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NADPH oxidases (Noxes) represent a family of enzymes who produce reactive oxygen species.  

Excessive Nox activity is associated with multiple pathological conditions, including 

hypertension.  Despite Nox1’s association with morbidity, there is a paucity of specific Nox1 

inhibitors.  The overarching hypothesis of this project was that Nox1 promotes endothelial 

phenotypes contributing to pulmonary hypertension and associated cardiac dysfunction.  

Pharmacological Nox1 inhibition testing this hypothesis was performed via designing the first 

specific peptidic Nox1 inhibitor (NoxA1ds).  Our results show that Nox1 is key to endothelial 

O2·- and VEGF-stimulated migration and that Nox1 contributes to left ventricle cardiac 

dysfunction. 

Functional Nox1 is activated in part by association of Nox1 with one of its essential 

cytosolic subunits NOXA1.  NoxA1ds was designed to mimic a putative activation domain in 

NOXA1 with a single F199A amino acid mutation.  NoxA1ds specifically inhibited Nox1 but 

not Nox2, Nox4, Nox5 in reconstituted cell-free systems.  Mechanistically, we found that 

NoxA1ds binds to Nox1 and disrupts Nox1:NOXA1 association and thus enzyme assembly. 

To identify the relative roles of Nox1 and Nox2 in human pulmonary artery endothelial 

cell (HPAEC) physiology, the relative specificity of Nox2ds for Nox2 vs Nox1 required 

validation.  In part, this thesis established Nox2ds as specific for Nox2 over canonical, hybrid, or 
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inducible Nox1 and Nox4.  NoxA1ds and Nox2ds were then used to establish that Nox1, but not 

Nox2, is responsible for hypoxia-induced O2·- in HPAEC and VEGF-stimulated HPAEC 

migration.  Additional data revealed that VEGF stimulates Nox1:NOXA1 association and 

identified fibroblasts as a source for hypoxic VEGF production. 

The role of Nox1 in HPAEC O2
- and migration suggested that Nox1 may contribute to of 

the development of pulmonary arterial hypertension.  Treatment of pulmonary hypertensive rats 

with aerosolized NoxA1ds improved left ventricular dilation but displayed minimal benefit in the 

right ventricle, indicating Nox1 may play a predominant role in the systemic vs pulmonary 

vasculature. 

Major contributions of this study include the design and characterization a novel Nox1 

inhibitor (NoxA1ds), the identification of pulmonary endothelial phenotypes mediated by Nox1 

rather than Nox2, and that the contribution of Nox1 to left ventricular dilation in the context of 

severe PAH. 
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1.0  INTRODUCTION 

 

 

1.1 ROLES OF ROS/RNS IN CELLULAR BIOLOGY 

 

1.1.1 Distinctions between individual ROS/RNS 

The family of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an 

amalgamated collection of numerous distinct molecules that are differentiated by their atomic 

composition, charge state, and free vs. paired electron status.  The majority of ROS and RNS 

share the primary atomic components of oxygen, nitrogen, and hydrogen and as such, the 

number and types of ROS/RNS family members is limited only by natural physical and chemical 

laws.  Despite the great variety of potential ROS/RNS, selected species bear particular 

significance in biology.  Particularly significant ROS/RNS in biological systems include 

hydrogen peroxide (H2O2), hydroxyl radical (OH·), superoxide anion (O2·-), nitric oxide (NO·), 

and peroxynitrite (ONOO-) (Table 1).  These molecules are derived from enzymatic processes as 

well as redox reactions among ROS/RNS and other organic/inorganic molecules such as lipids, 

proteins and iron.  The presence of charged moieties and free electrons on many of these species 

contribute greatly to their dynamic reactions, half-lives, and physiological signaling 

consequences. 

 

1.1.2 Physiological ROS/RNS Dynamics 

Cellular sources and inorganic catalysts of O2·- include NADPH oxidases (Noxes), uncoupled 

endothelial nitric oxide synthase (eNOS), free iron, and xanthine oxidoreductase (XO) [1-3].  To 
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mitigate the inherent reactivity of O2·-, most mammalian cells abundantly express superoxide 

dismutase (SOD).  The conversion of O2·- to H2O2 by copper/zinc superoxide dismutase (Cu,Zn-

SOD) is an extremely fast reaction occurring with a rate constant of 6.4 x 109 M-1s-1 [4].  Less 

efficient Mn-SOD or Fe-SOD catalyze this reaction at approximately 6.4 x 108 M-1s-1 [4].  The 

speed of these reactions is necessary to protect the cell from the damaging reactions of O2·- with 

cellular enzymes, in particular, aconitase. Aconitase is a critical enzyme in the Krebs cycle for 

the conversion of citrate to isocitrate and its iron-sulfur core is rapidly oxidized and inactivated 

by O2·- at a reaction rate constant of 107 M-1s-1, only marginally slower than the reaction rate of 

SOD, further emphasizing the importance of antioxidant enzymes for cellular protection [5].  

The reactive ability of O2·- extends to its potential to oxidize enzymatic cofactors, such as 

tetrahydrobiopterin, an essential cofactor of eNOS activation [6-8].  This reaction is also very 

rapid occurring at 3.9 x 105 M−1s−1 and is a significant cause of eNOS uncoupling leading to 

increased O2
- production [8, 9].  Beyond its ability to inactivate enzymatic cofactors, O2·- is 

capable of reacting with thiols at reaction rate constants ranging from 1.0 – 5.0 x 105 M−1s−1, 

depending on thiol availability [10]. 

Species Name Biological Sources 

H2O2 Hydrogen Peroxide Nox, XO, SOD  

OH· Hydroxyl Radical O2·-, Fenton Reaction 

O2·- Superoxide Nox, XO, eNOS, free iron 

NO· Nitric Oxide 
NOS, Nitrite reductases incl. 
myoglobin and neuroglobin 
 

ONOO- Peroxynitrite O2·- interaction with NO· 

 

Table 1-1: Selected Biological ROS/RNS.  
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O2·- very potently reacts with most cysteine containing enzymes and/or enzymatic 

cofactors.  Through dismutation of O2·- to H2O2, the reactive properties and half-life of O2·- are 

significantly changed and provides an alternate route for H2O2-mediated protein modification 

and oxidation.  H2O2 is arguably the most stable of the reactive oxygen species, with its half-life 

extending for days in solutions at room temperature [11].  Like O2·-, H2O2 is capable of oxidizing 

cysteines and thus modifying protein function [12].  Kinetically, the oxidation reaction of H2O2 

with cysteine occurs slowly at 720 M-1s-1, allowing H2O2 to diffuse away from its source and 

expanding its potential cellular targets [13].  The relatively low reaction rate constant of H2O2 

with cysteine and its long half-life indicate that this molecule is capable of diffusing throughout 

and beyond the cell.  This diffusion of H2O2 is limited, however, by the prevalence and 

distribution of catalase.  Catalase is by far most significant negative contributor to the half-life of 

H2O2 by catalyzing the formation of oxygen and water from H2O2 at a rate constant of 6.62 x 107 

M-1s-1.  Catalase is ubiquitously expressed in most mammalian cells and is responsible for 

controlling diffusion of H2O2 beyond its intended target [14, 15].  In addition to catalase, a wide 

variety of cellular peroxidases participate in the metabolism of H2O2.  Peroxidases utilize the 

oxidative capacity of H2O2 to perform a two-step reaction, first oxidizing themselves (reaction I), 

before transferring the oxidant to a target protein or porphyrin (reaction II) [16].  Physiologically 

relevant oxidation targets of peroxidases include pyridine nucleotides [16].  Peroxidase reaction I 

is often the rate limiting step of peroxidase activity, and depending on the class of peroxidase, 

target species, the kinetics of reaction I can be as slow as 5.4 x 105 M-1s-1 (lignin peroxidase) or 

as fast as 8.0 x 107 M-1s-1 (ascorbate peroxidase) [16, 17].  These kinetics are remarkably stable 

over wide pH ranges with horseradish peroxidase retaining its reaction rate constant of 1.8 x 107 

M-1s-1 from pH 5-9 [17].  Together, SOD, catalase, and peroxidases perform the majority of 
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cellular ROS catabolism and in doing so, protect the cell from the damaging effects of 

dysregulated ROS and maintain targeted ROS activity for physiological signaling. 

Perhaps the most widely studied RNS is nitric oxide (NO), which is a ubiquitous 

biological signaling molecule primarily produced by nitric oxide synthase (NOS) and nitrite 

reductases.  While NO confers many physiological effects, it is best known for its vasodilatory 

properties [18-20].  A single unpaired electron on NO dictates which molecules it can favorably 

react with, these are typically either other free radicals or metals such as heme iron [21].  The 

stability of NO and its ability to freely diffuse across and also utilize aquaporin channels allows 

it to serve as a paracrine signaling factor between endothelial and smooth muscle cells, lending it 

extraordinary control of vasodilation by causing smooth muscle relaxation [18, 19, 22].  The 

half-life of physiological NO in aqueous solution is quite high with a half-life of about 5 min in 

solution [21].  In the cellular environment, this is greatly reduced to less than 1 minute, which 

can be doubled by the addition of SOD [18].  Indeed, the reaction between NO and O2·- to form 

ONOO- is diffusion-limited and thus very rapid.  Hence, SOD leads to an increase in the half-life 

of NO by preventing this reaction [23].  The reaction of NO and O2·- to form ONOO- occurs at 

6.7 x 109 M-1s-1[24].  This extremely fast reaction closely competes with SOD for O2·- radicals.  

In turn, ONOO- is stable for days in alkaline solutions [25].  In biological systems, only 20% of 

ONOO- will be protonated and subsequently degraded to nitrate with the remainder remaining 

capable of oxidizing cellular components, with a relatively short half-life of 1 second [25].  

Biological protection from ONOO-  appears to be achieved through the scavenging properties of 

uric acid [26]. 

The vasoprotective functions of NO are in stark contrast to the ability of ONOO- to 

damage the endothelium leading to cardiovascular disease [27].  ONOO—mediated damage to 



 5 

proteins is often observed as a consequence of the nitration of tyrosines, although ONOO- 

oxidation can occur on iron, sulfur, or zinc complexes as well as cysteine residues [21, 28].  

ONOO- reaction rate constants differ widely based on the target and can proceed as slowly as 103 

M–1s–1 or as rapidly as 107 M–1s–1 [3, 29, 30].  Beyond its direct effect on cellular components, 

protonation of ONOO- leads to formation of OH· radicals that are capable of reacting with most 

organic molecules, including nucleic and amino acids [27].  Reactions between OH· and most 

organic molecules are fairly rapid on the order of 108 to 109 M–1s–1 [31].  The speed of this 

reaction and the plethora of potential targets makes it extremely difficult to specifically scavenge 

OH·, and thus most efforts focus on preventing formation of its precursors.   

To further appreciate the intricate relationship of interacting ROS/RNS species and thus 

protect cells from their detrimental effects, recent efforts have been focused on defining the exact 

mechanisms through which ONOO- and other ROS modify proteins.  One mechanism that is 

potentially translatable across a wide range of proteins involves the targeting of heme 

coordination sites by ONOO-.  Indeed, while all tyrosines are susceptible to nitration by ONOO-, 

tyrosines proximal to hexameric heme coordination sites are particularly important in protein 

function.  When these tyrosines become nitrated, the integrity of heme coordination is greatly 

reduced and can cause deactivation of catalytic sites [32].  Through this mechanism and others 

yet to be delineated, tyrosine nitration by ONOO- can inactivate, activate, or engender new 

functions for proteins including SOD, cytochrome c, fibrinogen, and HSP90 [32-35]. 

While many unknowns remain in ROS/RNS signaling, consistent and sustained effort has 

helped to determine functional roles for biologically relevant ROS/RNS including OH·, O2·-, 

NO·, ONOO-, and H2O2.  Each of these molecules is capable of modifying protein function 

through the modification of cysteines, tyrosines, or enzymatic cofactors among others, albeit at 
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significantly different rates.  Negative regulators of ROS-mediated protein modification and 

protective cellular enzymes include SOD and catalase.  SOD converts O2
·- to less reactive H2O2 

and in turn, catalase converts H2O2 to water.  These reactions occur at very high rates of 6.4 x 

109 M-1s-1 and 6.62 x 107 M-1s-1, respectively.  Despite its very high reaction rate constant, SOD 

is incapable of completely preventing the formation of ONOO- from NO· and O2·- (rate = 6.7 x 

109 M-1s-1).  These reaction rate constants are so similar that a close competition for the fate of 

cellular O2
-, H2O2, and NO· exists.  The outcome of this competition largely depends on the 

concentrations and availability of each individual species, target availability, and antioxidant 

scavenging enzymes.  The reactivity of these agents alone does not determine their influence in 

vitro or in vivo as different cell types and different stimuli can result in very different ROS 

profiles, in part as a result of different protein expression (e.g. SOD, catalase), subcellular 

localization, and available protein targets. 

 

 

1.2 NADPH OXIDASE-DERIVED ROS IN THE VASCULATURE 

 

1.2.1 NADPH Oxidase, Roles in Physiology 

NADPH oxidases (Noxes) are a family of proteins taxonomically characterized by their ability to 

harvest electrons from NADPH and transfer these to O2, producing ROS such as O2
·- and H2O2.  

The Nox family includes the proteins Nox1, Nox2, Nox3, Nox4 Nox5 and the Dual Oxidases 1 

and 2 (Duox1 and Duox2).  Noxes 1, 2, 3 & 5 produce O2
·-, while Nox4 and the Duoxes 

reportedly produce H2O2 [36].  Somewhat of a misnomer, Nox2 was the first member of this 

family to be discovered and historically, has been referred to as the phagocyte oxidase for its role 
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in bactericidal activity of the neutrophil and other leukocytes [37-39].  Tissue expression of the 

Nox family is as diverse as their lineage, with predominant expression of Nox1 in colon 

epithelium, uterus, vascular smooth muscle and vascular endothelium; predominant expression 

of Nox2 in neutrophils, macrophages, endothelial cells, neurons, and fibroblasts [40-48].  Nox3 

seems to be localized primarily to the inner ear, while Nox4 is ubiquitously expressed throughout 

the vasculature, with additional significant expression in in the kidney [48-52].  Nox5 is largely 

observed in vascular smooth muscle cells, but is also expressed in the endothelium, of higher 

mammals while the Duoxes are best known for their expression in the pulmonary epithelium [45, 

53-56] (Table 2).  

Beyond their differences in tissue expression, the Nox isoforms have distinct subcellular 

localization, with Nox expression being differentially expressed in an isoform-dependent manner 

in the plasma membrane, endosomes, phagosomes, and the endoplasmic reticulum (Table 2).  

These distinct subcellular locales are purported to be inextricably tied to the signal transduction 

consequences of the enzyme for two reasons: a) the reactive nature of the ROS produced and 

thus its radius of diffusion limits specific protein targeting and b) rapid scavenging by SOD and 

catalase prevents distal diffusion of ROS-mediated signal transduction, particularly in the case of 

O2
·- and moderately less so for H2O2.  While physiologically important for normal cardiovascular 

homeostasis and immune function, under pathological conditions excessive stimulation of Noxes 

often leads to hyperproliferative and migratory phenotypes as well as oxidative stress, often 

resulting in end-organ damage [57, 58].  Increasingly the role of individual Nox isoforms are 

being appreciated as playing highly-localized, specific, and temporal roles in disease 

progression.  Broad and nonspecific antioxidant actions of ROS scavengers (i.e., vitamin 

antioxidants and antioxidant enzymes) cannot manipulate cellular signaling in the specific and 
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temporal manner necessary to elicit subtle changes in cell physiology and pathophysiology. 

Thus, while ROS scavengers/antioxidants are extremely valuable as controls and confirmatory 

tools, their utility is superseded by the need for highly-selective inhibitors of Nox-derived ROS 

production.  Importantly, Noxes are increasingly being appreciated as key players in 

cardiovascular physiology through suppression of NO bioavailability, and induction of cell 

proliferation and vessel tone, for example, despite their long-emphasized major importance   in 

the phagocytic oxidative burst. 

1.2.2 Anatomy and Physiology of the Cardiovascular System 

An essential component of vertebrate physiology is the cardiovascular system, which serves to 

provide oxygen and nutrients to tissue beds while removing waste for excretion by the kidneys.  

