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PRESERVING PRIVACY IN SOCIAL NETWORKING SYSTEMS:

POLICY-BASED CONTROL AND ANONYMITY

Amirreza Masoumzadeh, PhD

University of Pittsburgh, 2014

Social Networking Systems (SNSs), such as Facebook, are complex information systems

involving a huge number of active entities that provide and consume enormous amounts of

information. Such information can be mainly attributed to the users of SNSs and hence, can

be considered privacy-sensitive. Therefore, in contrast to traditional systems where access

control is governed by system policies, enabling individual users to specify their privacy

control policies becomes a natural requirement. The intricate semantic relationships among

data objects, users, and between data objects and users further add to the complexity of

privacy control needs. Moreover, there is immense interest in studying social network data

that is collected by SNSs for various research purposes. Anonymization is a solution to

preserve user privacy in this case. However, anonymizing social network datasets effectively

and efficiently is a much more challenging task than anonymizing tabular datasets due to

the connectedness of the users in a social network graph.

In this dissertation, we propose approaches and methods that facilitate preserving user

privacy in terms of providing both fine-grained control of information and utility-preserving

anonymization. In particular, we propose an ontology-based privacy control framework that

enables fine-grained specification and enforcement of privacy control policies by both users

and SNS providers. Our framework allows an SNS provider to determine privacy control

policy authorities for SNS information, and allows users to specify advanced policies, that

in addition to fine-grained policy specification, enables sharing of authority over protected

resources. Based on such an ontology-based foundation, we also propose a framework to

iii



support novel privacy policy analysis tasks in SNSs. Furthermore, we propose a framework

to enhance anonymization algorithms for social network datasets in terms of preserving their

structural properties without sacrificing privacy requirements set for the algorithms. The

proposed approaches direct the behavior of anonymization algorithms based on concepts in

social network theory. We evaluate our proposed methods and approaches by implementing

a prototype of the privacy control framework, carrying out a policy analysis case study for a

real-world SNS, and performing an extensive set of experiments on improving social network

anonymization in terms of preserving data utility.
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1.0 INTRODUCTION

Social Networking Systems (SNSs) are increasingly becoming a major type of online appli-

cations that facilitate social interactions and information sharing among a large number of

users. The scale of active entities, interactions, and digital content in these complex environ-

ments brings about new security and privacy challenges. Users constantly provide contents

and information to these systems, either explicitly, such as by uploading a photo, or im-

plicitly by leaving behind interaction traces, such as by responding to an invitation. Such

information can be considered privacy sensitive since it is related to the users [30, 35, 47].

Therefore, an SNS must ensure preserving its users’ privacy as it shares information with

various entities through its services. Several privacy problems may arise in such an environ-

ment, such as effectively expressing privacy control policies by users, controlling information

objects that have multiple stakeholders, or efficiently anonymizing published social network

data. In this dissertation, we aim to provide solutions to such complex privacy issues.

We show the high-level privacy preservation mechanisms that are required in an SNS in

Figure 1. We assume that an SNS uses a knowledge base to store its information and provide

services to its users. The knowledge base will store all application-related information such

as social network, user profiles, content objects, etc. Besides the SNS operator, we consider

three categories of entities that may access the information. Users may query and update

the information through interaction with the SNS’s user interface. Viewing your friend’s

profile information or updating yours are some examples. In addition, users may authorize

other application providers to access data on behalf of them (i.e., delegation) in order to re-

ceive add-on services. For instance, many SNS providers nowadays provide an app platform

through which they provide third party developers access to user’s data. Such accesses must

be authorized by users in order to respect their privacy. Integration and data exchange with

1



SNS 
Knowledge 

Base 

Access 
Control 

Policy 
Base 

(Enhanced) 
Anonymization 

Policy 
Analysis 

Third Party SN 
Accessors (e.g., 

academic researchers) 

SNS Users 

Third-Party Apps 
(Authorized by Users) SNS 

Anonymized 
SN Dataset 

Task III 

Task II 

Task I 

Figure 1: Overview of Privacy Preservation Requirements for SNSs

other SNSs can also be provided using a similar approach. Lastly, an SNS provider may

allow third parties to access its data in an anonymized format, without requiring explicit au-

thorization from its users. Many researchers in different domains such as academia, business,

and even government, are interested in the study of social network data [61, 58, 67, 11]. The

purpose of such a study is typically to investigate various structural properties and patterns

both at node level and network as a whole depending on the application of interest. Market

researchers, academic researchers, and advertisers are a few examples of such third parties.

SNSs are by their nature a good platform to collect such information. However, since a social

network dataset may carry privacy-sensitive information about its users it is important to

ensure that users cannot be reidentified in the anonymized dataset.

As depicted in Figure 1, an SNS should preserve users’ privacy by mediating access

to SNS knowledge base based on privacy control policies set by the system and its users.

Such policies will restrict access to the information related to a user by other users and

applications. Moreover, a rigorous anonymization process makes sure to export anonymized

data from the main knowledge base that respects users’ privacy for use by third party

accessors. In this dissertation proposal, we propose research tasks to develop mechanisms

that addresses certain access control and anonymization challenges in SNSs, and overcome

2



the limitations of the previously-proposed approaches in the literature.

1.1 CHALLENGES AND MOTIVATIONS

In this section, we discuss our motivations and problem statement and present challenges that

need to be addressed. The volume of privacy-sensitive information in SNSs calls for tighter

security measures for protection against attackers. But it also creates unique challenges

and complexities to mediate accesses of the legitimate entities, as indicated in Figure 1.

As per a general goal of SNSs, users are motivated to expand their social connectivity and

awareness through interactions and content sharing with each other. However, as the social

connections of a user grows, so does the complexity of privacy implications. The increased

variety of social contents and connections requires more fine-grained control on privacy-

sensitive information. Leveraging third party applications also raises similar challenges.

Furthermore, as users release more privacy-sensitive information, including their connections

that can help in (re)identifying them, compiling an anonymized and still useful dataset for

the use by external entities becomes more challenging.

There are major issues with the current practice of privacy control policies in SNSs such

as Facebook. They provide some control in the form of privacy settings to their users.

However, the privacy control features provided by these systems are usually limited, and not

so flexible and robust [10]. Moreover, they seem to be implemented incrementally without

detailed formal modeling, a practice that has led to many controversies [71, 43, 1]. Several

desirable control features are missing and there exist no way of verifying consistency in policy

specification and enforcement. The following examples show some pitfalls of taking such an

approach by Facebook. In Facebook, a user can choose to hide her relationship status with

her significant other. But one can learn about that relationship if the significant other

happens not to hide it. In other words, users cannot control disclosure of some intuitively

privacy-sensitive information. As an example of inconsistency in policy enforcement, even if

a user disables being publicly listed in Facebook she will be still listed in the public listings

of the groups which she has joined (Facebook has disabled public listing of group members

3



recently). Digital resources in SNSs are comprised of various data types. Also, different

annotation methods such as tagging and commenting are common in these systems. These

all introduce a variety of semantic relations among objects. In particular, it is important to

ensure the protection of not only the basic data entities and values, but also their relations.

For instance, a person tagged in a photo might not be only concerned about being tagged,

but also about who else has been tagged in the same photo, and who actually owns the

photo. In order to truly capture the fine-grained protection requirements in SNSs, it is

important to have an appropriate data model. Most of the major approaches for access

control in SNSs, such as trust-based policies [48, 49, 14, 15] and relationship-based access

control [24, 25] focus on enabling expressive policies with regards to access subjects. These

approaches neglect to capture fine-grained information modeling required for SNSs in order

to express fine-grained privacy control policies on information objects. Moreover, unlike in

traditional systems where security administrators are in charge of access control policy, in an

SNS, users should be recognized as the main authority over access control policies protecting

the information related to them. A flexible authority model is required to determine each

user’s authority over different resources. This feature has not been addressed in existing

work. Some key challenges are

Challenge 1. How can SNS users be provided authority to express privacy control policies

for the information related to them?

Challenge 2. How to support fine-grained specification of privacy control policy on SNS

information?

Challenge 3. How can an SNS ensure consistent enforcement of privacy control policies?

Since SNSs have a complex policy structure, it is important to provide policy analysis

techniques that help maintain the desired properties for policies and avoid privacy violation

risks. As an example, let us discuss transparency of policies in a typical SNS such as

Facebook. Users are able to control access to some of their resources through privacy settings.

However, such privacy settings are by no means complete in the sense that they do not control

access to all the potentially privacy-sensitive information about a user. That is the case even

for Facebook, which has fairly the most extensive set of privacy settings among SNSs. For the
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rest of the information related to the user and not indicated in the privacy settings, access is

governed by a set of fixed rules set by the SNS itself. We call such policies as system defined

policies. The issue is that usually the system defined policies are not clearly described to the

users. Therefore, users are unsure about what to expect from the system. Users need to learn

about them either by harvesting help pages in the SNS or by observing the system’s behavior.

Worse is that, since the system defined policies are not well documented, SNSs can modify

them without users noticing it and put them at great risk of privacy violations. Such issues

raise the need for a formal policy analysis framework that can handle the complex privacy

control policy requirements in these environments. For example, using such an analysis

framework, one can test the transparency of policies in an SNS. Most of the recent related

work on policy analysis (e.g., [46, 52]) focuses on XACML policies. Although XACML is

an expressive policy language that can support many traditional security policies it is not

suitable for representing complex privacy control policies in SNSs such as setting “Who can

see posts you have been tagged in on your timeline?” in Facebook. Thus, the key challenge

is

Challenge 4. How can we formally analyze privacy control policies in an SNS and provide

useful policy analysis for system operators and users?

As previously mentioned, anonymization of social network datasets are vital if they are

to be shared with third parties. A naive anonymization for social networks may simply

replace real node identifiers with random ones. However, researchers have shown that such

an approach is not immune from node reidentification if an adversary has certain background

knowledge about network structure of a target victim [4, 32, 62]. In order to provide stronger

anonymization for social networks, researchers have mainly taken two different approaches to

structural anonymization. In the graph generalization approach [31, 81, 12], a social network

is summarized in a higher-level graph, hiding details of the relationships among agents while

providing overall structural summaries of the graph. In the edge perturbation approach

[32, 80, 53, 76, 83, 33], the edge structure of the social network is modified, i.e., some edges

are removed and some are added, in order to satisfy an anonymity property (typically based

on k -anonymity [75]). For instance, a graph can be modified to have degree k -anonymity
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where for each node there are at least k − 1 other nodes with the same degree. Therefore,

an adversary that knows the degree of a victim node will not be able to reidentify her by a

probability larger than 1/k. An expected consequence of structural anonymization is that

running same analysis on a social network and its anonymized version may lead to different

results. In order to use a social network anonymized by a generalization method it needs

to be reconstructed by randomly generating sub-structures in place of supernodes based on

the reported supernode properties. Modifying links in the perturbation methods to fulfill

the anonymization criteria also severely affects the network structure. One may hope that

such differences are negligible, so that results are still usable. But observations show that if

a social network is anonymized up to an acceptable degree, the resultant network becomes

highly distorted, thus, severely affecting their utility for analysis purposes [62]. For instance,

a node with a low centrality value may become one with high centrality value because of the

addition of many fake adjacent links. Such a change can reduce the accuracy of centrality

analysis of the network nodes. The key issue is that anonymization methods usually focus

on achieving the anonymization objectives and disregard the crucial need to preserve the

original structural semantics of a social network; hence, the outcome is a significant decrease

in the utility of the results. In addition to researching social network anonymization concepts

and algorithms to achieve them, it is crucial to study how utility of social network dataset

is affected and can be preserved in an anonymization process. Here, the key challenges are:

Challenge 5. What factor should be considered in anonymization algorithms for social

network datasets in order to better preserve the utility of the data?

Challenge 6. Can we devise a generic approach to preserve social network utility in anony-

mization process?

1.2 OBJECTIVES

Motivated by the challenges discussed in Section 1.1, we propose an ontology-based privacy

control framework for SNSs and a framework for structure-preserving anonymization of social
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networks. Our ontology-based privacy control framework consists of an ontology-based access

control model for SNSs (OSNAC) and a privacy control policy analysis approach. Our

structure-preserving anonymization framework employs concepts in social network analysis

theory to improve network perturbation techniques in terms of preserving network structure.

The framework enhances original algorithms using concepts of structural roles and edge

betweenness. With regards to these frameworks, we study the validity of the following two

hypotheses in the dissertation:

• Ontology-based privacy control framework enables fine-grained specification of privacy

control policies and useful policy analysis tasks for SNSs.

• Concepts in social network analysis theory can be leveraged in edge-perturbing anony-

mization algorithms for social networks in order to better preserve data utility while

maintaining privacy requirements.

In order to precisely show the achievement of the above-mentioned, broadly-defined hy-

potheses, we break them down into more specific research questions. We formulate the

following three research questions with regards to the first hypothesis:

Question 1. Does OSNAC enable finer-grained specification of protected resources com-

pared to the existing access control models for SNSs?

Question 2. Does OSNAC enforce privacy control policies correctly?

Question 3. Can our ontology-based privacy control policy analysis framework enable novel

and useful policy analysis tasks for SNSs?

We also formulate the following two research questions with regards to the second hy-

pothesis:

Question 4. Do role-enhanced and edge-betweenness-enhanced versions of edge perturbing

anonymization algorithms preserve data utility better than original algorithms?

Question 5. Do role-enhanced and edge-betweenness-enhanced versions of edge perturbing

anonymization algorithms respect privacy requirements of the original algorithms?
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1.3 ORGANIZATION

The rest of the dissertation is organized as follows. In Chapter 2, we review the closely related

work in the literature to the dissertation. In Chapter 3, we propose an ontology-based privacy

control framework for SNSs, demonstrate its applicability in controlling users’ privacy and

policy analysis, and compare it against the proposed models in the literature. In Chapter 4,

we propose a framework to enhance structure-preservation of edge perturbing anonymization

schemes for social networks, and demonstrate its effectiveness using extensive experimental

results. Finally, in Chapter 5, we summarize the contributions of the dissertation and discuss

some limitations and future directions.
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2.0 RELATED WORK

2.1 ACCESS CONTROL APPROACHES FOR SNSS

2.1.1 Relationship-Based Policies

The early efforts on access control models for SNSs rely on leveraging social connections as

trust relationships. Those works are inspired by research developments in trust and reputa-

tion networks (e.g., [28, 29, 40, 41]). FOAF-Realm [48, 49] is one of the earliest approaches

that quantifies the knows relations in the context of FOAF (Friend Of A Friend) ontology

as a trust metric, and supports rules that control accesses of friends to resources in a social

network by stating the maximum distance and minimal friendship level. Friendship level is a

trust value between any two individuals that is computed based on indirect relationships in

case a direct relationship is missing. Carminati et al. [14, 15] propose a conceptually similar

but more complete and formal trust-based access control model. The access control rules are

defined based on type of relationship, maximum distance and minimum trust value. Villegas

et al. [77] propose to use a slightly different trust measure by automatically classifying nodes

into zones. A general drawback of trust-based access control models is the usability issues. It

can be very hard to comprehend and specify appropriate trust thresholds. Hence users may

be left with even less protection compared to simple, conventional access control approaches.

While these approaches focus mainly on subject specification based on distance and trust

measures, we take a more abstract approach on subject specification. Trust information can

be easily captured in the ontology and hence policies in our approach, independently from

underlying trust computation mechanism. Our focus is instead on accurately capturing the

protected information semantics using an ontology-based privacy control policy model.
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Fong et al. [23, 3] propose a more formal and generic access control model for SNSs than

trust-based approaches. In its policy predicates, the model accounts for network topology

between an object owner and an accessor, communication history between the two entities

(e.g., friendship request sent), and type of the object. Their proposed topology model

allows specifying more variety of patterns than simple distance. For instance, access can

be constrained to the case where the two users have certain number of mutual friends or

are part of a clique. In a subsequent work, Relationship-Based Access Control (ReBAC)

[24, 25] was proposed. ReBAC provides a family of policy languages based on modal logic

that allows for combining simple policy predicates based on relationship types in a social

network into more complex topology-based policies. Compared to its predecessors, ReBAC

has a more formal approach and more generic and concrete topology-based policy language.

However, the model focuses on the relationship between access subject and owner, and does

not address the need for fine granularity modeling of protected resources in SNSs.

2.1.2 Semantic Web-Based Policies

Carminati et al. [13] propose a Semantic Web-based access control framework for SNSs that

leverages OWL and SWRL. The authors define three types of policies, namely, access control

policy, filtering policy, and admin policy. Access control policies are positive authorization

rules. Filtering policies can limit someone’s access to information by herself (which is not

necessarily a security issue). Finally, admin policies express who are authorized to define the

former policies. Although the authors outline an access control framework, lack of formal

descriptions and implementation details leaves behind many ambiguities. In comparison,

we propose a more detailed and semi-formal semantics for our model (See Section 3.2),

and show the applicability by implementing a proof-of-concept framework. Also, our model

captures the notion of individual authorities, and provide privacy control policies to protect

the relations in the knowledge ontology as a more expressive and flexible alternative to

entity protection. Ryutov et al. [69] propose a rule-based access control model for semantic

networks, based on a constrained first order logic. The authors have implemented their model

in an RDF-like framework. While the model is based on logic rules similar to our approach in
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Section 3.2, the work introduces notions such as attaching policies and separating policy at

subject and object levels without adequate elaboration and justification of their application.

Similar to the previous work, they use relationships in specifying access subjects only and

not protected resources. Therefore, the expressiveness of their policy in terms of protected

resource is limited to the entity level.

In the area of Semantic Web, Rei [42] is a prominent policy language based on RDFS.

Although Rei leverages Semantic Web languages, it mainly provides a generic framework to

support different deontic concepts in the policy (i.e., permission, prohibition, obligation, and

dispensation), and distributed policy management. However, in terms of specifying subjects

and protection objects it uses generic conditions (attribute-value constraints), which are not

specific to Semantic Web. In contrast, our approach is more focused on how to specify fine-

grained policy rules on a knowledge base that is specified using OWL. There exists other

access control solutions for RDF stores that are close to our work, although not in the context

of SNSs. Reddivari et al. [66] propose RAP, a rule-based model and architecture. In RAP,

access control policy is written using Jena framework rules, and supports both permit and

prohibit predicates, similar to what our model features. Although no experimental results

are reported, RAP does not seem to have an efficient access control enforcement method.

For a given query to the RDF store, the result set is retrieved first. Then, the access control

inference is performed separately for every triple in the result in order to decide whether to

include it in the final result. Our query augmentation approach (See Section 3.2.4) enforces

access control more efficiently. The use of access control predicates in the query avoids

excessive overhead of access checks by leveraging the query processing mechanism itself.

