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ABSTRACT

Histologic tumor grade is a strong predictor of risk of recurrence in breast cancer. Nev-

ertheless, tumor grade readings by pathologists are susceptible to intra- and inter-observer

variability due to its subject nature. Because of this limitation, histologic tumor grade is

not included in the breast cancer stating system. Latent class models have been considered

for analysis of such discrete diagnostic tests with regarding the underlying truth as a latent

variable. However, the model parameters in latent class models are only locally identifiable,

that is, any permutation on the categories of the underlying truth can lead to the same

likelihood value.

In many clinical practices, the underlying truth is known associated with the risk of a

certain event in a trend. Here, we proposed a joint model with a Cox proportional hazards

model for time-to-event data where the underlying truth is a latent predictor and a latent

class model for multiple ratings of a discrete diagnostic test without a gold standard. With

the known association between the underlying truth and the risk of an event in a trend, the

proposed joint model not only fully identifies all model parameters but also provides valid

assessment of the association between the diagnostic test result and the risk of an event.

The modified EM algorithm was used for estimation with employing the survey-weighted

Cox model in the M-step. To test whether the known trend imposed on model parameters can

be assumed, we applied the Union-Intersection principle for the proposed joint model. The
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proposed method is illustrated in the analysis of data from the National Surgical Adjuvant

Breast and Bowel Project (NSABP) B-14 sub-study and through simulation studies.

The proposed method is relevant to public health fields, such as chronic diseases and psy-

chiatry, where some components of the initial diagnostics are subjective but have important

implications in patient management. Application of our method leads to accurate assessment

on the association between the diagnostic tests and the clinical outcomes and subsequently

significant improvement in decision-making on treatment or patient management.

Keywords: Discrete diagnostic test, Misclassification, Latent class model, EM algorithm,

Survey-weighted Cox model, Order restricted testing, Union-Intersection principle.

iv



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Existing Methods for analysis of data on diagnostic tests without a gold

standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 A latent class model for discrete diagnostic tests without a gold standard 8

2.1.2 EM algorithm for the latent class model (2.1) . . . . . . . . . . . . . . 12

2.1.3 Local identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Conditional independence in latent class models . . . . . . . . . . . . 19

2.2 Joint modeling of time-to-event outcome and covariates with measurement

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Survey-Weighted Cox models . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.0 PROPOSED JOINT ANALYSIS OF TIME-TO-EVENT DATA AND

DISCRETE DIAGNOSTIC TESTS WITHOUT A GOLD STANDARD 29

3.1 A new joint modeling approach . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 An EM algorithm for parameter estimation . . . . . . . . . . . . . . . . . . 30

3.2.1 E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Variance Estimation from the profile likelihood . . . . . . . . . . . . . . . . 34

4.0 STATISTICAL TESTING WITH ORDER RESTRICTED HYPOTH-

ESIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Likelihood-base approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 General two-sided alternative: H0 : β = β0 vs. H1 : β 6= β0 . . . . . . 37

v



4.1.2 Constrained one-sided alternative: H0 : β = 0 vs. H1 : β ∈ C . . . . . 38

4.2 The Union-Intersection Principle for Cox proportional hazards models . . . 39

4.3 The Union-Intersection Principle for the proposed joint model . . . . . . . . 44

5.0 SIMULATION STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.0 APPLICATION: ANALYSIS OF DATA FROM THE NSABP B-14

DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.0 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



LIST OF TABLES

1 The scoring in the modified Bloom-Richardson grading system . . . . . . . . 2

2 The modified Bloom-Richardson grading system: Tumor grade . . . . . . . . 2

3 Independent tumor grade readings from three pathologists in the NSABP B-14

trial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Estimated prevalences and classification rates from the method in Dawid and

Skene (1974) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Weights for the mixture distribution for the UI-test statistic . . . . . . . . . 47

6 Simulation setup: Classification rates for simulation studies . . . . . . . . . . 50

7 Simulation results with (γ, β1, β2) = (0.3, 0.5, 2.0). . . . . . . . . . . . . . . . 53

8 Estimated prevalences and classification rates from the proposed joint model 56

9 Parameter estimates and standard errors of Cox parameter estimates from the

joint model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10 The conditions for calculating the U-I test statistic for the NSABP B-14 data. 58

11 Estimated weights for the mixture distribution for the U-I test statistic . . . 59

vii



1.0 INTRODUCTION

In cancer treatment, it is critical to diagnose cancer at early stage and administer the most

effective treatment option to obtain better prognosis. Diagnostic tests are often considered to

determine disease status along with several clinical factors and help physicians and patients

make decisions on treatment options. In clinical practice, however, the true disease status

called the ‘gold standard’ sometimes remains unknown because of either the subjective nature

of the diagnostic tests themselves or limited resources or ethical issues to operate a test on

all patients [14].

In breast cancer research, the histologic tumor grade has been well-known as a strong

predictor of breast cancer recurrence [9, 20, 22]. The histologic tumor grade is evaluated

by pathologists with a patient’s paraffin-embedded tumor tissue. After surgical removal of

breast tumor, patient’s tumor sample is embedded in a block of paraffin. Once the paraffin-

embedded tissue is ready, a pathologist evaluates the patient’s biopsy sample under a micro-

scope and determines patient’s tumor grade based on the Bloom-Richardson grading system.

The Bloom-Richardson grading system consists of the three features: tubular differentiation,

nuclear features, and mitotic counts (Table 1). Once each of these features is scored from

1 to 3, a primary tumor is graded into one of three categories based on the total sum of

these scores: Well, Moderately, and Poorly differentiated (correspond to Grade 1, 2, and 3,

respectively, See Table 2). A patient diagnosed with a lower tumor grade is more likely to

have better prognosis of breast cancer compared to one having a higher tumor grade.

Despite of the strong association between a histologic tumor grade and clinical out-

comes such as overall survival or disease-free survival, a histologic tumor grade has not been

included in the current breast cancer staging system of the American Joint Committee on

Cancer (AJCC) due to disagreements in tumor grade readings by different pathologists. Even
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Table 1: The scoring in the modified Bloom-Richardson grading system

Tubule formation Score Mitotic counts Score Nuclear Grade Score

75% or more 1 1-10 1 Low 1

10-75% or more 2 11-20 2 Intermediate 2

10% or less 3 Greater than 20 3 High 3

Table 2: The modified Bloom-Richardson grading system: Tumor grade

Total score Histologic Tumor Grade

3 to 5 Well-differentiated tumor (Grade 1)

6 to 7 Moderately-differentiated tumor (Grade 2)

8 to 9 Poorly-differentiated tumor (Grade 3)

pathologists use the same tumor grading system, such as the modified Bloom-Richardson

criteria, the subjective aspects of grading systems can cause substantial discrepancies in

tumor grade readings [12].

In the sub-study of the National Surgical Adjuvant Breast and Bowel Project (NSABP)

trial B-14, tumor grades from 668 tamoxifen-treated participants with node-negative, estro-

gen receptor-positive breast cancer were independently assessed by three experienced pathol-

ogists who followed the modified Bloom-Richardson grading criteria [20]. All three pathol-

ogists were blinded from any other clinical information except for participant’s tumor scan

of paraffin-embedded tissues and independently evaluated participant’s tumor grade [9, 20].

The criteria has three categories of tumor grade: ‘well-differentiated’ grade (Grade=1) in-

dicating the least aggressive and slowly growing tumors, ‘moderately-differentiated’ grade

(Grade=2), and ‘poorly-differentiated’ grade (Grade=3) indicating highly aggressive and

progressed tumors.

In Theissig et al. [30], the agreements of tumor grade readings from three pathologists

based on the modified Bloom-Richardson criteria were reached 72.3% . In the sub-study of
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the B-14 trial, however, the overall agreement in tumor grade readings from three patholo-

gists was only 43.3% and the agreements in tumor grade readings from any two pathologists

were ranged from 58.8% to 64.8 % [20]. The tumor grade reading data are shown in Table 3.

Given that each tumor grade reading is subject to misclassification, it is hard to determine

true tumor grade for each patient. Subsequently, the assessment of the association between

tumor grade and risk of breast cancer recurrence based on the readings from one pathologist

can be substantially biased. This result points out that the true tumor grade should be

identified to integrate tumor grade readings with other prognostic factors or biomarkers so

that the diagnostic test results can guide better treatment decision. With more accurate

diagnosis, patients with well-differentiated tumor can avoid over-treatment along with cyto-

toxic chemotherapy regimens. At the same time, patients with poorly-differentiated tumor

can get more intensive chemotherapy to improve their survival.

Latent class models for independent ratings of a discrete diagnostic test without a gold

standard have been widely studied [7, 11, 17, 34]. Mostly in these models, the underlying

truth of the diagnostic test is considered as a latent variable and the multiple ratings given

the underlying truth are assumed mutually independent. The Pearson chi-square goodness-

of-fit test is usually employed to check whether the conditional independence assumption

holds or not [17]. Under some regularity conditions, the model parameters in a latent class

model are locally identifiable, that is, identifiable up to a permutation on the categories of

the underlying truth [7,11,17]. In our motivating example on tumor grade readings, we can

estimate the prevalence of three categories of tumor grade but cannot determine the actual

level of tumor grade due to the local identifiability. Dawid and Skene [7] proposed to pick

the set of estimates that yield higher classification rates for all raters. However, if some

pathologists have difficulties in classifying tumor grade, it is hard to justify the approach

proposed by Dawid and Skene.

In many circumstances, clinical outcomes that are associated with the underlying truth

in a known trend may be available. Instead of relying on Dawid and Skene’s strategy to

choose the set of estimates, we propose to incorporate auxiliary variables in a joint model

and to utilize a known trend in the association between the underlying truth and the risk of

a certain event for global identification. Under the condition that the multiple ratings given
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the true status are independent of auxiliary variables, the parameters of interest in latent

class models for a discrete diagnostic test can be fully identified.

Joint models have been widely studied for modeling time-to-event data and longitudinal

outcomes or covariates measured with errors [13,15,16,31,35,36]. Typically, the time-to-event

data are modeled by the Cox proportional hazards model and the longitudinal covariates with

measurement errors are modeled by a random effects model [13,15,31,35,36]. These proposed

joint models are flexible and enhance the performance of prediction in clinical outcomes by

accounting for the measurement errors in covariates. However, these models require to

replace the true values of covariates with predicted values from a separate sub-model and so

this may entail additional assumptions for the specification of sub-models [13,15,16,31,35,36].

In this dissertation, the time-to-event data are also modeled by the Cox proportional

hazards model with using the underlying true tumor grade as a predictor in addition to

other classical clinical predictors. Instead of building a separate model with additional

covariates to predict the latent truth as Larsen (2004, 2005) [15, 16], we incorporate the

latent class model for a discrete diagnostic test [7,11,17] into our proposed method without

requiring additional structures that ask an external information to predict the latent truth.

The proposed joint modeling of multiple independent ratings and time-to-event data not only

fully identifies the parameters in the latent class model but also provides valid assessment

of the association between the diagnostic test and the risk of the event of interest.

The rest of the dissertation is organized as following. In Chapter 2, we review the

existing methods for analyzing discrete diagnostic tests without a gold standard. After that,

we discuss the issue of local identifiability in latent class models and review the application

of the EM algorithm. This chapter also contains the reviews of the existing joint models

for time-to-event data and covariates with measurement errors or misclassification. The

overview of survey-weighted Cox model is also covered in this chapter. In Chapter 3, the

proposed joint model is introduced with its details in procedures for parameter estimation.

The profile likelihood approach for estimating standard errors of parameter estimates is also

introduced in this chapter. In Chapter 4, the application of Union-Intersection method to

provide a global test on the association between the underlying truth and the risk of an

event is presented. The results of simulation studies for evaluating statistical properties of
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the proposed joint model are discussed in Chapter 5. The analysis of the National Surgical

Adjuvant Breast and Bowel Project (NSABP) B-14 data with the proposed joint model is

illustrated in Chapter 6. In Chapter 7, we conclude with summary on the proposed method

and discussion about future works.

5



Table 3: Independent tumor grade readings from three pathologists in the NSABP B-14

trial.

Pathologists Pathologists

1 2 3 Frequency {nklm} 1 2 3 Frequency {nklm}

W W W 49 M P W 2

W W M 27 M P M 38

W M W 7 M P P 12

W M M 23 P W W 1

W M P 1 P W M 5

M W W 55 P W P 2

M W M 82 P M M 29

M W P 3 P M P 15

M M W 17 P P W 1

M M M 189 P P M 44

M M P 15 P P P 51
1W = Well-differentiated; M = Moderately-differentiated; P = Poorly-differentiated
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2.0 LITERATURE REVIEW

2.1 EXISTING METHODS FOR ANALYSIS OF DATA ON DIAGNOSTIC

TESTS WITHOUT A GOLD STANDARD

To evaluate the accuracy of a new diagnostic test, a gold standard is usually compared with

the new test. Under the presence of a gold standard, the accuracy of tests can be measured

by sensitivity and specificity. However, it is common that the true disease status cannot

be obtained due to the complexity of the diagnostic test or insurmountable cost to perform

the gold standard test. Even the gold standard test is free from the above limitations, the

subjective natures of diagnostic procedures may prohibit the investigators from obtaining the

true disease status. In past decades, the statistical methods for evaluating the performance

of a diagnostic test with an unknown true disease status have been widely studied. Hui

and Zhou [14] provided a comprehensive review of statistical methods for diagnostic tests

without a gold standard under a variety of conditions. With the frequentist and bayesian

perspectives, the authors discussed statistical methods to sensitivity and specificity of a

new test and prevalence of disease with or without some known parameters. In addition,

the authors covered a brief background of methods to estimate the parameters of interest

when the assumption of conditional independence is not suitable. With pointing out the

identifiability issues with an unknown truth, the authors introduced various methods for

estimating the parameters of interest from multiple tests with a binary outcome in a single

population or tests with a multinomial outcome in a multiple population. Among the variety

of statistical methods for multiple tests without a gold standard, we focus on the classical

latent class model and the local identifiability issues with providing a detailed review of

works by McHugh [17], Goodman [11], and Dawid and Skene [7] in the following.
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2.1.1 A latent class model for discrete diagnostic tests without a gold standard

Latent class models have been widely studied for analyzing multiple independent assessments

with an unknown truth. A latent class simply means the underlying class membership

that cannot be directly observed. With assuming the local independence among multiple

assessments in a class membership, a latent class model aims to estimate the prevalence

of class memberships in a latent class and the conditional probabilities of observed class

memberships given a certain level of latent class.

McHugh [17] presented a latent class model for m observable Bernoulli random variables

and a binary latent variable. In the paper, the sufficient conditions for local identifiability

derived by Fisher information matrix and a chi-square goodness-of-fit test to determine the

number of latent classes were discussed. Goodman [11] extended McHugh’s latent class model

to a latent class model for m polytomous observable variables with a 3-class latent variable.

In addition, the author proposed an algorithm for obtaining maximum likelihood estimates

of model parameters and generalized the sufficient conditions for the local identifiability in

McHugh. A method to test overall model fit and the use of parameter constraints to achieve

identifiability are also covered in Goodman [11].

For a subject i, we denote the multiple independent assessments from the sth rater by

V
(s)
i , where i = 1, 2, . . . , n; s = 1, 2, . . . , S, S is the total number of raters and each rating

has K levels. Assuming that the latent class variable Wi has J levels, the latent class model

is [11]:

P (W = j) = πj, P (V (s) = k|W = j) = q
(s)
jk , (2.1)

where j = 1, 2, . . . , J ; k = 1, 2, . . . , K; s = 1, 2, . . . , S and with restrictions
∑J

j=1 πj =∑K
k=1 q

(s)
jk = 1; πj ≥ 0, q

(s)
jk ≥ 0. In the equation (2.1), the πj indicates the prevalence of

the underlying truth at the jth level, and the q
(s)
jk indicates the classification rate for the sth

rater when the level of rating is k given the level of the underlying truth is j. We assume

that the multiple ratings V (s) are conditionally independent given at a certain level of truth

W . This assumption can be tested by using the Pearson chi-square goodness-of-fit test. The

details are discussed in Section 2.1.4.
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The likelihood function under the latent class model (2.1) is

L(π,q) =
n∏
i=1

J∑
j=1

[
πj

{
S∏
s=1

K∏
k=1

(q
(s)
jk )I(v

(s)
i =k)

}]
, (2.2)

where I(v
(s)
i = k) is equal to 1, if the level of ratings for the ith subject evaluated by the sth

pathologists is k, or 0, otherwise where s = 1, 2, .., S; k = 1, 2, ..., K.

