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HYPOTHESIS TESTING IN SEQUENTIALLY RANDOMIZED DESIGNS

THROUGH ARTIFICIAL RANDOMIZATION

Semhar B. Ogbagaber, PhD

University of Pittsburgh, 2014

Abstract

An adaptive treatment strategy (ATS) is an outcome-guided algorithm that allows personal-

ized treatment of complex diseases based on patients’ disease status and treatment history.

Conditions such as AIDS, depression, and cancer usually require several stages of treatment

due to the chronic, multifactorial nature of illness progression and management. Sequen-

tial multiple assignment randomized (SMAR) designs permit simultaneous inference about

multiple ATSs, where patients are sequentially randomized to treatments at different stages

depending upon response status. The purpose of the first part of the dissertation is to de-

velop a sample size formula to ensure adequate power for comparing two or more ATSs.

Based on a Wald-type statistic for comparing multiple ATSs with a continuous endpoint,

we develop a sample size formula and test it through simulation studies. We show via sim-

ulation that the proposed sample size formula maintains the nominal power. The proposed

sample size formula is applicable to designs with continuous endpoints and will be useful for

practitioners while designing SMAR trials to compare adaptive treatment strategies.

Hypothesis testing to compare adaptive treatment strategies are usually based on in-

verse weighting and g-estimation. However, regression methods that allow for comparison of

treatment strategies that flexibly adjusts for baseline covariates are not as straight-forward

using these methods due to the fact that one patient can belong to multiple strategies. This

poses a challenge for data analysts as it violates basic assumptions of regression modeling of

unique group membership. In the second part of the dissertation, we propose an “artificial

randomization” technique to make the data appear that each subject belongs to a specific
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ATS. This enables treatment strategy indicators to be inserted as covariates in a regression

model. The properties of this method are investigated analytically and through simulation.

Public Health Significance: Chronic diseases such as cancer and mental health problems

are becoming a major health care burden that present challenges to caregivers and pub-

lic health officials. Adaptive treatment strategies are a natural way of treating patients as

subjects’ conditions change repeatedly over a course of treatment. Finding optimal ATS is

therefore vital for the benefit of the patient as well as for society to reduce the health care

burden. SMAR (sequential multiple adaptive randomized) trials are convenient methods

to compare ATSs. In this dissertation, we provide a sample size formula to help design

SMARTs. We also introduce an “artificial randomization” technique that would allow re-

searchers to compare strategies in regression based models. These contributions enhance our

understanding of debilitating chronic diseases and will help managing them better.

Keywords: Sample size, power, sequential multiple assignment randomized trial, adaptive

treatment strategy, artificial randomization, multiple imputation, ANOVA.
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1.0 INTRODUCTION

In this chapter, we introduce a general review of important concepts and established facts

that will be referred to repeatedly throughout the dissertation.

1.1 SEQUENTIAL MULTIPLE ASSIGNMENT RANDOMIZED TRIALS

AND ADAPTIVE TREATMENT STRATEGIES

An adaptive treatment strategy (ATS) is an outcome-guided algorithm that allows personal-

ized treatment [14, 20, 23] of complex diseases based on disease status (response, recurrence,

remission, relapse) and intermediate treatment history. ATSs are also called dynamic treat-

ment regimes (DTR) due to time-varying nature of the approach [27, 29]. Complex diseases

such as AIDS, depression, and cancer usually involve several stages of treatment due to

dynamic disease progression. For instance, a patient with depression may benefit if she ini-

tiates treatment with citalopram (CIT). Depending on response, she may remain on CIT

or switch to or add another medication or psychosocial treatment during the next phase

of treatment. An example of an adaptive treatment strategy from a SMART design of a

depression trial (STAR*D) (Rush et al., 2004) [33] is, “Treat with CIT for 6-8 weeks; if

response is not achieved with CIT; augment with cognitive behavioral therapy (CBT) for 8

weeks; otherwise, continue with CIT for another 8 weeks”. Given first stage, Aj, j = 1, 2

and second stage treatments, Bk, k = 1, 2 and Cl, l = 1, 2, one can define ATS as AjBkCl to

indicate “Treat with Aj followed by Bk, if response and Cl, if no response”. Learning about

ATSs can be realized by studying sequences of treatments in a whole trial.
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Sequential multiple assignment randomized trials (SMARTs) are multistage trials whereby

subjects are sequentially randomized and re-randomized to available treatment options in

several stages after enrollment. Randomization of treatments at each stage is dependent on

covariate history (such as patient preference) and previous treatment response. Although

previous studies have described SMARTs [12, 13], their characterization was formalized by

Murphy (2005) [22]. SMARTs allow us to collect data which in turn inform the development

of adaptive treatment strategies (ATSs) to guide treatment of future patients. In practice,

SMAR designs usually contain two to three stages of treatment.

1.2 WALD TEST AND POWER

A Wald-test based approach for power and sample size computation is useful in a hypothesis

testing setting in statistics (Wald, 1943) [41]. Wald (1943) developed the theory for testing

multiple parameters when the number of observations is large. From large sample theory,

if appropriate assumptions hold, it is established that the maximum likelihood estimator

(MLE) Θ̂ of a vector of parameters Θ, has a limiting normal distribution, that is

√
n
(

Θ̂−Θ
)

d−→ N
(
0, I−1 (Θ)

)
as n → ∞, where

d−→ is convergence in distribution and I (Θ) is the information matrix.

Because I (Θ) is continuous in Θ, then for a sequence of estimators Θ̂n,

I
(

Θ̂n

)
p−→ I (Θ)

as n →∞, where
p−→ is convergence in probability. By Slutsky’s theorem,

n
(

Θ̂n −Θ
)T

I
(

Θ̂n

)(
Θ̂n −Θ

)
d−→ V T I (Θ)V

where r = dim (Θ), V ∼ Nr (0, I−1 (Θ)) and V T I (Θ)V ∼ χ2
r,α. To determine the significance

of a test, Wald-test statistic is compared with its theoretical frequency distribution, which is
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the chi-square distribution with r degrees of freedom under the null-hypothesis (χ2
r). That

is, the Wald test rejects H0 : Θ = Θ0 in favor of H1 : Θ 6= Θ0 where

Wn (Θ0) = n
(

Θ̂n −Θ0

)T
I (Θ0)

(
Θ̂n −Θ0

)
≥ χ2

r,α

has asymptotic level α. Usually, I (Θ0) is evaluated by replacing the MLE Θ̂n into the

Hessian matrix.

We develop a sample size formula based on Wald-type statistic to compare multiple

ATSs with a continuous endpoint. The sample size required to test the null hypothesis with

specified significance level α and power 1− β against the alternative is computed by finding

the non-centrality parameter λ from a non-central chi-square distribution with r degrees of

freedom and then equating it with nΘTCT [CΣCT ]−1CΘ where C is a contrast matrix and

Σ is the variance-covariance matrix of Θ.

1.3 INVERSE PROBABILITY WEIGHTING

In clinical and biomedical research, missing data is an unavoidable phenomenon. Naive es-

timation procedures that only consider fully observed data induce bias. Therefore, weighted

estimation procedures are suggested. Inverse probability weighting (IPW) for estimating

population means in survey sample non-response problems was first described by Horvitz

and Thompson (1952) [9]. One such method, namely, the Horvitz-Thompson mean estimator

can be written as µ̂HT = 1
N

∑N
i=1

yi
πi

, where yi, i = 1, ..., n are independent measurements from

n ≥ N strata with common population mean µ; πi is the probability that a randomly selected

subject belongs to stratum i. A subject weighted by 1
πi

represents himself/herself as well

as missing subjects 1
πi
− 1 in the same stratum. Horvitz-Thompson’s mean estimator gives

more weight to subjects with more missingness in their strata. A slight variant of Thomp-

son’s estimator is the normalized inverse probability weighted estimator, µ̂IPWN =
∑N
i=1

Riyi
πi∑N

i=1
Ri
πi

,

where Ri = 1 if yi is observed and Ri = 0 if yi is missing. Weighting boosts the sample size

by expanding the representation of observed data. Applications of IPW has been adequately

covered in articles by Robins et al. [28], Murphy et al. [21] and Bembom and van der
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Laan [2]. In sequential randomized trials, not everyone in the study follows one of the eight

regimes, say AjBkCl, j, k, l = 1, 2. Assume a population follows regime A1B1C1. Because

the estimated strategy mean is biased, inversely weighting responders who were assigned to

B1 and non-responders who were assigned to C1 by their corresponding probabilities of ran-

domization would correct the bias. Weighting adjusts the mean by creating representation

of missing responders (B2) and non-responders (C2).

1.4 LEUKEMIA STUDY

Cancer and Leukemia Group B (CALGB) clinical trial (Protocol 8923) was designed for

treatment of acute myelogenous leukaemia (AML) among elderly patients of 60 years and

older [36]. It was a double-blind, placebo-controlled two-stage trial with two randomiza-

tions conducted in the early 1990’s. At the first stage, patients were initially randomized

to two induction therapies granulocyte-macrophage colony-stimulating factor (GM-CSF) or

placebo, following a standard chemotherapy. Response is defined as “complete remission”

where complete remission is defined as recovery of morphologically normal bone marrow and

blood counts (i.e., neutrophils = 1,500/µl and platelets < 100,000/µl), and no circulating

leukemic blasts or evidence of extramedullary leukemia. In the second stage, responders were

randomized to two maintenance therapies, namely, intensification therapy I (cytarabine) and

intensification therapy II (cytarabine + mitoxantrone). For simplicity we will use the no-

tations, the first stage treatments, A1: standard chemotherapy + placebo, A2: standard

chemotherapy + GM-CSF; the second stage treatments are: B1, B2: intensification treat-

ments I and II. By design, this trial offers second stage randomization to stage 1 treatment

responders but not to non-responders. Figure 1 is a schematic of CALGB 8923 study. We

use the data from this study to compare the treatment strategies in a regression setting and

further generate informative strategies for leukemia treatment.
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Patients with AML are randomized to initial treatments A1 and A2. If a patient responds

to the initial treatment he/she is randomized to either B1 or B2, otherwise the patient goes

to follow up.

Figure 1: CALGB 8923 Study.
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1.5 MOTIVATION AND OBJECTIVES

SMAR designs are becoming popular in the context of long term treatment options for

chronic diseases. The appeal lies in their naturalistic approach as patient characteristics

dictate treatments. Same treatments given to heterogeneous individuals might not have the

same effectiveness since, naturally, response is subject-specific (Nahum-Shani et al., 2012)

[24]. SMAR trials allow patients to be randomized in multiple stages. Critical decisions

are made at each stage of SMAR design when clinically significant event happens during

the course of treatment. That is, when patients respond well to sequences of treatments or

otherwise.

ATSs are tools that operationalize critical decisions that physicians utilize to manage

these complex diseases. ATSs take inputs such as patient characteristics, covariate history,

previous treatments and output a treatment choice. Construction of ATSs is made possi-

ble via data collected from sequential multiple assignment randomized trials (SMARTs) or

observational studies.

The objective of this dissertation is twofold. First, we propose sample size formulas for

various SMAR designs when the outcome of interest is continuous. Sample sizes have been

developed for survival and continuous outcomes to compare strategies [6, 7, 16]. However,

Wallace and Moodie (2014) [42] suggest limiting the number of strategies because of the

dangers of creating high dimensional problem and impracticable sample sizes. As such, we

also propose a sample size formula for pairwise comparisons that target only desired number

of ATSs. Second, we propose the simple multiple artificial randomization tool (SMART)

estimator that combines ‘artificially randomized’ estimators borrowing techniques from mul-

tiple imputation methods of Rubin (1977, 1987) [31, 32]. Subsequently, we show how the

artificial randomization approach can be used to construct regression models to compare

strategies adjusting for baseline covariates, and hence inform further useful strategies.
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2.0 DESIGN OF SEQUENTIALLY RANDOMIZED TRIALS FOR

TESTING ADAPTIVE TREATMENT STRATEGIES

2.1 INTRODUCTION

An adaptive treatment strategy (ATS) is an outcome-guided algorithm that allows personal-

ized treatment [14, 20, 23] of complex diseases based on disease status (response, recurrence,

remission, relapse) and intermediate treatment history. ATS is also called dynamic treat-

ment regimes (DTR) due to time-varying nature of the approach [27, 29]. Complex diseases

such as AIDS, depression, and cancer usually involve several stages of treatment due to dy-

namic disease progression. For instance, a patient with depression may benefit if she initiates

treatment with citalopram (CIT). Depending on response, she may remain on CIT or switch

to or add another medication or psychosocial treatment during the next phase of treatment

[33]. In principle, a clinician monitors a depressed patient and decides on interventions at

different time points based on the patient’s clinical status. Availability of multiple treatment

options at each stage of treatment, various possibilities for the duration of each stage, and

various responses that can be achieved through different stages of therapy could lead to a

multitude of adaptive treatment strategies. Examples of treatment strategies for a patient

with moderate depression include [33]:

1. Treat with CIT for 6-8 weeks; if response is not achieved with CIT, augment with cog-

nitive behavioral therapy (CBT) for 8 weeks, otherwise continue with CIT for another 8

weeks.

2. Treat with CIT for 6-8 weeks; if response is not achieved with CIT, switch to CBT for 8

weeks, otherwise switch to BUS (buspirone) for another 8 weeks.
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3. Treat with CIT for 6-8 weeks; if response is not achieved with CIT, switch to CBT for 8

weeks, otherwise switch to BUP-SR (bupropion sustained release) for another 8 weeks.

4. Treat with CIT for 6-8 weeks; if response is not achieved with CIT, switch to SERT

(sertraline) for 8 weeks, otherwise switch to CBT for another 8 weeks.

Adaptive treatment strategies are often compared via sequential multiple assignment

randomized (SMAR) designs [12, 13, 22]. Even though SMAR trials are useful for comparing

ATSs because different ATSs can be tested from the same experimental design and the

procedure for inference about ATSs from data arising from such trials are well-established,

the design issues (e.g. sample size and power) have not been adequately addressed. This

may be due to the challenges posed by the adaptive and sequential nature of SMAR designs.

Nevertheless, a few articles have alluded to the development of sample size formula for SMAR

designs.

Murphy [22] provides a sample size formula to test the equality of two strategies that do

not share same initial sets of treatments, making data from two groups of patients following

these strategies statistically independent. Feng and Wahed [6] also constructed a sample size

formula for survival outcomes. However, their formula was developed for censored survival

times to test equality of point-wise survival probabilities under two ATSs that have the

same initial, but different second stage treatments. They also proposed another formula

based on weighted log-rank test for the equality of survival curves under two strategies that

share different initial treatments [7]. Recently, Li and Murphy [16] presented a sample size

formula for survival data to relax the assumptions set forth by Feng and Wahed [6, 7].

Oetting et al. [25] established four sample size formulas, of which only two are relevant to

adaptive treatment strategies. One of the formulas (referred to as #3 in their chapter) deals

with a hypothesis testing the equality of a pair of strategy means. The other relevant formula

(referred to as #4 in their chapter) is developed with the goal of finding the best strategy (as

opposed to hypothesis testing comparing multiple strategies). Dawson and Lavori [3] also

devised a sample size formula for the nested structure of successive SMAR randomizations

when the outcome is continuous. They extended the sample size for the usual t-test to

be applicable to SMAR trials. Using a semi-parametric approach, their formula includes

stage-specific variance inflation factor (VIF) and marginal outcome variance σ2
Y . Due to the
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presence of between-strategy covariance, one cannot make inference for a pair of strategy

means that share the same initial treatments by just pooling the VIF’s and marginal outcome

variances across the stages. As a remedy, Dawson and Lavori [4] proposed a conservative

approach to adjust the sample size formula using the VIF. The caveat with their approach is

its difficulty of application. It involves cumbersome computation of all stage-specific VIFs,

σ2
Y and coefficient of determination by regressing the final outcome on previous states. More

recent simulation work by Ko and Wahed [11] considered the power for detecting differences

between multiple strategy means for arbitrary sample sizes for a two-stage SMAR design.

Most of the work related to sample sizes in SMAR trials are either confined to two-

strategy comparisons [12, 7] or require assumptions about population parameters that are

difficult to ascertain (e.g. VIF’s and stage-specific variances) in multi-strategy comparison

settings. We derive sample size formulas for a variety of SMAR designs in order to test

specific alternative hypotheses related to continuous outcomes.

The rest of this chapter is organized as follows. In Section 2.2, we introduce notation

and consider three SMAR designs that are being used in various disease areas. The param-

eters needed to be specified in advance correspond to well-defined subgroups in the patient

population and hence are relatively simple to specify. In Section 2.3, we show estimation of

strategy means and their corresponding variances and covariances given some fundamental

assumptions. Based on a Wald-type statistic, in Section 2.4 we derive an overall sample

size formula required to compare multiple strategy means. In Section 2.5, we introduce a

t-test based sample size formula to power pairwise comparisons among all or selected ATSs.

In Section 2.6, we validate our sample size formulas through simulation experiments. We

conclude the chapter with a discussion in Section 2.7.