There are other approaches to access control on RDF stores that are comparatively less

grounded [20, 19, 54], or support only a specific policy such as multi-level security [39].

2.1.3 Policy Analysis

There exist some work on analysis and comparison of access control policies in the literature

outside of the scope of SNSs. Most of the recent literature on policy analysis focuses on

XACML policies [46, 52]. EXAM [52] is a framework for analyzing policy similarity among
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XACML policies. It can verify answer of a policy given a set of inputs, find the inputs for

which multiple policies have the same decision, or have contrasting decisions. It relies on

multi-terminal binary decision diagrams for policy similarity analysis. Kolovski et al. [46]

propose an XACML policy analysis approach based on description logics. Since our ontology

modeling language is also theoretically founded on Description Logics, there are similarities

between this approach and ours in terms of their support for logic-based reasoning. However,

the focus of both these frameworks are on formalizing complete XACML attribute-based

policies. Although XACML is a powerful attribute-based access control language, it is not

suitable to express the policies in the case of complex network model of information objects

in SNSs as developed in our approach. For example, one cannot express a typical privacy

setting in an SNS such as “Who can see posts you’ve been tagged in on your timeline?” using

XACML. Furthermore, the notion of multiple authorities has not been addressed in these

frameworks.

2.2 REIDENTIFICATION ATTACKS ON SOCIAL NETWORKS

Researchers have shown that it is possible to reidentify users based on the network struc-

ture in naively anonymized social networks (in which only explicit identifiers are removed).

Backstrom et al. present a family of active/passive attacks that work based on uniqueness

of some small random subgraphs embedded in a network [4]. Hay et al. study the extent

of node reidentification based on structural information [32, 31]. They experiment on the

use of three types of structural queries as adversary background knowledge on real, naively

anonymized social networks and show significantly low k -anonymity for such background

knowledge queries. Narayanan et al. propose a different attack approach that relies on input

of an auxiliary, overlapping, probably publicly available social network without any assump-

tion about structural background knowledge of an adversary [62]. Empirical evaluation of

their approach shows that a third of users who have accounts both on Twitter and Flickr

can be re-identified in the anonymous Twitter graph with a low error rate.
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2.3 K-ANONYMITY APPROACHES FOR SOCIAL NETWORKS

The non-naive social network anonymization approaches in the literature can be categorized

into two groups: graph generalization and graph perturbation.

2.3.1 Generalization

In generalization techniques, the network is first partitioned into subgraphs. Then each

subgraph is replaced by a supernode, and only some structural properties of the subgraph

alongside linkage between clusters are reported. Hay et al. propose a k -anonymity-based

generalization approach, where supernodes contain at least k nodes, which optimizes fitness

to the original network via a maximum likelihood approach [31]. Zheleva et al. propose a

generalization approach to avoid disclosure of exact nonsensitive edge structure, which could

be used for predicting sensitive edges [81]. Campan et al. also follow a similar approach [12]

but propose a greedy optimization solution that can be tuned to control information loss. In

order to use a generalized social network for analysis purpose, one should sample a random

graph in accordance with the reported generalized properties. Although such a network may

maintain some local structural properties of the original network, much of high-level graph

structure is lost [76], which impacts negatively the utility of results.

2.3.2 Perturbation

In perturbation techniques , the network is modified to meet desired privacy requirements.

This is usually carried out by adding and/or removing graph edges. Although, theoretically,

perturbation can be introduced to graph nodes as well, it is not considered plausible because

of adverse effects on the dataset.

Hay et al. propose a random perturbation approach, in which a sequence of m edge

removals is followed by m edge additions [32]. Assuming an adversary needs to consider

the set of possible worlds implied by m removals/additions, the authors reason that it could

be intractable for an attacker to achieve exact identification. However, this cannot guar-

antee that the adversary will not succeed in (sufficiently accurate) identification of selected
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individuals. Ying et al. formulate the confidence of an adversary in identifying a node in

a randomly perturbed network based on the degree of the target as background knowledge

[80].

Liu et al. propose an edge perturbation approach that provides k -anonymity for ver-

tices based on their degrees [53]. Initially a k -anonymous degree sequence for the graph

is constructed, in which there exist at least k nodes of each degree and the total degree

difference between the anonymized and the original degree sequence is minimum. Then the

problem reduces to realizing a graph with the anonymized degree sequence from the original

graph. They propose two different algorithms to solve it. The Supergraph algorithm greed-

ily perturbs the original graph until it reaches the target anonymized degree sequence. Since

such a greedy algorithm cannot guarantee an answer, a probing scheme is proposed by the

authors that retries the procedure with slight modification of the degree sequence, until an

anonymized graph is realized. The Greedy-Swap algorithm starts by constructing a random

graph based on the anonymized degree sequence. It then modifies the graph to maximize its

overlap with the original graph, while preserving the anonymized degree sequence.

Thompson et al. propose a k -anonymity-based two-phase clustering and perturbation

approach [76]. Vertices are first clustered into groups of size of at least k, and then edges

are greedily added/removed so that each vertex is anonymous to the vertices in its clus-

ter. Anonymity is either based on the degree of a vertex or the degrees of a vertex and

its neighbors, which is also used as similarity measure for forming clusters. They propose

two alternative clustering algorithms for this purpose: Bounded t-Means, and Union-Split.

Although their clustering approach seems promising, the proposed greedy perturbation al-

gorithm based on clusters does not guarantee an answer. An approach such as probing in

[53] seems necessary to take into account realizability of the graph based on formed clusters.

Zhou et al. propose a scheme to k -anonymize vertex neighborhoods [83], by constructing

isomorphic neighborhoods. The method seems to be inefficient and with high graph distor-

tion, since it requires recurring anonymization of node neighborhoods. He et al. propose a

different neighborhood anonymization scheme [33], by making isomorphic groups of k graph

partitions. Furthermore, we believe that making every k-grouped partitions isomorphic and

adding back inter-partition edges in an isomorphic-preserving manner as adopted in [33] will
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create a very symmetric structure; considering the need for addition of about k2 edges per

original inter-partition edge, the result does not seem to maintain well its original structural

properties in general.
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3.0 A PRIVACY CONTROL FRAMEWORK FOR SOCIAL

NETWORKING SYSTEMS

In this chapter, we present our ontology-based framework to capture, enforce, and analyze

fine-grained privacy control policies in SNSs. The rest of the chapter is organized as fol-

lows. In Section 3.1, we detail our ontology modeling approach for SNS information that

enables expressing fine-grained privacy-sensitive information resources. In Section 3.2, we

propose our access control model, describing the policy specification and enforcement details,

and evaluate it by comparing against existing approaches in the literature and presenting

experimental results of our prototype implementation. In Section 3.3, we propose our for-

mal approach to analyzing privacy control policies. We present a detailed analysis task on

transparency of permission management in SNSs and demonstrate the applicability of our

analysis approach by providing a case study.

3.1 MODELING FINE-GRAINED PERMISSIONS ON SNS

INFORMATION

In this section, we propose an ontology-based model of SNS information using OWL [34] as

our modeling language. We first discuss a generic information model for SNSs and explain

in more detail a sample ontology that we have developed for Facebook. Clearly, a similar

ontology can be developed for other SNSs. Then, we present our approach to capture privacy-

sensitive information resources in such a model.
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3.1.1 Semantic Web Languages, Notations, and Terminology

We leverage several Semantic Web languages in this work. In particular, we use Web Ontol-

ogy Language (OWL) [57] to express the protected knowledge in an SNS and some access

control decision information. We use Semantic Web Rule Language (SWRL) [37] to specify

access control policy rules. In fact, we use a subset of this language, known as DL-safe rules

because of its decidability property [60]. Moreover, we present how access control can be

applied to knowledge base queries based on SPARQL Protocol and RDF Query Language

(SPARQL).

OWL [34] is a W3C recommendation to express meanings and semantics, which builds

on RDF/RDFS. There are three main concepts in OWL. A class is a collection of objects,

which are also called individuals/instances of the class. A property is a directed binary

relation (predicate). An object property relates instances of two classes, and a data property

relates instances to data values (e.g., string values). A class or a property can be defined

as subclass or subproperty of another. OWL also supports various operators on classes such

as union, intersection, and complement and restrictions such as cardinality constraints on

properties. OWL has three sublanguages that vary in their level of support for different

operators/concepts. For the purpose of this work, we have chosen OWL DL as it provides

semantic features adequate for expressing knowledge in an SNS, does not have intractability

issues, and there exist various tools and packages that support it. As customary to XML-

based languages, we use namespace prefixes to distinguish different ontologies. For instance,

owl:Class represents the type Class in the OWL namespace. We interchangeably use function-

style notation for representing OWL property instances and the Manchester syntax for OWL

2 [36]. For example, owns(alice, book1) and alice owns book1, are representing the same

triple (predicate) in function-style and Manchester syntax, respectively. Here, owns is the

property, alice is the subject of the property, and book1 is the object of the property. We use

this terminology for describing reification of ontology properties. As for naming convention,

in this document, class names start with upper case, and properties and instances start with

lower case, e.g., class User and its instance alice.

SWRL [37] allows combining Horn-like rules with an OWL knowledge base, thereby
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enabling new knowledge reasoning tools. We encode access control policy rules using SWRL

to reason on top of access decision information stored in an OWL-based knowledge base and

infer access decision. SWRL rules have a very detailed syntax [37]. For the purpose of our

work, we represent them simply as antecedent ⇒ consequence, where antecedent (body) is a

conjunction of multiple predicates and consequence (head) is a single predicate. Predicates

can be either unary or binary, representing either a class or a property, respectively. A

notation such as ?x is used to declare variable x in the body/head of a rule, which can be

bound to class instances. For example, the following rule expresses that if someone is a

tenure-track faculty he/she has a PhD degree.

TenureTrackFaculty(?x) ⇒ hasDegree(?x, “PhD”)

SPARQL [65] is a syntactically SQL-like language for querying RDF graphs via pattern

matching. We augment SPARQL queries with access control predicates to automatically

enforce access control policies when a query is evaluated.

3.1.2 SNS Ontology: Basic Concepts

We model SNS information as a set of users, digital objects, and data values, which are

related to each other by relationships. In OWL terminology, we model the first two concepts

using classes as abstract objects. The relationships between objects are captured using the

following object properties : between users to define the social links (e.g., friendship, following,

etc.), between digital objects (e.g., a comment that is related to a photo), or between users

and digital objects (e.g., a user may own a photo). Moreover, class objects can be related

to data values using data properties, e.g., the relationship between a photo and its binary

content. We model annotations as a special class of digital objects. An annotation is an

object that annotates a first object with a second object. Comments and photo tags are two

common ways of annotation. For instance, a photo tag can annotate a photo with a user. As

another example, a check-in in Foursquare is an annotation that annotates a venue (place)

with a user, which may also be associated with a time stamp. These are the minimum

concepts and relationship types that we capture for an SNS; they can be easily extended

depending on the needs of an SNS.
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Figure 2 depicts our proposed ontology for Facebook. Note that many details, especially

restrictions, are not captured in the figure or in the following description. Entity is the root

class of our ontology (a subclass of owl:Thing, which is OWL’s built-in most general class). It

is specialized by User and DigitalObject. There is a predefined instance in class User, i.e., me,

for whom policy analysis is performed. The isFriendOf object property expresses friendship

relationship between instances of User. Data properties such as hasFullname associate data

values to a User. The owns object property defines a User as the owner of a DigitalObject.

DigitalObject is the union of four major subclasses: Content, Wall, Event, and Annotation.

Content represents an object that has data content such as a photo or a text (specified

using hasContent data property). Classes Wall and Event, respectively, correspond to profile

wall page and events that users can attend on Facebook. Annotation, as mentioned before,

represents objects that instead of directly carrying content, annotate a DigitalObject (e.g.,

a wall or a photo) with an Entity (e.g., a wall post or a comment), using object properties

annotates and annotatesWith, respectively. Actual forms of annotations are defined as its

subclasses: Comment, UserTag, and WallPost. A Comment annotates a Commentable (a class

which is the union of Photo and WallPost) with a Text. A UserTag annotates a UserTaggable

(a class which is the union of Photo and Text) with a User. We refer to this ontology as

SNS Ontology (SNO) in the rest of the document, and use namespace prefix sn to refer to

its concepts and properties.
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Figure 2: SNS Ontology (SNO): A Model of Concepts and Properties for Facebook
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3.1.3 SNS Ontology: Restrictions

It is crucial to accurately model the data constraints in an SNS knowledge base, in order

to accurately enforce access control policies and facilitate meaningful policy analysis. We

employ the following restriction features in OWL to model such data constraints:

Disjoint Union of Subclasses: We ensure our class hierarchy is captured completely by

defining each class as disjoint union of its subclasses, i.e., union of subclasses which

are pair-wise disjoint. For instance, Annotation is equivalent to the disjoint union of

Comment, UserTag, and WallPost.

Property Domain/Range: The domain and range of a property can be restricted to spe-

cific classes, e.g., owns has User and DigitalObject as its domain and range, respectively.

Property Characteristics: OWL supports several restrictions to accurately model prop-

erty constraints: functional, inverse functional (i.e., the inverse of the relation is a

function), transitive, symmetric, asymmetric, reflexive, and irreflexive. For instance,

isFriendOf is defined as irreflexive; hence, no user can be a friend of herself.

Class Property Restriction: OWL supports existential, universal, cardinality, and value

constraints for properties when applied to a class. For instance, WallPost is defined

equivalent to a class that annotates exactly one Wall.

3.1.4 Running Example

In order to facilitate discussions, we provide a small scenario as a running example based

on the sample ontology proposed in Section 3.1.2. We refer to this example throughout this

document.

Figure 3 depicts a partial ontology that captures a typical scenario: a group of users, a

photo, a comment on the photo, and tagging of users in the photo and the comment. Here,

there are friendship relationships among Alice, Bob, Carol, and David. Note that Alice and

Bob are related using isCloseFriendOf property, which is a subproperty of isFriendOf. Alice

has a photo (photo1), in which Bob has been tagged by Carol: Carol owns photoUserTag1

which annotates photo1 with Bob. The abstract photo object is associated with its bi-

nary content using property hasContent. David has liked photo1, and has made a comment
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Figure 3: Running Example - A Photo Post

(comment1) on that, say mentioning how well Bob looks in the photo. comment1 annotates

photo1 with a text object (text1), which is associated with its textual value using property

hasContent. Moreover, by mentioning Bob in the comment, David has effectively tagged him

in the comment’s text: textUserTag1 annotates text1 with Bob.

3.1.5 Properties as Protected Resources

The ontology modeling approach proposed in Sections 3.1.2 and 3.1.3 captures SNS informa-

tion in the forms of classes and properties. We argue that a class instance does not represent

any privacy-sensitive information by itself unless its properties are considered. In other

words, the essential knowledge is captured by the triples that represent properties between

two instances (object properties), or between an instance and a data value (data proper-

ties). Based on this observation, we consider such triples as privacy-sensitive information

that needs to be protected.

By considering the object and data properties in our running example (See Section 3.1.4)
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as protected resources, we can provide fine-grained access control to privacy-sensitive infor-

mation. We assume a simple and effective policy authority scheme: the owners of the

endpoints of each property are eligible to define policy for that property. Therefore, in the

example, visibility of the tag is dependent on relationships annotates(photoUserTag1,photo1)

(controlled by policies provided by Alice and Carol) and annotatesWith(photoUserTag1, bob)

(controlled by policies provided by Bob and Carol). Carol can control disclosure of the

fact that she has created the tag by controlling owns(carol, photoUserTag1). Finally, Al-

ice can control the association of the actual binary content of the photo using relationship

hasContent(photo1, photo1 data).

With regards to our proposed SNS ontology and specific to the running example, one

may think that there are redundancies in tag objects and their relationships. However,

such a modeling approach allows very fine granular and selective control over sensitive in-

formation. For instance, in the running example, Bob is tagged once in the photo and

once in the comment. Therefore, there are two tag objects photoUserTag1 and textUserTag1

and their corresponding relationships. This allows Bob and other people involved in these

tags to independently control each tag by providing separate policies for the corresponding

relationships.

By considering the three basic possible actions on property instances in the ontology,

i.e., selection, insertion, and deletion, different permissions can be specified. For example,

the insertion of a tag can be controlled using similar policies discussed for visibility of the

tags.

3.1.6 Reification of Properties

In order to specify policies, we need to define authorization characteristics about property

instances in an ontology. However, OWL does not support such expressions about individual

properties. In other words, there cannot be properties that can characterize other properties.

We use the concept of reification to overcome this limitation. We reify each object/data

property in our SNS ontology as a class in OWL. Figure 4 depicts the ontology for reified

versions of properties presented in Figure 2. Class ReifiedProperty is the root of all such
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Figure 4: Representing Reified Properties in Ontology

classes, with the two subclasses ReifiedObjectProperty and ReifiedDataProperty, which are the

disjoint union of the corresponding reified property classes. We define two special object

properties, ropSbj and ropObj, that relate a reified object property to its subject and object,

respectively. Analogously, the special object and data properties rdpSbj and rdpData relate

a reified data property to its subject and data value, respectively. An example of reification

of a triple from the running example is shown in Figure 5. The reification allows us to

characterize instances of reified properties, such as rpAnnotates1, as the protected resources.

The reified instances of properties may be automatically generated from the current state-

ments in the ontology. Alternatively, reified classes can replace SNS ontology properties that

were described in Section 3.1.2. In the latter case, the information domain constraints con-

sidered in designing the ontology need to be enforced on the reified classes. We demonstrate

photo1 photoUserTag1
annotates

(a) Before Reification

rpAnnotates1 photoUserTag1photo1
ropObj ropSbj

(b) After Reification

Figure 5: Reification Example: annotates Property
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with an example how such a property restriction that was presented in Section 3.1.3 can

be translated to be applied on reified properties. Let p be an object property in the SNS

ontology, and RPp be its corresponding reified class. If p is a functional property (i.e., it

assigns only one object to any subject), such a characteristic can be ensured for RPp by the

following restriction: owl:Thing v inverse ropSbj max 1 RPp.

3.2 ONTOLOGY-BASED PRIVACY CONTROL MODEL

We propose Ontology-based Social Network Access Control (OSNAC), a rule-based access

control policy model for SNSs based on Semantic Web standards. OSNAC is a fine-grained

semantics-aware model that captures relationships between ontological concepts of knowledge

as protected resources. For this purpose, the model relies on an ontology such as SNO

(introduced in Section 3.1) that models the SNS knowledge. It also uses an access control

ontology (ACO, described in Section 3.2.1) to model the policies. We assume a closed-world

policy model, where an access is denied unless it is allowed according to access control policy

rules.