To obtain maximum likelihood estimates for latent class models, iterative numerical

procedures have been considered [7,8,11,17]. McHugh [17] optimized the likelihood function

by using the scoring system with first approximations on (π,q). The scoring system consists

of the score and information functions for the parameters of interest (π,q) in the latent

class model with binary observed variables. The information functions are equivalent to

the variances and covariances of the scores. With an initial value (π(0),q(0)), the iterative

algorithm with the scoring system from McHugh [17] is

π̂(t) = π(t−1) + ∆π̂(t−1)

q̂(t) = q(t−1) + ∆q̂(t−1) ,

where t = 1, 2, . . . and ∆π̂(t−1) , ∆q̂(t−1) are calculated from the corresponding values for score

and information functions. Here, the length of π̂(t−1) is (J−1) with π̂
(t−1)
j = 1−

∑J−1
j=1 π̂

(t−1)
j ,

where
∑J

j=1 π̂
(t−1)
j = 1. First, the score values for parameters (π̂, q̂) = (π̂(t−1), q̂(t−1)) are

calculated by [17]

Sπ̂j =
∂

∂π̂j
logL(π,q), j = 1, 2, . . . , J − 1

S
q̂
(s)
jk

=
∂

∂q̂
(s)
jk

logL(π,q); j = 1, 2, . . . , J, k = 1, 2; s = 1, 2, . . . , S.

Second, the information values for parameters (π̂, q̂) = (π̂(t−1), q̂(t−1)) are calculated by [17]

Iπ̂j π̂j′ = E(Sπ̂jSπ̂j′ ), j, j
′ = 1, 2, . . . , J − 1

I
q̂
(s)
jk q̂

(s′)
j′k′

= E(S
q̂
(s)
jk
S
q̂
(s′)
j′k′

), j, j′ = 1, 2, . . . , J ; k, k′ = 1, 2; s, s′ = 1, 2, . . . , S

I
π̂j′ q̂

(s)
jk

= E(Sπ̂j′Sq̂(s)jk
), j′ = 1, 2, . . . , J − 1; j = 1, 2, . . . , J ; k = 1, 2; s = 1, 2, . . . , S.
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With the computed score and information values, ∆π̂, ∆q̂, where (π̂, q̂) = (π̂(t−1), q̂(t−1))

are calculated by [17]

∆π̂j =
J−1∑
j′=1

Ĩπ̂j π̂j′ S̃π̂j′ +
J∑

j′=1

2∑
k=1

S∑
s=1

Ĩ
π̂j′ q̂

(s)

j′k
S̃
q̂
(s)

j′k

∆
q̂
(s)
jk

=
J−1∑
j′=1

Ĩ
π̂j′ q̂

(s)
jk
S̃π̂j′ +

J∑
j′=1

2∑
k′=1

S∑
s′=1

Ĩ
q̂
(s)
jk q̂

(s′)
j′k′
S̃
q̂
(s′)
j′k′
,

where S̃, Ĩ indicate the score and information values at the (t− 1)th iteration, respectively.

This algorithm proposed by McHugh [17] is dealt only with the latent class model for 2-class

observed variables. Goodman [11] introduced the iterative procedure which can be applied

for a latent class model with m-class observed variables, m ≥ 2. The iterative procedure

calculates the maximum likelihood estimates in a m-class latent class model with an iterative

proportional fitting algorithm. With an initial value (π(0),q(0)), the iterative procedure is

as follows [11]:

Step 1: With the current estimates {π(t−1)
j , q

(1,t−1)
jk , q

(2,t−1)
jl , q

(3,t−1)
jm }, j = 1, 2, . . . , J ; k =

1, 2, . . . , K; l = 1, 2, . . . , L;m = 1, 2, . . . ,M ; t = 1, 2, . . ., first calculate p̂
(t)
jklm, where

p̂
(t)
jklm = π̂

(t−1)
j q

(1,t−1)
jk q

(2,t−1)
jl q

(3,t−1)
jm .

With p̂
(t)
jklm, calculate p̂

(t)
klm, which is the estimated probability with (V (1) = k, V (2) =

l, V (3) = m) and p̂
(t)
j|klm, which is the estimated conditional probability that the level of

unknown truth is j given that (V (1) = k, V (2) = l, V (3) = m), J ; k = 1, 2, . . . , K; l =

1, 2, . . . , L;m = 1, 2, . . . ,M ; t = 1, 2, . . .:

p̂
(t)
klm = Pr(V (1) = k, V (2) = l, V (3) = m)

=
J∑
j=1

p̂
(t)
jklm

p̂
(t)
j|klm = Pr[W = j|V (1) = k, V (2) = l, V (3) = m]

=
p̂

(t)
jklm∑J

j=1 p̂
(t)
klm

.
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Step 2: Update the maximum likelihood estimates for (π, q) with the following equa-

tions, where p̃klm is the observed proportion of (V (1) = k, V (2) = l, V (3) = m), j =

1, 2, . . . , J ; k = 1, 2, . . . , K; l = 1, 2, . . . , L;m = 1, 2, . . . ,M .

π̂
(t)
j =

∑
k,l,m

p̃klmp̂
(t)
j|klm (2.3)

q̂
(1,t)
jk =

∑
l,m p̃klmp̂

(t)
j|klm

π̂
(t)
j

(2.4)

q̂
(2,t)
jl =

∑
k,m p̃klmp̂

(t)
j|klm

π̂
(t)
j

(2.5)

q̂
(3,t)
jm =

∑
k,l p̃klmp̂

(t)
j|klm

π̂
(t)
j

, (2.6)

The numerator in Equation (2.4) - (2.6) indicates the estimated probability that the level of

rating from the sth rater (s = 1, 2, 3) is k (or l,m) and the level of the underlying truth is j.

For example, the numerator in Equation (2.4) can be written as Pr(V (1) = k,W = j), that is,

the probability that the level of rating from the first rater is k and the level of the underlying

truth is j. Without loss of generality,
∑J

j=1 π̂j = 1 ,
∑K

k=1 q̂
(s)
jk = 1, π̂j ≥ 0, q̂

(s)
jk ≥ 0, j =

1, 2, . . . , J ; s = 1, 2, . . . , S. These steps will be repeated until a certain convergence criteria

is met. Goodman’s iterative proportional fitting algorithm is straightforward and easy to

be applied for latent class models with m-class observed variables. The iterative algorithms

proposed by McHugh [17] and Goodman [11] require relatively few iterations to converge,

but convergence is not guaranteed. Dawid and Skene [7] proposed the EM algorithm that

was initially proposed by Dempster et al. [8] in the wider context of missing data to estimate

classification rates and prevalences in latent class models with regarding the unknown truth

as missing. We cover the basic aspects of the EM algorithm and discuss more details in the

application of EM algorithm to a latent class model in the next section 2.1.2.

While the iterative procedures for obtaining maximum likelihood estimates have been

used for latent class models, no procedure can guarantee of finding a global maxima. When

the model parameters are not fully identifiable but locally identifiable, multiple sets of pa-

rameter estimates optimize the likelihood function. Goodman [11] extended the sufficient
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conditions for the local identifiability of latent class models with dichotomously observed

variables discussed by McHugh [17] to polytomous observed variables. The method to check

local identifiability is relied on the Fisher information matrix, which is the matrix of second

partial derivatives of the logarithm of complete-data likelihood function with respect to the

model parameters. If the rank of this matrix is less than full rank, the latent class model is

not even locally identifiable. We discuss more details in Section 2.1.3.

2.1.2 EM algorithm for the latent class model (2.1)

The Expectation-Maximization (EM) algorithm is an iterative procedure to compute max-

imum likelihood estimates in a model including quantities which can be viewed as missing

data [8]. This iterative algorithm consists of two steps at each iteration: E-step and M-

step. With current estimates for model parameters θ ∈ Θ, the EM algorithm calculates

the conditional expectation of the logarithm of the complete-data likelihood given observed

data (E-step) and maximizes the conditional expectation in terms of the model parameter

(M-step).

We denote the complete data as Z = (X, Y ), where X is a matrix of incomplete or unob-

served data and Y is a matrix of fully observed data. At step t, t = 1, 2, . . ., the conditional

expectations of the logarithm of the complete-data log-likelihood function given the observed

data and the current estimates are computed in E-step.

E-step: Calculate

Q(θ; θ(t)) = Eθ(t) [lcom(θ;X, Y )|Y ],

where lcom(θ;X, Y ) = logLcom(θ;X, Y ) = log f(X, Y ; θ).

If the distribution of (X, Y ) follows an exponential family such as: Gaussian, Binomial,

Multinomial, Exponential, etc., lcom(θ;X, Y ) is a linear function of the sufficient statistics.

The E-step is equivalent to calculating the conditional expectation of the sufficient statistics

given the observed data and the current estimates of θ, θ(t).

12



M-step: Find θ(t+1) such that

θ(t+1) = argmaxθQ(θ; θ(t))

The E- and M-steps are repeated until the sequence {θ(t)} converges.

Dawid and Skene [7] presented the application of the EM algorithm to latent class models.

Since a latent class variable represents the unknown or unobserved data, the EM algorithm

can be applied in a straightforward manner. For the latent class model in Equation (2.1),

the complete data are Dcom = {Wi, V
(s)
i }, where Wi, i = 1, 2, . . . , n is the underlying truth,

which cannot be observed for each subject i and V
(s)
i , i = 1, 2, . . . , n; s = 1, 2, . . . , S is the

ratings evaluated by the sth rater for a subject i. Hence, the observed data are Dobs =

{V (s)
i }, i = 1, 2, . . . , n; s = 1, 2, . . . , S, where n and S are the total number of subjects and

raters, respectively. The set of parameters in the equation (2.1) is Θ = {πj, q(s)
jk }, j =

1, 2, . . . , J ; k = 1, 2, . . . , K; s = 1, 2, . . . , S, where J and K are the number of categories in

the latent class variable Wi and the ratings V
(s)
i , respectively. Here, πj is the prevalence of

the underlying truth at the level j and q
(s)
jk is the probability that the level of rating from

the sth rater is k given the underlying truth at the level j. The complete-data log-likelihood

function with Dcom is

lcom(π,q) =
n∑
i=1

[
J∑
j=1

I(Wi = j)

{
log(πj) +

S∑
s=1

K∑
k=1

I(V
(s)
i = k) log(q

(s)
jk )

}]
.

In the E-step, the conditional expectation of the complete-data log-likelihood E[lcom(π,q)|θ(t)]

is computed with the current estimates θ(t) = (π(t),q(t)). The complete-data log-likelihood

function is a linear function of I(Wi = j), which is the indicator function of the latent truth

for the ith subject at level j. With the observed dataDobs = {V (s)
i }, i = 1, 2.., n; s = 1, 2, .., S,

the conditional expectation of the form E[h(W̃i)|Dobs; θ
(t)] can be written as

E[I(Wi = j)|Dobs; θ
(t)] = Pr[Wi = j|Dobs, θ

(t)] =
π

(t)
j [
∏S

s=1

∏K
k=1(q

(s,t)
jk )I(v

(s)
i =k)]∑J

j=1 π
(t)
j [
∏S

s=1

∏K
k=1(q

(s,t)
jk )I(v

(s)
i =k)]

,

where i = 1, 2, .., n; j = 1, 2.., J ; k = 1, 2, ..K; s = 1, 2.., S.
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In the M-step, the conditional expectation of the complete-data log-likelihood function

is maximized with replacing the underlying truth Wi by the sufficient statistics E[I(Wi =

j)|Dobs; θ
(t)]. Then the maximum likelihood estimates for the latent class model (2.1) are

updated by

π
(t+1)
j =

∑n
i=1E[I(Wi = j)|Dobs; θ

(t)]

n
(2.7)

q
(s,t+1)
jk =

∑n
i=1 I(V

(s)
i = k)E[I(Wi = j)|Dobs; θ

(t)]∑n
i=1E[I(Wi = j)|Dobs; θ(t)]

. (2.8)

If there is no closed-form of solutions for model parameters, the additional iterative

procedure, such as Newton-Raphson algorithm may be necessary. The E- and M-steps are

repeated until the difference in the complete-data log-likelihood between θ(t) and θ(t+1) is

arbitrarily small.

Denote the complete data as (V i,Wi) for a subject i, where V i = (V
(1)
i , V

(2)
i , V

(3)
i ) are

the tumor grade readings from three pathologists and Wi is the unknown true tumor grade.

The counts of tumor grade readings from three pathologists in Table 3 can be denoted by

nklm = # {i : V
(1)
i = k, V

(2)
i = l, V

(3)
i = m}, k, l,m = 1, 2, 3. Then, the observed data can

be written as n+klm =
∑3

j=1 njklm, where njklm = # {i : V
(1)
i = k, V

(2)
i = l, V

(3)
i = m,Wi =

j}, j, k, l,m = 1, 2, 3.

In E-step at tth iteration, the conditional expectations with the current estimates θ(t) =

{π(t)
j , q

(1,t)
jk , q

(2,t)
jl , q

(3,t)
jm }, j, k, l,m = 1, 2, 3; t = 1, 2, . . . can be calculated by

E[njklm|n+klm, j, k, l,m = 1, 2, 3; θ(t)] = n+klmPr[W = j|V (1) = k, V (2) = l, V (3) = m]

= n+klm
Pr[W = j, V (1) = k, V (2) = l, V (3) = m]

Pr[V (1) = k, V (2) = l, V (3) = m]
.

Under the conditional independence assumption, Pr[V (1) = k, V (2) = l, V (3) = m] can

be written as

Pr[V (1) = k, V (2) = l, V (3) = m] = Pr[V (1) = k, V (2) = l, V (3) = m|W = j]Pr[W = j]

= q
(1,t)
jk q

(2,t)
jl q

(3,t)
jm π

(t)
j .
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Hence, E[njklm|n+klm, j, k, l,m = 1, 2, 3; θ(t)] is

E[njklm|n+klm, j, k, l,m = 1, 2, 3; θ(t)] = n+klm

q
(1,t)
jk q

(2,t)
jl q

(3,t)
jm π

(t)
j∑3

j=1 q
(1,t)
jk q

(2,t)
jl q

(3,t)
jm π

(t)
j

.

In M-step, the maximum likelihood estimates for the parameters (π, q) are updated by

π
(t+1)
j =

∑
k,l,mE[njklm|n+klm; θ(t)]

n
,

q
(1,t+1)
jk =

∑
l,mE[njklm|n+klm; θ(t)]∑

k,l,m n
(t)
jklm

,

q
(2,t+1)
jl =

∑
k,mE[njklm|n+klm; θ(t)]∑

k,l,m n
(t)
jklm

,

q
(3,t+1)
jm =

∑
k,lE[njklm|n+klm; θ(t)]∑

k,l,m n
(t)
jklm

,

where j, k, l,m = 1, 2, 3 and n = n++++.

2.1.3 Local identifiability

In statistical models, the model parameters are fully identifiable if different sets of param-

eter estimates strictly correspond to different probability distributions. By definition, the

parameter φ of a distribution family Fφ(.) is fully identifiable if Fφ(.) and Fφ′ (.) are differ-

ent cumulative distribution functions for any φ 6= φ
′
. It is a rule of thumb that the global

identifiability can be guaranteed if the number of parameters in the model does not exceed

the degree of freedom in the data. However, a model can still suffer from the lack of global

identifiability despite of a sufficient degree of freedom. Especially, latent class models cannot

be fully identifiable due to its “label-switching” phenomenon, which means that the J ! per-

muted sets of parameter estimates, where J is the number of classes, can reach the maximum

of the log-likelihood function.