Mammalian hearts are divided into four chambers: the left atrium, left ventricle, right atrium, and 

right ventricle.  Together, these chambers are the pump that drives the circulation of blood 

throughout the body.  After tissue perfusion and oxygen depletion, blood returns to the right side 

of the heart via the superior vena cava where blood is sent via the pulmonary artery for 

oxygenation in the lungs.  Via the left and right pulmonary veins, the left side of the heart 

receives oxygenated blood from the lungs and distributes it through the body (Figure 1-1) [59, 

60].  Control of heart beats/contractions is achieved through sympathetic and parasympathetic 

innervation and it is through the sympathetic innervation which synchronous contraction of the 

left and right ventricles, or systole, is stimulated [60, 61].  Systolic contractions force ejection of 

the blood through the vasculature and is immediately followed by diastole, the relaxation of the 

heart muscle allowing its chambers to refill [60-62]. 

The progress of blood flow can be described by starting at the filling of the left atrium 

with blood draining from the pulmonary veins.  In turn, contractions of the left atrium fill the 
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relaxed left ventricle (LV).  The LV is the largest component of the heart and pumps oxygenated 

blood into the aorta, which branches distally to smaller conduit vessels and sequentially smaller 

and thinner arteries greater diffusion of oxygen from the vessels to organ systems occurs, with 

the greatest diffusion occurring between the smallest of vessels or capillaries.  After oxygen 

diffusion, the blood returns to the heart via the vena cava as “venous return” and is drained by 

the right atrium which, during systole, fills the diastolic right ventricle (RV).  Contraction of the 

RV sends blood through the pulmonary artery for oxygenation in the lungs before blood is and 

then transferred back to the left atrium and LV for subsequent distribution through the body [60, 

63].   

 

Figure 1-1: Blood flow and anatomy of the heart 

Image from U.S. National Library of Medicine, no copyright restriction. 
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The cycle of blood flow through the heart through systolic contractions and diastolic 

relaxations causes substantial changes in pressures and volumes within the heart.  Hemodynamic 

analysis of these pressures and volumes provides great detail concerning the function of each 

component of the heart and is best measured by pressure-volume conductance catheters and the 

resultant pressure-volume loops (PV loops) (Figure 1-1) [64].  Critical measures of ventricular 

function determined by PV loop analysis are the End Systole Pressure Volume Relationship 

(ESPVR) and the End Diastole Pressure Volume Relationship (EDPVR). ESPVR describes the 

maximal pressure that can be achieved at any given volume and is critical in determining 

ventricular contractility [65-67].  In turn, EDPVR describes the maximal volume that can be 

achieved at any given pressure and is a function of ventricular compliance [67-69] (Figure 1-2).  

Determining ESPVR/EDPVR by PV loop analysis offers the benefit of being a highly sensitive 

and load-independent technique for measuring cardiac states and is a key measure of cardiac 

function under any condition [70].  Deviation of either ESPVR or EDPVR from their initial slope 

values can indicate any one of a number of cardiomyopathies depending on the direction of the 

shift.  For example, a decrease in the slope of EDPVR indicates a more compliant heart that fills 

more readily while an increase in ESPVR indicates a more contractile heart or one that is 

working against abnormally high pressures to move blood [68, 71].  

Larger blood vessels that carry blood throughout the body are composed of three distinct 

layers and cell types: the innermost intima (endothelial cells), the central media (smooth muscle 

cells), and the outermost adventitia (fibroblasts, Figure 1-2) [72].  In the smallest of vessels 

including resistance vessels and capillaries, the smooth muscle cells and fibroblasts are replaced 

by pericytes [73]. The intima surrounds the interior of the vessel, the lumen, which contains the 

flowing blood, including plasma, erythrocytes, and leukocytes.  Conduit arteries, which carry 
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blood away from the heart, maintain a significantly thicker media than veins returning blood to 

the heart with multiple layers of smooth muscle cells. As one progresses down the vascular tree, 

anywhere between 1 through 7 layer(s) of smooth muscle cells are found, with vessels of a larger 

diameter having more smooth muscle while the most distal arteries, veins, and capillaries have 

lesser to no virtually smooth muscle [60].  Functionally, the adventitia appears to preserve 

vascular tone, at least in part, through its production of O2
·- and the subsequent destruction of NO 

while structurally supporting the vessel via production of matrix proteins including collagen [74-

76].  The smooth muscle cells of the media provide the main contractile force that determines 

vessel diameter and consequent vascular resistance [77].  The innermost endothelial cells lining 

the vessel lumen counteract the contractile force of the media through primarily the production 

of NO and subsequent sGC activation in larger vessels as well as eicosanoids, H2O2, and 

adenosine in smaller vessels [18, 78-81]. 

 

Figure 1-2: Schematic of an ideal PV loop.  

The PV-loop is divided into two halves, systole and diastole with contraction and ejection occurring 

during systole and relaxation and filling occurring during diastole. 
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Figure 1-3: Relationship of ESPVR and EDPVR to an ideal series of PV loops. 

End Systole Pressure Volume Relationship (ESPVR) indicates the maximum pressure that can be attained 

at any given volume while End Diastole Pressure Volume Relationship (EDPVR) indicates the maximum 

volume that can be attained at any given pressure.  ESPVR and EDPVR are calculated though occlusion 

of the vena cava and reducing ventricular volume, leading to sequential PV loops shown.  Calculation of 

ESPVR and EDPVR through this method contributes to the load independence of this cardiac measure.  

 

Angiogenesis, the growth of new blood vessels, is a tightly-controlled vascular process 

that functions to extend the circulatory system to hypoxic growing and damaged tissue beds that 

are unable to survive on interstitial fluid alone [82].  Angiogenic signaling is driven primarily by 

oxygen gradients and is stimulated by multiple key proteins, including VEGF, HIF1α, and Noxes 

have emerged as important players in this process [82-85].  Originally described as a “vascular 

permeability factor” for its ability to rearrange endothelial cells and vascular superstructure in 

tumors, VEGF was later renamed as “vascular endothelial growth factor” when its mitogenic 

properties were being revealed [84, 86-89]. As an extremely potent stimulator of mitogenesis, 

endothelial migration, and angiogenic sprouting by vessels, VEGF is also a major contributor to 
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malignant tumor growth through its potentiation of angiogenesis [84, 88, 90].  Hypoxia inducible 

factor 1α (HIF1α) is the master regulator of oxygen sensitive angiogenic gene transcription, 

including the transcript for VEGF and potentially the transcripts for Noxes [85, 91].  HIF1α 

activity is tightly controlled by endogenous prolyl hydroxlases that target HIF1α for rapid 

proteolytic degradation through post-translational modification [92, 93].  However, under 

conditions of low oxygen, prolyl hydroxlases are inhibited, allowing HIF to remain active in the 

cell, leading to transcription of genes with HIF1α-responsive elements, including VEGF and Nox 

[85, 94].  Noxes are established contributors to angiogenic signaling, in part through oxidative 

activation of matrix metalloproteases that permit angiogenic remodeling through degradation of 

extracellular matrix proteins [95-97].  Nox1, Nox2, and Nox4 have each been identified as 

contributors to angiogenesis, with some evidence indicating that Nox1 may be more influential 

in angiogenic signaling [98, 99].  The important role of Nox1 in angiogenesis is likely not only 

due to potential ROS-mediated activation of metalloproteases, but also its potentiation of VEGF 

transcription [83, 95, 100].  This has generated some interest as to whether Nox inhibition may 

be a potential treatment for diseases mediated by angiogenic signaling and vessel remodeling, 

including cancer and pulmonary arterial hypertension. 

1.2.3 Structure and Regulation of Vascular Nox Isoforms 

Beyond their role in preventing bacterial pathogenesis, Nox1 and Nox2 are significant 

contributors to vascular cell proliferation and invasion [98, 100-106].  Tissue expression data and 

knockout mice have identified Nox1, Nox2, Nox4, and Nox5 as the most prominent Noxes in 

vascular physiology [46, 107-109].  These Noxes play key roles in vascular physiology in part 

through the destruction of NO via Nox-derived O2
·- and subsequent generation of ONOO-.  

While critical for normal vascular homeostasis, when this pathway is dysregulated, Nox1 and 
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Nox2 contribute to left heart failure, atherosclerosis and hypertension [101, 110-112]; and 

whereas the link between enhanced Nox1 & 2 activity and systemic vascular disease in 

experimental models is well established, less clear is the link between Nox4 and cardiovascular 

disease progression.  Rather, significant controversy surrounds Nox4 as to whether this enzyme 

plays a protective or destructive role in cardiovascular disease [99, 113].  Nox5’s role in the 

vasculature is less well defined, largely due to the lack of murine Nox5 expression and resulting 

lack of appropriate animal models and genetic tools to investigate cardiovascular disease.               

However, it is presumed that Nox5 potentiates similar signaling pathways as Nox1 through the 

production of O2
·- [109, 114].  Additionally, the role of Nox1 and Nox2 in pulmonary vascular 

disorders is largely unknown. 

As evidence has grown defining the role of Noxes in cardiovascular health and disease, 

Nox biochemistry has emerged as an area of great interest.  Structurally, the cardiovascular 

Noxes1-5 bear significant differences in their amino acid sequence and assembly.  Functional 

Nox1 and Nox2 oxidases are the most homologous vascular Noxes and, when structurally 

complete, are a multimeric protein complex consisting of a transmembrane catalytic core (either 

Nox1 or Nox2), a cytoplasmic GTPase (Rac1), a cytoplasmic organizing subunit (NOXO1 

organizing Nox1; p47phox organizing Nox1 and 2), a cytoplasmic activating subunit (NOXA1 

activating Nox1; p67phox activating Nox2) and the transmembrane stabilizing protein p22phox 

[115-123]. 

The cytoplasmic subunits NOXO1, p47phox, NOXA1, and p67phox are critically important 

components of Nox activation in vitro and in vivo.  Indeed, mutations in cytoplasmic Nox 

subunits can manifest as chronic granulomatous disease in humans, a condition of insufficient 

microbial clearance by the macrophage [124]. Through catalyzing enzyme assembly NOXO1 
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and p47phox serve as the organizing subunits of Nox1 and Nox2, respectively.  Although both 

proteins share significant homology, a major difference between the two is the presence of an 

auto-inhibitory domain in p47phox.  This domain prevents p47phox interaction with either Nox1 or 

Nox2 until p47phox is phosphorylated [125, 126].  NOXA1 and p67phox serve as the key canonical 

activating proteins for Nox1 and Nox2, respectively.  As testament to the key activating function 

of NOXA1/p67phox, in reconstituted cell-free assays containing prenylated p67phox, Nox2 can be 

activated independently of the organizing subunits p47phox/NOXO1, at least in an experimental 

setting [119].  Within p67phox exists a key activation domain extending through residues 190-210, 

that is critical for the successful transfer of electrons from NADPH to FAD in Nox2 [127, 128].  

While the homologue of p67phox’s activation domain in NOXA1 remains to be conclusively 

characterized as an activation domain, the significant homology between these two proteins, in 

particular residues 190-210, as well as their sensitivity to mutation, implies that residues 190-210 

in NOXA1 may serve as a domain with a similar function for Nox1 [129]. 

Recent reports have suggested that NOXO1 and p47phox are interchangeable organizers of 

either Nox1 or Nox2 while NOXA1 and p67phox are interchangeable activators of either Nox1 or 

Nox2 in smooth muscle cells [46].  It would appear that cellular expression levels of the different 

organizing and activating subunits NOXO1, NOXA1, p47phox, and p67phox is the greatest 

determinant in whether a “hybrid” Nox system where Nox1 is associated with Nox2 subunits 

p47phox and/or p67phox exists.  Hybrid Nox systems further complicate the expression profile and 

regulation of Noxes.  That is, with respect to Nox1 or 2 systems utilizing p47phox, these systems 

may be inducible through activation of protein kinase C-dependent p47phox phosphorylation and 

subsequent repression of its auto-inhibitory domain [125, 130].  The presence of hybrid Nox1 

and/or Nox2 systems complicates the use of pharmacological Nox inhibitors in that drugs 
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specifically targeting any Nox cytosolic organizing or activating component will potentially lack 

specificity against a single Nox oxidase complex, be they canonical or hybrid.  As such, any drug 

targeting cytosolic Nox proteins must be carefully evaluated for its specificity against Nox 

hybrid systems. 

In contrast to the multimeric protein organization of Nox1 and Nox2, Nox4 and Nox5 are 

simpler in nature.  It is now generally accepted that the fully-functional Nox4 oxidase is the 

aggregate of two polypeptide chains, the first being p22phox and the second being the Nox4 

catalytic core [52, 115, 131].  Even simpler yet is the single polypeptide transcript that 

constitutes the entire Nox5 oxidase [53].  However, the simplicity in constitution of Nox4 and 

Nox5 belies their more complex regulatory mechanisms, such as the stimulation of Nox4 by 

polymerase delta interaction protein 2, Poldip2 [132].  Separately, Nox5’s transcript bears two 

calcium binding EF hands which serve to activate enzyme activity in response to increasing 

intracellular calcium concentrations [54].  As endothelin receptors are known potentiators of 

calcium release, it is possible that Nox5 is indirectly activated by endothelin receptor signaling 

[133].  The independent expression and regulation of these Noxes can lead to dramatically 

different vascular phenotypes in a context-dependent manner, in part due to the different cellular 

and intracellular localization of the enzyme.  

1.2.4 Roles of Nox in Cardiovascular Physiology/Pathophysiology 

A number of studies have provided evidence supporting a major role for Nox1 and Nox2 in 

vascular homeostasis and pathophysiological ischemic injury and systemic hypertension [2, 9, 

75, 107, 134-136].  Multiple effectors of O2
·- are responsible for the downstream signaling of 

Noxes in blood flow and vascular tone, with two major culprits being a) the destruction of NO 

and b) uncoupling of eNOS through BH4 oxidation, with both resulting in a decreased soluble 
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guanylate cyclase activation and smooth muscle relaxation [8, 9, 23, 137].  Beyond prevention of 

smooth muscle relaxation and vasodilation, Nox1- and Nox2-derived O2
·- are established 

contributors to neointimal and medial proliferation/cell migration and subsequent vessel 

occlusion [138, 139].  Intimal/medial structural abnormalities of the microvasculature, i.e. small 

arteries, and resistance vessels, have been correlated with hypertension and support the current 

paradigm that the majority of pathophysiological changes in arterial walls in hypertension occur 

in small resistance vessels [140, 141].   

The role of Nox5 in the vasculature is presumed to be similar to that of Nox1 and Nox2, 

although substantially less is known about its function due to the Nox5 gene being absent in 

murine models.  The ensuing lack of appropriate animal models of Nox5 in cardiovascular 

disease and its relatively recent discovery in the human vasculature limit clear phenotypic 

connections between Nox5 and cardiovascular physiology, with the most detailed studies 

suggesting a correlation between Nox5 expression and myocardial infarction and more recent 

interest in its role in kidney glomerular filtration barrier damage as well as spermatozoa 

maturation and capacitation [109, 142-144].  Furthermore, evidence exists for Nox5’s role in 

carcinogenesis and its direct role in cell transformation and indirect potentiation of angiogenesis 

by increased ROS [109, 145, 146].  Pathophysiological effects of Nox-derived O2
·- effects on 

hypertension inherently extend from resistance vessels to the heart where increased resistance 

vessel afterload forces cardiac adaptation to maintain adequate tissue perfusion.  While multiple 

pathways contribute to cardiac compensation in response to afterload, one controversial 

pathways is a potentially protective role for Nox4 in myocardial damage by promoting 

compensatory cardiac hypertrophy, angiogenesis, and fibroblastmyofibroblast transformation 

[99, 113, 147].  In contrast, Nox2 appears to have a less controversial, deleterious role in cardiac 
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dysfunction, causing pathologic remodeling in response to myocardial infarction and 

chemotherapeutic agents [148, 149].  To date, most cardiac Nox research has been narrowly 

focused on the most highly-expressed cardiac Nox isoforms Nox2 and Nox4 and, as such, very 

little is known about Nox1 in cardiac tissue.   

