) 

Pellerin 
2012 

-3 Mean groundwater 
NO3

- value from 
2004 

Avg. of snowmelt  
from 2004 

NA NA +86 
(+77 to +96) 

+3 
(-3 to +10) 

7 
(0 to 15) 

Piatek  
2005 

NA NA Snowmelt, throughfall,  
wet deposition 

+1 
(-6 to +3) 

+1 
(-6 to +3) 

+72 
(+58 to +80) 

+10 
(+6 to +16) 

NA 

Sebestyen 
2008 

-2 to +2 Groundwater 
NO3

- value 
Weekly & event  

wet-only precipitation 
NA 

(-4 to +3) 
NA 

(0 to +7) 
NA 

(+76 to +101) 
NA 

(-5 to +43) 
13 

(0.4 to 48) 
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Table 2.2 (continued)

         Nitrification End-member Atmospheric End-member       δ15N-NO3
- (‰)            δ18O-NO3

- (‰)  
Study δ18O-NO3

- 
Value (‰) 

Estimation  
Method 

Estimation Method Atm Stream Atm Stream % NO3
-
atm in 

streams 
Sebestyen 

 2014 
-4 to +1 Groundwater or soil 

water NO3
- value 

Event wet-only 
precipitation 

NA +2 NA 
(+70 to +101) 

NA 
(-1 to +32) 

NA 
(0 to 33) 

Spoelstra 
2001 

-1 
(-6 to +5) 

δ18O of soil  
water and O2 

Mass-wt. avg. of biweekly 
bulk precipitation 

-2 
(-4 to +1) 

NA 
(+1 to +6) 

+50 
(+35 to +59) 

NA 
(+3 to +15) 

20 
(8 to 30) 

Tobari 
2010 

-16 Lowest baseflow 
NO3

-value 
Avg. of bulk rainfall +3 

(-7 to +15) 
+3 

(-3 to +10) 
+64 

(+43 to +76) 
+5 

(-16 to +38) 
26 

(11 to 45) 

Tsunogai 
2010 

0 Assumed value  
for Δ17O method 

Avg. of daily  
wet deposition 

-1 +2 
(-4 to +9) 

+87 
Δ17O-NO3

-=+26 
+3 

(-2 to +18) 
7  

(using Δ17O) 

Williard 
2001 

(Fernow 4) 

+10 Incubated 
Soil cores 

Avg. of annual or  
monthly throughfall 

NA NA +56 
(+50 to +60) 

+5 
(+3 to +9) 

3 
(0 to 11) 

Williard 
2001 

(Fernow 10) 

+7 Incubated 
soil cores 

Avg. of annual or  
monthly throughfall 

NA NA +56 
(+50 to +60) 

+7 
(+2 to +14) 

7 
(0 to 21) 

Williard 
2001 

(Otter Run) 

+14 Incubated  
soil cores 

Avg. of annual or  
monthly throughfall 

NA NA +56 
(+50 to +60) 

+10 
(+2 to +15) 

13 
(0 to 23) 

Williard 
2001 

(Salamander Run) 

+12 Incubated  
soil cores 

Avg. of annual or  
monthly throughfall 

NA NA +56 
(+50 to +60) 

+10 
(+6 to +12) 

12 
(5 to 19) 

Williard 
2001 

(W. Three 
Spring) 

+3 Incubated  
soil cores 

Avg. of annual or  
monthly throughfall 

NA NA +56 
(+50 to +60) 

+7 
(+3to +11) 

7 
(0 to 17) 

Williard 
2001 

(Karly Run) 

+8 Incubated  
soil cores 

Avg. of annual or  
monthly throughfall 

NA NA +56 
(+50 to +60) 

+4 
(+1 to +6) 

2 
(0 to 7) 
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Figure 2.1. Percent atmospheric nitrate (NO3
-atm) in streams as reported in various catchment-scale isotope 

tracer studies. 

Data were obtained from values reported in publications or were extracted from published figures using 

g3data software (http://frantz.fi/s software/g3data.php; [Bauer and Reynolds, 2008; Snider et al., 2010]).  Grey 

bars represent reported ranges of NO3
-
atm in streams for each study.  So lid circles represent average %     

NO3
-
atm during the entire study period; this may represent a combination of baseflow and quickflow 

(snowmelt and stormflow).  Solid triangles represent average % NO3
-
atm reported for baseflow only.  Open 

triangles show the maximum reported % NO3
-
atm in quickflow.  For emphasis, the bold line represents 10% 

NO3
-
atm in streams. 

 

2.2.1 Methodological Biases 

Due to the potential importance of this source of bias in interpreting atmospheric nitrate 

dynamics in catchments, we focus first on methodological biases.  Examples of methodological 

biases include those related to the timing and frequency of sample collection, as well as 

analytical approaches that may influence estimated contributions of atmospheric nitrate to 

streams. 
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2.2.1.1 Frequency, Seasonality, and Scale of Sample Collection 

Given that atmospheric N delivery to streams varies over time scales as short as individual 

hydrologic events, the frequency and seasonality of sample collection strongly influences data 

interpretation, particularly in catchments with fast hydrologic response times.  Some studies have 

attributed the small amounts of unprocessed atmospheric nitrate in streams to low sampling 

frequency during snowmelt events [Pardo et al., 2004; Piatek et al., 2005].   In other cases, 

heterogeneity in atmospheric nitrate delivery to streams occurs on longer time scales.  Indeed, 

the largest atmospheric nitrate inputs to streams have been measured during hydrologic 

conditions that are seasonal (e.g. snowmelt and monsoon events) [Sebestyen et al., 2008; Fang et 

al., 2011a; Pellerin et al., 2012].  As a result, seasonal sampling biases can also influence the 

perceived importance of atmospheric nitrate export to streams. 

 Sampling scale and can also influence interpretations of atmospheric nitrate export 

dynamics.  A nalysis of a subset of the studies presented in Table 2.1 demonstrates this point 

(Figure 2.2).  The data presented in Figure 2.2 are from forested catchments, undisturbed for at 

least 40 years prior to the study period, where sample collection occurred on a  bi-monthly or 

monthly basis for at least one full year.  While the studies shown in Figure 2.2 reflect relatively 

minor inorganic N and NO3
--N deposition gradients, in both cases declining proportions of 

atmospheric nitrate in streams with increasing N deposition suggest that chronic elevated 

atmospheric N inputs may result in greater export of microbial nitrate in streams.  Similarly, the 

proportion of atmospheric nitrate in streams decreases with increasing average 
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Figure 2.2.  Relationship of average percent atmospheric nitrate in streams to (a) long-term (1984 to the study 

year) average total wet inorganic N deposition, (b) long-term (1984 to the study year) average total wet NO3
--

N deposition, and (c) annual average total precipitation (for study years only) at sites across the northeastern 

U.S. and eastern Canada. 

Average annual precipitation, total N, and total NO3
--N deposition were calculated from the nearest National 

Atmospheric Deposition Program site (less than 70 km away for all sites).  A verage values incorporate a 

range of hydrologic conditions, as all studies were conducted for more than one year (with bimonthly or 

monthly sampling).  (d) The relationship between average percent atmospheric nitrate in streams and total 

wet NO3
--N deposition during individual storm events measured at Sleepers River Research Watershed.   

 

 

total precipitation among these sites (Figure 2.2c).  In contrast, examination of a similar 

relationship at a s ingle site (Watershed 9 at Sleepers River Research Watershed) and over a 

shorter temporal scale (i.e. individual storm events) shows the opposite trend (Figure 2.2d).  
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Increasing proportions of atmospheric nitrate in the stream at Sleepers River with increasing wet 

NO3
--N deposition during storms may be due to the occurrence of saturated overland flow that 

has been observed at this site [Sebestyen et al., 2008, 2014] .  These examples demonstrate the 

potential dependence of perceived atmospheric nitrate export dynamics on the spatial and 

temporal scales at which the nitrate deposition-export relationship is examined.        

 It is not always possible to control for certain types of sampling biases across sites, but 

they should be acknowledged nevertheless.  For example, snowmelt events account for a large 

proportion of annual water and nutrient budgets at some sites [Sebestyen et al., 2008] but can be 

less important  in other catchments [Barnes et al., 2008].  The synchrony of seasonal patterns of 

atmospheric deposition and biological uptake also influences nitrate transport to streams.  

Seasonal differences in peak nitrate export among catchments (e.g., during dormant season 

snowmelt in the northeastern U.S. and the summer monsoon season in Japan) exemplify the 

reasons why timing and frequency of sampling must be considered.  The paucity of nitrate 

isotope data from summer and autumn stormflow may particularly bias our assessment of 

unprocessed atmospheric nitrate contributions to streams.  T o date, few publications have 

documented substantial inputs of stream nitrate from unprocessed atmospheric sources outside of 

snowmelt [Williard et al., 2001; Sebestyen et al., 2014].   

2.2.1.2 Analytical Biases 

Multi-isotope approaches are emerging as new techniques for the estimation of unprocessed 

atmospheric nitrate export and evaluation of nitrogen processing in catchments.  Until the last 

several years, natural abundance isotopic studies relied primarily on δ18O-NO3
- to differentiate 

atmospheric and microbial sources in natural waters.  However, isotopic analyses that coupled 
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sample preparation using silver nitrate with sealed glass tube combustion analytical methods 

often resulted in abnormally high nitrification and low atmospheric δ18O end-member values 

[Revesz and Böhlke, 2002].  Additionally, high concentrations of dissolved organic matter biased 

results using the silver nitrate method [Chang et al., 1999; Casciotti et al., 2002].  More recently, 

the bacterial denitrifier method has become a preferred and accepted approach for dual nitrate 

isotopic analysis; this method is not subject to the same biases as the combustion-based methods 

[Sigman et al., 2001; Casciotti et al., 2002].  Xue et al. [2010] compared δ18O-NO3
- values in 

surface waters analyzed using both techniques, and concluded that the silver nitrate- and 

denitrifier-derived results were highly correlated and generally statistically comparable.  

However, no precipitation samples were analyzed by Xue et al. [2010] and the range of δ18O-

NO3
- values in their study was -19‰ to +31‰;  it is unclear whether analysis of precipitation 

nitrate samples would show the same degree of correlation between analytical methods.  

δ18O-NO3
- has frequently been used to differentiate atmospheric and microbial N sources, as 

their ranges are generally considered distinct.  However, δ18O-NO3
- data from an increasing 

number of studies has widened the ranges of both microbial and atmospheric isotopic signatures, 

making δ18O-based source apportionment more challenging.  This is particularly evident when 

theoretical end-member isotopic values have been accepted to be true rather than directly 

measured.  This often occurs with respect to designation of the nitrification end-member value, 

which has been variously estimated using baseflow, soil water, or groundwater δ18O-NO3
- 

values, or from an “expected” isotope value based on assumed or measured δ18O values of soil 

water and O2 and the assumed ratio of oxygen atoms contributed from each during nitrification 

(Table 2.2;Figure 2.3). Such differences in the method of estimation can lead to substantial 

uncertainties in the nitrification end-member value.  Direct measurement of nitrate source 
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isotopic composition of both precipitation and nitrification end-members provides a higher 

degree of certainty that apportionment values represent reasonable estimates of unprocessed 

atmospheric nitrate inputs.  Conversely, large ranges of microbial and atmospheric nitrate isotope 

values have resulted in greater uncertainties when isotope values have been assumed rather than 

measured [Michalski et al., 2004].  Adding to this uncertainty is the potential influence of abotic 

oxygen exchange between nitrite and soil water during nitrification.  Depending on the degree to 

which it occurs in forest soils, abiotic oxygen exchange may alter the δ18O-NO3
- value of the 

microbial nitrate end-member [Snider et al., 2010], potentially erroneously inflating estimates of 

microbial source contributions to stream nitrate.  However, it is  unclear to what extent abiotic 

oxygen exchange occurs in natural settings, as this process has so far only been evaluated in 

laboratory settings.  I n addition, Snider et al. [2010] observed decreasing fractions of abiotic 

oxygen exchange with increasing net nitrification in laboratory incubation experiments.  Spatial 

variability in net nitrification rates (both within individual catchments and among different sites) 

may therefore also influence the degree to which this abiotic process affects microbial end-

member δ18O-NO3
- values.     
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Figure 2.3.  Estimated δ18O-NO3
- means (black dots) and ranges (shaded areas) for (a) atmospheric and (b) 

microbial nitrate end-members using various analytical techniques. 

Studies using the silver nitrate/combustion method generally report lower atmospheric nitrate δ18O values 

than studies using the denitrifier method.  Soil incubation approaches to estimating microbial end-member 

δ18O-NO3
- values generally report higher values than studies that estimate the microbial end-member value 

using a stream, soil, or groundwater δ18O-NO3
- value or that calculate a theoretical end-member value based 

on the assumption of two oxygen atoms contributed to the nitrate molecule from soil water and one oxygen 

contributed from O2.  The wide ranges of potential microbial and atmospheric nitrate end-member values 

presented in some studies can lead to considerable uncertainty in the calculated proportion of atmospheric 

nitrate in streams.  
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Source apportionment can be further complicated by mass-dependent fractionation of 

δ18O-NO3
-, particularly during biological processes such as denitrification or coupled 

nitrification and denitrification.  Such fractionating processes can enrich the δ18O of residual 

nitrate pools, thereby complicating data interpretation [Kendall et al., 2007].  As the 

fractionation due to biological transformation is often difficult to quantify and is not constant 

through time [Koba et al., 1997, 2012 ], the isotopic fractionation inherent in such biological 

processes must be considered in interpretations of dual nitrate isotope data.  M ore recently, 

Δ17O-NO3
- — a mass-independent tracer of atmospheric nitrate — has been increasingly adopted 

in addition to δ18O analysis.  O xygen atom exchange during biological processes such as 

assimilation and denitrification erases the Δ17O signature of the original atmospheric nitrate; 

Δ17O is not fractionated by those processes. It therefore serves as a conservative tracer of 

unprocessed atmospheric nitrate contributions to streams.  Indeed, one major advantage of 

combining δ18O and Δ17O analyses is the potential for a w ealth of process-based information 

such an approach provides.  The difference between stream δ18O-NO3
- values and the δ18O-NO3

- 

values of atmospheric deposition indicates the degree of atmospheric nitrate processing.  In 

contrast, Δ17O-NO3
- values provide information about the proportion of unprocessed atmospheric 

nitrate present in stream water.  The distinction between δ18O- and Δ17O-based interpretations is 

subtle, yet important to consider as each provides unique information about ecosystem processes.  

In addition, Δ17O-NO3
- analysis circumvents uncertainty in the estimation of microbial 

nitrification end-member values arising from differences in analytical approaches (i.e., silver 

nitrate/combustion versus bacterial denitrifier methods; Table 2.2), as the absence of mass-

independent 17O isotope enrichment in microbial nitrate sets this end-member Δ17O value to 

zero. 
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As the Δ17O-NO3
- approach is relatively new, few studies have applied it to questions in 

catchment biogeochemistry.  Based on Δ17O-NO3
- measurements in precipitation and discharge 

waters (spring, lake, and stream water), Tsunogai et al. [2010] estimated that ~9% of deposited 

atmospheric nitrate was exported without biological processing.  Costa et al. [2011] used Δ17O-

NO3
- measurements in a northern hardwood forest to determine that on average, 9% of soil 

solution nitrate originated from atmospheric deposition.  In a semi-arid ecosystem, Michalski et 

al. [2004] reported large proportions of unprocessed atmospheric nitrate (20-40%) during 

stormflow, and smaller proportions (3-8%) in baseflow.  They also quantified the difference in 

estimated atmospheric nitrate contributions to streams using both δ18O and Δ17O analyses.  I n 

that study, δ18O-based estimates ranged from 40% less to 10% more than estimated contributions 

based on Δ17O analysis.  The disparity between δ18O- and Δ17O-based estimates of atmospheric 

nitrate export exemplifies the importance of careful interpretation of δ18O and Δ17O data to 

ensure that conclusions about the influence of biological versus depositional processes are 

accurate.   

2.2.2 Biological Drivers 

2.2.2.1 Terrestrial Nitrogen Processing 

Most studies of atmospheric nitrate deposition to forested catchments have focused on t he 

influence of biology, particularly uptake and cycling of atmospheric N by vegetation and 

microbes.  Important insights have been gained from such work, including species-level 

responses to N deposition [Templer and Dawson, 2004; Templer et al., 2005; McNeil et al., 

2007; Clark and Tilman, 2008], functional responses of microbial communities to atmospheric N 
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inputs [Tietema, 1998; Corre and Lamersdorf, 2004; Frey et al., 2004], and a better appreciation 

of the spatially heterogeneous response of these biological drivers to atmospheric N deposition  

[Lovett et al., 2002; McNeil et al., 2007; Costa et al., 2011].  

Forest characteristics, such as stand age and species composition, play an important role 

in nitrogen transport from terrestrial to aquatic systems [Vitousek and Reiners, 1975; Lovett et 

al., 2002, 2004] .  However, among the few studies comparing N dynamics in catchments with 

differing forest type (e.g., coniferous vs. deciduous), most have focused on nitrate concentrations 

rather than isotopic compositions of litterfall, soil solution, or stream water.  Research 

approaches that employ only concentration measurements do not differentiate nitrate sources, the 

degree to which atmospheric N inputs are biologically cycled, or whether species composition 

influences atmospheric N uptake.  In a comparison of N leaching in 21 deciduous and 37 

coniferous forests across Europe, Van der Salm et al. [2007] found no effect of forest type on the 

relationship between N deposition and soil N leaching.  Conversely, microbial nitrate production 

was nine times greater in a hardwood forest than a conifer forest at the Fernow Experimental 

Forest (West Virginia, USA), where the N deposition was ~12 kg ha -1 [Kelly et al., 2011].  

However, neither study distinguished between atmospheric and within-catchment nitrate sources.  

Durka et al. [1994] conducted one of the few studies to employ a dual nitrate isotope approach to 

examine unprocessed atmospheric nitrate export from coniferous forests.  Lower proportions of 

atmospheric nitrate were observed in streams draining healthy Norway spruce plantations than in 

stands that were already in a deposition-induced state of decline [Durka et al., 1994], but a direct 

comparison to hardwood forests was not possible because their study did not include deciduous 

species.   
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In some cases, forest age may exert a strong influence on e cosystem retention of 

atmospheric inputs and the proportion of atmospheric nitrate in streams.  Tobari et al. [2010] 

observed greater proportions of atmospheric nitrate in streams draining stands of Japanese cedar 

(Cryptomeria japonica) and cypress (Chamaecyparis obtusa) older than 25 years.  Low total N 

uptake  in a younger stands led to higher nitrate concentrations and fractions of atmospheric 

nitrate exported to streams, while proportions of atmospheric nitrate in streams were lower in 

younger stands due to greater contributions from microbial sources [Tobari et al., 2010].   

The nutrient demands of microbes and vegetation, as well as abiotic incorporation into 

soil organic matter, influence how atmospheric N inputs are cycled and immobilized in 

catchments.  Uptake and conversion of dissolved nitrogen from inorganic to organic forms by 

vegetation and microbes explains the high rates of nitrate retention in some systems [Aber et al., 

1998], while other studies have demonstrated that the plasticity of microbial C:N ratios can exert 

significant control on ecosystem N dynamics [Perakis et al., 2005; Taylor and Townsend, 2010].  

Perakis et al. [2005] calculated that the decrease in microbial biomass C:N ratios from 8.4 to 4.8 

following  experimental N additions would yield a 40% increase in soil organic matter N storage 

in a co astal old-growth forest in Chile.  Other studies have also reported high rates of nitrate 

assimilation and sequestration in microbial biomass [Davidson, 1992; Stark and Hart, 1997], 

highlighting the importance of the overall N availability in catchments to nitrate retention in 

general, and  retention of atmospheric N inputs in particular [Ågren and Bosatta, 1988].    

Denitrification also influences catchment N retention and nitrate export to streams, and 

has been measured along subsurface flowpaths, as well as within streams and hyporheic zones 

[Böhlke and Denver, 1995; Seitzinger et al., 2006; Inamdar et al., 2009; Osaka et al., 2010; 

Zarnetske et al., 2011].  Denitrification is sensitive to the balance between hydrologic conditions 
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and redox state, and can be minimal even when the supply of nitrate is ample [Cirmo and 

McDonnell, 1997; Hedin et al., 1998; Vidon et al., 2010].  Hill et al. [2000] reported greater 

denitrification in riparian subsurface sediments where nitrate-rich groundwater flowed through 

pockets of dissolved organic carbon-rich microsites.  Low denitrification rates have also been 

attributed to shorter water residence times and lower organic matter contents in coarser 

sediments [Vidon and Hill, 2004].  T hus, while vegetation and soil microbial communities 

consume nitrate, the importance of these biological controls may ultimately be regulated by 

hydrologic conditions.   

The degree of biological processing varies with distance and depth along soil water and 

groundwater flowpaths [Gold et al., 2001; Inamdar et al., 2009].  U nprocessed atmospheric 

nitrate has been found in both shallow groundwater [Nolan et al., 2002; Osaka et al., 2010] and 

in the deeper groundwater of arid systems [Michalski et al., 2004; Dejwakh et al., 2012].  Durka 

et al. [1994] found unprocessed atmospheric nitrate in spring waters, suggesting the presence of 

unprocessed atmospheric nitrate along groundwater flowpaths.  Osaka et al. [2010] reported 

decreasing nitrate concentrations and increasing δ15N-NO3
- with depth in a headwater catchment, 

suggesting more denitrification along deeper flowpaths.  Interestingly, δ15N values of stream 

nitrate fell between those of the shallow and deep groundwater nitrate, suggesting mixing from 

two different flowpaths and the imprint of denitrification on nitrate export to the stream [Koba et 

al., 1997; Osaka et al., 2010].   

2.2.2.2 In-stream Nitrogen Processing 

In-stream uptake and processing can strongly influence the amount of nitrate exported to the 

catchment outlet, and potentially the fraction of atmospheric nitrate observed in the stream.  
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Sebestyen et al. [2014] suggested that decreased in-stream nitrification coupled with greater 

heterotrophic nitrate uptake during autumn leaf fall contributed to declining nitrate 

concentrations and yields at the catchment outlet in W-9 at Sleepers River Research Watershed 

in Vermont (USA).  Campbell et al. [2002] reported little change in the proportions of 

atmospheric and microbial nitrate in stream water during summer snowmelt in an alpine forest, 

despite a reduction in stream nitrate concentrations.  The decline in stream nitrate concentrations 

was partially attributed to in-stream uptake; however, differential elution of snowpack solutes 

and temporal variability in soil nitrate flushing also reduced stream nitrate concentration while 

maintaining the relatively constant proportions of atmospheric and microbial nitrate in the 

stream.   

The importance of in-stream uptake and processing on catchment-scale nitrate export is 

not limited to event or seasonal time scales, but has been observed on decadal time scales 

[Bernhardt et al., 2005] and for several years following catastrophic disturbance [Bernhardt et 

al., 2003].  Longitudinal variability of in-stream processes (such as denitrification), coupled with 

spatially variable nitrate inputs from groundwater, can also affect the magnitude and sources of 

nitrate export observed at the catchment outlet [Burns, 1998].  Indeed, Burns [1998] suggested 

that differential in-stream nitrate processing among catchments receiving similar amounts of 

atmospheric N deposition could contribute to differences in stream nitrate concentrations.  Thus, 

the complexity of interactions among terrestrial and aquatic N biogeochemical cycles can 

influence catchment nitrate export in general and the proportion of atmospheric nitrate in streams 

specifically.                  
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2.2.2.3 Phase of Nitrogen Deposition and Synchrony with Biological Processing 

While the amount of atmospheric nitrate in wet deposition has often been implicated in the 

development of forest N saturation, the phase (wet vs. dry) and timing of atmospheric nitrate 

inputs may influence the degree to which it is biologically cycled within catchments.  In a study 

of dry nitrate deposition in Ohio, Pennsylvania, and New York, Elliott et al. [2009] reported 

positive correlations between stationary source NOx emissions (e.g., electricity generation) and 

particulate nitrate concentrations during all seasons except summer.  P referential formation of 

particulate nitrate at lower temperatures, combined with increased stationary source NOx 

emission rates during colder months [Elliott et al., 2009], may cause higher rates of dry nitrate 

deposition across the northeastern U.S. during the dormant season.  T he ways in which this 

potentially significant source of N— dry deposition constitutes up to 40% of the total N 

deposition in some areas [Elliott et al., 2009]— interacts with hydrologic and climatic drivers 

may profoundly affect the degree to which atmospheric nitrate is biologically cycled or 

transported directly to streams.   

Vegetation canopies are highly effective scavengers of dry N deposition, with nitric acid 

(HNO3) vapor comprising nearly 50% of annual average atmospheric nitrate flux to canopies in 

the southeastern U.S. [Lindberg et al., 1986].  Dry deposition is a particularly important N source 

in western U.S. forests, where it dominates total N deposition and is scavenged (i.e. deposited 

onto leaf surfaces) with great efficiency by conifer-dominated stands [Bytnerowicz and Fenn, 

1996; Fenn et al., 2003].  S uch interactions between vegetation canopies and dry deposition 

often yield throughfall N inputs in excess of those observed in bulk deposition [De Schrijver et 

al., 2007], potentially altering the temporal dynamics of N deposition and stream nitrate export. 
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Synchrony between atmospheric N deposition and biological uptake can influence nitrate 

isotopic values in stream water.  In the U.S., dormant season hydrologic events associated with 

snowmelt runoff often contribute large proportions of unprocessed atmospheric nitrate to streams 

[Spoelstra et al., 2001; Sebestyen et al., 2008; Goodale et al., 2009].  Catchment-scale studies in 

monsoonal climates such as Japan also report increased proportions of unprocessed atmospheric 

nitrate in streams during winter, but overall nitrate export is greatest during the growing season, 

when production and consumption of microbial nitrate is also greatest [Mitchell et al., 1997; 

Ohte et al., 2010; Fang et al., 2011a; Nakamura et al., 2011; Ohte, 2012; Kohzu et al., 2013].  

As the growing season coincides with the rainy season in Japan, the greater nitrate export 

observed during this season likely reflects the combined influence of increased microbial nitrate 

production and high water drainage [Mitchell et al., 1997; Mitchell, 2001].  In a study of forested 

catchments near Tokyo, Tabayashi and Koba [2011] reported higher stream nitrate 

concentrations and δ18O-NO3
- values in areas receiving elevated N deposition inputs; however, 

maximum δ18O-NO3
- values only reached +6‰.  They showed that microbial sources dominated 

stream nitrate, including catchments exporting the most nitrate.  These studies point to increased 

rates of nitrate export from forests under conditions of greater microbial nitrate production (as 

regulated by factors such as soil temperature, moisture, and carbon and nitrogen availability 

[Stark and Firestone, 1995; Stark, 1996; Taylor and Townsend, 2010]), high atmospheric 

deposition rates, and peak precipitation inputs.  Further investigations comparing δ15N and δ18O 

of nitrate in Asian, North American, and European catchments can help elucidate the roles that 

synchrony among N deposition, biology, and hydrology play in determining the proportion of 

atmospheric nitrate observed in forest streams.  For example, it is possible that the coincidence 

of hydrologic events (e.g. monsoons) and biological activity in some catchments may result in 
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greater atmospheric N processing prior to N export.  C onversely, short transit times of 

atmospheric deposition through terrestrial systems during the rainy season or asynchrony 

between biological activity and hydrologic events (e.g. snowmelt) may preclude extensive 

biological processing and yield greater proportions of unprocessed atmospheric nitrate in 

streams.   

Other studies have reported no seasonal trends in atmospheric nitrate export.  Pardo et 

al.[2004] observed similar proportions of atmospheric nitrate in streams during both the winter 

and non-winter months in a mixed hardwood catchment in the northeastern USA.  The authors 

attributed this pattern to short hydrologic residence times on steep hillslopes and significant 

storage capacity in well-mixed subsurface reservoirs that dampened seasonal differences in 

stream water nitrate isotopic signatures.  Cirmo and McDonnell [1997] suggested that increased 

litter decomposition at the end of the growing season could create a significant dissolved 

inorganic N pool in soils.  Subsequent flushing during dormant season hydrologic events may 

result in elevated stream nitrate concentrations [Ohte, 2012], but not necessarily increased 

proportions of atmospheric nitrate.  However, Sebestyen et al. [2014] reported a s ignificant 

decline in stream nitrate concentrations during the end of the growing season, with assimilatory 

nitrate uptake and decreased rates of in-stream nitrification responsible for the retention of up to 

72% of nitrate entering the stream. 
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2.2.3 Physical Drivers 

A variety of physical factors can influence estimated contributions of atmospheric nitrate to 

streams draining N-polluted forests.  T he hydrologic regime of a catchment and its landscape 

characteristics are particularly important drivers of nitrate transport dynamics.   

2.2.3.1 Hydrologic Regime 

Given the commonality across many studies of low mean proportions of atmospheric nitrate in 

streams, particularly in baseflow (Table 2.2; Figure 2.1), it is important to consider the influence 

of catchment hydrologic regime on biological processing of deposition inputs.  If processing is 

more rapid than transport, then only minor contributions of unprocessed atmospheric nitrate to 

streams can result [Hales et al., 2007; Osaka et al., 2010].  Helliwell et al. [2007] suggested that 

rapid hydrologic routing likely outweighs N retention in steep watersheds, whereas greater soil 

water residence times in watersheds with shallower slopes increase soil N pools and enhance 

nitrification.  Lower saturated hydraulic conductivities and greater soil thickness resulted in 

greater hydrologic residence times in old (4.1 million years) Hawaiian soils, thereby impeding 

nitrate leaching and increasing the opportunity for biological uptake and retention [Lohse and 

Matson, 2005].  In contrast, short hydrologic residence times in a younger (300-year-old) 

Hawaiian soil facilitated rapid and large losses of added nitrate following precipitation events; 

limited contact time between soils and drainage waters prevented plant and microbial retention 

of added N  [Lohse and Matson, 2005].  While this study did not characterize the sources of 

nitrate leached to streams specifically, the results demonstrate the potential for hydrologic 

residence times to influence the degree of biological processing and kinetic and/or capacity N 



   

 

 39 

saturation within catchments, with implications for the export of unprocessed atmospheric 

nitrate.   

Water and nitrate can be quickly routed to streams along preferential flowpaths during 

rain and snowmelt events in some systems [McGlynn et al., 1999; Burns et al., 2001; Sebestyen 

et al., 2008] with the potential for elevated atmospheric nitrate export.   In other systems, event 

water and nitrate may be initially incorporated into well-mixed groundwater reservoirs, with 

export to the stream delayed [Schiff et al., 2002; Pardo et al., 2004], although this speculation 

has not been validated through measurement of nitrate isotopes along deeper subsurface 

flowpaths.  Burns and Kendall [2002] reported small proportions of atmospheric nitrate (< 9%) 

in baseflow from streams draining two forested catchments in the Catskill Mountains (USA), but 

the occurrence of a s torm event with a 10-year recurrence interval during the study resulted in 

large contributions of atmospheric nitrate (55%) to stormflow.  T hese results provide further 

evidence that variations in hydrologic flowpaths influence the connectivity of catchment areas to 

the stream and exert control on the export of atmospheric nitrate.  The influence of catchment 

hydrologic condition on t he proportion of unprocessed atmospheric nitrate in streams is 

demonstrated in Figure 2.1.   

Relationships between streamflow and δ18O-NO3
- values during baseflow and 

stormflow/snowmelt periods at several sites are shown in Figure 2.4.  While the relationship 

between baseflow discharge rate and δ18O-NO3
- values is positive for all catchments shown in 

Figure 2.4a, the catchments show a variety of trends in δ18O-NO3
- values with increasing 
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Figure 2.4.  Streamflow versus stream δ18O-NO3
- values during (a) baseflow and (b) stormflow/snowmelt 

events at multiple sites. 

Circles represent rainfall events and triangles represent snowmelt events.  Data were obtained either from 

published tables or were extracted from published figures using g3data software 

(http://frantz.fi/software/g3data.php; [Bauer and Reynolds, 2008; Snider et al., 2010]).  Direct comparison of 

trends across studies should be done with caution, as differences in the analytical method used for δ18O-NO3
- 

determination (i.e., silver nitrate/combustion method versus denitrifier method) may confound direct 

comparisons in some cases.  

 

 

discharge during stormflow/snowmelt conditions (Figure 2.4b).  For example, Sebestyen et al. 

[2008] and Pellerin et al. [2012] attributed high nitrate concentrations and δ18O-NO3
- values 

during relatively low flows to preferential flowpaths and the presence of melting snow in the 

stream channel during two snowmelt events at Sleepers River Research Watershed.  Such direct 

routing of high-concentration meltwater resulted in high proportions of atmospheric nitrate (up to 
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48%) during early snowmelt, with decreasing proportions of atmospheric nitrate in the stream 

thereafter [Sebestyen et al., 2008].  In contrast to the atmospheric nitrate-streamflow dynamics 

observed at Sleepers River, other studies have shown increasing stream nitrate concentrations 

and δ18O values with increasing discharge during snowmelt and storm events [Williard et al., 

2001; Piatek et al., 2005; Hales et al., 2007].  These positive trends have been attributed to 

flushing of accumulated soil N pools with increasing stormflow [Creed et al., 1996; Williard et 

al., 2001; Piatek et al., 2005].  While positive trends in stormflow/snowmelt δ18O-NO3
- occur for 

some studies shown in Figure 2.4b (e.g., Piatek et al. [2005] and Williard et al. [2001]), the 

reported δ18O-NO3
- values are nonetheless within the theoretical source range of microbial 

nitrate (-5‰ to +16‰; [Kendall et al., 2007]).  Thus, although δ18O-NO3
- values may increase 

slightly in streams as soils are flushed during hydrologic events (particularly flushing of upper 

soil layers [Williard et al., 2001])— possibly due to increased contributions of atmospheric 

nitrate in some cases— most nitrate mobilized by increasing discharge comes from a microbial 

source.  This is also the case during baseflow for all catchments shown in Figure 2.4a.  While it 

is noteworthy that stream δ18O-NO3
- values increase with increasing baseflow at all sites in 

Figure 2.4a, δ18O-NO3
- values in the microbial source range suggest that any contributions of 

atmospheric nitrate to streams are minor under baseflow regimes.   

Our understanding of hydrologic controls on catchment N export has been highly 

influenced by coupled hydro-ecological models [Creed et al., 1996; Creed and Band, 1998] that 

have advanced our understanding of nitrate transport during hydrologic events (i.e. snowmelt and 

rainfall) when stream nitrate responses are most dynamic.  R unoff processes include some 

combination of overland flow and subsurface flow [Dunne and Black, 1970, 1971; Hibbert and 

Troendle, 1988], and the hydrological and biogeochemical processes that control atmospheric 
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nitrate export are rarely discernible from measurements at the catchment outlet alone.  As such, 

the catchment sciences community still faces the challenge of elucidating similarities and 

differences among rainfall-runoff processes and N deposition-runoff dynamics.  This represent a 

striking example of the double paradox in catchment hydrology [Kirchner, 2003], wherein 

streams respond rapidly to precipitation inputs, but the precipitation itself is not a large 

contributor to stormflow and the chemical composition of stormflow varies with flow regime.  

Making progress on t his front is particularly important for better constraining mechanisms 

responsible for the low proportions of atmospheric nitrate in streams during baseflow and 

dynamic variation during stormflow. 

2.2.3.2 Landscape Characteristics 

While catchment hydrology and topography can be important drivers of overall forest nitrate 

export, the factors affecting unprocessed atmospheric nitrate delivery to streams are more 

nuanced.  T he hydrologic regime of a catchment is often closely related to its landscape 

characteristics, including geological, pedological, and topographical features [Dunne and Black, 

1970; Jencso et al., 2009].  T opography can exert a f irst-order control on the source areas of 

water that affect streamflow variation, meaning that landform acts as the primary determinant of 

streamflow characteristics [Dunne and Black, 1970; Jencso et al., 2009].  Topographic 

characteristics such as slope steepness and aspect, upslope accumulated area (UAA), bedrock 

and soil type, and soil thickness influence the capacity for water and nitrogen storage and 

movement [Creed et al., 1996; Creed and Band, 1998; Jencso et al., 2009; Speiran, 2010].  

Topographic influences on the hydrologic storage capacity of various reservoirs (e.g., in 

hillslopes, riparian areas, and bedrock) may also affect the degree of atmospheric nitrate 
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processing by controlling water transit times and opportunities for biological uptake and cycling 

[Inamdar et al., 2009].  As biological processing resets the δ18O of atmospheric nitrate from a 

range of +45 to +100‰ to the range of -10 to +15‰, the residence time of water in various 

catchment reservoirs can influence the isotopic expression of unprocessed atmospheric nitrate 

inputs to streams [Pardo et al., 2004; Hales et al., 2007; Osaka et al., 2010].  For example, 

landscape and soil characteristics that promote rapid water movement facilitate greater 

atmospheric nitrate delivery to streams in some catchments [Durka et al., 1994].  S imilarly, 

exposed rock surfaces can quickly transport water and nitrate inputs past plant and microbial 

pools, resulting in greater unprocessed atmospheric nitrate export [Curtis et al., 2011].  

Conversely, groundwater reservoirs may store nitrate for longer periods than shallower soil 

layers, potentially influencing the timing of nitrate export to streams while allowing more time 

for microbial processing of atmospheric inputs [Burns et al., 1998; Schiff et al., 2002; Pardo et 

al., 2004]. 

Interactions between catchment topography and hydrologic regime are highly dynamic 

through space and time, as variations in seasonal and event-scale precipitation cause expansion 

or contraction of the effective streamflow source area [Dunne and Black, 1970, 1971] .  T he 

concept of variable source areas and spatio-temporal heterogeneity of hillslope-riparian-stream 

connectivity has clear implications for the delivery of atmospheric nitrate to streams.  For 

example, areas of topographic concavity (e.g. convergent hillslope hollows) may have more 

persistent connectivity to streams and exert greater influence on the composition of stream 

nitrate than areas of topographic convexity (e.g. tops of slopes) [Dunne and Black, 1970].  