2.2 SET-UP

We consider three two-stage SMAR designs. Figures 2, 3 and 4 display the three SMAR

designs. In the first design, n subjects are to be randomized to two induction treatments

Aj, j = 1, 2. Then maintenance treatments, Bk, k = 1, 2, are to be administered randomly
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if they responded to induction treatments, or else they are randomized to Cl, l = 1, 2.

We use the Lei et al. [14] design for alcohol-dependence interventions as an example to

explain the first design (Figure 1). All patients are provided with “NTX+MM” as their

initial intervention (NTX = naltrexone, MM = medical management). Then patients are

randomized to two groups based on how the intermediate response to “NTX+MM” would

be ascertained. In one group, referred to as A1, the response criteria would be stringent

(2+ days of heavy drinking), whereas in the other group, referred here forth as A2, the

criterion would be lenient (5+ days of heavy drinking). Following eight weeks of treatment,

participants are randomized to the second line treatments depending on their non-response

status. Non-responders were re-randomized to either “NTX” (B1) or “NTX+TDM” (B2),

otherwise, they were re-randomized to two maintenance treatments: “CBI+MM+Placebo”

(C1) or “CBI+MM+NTX” (C2), where CBI = combined behavioral intervention, and TDM

= telephone disease management. At the end of the study, the primary outcome (defined as

“percent of heavy drinking days” over the last two months of the study) was obtained.

Design 1 allows inference related to eight possible ATSs, namely AjBkCl, j, k, l = 1, 2,

where AjBkCl stands for “Treat with Aj followed by Bk if they respond, or by Cl if not”.

For example, one might want to test the equality of all strategy means H0 : µ111 = µ112 =

µ121 = µ122 = µ211 = µ212 = µ221 = µ222, where µijk is the mean response under strategy

AjBkCl, j, k, l = 1, 2 against the alternative of at least one pair being different. Testing

equality of any combination of treatment strategies (e.g. pairwise comparisons) may also be

of interest. In the sequel we consider the sample sizes required to test varieties of treatment

strategy comparisons with adequate statistical power.

The second design was used by Pelham et al. [26] for an Attention Deficit Hyperactivity

Disorder (ADHD) clinical trial (Figure 3). This trial involved treating children with ADHD

with behavioral and pharmacological interventions during stage 1. In the first stage partic-

ipants were randomized to low intensity “psychostimulant drug (low intensity MED)” (A1)

or low intensity “behavioral modification (low intensity BMOD)” (A2). Behavioral modifi-

cation consists of school-based, weekend and at-home activity sessions. A child’s response

to the first line treatment is assessed using Impairment Rating Scale (IRS) and an individ-

ualized list of target behaviors (ITB). IRS is a comprehensive measure of improvement in
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CBI+MM+NTX 

NTX+MM+ 

Lenient 

 

B2 
NTX+Phone 

NTX 

B2 

B

B

C

C

B

B

C

C

NTX 

NTX+Phone 

At entry, patients are randomized to initial treatments A1 and A2. If a patient responds to the

initial treatment she is randomized to either B1 or B2, otherwise the patient is randomized

to either C1 or C2.

Figure 2: Design 1.
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B2 

B1 

B1 

At entry, patients are randomized to initial treatments A1 and A2. If a patient responds

to the initial treatment she stays on the same initial treatment, otherwise the patient is

re-randomized to subsequent treatments: B1 or B2 if she does not respond to A1; similarly,

to B1 or B2 if she does not respond to A2.

Figure 3: Design 2.
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social performance while ITB is a child-specific monitor of social performance. IRS and ITB

are “tailoring” variables that determine response status and randomization to the second

stage treatments. A response is defined if the child attains an average ITB performance of

less than 75% and is reported impaired by teachers on at least one domain in IRS. Based

on these tailoring variables, participants who responded to first-stage treatment remained

on the same treatment whereas non-responders were re-randomized. Children who did not

respond to low intensity BMOD (A1) were re-randomized to either intensified BMOD (A1)

or BMOD augmented with MED (B2). Those children who did not respond to low intensity

MED (A2) were re-randomized to either intensified MED (B1) or MED augmented with

BMOD (B2).

Thus, if a patient responds to A1 then she stays on A1 but is randomized to B1 or B2 for

non-response. Similarly, if a patient responds to A2 then she stays on A2; otherwise, she is

switched to either B1 or B2. Following the notation from the first design, there are 4 possible

treatment strategies, namely, A1A1B1, A1A1B2, A2A2B1, or A2A2B2. Note that it might

seem redundant to use two A1’s or A2’s to define the strategies, but this formulation allows

us to cast the problem in the frame of Design 1. It might be of interest to test equality of

all 4 strategy means, H0 : µ111 = µ112 = µ221 = µ222.

The third design considered is described in Thall et al. [39] (Figure 4). Patients received

one of three initial treatments A1, A2 and A3 during the first randomization. If a patient

initially assigned to A1 responded, she would remain on A1 during the second stage; otherwise

she would be randomized to A2 or A3. Similarly, if a patient responds to initial treatment

A2 then he/she would continue A2 in the second stage; otherwise would be randomized to

A1 or A3. Similarly, patients not responding to A3 would be re-randomized to A1 or A2 in

the second stage. There are 6 possible regimes, namely, A1A1A2, A1A1A3, A2A2A1, A2A2A3,

A3A3A1, or A3A3A2. The null hypothesis of equality of strategy means is, H0 : µ112 = µ113 =

µ221 = µ223 = µ331 = µ332. For all the three designs, we develop a sample size formula to

detect meaningful differences between strategy means.

13
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At entry, patients are randomized to initial treatments A1, A2 and A3. If a patient responds

to the initial treatment she stays on the same initial treatment, otherwise the patient is

re-randomized to subsequent treatments: A2 or A3 if she does not respond to A1; A1 or A3

if she does not respond to A2; A1 or A2 if she does not respond to A3.

Figure 4: Design 3.
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2.3 COMPARING MULTIPLE TREATMENT STRATEGIES

The goal is to design a sample size formula for a test that detects differences in strategy

means from SMAR designs with a continuous endpoint. The formula is based on Design

1 (Figure 2) which is described in Section 2.2. In order to achieve this goal, let us introduce

the following notation. Let Rj be the counterfactual response indicator for an individual who

responded to Aj, j = 1, 2; Y (AjBk) is the counterfactual outcome of an individual had he/she

received Aj, responded, then took Bk; similarly, Y (AjCl) is the counterfactual outcome of

an individual had he/she received Aj, did not respond, then took Cl. Based on these three

counterfactual outcomes, consider Y (AjBkCl) as the outcome under strategy AjBkCl, which

can be written as

Y (AjBkCl) = RjY (AjBk) + (1−Rj)Y (AjCl), j, k, l = 1, 2. (2.1)

To clarify the distinction between the observed and unobserved quantities, for example, for

a patient who received A1, responded, and received B1, {R2, Y (A1B2), Y (A2B1), Y (A2B2)}

are all unobservable. What is observed here is only Y (A1B1) (see consistency assumption

below). As described in Section 2, we are interested in estimating µjkl = E{Y (AjBkCl)}.

Conditioning on Rj, µjkl can be expressed as

µjkl = πjµAjBk + (1− πj)µAjCl , (2.2)

where µAjBk = E{Y (AjBk)} is the sub-group mean of the population receiving Aj followed

by Bk, µAjCl = E{Y (AjCl)} is sub-group mean of the population receiving Aj followed by

Cl. Our development of the sample size formula is based on Wald-type test statistic. Thus,

an estimator of the strategy means and corresponding variance and covariance expressions

is required. We will rely on the method of normalized inverse probability weighting (IPWN,

Ko and Wahed, 2012) to construct unbiased estimator of strategy means. Although we focus

on sample size for a continuous endpoint, the formulas developed apply equally for designs

with a binary endpoint.

Consider Design 1 (Figure 2) in Section 2.2. Contrary to the counterfactual variables

defined above, the observed data for this design consists of i.i.d (independent and identically

15



distributed) random variables, (Xji, RiZki, (1 − Ri)Z
′

li, Yi) where Xji = 1, if the ith patient

is randomized to Aj; 0 otherwise. Yi is the observed outcome for the ith individual, Ri is

the indicator for initial response, Ri = 1 if the ith patient responded to initial therapy, 0,

otherwise; Zki is the indicator for receiving Bk, i.e. Zki = 1 if subject i is randomized to

receive Bk after responding to the first-stage treatment, 0, otherwise; similarly, Z
′

li is the

indicator for receiving Cl. We make the usual assumptions of causal inference to construct

consistent estimators for µjkl [29]. They are:

A1. Consistency Assumption: A patient’s counterfactual outcome under the observed inter-

vention (exposure) and the observed outcome agree. In the SMAR trial considered here,

Ri = X1iR1i + (1−X1i)R2i, (2.3)

and

Yi = X1i [R1iYi(A1B1) + (1−R1i)Yi(A1C1)]+(1−X1i) [R2iYi(A2B1) + (1−R2i)Yi(A2C2)] ,

(2.4)

where R1i and R2i are indicators for counterfactual response to A1 and A2, respectively,

defined previously. The consistency assumption (CA) allows us to connect counterfactual

and observed data.

A2. Sequential Randomization Assumption: The probability of a particular treatment allo-

cation at stage a at a treatment time k does not depend on the counterfactual outcome

given observed data up to but not including stage k randomization. This assumption

follows since treatments are assigned randomly at each stage.

A3. Positivity: There is a non-zero probability of receiving any level of intervention for every

combination of values of interventions.

Under these assumptions, we define the normalized weighted inverse probability estimator

for strategy mean µjkl is given by

µ̂IPWN
jkl =

∑n
i=1WjkliYi∑n
i=1Wjkli

, (2.5)
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where Wjkli = Xji

{
RiZki
Pk

+
(1−Ri)Z

′
li

Ql

}
, Xji is the assignment indicator for first-stage treat-

ment Aj; Pk and Ql are probabilities of second treatment assignment for responders and

non-responders.

Estimator (2.5) is similar to that in Ko and Wahed (2012) (Section 3.3) except that it

treats the group sample sizes in Stage 1 as random rather than being treated as fixed. This is

more reasonable because the group sizes in Stage 1 are determined through randomization.

The IPWN estimator, µ̂IPWN
jkl , defined in Equation (2.5) is consistent and asymptotically

normal. This can be shown as follows. We can write,

√
n(µ̂IPWN

jkl − µjkl) =
√
n

[∑n
i=1WjkliYi∑n
i=1Wjkli

− µjkl
]

= n−1/2

∑n
i=1 Wjkli(Yi − µjkl)

1
n

∑n
i=1 Wjkli

.

By the weak law of large numbers, 1
n

∑n
i=1Wjkli

p−→ 1
κj

where κj is the inverse of the random-

ization probability to Aj (i.e., κj = 1
P (Xji=1)

). This follows from the fact that Wjkli’s are i.i.d

random variables with expectation,

E{Wjkli} = E

[
E

{
RiZki
Pk

+
(1−Ri)Z

′

li

Ql

}
Xji|Xji, Ri

]
= E

[
XjiE

{
RiZki
Pk

+
(1−Ri)Z

′

li

Ql

}
|Ri

]
= E [XjiE{Ri + (1−Ri)}|Ri]

= E [Xji]

= P (Xji = 1)

=
1

κj
.

Also, by the central limit theorem, n−1/2
∑n

i=1Wjkli(Yi − µjkl)
d−→ N(0, σ2

jkl), where σ2
jkl

is given in Equation (2.7) below. Therefore, by Slutsky’s theorem,
√
n(µ̂IPWN

jkl − µjkl) is

asymptotically equivalent in distribution to n−1/2κj
∑n

i=1Wjkli(Yi − µjkl) which is normally

distributed as N(0, σ2
jkl), where σ2

jkl is defined below. It can also be shown that,

√
n(µ̂IPWN

jkl − µjkl) = n−1/2

n∑
i=1

ψjkli + op(1), (2.6)
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where ψjkli = κjWjkli(Yi − µjkl) is the influence function of the estimator µ̂IPWN
jkl and

op(1) is a term that converges to zero in probability. Therefore, the asymptotic variance

of
√
n(µ̂IPWN

jkl − µjkl) is given by,

σ2
jkl = κj

[
πj
Pk
{σ2

AjBk
+ (1− πj)2(µAjBk − µAjCl)2}+

1− πj
Ql

{σ2
AjCl

+ π2
j (µAjBk − µAjCl)2}

]
,

(2.7)

where πj is the response rate for first stage treatment Aj; σ
2
AjBk

and σ2
AjCl

are variances of

the outcome in the population of patients who received the sequence of treatments AjBk

and AjCl, respectively; µAjBk and µAjCl are defined as before.

Following Ko and Wahed (2012), the variance formula in Equation (2.7) is derived as

follows, σ2
jkl = var(ψjkli) = var(κjWjkli(Yi − µjkl)) = κ2

jE [Wjkli(Yi − µjkl)]2. This variance

can be expressed in terms of subgroup-specific population parameters. For example, consider

µ̂IPWN
111 . In this case, the weight is defined as W111i = X1i

{
RiZ1i

P1
+

(1−Ri)Z
(′)
1i

Q1

}
, and therefore,

W 2
111i = X1i

{
RiZ1i

P 2
1

+
(1−Ri)Z

′
1i

Q2
1

}
. Then,

E
[
κ2

1W
2
111i(Yi − µ111)2

]
= κ2

1E

[
X1i

{
RiZ1i

P 2
1

+
(1−Ri)Z

′
1i

Q2
1

}
(Yi − µ111)2

]
(2.8)

.

Under assumptions (A1)-(A3), using a series of conditional expectations, we can show

that

E
[
κ2

1W
2
111i(Yi − µ111)2

]
= κ1

[
π1

P1

{
σ2
A1B1

+ (µ111 − µA1B1)
2
}

+
(1− π1)

Q1

{
σ2
A1C1

+ (µ111 − µA1C1)
2
}]

.
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= κ
2
1E

X1i

RiZ1i

P2
1

+
(1− Ri)Z

′
1i

Q2
1

 (Yi − µ111)
2


= κ

2
1EE

[
X1i

{
RiZ1i

P2
1

}
{RiYi(A1B1) + (1− Ri)Yi(A1C1)− µ111}

2 |Ri, X1i, Yi(A1B1), Yi(A1C1)

]
+

κ
2
1EE

X1i

 (1− Ri)Z
′
1i

Q2
1

 {RiYi(A1B1) + (1− Ri)Yi(A1C1)− µ111}
2 |Ri, X1i, Yi(A1B1), Yi(A1C1)


= κ

2
1E [Z1i|Ri, X1i, Yi(A1B1)]EE

[
X1i

{
Ri

P2
1

}
{RiYi(A1B1) + (1− Ri)Yi(A1C1)− µ111}

2 |Ri, X1i, Yi(A1B1), Yi(A1C1)

]
+

κ
2
1E

[
Z

′
1i|Ri, X1i, Yi(A1C1)

]
EE

[
X1i

{
(1− Ri)

Q2
1

}
{RiYi(A1B1) + (1− Ri)Yi(A1C1)− µ111}

2 |Ri, X1i, Yi(A1C1)

]

= κ
2
1E [Z1i|Ri, X1i, Yi(A1B1)]E

[
X1i

P2
1

E
[
RiY

2
i (A1B1)− 2µ111 {RiYi(A1B1) + (1− Ri)Yi(A1C1)} + µ

2
111|Ri, X1i

]]
+

κ
2
1E

[
Z

′
1i|Ri, X1i, Yi(A1C1)

]
E

[
X1i

Q2
1

E
[
(1− Ri)Y

2
i (A1C1)− 2µ111 {RiYi(A1B1) + (1− Ri)Yi(A1C1)} + µ

2
111|Ri, X1i

]]

= κ
2
1P1E

[
X1i

P2
1

E
[
RiY

2
i (A1B1)− 2µ111 {RiYi(A1B1)} + µ

2
111|Ri, X1i

]]
+

κ
2
1Q1E

[
X1i

Q2
1

E
[
(1− Ri)Y

2
i (A1C1)− 2µ111 {(1− Ri)Yi(A1C1)} + µ

2
111|Ri, X1i

]]

= κ
2
1P1E

[
X1i

P2
1

E
[
Ri(σ

2
A1B1

+ µ
2
A1B1

)− 2µ111RiµA1B1
+ µ

2
111|Ri, X1i

]]
+

κ
2
1Q1E

[
X1i

Q2
1

E
[
(1− Ri)(σ

2
A1C1

+ µ
2
A1C1

)− 2µ111(1− Ri)µA1C1
+ µ

2
111|Ri, X1i

]]

= κ
2
1E

[
X1iE

[
Ri

P1

{
σ
2
A1B1

+ µ
2
A1B1

− 2µA1B1
µ111 + µ

2
111

}
+

(1− Ri)

Q1

{
σ
2
A1C1

+ µ
2
A1C1

− 2µA1C1
µ111 + µ

2
111

}
|X1i

]]

= κ
2
1E

[
X1i

[
π1

P1

{
σ
2
A1B1

+ (µ111 − µA1B1
)
2
}

+
(1− π1)

Q1

{
σ
2
A1C1

+ (µ111 − µA1C1
)
2
}]]

= κ1

[
π1

P1

{
σ
2
A1B1

+ (µ111 − µA1B1
)
2
}

+
(1− π1)

Q1

{
σ
2
A1C1

+ (µ111 − µA1C1
)
2
}]
.