Beyond their role in systemic hypertension and left heart failure largely established 

through genetic knockouts and knockdowns, Noxes have been also been identified as 

contributors to other systemic CVD, including atherosclerosis, ischemia reperfusion injury, 

aberrant vessel growth and diabetic vasculopathy [150-154].  Most simply put, Nox1 directly 

augments vascular tone via its downstream effects on actin-myosin coupling, thus contributing to 

hypertension [136].  Additionally, Nox1 also contributes to intimal occlusion, vessel remodeling, 

and neointimal hyperplasia throughout the systemic vasculature [2, 138, 155].  Mechanistically-

speaking, Nox1 contributes to neoplastic growth by uncoupling eNOS, increasing production of 

VEGF and the ROS produced by Nox1 are capable of activating matrix metalloproteases (MMP) 

[9, 83, 95, 100, 156].  By extension of these biochemical data, in vitro and in vivo data have 

shown Nox1 is an angiogenic factor [83, 98].  The contribution of Nox1 to neoplasia, 

angiogenesis, and eNOS uncoupling is strongly suggestive of a role for Nox1 in the development 

and progression of diseases linked to angiogenesis and vessel remodeling including cancer and 

pulmonary arterial hypertension.  Specific pharmacological inhibitors of individual Nox isoforms 

remain highly sought after for their potential utility in scientific investigation and therapeutic 

intervention in a variety of pathologies.  Furthermore, despite the well-established role of Noxes 

in systemic hypertension, little is known about Noxes in pulmonary hypertension. 
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Table 1-2: Cellular distribution of Nox expression.  

 Reprinted from FRBM, Vol. 51/7, Al Ghouleh et. al. “Oxidases and peroxidases in cardiovascular and 

lung disease: New concepts in reactive oxygen species signaling” pgs 1271-1288. ©2011. With 

permission from Elsevier, ref. [36]. 

Nox isoform Cellular distribution Subcellular localization Primary ROS Product 

Nox1 

Colon epithelium, vascular 
smooth muscle cells, 
endothelial cells, 
osteoclasts, reproductive 
organs 

Intracellular membranes 
close to ER, endosomes, 
signalosomes, caveolae 

Superoxide anion 

Nox2 

Neutrophils, macrophages, 
endothelial cells, vascular 
smooth muscle cells, 
fibroblasts, skeletal muscle 
cells, cardiomyocytes 

Plasma membrane, 
phagosomes, perinuclear Superoxide anion 

Nox3 
Inner ear (vestibular 
system, cochlea), skull, 
brain, fetal tissues 

Plasma membrane Superoxide anion 

Nox4 

Kidney, vascular smooth 
muscle cells, fibroblasts, 
hematopoietic stem cells, 
osteoclasts, neurons, 
endothelial cells 

Focal adhesions, ER, 
nucleus, mitochondria Hydrogen Peroxide 

Nox5 

Vascular smooth muscle 
cells, endothelial cells, 
bone marrow, lymph 
nodes, spleen, reproductive 
tissues, stomach, pancreas 

Plasma membrane, ER Superoxide anion 

Duox1/2 
Thyroid, airway epithelia, 
prostate, digestive system 
(Duox2) 

Apical membrane Hydrogen Peroxide 
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1.2.5 Existing Nox Inhibitors 

Current widely-used Nox inhibitors include a number of small molecules and peptides that 

exhibit either unknown or limited specificity for any particular Nox isoform.  The most widely 

used Nox inhibitors today include diphenyleneiodonium (DPI), GKT137831, apocynin, and 

Nox2ds-tat [2, 112, 130, 157-162].  Historically, DPI and apocynin have played major roles in 

implicating the contribution of Nox-derived ROS to cellular processes, yet they are both 

burdened by a complete lack of specificity for any Nox isoforms.  More specifically, while DPI 

is a highly efficacious Nox inhibitor, it also broadly inhibits all flavoproteins utilizing FAD as a 

cofactor including nitric oxide synthase and NADH dehydrogenase [157, 158, 163, 164].   In 

turn, apocynin is a pro-drug that inhibits Nox exclusively in cells expressing myeloperoxidase, 

those primarily being leukocytes [165]. When permeating cells other than leukocytes, apocynin 

is not converted into Nox-inhibiting apocynin dimers and could serve as a nonspecific 

antioxidant that scavenges H2O2 and HO∙ [165].  One of the very few compounds reported to be 

specific for Nox1 over Nox2 is ML171 [159].  While ML171 is reportedly an effective and 

specific Nox1 inhibitor, there is a complete lack of information concerning its mechanism of 

action and its binding target, thereby hindering its extension into pre-clinical trials.  It is also 

untested whether ML171 acts on Nox4, Nox5, or XO-derived ROS production.  The only Nox 

inhibitor to have reached clinical trials is GKT137831, a small molecule effective for Nox1/4 

inhibition [160].  GKT137831 has shown good oral bioavailability and is being investigated in 

diabetic nephropathy, although its inability to distinguish between Nox1 and Nox4 may 

potentially cause undesired side effects [166].  Nox2ds is a peptide derived from the intracellular 

B-loop of Nox2 (residues 86-103) that has demonstrated utility in ischemic retinopathy, cerebral 

microcirculation, and angiotensin II-stimulated ROS when conjugated to the cell penetrating 
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sequence [H]-R-K-K-R-R-Q-R-R-R-[NH2], also known as “tat” for its derivation from the 

human immunodeficiency virus 1 protein of the same name [151, 167-169].   Despite the wide 

utility of Nox2ds, its specificity among Nox isoforms had not been tested prior to a 

comprehensive study by Csanyi et al. [130] which includes studies performed by this candidate 

as part of his training in the Pagano laboratory.  This body of work, for which the candidate was 

a contributor, proved the specificity of Nox2ds for Nox2.  Most importantly, this thesis describes 

the design and mechanistic characterization of a specific Nox1 inhibitor with a validated target 

(NoxA1ds).  Further investigation revealed that Nox1 is the primary Nox responsible for 

pulmonary endothelial O2
·- production and VEGF-stimulated migration followed by in vivo 

investigation of the therapeutic benefit of Nox1 inhibition in PAH.  

 
Figure 1-4 Structures of Existing Nox1 Inhibitors 



 22 

 

Figure 1-5: Tissue, cellular, and intracellular distribution of vascular Nox isoforms. 

A) Schematic diagram showing cellular localization (endothelial cells, vascular smooth muscle cells, 

fibroblasts, macrophages and T cells) of NADPH oxidase isoforms (NOX1 oxidase, NOX2 oxidase, 

NOX4 oxidase and NOX5 oxidase) through a cross-section of an artery. B) Schematic diagram of a 

hypothetical cell in which all of the vascular NADPH oxidase isoforms (starting with NOX1 oxidase in 

the left hand column and finishing with NOX5 oxidase in the right hand column) are expressed in each of 

their possible subcellular locations. H2O2, hydrogen peroxide; NOXA1, NADPH oxidase activator 1; O2
•−, 

superoxide; p22, p22phox; p40, p40phox; p47, p47phox; p67, p67phox; POLDIP2, polymerase δ-interacting 

protein 2. 

 

Reprinted by permission from Macmillan Publishers Ltd: [Nature Reviews Drug Discovery] Ref [72]. 
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1.3 PULMONARY ARTERIAL HYPERTENSION 

 

1.3.1 Pathophysiology of Pulmonary Arterial Hypertension 

Pulmonary arterial hypertension (PAH) is a debilitating disease with high mortality characterized 

by a mean pulmonary artery pressure (mPAP) greater than 25 mmHg.  Diagnosis of PAH 

through right heart catheterization is often performed after by exclusion of other diseases with 

similar symptoms, these symptoms including chest pain and a shortness of breath.  Idiopathic 

PAH comprises nearly half of all cases of PAH, yet its cause is completely unknown and this 

progressive disease has no cure [170].  More common is the reversible, altitude-associated PAH.  

At high altitudes (>3500 meters), lung vasculature of healthy individuals compensates for 

reduced atmospheric oxygen through pulmonary vasoconstriction.   This, in turn causes elevation 

of pulmonary artery pressures leading to clinical pulmonary hypertension which is ameliorated 

upon return to lower altitudes [171].  Epidemiological data from individuals with altitude-

associated PAH and data indicating severe hypoxia in patients with idiopathic PAH are highly 

supportive of the paradigm that hypoxia plays a critical role in the pathogenesis of PAH [170, 

171].  

While hypoxia is a critical factor in the development of PAH, other factors including 

reduced NO bioavailability and vascular remodeling/occlusion contribute to the pathogenesis of 

PAH.  Through abnormal proliferation of the intima, media and adventitia within the pulmonary 

vasculature; pathophysiological vessel remodeling occurs and plexiform lesions (PXLs) arise 

[170, 172]. The presence of angiogenic markers in PXLs indicates that these lesions may be the 

result of angiogenic signaling processes stimulated by hypoxia.  Similarly, observational studies 

of clinical patients with PAH reveal that remodeling in pulmonary vessels is largely initiated by 
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endothelial cells and that proximal to the PXL, vessels exhibit an increase in intimal thickness 

[172-174].  Circumstantial evidence supporting the hypothesis that hypoxic angiogenic signaling 

contributes to PXL formation in PAH also is observed in the similarities between PXL histology 

and glomeruloid lesions in glioblastoma multiforme, a malignant cancer with particularly strong 

angiogenic signaling [172, 175].  The combination of proximal intimal remodeling and the 

redirection of blood flow around the PXLs are major contributors to a steady increase in 

pulmonary vascular resistance (PVR), RV ESPVR, and attendant pressure overload in the right 

ventricle.   

1.3.2 Cellular Signaling Pathways Contributing to Pulmonary Arterial Hypertension 

As evidenced by multiple in vitro and in vivo studies, hypoxia contributes to pulmonary vascular 

ROS production (via Nox and mitochondria), cell proliferation (through HIF1α), and pulmonary 

vessel remodeling [82, 94, 176, 177].  Each of these phenomena plays a role in attenuating 

pulmonary artery relaxation during hypoxia, either through O2
·- scavenging of NO, pulmonary 

microvessel remodeling and occlusion, or reduced vascular compliance [178-181].  Through 

investigating cellular potentiators of PAH, caveolin-1 dysfunction has emerged as a consistent 

theme in the disease, despite continuing disagreement as to the exact mechanism [182, 183].  

Though investigating the role of caveolin-1 in PAH, a clear relationship between it and ROS, 

eNOS and PAH has been established, as both caveolar dysfunction and ROS production 

attenuate NO bioavailability in pulmonary vessels through eNOS uncoupling [3, 183-186].  

Beyond reduced activity of sGC and concomitant constriction of vascular smooth muscle cells, 

decreased NO bioavailability is also permissive of endothelial proliferation [187, 188].  ROS 

directly reduce NO availability by conversion of NO to ONOO- and by inhibiting NO production 

through inactivation of BH4, resulting in uncoupled eNOS and in turn propagating systemic and 
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pulmonary endothelial proliferation [6, 7, 186].  Thus, an imbalance in favor of increased ROS 

vs. NO presumably would lead to increased endothelial proliferation and PAH.  The two 

opposing functions suggest that regulation of eNOS and NO availability by Nox-derived O2
·- 

may be a primary regulator of endothelial physiology and that the coupling or uncoupling of 

eNOS results in either endothelial maintenance or growth, respectively.   

Beyond regulation of endothelial physiology by Nox-mediated eNOS uncoupling, soluble 

growth factors leading (i.e. VEGF, EGF) to proliferation of pulmonary endothelial cells are also 

implicated in the development of PAH [174, 189].  Endothelial growth and migration is a major 

component of microvessel remodeling and, along with the reduced compliance of pulmonary 

arteries deprived of NO, is a primary contributor to increasing pulmonary vascular resistance 

(PVR) and clinical PAH.  In early PAH, the RV compensates for the persistent increase in PVR 

through thickening, proliferation, and hypertrophy of cardiac tissue.  Unfortunately, the RV 

cannot compensate indefinitely and RV failure normally ensues in PAH and can occur within 5 

years of diagnosis if left untreated [170].  Hemodynamically, RV failure in PAH is observed as a 

sharp increase in ESPVR and RV pressure, indicative of greater contractility [190]. Inhibitors of 

ROS sources are expected to reduce proliferation and/or lower pulmonary vascular remodeling, 

leading to lower PVR and improved prognosis for patients with PAH.  Despite the great potential 

of ROS inhibitors, no effective antioxidant treatment for this disease has yet been identified. 

1.3.3 In Vitro Cellular Models Applicable to Pulmonary Arterial Hypertension 

In attempting to model vasculature pathology in PAH using isolated cellular models, it is 

essential to consider that the primary vascular etiological factors of clinical PAH are hypoxia, 

angiogenic growth factors, and vascular remodeling [170].  To best mimic these etiological 

factors, hypoxia or angiogenic growth factors can be used to perturb the phenotype of pulmonary 
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vascular cells followed by phenotypic measurements of ROS production, protein expression, 

proliferation, or migration, as in vitro indications of PAH physiology.  Of particular importance 

are in vitro models utilizing hypoxia as this is both a causative agent and an indicator of disease 

severity in PAH [170, 171].  Blood oxygen tension in vivo can vary widely from 1.0-10.0%, 

depending on the tissue bed.  Typically, smaller vessels and those more distal from conduit 

arteries have lower oxygen saturation [191, 192].  Emerging from these in vivo measurements 

and clinical data from PAH patients is the current practice of using in vitro oxygen tensions from 

1-5.0% as an in vitro approximation of severe pulmonary hypertension [189, 193].  In addition to 

hypoxia, other factors observed in clinical PAH that are useful for in vitro approximations 

include endothelin-1, estrogen metabolites, free heme, and angiogenic growth factors [194-197].  

While each of these stimuli bears important implications in the pathogenesis of PAH, angiogenic 

growth factors merit further discussion due to their clear role in vessel remodeling and probable 

interactions with Nox. 

The overexpression of angiogenic molecules in diseased pulmonary vessels supports the 

hypothesis that PAH is driven in part by disordered angiogenesis and has led to investigations on 

the role of angiogenic factors as contributors to PAH, in particular, HIF1α, EGF, VEGFR2, and 

Tie2 [174, 175, 181, 198].  As such, assays monitoring cell proliferation, mitogenic potential, 

migratory ability, and/or potential sprouting of pulmonary artery smooth muscle cells, 

endothelial cells, and/or fibroblasts are all widely used as in vitro approximations of pulmonary 

vasculature remodeling [84, 199, 200].  During the progression of PAH, the endothelium is a key 

player in the remodeling of pulmonary vessels, with additional contributions by the medial and 

adventitial layers both in composition of remodeled arteries and enhancement of remodeling via 

paracrine signaling factors [172, 173, 175].  While smooth muscle and fibroblast components of 
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pulmonary vessels cannot be ignored and remain critically important in the pathogenesis of PAH, 

many in vitro assessments pulmonary vessel remodeling utilize endothelial cells for their 

sensitivity to hypoxia and close relationship with the regulation of vessel tone. 

Hypoxia and angiogenic growth factors are key factors for perturbing vascular 

phenotypes in in vitro approximations of PAH with major phenotypic outcomes including 

increased ROS production, cellular proliferation and migration which are major contributors to 

increased pulmonary vascular tone and remodeling.  Pulmonary endothelial cells are a key 

component of vascular remodeling and represent a significant portion of PAH pathology.  

However, the endothelium is not alone in PAH pathology and it is appropriate to also consider 

utilizing smooth muscle cells and fibroblasts.  These stimuli, phenotypes, and cell types are 

reasonable representations of pulmonary vascular function in vivo and provide a reductionist 

perspective of PAH pathology. 

1.3.4 In Vivo Models of Pulmonary Arterial Hypertension 

Ongoing attempts to model PAH in vivo include the aforementioned major clinical 

characteristics of PAH including elevated mPAP, hypoxia, and vascular remodeling.  Current in 

vivo models of PAH utilize a variety of toxicological agents, surgical modifications, hypoxic 

environments, and combinations of these to generate multiple competing models of PAH that all 

attempt to model this complex human disease.  While no model is clearly superior to all others in 

every situation, there remain consistent advantages and disadvantages for each model. 

Pulmonary artery banding of mice using a 27-gauge surgical clip is a useful surgical 

model of PAH and results in an immediate pressure overload of the right ventricle with 

concomitant increases in RV end systolic pressure of ~35mmHg [58, 201].  This increase in 

pressure is chronic so long as the surgical clip remains on the pulmonary artery.  The 
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simultaneous advantage and disadvantage of this model is the ability to dissect the effect of 

pressure-overload on RV function independently of pulmonary vascular effects.  Incidentally, 

RV dysfunction without accompanying vasculopathies is observed in some cases of PAH. 