Topographic lows in near-stream areas (e.g. wetlands) are often characterized by low nitrate 

export and high denitrification rates due to greater soil water content and carbon-rich sediments 
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[Groffman and Tiedje, 1989; Gold et al., 2001; Ogawa et al., 2006; Inamdar et al., 2009].  

Conversely, Durka et al. [1994] reported greater proportions of atmospheric nitrate in streams 

draining forested catchments with waterlogged soils, suggesting that surface flow can facilitate 

direct routing of atmospheric nitrate to streams.   S till other studies have reported considerable 

differences in overall nitrate export but only minor differences in the proportion of unprocessed 

atmospheric nitrate in streams draining catchments with widely differing topographic 

characteristics [Schiff et al., 2002]. 

2.3 KNOWLEDGE GAPS AND NEXT STEPS WITH RESPECT TO FUTURE 

EXPERIMENTS, OBSERVATIONS, AND INTERDISCIPLINARY RESEARCH 

A better conceptual, functional, and observational understanding of the factors regulating 

atmospheric nitrate transfer to streams is needed, particularly as it r elates to catchment-scale 

hydrologic and topographic drivers of N biogeochemistry (Figure 2.5).  While studies on the 

importance of biological factors are prevalent in the N saturation literature, less research has 

focused on c atchment hydrology and landscape topography as related to N processing and 

transport.  A fundamental challenge of catchment-scale biogeochemistry is the integration of 

hydrologic processes and landscape form and function into conceptual and computational models 

optimized for biological parameterization.  In order to establish a more comprehensive view of 

“catchment processes”, we suggest some potential areas of future research. 
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Figure 2.5.  Conceptual model of hydrological and topographic regulation of catchment-scale atmospheric 

nitrate export. 

a) During baseflow, subsurface stormflow-dominated systems (SSF) maintain little hydrologic connectivity 

between hillslope surficial soils and streams, whereas saturation overland stormflow-dominated systems 

(SOF) maintain more extensive hydrologic connectivity between catchment areas and streams.   b ) Under 

stormflow conditions, channel networks and hydrologic connectivity of surficial soils to streams expand from 

topographic lows and near-stream areas in SSF-dominated catchments; larger areas of hydrologic 

connectivity to surficial soils and source areas develop during storms in SOF-dominated systems.  c)  δ18O-

NO3
- reflects the proportion of unprocessed atmospheric nitrate in soils; under baseflow conditions, δ18O-

NO3
- decreases with soil depth in both SSF- and SOF-dominated systems (dashed line).  However, the degree 

of atmospheric nitrate flushing from upper soil layers to streams during storms depends on the dominant 

hydrologic regime of the catchment and the depth of the water table (solid orange line; this represents the 

relative frequency of water table depth within the soil profile).  In SSF-dominated systems, the water table 

 

 

        δ18O-NO3
- 

              or 
        fwater table 
   -                      +  

 

so
il 

de
pt

h 

so
il 

de
pt

h 

        δ18O-NO3
- 

              or 
        fwater table 
   -                    + 



   

 

 46 

does not intersect the land surface and also might not intersect upper soil layers (i.e. frequency goes to zero), 

keeping atmospheric nitrate in upper soil layers hydrologically disconnected from the stream.  I n SOF-

dominated systems, the water table may periodically intersect the land surface during hydrologic events, 

resulting in SOF and flushing of atmospheric nitrate in upper soil layers to the stream.  The vertical δ18O-

NO3
- profile is therefore particularly dynamic in SOF-dominated systems.  As the water table intersects 

upper soil layers, δ18O-NO3
- values temporarily decrease as microbial nitrate from deeper soil layers is 

transported upward and atmospheric nitrate is flushed to the stream.  Subsequent atmospheric deposition 

inputs gradually increase the δ18O-NO3
- values of upper soil layers again.  d) Greater flushing of unprocessed 

atmospheric nitrate is therefore expected from SOF-dominated catchments, whereas more extensive 

processing of atmospheric nitrate inputs is expected in soils of SSF-dominated catchments.  These saturation 

and isotope dynamics are expected to be particularly relevant in flatter near-stream areas. 
 

 

2.3.1 High Resolution Temporal and Spatial Sampling of Nitrate Isotopes 

Hydrologic connectivity and N transport between terrestrial and aquatic systems can be highly 

transient in space and time, creating “hotspots” and “hot moments” within catchments [Vidon et 

al., 2010].  Frequent, spatially-intensive sampling for isotopic analysis of N sources and sinks 

across a range of hydrologic conditions is critical to advancing our understanding of the 

influence of topographic and hydrologic factors on atmospheric N transport.  With the capacity 

for high-throughput sample analysis, the bacterial denitrifier method for nitrate isotope analysis 

makes such high resolution sampling and analysis a viable option.  

2.3.2 Understanding Internal Water Cycling Dynamics at Relevant Catchment Scales 

Heterogeneity of flowpath characteristics across landscapes can result in some areas serving as 

nutrient sources while others function as nutrient sinks [Fortescue, 1980; Sebestyen et al., 2008; 
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Inamdar et al., 2009].  Investigating the relative magnitude of N transport along various 

flowpaths and the biological processes taking place along them would better constrain the 

importance of biological versus physical drivers in atmospheric nitrate delivery to streams.  

Additional research on the ways these biological and physical dynamics differ under baseflow 

and event conditions would provide critical details about the processes by which catchment 

hydrology and topography facilitate atmospheric nitrate export.      

2.3.3 Models to Conceptualize and Parameterize Distinctions among Nitrate and Water 

Sources 

Catchment-scale hydrologic models can be powerful tools for hypothesis testing and evaluating 

the sensitivity of ecosystem responses to changes in hydrologic parameters.  In order to better 

understand how hydrology, topography, and biogeochemistry interact across a range of spatial 

and temporal scales to influence the transport and fate of atmospheric N, new and more 

integrated models are needed.  In addition, existing spatially-explicit hydro-ecological process 

models such as the Regional Hydro-Ecologic Simulation System (RHESSys) [Band et al., 1993; 

Tague and Band, 2004] are also useful for examining catchment-scale N dynamics.  Although 

most existing biogeochemical models do not explicitly simulate isotope dynamics within 

ecosystem compartments, coupling mass-balance models with software packages such as the 

Non-Equilibrium Stable Isotope Simulator (NESIS) [Rastetter et al., 2005] may facilitate such 

calculations.  Future biogeochemical models should also emphasize the incorporation of 

parameters that capture the spatio-temporal influence of landscape topography and vegetation on 
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both water and N dynamics, as well as the incorporation of biogeochemical and hydrologic 

isotope parameters. 

2.4 IMPLICATIONS 

Determining the factors that most influence atmospheric nitrate processing in and transport 

through forests has important implications for the study and management of these systems.  The 

concept of N saturation as a condition where ecosystem N supply exceeds biological demand 

may be too simplistic [Lovett and Goodale, 2011], given the overwhelming contributions of 

microbially-derived N to stream nitrate export observed in many systems (Table 2.2; Figure 2.1).  

Indeed, observations that demonstrate the greatest percentage of atmospheric nitrate in streams 

during periods of hydrologic extremes (e.g. snowmelt and storm events) suggest a direct role of 

catchment hydrology and, perhaps less directly, topography in atmospheric nitrate export to 

streams.  Coupled isotopic analyses of water and nitrate can also inform the parameterization of 

hydrologic models, as the pathways and processing of the two may not always be the same .   

With respect to land management, understanding the role of catchment hydrology in 

linking atmospheric N inputs and export: 1) provides a basic understanding of how atmospheric 

pollutants directly affect forests and streams, 2) may inform practices to maximize the potential 

for N retention through plant uptake or denitrification within landscapes, and 3) offers valuable 

information to regulators and management agencies to consider when evaluating critical loads, 

nutrient criteria, and emission regulations.  In addition, the importance of seasonal variability in 

hydrologic regime (e.g. snowmelt and monsoon events) on bot h total N export as well as the 



   

 

 49 

delivery of atmospheric nitrate in particular to streams can help focus management efforts to 

mitigate the effects of episodic acidification during those times when N export is likely to be 

greatest. 
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3.0  TEMPORAL TRENDS IN STREAM NITRATE SOURCES ACROSS A 

NITROGEN SATURATION GRADIENT 

3.1 INTRODUCTION 

Since the Industrial Revolution, anthropogenic nitrogen (N) sources have more than doubled the 

bioavailable N cycled through the environment [Vitousek et al., 1997].  Increased N deposition 

can lead to ecosystem N saturation, causing significant harm to terrestrial and aquatic systems.  

Nitrogen saturation occurs when N inputs exceed vegetation and soil uptake capacities and 

excess N leaches from landscapes to surface and ground waters, typically as nitrate (NO3
-) 

[Ågren and Bosatta, 1988; Aber et al., 1989; Lovett and Goodale, 2011].  Nitrate can be added to 

forests via atmospheric deposition, and can also be produced through microbial nitrification in 

forest soils; increased microbial nitrification rates are one hypothesized symptom of ecosystem N 

saturation [Aber et al., 1989; Peterjohn et al., 1996].  Elevated nitrate in forest soils can increase 

nitrate and base cation leaching, leading to soil acidification [Adams et al., 2007].  Excess nitrate 

leached to surface waters can cause acidification and eutrophication in aquatic systems, resulting 

in toxic algae blooms, “dead zones”, and degraded drinking water quality [Vitousek et al., 1997; 

Galloway et al., 2003].  As  anthropogenic additions to the global N cycle will likely continue 

unabated for the foreseeable future [Galloway et al., 2003], it is important to understand the post-

depositional processes influencing the transport and fate of atmospheric nitrate in forests.  
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 Aber et al. [1989] proposed a conceptual model detailing various ecosystem responses to 

elevated N deposition.  In this model, ecosystem N saturation progresses through four stages, 

ranging from N-limited (Stage 0) to severely N-saturated (Stage 3).  Long-term increases in 

nitrate leaching to streams are one hypothesized indicator of N saturation [Aber et al., 1989].  

While long-term stream chemistry changes provide a framework for investigating ecosystem 

health under N-saturated conditions, these data provide little detail about the extent of N cycling 

prior to its export from the watershed.  For example, it is  unclear whether the extent to which 

atmospheric N inputs are cycled differs in N-limited versus N-saturated systems.  Stream nitrate 

concentrations alone provide little information about the biological processes and transport 

mechanisms affecting atmospheric nitrate in watersheds.   

Stable isotopes of nitrate (δ15N, δ18O, and Δ17O) elucidate the influence of biotic and 

abiotic factors on the fate and transport of atmospheric nitrate deposited to forests.  Small mass 

differences between isotopes of an element cause different reaction rates during physical, 

chemical, and biological processes.  These differences impart unique isotopic signatures 

(denoted by δ) to various sources, making stable isotopes useful for differentiating among 

ecosystem nitrate sources (Figure 1.2).   

Previous studies have used nitrogen and oxygen stable isotopes to track spatio-temporal 

changes in atmospheric and microbial nitrate pools and to differentiate between them [Pardo et 

al., 2004; Barnes et al., 2008; Sebestyen et al., 2008, 2014; Goodale et al., 2009].  For example, 

preferential biological uptake of lighter isotopes (termed mass-dependent fractionation) can lead 

to enrichment of soil and stream δ15N compared to δ15N values in precipitation [Barnes et al., 

2008].  Temporal trends in δ15N values across dormant and growing seasons can thus provide 

information about biological nitrate processing.  H owever, mass-dependent fractionation also 
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confounds nitrate source apportionment when biological processes (such as denitrification) act as 

permanent sinks for nitrate (Figure 1.2).   

Differences in nitrate δ18O values have also been used to distinguish atmospheric and soil 

sources and to calculate their relative contributions to ecosystem nitrate pools [Williard et al., 

2001; Pardo et al., 2004; Goodale et al., 2009; Sebestyen et al., 2014].  While δ18O of nitrate has 

proven useful in many previous studies, it is also susceptible to mass-dependent fractionation and 

may therefore lead to imprecise source apportionment.  However, isotopic source signatures can 

also result from processes not dependent on mass; these mass-independent signatures— such as 

Δ17O of nitrate— are not fractionated by biological processes [Michalski et al., 2004].  Positive 

Δ17O of nitrate values result from the creation of atmospheric nitrate anomalously enriched in the 

17O isotope [Cliff and Thiemens, 1997].  Because the nitrate Δ17O anomaly only forms in the 

atmosphere, its presence identifies a nitrate molecule as atmospherically-derived.  T his makes 

Δ17O a robust tool for differentiating atmospheric from microbially-derived nitrate, which lacks 

the Δ17O anomaly.  The Δ17O signature is altered only when an atmospheric nitrate molecule 

ceases to exist—i.e., when it is biologically assimilated and converted to organic N.  The ∆ 17O of 

atmospheric nitrate is not fractionated by biological processes; rather, biological processing 

resets the Δ17O value to zero.  Thus, Δ17O serves as a conservative and unambiguous tracer of 

atmospheric nitrate in ecosystems.  The presence of positive Δ17O values in forest streams 

implies that some proportion of atmospheric nitrate deposition has not undergone biological 

processing prior to export, potentially signaling N-saturated conditions.   

In this study, we characterized the triple nitrate isotopic composition (δ15N, δ18O, and 

Δ17O) of streams sampled weekly from four watersheds in the Fernow Experimental Forest 

(Figure 1.4).  These watersheds differ with respect to long-term patterns of stream nitrate export, 
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suggesting that they represent unique stages of N saturation.  Here we present the results of triple 

nitrate isotope analysis and discuss the implications of our findings for N saturation theory.   

3.2 STUDY SITE AND METHODS 

3.2.1 Study Site 

Fernow Experimental Forest is located in the Allegheny Mountains portion of West Virginia, on 

the unglaciated Allegheny Plateau (Figure 1.4).  Elevations in the study watersheds range from 

720 to 865 m, and slopes average ~20%.  Bedrock is primarily composed of hard sandstone and 

softer shale of the Upper Devonian Hampshire Formation (Canon Hill and Rowlesburg 

Members); little water storage occurs in these strata [Reinhart et al., 1963; Kochenderfer, 2007].  

Soils are well-drained loams and silt loams of the Calvin and Dekalb series (loamy-skeletal, 

mixed active, mesic typic Dystrudepts), averaging 1 m in depth.  Mixed hardwoods are the 

dominant forest type, with northern red oak (Quercus rubra), sugar maple (Acer saccharum), red 

maple (Acer rubrum), black cherry (Prunus serotina), and yellow poplar (Liriodendron 

tulipifera) the most abundant species.  The growing season at Fernow extends from late April 

through October, and precipitation is evenly distributed throughout the year, with an annual 

average of 1450 mm; significant snowpack does not accumulate over long periods.  During high-

intensity rain events, streamflow is high and falls off quickly during periods of low-intensity or 

no precipitation [Reinhart et al., 1963].  Infiltration rates are high and most precipitation reaches 

the streams via subsurface flow [Reinhart et al., 1963].   
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We sampled stream water from three hardwood-dominated stands and one Norway 

spruce (Picea abies) stand.  These four watersheds share similar site characteristics (e.g., climate, 

discharge patterns, geology, soils, elevation) but vary with respect to stream nitrate 

concentrations, treatment history, and dominant overstory composition (Table 3.1).  T he N 

saturation status of each study watershed was determined based on l ong-term stream nitrate 

concentrations (Table 3.1); this metric has been cited as one indicator of N saturation stage [Aber 

et al., 1989; Stoddard, 1994].  Indeed, Stoddard [1994] identified the Stage 2 watershed in this 

study (WS4) as one of the best examples of an N-saturated watershed based on long-term trends 

in stream nitrate concentration in this watershed (Figure 3.1). 

3.2.2 Sample Collection 

From January through December 2010, 1 L stream samples were collected weekly in high 

density polyethylene bottles at the base of each watershed when streams were flowing.  Samples 

were vacuum-filtered through 0.22 μm polyethersulfone membrane filters to remove suspended 

solids and biological material.  All samples were processed at the US Forest Service Timber and 

Watershed Laboratory in Parsons, West Virginia within 24 hours of collection.  Filtered samples 

were frozen and transported to the University of Pittsburgh, where they remained frozen until 

isotopic analysis.  W eekly samples of wet-only deposition were also collected at a National 

Atmospheric Deposition Program (NADP) National Trends Network site located approximately 

2 km from the study watersheds from February through December 2010.  These samples were 

filtered through 0.45 μm polyethersulfone membrane filters and archived at 4°C at the NADP 
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Central Analytical Laboratory in Champaign, IL, USA.  Precipitation samples were shipped to 

the University of Pittsburgh and frozen until isotopic analysis. 

 
 

Table 3.1.  Description of study watersheds 

 

 

 

N 

saturation 

stage 

Water-

shed # 

Size 

(ha) 

Dominant 

canopy 

species 

Forest 

age 

(yrs) 

Aspect Treatment  

history 

Mean stream 

[NO3
-] (mg L-1) 

1980-2010 

0 6 22 Picea abies 40 S Lower half clearcut 

1964; upper half clearcut 

1967-68; maintained 

barren until 1969. 

Planted P. abies 1973 

0.9 

1 5 36 Acer rubrum, 

Acer saccharum 

Uneven NE Selective cut (~10% of 

basal area > 27.9cm dbh 

removed every 10 yrs.) 

1.7 

2 4 39 Quercus rubra, 

Acer rubrum 

110 SE Control, no treatment 3.4 

3 7 24 Liriodendron 

tulipifera, 

Acer rubrum, 

Quercus rubra 

44 E Upper half clearcut 1963; 

lower half clearcut 1966; 

kept barren until 1969, 

natural regeneration 

5.1 
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Figure 3.1.  Average monthly stream nitrate concentrations in the four study watersheds at Fernow 

Experimental Forest from 1980-2010. 

   

3.2.3 Isotopic Analysis 

Nitrate concentrations for all samples were measured by ion chromatography (Dionex ICS-2000) 

at the University of Pittsburgh.  For isotopic analysis, a denitrifying bacteria, Pseudomonas 

aureofaciens, was used to convert aqueous nitrate into gaseous N2O which was then introduced 

into the mass spectrometer [Sigman et al., 2001; Casciotti et al., 2002].  For Δ17O analysis, this 

N2O was thermally decomposed at 800°C into N2 and O2 prior to isotopic analysis following the 

method described by Kaiser et al. [2007].  Duplicate samples were analyzed for δ15N and δ18O of 

nitrate (and separately for Δ17O of nitrate during Δ17O analysis) on an Isoprime Trace Gas and 

Gilson GX-271 autosampler coupled with an Isoprime Continuous Flow Isotope Ratio Mass 

Spectrometer (CF-IRMS) at the Regional Stable Isotope Laboratory for Earth and 
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Environmental Science at the University of Pittsburgh.  Isotope values are reported in parts per 

thousand relative to nitrate standards as follows: 

 

δ N, δ O, and δ17O (‰) =  ��
Rsample

Rstandard
� −  1�  × 1000                              (Eq. 1) 

18
 

15  

 

where R = 15N/14N, 18O/16O, or 17O/16O.  T he mass-independent oxygen isotope anomaly of 

nitrate (Δ17O-NO3
-) is likewise reported in parts per thousand and calculated using the equation: 

 

Δ17O (‰) =  δ17O − 0.52 ×  δ18O                                                      (Eq. 2) 

 

Samples with low nitrate concentrations were pre-concentrated prior to bacterial 

conversion to N2O.  Pre-concentration was accomplished by calculating the sample volume 

necessary to obtain a final concentration of 20 nmol (for δ15N and δ18O analysis) or 200 nmol 

(for Δ17O analysis) in a 5 m L sample.  Appropriate sample volumes were measured into 10% 

hydrochloric acid-washed Pyrex or Teflon beakers and placed in a drying oven at 60°C until all 

liquid evaporated.  The interior of each beaker was then rinsed with 10mL of 18 MΩ water to 

reconstitute duplicate samples to the appropriate concentration.  Samples were prepared for 

isotopic analysis following the bacterial denitrifier method as previously described.  International 

reference standards were similarly pre-concentrated and used for correction of pre-concentrated 

samples.   

δ15N and δ18O values were corrected using international reference standards USGS-32, 

USGS-34, USGS-35, and N3; USGS-34 and USGS-35 were used to correct Δ17O values.  These 
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standards were also used to correct for linearity and instrument drift.  Standard deviations for 

international reference standards were 0.2‰, 0.5‰, and 0.2‰ f or δ15N, δ18O, and Δ17O, 

respectively.    

There is the potential for isobaric interference of the δ15N signal in samples with high 

Δ17O values.  Corrections for mass-independent contributions of Δ17O to m/z 45 were evaluated 

following the relationship described in Coplen et al. [2004], where a 1‰ increase in δ15N 

corresponds to an 18.8‰ increase in Δ17O.  Corrected δ15N values were zero to 1.3‰ lower than 

uncorrected values, depending on t he mass-independent contribution of Δ17O in the sample.  

Because Δ17O of nitrate values were low in most samples and because we could not apply the 

correction to some samples due to a lack of Δ17O data (particularly in the Stage 0 stand), the δ15N 

values presented here do not include the mass-independent Δ17O correction.  W hile values of 

corrected δ15N data are slightly lower than those presented here, the temporal and spatial trends 

of δ15N values presented here are not strongly influenced by the omission of the mass-

independent Δ17O correction. 

3.2.4 Statistical Analysis 

We used analysis of variance to test for significant differences in mean nitrate concentrations, 

δ15N, δ18O, and Δ17O values.  When significant differences were indicated, we applied Tukey’s 

Honestly Significant Difference test to determine which means were significantly different 

(α=0.05).  The experiment-wise error rate was held at α=0.05 for multiple comparisons.  A ll 

statistical analyses were conducted using SAS [SAS Institute, Inc., 2011]. 
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3.3 RESULTS 

3.3.1 Nitrate Concentration 

Intermittent streamflow in all study watersheds precluded sample collection during much of July 

through October in the Stage 0, 1, and 2 watersheds and August through October in the Stage 3 

watershed.  In addition, stream nitrate concentrations were frequently below the detection limit 

in the Stage 0 w atershed, precluding isotopic analysis.  D ischarge-weighted mean nitrate 

concentrations in the Stage 0, 1, 2, a nd 3 w atersheds were 0.0, 1.1, 2.1, and 3.7 mg L-1, 

respectively.  The volume-weighted mean nitrate concentration in precipitation was 0.7 mg L-1 

(http://nadp.isws.illinois.edu/data/ntndata.aspx).  Stream nitrate concentrations ranged from zero 

to 8.4 mg L-1 (Figure 3.2; Table 3.2) and mean nitrate concentration increased significantly with 

increasing N saturation stage (p<0.0001; Table 2).  N itrate concentrations were seasonally 

variable in the Stage 1 and Stage 2 watersheds (Figure 3.3), with significantly lower 

concentrations during the growing season than the dormant season in the Stage 1 (p<0.0001) and 

2 (p=0.0004) watersheds.  No seasonality in nitrate concentrations was observed in the Stage 0 or 

3 watersheds or in precipitation.  
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Figure 3.2.  Boxplots of stream and precipitation nitrate concentrations, δ15N, δ 18O, and Δ17O isotopes. 

Boxes represent upper and lower quartiles; whiskers extend to ± 1.5 times the interquartile range.  Circles 

with a line inside the boxes represent median values.  Outliers are shown as circles with lines through them. 
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Table 3.2.  Means and ranges of precipitation and stream nitrate concentration and triple nitrate isotope 

values in study watersheds.   

Nitrogen saturation stage means followed by different letters are significantly different at p < 0.05. 

 

 

 

N 

saturation 

stage 

[NO3
-] (mg L-1)  δ15N-NO3

- (‰)  δ18O-NO3
- (‰)  Δ17O-NO3

- (‰) 

Mean Range  Mean Range  Mean Range  Mean Range 

0 0.0d 0.0 to 0.1  +0.5b -2.9 to +3.8  +38.6b -5.3 to +72.8  +8.4b -1.4 to +23.9 

1 1.0c 0.6 to 1.4  +2.2a +1.0 to +5.0  -2.4c -9.4 to +13.4  +0.2c -1.2 to +5.6 

2 1.9b 1.3 to 3.5  +2.2a +1.5 to +4.3  -1.5c -7.9 to +6.1  +0.5c -1.2 to +3.2 

3 3.7a 2.5 to 8.4  +2.9a +1.6 to +5.9  -2.9c -7.5 to +4.0  -0.3c -1.4 to +3.0 

Precip 0.8c 0.1 to 2.9  +0.1b -6.0 to +5.1  +65.2a +51.1 to +81.7  +20.9a +12.3 to +29.1 
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Figure 3.3.  Nitrate concentration and isotopic composition of weekly stream and precipitation samples 

collected at Fernow Experimental Forest during 2010.   

Grey bars in δ18O and Δ17O of nitrate plots indicate samples collected during stormflow. 

 

3.3.2 δ15N of Nitrate 

Across all watersheds, stream nitrate δ15N values ranged from -2.9‰ to +5.9‰; precipitation 

values ranged from -6.0‰ to +5.1‰ (Figure 3.2; Table 3.2).  Mean δ15N was significantly lower 

in the Stage 0 watershed than in the other watersheds (p<0.0001), but mean δ15N values were 

higher in all watersheds than in precipitation (Table 3.2).   
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Seasonally, mean stream nitrate δ15N values were significantly higher during the growing 

season than the dormant season in the Stage 1, 2, and 3 w atersheds and also in precipitation 

(p<0.0001 for stream water; p=0.02 for precipitation).  This seasonal trend may partially explain 

the lower mean δ15N values in the Stage 0 watershed, as streamflow was absent in this watershed 

during the growing season, when δ15N values were highest in the hardwood-dominated stands 

(Figure 3.3).  Seasonal isotope dynamics were not evaluated in the Stage 0 watershed due to the 

small number of samples collected during the growing season (n=4).      

3.3.3 δ18O of Nitrate 

The range of stream nitrate δ18O values across all watersheds was -9.4‰ to +72.8‰ whereas 

precipitation nitrate δ18O values ranged from +51.1‰ to +81.7‰ (Figure 3.2; Table 3.2). The 

highest mean stream nitrate δ18O value (+38.6 ± 19.0‰) occurred in the Stage 0 w atershed 

(p<0.0001; Table 3.2).  Although this value was higher than those observed in the other 

watersheds, it w as significantly lower than the mean precipitation value (+65.2 ± 6.8‰; 

p<0.0001).   

Seasonal trends in stream nitrate δ18O were similar among the Stage 1, 2, a nd 3 

watersheds (Figure 3.3), with higher mean values during the dormant season and lower mean 

values during the growing season (p<0.0007 for all watersheds).  While there was no statistically 

significant difference in seasonal mean δ18O values of precipitation nitrate, weekly precipitation 

samples showed higher dormant season values and lower growing season values (Figure 3.3).   
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3.3.4 Δ17O of Nitrate 

The Δ17O in stream nitrate ranged from -1.4‰ to +23.9‰ across all watersheds (Figure 3.2; 

Table 3.2), with a significantly higher mean in the Stage 0 watershed (p<0.0001).  Precipitation 

nitrate Δ17O ranged from +12.3‰ to +29.1‰ and the mean (+20.9 ± 4.3‰) was significantly 

higher than means for all streams (p<0.0001).  V alues of Δ17O in precipitation nitrate were 

generally lower during the growing season and higher during the dormant season (Figure 3.3), 

but this trend was not statistically significant.  Patterns in stream nitrate Δ17O values were 

opposite that of precipitation (Figure 3.3), with significantly higher means in the Stage 1, 2, and 

3 watersheds during the dormant season (p ≤ 0.0135 for all watersheds).  
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3.4 DISCUSSION 

3.4.1 Atmospheric Nitrate Processing and Export across a Nitrogen Saturation Gradient 

A central tenet of nitrogen saturation theory is that N saturation occurs when N supply exceeds 

the capacity of vegetation and soil pools [Ågren and Bosatta, 1988; Aber et al., 1989; Stoddard, 

1994; Lovett and Goodale, 2011].  This theory also posits that excess N supply reduces seasonal 

variability and leads to a long-term increase in stream nitrate concentration [Aber et al., 1989; 

Stoddard, 1994].  W hile these N saturation characteristics have been previously recognized in 

the Stage 2 and 3 watersheds [Peterjohn et al., 1996; Gilliam et al., 2001], stream nitrate 

concentration data alone are inadequate to assess biological N demand.  Stream nitrate source 

contributions cannot be determined solely based on temporal trends in concentration, and such 

source characterization is essential for quantifying the balance between ecosystem N supply and 

demand.  T his has important implications for N saturation theory, as elevated rates and/or 

decreased seasonality of nitrate export may not necessarily indicate saturation of biological 

demand; the isotope data presented here are a case in point.  Although long-term mean stream 

nitrate concentrations in the Stage 1, 2, and 3 watersheds span a nearly three-fold range (Table 

3.1), similarity in their nitrate isotopic compositions (Table 3.2) suggests that atmospheric nitrate 

inputs are extensively biologically cycled in these watersheds.  In contrast, while persistently low 

nitrate concentrations in the Stage 0 watershed stream suggest N-limitation, δ18O and Δ17O 

values of stream nitrate indicate that most of the atmospheric nitrate deposited in this watershed 

bypasses biological assimilation prior to export.   
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Differences in atmospheric nitrate processing among watersheds may be related to N 

saturation stage or may result from other characteristics.  The Stage 0 watershed is a Norway 

spruce monoculture, which is entirely different in terms of plant physiology from the other 

mixed hardwood-dominated watersheds.  This difference in species composition may contribute 

to the observed atmospheric nitrate export patterns.  For example, stream nitrate δ15N values 

were lower and more similar to precipitation δ15N values in the Norway spruce-dominated Stage 

0 watershed than in the hardwood-dominated stands (Table 3.2).  This may be partially 

attributable to preferential uptake of ammonium over nitrate by Norway spruce, resulting in less 

enrichment of soil nitrate δ15N.  In an N-saturated forest in Germany, [Gessler et al., 1998] 

observed minimal nitrate uptake by Norway spruce, particularly in the presence of ammonium.  

[Marschner et al., 1991] similarly reported ammonium uptake rates 3-4 times higher than nitrate 

in Norway spruce.  During 2010, ammonium-N and nitrate-N deposition rates were 1.7 and 2.5 

kg N ha-1, respectively [National Atmospheric Deposition Program, 2014] at Fernow, thus 

ammonium should be available for uptake, particularly in the Stage 0 w atershed where 

nitrification rates are low [Kelly et al., 2011].  Nitrate comprises only about 1% of soil solution 

total dissolved N (TDN) in the Stage 0 watershed, with the majority of TDN occurring as 

dissolved organic N [Kelly, 2010].  In contrast, nitrate is approximately 60% of soil solution 

TDN in the Stage 3 watershed [Kelly, 2010].  This difference is noteworthy, as these watersheds 

have identical treatment histories aside from conversion of the Stage 0 watershed to Norway 

spruce following clearcutting (Table 3.1).  These watersheds also differ markedly in microbial 

nitrate production rates, being nine times higher in the Stage 3 versus Stage 0 watershed [Kelly et 

al., 2011].  The wide disparity in nitrate source contributions in these two watersheds is reflected 

in their stream nitrate isotopic compositions.  Most of the atmospheric nitrate deposited on the 
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Stage 0 watershed is retained (as demonstrated by perpetually low stream nitrate concentrations), 

but high proportions of atmospheric deposition in exported nitrate suggest that nitrate supply 

exceeds the capacity of biological sinks.  This contrasts with the low proportions of atmospheric 

deposition present in the Stage 3 stream, indicating extensive biological processing.  Low rates 

of microbial nitrate production and potentially lower rates of nitrate uptake by Norway spruce in 

the presence of ammonium offer one explanation for the higher proportions of atmospheric 

nitrate in the Stage 0 stream, as well as the similarity between δ15N, δ18O, and Δ17O values of 

stream nitrate and precipitation in this watershed.   

The range of stream nitrate δ15N values across all watersheds (-2.9‰ to +5.9‰) was 

similar to that reported for microbial nitrate (+2‰ to +8‰) [Kendall et al., 2007].  However, 

exclusion of Stage 0 watershed data reduces the range of stream nitrate δ15N values to +1.0‰ to 

+5.9‰ in the hardwood-dominated stands; these values are almost fully encompassed by the 

microbial source range.  Enrichment of mean stream nitrate δ15N values in the Stage 1, 2, and 3 

watersheds versus that of precipitation may be due to preferential biological uptake of the 14N 

isotope in these watersheds [Pardo et al., 2004; Barnes et al., 2008; Koba et al., 2012].  This 

mass-dependent fractionation would enrich the soil nitrate pool in 15N, which could subsequently 

leach to streams.  Conversely, similar mean δ15N values in precipitation and stream nitrate in the 

Stage 0 watershed suggest a lesser degree of biological cycling and potentially greater inputs of 

unprocessed atmospheric nitrate to the stream; this is also confirmed by δ18O and Δ17O values.   

Similar to δ15N, the range of stream nitrate δ18O values across all watersheds (-9.4‰ to 

+72.8‰) was large, but when the Stage 0 watershed was excluded, the range was greatly reduced 

(-9.4‰ to +13.4‰).  Stream nitrate δ18O values in the Stage 1, 2, and 3 watersheds fell within 

the microbial source range (-10‰ to +15‰; [Kendall et al., 2007]), indicating that microbial 
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nitrification was the primary nitrate source in these hardwood-dominated watersheds throughout 

the year.  Using an isotope mixing model, we calculated the mean fraction of atmospheric nitrate 

exported from each watershed (Equation 3): 

 

fatm =
χstream– χnitri�ication
χatm −  χnitri�ication

                                                          (Eq. 3) 

 

where 𝜒 is δ18O or Δ17O of nitrate.  We used the lowest measured stream nitrate δ18O value in 

each watershed as the nitrification end-member and the minimum and maximum δ18O of nitrate 

values of precipitation as the atmospheric end-member to calculate the range of atmospheric 

nitrate export from each watershed [Barnes et al., 2008].  This δ18O-based approach indicates 

that atmospheric nitrate accounts for an average of 8 to 12%, 7 to 11%, and 5 to 8% of nitrate in 

streams draining the Stage 1, 2,  and 3 watersheds, respectively.  These low proportions are in 

agreement with δ18O-based results of other studies in the northeastern U.S. that have generally 

observed minor contributions of atmospheric nitrate to streams draining forested watersheds 

[Williard et al., 2001; Burns and Kendall, 2002; Barnes et al., 2008; Sebestyen et al., 2008, 

2014; Goodale et al., 2009].  In contrast to the hardwood-dominated stands, the Norway spruce-

dominated Stage 0 watershed displayed very different patterns in δ18O of nitrate.  Using Equation 

3, atmospheric nitrate contributions to the Stage 0 stream ranged from 50 to 78%.   

While mixing model estimates based on δ18O of nitrate values have previously been used 

to quantify the extent of biological N cycling [Williard et al., 2001; Burns and Kendall, 2002; 

Barnes et al., 2008; Sebestyen et al., 2008; Goodale et al., 2009], the potential for mass-

dependent fractionation of δ18O during assimilation and denitrification can enrich the residual 
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soil nitrate pool over time and lead to overestimation of atmospheric source contributions.  Δ17O 

of nitrate more conservatively estimates the proportion of atmospheric nitrate in streams because 

it is not susceptible to mass-dependent fractionation.  Values of Δ17O for terrestrial sources (e.g., 

nitrification) are typically zero or less, whereas values for atmospheric nitrate can range from 

+20‰ to +30‰ [Michalski et al., 2004].  In the hardwood-dominated stands, stream nitrate Δ17O 

values ranged from -1.4‰ to +5.6‰, suggesting minor atmospheric nitrate contributions to 

streams draining these watersheds.  In contrast, Δ17O values in the Norway spruce stand ranged 

from +1.5‰ to +23.9‰ (Figure 3.2).  It should be noted, however, that Δ17O data from this 

watershed were extremely limited (n=4) due to low nitrate concentrations in most stream 

samples.  Using the lowest Δ17O value in each watershed as the nitrification end-member (this 

value was set to 0‰ in the Stage 0 watershed, as all measured stream nitrate values were 

positive) and the minimum and maximum Δ17O of nitrate values of precipitation as the 

atmospheric end-member, we substituted the corresponding Δ17O values into Equation 3 to 

calculate atmospheric nitrate contributions to streams.  Δ17O-based estimates of atmospheric 

nitrate in the Stage 0, 1, 2, and 3 watershed streams are 29-68%, 5-10%, 6-12%, and 4-8%, 

respectively.  T hus, δ18O and Δ17O data both indicate that as stream nitrate concentrations 

increase (suggesting increasing nitrogen saturation), microbial nitrification becomes an 

increasingly important stream nitrate source.  This is in agreement with results of other nitrate 

isotope studies that reported extensive biological processing of atmospheric N in forests across a 

range of N deposition rates [Spoelstra et al., 2001; Williard et al., 2001; Michalski et al., 2004; 

Pardo et al., 2004; Barnes et al., 2008; Sebestyen et al., 2008; Tsunogai et al., 2010].  Therefore, 

while mean stream nitrate concentrations differ among the Stage 0, 1,  2, a nd 3 N -saturated 

watersheds, nitrate concentrations alone cannot serve as a basis for inferences about the presence 
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of nitrate in excess of biological demand.  Indeed, the combined concentration- and isotope-

based approaches presented here indicate that nitrogen supply does not exceed biological 

demand in any of these watersheds and that microbial nitrate production may even increase in 

response to elevated atmospheric N deposition.   