Figure 6 shows the overall OSNAC policy framework. Access control rules are specified at

two levels: user and system. At the user level, every user can express personal authorization

rules regarding protected resources. For more flexible authorizations, users can leverage de-

pendent authorization, delegative authorization as well as multi-authority specification rules.

At the system level, the rules govern the overall privacy policy of the system. Basic author-

ity specification rules determine which users have authority over which protected resources.

They empower users by recognizing the authorizations defined at the user level as system-

level authorizations. In other words, they aggregate user-level authorizations by determining

the appropriate authority for protected resources. In contrast, direct system authorization

rules indicate system authorizations that are valid independently of users’ policies. Finally,

conflict resolution rule(s) apply to system authorizations to determine final access decision.

All policy rules, except conflict resolution, are expressed using DL-safe SWRL syntax,

In Figure 6, a higher-level policy component may be considered to aggregate its lower-
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Figure 6: OSNAC Policy Framework

level policy components. For instance, basic authority specification rules aggregate user-

level policies. But direct system authorizations do not aggregate any other authorizations.

Similarly, conflict resolution policy aggregates system-level authorizations to determine the

final access decision. We elaborate on each component of the framework in the rest of the

section.

3.2.1 Policy Expression at Ontology Level

Since knowledge resources are captured in an ontology, such as SNO, the access control

policies need to express them using concepts in the ontology. In order to facilitate an efficient

and semantics-rich access control, we choose to capture information related to access control

policy using an ontology too. For clarity, we use a separate ontology for this purpose,

which we call Access Control Ontology (ACO). We use namespace prefix ac to refer to ACO

concepts and relationships, which are depicted in Figure 7. ACO is used to model and store

any knowledge solely needed for access control purposes including inferences based on access

control policy rules. We have already presented some part of this ontology in Section 3.1.6.

We categorize the concepts and relations in ACO as follows.

• Access Subject: Class ac:Subject is used to specify the access subject (an instance of

sn:User) of a given access request that is going to be evaluated.

• Reified Properties: As previously discussed in Sections 3.1.5 and 3.1.6, we consider
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instances of SNO properties as protected resources, and represent them using reified

statements. Corresponding to each property sn:x, there exists class ac:RPx, which is a

subclass of ac:ReifiedProperty. Thus, a predicate such as sn:isFriendOf(Alice, Bob) in SNO

is correspondingly represented in ACO using an instance of class ac:RPisFriendOf; the

subject and object of the predicate are related using ac:ropSbj(Alice) and ac:ropObj(Bob),

respectively.

• User Authorizations: User authorizations determine merely a user’s decision about

an access. Note that such a decision is not necessarily the effective decision that will

be enforced by the SNS. Property ac:uPermits (ac:uDenies) abstractly relates the user

who issues the rule to the reified property instance that is to be accessed by the subject.

Depending on the mode of access, one of the descendents of ac:uPermits (ac:uDenies),

i.e., either ac:uPermitsRead (ac:uDeniesRead), ac:uPermitsDelete (ac:uDeniesDelete), or

ac:uPermitsInsert (ac:uDeniesInsert) is used.

• System Authorizations: System authorizations determine SNS policy. In most cases

(where user-related protected resources are involved), such a policy may infer the au-

thorization based on user-level authorizations. Class ac:Permitted (ac:Denied) repre-

sents an abstract notion of system-level positive (negative) authorizations, which is

assigned to a reified property instance. Depending on the mode of access, one of the

descendents of ac:Permitted (ac:Denied), i.e., either ac:PermittedRead (ac:DeniedRead),

ac:PermittedDelete (ac:DeniedDelete), or ac:PermittedInsert (ac:DeniedInsert) is used.

• Access Decision: Class ac:Granted represents the final positive access decision. Similar

to authorizations, depending on the mode of access, one of its descendents

(ac:GrantedRead, ac:GrantedDelete, or ac:GrantedInsert) is used. A reified property class

instance will be assigned to any of these classes if the corresponding access decision is

resolved as positive (after resolving possible conflicts at system-level authorizations).

• Principal Authority: We assume there is a unique principal authority for every SNO

class instance, assigned using property ac:hasPrincipalAuthority. The principal authority

is most probably the originator of the object, and is determined by the system. In

practice, principal authorities can be inferred based on other properties captured in SNO

such as sn:owns or sn:created, that may be defined between an sn:User instance and an
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Table 1: System-Level Access Control Policy Rules

Direct System Authorization:

P ∧ [?rsc ← sn:p(s,o)] ⇒ ac:Permitted(?rsc)

Basic Authority Specification:

P ∧ [?rsc ← sn:p(s,o)] ∧
n≥1∧
i=1

ac:uPermits(ui, ?rsc) ⇒ ac:Permitted(?rsc)

Conflict Resolution:

ac:Permitted(?rsc) ∧ noValue(ac:Denied(?rsc)) ⇒ ac:Granted(?rsc)

sn:Entity instance. We elaborate more on how this concept is used in our model in

Section 3.2.2.2.

The access control policy rules in our model follow the syntax mentioned in Section 3.1.1.

In order to efficiently express reified properties as protected resources in the rules we intro-

duce the following shorthand.

Definition 1 (Reified Property Shorthand). Expression [?rsc ← sn:p(s,o)] represents ?rsc

as the protected reified property instance of type sn : p that relates property subject s to

property object o, i.e., [?rsc ← sn:p(s,o)] ≡ ac:RPp(?x) ∧ ac:ropSbj(?x,s) ∧ ac:ropObj(?x,o).

In defining rule formats, we only use abstract authorization predicates. For instance,

we use ac:uPermits in the format of personal authorizations. However, an actual rule needs

to use one of its descendents as mentioned above. Moreover, we only provide syntax for

positive authorizations for brevity reasons. The same syntax can be used to specify negative

authorization (deny) rules.

3.2.2 System-Level Policy Rules

System-level access control policy rules are specified by SNS administrators. Table 1 shows

the format of system-level policy rules. In these rules, [?rsc ← sn:p(s,o)] specifies the pro-
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tected resource according to the reified property shorthand. P is a conjunction of zero or

more of either SNO predicates, ac:Subject, or ac:hasPrincipalAuthority, and is used to charac-

terize the target of the rule. We call P a rule extension sentence.

3.2.2.1 Direct System Authorization Direct permissions allow the system to autho-

rize/deny accesses without involvement of user authorities. As shown in Table 1, a direct

system authorization rule includes a rule extension sentence and a protected resource speci-

fication in the antecedent, and a ac:Permitted descendent as the consequence.

Example 1. The following two direct system authorization rules entitle everyone to read

the properties of the objects for which they are principal authority.

ac:Subject(?sbj) ∧ ac:hasPrincipalAuthority(?s, ?sbj)

∧ [?rsc ← sn:property(?s,?o)] ⇒ ac:PermittedRead(?rsc).

ac:Subject(?sbj) ∧ ac:hasPrincipalAuthority(?o, ?sbj)

∧ [?rsc ← sn:property(?s,?o)] ⇒ ac:PermittedRead(?rsc).

In the first rule in the above example, the first two predicates in the body compose the

rule extension sentence, and the third predicate specifies the protected property instance.

The first predicate of the rule extension sentence indicates sbj to be the access subject, and

the second one indicates sbj to be the principal authority for the protected property’s subject.

Note that ac:ReifiedProperty is the superclass of any reified SNO property. Therefore, the

reified property shorthand applies to any property where variables s and o are bound to its

subject and object. Finally, the consequence predicate allows read access to such a property

for the access subject. The second rule is slightly different in that it considers the access

subject to be the principal authority for the protected property’s object.
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3.2.2.2 Basic Authority Specification Since most of the protected resources in an

SNS are related to users’ privacy, it is desirable that access control decisions are made based

on the relevant users’ policies rather than direct system authorization. In this respect,

the role of system-level rules is to determine policy authorities for resources. According to

Table 1, authority specification rules follow a similar format to direct system authorizations,

i.e., having a rule extension sentence P and a reified resource specification in antecedent

and an ac:Permitted descendent in consequence. But they also include a conjunction of

ac:uPermits predicates, which indicates users whose authorization decisions matter regarding

the characterized protected resources. This means that system authorizations are based on

user-level authorizations.

Here, we propose a generic, basic authority model. Assuming there is a principal au-

thority for every SNO class instance, as described in Section 3.2.1, it is safe to consider the

same authority to be effective for any property associated with that class instance. Hence,

the authority over an object property instance can be determined based on the principal

authorities of the related class instances. For instance, access to sn:isFriendOf(Alice,Bob) is

under the authority of both Alice and Bob. Analogously, the authority over a data property

instance is the principal authority of the only related class instance. The basic authority

model for read access (on an object property) can be expressed using the following rule.

ac:hasPrincipalAuthority(?s,?u1)]∧ ac:hasPrincipalAuthority(?o,?u2)]

∧ [?rsc← sn:property(?s,?o)]

∧ ac:uPermitsRead(?u1, ?rsc)∧ ac:uPermitsRead(?u2, ?rsc)

⇒ ac:PermittedRead(?rsc)

(3.1)

The above rule considers read access to a property authorized by the system only if

both principal authorities of the class instances associated with the property authorize that

access. Note that an SNS may specify and customize its own set of authority specification

rules based on its application semantics. For instance, in many applications, it may be

appropriate to allow delete operation over object properties with authorization of even one

of the two associated principal authorities (e.g., deleting isFriendOf property between two

users).
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3.2.2.3 Conflict Resolution As mentioned in Section 3.2.1, OSNAC provides support

for both positive and negative system authorization rules. The conflict resolution rule at

the system level resolves any conflicts between such authorizations. We follow the deny-

overrides conflict resolution policy. According to the definition of the rule in Table 1, the

outcome of the rule is to grant access to the resource if the access has been authorized

positively (i.e., being instance of ac:Permitted) and has not been authorized negatively (i.e.,

being instance of ac:Denied). Note that the rule does not follow SWRL syntax because of

using the special operator noValue. The operator ensures not to grant the access if it is

denied at the system level. We elaborate more on this operator in Section 3.2.4.1. A final

grant decision is represented by assigning the resource to the appropriate descendent class of

ac:Granted. Note that only class ac:Granted and its descendents represent the effective access

control decision by the system. Other system-level and user-level authorization concepts

represent merely intermediate decisions.

3.2.3 User-Level Policy Rules

User-level access control policy rules are specified by SNS users regarding the protected re-

sources over which they have authority. The actual effectiveness of such rules is determined

according to system authority policies. Table 2 shows the format of user-level policy rules.

Similar to system-level policy rules, user-level policy rules include in antecedent a rule ex-

tension sentence R, which is a conjunction of zero or more of either SNO predicates or

ac:Subject, and a reified property shorthand for specifying a protected resource. Also, all

user-level policy rules have an ac:uPermits descendent in their consequences. The first argu-

ment of this predicate has to be the user who specifies the rule. Otherwise, user authorities

may be misused. We assume that SNSs enforce this requirement.

3.2.3.1 Personal Authorization A personal authorization rule expresses a permission

granted by an individual user to others. According to the rule format shown in Table 2, a

personal authorization rule uses a rule extension sentence and a reified property shorthand

in antecedent and an ac:uPermits descendent in consequence.
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Table 2: User-Level Access Control Policy Rules

Personal Authorization:

R ∧ [?rsc ← sn:p(s,o)] ⇒ ac:uPermits(u,?rsc)

Dependent Authorization:

R ∧ [?rsc1 ← sn:p1(s1,o1)] ∧ [?rsc2 ← sn:p2(s2,o2)] ∧ ac:uPermits(u,?rsc1)

⇒ ac:uPermits(u,?rsc2)

Delegative Authorization:

R ∧ [?rsc ← sn:p(s,o)] ∧ ac:uPermits(u2, ?rsc) ⇒ ac:uPermits(u1, ?rsc)

Disjunctive Multi-Authority Specification:

R = {Ri}

Ri = Ri ∧ [?rsc ← sn:p(s,o)] ∧ ac:uPermits(ui, ?rsc) ⇒ ac:uPermits(pa, ?rsc)

Conjunctive Multi-Authority Specification:

R ∧ [?rsc ← sn:p(s,o)] ∧
n∧

i=1

ac:uPermits(ui, ?rsc) ⇒ ac:uPermits(pa, ?rsc)
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Example 2. In the context of the running example (See Section 3.1.4), the following rule,

expressed by Bob, authorizes his friends to read the photo-tags with which he has been

marked.

ac:Subject(?sbj)∧ sn:isFriendOf(?sbj, bob)∧ sn:PhotoUserTag(?pTag)

∧ [?rsc ← sn:anonatesWith(?pTag, bob)]⇒ ac:uPermitsRead(bob, ?rsc)

In the above example, the first three antecedent predicates compose the rule extension

sentence. The first and second predicates characterize the access subject to be Bob’s friend,

and the third predicate declares variable pTag to be of type sn:PhotoUserTag. The forth

predicate specifies the protected resource to be an sn:annotatesWith property that relates

PhotoUserTag pTag to Bob. The consequence predicate indicates that Bob authorizes such

an access request.

3.2.3.2 Dependent Authorization Dependent authorization rules allow one autho-

rization to be inferred based on another authorization. This is often useful in scenarios

where authorizations need to be derived for related protected resources. As the format shown

in Table 2, dependent authorization rules include a rule extension sentence, two protected

property specifications, and an ac:uPermits descendent for the first protected property in an-

tecedent, and an ac:uPermits descendent for the second protected property in consequence.

In other words, dependent authorization allows for authorization propagation from protected

resource rsc1 to protected resource rsc2 under specific condition determined by rule extension

sentence R.

Example 3. In the context of the running example (See Section 3.1.4), suppose Alice has

specified detailed authorization rules for different types of annotations on her photo. Then

she can make sure whoever gets to access the annotations can also access the photo content

using the following rule, without redefining all the restrictions.

[?rsc1 ← sn:annotates(?x, photo1)]∧ [?rsc2 ← sn:hasContent(photo1, ?c)]

∧ ac:uPermitsRead(alice, ?rsc1)⇒ ac:uPermitsRead(alice, ?rsc2)
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3.2.3.3 Delegative Authorization Delegation has been shown to be useful in the con-

text of access control models [6]. We observe that delegating authority improves the flexibility

of policies in OSNAC. Based on a delegative authorization, a user delegates its authority

over a specific resource to another user. According to the rule format shown in Table 2 user

u1 delegates authorization on a specific resource to user u2. In other words, user u1 respects

the authorizations made by user u2 on that resource. Delagative authorizations may be

used to relax authority on the protected properties. The basic authority specification rule

stated in Section 3.2.2.2 (rule (3.1)) requires both principal authorities of the associated class

instances of a property to authorize a read access, in order for it to be authorized by the

system. However, such a mutual agreement might be too restrictive in some contexts. The

two end authorities can use delegative authorizations to respect one another’s decisions on

the specific access of choice, without a change in system-level rules.

Delegative authorizations are very flexible and secure in terms of delegation power. First,

an authority can flexibly customize the permission. For instance, it can restrict the target

subjects to have certain characteristics, or the resource/action to be of certain type. Second,

subsequent updates to the delegative authorization rule will be applied seamlessly, with-

out a need to worry about grant/revoke propagation issues that delegation models usually

deal with. This is because unlike traditional delegation models, the authorizations are not

explicitly transferred; the authorization rule is the sole means of delegation. Third, since

delagative authorizations are at the user level, there is no need to assure that the delegator

actually has the authority on the resource. Only the valid delegations will be effective based

on the system-level authority specification rules.

3.2.3.4 Multi-Authority Specification There are scenarios in SNSs where it is desir-

able to have more authorities to weigh in an access control decision than just the directly

related authorities. We support multi-authority specification in two ways. A principal

authority may use multiple delegative authorization rules to enable a disjunctive multi-au-

thority. Such a multi-authority is disjunctive in the sense that an authorization by any

corresponding authority in the set is a sufficient condition for that permission to be consid-

ered authorized by the principal authority. Alternatively, a principal authority may create
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a conjunctive multi-authority, in which every involved authority is required to authorize an

access in order that it would be considered authorized by the principal authority. Table 2

shows the formats of a rule set and a single rule that establish disjunctive and conjunctive

multi-authority, respectively, where principal authority user pa shares the authority with

users u1, u2, . . ., and un.

3.2.4 Access Control Enforcement

3.2.4.1 Entailments and Conflict Resolution We presented the syntax of OSNAC

policy rules in Sections 3.2.2 and 3.2.3. Figure 8 demonstrates the overall entailment process

based on such rules. The blue arrows represent policy rules showing how they entail new

policy concepts/relationships. Properties ac:uPermits and ac:uDenies represent access control

decisions at the user level. They are entailed based on either ontology (using personal

authorization rules) or other already entailed access properties (using advanced user-level

rules such as dependent or delegative authorizations). Classes ac:Permitted and ac:Denied

represent initial access control decisions at the system level. Class ac:Granted represents the

final access decision. Entailment of this class for the protected resource means granting the

access, and denial otherwise.

The green and red colors in Figure 8 represent positive and negative authorization con-
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cepts, respectively. Both user-level and system-level rules allow for positive and negative

authorizations. Therefore, an access might be both positively and negatively authorized at

each level. The conflict resolution is performed based on dedicated conflict resolution rule

as the last step of entailments (refer to Section 3.2.2.3). The conflict resolution will either

entail ac:Granted for the protected resource or not, equivalent to final grant or deny decision,

respectively.

As mentioned in Section 3.2.2.3, we leverage a built-in operator in Jena rules, i.e., noValue.

Therefore, the conflict resolution rule is not pure SWRL. This operator simulates a weak

notion of negation. SWRL does not support negation-as-failure due to the open world

assumption of the Semantic Web: if you cannot entail a predicate, you cannot entail that

it does not exist. In the case of OSNAC, that means if a negative authorization cannot

be entailed, we are not sure if it exists or not. However, from an access control policy

perspective, the condition is satisfactory. Operator noValue can exactly perform that for us.

According to the conflict resolution rule, if the rule engine entails Permitted(?rsc) it will next

try to entail the negative authorization (Denied(?rsc)). If such a reasoning is unsuccessful,

noValue(Denied(?rsc)) will be true, and the access will be granted.

In addition to the final conflict resolution, there is possibility of partial conflict resolution

at intermediate stages. The basic authority specification rules at the system level (See

Section 3.2.2.2) aggregate user-level authorizations. Therefore, they can partially resolve

some conflicts. For instance, suppose a basic authority specification rule considers positive

authorization of one of the two users in a friendship relationship satisfactory to delete that

relationship. Such a rule indirectly resolves conflicts between a positive user authorization

and a negative user authorization, in case it exists.