For example, when we estimate parameters for a latent class model with a 3-class latent

variable, total 3! = 6 permuted sets of estimates can generate the same value of the complete-

data likelihood. Given φ = {π1, π2, π3, q
(s)
1k , q

(s)
2k , q

(s)
3k ; k = 1, 2, . . . , K; s = 1, 2, . . . , S},

∑3
j=1 πj =
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∑3
k=1 q

(s)
jk = 1, one of the permuted sets φ1 = {π1, (1−π1−π2), π2, q

(s)
1k , (1−q

(s)
1k −q

(s)
2k ), q

(s)
2k ; k =

1, 2, . . . , K; s = 1, 2, . . . , S} can generate the same likelihood value, logLcom(φ;Dobs) =

logLcom(φ1;Dobs). With this “label-switching” phenomenon, global identification for latent

class models cannot be achievable. However, under certain conditions, local identification for

latent class models can be obtained even global identification is not guaranteed. The general

definition of local identifiability for a distribution Fφ at the parameter φ is that there exists

some neighborhood Φ of φ such that Fφ′ = Fφ if and only if φ
′

= φ, for all φ, φ
′ ∈ Φ. The

lack of full identification does not hinder statistical inferences, but the parameters cannot be

uniquely estimated [2]. Therefore, the verification of model identifiability must be considered

before making statistical inferences for latent class models.

McHugh [17] showed the sufficient conditions for the local identifiability of latent class

models (2.1) with binary observed variables and a 2-class latent variable. The specific con-

ditions are described as below [17]:

(i) 2s ≥ J − 1 + SJ

(ii)
∑2

k=1{
∑2

j=1 πj
∏S

s=1 q
(s)
jk } = 1

(iii)
∑2

k=1 πj
∏S

s=1 q
(s)
jk > 0, for all j, k, s.

(iv)
∑2

k=1 πj
∏S

s=1 q
(s)
jk , for all j, k, s are continuous functions of πj, q

(s)
jk and its continuous first

and second derivatives are existed.

(v) There are at least (2S + 1) of the expressions
∑2

k=1 πj
∏S

s=1 q
(s)
jk , which are linearly inde-

pendent.

If all of five conditions are met, the model parameters are locally identifiable. For exam-

ple, if we have three observed binary variables, the degree of freedom is 7 df. The equation

(2.1) with a 2-class latent variable requires to estimate seven parameters (1 prevalence and

3 classification rates for each latent class). In this case, the number of estimated parameters

is equal to the degree of freedom, so the equation (2.1) with a 2-class latent variable and

three observed variables is locally identifiable.

Goodman [11] extended the sufficient conditions showed by McHugh (1956) to polyto-

mous observed variables with a m-class latent variable, m ≥ 2. In the paper, the author

pointed out that if the rank of the Jacobian matrix of the latent class model is equal to the
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number of estimated parameters in the model, then the model can be locally identifiable [11].

The sufficient conditions for the local identifiability in McHugh (1956) can be generalized as

below [11,17]:

(i) Js ≥ K + SK − 1

(ii) Let h(v) =
∑J

j=1 πj

{∏S
s=1 qjv(s)

}
with v = (v(1), . . . , v(S)), then

∑
v h(v) =

∑
v pr[V =

v] = 1.

(iii) h(v) = pr[V = v] > 0, for all v = (v(1), . . . , v(S)).

(iv) Let π = (π1, π2, . . . , πJ),q =
{
q

(s)
jk , j = 1, 2, . . . , J ; k = 1, 2, . . . , K; s = 1, 2, . . . , S

}
, h(v)s

are continuous functions of (π,q) and have continuous first and second derivatives.

(v) There exist {v1, . . . ,vT} with T ≥ K−1+SK, such that {h(v1), . . . , h(vT)} are linearly

independent as functions of the model parameters.

When the model parameters are non-identifiable due to the violation of the five con-

ditions, restrictions on the parameters enable the model to be locally identifiable. Good-

man [11] suggested the restricted polytomous latent class models which are brought by

imposing various restrictions on the model parameters.

With the equation (2.1) and assuming four observed variables, one of the scenarios de-

scribed in Goodman (1974) is below:

• Models in them latent classes can be partitioned into αmutually exclusive and exhaustive

subsets FA
1 , . . . , F

A
α , where α ≤ m and/or into β mutually exclusive and exhaustive

subsets FB
1 , . . . , F

B
β , where β ≤ m and/or into γ mutually exclusive and exhaustive

subsets FC
1 , . . . , F

C
γ , where γ ≤ m, and/or into η mutually exclusive and exhaustive

subsets FD
1 , . . . , F

D
η , where η ≤ m such that q

(1)

jkA
= q

(1)

jk′A
(k, k

′ ∈ FA
1 ), q

(2)

jkB
= q

(2)

jk′B
(k, k

′ ∈

FB
1 ), q

(3)

jkC
= q

(3)

jk′C
(k, k

′ ∈ FC
1 ),q

(4)

jkD
= q

(4)

jk′D
(k, k

′ ∈ FD
1 ).

With the above restriction, the number of estimated parameters will be reduced from J −

1 + 4J(K − 1) to J − 1 + (K − 1)α + (K − 1)β + (K − 1)γ + (K − 1)η. Hence, if the rank

of the Jacobian matrix with the restrictions is equal to the number of estimated parameter

J − 1 + (K − 1)α+ (K − 1)β + (K − 1)γ + (K − 1)η, the parameters in the restricted latent

class model will be locally identifiable [11].
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Table 4: Estimated prevalences and classification rates from the method in Dawid and Skene

(1974)

Rater#1 Rater#2 Rater#3

True grade π W M P W M P W M P

W 0.26 0.47 0.52 0.01 0.87 0.13 0 0.67 0.33 0

M 0.51 0.08 0.86 0.06 0.20 0.70 0.09 0.04 0.91 0.05

P 0.24 0 0.19 0.81 0.02 0.23 0.74 0.01 0.47 0.52

Under the sufficient conditions for local identification, the parameters in the equation

(2.1) can be uniquely identifiable within the neighborhood of the true values of these pa-

rameters and there exists only one set of maximum likelihood estimates within the neigh-

borhood [11, 17]. Due to the lack of global identifiability, J ! sets of estimates, which are

the permutations on the set of {1, 2, . . . , J}, reach the maximum of the likelihood function.

To deal with the local identification, Dawid and Skene [7] suggested choosing one set of

estimates that leads to the largest conditional probabilities for all observed variables given a

certain level of latent class. This guideline is applied to the previously mentioned sub-study

of the NSABP B-14 trial. The maximum likelihood estimates for the prevalence of tumor

grade and the classification rates of the three pathologists are shown in Table 4. Among 3!

sets of estimates, one set of estimates which yields the best classification rates for all raters is

chosen. One of cautions about the strategy proposed by Dawid and Skene is that if the clas-

sification rates in two adjacent categories within a rater are closed to each other, it is hard to

select a set of estimates. In Table 4, we can see that the classification rates in two adjacent

categories for Rater #1 and #3 are close to each other. Therefore, more options should be

considered to handle the issue of local identifiability in latent class models. In Chapter 3, we

discuss the proposed joint modeling and how it does handle the local identifiability of the

parameters in a latent class model.
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2.1.4 Conditional independence in latent class models

The critical assumption on basic latent class models is that observed variables or ratings are

mutually independent given the latent truth. This is known as conditional independence or

local independence which can be written as Pr[V
(s)
i = k|Wi = j] ⊥ Pr[V

(s)
i = k

′ |Wi = j],

for all k 6= k
′

in the equation (2.1). Sometimes, observed variables, such as assessments

for related symptoms to determine a disease status, can be correlated within a true disease

status. In this case, latent class models which fail to account for the correlation structure

among observed variables will lead to biased estimates. There are various strategies to test

whether the assumption of conditional independence in a latent class model is met.

Method 1: Goodness of fit test statistic

The goodness-of-fit test statistic can be used to detect the violation of conditional in-

dependence in a latent class model. The conventional goodness-of-fit test statistics, such

as Pearson chi-square statistic, the likelihood ratio statistic, and empirical likelihood ratio

statistics known as the Cressie-Read power-divergence statistic (Cressie and Read, 1984),

compare the sets of observed frequencies with the sets of expected frequencies and asymptot-

ically follow chi-square distribution [4,6,29]. If the assumption is violated, the goodness-of-fit

test statistic tends to have a large value. The chi-square statistics is defined as

χ2
df =

R∑
r

(Or − Er)2

Er
,

where Or is the observed frequency in the contingency table for the observed data or ratings

and Er is the corresponding quantity estimated by the latent class model. R is the total

number of response patterns defined by all possible combinations of ratings, such as {V (1) =

k, V (2) = l, V (3) = m, k, l,m = 1, 2, 3} in Table 3. The degree of freedom df can be computed

by df = R − p − 1, where p is the number of model parameters. If the p-value of the test

statistic is low (conventionally, less than 0.05), the model is said to not fit and so the

assumption of conditional independence is violated.
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The likelihood ratio statistic is defined as

G2 = 2
R∑
r

Or log

(
Or

Er

)
.

The Cressie-Read power-divergence statistic is defined as [33]

CR = 1.8
R∑
r

Or

[(
Or

Er

) 2
3

− 1

]
.

The degree of freedom of two statistics are the same as the chi-square test [33]. All three test

statistics are reasonable for situation where the sample size is large enough, and the number

of observed variables is small enough. However, when data are sparse and the expected

frequencies are very low, the chi-square approximation is not acceptable. In this case, the

parametric bootstrapping goodness-of-fit statistic proposed by Aitkin et al.(1981) can be

considered as an alternative method of the three goodness-of-fit tests [1, 29, 33].

Method 2: Graphical procedures

In addition to goodness-of-fit tests with a chi-square approximation, a graphical approach

can be considered to check the violation of conditional independence. Qu et al. [21] proposed

the pairwise correlation residual plot for latent class models with binary observed variables

and a 2-class latent variable. With S binary observed variables, total S(S − 1)/2 pairwise

correlations will be calculated. The correlation between observed variables (V
(s)
i = 1, V

(s
′
)

i =

1), where can be computed by [21]

corrss′ =
P (V

(s)
i = 1, V

(s
′
)

i = 1)− µsµs′√
µs(1− µs)µs′ (1− µs′ )

,

where µs = P (V
(s)
i = 1).
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The observed correlation, µs and P (V
(s)
i = 1, V

(s
′
)

i = 1) can be computed by

µs =
1

n

n∑
i=1

I(V
(s)
i = 1)

P (V
(s)
i = 1, V

(s
′
)

i = 1) =
1

n

n∑
i=1

I(V
(s)
i = 1)I(V

(s′)
i = 1).

The expected correlation, E(µs) and the estimated probability of (V
(s)
i = 1, V

(s
′
)

i = 1)

can be computed by

µs = π0q
(s)
00 + π1q

(s)
11

P (V
(s)
i = 1, V

(s
′
)

i = 1) =
1∑
j=0

πj

S∏
s=1

q
(s)
j1 ,

where πj, j = 0, 1 is the estimated prevalence of the underlying truth at level j, and

q
(s)
j1 , j = 0, 1; s = 1, 2, . . . , S is the estimated classification rate that the level of the sth

observed variable is 1 given the level of underlying truth is 1. With the difference between the

observed and expected correlations under the assumption of conditional independence, the

pairwise correlation plot is obtained by plotting S(S− 1)/2 pairwise correlation coefficients.

If the assumption is valid, all residual correlations should be randomly distributed around

zero [21].

Another way of graphical procedures to detect the lack of fit is proposed by Garrett

and Zeger [10], which is known as the Log-Odds Ratio Check (LORC) plot. First, the

observed and expected pairwise log-odds ratios from two-way cross-classification frequency

tables for all possible

S
2

 combinations of observed variables are calculated with a con-

tinuity correction of 0.5 in the case of zero cells. Then, 95% confidence intervals of the

observed pairwise log-odds ratios are constructed with the standard errors of the observed

log-odds ratio
√

(1/a+ 1/b+ 1/c+ 1/d), where a, b, c, d denote the four frequencies of a

two-way table. By plotting 95% confidence intervals for the observed log-odds ratios and

the expected log-odds ratios on the same graph, the differences between the observed and

expected log-odds ratios can be detected. If the assumption of conditional independence

is valid, all relative magnitudes in differences between the observed and expected log-odds

ratios should be small enough [10].
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When the conditional independence between observed variables does not be guaranteed

in latent class models, the parameter estimates will be biased. The simulation studies for

examining the robustness of latent class models under the violation of conditional indepen-

dence and exploring the performance of the methods for checking conditional independence

were presented by Subtil et al. [29]. The authors considered a latent class model with a

2-class latent variable and four binary observed variables. The data were simulated with

admitting conditional dependence between first and second observable variables (V
(1)
i , V

(2)
i )

within the latent class of Wi = 1. The model for generating data with conditional dependence

is formulated by [29]

P (V = v) = π1{pv111(1− p11)1−v1pv221(1− p21)1−v2 + (−1)v1−v2σ12|W=1}
S∏
s=1

{pvss1(1− ps1)1−vs}(1− π1)
S∏
s=1

{pvss0(1− ps0)1−vs},

where V = (V (1), . . . , V (s))
′
;v = (v(1), . . . , v(s))

′
; vs = 0, 1, s = 1, . . . , S; and σ12|W=1 =

cov(V (1), V (2)|W = 1). The degree of conditional dependence can be defined by σ12|W=1. In

Subtil et al. [29], the four types of goodness-of-fit test statistic (likelihood ratio, chi-square,

CR, parametric bootstrap), the pairwise correlation residual plot, and the LORC plot were

considered with four scenarios: conditional independence, conditional dependence ranging

from weak to strong correlation. The performance of each method was measured in the

proportions of detection of the violation of conditional independence. The simulation re-

sults in Subtil et al. (2012) pointed out that all methods showed similar performance under

conditional independence, however, the correlation residual plot and the LORC plot showed

unsatisfactory performances under conditional dependence between (V
(1)
i , V

(2)
i ). With strong

correlation between (V
(1)
i , V

(2)
i ), the LORC plot even yielded a poor performance in terms of

identifying the true pair of observed variables having conditional dependence. For example,

the correlation residual plot and the LORC plot identified the wrong pair of observed vari-

ables, such as (V
(3)
i , V

(4)
i ), instead of the true pair (V

(1)
i , V

(2)
i ) forced to admit conditional

dependence.
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Since the expected pairwise correlations and the expected log-odds ratios can be impacted

by biased estimates, these two plots may not be able to show better performance in detecting

the violation of conditional independence and identifying the true pair of observed variables

having conditional dependence. Accordingly, it may be problematic to use the correlation

residual plot or the LORC plot only to check the assumption of conditional independence in

a certain case with strong association between observed variables [29].

2.2 JOINT MODELING OF TIME-TO-EVENT OUTCOME AND

COVARIATES WITH MEASUREMENT ERRORS

Joint modeling analyses of time-to-event data and covariates with measurement errors have

been widely studied. Due to random errors in a covariate or the presence of misclassification,

the true status of a covariate may not be achievable [15, 16, 35]. Wulfsohn and Tsiatis [35]

proposed the joint model of time-to-event data and a longitudinal continuous covariate with

measurement errors. For the time-to-event data, the Cox proportional hazards model with

an unspecified baseline hazard was considered. As an alternative of a two-stage modeling for

longitudinal covariates with measurement errors, the authors incorporated a linear growth

curve model with random intercept and random slope to account for the heterogeneity in the

CD4 counts among patients caused by different progresses on HIV disease [35]. Larsen [15,16]

proposed the joint analysis of time-to-event data and a latent covariate with adapting the

estimation procedures in Wulfsohn and Tsiatis (1997). The Cox proportional hazards model

was also used to model the hazard functions for time-to-event with a latent covariate in

the regression component. In Larsen [15, 16], a generalized logit model was considered as a

sub-model for a latent class covariate [15] and a two-parameter logistic item response model

was considered as a sub-model for a latent continuous covariate [16].

In Wulfsohn and Tsiatis [35], a covariate Zi is measured over time and the measurement

time mi could be different for each subject i. The observable data for each subject i is

denoted as (Xi,∆i,Zi, ti). Here, the observable event time is Xi = min(Ti, Ci), where Ti

and Ci are the survival time and a potential right censoring time, respectively. The failure
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indicator is denoted as ∆i = I(Ti ≤ Ci). ti = (tij : tij ≤ Xi) is the time for a measurement,

where tij, j = 1, 2, . . . ,mi is the time from randomization for subject i. Zi = (Zij : tij ≤ Xi)

is the value of covariate at time tij. Due to the heterogeneity in the CD4 counts among

patients, the observed CD4 counts Zij at time tij is modeled by [35]

Zij = θ0i + θ1itij + eij, (2.9)

where eij ∼ N(0, σ2
e), eij ⊥ eij′ , j 6= j

′
, and error eij is independent of random intercept and

slope, θ0i and θ1i, respectively. The distribution of random intercept and slope is assumed

to be a bivariate normal distribution [35].