3.4.2 Seasonal Variability of Stream Nitrate Isotopic Composition 

A clear seasonal pattern in stream nitrate δ15N was observed in the hardwood-dominated 

watersheds (Figure 3.3).  The sharp increase in δ15N values from early April through late August 

may be due to mass-dependent fractionation during nitrification and/or plant uptake.  W hile 

mineralization of organic N to ammonium does not produce large isotopic fractionations 

[Kendall, 1998], oxidation of ammonium to nitrate can result in fractionations ranging from ε = -

12‰ to -29‰ [Shearer and Kohl, 1986].  Thus, as the ratio of net nitrification to net 

mineralization increases, the δ15N of nitrate in soils should approach that of the original soil 

ammonium pool [Spoelstra et al., 2007].  Increasing rates of net nitrification relative to net N 

mineralization from early April through late August may have resulted in this seasonal increase 

of δ15N values in the hardwood-dominated watersheds.  Alternatively, greater N uptake by plants 

could have produced the same temporal δ15N trend.  In N-limited forests, available soil N pools 

are depleted during the growing season as plants maximize N uptake [Stoddard, 1994].  B y 

contrast, net nitrification rates in the Stage 2 and 3 watersheds are highest during the growing 

season and soil N pools remain well above 0 g NO3
--N m-2 throughout the year, indicating that 

microbial nitrate production exceeds plant uptake [Gilliam et al., 2001].  Greater nitrate supply 

during the growing season may facilitate preferential uptake of the lighter 14N isotope, yielding 
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an isotopically-enriched residual soil nitrate pool [Högberg, 1997; Templer et al., 2007] that 

could then be leached to streams.  Although plant N demand decreases sharply at the end of the 

growing season, soil microbial processes such as nitrification can continue throughout the 

dormant season under an insulating snowpack [Campbell et al., 2005].  P ersistent microbial 

activity coupled with decreased N demand during the dormant season would result in less 

isotopic fractionation of soil water nitrate, yielding lower δ15N of nitrate values in streams at the 

end of the growing season and throughout the dormant season.  S imilarly, the generally lower 

δ15N values observed in the Stage 0 watershed throughout the study period may indicate lower N 

cycling rates in that watershed relative to the more N-saturated stands.  Indeed, previous studies 

in the Stage 0, 2, and 3 watersheds confirm that net nitrification rates are lower in the Stage 0 

Norway spruce stand than in the Stage 2 and 3 hardwood-dominated stands [Gilliam et al., 2001; 

Kelly, 2010]. 

In contrast to the seasonal enrichment in stream nitrate δ15N values, trends in stream δ18O 

of nitrate were flat or declined during the growing season (Figure 3.3).  Patterns in stream δ18O 

of nitrate may be disproportionately influenced by varying contributions of atmospheric nitrate, 

that  has high δ18O values [Michalski et al., 2004]; this can obscure temporal signals resulting 

from biological activity.  It is therefore helpful to remove the atmospheric component from 

nitrate δ18O values when examining temporal trends that may be due to biological processes 

[Dejwakh et al., 2012].  Because the two primary sources of nitrate at Fernow are atmospheric 

deposition and nitrification, a simple mixing model can be used to subtract the atmospheric 

nitrate contribution, yielding the δ18O value of the microbial end-member (Equation 4):    
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δ18Omicrobial = δ18Ostream − fatm × δ18Oatm                                             (Eq. 4) 

 

The fatm term is calculated using Δ17O of nitrate values in Equation 3 because Δ17O is a 

conservative tracer of atmospheric nitrate in ecosystems [Dejwakh et al., 2012].  Assigning Δ17O 

values of 0‰ t o the nitrification end-member and +19.8‰ to the precipitation end-member 

(representing the volume-weighted Δ17O value of precipitation nitrate during 2010) we 

calculated the proportion of atmospheric nitrate (fatm) in each stream sample.  Substituting this 

fatm value and a δ18Oatm value of +60.8‰ (representing the volume-weighted δ18O value of 

precipitation nitrate during 2010) into Equation 4, we estimated the δ18O of microbial nitrate 

(δ18Omicrobial) for all stream samples.  Because the Stage 0 watershed only had four data points for 

Δ17O of nitrate, δ18Omicrobial was not calculated for this watershed.   

After removing the atmospheric nitrate contribution, a t emporal shift occurs between 

untransformed δ18O and δ18Omicrobial values of stream nitrate (Figure 3.4).  Although δ18Omicrobial 

values still decrease during the early growing season, the timing of this trend is shifted, such that 

the lowest δ18Omicrobial values occur in March and April rather than July and August.  This 

seasonal timing is more consistent with the expected increase in microbial activity (which would 

yield lower nitrate δ18O values) as ambient temperatures increase during the early growing 

season [Norton and Stark, 2011]. 
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Figure 3.4.  Temporal trends in stream water nitrate isotopic composition in the hardwood-dominated 

watersheds.   

Data for δ18Omicrobial represent stream nitrate δ18O data that have been transformed using Equation 4 to 

remove the influence of atmospheric nitrate.  Removal of the atmospheric influence allows temporal trends 

due to biological processes (e.g., nitrification, denitrification, assimilation) to be more clearly visualized.  

Trendlines for data series were generated using a local regression (LOESS) smoothing curve to emphasize the 

temporal shift between untransformed δ18O and δ18Omicrobial values.  

 

 

The absence of a seasonal enrichment in stream nitrate δ18O values similar to that 

observed for δ15N is not unexpected, as the 18O/16O ratio of microbial nitrate is not influenced by 

nitrogen substrate availability [Spoelstra et al., 2007].  Rather, the δ18O values of stream nitrate 

in the hardwood-dominated stands were likely influenced by the oxygen isotopic compositions of 

soil water and O2, as microbial nitrification was the dominant stream nitrate source in the Stage 
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1, 2, a nd 3 w atersheds.  D uring microbial nitrification, oxygen atoms are contributed to the 

nitrate molecule in varying proportions by atmospheric O2 (δ18O-O2 = +23‰) and soil water 

[Buchwald and Casciotti, 2010].  W hile δ18O values of soil O2 could have increased with 

increasing respiration rates, previous research in temperate forests suggests these fractionations 

are minor (+0.08‰ to +0.47‰ relative to δ18O of atmospheric O2; [Spoelstra et al., 2007]).  In  

contrast, δ18O values of soil water can be highly spatially and temporally variable at Fernow (L. 

Rose, unpublished data), potentially affecting the oxygen isotopic composition of stream nitrate.  

The influence of soil water isotopic composition on the δ18O of stream nitrate depends on several 

factors, including spatial and temporal variability of microbial nitrification rates and hydrologic 

connectivity between watershed areas and the stream.  This complicates efforts to determine the 

specific factors responsible for the temporal trends in δ18O of nitrate observed in streams.              

While trends in both δ15N and δ18O can provide insight into the role of biological 

processes in stream nitrate export, temporal Δ17O of nitrate dynamics highlight the seasonal 

variability of atmospheric nitrate contributions to streams.  Mean Δ17O values were significantly 

higher during the dormant season than the growing season in all watersheds (p≤0.0135 for all 

watersheds).  Lower biological N demand during the dormant season may partially explain the 

elevated atmospheric nitrate export during the dormant season.  However, stream Δ17O of nitrate 

was low compared to precipitation even during the dormant season, indicating little atmospheric 

nitrate in streams.  Mean stream nitrate Δ17O values during the dormant season were +0.6±1.4‰, 

+0.8±0.8‰, and 0.0±0.8‰ for the Stage 1, 2, a nd 3 N -saturated watersheds, respectively.  In 

comparison, the mean dormant season precipitation nitrate Δ17O value was +22.4±5.5‰.  

Substituting into Equation 3 and using the lowest Δ17O value measured in each watershed for the 

nitrification end-member, mean dormant season contributions of atmospheric nitrate to streams 
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in the Stage 1, 2, and 3 N-saturated watersheds were 8%, 8%, and 6%, respectively.  T hus, 

despite generally higher stream nitrate Δ17O values during the dormant season, overall 

contributions of atmospheric nitrate to streams during this period of lower biological demand 

remained small.   

The low proportions of atmospheric nitrate in streams draining the hardwood-dominated 

stands may be due to persistent microbial activity in these watersheds, perhaps facilitated 

periodically by an insulating snowpack [Campbell et al., 2005].  H ydrologic characteristics of 

the study watersheds may also influence atmospheric nitrate export to streams.  [Pardo et al., 

2004] suggested that short hydrologic residence times on hillslopes and significant storage 

capacity in well-mixed subsurface reservoirs may dampen seasonal signals of stream nitrate 

isotopes.  Increased litter decomposition at the end of the growing season could also create a 

significant soil N pool that, if flushed during a dormant season hydrologic event, could elevate 

stream nitrate concentrations, but not necessarily increase proportions of atmospheric nitrate 

[Cirmo and McDonnell, 1997].  However, [Sebestyen et al., 2014] observed the opposite trend 

during an autumn storm event, attributing lower stream nitrate concentrations to heterotrophic 

uptake following leaf fall, and elevated atmospheric nitrate export during storm events to 

increased hydrologic connectivity and rapid transport.  W ithout directly measuring changes in 

hydrologic connectivity between landscape areas and streams, it is  difficult to determine how 

biological versus hydrologic drivers influenced the seasonal trends and magnitudes of 

atmospheric nitrate export we observed at Fernow.  However, there is evidence to support the 

idea that hydrologic status influenced atmospheric nitrate export in these watersheds.             
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3.4.3 Hydrologic Drivers of Watershed Atmospheric Nitrate Export 

Stream nitrate δ18O and Δ17O values were higher in samples collected during stormflow 

in all watersheds (Figure 3.3).  A dditionally, the largest proportion of atmospheric nitrate 

exported from all watersheds occurred during a snowmelt event on 23 February.  Using the 

highest precipitation nitrate Δ17O value measured during the study period (+29.1‰) and the 

lowest Δ17O value measured in each watershed (and 0‰ for the Stage 0 watershed) for the 

nitrification end-member in Equation 3, atmospheric nitrate contributed 82%, 22%, 15%, and 

14% to total stream nitrate in the Stage 0, 1, 2, and 3 N-saturated watersheds, respectively, on 23 

February.  T hat the greatest proportions of atmospheric nitrate in all streams occurred on t he 

same day suggests a common factor influencing atmospheric nitrate export.   

Prior to 21 February, the maximum daily temperature remained below 0°C for 26 days 

while total precipitation ranged from 88 mm in the Stage 2 watershed to 112 mm in the Stage 1 

watershed (snow water equivalent).  When ambient temperatures rose above freezing from 21-23 

February, the resulting snowmelt event produced peak discharges of 2.9 mm, 1.7 mm, and 2.1 

mm on 24 February in the Stage 1, 2, and 3 watersheds and 0.96 mm on 3 March in the Stage 0 

watershed.  Sample collection on 23 February coincided with the rising limb of this hydrologic 

event in each watershed.  Rapid routing of melt water and decreased biological activity during 

this time may have facilitated greater export of atmospheric nitrate to streams.  O ther studies 

have reported greater proportions of atmospheric nitrate in streams during snowmelt events 

[Burns and Kendall, 2002; Sebestyen et al., 2008; Goodale et al., 2009], suggesting that 

watershed hydrologic status can be an important regulator of atmospheric nitrate export.  

However, it is important to reiterate that the proportion of atmospheric nitrate exported from 
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these watersheds is generally small throughout the year.  Indeed, much larger discharges than 

those observed on 23 February were recorded in all of the watersheds during the study period but 

these occurred during the growing season, resulting in only marginal increases in the proportion 

of atmospheric nitrate in streams.  Although hydrologic status can influence atmospheric nitrate 

export, extensive biological N cycling— particularly in the hardwood-dominated watersheds— 

outweighs the influence of hydrologic extremes (e.g., storm events) in these watersheds. 

3.4.4 Implications for Nitrogen Saturation Theory 

Various mechanisms have been proposed to explain the development of N saturation in 

forests, including interactions between soil and vegetation pools [Ågren and Bosatta, 1988; 

Lovett and Goodale, 2011].  These models hypothesize that soil N accumulates over time due to 

low net N mineralization rates relative to N input from litterfall (assuming constant litter 

production rates), eventually saturating the soil N pool [Ågren and Bosatta, 1988; Lovett and 

Goodale, 2011].  The rate at which the soil N pool saturates (termed kinetic saturation by [Lovett 

and Goodale, 2011]) is a function of several factors, including litterfall quality, the rate of litter 

addition to the forest floor, and the C:N ratio and community composition of the soil microbial 

pool [Ågren and Bosatta, 1988; Magill et al., 1997; Compton et al., 2004; Lovett and Goodale, 

2011].  T hese factors, combined with rates of allochthonous N additions from atmospheric 

deposition, regulate the degree of kinetic N saturation in soils.   

Under N-limited conditions, strong competition exists between vegetation and microbial 

sinks for available N, with plants generally out-competing nitrifying bacteria [Kaye and Hart, 

1997].  Increased ecosystem N availability can reduce this competition, leading to greater 



   

 

 78 

microbial nitrate production and lower ratios of mineralization to nitrification [Magill et al., 

1997; Compton et al., 2004].  Previous studies have reported higher microbial nitrification rates 

at sites with elevated N deposition [Magill et al., 1997; Lovett and Rueth, 1999; Jordan et al., 

2005]; when microbial nitrate production exceeds plant N demand, excess nitrate can leach to 

streams, signaling ecosystem N saturation.  This appears to be occurring in the Stage 2 and 3 N-

saturated watersheds examined in our study.  N et nitrification is nearly 100% of net N  

mineralization in these watersheds, and soil inorganic N pools remain above 0 g N O3
--N m-2 

throughout the growing season [Gilliam et al., 2001] suggesting that N supply exceeds plant 

demand.  In contrast, net nitrification is only approximately 20% of net N mineralization in the 

Stage 0 (N-limited) watershed [Kelly, 2010], indicating stronger competition between vegetation 

and microbial sinks for available ammonium.   

The idea put forth in previous descriptions of N saturation— that stream nitrate export 

represents the fraction of N inputs in excess of biological demand [Aber et al., 1989; Stoddard, 

1994]—  may not apply to all (or even most) forests exhibiting symptoms of N saturation.  Our 

study and others employing nitrate stable isotopes [Williard et al., 2001; Barnes et al., 2008; 

Sebestyen et al., 2008, 2014] highlight a critical aspect of ecosystem N cycling with important 

implications for N saturation theory: while the capacity for biological N cycling is large in some 

forests, the capacity for N retention is often smaller, particularly in forests exhibiting symptoms 

of N saturation.  

The conceptual model in Figure 3.5 shows potential differences in vegetation and 

microbial processing of atmospheric nitrate inputs and ecosystem N retention in N-limited versus 

N-saturated forests.  While nitrate uptake can occur in N-limited systems, nitrate assimilation is 

typically low in vegetation when soil nitrate availability is limited [Gessler et al., 1998; Collier 
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et al., 2003].  In contrast, greater soil nitrate supply (such as in N-saturated systems) can induce 

nitrate uptake in vegetation [Gessler et al., 1998; Min et al., 1998; Collier et al., 2003], leading 

to greater biological cycling of atmospheric nitrate inputs.  Additionally, decreased competition 

between vegetation and microbial pools for soil N may increase biological N cycling in both 

vegetation and microbial pools, further elevating biological N processing in already N-saturated 

forests.  Increased vegetative uptake of N (including atmospheric nitrate), along with greater 

microbial nitrate production, is manifested at the watershed outlet as elevated stream nitrate 

concentrations, greater proportions of microbial nitrate, and lower proportions of atmospheric 

nitrate in streams (Figure 3.5).  T he roles of vegetation and soil microbial communities in 

ecosystem N processing suggested by this conceptual model have been confirmed by a variety of 

studies showing induction of nitrate uptake by vegetation with increasing soil nitrate availability 

[Gessler et al., 1998; Min et al., 1998; Collier et al., 2003] and increasing nitrification relative to 

N mineralization under elevated  N  deposition [Aber et al., 1998].  T hus, the more extensive 

biological processing of atmospheric nitrate inputs associated with elevated stream nitrate 

concentrations in the current study suggests that rather than exceeding biological demand, 

elevated atmospheric nitrate inputs may actually stimulate both vegetative demand and microbial 

production of nitrate.   
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Figure 3.5.  Conceptual model of atmospheric nitrate processing and export dynamics under N-limitation and 

N-saturation.   

Text and arrow sizes reflect the relative importance of N sources and fluxes.  (a) In N-limited systems, nitrate 

uptake by vegetation and microbial nitrate production are limited, facilitating greater export of unprocessed 

atmospheric nitrate.  ( b) Chronic elevated nitate deposition induces nitrate uptake by vegetation and 

decreases competition between vegetation and microbes for N, encouraging microbial nitrate production, 

elevated nitrate leaching, and ecosystem N saturation. 
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Given the large capacity of soil to serve as both a s ource and sink for ecosystem N, 

improved understanding of the ways that chronic N additions (in all forms) alter the capacity of 

ecosystem sinks to cycle and retain N will facilitate better predictions of N saturation 

development in forests.  The stable isotope data presented here demonstrate that elevated stream 

nitrate export does not necessarily signal N supply in excess of biological demand, and that 

microbial nitrate production can exert significant control on t he degree of watershed nitrate 

export.   

3.5 CONCLUSION 

Our results indicate that while vegetation and microbial sinks assimilate atmospheric N inputs to 

a great extent at Fernow, their ability to retain N inputs is often limited.  These observations are 

in agreement with the conceptual models of ecosystem nitrogen saturation put forward by [Ågren 

and Bosatta, 1988] and [Lovett and Goodale, 2011], which emphasize the importance of balance 

among soil N production, plant demand, and atmospheric deposition in regulating ecosystem N 

export.  B y quantifying the direct contributions of atmospheric deposition to stream nitrate 

export in multiple watersheds characterized by differing long-term stream nitrate concentrations, 

we have demonstrated that stream nitrate concentrations alone do not reflect the capacity of 

forests to cycle and retain atmospheric N inputs.  While this study focused on ni trate export 

dynamics in forested watersheds, other forms of N input—such as ammonium and dissolved 

organic N—exert additional influence on the degree of biological N cycling and ecosystem N 

retention.  Improved understanding of the ways that various forms of chronic N addition alter the 
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capacity of biological sinks to cycle and retain N will facilitate better predictions of N saturation 

development in forested systems.  
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4.0  DECOUPLED NITRATE SOURCE DYNAMICS IN WATERSHEDS ACROSS 

SPATIAL SCALES 

4.1 INTRODUCTION 

Decades of chronic elevated atmospheric nitrogen (N) deposition have led to the N saturation of 

forested systems throughout the eastern U.S. [Aber et al., 1998; Galloway et al., 2003].  The 

theory of N saturation holds that as N availability exceeds the retention capacity of ecosystem 

sinks (e.g., vegetation and soils), excess nitrate (NO3
-) is leached to surface and ground waters 

[Aber et al., 1989; Stoddard, 1994; Lovett and Goodale, 2011].  Common metrics used to assess 

the extent of ecosystem N saturation include long-term concentration increases [Edwards and 

Helvey, 1991; Peterjohn et al., 1996; Adams, 1999] and decreased seasonal variability [Stoddard, 

1994; Peterjohn et al., 1996; Adams, 1999] of stream nitrate concentrations.  However, 

concentration measurements taken at the watershed outlet alone provide little information about 

the heterogeneity of intra-watershed N cycling processes.  The potential decoupling of terrestrial 

and stream nitrate dynamics across spatial scales has been previously observed in eastern forests 

[Goodale et al., 2009; Sebestyen et al., 2014].   

Spatio-temporal variability of intra-watershed atmospheric N processing and transport 

may influence the nitrate signals observed at the watershed outlet.  Stream nitrate is generally 

positively correlated with atmospheric N deposition [Mitchell et al., 1997; Aber et al., 2003; 
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Driscoll et al., 2003; Pardo et al., 2006; Dise et al., 2009], but N mineralization and nitrification 

rates can be substantial in some systems, potentially complicating this relationship.  For example, 

nitrification rates are highly spatially variable in several watersheds at Fernow Experimental 

Forest [Gilliam et al., 2001] but the effect of this spatial variability on nitrate source 

contributions to streams is poorly constrained, particularly across a continuum of hydrologic 

states.  Nitrate concentrations measured at the watershed outlet may therefore obscure N 

processing heterogeneity at the sub-watershed scale.  O utlet measurements represent the 

integration of all nitrate sources in watershed areas that are hydrologically connected to the 

stream.  A s the extent of landscape-stream hydrologic connectivity can vary spatially and 

temporally [Hibbert and Troendle, 1988; Creed and Band, 1998; Jencso et al., 2009], it is  

important to characterize nitrate biogeochemical indicators (e.g., concentration and stable 

isotopic composition) at a variety of spatial scales to identify the drivers of nitrate export from 

individual landscape units to the watershed outlet.  

Isotopic approaches employing δ15N, δ18O, and Δ17O of nitrate can be useful for 

differentiating nitrate sources (Figure 1.2) and assessing N source dynamics across spatial scales.  

The presence of atmospheric nitrate isotopic signatures in soil water and streams indicates that 

some proportion of N deposition inputs is not biologically cycled.  H owever, several studies 

reported only minor contributions of unprocessed atmospheric nitrate to streams, despite a wide 

range of deposition and stream N fluxes [Spoelstra et al., 2001; Burns and Kendall, 2002; Ohte 

et al., 2004; Pardo et al., 2004; Barnes et al., 2008].  If landscape units vary in their 

contributions to streamflow— or if contributing areas change through time—this can have 

serious implications for the interpretation of N dynamics as assessed at the watershed outlet.  
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Thus, a closer examination of the N saturation concept and the roles of hydrologic connectivity 

and dynamic contributing areas in nitrate export is warranted. 

Understanding the roles of hydrology and topography in determining the source areas, 

magnitude, and timing of N transport to aquatic systems is essential, as effective management 

and mitigation of N pollution effects requires a clear understanding of the drivers of 

biogeochemical signals observed at the watershed outlet.  C haracterizing the influences of 

hydrology and topography on nitrate export can also clarify the extent to which stream nitrate 

concentrations are reflective of physical (e.g., hydrology- and mixing-driven) versus biological 

processes.   

Here we use nitrate concentration and stable isotope measurements to address the spatio-

temporal variability of nitrate sources across Watershed 4 (WS4) at Fernow Experimental Forest, 

as measured in A horizon (0-10 cm) soil water from January 2010 through February 2011.  We 

consider potential drivers of intra-watershed nitrate source heterogeneity, contrast these 

observations with patterns of nitrate source contributions to the stream at the outlet of WS4, and 

discuss the implications for N saturation theory of decoupled nitrate source dynamics across 

spatial scales.    
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4.2 STUDY SITE AND METHODS 

4.2.1 Study Site 

This study was conducted in Watershed 4 (WS4) at the Fernow Experimental Forest (39°05’ N, 

79°40’ W; Figure 1.4).  Fernow is located in the Allegheny Mountains portion of West Virginia.  

Elevations in WS4 range from 720 to 865 m, and slopes average ~20%.  Bedrock is primarily 

composed of hard sandstone and softer shale of the Upper Devonian Hampshire Formation 

(Rowlesberg Member); little water storage occurs in these strata [Reinhart et al., 1963; 

Kochenderfer, 2007].  Soils are channery silt loams of the Calvin series (loamy-skeletal, mixed 

active, mesic typic Dystrudept), averaging 1 m in depth [Kochenderfer, 2007].  Infiltration rates 

in these soils are high and most precipitation reaches the stream via subsurface flow [Reinhart et 

al., 1963].  Mixed hardwoods are the dominant forest type in WS4; northern red oak (Quercus 

rubra), sugar maple (Acer saccharum), red maple (Acer rubrum), and black cherry (Prunus 

serotina) are the most abundant species [Peterjohn et al., 1999].  The growing season at Fernow 

extends from late April through October, and precipitation is evenly distributed throughout the 

year, with an annual average of 1450 mm; significant snowpack does not accumulate over long 

periods.  Nitrate comprised approximately 60% of inorganic wet N deposition (NO3
- + NH4

+) to 

Fernow in 2010 [National Atmospheric Deposition Program, 2011]. 
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4.2.2 Sample Collection 

Fifteen sets of nested zero-tension pan lysimeters collected soil water draining the A horizon 

throughout WS4 (Figure 4.1).  When soil water was present in lysimeters, we collected samples 

monthly from January 2010 through February 2011.  D uring the growing season there is 

generally insufficient soil water present in lysimeters; in addition, sample collections did not 

occur in February and December 2010 or January 2011. 

 

 

Figure 4.1.  Map of lysimeters in Watershed 4 at Fernow Experimental Forest (FEF).  

 Lysimeters located on the east-facing aspect are shown as solid black circles; lysimeters on the south-facing 

aspect are shown as open circles.  The black star indicates the location of the weir at the base of the 

watershed.  Elevation contours are in meters (12-meter interval). 
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In October 2011, soil samples were collected from the A horizon immediately upslope of 

each lysimeter location.  At each location, five mineral soil samples were collected to a depth of 

5 cm using a h and trowel.  S amples at each lysimeter were composited in plastic bags, 

thoroughly mixed, and transported to the University of Pittsburgh where they were frozen until 

isotopic analysis.  Soil subsamples from each lysimeter location were subsequently freeze-dried, 

ground with a mortar and pestle, and packed into tin capsules for isotopic analysis.   

4.2.3 Isotopic Analysis 

Isotopic analysis of soil samples was conducted using a EuroVector high temperature elemental 

analyzer connected to a GV Instruments Isoprime Continuous Flow Isotope Ratio Mass 

Spectrometer (CF-IRMS) at the Regional Stable Isotope Laboratory for Earth and 

Environmental Science at the University of Pittsburgh. Precisions were 0.3‰ for δ13C and 0.5‰ 

for δ15N on duplicate samples. 

Nitrate concentrations for all soil water samples were measured by ion chromatography 

(Dionex ICS-2000) at the University of Pittsburgh.  For δ15N, δ18O, and Δ17O analysis of soil 

water nitrate, a denitrifying bacteria, Pseudomonas aureofaciens, was used to convert aqueous 

nitrate into gaseous N2O which was then introduced into the mass spectrometer [Sigman et al., 

2001; Casciotti et al., 2002].  For Δ17O analysis, this N2O was thermally decomposed at 800°C 

into N2 and O2 prior to isotopic analysis following the method described by Kaiser et al. [2007].  

Duplicate samples were analyzed for δ15N and δ18O of nitrate (and separately for Δ17O of nitrate 

during Δ17O analysis) on an Isoprime Trace Gas and Gilson GX-271 autosampler coupled with 
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an Isoprime Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS).  Isotope values are 

reported in parts per thousand relative to nitrate standards as follows: 

 

δ15N, δ17O, and δ18O (‰) =  ��
Rsample

Rstandard
� − 1� × 1000                        (Eq. 1) 

 

where R = 15N/14N, 18O/16O, or 17O/16O.  T he mass-independent oxygen isotope anomaly of 

nitrate (Δ17O-NO3
-) is likewise reported in parts per thousand and calculated using the equation: 

 

Δ17O (‰) =  δ17O − 0.52 ×  δ18O                                                  (Eq. 2) 

 

Samples with low nitrate concentrations were pre-concentrated prior to bacterial 

conversion to N2O.  F or pre-concentration, the sample volume necessary to obtain a final 

concentration of 20 nmol (for δ15N and δ18O analysis) or 200 nmol (for Δ17O analysis) in a 5 mL 

sample was calculated.  Appropriate sample volumes were measured into 10% hydrochloric 

acid-washed Pyrex or Teflon beakers and placed in a drying oven at 60°C until all liquid 

evaporated.  The interior of each beaker was then rinsed with 10mL of 18 MΩ water to 

reconstitute duplicate samples to the appropriate concentration.  Samples were prepared for 

isotopic analysis following the bacterial denitrifier method described above.  International 

reference standards were similarly pre-concentrated and used for correction of pre-concentrated 

samples.  Precisions for all soil water samples were 0.2‰, 0.5‰, and 0.2‰ for δ15N, δ18O, and 

Δ17O, respectively.       
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There is the potential for isobaric interference of the δ15N signal in samples with high 

Δ17O values.  Corrections for mass-independent contributions of Δ17O to m/z 45 were evaluated 

following the relationship described in Coplen et al. [2004], where a 1‰ increase in δ15N 

corresponds to an 18.8‰ increase in Δ17O.  Corrected δ15N values were zero to 1.7‰ lower than 

uncorrected values, depending on t he mass-independent contribution of Δ17O in the sample.  

Because this correction factor is small relative to the range of soil water δ15N values observed 

and because we could not apply the correction to some samples due to a lack of Δ17O data, the 

δ15N values presented here do not include the mass-independent Δ17O correction.  While values 

of corrected δ15N data are slightly lower than the data presented here, the temporal  and spatial 

trends of δ15N values presented here are not strongly influenced by the omission of the mass-

independent Δ17O correction. 

4.2.4 Statistical Analysis 

Data were analyzed using the Proc GLM procedure in SAS [SAS Institute, Inc., 2011]; mean 

values were not volume-weighted.  Nitrate concentration data for March 2010 and February 2011 

were log-transformed prior to means comparisons among months to meet the assumption of 

normality and equality of variances.  Nitrate concentration data for east- and south-facing aspects 

were similarly log-transformed prior to means comparisons between aspects. 
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4.3 RESULTS 

4.3.1 Soil Water Nitrate Concentrations 

Soil water nitrate concentrations showed a high degree of spatial and temporal variability across 

WS4.  Nitrate concentrations ranged from zero to 11.4 mg L-1 over the entire study period, with 

the highest monthly mean concentrations in March (2.5±3.3 mg L-1) and the lowest monthly 

value in the single sample collected in July (0.2 mg L-1) (Figure 4.2; Table 4.1).  I t should be 

noted that the soil water samples collected in October 2010 represent soil water from a single 

storm event whereas soil water collected during all other months had accumulated since the 

previous monthly collection.  The large coefficients of variation during most months (Table 4.1) 

demonstrate the high degree of spatial variability observed across WS4 throughout the study 

period.  Due to this variability, there were no statistically significant differences in mean nitrate 

concentration among months, despite a five-fold difference between the highest and lowest mean 

monthly nitrate concentrations (Figure 4.2; Table 4.1).   
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Figure 4.2.  Monthly soil water nitrate (a) concentration, (b) δ15N, (c) δ18O, and (d) Δ17O in WS4   

Boxplots for nitrate concentration show untransformed data.  Boxes represent upper and lower quartiles; 

whiskers extend to ± 1.5 times the interquartile range.  Circles and lines inside boxes represent median 

values.  Outliers are shown as open circles with lines. 
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Table 4.1. Monthly mean, range, and coefficient of variation of soil water nitrate concentration and triple nitrate isotopes in WS4. 

NA=Unable to calculate range and CV due to n=1 (April and July 2010), or negative mean yielded negative CV% (September and October 2010).   

*Nitrate concentration mean, range, and CV are reported for back-transformed data.  CVs were calculated following [Koopmans et al., 1964].  

 

Month  [NO3
-]  δ15N-NO3

-  δ18O-NO3
-  Δ17O-NO3

- 

  Mean 

(mg L-1) 

Range 

(mg L-1) 

CV (%)  Mean 

(mg L-1) 

Range 

(mg L-1) 

CV 

(%) 

 Mean 

(mg L-1) 

Range 

(mg L-1) 

CV 

(%) 

 Mean 

(mg L-1) 

Range 

(mg L-1) 

CV 

(%) 

Jan 

2010 

 1.7 

(n=7) 

0.0 to 4.2 94  +2.7 

(n=6) 

-2.6 to 

+5.0 

105  +46.0 

(n=6) 

-0.5 to 

+79.7 

77  +15.0 

(n=5) 

-0.1 to 

+31.6 

88 

Mar 

2010* 

 1.3 

(n=10) 

0.2 to 

12.6 

183  +1.8 

(n=10) 

-0.2 to 

+6.0 

113  +25.0 

(n=10) 

-2.8 to 

+76.5 

121  +10.0 

(n=9) 

0.0 to 

+28.0 

104 

Apr 

2010 

 1.0 

(n=1) 

NA NA  +0.6 

(n=1) 

NA NA  +11.7 

(n=1) 

NA NA  +5.8 

(n=1) 

NA NA 

Jul 

2010 

 0.2 

(n=1) 

NA NA  +2.5 

(n=1) 

NA NA  +63.4 

(n=1) 

NA NA  +16.4 

(n=1) 

NA NA 

Sept 

2010 

 1.5 

(n=8) 

0.3 to 3.5 96  -1.8 

(n=8) 

-6.9 to 

+0.8 

NA  +27.1 

(n=8) 

+3.4 to 

+61.6 

76  +7.4 

(n=8) 

+0.7 to 

+17.7 

87 

Oct 

2010 

 0.5 

(n=9) 

0.0 to 1.5 110  +1.0 

(n=5) 

-1.1 to 

+3.1 

169  +4.3 

(n=5) 

+0.9 to 

+9.3 

72  -0.05 

(n=6) 

-1.0 to 

+1.5 

NA 

Feb 

2011* 

 0.6 

(n=10) 

0.0 to 8.0 238  +3.1 

(n=8) 

+0.1 to 

+6.6 

60  +19.6 

(n=8) 

-6.4 to 

+81.4 

190  +5.0 

(n=8) 

-0.5 to 

+29.8 

209 
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Previous work on t his watershed has demonstrated a significant influence of aspect on 

biogeochemical attributes such as soil water nitrate concentration, net nitrification rate, and 

overstory vegetation species composition [Peterjohn et al., 1999; Gilliam et al., 2001; Christ et 

al., 2002].  I n agreement with these previous studies, we observed a higher mean soil water 

nitrate concentration on the east-facing aspect (1.10 ± 0.49) than the south-facing aspect 

(0.20±0.41) following log-transformation of nitrate concentrations (Figure 4.3; Table 4.2).  
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Figure 4.3.  Nitrate (a) concentration, (b) δ15N, (c) δ18O, and (d) Δ17O on the dominant aspects of WS4. 

Boxplots for nitrate concentration show untransformed data.  Boxes represent upper and lower quartiles; 

whiskers extend to ± 1.5 times the interquartile range.  Solid circles and lines inside boxes represent median 

values.  Outliers are shown as open circles with lines.  Boxplots labeled with different letters were 

significantly different at α=0.05. 
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Table 4.2.  Mean, range, and coefficient of variation of soil water nitrate concentration and triple nitrate 

isotopes on east- and south-facing aspects of WS4.  

Nitrate concentration mean, range, and CV values are reported for back-transformed data.  CV values for 

were calculated following [Koopmans et al., 1964]. 

 

Aspect [NO3
-]  δ15N-NO3

-  δ18O-NO3
-  Δ17O-NO3

- 

Mean 

(mg L-1) 

Range 

(mg L-1) 

CV 

(%) 

 Mean 

(mg L-1) 

Range 

(mg L-1) 

CV 

(%) 

 Mean 

(mg L-1) 

Range 

(mg L-1) 

CV 

(%) 

 Mean 

(mg L-1) 

Range 

(mg L-1) 

CV 

(%) 

East 1.1 

(n=33) 

0.1 to 

11.5 

157  +0.7 

(n=32) 

-6.9 to 

+4.0 

351  +14.6 

(n=32) 

-6.4 to 

+65.1 

136  +5.0 

(n=31) 

-1.0 to 

+20.4 

130 

South 0.3 

(n=10) 

0.1 to  

2.2 

119  +4.5 

(n=7) 

0.8 to 

+6.6 

42  +75.7 

(n=7) 

+61.6 to 

+81.4 

9  +18.8 

(n=7) 

+0.1 to 

+31.6 

71 

 

4.3.2 Soil Water Nitrate Isotopes 

As with nitrate concentrations, the isotopic composition of soil water nitrate was also highly 

variable across WS4, particularly for δ18O and Δ17O.  The total range of δ18O values was -6.4‰ 

to +81.4‰ during the study period; the lowest monthly mean δ18O value of +4.3±3.1‰ occurred 

in October and the highest monthly value of +63.4‰ occurred in the single sample collected in 

July (Figure 4.2; Table 4.1).  Soil water nitrate Δ17O values were similarly variable, ranging from 

–1.0‰ to +31.6‰ during the study period.  The highest monthly mean Δ17O value occurred in 

July (+16.4‰) and the lowest monthly mean value occurred in October (-0.05±0.9‰) (Figure 

4.2; Table 4.1).  There were no statistically significant differences in monthly mean δ18O or Δ17O 

of nitrate due to the highly variable isotopic compositions of soil water nitrate throughout the 

study.  Temporal trends in the nitrogen isotopic composition of soil water nitrate were similar to 
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those observed for oxygen isotopes.  Overall, δ15N values ranged from -6.9‰ to +8.2‰ (Figure 

4.2;Table 4.1); the highest monthly mean value of +2.9±1.9‰ occurred in February and the 

lowest value of -1.8±2.6‰ occurred in September.  A s with oxygen isotopes, there were no 

statistically significant differences in mean δ15N among months due to the high degree of 

variability in soil water nitrate isotopic compositions. 

Mean δ18O, Δ17O, and δ15N values for the entire study period were all significantly higher 

on the south-facing aspect (p ≤ 0.0003 for all;Figure 4.3; Table 4.2).  δ18O and Δ17O values were 

also higher on the south-facing aspect during every month, but the differences among means 

were only statistically significant in September (p=0.01; Table 4.2).  δ15N values were higher on 

the south-facing aspect during every month but due to the high degree of spatial variability 

across WS4, none of the monthly mean values were significantly different between aspects 

(Table 4.2).       

4.3.3 Soil Nitrogen and Carbon Isotopes 

Nitrogen and carbon isotopic compositions of A horizon soils varied little across the watershed.  

The range of δ13C values was small (-27.4‰ to -26.8‰) and the range of δ15N values was 

slightly greater (+1.9‰ to +3.4‰), but means for neither were significantly different on east- 

versus south-facing aspects.  However, the mean soil C:N ratio was significantly higher on the 

south-facing aspect (16.72±1.87) compared to the east-facing aspect (13.61±0.29).    