3.2.4.2 Access Authorization A basic access request is a triple 〈sbj, rsc, act〉, where

sbj is the user who requests the access (instance of sn:User), rsc = p(s, o) refers to the

property instance to be accessed (instance of ac:ReifiedProperty), and act is the action re-

quested (read, delete, or insert). Making access deciding in OSNAC involves reasoning on

SNS ontology using access control policy rules. The ontology and policy rules are expressed

using OWL-DL and DL-safe SWRL rules, respectively. The following definition captures the
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notion of access authorization.

Definition 2 (Access Authorization). Given an access request 〈sbj, rsc, act〉, the access is

granted if and only if, given the fact ac:Subject(sbj), predicate ac:Granted(rsc) can be entailed

(GrantedRead, GrantedDelete, or GrantedInsert, depending on act). The access is denied

otherwise.

The above access authorization process is expected to determine a correct decision for

any access request.

Theorem 1. Access authorization in OSNAC is correctly enforced.

Proof. Access authorization in OSNAC involves trying to entail ac:Granted by resolving any

conflicts between ac:Permitted and ac:Denied entailments at the system level. According

to Motif et al.’s work [60], SWRL entailments are decidable if the language is limited to

OWL-DL and DL-safe SWRL rules. This applies to our OSNAC ontology, and user-level

and system-level policy rules (except conflict resolution). Therefore, entailing ac:Permitted/

ac:Denied is decidable. As discussed in Section 3.2.4.1, the conflict resolution in the last stage

of authorization is a straightforward step once the ac:Permitted/ac:Denied entailments are

known. It involves testing a condition, which is clearly decidable. Therefore, on one hand,

entailment of ac:Granted and access authorization is complete in OSNAC, meaning that for

every access request there will be an access decision entailment. On the other hand, since

OSNAC is based on Semantic Web technologies which themselves are based on Description

Logics, such entailments are sound. We conclude that access authorization entailment in

OSNAC is both sound and complete and therefore is correctly enforced.

3.2.4.3 Query Augmentation We note that in the case of information retrieval from an

SNS knowledge base multiple relations may be queried and evaluated simultaneously in order

to retrieve a result set of interest. Conceptually, for each valid variable assignment in a query,

every bound relation needs to be considered as one basic access authorization. However,

checking access authorization per such relation is not efficient, and needs modification of

the retrieval engine. Alternatively, we augment a query with access check primitives and

evaluate the augmented query in order to retrieve only the authorized results.
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Theorem 2 (Query Access Authorization). Let pair 〈sbj,Q〉 be a query Q on SNO sub-

mitted by subject sbj. Let QW =
n∧

i=1

sn:pi(si,oi) represent the conjunctive WHERE clause of

query Q. Given the fact ac:Subject(sbj), a retrieval engine can automatically enforce access

authorization and retrieve the authorized result by evaluating:

Q′W =
n∧

i=1

{sn:pi(si,oi) ∧ [?rsci ← sn:pi(si,oi)] ∧ ac:GrantedRead(?rsci)}

In the above theorem, each relation predicate in the original query is followed by two

predicates for access control purpose: the first predicate bounds the relation to a resource

variable, and the second predicate checks if the subject is authorized to access the resource.

A query that is augmented with access primitives can be directly processed by a query

retrieval engine on the ontology. The access control policy rules are enforced seamlessly

using a reasoner without the need for modifying the underlying retrieval engine.

Example 4. Suppose Bob requests access to the list of Alice’s friends who reside in Pitts-

burgh. This is a complex query that involves accessing the list of Alice’s friends, where they

live, and their names. The following is a SPARQL-like syntax for this query.

SELECT ?x ?fullname

WHERE{ sn:isFriendOf(alice, ?x)

∧ sn:residesIn(?x, pittsburgh)

∧ sn:hasFullname(?x, ?fullname) }

Its access-augmented WHERE clause will be as follows.

sn:isFriendOf(alice,?x) ∧

∧ [?rsc1 ← sn:isFriendOf(alice, ?x)]∧ ac:GrantedRead(?rsc1)

∧ sn:residesIn(?x, pittsburgh)

∧ [?rsc2 ← sn:residesIn(?x, pittsburgh)]∧ ac:GrantedRead(?rsc2)

∧ sn:hasFullname(?x, ?fname)

∧ [?rsc3 ← hasFullname(?x, ?fname)]∧ ac:GrantedRead(?rsc3)
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By executing the augmented query in Example 4, if Bob does not have access to even

one of the relations in the query corresponding to a specific Alice’s friend, that person’s

information will not be retrieved. Thus, the result set reflects the authorized information

according to the access control policies.

3.2.5 Evaluation

In this section, we evaluate our proposed access control approach in terms of expressiveness

and execution performance. We enumerate a set of access control policy features that are

useful in SNS scenarios, and compare our approach against the literature in achieving them.

We also present a prototype implementation of OSNAC and report the performance results

of our prototype.

3.2.5.1 Expressiveness We evaluate the expressiveness of OSNAC from two perspec-

tives. First, we show that our ontology-based data model is rich enough to capture useful

specification requirements for protected resource that have been proposed in the literature

which may be also useful for privacy control in SNSs. Second, we enumerate a set of access

control policy features that are useful in SNS scenarios, and compare our approach against

the literature in achieving them. We consider models in the literature that are either targeted

for SNSs or are generic and feature-rich enough that may be useful in these environments.

We specifically compare our approach with relationship-based policies [14, 15, 23, 3, 24,

25], Carminati et al.’s Semantic Web-based policy framework [13], access control for RDF

stores [66], and XACML [2].

Based on our literature review in Section 2.1, we consider the following features in char-

acterizing protected resource in access control policies in the literature.

• Resource identity : The basic approach is to use a resource’s identity in access control

policies. The relationship-based access control approaches for SNSs (See Section 2.1.1)

follow this approach as they are only concerned about characterizing access subjects

using relationships. In our data model, this is equal to protecting a class instance (e.g.,

a specific photo) as a whole. OSNAC can support this by specifying any property that
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is related to that instance as protected resources. Note that the specification can be

abstract, i.e., there is no need to enumerate all possible properties for an instance.

• Resource attributes : A more flexible way is to use resource attributes in the policies.

XACML, a widely popular access control standard, supports attributed-based specifi-

cation of the elements of access control policies including protected resources. In our

ontology-based approach, properties of a class instance will act as its attributes. A typ-

ical attribute-value pair in XACML can be represented using a data property and its

data value. Moreover, object properties can be leveraged to specify relationship to other

object instances as attributes. Note that, here, the attributes are only used to identify

the protected resource, unlike in our model that can consider attributes as protected

resources.

• Resource hierarchies : Many access control models support hierarchical organization of

protected resources [70, 18], where access control rules may be specified at different

levels. Usually, access control policies are propagated downwards in the hierarchy. Our

data model supports hierarchies of both classes and properties. Instances of a class are

considered instances of the ancestor classes too. This ensures that a policy applicable to

a class of instances will be also applicable to instances of any descendent classes.

In the above, we showed that OSNAC data model at the least supports conventional

protected resource specification approaches in the related literature. In the followings, we

enumerate a set of useful features for policies in SNSs that are supported in OSNAC, and

compare it to the proposed models in the literature. We draw sample access scenarios from

our running example (See Section 3.1.4) to elaborate on these comparisons.

• Networked data: As we previously discussed, an ontology-based data model is a good fit

for SNSs to represent its inherent networked data: i.e., user to user, object to object,

and user to object relationships. For example, suppose Alice wants to specify a policy

regarding access to the content of photos in which her close friends are tagged. This

characterization cannot be specified using a simple attribute. The closest approach in

the literature to capture this is policies based on resource content in XACML. However,

in order to achieve this, one should consider the whole photo, its annotations, and even
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friendship relationships as one protected resource in an XML document. The problem

is that the protected resource becomes very coarse grained. In contrast, one can easily

express such a policy in the context of OSNAC, using network semantics.

• Objects vs. semantics of objects : Access control models in the literature consider whole

objects as protected resources. Objects are translated to class instances in the ontology

context. OSNAC provides finer-grained specification of protected resources by consid-

ering selective aspects of the semantics of objects. In an ontology, semantics of class

instances are modeled using properties, which are recognized as protected resources in

OSNAC. For instance, the friendship between Bob and Carol is part of the semantics

of their representative object instances, and therefore can be considered as a protected

resource. Considering ontology properties as protected resources makes it flexible to

specify policies independently for each aspect of the semantics. For instance, one may

be able to access Bob’s tag in photo1 without accessing the “who has created the tag”

information. Or one can see the contents of photo1 without accessing the “who owns

this photo” or “who likes this photo” information.

• Hierarchies : As mentioned earlier, our data model supports class and property hierar-

chies. This enables propagation of policies down the hierarchies, allowing for flexibility of

specifying policies at different levels of abstraction. For instance, Bob can specify a policy

regarding properties relating him to UserTag instances, and such a policy would auto-

matically apply to both PhotoUserTag and TextUserTag instances. As another example,

a policy regarding isFriendProperty will be also applicable to isCloseFriendProperty.

• Authority of SNS and users : Access control models have been mainly used to provide

security in an organizational context. Therefore, the organization or system, has been

considered the stakeholder and authority of specifying policies. In contrast, in the context

of SNSs, users should be considered stakeholders too as they should be able to manage

the privacy of their related information. Realizing the need for both system and user

authorities, OSNAC supports administrating this policy system. We considered the

practicality of our approach for real-world products by recognizing system’s authority as

the final effective decision maker in this environment. To the best of our knowledge, our

work is the first approach to tackle this problem.
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• Multiple authorities : A challenging aspect of policy specification in SNSs is the existence

of multiple stakeholders that have interest in specifying policies for the same protected

resources. Most of the proposed access control models for SNSs, such as relationship-

based models (See Section 2.1), do not provide support for multiple authorities. OSNAC

recognizes multiple authorities in two ways. We consider a principal authority per class

instance. The authority for properties (i.e., protected resources) is determined by the

principal authorities of the associated class instances. This means that for every object

property there will be at most two principal authorities involved. A potential autho-

rization conflict between the involved authorities can be resolved either based on either

the basic authority specification rules or the conflict resolution rule at system level (See

Section 3.2.2). The second way of supporting multiple authorities in OSNAC is through

use of advanced user-level policies (multi-authority rules). In that case, the potential

conflicts are resolved based on the multi-authority rules themselves (See Section 3.2.3.4).

We note that there have been few recent work aiming specifically to tackle the problem of

policy authoring by multiple users [72, 73, 38]. OSNAC provides the high-level language

using which the result of such specific policy authoring approaches can be specified.

• Negative authorizations and conflict resolution: Supporting negative authorizations (in

addition to positive authorizations) enables more flexible policy specification and man-

agement [7, 70, 74]. However, co-existence of positive and negative authorizations may

lead to conflicts, which would need to be resolved to make an access decision. In OSNAC,

we support negative authorization specification both at the user and system level. As

explained in Section 3.2.4.1, we resolve conflicts in the last inference step based on sys-

tem-level authorizations. We chose to use the deny-overrides strategy for this purpose,

as a simple and flexible approach. Using this strategy in a closed system assumption

lets the users (or SNS) grant access using positive authorizations and make exceptions

using negative authorizations. The related access control models for SNSs (i.e., relation-

ship-based policies and Carminati et al.’s Semantic Web-based policy framework) do not

support negative authorization. There are other conflict resolution approaches in the ac-

cess control literature [59, 55, 21] such as more-specific-overrides, which is more suitable

for systems with hierarchical organization of protected resources. Also, XACML supports

43



conflict resolution in the form of rule and policy combining algorithms. The combining

algorithms define procedures to determine access decision based on the evaluation of

multiple rules/policies.

We summarize the comparison factors discussed above in Table 3.
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Table 3: OSNAC Expressiveness Comparison (k indicates partial support)

PPPPPPPPPPPPPP
Feature

Model
OSNAC Relationship-

Based [14, 15,

23, 3, 24, 25]

Semantic Web-

Based [13]

Access Control

for RDF [66]

XACML [2]

Networked Data 3 k(user-user) 3 k(object-object) 7

Controlling Semantics 3 7 7 3 7

Hierarchies 3 7 3 3 7

Policies for SNS/Users both user only user only system only system only

Multiple Authorities 3 7 7 7 7

Negative Authorization 3(deny-over-

rides)

7 7 7 3(flexible algo-

rithms)
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3.2.5.2 Prototype Implementation We have developed a prototype access control

engine based on our proposed OSNAC model to protect an SNS knowledge base. Figure 9

illustrates the architecture of the prototype implementation. Access control policy rules are

provided by users and system administrators, using separate interfaces, and are stored in

the policy rule-base. Rules are expressed using SWRL as explained in Section 3.2. However,

since SWRL is not directly supported in Jena, we programmatically convert rules to Jena’s

own rule language in a policy compilation phase. Note that there is no loss of expressiveness

in this process. At run time, the User Request Processor accepts the requests from a user

(in fact, from the SNS on behalf of a user), and passes it to the Query Modifier module,

where it is augmented with access control primitives (refer to Section 3.2.4). The modified

query is then sent to the SPARQL Engine. Before execution of the query by engine, a fact

is inserted in the knowledge base asserting the user to be the access subject. The SPARQL

Engine then interacts with the SNO and ACO to retrieve the query results. In the retrieval

process, the Access Inference Engine employs Jena general purpose rule engine to infer access

primitive predicates (i.e., ac:authorizes and ac:Permitted) based on the knowledge stored in

the ontologies and according to the access control policy rules. The access subject assertion

is removed from knowledge base after query has been executed. Finally, the authorized query

results are returned to the User Request Processor.

We implemented the prototype in Java based on the Apache Jena Semantic Web frame-

work1. The knowledge base (social networking system ontology) and access control ontology

are expressed in OWL-DL. We use Jena’s general purpose rule engine for reasoning about

accesses. For this purpose, we convert the access control policy rules from SWRL-DL into

the Jena’s rule syntax (which is very similar to SWRL-DL). We use the backward chaining

strategy of the rule engine for reasoning. Th Jena’s reasoning power has a limitation in that

it is an in-memory rule engine. Therefore, we cannot reason about large ontologies that

one may deal with in a real production system. But it is suitable for our small prototype

implementation and performance evaluation purpose.

1http://jena.apache.org/
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3.2.5.3 Experimental Results We manually tested the policy enforcement by the pro-

totype OSNAC engine, submitting SPARQL query requests for a knowledge base that cap-

tures the running example (See Section 3.1.4). As for system-level policies, we use the basic

authority specification described in Section 3.2.2.2. Moreover, two direct system authoriza-

tions allow each user’s full access to the properties that involve her or her owned digital

objects. As for user-level policies, we consider two personal authorization rules for each user

that allows her friends to see the properties involving her or her objects. Additionally, a del-

egative authorization rule by Alice delegates authorizations on properties of photo1 to Bob,

and a personal authorization rule by Bob allows read access to them by his friends. The

engine successfully returns only the expected authorized information. For example, David is

granted a read access to hasContent(photo1, photo1 data), as a result of Bob’s authorization

which itself is possible because of Alice’s delegation.

In order to evaluate the feasibility of employing our engine, we assessed its time perfor-

mance in resolving access decisions using synthetic knowledge bases. For this purpose, we

decided to focus on a scenario where users want to control their friendship links. In such

a scenario, we are able to evaluate the effects of change in the number of users and their

protected resources (i.e., friendship links) on access control performance, without the need

to consider multiple complicating variables. We generate two sets of synthetic datasets, to

individually evaluate the effect of each factor. First, in order to evaluate the effect of the

number of users, we generate four datasets with increasing number of users (i.e., 1250, 2500,

5000, 10000 users). In each dataset, users have friendship links based on a random network,

generated using Erdos-Renyi model, with the fixed link probability of 0.2. Second, in order

to evaluate the effect of network density and number of protected resources, we generate

four datasets with fixed number of users (i.e., 5000) and increasing number of friendship

links (i.e., link probabilities 0.1, 0.2, 0.3, 0.4, and 0.5). At the system level, we consider

the basic authority specification rules specified in Section 3.2.2.2 and direct authorization of

properties related directly to a user to herself. At user level, we consider the same policy

for all users, where they allow their friends to access their friendship relationships. We run

the prototype on a standard desktop PC. We measure access check time, i.e., the time it

takes for the engine to decide about an access authorization query. We report the average
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access check time for 1000 random access authorizations in each of which a randomly chosen

user requests access to a randomly chosen friendship link. The engine takes few seconds to

load the ontologies and inference model. Since such initialization is performed only once, we

only present our evaluation of access check time. Table 4 summarizes the above-mentioned

experimental setup for our feasibility test.

Figures 10 shows an acceptable performance by our prototype engine when the user

population is increased. For instance, it takes about 6 milliseconds on average to check

access decision for a random network of 5000 users with friendship probability of 0.2. As

expected, the access check time increases with the increase in the number of users, with a

semi-linear trend. As the user size increases, in addition to larger dataset, there will be more

access control policy rules that needs to be processed by the reasoner, which leads to slower

authorization decision.

Figure 11 depicts that access check time has a semi-linear growth by increase in the

network density. By increasing the probability of friendship links, processing the personal

authorization rules in our policies requires verifying if the access subject is among a larger

number of users who are friends with the two sides of the protected friendship relationship.

Therefore, the engine needs to spend more time to reason about authorization.
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Table 4: Experimental Setup for Feasibility Test

Experiment 1 Experiment 2

Knowledge

Base

Erdos-Renyi random network,

#nodes: 1250/2500/5000/10000,

Friendship probability: 0.2

Erdos-Renyi random network,

#nodes: 5000, Friendship proba-

bility: 0.1/0.2/0.3/0.4/0.5

System-

Level

Policies

Basic authority specification (Rules (3.1))

Two direct system authorization rules for self access:

ac:Subject(?u) ∧ ac:hasPrincipalAuthority(?s,?u)

∧ [?rsc← sn:property(?s,?o)] ⇒ ac:PermittedRead(?rsc)

ac:Subject(?u) ∧ ac:hasPrincipalAuthority(?o,?u)

∧ [?rsc← sn:property(?s,?o)] ⇒ ac:PermittedRead(?rsc)

User-Level

Policies

For each user ui, two personal authorization rules:

ac:Subject(?y) ∧ sn:isFriendOf(ui,?y)

∧ [?rsc← sn:isFriendOf(ui,?x)] ⇒ ac:uPermitsRead(?rsc)

ac:Subject(?y) ∧ sn:isFriendOf(ui,?y)

∧ [?rsc← sn:isFriendOf(?x,ui)] ⇒ ac:uPermitsRead(?rsc)

Metric
Average access check time for 1000 requests each by a randomly

selected user accessing a randomly selected friendship link
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3.3 PRIVACY CONTROL POLICY ANALYSIS FRAMEWORK

In this section, we present our policy analysis framework for SNSs based on ontology-based

privacy control policies. We lay out the foundations of ontology-based policy analysis and

provide details on how various policy properties can be analyzed by leveraging such a frame-

work. The framework shares the same foundation of modeling protected resources with

OSNAC (See Section 3.1), however, it is different in the way it models policies.