Consequently, the asymptotic variance of µ̂111 is given by,

var(µ̂IPWN
111 ) =

κ1

n

[
π1

P1

{
σ2
A1B1

+ (µ111 − µA1B1)
2
}

+
(1− π1)

Q1

{
σ2
A1C1

+ (µ111 − µA1C1)
2
}]

=
σ2

111

n
.

Estimators that share the same first-stage treatment are correlated as they use a common

group of observations. Consider µ̂IPWN
111 and µ̂IPWN

112 . To derive the covariance between strat-

egy means µ̂IPWN
111 and µ̂IPWN

112 , we note that similar to
√
n(µ̂IPWN

111 −µ111),
√
n(µ̂IPWN

112 −µ112)

is distributionally equivalent to n−1/2κ1

∑n
i=1 W112i(Yi−µ112). Therefore, the asymptotic co-

variance of
√
n(µ̂IPWN

111 − µ111) and
√
n(µ̂IPWN

112 − µ112) is given by,

σ111,112 = cov(ψ111i, ψ112i) = cov(κ1W111i(Yi − µ111), κ1W112i(Yi − µ112))

= E
[
κ2

1W111iW112i(Yi − µ111)(Yi − µ112)
]
.
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Since W111iW112i = RiZ1iX1i

P 2
1

, we can further simplify the above as,

σ111,112 = E

[
κ2

1

RiZ1i

P 2
1

X1i(Yi − µ111)(Yi − µ112)

]
By the Consistency Assumption,

= E

{
E

[
κ2

1

RiZ1i

P 2
1

X1i(Yi(A1B1)− µ111)(Yi(A1B1)− µ112)|Ri, X1i, Yi(A1B1)

]}
= κ2

1E

[
X1iE

[
Ri

P 2
1

(Yi(A1B1)− µ111)(Yi(A1B1)− µ112)

]
E{Z1i|Ri, X1i, Yi(A1B1)}

]
= κ2

1EE

[
X1i

Ri

P1

(Yi(A1B1)− µ111)(Yi(A1B1)− µ112)|X1i, Yi(A1B1)

]
= κ2

1

π1

P1

E [X1i(Yi(A1B1)− µ111)(Yi(A1B1)− µ112)]

= κ1
π1

P1

[σ2
A1B1

+ µ2
A1B1

− µ111µA1B1 − µ112µA1B1 + µ111µ112]

= κ1
π1

P1

[σ2
A1B1

+ (µA1B1 − µ111)(µA1B1 − µ112)].

Since, from Equation (2.2), (µA1B1−µ111) = µA1B1−π1µA1B1−(1−π1)µA1C1 = (1−π1)(µA1B1−

µA1C1) and (µA1B1−µ112) = (1−π1)(µA1B1−µA1C2), it follows that the asymptotic covariance

of µ̂111 and µ̂112 is given by

cov(µ̂IPWN
111 , µ̂IPWN

112 ) =
κ1

n

π1

P1

[σ2
A1B1

+ (1− π1)2(µA1B1 − µA1C1)(µA1B1 − µA1C2)]. (2.9)

A similar derivation could be employed to compute other covariances. Let Σ = var(ψi),

where ψi is the vector of eight influence functions ψjkli, j, k, l = 1, 2, denote the variance-

covariance matrix where Equation (2.7) is used to form the diagonal elements and Equation

(2.9) is used to form the off-diagonal entries, respectively.
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2.4 OVERALL SAMPLE SIZE

The hypothesis of interest is whether there is a strategy-specific mean difference. The null

hypothesis is H0 : µ111=µ112=µ121=µ122=µ211=µ212=µ221=µ222, which is written as a linear

equation H0 : Cµ=0, where

C =



1 −1 0 0 0 0 0 0

1 0 −1 0 0 0 0 0

1 0 0 −1 0 0 0 0

1 0 0 0 −1 0 0 0

1 0 0 0 0 −1 0 0

1 0 0 0 0 0 −1 0

1 0 0 0 0 0 0 −1


,

and µ = [µ111, µ112, µ121, µ122, µ211, µ212, µ221, µ222]T . Under the null hypothesis, the statistic

nµ̂TCT [CΣ̂CT ]−1Cµ̂ follows a central chi-square distribution with degree of freedom equal

to 7, the number of rows of the contrast matrix C. Here µ̂ and Σ̂ denote estimated mean

vector and covariance matrix given by,

µ̂T = [µ̂111, µ̂112, µ̂121, µ̂122, µ̂211, µ̂212, µ̂221, µ̂222] ,

Σ̂ =

 Σ̂1 0̃

0̃ Σ̂2

 ,
where

Σ̂1 =


σ̂2

111 σ̂111,112 σ̂111,121 σ̂111,122

σ̂112,111 σ̂2
112 σ̂112,121 σ̂112,122

σ̂111,112 σ̂121,112 σ̂2
121 σ̂121,122

σ̂122,111 σ̂122,112 σ̂122,121 σ̂2
122

 ,

Σ̂2 =


σ̂2

211 σ̂211,212 σ̂211,221 σ̂211,222

σ̂212,211 σ̂2
212 σ̂212,221 σ̂212,222

σ̂211,212 σ̂221,212 σ̂2
221 σ̂221,222

σ̂222,211 σ̂222,212 σ̂222,221 σ̂2
222

 ,
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0̃ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

where µ̂jkl is defined in Equation (2.7), σ̂2
jkl is obtained by substituting estimates of param-

eters on the RHS in Equation (2.7). For example,

σ̂2
111 =

κ̂1

n

[
π̂1

P̂1

{
σ̂2
A1B1

+ (µ̂111 − µ̂A1B1)
2
}

+
(1− π̂1)

Q̂1

{
σ̂2
A1C1

+ (µ̂111 − µ̂A1C1)
2
}]

,

where

κ̂1 =
n∑n

i=1X1i

,

π̂1 =

∑n
i=1 X1iRi∑n
i=1X1i

,

µ̂A1B1 =

∑n
i=1 X1iRiZ1iYi∑n
i=1X1iRiZ1i

,

σ̂2
A1B1

=

∑n
i=1(X1iRiZ1iYi − µ̂A1B1)

2

(
∑n

i=1 X1iRiZ1i)(
∑n

i=1X1iRiZ1i − 1)
,

Q̂1 =

∑n
i=1X1i(1−Ri)Z

′
1i∑n

i=1X1i(1−Ri)
,

and

P̂1 =

∑n
i=1X1iRiZ1i∑n
i=1X1iRi

.

Under the alternative hypothesis, the test statistic follows a non-central chi-squared

distribution with the same degrees of freedom and a non-centrality parameter λ, where

λ = nµTCT [CΣCT ]−1Cµ.

Consequently, a straightforward manipulation leads to a sample size formula,

n =
λ

µTCT [CΣCT ]−1Cµ
. (2.10)
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To use the sample size formula in Equation (2.10), for a given power, we note that the power

of the Wald test is the probability that we reject the null hypothesis, i.e., the probability

that the test statistic is greater than the critical value. Thus,

power = P (χ2
df=7,λ ≥ χ2

df=7,1−α) = 1− P (χ2
df=7,λ ≤ χ2

df=7,α), (2.11)

where α is the level of significance of the test. For a given power and α, we can solve

Equation (2.11) for λ. Having obtained λ, the sample size needed for achieving a given power

is obtained by plugging in appropriate strategy means under the alternative hypothesis and

their assumed variance-covariance matrix into the sample size expression above.

The knowledge of subgroup means and variances in the population will allow the com-

putation of covariance terms.

2.5 POWERING PAIRWISE COMPARISONS

Above we developed a sample size formula for a global test that provides evidence that there

are differences among at least one pair of strategy means. Next, it is natural to focus on

pairwise comparisons and ask which strategy means are different. A popular two-sample

pairwise test is the t-test. A sample size based on the usual t-test would not apply directly

since the assumption of independence among strategy means does not hold. When strategies

share first stage treatment, a pairwise treatment comparison should consider the between-

strategy covariances in the traditional t-test based sample size formula. Suppose we are

interested in the sample size of a test that truly rejects the null hypotheses at a pre-specified

level of significance (α) and a given power. For instance, there are 8 regimes and 28 pairwise

comparisons for Design 1. One possible pairwise comparison would be,

H0 : µ111 − µ112 = δ1.

For each test different sample sizes are required to detect a difference between each pairwise

comparison. To control type I error, Bonferroni correction can be used. That is, for a two-

sided test the level of significance for each hypothesis will be α/g, where g is the total number
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of pairwise comparisons. The aim is to compute the sample sizes for each pairwise comparison

and then select maximum of the set of sample sizes that powers a test to identify difference

between strategy means. The sample size formula that accounts dependency among strategy

means is,

n =
[σ2
jkl + σ2

j′k′ l′
− 2σjkl,j′k′ l′ ][Z1−α/2g + Z1−β]2

[µjkl − µj′k′ l′ ]2
, j, k, l = 1, 2 (2.12)

where σ2
jkl, σ

2
j′k′ l′

, and σjkl,j′k′ l′ are obtained using Equations (2.7) and (2.9); µjkl and µj′k′l′

are the strategy means under the alternative hypothesis. If the strategy means do not share

the same initial treatments, the between-strategy means covariance is zero and the sample

size formula (2.12) would mimic the one required for independent two-sample t-test.

Equation (2.12) has a more general use than it apparently implies. For example, suppose

prior to designing the trial, researchers focus on g1 ≤ g specific pairwise comparisons. Then

the sample size for pairwise comparisons can be calculated using a level of significance α
g1

to ensure that the experiment-wise error is maintained at α for a pairwise comparison of g1

pairs. Since the variance-covariance formula depends on the randomization probabilities, the

researcher could potentially use randomization probabilities that allocate more observations

to the strategies of interest. The other (g−g1) pairwise comparisons could remain unpowered

but essentially provide valuable information for future studies.

Methods developed in Sections 3 and 4 can easily be applied to Designs 2 and 3. For

example, for Design 2, to test the overall hypothesis H0 : µ111 = µ112 = µ221 = µ222, it is

written as a linear equation H0 : Cµ=0, where

C =

 1 −1 0 0

1 0 −1 0

1 0 0 −1

 ,
and µ = [µ111, µ112, µ221, µ222]T . The variance-covariance matrix Σ can be computed in a

similar manner as Design 1 by replacing with 4 diagonal estimated mean strategy variances

and 4 off-diagonal estimated covariances among strategy means. That is,

Σ =


σ2

111 σ111,112 0 0

σ112,111 σ2
112 0 0

0 0 σ2
211 σ211,212

0 0 σ212,211 σ2
212

 .
Note that in Design 2, since there is only one treatment option for the responders, P1=1.
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2.6 SIMULATION STUDY AND RESULTS

To evaluate the performance of the overall sample size formula, we conducted a number of

simulations to see if the empirical power for detecting the alternative hypothesis is close to

the nominal power. We presented four scenarios for each of the three designs in Tables 1, 2

and 3 by varying the nominal power, response rates and probabilities of second treatment

assignment for responders (Pk) and non-responders (Ql). For each subject in the popula-

tion, Yi(AjBk) and Yi(AjCl) follow normal distribution with means µAjBk and µAjCl , and

variances σ2
AjBk

and σ2
AjCl

, respectively for j, k, l = 1, 2. The response status Ri was gener-

ated from a Bernoulli distribution with probability (response rate) π1 to treatment A1 and

π2 to treatment A2. For each scenario we generated 10000 samples using the three designs.

The methods described so far are explained via Design 1, however, the formulas can be

applied to Designs 2 and 3. There are six pairwise comparisons for Design 2 and fifteen for

Design 3. Tables 4 and 5 show the pairwise sample size computation for Designs 2 and 3.

Tables 1, 2 and 3 demonstrate sample size computation for different scenarios by assuming

certain values for population parameters. Design 1 assumes subgroup means: µAjB1 =

µAjC2 = 15, µAjC1 = 20, µAjB2 = 22; subgroup variances: σ2
AjBk

= 62, σ2
AjCl

= 82, for j, k, l =

1, 2. Subgroup variances are assumed to be the same for all designs considered. Depending

on a specific design and scenario considered, the following range of response proportions πj’s

are assumed: 0.2, 0.3, 0.5, 0.6 and 0.7. Similarly, depending on a specific design the following

P1 and Q1 are assumed. Probability of treatment assignment for responders, P1, is assumed

to be 0.5, 0.7, 0.9 and 1. For non-responders, Q1(= 1 − Q2), is assumed to be 0.5, 0.7,

0.9. Design 2 assumes the following subgroup means: µA1B1 = 15, µA2B1 = 17, µAjC2 = 15,

µA1C1 = 20, µA2C1 = 22, for j, k, l = 1, 2. Design 3 assumes the following subgroup means:

µA1B1 = 15, µA2B1 = 17, µA3B1 = 19, µAjC2 = 15, µA1C1 = 20, µA2C1 = 22, µA3C2 = 24, for

j, k, l = 1, 2, 3. The parameter values were chosen following those from Ko and Wahed [11].

The sample size changes as the values for πj, Pl, Ql, and power vary. The strategy means

differ for each scenario in each table. In each scenario, having obtained the appropriate

sample size using our formula, we evaluate the power of the Wald tests in rejecting the null

hypothesis of no difference in treatment means when the strategies have different means. The
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effect size is computed using the Mahalanobis distance (MD). One useful property of the MD

is that it takes into account the correlation in the data. Effect sizes are common measures

in psychology and other disciplines where they are useful in calculating and interpreting

power especially if more than two groups are involved. Effect size estimates add validity to

interpretation of results. The magnitude of effect sizes would capture experimental effects

by protecting guaranteed significance due to large sample size [5].

The first row of Scenario 1 in Table 1 assumes strategy means µ111 = 17.5 µ112 = 15,

µ121 = 21, µ122 = 18.5, µ211 = 17.5, µ212 = 15, µ221 = 21, µ222 = 18.5 when response rates π1,

π2 were taken to be both 0.5; P1 and Q1 are assumed to be 0.5. 70 subjects would be required

to detect the resulting effect size of 0.21 with power 80% at α = 0.05. The empirical power

is 85% which is slightly inflated compared to the nominal power of 80% used to compute the

sample size. Row 3 of the same scenario shows that the empirical power of 92% is close to

the nominal value of 90%. Similar patterns follow for all the rows in Scenarios 2, 3 and 4. If

we observe across all scenarios (from 4 to 1), we note a small degree of increase in empirical

power when P1 increases.

The first row of Scenario 1 in Design 2 (Table 2) assumes strategy means µ111 = 17.5,

µ112 = 15, µ211 = 19.5, µ212 = 16 when response rates π1, π2 were taken to be both 0.5;

P1=1 and Q1=0.5. 142 subjects would be required to detect the resulting effect size of 0.08

with power 80% at α = 0.05. The empirical power is 81% which is very close to the nominal

power of 80% used to compute the sample size. Row 4 of scenario 3 shows that the empirical

power of 93% is slightly inflated compared to the nominal value of 90%. For various response

rates, the empirical power for each case in scenarios 1 to 3 nearly attain the nominal power.

This indicates that the sample sizes calculated for Design 2 ensure enough power to detect

differences among the four strategy means.

The first row of Scenario 1 in Design 3 (Table 3) assumes strategy means µ111 = 17.5,

µ112 = 15, µ211 = 19.5, µ212 = 16, µ311 = 21.5, µ312 = 17 when response rates π1, π2, π3

were taken to be all 0.5. 108 subjects would be required to detect the resulting effect size

of 0.12 with power 80% at α = 0.05. The empirical power is 83% which is slightly larger

than the nominal power of 80% used to compute the sample size. We note that for small

changes in response rates, sometimes the sample sizes do not change or change only slightly.
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Table 1: Overall sample size for Design 1.

Overall Empirical Effect Size
Scenario π1 π2 P1 Power Sample Size Power (Mahalanobis Distance)

1 0.5 0.5 0.5 0.8 70 0.84 0.21
0.5 0.5 0.7 0.8 79 0.85 0.18
0.5 0.5 0.5 0.9 89 0.92 0.21
0.5 0.5 0.8 0.9 120 0.92 0.15

2 0.2 0.5 0.5 0.8 83 0.82 0.17
0.2 0.5 0.7 0.8 92 0.83 0.16
0.2 0.5 0.5 0.9 106 0.9 0.17
0.2 0.5 0.8 0.9 134 0.92 0.14

3 0.7 0.5 0.5 0.8 62 0.85 0.23
0.7 0.5 0.7 0.8 71 0.85 0.20
0.7 0.5 0.5 0.9 79 0.92 0.23
0.7 0.5 0.7 0.9 91 0.92 0.20

4 0.2 0.7 0.5 0.8 72 0.84 0.20
0.2 0.7 0.7 0.8 82 0.84 0.18
0.2 0.7 0.5 0.9 92 0.91 0.20
0.2 0.7 0.7 0.9 104 0.92 0.18

Sample size computation and simulation of empirical power (# replications=10000) for De-

sign 1 where Q1 = 0.5, subgroup means: µAjB1 = µAjC2 = 15, µAjC1 = 20, µAjB2 = 22;

subgroup variances: σ2
AjBk

= 62, σ2
AjCl

= 82, for j, k, l = 1, 2. Hypothesis of interest is H0 :

µ111=µ112=µ121=µ122=µ211=µ212=µ221=µ222; α = 0.05.