   

 

 98 

4.4 DISCUSSION 

Soil water nitrate concentrations and isotopic compositions were highly spatially variable across 

the watershed, indicating that nitrate source contributions also varied across WS4.  Indeed, this 

high degree of spatial heterogeneity, combined with small sample sizes during individual months 

and inconsistent availability of soil water at any given lysimeter from month to month preclude 

meaningful analysis of temporal trends in soil water nitrate sources.  Given these limitations, we 

focus our discussion on two important aspects of nitrate source dynamics in WS4: 1) persistent 

spatial variability of nitrate sources across the watershed and, 2) differences in nitrate source 

contributions observed across spatial scales. 

4.4.1 Intra-watershed Variability of Nitrate Sources 

The two main sources of nitrate in soil water and streams at Fernow are atmospheric deposition 

and microbial nitrification.  Interpretation of the δ18O and Δ17O isotopic signatures of nitrate 

allows the relative contributions from these two sources to be quantified.  Characteristic δ18O and 

Δ17O ranges for atmospheric nitrate are high (+60‰ to +100‰ and +20‰ to +35‰ for δ18O and 

Δ17O, respectively) whereas the ranges for microbial nitrate are lower (-10‰ to +15‰ for δ18O 

and a maximum of 0‰ for Δ17O) [Michalski et al., 2004; Kendall et al., 2007].  D ue to 

significant overlap in the ranges of δ15N values for atmospheric and microbial nitrate (Figure 

1.2), these data are not typically used for source differentiation.  Rather, they can provide insight 

into the relative extent of biological nitrate uptake and processing.    
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Nitrate concentrations showed a negative relationship with both δ18O and Δ17O during all 

months; significantly so in September (p=0.01 for δ18O and Δ17O) and October (p=0.04 for δ18O 

and p=0.05 for Δ17O).  T his indicates that greater proportions of microbial nitrate were 

associated with higher soil water nitrate concentrations.  Previous studies have also documented 

the importance of microbial nitrification as a nitrate source in WS4 [Peterjohn et al., 1999; 

Gilliam et al., 2001; Christ et al., 2002].  Gilliam et al. [2001] reported high percentages of 

relative nitrification in WS4, with 92% of mineralized N converted to nitrate.  H owever, that 

study and others also observed a high degree of spatial variability in net nitrification rates and 

nitrate concentrations in A horizon soil water [Peterjohn et al., 1999; Gilliam et al., 2001].  The 

spatial distribution of net nitrification rates and nitrate concentrations reported in these studies 

agree with the spatial trends in δ18O and Δ17O values we observed.  The lowest median nitrate 

concentrations and highest oxygen isotope values were observed on the south-facing aspect of 

WS4 (Figure 4.4), corresponding to the highest proportions of unprocessed atmospheric nitrate in 

soil water.  Indeed, the median soil water nitrate concentration on this part of the watershed was 

only 0.20 m g L-1 and the median Δ17O value was +23.6‰.  Applying the two end-member 

mixing model  

 

fatm =
∆17Osoil water – ∆17Onitri�ication

∆17Oatm −  ∆17Onitri�ication
                                                 (Eq. 3) 

 

we calculated the median fraction of atmospheric nitrate in soil water (fatm).  Using a nitrification 

end-member Δ17O value of -1.0‰ (representing the lowest soil solution nitrate Δ17O value 

observed during the study period) and an atmospheric end-member Δ17O value of +31.3‰ 
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(representing the highest Δ17O value observed in precipitation samples collected weekly at 

Fernow from February 2010 through February 2011), the median contribution of atmospheric 

deposition to soil water nitrate was 62% on the south-facing aspect.  T his indicates that the 

majority of soil water nitrate on this part of the watershed was atmospherically-derived.  These 

results agree with those of previous studies that reported microbial nitrification rates near zero on 

the south-facing aspect [Gilliam et al., 2001], and explain the greater importance of atmospheric 

nitrate and lower overall nitrate concentrations on this part of the watershed.  In contrast, lower 

median nitrate Δ17O isotope values, higher median concentrations, and low proportions of 

atmospheric nitrate (range=0 to 67%; median=6%) on the east-facing portion of the watershed 

(Figure 4.4 and Figure 4.5) indicate that atmospheric nitrate inputs are biologically cycled to a 

greater extent and microbial nitrification contributes more substantially to the soil N pool in 

these areas.     
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Figure 4.4.  Median A horizon soil water nitrate (a) concentrations, (b) δ15N, (c) Δ17O, and (d) A horizon soil 

C:N ratios at lysimeter locations across WS4.   

Lysimeters located on the east-facing aspect are shown as solid black circles; lysimeters on the south-facing 

aspect are shown as open circles. 
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Figure 4.5.  Median percent atmospheric nitrate in lysimeters across WS4. 

Lysimeters located on the east-facing aspect are shown as solid black circles; lysimeters on the south-facing 

aspect are shown as open circles.  Values in parentheses denote the number of monthly samples used to 

calculate median Δ17O values at each lysimeter.   

 

 
 

Previous efforts to understand the spatial variability in soil water nitrate across WS4 have 

focused on the relationship between vegetation composition and soil N dynamics [Peterjohn et 

al., 1999; Gilliam et al., 2001; Christ et al., 2002].  However, these studies have often presented 

conflicting ideas.  Peterjohn et al. [1999] hypothesized that higher net nitrification rates and soil 

water nitrate concentrations observed on the east-facing aspect were due to greater abundances 
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of sugar maple (Acer saccharum) and black cherry (Prunus serotina) on t hat part of the 

watershed, while lower N cycling rates on the south-facing aspect were due to the presence of 

species with more recalcitrant litter such as northern red oak (Quercus rubra) and American 

beech (Fagus grandifolia).  S imilarly, Christ et al. [2002] reported higher N processing rates 

associated with overstory sugar maple and lower rates with oak species in WS4.  Piatek et al. 

[2010] also reported greater total N immobilization and lower rates of N mineralization in oak 

litter versus litter from a mixture of species, suggesting that overstory species composition 

influences soil N dynamics at Fernow.  In contrast to these studies, Gilliam et al. [2001] found 

no relationship between soil water nitrate concentration or nitrification potential and overstory 

species composition in WS4.  Rather, they suggested that more extensive soil weathering and 

greater abundance of the ericaceous shrub hillside blueberry (Vaccinium vacillans) on the south-

facing aspect may have inhibited nitrification activity on this part of the watershed, resulting in 

lower soil water nitrate concentrations.  As the root exudates of hillside blueberry are capable of 

inhibiting the activity of nitrifying bacteria [Gilliam et al., 2001], the absence of this species on 

the east-facing aspect and its dense cover on the south-facing aspect (up to 30% in some areas 

sampled by Gilliam et al. [2001]) suggests that the species composition of vegetation exerts 

some influence on microbial N processing across WS4. 

The spatial differences in δ15N values observed in our study support the idea that 

biological nitrate processing is variable across the watershed.  Mean δ15N values for the entire 

study period were significantly lower on the east-facing versus south-facing aspect (+0.7±2.4‰ 

and +4.5±2.1‰ for east- and south-facing aspects, respectively; Table 4.2).  T his relationship 

also held during individual months, although differences were only significant in March 

(+0.9±0.9‰ and +5.2±1.2‰ for east- and south-facing aspects, respectively).  Lower mean δ15N 
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values on the east-facing aspect could be the result of greater microbial nitrate production on this 

part of the watershed relative to the south-facing aspect, consistent with results from Peterjohn et 

al. [1999] and Gilliam et al. [2001].  Higher rates of mineralization and nitrification of 14N-rich 

organic matter (e.g., plant litter) would result in an isotopically depleted forest floor and mineral 

soil on the east-facing portion of the watershed.  Significantly different nitrification rates on the 

east- and south-facing aspects [Gilliam et al., 2001] may therefore explain the spatial differences 

in δ15N, as well as δ18O and Δ17O of nitrate observed in our study (Figure 4.4).   

Research at Fernow and other forested sites has additionally demonstrated negative 

relationships between soil C:N ratios and microbial nitrification potential [Christ et al., 2002; 

Ross et al., 2004].  The spatial differences in A horizon C:N ratios observed in our study also 

support this idea.  M ean A horizon C:N ratios were significantly higher on t he south-facing 

portion of WS4 (18.22±2.41) compared to the east-facing aspect (14.00±1.07), coincident with 

generally higher mean nitrogen and oxygen isotope values (Figure 4.4).  T aken together, the 

patterns in soil water nitrate concentration and isotopic composition across WS4 suggest that 

microbial nitrification is a more important source of nitrate on the east-facing portion of the 

watershed while atmospheric deposition is the main source of nitrate on the south-facing aspect.   

4.4.2 Decoupled Nitrate Biogeochemical Signals Across Spatial Scales 

Soil water nitrate concentrations and isotopic compositions across WS4 demonstrate that the 

biogeochemical characteristics of a watershed can be highly variable even across small spatial 

scales.  As this variability is often not reflected in stream water measurements integrated over an 
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entire watershed (i.e., at the watershed outlet), it is important to consider the factors that may 

influence the coupling (or decoupling) of N biogeochemical cycles at different spatial scales.   

One watershed attribute that is particularly important in linking biogeochemical cycles 

across spatial and temporal scales is hydrologic regime.  Hydrologic connectivity and transit time 

of water between specific landscape areas (e.g., uplands, hillslopes, and riparian areas) and the 

stream can influence the biogeochemical signal that is ultimately observed at the watershed 

outlet [Evans et al., 2005; Gardner et al., 2011].  For example, in a 212 km2 mixed land-use 

watershed in Montana (USA), Gardner et al. [2011] found that while 98-99% of N inputs were 

retained in upland areas or by in-stream processing, fast transit times of water to the stream from 

a portion of the watershed dominated by wastewater inputs resulted in its disproportionate 

influence on nitrate export measured at the watershed outlet.  Similarly, variation in the degree of 

landscape-stream hydrologic connectivity can result in low nitrate export during periods of slow 

water transit and greater export via overland flow during storms [Evans et al., 2005].  Such 

hydrologic drivers also appear to operate at Fernow, where consistently low Δ17O of nitrate 

values observed in stream samples collected at the base of WS4 (Figure 3.3) could indicate that 

1) areas on the south-facing aspect of the watershed are minimally hydrologically connected to 

the stream, 2) these areas are hydrologically connected to the stream, but unprocessed 

atmospheric nitrate undergoes biological processing before reaching the watershed outlet, or 3) 

these areas are hydrologically connected to the stream, but low soil water nitrate concentrations 

in these areas (potentially linked to high soil C:N ratios) result in little unprocessed atmospheric 

nitrate reaching the watershed outlet. 

The highly variable contributions of microbial and atmospheric nitrate across space and 

time in WS4 are not reflected at the watershed outlet.  R ather, low Δ17O of nitrate values in 
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stream water collected weekly at the base of the watershed demonstrate that microbial 

nitrification is the dominant nitrate source in the stream draining WS4 (Figure 3.3).  U sing 

(Equation 3) and Δ17O values of -1.2‰ for the nitrification end-member (representing the lowest 

Δ17O of nitrate value measured in stream samples collected at the base of the watershed during 

2010) and +29.1‰ for the atmospheric end-member (representing the highest Δ17O of nitrate 

value measured in precipitation at Fernow during 2010), atmospheric deposition contributed a 

maximum of 15% to stream nitrate during 2010 (Figure 4.6).  This indicates that the majority of 

nitrate export at the whole-watershed scale derives from microbial nitrification.  These results are 

in stark contrast to the high contributions of atmospheric nitrate to soil water (often greater than 

90%) observed in some areas of WS4 (Figure 4.5), suggesting a decoupling of N biogeochemical 

dynamics across spatial scales in WS4. 
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Figure 4.6.  Percent of atmospheric nitrate in stream samples collected weekly at the base of WS4 (black 

circles). 

Daily discharge is shown on the secondary axis to highlight the greater atmospheric nitrate export in samples 

collected during stormflow.  The area shaded in grey represents a snowmelt event sampled at the end of 

February 2010.   

 

 

Previous research has emphasized the importance of landscape-stream hydrologic 

connectivity as a d river of nitrate source contributions to watershed nitrate export [Dunne and 

Black, 1970; Goodale et al., 2009; Gardner et al., 2011; Sebestyen et al., 2014].  These studies 

and others [Dunne and Black, 1970; Jencso et al., 2009; Pacific et al., 2010] demonstrate that all 

areas within a watershed do not contribute equally to streamflow at all times; this finding has 

direct applications to nitrogen biogeochemical cycling and nitrogen saturation across spatial 

scales in watersheds at Fernow.  For example, the greatest export of atmospheric nitrate 

generally occurred on sampling dates that coincided with stormflow (Figure 4.6).  Indeed, the 

highest percentage of atmospheric nitrate in the stream observed during 2010 occurred during a 
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snowmelt event in late February (Figure 4.6).  While the dominant nitrate source in the stream 

throughout 2010 was microbial nitrification, temporal relationships between atmospheric nitrate 

export and discharge suggest that variable hydrologic connectivity between watershed areas and 

the stream may influence the degree of atmospheric nitrate export.  T he difference in nitrate 

sources on the east- and south-facing aspects of WS4 represents an ideal setting for future work 

investigating the influence of variable hydrologic source areas on nitrate export dynamics.                   

The idea that the fate and transport of atmospheric nitrate in watersheds is mediated not 

only by biological activity, but also by watershed hydrology has implications for our 

conceptualization of nitrogen saturation across spatial scales.  While WS4 has been cited as one 

of the best examples of an N-saturated watershed in North America [Stoddard, 1994; Peterjohn 

et al., 1996; Gress et al., 2007], this characterization is based on long-term trends in stream 

nitrate concentration measured at the watershed outlet alone.  Such a sampling scheme integrates 

the N cycling dynamics of the entire watershed, reducing them to a single value.  The disparity 

between the proportions of atmospheric nitrate in soil water across WS4 and those observed at 

the base of the watershed demonstrates that stream-based characterizations of nitrate sources and 

export may not entirely reflect the complexities of nitrate source dynamics occurring within a 

watershed.   

In-stream N processing can also exerts some influence on nitrate source contributions and 

export measured at the watershed outlet [Sebestyen et al., 2014] and deserves further study in 

WS4; in-stream N cycling is currently not well characterized in this watershed.  However, our 

results also suggest that characterizations of a watershed’s apparent nitrogen saturation status can 

be scale-dependent.  At the whole-watershed scale, nitrate deposition in WS4 appears to exceed 

the retention capacities of vegetation and soil pools, suggesting a nitrogen-saturated system 
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[Stoddard, 1994; Aber et al., 1998; Lovett and Goodale, 2011].  However, the soil water nitrate 

isotope results presented here demonstrate that this is not the case for all areas of WS4.  Rather, 

our data suggest that the portions of WS4 that appear most saturated (i.e., those that with the 

highest nitrate concentrations in soil water) are also the areas with the greatest biological nitrate 

production.  In contrast, watershed areas that leach the smallest amounts of nitrate to soil water 

are more strongly influenced by atmospheric nitrate inputs.  T his decoupling of N 

biogeochemical indicators across spatial scales is an important feature of watershed-scale 

biogeochemical cycling and should be considered in the development of forest management 

plans aimed at mitigating the negative effects of chronic, elevated N deposition.          

4.5 CONCLUSION 

The disparity between nitrate source contributions at differing spatial scales in WS4 has 

implications for our understanding of nitrogen saturation.  T his decoupling of biogeochemical 

indicators across spatial scales illustrates the importance of not only biological drivers but also 

physical factors that influence the fate and transport of nitrate from landscapes to streams.   

The results presented here demonstrate that atmospheric deposition inputs are 

biologically processed to varying degrees across WS4.  Little unprocessed atmospheric nitrate 

occurs in soil solution on the east-facing portion of the watershed, while nitrate in soil solution 

on the south-facing slope is dominated by an atmospheric source.  While these results support the 

conclusions of previous studies of microbial nitrification in WS4 [Peterjohn et al., 1996; Gilliam 

et al., 2001], the atmospheric source dynamics presented here for soil solution and stream water 
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nitrate provide additional insight into the variable importance of atmospheric deposition when 

considered across spatial scales.  O ur results further suggest that hydrologic and topographic 

factors may be important in regulating the degree of atmospheric nitrate export from WS4.  

When watershed outlet-based characterizations of nitrogen saturation status do not  reflect the 

heterogeneous N cycling dynamics observed at the intra-watershed scale, it is  important to 

understand the basis for this difference in order to most effectively manage for improved forest 

health and water quality.  The results of this study emphasize the need to consider N saturation 

mechanisms at a v ariety of spatial and temporal scales, as well as their relationships to other 

watershed attributes such as hydrologic regime and geomorphology, which operate across spatial 

scales. 
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5.0  ISOTOPIC VARIABILITY OF PRECIPITATION NITRATE DURING 

GROWING SEASON STORM EVENTS 

5.1 INTRODUCTION 

Since their passage in 1990, the Clean Air Act Amendments have resulted in markedly decreased 

acidic deposition across the northeastern United States [Burns et al., 2011].  While the greatest 

reductions occurred in sulfate (SO4
2-) deposition (a 43% decrease from 1989-2009 across the 

region), reductions of up t o 27% were also observed in regional wet inorganic nitrogen (N) 

deposition over the same time period [Burns et al., 2011].  Recent attention has focused on the 

ecological effects of seasonal and long-term fluctuations in atmospheric deposition [Driscoll et 

al., 2003; Galloway et al., 2008], but few studies have explored the variable nature of nitrate 

(NO3
-) deposition on short time scales, such as storm events.  As wet deposition of nitrate during 

storms represents an important mode of N transfer from the atmosphere to terrestrial systems, 

examination of nitrate deposition dynamics during storms can improve constraints on ni trate 

inputs from natural and anthropogenic sources, improving our understanding of terrestrial N 

cycling.   

Atmospheric nitrate is generated through the oxidation of NOx (NO + NO2) precursors by 

a variety of atmospheric oxidants [Alexander et al., 2009].  I dentifying the sources of NOx 

precursors and the atmospheric processes that convert those emissions to atmospheric nitrate 
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deposition is important for our understanding of ecosystem nitrogen biogeochemistry.  It is 

particularly important to examine NOx source dynamics and oxidation processes on very short 

time scales (e.g., during individual storm events) as contributions from NOx sources such as 

lightning and biogenic emissions are transitory.   

Following emission, NO is oxidized to NO2 by ozone (R1) or peroxy radicals (R2).  

During the daytime, this NO2 is rapidly converted back to NO (R3); rapid interconversion 

between NO and NO2 results in a steady state equilibrium during the day.  The lifetime of NO2 in 

the atmosphere is 1 to 2 days; conversion of NO2 to nitric acid (HNO3) can proceed via a 3-body 

reaction with OH (R4), or NO2 can be oxidized by ozone to form the nitrate radical (NO3) (R5).  

The nitrate radical can react further with volatile organic compounds (VOC) to form nitric acid 

(R6) or with NO2 to form N2O5 (R7); these reactions are only important at night because the 

nitrate radical is readily photolyzed during the day.  N2O5 can then react slowly with gas phase 

water or more rapidly with wetted aerosol surfaces to form nitric acid (R8).   

 

(R1)    NO + O3  NO2 + O2 

(R2)    NO + HO2/RO2  NO2 + OH/RO  

(R3)    NO2 + hν  NO + O 

(R4)    NO2 + OH + M  HNO3 + M  

(R5)    NO2 + O3  NO3 + O2  

(R6)    NO3 + VOC  HNO3 

(R7)    NO2 + NO3  N2O5 

(R8)    N2O5 + H2O/aerosol  2HNO3  
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The oxygen isotopic compositions (δ18O and Δ17O) of NOx and nitrate have been used in 

many previous studies to infer the relative importance of these oxidation pathways to 

atmospheric nitrate formation [Savarino et al., 2007; Alexander et al., 2009; Morin et al., 2009; 

Michalski et al., 2013; Vicars et al., 2013].  For example, ozone has both high δ18O (+80‰ to 

+120‰) and Δ17O (+30‰ to +50‰) values [Michalski et al., 2013], and these isotopic 

enrichments are imparted to atmospheric nitrate when NOx oxidation proceeds via ozone.  In 

contrast, atmospheric nitrate formed via oxidation by the hydroxyl radical has lower δ18O and 

Δ17O values, more closely reflecting the oxygen isotopic composition of OH (δ18O-OH= -30‰ 

to +2‰ and Δ17O-OH=0‰; [Hastings et al., 2003]).  T hese differences in the isotopic 

compositions of O3 and OH have been used to infer their relative importance in the formation of 

atmospheric nitrate [Hastings et al., 2003; Michalski et al., 2003].  I ndeed, the typical δ18O 

values of atmospheric nitrate (δ18O=+63‰ to +94‰ and Δ17O=+20‰ to +30‰; [Michalski et 

al., 2003; Kendall et al., 2007]) demonstrate the importance of ozone in the oxidation of NOx to 

nitrate.     

Throughout these oxidation reactions, nitrogen atoms are conserved.  Thus, δ15N of 

nitrate can be used to trace the contributions of NOx sources to atmospheric nitrate formation.  

However, variation in ambient conditions (e.g., relative humidity, atmospheric ozone levels) can 

alter the equilibrium between atmospheric NOx pools, with consequences for their isotopic 

compositions [Freyer et al., 1993; Morino et al., 2006; Wankel et al., 2010].  While these factors 

are important to consider when using δ15N values to infer source dynamics, they may be less 

important during storm events when short-term fluctuations in relative humidity and temperature 

are minor.  S imilarly, while seasonal variability in ozone levels can lead to fractionation of 
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nitrogen isotopes [Morin et al., 2009], this is not likely to be important on the time scale of 

individual storm events.   

Many previous studies have used δ15N of nitrate to identify NOx sources in the 

environment and to quantify their relative contributions to atmospheric N pools [Heaton, 1990; 

Elliott et al., 2007, 2009; Felix et al., 2012].   δ15N is well-suited to such source differentiation, 

as the isotopic signatures of anthropogenic and biogenic NOx are distinct.  δ15N-NOx values for 

electricity-generating units (EGUs) range from +9‰ to +26‰, depending on t he type of 

emissions control technology employed [Felix et al., 2012], while reported values for vehicle 

NOx range from -13‰ to +10‰ [Heaton, 1990; Ammann et al., 1999] and those for biogenic 

NOx range from -49‰ to -20‰ [Li and Wang, 2008].  However, few studies have attempted to 

identify the role of NOx source dynamics in atmospheric nitrate formation during storm events.  

Freyer [1991] reported a negligible influence of source contributions on seasonal variability in 

precipitation nitrate isotopes during storms in Europe.  Instead, lower mean precipitation δ15N of 

nitrate values in summer versus winter were attributed to differences in nitrate formation 

pathways and nitrate species (i.e., particulate vs. gas phase); variability within individual storms 

was not discussed.  In contrast, higher mean δ15N and lower mean δ18O of nitrate were reported 

during warm season events in Bermuda [Hastings et al., 2003].  While the seasonal isotopic 

variability observed in this study was attributed to varying NOx sources, source dynamics within 

individual storm events were not addressed.  In one of the few studies that examined within-

storm variability in nitrate isotopic composition, Buda and DeWalle, [2009b] reported significant 

δ15N and δ18O variability during six storms in central Pennsylvania.  Among the six storms 

sampled, the largest within-storm δ15N and δ18O ranges were 8.8‰ a nd 30.0‰, respectively; 
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both intra-storm and seasonal variability were attributed to changing air mass back trajectories 

and atmospheric oxidation chemistry [Buda and DeWalle, 2009b].   

Here we present the results of triple nitrate isotope analyses (δ15N, δ18O, and Δ17O) of 

precipitation samples collected during six growing season storms at Fernow Experimental Forest 

(West Virginia, USA).  We discuss possible explanations for the wide variation in isotopic 

composition observed over short time periods and address the potential importance of 

anthropogenic and biogenic NOx sources and atmospheric oxidation pathways to atmospheric 

nitrate formation.  This research highlights the dynamic nature of intra-event atmospheric nitrate 

isotopic composition, with implications for our understanding of N source-sink relationships in 

forested watersheds.    

5.2 STUDY SITE AND METHODS 

5.2.1 Study Site 

This study was conducted at the USDA Fernow Experimental Forest (39°05’ N, 79°40’ W; 

Figure 1.4).  Fernow is located in the Allegheny Mountains portion of West Virginia.  Elevations 

in WS4 range from 670 to 930 m , and slopes average ~20%.  B edrock in the study area is 

primarily composed of hard sandstone and softer shale of the Upper Devonian Hampshire 

Formation (Rowlesberg Member); little water storage occurs in these strata [Reinhart et al., 

1963; Kochenderfer, 2007].  Soils are channery silt loams of the Calvin series (loamy-skeletal, 

mixed active, mesic typic Dystrudept), averaging 1 m in depth [Kochenderfer, 2007].  Infiltration 
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rates in these soils are high and most precipitation reaches the stream via subsurface flow 

[Reinhart et al., 1963].  Mixed hardwoods are the dominant forest type at Fernow;  northern red 

oak (Quercus rubra), sugar maple (Acer saccharum), red maple (Acer rubrum), and black cherry 

(Prunus serotina) are the most abundant species [Peterjohn et al., 1999].  The growing season 

extends from late April through October, and precipitation is evenly distributed throughout the 

year, with an annual average of 1450 mm; significant snowpack does not accumulate over long 

periods.  Nitrate comprised approximately 60% of inorganic wet N deposition (NO3
- + NH4

+) to 

the Fernow in 2010 [National Atmospheric Deposition Program, 2011]. 

5.2.2 Sample Collection 

We sampled six growing season storms during July and September 2010.  Hourly precipitation 

samples were collected in a clearing adjacent to Watersheds (WS) 3, 4, and 5 during each storm 

(Figure 1.4).  For the 9 July event, hourly precipitation samples were collected using a plastic 

funnel (area of funnel top = 1200 cm2) clamped to a pole at a height of 2 m, which drained into a 

1 L HDPE sample bottle also clamped to the pole.  Sample bottles were replaced hourly.  For 

subsequent storms, a Teledyne ISCO autosampler collected hourly precipitation samples.  Two 

rectangular plastic containers (total area = 4756 cm2) were arranged in series and angled 

downslope, with a hole drilled into the downslope corner.  P recipitation collected in these 

containers drained into a 1 L HDPE sample bottle, held in place by a clamp beneath the 

downslope container.  The ISCO autosampler suction tube was secured so that it rested in the 

bottom of the sample bottle.  O nce per hour, the autosampler collected all accumulated 

precipitation.  Immediately prior to all storms, the funnel, plastic containers, sample bottles, and 
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all autosampler bottles were triple-rinsed with 18 M Ω water.  On 16 S eptember, the first 

precipitation sample was collected approximately four hours after rainfall onset.  For the 11 and 

26 September events, the first sample represents a composite of all precipitation since the onset 

of rainfall.  A ll precipitation samples were processed at the U.S. Forest Service Timber and 

Watershed Laboratory in Parsons, WV within 24 hours.  Samples were vacuum-filtered through 

0.22 μm polyethersulfone (PES) membrane filters to remove suspended solids and biological 

material.  S amples were frozen and transported to the University of Pittsburgh, where they 

remained frozen until further analysis. 

5.2.3 Isotopic Analysis 

Concentrations of nitrate for all samples were measured by ion chromatography (Dionex ICS-

2000) at the University of Pittsburgh.  For isotopic analysis, a denitrifying bacteria, 

Pseudomonas aureofaciens, was used to convert aqueous nitrate into gaseous N2O which was 

then introduced into the mass spectrometer [Sigman et al., 2001; Casciotti et al., 2002].  For 

Δ17O analysis, this N2O was thermally decomposed at 800°C into N2 and O2 prior to isotopic 

analysis following the method described by Kaiser et al. [2007].  Duplicate samples were 

analyzed for δ15N and δ18O of nitrate (and separately for Δ17O of nitrate during Δ17O analysis) on 

an Isoprime Trace Gas and Gilson GX-271 autosampler coupled with an Isoprime Continuous 

Flow Isotope Ratio Mass Spectrometer (CF-IRMS) at the Regional Stable Isotope Laboratory for 

Earth and Environmental Science at the University of Pittsburgh.  Isotope values are reported in 

parts per thousand relative to nitrate standards as follows: 
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δ N, δ O, and δ17O (‰) =  ��
Rsample

Rstandard
� −  1�  × 1000                              (Eq. 1) 

18
 

15  

 

where R = 15N/14N, 18O/16O, or 17O/16O.  T he mass-independent oxygen isotope anomaly of 

nitrate (Δ17O-NO3
-) is likewise reported in parts per thousand and calculated using the equation: 

 

Δ17O (‰) =  δ17O − 0.52 ×  δ18O                                                      (Eq. 2) 

 

Samples with low nitrate concentrations were pre-concentrated prior to bacterial 

conversion to N2O.  Pre-concentration was accomplished by calculating the sample volume 

necessary to obtain a final concentration of 20 nmol (for δ15N and δ18O analysis) or 200 nmol 

(for Δ17O analysis) in a 5 m L sample.  Appropriate sample volumes were measured into 10% 

hydrochloric acid-washed Pyrex or Teflon beakers and placed in a drying oven at 60°C until all 

liquid evaporated.  The interior of each beaker was then rinsed with 10mL of 18 MΩ water to 

reconstitute duplicate samples to the appropriate concentration.  Samples were prepared for 

isotopic analysis following the bacterial denitrifier method as previously described.  International 

reference standards were similarly pre-concentrated and used for correction of pre-concentrated 

samples.   

δ15N and δ18O values were corrected using international reference standards USGS-32, 

USGS-34, USGS-35, and N3; USGS-34 and USGS-35 were used to correct Δ17O values.  These 

standards were also used to correct for linearity and instrument drift.  Standard deviations for 

international reference standards were 0.2‰, 0.5‰, and 0.2‰ f or δ15N, δ18O, and Δ17O, 

respectively.    
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Water isotope analyses were carried out at the University of Maryland, Baltimore County 

(UMBC) and at the Cornell Isotope Laboratory (COIL) at Cornell University.  Sample analyses 

at UMBC were carried out on a Picarro water isotope cavity ring-down spectrometer.  δ18O-H2O 

values for these samples represent an average of five sample injections and samples were 

corrected using reference standards USGS-46 and USGS-48, with a standard deviation of 0.2‰.  

Samples analyses at COIL were carried out on a Thermo Delta V isotope ratio mass spectrometer 

interfaced to a Gas Bench II.  These samples were analyzed in duplicate and corrected against 

Vienna Standard Mean Ocean Water and in-house standards, with a standard deviation of 0.2‰.       

 There is the potential for isobaric interference of the δ15N signal in samples with high 

Δ17O values.  Corrections for mass-independent contributions of Δ17O to m/z 45 were evaluated 

following the relationship described in Coplen et al. [2004], where a 1‰ increase in δ15N 

corresponds to an 18.8‰ increase in Δ17O.  Corrected δ15N values were 0.6‰ to 1.6‰ lower 

than uncorrected values, depending on the mass-independent contribution of Δ17O in the sample.  

Because this correction factor is small relative to the range of precipitation δ15N values observed 

and because we could not apply the correction to some samples due to a lack of Δ17O data, the 

δ15N values presented here do not  include the mass-independent Δ17O correction.  H owever, 

given that the magnitude of δ15N variability is much greater than the correction for isobaric 

interference by ~12 times, omission of the mass-independent Δ17O correction does not influence 

the observed δ15N trends and our interpretation of storm dynamics.       
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5.2.4 Electricity-Generating Unit NOx Quantification 

To quantify EGU NOx source inputs to the study site, we used the National Oceanographic and 

Atmospheric Administration (NOAA) Hybrid Single Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model to calculate a 48-hour back trajectory for each hourly precipitation sample 

collected during storm events.  W e chose a back trajectory duration of 48 hour s because it 

approximates the lifetime of NOx in the near-surface troposphere [Seinfeld and Pandis, 2006; 

Alexander et al., 2009].  Back trajectories were calculated at 500 m above ground level using the 

Eta Data Assimilation System (EDAS, 40 km resolution).  Hourly NOx emission data from the 

U.S. EPA Air Markets Program were used to characterize NOx emissions along each back 

trajectory; emissions from all EGUs located within a 100 km radius of the back trajectory were 

included.  A radius of 100 km was chosen based on e valuation of the relationship between 

bimonthly δ15N and EGU NOx emissions summed within varying radial source areas of NTN 

sites as shown in Elliott et al. [2007].  As the current study focuses on NOx source dynamics at 

much shorter time scales than those evaluated in Elliott et al. [2007] (i.e., hourly as opposed to 

bimonthly time scales) and improvements in R2 values were minimal at radii greater than 100 km 

[Elliott et al., 2007], we chose a radius of 100 km in this study.  Total NOx emissions were 

calculated by summing all emissions occurring within this 100 k m radius during each hour.  

Emissions were categorized by the reported NOx control technology in use at the time of 

emission: selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) or low-

NOx burner (LNB); emissions from EGUs using both SCR and SNCR were categorized as SCR.  

The proportions of total NOx contributed by each control technology along a back-trajectory 

were used to calculate a representative EGU δ15N-NOx value for each hour, where δ15N-NOx 
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values of +20‰, +14‰, and +10‰ were used for SCR, SNCR, and LNB facilities, respectively 

[Felix et al., 2012].  To account for fractionations between the estimated EGU δ15N-NOx and 

δ15N of nitrate, we applied a fractionation factor of α=0.997 to all δ15N values [Freyer, 1991]. 

5.2.5 Biogenic NOx Quantification 

To estimate biogenic NOx contributions to precipitation, we assumed a biogenic δ15N-NOx 

isotopic signature of -27‰ [Felix and Elliott, 2013] and applied the same α=0.997 fractionation 

factor described above, yielding a nitrate δ15N value of -30‰.  Using measured precipitation 

nitrate δ15N values and the estimated nitrate δ15N values for EGU and biogenic NOx emissions as 

described above, we created a two-endmember isotope mixing model to estimate contributions of 

biogenic NOx emissions to precipitation nitrate:   

 

𝑓biogenic =  
δ15N − NO3

−
precip − �𝑓EGU  ×  δ15N − NO3

−
EGU�

δ15N − NO3
−
biogenic

                         (Eq. 3) 

 

where fbiogenic is the fraction of precipitation N from biogenic NOx.  Our model did not consider 

mobile NOx emissions (e.g., vehicles) due to the remoteness of the study area; the only roads in 

the vicinity are U.S. Forest Service roads that receive minimal automobile traffic.  Previous 

research suggests that NO2 fluxes decline rapidly with distance from roadways [Ammann et al., 

1999; Cape et al., 2004; Kirchner et al., 2005; Redling et al., 2013]; one study reported a 90% 

reduction in NO2 concentrations at distances greater than 15 m from the roadway [Cape et al., 
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2004].  A s the nearest public road is ~1.5 km from the study site, we therefore assumed 

negligible contributions from vehicle NOx emissions. 

5.2.6 Statistical Analysis 

We used analysis of variance to test for significant differences among storm event nitrate 

concentration and mean δ15N and δ18O of nitrate.  When significant differences were indicated, 

we applied Tukey’s Honestly Significant Difference test to determine which storm means were 

significantly different (α=0.05). To evaluate the relationships between NOx emissions, storm 

characteristics, and precipitation isotope values, we used Pearson Correlation Coefficients.  

Linear regression was used to evaluate the relationship between δ15N and δ18O of nitrate during 

individual storms.  All statistical analyses were conducted using SAS [SAS Institute, Inc., 2011]. 

5.3 RESULTS 

5.3.1 Precipitation Nitrate Concentrations 

Storm event characteristics are presented in Table 5.1.  V olume-weighted mean nitrate 

concentrations ranged from 0.1 t o 1.6 mg/L.  Within-storm nitrate concentrations also varied, 

with some events showing large ranges (Figure 5.1).  With the exception of the 9 July event, 

volume-weighted mean precipitation nitrate concentrations among events generally decreased 

with time (Figure 5.1).  Storms differed in duration and pattern of precipitation input, including 

short, intense downpours and moderate, steady rainfall (Table 5.1), but precipitation intensity 



   

 

 123 

was not correlated with nitrate concentration.  W hile this relationship was not statistically 

significant during any storm, nitrate concentrations did decrease sharply during periods of very 

high intensity precipitation on 16 September and 30 September.   
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Table 5.1. Characteristics of six storm events sampled at Fernow Experimental Forest during 2010 

 

 

 

 

Date Antecedent 

precip.  

(mm in past month) 

Days  

since rain 

>5mm 

Total  

precip.  

(mm) 

Mean 

intensity 

(mm hr-1) 

Volume-weighted  

mean 

 Total NOx  

emissions 

 (metric tons) 

Estimated mean 

biogenic flux 

(μg N m-2h-1) 

Estimated 

mean biogenic 

fraction (%) 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

 SCR SNCR LNB   

9 July 61.7 14 17.7 2.2 0.6 +1.1 +65.5 +18.4  784 198 1047 69.5 17 

11 Sept 47.5 3 5.5 0.9 1.6 -3.5 +54.5 +16.8  110 36 59 124.0 36 

16 Sept 44.2 9 47.7 4.8 0.5 -3.2 +61.0 +14.9  141 64 317 195.1 36 

26 Sept 65.3 10 8.6 0.7 0.7 -0.4 +69.7 +23.3  183 34 361 27.7 32 

28 Sept 67.3 1 7.8 1.1 0.2 -3.7 +70.2 +24.8  160 89 199 17.8 29 

30 Sept 81.5 2 56.2 3.5 0.1 +2.3 +67.5 +22.5  659 230 785 9.9 19 
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Figure 5.1.  Means and ranges of precipitation (a) nitrate concentration, (b) δ15N of nitrate, (c) δ18O of nitrate, 

and (d) Δ17O of nitrate during six storms sampled at Fernow Experimental Forest in 2010.   