3.3.1 Representing Policies

For the purpose of policy analysis framework, we are interested in the following policy char-

acteristics:

• Fine-grained specification: Ontology-based specification of knowledge in SNS and use of

reification techniques, as described in Section 3.1, allows us to provides a fine-grained

method to specify permissions and access subjects.

• User/System authors : We require that policies can be specified about protected resources

by both users and system as policy authors.

• Positive/Negative authorization: Finally, policies should support both positive and neg-

ative authorization in order to allow a flexible specification.

Given the above requirements, we consider five components to policy specification: protected

resource, action, subject, effect (grant/deny), and author. While these components allow

very expressive policy specification, we follow a simple approach to combining policies for

the purpose of the policy analysis framework. In the analysis framework, we consider manual

combination of policies through analysis operations as it will be explained in Section 3.3.2.2.

For example, a deny-overrides conflict resolution meta-policy can be achieved using subtrac-

tion operation. However, while various flexible combining operations are supported in our

framework we do not discuss meta-policies that require algorithmic procedures in our policy

analysis framework. The reason behind this limitation is to constrain the framework within

the expression power of OWL-DL language for decidability purposes. Note that it means

that our policy analysis framework will not leverage SWRL rules unlike OSNAC.
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The core concept used for policies in our analysis framework is class Access, which char-

acterizes an access request. The following properties characterize an Access instance:

• pResource: specifies the protected resource (i.e., reified property) that is accessed. The

domain and range of object property pResource are Access and ReifiedProperty, respec-

tively.

• pAction: specifies the action on the protected resource. We consider basic data manipula-

tion actions of selection, insertion, and deletion of protected resources in the knowledge

base. The domain and range of object property pAction are Access and PolicyAction,

respectively. Class PolicyAction is comprised of individuals pa select, pa insert, and pa -

delete).

• pSubject: specifies the subject who accesses the protected resource. The domain and

range of object property pSubject are Access and User, respectively.

As an example, suppose David wants to know if Bob and Carol are friends with each

other. The corresponding Access instance can be characterized by the following predicates,

where rop isFriendOf bob carol is the reified property representing friendship between Bob

and Carol:

access1 pResource rop isFriendOf bob carol

access1 pAction pa select

access1 pSubject david

A user policy is expressed by specifying a set of applicable accesses and indicating the

user’s intended effect for such accesses, i.e., either grant or denial. In our policy analysis

framework, such an effect is specified using properties permits or denies, respectively. Both

these properties have domain of User and range of Access. Formally, a user policy is defined

as a concept that characterizes a subset of class Access and is also defined as a subset of

intended authorization relationship. For example, the following two predicates specify Bob’s

policy that allows his friends to access his friendship relationships.
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up1 ≡ Access

and pResource some (RPisFriendOf and

(ropSbj value bob) )

and pAction value pa select

and pSubject some (User and (isFriendOf value bob))

up1 v inverse permits value bob

The first predicate above defines user policy concept up1 where the protected resource is

a friendship reified property with Bob as its subject, action is selection, and the subject is a

friend of Bob. The second predicate indicates that such accesses are among those authorized

by Bob. Note that the inverse of property permits is used in the second predicate to switch

the place of its domain and range.

3.3.2 Analysis Tasks

We define a privacy analysis task as the act of performing analysis operations on the analysis

target based on analysis factors.

3.3.2.1 Analysis Targets Analysis targets are characterizations of accesses or their

related components, i.e., protected resources, actions, and subjects. Such characterizations

are specified using class Access and its related properties, that were described in Section

3.3.1. While a full characterization of access uses all three properties (pResource, pAction,

and pSubject), a partial characterization of access uses a subset of those properties. For

instance, using only properties pResource and pAction, one can characterize permissions and

analyze them in our framework.
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3.3.2.2 Analysis Operations Analysis operations either combine or reason about two

analysis targets. In order to avoid unnecessary complication, we provide definition of the

operations based on full characterization of accesses. However, the same operations are

applicable to partial characterization of accesses. The only requirement is that the operands

of analysis operations should be of the same type.

The basic operations that allow analysis in our framework are notions of complement

and intersection of concepts as well as subsumption reasoning. Let concepts P and Q be

subclasses of Access. The following list include the two primary combining operations and

the primary reasoning operation in our framework:

• not P (Negation): denotes whatever that is not described by P.

• P and Q (Intersection): denotes accesses that are described by both P and Q.

• P v Q (Subsumption): if satisfied it means that all accesses described by P are also

described by Q.

The above operations can be conveniently supported by an OWL reasoner. We derive

other operations and reasoning by combining the primary operations. Some of the typical

derived operations include:

• P or Q (Union): denotes accesses that are described by either P or Q (or both). Such a

concept is equivalent to not( (not Q) and (not Q) ).

• P \ Q (Subtraction): denotes accesses that are described by P and not by Q. Such a

concept is equivalent to P and not Q.

• P ≡ Q (Equivalency): if satisfied it means P and Q describe the same set of accesses.

Such a concept is equivalent to satisfying both P v Q and Q v P.

Suppose we have two analysis targets T1 and T2, where T1 specifies read accesses to

Bobs friendship relationships by his friends and T2 specifies read accesses to any of Bobs

relationships by his close friends. The interpretation of applying each of the above-mentioned

analysis operations on these targets are listed in Table 5.

3.3.2.3 Analysis Factors We consider several analysis factors based on which the anal-

ysis operations can be performed on the analysis target. Two classes of analysis targets can
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Table 5: Interpretation of Analysis Operations on Sample Targets

Operation Interpretation

not T1 Any access except reading Bobs friendship relationships by his friends

T1 and T2 Read access to Bobs friendship relationships by his close friends

T1 v T2 Are read accesses to Bob’s friendships by his friends subsumed by those to

any of his relationships by his close friends?

T1 or T2 Read accesses to Bob’s friendships by his friends or to any of his relationships

by his close friends

T1 \ T2 Read accesses to Bob’s friendships by his friends who are not his close friends

T1 ≡ T2 Is the set of read accesses to Bob’s friendships by his friends equivalent to the

set of read accesses to his relationships by his close friends?

be combined or compared according to their different respective analysis factors:

• Policy Effect : User policies state either of the two possible effects: grant or denial. Those

are also known as positive and negative effects, respectively. For example, a subtraction

operation between positive and negative policies allows inferring authorized accesses after

resolving conflicts.

• Policy Author : The policy author is the entity that provides the policy. According to

our policy representation, the policy author is specified as the subject of permits/denies

predicates. For example, one can compare and contrast two users’ policies with regards

to their same type of protected resources (e.g., their photos).

• Time State: We can consider different time states (snapshots) for an SNS. By considering

the same policy in different time state of a system, one can perform time-based analysis

tasks such as analyzing evolution of policies.

• Logical State: Logical states express classes of analysis target that do not exist as part of

the current policies in an SNS. For example, one can compare what should ideally be the

policies in an SNS versus what actually exists in the system. As another example, we
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can constrain the scope of the analysis target by calculating the intersection of a limiting

logical state and the analysis target at hand.

• System: Ontology-based model of the data and policies allows us to map between the

concepts in one SNS and the respective ones in another SNS. Therefore, system itself

can act as analysis factor. For example, we can verify the equivalence of the same user’s

policies in two different SNSs. As another example, combination operations can provide

a global view of the policies that a user has in several SNSs.

• Access Components : Those components of access that are not part of the analysis target

could also be employed as analysis factor. For example, if the target of analysis is

permission, we can compare them according to different set of access subjects.

Figure 12 shows a conceptual visualization of an analysis task. We represent access

characterization on a two-dimensional plane, where the first dimension represents protected

resources and actions and the second dimension represents access subjects. Note that a

more accurate representation was to use separate dimensions for each component of access

characterization. But we avoid it to represent the analysis factors on the third dimension.

In the figure, T1 and T2 are two access characterizations that differ on their corresponding

analysis factor value. The analysis task performs one of the operations described in Section

3.3.2.2 on T1 and T2 based on their differences according to the analysis factor. For example,

if T1 specifies accesses that Alice authorizes and T2 specifies accesses that Bob authorizes,

T1 and T2 will be corresponding to accesses that both Alice and Bob authorize, based on the

policy author analysis factor. As another example, if T1 specifies accesses that a user allows

and T2 specifies accesses that the same user denies, T1 \ T2 will be corresponding to accesses

that are authorized by the user after conflict resolution, based on the policy effect factor.

More complex analysis tasks can be formed by performing a series of such basic analysis

tasks.

Table 6 lists a number of sample analysis tasks that can be carried out using our frame-

work, showing their corresponding analysis targets and factors. A star symbol for an analysis

factor in the table indicates that it can be involved in the analysis task depending on the pur-

pose of analysis. For example, the policy effect analysis factor has been marked as optional

for many of the proposed tasks in the table. In that case, depending on the policy model and
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Figure 12: Privacy Control Policy Analysis Task

the task at hand, if policies with both positive and negative effects exist a combining step

may be required to resolve conflicts (subtracting the targets in the negative policies from

their corresponding targets in the positive policies).

3.3.3 A Detailed Analysis Task: Completeness of Privacy Control Permissions

In this section, we provide details for Task 1 in Table 6. In a typical SNS such as Facebook,

there exists different privacy settings that can be configured by a user in order to control

others’ access to the information related to her. These settings are in fact equivalent to

access control policies that are expressed by the users for the respective digital objects. Such

privacy settings are by no means complete in the sense that they do not control access to

all the potentially privacy-sensitive information about a user. That is the case even for

Facebook, which has fairly the most extensive set of privacy settings among SNSs. Access

to the rest of the information related to the user is governed by a set of fixed, default rules

set by the SNS itself.

There is a major issue with the current practice of privacy control policies in SNSs such

as Facebook. The current privacy settings do not provide users with adequate power to

protect their privacy-sensitive information. Moreover, the default policies enforced by an

SNS are not clearly described to the users. Therefore, users are unsure about what to expect

from the system. Users need to learn about them either by harvesting help pages in the SNS
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Table 6: Sample Analysis Tasks (k indicates optional analysis factor)

Analysis
Target Analysis Factor
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1 Verify completeness of privacy con-

trol permissions

3 3 3 3

2 Compare the same user’s policy in

two similar SNSs (e.g., Facebook vs.

Google+) with regards to similar

type of protected resources

3 3 3 k 3

3 Compare access subjects authorized

by two users for a certain shared pro-

tected resource between them

3 k 3

4 Compare access subjects authorized

by a user for a permission between

two snapshots of the system (differ-

ence due to evolution of user policies)

3 k 3

5 Compare access subjects authorized

for a permission between two snap-

shots of the system (difference due to

evolution of policies)

3 k 3 3

6 Compare the protected resources

that friends vs. friends-of-friends can

see according to a user’s policy

3 k 3
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or by observing the system’s behavior. Worse is that, since the default settings are not well

documented, SNSs can modify them without users noticing it and put them at great risk of

privacy violations.

In order to identify the privacy risks users are dealing with in such an above-mentioned

ecosystem, we propose an analysis task to formally reason about completeness of permissions

in an SNS. Our notion of completeness ensures that privacy control policies are applicable to

every piece of information related to a user. Therefore, the user can clearly expect to know

how her information is protected.

3.3.3.1 Privacy Properties We introduce two properties regarding completeness of

privacy control permissions. The target of analysis is the permissions, which can be expressed

by partial characterization of policies, as mentioned in Section 3.3.2. We identify three

categories of permissions in an SNS:

• Privacy Setting Permissions : These are captured by user-configurable privacy settings,

which usually have dedicated control elements in the system.

• Described System Permissions : These consists of the permissions that are not config-

urable by users and their corresponding system-defined policies are well documented.

• Expected Permissions : These refer to the permissions that a user considers as privacy-

sensitive, which may depend on the information model of the SNS and individual expec-

tations.

The privacy setting permissions and described system permissions are disjoint by def-

inition. The expected permissions are subjective in nature. Therefore, depending on the

purpose of the analysis, it needs to be determined. Let S, D, and E, represent the classes

of privacy setting, described system, and expected permissions in an SNS, respectively. The

Venn diagram of Figure 13 is a sample representation of these permission classes. We as-

sume that the expected permissions is likely to cover both privacy setting and described

system permissions, i.e., we expect at the least the privacy settings and described system

permissions are deemed privacy-sensitive. However, there may exist parts of the expected

permissions that are covered by neither privacy settings nor described system permissions.
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Figure 13: Permission Classes in an SNS: Privacy Settings (S), Described System (D), and

Expected (E) Permissions (where E is very likely to cover both S and D)

In other words, there may exist some privacy-sensitive permissions which are not mediated

by a transparent policy. The purpose of our analysis task is to reason about existence and

nature of such permissions.

We propose two permission completeness properties for an SNS. The following property

ensures that users’ expected permissions are part of the privacy settings and can be controlled

by them.

Definition 3 (Completely Controllable). An SNS with its privacy setting permissions S is

completely controllable with regards to expected permissions E, if and only if E v S.

Verification of the above property is an analysis task where the subsumption reasoning

operation is performed on permissions based on the logical state of expected permissions.

In practice, with a reasonable assumption about expected permissions, the above notion of

completeness cannot be satisfied in SNSs; the users may be overwhelmed by the complexity

of the options if they need to control every expected permission. Even if possible, the

system provider may choose not to provide such extensive controls due to various design

considerations. For example, it might be essential for users to see certain information about

their friends in order to keep the friendship relationships valuable in the context of the SNS.

We define the following notion of permission completeness as a more practical alternative.

Definition 4 (Completely Known). An SNS with its privacy setting and described system

permissions 〈S, D〉, is completely known with regards to expected permissions E, if and only
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if E v (S or D).

Verification of the above property is an analysis task where two analysis operations are

performed. First, the union of the privacy setting and described system permissions are

calculated according to policy author analysis factor (Privacy settings are provided by the

user and the described system permissions are provided by the system.) Second, based on

a logical state analysis factor, the subsumption of expected permissions by the result of the

previous step is tested.

3.3.3.2 Case Study: Facebook Privacy Control Permissions In order to demon-

strate verification of our permission completeness properties, we analyze the privacy control

policies in Facebook. For this purpose, we manually collected the privacy settings and de-

scribed system permissions from Facebook in December 2012.

Facebook provides a centralized dashboard for controlling privacy settings such as the

visibility of the statuses, tags, etc. Moreover, a user can determine the visibility of her

profile information such as education, contact info, etc. We collected those settings and

formulated their corresponding permissions. In Table 7, we list those settings worded as

similarly possible as in the Facebook’s privacy settings page, and corresponding permissions.

The permission representation is based on partial characterization of policy concept using

pResource and pAction properties. For example, in privacy setting permission S2, the first

clause specifies the action as insertion. The second complex clause indicates that the resource

should be of a reified property class RPannotate, where its object is a Wall, and that wall

is owned by me. In other words, the resource is the annotates relationship that annotates a

Wall instance belonging to me. Note that the listed privacy settings in Table 7 are limited

to the information that can be captured by our proposed ontology in Section 3.1.2. For

instance, the setting “Who can send you Facebook messages?” is not listed since we did

not include messages in our ontology. Our current ontology also does not model third party

apps. Moreover, in order to avoid enumerating a tedious list of settings, we provide one

privacy setting permission that accounts for all profile attributes (S1). Such a permission

specification covers permissions corresponding to settings such as “Who can look you up using

the email address or phone number you provided?” as well as many other single visibility
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controls in front of every profile item under a user’s about page.

Unfortunately, Facebook is not very transparent about its system-defined policies. Some

of the system-defined policies are documented in the help pages in the format of questions

and answers, which are not easily accessible unless one goes through all such pages. For

instance, the following question is provided in the help page for tagging (and not under

privacy!): “When I tag someone in a photo, post or app activity, who can see it?”. The

answer provided to this question explains that the audience selected for the post, the user

tagged, etc., can see it. Table 8 lists the described system policies that we were able to

harvest from Facebook’s help pages, and that were related to the information captured in

our ontology.

Based on our model of SNS information, our intuition is that a user should be able to

control relationships that are about her. In terms of our proposed Facebook ontology, those

include properties that directly relate to the user, and the properties that relate to some

digital objects owned by the user. We consider these as our expected permissions for a user

in an SNS, as shown in Table 9. Note that this is a fairly conservative model of expected

permissions in the sense that every piece of information related to a user is considered as

potentially privacy-sensitive. However, we see it as a safe and reasonable assumption.

We now present the results of verification of permission completeness properties that

were introduced in Section 3.3.3.1 with regards to the permissions presented in Tables 7, 8,

and 9. According to the listed permissions, it is not very surprising that Facebook does not

satisfy the completely controllable property (Definition 3). However, Facebook does not sat-

isfy the completely known (Definition 4) property either. It means that there exist expected

permissions that are neither in the privacy settings nor in the described system permissions.