Assuming that the true covariate value Zij can be derived by using the equation (2.9),

which is the growth curve model with random effects, the part of time-to-event can be

modeled as

λ(t|θi,Zi, ti) = λ0(t) exp {β(θ0i + θ1it)} (2.10)

With the observed data for each subject i, (Xi,∆i,Zi, ti), the observed data likelihood

is given by [35]

n∏
i=1

[

∫ ∞
−∞

{
mi∏
j=1

f(zij|θi, σ2
e)

}
f(θi|θ,V)f(Xi,∆i|θi,λ0, β)dθi], (2.11)

where

f(zij|θi, σe2) = (2πσ2
e)
−1/2 exp{−(zij − θ0i − θ1itij)

2/2σ2
e},

f(θi|θ,V) = (2π|V|)−1/2 exp{−(θi − θ)
′
V−1(θi − θ)/2},

f(Xi,∆i|θi,λ0, β) = [λ0(Xi) exp{β(θ0i + θ1iXi)}]∆i exp[−
∫ Xi

0

λ0(µ) exp{β(θ0i + θ1iµ)}dµ].

In order to estimate the parameters with unknown random effects θ, Wulfsohn and

Tsiatis [35] adapted the EM algorithm introduced by Dempster et al. [8]. Since there are

no closed-form of solutions to estimate the baseline hazard λ0 and the parameter β in the

joint model, λ0 and β are updated via a one-step Newton-Raphson algorithm in M-step [35].

For variance estimation of the Cox model parameters, the authors employed the profile score

with using the restricted maximum likelihood estimates [35].
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In Larsen [15],Yi = (Yi1, Yi2...., YiJ)t, is a random vector of J binary indicators for the

ith subject. With assuming that the population consists of K sub-populations, a latent class

variable Ci, which may represent the unobserved status of health or group membership, takes

one of the values 1, . . . , K. The probability of each binary indicator Yij would be y given

the latent class Ci = c is modeled by [15]

Pr(Yij = y|Ci = c) = πycj(1− πcj)1−y, y = 0, 1,

where πc = (πc1, ...πcJ)t, c = 1...K. Under the conditional independence, Pr(Yi = yi|Ci =

c) =
∏J

j=1 Pr(Yij = y|Ci = c).

Larsen [15] included additional covariates to predict the latent class Ci for each subject i.

To build the predictive model for the latent class Ci with additional covariates, a generalized

logit model is considered [15]:

Pr(Ci = c|xi) =
exp(xiκc)∑K
k=1 exp(xiκc)

,

where xi = (xi1, ..., xip) is a vector of covariates for the ith subject. Then the joint distribu-

tion of (Yi, Ci) is defined by [15]

Pr(Yi = yi, Ci = c|xi) = Pr(Ci = c|xi)× Pr(Yi = yi|Ci = c,xi)

=
exp(xiκc)∑K
k=1 exp(xiκc)

×

{
J∏
j=1

π
yij
cj (1− πcj)1−yij

}
.

For the sub-model for time-to-event data, Larsen [15] also used the Cox proportional

hazards model. The observable event time is denoted by Ui = min(Ti, Vi), where Ti is

the failure time and Vi is the possible censoring time. The event indicator is denoted by

∆i = I(Ti ≤ Vi). The density of the event time Ti is defined by [15]

P (t|zi, ci) = λ0(t) exp(ziβ + νci) exp {−Λ0(t) exp(ziβ + νci)} ,

where Λ0(t) =
∫ t

0
λ0(s)ds. ν represents the effect of ci on the hazard with defining ν1 = 0

for identification.

The time-to-event data can be modeled as [15]

Pr(µi,∆i|zi, ci) ∝ λ0(µi) exp(ziβ + νci)
δi exp{−Λ0(µ) exp(ziβ + νci)}.
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Then the joint distribution of (Ui,∆i,Yi, Ci) is defined by

Pr(µi,∆i,yi, ci|xi, zi) = pr(ci|xi)pr(yi|ci)pr(µi,∆i|cizi).

By integrating out Ci, the marginal distribution of the observable data,(Ui,∆i,Yi) be-

comes [15]

Pr(µi,∆i,yi|xi, zi) =
K∑
c=1

Pr(c|xi)Pr(yi|c)Pr(µi,∆i|c, zi)

=
K∑
c=1

[
exp(xiκc)∑K
k=1 exp(xiκc)

×

{
J∏
j=1

π
yij
cj (1− πcj)1−yij

}
× λ0(µi) exp(ziβ + νc)

∆i exp{−Λ0(µi) exp(ziβ + νc)}
]
.

With the complete data (u,∆,y, c), the complete-data log-likelihood function is defined

as following [15]

lcom(θ; u,∆,y, c) =
N∑
i=1

li,com(θ;µi,∆i, yi, ci)

= xiκci − log

{
k∑
k=1

exp(xiκk)

}
+

J∑
j=1

yij log(πcij) + (1− yij) log(1− πcij)

+ ∆i[log λ0(µi) + ziβ + νci ]− Λ0(µi) exp(ziβ + νci).

Then, the observed data log-likelihood is given by [15]

l(θ; u,∆,y) = log
∑

c∈{1,...,K}N
exp{lcom(θ; u,∆,y, c)}.

For parameter estimation, Larsen [15] also used the EM algorithm with a one-step

Newton-Raphson algorithm in the M-step, that is similar to the procedure in Wulfsohn

and Tsiatis (1997).
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2.3 SURVEY-WEIGHTED COX MODELS

The Cox proportional hazards model is commonly used to investigate the association between

a set of covariates and the risk of disease recurrence. The Cox model parameters β can be

estimated via the partial likelihood function with independent observations. Denote the

observed failure time and the censoring indicator as Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci),

where Ti and Ci are the event time and a possible censoring time, respectively. Time-varying

covariates and the risk set at time xi are denoted as Zi(xi) and R(xi), respectively. The risk

set R(xi) can be defined as the set of subjects available for the event at time xi. Then, the

partial likelihood function for the Cox proportional hazards model can be defined by

N∏
i=1

[
λ0(xi) exp{z′i(xi)β}∑

j∈R(xi)
λ0(xi) exp{z′j(xi)β}

]δi
.

The estimates for β can be obtained by determining β̂ which maximize the partial likelihood

score function so that

N∑
i=1

δi

[
z
′

i(xi)−
S(1)(xi,β)

S(0)(xi,β)

]
= 0, (2.12)

where

S(0)(xi,β) =
1

N

∑
j∈R(xi)

exp{z′j(xi)β}

S(1)(xi,β) =
1

N

∑
j∈R(xi)

zj(xi) exp{z′j(xi)β}.

However, when the sample has been drawn from a complex designed sampling, such as a

stratified random sampling, the observations within a strata can be correlated. The partial

likelihood function for the Cox model cannot take account for the design of sampling and so

it can lead to misleading results. Moreover, if parameters for stratified sampling are related

to the risk of disease recurrence, estimating β without considering the survey design can

result in incorrect inference.
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Binder [3] proposed a method for fitting the partial likelihood function with the sampling

weights ωi, i = 1, 2, . . . , n. We assume that the sample of size n is drawn from a finite

population of size N via a survey design and the sampling weights ωi, i = 1, 2, . . . , n are

scaled so that
∑

n ωi = 1. With the weights ωi, the partial likelihood score function for β

can be defined by replacing the summations in the equation (2.12) with weighted sums [3]:

N∑
i=1

ωiδi

[
z
′

i(xi)−
S(1)(xi,β)

S(0)(xi,β)

]
= 0, (2.13)

where

S(0)(xi,β) =
1

N

∑
j∈R(xi)

ωj exp{z′j(xi)β}

S(1)(xi,β) =
1

N

∑
j∈R(xi)

ωjzj(xi) exp{z′j(xi)β}.

The survey-weighted Cox model can be fitted by using the R package survey. The survey

design should be specified with the R function svydesign before fitting the survey-weighted

Cox model by using the R function svycoxph.

Step 1: Specify the survey design with the R function svydesign.

grade.design <- svydesign(data=, ids=,strata=,variables=,weight=)

• data: Call data frame.

• id: Specify the level of cluster. ∼ 1 or ∼ 0 is for no cluster.

• strata: Specify the strata. NULL is for no strata.

• variables: Specify the variables measured in the survey.

• weights: Specify the sampling weights.

Step 2: Fit the survey-weighted Cox model with the R function svycoxph.

grade.model <- svycoxph(Model, design=)

• Model: Specify a Cox model. Use the same model statement for coxph.

• design: Specify the survey design which is defined with the R function svydesign.

Except for specifying the survey design, the outputs are similar to fitting a Cox model

with the R function coxph. The details can be found in the document for R package survey

’http://cran.r-project.org/web/packages/survey/survey.pdf’.
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3.0 PROPOSED JOINT ANALYSIS OF TIME-TO-EVENT DATA AND

DISCRETE DIAGNOSTIC TESTS WITHOUT A GOLD STANDARD

3.1 A NEW JOINT MODELING APPROACH

We propose a new joint modeling approach for time-to-event data and multiple ratings with

an unknown truth. For each subject i, suppose multiple independent ratings on a discrete

diagnostic test and time-to-event data are observed. Typically, such a diagnostic test is

associated with the risk of the event in a known trend based on prior biological knowledge.

Let Ti and Ci be the event time and a right censoring time on subject i. The observed event

time and the censoring indicator are denoted by Xi = min(Ti, Ci) and ∆i = I{Ti ≤ Ci},

which equals to 1 if Ti ≤ Ci and 0 otherwise, respectively. We assume that the censoring is

random or non-informative. For simplicity, denote Zi as another predictor of the risk of the

event besides the diagnostic test under consideration. The multiple ratings are denoted by{
V

(s)
i , s = 1, 2, .., S

}
with S = 3 without loss of generality. The unobservable and underlying

truth of the test for subject i is denoted by Wi. Therefore, the complete data for the

ith subject is Dcom =
{
Xi,∆i, Zi, V

(s)
i ,Wi

}
and the observed data for the ith subject is

Dobs =
{
Xi,∆i, Zi, V

(s)
i

}
, where i = 1, 2, . . . , n; s = 1, 2, . . . , S. Here, we propose to model

the multiple independent ratings data by a latent class model as in Section 2.1 and the time-

to-event data by a Cox proportional hazards model [5] with the latent truth as a predictor

besides Z:

λ(t|Zi, W̃i) = λ0(t)exp(βW̃i + γZi), (3.1)

where W̃i = (Wi1,Wi2) = (I(Wi = 2), I(Wi = 3)), I(.) is an indicator function; β = (β1, β2)

and γ are the regression coefficients; λ0(t) represents the baseline hazard function. Because
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the more aggressive and progressed the tumor has the higher risk of recurrence, we would

impose the following restriction on the Cox regression parameters: 0 < β1 < β2.

In many circumstances, the assessment of a diagnostic test is blinded from the time-

to-event data. Therefore, conditioned on the underlying truth W , the multiple ratings

are independent from both the event time T and censoring time C. With the observed

data Dobs = {Xi,∆i, Zi, V
(s)
i ; i = 1, ...n; s = 1, 2, 3}, the full likelihood function of Ω =

{π,q,β, γ, λ0(.)} is:

L(π,q,β, γ, λ0(t);Dobs) =
n∏
i=1

(
3∑
j=1

[
πj

{
3∏
s=1

3∏
k=1

(q
(s)
jk )I(v

(s)
i =k)

}
f(Xi,∆i|Wi = j, Zi)

])
,

(3.2)

where

f(Xi,∆i|Wi = j, Zi) = [λ0(Xi) exp(βW̃i+γZi)]
∆i exp[− exp(βW̃i+γZi)

∫ Xi

0

λ0(u)du] (3.3)

3.2 AN EM ALGORITHM FOR PARAMETER ESTIMATION

Regarding the underlying truth as missing data, the EM algorithm can be implemented for

finding the MLE of Ω [8,35]. In the expectation step (E-step), the conditional expectation of

the complete data log-likelihood function given the observed data under current parameter

estimates is calculated. In the maximization step (M-step), the current parameter estimates

are updated by maximizing the conditionally expected log-likelihood function obtained in

the E-step. The steps will be repeated until the parameter estimates reach convergence.

3.2.1 E-step

The complete-data log-likelihood function for the proposed joint model is:

lcom(π,q,β, γ, λ0(t))

=
n∑
i=1

[
3∑
j=1

I(Wi = j)

{
log(πj) +

3∑
s=1

3∑
k=1

I(V
(s)
i = k) log(q

(s)
jk )

}

+ ∆i

{
log(λ0(Xi)) + γZi + βW̃i

}
− exp(βW̃i + γZi)

∫ Xi

0

λ0(u)du

]
(3.4)
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In the E-step, with current estimate Ω(t), we would need to calculate the conditional

expectation of the complete-data log-likelihood, E[lcom(π,q,β, γ, λ0(t))|Ω(t)].

For any measurable function h(.), the conditional expectation of the formE[h(W̃i)|Dobs; Ω(t)]

is defined as

E[h(W̃i)|Dobs; Ω(t)] =
3∑
j=1

Pr(Wi = j|Dobs; Ω(t))h(W̃i)|Wi=j.

Then the conditional expectation of the complete-data log-likelihood for the proposed

joint model can be calculated by

E[I(Wi = j)|Dobs; Ω(t)] = Pr[Wi = j|Dobs,Ω
(t)]

=
π

(t)
j [
∏3

s=1

∏3
k=1(q

(s,t)
jk )I(v

s
i =k)]f(Xi,∆i|Wi = j, Zi; Ω(t))∑3

j=1 π
(t)
j [
∏3

s=1

∏3
k=1(q

(s,t)
jk )I(v

s
i =k)]f(Xi,∆i|Wi = j, Zi; Ω(t))

,

where the calculation of f(Xi,∆i|Wi = j, Zi; Ω(t)) is presented in the equation (3.3).

3.2.2 M-step

At the M-step, we find the Ω = Ω(t+1) that maximizes E[lcom(π,q,β, γ, λ0(t)|Dobs); Ω(t)] and

update it as the new estimate of Ω. The parameters for the latent class models are updated

as:

π
(t+1)
j =

∑n
i=1 E[I(Wi = j)|Dobs; Ω(t)]

n
(3.5)

q
(s,t+1)
jk =

∑n
i=1 I(V

(s)
i = k)E[I(Wi = j)|Dobs; Ω(t)]∑n
i=1 E[I(Wi = j)|Dobs; Ω(t)]

. (3.6)

Given the updated estimates of the coefficients in the Cox model, (γ(t+1), β(t+1)), the baseline

hazard function λ0(·) can be updated with the following formula:

λ
(t+1)
0 (u) =

∑n
i=1 ∆iI(Xi = u)∑

i:Xi≥µE[exp(β(t+1)W̃i + γ(t+1)Zi)|Dobs; Ω(t)]
, (3.7)

where

E[exp(β(t+1)W̃i+γ
(t+1)Zi)|Dobs; Ω(t)] =

3∑
j=1

Pr[Wi = j|Dobs; Ω(t)] exp(β(t+1)W̃i+γ
(t+1)Zi)|Wi=j.
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However, there are no closed-form solutions for (γ(t+1), β(t+1)) and in general an itera-

tive optimization algorithm is necessary. In the M-step, it can be shown that the update of

Cox model regression parameters is equivalent to fitting a survey-weighted Cox proportional

hazards model that was introduced by Binder [3]. A one-step Newton-Raphson approach in

Wulfsohn and Tsiatis [3] can be considered as an alternative.

A. Using a survey-weighted Cox proportional hazards model

By creating some pseudo observations, it can be shown that the update of the Cox

regression parameters θ = (β, γ) in the M-step is equivalent to fitting a survey-weighted Cox

model. In Binder [3], the estimating equation for the regression parameter θ is

N∑
i=1

ωiδi

[
z
′

i(xi)−
S(1)(xi,θ)

S(0)(xi,θ)

]
= 0, (3.8)

where

S(0)(xi,θ) =
1

N

∑
j∈R(xi)

ωj exp{z′j(xi)θ}

S(1)(xi,θ) =
1

N

∑
j∈R(xi)

ωjzj(xi) exp{z′j(xi)θ}.