Storm means are indicated by a black circle.  Box limits represent the interquartile range; whisker limits 

denote the entire data range.  Storms with different letters are significantly different at p<0.05 based on 

Tukey’s HSD test. 
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Among NOx emissions control types, LNB showed the strongest relationship to nitrate 

concentrations (R2=0.17, p=0.0008).  This may be due in part to the lower efficiency of LNB 

among the three NOx control types considered here [Felix et al., 2012], yielding higher NOx 

fluxes from stacks employing this technology.  Interestingly, SCR emissions showed a 

significantly positive relationship to precipitation sulfate concentrations (R2=0.27, p<0.0001) 

despite the greater efficiency of this emissions control type.  LNB emissions were also positively 

related to sulfate concentrations, but the relationship was slightly weaker (R2=0.14, p=0.0024).  

5.3.2 δ15N of Precipitation Nitrate  

Precipitation nitrate δ15N values ranged from -12.4 to +13.9‰ across all storms; volume-

weighted mean δ15N for individual events ranged from -3.7‰ to +2.3‰ (Table 5.1).  Mean δ15N 

did not differ among storms (Figure 5.1).  H owever, large intra-storm variations in δ15N did 

occur during some events.  For example, δ15N values increased by nearly 16‰ over two hours on 

9 July and by 12‰ over three hours on 30 Sept (Figure 5.2).  Temporal trends in δ15N of nitrate 

varied among storms (Figure 5.2).  On some dates (9 July, 26 September), values were low at the 

beginning of the storm, increased during the middle, then decreased toward the end.  During 

others (30 September), δ15N values began high, decreased sharply within a few hours, then 

increased again shortly thereafter.  Still other events (11 September, 16 September) showed only 

minor trends in δ15N values.       
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Figure 5.2. Intra-storm variation during six storms sampled at Fernow Experimental Forest during 2010.   

Precipitation intensity is shown by black bars, nitrate concentration by black circles, δ15N of nitrate by green 

circles, δ18O of nitrate by red circles, and Δ17O of nitrate by blue circles.  Storm date is indicated in the top 

right corner of each plot. 

 

 

5.3.3 δ18O of Precipitation Nitrate  

δ18O of nitrate values ranged from +43.0‰ to +84.3‰.  V olume-weighted mean δ18O ranged 

from +54.5‰ to +70.2‰ (Table 5.1), with significant differences in mean δ18O among events 

(Figure 5.1).  As with δ15N, intra-storm δ18O values were highly variable, and storms differed in 

temporal δ18O trends (Figure 5.2).  For example, δ18O values were lowest during the early part of 

the storm on 9 July, whereas values were highest and decreased sharply at the end of the storm 
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on 26 September.  On other dates, trends in δ18O were both positive and negative within storm 

events.   

5.3.4 Δ17O of Precipitation Nitrate    

Due to low nitrate concentrations and insufficient sample volume for pre-concentration, Δ17O 

data are lacking for eight samples during the 30 September storm.  D uring all storms, the 

temporal dynamics of nitrate Δ17O values were similar to those of δ18O of nitrate.  Δ17O values 

spanned a wide range across all storms, from +11.2‰ to +30.6‰.  Volume-weighted mean Δ17O 

of nitrate values ranged from +14.9‰ to +24.8‰ (Table 5.1), with significant differences among 

events (Figure 5.1).  Within individual storms, Δ17O values were highly variable and temporal 

trends differed among storms (Figure 5.2). 

5.3.5 δ18O of Water in Precipitation 

δ18O-H2O values ranged from -22.8‰ to -4.5‰ across all storms.  Volume-weighted mean δ18O-

H2O ranged from -20.7‰ to -5.4‰.  I ntra-storm δ18O-H2O values were highly variable, and 

storms differed in temporal trends (Figure 5.3).  For example, δ18O-H2O values showed generally 

decreasing trends throughout the event on 9 July and 30 September, whereas values showed a 

positive trend on 26 September.  On other dates, trends in δ18O were both positive and negative 

within storm events.   
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Figure 5.3.  Hourly precipitation δ18O-H2O values and precipitation amounts during six growing season 

storms sampled in 2010 at Fernow Experimental Forest. 

 

5.3.6 Biogenic NOx Flux Measurements and Mixing Model Results 

Based on the two endmember mixing model in Eq. 3, mean biogenic NOx flux estimates ranged 

from 9.9 to 195.1 μg N m-2 h-1 for the six storms (Table 5.1).  Using Eq. 4, we calculated mean 

biogenic NOx contributions to wet nitrate deposition ranging from 17% to 36% 

 

% biogenic =
�(δ15N − NO3

−) precip −  (δ15N − NO3
−) EGU�

�(δ15N − NO3
−) biogenic −  (δ15N − NO3

−) EGU�
  ×  100                    (Eq. 4) 

 

for the six storms (Table 5.1); hourly estimates ranged from -7% to 59%. 
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5.4 DISCUSSION 

5.4.1 Anthropogenic and Biogenic NOx Sources 

The high degree of variability in δ15N of nitrate during storms was surprising.  Because the 

nitrogen isotopic composition of the NOx source is generally retained during atmospheric nitrate 

formation [Wankel et al., 2010], we attribute this intra-storm variability in precipitation nitrate 

δ15N values to contributions from two NOx sources—emissions from local biogenic sources and 

regional EGUs.   

Various NOx emissions controls may operate at an EGU, as well as along an air mass 

back trajectory.  E ach emissions control technology fractionates δ15N-NOx differently (mean 

SCR= +20‰, mean SNCR= +14‰, mean LNB= +10‰; [Felix et al., 2012]) and efficiencies 

vary through time.  P otential rainout and recharge of EGU-derived atmospheric nitrate along 

back trajectories may also influence the isotopic composition of precipitation.  However, these 

factors alone cannot explain the large number of isotopically depleted δ15N values observed 

during storms. The majority (59%) of hourly precipitation samples had negative δ15N values, 

whereas a s mall fraction (10%) had δ15N values greater than +7‰ (representing the lowest 

measured EGU δ15N-NOx value from Felix et al. [2012] with an α=0.997 fractionation factor 

applied).  This strongly suggests that another N source— with a much lower δ15N signature— 

influences precipitation nitrate isotopes.  The highly dynamic fluctuations in δ15N over short time 

periods (Figure 5.2) also suggest another NOx source.  Lightning may have contributed to NOx 

formation along air mass back trajectories, although the δ15N of NOx range for this source (-0.5 

to +1.4‰; [Hoering, 1957]) cannot account for the much lower δ15N of nitrate values observed 
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during many storms.  Biomass burning was also not significant NOx source during this time, as 

no large fires were reported in any of the states through which air mass back trajectories passed 

[National Oceanic and Atmospheric Administration (NOAA), 2010a, 2010b].  V ehicle NOx 

emissions produced along air mass back trajectories likely had minimal effect on the δ15N values 

observed during storms because most of these NOx emissions (in some cases up to 90% [Cape et 

al., 2004]) are deposited within a short distance of roadways [Ammann et al., 1999; Cape et al., 

2004; Kirchner et al., 2005; Redling et al., 2013] and the closest public road to the Fernow study 

site is ~ 1km away.  Instead, we propose that biogenic NOx emissions from the soils at Fernow 

served as an additional NOx source during storms.  If these isotopically-depleted emissions were 

rapidly oxidized and deposited as wet nitrate deposition during storms, this could partially 

explain the highly variable isotopic composition observed in precipitation samples during storms.    

Plumes of microbial NOx following soil wetting have been widely reported [Davidson 

and Kingerlee, 1997; Davidson et al., 2000; Jaeglé et al., 2004; Ghude et al., 2010; Zhang et al., 

2011; Hudman et al., 2012], with large NO fluxes often occurring with the first wetting event 

after a dry period [Stark et al., 2002].  Because of the low δ15N values associated with biogenic 

NOx (-49‰ to -20‰ [Li and Wang, 2008]; -27‰ [Felix and Elliott, 2013]), even a s mall 

contribution from this source could lower δ15N of nitrate values substantially.  NO flux increases 

of 12-2200% have been reported within 10 minutes after the addition of 2 cm of water to forest 

soils in the western US [Stark et al., 2002]; these fluxes were positively correlated with net 

nitrification rates and soil nitrate content.  A t sites where nitrate is the dominant form of soil 

inorganic N, NO and N2O emissions are also high [Davidson et al., 2000].  High nitrification 

rates and the predominance of nitrate in the soil inorganic N pool in watersheds adjacent to our 

study site Gilliam et al. [2001] suggest the potential for large soil NO fluxes.   In addition, 
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negative correlations between soil moisture content and NO flux have been reported [Horváth et 

al., 2006], indicating a soil moisture threshold for nitrification.  Threshold soil water contents of 

59% and 53% were observed in oak and spruce forests, respectively [Horváth et al., 2006].  

Beyond these thresholds, denitrification exceeded nitrification and N2O flux was greater than NO 

flux.  O ther studies confirm this negative relationship between nitrification and soil moisture 

[Stark and Firestone, 1995; Ullah and Moore, 2009]. 

Accordingly, in this study, early decreases in δ15N during some storms may have resulted 

in part from increasing nitrification rates during soil wet-up.  During periods of intense rainfall or 

long events (e.g., 9 July and 30 S eptember), sharp increases in δ15N of nitrate may signify a 

threshold soil water content beyond which nitrification rates and/or diffusion of NOx from the 

soil decreased.  P recipitation nitrate deposited after this time would have been influenced 

primarily by EGU NOx, yielding higher δ15N values.   

Based on Eq. 4, mean biogenic NOx contributions to wet nitrate deposition ranged from 

17 to 36% for individual storms (Table 5.1).  T hese estimates encompass those reported 

elsewhere using satellite observations and atmospheric chemistry models [Jaeglé et al., 2005; 

Steinkamp et al., 2008].  G lobally, soil NOx is estimated to contribute 22% to surface NOx 

emissions based on satellite observations [Jaeglé et al., 2005].  Similarly, the ECHAMS/MESSy 

atmospheric chemistry (EMAC) model showed a 2 5% decrease in estimated global HNO3 

deposition during the summer months when soil NOx was removed from the model [Steinkamp et 

al., 2008].  Our estimates of mean biogenic NOx fluxes (9.9 μg N m-2 h-1 to 195.1 μg N m-2 h-1) 

encompass measured NO fluxes reported by Venterea et al. [2004] on an N-amended watershed 

(WS3) at Fernow.  In that study, maximum soil NO fluxes during August were approximately 33 
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μg N m-2 h-1 and 14 μg N m-2 h-1 at low and high elevations, respectively, suggesting potentially 

high rates and high spatial heterogeneity in local biogenic NOx emissions.             

While the highly variable δ15N values over short time periods indicate that biogenic NOx 

may be an important source of wet nitrate deposition at Fernow, negative estimates in the range 

of biogenic NOx contributions (range = -7% to 59%) based on our  mixing model demonstrate 

that further constraints to our mixing model are necessary.  For example, we held the biogenic 

δ15N of nitrate value fixed at -30‰ in our mixing model.  While this value is based on empirical 

measurements [Freyer, 1991; Felix and Elliott, 2013], it may differ at Fernow and likely varies 

through time.  Indeed, δ15N-NOx values are reported to vary temporally, ranging from -49‰ to -

20‰ over 11 days in one study [Li and Wang, 2008].  To better constrain our understanding of 

biogenic NOx fluxes, future work should address temporal variability in δ15N-NOx.  Additional 

model refinements should include biological processes such as canopy scavenging through 

stomatal uptake, which can be an important regulator of soil NOx emissions [Ganzeveld et al., 

2002].  Changes in soil moisture during storms can also influence microbial activity [Linn and 

Doran, 1984; Davidson et al., 2000], however, the lack of high-temporal resolution data 

precluded evaluation of precipitation-soil-microbial interactions and their effects on precipitation 

nitrate dynamics.  A comparison of average estimated biogenic NOx flux derived from Eq. 4 with 

total precipitation at the study site during the 30 days prior to each storm indicates a significantly 

negative relationship (p=0.01; R2=0.84; Figure 5.4).  Length of antecedent drying period is a 

controlling factor in the magnitude of soil N gas flux; the longer dry conditions persist, the larger 

the biogenic NOx flux following precipitation [Davidson, 1992].  Our results confirm that larger 

estimated biogenic NOx fluxes occurred during storms with drier antecedent moisture conditions.  

Similarly, the effect of precipitation intensity on soil moisture should be better constrained.  
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Nitrification rates increase when water-filled pore space (WFPS) is between ~25 and 60%; 

beyond this threshold, nitrification drops sharply and approaches zero at 80% WFPS [Linn and 

Doran, 1984; Davidson et al., 2000].  G iven the highly significant relationship between 

antecedent moisture and the NOx flux estimated by our mixing model (Figure 5.4), further 

investigation of the mechanisms relating precipitation intensity, soil moisture, and biogenic NOx 

flux is warranted.  Future work in this area should focus on constraining the dynamics of soil 

moisture change and nitrification rates under varying precipitation intensities and durations. 

 
 

 

Figure 5.4.  Relationship between antecedent moisture conditions measured at the study site and biogenic 

NOx flux as estimated by the two-endmember mixing model for six growing season storms at Fernow 

Experimental Forest. 
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5.4.2 Atmospheric Oxidation Chemistry 

Variability in δ18O and Δ17O of nitrate has been used to interpret changes in oxidation pathways 

of atmospheric nitrate [Hastings et al., 2003; Michalski et al., 2003].  The relative importance of 

ozone (O3) and the hydroxyl radical (OH) in the oxidation of NOx to nitrate varies both 

seasonally [Hastings et al., 2003; Michalski et al., 2003] and diurnally [Brown et al., 2004; 

Alexander et al., 2009; Morin et al., 2011].  As the lifetime of NOx in the troposphere is 1-2 days 

[Seinfeld and Pandis, 2006; Alexander et al., 2009], diurnal variations in NOx oxidation 

pathways along air mass back trajectories could have contributed to the temporal variability in 

precipitation δ18O and Δ17O we observed.   

Ozone is characterized by high values of δ18O (+80‰ to +120‰) and Δ17O (+30‰ to 

+50‰) [Michalski et al., 2013], and ozone imparts this enrichment in heavy isotopes to 

atmospheric nitrate during NOx oxidation [Michalski et al., 2003], resulting in δ18O and Δ17O of 

nitrate values ranging from +63‰ to +94‰ and +20‰ to +30‰, respectively [Michalski et al., 

2003; Kendall et al., 2007].  In contrast, the oxygen isotopic compositions of other atmospheric 

oxidants— such as OH and peroxy radicals— are much lower than that of ozone [Michalski and 

Xu, 2010].  Consequently, atmospheric nitrate formed via these pathways has lower δ18O and 

Δ17O values than that formed via pathways involving ozone.  Michalski and Xu, [2010] used an 

isotope mass balance model (ISO-RACM) to predict atmospheric Δ17O of nitrate values resulting 

from various NOx oxidation pathways.  T heir model predicted that Δ17O values below +15‰ 

would occur under atmospheric conditions of low ozone and high biogenic VOC mixing ratios; 

however, the authors suggested that such conditions were unlikely to be observed in the 

troposphere.  On three dates (9 July, 11 and 16 September) we observed Δ17O of nitrate values 
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less than +15‰; these low values occurred during both day and night (Figure 5.2).  As ozone 

production involves photolytic reactions, cloudy conditions during these storm events may have 

suppressed ozone production to some extent, resulting in low ozone mixing ratios.  Low ozone 

mixing ratios coupled with potentially high biogenic VOC mixing ratios due to the densely-

forested surroundings at the study site could have resulted in the low Δ17O of nitrate values we 

observed during some storms.  While we did not measure ozone or VOC mixing ratios at Fernow 

during the storm events, future research focusing on s uch episodic atmospheric chemistry 

dynamics during would provide novel detail about the sources and processes that drive the 

formation and deposition of atmospheric nitrate in forested systems.   

5.4.3 Rainout/Washout Processes 

Rainout/washout processes can be important modes of N transport from the atmosphere to 

terrestrial systems; this is particularly true of nitrate, which is highly soluble in water [Seinfeld 

and Pandis, 2006].  Rainout occurs when atmospheric constituents (such as nitrate) are fixed by 

raindrops or ice crystals as clouds form (i.e., before raindrops begin to drop), whereas washout 

occurs when constituents are scavenged from the surrounding atmosphere as raindrops fall 

[Burch et al., 1996].  In the current study, precipitation intensity was not correlated with nitrate 

concentration during any storm; however, nitrate concentrations did decrease sharply during 

periods of high-intensity precipitation on 16 S eptember and 30 September, possibly due to 

rainout/washout of atmospheric nitrate (Figure 5.3).  In addition, rainout/washout of atmospheric 

nitrate during the beginning of the 9 July event may have contributed to the greater proportion of 

atmospheric nitrate observed in the stream on this date.  In an analysis of intra-storm variation in 
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rain chemistry during 230 events, Burch et al. [1996] found that during short events, the highest 

nitrate concentrations typically occurred during the beginning of the storm, followed by a rapid 

decrease in concentrations.  T he authors attributed this pattern to strong initial washout of 

atmospheric nitrate by raindrops.  It is also possible that evidence of rainout/washout processes 

during the storms sampled at Fernow may have been confounded by continuous recharge of NOx 

from EGUs along trajectories during all but the highest precipitation intensities.  

The temporal dynamics we observed in the precipitation δ18O-H2O of precipitation 

suggest that rainout/washout processes along 48-hour back trajectories were important during 

some events (Figure 5.3).  F or example, sharply decreasing δ18O-H2O values coincided with 

periods of high-intensity rainfall during the 16 and 30 September storms.  These lower values 

may have resulted from the preferential rainout of heavier oxygen isotopes along air mass back 

trajectories, leaving the subsequent rainfall that occurred over Fernow isotopically lighter (i.e., 

depleted in the heavier isotope).   

5.5 CONCLUSION 

This study demonstrates the highly variable nature of intra-storm nitrate stable isotopes and 

represents the first attempt to quantify the importance of biogenic NOx emissions and NOx 

oxidation pathways to nitrate deposition during storm events, using δ15N, δ18O, and Δ17O of 

nitrate.  Our results suggest that biogenic sources may contribute up to 59% of NOx emissions 

that are the precursors to precipitation nitrate and subsequent deposition and that NOx oxidation 

pathways may be highly variable over short time scales during storms.  Biogenic emissions are 
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often underestimated or overlooked in terrestrial N budgets due to the paucity of data and 

difficulty in obtaining measurements.  We have shown that this source may contribute 

significantly to atmospheric nitrate formation, particularly on short time scales.  Understanding 

the magnitude of transient biogenic N inputs will further clarify the importance of this source 

during episodic acidification events.  T his may be particularly important in rapidly 

industrializing countries such as India and China, where large biogenic NOx plumes occur in the 

spring, facilitated by the monsoonal climate [Wang et al., 2007; Ghude et al., 2010].  Indeed, in 

eastern China, increased wet nitrate deposition in spring coincides with large biogenic NOx 

pulses [Wang et al., 2007].   

Identifying the sources of atmospheric nitrate— and understanding the oxidation 

pathways leading to its formation— clarifies the influence of natural and anthropogenic inputs to 

the biogeochemical N cycle.  W e have demonstrated that nitrate stable isotope analysis can 

provide valuable information on source differentiation and dynamics on short temporal scales.  

The results of this study can serve as a catalyst for constraints on the importance of 

autochthonous and allochthonous NOx emissions to atmospheric nitrate formation in forested 

systems.  Such dynamics may be important in N-saturated systems, particularly if “priming” 

[Guenet et al., 2010] of microbial communities under N saturation results in greater nitrification 

and biogenic NOx production.  In addition, elucidating the interactions among nitrate sources, 

atmospheric nitrate formation pathways, and hydrologic regime on short temporal scales will 

lead to more effective mitigation of both chronic and episodic acidification events. 
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6.0  HYDROLOGIC AND NITROGEN BIOGEOCHEMICAL SOURCE DYNAMICS 

DURING GROWING SEASON STORM EVENTS IN A NITROGEN-SATURATED 

WATERSHED 

6.1 INTRODUCTION 

In forested watersheds, water and nitrate typically originate from either the atmosphere (e.g., 

precipitation and atmospheric nitrate deposition) or the landscape (e.g., groundwater and 

microbial nitrate).  Nitrogen additions from atmospheric deposition can alter terrestrial 

biogeochemical cycles in a number of ways, including increased nitrification in soils and 

elevated nitrate export in streams [Christ et al., 2002; Aber et al., 2003; Adams et al., 2007].  

Pinpointing the sources and processes that drive nitrate export from forested systems is therefore 

essential, particularly during transient yet hydrologically dynamic periods such as storm and 

snowmelt events, when variable sources and source areas can contribute to elevated nitrate 

export and episodic acidification [Murdoch and Stoddard, 1992]. 

Stable isotopes of nitrate (δ15N, δ18O, and Δ17O) and water (δ18O-H2O) can clarify the 

importance of these biogeochemical and hydrological sources in natural systems and the 

processes affecting them.  Variations in δ18O-H2O values of stream water on both long and short 

time scales have been used to quantify precipitation and groundwater inputs to streams and to 

estimate hydrologic transit times in watersheds [DeWalle et al., 1997; McGlynn et al., 1999; 
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McDonnell et al., 2010].  Spatially-distributed measurements of water isotopic composition in 

the subsurface can also be coupled with stream water isotopic compositions to understand source 

area dynamics under different hydrologic conditions [McGlynn et al., 1999].  Similarly, nitrate 

stable isotopes have been used to quantify source contributions to aquatic systems and to identify 

biological processes, such as nitrification and denitrification, that influence ecosystem N 

retention and export [Michalski et al., 2004; Barnes et al., 2008; Sebestyen et al., 2008; Goodale 

et al., 2009; Koba et al., 2012].   

If the characteristic delta values of hydrologic and biogeochemical sources are distinct, 

then source contributions can be distinguished using end-member mixing analysis.  For example, 

δ18O-H2O values of deep groundwater are often consistent through time because this well-mixed 

reservoir integrates precipitation inputs over long periods.  G roundwater δ18O values can be 

compared to those of precipitation and soil water, which are typically more temporally variable, 

and the relative contributions of these sources to streamflow can be determined [McGlynn et al., 

1999].  Similarly, δ18O values of atmospheric and microbial nitrate are relatively distinct (Figure 

1.2) and have been widely used in end-member mixing analysis to quantify contributions of 

nitrate from atmospheric and microbial sources [Burns and Kendall, 2002; Pardo et al., 2004; 

Barnes et al., 2008; Sebestyen et al., 2008; Goodale et al., 2009].  However, while the δ18O of 

nitrate approach has been used to characterize nitrate source contributions in many forested 

systems, there are a number of limitations to this approach that should be considered.  As δ18O of 

nitrate continues to be characterized for an increasing variety of systems, the reported source 

ranges for atmospheric and microbial nitrate also continue to expand and become more similar.  

In addition, recent studies of variable oxygen exchange between nitrite and soil water during 

nitrification have highlighted the difficulty in pinpointing the isotopic composition of the 



   

 

 141 

nitrification end-member [Buchwald and Casciotti, 2010; Casciotti et al., 2010; Snider et al., 

2010].  I ndeed, many studies simply estimate the δ18O value of the nitrification end-member 

rather than directly measure it, which adds further uncertainty to source apportionment estimates 

[Sebestyen et al., 2014].  Perhaps the most widely recognized limitation the δ18O-based approach 

for nitrate source apportionment is the issue of mass-dependent fractionation during biological 

processes such as denitrification and assimilation.  Preferential uptake of lighter isotopes during 

biological processes alters the isotopic composition of the residual soil nitrate pool; it is precisely 

this effect that makes δ15N a useful tracer of biological processing, as described below.  

However, increasing δ18O values due to enrichment of the residual soil nitrate pool can lead to 

the assignment of an erroneous nitrification end-member value in isotope mixing models, 

thereby increasing the potential for inaccurate source apportionment of nitrate in streams.   

To overcome these limitations of δ18O-based mixing model approaches, Δ17O of nitrate is 

increasingly used to quantify nitrate source contributions to streams.  The ranges of atmospheric 

and microbial Δ17O values are distinct; Δ17O values of atmospheric nitrate range from +20‰ to 

+35‰ [Morin et al., 2009] while those of microbial nitrate are zero or less [Michalski et al., 

2004].  U nlike δ18O of nitrate, Δ17O is not subject to mass-dependent fractionation during 

biological processing, making it a conservative tracer of atmospheric nitrate.  

When the delta value ranges of two sources overlap, end-member mixing analysis cannot 

be used to distinguish source contributions; such is the case for δ15N ranges of atmospheric and 

microbial nitrate (Figure 1.2).  Instead, examination of temporal trends in δ15N can provide 

information about the extent of biological processing in ecosystems [Robinson, 2001; Koba et 

al., 2012].  F or example, consumption of soil nitrate during denitrification results in a 
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characteristic isotopic enrichment of the residual soil nitrate pool (Figure 1.2).  A nalysis of 

temporal trends in δ15N values of nitrate in soil water or streams may therefore be useful in 

determining the importance of this N cycling process within watersheds at a variety of time 

scales.          

While many previous studies have used nitrate stable isotopes to track changes in the 

relative contributions of atmospheric and microbial nitrate in streams, much of this research has 

occurred on monthly, seasonal, and inter-annual time scales [Burns and Kendall, 2002; Pardo et 

al., 2004; Barnes et al., 2008; Sebestyen et al., 2008].  Investigations of stream nitrate source 

contributions over shorter periods are less common, and those which have examined event-scale 

dynamics have often occurred in snowmelt-dominated systems [Campbell et al., 2002; Ohte et 

al., 2004; Sebestyen et al., 2008].  In this paper, we present stable isotope analyses for nitrate 

(δ15N, δ18O, and Δ17O) and water (δ18O) in precipitation and stream samples collected hourly 

during three growing season storm events at Fernow Experimental Forest (West Virginia, USA).  

Coupled observation of nitrate and water isotope dynamics provides important insights into the 

biogeochemical and hydrological processes regulating atmospheric nitrate export on the time 

scale of individual storm events in a nitrogen-polluted watershed.    
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6.2 STUDY SITE AND METHODS 

6.2.1 Study Site 

This study was conducted on Watershed 4 (WS4) at the Fernow Experimental Forest (39°05’ N, 

79°40’ W; Figure 1.4).  Fernow is located in the Allegheny Mountains portion of West Virginia.  

Elevations in WS4 range from 720 to 865 m, and slopes average ~20%.  Bedrock is primarily 

composed of hard sandstone and softer shale of the Upper Devonian Hampshire Formation 

(Rowlesberg Member); little water storage occurs in these strata [Reinhart et al., 1963; 

Kochenderfer, 2007].  Soils are channery silt loams of the Calvin series (loamy-skeletal, mixed 

active, mesic typic Dystrudept), averaging 1 m in depth [Kochenderfer, 2007].  Infiltration rates 

in these soils are high and most precipitation reaches the stream via subsurface flow [Reinhart et 

al., 1963].  During high-intensity rain events, streamflow is high and falls off quickly during 

periods of low-intensity or no precipitation [Reinhart et al., 1963].  Infiltration rates are high and 

most precipitation reaches the streams via subsurface flow [Reinhart et al., 1963].  Mixed 

hardwoods are the dominant forest type in WS4; northern red oak (Quercus rubra), sugar maple 

(Acer saccharum), red maple (Acer rubrum), and black cherry (Prunus serotina) are the most 

abundant species [Peterjohn et al., 1999].  T he growing season at Fernow extends from late 

April through October, and precipitation is evenly distributed throughout the year, with an 

annual average of 1450 mm; significant snowpack does not accumulate over long periods.  

Nitrate comprised approximately 60% of inorganic wet N deposition (NO3
- + NH4

+) to the 

Fernow in 2010 [National Atmospheric Deposition Program, 2011]. 
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From 1980 to 2010, the annual average stream nitrate concentration in WS4 was 3.4 mg 

L-1.  S tream nitrate concentrations show some seasonal variability, with a maximum monthly 

average of 3.8 mg L-1 in March and the lowest monthly average of 2.9 mg L-1 in August.  Annual 

average discharge from 1980 to 2010 w as 1.8 mm.  D ischarge from this watershed is highly 

dynamic on bot h event and seasonal time scales; the stream draining WS4 is ephemeral, but 

responds quickly to precipitation inputs.  S easonally, maximum monthly average discharge 

occurs in March (3.4 mm), while the lowest monthly average discharge in September is nearly an 

order of magnitude lower (0.4 mm). 

6.2.2 Sample Collection 

Hourly precipitation and stream samples were collected during storm events on 9 J uly, 16 

September, and 30 September 2010.  Precipitation was collected hourly in a clearing located 180 

m from the bottom of WS4 using an automated sampler.  Precipitation was intercepted by two 

plastic basins arranged in series (total area = 0.48 m2) that drained into a 1 L plastic sample 

collection bottle.  An autosampler evacuated all precipitation from the collection bottle once per 

hour.  Stream samples were also collected hourly using an automated sampler.  At the base of 

WS4, all streamflow is diverted through a plastic culvert routed beneath a shed.  A door in the 

shed’s floor allows access to a large plastic tub, into which a portion of streamflow drains via 

holes drilled into the bottom of the culvert.  The autosampler was manually triggered to collect 

the first stream sample from the tub when a sufficient volume of water was judged to have 

accumulated to obtain a 1 L sample.  All subsequent samples were collected on an hourly basis 
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by the autosampler, and collection continued until cessation of streamflow.  Table 6.1 provides 

additional information about each storm event.  

 

 

Table 6.1.  Precipitation and discharge characteristics of the three growing season storms at Fernow 

Experimental Forest 

 

Event date Precipitation  Stormflow 

Duration (h)            Mean (mm h-1) Total (mm)  Duration (h)       Mean (mm h-1)         Total (mm) 

9 July 8 2.21 17.66  23 0.04 0.96 

16 Sept 10 4.77 47.67  19 0.17 3.22 

30 Sept 17 3.51 56.23  27 0.48 16.35 

 

 

All precipitation and stream samples were taken to the U.S. Forest Service Timber and 

Watershed Laboratory in Parsons, WV within 24 hours for processing.  Samples were vacuum 

filtered through 0.22 μm polyethersulfone membrane filters to remove suspended solids and 

biological material.  Samples were then frozen and transported to the University of Pittsburgh, 

where they remained frozen until analysis.   

6.2.3 Isotopic Analysis 

Nitrate concentrations for all samples were measured by ion chromatography (Dionex ICS-2000) 

at the University of Pittsburgh.  For isotopic analysis, a denitrifying bacteria, Pseudomonas 

aureofaciens, was used to convert aqueous nitrate into gaseous N2O which was then introduced 
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into the mass spectrometer [Sigman et al., 2001; Casciotti et al., 2002].  For Δ17O analysis, this 

N2O was thermally decomposed at 800°C into N2 and O2 prior to isotopic analysis following the 

method described by Kaiser et al. [2007].  Duplicate samples were analyzed for δ15N and δ18O of 

nitrate (and separately for Δ17O of nitrate during Δ17O analysis) on an Isoprime Trace Gas and 

Gilson GX-271 autosampler coupled with an Isoprime Continuous Flow Isotope Ratio Mass 

Spectrometer (CF-IRMS) at the Regional Stable Isotope Laboratory for Earth and 

Environmental Science at the University of Pittsburgh.  Isotope values are reported in parts per 

thousand relative to nitrate standards as follows: 

 

δ N, δ O, and δ17O (‰) =  ��
Rsample

Rstandard
� −  1�  × 1000                              (Eq. 1) 

18
 

15  

 

where R = 15N/14N, 18O/16O, or 17O/16O.  T he mass-independent oxygen isotope anomaly of 

nitrate (Δ17O-NO3
-) is likewise reported in parts per thousand and calculated using the equation: 

 

Δ17O (‰) =  δ17O − 0.52 ×  δ18O                                                      (Eq. 2) 

 

Samples with low nitrate concentrations were pre-concentrated prior to bacterial 

conversion to N2O.  Pre-concentration was accomplished by calculating the sample volume 

necessary to obtain a final concentration of 20 nmol (for δ15N and δ18O analysis) or 200 nmol 

(for Δ17O analysis) in a 5 m L sample.  Appropriate sample volumes were measured into 10% 

hydrochloric acid-washed Pyrex or Teflon beakers and placed in a drying oven at 60°C until all 

liquid evaporated.  The interior of each beaker was then rinsed with 10mL of 18 MΩ water to 
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reconstitute duplicate samples to the appropriate concentration.  Samples were prepared for 

isotopic analysis following the bacterial denitrifier method as previously described.  International 

reference standards were similarly pre-concentrated and used for correction of pre-concentrated 

samples.   

δ15N and δ18O values were corrected using international reference standards USGS-32, 

USGS-34, USGS-35, and N3; USGS-34 and USGS-35 were used to correct Δ17O values.  These 

standards were also used to correct for linearity and instrument drift.  Standard deviations for 

international reference standards were 0.2‰, 0.5‰, and 0.2‰ f or δ15N, δ18O, and Δ17O, 

respectively.    

Water isotope analyses were carried out at the University of Maryland, Baltimore County 

(UMBC) and at the Cornell Isotope Laboratory (COIL) at Cornell University.  Sample analyses 

at UMBC were carried out on a Picarro water isotope cavity ring-down spectrometer.  δ18O-H2O 

values for these samples represent an average of five sample injections and samples were 

corrected using reference standards USGS-46 and USGS-48, with a standard deviation of 0.2‰.  

Sample analyses at COIL were carried out on a Thermo Delta V isotope ratio mass spectrometer 

interfaced to a Gas Bench II.  These samples were analyzed in duplicate and corrected against 

Vienna Standard Mean Ocean Water and in-house standards, with a standard deviation of 0.2‰.       

  There is the potential for isobaric interference of the δ15N signal in samples with high 

Δ17O values.  Corrections for mass-independent contributions of Δ17O to m/z 45 were evaluated 

following the relationship described in Coplen et al. [2004], where a 1‰ increase in δ15N 

corresponds to an 18.8‰ increase in Δ17O.  Corrected δ15N values were zero to 0.1‰ lower than 

uncorrected values, depending on t he mass-independent contribution of Δ17O in the sample.  

Because this correction factor is small relative to the range of stream δ15N values observed and 
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because we could not apply the correction to some samples due to a lack of Δ17O data, the δ15N 

values presented here do not include the mass-independent Δ17O correction.  However, given that 

the magnitude of δ15N variability is much greater than the correction for isobaric interference, 

omission of the mass-independent Δ17O correction does not influence the observed δ15N trends 

and our interpretation of stormflow dynamics.  

6.2.4 End-Member Mixing Analysis 

The two main sources of stream water in WS4 are precipitation and subsurface flow [DeWalle et 

al., 1997], and atmospheric deposition and microbial nitrification are the two sources of stream 

nitrate (see Chapter 3).  Because the isotopic compositions of these water and nitrate sources are 

distinct, two end-member isotope mixing models can be used to quantify the relative 

contributions of each source to water and nitrate in streams.  We calculated the fractions of event 

water and atmospheric nitrate in hourly stormflow samples using the mixing model 

 

fevent =
χsf −  χbf
χatm −  χbf

                                                               (Eq. 3) 

 

where fevent is the fraction of event water or atmospheric nitrate in stormflow, and 𝜒sf, 𝜒bf, and 

𝜒atm represent the δ18O-H2O or Δ17O of nitrate isotopic composition of stormflow, baseflow, and 

precipitation water or nitrate, respectively.  For the baseflow end-member on 9 July, we used a 

δ18O-H2Obf value of -10.3‰ measured during baseflow conditions in WS4 on 6 July.  Because 

streamflow was absent in WS4 during routine weekly sampling from August through October 

2010, we used a δ18O-H2Obf end-member value of -8.1‰ for the two September storms, based on 
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a baseflow sample collected on 28 September from an adjacent watershed (WS5).  This end-

member value is justified based on the general agreement between growing season baseflow 

δ18O-H2O values measured in WS4 and WS5 during 2010 ( Figure 6.1).  For δ18O-H2Oatm, we 

used the incremental mean method described by McDonnell et al. [1990] to calculate a volume-

weighted mean based on precipitation samples collected hourly during each storm.   

 

 

 

Figure 6.1.  δ18O-H2O values in stream samples collected weekly during 2010 in WS4 (solid black circles) and 

an adjacent watershed (WS5; open squares).  The black line shows discharge in WS5; grey bars show 

precipitation measured in WS5. 

 
 

 

We chose a Δ17O-based approach for nitrate source apportionment because, unlike δ18O 

of nitrate, this isotope tracer is not affected by mass-dependent fractionation during biological 

processes such as assimilation and denitrification.  Biological processing does not incrementally 



   

 

 150 

bias Δ17O of nitrate values; rather, the Δ17O value of atmospheric nitrate becomes zero (or 

negative) following biological processing.  The Δ17O values for the two nitrate sources at 

Fernow— atmospheric deposition and nitrification— are therefore distinct.  T o calculate the 

fraction of atmospheric nitrate in each stormflow sample, we used a baseflow nitrate Δ17O value 

(Δ17O-NO3
-
bf) of zero to represent microbial nitrate [Michalski et al., 2004].  The atmospheric 

end-member value for each storm (Δ17O-NO3
-
atm) was calculated using the incremental mean 

method [McDonnell et al., 1990].  T he absence of Δ17O data for several precipitation nitrate 

samples during the 30 S eptember storm may have biased the atmospheric nitrate fractions 

calculated using the incremental mean method toward the Δ17O values of the first two 

precipitation nitrate samples on t his date.  T he atmospheric nitrate contributions to stormflow 

should therefore be interpreted cautiously for this storm event. 