In order to identify such missing permissions, we formulated several permission classes (sub-

classes of expected permissions) Mi, and tested them for subsumption satisfiability according

to Mi v E − (S or D). Mi is an expected permission that is neither in S nor D if the subsump-

tion relationship is satisfied. We report in Table 10 some permissions that are missing in

current Facebook privacy control policies according to our analysis. Note that the table lists

only a sample of permissions with selection as their action; many other missing permissions

can be formulated for insertion and deletion actions.
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Table 7: Privacy Setting Permissions in Facebook

Privacy Setting/Corresponding Permission

S1
Profile attributes privacy (for each item)

pAction value pa select and

pResource some (rdpSbj value me)

S2
Who can post on your timeline?

pAction value pa insert and

pResource some (RPannotates and

(ropObj some (Wall and (inverse ropObj some

(RPowns and (ropSbj value me))) )))

S3
Who can see what others post on your timeline?
pAction value pa select and

pResource some (RPannotates and
(ropObj some (Wall and (inverse ropObj some (RPowns and (ropSbj value me))))) and
(ropSbj some (WallPost and (inverse ropObj some (RPowns and (ropSbj value me))))) )

S4
Who can see what you post? (per item)

pAction value pa select and

pResource some (RPhasContent and

(rdpSbj some (inverse ropObj some (RPowns and (ropSbj value me)))) )

S5
Review tags friends add to your own posts

pAction value pa insert and

pResource some (RPannotates and

(ropObj some (inverse ropObj some (RPowns and (ropSbj value me)))) and

(ropSbj some PhotoUserTag) )

S6
Visibility of photos (managed per album)

pAction value pa select and

pResource some (RPhasContent and (rdpSbj some (inverse ropObj some

(RPowns and (ropSbj value me)) ))) or

(RPowns and (ropSbj value me) and (ropObj some Photo))
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Table 8: Described System Permissions in Facebook

Described System Policy/Corresponding Permission

D1
Who can see tags I make?

pAction value pa select and

pResource some (RPannotatesWith and

(ropSbj some (UserTag and (inverse ropObj some (RPowns and

(ropSbj value me) )))) )

D2
Who can see that I’m tagged in a post?

pAction value pa select and

pResource some (RPannotatesWith and (ropObj value me) )

D3
Who can see a tag that someone added to your post?

pAction value pa select and

pResource some (RPannotates and

(ropObj some (UserTaggable and (inverse ropObj some

(RPowns and (ropSbj value me) )))) )
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Table 9: Expected Permissions for Facebook

Expected Privacy Setting/Corresponding Permission

E1
Control whatever relates to you

pAction some Action and

pResource some (ReifiedProperty and

((rdpSbj value me) or (ropObj value me) or (ropSbj valueuj me)) )

E2
Control whatever relates to something belonging to you

pAction some Action and

pResource some (ReifiedProperty and

( (rdpSbj some (inverse ropObj some (RPowns and (ropSbj value me)))) or

(ropObj some (inverse ropObj some (RPowns and (ropSbj value me)))) or

(ropSbj some (inverse ropObj some (RPowns and (ropSbj value me)))) ) )
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Table 10: Sample Missing Permissions in Facebook

Missing Policy/Corresponding Permission

M1
Who can see that you have tagged someone?

pAction value pa select and

pResource some (RPowns and

(ropObj some PhotoUserTag) and (ropSbj value me) )

M2
Who can see that you have liked something?

pAction value pa select and

pResource some (RPlikes and

(ropSbj value me) )

M3
Who can see your comment on someone else’s post?

pAction value pa select and

pResource some (RPannotates and

(ropSbj some (Comment and (inverse ropObj some (RPowns

and (ropSbj value me) )) ))

and (ropObj some (inverse ropObj some (RPowns

and (ropSbj some Others) )) )

M4
Who can see if you are friend with someone?

pAction value pa select and

pResource some (RPisFriendOf and

(ropSbj value me) )
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4.0 A FRAMEWORK FOR STRUCTURE PRESERVING

ANONYMIZATION OF SOCIAL NETWORKS

In this chapter, we present our framework to apply structure-preserving heuristics to existing

edge-perturbation anonymization schemes for social networks. We empirically show that our

proposed enhancement methods can preserve structural properties of social networks signifi-

cantly better compared to what original edge perturbation algorithms offer. For this purpose,

we present results of experiments on three different enhanced anonymization algorithms and

multiple datasets, analyzing social network analysis measures such as betweenness centrality,

clustering coefficient, etc.

The rest of the chapter is organized as follows. In Section 4.1, we provide an abstract

representation of edge-perturbing anonymization algorithms. In Section 4.2, we define the

notions of structural roles in social networks and role dissimilarity, and present an algorithm

to calculate them for undirected networks. We propose our approaches to preserve structural

properties by using concepts of roles and edge betweenness in Sections 4.3 and 4.4, respec-

tively. We evaluate the proposed approaches using multiple datasets and various evaluation

metrics in Section 4.5. In Section 4.6, we discuss privacy implications of our approach and

a practical way to select anonymization enhancement parameters.

4.1 EDGE-PERTURBING ANONYMIZATION

An undirected social network is defined as a graph, G〈V,E〉, where the set of vertices V

represents the agents in the network, and the set of undirected edges E ⊆ {(u, v)|u, v ∈ V }

represents the relationships between agents in V . Edge-perturbing anonymization techniques
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modify edges of a network to satisfy a certain anonymization criteria. These techniques typi-

cally follow a greedy iterative approach, which can be abstractly expressed as in Algorithm 1.

In each iteration, Algorithm 1 selects an edge to be added/removed using a heuristic which

Algorithm 1 Iterative Edge Perturbation

Require: G〈V,E〉

Ensure: Anonymized version of G〈V,E〉

1: repeat

2: if an edge should be added then

3: Choose non-existent edge (u, v) to be added

4: E ← E ∪ {(u, v)}

5: if an edge should be removed then

6: Choose existing edge (u, v) to be removed

7: E ← E\{(u, v)}

8: if anonymization criteria is not achievable then

9: return null

10: until anonymization criteria is achieved

11: return G〈V,E〉

depends on the specific technique. The iterations continue until the graph is considered

anonymized according to the anonymization criteria. Different anonymization techniques

have different anonymization criteria. In the random perturbation technique [32], the goal is

to simply remove m edges randomly and then add m random edges. In the k-anonymity-based

approaches (e.g., [53, 83, 76, 33]), the goal is, for instance, to achieve a graph with k-anony-

mous vertex degrees (e.g., Supergraph [53]). The algorithm aborts if the anonymization

criteria cannot be achieved, which is also dependent on the actual technique.

The Greedy-Swap algorithm proposed in [53] includes an optimization phase to select

a group of edge changes in the graph in each iteration, which results in a slightly different

algorithm scheme (see Algorithm 2). The algorithm first creates an anonymized random

graph based on a k-anonymous degree sequence of the original graph. In each iteration,

every pair of edges in a subset of existing edges is examined for a swap. In a swap operation,

a pair of edges are replaced with another pair using the same end nodes. Two swap options
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Algorithm 2 Greedy-Swap

Require: G〈V,E〉

Ensure: Anonymized version of G〈V,E〉

1: Create anonymized random social network G′〈V,E ′〉, where |E ′| = |E|

2: repeat

3: Select log(|E ′|) of edges E ′ randomly

4: for all pairs of selected edges (u, v) and (u′, v′) do

5: Calculate the gain value considering swapping of the pair either with (u, u′) and

(v, v′), or (u, v′) and (u′, v)

6: Perform the swap with maximum gain (if any)

7: until no edge swap is performed

8: return G′〈V,E ′〉

are considered for a pair of edges {(u, v), (u′, v′)}: either {(u, u′), (v, v′)}, or {(u, v′), (u′, v)}.

Such swaps do not change vertex degrees, thus, ensuring the already-established degree k-

anonymity. A gain value is calculated for each swap option, and the swap with maximum

(positive) gain is selected. In [53], the authors calculate the gain value as the increment

of edge overlap (intersection) between the interim and the original graph. Performing the

swap with maximum gain at each iteration would greedily make the anonymized graph more

structurally similar to the original one.

4.2 STRUCTURAL ROLES

There are three major approaches to classify agents in a network based on relationships

among them into their social positions: structural, automorphic, and regular equivalence

[78, 45]. Two agents are structurally equivalent if they have identical ties with identical

other agents. In automorphic equivalence, agents in the same position must have identical

ties with different sets of agents that play the same role in relation to that position. Finally,

two agents are regularly equivalent if they have same kind of relationships with agents that
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structural:

{{a},{b},{c},{d},{e, f},{g,h}}

automorphic:

{{a},{b,c},{d},{e,f,g,h}}

regular:

{{a,b,c},{d,e,f,g,h}}

Figure 14: Sample Equivalency Classes for a Network

are also regularly equivalent. Figure 14 shows a small example of equivalency classes based

on each of these concepts. We choose regular equivalence among these as it captures the

concept of structural roles very well, and is the least restrictive among the three concepts.

In this section, we formally define the notion of roles in the context of undirected social

networks, adopting some definitions from [50]. We also define the extent of regular equiva-

lence between roles and introduce an algorithm for identifying roles and calculating such a

measure.

4.2.1 Roles based on Regular Equivalence

Definition 5 (Role Assignment). A role assignment for network G〈V,E〉 is a function Φ :

V → R, defined for every member of V , where R is a set of roles.

A role assignment partitions agents into equivalency classes. Two agents are considered

equivalent (≡Φ) if they are assigned the same role: ∀u, v ∈ V ;u ≡Φ v ⇔ Φ(u) = Φ(v). In

other words, a role assignment is a projection of an equivalence relation. Of our particular

interest is the regular equivalence. The following definition captures the relationships between

agents.

Definition 6 (Neighbor Role Set). ΓΦ : V → 2R is a function that maps an agent in

network G〈V,E〉 to the roles of its neighbors according to role assignment Φ, i.e., ΓΦ(u) =

71



{Φ(v)|(u, v) ∈ E}.

We recall that regularly equivalent agents must have the same kind of relationships with

other regularly equivalent agents. Therefore, we define a role assignment that projects a

regular equivalence relation as follows.

Definition 7 (Regular Equivalence Role Assignment). A role assignment Φ : V → R

projects a regular equivalence for agents in network G〈V,E〉 iff

∀u, v ∈ V,Φ(u) = Φ(v)⇒ ΓΦ(u) = ΓΦ(v).

Two agents are regularly equivalent if and only if they have neighbors with the same

roles. We refer to this as RE-role assignment.

4.2.2 Extent of Role Equivalence

In the case that two agents are not regularly equivalent, it is sometimes desirable to know to

what extent they are playing similar roles. That is particularly useful in our enhancement

approach, which relies highly on the existence of large classes of equivalent agents. As per our

experiments, algorithms for computing regular equivalence usually result in low-populated

equivalency classes. Therefore, as we discuss in later sections, agents playing similar roles can

be considered as alternatives to the non-existing regularly equivalent agents. We abstractly

define a dissimilarity measure for roles as follows.

Definition 8 (Regular Equivalence Role Dissimilarity). ∆Φ : V × V → [0, 1] is a role

dissimilarity function for agents of network G〈V,E〉 corresponding to role assignment Φ,

where, at the two extremes, ∆Φ(u, v) = 0 implies agents u and v have the same role (Φ(u) =

Φ(v)), and ∆Φ(u, v) = 1 implies agents u and v have completely dissimilar roles.

The role dissimilarity measure is usually dependent on the regular equivalence computa-

tion scheme in use. We provide the details in Section 4.2.3. Subsequently, we are interested

in a dissimilarity measure between two sets of roles, given the dissimilarity measure for indi-

vidual pairs of roles. The rationale behind computing such a dissimilarity measure is to see

how similar a modified neighbor role set of an agent is to its original one if some of its ties

are changed. We define this measure as follows.
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Definition 9 (Regular Equivalence Role Set Dissimilarity). Let S, S ′ ⊆ R be two subsets of

roles. The regular equivalence dissimilarity between S and S ′, written as Λ(S, S ′), is equal

to: ∑
x∈S

|S′|
√∏

y∈S′ ∆(x,y)

|S| +
∑

y∈S′ |S|
√∏

x∈S ∆(x,y)

|S′|

2

The above formula essentially calculates the (asymmetric) dissimilarities of S to S ′, and

S ′ to S, and then takes the average to compute an overall (symmetric) dissimilarity between

S and S ′. The dissimilarity of S to S ′ (the first expression in the numerator) is calculated

as follows. For every role x in S, the product of its dissimilarities with all roles in S ′ is

calculated, and its |S ′|th root is taken. This gives us an overall dissimilarity value between

x and roles in S ′. If one of the roles in S ′ is the same as x, the result would be zero;

otherwise, the dissimilarity values for each will be effective in the result. The average of all

such dissimilarities for all the roles in S is considered as the dissimilarity of S to S ′. The

dissimilarity of S ′ to S is calculated in a similar fashion.

4.2.3 An Algorithm to Identify Roles

REGE is a simple algorithm to partition agents based on regular equivalence. However, as

pointed out by Borgatti and Everett [9], there are some inconsistencies with the algorithm

in recognizing regular equivalence partitions. Also, there are issues related to the similarity

measure it generates such as being affected by degree of nodes (which theoretically should not

occur because of the nature of regular equivalence). CATREGE [9] is an alternative solution

for finding regular equivalence in categorical network data, i.e., networks with different types

of edges. It also works for non-categorical data that is the concern of our work. Moreover,

the similarity measure computed by CATREGE avoids the above-mentioned issues.

Since we deal with non-categorical (single-type edge), undirected social networks employ-

ing CATREGE results into an uninteresting regular equivalence: all agents will be classified

in a same equivalency class. We modify the CATREGE algorithm to tackle this issue, as

shown in Algorithm 3. We initialize our algorithm with two partitions of equivalent agents:

agents with the minimum degree (disregarding isolates) form one partition, and the rest

of the agents form the other partition. In each iteration, the algorithm checks if pairs of
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(e) Iteration 4

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 5 1 0 1 2 2 2 2 0 0

v2 1 5 0 3 1 1 1 1 0 0

v3 0 0 5 0 0 0 0 0 4 4

v4 1 3 0 5 1 1 1 1 0 0

v5 2 1 0 1 5 5 2 2 0 0

v6 2 1 0 1 5 5 2 2 0 0

v7 2 1 0 1 2 2 5 5 0 0

v8 2 1 0 1 2 2 5 5 0 0

v9 0 0 4 0 0 0 0 0 5 5

v10 0 0 4 0 0 0 0 0 5 5

(f) (Non-Normalized) Similarity

Partition Color Codes: 1=Yellow, 2=Green, 3=Red, 4=Purple, 5=Pink, 6=White, 7=Orange

Figure 15: Sample Execution of Algorithm 3
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Algorithm 3 Calculate Agents’ Role Dissimilarities

1: p1 ← {u ∈ V |degree(v) = Min(degree(vi ∈ V ))}

2: p2 ← V \ p1

3: P ← {p1, p2}

4: Initialize Φ according to partition set P :

∀u ∈ V [u ∈ pi → Φ(u) = ri]

5: i← 1

6: repeat

7: for each partition p ∈ P do

8: Split p into independent partitions {pi} such that ∀u, v ∈ p [u, v ∈ pi ↔ ΓΦ(u) =

ΓΦ(v)]

9: if ΓΦ(u) 6= ΓΦ(v) then

10: Similarity(u, v)← i

11: Substitute p in P with partitions {pi}

12: Update Φ according to partition set P

13: i← i+ 1

14: until no changes in partitions set P

15: for every pair of agents u and v do

16: ∆Φ(u, v)← (i− Similarity(u, v))/i
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nodes that were equivalent in the previous iteration are connected to other agents that were

equivalent themselves. If not, they are marked as non-equivalent. The procedure is repeated

until there is no change in the equivalencies compared to the previous iteration. The extent

of regular equivalence between two agents can be obtained by counting the number of iter-

ations it takes them to split into different partitions. The algorithm obtains a normalized

dissimilarity by subtracting this value from and dividing it by the total number of iterations.

A naive implementation of Algorithm 3 has time complexity O(dn3), where n and d are node

count and maximum node degree of the input network. However, in practice, the algorithm

converges much sooner than the worst case complexity indicates.

Algorithm 3 is different from the original CATREGE in two aspects. First, it does not

deal with multiplex matrix required for categorical data. Second, it begins with a specific

initial partitioning, as opposed to all agents being in the same partition in the original

CATREGE. Our initial partitioning essentially indicates that peripheral agents in a network

are more regularly equivalent to each other, and less so with the other agents that fall inside

the network.

Figure 15 illustrates the execution of Algorithm 3 on a small network. In each iteration,

nodes within a same partition are marked with a same color (number). Note that partition

colors (numbers) only indicate equivalent agents in one iteration and do not carry any other

semantics. In the initial state (Figure 15a), vertices v3, v9, and v10 are colored yellow, and

all the others are colored green. Figure 15b illustrates the resultant partitions after the first

iteration. Since in the previous step, the yellow vertices were all connected to the green

vertices, they will not separate in this iteration. However, the previously green vertices are

divided into two partitions: the ones that were only connected to greens, and the ones that

were connected to both yellows and greens. If we continue the procedure, the final result

is obtained after iteration 4 (Figure 15e); further iterations will not change the partitions.

Figure 15f shows the (non-normalized) extent of regular equivalence between agents. For

instance, the similarity value between v1 and v2 is 1, because they were separated after

the first iteration. Analogously, the similarity value between v5 and v7 is 2, because they

were separated after the second iteration. If two vertices eventually remain equivalent, their

similarity value will be the maximum number of steps (e.g., 5 for v5 and v6). These values
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are converted to dissimilarity measure in the last loop of Algorithm 3.

4.3 PRESERVING STRUCTURAL PROPERTIES USING ROLES

Our intuition is that preserving the role structure of a social network in the anonymization

process would preserve to some extent the network structural properties such as centralities.

Therefore, the anonymized network will be more suitable to be used for typical network

analysis. To this end, we need to ensure that an RE-role assignment in the original network

is applicable to its edge-perturbed version as well. In this section, we present our proposed

approach that preserves role structure, and apply it on the edge perturbation algorithms

presented in Section 4.1.

Preserving an RE-role assignment while perturbing a social network is not straightfor-

ward. Because modifications to the edge structure of a network during perturbation and

changing neighborhoods of agents can easily invalidate an RE-role assignment for the edge-

perturbed version of a network. The following theorem captures a sufficient condition to

ensure that.

Theorem 3. Let G′〈V,E ′〉 be an edge-perturbed version of network G〈V,E〉. An RE-role

assignment Φ for G is also an RE-role assignment for G′ if

∀u ∈ V [ΓG′

Φ (u) = ΓG
Φ(u)]

Proof. The proof follows from the above condition and Definition 7. Given Φ is an RE-role

assignment for G, for a pair of agents u and v where Φ(u) = Φ(v), by Definition 7, we have

ΓG
Φ(u) = ΓG

Φ(v). Now, if the condition in the theorem is true, we also have ΓG′
Φ (u) = ΓG

Φ(u) and

ΓG′
Φ (v) = ΓG

Φ(v). Based on these three equalities, we have Φ(u) = Φ(v) ⇒ ΓG′
Φ (u) = ΓG′

Φ (v),

which is a necessary and sufficient condition for Φ to be an RE-role assignment for G′,

according to Definition 7.

Theorem 3 states that keeping the neighbor role sets of agents in a network intact in

the anonymization process will preserve an RE-role assignment. As an edge perturbation
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algorithm involves a series of edge additions/removals, the above condition can be further

elaborated with regards to the set of added or removed edges as in the following theorem.

Theorem 4. Let G′〈V,E ′〉 be an edge-perturbed version of network G〈V,E〉. An RE-role

assignment Φ for G is also an RE-role assignment for G′ if the following conditions are met

∀(u, v) ∈ Ei ∃(u, v′) ∈ E [Φ(v) = Φ(v′)] (4.1)

∀(u, v) ∈ Ed ∃(u, v′) ∈ E ′ [Φ(v) = Φ(v′)] (4.2)

where sets Ei = E ′\E and Ed = E\E ′ represent added and removed edges, respectively.