 In addition to pulmonary artery banding, chronic mouse hypoxia at 10% O2 for at least 3 

weeks also remains a consistently popular method to model human PAH [202].  Similar to the 

human condition, mice in the hypoxic environment experience a sharp rise in mPAP and RV 

hypertrophy that are both reversible when oxygen tension is returned to normoxia [177].  

Importantly, this model of PAH does not display the extent of vascular remodeling that is 

prevalent in humans. 

Moving beyond mice in hypoxia, extensive research in PAH physiology has been also 

performed in rats where PAH is induced by a single subcutaneous injection of monocrotaline, 

which causes functional alterations in pulmonary endothelial cells without apoptosis [203].  

Following monocrotaline injection, at least two weeks of rodent maintenance are necessary to 

allow for the disease to develop.  The monocrotaline model of PAH is characterized by a 

sustained increase in mPAP, RV hypertrophy, and significant pulmonary vasculature 

remodeling.  This model has been reported to be different from human PAH as it is caused 

independent of hypoxia [204].  In addition, monocrotaline injections also induce significant lung 

fibrosis, thus further complicating the pathophysiology of PAH in this model and hampering the 

ability to dissect precise roles of the vasculature [205]. 

The most recently developed rodent model of PAH utilizes the combination of the 

VEGFR2 antagonist SU5416 and chronic hypoxia (SUCH) in rats to induce elevated mPAP as 

well as RV hypertrophy and pulmonary arteriolar remodeling [206].  Of the in vivo models of 

PAH, SUCH bears the greatest similarities to human PAH with respect to vessel remodeling.  A 
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reported disadvantage of the SUCH model is that inhibition of VEGFR2 by SU5416 causes 

endothelial damage distinct from potential endothelial insults in human PAH. 

  The advantages and disadvantages of each model as well as the desired endpoint of 

study are key components that the investigator has to consider to determine which animal model 

of PAH is the most appropriate for the proposed experiments.  In the present study, the SUCH 

model of PAH was chosen to test the effect of Nox1 inhibition in PAH as SUCH disease severity 

correlates with severe lung vessel remodeling, a process that was postulated to be attenuated via 

Nox1 inhibition. 

1.3.5 Clinical Treatment Options for Pulmonary Arterial Hypertension 

In the past quarter-century, PAH has progressed from a virtually untreatable disease with rapid 

mortality to a disease which can be carefully managed through three main classes of 

pharmacological agents. These three classes include prostacyclin analogs, agents that increase 

nitric oxide (NO) bioavailability, and endothelin receptor antagonists. Historically, the benefits 

of prostacyclin in reducing pulmonary vascular resistance were observed as early as the 1970s in 

dogs with human studies occurring later in the early 1980s [207]. Later, increasing NO 

bioavailability through inhaled NO or nitrates was developed as an additional treatment for PAH 

after demonstrations of clinical efficacy in the early 1990s through drugs enhancing NO 

signaling cascades (PDE5 inhibitors) [71, 208-210]. A relatively new class of treatments acts by 

preventing endothelin-mediated vasoconstriction, with one of the primary endothelin receptor 

antagonists (bosentan) gaining U.S. Food and Drug Administration approval for the treatment of 

PAH in 2001. 

Each of these treatments individually or in combination is eventually overcome by 

unsatisfactory clinical responses. Although highly effective at treating PAH, prostacyclin analogs 
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are also dangerously capable of causing pulmonary edema, leading to patient death [211]. In the 

case of NO donors and signal enhancers, unsatisfactory clinical responses may be a result of 

desensitization to NO or a reduced capacity of cells to endogenously generate NO, yet a more 

gradual and continual delivery may be beneficial [210, 212].  Additionally, the efficacy of NO is 

greatly reduced in conditions of increased adiposity and hypercholesterolemia [111, 213]. In the 

case of bosentan, about 10% of patients experience mild liver reactions with a portion of these 

patients experiencing severe hepatotoxicity [214]. Recent studies implicating endothelin in the 

preservation of RV contractility and compensation in response to increased afterload may 

contraindicate ET receptor antagonists in a subset of patients [190].  Each treatment option 

provides a viable means to treat PAH, yet no treatment is without its significant side effects or 

patients who are resistant to that particular therapy. Inasmuch as renin, aldosterone and 

angiotensin II, per se, are well-established promoters of reactive oxygen species production in 

the lung that are likely to impede and/or or exacerbate the effects of NO, prostacyclin, or 

endothelin blockade, the AngII type I receptor antagonists, sartans, could become an important 

adjuvant therapy in PAH [36, 58]. Moreover, angiotensin II type 1 receptor antagonist could 

serve to enhance NO bioactivity in obese and aging populations.   

The most recently approved therapy for PAH is riociguat (Adempas®), a novel stimulator 

of soluble guanylate cyclase (sGC) which acts through sensitizing the heme core of sGC to NO 

[215, 216].  Following riociguat’s 2013 FDA approval, increased energy has been directed 

towards the identification of therapies for PAH that act on ROS-dependent mechanisms.  Despite 

these advances in the treatment of PAH, no treatment has been developed that acts through 

inhibition of angiogenic signaling or ROS production.  To date, no Nox inhibitors have been 

tested as potential therapeutics for PAH, despite their great potential to improve PAH prognosis 
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through increasing NO biovailability, inhibiting angiogenic signaling pathways, and attenuating 

pathological pulmonary vascular remodeling. 

 

Species Mouse/Rat Mouse Mouse/Rat Rat 
Toxicological 
Stimuli 

none none monocrotaline 
40mg/kg 

SU5416 
20mg/kg 

Surgical Stimuli Pulmonary 
artery banding 

None None None 

Hypoxia 
Dependent 

No Yes, 10% 
Oxygen 

No Yes, 10% 
Oxygen 

Disease 
Progression 

Causes 
immediate and 
sustained 
elevation of 
mPAP 

Phenotype 
apparent after 
3 weeks, 
reversible in 
normoxia 

Severe disease 
2 weeks post 
injection, not 
reversible 

Severe disease 
after 6 weeks, 
not reversible 

Pulmonary 
Artery Pressure 

Immediate 
elevation, 
~35mmHg 

Gradual 
elevation, 
~35mmHg 

Gradual 
elevation, 
~60mmHg 

Gradual 
elevation 
~35mmHg 

Degree of RV 
Remodeling 

Moderate Moderate Severe Severe 

Degree of 
Pulmonary 
Vascular 
Remodeling 

none Minimal Moderate Severe 

Advantages Independently 
dissects RV 
function in 
pressure 
overload 

Very good 
model for 
human altitude 
induced PAH, 
ease of use 

Ease of use, 
greatest 
pulmonary 
pressures 

Severity of lung 
vessel 
remodeling 

Disadvantages Independent of 
pulmonary 
vasculature 

Reversible, not 
a good model 
for idiopathic 
PAH 

Extensive 
fibrosis 
complicates 
pathology 

Confounding 
factors 
resulting from 
VEGFR2 
inhibition 

 

Table 1-3: In vivo models of PAH 
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1.4 OVERVIEW AND SPECIFIC AIMS 

 

1.4.1 Overview 

NADPH Oxidases (Nox) are a family of enzymes that are professional producers of reactive 

oxygen species (ROS) including superoxide (O2
·-).  Multiple Nox isoforms are expressed in 

pulmonary vessels, of which Nox1 is the most poorly studied.  Hypoxia and growth factors have 

been shown to promote Nox1 activity in systemic vascular cells leading to cellular proliferation 

and invasion, however it is unknown whether Nox1 mediates proliferative cell phenotypes in the 

pulmonary vasculature.  The role of Nox1 in the development of pulmonary disorders remains 

unknown. Furthermore, despite its well characterized association with cardiovascular morbidity 

and mortality, there previously has been no specific inhibitor of Nox1 with an established 

mechanism of action.  We postulated that the putative activation domain of NOXA1 plays a key 

role in Nox1 activation. We tested whether a peptide sequence targeting this region specifically 

inhibits Nox1, and used it as a tool to investigate the relative role of Nox1 in pulmonary vascular 

disorders, and its potential to attenuate the development of PAH.  

Pulmonary arterial hypertension (PAH) is a debilitating disease characterized by 

abnormal proliferation in pulmonary arterioles, tissue hypoxia, and elevated pulmonary artery 

pressures leading to right heart failure.  Angiogenic markers in diseased pulmonary vessels 

exhibiting endothelial and smooth muscle proliferation imply angiogenic signaling, that 

contribute to vessel occlusion and progression of PAH.  The roles of Nox2-derived ROS have 

been demonstrated in systemic as well as pulmonary artery vascular cell proliferation. 

Significantly less is known about the role of other Nox isoforms in angiogenic signaling in the 

pulmonary vasculature.  
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While both Nox1 and Nox2 are expressed in pulmonary vessels, their relative roles in 

pulmonary vascular physiology and pathology are unknown.  It is unknown whether hypoxic 

induction of Nox-derived ROS plays a role in the development of PAH. 

The overarching hypothesis of this dissertation was that Nox1 promotes endothelial 

dysfunction and VEGF-stimulated pulmonary artery EC migration, and that these 

processes endow Nox1 with a pivotal role as a potentiator of PAH.  In order to test the 

hypothesis, the work described herein involved the design and characterization of the first 

peptidic Nox1 inhibitor (NoxA1ds).  After confirming the specificity of NoxAS1ds, this peptide 

was utilized to inhibit Nox1 in in vitro approximations and in vivo models of PAH. 

 

1.4.2 Specific Aim 1: Development and Characterization of NoxA1ds 

Recent publications have established the primary importance of NOXA1 domain in functional 

Nox1 O2
·- production.  Amino acids in NOXA1 corresponding to the reported p67phox activation 

domain (residues 190-210) demonstrate a high level of homology and thus suggested its role as 

an activation domain in the Nox1 oxidase. We derived a peptide from this region of NOXA1 

which was named “NoxA1ds” on the theory that it was a NOXA1 docking sequence for Nox, 

thus NoxA1ds.  NoxA1ds’ potency, efficacy and specificity were tested using heterologous cell-

free assays prepared from whole cells transfected with each of the individual vascular Nox 

isoforms.  NoxA1ds’ activity was tested by measuring O2
·- production in HT29 colon carcinoma 

cells exclusively expressing Nox1.   
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1.4.3 Specific Aim 2: To determine the relative contribution of Nox1 vs Nox2 to 

endothelial O2
·- production and cell migration 

While ROS have been correlated with endothelial dysfunction and PAH, the contribution of 

Nox1 and Nox2 in these pathways is unclear.  Pharmacological inhibitors of Nox1 and Nox2 will 

be tested for their isoform specificity and utilized to determine the Nox isoform responsible for 

hypoxia-induced O2
·- production and endothelial dysfunction as well as VEGF-stimulated wound 

healing.  Crosstalk between HPAEC and HPASMC will be investigated by hypoxic conditioning 

of each cell type to stimulate cytokine production followed by transfer of conditioned media to 

naïve HPAEC/SMC. The relative role of Nox1/2 in HPAEC/SMC proliferation in this 

conditioned media will be evaluated by MTT assay. 

 

1.4.4 Specific Aim 3: To investigate the role of Nox1 in Pulmonary Arterial Hypertension 

using NoxA1ds 

We will evaluate the role of Nox1 in an in vivo model of PAH by injecting rats subcutaneously 

with SU5416 and exposing the rats to 3wks of chronic hypoxia to induce severe PAH.  

Throughout this study, the role of Nox1-derived O2
- in PXL formation will be tested by 

aerosolized delivery of NoxA1ds to rat lungs or Nox1 morpholino injection, i.v., at 0, 1, and 3 

wks.  Measures of PAH (Fulton Index and RV pressure) will be taken followed by ex vivo 

quantification of ROS production (EPR, cytochrome c) in tissue homogenates. 



 35 

2.0  MATERIALS AND METHODS 

2.1.1 Reagents 

Cytochrome c, superoxide dismutase (SOD), lithium dodecyl sulfate (LiDS), catalase, 

diphenyleneiodonium chloride (DPI), horseradish peroxidase (HRP), hypoxanthine, and 

rhodamine B were purchased from Sigma-Aldrich (St. Louis, MO, USA).  Xanthine Oxidase was 

obtained from Calbiochem (Merck, KGaA, Damstadt, Germany).  Amplex Red was purchased 

from Invitrogen (Eugene, OR, USA).  Protease inhibitor cocktail was purchased from Roche 

Diagnostics GmbH (Mannheim, Germany).  NoxA1ds and scrambled NoxA1ds were synthesized 

by the Tufts University Core Facility (Boston, MA, USA).  The sequence of NoxA1ds is as 

follows: [NH3] E-P-V-D-A-L-G-K-A-K-V [CONH2].  The scrambled NoxA1ds sequence 

(SCRMB) is as follows: [NH3] L-V-K-G-P-D-A-E-K-V-A [CONH2].  The sequence of Nox2ds 

is [NH3] C-S-T-R-I-R-R-Q-L[CONH2].  The scrambled Nox2ds sequence (scrmb) is [NH3] C-

L-R-I-T-Q-S-R [CONH2].  The sequence of the cell penetrating peptide “tat” is [NH3] R-K-K-

R-R-Q-R-R-R [CONH2] and, if used, was added to the amino end of the peptide. In all cases the 

[NH3] group represents the amino end and [CONH2] represents the amide of the carboxy 

terminus, a consequence of the synthetic procedure.  Each peptide was prepared in several 

batches, with no batch having purity less than 90%.  FITC-labeled NoxA1ds was also 

synthesized by Tufts University and is identical in sequence to NoxA1ds with FITC linked to the 

N-terminus of NoxA1ds via an alpha hydroxyl acid.  Rhodamine-labeled NoxA1ds was 

synthesized by Fisher Scientific GmbH (Schwerte, Germany) and is identical in sequence to 

NoxA1ds with Rhodamine B linked to the N-terminus of NoxA1ds via an alpha hydroxyl acid. 
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2.1.2  Cell Lines 

COS-22 (COS-7 cells stably expressing human p22phox) and COS-Nox2 (a.k.a. COS-phox) cells 

(COS-7 cells stably expressing human p22phox, Nox2, p47phox and p67phox) were kindly provided 

by Dr. Mary C. Dinauer (Indiana University, School of Medicine). COS-22 cells were 

maintained in Dulbecco's Modified Eagle Medium (Cellgro) with 4.5 g/l glucose, L-glutamine 

and sodium pyruvate containing 10% heat-inactivated fetal bovine serum (FBS, Invitrogen), 100 

units/ml penicillin and 100 µg/ml streptomycin (Invitrogen) supplemented with 1.8 mg/ml G418 

(Calbiochem/EMB Bioscience, Gibbstown, NJ). COS-Nox2 cells were maintained in otherwise-

identical media supplemented with 1 µg/ml puromycin (Sigma, St Louis, MO) and 0.2 mg/ml 

hygromycin B (Invitrogen, Carlsbad, CA).  HEK-Nox5 (HEK-293 cells stably expressing human 

Nox5) were kindly provided by Dr. David Fulton (Georgia Health Sciences University) and were 

maintained in DMEM with 4.5 g/l glucose, L-glutamine and sodium pyruvate containing 10% 

FBS, 100 units/ml penicillin and 100 µg/ml streptomycin.  HT-29 cells were purchased from 

ATCC and cultured in McCoy’s 5a Medium Modified (Manassas, VA).  HEK-293 cells were 

purchased from ATCC and cultured Dulbecco’s Modified Eagle Medium (Manassas, VA). 

HPAEC, HPASMC and their growth medium (EBM-2 or SmGM, respectively) were purchased 

from Lonza (Basel, Switzerland).  HPAF and their growth medium were purchased from 

ScienCell Laboratories (Carlsbad, CA). COS, HEK, and HT-29 cells were used within 7-10 

passages for all experiments while HPAEC were used within 5-8 passages. 
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2.1.3 Plasmid Preparation, Amplification and Purification 

Plasmids encoding full-length human cDNAs for Nox1 (pcDNA3.1-hNox1), NOXO1 

(pcDNA3.1-hNOXO1), NOXA1 (pCMVsport 6-hNOXA1), and Nox4 (pcDNA3-hNox4) were 

kindly provided by Dr. David Lambeth (Emory University, GA) [108, 217].  Plasmids encoding 

full-length human cDNA’s for Nox1-YFP and NoxA1-CFP were custom subclones purchased 

from OriGene (Rockville, MD).  Nox1-YFP was subcloned into the pCMV6-AC-mYFP plasmid 

and NOXA1-CFP was subcloned into the pCMV6-AC-mCFP plasmid.  Both plasmids placed the 

fluorophore at the C-terminus of the Nox-protein sequence.  A membrane-targeted CFP with 

extensive N-terminal myristoylation (CFPm) was kindly provided by Dr. Jean-Pierre Vilardaga 

(Pittsburgh, PA) [218].  Plasmids encoding Nox1, NOXO1, NOXA1, Nox1-YFP, NOXA1-CFP, 

or CFPm were transformed and amplified into Escherichia coli strain TOP10 (Invitrogen, 

Carlsbad, CA).  Plasmids were purified using a QIAfilter plasmid purification kit (QIAGEN Inc., 

Valencia, CA.).   