Alternative is true with means: Scenario 1: µ111 = 17.5, µ112 = 15.0, µ121 = 21.0, µ122 = 18.5,

µ211 = 17.5, µ212 = 15.0, µ221 = 21.0, µ222 = 18.5

Scenario 2: µ111 = 19.0, µ112 = 15.0, µ121 = 20.4, µ122 = 16.4, µ211 = 17.5, µ212 = 15.0,

µ221 = 21.0, µ222 = 18.5

Scenario 3: µ111 = 16.5, µ112 = 15.0, µ121 = 21.4, µ122 = 19.9, µ211 = 17.5, µ212 = 15.0,

µ221 = 21.0, µ222 = 18.5

Scenario 4: µ111 = 19.0, µ112 = 15.0, µ121 = 20.4, µ122 = 16.4, µ211 = 16.5, µ212 = 15.0,

µ221 = 21.4, µ222 = 19.9
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Table 2: Overall sample size for Design 2.

Overall Empirical Effect Size
Scenario π1 π2 Q1 Power Sample Size Power (Mahalanobis Distance)

1 0.5 0.5 0.5 0.8 142 0.81 0.08
0.5 0.5 0.7 0.8 156 0.82 0.07
0.5 0.5 0.5 0.9 185 0.91 0.08
0.5 0.5 0.9 0.9 344 0.92 0.04

2 0.2 0.5 0.5 0.8 130 0.81 0.08
0.2 0.5 0.7 0.8 144 0.82 0.07
0.2 0.5 0.5 0.9 169 0.91 0.08
0.2 0.5 0.9 0.9 448 0.92 0.03

3 0.7 0.5 0.5 0.8 143 0.82 0.08
0.7 0.5 0.7 0.8 143 0.83 0.08
0.7 0.5 0.5 0.9 186 0.91 0.08
0.7 0.5 0.9 0.9 241 0.93 0.06

4 0.7 0.2 0.5 0.8 94 0.82 0.12
0.7 0.2 0.7 0.8 88 0.84 0.12
0.7 0.2 0.5 0.9 122 0.9 0.12
0.7 0.2 0.9 0.9 131 0.94 0.11

Sample size computation and simulation of empirical power (# replications=10000) for De-

sign 2 where P1 = 1, subgroup means: µA1B1 = 15, µA2B1 = 17, µAjC2 = 15, µA1C1 = 20,

µA2C1 = 22; subgroup variances: σ2
AjBk

= 62, σ2
AjCl

= 82 for j, k, l = 1, 2. Hypothesis of

interest is H0 : µ111=µ112=µ211=µ212.

Alternative is true with means: Scenario 1: µ111 = 17.5, µ112 = 15.0, µ221 = 19.5, µ222 = 16.0

Scenario 2: µ111 = 19.0, µ112 = 15.0, µ221 = 19.5, µ222 = 16.0

Scenario 3: µ111 = 16.5, µ112 = 15.0, µ221 = 19.5, µ222 = 16.0

Scenario 4: µ111 = 16.5, µ112 = 15.0, µ221 = 21.0, µ222 = 15.4
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Table 3: Overall sample size for Design 3.

Overall Empirical Effect Size
Scenario π1 π2 Power Sample Size Power (Mahalanobis Distance)

1 0.5 0.5 0.8 108 0.83 0.12
0.2 0.5 0.8 111 0.83 0.12
0.5 0.5 0.9 139 0.91 0.12
0.2 0.5 0.9 142 0.91 0.12

2 0.2 0.2 0.8 95 0.84 0.14
0.2 0.6 0.8 116 0.84 0.11
0.2 0.2 0.9 122 0.92 0.14
0.2 0.6 0.9 149 0.91 0.11

3 0.3 0.5 0.8 111 0.83 0.12
0.3 0.6 0.8 116 0.82 0.11
0.3 0.5 0.9 142 0.91 0.12
0.3 0.6 0.9 149 0.92 0.11

4 0.4 0.5 0.8 110 0.83 0.12
0.4 0.6 0.8 115 0.82 0.11
0.4 0.5 0.9 141 0.92 0.12
0.4 0.6 0.9 148 0.91 0.11

Sample size computation and simulation of empirical power (# replications=10000) for De-

sign 3 where P1 = 1, subgroup means: µA1B1 = 15, µA2B1 = 17, µA3B1 = 19, µAjC2 = 15,

µA1C1 = 20, µA2C1 = 22, µA3C1 = 24; subgroup variances: σ2
AjBk

= 62, σ2
AjCl

= 82 for

j, k, l = 1, 2, 3. Response rate for induction treatment A3 is assumed to be 50%. Hypothesis

of interest is H0 : µ111 = µ113 = µ221 = µ223 = µ331 = µ332.

Alternative is true with means: Scenario 1: µ111 = 17.5, µ112 = 15.0, µ221 = 19.5, µ222 = 16.0,

µ331 = 21.5, µ332 = 17.0

Scenario 2: µ111 = 19.0, µ112 = 15.0, µ221 = 21.0, µ222 = 15.4, µ331 = 21.5, µ332 = 17.0

Scenario 3: µ111 = 18.5, µ112 = 15.0, µ221 = 19.5, µ222 = 16.0, µ331 = 21.5, µ332 = 17.0

Scenario 4: µ111 = 18.0, µ112 = 15.0, µ221 = 19.5, µ222 = 16.0, µ331 = 21.5, µ332 = 17.0
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Table 4: Pairwise sample size computation for Design 2.

Overall MC Not Corrected
Adjusted for

Hypothesis Sample Size Multiple Comparison δi
H1 : µ111−µ112=δ1 532 345 2.5
H2 : µ111−µ221=δ2 1107 717 -2.0
H3 : µ111−µ222=δ3 1882 1220 1.5
H4 : µ112−µ221=δ4 207 134 -4.5
H5 : µ112−µ222=δ5 4008 2598 -1.0
H6 : µ221−µ222=δ6 280 181 3.5

Subgroup means: µA1B1 = 15, µA2B1 = 17, µA1C1 = 20, µA1C2 = 15, µA2C1 = 22, µA2C2 = 15;

subgroup variances: σ2
AjBk

= 62, σ2
AjCl

= 82 for j, k, l = 1, 2. Here π1=0.5, π2=0.5, P1=1,

Q1=0.5, and power=0.8.

For example, row 4 of scenarios 2 and 3 have the same sample size (149). The sample size

did not change as π1 changed slightly from 0.2 to 0.3.

In many clinical trials, testing of an overall hypothesis may not be of primary interest,

rather some or all of the pairwise comparisons are. To show how the sample size for a SMAR

trial is determined in such cases, we present the sample sizes required for Design 2 when

all six pairwise comparisons are powered simultaneously in the second column of Table 4.

The third column provides the sample sizes when individual tests are powered. For example,

under the setting described in Table 4, Design 2 requires 4008 patients to power all pairwise

comparisons. However, if the interest, for example, is in powering the single hypothesis

H0 : µ111 = µ112 leaving other pairs as exploratory, the trial could be conducted using a

sample as small as 345. Similarly, Table 5 provides sample sizes for Design 3 when fifteen

pairwise comparisons are powered simultaneously (Column 2) and when only three pairwise

comparisons are considered (Column 3). From Column 2, Design 3 requires 30,704 patients

(maximum of the sample sizes) to power all pairwise comparisons. However, if the interest

is in powering only three pairwise hypotheses such as H0 : µ112 = µ113, H0 : µ112 = µ221, and

H0 : µ112 = µ223, the trial would require a sample size of 2,441. On the other hand, if the
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Table 5: Pairwise sample size computation for Design 3.

Overall MC Partially MC
Adjusted Adjusted

Hypothesis Sample Size Sample Size δi
H1 : µ112−µ113=δ1 941 690 2.5
H2 : µ112−µ221=δ2 1955 1435 -2.0
H3 : µ112−µ223=δ3 3326 2441 1.5
H4 : µ112−µ331=δ4 489 359 -4.0
H5 : µ112−µ332=δ5 30704 22535 0.5
H6 : µ113−µ221=δ6 366 269 -4.5
H7 : µ113−µ223=δ7 7082 5198 -1.0
H8 : µ113−µ331=δ8 176 129 -6.5
H9 : µ113−µ332=δ9 1819 1335 -2.0
H10 : µ221−µ223=δ10 494 362 3.5
H11 : µ221−µ331=δ11 1955 1435 -2.0
H12 : µ221−µ332=δ12 1228 901 2.5
H13 : µ223−µ331=δ13 247 182 -5.5
H14 : µ223−µ332=δ14 7339 5386 -1.0
H15 : µ331−µ332=δ15 314 230 4.5

Subgroup means: µA1B1 = 15, µA2B1 = 17, µA3B1 = 19, µA1C1 = 20, µA1C2 = 15, µA2C1 = 22,

µA2C2 = 15, µA3C1 = 24, µA3C2 = 15; subgroup variances: σ2
AjBk

= 62, σ2
AjCl

= 82 for j, k, l =

1, 2, 3. Here π1=0.5, π2=0.5, P1=1, Q1=0.5, and power=0.8. Second column provides sample

size which powers all pairwise comparisons whereas the third column assumes that only three

of the fifteen hypotheses are of interest.
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interest is only in comparing the three pairs, H4, H6, and H8 then the sample size required

will be n = 359.

Outcomes in the above simulation scenarios were generated from a normal distribution.

We wanted to conduct the sensitivity of our formula to non-normal responses. To do this,

we further generated data from logistic (symmetric) and gamma (skewed) distributions and

calculated the empirical power based on the sample size calculated using Equation(2.10).

Basically, we selected one row from each scenario of Tables 1 to 3 to perform sensitivity

analysis of our formula using data from the logistic and gamma distributions ensuring the

same means and variances for the subpopulations and keeping all other parameters the same.

From each table, we selected the first row for Scenarios 1 and 3 while we chose the fourth

row for Scenarios 2 and 4. Therefore, the results presented in Table 6 have twelve rows

in total. In general, the nominal power is maintained and is consistent across the three

distributions. This shows that our sample size formula is robust to the misspecification of

outcome distribution.

2.7 DISCUSSION

Complex multi-stage diseases require decision-based multi-stage treatments depending on the

response to prior-stage treatments. SMAR designs provide efficient and unbiased inference

to compare staged strategies for complex conditions. We presented a sample size formula

that is applicable for various SMAR designs to ensure adequately powered comparisons of

these treatment strategies. The usual design is to randomize responders (or non-responders)

to available treatments. A slight variation to that is a design where responders (or non-

responders) would not be randomized any further in the second stage. Designs 2 and 3 are

such examples. In Design 2, only the non-responders are randomized to C1 or C2 and C
′
1 or

C
′
2 respectively depending on whether they received A1 or A2 in the first stage. Responders

would stay on the same first stage treatment. Equivalently, responders will be randomized

with probability 1 to whatever treatment they received in the first stage. There are four

strategies resulting from this design and the sample size required to detect differences among
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Table 6: Robustness of the Sample Size Formula against misspecification of out-

come distributions.

Empirical Empirical Empirical
Overall Power: Power: Power:

Design Scenario π1 π2 P1 Q1 Power Sample Size Normal Gamma Logistic

Design 1 1 0.5 0.5 0.5 0.5 0.8 70 0.84 0.86 0.86
2 0.2 0.5 0.8 0.5 0.9 134 0.92 0.93 0.93
3 0.7 0.5 0.5 0.5 0.8 62 0.85 0.86 0.87
4 0.2 0.7 0.7 0.5 0.9 104 0.92 0.92 0.92

Design 2 1 0.5 0.5 1 0.5 0.8 142 0.81 0.83 0.82
2 0.2 0.5 1 0.9 0.9 448 0.92 0.91 0.91
3 0.7 0.5 1 0.5 0.8 143 0.82 0.85 0.83
4 0.7 0.2 1 0.9 0.9 131 0.94 0.96 0.94

Design 3 1 0.5 0.5 1 0.5 0.8 108 0.83 0.86 0.85
2 0.2 0.6 1 0.5 0.9 149 0.91 0.93 0.92
3 0.3 0.5 1 0.5 0.8 111 0.83 0.86 0.85
4 0.4 0.6 1 0.5 0.9 148 0.91 0.93 0.92

For Design 1 the following parameter values were considered: Q1 = 0.5, subgroup means:

µAjB1 = µAjC2 = 15, µAjC1 = 20, µAjB2 = 22; subgroup variances: σ2
AjBk

= 62, σ2
AjCl

= 82, for

j, k, l = 1, 2. The hypothesis tested is H0 : µ111=µ112=µ121=µ122=µ211=µ212=µ221=µ222; α =

0.05. For Design 2 the following parameter values were considered: P1 = 1, subgroup means:

µA1B1 = 15, µA2B1 = 17, µAjC2 = 15, µA1C1 = 20, µA2C1 = 22; subgroup variances: σ2
AjBk

=

62, σ2
AjCl

= 82 for j, k, l = 1, 2. The hypothesis tested is H0 : µ111=µ112=µ211=µ212. For

Design 3 the following parameter values were considered: P1 = 1, subgroup means: µA1B1 =

15, µA2B1 = 17, µA3B1 = 19, µAjC2 = 15, µA1C1 = 20, µA2C1 = 22, µA3C2 = 24; subgroup

variances: σ2
AjBk

= 62, σ2
AjCl

= 82 for j, k, l = 1, 2, 3. Response rates to induction treatment

A3 is assumed to be 50%. The hypothesis tested is H0 : µ111=µ113=µ221=µ223=µ331=µ332.
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the four strategies is computed. In Design 3 each patient is randomized to a set of treatments

(A1, A2, A3) in the first stage and these treatments are continued until they fail due to disease

worsening. The patient is then re-randomized among a set of the same first stage treatments

with the exception of the treatment s/he received initially. There are six strategies of interest

in this design. We showed in the simulation how to compute sample size formula for this

design and showed that the formula ensures nominal power under various scenarios involving

many outcome distributions.

In contrast to our formula, Murphy’s [22] formula is not applicable to designs powering

multi-strategy comparison or to designs comparing strategies that share the same initial

treatments commonly referred to as shared-path strategies [10] or overlapping strategies [3].

Moreover, their formula requires specifying the variance of the response under the strategies

being compared, although the effect sizes can be specified per standard deviations of mean

difference assuming equal variance across strategies.

Dawson and Lavori [3, 4] provide a sample size formula for comparing pairs of overlap-

ping or non-overlapping/treatment strategies based on semiparametric efficient variances.

The formula requires one to specify the variance of the response under each strategy and

the variance inflation factor, the latter depending on the coefficient of determinations based

on the regression of counterfactual strategy response on stage-specific states. Correct spec-

ification of such quantities is difficult, if not impossible, in the absence of a similar SMAR

trial. However, when correctly specified, Dawson and Lavori’s formula provide smaller sam-

ple sizes than those proposed in Murphy [22] or the ones provided here. One advantage

of both Murphy [22] and Dawson and Lavori’s [3, 4] formula over our method is that they

can be applied to compare strategies from SMAR trial with more than two stages. How-

ever, like Murphy’s formula, Dawson and Lavori’s formula also focuses on comparing pairs

of treatment strategies.

The simplicity of our procedure compared to Dawson and Lavori [3] (even in the two-stage

SMAR trial settings) relies on the specification of the parameters. Our formula requires one

to specify sub-group-specific means and variances. Our sample size formula requires spec-

ification of subgroup means and variances for patients following different treatment paths.

These parameters are usually available from observational studies or stage-specific individual
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non-SMAR trials. For example, there are many cancer clinical trials that compare frontline

treatments (e.g. Estey et al. [15]). Even though such trials are terminated once the recruit-

ment is over and the primary endpoint is observed or the trial period ends, patients are often

followed and medication information (salvage treatments used) is collected for patients who

become resistant to frontline therapy or for patients with disease progression. The collection

of salvage treatment information is often done only for the purpose of safety, however, such

information allows the researchers to obtain meaningful information on subgroup means and

variances based on the salvage therapies received within each frontline treatments. Mental

health and other clinical research by their very nature, are concerned with sequences of treat-

ments and hence the means and variances of responses under a particular treatment sequence

are most likely to be available from observational studies or from electronic medical records.

Fortunately, there are already existing SMAR trials in mental health (STAR*D [33], CATIE

[35]) that can provide useful information on subgroups to be used in future trial design.

The Murphy [22] and Dawson and Lavori [3] methods require fewer unknown quantities

to be specified compared to what is required by our formula; our parameters are basically

means and variances of response among subpopulations. Generally, these parameters can

be obtained from pilot studies, non-SMAR trials or observational studies. Therefore, these

parameters are less likely to be mis-specified as compared to the parameters in Murphy’s

[22] and Dawson and Lavori’s [3] methods. Moreover, our focus is to compare multiple

treatment strategies for which specification of effect size does not necessarily reduce the

number of unknown parameters.