In the above equations, ωi is the sampling weight associated with subject i and is scaled

so that
∑

i ωi = 1. Functions svycoxph and svydesign in the R package survey are available

to fit such models. In order to show that our update of θ in the M-step is equivalent to fitting

a survey-weighted Cox model, we first create a new data set with three pseudo observations

(i0, i1, i2) for each subject i, i = 1, 2, . . . , n such that:

(1) All these pseudo observations have the same values on all observed variables such as

other predictors than the true tumor grade, observed event time and censoring code as

the corresponding subject i: (Xij, δij, zij) = (Xi, δi, zi), j = 0, 1, 2

(2) W ∗
i0 = 1, W ∗

i1 = 2 and W ∗
i2 = 3.
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Therefore, these pseudo observations represent the cases when the true tumor grade is

well, moderate, and poor, respectively. Denote the corresponding weights as ωij = E[I(Wi =

j+ 1)|Dobs;θ
(t)], j = 0, 1, 2. Then we can re-write the score equations for estimating the cox

model regression parameters at the M-step as:

Sγ =
n∑
i=1

∆i

{
Zi −

∑
k:Xk≥Xi

E[Zk exp(γ
′
Zk + β

′
W̃k)|Dobs;θ

(t)]∑
k:Xk≥Xi

E[exp(γ′Zk + β ′W̃k)|θ(t)]

}

=
n∑
i=1

{
2∑
j=0

ωij∆iZi −∆i

2∑
j=0

ωij

∑
k:Xk≥Xi

ZkE[exp(γ
′
Zk + β

′
W̃k)|Dobs;θ

(t)]∑
k:Xk≥Xi

E[exp(γ′Zk + β ′W̃k)|θ(t)]

}

=
n∑
i=1

2∑
j=0

ωij∆ij

{
Zij −

∑
k:Xk≥Xi

∑2
j=0 ωkjZkj exp(γ

′
Zkj + β

′
W̃ ∗
kj)∑

k:Xk≥Xi

∑2
j=0 ωkj exp(γ′Zkj + β ′W̃kj

∗
)

}

Sβ1 =
n∑
i=1

∆i

{
E[Wi = 2|Dobs;θ

(t)]−
∑

k:Xk≥Xi
E[Wk = 2|Dobs;θ

(t)] exp(γ
′
Zk + β

′
W̃k)∑

k:Xk≥Xi
E[exp(γ′Zk + β ′W̃k)|θ(t)]

}

=
n∑
i=1

2∑
j=0

ωij∆ij

{
I(W ∗

ij = 2)−
∑

k:Xk≥Xi

∑2
j=0 ωkjI(ω∗kj = 2) exp(γ

′
Zkj + β

′
W̃kj

∗
)∑

k:Xk≥Xi

∑2
j=0 ωkj exp(γ′Zkj + β ′W̃Kj

∗
)

}

Sβ2 =
n∑
i=1

∆i

{
E[Wi = 3|Dobs;θ

(t)]−
∑

k:Xk≥Xi
E[Wk = 3|Dobs;θ

(t)] exp(γ
′
Zk + β

′
W̃k)∑

k:Xk≥Xi
E[exp(γ′Zk + β ′W̃k)|θ(t)]

}

=
n∑
i=1

2∑
j=0

ωij∆ij

{
I(W ∗

ij = 3)−
∑

k:Xk≥Xi

∑2
j=0 ωkjI(ωkj = 3) exp(γ

′
Zkj + β

′
W̃kj

∗
)∑

k:Xk≥Xi

∑2
j=0 ωkj exp(γ′Zkj + β ′W̃kj

∗
)

}

Therefore, the update of (γ, β) in the M-step is equivalent to fitting a survey-weighted Cox

proportional hazards model on the pseudo observations {Xij, δij, zij,W
∗
ij; i = 1, 2, . . . , n; j =

0, 1, 2} with weights {ωij, i = 1, 2, . . . , n; j = 0, 1, 2}. The normalization of the weights with

their summation being one will not affect the estimating equations.

B. Using a one-step Newton-Raphson algorithm

First, we can update it via a one-step Newton-Raphson method suggested by Wulfsohn

and Tsiatis [35] as following:

θ̂
(k+1)

= θ̂
(k)

+ I(θ̂
(k)

;Dobs)
−1S

θ̂
(k)|Dobs

,
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where S
θ̂
(k)|Dobs

is the score function and I(θ̂
(k)

;Dobs) is an information matrix for θ̂
(k)

=

(γ(k), β(k)) at kth iteration. The elements of the score function are:

Sγ =
n∑
i=1

∆i

Zi − ∑j:Xj≥Xi
ZiE[exp(γ

′
Zi + β

′
W̃i)|Dobs; θ̂

(k)
]∑

j:Xj≥Xi
E[exp(γ′Zi + β ′W̃i)|θ̂

(k)
]


Sβ1 =

n∑
i=1

∆i

E[I(Wi = 2)|Dobs;θ
(t)]−

∑
j:Xj≥Xi

E[I(Wi = 2) exp(γ
′
Zi + β

′
W̃i)|Dobs; θ̂

(k)
]∑

j:Xj≥Xi
E[exp(γ′Zi + β ′W̃i)|θ̂

(k)
]


Sβ2 =

n∑
i=1

∆i

E[I(Wi = 3)|Dobs; θ̂
(k)

]−
∑

j:Xj≥Xi
E[I(Wi = 3) exp(γ

′
Zi + β

′
W̃i)|Dobs; θ̂

(k)
]∑

j:Xj≥Xi
E[exp(γ′Zi + β ′W̃i)|θ̂

(k)
]

 .
The elements of the information matrix I(θ̂

(k)
;Dobs) are derived by a numerical approxima-

tion on the score function S
θ̂
(k)|Dobs

.

With the local identifiability discussed in Section 2.1.3, the EM algorithm with the

Newton-Rapshon method in the M-steps will converge to a local maximum of the likelihood

function (Equation 3.4). To handle the local identifiability with the “label-switching” phe-

nomenon, the estimates for the latent class model are re-arranged so that 0 < β̂1 < β̂2.

This re-arrangement enables us to achieve the global identification on the estimates for the

latent class model under the order restrictions on β. For example, if 0 > β̂1 > β̂2, the

labels on φ = {π1, π2, π3, q
(s)
1k , q

(s)
2k , q

(s)
3k ; k = 1, 2, . . . , K; s = 1, 2, . . . , S} are switched to φ

′
=

{π3, π2, π1, q
(s)
3k , q

(s)
2k , q

(s)
1k ; k = 1, 2, . . . , K; s = 1, 2, . . . , S}, where

∑3
j=1 πj =

∑3
k=1 q

(s)
jk = 1. If

0 < β̂2 < β̂1, the labels on φ are switched to φ
′
= {π1, π3, π2, q

(s)
1k , q

(s)
3k , q

(s)
2k ; k = 1, 2, . . . , K; s =

1, 2, . . . , S}, where
∑3

j=1 πj =
∑3

k=1 q
(s)
jk = 1. The order restriction is the critical assumption

for the proposed joint model to guarantee the global identification. Hence, testing for the

order restriction is necessary. The testing procedure will be discussed in Chapter 4.3.

3.3 VARIANCE ESTIMATION FROM THE PROFILE LIKELIHOOD

A likelihood function can be used to estimate variances for parameters of interest with its

observed information matrix. However, the use of full likelihood function is not feasible when

the dimension of parameter space is too high or the model has a semi-parametric nature.
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Due to its semi-parametric nature, the variance of the parameter estimates for the Cox model

in the proposed joint model cannot be readily derived from the usual likelihood approach

with finite number of parameters. Instead of using the full likelihood function, we apply

the profile likelihood method for inference on those estimates [19]. Denote Ω = (θ, φ) with

θ = (β1, β2, γ) as the Cox regression parameters in the proposed joint model and φ the other

nuisance parameters, including parameters for the latent class model and baseline hazard for

the Cox model. Then, the profile likelihood for θ = (β1, β2, γ) is

Lpl(θ) = L(θ, φ̂(θ);Dobs) = maxφL(θ, φ;Dobs). (3.9)

With the maximum likelihood estimators Ω̂, the asymptotic variances for θ̂ are estimated

by inverting the negative of the second derivatives of the logarithm of the profile likelihood :

v̂ar(θ̂) =

[
−∂

2Lpl(θ)

∂θ∂θT

]−1

|θ=θ̂MLE
.

Usually, we do not have the analytical forms for the second derivatives of the log-profile

likelihood function. We adapt a numerical approximation to derive the second derivatives

of the log-profile likelihood function [19]. With h = 0.001, θ = (β1, β2, γ), and lpl(θ) =

logLpl(θ, φ;Dobs), we approximate the second derivatives of the log-profile likelihood scores

as below:
∂2lpl
∂γ2

=
lpl(γ + h, β1, β2)− 2lpl(γ, β1, β2) + lpl(γ − h, β1, β2)

h2
+ o(h)

∂2lpl
∂β2

1

=
lpl(γ, β1 + h, β2)− 2lpl(γ, β1, β2) + lpl(γ, β1 − h, β2)

h2
+ o(h)

∂2lpl
∂β2

2

=
lpl(γ, β1, β2 + h)− 2lpl(γ, β1, β2) + lpl(γ, β1, β2 − h)

h2
+ o(h)

∂2lpl
∂γ∂β1

=
1

4h2
{lpl(γ + h, β1 + h, β2) + lpl(γ − h, β1 − h, β2)

− lpl(γ − h, β1 + h, β2)− lpl(γ + h, β1 − h, β2)}+ o(h)

∂2lpl
∂γ∂β2

=
1

4h2
{lpl(γ + h, β1, β2 + h) + lpl(γ − h, β1, β2 − h)

− lpl(γ − h, β1, β2 + h)− lpl(γ + h, β1, β2 − h)}+ o(h)

∂2lpl
∂β1∂β2

=
1

4h2
{lpl(γ, β1 + h, β2 + h) + lpl(γ, β1 − h, β2 − h)

− lpl(γ, β1 − h, β2 + h)− lpl(γ, β1 + h, β2 − h)}+ o(h),

and
∂2lpl
∂θi∂θj

=
∂2lpl
∂θj∂θi

, where i, j = 1, 2, 3.
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4.0 STATISTICAL TESTING WITH ORDER RESTRICTED HYPOTHESIS

Hypothesis testing for statistical model parameter θ is mainly focused on the null hypothesis

H0 : θ = 0 against H1 : θ 6= 0. In this conventional statistical inference, likelihood-base

approaches, such as likelihood ratio, score, and Wald tests have been commonly used for

hypothesis testing [18]. Under a large sample, the likelihood-based approaches gain the opti-

mal statistical inferences even the regularity conditions are somewhat violated [26]. However,

under a constrained parameter space, the optimal statistical inferences may not be achieved

regardless of a sample size [26]. Molenberghs and Verbeke [18] provided the frameworks of

the likelihood-based approaches for one-sided testing in constrained parameter spaces with

some illustrative examples. Under constrained one-sided alternatives, Self and Liang [24]

provided the theoretical works on the likelihood ratio test and its null distribution. Silva-

pulle and Silvapulle [27] proposed Wald-type tests under restricted one-sided alternatives.

Silvapulle [28] also provided the score test under a constrained alternatives.

Even the regularity conditions on the likelihood-based approaches are met, the explicit

form of maximum likelihood estimators and likelihood function are sometimes hard to be

derived due to the complexity of statistical model [26]. As an alternative of likelihood-

based approaches, the Union-Intersection (UI) principle introduced by Roy [23] has been

considered for constrained statistical inferences. With preserving the statistical properties

setting in likelihood-based approaches, the UI principle provides a flexibility of an alternative

hypothesis by allowing complex parametric or beyond parametric parameters [26]. Sen [25]

introduced the application of the UI principle for the Cox proportional hazards model with

various order restricted alternatives. With formulating a partial likelihood of the parameters

of interest, Sen [25] presented more efficient statistical inferences on the order constrained

alternatives.
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In the following sections, we first review the statistical hypothesis testing under standard

conditions and the Union-Intersection principle for the Cox proportional hazards model

introduced by Sen [25]. Then, the use of the Union-Intersection principle for the proposed

joint model is discussed in Section 4.3.

4.1 LIKELIHOOD-BASE APPROACHES

Let θ = (βT , ψT )T denote a 1 × p vector of parameters. In the parameter vector θ, β is

the vector of parameters of interest and ψ is a vector of nuisance parameters. Under the

null hypothesis H0 : β = β0, the log-likelihood and score functions are denoted by l(θ)

and S(θ) = ∂l(θ)/∂θ, respectively. Denote J(θ) as the matrix of second derivatives of the

log-likelihood function. Then, S(θ) can be decomposed into S(θ) = (Sβ(θ), Sψ(θ)). J(θ)

can be partitioned as

Jββ(θ) Jβψ(θ)

Jψβ(θ) Jψψ(θ)


and its inverse J−1(θ) can also be partitioned as

Jββ(θ) Jβψ(θ)

Jψβ(θ) Jψψ(θ)

 .

4.1.1 General two-sided alternative: H0 : β = β0 vs. H1 : β 6= β0

The Wald test statistic is defined as

Tw = (β̂ − β0)T [Jββ(θ̂)]−1(β̂ − β0).

The score test statistic is defined as

Ts = [Sβ(β0, ψ̂(β0))]T [Jββ(β0, ψ̂(β0))][Sβ(β0, ψ̂(β0))],

where ψ̂(β0) is a restricted maximum partial likelihood estimator at β = β0.
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The likelihood ratio test statistic is defined as

Tlr = 2[l(β̂, ψ̂)− l(β0, ψ̂(β0))],

where ψ̂(β0) is a restricted maximum partial likelihood estimator at β = β0.

The asymptotic null distributions of the three tests are equivalent to a chi-square with

the degree of freedom p, where p is the number of restrictions imposed on β by H0.

4.1.2 Constrained one-sided alternative: H0 : β = 0 vs. H1 : β ∈ C

In Molenberghs and Verbeke [18], the authors defined the differences between constrained

and unconstrained one-sided test by whether negative estimates for β are allowed in the

null hypothesis. For the same alternative hypothesis H1 : β > 0, the null hypothesis for

the unconstrained one-sided hypothesis testing is defined as H0 : β ≤ 0 and that for the

constrained one-sided hypothesis testing sets H0 : β = 0. From the null hypothesis, any

negative values of β will be replaced by β = 0 under the constrained one-sided hypothesis

[18].

For general form of alternative hypotheses, Molenberghs and Verbeke [18] denoted C as

a closed and convex cone in the Euclidean space, with vertex at the origin. With β0 = 0

and Z = N−1/2Sβ(ψ̂
′

,0
′
)
′
, a one-sided score statistic is defined as [18,28]

Ts = Z
′
Jββ(ψ̂

′

,0
′
)Z − inf

{
(Z − b)′Jββ(ψ̂

′

,0
′
)(Z − b)|b ∈ C

}
.

A one-sided Wald statistic is defined as [18,27]

Tw = β̂
′

V −1
ββ β̂

′

− inf
{

(β̂ − b)′V −1
ββ (β̂ − b)|b ∈ C

}
,

where V is the asymptotic variance-covariance matrix of θ and Vββ is the corresponding

sub-matrix.

A one-sided likelihood ratio test is defined as

Tlr = 2[sup{l(β̂, ψ̂)|β ∈ C} − sup{l(β̂, ψ̂)|β = 0}].
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The asymptotic p-values of the three tests can be calculated from the mixture of chi-

bar square distribution. With an observed test statistic tobs and p, which is the number of

restrictions imposed on β by H0, the asymptotic p-value can be calculated by

lim
n→∞

pr(tobs ≥ c|H0) =

p∑
i=0

ωi(p, J
ββ(θ))pr(χ2

i ≥ tobs).

When we test the null hypothesis with p restrictions on β, the mixture of chi-bar square

distribution can be calculated by

p∑
i=0

2−p

i
p

χ2
i .