6.2.5 Statistical Analysis 

We used Pearson’s Correlation Coefficients to evaluate the relationships among hydrologic and 

biogeochemical variables during storms.  Variables were significantly correlated at p < 0.05.  All 

statistical analyses were conducted using SAS [SAS Institute, Inc., 2011]. 
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6.3 RESULTS 

6.3.1 Nitrate Concentrations in Precipitation and Stormflow 

Hourly precipitation, discharge, and nitrate concentrations during storms are shown in Figure 

6.2.  P recipitation samples were not collected during the first four hours of the 16 S eptember 

storm.  Total precipitation amounts were 18 mm, 48 mm, and 56 mm, whereas peak discharges 

reached 0.1 mm, 1.0 mm, and 2.1 mm on 9 July, 16 September, and 30 September, respectively 

(Table 6.2).  Volume-weighted mean nitrate concentrations in precipitation were 0.7 mg L-1, 0.5 

mg L-1, and 0.1 mg L-1; corresponding discharge-weighted mean nitrate concentrations in the 

stream were 1.9, 8.6, a nd 2.5 mg L-1 for the 9 J uly, 16 September, and 30 September storms, 

respectively.  D ifferences in mean precipitation and stormflow nitrate concentrations indicate 

much higher nitrate concentrations in stormflow than precipitation (Table 6.2).  During the 9 July 

and 30 S eptember events, nitrate concentrations were highest immediately following peak 

discharge; on 16 S eptember, nitrate concentrations were highest prior to and immediately after 

peak discharge, with substantially lower concentrations thereafter (Figure 6.2). 
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Figure 6.2.  Hourly precipitation (grey bars), discharge (grey line), and δ15N (blue line), δ18O (red line), and 

Δ17O (black line) of nitrate values for the 9 July (a and b), 16 September (c and d), and 30 September (e and f) 

storms sampled in WS4 at Fernow Experimental Forest. 
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Table 6.2.  Volume-weighted mean precipitation and stormflow nitrate concentrations and isotopic 

compositions during three growing season storms 

 

Event date Precipitation     Stormflow 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ18O-

H2O 

(‰) 

 [NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ18O-

H2O 

(‰) 

9 July 0.7 +1.1 +65.5 +18.4 -7.2  1.9 +3.4 -0.6 +0.2 -10.1 

16 Sept 0.5 -3.2 +61.0 +14.9 -7.1  8.6 +1.7 -0.2 -0.1 -7.6 

30 Sept 0.1 +2.3 +67.5 +22.5 -20.7  2.5 +2.5 -2.2 -0.7 -11.7 

 

 

6.3.2 Nitrate Isotopic Compositions of Precipitation and Stormflow  

The range of precipitation nitrate δ15N values (-6.5‰ to +14.0‰) was much larger than the range 

observed in stream samples during all storms (+1.4‰ to +5.0‰; Figure 6.2).  Volume-weighted 

mean δ15N values in precipitation were +1.1‰, - 3.2 ‰, and +2.3‰ on 9 July, 16 September, 

and 30 September, respectively.  Stream nitrate δ15N values were much less variable than those 

measured in precipitation (Figure 6.2), and discharge-weighted means were +3.0‰, +1.7‰, and 

+2.0‰ on 9 July, 16 S eptember, and 30 S eptember, respectively.  δ15N was lowest in early 

discharge and increased slightly over time during all events (Figure 6.2).  On 9 July, δ15N values 

ranged from +2.2‰ at the onset of discharge to +5.0‰ near the end.  On 16 S eptember, the 

lowest δ15N value of +1.4‰ occurred one hour after discharge onset; the highest value of +2.4‰ 

occurred one hour before the cessation of discharge.  Similarly, stream δ15N values spanned a 
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small range on 30 September, from +1.98‰ in early discharge to +3.81‰ during the final hour 

of streamflow. 

Precipitation δ18O of nitrate ranged from +55.1‰ to +82.0‰ for the three storms (Figure 

6.2), and volume-weighted mean δ18O values were +65.5‰, +61.0‰, and +67.5‰ on 9 July, 16 

September, and 30 September, respectively (Table 6.2).  These values are in stark contrast to the 

discharge-weighted mean δ18O values of stormflow nitrate: -1.0‰, -0.1‰, and -2.1‰ on 9 July, 

16 September, and 30 September, respectively (Table 6.2).  T he range of stream nitrate δ18O 

values was small, from -4.2‰ to +3.0‰ across all storms, and temporal trends in stream nitrate 

δ18O values differed among storms (Figure 6.2).  On 9 July, the highest value (+3.0‰) occurred 

at the onset of stormflow and values decreased steadily to -3.9‰ at the end of discharge.  In 

contrast, δ18O of nitrate values on 16 September were lowest in early discharge (-4.2‰), 

increased to +1.9‰ during the rising limb of the hydrograph, and remained elevated for the next 

12 hours before decreasing again in the last hours of discharge.  Stream nitrate δ18O values also 

increased during the rising limb of the 30 September hydrograph, but alternating negative and 

positive trends in isotopic composition occurred following peak discharge.  

As with δ18O of nitrate, precipitation nitrate Δ17O values spanned a wide range (+11.2‰ 

to +26.8‰; Figure 6.2), and volume-weighted mean Δ17O values were +17.3‰, +14.9‰, and 

+22.5‰ on 9 July, 16 September, and 30 September, respectively (Table 6.2).  S tream nitrate 

Δ17O values showed a much smaller range— from only -1.1‰ to +1.5‰ across all storms 

(Figure 6.2).  Discharge-weighted mean Δ17O values were +0.1‰, -0.1‰, and -0.6‰ on 9 July, 

16 September, and 30 S eptember, respectively.  O n 9 July, the highest Δ17O value (+1.5‰) 

occurred at discharge onset and steadily decreased thereafter; in contrast, Δ17O of nitrate values 

showed no temporal trends during the two September storms (Figure 6.2).       



   

 

 155 

6.3.3 δ18O-H2O in Precipitation, Stormflow, and Soil Water  

The range of precipitation δ18O-H2O values was wide across all storms, from -23.1‰ to -4.5‰ 

(Figure 6.2).  In general, lower isotope values corresponded to periods of higher intensity 

rainfall, suggesting rainout of heavier isotopes during storms.  Mean precipitation δ18O-H2O 

values for the July and September storms did not follow the general seasonal trend of higher 

values in July and lower values in September reported by DeWalle et al. [1997] at Fernow.  

Rather, volume-weighted mean precipitation δ18O-H2O values were -7.2‰, -7.1‰, and -20.4‰ 

on 9 July, 16 September, and 30 September, respectively (Table 6.2).   

The δ18O-H2O in streams ranged from -15.0‰ to -7.3‰ across all events, and showed 

very little variability within the 9 July and 16 September events (Figure 6.2).  D ischarge-

weighted mean δ18O-H2O values were -10.1‰, -7.6‰, and -11.7‰ on 9 July, 16 September, and 

30 September, respectively (Table 6.2).  

On 17 September and 1 October, soil water samples were collected from lysimeters 

draining the A horizon at several locations across WS4 (Figure 6.3); no soil water was present in 

lysimeters following the 9 J uly event.  V alues of δ18O-H2O in these distributed soil water 

samples were used to characterize the hydrologic connectivity between upslope areas in WS4 

and the stream during storm events.  The samples collected on 17 September had accumulated 

over the previous two weeks; δ18O-H2O values in these samples ranged from -6.8‰ to -5.8‰ 

(Figure 6.3).  Lysimeters were emptied on 29 S eptember to ensure that samples collected on 1 

October contained only soil water that had accumulated during the 30 September event.  The 

range of soil water δ18O-H2O values for this event was -17.8‰ to -10.4‰ (Figure 6.3).   
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Figure 6.3.  Map of WS4, A horizon δ18O of soil water values at lysimeter locations sampled on 17 September 

(regular type) and October 1 (bold type), 2010.   

The location of the weir in WS4 is shown by the star. 

 

 



   

 

 157 

6.4 DISCUSSION 

6.4.1 Sources of Stream Nitrate in Watershed 4 

The highly variable isotopic composition of precipitation nitrate was not reflected in the nitrate 

stable isotopic composition of stormflow (Figure 6.2).  The low values and small range of stream 

δ18O and Δ17O of nitrate across all storms (-3.9 to +3.0‰ and -1.1‰ to +1.5‰, respectively) 

indicate that microbial nitrification was the dominant nitrate source in stormflow.  In addition, 

the lack of coincident increasing trends in stream nitrate δ15N and δ18O values during storm 

events suggests that denitrification was not an important N cycling process during these storms.   

Using Equation 3 (with the minimum and maximum precipitation nitrate Δ17O values 

during each storm representing Δ17O-NO3
-
atm and a value of zero for Δ17O-NO3

-
bf), atmospheric 

nitrate contributions to hourly stormflow ranged from 0 to 12%, 0 to 5%, and 0% during the 9 

July, 16 September, and 30 September events, respectively.  These proportions of atmospheric 

nitrate in stormflow are smaller than those reported for other watersheds [Spoelstra et al., 2001; 

Williard et al., 2001; Burns and Kendall, 2002; Campbell et al., 2006; Sebestyen et al., 2008, 

2014; Buda and DeWalle, 2009a; Goodale et al., 2009].  In many of these previous studies, 

larger proportions of atmospheric nitrate occurred during snowmelt; these dynamics are not 

represented by the growing season storms sampled in this study at Fernow.  In other studies of 

nitrate export during non-snowmelt events, large proportions of atmospheric nitrate in stormflow 

were attributed to a v ariety of factors.  Buda and DeWalle [2009a] reported maximum 

atmospheric nitrate contributions ranging from 19 to 100% during peakflow of five storms 

sampled from March through November.  The authors suggested that direct channel interception 
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of precipitation and wash-off of dry atmospheric nitrate deposition to streams was responsible 

for the high proportions of atmospheric nitrate in streams during small storms.  Similarly, 

Michalski et al. [2004] attributed the nearly 40% of atmospheric nitrate in stormflow at the onset 

of the southern California rainy season to wash-off of dry nitrate deposition which had 

accumulated on plant and soil surfaces during the dry season.  Although the largest contribution 

of atmospheric nitrate observed in our study (12%) was smaller than those reported by others, it 

occurred at the beginning of the smallest storm on 9 July (18 mm total precipitation and 2 mm 

total discharge).  Direct channel interception of precipitation nitrate is unlikely due to dense 

canopy cover over the stream channel during this time of year; however wash-off of dry 

atmospheric nitrate deposition in throughfall may have facilitated direct routing of atmospheric 

nitrate to the stream early in this event.   

Other studies attributed significant atmospheric nitrate export (up to 33% in some cases) 

to the establishment of saturation overland flow during summer and autumn storms [Sebestyen et 

al., 2014].  Under such hydrologic conditions, atmospheric nitrate deposited to the land surface 

may be rapidly transported to streams along surficial flowpaths, bypassing opportunities for 

extensive biological processing [Sebestyen et al., 2014].  Such nitrate transport mechanisms are 

not likely to occur at Fernow, as overland flow has not been observed in WS4 [Reinhart et al., 

1963].  High rates of N mineralization and nitrification in WS4 [Peterjohn et al., 1999; Gilliam 

et al., 2001], coupled with stormflow generation occurring primarily along subsurface flowpaths, 

may explain the predominance of microbial nitrification as a nitrate source in stormflow.   

 Gilliam et al. [2001] reported that soil N pools remain well above 0 g NO3
--N m-2 in WS4 

throughout the year, indicating that microbial nitrate production consistently exceeds plant and 

microbial demand.  N et nitrification rates in WS4 also demonstrate a strong response to 
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increasing ambient temperature and soil moisture (R2 = 0.66; [Gilliam et al., 2001]).  S uch 

conditions likely facilitated high rates of microbial nitrification during the period of storm 

sampling, as the mean minimum temperature at the study site during the month prior to 16 

September was 13°C and the antecedent moisture for the same period was 44.2 mm.  Indeed, the 

low δ18O and Δ17O of nitrate values observed in stormflow (Figure 6.2) are consistent with large 

contributions of nitrate from a microbial source. 

6.4.2 Drivers of Nitrate Export During Storms 

Direct channel interception and routing of precipitation along preferential flowpaths during 

storms can result in contributions of event water to stormflow, and atmospheric nitrate can also 

be routed along these pathways [Sebestyen et al., 2008].  Mean proportions of event water in 

stormflow were 6, 34, and 28% for the 9 J uly, 16 September, and 30 September storms, 

respectively.  Unfortunately, sample vials for several water isotope samples collected during the 

16 September event broke during transport (including those collected at peakflow), so the 

proportion of event water in stormflow calculated for this date may be underestimated.  In 

contrast to event water, mean contributions of atmospheric deposition to stormflow nitrate were 

negative for all storms, indicating greater proportions of event water than event nitrate in 

stormflow during all storms.  This difference indicates that factors other than precipitation inputs 

regulate nitrate export during storms.  Greater nitrate deposition did not correspond to increased 

stream nitrate export during storms (p=0.44).  Although stream nitrate export showed no 

significant relationship to discharge amount (p=0.11), the greater nitrate yields observed with 
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greater discharge suggests that event size many have influenced overall nitrate export during 

storms, possibly from flushing of the stored soil nitrate pool from source areas throughout WS4.  

Nitrate export dynamics during the 16 S eptember event provide a good example of 

nitrogen flushing.  C oncentrations in the stream prior to and including peak discharge on 16 

September ranged from 9.0 mg L-1 to 10.8 mg L-1; samples collected after peak discharge had 

lower nitrate concentrations (Figure 6.2).  P rior to this storm, antecedent moisture during the 

previous month was 44.2 mm and the average temperature was 13°C; the last rainfall event of at 

least 5 mm occurred 9 days prior.  These conditions, along with increased inputs of labile organic 

nitrogen from litterfall during this time of year, could have facilitated microbial nitrate 

production in soils.  Indeed, high stream nitrate concentrations during the onset of stormflow and 

low δ18O and Δ17O of nitrate values throughout the event (Figure 6.2) suggest that soil N 

flushing was the main source of nitrate to the stream.  In addition, high proportions of event 

water in stormflow relative to atmospheric nitrate during this event lend further support to the 

idea that precipitation inputs facilitated soil nitrate flushing rather than directly contributing 

nitrate to the stream.  Similar soil nitrate flushing dynamics have been described in other storm 

response studies in forested watersheds [Creed et al., 1996; Mitchell et al., 2006; Inamdar et al., 

2009]. 

The stream responses we observed at Fernow are comparable to patterns of water and 

nitrate source contributions to stormflow reported elsewhere, but with some important 

differences.  Buda and DeWalle [2009a] reported greater fractions of event nitrate than event 

water in stormflow during small events (> 35 mm of precipitation) in a forested watershed.  

During larger storms, the authors invoked a similar nitrate export mechanism as we hypothesized 

here for WS4, whereby event water mobilizes stored soil nitrate and transports it along shallow 
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subsurface flowpaths to the stream [Buda and DeWalle, 2009a].  While contributions of event 

water exceeded those of atmospheric nitrate in all stormflow samples collected in WS4, the 

greatest proportion of atmospheric nitrate export (12%) occurred in the first sample collected 

during the smallest event on 9 J uly.  D uring this time, direct routing of precipitation and 

atmospheric nitrate to the stream (perhaps via throughfall) may have been an important pathway 

for direct routing of atmospheric nitrate to the stream.  Buda and DeWalle [2009a] similarly 

attributed high proportions of atmospheric nitrate in stormflow during small events (<35 mm 

precipitation) to wash-off of dry-deposited nitrate from vegetation surfaces to the stream.  

Vegetation canopies can be highly effective scavengers of wet and dry atmospheric N deposition 

[Lovett and Lindberg, 1986; Johnson and Lindberg, 1992], with throughfall nitrate 

concentrations in excess of bulk precipitation concentrations in areas of high N deposition 

[Parker, 1983; Grennfelt and Hultberg, 1986; Lovett and Lindberg, 1986].  F ernow has 

historically received some of the highest rates of atmospheric N deposition in the U.S. [Adams et 

al., 2007], and dry inorganic N deposition represents nearly 25% of bulk inorganic N deposition 

at this site [National Atmospheric Deposition Program, 2011; U.S. EPA CASTNET, 2012]).  Dry 

nitrate deposition accumulated on ve getation surfaces since the previous storm event (14 days 

prior) could have been transported to the stream as throughfall; this atmospheric nitrate transport 

process seems feasible given that the most intense rainfall period (9 mm h-1) occurred during the 

first hour of the 9 July event.  Alternatively, rainout/washout of atmospheric nitrate during the 

beginning of the 9 J uly event may have contributed to the greater proportion of atmospheric 

nitrate observed in the stream on t his date.  In an analysis of intra-storm variation in rain 

chemistry during 230 events, Burch et al. [1996] found that during short events, the highest 

nitrate concentrations typically occurred during the beginning of the storm, followed by rapid 
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decrease in concentrations.  The authors attributed this pattern to strong initial washout of the 

atmosphere by raindrops.  These atmospheric source contributions notwithstanding, the 

overwhelming contributions of microbial nitrate to the stream across all storms (92 to 100%) 

emphasize the dominant role of microbial nitrification in watershed nitrate export, regardless of 

the hydrologic pathway responsible for nitrate transport to the stream.   

6.4.3 Variable Source Areas of Stream Water and Nitrate during Storms 

The storms sampled in this study represent a wide range of hydrologic and biogeochemical 

characteristics.  There was a 17-fold difference in peak discharge measured during the smallest 

event (0.1 mm on 9 July) versus the largest event (2.1 mm on 30 September), and the timing of 

the stream response to precipitation inputs also varied among events.  Discharge began within 

the first hour of rainfall on 9 July, whereas streamflow initiation did not occur until six and seven 

hours after rainfall began on 16 a nd 30 September, respectively.  However, high rainfall 

intensities were quickly followed by peak discharges during all three events, illustrating the 

responsiveness of this watershed to intense rainfall inputs (Figure 6.2).  Most of the δ18O-H2O 

values in stream water indicated that stormflow was primarily generated from pre-event water 

stored within the watershed despite the rapid hydrograph response.  This phenomenon— wherein 

streams respond rapidly to precipitation inputs, but the precipitation itself is not a large 

contributor to stormflow— has been observed elsewhere [McDonnell et al., 1990, 2010; Sidle et 

al., 2000; Buttle, 2006] and is so widespread that it constitutes a fundamental hydrologic and 

biogeochemical paradox of small watershed studies [Kirchner, 2003; Bishop et al., 2004].    
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The dynamic nature of hydrologic flowpaths and hillslope-stream connectivity can affect 

stormflow generation and nitrate export during storms [Kirchner, 2003; Inamdar et al., 2009].  

Differences in the water and nitrate isotopic compositions of precipitation, soil water, and 

stormflow in WS4 suggest that different source areas and transport pathways influenced water 

and nitrate delivery to the stream during each of the three events.  For example, while we lacked 

distributed soil water samples from WS4 during the 9 July event, the small amount of discharge 

(peakflow = 0.10 mm), consistency of δ18O-H2O values throughout the hydrograph (mean = -

10.1 ± 0.1‰), and their similarity to previous estimates of groundwater δ18O-H2O in WS4 (-

9.1‰; [DeWalle et al., 1997]) suggest that stormflow was generated primarily from groundwater 

and likely constrained to near-stream areas during this small event.   

Similarly, nitrate contributions to the stream on 9 July were dominated by terrestrial 

sources rather than direct atmospheric inputs.  The maximum contribution of atmospheric nitrate 

to the stream (12%) was quite small relative to microbial nitrate inputs, and this atmospheric 

contribution occurred prior to peak discharge.  Rainfall intensity peaked during the first hour of 

this storm, which may have facilitated greater contributions of atmospheric nitrate to early 

discharge through wash-off of dry-deposited nitrate from vegetation surfaces.  Thus, the larger 

proportions of atmospheric nitrate in the stream during this event do not appear to be driven by 

variations in subsurface hydrologic connectivity between specific watershed areas and the 

stream, but rather by direct routing of atmospheric nitrate to the stream via throughfall.  

In contrast to the small 9 July storm, the greater variability of stream δ18O-H2O values 

during the 30 September event (Figure 6.2) points to contributions of water from a more variable 

source area across the watershed, including hillslopes.  While a lack of distributed groundwater 

depth measurements precludes absolute confirmation that hydrologic connectivity was 
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established between hillslopes and the stream, several lines of evidence support the idea that 

variable source areas facilitated periodic rapid transport of event water to the stream during the 

30 September event.  First, an 8‰ de crease in precipitation δ18O-H2O values during the first 

seven hours of rainfall was followed by a 3‰ decline in stream water δ18O-H2O values in early 

discharge; stream water δ18O-H2O values subsequently decreased again by 3.5‰ between 13:00 

and 15:00 (Figure 6.2).  Rapid transport of this isotopically-depleted event water to the stream 

may have been facilitated by the establishment of transient hydrologic connections between 

hillslopes and the stream.  Second, the δ18O-H2O isotopic compositions of A horizon soil water 

collected on 1 October suggest that a hydrologic connection between hillslopes and the stream 

may have occurred during the 30 September event (Figure 6.3).  These samples contained water 

only contributed to lysimeters on 29 and 30 September; they therefore provide information about 

potential sources of stormflow.  The range of soil water δ18O-H2O values encompasses the range 

of values observed in all but the first stream sample, suggesting that stormflow on 30 September 

reflected contributions from shallow and deeper groundwater reservoirs.  Third, sharp declines in 

stream δ18O-H2O over short time periods indicate that transient hydrologic connections may have 

been established between watershed areas characterized by lower soil water δ18O-H2O values 

and the stream.  The decline in stream water δ18O-H2O from -11.4‰ to -15.0‰ between 13:00 

and 15:00 (Figure 6.2) is one such example.   

In order for event precipitation to be transported from hillslopes to the stream on the time 

scale of a storm event, the hydraulic conductivity along subsurface flowpaths would need to be 

high enough to facilitate discharge from hillslopes to the stream [Hibbert and Troendle, 1988].  

One factor that influences the hydraulic conductivity of soils is the soil moisture content.  

Rainfall during the month prior to the 30 September event totaled 81.53 mm, with rainfall input 
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of at least 5 mm occurring on 28 September.  Soil moisture content may therefore have been high 

during the period of stormflow.  While saturation and infiltration excess overland flow are 

unlikely at Fernow [Reinhart et al., 1963], high antecedent moisture may have resulted in greater 

hydraulic conductivity and preferential flow during the 30 S eptember storm.  S uch conditions 

would result in rapid transport of event water and shallow groundwater (with potentially high 

concentrations of microbial nitrate) to the stream [Sidle et al., 2000], accounting for the 

concomitant increase in stream nitrate concentration and decrease in stormflow δ18O-H2O 

composition following the first discharge peak on this date.   

Variable hydrologic sources and source areas notwithstanding, the consistently negative 

δ18O and Δ17O of nitrate values in stormflow on 30 September indicate that direct contributions 

of atmospheric nitrate to the stream did not occur during this event.  T he discharge-weighted 

mean nitrate concentration in stormflow (2.5 mg L-1) was more than an order of magnitude 

greater than the volume-weighted mean nitrate concentration in precipitation (0.1 mg L-1), 

supporting the idea that microbial nitrate was the dominant source in stormflow.  T he nitrate 

source dynamics observed in WS4 are consistent with those of other studies in forested 

watersheds throughout the eastern U.S. [Williard et al., 2001; Mitchell et al., 2006].          

6.5 CONCLUSION 

Nitrate is a highly soluble and mobile anion, making hydrologic flowpaths important vectors for 

nitrate transfer from landscapes to streams.  Spatio-temporally heterogeneous hydrologic and 

biogeochemical regimes can influence the movement of water and nitrate from the landscape to 
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the stream, facilitating nitrate transport to streams along both shallow and deep subsurface 

flowpaths [Sebestyen et al., 2008; Inamdar et al., 2009].   

By coupling hydrologic and nitrate isotope measurements, we have shown that watershed 

hydrology can influence nitrate source contributions and export during storm events.  While the 

range of event water contributions to stormflow was wide during the growing season storms we 

sampled in WS4 (6 to 34%), atmospheric nitrate export remained below 10% during all storms, 

suggesting that biological N processing is extensive on this watershed and flushing of the soil 

nitrate pool represents the dominant mode of nitrate export during growing season storms.   

Effective management of nitrogen polluted forests requires an accurate determination of 

stream nitrate sources and the factors influencing atmospheric nitrate processing and transport at 

the watershed scale.  Substantial contributions of microbial nitrate to the stream draining WS4 

suggest that nitrogen inputs do not  exceed biological demand and that both biological and 

hydrological drivers (e.g., transport via throughfall versus subsurface flow) influence 

atmospheric nitrate contributions to streams during storms. 
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7.0  ECOSYSTEM PROCESSING OF ATMOSPHERIC NITRATE ALONG A 

NITROGEN DEPOSITION GRADIENT 

7.1 INTRODUCTION 

Anthropogenic production of reactive nitrogen (NH3, NH4
+, NOx, HNO3, NO3

-, and organic N 

compounds) now exceeds that of all natural terrestrial sources [Galloway et al., 2003].  Increased 

inputs of reactive nitrogen have been linked to nitrogen saturation in ecosystems worldwide 

[Ågren and Bosatta, 1988; Aber et al., 1998].  Nitrogen saturation occurs when the capacity of 

vegetation and soil sinks to accommodate N inputs is exceeded, and excess N is leached from the 

landscape to surface and ground waters as nitrate (NO3
-) [Ågren and Bosatta, 1988; Aber et al., 

1998; Lovett and Goodale, 2011].  Terrestrial effects of N saturation can include decreased frost-

hardiness in plants, decreased mycorrhizal fungi abundance, increased soil acidification, and 

greater leaching of nitrate and base cations from soils [Driscoll et al., 2001; Adams et al., 2007; 

Van Diepen et al., 2007].  Excess nitrate leaching to surface and ground waters can contribute to 

eutrophication effects including toxic algae blooms and fish kills, as well as degraded drinking 

water quality [Vitousek et al., 1997; Boesch et al., 2001; Galloway et al., 2003].  These 

symptoms of excess nitrogen inputs are particularly evident in the eastern United States, where 

the amount of atmospheric deposition has increased 5-fold over the pre-industrial baseline 

[Galloway et al., 1984].  Sixty to 80% of this deposition occurs as nitrate [Aber et al., 2003], the 
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sources of which are primarily fossil-fuel combustion from coal-fired power plants and 

automobiles [Elliott et al., 2007].  O nce in the atmosphere, these NOx emissions are rapidly 

oxidized to multiple NOy species (e.g., HNO3 and particulate nitrate), that enter the terrestrial N 

cycle via wet and dry deposition.  

There are two main sources of nitrate in eastern U.S. forests: atmospheric deposition and 

microbial nitrification.  In forests exhibiting symptoms of N saturation, excess nitrate is not 

retained by terrestrial biomass, but is exported from the system via surface and ground waters 

[Williard et al., 2001; Adams et al., 2007].  Over time, nitrate concentrations in streams draining 

N-saturated forests can increase; indeed, long-term increases in stream nitrate concentration have 

been used to identify N saturation in some forested watersheds [Peterjohn et al., 1996; 

Kothawala et al., 2011].  However such long-term stream chemistry records are not available for 

most watersheds, complicating assessments of N saturation status at many sites.  A s an 

alternative, stable isotope-based characterizations of stream nitrate sources (e.g., δ15N and δ18O 

of nitrate) have been used to assess the N saturation status of forests [Pardo et al., 2004; Barnes 

et al., 2008].  If increased N supply relative to biological demand results in less efficient (i.e., 

more “leaky”) ecosystem N cycling as N saturation progresses, then assimilation of atmospheric 

nitrate inputs may also become less extensive.  In this case, stream nitrate isotopic compositions 

should show evidence of unprocessed atmospheric nitrate.  Due to the similarity in δ15N values 

of atmospheric and microbial nitrate (Figure 1.2), δ15N values are not typically used for nitrate 

source differentiation.  Conversely, greater separation of δ18O ranges for atmospheric and 

microbial nitrate (Figure 1.2) has facilitated the apportionment of nitrate contributions from these 

two sources using a simple two-endmember mixing model (Equation 1) 
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fatm =
χstream– χnitri�ication
χatm −  χnitri�ication

                                                  (Eq. 1) 

 

where fatm is the fraction of stream nitrate contributed by atmospheric deposition and 𝜒 is the 

δ18O of nitrate value of stream, microbial nitrification, or atmospheric nitrate.  This approach has 

been used in many studies to characterize source contributions to stream nitrate [Williard et al., 

2001; Burns and Kendall, 2002; Pardo et al., 2004; Campbell et al., 2006; Barnes et al., 2008; 

Sebestyen et al., 2008, 2014; Goodale et al., 2009].   

While there is a strong precedent for using δ18O of nitrate for source apportionment, 

important limitations to this approach are being increasingly recognized.  As a growing number 

of studies have characterized δ18O values for atmospheric and microbial nitrate, their source 

ranges have also widened and become more similar [Kendall and Doctor, 2004; Michalski et al., 

2004].  In addition, mass-dependent fractionation during biological processes such as 

denitrification can lead to enrichment of δ15N and δ18O values in the residual soil nitrate pool 

(Figure 1.2), which can further confound isotope mass balance-based source apportionment 

[Michalski et al., 2004].  

More recently, studies have demonstrated that atmospheric nitrate is anomalously 

enriched in the 17O isotope; this enrichment is denoted by ∆17O ([Michalski et al., 2003]; Figure 

1.3).  V alues of ∆ 17O in atmospheric nitrate generally range from +20 to +33‰, whereas 

microbial nitrate has ∆ 17O values of zero or less [Michalski et al., 2003; Morin et al., 2009].  

Importantly, ∆ 17O is not susceptible to mass-dependent fractionation as with δ18O of nitrate, 

making it a conservative tracer of atmospheric nitrate.  W hen atmospheric deposition (with a 

positive ∆17O value) is biologically assimilated and cycled, the positive ∆17O signal is lost as the 
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nitrate is converted to organic N.  When the organic N is subsequently nitrified, this microbially-

produced nitrate has a ∆ 17O value of zero or less.  Thus, when streams show positive ∆ 17O of 

nitrate values, this indicates that some proportion of the atmospheric nitrate deposited in the 

watershed was not biologically cycled prior to export to the stream.  T he ability to 

unambiguously differentiate between atmospheric and microbial nitrate sources makes ∆ 17O a 

useful tool for assessing whether the extent of atmospheric nitrate processing changes with 

increasing ecosystem N saturation or variation in N deposition regimes.  

Several cross-site comparisons have been conducted in the eastern U.S. to examine the 

effects of variable N deposition rates on forest N saturation [Aber et al., 2003; Driscoll et al., 

2003; Pardo et al., 2006].  These studies provide insights into the ways that N deposition and 

factors such as species composition, climate, and geology interact to influence forest N export 

dynamics.  H owever, the key question that remains unanswered by such studies is: how are 

atmospheric nitrate inputs processed along gradients of nitrogen deposition?  Some studies have 

reported positive correlations between stream nitrate concentrations and N deposition in the 

northeastern U.S. [Aber et al., 2003], whereas others have observed no relationship [Johnson and 

Lindberg, 1992; Williard et al., 1997]; however, the post-depositional fate of this atmospheric 

nitrate is unclear.  In watersheds with high rates of nitrate export, do atmospheric inputs 

represent an excess N supply that is exported directly to the stream without biological 

processing?  O r is elevated nitrate export from some watersheds primarily due to increased 

microbial activity (i.e., nitrification), indicating that the terrestrial N cycle can accommodate 

elevated atmospheric inputs?  The answers to these questions are important, as they directly 

address ecosystem responses to elevated N deposition, which is largely the result of human 

activities.    
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7.2 STUDY SITES AND METHODS 

7.2.1 Study Sites 

This study was conducted across a long-term (1982-2007) nitrate deposition gradient that 

included reference watersheds at Coweeta Hydrologic Laboratory in North Carolina, Fernow 

Experimental Forest in West Virginia, and Hubbard Brook Experimental Forest in New 

Hampshire (Figure 7.1).  F rom 1982 t o 2007, annual average atmospheric nitrate deposition 

along this gradient ranged from 11 kg ha-1 yr-1 at Coweeta to 17 kg ha-1 yr-1 at Fernow.  At all 

sites, one reference watershed was selected for monthly stream and precipitation sampling.  All 

study watersheds were dominated by mixed hardwoods (with some spruce-fir dominated areas in 

the higher elevations of the Hubbard Brook watershed), and ranged in age from 84 to 110 years.  

Additional information on specific study watersheds is presented in Table 7.1. 
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Figure 7.1.  (a) Location of study sites along a long-term (1982-2007) nitrate deposition gradient.  (b) Maps of 

study watersheds.   

Solid circles denote weir locations and solid triangles denote precipitation gauge locations in each watershed.  

Contour lines show 12-meter spacing. 
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Table 7.1.  Description of study watersheds 

 

 

7.2.2 Sample Collection 

When sufficient sample volume was present, 1 L stream and precipitation samples were collected 

monthly from all study watersheds, timed to coincide with routine sample collection for long-

term monitoring at study sites.  Samples were collected on the same dates at all sites.  Stream 

samples were collected just above the weir and represent instantaneous grab samples.  

Precipitation samples were collected from bulk precipitation collectors located in meteorological 

openings (maintained to minimize forest edge effects) in each study watershed (Figure 7.1).  

Precipitation samples represent rain and snow that had accumulated during the week prior to 

sample collection.  Within 24 hours of collection, all samples were filtered through 0.22 μm 

polyethersulfone membrane filters to remove suspended solids and biological material.  Filtered 

Site  

(Watershed) 

Forest 

Age (yrs) 

Area 

(ha) 

Elevation 

Range 

(m) 

Aspect Mean  

slope 

(%) 

Soil depth to 

bedrock (cm) 

Mean annual 

precipitation 

(cm) 

Forest 

type 

Coweeta 

(WS 34) 

84 33 866-1184 SE 52 >150 200 Mixed 

hardwood 

Fernow 

(WS 4) 

110 39 743-867 ESE 20 92 145 Mixed 

hardwood 

Hubbard 

Brook 

(WS 3) 

~100 42 527-732 SW 21 61 140 Mixed 

hardwood, 

spruce-fir 
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samples were frozen and shipped to the University of Pittsburgh where they remained frozen 

until isotopic analysis.   

7.2.3 Isotopic Analysis 

Nitrate concentrations for all samples were measured by ion chromatography (Dionex ICS-2000) 

at the University of Pittsburgh.  For isotopic analysis, a denitrifying bacteria, Pseudomonas 

aureofaciens, was used to convert aqueous nitrate into gaseous N2O which was then introduced 

into the mass spectrometer [Sigman et al., 2001; Casciotti et al., 2002].  For Δ17O analysis, this 

N2O was thermally decomposed at 800°C into N2 and O2 prior to isotopic analysis following the 

method described by Kaiser et al. [2007].  Duplicate samples were analyzed for δ15N, δ18O, and 

Δ17O of nitrate on an Isoprime Trace Gas and Gilson GX-271 autosampler coupled with an 

Isoprime Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) at the Regional Stable 

Isotope Laboratory for Earth and Environmental Science at the University of Pittsburgh.  Isotope 

values are reported in parts per thousand relative to nitrate standards as follows: 

 

δ N, δ O, and δ17O (‰) =  ��
Rsample

Rstandard
� −  1�  × 1000                              (Eq. 2) 

18
 

15  

 

where R = 15N/14N, 18O/16O, or 17O/16O.  T he mass-independent oxygen isotope anomaly of 

nitrate (Δ17O-NO3
-) is likewise reported in parts per thousand and calculated using the equation: 

 

Δ17O (‰) =  δ17O − 0.52 ×  δ18O                                                      (Eq. 3) 
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Samples with low nitrate concentrations were pre-concentrated prior to bacterial 

conversion to N2O.  Pre-concentration was accomplished by calculating the sample volume 

necessary to obtain a final concentration of 20 nmol (for δ15N and δ18O analysis) or 200 nmol 

(for Δ17O analysis) in a 5 m L sample.  Appropriate sample volumes were measured into 10% 

hydrochloric acid-washed Pyrex or Teflon beakers and placed in a drying oven at 60°C until all 

liquid was evaporated.  The interior of each beaker was then rinsed with 10mL of 18 MΩ water 

to reconstitute duplicate samples to the appropriate concentration.  Samples were prepared for 

isotopic analysis following the bacterial denitrifier method as described above.  International 

reference standards were similarly pre-concentrated and used for correction of pre-concentrated 

samples.   

δ15N and δ18O values were corrected using international reference standards USGS-32, 

USGS-34, USGS-35, and N3; USGS-34 and USGS-35 were used to correct Δ17O values.  These 

standards were also used to correct for linearity and instrument drift.  Standard deviations for 

international reference standards were 0.2‰, 0.5‰, and 0.2‰ f or δ15N, δ18O, and Δ17O, 

respectively.       

There is the potential for isobaric interference of the δ15N signal in samples with high 

Δ17O values, such as precipitation.  Corrections for mass-independent contributions of Δ17O to 

m/z 45 were evaluated following the relationship described in Coplen et al. [2004], where a 1‰ 

increase in δ15N corresponds to an 18.8‰ increase in Δ17O.  Corrected δ15N values were 0.6‰ to 

1.9‰ lower than uncorrected values, depending on the mass-independent contribution of Δ17O in 

the sample.  Because this correction factor is small relative to the range of precipitation δ15N 

values observed and because we could not apply the correction to some samples due to a lack of 

Δ17O data, the δ15N values presented here do not include the mass-independent Δ17O correction.  
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While values of corrected δ15N data are slightly lower than the data presented here, the temporal 

trends in δ15N values presented here are not strongly influenced by the omission of the mass-

independent Δ17O correction. 

7.2.4 Statistical Analysis 

We used analysis of variance to test for significant differences in mean nitrate concentrations, 

δ15N, δ18O, and Δ17O values among sites, seasons, and sample types.  W hen significant 

differences were indicated, we applied Tukey’s Honestly Significant Difference test to determine 

which means were significantly different (α=0.05).  To control for the inflation of Type I error 

rate with multiple comparisons, the experiment-wise error rate was held at α=0.05 when 

comparing means among the three study sites.  A s a r esult, site means were significantly 

different at p < 0.0167.  All statistical analyses were conducted using SAS [SAS Institute, Inc., 

2011]. 