The Oetting et al. [25] sample size formula for comparing two strategies is derived

under the assumption that response rates are the same across the two first stage treatments.

While a sensitivity analysis was carried out in the simulation, this assumption may not be

reasonable in practice. Finally, our formula does not address the issue of finding an optimal

treatment strategy, which is a separate issue that is dealt with in Oetting et al. [25].

Future research could investigate sample size formulas for various k-stage designs with

emphasis on specific and meaningful number of strategies. Issues of missing data is another

design concern in SMAR trials that needs to be addressed.
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3.0 ANALYSIS OF SEQUENTIALLY RANDOMIZED TRIALS THROUGH

ARTIFICIAL RANDOMIZATION

3.1 INTRODUCTION

Treatment of patients whose disease severity change over time is best managed by employing

strategies that treat patients dynamically. Naturally, administering treatments in steps

according to changing disease phases would lead to better management and likely better

outcome. Psychiatrists commonly treat mental illnesses by first stabilizing the patient in the

first stage and then preventing relapse in the second stage [33]. Treatment strategies that

are adapted to patients’ response status are therefore attractive to clinicians and researchers

alike. Public health interest in adaptive treatment strategies (ATS) is growing basically for

two reasons:

i. Increasingly convincing evidence are becoming available that using adaptive treatment

strategies, overall health outcome could be improved and better compared to traditional

once-and-for-all treatments, and

ii. ATSs are implemented in a manner a patient’s disease is naturally managed.

Research in the area of ATS has so far focused on comparison of adaptive treatment

strategies and estimation of optimal strategy. The crux of the problem in this chapter is

how to compare strategy means that account for baseline covariates. Regression methods

such as multiple linear, logistic, or survival (Cox or accelerated failure) regression that allow

for comparison of treatment strategies flexibly adjusting for baseline covariates are not as

straight-forward to apply in SMART designs. This is because a patients in a SMAR trial

can belong to multiple strategies making it challenging, if not impossible to apply regression
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Table 7: A hypothetical data set from a two-stage SMAR trial.

Patient Initial Treatment Response Status Second Treatment A1B1 A1B2 A2B1 A2B2

1 A1 No B1 1 0 0 0
2 A1 Yes NA 1 1 0 0
3 A1 No B2 0 1 0 0
4 A2 Yes B1 0 0 1 0
5 A2 Yes NA 0 0 1 1
6 A2 No B2 0 0 0 1

techniques. To clarify this, let us consider a two-stage SMAR design similar to the one

described in Figure 3 on page 12. Four strategies in this design are AjBk which denotes “treat

with Aj followed by Bk if he/she is a non-responder (j, k = 1, 2)”. One may be tempted

to compare the four strategies: A1B1, A1B2, A2B1, A2B2 using a regression model. Note

that a patient responding to A1 is, by definition, consistent with both strategies A1B1 and

A1B2 which poses a challenge for data analysts as it violates basic assumptions of regression

modeling of unique group membership. As shown in [37], Table 7 summarizes a hypothetical

situation whereby a patient can belong to multiple strategies. In this hypothetical data set

we present 6 patients participating in a trial represented in Figure 3 (page 12). It gives the

initial treatment assignment, response status, second treatment assignment, and an indicator

(0 or 1) to indicate if that particular patient belongs to one of the four specific strategies. For

instance, patient 2 is a responder to initial treatment A1. Therefore, his or her data could

be used to draw inference for two strategies namely, A1B1 and A1B2. Similarly, patient 5

is a responder to A2 whose treatment path is consistent with following strategies A2B1 and

A2B2. Thus, the same patient can have a treatment trajectory that makes him eligible to be

counted in multiple strategies poses a challenge for the analyst to use regression modeling

techniques. Hence, we propose an “artificial randomization” technique to make the data

appear that each subject belongs to a unique strategy. This will enable us to use regular

regression methods by inserting treatment strategy indicators as covariates in a regression

model along with other covariates.

37



Table 8: A hypothetical data set from a two-stage SMAR trial: Illustrating

Artificial Randomization.

Patient Initial Treatment Response Status Second Treatment Z∗ A1B1 A1B2 A2B1 A2B2

1 A1 No B1 B1 1 0 0 0
2 A1 Yes NA B1 1 0 0 0
3 A1 No B2 B2 0 1 0 0
4 A2 No B1 B1 0 0 1 0
5 A2 Yes NA B2 0 0 0 1
6 A2 No B2 B2 0 0 0 1

G-computation [27] and inverse probability weighting (IPW) [18] are commonly used to

estimate treatment regime effects and thus can be used for Wald-type hypothesis testing to

compare strategy means. Unlike G-computation, IPW has become popular in applications

for its ease of implementation and generality. For example, IPW does not estimate or make

assumptions about distributions of intermediate outcomes. Various papers have suggested

methods to compare different treatment strategies using IPW. Except for the limited work

of Hernan et al., and Tang and Wahed [8, 38], most of these methods do not allow regression

to adjust for baseline covariates. Using observational data, Hernan et al. [8] applied a Cox

regression with artificial censoring to compare different two treatment strategies. Due to wide

range of possible treatment regime options, observations were routinely artificially censored

if they depart from the pre-specified regimes of interest. Hernan’s approach is a motivation

to build a unified regression model with the option of adjusting for covariates and interaction

terms (between covariates and treatment strategies) in a model. Using IPW in a two-stage

randomization setting, Lokhnygina and Helterbrand [17] derived an estimator for the log-

hazard and a score test to compare treatment strategies under Cox model. However, this is

limited to the comparison of a pair of treatment regimes without adjusting for time-varying

treatment effects or other auxiliary variables. Tang and Wahed [38] suggested modeling each

treatment strategy using Cox regression model that adjusts for both time dependent and time

independent covariates. They fit a stratified Cox model that allows the underlying hazard to

vary across strategies. Model comparisons among treatment strategies is performed using log
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ratio of estimated cumulative hazards. Their approach to model each strategy and make a

statistical comparison across strategies is the only work known thus far to compare strategies

by adjusting for covariates.

We propose a consistent simple multiple artificial randomization tool (SMART) estimator

that combines ‘artificially randomized’ estimators according to Rubin’s (1977, 1987) [31, 32]

multiple imputation method. Subsequently, the ‘artificial randomization’ approach is utilized

in regression models to compare strategies adjusting for baseline covariates, and hence inform

further useful strategies.

This chapter is organized as follows. In Section 3.2, we describe counterfactual and ob-

served outcomes followed by an introduction to artificial randomization and the proposed

SMART estimator in Section 3.2.1. This estimator is compared with IPW-based estimators

in Section 3.2.2. Within this subsection, we derive model-based and robust variance esti-

mates for each estimator. In Section 3.3, we conduct simulation studies to examine properties

of our proposed estimator with respect to existing estimators. In Section 3.4, we demon-

strate how regression analysis through artificial randomization allows adjusted comparison

of ATSs and helps develop new strategies involving covariates. In Section 3.5.1, we apply

the adopted procedures to the CALGB data and report strategy means, standard errors and

confidence intervals. Appropriately, depending on significant interaction between covariate

and strategies, we define new informative covariate-specific strategies. We wrap up the chap-

ter with results in Section 3.5.2. In the CALGB data the outcome is a survival time but we

treat it as continuous in our methodology and drop censored times. With only few censored

observations (7%) the assumption seems to be reasonable.

3.2 ARTIFICIAL RANDOMIZATION, SMART, AND OTHER

ESTIMATORS

The design described in Figure 3 (page 12) allows estimation of the effect of four treatment

regimes, namely, AjBk; j, k = 1, 2. Let Xji be the assignment indicator for first-stage treat-

ment Aj, where Xji = 1, if the ith patient is randomized to Aj, j = 1, 2; i = 1, 2, ..., n; 0
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otherwise. The indicator for individual response status, Rji, is 1 for responders and 0 for

non-responders to Aj, j = 1, 2; i = 1, 2, ..., n. For non-responders, Rji = 0, define variable

Zki to indicate assignment of second-stage treatments, Bk, k = 1, 2; conditional on Rji = 0,

Zki = 1, if the ith patient receives Bk assignment; 0 otherwise. Assume Vi and Yi to denote

a vector of baseline covariates and the final outcome, respectively.

Inferences from sequentially randomized trials are often facilitated through defining coun-

terfactual outcomes and corresponding expectations [40, 18, 22]. The goal is to estimate,

for example, the mean of the outcome under a given strategy. Let Yi(Aj), j = 1, 2 indi-

cate outcomes under Aj if the patient had received Aj and responded to Aj (and hence

there were no second randomization). Similarly, Yi(AjBk), j, k = 1, 2 denotes outcomes un-

der AjBk, j, k = 1, 2 if the patient had received Aj, j = 1, 2, did not respond and followed

by Bk, k = 1, 2. The potential outcome if patient i follows regime AjBk would then be

Yjki = RjiYi(Aj) + (1 − Rji)Yi(AjBk), j, k = 1, 2; i = 1, ..., n, where Yjki is the potential

outcome for individual i under strategy AjBk. The observed outcome, for patient i following

treatment regime AjBk, is connected to the potential outcome via the following formula,

Yi =
n∑
i=1

2∑
j=1

Xji

{
RjiYi(Aj) + (1−Rji)

2∑
k=1

ZkiYi(AjBk)

}

which is known as the consistency assumption (Assumption 2.3, page 16). As defined in

Chapter 2 (Section 2.3, page 15), the strategy mean is, µjki = πjµAj + (1− πj)µAjBk , where

µAj = E{Y (Aj)} is the sub-group mean of the population receiving Aj followed by Aj,

µAjBk = E{Y (AjBk)} is sub-group mean of the population receiving Aj followed by Bk.

3.2.1 ARTIFICIAL RANDOMIZATION AND THE SMART ESTIMATOR

Analysis of ATSs obtained from SMAR designs has thus far been limited to comparing

means of strategies using Wald-type hypothesis testing. Comparing means of strategies using

regression models that adjust for baseline covariates may be of further interest. However, as

discussed before, such adjustments are not straightforward. The reason is that a regression

model requires subjects belong uniquely to one strategy, which is not the case for SMAR

trials. For example, a responder to A1 is consistent with following strategies A1B1 and
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A1B2. Therefore, to analyze the data from this specific design using regression or ANOVA

framework, we need to devise a way to attach each subject to a unique strategy. This is

what is the topic of this research.

Since responders are not randomized to further treatments, for the purpose of identify-

ing them to unique strategies, at the analysis stage, we create an artificial randomization

indicator for responders that assigns each responder to one of the second stage treatment,

B1 or B2. It is important to emphasize that responders are artificially randomized for the

sake of statistical analysis after all the data have been accumulated and locked. They are

not re-randomized in the actual trial. The purpose is to uniquely associate each responder

to one of the four strategies AjBk, j, k = 1, 2 so that we can readily employ ANOVA or

regression techniques.

At the analysis stage, we create a randomization indicator, using the same mechanism

that was used to randomize the non-responders. For example, if B1 and B2 were assigned

randomly with probabilities Q1 and 1 − Q1 respectively, then this artificial randomization

indicator Z∗
i is defined as,

Z∗
i =

 Zi if Ri=0

Bernoulli(Q1) if Ri=1

where Bernoulli(Q1) indicates a randomly generated value of a Bernoulli random vari-

able with probability Q1. With this artificial augmentation, the observed data looks like

(Vi, Xi, Ri, Z
∗
i , Yi) , i = 1, 2, ..., n. Define Z∗

1i = Z∗
i and Z∗

2i = 1− Z∗
i be the indicators for B1

and B2 (actual or artificial assignment). In this observed data, Xi and Z∗
i uniquely assigns

a participant to one strategy. For example, patient 2 in Table 8, Xi = 0 and Z∗
i = 0, we

know that the participant ‘followed’ (treated to have followed) strategy A1B1. With this

‘augmented observed data’ one can easily construct estimators for strategy means or use

regression-based methods to compare strategies adjusting for baseline covariates. Here we il-

lustrate by defining estimates of strategy means. In Section 3.4, we explain how this method

can be adapted for regression or ANOVA.

41



Since Xi and Z∗
i uniquely identifies a participant with a specific strategy, an estimator

of the (j, k)th strategy mean would be

µ̂ARjk =

∑n
i=1 XjiZ

∗
kiYi∑n

i=1XjiZ∗
ki

, (3.1)

the simple average of outcome over those who ‘followed’ strategy AjBk. Note that we have

used the superscript ‘AR’ to indicate that this estimator uses artificial randomization. To

show consistency of this estimator, note that,

E(XjiZ
∗
ki) = E [XjiE [Z∗

ki|Xji]]

= E [XjiE{E(Z∗
ki|Xji, Ri)}]

= E [XjiE{RiQk + (1−Ri)Qk}]

= E [XjiQk]

= Qkκj.

where E [Xji] = κj. Also,

E(XjiZ
∗
kiYi) = E [XjiZ

∗
kiYjki] by consistency assumption (Assumption 2.3, page 16),

= E [YjkiE{XjiZ
∗
ki|Yjki}]

= E [YjkiE(XjiZ
∗
ki)]

= QkE [Yjki]κj

= Qkµjkκj.

Therefore, using the law of large numbers,

µ̂ARjk =
1
n

∑n
i=1XjiZ

∗
kiYi

1
n

∑n
i=1 XjiZ∗

ki

p−→ E(XjiZ
∗
kiYi)

E(XjiZ∗
ki)

=
Qkµjkκj
Qkκj

= µjk,
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where “
p−→” denotes “convergence in probability”.

Hence, µ̂ARjk is a consistent estimator of µjk. The artificial randomization procedure

facilitates independent estimation of strategy means to compare ATSs. However, additional

uncertainty introduced into the artificial estimator due to the augmented randomization

indicator needs to be accounted for before it can be compared with existing estimators.

In the spirit of Rubin’s average estimator for multiple imputations, we propose to conduct

multiple artificial randomization and average them to form a single estimator. We refer to

this as a “SMART” (simple multiple artificial randomized tool) estimator. This is similar

to the multiple imputation method that captures uncertainty due to stochastic randomness

introduced via the imputation process. Denote by µ̂
AR(m)
jk the estimate of µjk, from the mth

“artificially randomized” data set (m = 1, 2, ...,M). The SMART estimate of µjk is the

simple average of the artificial estimates,

µ̂SMART
jk =

1

M

M∑
m=1

µ̂
AR(m)
jk . (3.2)

Rubin (1987) [32] introduced variance formula that has within- and between-imputation

variability. To mimic his approach, define W and B to be the average “within-randomization”

and “between-randomization” covariances of µ̂
AR(m)
jk , that is,

W =
1

M

M∑
m=1

V̂
AR(m)
jk (3.3)

and

B =
1

(M − 1)

M∑
m=1

(µ̂
AR(m)
jk − µ̂SMART

jk )2, (3.4)

where V̂
AR(m)
jk is the estimated variance for µ̂

AR(m)
jk for the mth artificial randomization. The

estimated variance of µ̂SMART
jk is then given by,

T = W +

(
M + 1

M

)
B. (3.5)

To summarize the steps, we create M data sets from M artificial randomizations. The

M data sets are analyzed using standard procedures to compute the means and then re-

sults from M analyses are combined to obtain a single estimator given in Equation 3.2.
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Equation (3.1) gives an estimate of µjk based on single artificial randomization, which is

equivalent to a “single imputation” technique that does not take into account variability

between “imputations” (or randomizations in our case) (Schafer, 1999) [34]. To make up

for the disadvantages associated with single imputation (such as underestimated standard

errors), multiple imputation technique has been suggested (Rubin, 1977, 1987) [31, 32]. The

proposed SMART estimator is mechanistically equivalent to multiple imputation technique.

SMART would account for both within and between-randomization variance.

This estimator enables us to apply tests such as the F-test and the t-test that are in-

convenient or even impossible to be applied when observations are not independent. Large

sample properties of SMART are compared with the four existing estimators using simula-

tion. Below is a formula for the variance of artificial estimator which is derived in Section 4.1.

var
(
µ̂ARjk

)
=

1

nQkκj

[
πj{σ2

Aj
+ (µjk − µAj)2 − σ2

AjBk
− (µjk − µAjBk)2}

]
+

1

nQkκj

[
σ2
AjBk

+ (µjk − µAjBk)2
]
.

(3.6)

The asymptotic variance of µ̂ARjk can be estimated either by the empirical estimator (Sec-

tion 4.2), or the model-based estimator which is obtained by substituting estimated quanti-

ties κ̂j, Q̂k, π̂j, σ̂
2
Aj
, µ̂Aj , σ̂

2
AjBk

, µ̂AjBk , µ̂jk into Equation(3.6). It is similarly computed for all

other estimators. Section 4.1 refers to the variance formulas of estimators and Section 4.2

refers to their robust variance estimates.