For example, if the null hypothesis is H0 : β0 = β1 = β2 = β3, which can be rewrote as

H0 : λ1 = λ2 = λ3 = 0, where λp = βp − βp−1, p = 1, 2, 3, the null distribution under the

constrained one-sided alternative can be defined as

p∑
i=0

2−p

i
p

χ2
i =

1

8
χ2

0 +
3

8
χ2

1 +
3

8
χ2

2 +
1

8
χ2

3.

4.2 THE UNION-INTERSECTION PRINCIPLE FOR COX

PROPORTIONAL HAZARDS MODELS

In a multi-parameter setting, testing for the null hypothesis H0 : β = 0 against the alterna-

tive hypothesis with order restrictions on the parameters, such as H1 : 0 ≤ β1 ≤ β2 · · · ≤ βp,

may be interested. In such a case, the statistical testing with the likelihood-based approaches

may not be optimal and hard to be conducted [26]. Roy [23] proposed the Union-Intersection

(UI) principle that can preserve the statistical properties of the likelihood-based approaches

and adapt more various settings of alternative hypotheses with good robustness. Sen [25]

showed the use of the UI principle for testing order restricted alternatives on the Cox model

parameters with partial likelihood scores. We review Sen’s approaches for the Cox model in

this section and discuss the application of the UI principle to the proposed joint model in

Section 4.3.
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For simplicity, Sen [25] considered the general Cox proportional hazards model with cate-

gorical covariates ci and a continuous covariate zi. With the observable dataset (Xi, δi, ci, zi),

where Xi and δi are the observed failure time and the failure indicator for each subject i,

the hazard rate is defined as

hi(t; ci, zi) = h0(t) exp(β
′
ci + γ

′
zi),

where i = 1, . . . , n; h0(t) is an unknown, arbitrary nonnegative function. Here, the p

parameters of interest are denoted as β = (β1, β2, ..., βp)
′

and ci is the set of vectors

{(0, ..., 0)
′
, (1, ..., 0)

′
, . . . , (0, ..., 1)

′} for a subject i.

Based on the observable dataset (Xi, δi, ci, zi), i = 1, ..., n, the test for H0 : β = 0 against

H>
1 , H∗1 or H∗>1 may be interested, where

H>
1 : βj ≥ 0, j = 1, ...p

H∗1 : β1 ≤ ... ≤ βp

H∗>1 : 0 ≤ β1 ≤ ... ≤ βp.

Even the global test for the Cox model parameters based on the partial likelihood is still

valid, it may not be optimal approaches for these alternative hypotheses regarding efficiency

and/or power properties [26]. To implement the UI principle for testing the constrained

hypotheses under the Cox model, we first build the partial likelihood function with the

observable dataset (Xi, δi, ci, zi), i = 1, ..., n. The partial likelihood function is given by [25]

LPN(β, γ) =
N∏
i=1

{
exp(β

′
ci + γ

′
zi)∑

j:Xj≥Xi
exp(β

′
cj + γ′zj)

}δi

.

Based on the maximum partial likelihood estimator of γ, γ̂0
N , the partial likelihood scores

for β are defined by:

ÛN = N−1/2(
∂

∂β
) logLPN(β, γ)|β=0,γ=γ̂0N

(4.1)

= N−1/2

N∑
i=1

δi

{
ci −

∑
j:Xj≥Xi

cj exp(z
′
j γ̂

0
N)∑

j:Xj≥Xi
exp(z

′
j γ̂

0
N)

}
. (4.2)
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Here, γ̂0
N can be obtained by solving the below equation under the null hypothesis H0 :

β = 0.

N∑
i=1

δi

{
zi −

∑
j:Xj≥Xi

zj exp(γ
′
zj)∑

j:Xj≥Xi
exp(γ′zj)

}
= 0.

Let ωij = I(Xj ≥ Xi) exp(z
′
j γ̂

0
N), for i, j = 1, ..., N . Then, we define V̄11, V̄12, V̄22, V̄11.2, which

are second derivatives of the partial likelihood scores with respect to β, γ, by

V̄11 = N−1

N∑
i=1

δi

{
(
N∑
i=1

ωij)
−1

N∑
i=1

ωijcjc
′

j − (
N∑
i=1

ωij)
−2(

N∑
i=1

ωijcj)(
N∑
i=1

ωijc
′

j)

}

V̄12 = N−1

N∑
i=1

δi

{
(
N∑
i=1

ωij)
−1

N∑
i=1

ωijcjz
′

j − (
N∑
i=1

ωij)
−2(

N∑
i=1

ωijcj)(
N∑
i=1

ωijz
′

j)

}

V̄22 = N−1

N∑
i=1

δi

{
(
N∑
i=1

ωij)
−1

N∑
i=1

ωijzjz
′

j − (
N∑
i=1

ωij)
−2(

N∑
i=1

ωijzj)(
N∑
i=1

ωijz
′

j)

}
V̄11.2 = V̄11 − V̄12V̄22

−1
V̄21.

For given b ≥ 0, we can write H>
1 : βj ≥ 0 as H>

1 : ∪BHb, where B = {b : b ≥ 0}. Under

H0, (b
′
ÛN)/(b

′
V̄11.2b) closely follows N(0, 1) for a given b. Hence, the Union-Intersection

test statistic for testing H0 : β = 0 vs. H>
1 : β ≥ 0 can be defined as

T
(1)
N = sup

{
(b
′
ÛN)/(b

′
V̄11.2b)1/2 : b ∈ B

}
.

The supremum of T
(1)
N can be obtained by maximizing b

′
ÛN , where b > 0 and b

′
V̄11.2b

is a constant. Based on the Kuhn-Tucker-Lagrange (KTL-) point formula theorem, we can

find the solution for maximizing b
′
ÛN , that is b∗

′
ÛN [25]. Let h(b) = −b

′
ÛN , h1(b) = −b,

and h2(b) = b
′
V̄11.2b− 1, then the Lagrangian function is

L(b, t1, t2) = h(b) + t
′

1h1(b) + t
′

2h2(b)

and (b∗, t∗1, t
∗
2) is a KTL-point that satisfies the system of conditions

t∗1 ≥ 0, b∗ ≥ 0, b∗V̄11.2b = 1

t∗
′

1 b∗ = 0, −ÛN − t∗1 + 2t∗2V̄11.2b
∗ = 0.
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Let a be any subset of P = {1, ..., p}, where p is the number of components in ÛN and

ā be the complementary subset (∅ ⊆ a ⊆ P ). For each subset a, the partial likelihood score

Û
′
N and the variance-covariance matrix V̄11.2 are partitioned by :

Û
′
N = (Û

′

N(a), Û
′

N(ā)), V̄11.2 =

V̄11.2(aa) V̄11.2(aā)

V̄11.2(āa) V̄11.2(āā)

 .

With the sub-vectors of Û
′
N and the sub-blocks of V̄11.2, Û∗N(a) and V̄ ∗11.2(a) for each subset

a are calculated as below:

Û∗N(a) = ÛN(a) − V̄11.2(aā)V̄
−1

11.2(āā)ÛN(ā) (4.3)

V̄ ∗11.2(a) = V̄11.2(aa) − V̄11.2(aā)V̄
−1

11.2(āā)V̄11.2(āa). (4.4)

For some set a ⊆ P , a KTL-point is (a∗, t∗1, t
∗
2) , where

t∗1 =

 0

−V̄ −1
11.2(āā)ÛN(ā)

 ≥ 0

2t∗2a
∗ = a∗

′
ÛN = {Û ′N V̄ −1

11.2ÛN − Û
′

N(ā)V̄
−1

11.2(āā)Û
′

N(ā)}
1
2

2t∗2 = V̄ −1
11.2(ÛN + t∗1).

From the KTL-point, the solution for b∗
′
ÛN is given by [25]

b∗
′
ÛN = (Û∗

′

N(a)V̄
∗−1

11.2(a)Û
∗
N(a))

1/2,

where Û∗N(a) > 0 and V̄ −1
11.2(āā)ÛN(ā) ≤ 0.

Hence, the UI-test statistic is defined by [25]

T
(1)
N = sup

{
(b
′
ÛN)/(b

′
V̄11.2b)1/2 : b ∈ B

}
=

∑
∅⊆a⊆P

{
(Û∗

′

N(a)V̄
∗−1

11.2(a)Û
∗
N(a))

1/2I(Û∗N(a) > 0)I(V̄ −1
11.2(āā)ÛN(ā) ≤ 0)

}
, (4.5)

where a is a subset of P , and Û∗
′

N(a) and V̄ ∗−1
11.2(a) are calculated by the equation (4.3) and

(4.4).
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Under the null hypothesis with large n, for each a, (∅ ⊆ a ⊆ P ),

• ÛN is asymptotically normal with null mean vector and variance-covariance matrix v11.2.

• V̄11.2 converges in probability to v11.2.

• Û∗N(a) is asymptotically normal with null mean vector and variance-covariance matrix

v11.2(a).

• V̄ −1
11.2(āā)ÛN(ā) is asymptotically normal with null mean vector and variance-covariance

matrix v−1
11.2(āā).

• (Û∗
′

N(a)V̄
∗−1

11.2(a)Û
∗
N(a))

1/2 has asymptotically the central chi distribution with ka degrees of

freedom, which is the cardinality of the set a .

• For every x ≥ 0, the three events I((Û∗
′

N(a)V̄
∗−1

11.2(a)Û
∗
N(a))

1/2 ≤ x), I(Û∗N(a) > 0), I(V̄ −1
11.2(āā)ÛN(ā) ≤

0) are asymptotically mutually independent.

Therefore, the p-value can be obtained by

P
{
T

(1)
N ≤ x|H0

}
= P

 ∑
∅⊆a⊆P

{
(Û∗

′

N(a)V̄
∗−1

11.2(a)Û
∗
N(a))

1/2I(Û∗N(a) > 0)I(V̄ −1
11.2(āā)ÛN(ā) ≤ 0)

}
≤ x


=

∑
∅⊆a⊆P

P
{
Û∗N(a) > 0

}
P
{
V̄ −1

11.2(āā)ÛN(ā) ≤ 0
}
P {χk ≤ x}

=

p∑
k=0

ωkP {χk ≤ x} ,∀x ≥ 0,

p∑
k=1

ωk = 1. (4.6)

The null distribution of the UI-test statistic is a chi-bar distribution with the weight ωk

for each k, where k is the number of elements in some subset a. The weight, ωk can be

computed by multiplying P (Û∗N(a) > 0) by P (V̄ −1
11.2(āā)ÛN(ā) ≤ 0), where Û∗N(a) ∼ N(0, v11.2(a))

and V̄ −1
11.2(āā)ÛN(ā) ∼ N(0, V̄ −1

11.2(āā)). The weights ωk can be calculated by the exact formulas

or a numerical integration.

For testing H0 : β = 0 vs. H∗>1 : 0 ≤ β1 ≤ ... ≤ βp, the reparameterization may be

necessary to use Equation (4.5) and (4.6) for the test statistic and its p-value, respectively.

Let ψj = βj − βj−1, j = 1, ..., p, where β0 = 0, and d
′
i = (di1, ..., .dip), i = 1, ..., N , where

dij =
∑p

s=j cis, for j = 1, .., p, i = 1, ..., N . Then, the Cox model can be written as

hi(t; ci, zi) = h0(t) exp(β
′
ci + γ

′
zi) = h0(t) exp(ψ

′
di + γ

′
zi).
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Then, the null and alternative hypotheses are reduced to H0 : ψ = 0 and H>
1 : ψ ≥ 0. The

UI-test for testing H0 : β = 0 vs. H∗> : 0 ≤ β1 ≤ .... ≤ βp is the same as that for testing

H>
1 : βj ≥ 0, j = 1, ...p.

4.3 THE UNION-INTERSECTION PRINCIPLE FOR THE PROPOSED

JOINT MODEL

In the proposed joint model in Chapter 3, we assume that the more aggressive and progressed

tumor has the higher risk of recurrence to obtain the full identification of the parameter

estimates for tumor grades. Under this assumption, the order restriction is imposed on the

Cox regression parameters: 0 ≤ β1 ≤ β2.

λ(ti|Zi, W̃i) = λ0(ti)exp(βW̃i + γZi),

where W̃i = (Wi1,Wi2) = (I(Wi = 2), I(Wi = 3)), β = (β1, β2) in the case of tumor grade

and λ0(ti) represents the baseline hazard function for a subject i. To test the order restriction

on the Cox regression parameters, the Union-Intersection (UI) principle can be considered.

Under the null hypothesis H0 : β = 0 and the alternative hypothesis H1 : 0 ≤ β1 ≤ β2 , we

adapt the UI principle for the Cox proportional hazards model with H1 : β ≥ 0 proposed

by Sen [25].

Instead of building partial likelihood scores as in Sen [25], we use the profile likelihood

scores with treating the parameters φ = (λ0(ti),π, q) as nuisance parameters, where (π, q)

are the prevalences and classification rates in the sub-model for multiple ratings and λ0(ti)

are the baseline hazards in the sub-model for time-to-event data. If we consider the profile

likelihood such as logLPL(β), the additional iterative procedures along with the survey-

weighted cox model in the M-steps are required to update γ. However, with the profile

likelihood logLPL(β, γ), the survey-weighted Cox model in the M-steps is enough to update

the nuisance parameters φ = (λ0(ti),π, q) while (β, γ) are fixed. Hence, we can expect

that the use of profile likelihood logLPL(β, γ) can reduce the programming demands for the

proposed joint model.

44



Denote γ̂0
N , which is the parameter estimate of γ under the null hypothesis and it can

be derived by fitting a cox model with only including an auxiliary variable, such as tumor

sizes. The profile likelihood score for β under H0 and the variance-covariance matrix can be

defined by

ÛN =
∂

∂β
logLPL(β, γ)|β=0,γ=γ̂0N

(4.7)

V11.2 = −

 ∂2logLPL(β,γ)

∂β∂βT

∂2logLPL(β,γ)
∂β∂γ

∂2logLPL(β,γ)
∂γ2


β=0,γ=γ̂0

=

 V̄11 V̄12

V̄21 V̄22

 . (4.8)

Then V̄11.2 can be calculated by the sub-blocks of V11.2 with the following equation:

V̄11.2 = V̄11 − V̄12V̄
−1

22 V̄21. (4.9)

The first and second derivatives in the equations (4.7) and (4.8) are approximated by

a numerical differentiation. With β = (β1, β2) and h = 0.001,h1 = h ∗ (1, 0),h2 = h ∗

(0, 1),h3 = h ∗ (1, 1),h4 = h ∗ (−1, 1),h5 = h ∗ (1,−1), we use the following numerical

differentiation to calculate the first and second order partial derivatives, where logLPL =

logLPL(β, γ).

∂logLPL
∂β1

=
logLPL(β + h1, γ)− logLPL(β − h1, γ)

2h
+ o(h)

∂logLPL
∂β2

=
logLPL(β + h2, γ)− logLPL(β − h2, γ)

2h
+ o(h)

∂logLPL
∂γ

=
logLPL(β, γ + h)− logLPL(β, γ − h)

2h
+ o(h)

∂2logLPL
∂β2

1

=
logLPL(β + h1, γ) + logLPL(β −+h1, γ)− 2logLPL(β, γ)

h2
+ o(h)

∂2logLPL
∂β2

2

=
logLPL(β + h2, γ) + logLPL(β −+h2, γ)− 2logLPL(β, γ)

h2
+ o(h)

∂2logLPL
∂γ2

=
logLPL(β, γ + h) + logLPL(β, γ − h)− 2logLPL(β, γ)

h2
+ o(h)
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∂2logLPL
∂β1∂γ

=
1

4h2
[logLPL(β + h1, γ + h) + logLPL(β − h1, γ − h)

− logLPL(β + h1, γ − h)− logLPL(β − h1, γ + h)] + o(h)

∂2logLPL
∂β1∂β2

=
1

4h2
[logLPL(β + h3, γ) + logLPL(β − h3, γ)

− logLPL(β + h4, γ)− logLPL(β + h5, γ)] + o(h)

∂2logLPL
∂β2∂γ

=
1

4h2
[logLPL(β + h2, γ + h) + logLPL(β − h2, γ − h)

− logLPL(β + h2, γ − h)− logLPL(β − h2, γ + h)] + o(h).