 

2.1.4 Detection of Nox1/2/5-derived Superoxide Anion (O2˙-) 

Separate populations of COS-22 cells were transfected with pcDNA3.1-hNox1 (COS-Nox1) or a 

co-transfection of pcDNA3.1-hNOXO1 and pCMVsport 6-hNOXA1 (COS-NOXO1/A1).  

Adherent cells were harvested by incubating with 0.05 % trypsin /EDTA for 5 min at 37○C. 

Following addition of DMEM/10%FBS to neutralize the trypsin, the cells were pelleted by 

centrifugation at 1000 x g for 5 min at 4○C and subsequently resuspended at 5 x 107 cell/ml in 

lysis buffer (8 mM potassium, sodium phosphate buffer pH 7.0, 131 mM NaCl, 340 mM sucrose, 
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2 mM NaN3, 5 mM MgCl2, 1mM EGTA, 1 mM EDTA, 1 mM DTT and protease inhibitor 

cocktail) [219]. The cells were lysed by freeze/thaw cycles (5 cycles), and passed through a 30-

gauge needle 5 times to further lyse the cells and then centrifuged at 1000 x g for 10 min at 4○C 

to remove unbroken cells. The supernatant was then centrifuged at 160,000 x g for 60 min at 4○C 

to yield a membrane-enriched pellet (membrane fraction).  The membrane fraction from COS-

Nox1 was resuspended in lysis buffer and retained whereas the COS-NOXO1/A1 cytosolic 

fraction was retained.  O2˙-  generation was measured in  oxidase assay buffer (OAB) (65 mM 

sodium phosphate buffer (pH 7.0), 1 mM EGTA, 10 μM FAD, 1 mM MgCl2, 2 mM NaN3, and 

0.2 mM cytochrome c with added 1000 U/ml catalase to prevent H2O2-mediated oxidation of 

cytochrome c [219]). The components of the cell-free system were added in the following order: 

oxidase assay buffer, COS-Nox1 cell membrane fraction (5 x 105 cell equivalents/well, 

approximately 5 µg protein/well), NoxA1ds/SCRMB peptides followed by 10-min incubation on 

ice, after which COS-NOXO1/A1-containing cytosolic fractions were added (5 x 105 cell 

equivalents/well). Plates were placed on an orbital shaker for 5 min at 120 movements/min at 

room temperature before addition of 180 μM NADPH to initiate O2˙- production.  The 

production of O2˙- was calculated from the initial linear rate (over 15 min) of SOD-inhibitable 

cytochrome c reduction quantified at 550 nm using an extinction coefficient of 21.1 mM-1 cm-1 

(Biotek Synergy 4 Hybrid Multi-Mode Microplate Reader). The concentration of NoxA1ds 

peptide that caused 50% inhibition of O2˙- production (IC50) in COS-Nox1 cell lysates was 

calculated by Prism 5 (GraphPad Software, Inc. La Jolla, CA, USA).   

To measure Nox2-derived O2˙- production, COS-Nox2 cells were separated into membrane and 

cytosolic fractions as described above.  The production of O2˙- was measured using identical 

methods with the addition of 130 μM LiDS after incubation with NoxA1ds or SCRMB.  HEK-
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Nox5 O2˙- production was determined using methods as described previously with NoxA1ds and 

SCRMB peptides being added to HEK-Nox5 membrane lysates prior to the addition of calcium 

(final concentration 20 µM) [54].  Throughout these procedures, extreme care was taken to 

maintain the lysate at a temperature close to 0 ○C.   

 

2.1.5 Detection of Nox4-derived hydrogen peroxide (H2O2) 

H2O2 production was quantified in COS-Nox4 cell lysates as described previously [220].  It is 

important to note that COS-Nox4 cells do not produce measureable amounts of O2
.- [130]. COS-

Nox4 and COS-22 cells were suspended to a concentration of 5×107 cells/ml in ice-cold 

disruption buffer (PBS containing 0.1 mM EDTA, 10 % glycerol, protease inhibitor cocktail, and 

0.1 mM PMSF). The cells were lysed by five freeze/thaw cycles and passed through a 30-gauge 

needle five times to further lyse the cells. Incubation of COS-Nox4 cell lysate (10 μg/100 μl) 

with NoxA1ds was performed in assay buffer (25 mM Hepes, pH 7.4, containing 120 mM NaCl, 

3 mM KCl, 1 mM MgCl2, 25 μM FAD, 0.1 mM Amplex Red, and 0.32 U/ml of HRP) for 15 min 

at room temperature on an orbital shaker (120 movements/min), before the addition of 36 μM 

NADPH, to initiate H2O2 production. This relatively low concentration of NADPH was used 

because it was found that higher concentrations interfered with Amplex Red fluorescence.  

Fluorescence measurements were made using a Biotek Synergy 4 Hybrid Multi-Mode 

Microplate Reader (excitation wavelength: 560 nm; emission wavelength: 590 nm). A standard 

curve of known H2O2 concentrations was developed using the Amplex Red assay (per the 

manufacturer’s instructions, manufacturer: Life Technologies, Carlsbad, CA), and was used to 

quantify H2O2 production in the COS-Nox4 cell free system. The reaction was monitored at 
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room temperature for 60 min. The emission increase was linear during this interval. The effect of 

NoxA1ds on Nox4-derived H2O2 production was expressed as percent inhibition of Nox4, which 

was calculated by designating the amount H2O2 production by control mixtures in the absence of 

peptide as 100%. 

 

2.1.6 O2˙- generating activity in HEK 293 cells 

In order to test the effect of Nox2ds on inducible Nox1 activity we used Nox1/NOXO1/NOXA1-

transfected HEK 293 cells (hereafter referred to as HEK-Nox1) as it was shown previously that 

O2˙- production in HEK-Nox1 cells was significantly stimulated by phorbol myristate acetate 

(PMA) treatment[117]. The effect of Nox2ds on inducible Nox1 activity was tested on LiDS-

stimulated O2˙- in HEK-Nox1 cell-free system. HEK 293 cells were separately transfected with 

either Nox1, NOXO1 or NOXA1.  Nox1-containing membranes, and NOXO1 and NOXA1 

cytosolic extracts from each preparation were prepared as described above. The Nox1 organizer 

subunit NOXO1 was preincubated with 10 μM Nox2ds for 10 min, and then NOX1 and NOXA1 

were added consecutively. After the preincubation period, LiDS (130 µM) was added to induce 

the assembly of the oxidase by permitting membrane reorganization.  LiDS was followed by 

initiation of O2˙- production by 180 μM NADPH.  Superoxide production was measured using 

cytochrome c. 
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2.1.7 Xanthine oxidase-derived O2˙- production 

The nitroxide spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine 

hydrochloride (CPH; Alexis Corp., San Diego, CA) was used to examine O2˙- production using a 

Bruker eScan Table-Top EPR spectrometer (Bruker Biospin, USA).  O2˙- production in semi-

purified preparations of xanthine oxidase initiated by the addition of 100µM xanthine was 

measured in Krebs HEPES buffer (100 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 

25 mM NaHCO3, 1.0 mM KH2PO4, 5.6 mM D-Glucose, 20 mM Na-HEPES) supplemented with 

50 μM CPH.  Purified xanthine oxidase was incubated with NoxA1ds or SCRMB for 5 min at 

room temperature.  Analyses of the CPH up-field spectra peak amplitude from peak to nadir 

were used to quantify the amount of O2˙- produced by the lysates and were compared with 

buffer-only control spectra or spectra in the presence of NoxA1ds, SCRMB, or 200 U/ml SOD.  

To minimize the deleterious effects of contaminating metals, the buffers were treated with 

Chelex resin and contained 25 µM deferoxamine (Noxygen Science Transfer, Germany). The 

EPR instrument settings were as follows: field sweep, 50 G; microwave frequency, 9.78 GHz; 

microwave power 20 mW; modulation amplitude, 2 G; conversion time, 327 ms; time constant, 

655 ms; receiver gain, 1 x 105, DETC (Noxygen Science Transfer, Germany). 

 

2.1.8 Detection of O2˙- Production by Whole Cells Treated with NoxA1ds 

HT-29 cells at 80% confluence were serum starved in media containing 0.5%  FBS for 12 hrs 

and NoxA1ds (final concentrations of 0.1, 0.3, 1, 3, or 5µM ) was added directly to the growth 

media for one hour prior to cell lysis and membrane preparation for cytochrome c assay.   
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To measure HPAEC O2˙- production, cells were grown to 80% confluence prior to 12 hr serum 

starvation (0.2 % FBS).  Cells were placed in normoxic (20% O2) or hypoxic (1% O2) conditions 

for 23 hrs and then treated with 10 µM NoxA1ds, SCRMB NoxA1ds, Nox2ds-tat, or SCRMB 

Nox2ds-tat for 1 hr.  For both HT-29 and HPAECs, cells were lysed in lysis buffer by 5 

freeze/thaw cycles and 5 passages through a 30 gauge needle.  Membrane fractions were 

collected by centrifugation (28,000 xg, 20 min).  Membranes were suspended in OAB and 

NADPH-dependent O2˙- production was determined using cytochrome c reduction.   

 

2.1.9 Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISA was first used to determine whether NoxA1ds binds Nox1. Neutravidin-coated plates 

(Thermo Scientific, Rockford, IL, USA) were incubated with 10 µM biotinylated NoxA1ds or 10 

µM biotinylated SCRMB (Tufts University Core Facility, Boston, MA, USA) for 2 hr at room 

temperature.  The plates were washed 3 times with wash buffer (25 mM Tris, 150 mM NaCl, and 

0.05% Tween-20, pH 7.2).  After 1 hr incubation at room temperature, 50 µg of membrane 

fractions prepared from either COS-22 or COS-Nox1 cells were added to plates in phosphate 

buffered saline (pH 7.2) at room temperature and allowed to incubate for 1 hr.  Rabbit polyclonal 

Nox1 antibody (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA) was added to detect 

Nox1 bound to NoxA1ds or SCRMB, respectively.  After 1 hr incubation and extensive washing, 

bound primary antibodies were detected by the addition of FITC-labeled goat anti-rabbit IgG 

antibody (1:1000; 30 min Sigma-Aldrich, St. Louis, MO, USA).  The fluorescence of each well 

was measured using a Biotek Synergy 4 Hybrid Multi-Mode Microplate Reader (Excitation:488 

nM, Emission:518 nM- BioTek, Winooski, VT, USA).  
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A second set of ELISA experiments were performed to test the mechanism by which 

Nox2ds could inhibit O2
·- production in COS-Nox2 and not in the COS-Nox1 cell-free system. 

Neutravidin-coated plates (Thermo Scientific, Rockford, IL, USA) were incubated with 

biotinylated Nox2ds (Biotin-Nox2ds, 6 μM) or biotinylated scrmb Nox2ds (Biotin-scrmb, 6 μM) 

(Tufts University Core Facility, Boston, MA, USA) for 2 hr at room temperature. The plates 

were washed 3 times using wash buffer (25 mM Tris, 150 mM NaCl, 0.1% BSA, 0.05% Tween-

20, pH 7.2).  After 1 hr incubation at room temperature with COS-22, COS-22-p47phox (COS-22 

cells transfected with p47phox) or COS 22-NOXO1 (COS-22 cells transfected with NOXO1) 

cytosolic fraction, rabbit polyclonal p47phox (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, 

USA) or rabbit NOXO1 (1:500; Rockland Immunochemicals Inc., Gilbertsville, PA, USA) 

antibodies were used to detect p47phox or NOXO1 bound to Nox2ds or its scrambled control, 

respectively. After 1 hr incubation and extensive washing, bound primary antibodies were 

detected by the addition of FITC-labeled goat anti-rabbit IgG antibody (1:500; Sigma-Aldrich, 

St. Louis, MO, USA). The fluorescence of each well was measured using a Biotek Synergy 4 

Hybrid Multi-Mode Microplate Reader and expressed as relative fluorescence units 

(Excitation:488 nM, Emission:518 nM- BioTek, Winooski, VT, USA). 

 

2.1.10 Fluorescence Recovery After Photobleaching (FRAP) 

FRAP was performed using an Olympus FV1000 confocal microscope with minor modifications 

from studies by Wheeler et al[221].  Briefly, circular regions of interest (1.0 μm2) were selected 

and bleached with a 400 ms pulse from a 488-nm (YFP) and a 559-nm (Rhodamine) laser line 

using the SIM scanner; recovery data were acquired using the instrument's main scanner and the 
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488 and 559-nm lines of an argon gas laser. This short pulse was selected to ensure a Gaussian 

bleaching spot. To maximize reproducibility of the experimental conditions, all data were 

acquired in the photon-counting mode of the instrument. Thirty-five images were then collected 

at intervals of ~7 s. Average fluorescence intensities of the bleached and control regions in other 

cells or far-removed regions of the same cell were obtained and used to account for bleaching 

resulting from image acquisition.  Fluorescence was normalized to time = 0 and monitored for ~ 

250 s.  Mobile fraction was calculated using equation 1: 

 

Mobile Fraction =
End Fluorescence Intensity

Fluorescence Intensity Before Photobleaching
 

 

2.1.11 Fluorescence Resonance Energy Transfer (FRET) 

COS-22 cells seeded at 20% density on glass-bottomed tissue culture plates were co-transfected 

with Nox1-YFP and NOXA1-CFP or Nox1-YFP and CFPm. After 24 h, cells were washed with 

PBS and fixed in 2 % paraformaldehyde.  The interaction between Nox1 or CFPm and NOXA1 

was then detected using a combination laser scanning microscope system (Nikon A1 confocal) 

and quantified by acceptor photobleaching. To achieve excitation, the 458 nm line of an argon 

ion laser was focused through the Nikon ×60 oil differential interference contrast objective.  

Emissions of YFP (the FRET acceptor) and CFP were collected through 530–575 nm and 475–

500 nm barrier filters, respectively, over a segment of the cell ~5 microns in diameter. 

Photobleaching was performed with 50 iterations and 100% intensity of a 514-nm laser.  Using 

methods described previously, average fluorescence intensities/pixel was calculated following 



 45 

background subtraction [222].  To determine the effect of NoxA1ds on Nox - NOXA1 

association, cells transfected with Nox1-YFP and NOXA1-CFP were incubated with 10 µM 

NoxA1ds or SCRMB 24 hrs post transfection for 1 hr before fixing the cells.  FRET efficiency 

was calculated using Equation 2. 

 

Equation 2: 

FRET Efficiency = E = 1 −  
CFPpost-bleach intensity

CFPpre-bleach intensity
∗ 100 = 1 −

CFPpost

CFPpre
∗ 100 

 

2.1.12 Cell Migration Assay 

Scratch assay was performed as described by Liang et al. with minor modification [223].  

Briefly, HPAECs were grown to 90% confluence in 35-mm dishes before growth media was 

replaced with starvation media (1:10 dilution of growth media). Before cell seeding, each dish 

was marked on its bottom with ink bisecting the dish into two halves. HPAEC were starved for 

16 hours before the cell monolayer was disrupted with a P1000 pipet tip in one stroke that passed 

through both halves of the dish.  The scratch was photographed as positions immediately above 

and below the halfway mark, cells were treated with +/- 20 nM VEGF, +/- 10 µM NoxA1ds, +/- 

10 µM SCRMB NoxA1ds, +/- 10 µM Nox2ds-tat, +/- 10 µM SCRMB Nox2ds-tat and placed in 

either 1.0% O2 or 20% O2 environment at 37° for 24 hours.  VEGF was added only at time 0 

whereas peptides were added at time 0 and each 4 hrs thereafter.  After 24 hours, the cells were 

again photographed immediately above and below the halfway mark on the dish.  ImageJ 

software was used to calculate the change in distance between the cell fronts as compared to the 



 46 

time 0 photograph.  Distance between the cell fronts was calculated as the width of the 

rectangular are between the cell fronts containing 16 cells. 