7.3 RESULTS 

Mean nitrate concentrations in precipitation did not differ significantly among sites and there 

were no clear temporal trends in precipitation nitrate concentrations at any of the sites (Figure 

7.2).  M ean precipitation δ15N values were significantly higher (p=0.0004) at Fernow than at 

Coweeta and Hubbard Brook, whereas no significant differences in mean nitrate oxygen isotopic 

composition (δ18O and Δ17O) were observed among sites (Table 7.2).  There were no consistent 
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temporal trends in precipitation δ15N; conversely, similar seasonal trends in δ18O and Δ17O were 

apparent among sites, with higher values during the colder months and lower values during the 

warmer months (Figure 7.2).   
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Figure 7.2.  Monthly concentrations (a and e), d15N (b and f), δ18O (c and g), and Δ17O (d and h) values of 

nitrate in precipitation (open circles) and streams (solid circles) at Coweeta (in red), Fernow (in blue), and 

Hubbard Brook (in black) Experimental Forests. 
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Table 7.2. Mean concentrations and isotope values of nitrate in precipitation and stream water for study 

watersheds at Coweeta (CWT), Fernow (FEF), and Hubbard Brook (HBR) Experimental Forests. 

The experiment-wise error rate was held at α=0.05 for multiple comparisons; site means followed by different 

letters are significantly different at p < 0.0167. 

 

Site                           Precipitation                                  Stream 

  [NO3
-] 

(mg L-1) 

δ15N 

(‰) 

δ18O 

(‰) 

Δ17O 

(‰) 

 [NO3
-]  

(mg L-1) 

δ15N 

 (‰) 

δ18O 

 (‰) 

Δ17O 

 (‰) 

CWT (WS34)  0.5 

(n=10) 

-2.7b 

(n=10) 

+68.1 

(n=10) 

+23.6 

(n=8) 

 0.1b 

(n=12) 

+0.2 

(n=8) 

+4.3ab 

(n=8) 

+3.9a 

(n=6) 

FEF (WS4)  0.7 

(n=12) 

+1.3a 

(n=11) 

+68.7 

(n=11) 

+24.8 

(n=10) 

 1.5a 

(n=12) 

+2.3 

(n=12) 

-0.8b 

(n=12) 

-0.5b 

(n=12) 

HBR (WS3)  0.6 

(n=12) 

-2.0b 

(n=12) 

+72.5 

(n=12) 

+25.1 

(n=10) 

 0.2b 

(n=12) 

+0.8 

(n=11) 

+9.1a 

(n=11) 

+1.1b 

(n=11) 

p-value*  0.6064 0.0004 0.5839 0.8940  <0.0001 0.0489 0.0039 0.0002 

 

 

 Mean stream nitrate concentrations were significantly higher at Fernow than Coweeta and 

Hubbard Brook (p<0.0001;Table 7.2).  W hile there were no s trong seasonal trends in stream 

nitrate concentration at Fernow or Coweeta, concentrations at Hubbard Brook were elevated 

during the dormant season (from December through April) relative to the rest of the year.  Mean 

stream nitrate δ15N values were not significantly different and there were no consistent temporal 

trends in stream nitrate δ15N among sites (Figure 7.2).  Mean δ18O and Δ17O of stream nitrate 

were significantly different among sites (Table 7.2), and temporal trends were also different 

among the sites.  A t Fernow, both δ18O and Δ17O values of stream nitrate remained near zero 

during every month of the study (range=-3.3‰ to +0.3‰ for δ18O and -1.4‰ to +0.1‰ for 

Δ17O).  In contrast, the limited dataset of δ18O values at Coweeta showed values ranging from -
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0.9‰ to +13.8‰, while the widest range of stream nitrate δ18O values occurred at Hubbard 

Brook (-2.8‰ to +27.2‰).  Hubbard Brook also showed the greatest range in Δ17O of stream 

nitrate, from -0.7‰ to +7.1‰.  A t Coweeta, stream nitrate concentrations during the first six 

months of the study (August 2012 through January 2013) were too low for Δ17O analysis.  Δ17O 

values in samples from February through July 2013 were all positive, ranging from +1.5‰ to 

+7.8‰, indicating the presence of atmospheric nitrate in every stream sample.    

 There was strong differentiation between precipitation and stream nitrate concentrations 

and isotopic compositions at all sites.  T he mean concentration of precipitation nitrate was 

significantly greater than that of stream nitrate at Coweeta, whereas the mean stream nitrate 

concentration was significantly higher than in precipitation at Fernow (Table 7.3).  M ean 

precipitation δ15N values were significantly lower than stream values at Coweeta and Hubbard 

Brook, while mean precipitation nitrate δ18O and Δ17O values were significantly higher than 

stream nitrate values at all sites (Table 7.3).  
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Table 7.3.  Mean concentrations and isotope values of nitrate in precipitation and stream water at individual 

study sites.   

Precipitation and stream means followed by different letters are significantly different at p<0.05. 

 

  Precipitation  Stream  p-value 

  Coweeta (WS34) 
[NO3

-] 

(mg L-1) 

 0.48a 

(n=10) 

 0.04b 

(n=12) 

 0.0008 

δ15N (‰)  -2.7b 

(n=10) 

 +0.2a 

(n=8) 

 0.0152 

δ18O (‰)  +68.1a 

(n=10) 

 +4.3b 

(n=8) 

 <0.0001 

Δ17O (‰)  +23.6a 

(n=8) 

 +3.9b 

(n=6) 

 <0.0001 

  Fernow (WS4) 
[NO3

-] 

(mg L-1) 

 0.71b 

(n=12) 

 1.45a 

(n=12) 

 <0.0001 

δ15N (‰)  +1.3 

(n=11) 

 +2.3 

(n=12) 

 0.2711 

δ18O (‰)  +68.7a 

(n=11) 

 -0.8b 

(n=12) 

 <0.0001 

Δ17O (‰)  +24.8a 

(n=10) 

 -0.5b 

(n=12) 

 <0.0001 

       Hubbard Brook (WS3) 
[NO3

-] 

(mg L-1) 

 0.60 

(n=12) 

 0.21 

(n=12) 

 0.0718 

δ15N (‰)  -2.0b 

(n=12) 

 +0.8a 

(n=11) 

 0.0017 

δ18O (‰)  +72.5a 

(n=12) 

 +9.1b 

(n=11) 

 <0.0001 

Δ17O (‰)  +25.1a 

(n=10) 

 +1.1b 

(n=11) 

 <0.0001 
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 There were no seasonal differences in precipitation nitrate concentrations between warm 

season (May-October) and cool season (November-April) periods at any site.  S easonal 

differences in mean δ15N were only significant for precipitation nitrate at Hubbard Brook (-0.5‰ 

in the cool season versus -3.5‰ in the warm season; p=0.0056; Table 7.4).  Mean cool season 

δ18O values in precipitation nitrate were higher at all sites, but differences were only statistically 

significant at Coweeta and Hubbard Brook (Table 7.4).  P recipitation nitrate Δ17O means were 

also higher during the cool season at all sites, but only significantly so at Fernow (+29.7‰ in the 

cool season versus +19.8‰ in the warm season; p=0.0101; Table 7.4).  In streams, the only 

significant seasonal difference in mean nitrate concentrations occurred at Hubbard Brook (0.36 

mg L-1 during the cool season versus 0.05 mg L-1 during the warm season; p=0.0044; Table 7.4).  

Significant seasonal differences in mean δ15N of stream nitrate were only observed at Coweeta 

(+3.1‰ in the cool season versus -1.5‰ in the warm season; p=0.0121; Table 7.4), and mean 

stream nitrate δ18O values only showed significant season differences at Fernow (-0.3‰ in the 

cool season versus -1.6‰ in the warm season; p=0.0291; Table 7.4).  Mean stream nitrate Δ17O 

values were higher at all sites during the cool season, but differences were only statistically 

significant at Fernow (-0.2‰ in the cool season versus -0.8‰ in the warm season; p=0.0051; 

Table 7.4).   
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Table 7.4.  Mean cool (November-April) and warm (May-October) seasons precipitation and stream nitrate 

concentrations and isotope values.   

Cool and warm season means followed by different letters are significantly different at p < 0.05. 

 

 Precipitation  p-value  Stream  p-value 

 Cool Warm    Cool Warm   

Coweeta (WS34) 
[NO3

-] (mg L-1) 0.7 

(n=4) 

0.4 

(n=6) 

 0.2710  0.1 

(n=6) 

0.1 

(n=6) 

 0.9248 

δ15N (‰) -2.2 

(n=4) 

-3.0 

(n=6) 

 0.4667  +3.1a 

(n=3) 

-1.5b 

(n=5) 

 0.0121 

δ18O (‰) +74.5a 

(n=4) 

+63.9b 

(n=6) 

 0.0007  +1.5 

(n=3) 

+6.0 

(n=5) 

 0.2579 

Δ17O (‰) +27.8 

(n=2) 

+22.3 

(n=6) 

 0.0938  +4.0 

(n=3) 

+3.9 

(n=3) 

 0.9765 

Fernow (WS4) 
[NO3

-] (mg L-1) 0.8 

(n=6) 

0.6 

(n=6) 

 0.3823  1.6 

(n=6) 

1.3 

(n=6) 

 0.1359 

δ15N (‰) +2.5 

(n=6) 

-0.1 

(n=5) 

 0.1208  +1.9 

(n=6) 

+2.8 

(n=6) 

 0.2935 

δ18O (‰) +76.5 

(n=6) 

+59.3 

(n=5) 

 0.0681  -0.3a 

(n=6) 

-1.4b 

(n=6) 

 0.0291 

Δ17O (‰) +29.7a 

(n=5) 

+19.8b 

(n=5) 

 0.0101  -0.2a 

(n=6) 

-0.8b 

(n=6) 

 0.0051 

Hubbard Brook (WS3) 
[NO3

-] (mg L-1) 0.9 

(n=6) 

0.3 

(n=6) 

 0.1719  0.4a 

(n=5) 

0.1b 

(n=5) 

 0.0044 

δ15N (‰) -0.5a 

(n=6) 

-3.5b 

(n=6) 

 0.0056  +0.8 

(n=6) 

+0.8 

(n=5) 

 0.9865 

δ18O (‰) +77.1a 

(n=6) 

+67.5b 

(n=6) 

 0.0431  +6.3 

(n=6) 

+12.4 

(n=5) 

 0.3291 

Δ17O (‰) +27.5 

(n=5) 

+22.6 

(n=5) 

 0.3399  +1.7 

(n=6) 

+0.3 

(n=5) 

 0.3539 
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7.4 DISCUSSION 

7.4.1 Atmospheric Nitrate Processing and Export 

The study sites differed markedly in the degree to which atmospheric N deposition inputs were 

biologically processed prior to export in streams.  U sing the two-endmember mixing model 

(Equation 1), where 𝜒 is Δ17O of nitrate and the nitrification and precipitation endmember values 

are zero [Michalski et al., 2004] and +34‰ (representing the highest precipitation Δ17O value 

measured at any site during the study period), respectively, we calculated the proportions of 

atmospheric nitrate in monthly stream samples at all sites.  T he highest proportions of 

atmospheric nitrate export occurred at Coweeta (however, nitrate concentrations were too low 

for Δ17O analysis during some months), while the lowest proportions were observed at Fernow 

throughout the study period.  Proportions of atmospheric nitrate in streams ranged from zero to 

0.2% at Fernow, zero to 21% at Hubbard Brook, and 4% to 23% at Coweeta (for February 

through July 2013) (Figure 7.3).  T hese results were unexpected, as consistently low nitrate 

concentrations in the stream at Coweeta suggest that this watershed is nitrogen-limited and that 

biological nitrate demand is therefore high.  The fact that some proportion of atmospheric nitrate 

bypassed biological processing in every stream sample at this low N deposition site indicates that 

demand from biological N sinks (i.e., vegetation and/or soil microbes) is too low to prevent 

direct export of some atmospherically deposited nitrate.  In contrast, nearly complete biological 

cycling of atmospheric nitrate inputs at Fernow suggests strong demand from biological N sinks 

at this high N deposition site, even though elevated stream nitrate concentrations indicate that the 

nitrate retention capacity of these sinks is low.    
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Figure 7.3.  Proportions of atmospheric nitrate calculated using observed Δ17O values and daily discharge in 

reference watersheds at (a) Coweeta, (b) Fernow and (c) Hubbard Brook Experimental Forests.   

Note that discharge axes differ among sites. 
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The complex relationships demonstrated by the sites in this study with respect to the 

deposition, biological processing, and retention of nitrate demonstrate the need for a b etter 

understanding of the factors driving ecosystem responses to atmospheric N deposition.  T he 

balance between ecosystem carbon and nitrogen pools may be one such factor, strongly affecting 

the extent to which atmospheric N inputs are biologically processed.  Previous studies have 

documented both beneficial and detrimental effects of elevated N deposition on f orest carbon 

pools, with increased ecosystem carbon sequestration attributed to greater N availability in some 

studies [Magnani et al., 2007; Thomas et al., 2010].  In other studies, elevated stream nitrate 

export was attributed to decreased heterotrophic bacterial demand for ammonium and increased 

competition from nitrifying bacteria in low C:N (C:N < 20) soils [Williard et al., 1997; Nave et 

al., 2009].  Although the mean O horizon C:N ratio in WS4 at Fernow is 23.8 (n=15; [Adams et 

al., 2006]), high rates of nitrification relative to mineralization (nearly 100%; [Gilliam et al., 

2001]) suggest strong competition from nitrifying bacteria for substrate ammonium at this site.  

Such microbial N cycling dynamics likely contribute to the high proportions of microbial nitrate 

observed in the stream draining WS4.  Similar dynamics may operate in WS3 at Hubbard Brook, 

where a low mean O horizon C:N ratio (20.8; [Ross et al., 2011]) may have facilitated the large 

microbial source contributions to stream nitrate (> 93%) observed at this site on a ll but one 

sampling date.    

In addition to biological demand, physically-based drivers such as watershed 

geomorphology and hydrologic status may also influence the extent of atmospheric nitrate export 

from forests.  T he highest proportions of atmospheric nitrate in streams at Coweeta (23%), 

Hubbard Brook (21%), and Fernow (0.2%) all occurred on s ampling dates coincident with 

stormflow (Figure 7.3).  T hat peak atmospheric nitrate export occurred during stormflow 
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conditions at all sites along the N deposition gradient is noteworthy, and suggestive of watershed 

hydrologic status as an important regulator of atmospheric nitrate export.  S ubstantial 

contributions of atmospheric nitrate to streams on other dates at Coweeta (ranging from 10-17%) 

were also coincident with stormflow (Figure 7.3).  O ther studies have reported elevated 

atmospheric nitrate export during hydrologic events (particularly snowmelt events) relative to 

periods of baseflow [Spoelstra et al., 2001; Sebestyen et al., 2008; Goodale et al., 2009; Pellerin 

et al., 2012].  During lower flows, atmospheric nitrate comprised less than 8% of total stream 

nitrate in the study watersheds at Coweeta, Fernow, and Hubbard Brook; this is consistent with 

many previous studies in the eastern U.S. that reported average atmospheric nitrate contributions 

to streams of less than 10% during baseflow [Williard et al., 2001; Burns and Kendall, 2002; 

Sebestyen et al., 2008; Goodale et al., 2009; Pellerin et al., 2012].  More frequent sampling or 

targeted storm event sampling at our study sites would have clarified the relationship between 

watershed hydrologic status and atmospheric nitrate export and is an important area of future 

research.   

Landscape differences within the study watersheds may also have contributed to the 

patterns of atmospheric nitrate export we observed.  Landscape and soil characteristics that 

promote rapid water movement through watersheds can lead to greater atmospheric nitrate 

delivery to streams [Durka et al., 1994].  Helliwell et al. [2007] suggested that rapid hydrologic 

routing likely outweighs N retention in steep watersheds, whereas greater soil water residence 

times in watersheds with shallower slopes increase soil N pools and enhance nitrification.  The 

mean slope steepness of WS34 at Coweeta (52%) is more than two times greater than that of 

WS4 at Fernow (20%) or WS3 at Hubbard Brook (21%).  Steep slopes and greater mean annual 

precipitation at Coweeta (Table 7.1) may have facilitated rapid routing of water and atmospheric 
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nitrate to the stream in this watershed.  By influencing the rate of atmospheric nitrate transport 

through watersheds, physical attributes such as landscape geomorphology may also limit the 

opportunity for biological processes to act on atmospheric deposition inputs.  It is therefore 

important to consider how such differences in landform may regulate atmospheric nitrate 

processing under various hydrologic and N deposition regimes. 

7.4.2 Seasonal Patterns of Precipitation Nitrate Isotopes 

Mean precipitation nitrate δ15N, δ18O, and Δ17O values were higher during the cool season than 

the warm season at all sites (Table 7.4).  Other studies have reported similar seasonal patterns in 

precipitation nitrate isotopes [Durka et al., 1994; Williard et al., 2001; Hastings et al., 2003; 

Pardo et al., 2004].  While temporal variability in δ15N of nitrate has been attributed to variation 

in nitrate sources [Hastings et al., 2003; Elliott et al., 2007; Yang et al., 2013], seasonality of 

δ18O and Δ17O of nitrate is typically explained by variability in the dominant oxidation pathways 

of atmospheric nitrate [Hastings et al., 2003; Michalski et al., 2003].  Oxidation of NOx to nitrate 

via ozone (O3) is more prevalent during the cool season, whereas oxidation via the hydroxyl 

(OH) or peroxy radicals (HO2 + RO2) becomes more important during the warmer months 

[Hastings et al., 2003; Michalski et al., 2003].  Ozone is characterized by both high δ18O (+80‰ 

to +120‰) and Δ17O (+30‰ to +50‰) values [Michalski et al., 2013]; these isotopic 

enrichments are imparted to atmospheric nitrate when NOx oxidation proceeds via ozone.  In 

contrast, atmospheric nitrate formed via oxidation by hydroxyl or peroxy radicals is 

characterized by lower δ18O and Δ17O values, more closely reflecting the oxygen isotopic 

compositions of tropospheric water vapor, from which the hydroxyl radical derives its oxygen 
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(δ18O-OH= -30‰ to +2‰ and Δ17O-OH=0‰; [Hastings et al., 2003]) or atmospheric O2, from 

which peroxy radicals derive their oxygen atoms (δ18O-O2 = +23.9‰; [Fang et al., 2011b]).  

These differences in the isotopic composition of atmospheric oxidants have been used to infer 

the importance of each oxidation pathway to seasonal atmospheric nitrate formation dynamics 

[Hastings et al., 2003; Michalski et al., 2003].  T hat the temporal patterns in δ18O and Δ17O 

values of precipitation nitrate were similar at all sites suggest that a common factor— such as 

seasonal variation in atmospheric oxidation chemistry— influenced precipitation nitrate isotope 

dynamics. 

In three of the months during the study, precipitation samples collected at Hubbard Brook 

and Fernow did not follow this seasonal trend in Δ17O values (Figure 7.2).  Indeed, the range of 

Δ17O values in these samples (+11.1‰ to +14.8‰) was well outside the range generally reported 

for atmospheric nitrate (+20‰ to +33‰; [Michalski et al., 2003; Morin et al., 2009]), suggesting 

that some other factor may have influenced the isotopic composition of these precipitation 

samples.  U sing an isotope mass balance model (ISO-RACM), [Michalski and Xu, 2010] 

predicted atmospheric Δ17O of nitrate values resulting from various NOx oxidation pathways.  

According to their model, Δ17O values below +15‰ occurred under atmospheric conditions of 

low ozone and high biogenic VOC mixing ratios; however the authors suggested that such 

conditions were unlikely to be observed in the troposphere [Michalski and Xu, 2010].  At two of 

the study sites (Fernow and Hubbard Brook) we observed Δ17O of nitrate values less than +15‰; 

these low values occurred during the growing season, when emission of biogenic VOCs would 

have been possible at these densely-forested sites.  Yang et al. [2013] attributed very low δ18O 

values of atmospheric nitrate (~+17‰) in the South China Sea to oxidation of NO to NO2 by 

peroxy radicals, which derive their oxygen atoms from atmospheric O2 and are therefore 
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expected to have much lower δ18O values than those of ozone [Fang et al., 2011b].  Oxidation 

pathways not proceeding via ozone would also be expected to yield low Δ17O values of 

atmospheric nitrate, and may explain the periodically low values observed at Hubbard Brook at 

Fernow.  In addition, Rose and Elliott [manuscript in preparation; see also Chapter 5] suggested 

that Δ17O values as low as +11.2‰ in precipitation nitrate observed during storms at Fernow 

may have resulted from rapid oxidation and re-deposition as nitrate of biogenic NOx emitted 

during soil wet-up (biogenic NOx should have a Δ17O value of zero, as it is formed by mass-

dependent fractionating processes).  While we did not measure biogenic NOx emissions or ozone 

and VOC mixing ratios during this study, future research focusing on t hese atmospheric 

dynamics would provide critical insights into the sources and processes driving atmospheric 

nitrate formation and deposition in these forested systems. 

7.5   CONCLUSION 

The results presented here demonstrate the complexities of atmospheric nitrate processing and 

export in forested systems and provide new insights into ecosystem nitrogen saturation 

dynamics.  In the low N deposition watershed at Coweeta, consistently low stream nitrate 

concentrations imply that N supply and biological demand are well-balanced, while consistently 

high stream nitrate concentrations in the high N deposition watershed at Fernow (which are 36 

times higher than those at Coweeta, on a verage) suggest that N supply exceeds biological 

demand.  However, the relationship between atmospheric nitrate supply and biological demand 

as indicated by stream nitrate stable isotopes is in contrast with these concentration-based 
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assessments.  R ather than a balance between nitrate inputs and outputs, stream nitrate stable 

isotopes at Coweeta point to incomplete biological assimilation of atmospheric nitrate inputs, 

whereas isotope-based source apportionment of stream nitrate at Fernow indicates that 

atmospheric nitrate inputs are extensively biologically cycled prior to export.  That the extents of 

atmospheric nitrate processing and export differ both within sites as well as among sites located 

along the nitrate deposition gradient in this study indicates that conceptual models of nitrogen 

saturation should consider not only the balance between N supply and biological demand [Aber 

et al., 1989, 1998]  but also the capacity of ecosystems to retain N added via atmospheric 

deposition [Lovett and Goodale, 2011]. 
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8.0  CONCLUSIONS 

This dissertation has presented research examining the fate and transport of atmospheric nitrate 

deposition in forested watersheds of the Appalachian Mountain Range.  Based on triple nitrate 

isotope analysis of natural waters, the novel results of this work enhance our understanding of 

the effects of nitrate inputs resulting from anthropogenic activities on terrestrial and aquatic 

systems.   

Chapter 2 explored the roles of hydrological, geomorphological, and biogeochemical 

processes in the cycling and export of atmospheric nitrate in watersheds.  These physical drivers 

are often under-appreciated in watershed-scale studies of N biogeochemistry, but can serve as 

important regulators of nitrate export in general and atmospheric nitrate export in particular.  

In Chapter 3, we showed that, despite differences in mean stream nitrate concentrations, 

export of unprocessed atmospheric nitrate was low in three hardwood-dominated watersheds at 

Fernow Experimental Forest and high in a conifer-dominated stand with persistently low stream 

nitrate concentrations.  Unprocessed atmospheric nitrate comprised less than 15% of nitrate 

export in weekly stream samples from the hardwood-dominated watersheds, based on Δ17O of 

nitrate measurements.  In contrast, high Δ17O values in the N-limited conifer stand indicated 32% 

to 72% contributions of atmospheric nitrate to the stream.  These results demonstrate extensive 

atmospheric nitrate cycling in the hardwood watersheds regardless of N saturation stage, whereas 
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the conifer stand exported high proportions of unprocessed atmospheric nitrate despite near-zero 

stream nitrate concentrations.  However, elevated export of atmospheric nitrate in all study 

watersheds during a snowmelt event suggests that hydrologic events may facilitate periodic 

direct routing of atmospheric nitrate to streams. 

In Chapter 4, we examined spatial and temporal heterogeneity of soil water nitrate 

concentrations and sources across WS4 at Fernow Experimental Forest.  Low soil water nitrate 

concentrations on the south-facing aspect were associated with high proportions of atmospheric 

nitrate, whereas high soil water nitrate concentrations on the east-facing portion of the watershed 

were largely attributable to microbial nitrification.  While nitrate source dynamics were highly 

variable at the intra-watershed scale, characterization of stream nitrate sources at the watershed 

outlet identified microbial nitrification as the dominant source of nitrate exported from the 

watershed.  T his disparity between nitrate source dynamics at the intra- and whole-watershed 

scales has implications for the determination of nitrogen saturation status and the factors that 

influence nitrate transport from landscapes to streams, such as hydrologic regime and watershed 

geomorphology.   

The research presented in Chapter 5 represents the first characterization of intra-event 

precipitation nitrate isotope dynamics using triple nitrate isotopes (δ15N, δ18O, and Δ17O).  We 

examined the intra-storm variability of precipitation nitrate stable isotopic composition during 

six growing season storms sampled during 2010 at Fernow Experimental Forest.  We reported 

highly variable δ15N, δ18O, and Δ17O values in precipitation over short time periods (~hourly) 

and explored possible explanations for this isotopic variability.  During one event, δ15N and δ18O 

of nitrate increased by 16‰ and 11‰, respectively, over two hours.  On two other dates, Δ17O of 

nitrate values varied by more than 9‰ in one hour.  Several factors may contribute to this intra-
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storm isotopic variability, including temporal variation in atmospheric NOx production from 

multiple sources, variability in NOx oxidation pathways during atmospheric nitrate formation, 

and rainout/washout processes.  Pulses of biogenic NOx emitted at the study site may be an 

important and overlooked NOx source, particularly during events with drier antecedent moisture 

conditions.  This suggests that a portion of wet nitrate deposition may come from intra-site 

recycling rather than external sources.    

 Chapter 6 examined high-temporal resolution dynamics of stream nitrate export during 

three of the storms presented in Chapter 5.  Whereas atmospheric nitrate contributions to 

stormflow were less than 12% during the three storms, mean event water contributions to 

stormflow ranged from 6 to 34%, suggesting that fast routing of precipitation inputs to the stream 

may have occurred periodically during some events.  Trends in δ18O of water in stormflow 

during the largest event on 30 S eptember support the establishment of a transient hydrologic 

connection between hillslopes and the stream.  These differences in atmospheric and terrestrial 

water and nitrate source contributions to stormflow demonstrate that while microbial nitrification 

is the most important source of stream nitrate in WS4, rapid movement of event water through 

watershed areas can be an important regulator of nitrate export during storms.   

Chapter 7 expanded the examination of atmospheric nitrate transport and fate from the 

single-site level to a larger geographic context, spanning a ~1700 km nitrate deposition gradient 

along the Appalachian Mountain Range. The results of this work showed that concentration- and 

isotope-based assessments of ecosystem N saturation status may often conflict with one another.  

Seasonal trends and mean values of precipitation nitrate δ15N, δ18O, and Δ17O were generally 

similar among the sites.  In contrast, the concentrations, δ18O, and Δ17O values of stream nitrate 

differed significantly among the sites.  Despite having the highest long-term annual average rate 
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of atmospheric nitrate deposition and mean stream nitrate concentration during the study period, 

the watershed at Fernow consistently exported the lowest proportions of atmospheric nitrate in 

streamflow.  In contrast, the study watershed at Coweeta had the lowest long-term annual 

average rate of atmospheric nitrate deposition and mean stream nitrate concentration during the 

study period, but exported the highest proportions of atmospheric nitrate.  The relationship 

between atmospheric nitrate supply and biological demand as indicated by stream nitrate stable 

isotopes is therefore in contrast with concentration-based assessments.  These results 

demonstrate the complexities of atmospheric nitrate processing and export from forested systems 

and provide new insights into ecosystem N saturation dynamics.   

 The results of this work demonstrate the dynamic nature of forested systems with respect to 

the processing and retention of atmospheric N additions.  W e have shown that, while the 

capacity of natural systems to biologically cycle allochthonous nitrate can be quite large, their 

capacity to retain those inputs is more limited.  These new insights have important implications 

for our understanding of anthropogenic effects on natural systems in N-polluted regions and for 

the mitigation of elevated nitrate export to surface waters.    
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APPENDIX A 

DATA TABLE FOR WEEKLY STREAM AND PRECIPITATION SAMPLES 

Table A-1   Nitrate concentration, nitrate isotope, and water isotope data for wee.ly stream and 

precipitation samples 

 

Data for Watersheds 4, 5, 6, and 7 refer to stream samples; data for NADP precipitation refer to 

precipitation samples collected at Fernow for the National Atmospheric Deposition Program.  

Entries with no data indicate nitrate concentrations below the instrument detection limit o r 

insufficient sample volume for isotope analysis. 

 

Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

4 2010 1 5 2.1 2.0 2.5 0.6 -61.1 -9.3 

4 2010 1 12 3.5 2.0 3.5 0.6 -58.1 -9.6 

4 2010 1 19 2.5 1.9 3.8 1.1 -65.7 -10.1 

4 2010 1 26 2.6 1.8 3.0 0.5 -65.7 -10.5 

4 2010 2 2 2.1 1.8 -2.3 0.5 -59.5 -9.9 

4 2010 2 9 2.0 1.7 -3.4 0.3 -64.7 -9.9 

4 2010 2 16 2.0 1.8 2.2 0.8 -64.3 -10.0 
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Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

4 2010 2 23 2.1 1.6 6.1 3.2 -66.8 -10.7 

4 2010 3 2 2.0 1.8 -1.3 0.7 -64.2 -10.6 

4 2010 3 9 1.8 1.9 1.3 1.6 -63.8 -10.3 

4 2010 3 16 2.2 1.8 1.7 2.1 -80.5 -12.3 

4 2010 3 23 2.0 1.9 -0.2 1.4 -75.0 -11.4 

4 2010 3 30 1.9 1.8 -0.3 1.1 -74.8 -11.5 

4 2010 4 6 1.8 1.8 -2.1 0.7 -72.6 -11.0 

4 2010 4 13 1.8 2.2 -2.8 0.4 -66.7 -11.0 

4 2010 4 20 1.6 2.1 -2.8 1.0 -69.2 -11.0 

4 2010 4 27 1.5 2.5 -2.3 0.4 -69.3 -10.9 

4 2010 5 4 1.8 2.6 -1.1 0.3 -73.3 -11.4 

4 2010 5 11 1.5 2.5 -3.2 0.5 -71.6 -10.9 

4 2010 5 18 1.4 2.7 -2.9 0.2 -66.3 -10.7 

4 2010 5 24 1.4 2.4 -3.1 0.3 -70.2 -11.0 

4 2010 6 1 1.3 2.7 -2.1 0.6 -70.3 -10.7 

4 2010 6 8 1.5 2.4 -2.6 0.2 -69.1 -11.0 

4 2010 6 15 1.4 2.3 -3.8 -0.5 -70.8 -11.2 

4 2010 6 22 1.4 2.5 -7.1 -0.8 -68.7 -10.8 

4 2010 6 29 1.3 3.6 -7.4 -1.0 -67.2 -9.8 

4 2010 7 6 1.4 4.3 -7.9 -1.2 -66.3 -10.3 

4 2010 11 30 1.9 2.8 -3.1 -0.3 -66.0 -10.3 

4 2010 12 6 2.3   -0.2 -68.8 -11.0 

4 2010 12 13 2.0 2.5 -0.7 0.5 -72.7 -10.9 

4 2010 12 21 2.0 2.3 -3.2 -0.3 -68.3 -10.9 

4 2010 12 28 1.9 1.5 -4.5 0.0 -70.9 -9.8 

5 2010 1 5 1.1 1.7 2.1  -61.0 -9.2 

5 2010 1 12 1.2 1.5 1.1 0.4 -57.2 -9.4 

5 2010 1 19 1.2 1.9 3.8 0.4 -66.0 -9.9 

5 2010 1 26 1.2 1.6 2.3 0.6 -68.4 -10.2 

5 2010 2 2 1.1 1.3 0.8  -59.8 -9.5 
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Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

5 2010 2 9 1.2 1.2 0.2 -0.1 -61.4 -10.1 

5 2010 2 16 1.2 1.0 0.8 1.0 -63.1 -10.1 

5 2010 2 23 1.4 1.5 13.4 5.6 -70.1 -10.9 

5 2010 3 2 1.1 1.6 -2.3 0.8 -61.8 -10.1 

5 2010 3 9 1.2 1.8 0.8 1.3 -64.1 -10.1 

5 2010 3 16 1.0 1.6 2.7 2.6 -79.2 -12.4 

5 2010 3 23 0.9 1.6 -0.9 0.7 -74.5 -11.7 

5 2010 3 30 0.9 1.5 -1.7 0.6 -77.9 -11.6 

5 2010 4 6 0.9 1.2 -4.1 0.3 -70.3 -10.7 

5 2010 4 13 0.9 2.1 -4.0 -0.1 -72.3 -11.0 

5 2010 4 20 0.8 2.3 -3.9 0.1 -79.9 -10.2 

5 2010 4 27 0.9 2.5 -3.4 0.3 -73.1 -10.7 

5 2010 5 4 0.9 2.6 -2.3 0.2 -82.8 -11.0 

5 2010 5 11 0.8 1.8 -6.0 -0.1 -73.2 -10.3 

5 2010 5 18 0.8 1.9 -4.9 -0.3 -71.9 -10.3 

5 2010 5 24 0.7 2.5 -4.4 -0.4 -75.6 -10.9 

5 2010 6 1 0.6 2.2 -3.6 0.9 -68.0 -10.0 

5 2010 6 8 0.9 2.6 -2.0 -0.3 -73.3 -10.5 

5 2010 6 15 0.8 2.2 -5.2 -0.8 -72.1 -10.7 

5 2010 6 22 0.9 2.6 -7.6 -0.9 -68.1 -10.3 

5 2010 6 29 0.7 3.2 -7.1 -0.8 -64.5 -9.4 

5 2010 7 6 0.8 3.3 -9.4 -0.9 -66.4 -10.0 

5 2010 8 24 0.9 5.0 -4.7 -0.7 -55.5 -8.2 

5 2010 9 28 1.4 4.5 -4.7 -1.2 -53.5 -8.1 

5 2010 10 5 0.9 4.1 -4.8 -1.0 -66.0 -9.4 

5 2010 11 9 1.0 2.8 -4.6 -0.6 -70.7 -10.4 

5 2010 11 16 0.7 2.8 -4.8 -0.6 -70.9 -10.4 

5 2010 11 23 0.8 2.7 -4.7 -0.6 -69.2 -10.6 

5 2010 11 30 1.0 2.5 -3.5 -0.1 -69.0 -9.9 

5 2010 12 6 1.1 2.0 -2.8 -0.2 -73.3 -10.8 
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Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

5 2010 12 13 1.2 2.2 -1.1 1.1 -76.0 -10.8 

5 2010 12 21 1.1 1.8 -4.5 -0.1 -68.2 -10.7 

5 2010 12 28 1.1 1.7 -4.8 0.0 -69.4 -10.9 

6 2010 1 5 0.0 -1.1 49.6  -57.2 -8.3 

6 2010 1 12 0.0 2.6 50.1  -51.7 -8.3 

6 2010 1 19 0.0    -57.4 -8.7 

6 2010 1 26 0.0    -61.8 -9.1 

6 2010 2 2     -56.5 -8.7 

6 2010 2 9 0.0 -1.6 40.9  -56.7 -8.8 

6 2010 2 16 0.0 2.6 45.1  -58.5 -8.8 

6 2010 2 23 0.1 3.8 72.8 23.9 -59.9 -9.1 

6 2010 3 2 0.0 0.5 49.2  -50.6 -9.0 

6 2010 3 9 0.0 -2.1 42.5  -56.8 -8.8 

6 2010 3 16     -63.6 -9.9 

6 2010 3 23 0.0    -64.2 -10.1 

6 2010 3 30     -65.8 -9.9 

6 2010 4 6 0.0    -61.0 -9.5 

6 2010 4 13 0.0 -0.8 38.0  -58.8 -9.2 

6 2010 4 20 0.0    -55.2 -9.1 

6 2010 4 27 0.0    -58.4 -9.1 

6 2010 5 4 0.0    -56.4 -8.9 

6 2010 5 18 0.0 0.9 25.7  -57.1 -8.2 

6 2010 5 24 0.0 2.9 26.8  -58.2 -9.0 

6 2010 6 1 0.1   6.6 -54.9 -8.9 

6 2010 6 8 0.0    -55.1 -9.0 

6 2010 6 15 0.0 1.7 27.5  -61.8 -9.1 

6 2010 6 22 0.0   1.7 -63.0 -9.4 

6 2010 6 29 0.1 -2.9 -5.3 1.4 -53.0 -8.6 

6 2010 11 30 0.0    -63.2 -9.0 

6 2010 12 6     -61.7 -9.7 
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Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