With ÛN and V̄11.2, Û∗N(a) and V̄ ∗11.2(a) are computed for any subset a of P = {1, . . . p},

where p is the dimension of ÛN .

Û∗N(a) = ÛN(a) − V̄11.2(aā)V̄
−1

11.2(āā)ÛN(ā) (4.10)

V̄ ∗11.2(a) = V̄11.2(aa) − V̄11.2(aā)V̄
−1

11.2(āā)V̄11.2(āa). (4.11)

Next, the below conditions for each subset a and the complementary subset ā are evalu-

ated.

Û∗N(a) > 0 V̄ −1
11.2(āā)ÛN(ā) ≤ 0

Without loss of generality, we assume that p = 2, where β = (β1, β2) in the proposed

joint model. Then, any subset of p is P = {∅, {1}, {2}, {1, 2}}. The first condition is always

met for a null set and the second condition is always met for P = {1, 2}. Among the subsets,

only one element (for the proposed joint model, {1} or {2}) satisfies both conditions. Once

the element is found, the Union-Intersection statistic can be computed, where I(ÛN(a) > 0)

and I(V̄ −1
11.2(āā)ÛN(ā) ≤ 0)

T
(1)
N = (Û∗

′

N(a)V̄
∗−1

11.2(a)Û
∗
N(a))

1/2 = t. (4.12)

Under the null hypothesis, Û∗N(a) ∼ N(0, v∗11.2(a)), V̄
−1

(āā)ÛN(ā) ∼ N(0, v−1
11.2(āā)). Hence, the

distribution of the UI statistic T
(1)
N is
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Table 5: Weights for the mixture distribution for the UI-test statistic

a k Pr{Û∗N(a) > 0} Pr{V̄ −1
11.2(āā)ÛN(ā) ≤ 0} ω

∅ 0 1 p1 ω0

{1} 1 1/2 1/2 1/4

{2} 1 1/2 1/2 1/4

{1, 2} 2 p2 1 ω2

P
{
T

(1)
N ≤ t|H0

}
=

∑
∅⊆a⊆P

P
{
Û∗N(a) > 0

}
P
{
V̄ ∗−1

11.2(āā)ÛN(ā) ≤ 0
}
P {χk ≤ t}

=

p∑
k=0

ωkP {χk ≤ t} ,∀x ≥ 0,

p∑
k=1

ωk = 1, (4.13)

Here, χ2
k is a chi-square random variable, with k is the number of elements in a. χ2

0 is

equal to zero with probability 1. The weight ωk can be computed by the product of two

normal orthant probabilities and be written as

ωk =
∑

dim(|a|)=k

Pr{Û∗N(a) > 0|H0}Pr{V̄ −1
11.2(āā)ÛN(ā) ≤ 0|H0}. (4.14)

With P = {∅, {1}, {2}, {1, 2}}, the weights for each k are calculated as Table 5. In

Table 5, p1 = Pr{Û∗N(a) > 0} with a = {1, 2} and p2 = Pr{V̄ −1
11.2(āā)ÛN(ā) ≤ 0} with

ā = {1, 2} are evaluated by using a numerical integration, where Û∗N(a) ∼ N(0, v11.2(a))

and V̄ −1
11.2(āā)ÛN(ā) ∼ N(0, V̄ −1

11.2(āā)). R function pmvnorm in R package mvtnorm can be used

to calculate the multi-dimensional normal orthant probabilities. For example, the two di-

mensional orthant probabilities can be computed by the below statement.

p1 <- pmvnorm(lower = c(l1,l2) ,upper = c(u1,u2) ,

+ mean=rep(0, 2), sigma = V11.2, algorithm = Miwa())
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• lower: Specify the lower limit of the integral region.

• upper: Specify the upper limit of the integral region.

• mean: Specify the mean vector.

• sigma: Specify the variance-covariance matrix.

• algorithm: Select the algorithm for a numerical integration.

If the limit of integral region is infinity, we specify small or large value to the lower/upper

limit (e.g. lower = c(0,0), upper = c(10000, 10000)). The details can be found in the

document for R package mvtnorm ’http://cran.r-project.org/web/packages/mvtnorm/

mvtnorm.pdf’.

Then, the P-value is calculated as

P− value = 1− {P (χ2
0 ≤ t) ∗ ω0 + P (χ2

1 ≤ t) ∗ ω1 + P (χ2
1 ≤ t) ∗ ω1 + P (χ2

2 ≤ t) ∗ ω2},

where t is the value of test statistic in the equation (4.12).

For testing the null hypothesis H0 : β = 0 vs. H1 : 0 ≤ β1 ≤ β2, the reparameterization

on β is needed. Let λj = βj − βj−1 with β0 = 0, then the alternative hypothesis will be

reduced to H1 : λ ≥ 0, where λ1 = β1 and λ2 = β2 − β1. Now, the profile likelihood score

ÛN (Eq.4.7) and the variance-covariance matrix V̄11.2 (Eq. 4.8) can be updated with respect

to λ by using a chain rule. Once the profile likelihood score and the variance-covariance

matrix are updated, the equations (4.10) and (4.11) are calculated with the values from the

equations (4.15) and (4.16). The test statistics (Eq.4.12) and p-value can also be calculated

in the same way. The profile likelihood score ÛN for λ can be calculated by

Û∗N =
∂

∂λ
logLPL(λ, γ)|λ=0,γ=γ̂0N

=
∂

∂β
logLPL(β, γ)

∂

∂λ
β(λ) (4.15)

The second derivatives for the variance-covariance matrix V̄ ∗11.2 can be calculated by

∂2

∂λ∂λT
logLPL(λ, γ)|λ=0,γ=γ̂0N

=
∂

∂λ
β(λ)

∂2

∂β∂βT
logLPL(β, γ)

∂

∂λ
β(λ)T , (4.16)

where

∂

∂λ
β(λ) =

∂β1∂λ1

∂β1
∂λ2

∂β2
∂λ1

∂β2
∂λ2

 =

1 0

1 1

 .
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5.0 SIMULATION STUDIES

We conducted simulation studies to examine the statistical properties for the proposed joint

model in Chapter 3. To confirm the practical utility of our methods, we considered simulation

setups that are similar to the National Surgical Adjuvant Breast and Bowel Project (NSABP)

B-14 sub-study. Based on the structure of the NSABP B-14 dataset, we simulated n subjects

with a total seven variables Di =
{
Wi, V

(1)
i , V

(2)
i , V

(3)
i , Xi,∆i, Zi

}
for each subject i, where

• Wi: True tumor grade, where Wi = j, j = 1, 2, 3

• (V
(1)
i , V

(2)
i , V

(3)
i ): Tumor grade ratings from three pathologists, where V

(s)
i = k, k =

1, 2, 3; s = 1, 2, 3

• Xi: Observed failure time

• ∆i: Observed censoring indicator, 1 for failure event, 0 for censoring event

• Zi: Tumor size

Tumor grade ratings (V
(1)
i , V

(2)
i , V

(3)
i ) from three pathologists, true tumor grade Wi and

tumor size Zi for each subject i were simulated such that:

(1) Simulate true tumor grades ranged from 1 to 3 for n subjects based on a multino-

mial distribution with the prevalence (π1, π2, π3) = (0.3, 0.5, 0.2). With the R function

rMultinom(rbind(0.3, 0.5, 0.2), n), generate Wi. The value of Wi is 1,2, or 3.

(2) Generate tumor grade ratings from three pathologists given a simulated true tumor grade

for each subject i. Tumor grade ratings for each pathologist are independently generated

given the level of true tumor grade generated at (1). A multinomial distribution with

the classification rates q̂
(s)
jk ; j, k, s = 1, 2, 3 in Table 6 are used to generate tumor grade

ratings. For example, if Wi = 2, we would generate V
(s)
i from a multinomial distribution
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Table 6: Simulation setup: Classification rates for simulation studies

Rater#1 Rater#2 Rater#3

True grade W M P W M P W M P

W 0.6 0.3 0.1 0.5 0.35 0.15 0.6 0.15 0.25

M 0.07 0.87 0.06 0.2 0.7 0.1 0.04 0.91 0.05

P 0.05 0.15 0.8 0.03 0.23 0.74 0.1 0.3 0.6

with the classification rates (q
(s)
21 , q

(s)
22 , q

(s)
23 ). Let n2 =

∑
I(Wi = 2), then V

(2)
i given

Wi = 2 are generated with the R function rMultinom(rbind(0.2, 0.7, 0.1), n2)

(3) Given a true tumor grade Wi for each subject i, generate tumor sizes from three log-

normal distributions with the mean and variance estimates from the B-14 dataset:

log(Zi) ∼ N(µi, σ
2), where µi = (0.54, 0.65, 0.81) for Wi = 1, 2, and 3, respectively,

and common variance σ2 = 0.29 for all grades. For example, if Wi = 2, generate

Z∗i = log(Zi) with the R function rnorm(n2, 0.65, 0.29) and take an exponential of Z∗i so

that Zi = exp(Z∗i ).

With the true regression coefficient {γ, β1, β2} = {0.3, 0.5, 2.0}, the survival time Ti was

generated from a Cox proportional hazards model with constant baseline hazard λ0(t) ≡ λ0,

such that

λ(t|Zi,Wi) = λ0 exp{0.3Zi + 0.5I(Wi = 2) + 2.0I(Wi = 3)},

where I(Wi = j), j = 2, 3.

The censoring time Ci was generated from an exponential distribution with rate λC with

assuming that the censoring is non-informative. We considered a simulation setup for the

sample size 668 and 1300 with 20% or 80% censoring rates, by setting (λ0, λc) to (0.045, 0.035)

or (0.01, 0.15), respectively. The observed failure time Xi were simulated such that:

(1) For i = 1, 2, . . . , n, generate ui1, ui2 from a uniform distribution U(0, 1), independently.
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(2) With the simulated true tumor grade and the tumor size given the true tumor grade,

generate a failure time Ti for n subjects by

Ti =
− log(ui1)

λ0 exp{0.3Zi + 0.5I(Wi = 2) + 2.0I(Wi = 3)}
.

(3) Generate censoring time ci for n subjects by

ci =
−log(ui2)

λc
.

(4) Generate time-to-event data and censoring indicator. The observed time-to-event data

are Xi = min{Ci, Ti} and the censoring indicator is ∆i = I(Ti ≤ Ci).

Considering each of four scenarios with different sample sizes n = (668, 1300) and censor-

ing proportions ∆% = (20, 80), we conducted 500 replications with different seed numbers.

For the sth replication, s = 1, 2, . . . , S, we set the initial values for the parameter estimates

(π, q, γ, β1, β2) for running the EM algorithm in Section 3.2. To get the initial values, we

fitted two sub-models separately. The parameter estimates for (π, q) from the equation (

2.1) were considered as the initial values for (π, q) in the EM algorithm in Section 3.2. The

Cox regression parameters fitted with including true tumor grade and tumor size were con-

sidered as the initial values for (γ, β1, β2) in the EM algorithm. With the initial values, the

parameter estimates and the standard errors of the Cox model parameters were computed

as described in Chapter 3. Due to the intensive computation, we run 20 replications per a

seed number. Hence, total 25 seed numbers for 500 replications were generated by the R

function .Random.seed for the simulation studies.

The results with 500 replications for the sample size 668 and 1300 are shown in Table

7. The empirical bias (Bias), the empirical standard deviations of the estimates over all

replications (Emp.SD), the average of estimated standard errors (ASE), and the coverage

probabilities of 95% confidence interval are reported to examine the statistical properties for

the proposed joint model. Let Ω̂(t) = (γ̂(t), β̂1

(t)
, β̂2

(t)
), t = 1, 2, . . . , 500 be the estimates for

tth simulated data, and Ω = {γ, β1, β2} = {0.3, 0.5, 2.0} be the true regression parameters.

For example, the simulation parameters for γ are computed as below:
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Empirical Bias

Emp.bias =
1

500

500∑
t=1

γ̂(t) − γ

.

Empirical Standard Deviation

Emp.SD =
1

499

500∑
t=1

(γ̂(t) − γ̄)2,

where γ̄ = 1
500

∑500
t=1 γ̂

(t).

Average of estimated standard errors

ASE =
1

500

500∑
t=1

Ŝ(γ̂(t)),

where Ŝ(γ̂(t)) is the estimated standard error for tth simulated dataset.

Coverage probability of 95% confidence interval

CP =
1

500

500∑
t=1

I(γ̂(t) ∈ [γ − 1.96 ∗ S(t)
γ̂ , γ + 1.96 ∗ S(t)

γ̂ ]).

Instead of imposing the order restrictions on the parameter estimates in the M-steps,

we incorporated the order restrictions when we interpreted the parameter estimates at the

convergences of the EM algorithm. For each case, we switched the labels on β by re-

parameterizing (β1, β2) so that the order restrictions are preserved.

(1) If β1, β2 > 0 but β2 < β1, then we set β′1 = β2 and β′2 = β1.

(2) If β1 < 0 and β2 > 0, we set β′1 = −β1 and β′2 = −β1 + β2.

In the same time, the labels on the (π, q) were also re-arranged so that 0 < β̂1 < β̂2. For

example,

(1) If 0 > β1 > β2, the labels on φ = {π1, π2, π3, q
(s)
1k , q

(s)
2k , q

(s)
3k ; k = 1, 2, . . . , K; s = 1, 2, . . . , S}

are switched to φ
′

= {π3, π2, π1, q
(s)
3k , q

(s)
2k , q

(s)
1k ; k = 1, 2, . . . , K; s = 1, 2, . . . , S}, where∑3

j=1 πj =
∑3

k=1 q
(s)
jk = 1.
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Table 7: Simulation results with (γ, β1, β2) = (0.3, 0.5, 2.0).

N = 500

% censoring n parms Bias Emp.SD ASE CP

20% 668 γ 0.026 0.038 0.021 0.779

β1 -0.007 0.149 0.095 0.923

β2 -0.004 0.196 0.121 0.913

1300 γ 0.023 0.028 0.02 0.700

β1 -0.005 0.103 0.095 0.924

β2 0.004 0.130 0.122 0.923

80% 668 γ 0.009 0.058 0.06 0.943

β1 0.069 0.361 0.272 0.896

β2 0.036 0.355 0.266 0.876

1300 γ 0.013 0.043 0.044 0.928

β1 -0.011 0.236 0.199 0.916

β2 -0.018 0.234 0.193 0.904
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(2) If 0 < β2 < β1, the labels on φ are switched to φ
′

= {π1, π3, π2, q
(s)
1k , q

(s)
3k , q

(s)
2k ; k =

1, 2, . . . , K; s = 1, 2, . . . , S}, where
∑3

j=1 πj =
∑3

k=1 q
(s)
jk = 1.

In Table 7, the simulation results for 20% censoring show that the proposed joint model

provides the parameter estimates for β with negligible biases. Also, no significant difference

between the empirical standard deviations and the average of estimated standard errors for

β is detected for 20% censoring. The coverage probabilities of 95% confidence interval for the

β are close to the nominal level of 0.95. However, the simulation results for 20% censoring

show that the parameter estimate for γ is biased and the coverage probability is not close

to the nominal level.

When the sets of weights include extreme values, such as 0 , 1, the current R package

survey may not converge well. Although the computation efforts can be reduced by using

the R package survey to update the parameters having no closed-form of solutions, the

systematic biases on the parameters may be expected through the estimation procedures.

For further checking procedure, we will compare the current simulation results with the

results from the EM algorithm with a one-step Newton-Raphson method. As the censoring

proportion is increased from 20% to 80%, the biases for (β1, β2) are also increased and

the coverage probability is not close to the nominal level. Based on our knowledge, if the

association between the unknown true status and the time of disease recurrence is not strong

enough, the estimates in a finite sample can be overestimated due to the ”label swapping”

on the model parameters. For example, when we generate a finite sample (X1, X2), where

X1 ∼ N(µ1, 1), X2 ∼ N(µ2, 1) with imposing the order restriction on µ, µ1 > µ2, the sample

means of X2, X̄2 can be larger than X̄1 due to the ”label switching” phenomenon if the

magnitude of the difference between µ1 and µ2 is not large enough.