3.2.2 IPW-BASED ESTIMATORS

We compare our SMART estimator to other competing estimators such as those based on

inverse probability weighting. To motivate the inverse probability weighting, suppose we are

interested in estimating µ11, mean outcome for strategy A1B1. Imagine that everyone in the

sample follows the regime A1B1 in Design 2 (Figure 3, page 12). In such a case, we would

estimate the mean, µ11, using the sample average. However, as in all SMAR designs, in our

sample patients receive treatment sequence other than A1B1 (those who received B2 or the

non-responders to A1 who are randomized to B2) which makes sample average estimation
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biased. To correct this bias, each subject following A1B1 is weighted by the reciprocal of the

probability of receiving treatment B1 (i.e., Q1) to account for the “missing” or unaccounted

individuals who received B2. To elaborate, a non-responder who received B1 could have

equally likely received B2. Thus, those who received B1 would be weighed by 1/Q1 because

they represent those who were randomized to B2. To estimate the A1B1 adaptive treatment

strategy, we consider outcomes of subjects consistent with following that treatment path.

The inverse probability weighted estimator (IPW) of µjk is given by,

µ̂IPWjk =
1

n

n∑
i=1

WjkiYi, (3.7)

where Wjki =
Xji
κj

{
Ri + (1−Ri)Zki

Qk

}
and κj is the probability assignment to first-stage treat-

ments Aj, j = 1, 2. The corresponding asymptotic variance for this estimator is,

var (µ̂jk) =
1

n

[
1

κj

{
πj
Qk

(σ2
Aj

+ µ2
Aj

) + (1− πj)(σ2
AjBk

+ µ2
AjBk

)

}
− µ2

jk

]
. (3.8)

The model-based variance estimate is obtained by substituting κ̂j, Q̂k, π̂j, σ̂
2
Aj
, µ̂Aj , σ̂

2
AjBk

, µ̂AjBk , µ̂jk

into Equation 3.8. Another variance estimate can be the so-called sandwich estimator (see

Section 4.2).

A variation of the IPW is its normalized version. As shown in [11], the normalized

inverse probability weighted (NIPW) is shown to have generally smaller variance than its

counterpart IPW. The NIPW estimator is given by,

µ̂NIPWjk =

∑n
i=1WjkiYi∑n
i=1 Wjki

. (3.9)

The variance of NIPW is given by,

var(µ̂jk) =
1

n

[
πj
κj

{
σ2
Aj

+ (µjk − µAj)2
}

+
(1− πj)
κjQk

{
σ2
AjBk

+ (µjk − µAjBk)2
}]

. (3.10)

The model-based variance estimate is obtained by substituting estimated quantities κ̂j, Q̂k, π̂j, σ̂
2
Aj
,

µ̂Aj , σ̂
2
AjBk

, µ̂AjBk , µ̂jk into Equation (3.10). The robust variance estimator is given in Sec-

tion 4.2.

In the above IPW and NIPW estimators, the randomization probabilities are assumed to

be known. But, one may wish to estimate them from the data. Therefore, below we present
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another version of IPW and NIPW estimators (denoted as IPW1 and NIPW1, respectively)

that estimates κj and Qk’s from the data:

µ̂IPW1
jk =

1

n

n∑
i=1

ŴjkiYi (3.11)

and

µ̂NIPW1
jk =

∑n
i=1 ŴjkiYi∑n
i=1 Ŵjki

, (3.12)

where Ŵjki =
Xji
κ̂j

{
Ri + (1−Ri)Zki

Q̂k

}
, κ̂j = n∑n

i=1Xji
, Q̂k =

∑n
i=1Xji(1−Ri)Zki∑n
i=1Xji(1−Ri)

. Details of variance

formulas and their robust estimates are shown in Sections 4.1 and 4.2. In the next subsection

we present the results from a simulation study to see how SMART estimator compare to

these existing estimators.

3.3 SIMULATION STUDY

We conducted a simulation study to evaluate the large sample properties of SMART estima-

tor with moderate sample sizes (150 and 300) and compare its performance with IPW-based

estimators. For each individual in the population, a hypothetical design similar to Design 3

on page 12 assumes that subgroup populations Yi(Aj) and Yi(AjBk) come from a normal

distribution with subgroup means: µAj = µAjB2 = 15, µAjB1 = 20, µAjB2 = 22; subgroup

variances: σ2
Aj

= 22, σ2
AjBk

= 82, for j, k = 1, 2. The initial treatment indicator Xi is gener-

ated from a binomial distribution with probability 0.5 of randomization to either A1 or A2.

The response indicator Ri is drawn from a Bernoulli distribution with probability of success

π1 for initial treatment A1 and π2 for A2. Randomization indicator Zi for non-responders

is generated from Bernoulli distribution with probability Q1. By definition, the outcome

Yi under strategy AjBk should follow a normal distribution since Yi(Aj) and Yi(AjBk) are

generated from a normal distribution. We considered many simulation scenarios for various

sample sizes and population parameters such as µAj , µAjBk , σ
2
Aj

, σ2
AjBk

, π1, π2, and Qk. The

true strategy means are computed using the formula µjk = πjµAj + (1− πj)µAjBk .
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We generated 10000 samples from the above population to compare the competing esti-

mators. To evaluate the performance of the estimators we calculate Monte Carlo (MCSE),

relative bias (RB, %), model-based (MBSE), robust (RSE) standard errors and coverage

probability (CP) of 95% Wald confidence intervals. These quantities are arranged as columns

in Tables 9 and 10. The rows correspond to strategy estimators. Specifically, there are four

strategies: A1B1, A1B2, A2B1 and A2B2.

Theoretically, we expect SMART estimators to be less efficient than NIPW as it uses less

number of non-responders. We provide simulation evidence summarizing this fact. SMART

are consistent estimators which makes them desirable in their application in regression based

adaptive strategy comparison (Section 3.4). The main results of the simulation are presented

in Tables 9 and 10, where the ratio of subgroup variance is held
σ2
Aj

σ2
AjBk

= 22

82
for a given sample

size (n=150, n=300). We present mean and standard error estimates for SMART when M=1

(SMART1) and M=5 (SMART5) based on Equation (3.5). The table rows are estimators

SMART1, SMART5, IPW, IPW1, NIPW, NIPW1. The first thing to note in both tables

is that the new estimator is approximately unbiased. Absolute relative biases (RB) were

less than 0.087% for both SMART1 and SMART5. Both MBSE and RSE are close to the

MCSE for SMART1 and SMART5. SMART5 has slightly higher MBSE than SMART1.

As anticipated, the variance for SMART1 is slightly smaller, as the between imputation

variance (B) is zero. They both approximately guarantee 95% CP. In Table 9 RSE and

MCSE comparison indicates that SMART1 attains very close estimates to SMART5.

In addition to SMART1 and SMART5, Table 9 provides four estimators produce unbiased

estimators of strategy means: µ11, µ12, µ21, µ22. Since it is shown that the IPW has greater

estimated strategy mean variance than its normalized version [11], we will focus on the

comparison of SMART estimators with the normalized versions of IPW across the MBSE,

RSE and MCSE. The IPW-based estimators are approximately unbiased with relative biases

less than 0.2% for IPW, less than 0.071% for IPW1, less than 0.3% for NIPW and less than

0.071% for NIPW1. Comparing columns MBSE, RSE and MCSE for SMART1 and SMART5

against the other estimators show a slightly higher standard error and hence are less efficient.

However, quite surprisingly, the IPW1 is almost equally efficient as the normalized versions

(NIPW and NIPW1).
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The agreement between the asymptotic standard errors and Monte Carlo standard error

suggests accuracy of the variance formulas of the estimators.

For the most part, all the estimators achieved coverage probabilities close to the nominal

95%. One can note, the NIPW and NIPW1 provided lower coverage probabilities of 90%

and 90%, respectively, for strategy A2B1. This calls for more examination of this strategy.

Table 10 shows simulation results when the sample size is increased to 300. Expectedly,

the standard errors of the estimators decreased. For the SMART estimator, the conclusions

were analogous to results in Table 9. In the same vein, comparisons across estimators are

consistent with results in Table 9. Due to equal response rates, πj’s, Tables 9 and 10 show

that estimated means and standard errors are nearly the same for strategies AjB1, j = 1, 2.

Common in both tables is that IPW estimator strategies A1B1 and A2B1 display higher

standard errors across columns MBSE, RSE and MCSE.

3.4 ARTIFICIAL RANDOMIZATION AND REGRESSION

It might seem that the proposed SMART approach to estimating the strategy means from

SMART designs is somewhat against the principle of sequential randomization. While this

provides approximately unbiased estimates, they are not more efficient than NIPW esti-

mators. This is expected, as the SMART approach uses less observations (e.g., half of the

responders) than NIPW. However, the utility of SMART approach is in its simplicity to allow

users to estimate/test strategy effects adjusting for other covariates. To show this, consider

that in a population where patients follow particular treatment strategies, the mean response

is modeled by

Yi = β0 +
∑
j,k=1,2

βjkSjki + γTVi +
∑
j,k=1,2

αTjkViSjki + εi, (3.13)

with E(εi) = 0, where parameters βjk, γ and αjk represent vector of coefficients for strategies

Sjk, covariates V and their interaction S ∗ V . Sjk is defined as Sjk = 1 if patient i follows

strategy AjBk, 0, otherwise.
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Table 9: Simulation results of estimators based on 10000 Monte Carlo (MC)

samples of size 150.

Estimator EST RB MBSE RSE MCSE CP

SMART1 15.01 -0.087 1.27 1.25 1.30 0.93
20.01 -0.035 0.96 0.95 0.97 0.94
14.99 0.027 1.27 1.25 1.34 0.92
20.02 -0.075 0.96 0.95 0.97 0.94

SMART5 15.01 -0.087 1.39 1.36 1.23 0.96
20.01 -0.045 0.98 0.97 0.94 0.96
15.02 -0.15 1.39 1.36 1.30 0.94
19.99 0.025 0.98 0.97 0.96 0.95

IPW 15.03 -0.20 1.85 1.83 1.86 0.93
19.99 0.067 2.52 2.47 2.61 0.93
14.97 0.18 1.86 1.83 1.92 0.93
19.99 0.032 2.53 2.47 2.66 0.93

IPW1 15.01 -0.051 1.16 1.10 1.11 0.94
19.99 0.071 0.94 0.94 0.95 0.93
14.99 0.03 1.15 1.10 1.19 0.93
19.99 0.04 0.95 0.94 0.97 0.92

NIPW 15.01 -0.29 1.16 1.16 1.19 0.92
19.99 0.074 0.92 0.92 0.93 0.93
14.99 -0.30 1.17 1.16 1.26 0.90
19.99 0.038 0.93 0.93 0.94 0.93

NIPW1 15.00 -0.051 1.18 1.10 1.12 0.92
19.99 0.071 0.94 0.94 0.95 0.93
15.00 0.026 1.18 1.10 1.19 0.90
19.99 0.041 0.94 0.94 0.97 0.93

Monte Carlo mean estimates (EST), relative bias (RB, %), Monte Carlo standard errors

(MCSE), model-based standard errors (MBSE), robust standard errors (RSE) and 95% cov-

erage probabilities (CP). CP is computed based on robust variance estimates. True strategy

means: µ11 = µ21 = 15, µ12 = µ22 = 20.
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Table 10: Simulation results of estimators based on 10000 Monte Carlo (MC)

samples of size 300.

Estimator EST RB MBSE RSE MCSE CP

SMART1 14.99 0.067 0.89 0.88 0.91 0.94
20.01 -0.05 0.68 0.67 0.67 0.95
14.99 0.067 0.89 0.88 0.96 0.92
20.02 -0.10 0.68 0.67 0.67 0.95

SMART5 15.02 -0.13 0.97 0.88 0.92 0.93
20.02 -0.085 0.69 0.67 0.68 0.94
14.99 0.01 0.97 0.88 0.97 0.92
20.01 -0.045 0.69 0.67 0.67 0.95

IPW 14.99 0.015 1.31 1.30 1.33 0.94
20.01 -0.097 1.78 1.76 1.87 0.93
14.99 0.01 1.31 1.30 1.34 0.94
20.01 -0.031 1.77 1.76 1.85 0.94

IPW1 15.00 -0.061 0.86 0.78 0.78 0.94
20.01 -0.055 0.67 0.66 0.67 0.93
14.99 0.024 0.86 0.78 0.83 0.94
20.00 -0.01 0.67 0.66 0.68 0.93

NIPW 15.03 -0.23 0.83 0.83 0.84 0.93
20.01 -0.052 0.66 0.66 0.67 0.94
15.02 -0.12 0.83 0.83 0.89 0.92
20.00 -0.01 0.66 0.66 0.67 0.94

NIPW1 15.01 -0.061 0.83 0.78 0.78 0.93
20.01 -0.055 0.67 0.66 0.67 0.94
14.99 0.024 0.83 0.78 0.83 0.92
20.00 -0.01 0.67 0.66 0.68 0.94

Monte Carlo mean estimates (EST), relative bias (RB, %), Monte Carlo standard errors

(MCSE), model-based standard errors (MBSE), robust standard errors (RSE) and 95% cov-

erage probabilities (CP). CP is computed based on robust variance estimates. True strategy

means: µ11 = µ21 = 15, µ12 = µ22 = 20.
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This is a multiple linear regression model, and if data were available from an upfront

randomization design (Ko and Wahed, 2012) [11], the parameters could be estimated using

regular regression analysis. As explained in the previous section, due to the non-separability

of the strategy indicators (a given observation can be associated to more than one strategy)

such an analysis is not feasible for SMAR designs. But note that artificial randomization

allows us to fit this regression model. As defined in Section 3.2.1, in terms of our artificially

randomized data, for a subject following regime AjBk would belong to Sjki = XjiZ
∗
i .

3.5 DATA ANALYSIS OF CALGB DATA

3.5.1 SAMPLE AND MEASURES

We apply the artificial randomization method and fit the model to the CALGB data de-

scribed in Chapter 1. There were a total of 388 patients who participated in the CALGB

8923 study of which 193 were randomized to the GM-CSF arm, and 195 were randomized to

the placebo arm. Of the the GM-CSF arm, 79 were responders and of the placebo arm, 90

were responders. Out of 79 responders to GM-CSF, 37 were randomized to intensification

therapy I while 45 out of 90 placebo responders were randomized to intensification therapy I.

The rest were randomized to intensification therapy II. The artificial randomization was ap-

plied to the subset of non-responders (114 from the GM-CSF arm and 105 from the placebo

arm).

Non-responders were superficially assumed to have received either intensification therapy

I or II with probability 0.5. Accordingly, we constructed strategy indicators to be used

as independent variables in the regression model as described in Section 3.4. We used R

(version 2.15) to fit Equation 3.13 and compute the estimators in Table 11. Table 11 depicts

mean estimates of the five strategies using SMART1, SMART5 IPW, IPW1, NIPW, NIPW1

estimators. In the analyses, we considered age (mean=69.5), sex (220 males, 168 females),

and strategy indicators as covariates in the artificial regression. The main outcome is survival

time but it is treated as being continuous.
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Table 11: Estimated strategy means and robust standard errors from the analysis

of CALGB 8923 data.

Strategy SMART1 (SE) SMART5 (SE) IPW (SE) IPW1 (SE) NIPW (SE) NIPW1 (SE)

A1B1 487.16 (70.58) 468.56 (70.11) 454.0 (70.9) 478.5 (57.9) 468.5 (59.5) 478.5 (66.5)
A1B2 521.21 (75.97) 536.46 (80.74) 454.0 (70.9) 528.0 (69.0) 468.5 (59.5) 528.0 (69.0)
A2B1 660.16 (88.23) 623.52 (90.12) 623.6 (91.3) 620.4 (71.6) 620.4 (73.4) 620.4 (71.6)
A2B2 592.72 (83.68) 627.48 (99.09) 632.6 (91.3) 629.4 (79.5) 620.4 (73.4) 629.4 (79.5)

3.5.2 RESULTS

From Table 11 rows are strategies and columns are strategy mean estimators. For each

strategy the estimates are similar across each estimator. The estimated means of strategies

sharing A1 are less than the strategies sharing A2 for all estimators. Similar observations

can be made about the corresponding standard errors. The NIPW, NIPW1 and IPW1 gave

smaller estimated standard errors than SMART which was noted in the simulation stud-

ies. SMART5 and IPW have greater standard errors than other estimators. In particular,

standard error estimates for SMART5 are considerably large.

As part of the modeling strategy we identified age, sex and strategy indicators from the

CALGB data as potential predictors in our regression model. Further, we explore possible

interaction between the strategies and age and sex. Practically, we expect significant inter-

actions to generate new strategies that specify long term survival of AML patients. In more

detail, we did the following. Three interaction models were fitted. The first contained two

interactions, namely, strategy by age and strategy by sex. The second and third models have

strategy by age and strategy by sex interactions. All the interaction models were found to

be not significant. To apply our method, we decide to keep the model with strategy and

sex interaction. Had the interaction between strategy and sex were significant, we would

choose the model in Table 12 for purposes of constructing informative strategies. Except for

age (P=0.0024), strategy, sex and the interaction terms are not significant. The p-value for

the interaction between strategy and sex is 0.086. Assuming significant interaction exists
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Table 12: Parameter Estimates for Model of CALGB 8923 data.