6 2010 12 13     -63.0 -10.0 

6 2010 12 21 0.0    -60.1 -9.6 

7 2010 1 5 4.2 2.1 1.5 -0.9 -61.2 -9.6 

7 2010 1 12 4.4 2.2 1.5 0.2 -62.3 -9.6 

7 2010 1 19 3.8 2.1 2.2 0.0 -64.8 -9.7 

7 2010 1 26 4.2 2.1 2.0 0.1 -62.2 -9.9 

7 2010 2 2 4.2 2.3 -3.3 0.0 -64.1 -9.7 

7 2010 2 9 4.4 2.2 1.4 -0.1 -62.8 -9.9 

7 2010 2 16 4.1 1.8 -1.1 0.0 -61.1 -10.0 

7 2010 2 23 4.1 2.0 4.0 3.0 -71.6 -10.8 

7 2010 3 2 5.0 2.3 -1.8 0.4 -64.3 -10.0 

7 2010 3 9 3.4 2.2 -1.1 0.4 -76.9 -10.3 

7 2010 3 16 3.7 2.0 -0.9 0.7 -73.7 -11.5 

7 2010 3 23 4.3 2.0 -1.9 0.5 -73.8 -11.1 

7 2010 3 30 3.9 2.0 -1.9 0.0 -74.3 -11.0 

7 2010 4 6 3.9 2.5 -3.0 0.1 -70.2 -10.7 

7 2010 4 13 3.9 1.6 -5.4 0.3 -66.8 -10.4 

7 2010 4 20 3.4 2.5 -3.6 0.3 -70.3 -10.6 

7 2010 4 27 3.2 2.7 -3.0 0.0 -68.1 -10.7 

7 2010 5 4 2.9 2.9 -2.4 -0.1 -70.8 -10.8 

7 2010 5 11 3.4 3.0 -3.1 0.0 -66.3 -10.2 

7 2010 5 18 3.1 2.9 -3.5 -1.0 -64.4 -10.5 

7 2010 5 24 3.1 2.7 -3.2 0.1 -75.4 -10.6 

7 2010 6 1 2.7 2.7 -3.4 -0.1 -66.2 -10.2 

7 2010 6 8 2.9 2.8 -3.2 -0.2 -67.7 -10.6 

7 2010 6 15 3.0 2.4 -4.5 -0.7 -73.3 -10.5 

7 2010 6 22 3.0 3.5 -6.2 -0.8 -69.4 -10.4 

7 2010 6 29 3.2 4.4 -5.4 -1.0 -63.1 -9.8 

7 2010 7 6 3.7 4.0 -7.5 -1.4 -64.1 -9.6 

7 2010 7 13 3.9 5.2 -6.1 -1.0 -62.0 -9.7 
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Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

7 2010 7 20 3.8 5.4 -5.8 -1.2 -60.1 -9.4 

7 2010 7 27 4.0 5.4 -6.4 -1.3 342.9 -8.9 

7 2010 8 24 4.2 5.9 -4.3  -57.4 -8.6 

7 2010 9 28 8.4   -1.2 -61.0 -8.6 

7 2010 10 5 3.3 4.0 -5.2 -0.9 -69.8 -10.3 

7 2010 11 9 3.0 3.4 -4.6 -0.5 -69.4 -10.1 

7 2010 11 16 2.5 3.6 -4.2 -0.6 -66.0 -9.7 

7 2010 11 23 3.1 3.3 -4.4 -0.8 -71.1 -10.3 

7 2010 11 30 3.4 2.8 -4.0 -0.5 -66.9 -10.0 

7 2010 12 6 3.9 2.5 -3.6 -0.6 -67.4 -10.5 

7 2010 12 13 3.0 2.5 -2.5 -0.3 -72.7 -11.0 

7 2010 12 21 3.8 2.5 -3.7 -0.7 -77.5 -10.5 

7 2010 12 28 3.7 2.7 -3.8 -0.8 -67.6 -10.6 

NADP 

precipitation 

2010 2 9 0.3 0.3 81.7    

NADP 

precipitation 

2010 2 16 1.2 -0.9 71.3    

NADP 

precipitation 

2010 3 2 3.0 1.5 70.4 27.7   

NADP 

precipitation 

2010 3 16 1.4 4.6 55.9 16.5   

NADP 

precipitation 

2010 3 23 0.1 1.7 62.8 24.5   

NADP 

precipitation 

2010 3 30 0.8 -0.4 67.9 23.6   

NADP 

precipitation 

2010 4 13 0.7 0.9 67.4 25.5   

NADP 

precipitation 

2010 4 20 1.1 -2.1 71.2 26.3   

NADP 

precipitation 

2010 4 27 1.3 -1.8 73.9 23.9   
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Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

NADP 

precipitation 

2010 5 4 0.3 -1.4 60.4    

NADP 

precipitation 

2010 5 11 0.6 -6.0 61.4 18.7   

NADP 

precipitation 

2010 5 18 0.7 2.1 65.8 23.2   

NADP 

precipitation 

2010 5 25 0.6 0.3 68.3 19.1   

NADP 

precipitation 

2010 6 1 0.8 -0.1 53.9 13.8   

NADP 

precipitation 

2010 6 8 0.7 -3.7 64.1 21.5   

NADP 

precipitation 

2010 6 15 1.2 -2.9 65.2 21.7   

NADP 

precipitation 

2010 6 22 0.6 -2.1 64.6 18.8   

NADP 

precipitation 

2010 6 29 1.3 -1.4 65.3 19.6   

NADP 

precipitation 

2010 7 13 0.3 2.0 65.8    

NADP 

precipitation 

2010 7 20 0.5 0.6 65.1 18.6   

NADP 

precipitation 

2010 7 27 0.4 -0.9 64.0 19.3   

NADP 

precipitation 

2010 8 3 0.9 1.1 67.8 19.8   

NADP 

precipitation 

2010 8 10 1.0 -0.7 50.0 12.8   

NADP 

precipitation 

2010 8 24 0.7 0.8 64.7 22.3   

NADP 

precipitation 

2010 9 14 0.9 -1.8 68.0 21.9   
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Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

NADP 

precipitation 

2010 9 21 0.4 -2.4 64.9 21.6   

NADP 

precipitation 

2010 9 28 0.4 -0.7 43.0 15.6   

NADP 

precipitation 

2010 10 5 0.5 2.6 51.1 18.1   

NADP 

precipitation 

2010 10 12 0.9 4.7 61.5 22.6   

NADP 

precipitation 

2010 10 19 1.6 -1.1 53.6 19.1   

NADP 

precipitation 

2010 11 2 0.3 2.6 66.3 21.3   

NADP 

precipitation 

2010 11 9 0.4 3.8 60.6 20.8   

NADP 

precipitation 

2010 11 16 1.2 -1.8 63.6 23.8   

NADP 

precipitation 

2010 11 23 0.6 1.3 40.3 13.2   

NADP 

precipitation 

2010 11 30 0.3 2.1 77.3 28.6   

NADP 

precipitation 

2010 12 7 0.2 5.1 52.5 12.3   

NADP 

precipitation 

2010 12 14 0.4 -0.5 70.5 29.1   

NADP 

precipitation 

2010 12 21 0.3 0.4 71.1 24.5   

NADP 

precipitation 

2011 1 11 2.9 4.9 78.1 29.4   

NADP 

precipitation 

2011 1 18 1.6 0.9 82.2 29.4   

NADP 

precipitation 

2011 1 25 1.8 2.4 69.7 22.5   
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Watershed Year Month Day [NO3
-] 

(mg L-1) 

δ15N-

NO3
- (‰) 

δ18O-

NO3
- (‰) 

Δ17O-

NO3
- (‰) 

δ2H- 

H2O (‰) 

δ18O-

H2O (‰) 

NADP 

precipitation 

2011 2 1 1.1 2.3 80.1 31.3   

NADP 

precipitation 

2011 2 8 0.5 1.9 78.4 28.6   
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APPENDIX B 

DATA TABLE FOR MONTHLY LYSIMETER SAMPLES 

Table B-1  Nitrate concentration, nitrate isotope, and water isotope data for monthly soil solution 

samples 

 

Data refer to monthly soil solution samples collected from zero-tension lysimeter throughout 

Fernow Watershed 4.  E ntries with no data indicate nitrate concentrations below the instrument 

detection limit, missing sample, or insufficient sample volume for isotope analysis. 

 

Year Month Day Lysimeter 

Number 

Soil 

Horizon 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O 

(‰) 

2010 1 21 3 A 0.3 3.8 65.1 20.4   

2010 1 21 7 A 2.2 4.6 77.7 31.6   

2010 1 21 8 A 0.2 5.0 79.7    

2010 1 21 9 A 3.0 -2.6 5.8 3.4   

2010 1 21 10 A 0.0      

2010 1 21 13 A 4.2 1.8 -0.5 -0.1   

2010 1 21 14 A 2.0 3.4 48.0 19.7   

2010 1 21 3 B 0.3 3.2 63.4 20.4   
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Year Month Day Lysimeter 

Number 

Soil 

Horizon 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O 

(‰) 

2010 1 21 6 B 0.0      

2010 1 21 10 B 0.0      

2010 1 21 11 B 0.1      

2010 1 21 13 B 4.3 2.0 -0.2 -0.6   

2010 1 21 6 C 0.0      

2010 1 21 9 C 0.3 2.9 5.2 0.6   

2010 1 21 12 C 0.3 1.4 9.4 5.3   

2010 1 21 15 C 2.0 2.5 3.0 1.1   

2010 3 17 1 A 3.3 1.1 22.3  -122.7 -17.7 

2010 3 17 2 A 1.5 0.7 -2.8 0.0 -95.0 -14.0 

2010 3 17 4 A 0.2 6.0 76.4 28.0   

2010 3 17 7 A 0.6 4.3 76.5 23.6 -134.5 -19.3 

2010 3 17 9 A 1.8 1.0 5.9 4.2 -101.7 -15.1 

2010 3 17 10 A 0.3 0.7 21.1 7.9 -91.6 -14.2 

2010 3 17 11 A 1.0 -0.2 5.4 5.0 -112.3 -16.9 

2010 3 17 12 A 3.0 1.0 3.9 3.2 -106.8 -16.0 

2010 3 17 13 A 11.4 0.2 -0.6 0.5 -110.9 -15.4 

2010 3 17 14 A 1.7 2.7 41.4 17.4 -114.4 -17.0 

2010 3 17 1 B 0.7 1.7 -1.9 -0.6 -69.6 -10.9 

2010 3 17 2 B 1.0 1.7 4.5 0.6 -64.7 -10.3 

2010 3 17 3 B 1.4 0.4 17.2  -103.9 -15.4 

2010 3 17 7 B 0.2 4.3 75.3 18.1 -124.3 -17.7 

2010 3 17 8 B     -73.9 -10.8 

2010 3 17 9 B 0.2 -1.7 0.3 -0.2 -70.0 -11.0 

2010 3 17 10 B 0.0    -88.6 -13.2 

2010 3 17 11 B 0.0    -90.6 -12.4 

2010 3 17 12 B 0.2 3.1 2.8 1.0 -53.9 -8.9 

2010 3 17 13 B 12.4 0.1 -0.6 1.3 -110.5 -16.5 

2010 3 17 5 C     -74.7 -11.6 

2010 3 17 7 C     -55.6 -9.0 
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Year Month Day Lysimeter 

Number 

Soil 

Horizon 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O 

(‰) 

2010 3 17 9 C 0.6 3.0 4.6 1.2 -69.5 -11.2 

2010 3 17 10 C 0.3 0.0 2.6 1.8 -83.8 -11.8 

2010 3 17 12 C 0.4 0.7 5.4 2.2 -70.2 -11.0 

2010 3 17 15 C 3.0 1.8 6.5 3.1 -93.8 -14.0 

2010 4 26 11 A 1.0 0.6 11.7 5.8 -120.9 -17.4 

2010 4 26 5 C     -88.3 -13.4 

2010 4 26 9 C 0.6 2.7 7.9 2.7 -99.9 -14.7 

2010 4 26 12 C 0.3 0.8 5.4 1.9 -77.9 -12.1 

2010 4 26 15 C 2.5 2.0 7.0 3.2 -87.6 -13.5 

2010 7 30 3 A 0.2 2.5 63.4 16.4 -33.7 -6.1 

2010 9 17 1 A 2.8 -0.6 10.5 2.0 -30.1 -6.8 

2010 9 17 2 A 3.5 -1.7 10.0 1.0 -27.6 -6.3 

2010 9 17 3 A 0.4 -0.4 48.3 14.2 -25.0 -5.8 

2010 9 17 8 A 0.3 0.8 61.6 17.7   

2010 9 17 9 A 3.4 -6.9 3.4 0.7 -29.1 -6.3 

2010 9 17 10 A 0.9 -4.0 22.1 5.8 -29.6 -6.4 

2010 9 17 11 A 0.5 -1.9 38.4 11.9   

2010 9 17 15 A 0.3 0.6 22.6 6.0 -27.5 -6.1 

2010 9 17 12 C 2.2 0.2 7.3 0.9   

2010 10 01 1 A 1.1 1.9 3.4 -0.8 -86.1 -12.0 

2010 10 01 2 A 1.0 -1.1 3.2 -1.0   

2010 10 01 3 A 0.1    -128.8 -17.7 

2010 10 01 5 A 0.1      

2010 10 01 7 A 0.0    -111.4 -15.9 

2010 10 01 8 A 0.2   0.5 -137.0 -19.0 

2010 10 01 9 A 1.5 1.6 0.9 -0.6 -92.5 -13.3 

2010 10 01 10 A 0.2 -0.4 9.3 1.5 -69.1 -10.4 

2010 10 01 11 A     -120.8 -17.1 

2010 10 01 14 A 0.3 3.1 4.8 0.1 -102.5 -14.4 

2011 2 14 1 A 2.87 1.9 15.2 7.7 -79.9 -12.3 
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Year Month Day Lysimeter 

Number 

Soil 

Horizon 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O 

(‰) 

2011 2 14 3 A 0.40 2.3 -1.7 0.4 -59.8 -9.6 

2011 2 14 5 A 0.12 0.9 -6.1 0.1 -60.5 -9.6 

2011 2 14 7 A 0.3 3.9 81.4 29.8 -92.8 -13.8 

2011 2 14 8 A 0.7 6.6 76.6  -95.6 -14.2 

2011 2 14 9 A 0.6 0.1 -6.4 0.4 -66.7 -10.2 

2011 2 14 10 A     -61.5 -9.5 

2011 2 14 11 A 0.0    -54.7 -9.4 

2011 2 14 12 A 0.8 3.5 -5.0 0.6 -60.5 -9.4 

2011 2 14 14 A 1.3 4.0 -5.0 -0.5 -63.1 -9.8 

2011 2 14 15 A 8.5 2.8 1.7 1.2 -70.9 -11.8 

2011 2 14 1 B 2.4 4.0 -1.4 -0.6 -62.4 -10.0 

2011 2 14 2 B 1.2 1.7 13.7 4.6 -83.4 -13.1 

2011 2 14 3 B 1.4 0.0 13.6 3.5 -80.6 -12.0 

2011 2 14 5 B 0.0    -60.8 -9.3 

2011 2 14 6 B 0.1    -73.4 -10.9 

2011 2 14 7 B 0.2 8.2 76.6 20.8 -88.9 -13.5 

2011 2 14 8 B 0.0    -70.8 -10.6 

2011 2 14 9 B 0.1    -60.1 -9.3 

2011 2 14 10 B     -63.5 -9.9 

2011 2 14 11 B     -65.6 -10.3 

2011 2 14 12 B 0.2 3.8 -3.8 5.3 -62.7 -9.4 

2011 2 14 13 B 8.2 2.7 -1.4 -0.8 -63.7 -10.3 

2011 2 14 6 C 0.0    -92.2 -13.5 

2011 2 14 7 C 0.0    -95.0 -13.8 

2011 2 14 9 C 0.0    -80.0 -11.8 

2011 2 14 10 C 0.9 -5.4 1.0 -0.4 -63.5 -9.0 

2011 2 14 12 C 0.9 1.5 27.6 10.8 -68.6 -11.0 

2011 2 14 15 C 2.9 2.4 4.1 2.4 -89.4 -10.6 
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APPENDIX C 

DATA TABLE FOR HOURLY STORM EVENT PRECIPITATION SAMPLES 

Table C-1 Precipitation amount, nitrate concentration, nitrate isotope, and water isotope data for 

hourly precipitation samples 

 

Data refer to precipitation samples collected hourly at the base of Fernow Watershed 4 during six 

growing season storms.  Time data refer to the end of the sampling period (e.g., a time of 19:00 

represents precipitation accumulated between 18:00 and 19:00).  Entries with no da ta indicate 

nitrate concentrations below the instrument detection limit o r insufficient sample volume for 

isotope analysis. 

 

Year Month Day Time  Precip 

(mm) 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O 

(‰) 

2010 07 09 19:00 9.23 0.7 1.5 64.2 19.6 -40.1 -6.5 

2010 07 09 20:00 3.43 0.6 0.3 66.3 18.6 -44.0 -7.0 

2010 07 09 21:00 3.16 0.2 -1.2 65.3 13.0 -54.0 -8.8 

2010 07 09 22:00 0.79 0.3 -1.0 62.0    

2010 07 09 23:00 0.26 0.2 -2.0 70.2 22.0 -59.6 -9.6 
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Year Month Day Time  Precip 

(mm) 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O 

(‰) 

2010 07 10 0:00 1.05       

2010 07 10 1:00 0.26 2.6 14.0 80.8 25.6   

2010 07 10 2:00 0.26 2.1 13.1 82.0 26.8   

2010 07 10 3:00 0.00 2.8 6.5 76.2    

2010 07 10 4:00 0.00       

2010 09 11 23:55 0.00 1.0 -3.9 60.3 12.8 -43.9 -7.6 

2010 09 12 1:55 0.28 1.8 -4.3 46.6 13.9   

2010 09 12 2:55 0.28 1.6 -3.1 65.3 22.1 -36.9 -6.9 

2010 09 12 3:55 0.28 1.6 -2.0 68.5 23.4 -38.9 -6.9 

2010 09 12 5:55 0.55 2.0 -3.9 43.0 14.2   

2010 09 16 16:00 3.95 0.2 -1.7 55.1 16.4 -26.4 -6.3 

2010 09 16 17:00 2.11 0.4 -2.7 65.7 14.3 -20.7 -5.5 

2010 09 16 18:00 0.26 1.2 -3.1 65.6 11.2 -13.2 -5.0 

2010 09 16 19:00 0.26 1.6 -3.5 66.4 20.4 -10.7 -4.5 

2010 09 16 21:00 19.75 0.6 -3.5 61.4 14.6 -37.6 -7.5 

2010 09 16 22:00 0.26 0.5 -4.5 68.0 14.7 -36.5 -7.4 

2010 09 26 19:30 1.31 0.4 0.0 64.9 19.6   

2010 09 26 21:00 1.31 1.2 3.9 70.4 23.5   

2010 09 26 23:00 0.26 1.6 4.9 72.9 25.4 -59.7 -9.4 

2010 09 27 4:00 1.31 0.7 0.6 73.8 24.0 -41.9 -7.5 

2010 09 27 6:00 0.52 0.3 -4.5 73.0 26.4 -39.0 -7.3 

2010 09 27 8:00 0.52 0.2 -1.8 74.0 24.1 -44.4 -7.5 

2010 09 27 9:00 0.52 0.2 -1.3 72.1 29.0   

2010 09 27 13:00 0.26 0.7 -9.7 59.8 20.3 -44.7 -7.2 

2010 09 27 14:00 0.26 0.8 -12.4 56.4 19.9   

2010 09 28 0:00 3.92 0.2 -6.6 67.9 24.3 -73.1 -10.2 

2010 09 28 1:00 0.26 0.2 -1.9 77.2 22.1 -64.1 -9.5 

2010 09 28 2:00 1.57 0.1 -1.2 76.0 26.1 -60.4 -9.1 

2010 09 28 3:00 0.52 0.1 -0.4 67.5 26.0 -74.7 -11.2 

2010 09 28 4:00 1.04 0.1 -1.1 67.1 22.1 -79.8 -11.4 
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Year Month Day Time  Precip 

(mm) 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O 

(‰) 

2010 09 28 6:00 0.26 0.3 1.2 78.3 30.6 -73.6 -10.2 

2010 09 28 10:00 0.26 0.4 1.3 73.7 28.3   

2010 09 30 2:00 1.30 0.5 -0.1 70.5 23.1   

2010 09 30 3:00 1.30 0.1 -6.5 58.5 23.2   

2010 09 30 4:00 1.30 0.0 1.0 68.6  -116.1 -14.9 

2010 09 30 5:00 3.90 0.0 -0.9 70.7    

2010 09 30 6:00 1.30 0.0 -3.9 64.7  -142.4 -18.1 

2010 09 30 7:00 5.21 0.0 4.5 73.0  -139.5 -18.2 

2010 09 30 8:00 6.51 0.0 2.8 74.0  -145.5 -19.5 

2010 09 30 9:00 13.02 0.0 2.9 60.8    

2010 09 30 10:00 11.71 0.0 5.3 55.4  -168.5 -22.2 

2010 09 30 11:00 2.60 0.0 -2.9 56.6  -172.8 -23.1 

2010 09 30 12:00 0.26 0.1 -1.8 58.1 17.4 -170.7 -22.8 

2010 09 30 14:00 2.60 0.3 0.6 58.8 20.4 -170.3 -22.4 

2010 09 30 15:00 1.30 0.7 11.7 66.7 22.3 -169.8 -22.3 

2010 09 30 17:00 2.60 0.8 13.0 67.3 23.6   

2010 09 30 18:00 1.04 0.5 10.4 73.0 24.0   

2010 09 30 19:00 0.26 0.5 11.7 84.3 26.5   
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APPENDIX D 

DATA TABLE FOR HOURLY STORM EVENT STREAM SAMPLES 

Table D-1 Discharge amount, nitrate concentration, nitrate isotope, and water isotope data for 

hourly stream samples 

 

Data refer to stream samples collected hourly at the base of Fernow Watershed 4 during three 

growing season storms.  Entries with no data indicate nitrate concentrations below the instrument 

detection limit or insufficient sample volume for isotope analysis. 

 

Year Month Day Time Discharge 

(mm) 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
-  

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O  

(‰) 

2010 07 09 20:42 0.10 2.0 2.2 3.0 1.5 -61.4 -9.9 

2010 07 09 21:42 0.12 2.1 2.5 0.8 0.4 -61.4 -10.0 

2010 07 09 22:42 0.09 2.0 2.6 0.2 0.5 -61.4 -10.2 

2010 07 09 23:42 0.09 2.1 3.0 -0.7 0.3 -62.0 -10.1 

2010 07 10 0:42 0.09 2.0 3.9 -0.3 0.0 -65.6 -10.0 

2010 07 10 1:42 0.09 1.9 3.3 -0.7 0.1 -62.7 -10.2 

2010 07 10 2:42 0.09 2.0 3.4 -1.2 -0.1 -70.0 -10.2 

2010 07 10 3:42 0.09 1.9 4.0 -1.2 -0.3 -62.7 -10.4 
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Year Month Day Time Discharge 

(mm) 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
-  

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O  

(‰) 

2010 07 10 4:42 0.09 1.8 3.7 -1.1 -0.2 -65.0 -10.2 

2010 07 10 5:42 0.04 1.8 3.7 -1.7 -0.4 -64.9 -10.0 

2010 07 10 6:42 0.04 1.8 3.7 -1.8 -0.1 -63.8 -10.2 

2010 07 10 7:42 0.04 1.7 4.7 -4.5 0.3 -64.7 -10.0 

2010 07 10 8:42 0.04 1.7 4.7 -2.1 0.1 -68.0 -10.2 

2010 07 10 9:42 0.04 1.7 4.8 -2.3 -0.3 -64.1 -10.1 

2010 07 10 10:42 0.04 1.7 4.5 -2.8 0.2 -66.6 -10.1 

2010 07 10 11:42 0.04 1.7 4.7 -2.7 -0.9 -64.7 -9.9 

2010 07 10 12:42 0.04 1.7 4.7 -2.8 -0.5 -68.1 -10.2 

2010 07 10 13:42 0.04 1.6 5.0 -3.2 -0.5 -64.2 -9.9 

2010 07 10 14:42 0.04 1.6 4.9 -3.9 -0.2 -64.4 -10.0 

2010 07 10 15:42 0.04 1.6 4.9 -2.9 -0.3   

2010 07 10 16:42 0.04     -67.0 -10.2 

2010 07 10 17:42 0.04 1.7 4.6 -3.4 -0.5 -65.2 -10.4 

2010 07 10 18:42 0.04 1.7 4.5 -3.9 -0.3   

2010 09 16 18:00 0.00 10.8 1.4 -1.8 -0.2   

2010 09 16 19:00 0.00 9.4 1.4 -2.1 0.1 -43.2 -7.5 

2010 09 16 20:00 0.04 9.4 1.9 -4.2 0.0   

2010 09 16 21:00 0.34 9.0 1.7 -2.6 -0.2 -43.3 -7.3 

2010 09 16 22:00 1.02 9.5 1.6 -1.5 0.0   

2010 09 16 23:00 0.48 4.6 1.4 1.7 -0.2   

2010 09 17 0:00 0.27 5.1 2.0 1.9 -0.1   

2010 09 17 1:00 0.27 5.1 2.0 1.0 -0.3 -48.5 -7.9 

2010 09 17 2:00 0.14 5.2 2.1 1.2 0.0   

2010 09 17 3:00 0.14 5.1 1.8 0.1 0.0 -44.1 -7.8 

2010 09 17 4:00 0.08 5.2 2.2 1.1 0.1 -44.3 -7.6 

2010 09 17 5:00 0.08 5.1 1.7 0.8 0.0 -45.9 -7.8 

2010 09 17 6:00 0.07 5.2 1.8 0.8 -0.6 -44.4 -7.6 

2010 09 17 7:00 0.07 5.1 1.6 0.8 0.2 -43.1 -7.9 

2010 09 17 8:00 0.05 5.2 1.9 1.1 0.0 -43.7 -7.6 
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Year Month Day Time Discharge 

(mm) 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
-  

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O  

(‰) 

2010 09 17 9:00 0.05 5.2 1.9 -2.2 -0.3 -47.7 -7.9 

2010 09 17 10:00 0.05 5.1 1.8 0.8 0.6   

2010 09 17 11:00 0.07 5.1 2.4 1.4 0.1 -44.1 -7.8 

2010 09 17 12:00 0.08 5.0 1.4 -0.8 0.0 -44.4 -7.7 

2010 09 30 9:00 1.59 2.2 2.0 -3.6 -0.7 -71.9 -10.3 

2010 09 30 10:00 2.14 2.0 2.4 -2.3 -0.7 -81.0 -11.5 

2010 09 30 11:00 1.32 3.3 2.1 -1.3 -0.6 -91.4 -12.7 

2010 09 30 12:00 0.60 3.7 2.0 -1.5 -0.6 -75.3 -13.1 

2010 09 30 13:00 0.92 3.8 2.2 -1.2 -0.3 -81.9 -11.4 

2010 09 30 14:00 0.87 3.7 2.1 -3.8 -0.9 -81.7 -12.4 

2010 09 30 15:00 0.70 3.4 2.2 -2.2 -0.6 -111.3 -15.0 

2010 09 30 16:00 0.50 3.2 2.3 -1.8 -1.0 -81.5 -12.0 

2010 09 30 17:00 0.50 3.0 2.4 -2.1 -1.0 -79.2 -11.2 

2010 09 30 18:00 0.43 2.9 2.3 -2.4 -0.9 -82.6 -11.8 

2010 09 30 19:00 0.43 2.8 2.9 -1.6 -0.9 -78.6 -11.3 

2010 09 30 20:00 0.35 2.7 2.9 -1.1 -0.8 -83.3 -11.7 

2010 09 30 21:00 0.35 2.6 3.0 -1.0 -0.5 -77.2 -11.2 

2010 09 30 22:00 0.28 2.5 3.3 -0.5 -1.1 -77.8 -11.7 

2010 09 30 23:00 0.28 2.5 3.0 -1.5 -0.7 -76.8 -11.1 

2010 10 01 0:00 0.26 2.5 3.2 -2.5 -0.9 -76.4 -11.0 

2010 10 01 1:00 0.26 2.4 3.4 -2.5 -0.5   

2010 10 01 2:00 0.26 2.4 3.4 -2.5 -0.3 -79.6 -11.4 

2010 10 01 3:00 0.26 2.7 3.7 -2.2 -0.6 -74.3 -11.0 

2010 10 01 4:00 0.26 2.5 3.6 -2.2 -0.6 -76.7 -11.2 

2010 10 01 5:00 0.26 2.5 3.7 -2.3 -0.4 -73.2 -11.0 

2010 10 01 6:00 0.26 2.4 3.5 -2.3 -0.8 -79.2 -11.3 

2010 10 01 7:00 0.26 2.4 3.5 -2.0 -0.7 -72.9 -10.8 

2010 10 01 8:00 0.26 2.4 3.5 -2.2 -0.3 -77.9 -11.2 

2010 10 01 9:00 0.26 2.4 3.7 -2.2 -0.6 -72.4 -10.8 

2010 10 01 10:00 0.19 2.3 3.7 -2.2 -0.9 -72.8 -11.2 
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Year Month Day Time Discharge 

(mm) 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
-  

(‰) 

δ2H-

H2O 

(‰) 

δ18O-

H2O  

(‰) 

2010 10 01 11:00 0.19 2.3 3.8 -3.2 -0.1 -72.0 -10.9 
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APPENDIX E 

DATA TABLE FOR MONTHLY STREAM AND PRECIPITATION SAMPLES 

Table E-1 Nitrate concentration, nitrate isotope, and water isotope data for monthly precipitation 

and stream samples 

 

Data refer to stream and precipitation samples collected once per month at Coweeta Watershed 

34, Fernow Watershed 4, and Hubbard Brook Watershed 3.  S tream samples were collected at 

the base of each watershed and precipitation samples were sub-sampled from a bulk precipitation 

collector located within each watershed.  Precipitation samples reflect accumulation during the 

previous week.  E ntries with no data indicate nitrate concentrations below the instrument 

detection limit or insufficient sample volume for isotope analysis. 

 

Site Water-

shed 

Year Month Day Sample 

Type 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H- 

H2O 

(‰) 

δ18O-

H2O 

(‰) 

Coweeta 34 2012 8 7 Precip 0.9 -4.6 66.8 20.8 -5.3 -1.9 

Coweeta 34 2012 9 4 Precip 0.5 -4.4 61.7 19.4 -11.3 -3.7 

Coweeta 34 2012 10 2 Precip 0.1 -2.5 61.2 22.9 -18.7 -5.4 
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Site Water-

shed 

Year Month Day Sample 

Type 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H- 

H2O 

(‰) 

δ18O-

H2O 

(‰) 

Coweeta 34 2012 11 6 Precip 0.5 -2.9 74.5  -78.2 -12.9 

Coweeta 34 2013 1 2 Precip 0.2 -2.7 75.4 27.2 -64.6 -10.6 

Coweeta 34 2013 2 5 Precip 1.2 -0.5 74.8 28.3 -71.7 -11.8 

Coweeta 34 2013 4 2 Precip 0.8 -2.7 73.1  -35.8 -7.9 

Coweeta 34 2013 5 7 Precip 0.1 -2.2 70.4 29.4 -25.6 -6.1 

Coweeta 34 2013 6 4 Precip 0.2 -0.1 61.9 20.9 -24.0 -5.3 

Coweeta 34 2013 7 2 Precip 0.3 -3.9 61.1 20.2 -18.7 -5.4 

Coweeta 34 2012 8 7 Stream 0.1 -2.6 9.8  -30.9 -6.2 

Coweeta 34 2012 9 4 Stream 0.0 -1.9 13.8  -32.1 -6.3 

Coweeta 34 2012 10 2 Stream 0.0    -23.7 -5.5 

Coweeta 34 2012 11 6 Stream 0.0    -32.7 -6.3 

Coweeta 34 2012 12 4 Stream 0.0    -24.4 -6.3 

Coweeta 34 2013 1 2 Stream 0.0    -27.4 -6.3 

Coweeta 34 2013 2 5 Stream 0.1 2.2 1.0 2.6 -26.9 -5.9 

Coweeta 34 2013 3 5 Stream 0.1 1.0 2.3 7.8 -28.5 -6.0 

Coweeta 34 2013 4 2 Stream 0.1 6.0 1.3 1.5 -30.4 -6.0 

Coweeta 34 2013 5 7 Stream 0.1 0.1 1.5 5.6 -28.2 -6.0 

Coweeta 34 2013 6 4 Stream 0.1 -0.8 -0.9 3.4 -29.3 -6.2 

Coweeta 34 2013 7 2 Stream 0.1 -2.3 5.8 2.7 -31.2 -6.3 

Fernow 4 2012 8 7 Precip 0.6 -4.5 65.9 12.9 -19.7 -4.2 

Fernow 4 2012 9 4 Precip 0.5 3.6 23.4  -88.0 -13.8 

Fernow 4 2012 10 2 Precip 1.5 -0.2 68.6 19.9 -30.1 -6.9 

Fernow 4 2012 11 6 Precip 0.7 3.0 76.9 26.7 -97.3 -13.9 

Fernow 4 2012 12 4 Precip 0.4 -0.7 78.4  -38.8 -6.9 

Fernow 4 2013 1 2 Precip 0.8 1.3 81.7 31.4 -96.6 -13.9 

Fernow 4 2013 2 5 Precip 0.3 3.5 76.3 34.0 -101.5 -13.9 

Fernow 4 2013 3 5 Precip 1.3 3.8 72.5 27.9 -112.4 -15.5 

Fernow 4 2013 4 2 Precip 1.5 3.9 72.9 28.7 -101.8 -13.8 

Fernow 4 2013 5 7 Precip 0.3   26.5 -57.3 -8.9 

Fernow 4 2013 6 4 Precip 0.5 -1.1 68.2 14.8 -51.3 -7.6 
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Site Water-

shed 

Year Month Day Sample 

Type 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H- 

H2O 

(‰) 

δ18O-

H2O 

(‰) 

Fernow 4 2013 7 2 Precip 0.1 1.8 70.4 24.8 -37.8 -5.6 

Fernow 4 2012 8 7 Stream 1.3 3.5 -0.9 -0.6 -52.9 -8.4 

Fernow 4 2012 9 4 Stream 2.0 4.0 -1.5 -1.4 -65.4 -9.7 

Fernow 4 2012 10 2 Stream 1.2 5.6 -1.1 -0.8 -57.0 -8.8 

Fernow 4 2012 11 6 Stream 2.1 1.9 -0.1 -0.3 -64.9 -9.6 

Fernow 4 2012 12 4 Stream 1.5 2.2 -0.6 -0.5 -57.8 -8.8 

Fernow 4 2013 1 2 Stream 1.5 1.9 -0.8 -0.1 -63.7 -9.6 

Fernow 4 2013 2 5 Stream 1.6 1.7 0.3 -0.1 -69.7 -10.1 

Fernow 4 2013 3 5 Stream 1.4 1.8 -0.3 -0.2 -69.5 -10.1 

Fernow 4 2013 4 2 Stream 1.6 1.7 -0.1 0.1 -77.1 -10.9 

Fernow 4 2013 5 7 Stream 1.1 0.8 -1.3 -0.6 -68.7 -10.3 

Fernow 4 2013 6 4 Stream 1.1 2.1 -3.3 -0.8 -70.6 -10.2 

Fernow 4 2013 7 2 Stream 1.1 0.6 -0.3 -0.4 -68.1 -10.2 

Hubbard Brook 3 2012 8 7 Precip 0.3 -4.2 57.6  -36.5 -6.4 

Hubbard Brook 3 2012 9 4 Precip 0.3 -5.4 68.9 22.4 -50.5 -7.9 

Hubbard Brook 3 2012 10 2 Precip 0.4 -4.0 73.1 11.1 -79.6 -11.8 

Hubbard Brook 3 2012 11 6 Precip 0.1 1.3 64.1  -32.6 -6.5 

Hubbard Brook 3 2012 12 4 Precip 1.7 -0.4 85.7 30.3 -59.9 -9.8 

Hubbard Brook 3 2013 1 2 Precip 2.4 1.5 81.6 33.0 -122.7 -17.2 

Hubbard Brook 3 2013 2 5 Precip 0.4 -2.1 82.7 31.0 -54.8 -8.4 

Hubbard Brook 3 2013 3 5 Precip 0.3 -1.5 75.8 12.3 -117.9 -14.9 

Hubbard Brook 3 2013 4 2 Precip 0.4 -1.8 72.8 31.1 -121.3 -17.0 

Hubbard Brook 3 2013 5 7 Precip 0.5 -2.7 73.2 28.4 -50.1 -7.6 

Hubbard Brook 3 2013 6 4 Precip 0.3 -1.8 66.4 26.1 -34.8 -5.9 

Hubbard Brook 3 2013 7 2 Precip 0.2 -2.6 67.9 24.9 -48.4 -7.2 

Hubbard Brook 3 2012 8 7 Stream 0.1 0.7 0.6 0.3 -55.4 -8.6 

Hubbard Brook 3 2012 9 4 Stream 0.1 0.4 4.1 2.3 -51.6 -8.3 

Hubbard Brook 3 2012 10 2 Stream 0.0 -2.0 27.2  -45.9 -7.6 

Hubbard Brook 3 2012 11 6 Stream 0.0 -1.5 15.6 -0.5 -46.2 -7.6 

Hubbard Brook 3 2012 12 4 Stream 0.5 0.6 18.7 7.1 -49.1 -8.3 
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Site Water-

shed 

Year Month Day Sample 

Type 

[NO3
-] 

(mg L-1) 

δ15N-

NO3
- 

(‰) 

δ18O-

NO3
- 

(‰) 

Δ17O-

NO3
- 

(‰) 

δ2H- 

H2O 

(‰) 

δ18O-

H2O 

(‰) 

Hubbard Brook 3 2013 1 2 Stream 0.2 1.0 -2.1 0.2 -51.1 -8.7 

Hubbard Brook 3 2013 2 5 Stream 0.6 1.9 4.0 2.2 -57.2 -9.1 

Hubbard Brook 3 2013 3 5 Stream 0.3 0.3 -2.8 -0.7 -49.1 -9.1 

Hubbard Brook 3 2013 4 2 Stream 0.5 2.4 4.3 1.8 -62.9 -10.0 

Hubbard Brook 3 2013 5 7 Stream 0.1 2.1 18.4 -0.6 -62.2 -10.0 

Hubbard Brook 3 2013 6 4 Stream 0.0 2.6 11.8 0.1 -58.8 -9.6 

Hubbard Brook 3 2013 7 2 Stream 0.0   -0.5 -57.8 -9.0 
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