We expect the bias, relative to the empirical standard deviation, will diminish as sample

size increases and the gap between the β1 and β2 increases. As censoring proportion decreases,

we expect the bias will also decrease. Because of the numerical approximation in variance

estimation in Section 3.3, the average of standard error estimates could be slightly different

from the empirical standard deviations of the estimates.
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6.0 APPLICATION: ANALYSIS OF DATA FROM THE NSABP B-14 DATA

The National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14 trial is a phase

3 randomized controlled trial to investigate the prognosis of patients with node-negative,

estrogen-receptor-positive breast cancer treated with Tamoxifen and/or chemotherapy. We

applied the proposed joint model to a sub-study of the NSABP B-14 trial with disease-free

survival as the endpoint or outcome of interest. With the tissue samples and clinical in-

formation of patients enrolled in B-14 trial, the validation study of a 21-gene panel assay

with comparing classical clinical factors such as age, tumor size, and tumor grade was carried

out [20]. With a patients paraffin-embedded tumor tissue, the tumor grades for a patient were

independently measured by three different pathologists from the NSABP, Stanford University

Medical Center, and the University of California at San Francisco, School of Medicine, re-

spectively. All three experienced pathologists were blinded from any clinical information and

independently evaluated the tumor grade following the modified Bloom-Richardson grading

criteria [20]. According to the modified Bloom-Richardson grading system, the pathologists

scored three features: the tubule formation, the count of cell mitosis, and uniformity in cell

size, shape and staining character of the nuclei. Each of these features is scored from 1 to 3.

Once all three features in Table 1 are scored, the total sum of three scores are computed and

categorized into one of three grade (Table 2). A tumor is considered as a well, moderately,

poorly differentiated tumor if the total sum of score is 3 to 5, 6 to 7, or 8 to 9, respectively [9].

The data analysis of this exemplary dataset was programmed in R. The survey-weighted

Cox model in the M-step was applied by using the R functions svydesign and svycoxph in

the R package survey. The weights were proportional to E[Wi = j|Dobs; θ
(t)] for a subject

i and a level of true tumor grade j, which was calculated in the E-step. The details are

shown in Section 3.2.2. The standard errors of cox parameter estimates were derived by
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Table 8: Estimated prevalences and classification rates from the proposed joint model

Rater#1 Rater#2 Rater#3

True grade π W M P W M P W M P

W 0.28 0.44 0.55 0.01 0.87 0.13 0 0.62 0.37 0

M 0.49 0.07 0.84 0.08 0.17 0.74 0.09 0.05 0.90 0.05

P 0.23 0 0.22 0.78 0.02 0.20 0.78 0.01 0.46 0.55

using the profile likelihood approach proposed by Murphy and van der Vaart [19]. With

the derived standard errors from the profile likelihood, the p-values for the parameters of

interest were calculated by the Wald test and the Union-Intersection Principle in Section 4.3.

In the analysis, we used tumor size for each subject as an auxiliary information and included

tumor grade readings from three pathologists with considering a well-differentiated tumor as

the reference category in the sub-model for time-to event data (Equation 3.3). Accordingly,

tumor size was used as one of covariates in the sub-model for time-to-event data and tumor

grade readings were used in the sub-model for multiple ratings with an unknown true tumor

grade.

Since three pathologists at three different sites in the U.S. independently assessed tumor

grades for 668 subjects in the NSABP B-14 study, it is reasonable to assume that three

tumor grade readings are independent each other given a true tumor grade. In addition, any

clinical information such as tumor size was not disclosed to all pathologists during tumor

grade reading. Hence, we can also assume that the auxiliary information is independent of

tumor grade readings given the underlying true tumor grade.

Table 4 in Section 2.1.3 shows the estimates of prevalence and classification rates from

the latent class model proposed by Dawid and Skene [7]. The assumption of conditional

independence on the tumor grade readings is met with the p-value of the Pearson Chi-

square goodness-of-fit test at 0.46 (χ2
6 = 5.7). Table 8 shows the estimates of prevalence and

classification rates from the proposed joint model. Both tables show very similar estimates

of prevalence and classification rates.
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Table 9: Parameter estimates and standard errors of Cox parameter estimates from the joint

model.

Cox model only Joint model

Pathologist 1 Pathologist 2 Pathologist 3

Est.(SE) P-value Est.(SE) P-value Est.(SE) P-value Est.(SE) P-value

γ̂ 0.18 (0.05) <.001 0.18 (0.05) <.001 0.12 (0.05) 0.01 0.16 (0.04) <.001

β̂1 0.30 (0.35) 0.39 0.62 (0.29) 0.03 0.52 (0.34) 0.13 0.55 (0.24) <.001

β̂2 1.21 (0.35) <.001 1.64 (0.28) <0.001 1.86 (0.36) <.001 1.86 (0.17) <.001

As a naive approach, each of the three Cox models includes tumor grade readings from one

of three pathologists and tumor size as the predictors. We compare the degree of association

between tumor grade and time to breast cancer recurrence determined from the three Cox

models and the proposed joint model. Table 9 summarizes the parameter estimates and

standard errors under three Cox models and the joint model. The estimated regression

coefficients of tumor size γ̂ and the corresponding standard errors are quiet similar across all

four models. However, we notice large differences in the estimates of regression coefficients

for tumor grades between three naive models and the joint model (β̂1 for grade 2 vs. grade

1 ;β̂2 for grade 3 vs. grade 1). Compared to the estimates from the joint model, the naive

Cox models can lead to biased results for the association between tumor grades and the

risk of breast cancer recurrence. For example, when we use tumor grade readings from

the first pathologist, the degree of association between tumor grades and the risk of breast

cancer recurrence can be underestimated (β̂1

(1)
= 0.3, β̂2

(1)
= 1.21 from the naive Cox

model; β̂1 = 0.55, β̂2 = 1.86 from the joint model). Comparing to the standard errors from

the naive cox models, the joint model provides more efficient estimates for the association

between tumor grades and time to breast cancer recurrence. The three naive Cox models

only use tumor grade readings from one of three pathologists. On the other hand, the

joint model combines all available tumor grade readings from three pathologists, so that it

estimates the Cox parameters with larger sample size.
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Table 10: The conditions for calculating the U-I test statistic for the NSABP B-14 data.

a ā Û∗N(a) V̄ −1
11.2(āā)ÛN(ā) I(Û∗N(a) > 0) I(V̄ −1

11.2(āā)ÛN(ā) ≤ 0)

∅ {1, 2} -

−2.44

1.86

 1 0

{1} {2} −25.65 0.23 0 0

{2} {1} 28.27 −0.63 1 1

{1, 2} ∅

−2.437

1.861

 - 0 1

Since the p-values for H0 : β = (β1, β2)
′

= 0 in Table 9 are less than 0.05, we tested

the order restrictions on β, which is 0 ≤ β1 ≤ β2. The Union-Intersection principle for the

proposed joint model in Section 4.3 was conducted with the re-parameterization on β. With

λj = βj − βj−1, where β0 = 0, the alternative hypothesis was reduced to H1 : λ ≥ 0, where

λ1 = β1 and λ2 = β2 − β1.

For each subset a of P = {∅, {1}, {2}, {1, 2}}, we first evaluated the two conditions:

Û∗N(a) > 0 and V̄ −1
11.2(āā)ÛN(ā) ≤ 0, where Û∗N(a) ∼ N(0, v11.2(a)), V̄

−1
11.2(āā)ÛN(ā) ∼ N(0, V̄11.2(āā)),

which are defined in Eq.4.10 and Eq.4.11 and the chain rule for re-parameterization in

Eq.4.15 and Eq.4.16. Table 10 shows the values of two conditions for each partition a.

The value of V̄ −1
11.2(āā)ÛN(ā) is always greater than zero when a is the empty set. On the

other hand, V̄ −1
11.2(āā)ÛN(ā) is always equal to or less than less than zero, when ā is the empty

set. Among a total 22 = 4 partitions, only one partition will have both I(Û∗N(a) > 0) and

I(V̄ −1
11.2(āā)ÛN(ā) ≤ 0) equal to one. The U-I test statistic 7.252 was calculated on the term

for which both indicators are one, a = 2, ā = 1.

TN = (Û∗
′

N(2)V̄
∗−1

11.2(2)Û
∗
N(2))

1/2 = 7.252.

The weights for a mixture chi-bar distribution for each partition are shown in Table11.

For a = ∅ and a = {1, 2}, the weights were calculated by the R package mvtnorm with the
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Table 11: Estimated weights for the mixture distribution for the U-I test statistic

a k Pr{Û∗N(a) > 0} Pr{V̄ −1
11.2(āā)ÛN(ā) ≤ 0} ω

∅ 0 1 0.399 0.399

{1} 1 0.5 0.5 0.25

{2} 1 0.5 0.5 0.25

{1, 2} 2 0.101 1 0.101

upper limits of integral region c = (10000, 10000) and the lower limits of integral region

c = (0, 0). For example, the weights ω0 and ω2 represent

ω0 = Pr{Û∗N(a) > 0}+ Pr{V̄ −1
11.2(āā)ÛN(ā) ≤ 0}

= 1 + Pr{ε = (ε1, ε2) ≤ 0 : ε ∼ N(0, v11.2(āā))}

ω2 = Pr{ε = (ε1, ε2) ≤ 0 : ε ∼ N(0, v11.2(a))}+ 1.

The P-value with t = 7.252 and the weights ωk, k = 0, 1, 2 is

P− value = 1− {P (χ2
0 ≤ t) ∗ ω0 + P (χ2

1 ≤ t) ∗ ω1 + P (χ2
1 ≤ t) ∗ ω2 + P (χ2

2 ≤ t) ∗ ω3}

= 0.0062,

where P (χ2
0 ≤ t) = 1.
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7.0 CONCLUSION

The main objective of the proposed method is to achieve global identification of model

parameters in the latent class models for modeling discrete diagnostic tests without a gold

standard. The global identification becomes possible when there is a known trend between

the underlying truth and the risk of an event of interest. In addition, the proposed joint

modeling approach enables us to utilize all ratings from multiple independent ratings to

provide an accurate assessment of the association between the unknown true status and the

time to event of interest. In our motivating example, the true tumor grade for patients

was inaccessible due to the subjective nature of the tumor grading system. The critical

assumption of conditional independence among multiple ratings is more likely to be true

because the three pathologists evaluated patients’ tumor grade independently and none of

them was aware of any clinical information related to the tissue samples. The result from

the Pearson chi-square goodness-of-fit test also concurs with its p-value larger than 0.05.

In some other circumstances, however, the conditional independence assumption may be

violated. Under the violation of conditional independence, the estimates from a misspecified

model will be biased as discussed in Section 2.1.4 [29, 32]. In addition to achieving global

identification, the proposed method produces more efficient estimates compared to the Cox

proportional hazards model that only includes the ratings from a single rater. The reason is

that the proposed joint model incorporates all accessible ratings from multiple raters on the

same subject.

Due to the absence of closed-form of solutions for the Cox model parameters, some

joint modeling approaches use a one-step Newton-Raphson algorithm to update estimates

in M-steps [15, 16, 30, 31]. For the proposed joint model, we employed the Newton-Raphson

algorithm in the M-steps to update the Cox model parameters. We found that the Newton-
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Raphson algorithm in the M-steps is equivalent to running a survey-weighted Cox model with

some pseudo observations and weights created accordingly. However, the current R package

survey may not converge well with extreme values in the sets of weights. Biases in some

parameter estimates shown in the simulation studies may be because of convergence in using

the R package survey or potential programming errors. We will work on comparing results

with a one-step Newton-Raphson method to these with the survey-weighted Cox model to

check whether the degree of biases can be reduced.

For testing the existence of a monotone association between the unknown true status and

the risk of an event, we modified the application of the Union-Intersection principle for the

Cox proportional hazards model as proposed by Sen [25]. Since the proposed joint model has

the high dimensional nuisance parameters, we used the profile likelihood function instead of

the partial likelihood function for the Cox proportional hazards model. We construct the

test statistic of the Union-Intersection principle based on the corresponding profile likeli-

hood score functions and their asymptotic variance-covariance matrix. Application of the

Union-Intersection principle achieves more statistical power than the likelihood-based testing

without considering the order restriction. In the future, we will perform additional simula-

tion studies for evaluating statistical properties of the order restricted hypothesis testing for

the proposed joint model regarding its statistical power.

In clinical studies, our proposed joint model can be widely applied to handle the issue

of local identifiability to evaluate the accuracy of a diagnostic test without a gold standard.

Also, the proposed method is useful to improve the precision of clinical decision making

when diagnostic test results are predictive of a risk of disease recurrence and so patients can

get more appropriate treatment consequently.
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diagnostic in the latent class model: A simulation study. Statistics & Probability Letters
82, 7 (2012), 1407–1412.

[30] Theissig, F., Kunze, K., Haroske, G., and Meyer, W. Histological grading
of breast cancer: interobserver, reproducibility and prognostic significance. Pathology-
Research and Practice 186, 6 (1990), 732–736.

[31] Tsiatis, A., Degruttola, V., and Wulfsohn, M. Modeling the relationship
of survival to longitudinal data measured with error. applications to survival and cd4
counts in patients with aids. Journal of the American Statistical Association 90, 429
(1995), 27–37.

[32] Vacek, P. M. The effect of conditional dependence on the evaluation of diagnostic
tests. Biometrics 17 (1985), 959–968.

[33] Von Davier, M. Bootstrapping goodness-of-fit statistics for sparse categorical data:
Results of a monte carlo study. Methods of Psychological Research Online 2, 2 (1997),
29–48.

[34] Walter, S., and Irwig, L. Estimation of test error rates, disease prevalence and
relative risk from misclassified data: a review. Journal of clinical epidemiology 41, 9
(1988), 923–937.

[35] Wulfsohn, M., and Tsiatis, A. A joint model for survival and longitudinal data
measured with error. Biometrics 53 (1997), 330–339.

[36] Xu, J., and Zeger, S. Joint analysis of longitudinal data comprising repeated mea-
sures and times to events. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 50, 3 (2001), 375–387.

64


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. The scoring in the modified Bloom-Richardson grading system
	2. The modified Bloom-Richardson grading system: Tumor grade 
	3. Independent tumor grade readings from three pathologists in the NSABP B-14 trial.
	4. Estimated prevalences and classification rates from the method in Dawid and Skene (1974)
	5. Weights for the mixture distribution for the UI-test statistic 
	6. Simulation setup: Classification rates for simulation studies 
	7. Simulation results with (, 1,2) = (0.3, 0.5, 2.0).
	8. Estimated prevalences and classification rates from the proposed joint model
	9. Parameter estimates and standard errors of Cox parameter estimates from the joint model.
	10. The conditions for calculating the U-I test statistic for the NSABP B-14 data.
	11. Estimated weights for the mixture distribution for the U-I test statistic

	1.0 INTRODUCTION
	2.0 LITERATURE REVIEW
	2.1 Existing Methods for analysis of data on diagnostic tests without a gold standard
	2.1.1 A latent class model for discrete diagnostic tests without a gold standard
	2.1.2 EM algorithm for the latent class model (2.1)
	2.1.3 Local identifiability
	2.1.4 Conditional independence in latent class models

	2.2 Joint modeling of time-to-event outcome and covariates with measurement errors
	2.3 Survey-Weighted Cox models

	3.0 PROPOSED JOINT ANALYSIS OF TIME-TO-EVENT DATA AND DISCRETE DIAGNOSTIC TESTS WITHOUT A GOLD STANDARD
	3.1 A new joint modeling approach
	3.2 An EM algorithm for parameter estimation
	3.2.1 E-step
	3.2.2 M-step

	3.3 Variance Estimation from the profile likelihood

	4.0 STATISTICAL TESTING WITH ORDER RESTRICTED HYPOTHESIS
	4.1 Likelihood-base approaches
	4.1.1 General two-sided alternative: H0: bold0mu mumu =bold0mu mumu 0 vs. H1: bold0mu mumu  =bold0mu mumu 0
	4.1.2 Constrained one-sided alternative: H0: bold0mu mumu =0 vs. H1: bold0mu mumu  C

	4.2 The Union-Intersection Principle for Cox proportional hazards models
	4.3 The Union-Intersection Principle for the proposed joint model

	5.0 SIMULATION STUDIES
	6.0 APPLICATION: ANALYSIS OF DATA FROM THE NSABP B-14 DATA
	7.0 CONCLUSION
	BIBLIOGRAPHY