Proof. Since the same role assignment Φ is considered for both G and G′, any difference

between ΓG
Φ(u) and ΓG′

Φ (u), for any agent u, can only be the result of either addition or

removal of an edge adjacent to u. For an added edge (u, v), by condition (4.1), we have

∃(u, v′) ∈ E[Φ(v) = Φ(v′)] and therefore Φ(v) = Φ(v′) ∈ ΓG
Φ(u), i.e., an added edge would

not affect the neighbor role set of an agent. For a removed edge 〈u, v〉, by condition (4.2),

we have ∃(u, v′) ∈ E ′[Φ(v) = Φ(v′)] and therefore, Φ(v) = Φ(v′) ∈ ΓG′
Φ (u), i.e., a removed

edge would not affect the neighbor role set of an agent. These suggest

∀u ∈ V [ΓG′

Φ (u) = ΓG
Φ(u)]

which is a sufficient condition for Φ to be an RE-role assignment for G′, according to Theo-

rem 3.

4.3.1 Role-Enhanced Iterative Edge Perturbation

Based on Theorem 4, we extend and enhance the iterative edge perturbation techniques

represented by Algorithm 1 as follows. After selecting an edge for addition, it is added only

if it conforms to condition (4.1). For this purpose, line 4 of the algorithm should be replaced

with the following.

if ∃(u, v′), (u′, v) ∈ E [Φ(v) = Φ(v′) ∧ Φ(u) = Φ(u′)] then

E ← E ∪ {(u, v)}
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This checks if there exists vertex v′ in u’s neighborhood with the same role as v’s, and if

there exists vertex u′ in v’s neighborhood with the same role as u’s. If either of the checks

fails the edge addition is discarded. Analogously, an edge removal should be allowed only if

it conforms to condition (4.2). As per Theorem 4, such a modified version of Algorithm 1

will preserve an RE-role assignment for the graph in each iteration. Therefore, an RE-role

assignment for the original social network graph will be valid for its final edge-perturbed

version.

Although theoretically sound, the above-mentioned strategy may not perform well in

practice. Based on our experiments on network datasets, algorithms such as the one pre-

sented in Section 4.2.3 identify very small number of agents with the same role. Therefore,

when adding/removing an edge, e.g., (u, v), the chance of finding an agent with the same role

as v’s in u’s neighborhood is very low, and vice versa. The above-mentioned strategy is hard

to be applied in such a situation as it would reject changes to the network, because of low

population of equivalent agents in every class. In order to overcome this limitation, we use a

relaxed version of the conditions in Theorem 4. Instead of an exact role match as proposed

in the conditions, we propose a partial match by using a threshold on RE-role dissimilar-

ity between agents. Algorithm 4 provides the pseudocode for the enhanced version of the

iterative edge perturbation approach. As the input arguments, it requires role dissimilarity

values for agents (∆Φ) and threshold δ ∈ [0, 1] which indicates the extent of non-perfect role

matching to be allowed. The time complexity of Algorithm 4 is clearly dependent on the

actual iterative edge perturbation method. However, it will be bounded by O(n2) since in

the worst case all the candidate edges for addition would be tested.

The following example demonstrates how maintaining the neighbor role set of an agent

can help in preserving structural properties of a network.

Example 5. In Figure 15e, assume we need to remove one of the adjacent edges to v4.

Based on our proposed scheme, an agent should exist in v4’s neighborhood that has low role

dissimilarity with the agent that is removed from that neighborhood, and vice versa. Note

that we can instead consider high similarity values in Figure 15f. The following list shows

the most similar agent in v4’s neighborhood after removing each candidate from it.
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Algorithm 4 Role-Enhanced Iterative Edge Perturbation

Require: G〈V,E〉, ∆Φ, and δ

Ensure: Anonymized version of G〈V,E〉

1: repeat

2: if an edge should be added then

3: Choose non-existent edge (u, v) to be added

4: if ∃(u, v′), (u′, v) ∈ E [∆Φ(v, v′) < δ ∧∆Φ(u, u′) < δ] then

5: E ← E ∪ {(u, v)}

6: if an edge should be removed then

7: Choose existing edge (u, v) to be removed

8: E ′ ← E\{(u, v)}

9: if ∃(u, v′), (u′, v) ∈ E ′ [∆Φ(v, v′) < δ ∧∆Φ(u, u′) < δ] then

10: E ← E ′

11: if anonymization criteria is not achievable then

12: return null

13: until anonymization criteria is achieved

14: return G〈V,E〉
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• v1: v5/v6 with similarity value 2.

• v2: v1/v5/v6 with similarity value 1.

• v3: No similar agent exists.

• v5: v6 with similarity value 5.

• v6: v5 with similarity value 5.

The following list shows the most similar agent in each of the above candidate’s neighborhood

that may replace v4’s role.

• v1: v2 with similarity value 3.

• v2: v1 with similarity value 1.

• v3: No other neighbor agent exists.

• v5: v6/v7/v8 with similarity value 1.

• v6: v5/v7/v8 with similarity value 1.

As suggested by the above similarities, edge (v1, v4) seems to be the best option to remove.

Because both v1 and v4 have an agent in their neighborhood with moderate similarity to the

other. To ensure this is indeed the best choice, we calculate two network measures, i.e, mean

betweenness and closeness centralities, for the result of each case. The mean betweenness

(closeness) centrality for the original network is 5.1 (0.487), and is as follows after removing

each of the candidates:

• v1 : 5.7 (0.458)

• v2 : 6.9 (0.411)

• v3 : 3.9 (0.318)

• v5 : 5.7 (0.456)

• v6 : 5.7 (0.456)

The above centrality values confirms our choice of removing (v1, v4), since the corresponding

resulting network has closer centrality values to the original network compared to the other

choices.
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4.3.2 Role-Enhanced Greedy-Swap

As mentioned in Section 4.1, the Greedy-Swap algorithm follows a different overall procedure

than most of the other perturbation approaches. Hence, we need a different approach to

enhance it for preserving role structure. We do so by proposing a new gain function in

Algorithm 2. Recall that the Greedy-Swap technique [53] starts with an anonymized version

of the network but with randomized edges, and performs edge swaps to make the anonymized

network as similar as possible to the original graph. To this end, the authors define the

gain measure as the increase in the edge overlap between the original and the anonymized

networks. We propose to substitute the gain function in Algorithm 2 with a role similarity

gain measure which is calculated based on regular equivalence role structure. The role

similarity gain function measures how much each of the involved vertices in an edge swap

gets closer (more similar) to its corresponding original state in terms of the role structure.

Recall from Theorem 3 that the neighbor role set of an agent acts as an important factor

in preserving its role. Hence, we consider it as the main clue for calculating such a role

similarity gain.

Let u be an agent involved in an edge swap, and ΓG
Φ(u) be its neighbor role set in the

original network. Also, in the ith iteration of Algorithm 2, let ΓGi
Φ (u) be its neighbor role set

in the interim network, and Γ
Gi+1

Φ (u) be its neighbor role set in the next state of the interim

network if the swap is performed. The objective of optimization based on role similarity gain

is to obtain better similarity between Γ
Gi+1

Φ (u) and ΓG
Φ(u) compared to ΓGi

Φ (u) and ΓG
Φ(u).

In other words, using dissimilarity measures defined in Section 4.2.2, we need to have

Λ(ΓG
Φ(u),ΓGi

Φ (u)) ≥ Λ(ΓG
Φ(u),Γ

Gi+1

Φ (u))

Hence, the role similarity gain can be measured by the decrease in dissimilarity between the

neighbor role sets in the original and interim networks. The bigger the gap between the two

sides of the above inequality, the larger the role similarity gain will be. As there are four

vertices involved in a swap of a pair of edges (u, v) and (u′, v′), we calculate the total role

similarity gain of a swap as follows.∑
x∈{u,v,u′,v′}[Λ(ΓG

Φ(x),ΓGi
Φ (x))− Λ(ΓG

Φ(x),Γ
Gi+1

Φ (x))]

4
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The time complexity is O(log2 n) for Algorithm 2, and O(d2) for the above gain function,

where n and d are node count and maximum degree of the input network, respectively.

Therefore, the time complexity for role-enhanced Greedy-Swap is O(d2 log2 n).

4.4 PRESERVING STRUCTURAL PROPERTIES BASED ON EDGE

BETWEENNESS

Computing shortest paths between pairs of nodes in a network is an underlying factor for

social network analysis measures, ranging from simple graph-level measures such as char-

acteristic path length (average path length between node pairs) and diameter (maximum

shortest path in the network) to node level centrality measures such as betweenness (pro-

portion of shortest paths that pass through a node) and closeness (average distance of a

node to all the other nodes). In this section, we propose an algorithm to maintain structural

properties in a perturbed network by limiting the amount of changes to the shortest paths

in the network.

We leverage the notion of edge betweenness to control the shortest paths, which was

introduced in the Newman-Girvan community detection algorithm [64]. Edge betweenness

is defined for an edge as the number of shortest paths between any pair of nodes that pass

through that edge. If there are more than one shortest paths for a pair of nodes, they are

counted proportionally so that they sum up to unity. Intuitively, based on the definition,

if an edge has a low edge betweenness centrality removing/adding it from/to the network

will have less effect on the shortest paths compared to removing/adding an edge with higher

betweenness. A lesser number of shortest path changes in the network due to such edge

addition/removal would help to have less change in social network analysis measures such

as closeness. However, note that although this strategy limits the number of shortest path

changes, it cannot control the amount of change in the shortest paths. This observation

is central to our proposed approach to perturb a network with limited changes to shortest

paths.

Algorithm 5 provides the pseudocode for the enhanced version of the iterative edge
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Algorithm 5 Edge-Betweenness-Enhanced Iterative Edge Perturbation

Require: G〈V,E〉 and β

Ensure: Anonymized version of G〈V,E〉

1: repeat

2: if an edge should be added then

3: Choose non-existent edge (u, v) to be added

4: E ′ ← E ∪ {(u, v)}

5: if Normalized-Edge-Betw〈V,E′〉((u, v)) < β then

6: E ← E ′

7: if an edge should be removed then

8: Choose existing edge (u, v) to be removed

9: if Normalized-Edge-Betw〈V,E〉((u, v)) < β then

10: E ← E\{(u, v)}

11: if anonymization criteria is not achievable then

12: return null

13: until anonymization criteria is achieved

84



perturbation anonymization using edge-betweenness. Here, function Normalized-Edge-Betw

calculates the betweenness of an edge and normalizes it based on the maximum edge be-

tweenness value of the edges in the graph. β ∈ [0, 1] is an input argument that limits the

potential set of edges to be added/removed, based on their normalized edge betweenness

centrality value. Edge-betweenness calculation has time complexity O(ne), where n and e

are node and edge count, respectively. Therefore, a naive implementation of the algorithm

will have time complexity O(n3e).

4.5 EXPERIMENTS

4.5.1 Experimental Setup

In order to evaluate the performance of the proposed enhanced approaches in terms of

preserving data utility, we set up an extensive experimental study. In this section, we

describe our choices for evaluation measures, datasets, and implementing anonymization

algorithms.

4.5.1.1 Evaluation Measures Since we do not focus on anonymization for a specific

application purpose it is hard to identify exact representative measures of data utility. In

the area of k -anonymization for tabular data [16], the basic two actions to perform on a

dataset are generalization and suppression. In generalization, attribute values of tuples are

replaced by more general values. In suppression, tuples may be removed from the dataset

(when generalization is not sufficient). The proposed algorithms for tabular data aim to

minimize such generalization and suppression. This can generally be computed based on a

formula of information loss for each tuple. However, it is much more challenging to consider

such a measure for social networks [32, 82, 79]. Perturbation of social networks, even when

limited to modifying edges, can affect many node and network properties. In other words,

the effect of changes in the graph is not local (as it was for tuples in the case of tabular

data). For this reason, instead of considering a single measure, we study the preservation
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of a set of social network analysis measures. We have selected two widely used measures

at network level [78, 63], namely, average path length and clustering coefficient. Also, since

studying node centrality in a network is of prime importance, we have considered a number

of node level centrality measures based on previous related studies on the quality of social

network data [8, 26]. We describe the set of measures in the following list:

• Average Path Length is the average distance of all the node pairs in the network.

• Clustering Coefficient measures the tendency of nodes in a network to cluster together,

by counting the ratio of closed triplets to connected triplets in the network.

• Betweenness Centrality is the number of times a node falls on the shortest paths between

node pairs in the network. We consider the average of this value for all the nodes in the

network.

• Closeness Centrality is the average distance of a node to all the nodes in the network.

We consider the average of this value for all nodes in the network.

• Centrality Rankings: We note that it is important in social network analysis to identify

the most central nodes in a network. Therefore, in addition to the mean centrality values

we investigate the accuracy of preserving individual nodes’ centrality rankings. For this

purpose, we consider the function of an anonymization algorithm as a classifier that

should classify the top n central nodes in the original network as the most central nodes.

We evaluate the performance of such a classifier by measuring the area under the ROC

curve (AUC). The accuracy measures Top3AUC and Top10pAUC, respectively, indicate

such performance metric for classifying the top three and the top decile of central nodes

in the original network as the most central in the anonymized network. The accuracy

metrics are considered separately for betweenness and closeness centrality.

• Centrality Correlation (R2) measures the square of Pearson correlation between central-

ities of nodes in the original and perturbed networks, as an alternative accuracy metric.

The effectiveness of the proposed approaches is evaluated as follows. We calculate the above-

mentioned measures on the outputs of both original anonymization algorithms and their

enhanced versions, and compare them with the corresponding measurements on the original

network. An anonymized output that provides closer measurements to those of the original
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network is intuitively more useful for analysis.

4.5.1.2 Datasets Since the network measures are dependent on the network structure,

it is common in the study of social networks to experiment on several networks [51, 44, 8].

In our study, we experiment on both real-world and synthetic datasets. We have selected

two published real-world datasets in the literature, and have generated three synthetic social

networks based on different topological models [63]. The social network datasets in our

experiments are as follows.

• PolBooks: A network of books about US politics sold by Amazon.com around the 2004

presidential election (compiled by V. Krebs, www.orgnet.com). Edges between books

represent their frequent purchase by the same buyers.

• Jazz: A collaboration network of jazz musicians [27], where nodes represent bands and

edges indicate that the corresponding bands share a common musician.

• ER: A synthetic random network based on Erdos-Renyi model.

• BA: A synthetic scale-free network based on Barabasi’s model.

• SW: A synthetic small-world network.

Table 11 lists some of the structural properties of our datasets. Since the original anony-

mization algorithms that we are enhancing are not fast algorithms we choose small size

datasets in our experiments. Note that the sizes of datasets are not an influencing factor on

how our approach is successful in achieving its goal to preserve data utility.

4.5.1.3 Implemented Algorithms We implemented the original, role-enhanced, and

edge-betweenness-enhanced versions of random perturbation [32], Supergraph [53], and

Greedy-Swap [53]. The first two algorithms are variations of the iterative edge perturbation

approach, as described in Section 4.1. The random perturbation algorithm first removes m

edges from a network and then adds m other edges at random to the network. In our ex-

periments, we set m equal to ten percent of the number of edges in each network to provide

adequate anonymization, as suggested by Hay et al. [32]. Also, for the role-enhanced version,

we vary the role equivalence threshold (δ) between 0.3 and 1, and average the measurements

over 500 runs.
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Table 11: Structural Properties of Social Network Datasets

Dataset # Nodes # Edges Density Diameter APL C.Coef.

PolBooks 105 441 0.081 7 3.079 0.348

Jazz 198 5484 0.281 6 2.235 0.520

ER 100 1000 0.202 3 1.813 0.203

BA 100 990 0.200 2 1.927 0.118

SW 100 1014 0.205 8 3.576 0.646

Both the Greedy-Swap and Supergraph algorithms ensure degree k -anonymity for net-

work nodes. They begin by constructing a k -anonymous degree sequence. The Supergraph

algorithm adds edges to the network until the network meets the anonymized degree se-

quence. The Greedy-Swap algorithm builds an anonymized random graph based on the

degree sequence and swaps its edges to obtain a network close to the original network. More

details on these algorithms can be found in Section 2.3.2.

In our experiments, we vary anonymization value k between 2 and 10 for role-enhanced

Greedy-Swap, and evaluate edge-betweenness-enhanced Supergraph for k = 10 and by vary-

ing threshold β between 0.1 and 1. The reported measures are averaged based on 50 runs.

Since our implementation of Supergraph only considers adding edges to the graph, i.e., in-

creasing node degrees, it will not perform well for networks which have very few nodes with

very high degrees, such as scale-free networks. Therefore, we do not perform the experiments

on the Jazz and BA datasets in the case of the edge-betweenness-enhanced Supergraph algo-

rithm. We found the above-mentioned number of runs good enough to represent performance

results while accounting for existing randomness in the algorithms. Our efforts to include

other edge-perturbation algorithms and asses our proposed scheme on them were not suc-

cessful, because of either flaws with the techniques (e.g., clustering-based methods proposed

in [76] as described in Section 2.3.2), or lack of available algorithmic details to implement

them (e.g., [83]).
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4.5.2 Experimental Results

In this section, we report on our experimental results based on the setup explained in Sec-

tion 4.5.1. Figures 16, 17, and 18, respectively, demonstrate the performance of role-en-

hanced random perturbation, role-enhanced Greedy-Swap, and edge-betweenness-enhanced

Seupergraph algorithms, in terms of preserving structural properties of original networks.

In all the figures, lines with symbols represent measurements corresponding to the en-

hanced algorithms while lines without symbols represent results of the corresponding original

algorithms. The measurements are normalized based on the original networks’ measure-

ments. For instance, in the APL plots, we divide measurements for the PolBooks network

by 3.079 which is the APL of the original network. Given that the measurements are nor-

malized, the closer a measurement is to unity, the better the network structural properties

has been preserved. Improvements over the original anonymization algorithms can be easily

evaluated by subtracting the corresponding measurement differences to unity. For instance,

if for a specific measure the original algorithm achieves 0.7 and the enhanced algorithm

achieves 1.1, the improvement is calculated as |1− 0.7| − |1− 1.1| = 0.2. Due to brevity, we

present only accuracy measurements for betweenness centrality. Closeness centrality results

were very similar in nature to those of betweenness.

We summarize our findings based on the evaluation measurements reported in Figures 16,

17, and 18 in the following.