 

2.1.13 Quantification of in vitro VEGF Production 

Human pulmonary artery endothelial cells (HPAEC), human pulmonary artery smooth muscle 

cells (HPASMC), or human pulmonary artery fibroblasts (HPAF) were seeded as 40,000 

cells/well in a 96 well plate in 100µl of their respective culture media. After 24hrs, cells were 

conditioned at either normoxia (20% O2) or hypoxia (1.0% O2) for 24 hrs.  After normoxic or 

hypoxic conditioning, media was removed from the cells and VEGF quantified in the supernatant 

using an ELISA kit and a SECTOR Imager 2400 from Meso Scale Discovery (Rockville, MD).  

Data were expressed as pg/ml VEGF. 

2.1.14 MTT (Methylthiazolyldiphenyl-tetrazolium bromide) Assay of Cell Proliferation 

HPAF were seeded as 40,000 cells/well in a 96-well plate in 100 µl of their respective culture 

media. HPAF were conditioned at either normoxia (20% O2) or hypoxia (1.0% O2) for 24 hrs.  

During HPAF hypoxic conditioning, HPAEC were seeded as 10,000 cells/well in a 96 well plate 

in 100µl of their respective culture media.  After HPAF oxygen conditioning, media was 

aspirated from HPAEC and replaced with HPAF-conditioned media.  After 24 hrs, 10µl of MTT 

reagent (final concentration 0.5mg/ml) was added to each well containing HPAEC cultured in 

HPAF-conditioned media.  After 2 hrs, media was aspirated from the HPAEC and replaced with 

100µl DMSO to solubilize metabolized MTT reagent as per manufacturer’s (Sigma Aldrich) 
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protocol.  After 15-minute incubation with mild agitation, absorbance of the DMSO solution was 

read at 570nm. Absorbance is an indication of cellular respiration and the data were expressed as 

relative absorbance. 

2.1.15 Rodent Model of Pulmonary Arterial Hypertension (PAH) 

To induce a rodent model of PAH, the protocol described by Abe et al. was followed with minor 

modification [206].  Briefly, female Sprague-Dawley rats (Charles River) weighing between 

210-225 grams were injected with 100mg/kg SU5416 and housed in either room air (21% O2) or 

hypoxic air (10% O2) for three weeks, at which point all animals housed in hypoxic air were 

removed from hypoxia and housed in room air for an additional one week.  This treatment course 

is referred to here as SU5416 with chronic hypoxia (SUCH).  Control animals were housed in the 

same room as hypoxic animals for the same time, yet in room air.  During the entire four-week 

course of the experiment, rats were treated with 10mg/kg NoxA1ds or SCRMB via aerosol 

inhalation for 30 minutes twice a week.  The concentration of NoxA1ds/SCRMB for aerosol 

preparation was calculated to deliver 10µM peptide to the lung epithelium.  Pressure-volume 

loop analysis of the left and right ventricles of the heart was performed through the apex of the 

heart in an open chest cavity, as described by Pacher et al. using catheters provided by Transonic 

(Ithaca, NY) [64].  After RV and LV hemodynamic phenotyping, animals were sacrificed by 

exsanguination immediately followed by tissue collection and Fulton index calculation.  All 

animal experiments were performed in accordance with the University of Pittsburgh Institutional 

Animal Care and Use Committee regulations. 
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2.1.16 Measurement of ROS in Tissue Homogenates 

Tissues from female SUCH-treated rats were flash frozen in liquid nitrogen immediately after 

sacrifice.  Cryopreserved tissues were homogenized in phosphate buffered saline followed by 

centrifugation at 5,000xg for 10 minutes to remove debris.  Homogenates were passed through a 

30ga needle 5 times to completely lyse remaining cells before suspension in OAB.  NADPH-

dependent O2˙- production was determined using cytochrome c reduction as described above, 

using 5ug protein per sample. 

 

2.1.17 Statistical Analysis 

All results are expressed as means ± S.E. A Student's t-test was used for simple comparisons 

between two data sets.  Two-way ANOVA with replication followed by a Bonferroni post-test 

was used to discern point differences in data sets with more than one group and with multiple 

treatments in each group, e.g. measurements from 2-3 treatment regimens over various time 

points.  Statistical analyses and IC50 determinations were performed using GraphPad Prism 5 

software.  A p value of <0.05 was considered statistically significant. 
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3.0  DEVELOPMENT AND CHARACTERIZATION OF AN ISOFORM-SPECIFIC 

NOX1 INHIBITOR 

 

3.1 INTRODUCTION 

 

The production of ROS by Nox enzymes is achieved through a conserved catalytic mechanism 

contained within the enzyme’s transmembrane domain that causes the transfer of electrons from 

NADPH through FAD and two heme groups to molecular oxygen to form O2˙- and/or H2O2 

[224].  While this catalytic core is conserved among Nox isoforms, it alone is insufficient for 

activity in a subclass of Noxes including Nox1.  Indeed, key interactions between Nox1 and its 

co-activating cytosolic subunits play a major role in activation of this enzyme domain by 

forming a heterodimeric complex essential for ROS generation [36, 115].  Canonical Nox2 

oxidase, the closest homologue of Nox1 and for which much more is known, requires the 

GTPase Rac, organizer subunit p47phox and activator subunit p67phox for activation [54, 132, 225] 

whereas canonical Nox1 requires interaction with  homologous  organizer NOXO1 and activator 

NOXA1 [226].  Nox1 also requires the small GTPase Rac and the transmembrane protein p22phox 

[36].  The assembled complex of subunits (Nox1, NOXO1, NOXA1, Rac, p22phox) comprises the 

functional Nox1 oxidase.  The biochemical structure and function of NOXA1 and NOXO1 are 

largely unknown due to their more recent discovery.  That said, p67phox contains an “activation 

domain” spanning amino acids 190-210 that participates in the catalytic reduction of FAD [127]. 

This domain shares 50% and 80% homology with corresponding residues 191-211 and 198-208 

of NOXA1, respectively [116]. Targeted and specific inhibition of Nox1 has long been desired 

and prior to the design of NoxA1ds, there was an absence of Nox1-specific inhibitors with a 
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validated target and established mechanism.  We hypothesized that residues 191-211 of NOXA1 

serve a function similar to that of the activation domain of p67phox and, in turn, that a peptide 

derived from this domain could serve as a viable inhibitor of NOXA1-Nox1 binding and 

activation.  With the knowledge that mutagenesis of a phenylalanine for an alanine at residue 199 

of NOXA1 reduces Nox1-derived O2˙- production by > 95% [129], we postulated that the same 

substitution would render this truncated peptide a highly-effective inhibitor of Nox1-derived O2˙- 

production.  In addition, by including amino acids that are homologous (residues 200 to 205) and 

non-homologous between NOXA1 and p67phox (residues 195-198), we surmised that the peptide 

would bind to Nox1, rather than Nox2. The peptide representing amino acids 195-205 of 

NOXA1 with a F199A substitution is heretofore referred to as NOXA1 docking sequence 

(NoxA1ds) and was tested for its efficacy as a Nox1 inhibitor (Figure 3-1). 
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Figure 3-1: Design of NoxA1ds.   

Alignment of p67phox and NOXA1 indicates a highly homologous region between the two sequences 

within the activation domain. Phe-199 (F199) in NOXA1 was previously shown to be critical for 

enzymatic activity of Nox1. We selected an 11-mer sequence that contained critical portions of the 

activation domain (i.e. Phe-199), substituted Phe-199 to Ala, and used the resulting peptide as NoxA1ds. 
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3.2 RESULTS 

 

3.2.1 NoxA1ds is a Potent Inhibitor of Nox1-Derived O2˙- in Cell-Free Preparations 

To investigate the ability of NoxA1ds ([NH3]-E-P-V-D-A-L-G-K-A-K-V-[CONH2]) to inhibit 

Nox1, O2˙- production was assessed in a reconstituted canonical COS-Nox1 oxidase system 

expressing Nox1, p22phox, NOXA1, and NOXO1. Previous reports suggested that a related 

previously ascribed “activation domain” in NOXA1 homolog p67phox interacts with FAD sites on 

Nox2’s C-terminal tail [128].  To maximize the potential for NoxA1ds and Nox1 to interact in 

this manner, membrane-integrated fractions from COS-Nox1 cells containing holoprotein Nox1 

with its C-terminal tail, were incubated with cumulative concentrations of NoxA1ds (10-12 – 10-5 

M) before adding cytosolic fractions containing NOXA1 and NOXO1. NoxA1ds concentration-

dependently inhibited O2˙- production with an IC50 of 20 nM (Fig. 3-2A). Maximal inhibition of 

Nox1 was achieved at 1.0 µM NoxA1ds.  In concert with these experiments, we designed a 

scrambled control peptide consisting of an identical amino acid composition in randomized order 

(SCRMB, [NH3]-L-V-K-G-P-D-A-E-K-V-A-[CONH2]) and verified that minimal to no matches 

were found in protein database (i.e. BLAST). Multiple variations of SCRMB with different 

amino acid sequences were initially considered as control peptides. This sequence was chosen as 

the control peptide as it did not preserve the order of charged residues nor the central key amino 

acid sequence of the activation domain (V-D-A-L).  SCRMB did not inhibit Nox1 (Fig. 3-2B).  

 

3.2.2 NoxA1ds is an Isoform-Specific Nox1 Inhibitor 

Isoform-specificity was explored by testing the ability of NoxA1ds to inhibit Nox2, Nox4, and 

Nox5. Cell lysates were prepared from COS-Nox2, COS-Nox4, or HEK-Nox5 cells and O2˙- 
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(Nox2/Nox5) or H2O2 (Nox4) production was measured using the reduction of cytochrome c or 

Amplex Red fluorescence, respectively. NoxA1ds was applied to prepared membrane fractions 

before addition of fractions containing cytosolic subunits (absent in Nox4 and 5 preparations) to 

maximize its ability to inhibit the oxidase.  NoxA1ds did not inhibit Nox2-derived O2˙- 

production, Nox4-derived H2O2 production, or Nox5-derived O2˙- production (Fig. 3-2C-E).  

Additionally, the ability of NoxA1ds to inhibit O2˙- production by xanthine oxidase (XO), a 

molybdenum-dependent enzyme that produces O2˙-, was investigated.  XO produces O2˙- as a 

result of purine catabolism where electrons from the substrate (hypoxanthine) are transferred to 

oxygen as the enzyme produces xanthine and uric acid [227, 228]. The hydroxylamine EPR spin 

probe CPH was used to detect O2˙- produced by XO in the presence or absence of O2˙- scavenger 

SOD or the XO-specific inhibitor allopurinol (measuring CP˙ signal intensity). Concentrations of 

NoxA1ds up to 1 µM did not inhibit XO-derived O2˙- (Fig. 3-2F) as compared to SOD and 

allopurinol controls which abolished the signal.  Each Nox and XO was also tested for to the 

effect of SCRMB control peptide; and no effect on ROS production by any of these oxidases was 

observed (Figure 3-3).  These data indicate that NoxA1ds does not inhibit Nox2-, Nox4-, Nox5-, 

or XO-derived ROS.  In addition, the data indicate that NoxA1ds does not scavenge either O2˙- 

from XO or H2O2 from Nox4. 
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Figure 3-2: NoxA1ds inhibits Nox1-derived O2˙- but not related enzymes. 

Production of O2˙- was calculated by monitoring the reduction of cytochrome c for 15 minutes post 

NADPH addition and subtracting baseline cytochrome c reduction occurring in the presence of SOD.   A) 

Production of O2˙- as measured by the reduction of cytochrome c by cell lysates from COS cells 

transiently transfected with the Nox1 oxidase. Increasing concentrations (from 0.1 nM to 10,000 nM) of 

NoxA1ds caused a dose dependent inhibition of O2˙- production with an IC50 of 20nM.  Maximal 
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inhibition of 88% of total O2˙- production was achieved at a dose of 1.0 µM NoxA1ds.  B) Increasing 

concentrations of SCRMB did not inhibit Nox1-derived O2˙-. C) Production of O2˙- as measured by the 

reduction of cytochrome c by cell lysates from COS cells transiently transfected with the Nox2 oxidase.  

Lysates were treated with increasing concentrations of NoxA1ds (from 0.1 nM to 10,000 nM) prior to 

stimulation of enzyme assembly with 130 μM LiDS and enzyme activation with 180 μM NADPH.  D) 

Production of H2O2 as measured by Amplex red fluorescence 15 min minutes post NADP addition by 

membrane fractions prepared from COS cells transiently transfected with the Nox4 oxidase.  Lysates 

were treated with increasing concentrations of NoxA1ds (from 100 nM to 10,000 nM). E)  Production of 

O2˙- as measured by the reduction of cytochrome c by cell lysates from HEK293 cells stably transfected 

with the Nox5 oxidase stimulated with Ca2+ as described by Banfi et al (Ref. 13), and treated with 

increasing concentrations of NoxA1ds (from 0.1 nM to 10,000 nM). F) Production of O2˙- as measured by 

Electron Paramagnetic Resonance from pure xanthine oxidase enzyme preparations, stimulated with 

hypoxanthine and pre-treated with increasing concentrations of NoxA1ds (from 0.1 nM to 10,000 nM).  

In all panels, enzyme activity was evaluated 15 min post enzyme activation with substrate (20 min post 

NoxA1ds treatment) and no inhibition of the signal was observed. n = 9-12, three to four separate 

experiments.  
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Figure 3-3: SCRMB NoxA1ds does not inhibit Nox2, Nox4, Nox5 or XO.  

A) Production of O2˙-  as measured by the reduction of cytochrome c by cell lysates from COS cells 

transiently transfected with the Nox2 oxidase, stimulated with LiDS, and treated with increasing 

concentrations of NoxA1ds (from 0.1 nM to 10,000 nM).  B) Production of H2O2 as measured by Amplex 

red fluorescence by COS cells transiently transfected with the Nox4 oxidase and treated with increasing 

concentrations of NoxA1ds (from 100 nM to 10,000 nM). C)  Production of O2˙-  as measured by the 

reduction of cytochrome c by cell lysates from HEK293 cells stably transfected with the Nox5 oxidase 

stimulated with Ca2+, and treated with increasing concentrations of NoxA1ds (from 0.1 nM to 10,000 

nM). D) Production of O2˙- as measured by Electron Paramagnetic Resonance from pure xanthine oxidase 

enzyme preparations, stimulated with hypoxanthine and treated with increasing concentrations of 

NoxA1ds (from 0.1 nM to 10,000 nM).  In all panels, no inhibition of the signal was observed. n = 9-12, 

three to four separate experiments.  
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3.2.3 NoxA1ds Inhibits O2˙- in Whole Cells  

We used HT-29 cells to explore whether NoxA1ds could be used as a viable pharmacological 

inhibitor in intact cells. HT-29 are a unique population of colon carcinoma cells that solely 

express Nox1 without expression of any other Nox isoform [229]. To test for permeability, HT-

29 cells were treated with a FITC-labeled NoxA1ds variant for 1 hr before imaging. Confocal 

microscopy revealed that NoxA1ds permeated the cell membrane of HT-29 cells and localized to 

the cytoplasm (Fig. 3-4A-D). To test whether NoxA1ds inhibits Nox1-derived O2˙- production in 

intact cells containing Nox1, HT-29 cells were incubated with increasing NoxA1ds 

concentrations and O2˙- was measured in membrane fractions using cytochrome c.  Fig. 3-4E 

illustrates concentration-dependent inhibition of HT-29 O2˙- that was absent in cells treated with 

SCRMB control peptide.  In whole HT-29 cells, the IC50 was 1.0 µM with maximal inhibition at 

5.0 µM NoxA1ds.  As measured in intact HT-29 cells via EPR, Nox1 inhibition in HT-29 cells 

by NoxA1ds was matched by Nox1 siRNA control (Fig 3-4F). As an additional control, we 

investigated whether NoxA1ds inhibited O2˙- production in cells that do not express Nox1.  

Peritoneal macrophages isolated from Nox1-null mice were pretreated with NoxA1ds for 1 hr 

before addition of PMA to stimulate O2˙- production.  No inhibition of O2˙- production was 

observed using L-012 luminescence (Figure 3-4H). 
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Figure 3-4: NoxA1dsis cell-permeant and effective in whole colon adenocarcinoma cells yet 

ineffective in Nox1-/y cells.  