Parameter Estimate SE Z Pr > |Z|
Intercept 1996.75 487.42 4.10 <0.001
SA1B1 25.90 146.64 0.18 0.86
SA1B2 -156.38 149.07 -1.10 0.29
SA2B1 71.50 154.77 0.46 0.64
Sex 95.74 154.75 0.62 0.54
Age -20.98 6.87 -3.05 0.0024
SA1B1*Sex -309.39 230.22 -1.34 0.18
SA1B2*Sex 281.88 221.34 1.27 0.20
SA2B1*Sex -23.34 224.15 -0.10 0.92

between sex and treatment strategies, we defined 16 new strategies to treat patients accord-

ing to their sex. One strategy could be, “If female treat with A1B1, else treat with A1B1”,

which is denoted by “fA1B1mA1B1”. Table 13 shows estimated means. Also, displayed are

robust standard errors and confidence intervals for the sixteen strategies. Figure 5 displays

the mean estimates and corresponding 95% confidence interval. Significant strategies are

either to the right or left of the mean dotted vertical line. Similar plot called forest plot is

used to display the effect of odds ratio for logistic regression results. As can be gathered

from the table and figure, Strategies “fA1B1mA1B2” and “fA1B2mA2B1” have the smallest

and highest mean and standard errors for the SMART estimators, respectively. As our sim-

ulation results would support the robust standard error estimates for SMART5 estimator is

greater than SMART1 estimator.

This chapter introduced an unbiased SMART estimator that is based on multiple impu-

tation concepts. As a consequence, it introduced the artificial randomization technique to

compare strategies from SMAR design using regression methods.
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Table 13: Analysis of CALGB 8923 data for sixteen new strategies.

Strategy SMART1 SE CI1 SMART5 SE CI5

fA1B1mA1B1 487.16 70.58 (348.82, 625.50) 487.16 70.58 (348.82, 625.50)
fA1B1mA1B2 363.18 47.65 (269.79, 456.57) 363.18 47.65 (269.79, 456.57)
fA1B1mA2B1 513.41 78.98 (358.61, 668.21) 513.41 78.98 (358.61, 668.21)
fA1B1mA2B2 468.93 73.87 (324.15, 613.72) 468.93 73.87 (324.14, 613.72)
fA1B2mA1B1 626.00 85.76 (457.91, 794.10) 626.00 190.45 (252.72, 999.28)
fA1B2mA1B2 521.21 75.97 (372.31, 670.11) 521.21 207.92 (113.69, 928.73)
fA1B2mA2B1 667.22 95.05 (480.92, 853.52) 667.22 211.00 (253.66, 1080.78)
fA1B2mA2B2 621.43 90.93 (443.21, 799.65) 621.43 207.73 (214.28, 1028.58)
fA2B1mA1B1 620.14 79.88 (463.58, 776.70) 620.14 181.40 (264.60, 975.68)
fA2B1mA1B2 516.16 68.88 (381.16, 651.16) 516.16 199.62 (124.91, 907.41)
fA2B1mA2B1 660.16 88.23 (487.23, 833.09) 660.16 200.22 (267.73, 1052.59)
fA2B1mA2B2 615.13 84.38 (449.74, 780.51) 615.13 197.95 (227.15, 1003.11)
fA2B2mA1B1 599.14 79.38 (443.56, 754.72) 599.14 158.46 (288.56, 909.72)
fA2B2mA1B2 499.26 69.24 (363.55, 634.97) 499.26 180.48 (145.52, 853.00)
fA2B2mA2B1 634.54 87.41 (463.22, 805.86) 634.54 172.20 (297.03, 972.05)
fA2B2mA2B2 592.73 83.68 (428.72, 756.74) 592.73 173.18 (253.30, 932.16)
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Means of sixteen strategies with their confidence intervals are displayed in a forest plot where

the dots are strategy mean estimates, and lines indicate ± SE.

Figure 5: SMART1.
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4.0 VARIANCE FORMULAS OF ESTIMATORS

4.1 VARIANCE FORMULAS

M-estimation or synonymously referred to as estimating equations are empirical or quasi-

likelihood based functions. Quasi-likelihood functions depend on specified means and vari-

ance relations of each observation [1]. Thus, M-estimation derives estimators by solving

estimating equations that are not necessarily constructed from the derivative of the log-

likelihood. Huber (1964, 1967) introduced and developed the asymptotic properties of

M-estimators. The estimating equation can be written as
∑n

i=1 ψ(Yi,Θ) = 0, where the

M-estimator Θ̂ satisfies the equation,

n∑
i=1

ψ(Yi, Θ̂) = 0.

The vector Yi, i = 1, ..., n are independent and may not be identically distributed, Θ is p-

dimensional parameter, and ψ is a known (p×1) influence function independent of i or n. It is

shown that Θ̂ ∼ N
(

Θ, V (Θ)
n

)
as n →∞, where V (Θ) = A(Θ)−1B(Θ){A(Θ)−1}T . Formally,

assuming Y1, Y2, ..., Yn are i.i.d and follow the distribution F, model-based estimators for A

and B are given by

A(Y, Θ̂) = EF{−ψ
′
(Yi, Θ̂)}

and

B(Y, Θ̂) = EF{ψ(Yi, Θ̂)ψ(Yi, Θ̂)T}

respectively.
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Using averages instead of expectations, the empirical estimators for A and B are given

by

An(Y, Θ̂) =
1

n

n∑
i=1

{−ψ′(Yi, Θ̂)}

and

Bn(Y, Θ̂) =
1

n

n∑
i=1

ψ(Yi, Θ̂)ψ(Yi, Θ̂)T

respectively.

Below we derive the asymptotic variance for the proposed and existing estimators and

in Section 4.2, we compute the empirical variance estimators.

1. Variance of IPW Estimator

Let Θ0 = (µjk) and the ψ- function ψ(Yi,Θ0) = ψ1(Yi,Θ0) = {WjkiYi − µjk}, ψ
′

= −1,

ψ(Yi,Θ0)ψT (Yi,Θ0) = {WjkiYi − µjk}2. Then A(Θ) = E{−ψ′(Yi,Θ0)} = 1, B(Θ) =

E{ψ(Yi,Θ0)ψT (Yi,Θ0)} = E

[(
Xji
κj
{Ri + (1−Ri)Zki

Qk
}Yi − µjk

)2
]

= E

[(
Xji

κj
{RiYi(Aj) +

(1−Ri)ZkiYi(AjBk)

Qk

} − µjk
)2
]

= E

[
Xji

κ2
j

{RiY
2
i (Aj) +

(1−Ri)ZkiY
2
i (AjBk)

Q2
k

}
]

−2E

[
µjk

Xji

κj
{RiYi(Aj) +

(1−Ri)ZkiYi(AjBk)

Qk

}+ µ2
jk

]
= E

[
Xji

κ2
j

{RiY
2
i (Aj) +

(1−Ri)ZkiY
2
i (AjBk)

Q2
k

} − µ2
jk

]
= E

[
E

[
Xji

κ2
j

{RiY
2
i (Aj) +

(1−Ri)ZkiY
2
i (AjBk)

Q2
k

} − µ2
jk

]
|Xji, Ri, Yi(Aj), Yi(AjBk)

]

After a few steps of iterative expectations, we obtain

B(Θ) =
1

κj
{ πj
Qk

(σ2
Aj

+ µ2
Aj

) + (1− πj)(σ2
AjBk

+ µ2
AjBk

)} − µ2
jk.

Therefore, the IPW variance estimator is

var(Θ̂) =
1

n
A−1(Θ̂)B(Θ̂){A−1(Θ̂)}T

=
1

nκj
{ πj
Qk

(σ2
Aj

+ µ2
Aj

) + (1− πj)(σ2
AjBk

+ µ2
AjBk

)} − µ2
jk.
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2. Variance of NIPW Estimator

Let Θ0 = (µjk) and the ψ- function ψ(Yi,Θ0) = Wjki(Yi − µjk), where ψ
′
(Yi,Θ0) =

−Wjki, ψ(Yi,Θ0)ψT (Yi,Θ0) = {Wjki(Yi − µjk)}2. Then A(Θ) = E{−ψ′} = E{Wjki},

B(Θ) = E{ψ(Yi,Θ0)ψT (Yi,Θ0)} = E
[
Xji
κ2j
{Ri + (1−Ri)Zki

Qk
}2{Yi − µjk}2

]
. Let’s expand

and evaluate A(Θ) and B(Θ).

A(Θ) = E{−ψ′} = E{Wjki}

= E

[
Xji

κj
{Ri +

(1−Ri)Zk
Qk

}
]

= E

[
E

[
Xji

κj
{Ri +

(1−Ri)Zk
Qk

}|Xji, Ri

]]
= E

[
Xji

κj
E

[
{Ri +

(1−Ri)Zk
Qk

}|Xji, Ri

]]
= E

[
Xji

κj
[Ri + (1−Ri)]

]
= E

[
Xji

κj

]
= 1.

B(Θ) = E{ψ(Yi,Θ0)ψT (Yi,Θ0)}

= E

[
Xji

κ2
j

{
Ri +

(1−Ri)Zki
Qk

}2

{Yi − µjk}2

]

= E

[
E

[
Xji

κ2
j

{
Ri +

(1−Ri)Zki
Qk

}2

{RiYi(Aj) + (1−Ri)Yi(AjBk)− µjk}2

]
|Ri, Yi(Aj), Yi(AjBk)

]

= E

[
E

[
XjiRi

κ2
j

[
RiY

2
i (Aj)− 2RiµjkYi(Aj) + µ2

jk

]]
|Ri, Yi(Aj), Yi(AjBk)

]
+E

[
E

[
Xji(1−Ri)Zki

κ2
jQ

2
k

[
(1−Ri)Y

2
i (AjBk)

]]
|Ri, Yi(Aj), Yi(AjBk)

]
−E

[
E

[
Xji(1−Ri)Zki

κ2
jQ

2
k

[
2(1−Ri)µjkYi(AjBk) + µ2

jk

]]
|Ri, Yi(Aj), Yi(AjBk)

]
= E

[
E

[
Xji

κ2
j

{
Ri

[
Y 2
i (Aj)− 2µjkYi(Aj) + µ2

jk

]}]
|Ri, Yi(Aj), Yi(AjBk)

]
+E [Zki|Xji, Ri, Y (Aj), Y (AjBk)]

E

[
E

[
Xji

κ2
j

{
(1−Ri)

Q2
k

[
Y 2
i (AjBk)− 2µjkYi(AjBk) + µ2

jk

]}]
|Ri, Yi(Aj), Yi(AjBk)

]
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Taking the expected values and rearranging the terms leads to

=
πj
κj

[
σ2
Aj

+ (µjk − µAj)2
]

+
(1− πj)
κjQk

[
σ2
AjBk

+ (µjk − µAjBk)2
]
.

Therefore, the NIPW variance estimator is

var(Θ̂) =
1

n
A−1(Θ̂)B(Θ̂){A−1(Θ̂)}T

=
πj
nκj

[
σ2
Aj

+ (µjk − µAj)2
]

+
(1− πj)
nκjQk

[
σ2
AjBk

+ (µjk − µAjBk)2
]
.

3. Variance of AR Estimator

Let Θ0 = (µjk) and the ψ- function ψ(Yi,Θ0) = Wjki(Yi−µjk), where ψ
′
(Yi,Θ0) = −Wjki,

ψ(Yi,Θ0)ψT (Yi,Θ0) = {Wjki(Yi − µjk)}2. Then A(Θ) = E{−ψ′} = E{Wjki}, B(Θ) =

E{ψ(Yi,Θ0)ψT (Yi,Θ0)} = E
[
Xji {RiZ

∗
ki + (1−Ri)Zki}2 {Yi − µjk}2

]
. Let’s expand and

evaluate A(Θ) and B(Θ).

A(Θ) = E{−ψ′} = E{Wjki}

= E [Xji {RiZ
∗
ki + (1−Ri)Zki}]

= E [E(Xji {RiZ
∗
ki + (1−Ri)Zki} |Xji, Ri)]

= E [Xji {RiPki + (1−Ri)Pki}]

= E [XjiPki] = κjQk.

B(Θ) = E{ψ(Yi,Θ0)ψT (Yi,Θ0)}

= E
[
Xji {RiZ∗

ki + (1−Ri)Zki}2 {Yi − µjk}2
]

= E
[
E
[
Xji {RiZ∗

ki + (1−Ri)Zki}2 {RiYi(Aj) + (1−Ri)Yi(AjBk)− µjk}2
]
|Ri, Yi(Aj), Yi(AjBk)

]
= E

[
E
[
XjiRiZ

∗
ki

[
RiY

2
i (Aj)− 2RiµjkYi(Aj) + µ2

jk

]]
|Ri, Yi(Aj), Yi(AjBk)

]
+E

[
E
[
Xji(1−Ri)Zki

[
(1−Ri)Y 2

i (AjBk)− 2(1−Ri)µjkYi(AjBk) + µ2
jk

]]
|Ri, Yi(Aj), Yi(AjBk)

]
= E

[
E
[
XjiRi

(
Y 2
i (Aj)− 2µjkYi(Aj) + µ2

jk

)
|Xji, Ri, Yi(Aj), Yi(AjBk)

]]
E [Z∗

ki|Xji, Ri, Yi(Aj), Yi(AjBk)]

+E
[
E
[
Xji(1−Ri)

[
(1−Ri)Y 2

i (AjBk)− 2(1−Ri)µjkYi(AjBk) + µ2
jk

]
|Xji, Ri, Yi(Aj), Yi(AjBk)

]]
E [Zki|Xji, Ri, Yi(Aj), Yi(AjBk)]
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Taking the expected values and rearranging the terms leads to,

= Qkκjπj

[
σ2
Aj

+ (µjk − µAj)2 − σ2
AjBk

− (µjk − µAjBk)2
]
+Qkκj

[
σ2
AjBk

+ (µjk − µAjBk)2
]
.

Therefore, variance of AR estimator is

var(Θ̂) =
1

n
A−1(Θ̂)B(Θ̂){A−1(Θ̂)}T

=
1

nQkκj

[
πj{σ2

Aj
+ (µjk − µAj)2 − σ2

AjBk
− (µjk − µAjBk)2}

]
+

1

nQkκj

[
σ2
AjBk

+ (µjk − µAjBk)2
]
.

4. Variance of NIPW1 Estimator

Let Θ0 = (κj, Qk, µjk) and ψ- function

ψ(Yi,Θ0) =


Xji − κj

Xji(1−Ri)(Zki −Qk)

Xji
κj

[
Ri + (1−Ri)Zki

Qk

]
{Yi − µjk}

 ,
where

−ψ′(Yi,Θ0) =


1 0 0

0 Xji(1−Ri) 0

Xji
κ2j

[
Ri + (1−Ri)Zk

Qk

]
{Yi − µjk} Xji

κj

[
(1−Ri)Zk

Q2
k

]
{Yi − µjk} Xji

κj

[
Ri + (1−Ri)Zk

Qk

]
 .

Then

A(Θ) = E{−ψ(Yi,Θ0)}

= E


1 0 0

0 Xji(1−Ri) 0

Xji
κ2j

[
Ri + (1−Ri)Zki

Qk

]
{Yi − µjk} Xji

κj

[
(1−Ri)Zki

Q2
k

]
{Yi − µjk} Xji

κj

[
Ri + (1−Ri)Zki

Qk

]
 ,

where

i. E{Xji(1 − Ri)} = E [E{Xji(1−Ri)}|Xji] = E [XjiE{(1−Ri)}|Xji] = E{Xji(1 −

πj)} = κj(1− πj).

ii. E
Xji
κ2j

[
Ri + (1−Ri)Zki

Qk

]
{Yi − µjk} = 0, since E(Yi) = µjk.
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iii.
Xji
κj

[
RiZki
P 2
k

]
{Yi − µjk} = 0, since E(Yi) = µjk.

iv. E
[
Xji
κj
{Ri + (1−Ri)Zki

Qk
}
]

= E

[
E
Xji

κj
{Ri +

(1−Ri)Zki
Qk

}|Xji, Ri

]
= E

[
E
Xji

κj
{Ri +

(1−Ri)Zki
Qk

}|Xji, Ri

]
= E

[
Xji

κj
E{Ri + (1−Ri)}|Xji

]
= E

[
Xji

κj

]
= 1.