Dependency on dataset: As expected, the amount of distortion to the measures and effective-

ness of our enhancement approach is not the same for different datasets. While the enhanced

algorithms show better performance than their original counterparts in most cases, there are

also cases with neutral and negligible negative effects. The role-enhanced random pertur-

bation (Figure 16) has almost no effect on the random and scale-free datasets, while it has

significant improvement for the other three networks, i.e., PolBooks, Jazz, and SW. The

improvement can be attributed to their similar topological characteristics as in small-world

networks. In the case of role-enhanced Greedy-Swap (Figure 17), datasets show moderate

improvements on measures, with the exceptions of scale-fee dataset for the first three mea-

sures and small-world dataset for the accuracy measures. The edge-betweenness-enhanced
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Figure 16: Evaluation Measurements for Role-Enhanced Random Perturbation (m =

10%|E|, 0.3 ≤ δ ≤ 1)
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Figure 17: Evaluation Measurements for Role-Enhanced Greedy-Swap (2 ≤ k ≤ 10)
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Figure 18: Evaluation Measurements for Edge-Betweenness-Enhanced Supergraph (k = 10,

0.1 ≤ β ≤ 1)
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Supergraph (Figure 18) also results in better performance in almost all the measures.

It is worth mentioning that the random graph (ER) is in fact very structurally robust to

all the perturbation algorithms. Since the edges are randomly distributed in such a topology

anyway, their replacements would not have much impact on the structural properties.

Effects of parameter variations: Improvements in the role-enhanced random perturbation

(Figure 16) are negatively correlated with threshold δ. That is expected since increasing δ

allows for less perfect role matching, and subsequently less structural preservation. Inter-

estingly, improvements on structural preservation is almost independent of anonymization

parameter k. This is suggested by the almost parallel lines in Figure 17 that correspond to

the enhanced and original algorithms for each dataset. As for β, the edge-betweenness en-

hancement parameter, it does not show monotonic improvement as seen for δ. Strangely, the

lower-range values of β perform worse than middle-range values in preserving the measures.

Measure correlations: We notice that the APL and mean BC plots follow similar overall

pattern for the same networks, for all the experiments. Also, the mean CC plots follow the

same pattern in a vertically mirrored fashion, which are omitted due to space limitations.

However, note that the pattern similarity is not always perfect and the improvements are in

different scales. Nevertheless, this observation suggests that APL, mean BC, and mean CC

measures are highly correlated, independent of the change in anonymization parameters and

enhancement thresholds. Such correlation can significantly help in choosing an appropriate

anonymization enhancement method for a dataset since there will be less number of measures

to be analyzed for preservation.

4.5.3 Selecting Appropriate Thresholds

As expected and also suggested by the experimental results, the improvement provided by

our enhanced algorithms for iterative edge perturbation can be tuned based on threshold

parameters. The role-enhanced and edge-betweenness-enhanced algorithms rely, respectively,

on δ, the role dissimilarity threshold of considering nodes semi-equivalent, and β, the edge

betweenness threshold to consider an edge for addition/removal. Intuitively, we should use

a threshold that results in the best preservation of structural properties of a social network.
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We can evaluate such preservation using different measures as suggested in our experiments.

Based on our experiments, the amount of preservation depends on both the social network

dataset and the threshold, and does not always follow a monotonic growth/decrease with

threshold values. For instance, in the role-enhanced random perturbation results, lower δ

values dominantly show better performance. However, choosing δ = 0.5 over δ = 0.7 for the

PolBooks network provides less Top1 BC centrality accuracy while the other BC accuracy

values are almost the same. Considering no significant improvement in the first case in

other measures as well, one may prefer δ = 0.7 over δ = 0.5. This simple example shows

that selecting a proper threshold value is probably not possible before actually performing

enhanced anonymization on the input network for different threshold values. Note that

the anonymization is an offline process before publishing a social network dataset, and it

seems feasible to invest some computation by trying out different thresholds to fine-tune

anonymization which both guarantees anonymity criteria and provides usable output for

analysis purpose.

4.6 PRIVACY ANALYSIS

In this section, we consider the effects of the proposed enhancement approaches on the

anonymity of the edge-perturbation schemes.

4.6.1 Effect on Anonymity Property

The enhanced algorithms modify the original algorithms in a way that the anonymization

criteria of the scheme is preserved. The enhanced versions of the iterative edge perturbation

approach continue the iteration until they achieve the anonymity property, similar to the

original algorithm (Compare Algorithms 4 and 5 vs. Algorithm 1). The same condition

holds for the enhanced Greedy-Swap since it only modifies the gin calculation in the original

algorithm (see Section 4.3.2).

Among the schemes discussed in our work, the degree k -anonymity-based schemes such
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as Supergraph and Greedy-Swap will completely fulfill their anonymity properties in the

enhanced versions. Because the anonymity is provided based on achieving a node measure

(here, degree) that is achieved in the enhanced versions too. Therefore, there is no degra-

dation in provision of the original anonymity property. For instance, using role-enhanced

Greedy-Swap, for any node in the perturbed graph, there will be at least k − 1 other nodes

with the same degree. So an adversary cannot re-identify nodes based on their degree. In

the case of random perturbation, our enhanced algorithm still respects the anonymization

criteria, i.e., adding and removing certain number of random edges. However, in terms

of theoretical anonymity property, the enhanced algorithm will be slightly different from

the original algorithm. Random perturbation creates uncertainty about the true network

by creating multiple possible worlds. Since our enhancement approach eliminates some of

the random choices it will slightly reduce the space of possible worlds. However, choosing a

combination of large enough number of edge additions/removals and not-too-small threshold

parameter in the enhanced algorithm can provide an acceptable degree of anonymity.

4.6.2 Role Structure as Background Knowledge

One plausible attack against role-enhanced perturbation could be to use role structure in

the original and perturbed networks to re-identify nodes. Assume an adversary knows,

for a target node t, role dissimilarities with every other node in the original network. We

show them as a dissimilarity vector dt of size n = |V |. The adversary can calculate role

dissimilarities on the perturbed network, and then calculate correlation of dt with that of

every node, in the perturbed network, say d′x. The nodes that have a high correlation

in terms of role dissimilarities can be a potential match. However, such an attack is not

computationally feasible. Since the attacker does not know the node identifiers, simply

correlating the two vectors dt and d′x is not meaningful: a dissimilarity value at a certain

index in dt may not correspond to the dissimilarity value at the same index in d′x. In fact,

dt should be correlated against all permutations of values in d′x. So the computation itself

is of complexity O((n+ 1)!). Even if the attacker can perform all the computations, due to

non-perfect role matching in our enhanced algorithm and high sensitivity of role dissimilarity
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calculation algorithm to small changes in the network structure, there is no guarantee that

high correlation in role dissimilarities can help in node re-identification.

4.6.3 Preserved Measures as Background Knowledge

One may argue that if certain node measures such as betweenness centrality are preserved

better using our enhancement approaches, they might be misused by an attacker for node

re-identification. For instance, if an enhanced algorithm provides perfect Top1AUC BC

accuracy, an attacker that knows about the most central node will be able to easily re-

identify that node in the perturbed network. Although it seems infeasible as a practical

attack, one can adjust anonymization parameters so as to introduce more distortion of the

centrality measures for the anonymized network (e.g., choosing a larger δ value in the case

of role-enhanced random perturbation). Note that assuming such information as attacker’s

background knowledge contradicts the goal of the enhanced algorithms, i.e., preserving the

measures.
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5.0 CONCLUSIONS AND DISCUSSIONS

In this chapter, we provide a summary of contributions in this dissertation work and discuss

how they address the objectives that were proposed in Section 1.2 as well as their impli-

cations and limitations. Furthermore, we propose some future research directions based on

approaches proposed in the dissertation.

5.1 SUMMARY OF CONTRIBUTIONS AND RESULTS

In this dissertation, we framed and addressed several challenges regarding user privacy in

SNSs. We approached the privacy problem from both online and offline aspects of access-

ing privacy-sensitive data, i.e., whether data is accessed online within an SNS (by users

through SNS functions) or offline where it is anonymized and exported for third party us-

age. From online protection perspective, we have proposed an ontology-based approach

to capture, enforce, and analyze fine-grained privacy control policies in SNSs. In our pro-

posed Ontology-Based SNS Access Control model (OSNAC), we have shown how fine-grained

knowledge in an SNS can be captured using OWL language, and how such representation

can be employed for fine-grained specification of protected resources and access subjects. By

leveraging SWRL rule language, we proposed extensive sets of privacy control policy rules

for both users and an SNS provider to enable flexible privacy control policy management

in such an environment. We also demonstrated the suitability of such an ontology-based

representation for enabling advanced policy analysis tasks in SNSs. From offline protection

perspective, we have proposed novel approaches to preserve utility of social network data

during anonymization in terms of preserving structural properties of social network datasets.
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We have employed concepts from social network analysis theory to develop a general frame-

work to improve k -anonymization algorithms in the literature from utility perspective while

maintaining their privacy guarantees.

In the rest of this section, we discuss our contributions with regards to validating the

main hypotheses of our work, and, particularly, to answering the more specific questions

that we proposed in Section 1.2.

Question 1. Does OSNAC enable finer-grained specification of protected resources com-

pared to the existing access control models for SNSs?

Our evaluation of OSNAC’s expressiveness, presented in Section 3.2.5.1, provides con-

firmative evidence for the above question. We showed the support of common schemes of

specifying protected resources in access control models by OSNAC including use of iden-

tifiers, attributes, and hierarchical organization of protected resources. Furthermore, by

enumerating a set of flexible features suitable for SNS environments, we compared their sup-

port in OSNAC versus state of the art general-purpose access control models or those that

have been specifically proposed for SNSs and Semantic Web. Those features include net-

worked data, controlling semantics, hierarchies, policy authorship by both system and users,

multiple authorities, and negative authorization and conflict resolution. While OSNAC sup-

ports all the above-mentioned features, other models provide either partial or no support in

most cases. The related models compare as follows with regards to the first three of those

factors that directly relate to fine-grained specification of protected resources. Networked

data is leveraged fully by the Semantic Web-based access control framework for SNSs [13],

but only partially by relationship-based access control models for SNSs [14, 15, 23, 3, 24, 25]

and the access control model for RDF stores [66]. Controlling semantics is only supported

by the access control model for RDF stores. And hierarchies are not supported by either

relationship-based access control models or XACML [2]. As for policy authorship by both

users and system and multiple authorities features, none of the related models provide suf-

ficient support. Moreover, negative authorization is only supported flexibly by XACML.

Question 2. Does OSNAC enforce privacy control policies correctly?

We have shown that the access authorization procedure in OSNAC is correctly enforced
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(Theorem 1). OSNAC supports both users and system policies and there exists various types

of policy rules for each. We provided a detailed description of access entailment procedure

in such a policy structure in Section 3.2.4, including the conflict resolution process based

on the deny-overrides strategy. We have also empirically tested a prototype of an OSNAC

access control engine, manually evaluating the correctness of access decisions in a small

scenario. Moreover, our prototype implementation entails access decision much faster than

its predecessor [56], making it more plausible for use in practice.

Question 3. Can our ontology-based privacy control policy analysis framework enable novel

and useful policy analysis tasks for SNSs?

We have proposed a generic framework for formal ontology-based privacy control policy

analysis, and have provided various example scenarios on how such a framework is enabling

novel policy analysis tasks in SNSs in Section 3.3. Our detailed analysis task of verifying com-

pleteness of privacy control permissions, including verifiable properties and the conducted

case study on Facebook, demonstrates a unique example of a policy analysis task that is

vital for ensuring privacy in SNSs. However, such an analysis cannot be supported by other

rather-powerful policy analysis frameworks such as EXAM [52].

Question 4. Do role-enhanced and edge-betweenness-enhanced versions of edge perturbing

anonymization algorithms preserve data utility better than original algorithms?

Our experimental results on evaluating the effect of employing our framework on three of

the prominent k -anonymization algorithms in the literature shows very promising improve-

ments in preserving structural properties. In order to asses the generality of our framework,

we have conducted experiments on several datasets with various social network topolgies and

evaluated the anonymization results based on several network/node social network analysis

measures. The results, which were presented in detail in Section 4.5.2, show overall positive

effect of using our role-enhanced and edge-betweenness-enhanced algorithms in preserving

various measures, i.e., resulting in closer numbers to the original datasets than original al-

gorithms. A limitation of our utility-preserving framework is that the improvements are not

guaranteed in a unified manner: not all measures achieve significant improvements and a

very small number of measures show slightly negative effect. However, as it was the pur-
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pose of our extensive experimental results, they show overall positive achievement in various

topology/measure situations.

Question 5. Do role-enhanced and edge-betweenness-enhanced versions of edge perturbing

anonymization algorithms respect privacy requirements of the original algorithms?

We have shown in Section 4.6 that our utility-preserving anonymization framework will

guarantee the anonymity properties of the k -anonymity-based schemes such as Supergraph

and Greedy-Swap. This is due to achieving the same anonymity node measure in the en-

hanced versions of the algorithms compared to their corresponding original versions. The

situation is less perfect with regards to the random perturbation algorithm. Since random

perturbation uniformly increases the uncertainty about the true links in the social network,

any restriction on edge addition/removal will change such uniform distribution of uncer-

tainty. However, increasing the number of links to add/remove from the social network

can compensate for such degradation in privacy due to not-perfectly-uniform uncertainty

introduced by our enhanced algorithm. We also argue that using the role structure against

the role-enhancement procedure is not a feasible threat; it is infeasible to align nodes in

two networks by calculating role dissimilarity in the anonymized version. Even if such an

alignment was feasible, the non-perfect role matching in our scheme prevents an attacker

from calculating role dissimilarity measures on the anonymized network that are close to the

ones of the original network. Furthermore, use of preserved measures by the framework as

background knowledge by an attacker can be prevented by adjusting the thresholds in the

enhancement algorithms (e.g., role dissimilarity threshold). However, note that considering

such a threat is in conflict with the consideration of using the framework for preserving the

measures in the first place.

5.2 LIMITATIONS

There are some limitations with regards to the research conducted in this dissertation which

we discuss below.
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Usability is an important aspect of security and privacy solutions [17], and it becomes a

primary concern when lay users of SNSs need to specify privacy control policies. The scope

of our work with regards to OSNAC is limited to providing a fine-grained and powerful

policy specification and enforcement framework, as a foundation layer for privacy control in

SNSs. We consider that an SNS operator will need to build layers on top of our framework

that will allow users to specify policies in a user-friendly manner. Therefore, we have not

conducted usability testings for the current framework. Ensuring that privacy control policies

are understandable by both system administrators and users needs further usability studies.

In experimenting with our OSNAC engine prototype, we limit our tests to relatively

simple access scenarios in order to avoid accounting for numerous variables that could change

with regards to the dataset and policy rules. A limitation of such an approach is that we

do not assess the effect of complexities of policies on the performance of the framework.

Designing such an experiment requires a method to characterize the complexity of policies.

That itself can be a quite complex task, considering the various influencing factors including

the numbers and formats of predicates that are used in the rules, the format of the rules

that can interact with each other, etc.

In terms of dynamicity of the information in an SNS, since OSNAC enforces its policy

rules based on an SNS knowledge base, any change in the knowledge base will be automat-

ically reflected in the enforcement of privacy control policies. However, the scope of our

policy analysis framework is limited to the changes that might occur in the privacy control

policies. It would be interesting to explore dynamicity of SNS knowledge as a factor in policy

analysis.

Our role-enhanced and edge-betweenness-enhanced approaches rely on algorithms with

complexities O(n3) and O(nm), respectively, which may sound limiting in terms of scalability

to large graphs. However, there are several considerations. Anonymization is an offline

process. Therefore, a heavy but feasible amount of computation would be reasonable in

practice. A data analyst may typically use algorithms such as community detection that

require similar order of complexity computation. Therefore, it will be worthwhile to invest

that amount of computation on generating a quality anonymized dataset in the first place.

Furthermore, we can employ approximate algorithms [68] and parallel processing approaches
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[5] to improve metric calculation.

As discussed in Section 5.1, our enhanced version of random perturbation algorithm

does not perfectly match the privacy guarantee of the original algorithm. This is due to

potential rejection of add/removal of some of the randomly selected edges by the enhanced

algorithm. We have not quantified such diversion from uniform randomness in the disser-

tation. Moreover, although we have shown through extensive experiments that enhanced

algorithms preserve data utility, we have not established theoretical proofs that they do so.

5.3 FUTURE RESEARCH

There are several areas for future research in the context of this dissertation. One of the

ultimate goals of relying on Semantic Web technologies for OSNAC is to enable easier adop-

tion of such a model for privacy protection in real-world systems. Our evaluation of an

OSNAC-based prototype engine required few millisecond to infer access decision for rela-

tively small systems (less than 10,000 users). Our current implementation clearly does not

scale for today’s massive SNSs like Facebook with billions of users. Further research is re-

quired to design and implement access control engines based on scalable Semantic Web tools,

which may involve redesigning the policy model too. Another future research with regards to

OSNAC is to introduce the signature characteristics of OSNAC, i.e., ontology-based policy

specification and multiple policy authors, into standard policy languages such as XACML.

Such an approach can improve adoptability of the model in practice and its extensibility

given the body of literature about specification and enforcement of such languages.

In terms of analyzing privacy control policies, we have focused on developing a theoretical

framework that enables ontology-based policy analysis. Since many analysis scenarios in

SNSs would involve user policies, one of the foreseeable extensions to this work is to develop

policy analysis tools that collect and inspect user policies in SNSs automatically and to

study the impact of such tools on improving privacy issues. A specific example with regards

to our completeness analysis of privacy control permissions is to develop a tool that can

identify and extract missing policies automatically. In our current prototype, we are able to
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verify the privacy properties and manually verify crafted missing permissions as detailed in

Section 3.3.3.2. A fully automatic extraction mechanism of such missing permissions requires

extending an ontology reasoning engine to be able to extract meaningful subsumed concepts

according to the ontology model at hand.

We have shown through an extensive empirical study how social network analysis con-

cepts such as structural roles can be leveraged to anonymize social network data more effi-

ciently with regards to data utility. An open research problem is to characterize and prove

such an approach mathematically, e.g., by providing lower bounds on improvements in pre-

serving data utility. Proposing enhancement approaches with better algorithmic complexity

that will be suitable for large graphs is another potential future work. In addition to em-

ploying faster algorithms for metric calculation [5, 68], it is interesting to explore use of

more local structural metrics that would require less intense computation for large graphs.

Moreover, in this work, we focused on a specific class of privacy enhancing techniques, i.e.,

anonymization. It will be interesting to explore use of similar techniques in conjunction with

other privacy preserving approaches of sharing information such as differential privacy [22].
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