FITC-labeled NoxA1ds and native NoxA1ds were incubated with HT-29 colon adenocarcinoma cells.  

HT-29 cells bear the distinction of having abundant Nox1 expression while not expressing Nox2, Nox4, 
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or Nox5.  A-D) FITC-labeled NoxA1ds was incubated with HT-29 colon adenocarcinoma cells for 1hr 

prior to imaging.  Confocal microscopy of these cells indicates that FITC-NoxA1ds penetrated the 

extracellular membrane and that its distribution is cytosolic and perinuclear.  E) As measured by SOD 

inhibitable reduction of cytochrome c, increasing doses of NoxA1ds caused dose-dependent inhibition of 

O2˙- production by HT-29 cells.  SCRMB peptide did not inhibit O2˙- production, *** p<0.05 for 0.5, 1, 

and 5 µM NoxA1ds vs 0µM NoxA1ds by one-way ANOVA. F) As measured by EPR, 10 μM NoxA1ds 

and Nox1 siRNA both significantly inhibited O2˙- production by HT29 cells, p values determined by one-

way ANOVA G) Western blot analysis of Nox1/β-actin protein from Nox1 siRNA or control treated 

HT29 cells.  H) Peritoneal macrophages were isolated from Nox1 null mice and O2˙- production was 

measured by L-012 chemiluminescence after 2 hr incubation with NoxA1ds and subsequent PMA 

stimulation.   No difference was observed between NoxA1ds treated and untreated samples. All values are 

expressed as n = 9, except for H which was quantified via three separate experiments n = 10-12, cells 

from four individual mice. 

  



 60 

3.2.4 NoxA1ds Binds to Nox1  

An ELISA-based assay was used to test whether NoxA1ds binds to Nox1. Biotin-tagged 

NoxA1ds (B-NoxA1ds) applied to neutravidin-coated 96-well plates was added membrane 

fractions from Nox1-transfected or non-transfected COS-22 cells followed by treatment with 

fluorescent secondary antibodies. After repeated washing, a 30% increase in fluorescence was 

observed in wells treated with membrane fractions of Nox1-transfected cells vs. untransfected 

cells. This increase was not observed in wells treated with Nox1-transfected cell membranes 

added to wells containing biotin-tagged SCRMB control peptide (Fig. 3-5A).  A similar ELISA-

based assay indicated that Nox2 from COS-Nox2 membrane fractions did not bind NoxA1ds 

(Fig 3-5B). 

To corroborate these results, Fluorescence Recovery After Photobleaching (FRAP) of a 

Rhodamine-labeled NoxA1ds (R-NoxA1ds) in untransfected cells and those transfected with 

Nox1-YFP was quantified.  As seen in Fig. 3-5C, R-NoxA1ds completely recovered after 250 s 

in untransfected cells while R-NoxA1ds recovery was significantly slower and markedly 

attenuated in cells transfected with Nox1-YFP, i.e. by 250 s, R-NoxA1ds had recovered less than 

50% in Nox1-YFP-transfected cells. The significant decrease in the mobile fraction of R-

NoxA1ds and Nox1-YFP-transfected vs. non-transfected cells corroborates the ELISA data, 

indicating binding between Nox1 and NoxA1ds (Fig. 3-5) 
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Figure 3-5: NoxA1ds binds to Nox1 but does not detectably bind Nox2.  

A) Neutravidin coated plates were incubated with biotin-tagged NoxA1ds (Biotin-NoxA1ds) or biotin-

tagged SCRMB (Biotin-SCRMB) before addition of cell membranes prepared from cells transfected with 

Nox1 (Nox1 membrane) or transfected with an empty vector (COS22 membrane).  Bound Nox1 was 

detected through a FITC conjugated secondary antibody bound to the Nox1 primary antibody.   FITC 

fluorescence was expressed as binding as % COS22 membranes on each experimental day.  There was no 

difference in binding between COS22 membranes and Nox1 membranes incubated with Biotin-SCRMB 

whereas membranes incubated with Biotin-NoxA1ds showed a significant increase in binding when 

transfected with Nox1. n = 10-12, three separate experiments, *p<0.05, two-way ANOVA with 

Bonferroni post-hoc t-test.  B) Neutravidin coated plates were incubated with biotin-tagged NoxA1ds 

(Biotin-NoxA1ds) or biotin-tagged SCRMB (Biotin-SCRMB) before addition of cell membranes 

prepared from cells transfected with Nox2 (Nox2 membrane) or transfected with an empty vector (COS22 

membrane).  Bound Nox2 was detected through an Alexa 488 conjugated secondary antibody bound to 



 62 

the Nox1 primary antibody. Fluorescence was expressed as binding as % COS22 membranes on each 

experimental day.  There was no difference in binding between COS22 membranes and Nox2 membranes 

incubated with Biotin-SCRMB  or Biotin-NoxA1ds, C) Fluorescence Recovery After Photobleaching 

(FRAP) of COS22 cells treated with 70nM Rhodamine B-labeled NoxA1ds (R-NoxA1ds) in the absence 

and presence of Nox1YFP transfection and FRAP of Nox1YFP alone.  Panel to the right represents 

mobile fraction of these groups after 250 sec, *p<0.05, one-way ANOVA with Bonferroni post-hoc t-test.  
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3.2.5 NoxA1ds Interrupts Nox1 : NOXA1 Association  

Upon observation of NoxA1ds-Nox1 binding, we proposed that NoxA1ds would interrupt 

association of Nox1 and NOXA1.  To test this, we employed a FRET-based assay in which 

COS-22 cells were transfected with Nox1-YFP and NOXA1-CFP. Cells were analyzed by fixing 

followed by irreversible YFP-photobleaching to determine if FRET was occurring between YFP 

and CFP. FRET is observed indicating protein interaction between two partners when the donor 

emission (CFP) signal increases after a nearby acceptor fluorophore (YFP) is inactivated by 

irreversible photobleaching. In these cells, photobleaching of the YFP label resulted in a 

concomitant increase in CFP fluorescence, together with a decrease in YFP signal intensity, 

indicating a direct interaction between Nox1-YFP and NOXA1-CFP (Fig. 3-6A).  Hence, 

photobleaching effectively prevented dipole-dipole coupled acceptor (YFP-Nox1) from 

accepting a quantum energy transfer from the donor (CFP), thus enhancing CFP fluorescence.  

We used a myristolated CFP (CFPm) which is exclusively targeted to the cell membrane as a 

negative control [25].  In cells expressing CFPm and Nox1-YFP, photobleaching of YFP did not 

result in an increase in CFP fluorescence, indicating FRET was not a result of coincidental 

membrane abundance and co-localization of these proteins (Fig 3-7). 

COS-22 cells transfected with Nox1-YFP and NOXA1-CFP were then incubated with 10 

µM SCRMB NoxA1ds or NoxA1ds for 1 hr before imaging. The SCRMB control peptide had no 

effect on CFP/YFP FRET coupling (Fig. 3-6B, D). On the other hand, NoxA1ds significantly 

reduced FRET efficiency (Fig. 3-6C, D). These results indicate that Nox1 and NOXA1 directly 

interact and that this interaction is disrupted by NoxA1ds, but not by control peptide. 
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Figure 3-6. NoxA1ds disrupts Nox1-NOXA1 interaction.  

FRET between Nox1-YFP and NoxA1-CFP transfected COS22 cells in the presence or absence of 10µM 

NoxA1ds or SCRMB was evaluated.  Relative fluorescence of CFP is green while YFP is red.  Traces 

underneath the images indicate fluorescent intensities of CFP and YFP underneath the arrow overlaid on 

each cell.  A) Transfected COS22 cells were treated with vehicle for one hour prior to imaging cells, 

photobleaching of Nox1-YFP was complete and resulted in a concomitant increase in CFP fluorescence. 

B)  Transfected COS22 cells were treated with 10µM SCRMB peptide for one hour prior to imaging 

cells, photobleaching of Nox1-YFP was complete and also resulted in a concomitant increase in CFP 

fluorescence.  C) Transfected COS22 cells were treated with 10µM NoxA1ds peptide for one hour prior 

to imaging cells, photobleaching of Nox1-YFP was complete but did not result in a concomitant increase 

in CFP fluorescence. D) Quantification of FRET efficiency from images A-C.  Values expressed as n= 8, 

three separate experiments ***p<0.001 by one-way ANOVA and Bonferroni post-test 
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Figure 3-7: Nox1:NOXA1 FRET interaction is not a result of CFP and YFP proximity in the 

membrane. 

Potential FRET between Nox1-YFP and a myristolated-CFP (CFP-Myr) transfected COS22 cells was 

evaluated.  Relative fluorescence of CFP is green while YFP is red.  Traces underneath the images 

indicate fluorescent intensities of CFP and YFP underneath the arrow overlaid on each cell.  

Photobleaching of Nox1-YFP was complete but did not result in a concomitant increase in CFP 

fluorescence. 
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3.3 DISCUSSION 

 

We report here on the design, mechanism, and target validation of a specific Nox1 inhibitor 

(NoxA1ds) that is cell permeant and highly potent [230]. NoxA1ds was derived from a peptide 

whose structure is based on a short sequence of an essential Nox subunit; in this case, a putative 

activation domain of NOXA1. We demonstrate here that NoxA1ds binds directly to NOX1 and 

displaces NOXA1 to inhibit enzymatic activity and biological function.  

NoxA1ds recapitulates a putative activation subdomain of NOXA1 with a F199A 

substitution in the sequence of NOXA1 stretching from residues 195 to 205 

(195EPVD(F→A)LGKAKV205). This modification mimics a point mutation first created in the 

holoprotein by Maehara et al. [129] that caused a 75% loss in activity in the reconstituted 

canonical Nox1 oxidase system. Although the function of this domain in NOXA1 is unclear, a 

related domain exists in p67phox, the activator of Nox2 [128]. The activation domain of p67phox is 

known to be critical for catalytic Nox2 oxidase activity [128]. In designing NoxA1ds as a 

potential competitive and specific inhibitor of Nox1-NOXA1 binding, we selected a subdomain 

in NOXA1 containing residues that are both conserved and non-conserved between NOXA1 and 

p67phox. 

The defined p67phox activation domain (amino acids 190–210) and corresponding region 

in NOXA1 share 50% homology. NoxA1ds was intentionally derived from a corresponding 

portion of this region in which 46% of the amino acids are dissimilar between p67phox and 

NOXA1, i.e. NoxA1ds is derived from amino acids 195 to 205, in which the first four amino 

acids are EPVD as opposed to AKKD in p67phox. We postulated that this difference confers 

isoform specificity of NoxA1ds for Nox1. The lack of observed inhibition in Nox4 or Nox5 
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systems is likely a result of these Nox systems having no cytosolic activator subunit requirement. 

Finally, the lack of inhibition of XO by NoxA1ds is further confirmation that its inhibitory effect 

is not germane to all oxidases and is not a consequence of ROS scavenging. 

NoxA1ds could potentially mimic functional sites in other proteins and thus interfere 

with their function. We used BLAST to compare the sequence of NoxA1ds to the National 

Institutes of Health translated nucleotide database to determine potential nonspecific protein 

interactions with NoxA1ds. We were surprised to observe that fewer than five mammalian 

proteins outside of the NADPH oxidase family shared significant homology with NoxA1ds. 

These hits were hypothetical proteins based on isolated DNA sequences. As such, we believe 

nonspecific actions of NoxA1ds should be negligible. 

When NoxA1ds was added to cell-free preparations of the canonical Nox1 oxidase, 

composed of catalytic subunit Nox1, activating subunit NOXA1 and organizing subunit NOXO1 

along with Rac, NoxA1ds inhibited Nox1-derived O2˙- production with an IC50 of 20 nM 

achieving maximum inhibition of 90% at 1.0 μM. In addition, we showed that NoxA1ds does not 

scavenge either O2˙- or H2O2 and does not inhibit Nox2, Nox4, Nox5, or XO activity. These 

results support NoxA1ds as an isoform-specific inhibitor of Nox1. 

We extended our studies to determine the in vitro efficacy of NoxA1ds and observed that 

fluorescent analogues of NoxA1ds (Noxa1ds-FITC) are capable of crossing the plasma 

membrane and localizing to the cytosol. Many short peptides require the small HIV “tat” peptide 

moiety to penetrate cell membranes [112, 231]. In contrast, our findings herein demonstrated that 

“tat” is unnecessary for NoxA1ds to cross the plasma membrane, and we attribute this in part to 

the positively charged lysines in the C terminus of NoxA1ds and the alternating 

hydrophobic/hydrophilic amino acid structure of NoxA1ds. Indeed, other short peptides with 
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similar hydropathy patterns have proven highly cell permeant and thus support our findings 

[232].  Upon demonstrating its permeability in whole cells, we tested whether NoxA1ds is an 

effective inhibitor of O2˙- production in a primary cancer cell line (HT-29) that exclusively 

expresses Nox1 oxidase [229]. We observed that NoxA1ds significantly attenuated O2˙- 

production in HT-29.  

ELISA and FRAP data revealed that NoxA1ds binds to the catalytic Nox1 subunit, and 

FRET demonstrated that NoxA1ds disrupted the critical association of Nox1 with NOXA1 and 

that this binding is specific to Nox1 in HPAEC. Our FRET data support the notion that not only 

is this domain an activation domain critical for enzyme activity in Nox1 but that this domain is 

also a key binding region  in Nox1-NOXA1 complexes [129].  

Notwithstanding the broadly-demonstrated effectiveness of related peptides by parenteral, 

peritoneal, subcutaneous, and direct application to blood vessels using gene therapy [159, 232], 

the limitations in the use of peptides as “druggable” therapeutics are obvious. These include a 

very limited oral bioavailability due to peptide degradation in the gut. As mentioned earlier, 

however, these issues are being circumvented by novel technologies, including the use of 

nanotechnologies such as microbubble mediated drug delivery [233, 234]. Beyond targeted 

peptide delivery, there are a number of peptide modifications that can support bioavailability by 

reducing protease degradation. These include hydrocarbon stapling and partial substitution of d-

amino acids [235, 236]. 

Maehara et al. [129] first reported that the NOXA1 F199A mutation that we incorporated 

into NoxA1ds interferes with FAD reduction in the enzyme complex and thus may prevent 

catalytic O2˙- production.  While it is plausible that NoxA1ds inhibits Nox1 through a similar 

mechanism, our data are more in line with NoxA1ds preventing Nox1-NOXA1 binding and 
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inhibiting O2˙- production. Thus, we propose that this domain is crucial for the binding and 

activation of Nox1. Taken together, our data indicate that the peptide NoxA1ds is a specific 

inhibitor of Nox1 in cell-free and whole cell preparation and that this inhibition occurs via 

binding to the catalytic Nox1 subunit and blockade of Nox1-NOXA1 binding (Figure 3-8).  It 

stands to reason that this site-specific binding is important for subsequent FAD reduction.  

However, whether the domain somehow catalyzes or facilitates FAD reduction either directly or 

via an allosteric change in the Nox1 C-terminus is still an open question. 
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Figure 3-8: Schematic of NoxA1ds Mechanism of Action. 