B(Θ) = E{ψψT}

= E


B11 B12 B13

B21 B22 B23

B31 B32 B33

 ,
where

i. B11 = E(Xji − κj)2 = var(Xji) = κj(1− κj).

ii. B12 = B21 = E{(Xji − κj)Xji(1−Ri)(Zk −Qk)} = 0.

iii. B13 = B31 = E
[
(Xji − κj)Xjiκj {Ri + (1−Ri)Zk

Qk
}(Yi − µjk)

]
= 0, since EYi = µjk.

iv. B22 = E{Xj(1−Ri)(Zk −Qk)
2}

= E
[
{Xji(1−Ri)Zki −Xji(1−Ri)Qk}2

]
= E

[
Xj(1−Ri)Zk +Xji(1−Ri)Q

2
k − 2Xji(1−Ri)Qk

]
= E

[
E
[
Xji(1−Ri)Zk +Xji(1−Ri)Q

2
k − 2Xji(1−Ri)Qk

]
|Xji, Ri

]
= E

[
E
[
Xji(1−Ri)Qk +Xji(1−Ri)Q

2
k − 2Xji(1−Ri)Qk

]
|Xji, Ri

]
= E

[
E
[
Xji(1−Ri)Q

2
k −Xji(1−Ri)Q

2
k

]
|Xji, Ri

]
= E

[
XjiE

[
(Q2

k −Qk)Xji(1− πj)
]
|Xji

]
= κj(1− πj)(Q2

k −Qk).

v. B23 = B32 = E
[
Xji(1−Ri)(Zki −Qk)

Xji
κj
{Ri + (1−Ri)Zki

Qk
}(Yi − µjk)

]
= 0, since

EYi = µjk.
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vi. B33 = E
[
Xji
κj
{Ri + (1−Ri)Zk

Qk
}(Yi − µjk)

]2

.

=
πj
κj

[
σ2
Aj

+ (µjk − µAj)2
]

+
(1− πj)
κjQk

[
σ2
AjBk

+ (µjk − µAjBk)2
]
,

which is derived above for NIPW estimator.

The variance of NIPW1 estimator is the (3, 3) entry of the matrix 1
n
{A−1(Θ)B(Θ){A−1(Θ)}T}.

5. Variance of IPW1 Estimator

Let Θ0 = (κj, Qk, µjk) and the ψ- function

ψ(Yi,Θ0) =


Xji − κj

Xji(1−Ri)(Zk −Qk)

Xji
κj

[
Ri + (1−Ri)Zk

Qk

]
Yi − µjk

 ,

where

−ψ′(Yi,Θ0) =


1 0 0

0 Xji(1−Ri) 0

Xji
κ2j

[
Ri + (1−Ri)Zk

Qk

]
Yi

Xji
κj

[
(1−Ri)Zk

Q2
k

]
Yi 1

 .
Then A(Θ) = E{−ψ(Yi,Θ0)}

= E


1 0 0

0 Xji(1−Ri) 0

Xji
κ2j

[
Ri + (1−Ri)Zki

Qk

]
Yi

Xji
κj

[
(1−Ri)Zk

Q2
k

]
Yi 1

 ,

where

i. E{Xji(1 − Ri)} = E [E{Xji(1−Ri)}|Xji] = E [XjiE{(1−Ri)}|Xji] = E{Xji(1 −

πj)} = κj(1− πj).

62



ii. E
{
Xji
κ2j

[
Ri + (1−Ri)Zk

Qk

]
Yi

}

= E

[
E
Xji

κ2
j

[
Ri +

(1−Ri)Zk
Qk

]
Yi|Xji, Ri, Yi(Aj), Yi(AjBk)

]

= E
Xji

κ2
j

[
E

[
RiYi(Aj) +

(1−Ri)ZkYi(AjBk)

Qk

]
Yi|Xji, Ri, Yi(Aj), Yi(AjBk)

]
= E

Xji

κ2
j

[E [RiYi(Aj) + (1−Ri)Yi(AjBk)] |Xji, Yi(Aj), Yi(AjBk)]

= E
Xji

κ2
j

[E [πjYi(Aj) + (1− πj)Yi(AjBk)] |Xji, Yi(Aj), Yi(AjBk)]

= E
Xji

κ2
j

[
E
[
πjµAj + (1− πj)µAjBk

]
|Xji

]
=

1

κj

[
πjµAj + (1− πj)µAjBk

]
=

1

κj
µjk.

iii. E
{
Xji
κj

[
(1−Ri)Zk

Q2
k

]
Yi

}

= E

[
E

{
Xji

κj

[
(1−Ri)Zk

Q2
k

]
Yi|Xji, Ri

}]

= E

{
Xji

κj
E

[
(1−Ri)Zk

Q2
k

]
|Xji, Ri

}
E {E [Yi|Ri]}

= E

{
Xji

κj
E

[
(1−Ri)

Qk

]
|Xji

}
µjk

= E

{
Xji

κj

(1− πj)
Qk

}
µjk

=
(1− πj)
Qk

µjk.

B(Θ) = E{ψψT}

= E


B11 B12 B13

B21 B22 B23

B31 B32 B33

 ,
where

i. B11 = E(Xji − κj)2 = var(Xji) = κj(1− κj).

ii. B12 = B21 = E{(Xji − κj)Xji(1−Ri)(Zk −Qk)} = 0.
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iii. B13 = B31 = E(Xji − κj)
[
Xji
κj

[
Ri + (1−Ri)Zki

Qk

]
Yi − µjk

]
= E

[
(Xji − κj)

Xji

κj
E

[
{RiYi(Aj) +

(1−Ri)ZkYi(AjBk)

Qk

} − µjk
]
|Xji, Ri, Yi(Aj), Yi(AjBk)

]

= E

[
(Xji − κj)

Xji

κj
E [{RiYi(Aj) + (1−Ri)Yi(AjBk)} − µjk] |Xji, Yi(Aj), Yi(AjBk)

]
= E

[
(Xji − κj)

Xji

κj
µjk − µjk

]
=
µjk
κj
E
[
(Xji − κj)2

]
=
µjk
κj
κj(1− κj) = (1− κj)µjk.

iv. B22 = E{Xi(1−Ri)(Zki −Qk)
2} = κj(1− πj)(Q2

k −Qk), which is the same as entry

B22 for NIPW.

v. B23 = B32 = E
{
Xji(1−Ri)(Zki −Qk){Xjiκj

[
Ri + (1−Ri)Zki

Qk

]
Yi − µjk}

}
= 0.

vi. B33 = E
[
Xji
κj

{
Ri + (1−Ri)Zki

Qk

}
Yi − µjk

]2

=
1

κj
{ πj
Qk

(σ2
Aj

+ µ2
Aj

) + (1− πj)(σ2
AjBk

+ µ2
AjBk

)} − µ2
jk,

which is computed for IPW above.

The variance of NIPW1 estimator is the (3, 3) entry of the matrix, 1
n
{A−1(Θ)B(Θ){A−1(Θ)}T},

4.2 VARIANCE ESTIMATORS

1. IPW Robust Variance Estimator

µ̂IPWjk =
1

n

n∑
i=1

Xji

κj
{Ri +

1−Ri

Qk

Zki}Yi

=
1

n

n∑
i=1

WjkiYi

where Wjki =
Xji
κj
{Ri + 1−Ri

Qk
Zki}.

Let the ψ function for Θ̂ = µ̂AjBk be ψ = {WjkiYi−µjk}; ψ
′
= −1, ψψT = {WjkiYi−µjk}2,

A(Θ) = 1
n

∑n
i=1−ψ

′
= 1, B(Θ) = 1

n

∑n
i=1 ψψ

T = 1
n

∑n
i=1{WjkiYi − µjk}2,
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v̂ar(Θ̂) is computed as follows

=
1

n
{A−1(Θ̂)B(Θ̂){A−1(Θ̂)}T}

=
1

n
{ 1

n

n∑
i=1

{WjkiYi − µ̂jk}2}

=
1

n2
{

n∑
i=1

{WjkiYi − µ̂jk}2}.

2. NIPW Robust Variance Estimator

µ̂NIPWAjBk
=

∑n
i=1

Xji
κj
{Ri + 1−Ri

Qk
Zki}Yi∑n

i=1
Xji
κj
{Ri + 1−Ri

Qk
Zki}

=

∑n
i=1WjkiYi∑n
i=1Wjki

where Wjki =
Xji
κj
{Ri + 1−Ri

Qk
Zki}.

Let the ψ function for Θ̂ = µ̂AjBk be ψ = Wjki(Yi−µjk); ψ
′
= −Wjki, ψψ

T = {Wjki(Yi−

µjk)}2, A(Θ) = 1
n

∑n
i=1−ψ

′
= 1

n

∑n
i=1 Wjki, B(Θ) = 1

n

∑n
i=1 ψψ

T = 1
n

∑n
i=1{Wjki(Yi −

µjk)}2,

v̂ar(Θ̂) is computed as follows,

=
1

n
{A−1(Θ̂)B(Θ̂){A−1(Θ̂)}T}

=
n∑n

i=1 Wjki

{ 1

n2

n∑
i=1

{Wjki(Yi − µ̂jk)}2} n∑n
i=1 Wjki

=

∑n
i=1{Wjki(Yi − µ̂jk)}2}

(
∑n

i=1Wjki)2

3. AR Robust Variance Estimator

The artificial randomized (AR) estimators is given by,

µ̂SMART
jk =

∑n
i=1Xji {RiZ

∗
ki + (1−Ri)Zki}Yi∑n

i=1Xji {RiZ∗
ki + (1−Ri)Zki}

=

∑n
i=1WjkiYi∑n
i=1Wjki
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where Wjki = Xji {RiZ
∗
ki + (1−Ri)Zki}.

Let the ψ function for Θ̂ = µ̂AjBk be ψ = Wjki(Yi−µjk), ψ
′
= −Wjki, ψψ

T = {Wjki(Yi−

µjk)}2, A(Θ) = 1
n

∑n
i=1−ψ

′
= 1

n

∑n
i=1 Wjki, B(Θ) = 1

n

∑n
i=1 ψψ

T = 1
n

∑n
i=1{Wjki(Yi −

µjk)}2,

v̂ar(Θ̂) is computed as follows

=
1

n
var(Θ̂)

=
1

n
{A−1(Θ̂)B(Θ̂){A−1(Θ̂)}T}

=
n∑n

i=1 Wjki

{ 1

n2

n∑
i=1

{Wjki(Yi − µjk)}2} n∑n
i=1 Wjki

=

∑n
i=1{Wjki(Yi − µjk)}2}

(
∑n

i=1Wjki)2

4. NIPW1 Robust Variance Estimator

µ̂NIPWAjBk
=

∑n
i=1

Xji
κj
{Ri + 1−Ri

Qk
Zki}Yi∑n

i=1
Xji
κj
{Ri + 1−Ri

Qk
Zki}

=

∑n
i=1WjkiYi∑n
i=1Wjki

where Wjki =
Xji
κj
{Ri + 1−Ri

Qk
Zki}.

Let the ψ-function for Θ = (κj, Qk, µjk) be

ψ(Θ, Yi) =


Xji − κj

Xji(1−Ri)(Zki −Qk)

Xji
κj

[
Ri + (1−Ri)Zki

Qk

]
{Yi − µjk}

 ,

−ψ′(Yi,Θ0) =


1 0 0

0 Xji(1−Ri) 0

Xji
κ2j

[
Ri + (1−Ri)Zki

Qk

]
{Yi − µjk} Xji

κj

[
(1−Ri)Zki

Q2
k

]
{Yi − µjk} Xji

κj

[
Ri + (1−Ri)Zki

Qk

]
 ,
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A(Θ) = 1
n

∑n
i=1−ψ(Θ, Yi)

=
n∑
i=1


1 0 0

0 Xji(1−Ri) 0

Xji
κ2j

[
Ri + (1−Ri)Zki

Qk

]
{Yi − µjk} Xji

κj

[
(1−Ri)Zki

Q2
k

]
{Yi − µjk} Xji

κj

[
Ri + (1−Ri)Zki

Qk

]
 .

B(Θ) = 1
n

∑n
i=1 ψψ

T

=
n∑
i=1


B11 B12 B13

B21 B22 B23

B31 B32 B33

 ,
where

i. B11 =
∑n

i=1(Xji − κj)2.

ii. B12 = B21 =
∑n

i=1(Xji − κj)Xji(1−Ri)(Zki −Qk).

iii. B13 = B31 =
∑n

i=1(Xji − κj)Xjiκj
[
Ri + (1−Ri)Zki

Qk

]
(Yi − µjk).

iv. B22 =
∑n

i=1Xi(1−Ri)(Zki −Qk)
2.

v. B23 = B32 =
∑n

i=1Xji(1−Ri)(Zki −Qk)
Xji
κj

[
Ri + (1−Ri)Zki

Qk

]
(Yi − µjk).

vi. B33 =
∑n

i=1

[
Xji
κj

[
Ri + (1−Ri)Zki

Qk

]
(Yi − µjk)

]2

.

The robust variance estimator of the variance of NIPW1 estimator is the (3, 3) entry of

matrix 1
n
{A−1(Θ̂)B(Θ̂){A−1(Θ̂)}T}.

5. IPW1 Robust Variance Estimator

µ̂IPWjk =
1

n

n∑
i=1

Xji

κj
{Ri +

1−Ri

Qk

Zki}Yi

=
1

n

n∑
i=1

WjkiYi

where Wjki =
Xji
κj
{Ri + 1−Ri

Qk
Zki}.

Let the ψ-function for Θ = (κj, Qk, µjk) be

ψ(Θ, Yi) =


Xji − κj

Xji(1−Ri)(Zki −Qk)

Xji
κj

[
Ri + (1−Ri)Zki

Qk

]
Yi − µjk

 ,
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−ψ′(Yi,Θ0) =


1 0 0

0 Xji(1−Ri) 0

Xji
κ2j

[
Ri + (1−Ri)Zki

Qk

]
Yi

Xji
κj

[
(1−Ri)Zki

Q2
k

]
Yi 1

 ,
A(Θ) = 1

n

∑n
i=1−ψ(Θ, Yi)

=
n∑
i=1


1 0 0

0 Xji(1−Ri) 0

Xji
κ2j

[
Ri + (1−Ri)Zki

Qk

]
Yi

Xji
κj

[
(1−Ri)Zki

Q2
k

]
Yi 1

 .
B(Θ) = 1

n

∑n
i=1 ψψ

T

=
n∑
i=1


B11 B12 B13

B21 B22 B23

B31 B32 B33

 ,
where

i. B11 =
∑n

i=1(Xji − κj)2.

ii. B12 = B21 =
∑n

i=1(Xji − κj)Xji(1−Ri)(Zki −Qk).

iii. B13 = B31 =
∑n

i=1(Xji − κj){Xjiκj
[
Ri + (1−Ri)Zki

Qk

]
Yi − µjk}.

iv. B22 =
∑n

i=1Xi(1−Ri)(Zki −Qk)
2.

v. B23 = B32 =
∑n

i=1Xji(1−Ri)(Zki −Qk){Xjiκj
[
Ri + (1−Ri)Zki

Qk

]
Yi − µjk}.

vi. B33 =
∑n

i=1

[
Xji
κj

[
Ri + (1−Ri)Zki

Qk

]
Yi − µjk

]2

.

The robust variance estimate of IPW1 is the (3, 3) entry of matrix 1
n
{A−1(Θ̂)B(Θ̂){A−1(Θ̂)}T}.

68



5.0 DISCUSSION AND FUTURE WORK

Adapting or personalizing treatments due to heterogeneous response profiles is becoming

important for treating patients with chronic diseases. Routine sequential dose adjustment,

treatment choice based on history of covariates and past treatments are essential features of

adaptive treatment strategies. SMAR designs enable construction of pre-specified strategies

for future patients.

This chapter presents a synopsis of the dissertation and future work. This dissertation

makes two fundamental contributions to the literature of adaptive treatment strategies.

In Chapter 2, we introduced sample size formulas that will be useful when designing two-

stage SMAR trials. The formula is based on Wald-type test statistic. An overall sample size

formula to detect any difference among all strategy means as well as a sample size formula to

detect pairwise differences are provided. Often, the interest is to compare ATSs embedded

within SMAR designs. One approach is to conduct hypothesis testing to compare the ATS

means. This can be achieved using IPW or g-computation techniques to estimate strategy

means and compare. However, investigators are interested in using regression models to

estimate ATS means, compare among them and make pertinent inferences by allowing co-

variate adjustments. To specifically deal with this, in Chapter 3, we introduced the concept

of ‘artificial randomization’. Artificial randomization puts subjects into unique classes which

then makes regression possible. Due to its sequential nature, data from SMAR designs are

manipulated before it becomes available for regression methods. To elaborate implementa-

tion of the method we used the CALGB data to perform a data analysis. One of the key

benefits of artificial randomization is that using the initial regression results, we are able to

create more strategies that could inform disease management.
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      We have proposed an unbiased estimator called simple multiple artificial randomized tool 

(SMART) which is easier to implement. SMART specifies artificial randomization to create

M=1 to M=5 data sets to create a single estimate and standard error. It is worth investi- 

gating properties of the estimator for higher values of M by changing assumed population

parameters. Softwares such as R or SAS can be used to implement the regression as the data

that is artificially randomized becomes readily available. There is a challenge to extend the

methodology to SMAR designs with more than two stages. It could easily be adapted to

binary, survival outcomes. Our method is limited to two-stage, specific designs where either

first stage responders or non-responders do not get re-randomized.

When analyzing data from SMAR designs, it is of interest to test equality of adaptive

treatment strategies (ATSs). In the usual setting, hypothesis testing is carried out para-

metrically using test statistics developed for IPW or g-estimation. Non-parametric tests

are often attractive for small sample sizes. For future work, permutation tests could be

considered.
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