The data presented here indicate that NoxA1ds is a specific Nox1 inhibitor that binds to Nox1 and 

prevents its interaction with NOXA1. 
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4.0  DETERMINE RELATIVE ROLES OF NOX1 VS NOX2 IN ENDOTHELIAL O2
·- 

PRODUCTION AND CELL MIGRATION 

 

4.1 INTRODUCTION 

 

The first rationally-designed, peptidic Nox inhibitor, Nox2ds-tat (Nox2 docking sequence-tat; 

Nox2ds-tat a.k.a. gp91ds-tat), was identified by the Pagano laboratory in 1999 and published in 

2001 as a compound that decreased angiotensin II-induced vascular O2˙- generation and attenuate 

systemic blood pressure elevation in hypertensive mice [112].  Nox2ds-tat was designed as a 

peptide mimicking the second intracellular loop of Nox2, with the “tat” sequence added to the C-

terminus to facilitate cell permeation [112].  Since its development, the utility of Nox2ds-tat has 

been demonstrated as a Nox inhibitor in a wide variety of cell and organ systems representing 

different disease phenotypes, including cardiovascular and neurodegenerative manifestations of 

disease consistent with the expression of Nox2 [151, 167, 237, 238].  However, despite the 

widespread efficacy and utility of Nox2ds-tat, specificity of Nox2ds for the Nox2-oxidase had 

not been fully tested.  This gap in knowledge was in part a result of the development of Nox2ds-

tat prior to or simultaneous with the discovery of new Nox homologues.  Indeed, Nox1 was 

discovered in prostate cancer cells in 1999 [100] while Nox4 was discovered in kidney cells in 

2001 [131] and Nox5 was discovered in testis in 2001 [53].  At the time of Nox2ds-tat’s 

discovery, vascular expression, physiological roles, and genetic data of these Noxes was 

completely lacking, thereby precluding investigation of the specificity of Nox2ds-tat against 

these novel Nox isoforms [108].  What’s more, heterologous systems (i.e., COS or HEK cell 

preparations) were not generally available. 
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The significant homology between Nox1 and Nox2 has raised a possibility that Nox2ds 

may also inhibit Nox1 despite its derivation from components of the Nox2 oxidase. Since its 

discovery in 2001, Nox2ds-tat has seen continued use as a generic Nox inhibitor and an untested 

bias that it would be effective at inhibiting other Noxes.  As the major vascular isoforms of Nox 

are Nox1, Nox2, and Nox4 (with the specificity of Nox2ds vs Nox4 being tested elsewhere), our 

laboratory proceeded to characterize the specificity of Nox2ds-tat for Nox2 vs Nox1 and Nox4 

and to determine the relative roles of various isoforms of Nox in endothelial cell biology.  The 

group long postulated that Nox2ds preferentially inhibits Nox2 rather than Nox1 and 4 by virtue 

of its design.  Furthermore, elucidation of the primary Nox isoform responsible for ROS 

production in HPAEC and subsequent effect on cell physiology was sought in this dissertation.  

Here, as part of a comprehensive study performed by Drs. Csanyi and Pagano (and co-workers), 

I performed a subset of experiments using cell-free biochemical assays of Nox activity to 

determine the pharmacological profile of Nox2ds against Nox1, Nox2 and Nox4. Nox2ds’ 

specificity was tested without the “tat” conjugation as these assays were performed in cell-free 

systems.  Following certification of Nox2ds specificity, I utilized NoxA1ds and Nox2ds-tat to 

investigate the relative contribution of Nox1 and Nox2 to hypoxia-induced O2˙- production and 

VEGF-mediated migration of endothelial cells.  The “tat” cell penetrating peptide leader 

sequence was added to Nox2ds and used for our endothelial cell migration experiments.  
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4.2 RESULTS 

 

4.2.1 Nox2ds inhibits O2˙- production from Nox2-oxidase 

To investigate whether Nox2ds inhibits O2˙- production in the Nox2 oxidase system, SOD-

inhibitable cytochrome c reduction was measured in Nox2ds-pretreated COS-Nox2 cell lysates. 

Addition of LiDS to lysates derived from COS-Nox2 cells stimulated O2˙- production in a 

reaction that was dependent on the presence of NADPH (1.33±0.1 and 0.40±0.1 nmol O2˙-

/min/107 COS-Nox2 lysate-cell equivalents for LiDS- and vehicle-treated COS-Nox2 lysates, 

respectively, p < 0.05). O2˙- production in non-transfected COS-22 cell lysates (control) was 

0.16±0.1 nmol O2˙-/min/107 COS-22 lysate-cell equivalents (Fig. 4-1). As demonstrated in Fig. 

4-1, preincubation of COS-Nox2 cell lysates with Nox2ds (before LiDS-treatment) 

concentration-dependently inhibited O2˙- production, displaying an IC50 of 0.74 μM. In contrast, 

preincubation of COS-Nox2 cell lysates with scrmb Nox2ds did not inhibit Nox2-oxidase.  Note:  

Experiments described in Sections 4.2.1 through 4.2.3 are part of a larger study performed by Dr. 

Gabor Csanyi et al. in the Pagano laboratory and are germane to this dissertation.  The 

candidate’s specific experimental contributions to this body of work are noted below. 

4.2.2 Nox2ds does not inhibit O2˙- production from Canonical or Hybrid Nox1-oxidase 

The series of experiments described in this subsection were personally carried out by the 

candidate and are directly relevant to the validation of Nox2ds for the purposes of this 

dissertation.  In contrast to the COS-Nox2 cell-free system and in line with the constitutive 

activity of COS-Nox1/NOXO1/NOXA1 cells, the cytochrome c assay of COS-

Nox1/NOXO1/NOXA1 cell free system revealed that the canonical COS-Nox1 oxidase does not 
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require LiDS for activation (nmol O2˙-/min/107 cell equivalents were: 1.30±0.3 and 0.16±0.1 for 

COS-Nox1 and COS-22 cell lysates, respectively, p < 0.05). Preincubation of COS-Nox1 cell 

lysates with different concentrations of Nox2ds did not inhibit O2˙- production (Fig. 4-2).  

In separate experiments, we tested whether the lack of an inhibitory effect of Nox2ds on 

the Nox1 system is due to the stable interaction of NOXO1 and NOXA1 with Nox1. The Nox1 

organizer subunit NOXO1 was preincubated with vehicle (control) or 10 μM Nox2ds for 10 min, 

and then NOX1 and NOXA1 were added consecutively. After the preincubation period, LiDS 

was added and O2˙- production was measured.  Our results demonstrate that preincubation of 

NOXO1 with Nox2ds did not inhibit the canonical Nox1 oxidase (Table 4-1). Previous studies 

reported that Nox1 can be activated by not only NOXO1 and NOXA1 but also by p47phox and 

p67phox [226]. We therefore tested the effect of Nox2ds on O2˙- production on all possible 

combinations of Nox1 oxidase system. As shown in Table 4-1, Nox2ds did not inhibit O2˙- 

production in either the canonical or the hybrid Nox1 system. 
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Figure 4-1. Nox2ds dose-dependently inhibits O2˙- production from Nox2-oxidase.  

COS-Nox2 cell lysate was preincubated with various concentrations of Nox2ds (from 0.1 μM to 10 μM) 

and Scrmb Nox2ds (from 0.1 μM to 10 μM) for 5 min at 25○C. After the addition of 130 μM LiDS, O2˙- 

production was initiated by the addition of 180 μM NADPH and measured by the initial linear rate of 

SOD-inhibitable cytochrome c reduction. O2˙- production is expressed as nmol O2˙-/min/107 cell 

equivalents. Data represent the mean ± SEM of 7-16 experiments. For comparison, O2˙- production in 

non-transfected COS-22 cell lysate is shown. *p < 0.05 indicates significant differences in O2˙- production 

between Nox2ds- and scrmb Nox2ds-treatment. †p < 0.05 indicates significant difference between COS-

Nox2 and COS-22 cell lysate activity.  
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Figure 4-2. Nox2ds does not inhibit O2˙- production from Nox1-oxidase.  

COS-Nox1 cell lysate was preincubated with various concentrations of Nox2ds (from 0.1 μM to 10 μM) 

for 5 min at 25 ○C. O2˙- production was initiated by the addition of 180 μM NADPH and measured by the 

initial linear rate of SOD-inhibitable cytochrome c reduction. O2˙-production is expressed as nmol O2˙- 

/min/107 cell equivalents. Data represent the mean ± SEM of three experiments. The series of experiments 

described in this figure were conducted by the candidate and Dr. Csanyi and are directly relevant to the 

validation of Nox2ds for the purposes of this dissertation.   
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HEK293 Cells: 

 

 

COS22 Cells: 

 

Table 4-1. Effect of Nox2ds on O2
•− generating activity of Nox1 oxidase. 

COS-22 cells were separately transfected with Nox1, NOXO1, p47phox, NOXA1 or p67phox, lysed and the 

Nox1 membrane component, as well as the NOXO1, p47phox, NOXA1 and p67phox cytosolic extracts were 

separately prepared. The respective organizer subunit (NOXO1 or p47phox) was preincubated with vehicle 

(control) or 10 μM Nox2ds for 10 min, and then Nox1-containing membrane and NOXA1/p67phox were 

added consecutively. After the preincubation period, LiDS (130 μM) was added to induce the assembly of 

the oxidase and O2˙- production was initiated by 180 μM NADPH. O2
•− was measured by the initial linear 

rate of SOD-inhibitable cytochrome c reduction. O2˙- production is expressed as nmol O2˙-/min/107 cell 

equivalents. Data represent the mean ± SEM of 3–6 experiments. The series of experiments described in 

this subsection were personally carried out by the candidate and are directly relevant to the validation of 

Nox2ds for the purposes of this dissertation.   
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4.2.3 p47phox, but not NOXO1, binds to Nox2ds 

Nox2ds was designed to selectively inhibit the interaction between the cytosolic B-loop of Nox2 

and p47phox by binding to p47phox and preventing its translocation to the membrane. To confirm 

this binding and to rule out binding of Nox2ds to NOXO1, ELISA experiments were performed 

on lysates from p47phox- or NOXO1-transfected COS-22 cells incubated in ELISA plates with 

neutravidin-immobilized biotinylated Nox2ds or its scrambled control. As shown in Fig. 4-3A, 

using p47phox antibody to detect binding (followed by fluorescently tagged secondary antibody), 

fluorescence intensity in biotinylated Nox2ds-bound wells was significantly higher when 

cytosolic fractions of COS-22-p47phox vs. COS-22 were added. These data indicate that p47phox 

binds to Nox2ds.  Binding of p47phox was sequence specific as p47phox binding to the scrambled 

sequence produced significantly less fluorescence (Fig. 4-3A). In contrast, there was no 

difference in fluorescence intensity when cytosolic fractions of COS-22 NOXO1 vs. COS-22 

cytosol were added to plates bound with Nox2ds, followed by incubation with NOXO1 antibody 

(Fig.  4-3B). 

 

4.2.4 Nox1, but not Nox2-derived O2˙- Mediates Endothelial Cell Migration 

To test the role of this key Nox1-NOXA1 interaction in a pathophysiologically relevant vascular 

cell phenotype, we investigated whether Nox1-NoxA1ds binding and inhibition was effective in 

HPAEC as these cells express abundant Nox1 and Nox2 with Nox4 being the most highly 

expressed (Fig. 4-4B). ELISA data indicated that NoxA1ds bound to Nox1 but not Nox2 or -4 in 

HPAEC (Fig. 4-4A). HPAEC were exposed to 1.0% oxygen for 24 h and treated with 10 μm 

NoxA1ds or SCRMB for 1 h before measuring O2˙- production. Hypoxia caused a 3-fold 

increase in O2˙- production that was completely inhibited by preincubation with NoxA1ds but not 
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with SCRMB or by Nox2ds-tat (Fig 4-4C,F). The effect of NoxA1ds was partially replicated 

using Nox1 siRNA, with detectable yet statistically insignificant inhibition of O2˙- production. 

The incomplete inhibition of O2˙- production was likely due to incomplete knockdown of Nox1 

by the siRNA (Fig. 4-4E). To determine the effect of NoxA1ds on migration, we performed a 

wound assay on VEGF-stimulated HPAEC migration under hypoxic conditions (1.0% O2). 

NoxA1ds caused a significant reversion in endothelial cell migration to vehicle control levels, an 

effect that was not observed in cells treated with SCRMB or Nox2ds-tat (Fig. 4-5). Additionally, 

HPAEC transfected with Nox1-YFP and NOXA1-CFP showed an increase in FRET when 

treated with 20 nm VEGF that was inhibitable by NoxA1ds, indicating that VEGF promotes 

Nox1-NOXA1 association (Fig.4-6). 

4.2.5 Fibroblasts are a Potential in vivo Source for VEGF during Hypoxia 

To determine potential sources for VEGF and thus Nox1 activation in the vessel, HPAEC, 

HPASMC and HPAF were cultured at either 20% O2 or 1.0%O2 for 24 hrs before quantification 

of VEGF in the cell culture media.  HPAEC consumed nearly all VEGF initially present in the 

media while HPASMC produced substantial VEGF, yet in a hypoxia independent manner.  

Interestingly, HPAF were the only tested vascular cell type to exhibit enhanced VEGF 

production during hypoxia (Figure 4-7).  This VEGF-enriched media derived from hypoxia 

conditioned HPAF was then used to culture HPAEC and was observed to support HPAEC 

mitogenic propensity significantly more than media derived from normoxia conditioned HPAF 

as measured by MTT assay.  This stimulation of mitogenic propensity was inhibited by 

NoxA1ds, confirming a role for Nox1 in VEGF stimulated HPAEC proliferation (Figure 4-7D). 
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Figure 4-3: p47phox, but not NOXO1, binds to Nox2ds.  

ELISA experiments were performed to test whether p47phox (A) and NOXO1 (B) bind to Nox2ds and/or 

scrmb Nox2ds. Biotinylated Nox2ds and scrambled peptides were first bound to neutravidin-coated plates 

and then incubated with COS-22, COS-22-p47phox (COS-22 cells transfected with p47phox) or COS-22-

NOXO1 (COS-22 cells transfected with NOXO1) cytosolic extracts for 1 hr at room temperature. Rabbit 

polyclonal p47phox or rabbit NOXO1 antibodies were used to detect Nox2ds-bound p47phox or NOXO1, 

respectively. After 1 hr incubation and extensive washing, bound primary antibodies were detected by 

FITC-labeled goat anti rabbit IgG antibody. The fluorescence of each well was measured using a Biotek 

Synergy 4 Hybrid Multi-Mode Microplate Reader (Excitation:488 nM, Emission:518 nM). Data represent 

the mean ± SEM of 3–4 experiments. *p<0.05 between COS-22 and COS-22-p47phox cytosolic extracts in 

Nox2ds wells. #p<0.05 between Nox2ds and Scrmb Nox2ds wells incubated with COS-22-p47phox extracts 
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Figure 4-4: NoxA1ds attenuates hypoxia-induced O2˙-production.  

A) NoxA1ds binds to Nox1 but not Nox2 or Nox4 in HPAEC.  Neutravidin coated plates were incubated 

with biotin-tagged NoxA1ds (B-NoxA1ds) or biotin-tagged SCRMB (B-SCRMB) before addition of 

HPAEC cell membranes.  Captured Noxes were detected through a Alexa-488 conjugated secondary 



 82 

antibody bound to the Nox1,2 or 4 primary antibody.  Fluorescence was expressed with background lysis 

buffer fluorescence subtracted.  When fluorescence was detected via Nox1 primary antibody, there was a 

significant increase in binding as compared to B-SCRMB. n = 4, *p<0.05, unpaired t-test.  B) Relative 

Nox expression in HPAEC quantified by qPCR.  C)  In hypoxia and normoxia, SCRMB and NoxA1ds 

peptides were added to cells at 10uM for 1hr prior to cell lysis and quantification of enzyme activity. 

Cells were transfected with Nox1 siRNA 24hrs prior to 24hr normoxic/hypoxic treatment followed by 

cell lysis and quantification of enzyme activity.   SCRMB, NoxA1ds, and Nox1 siRNA had a negligible 

effect on O2˙-production under normoxic conditions.  Hypoxia (1.0% O2, 24hrs) treatment resulted in a 

three-fold increase in O2˙- production that was unaffected by SCRMB.  Upon treatment with NoxA1ds, 

O2˙-production by cells subjected to hypoxia returned to the amount observed under normoxia.  D) 

Representative experimental trace for enzyme activity in “B” shown as the SOD-inhibitable reduction of 

cytochrome c over time.  n = 9, three separate experiments.  E) Western blot analysis of Nox1/β-actin 

protein from Nox1 siRNA or control treated human pulmonary artery endothelial cells (HPAEC).  Nox1 

knockdown was incomplete and approximates the degree of knockdown observed as O2˙- production F) 

Hypoxia (1.0% O2, 24hrs) treatment resulted in a two-fold increase in HPAEC (Human Pulmonary Artery 

Endothelial Cells) O2˙- production that was unaffected by Nox2ds-tat or its control (SCRMB).  n = 9, 

three separate experiments. *p<0.05, **p<0.01, one-way ANOVA with Bonferroni post-hoc t-test. 
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Figure 4-5: Nox1, but not Nox2, is responsible for VEGF-stimulated wound healing.  

Confluent HPAEC were scratched with P1000 pipet tip, photographed, treated with 20nM VEGF +/- 

10µM NoxA1ds, and photographed again after 24 hours.  A) Representative images of HPAEC 

immediately after scratch wounding and 24hrs post scratch wound.  B) Quantification of HPAEC wound 

closure VEGF +/- 10µM NoxA1ds C) Quantification of HPAEC wound closure treated with VEGF +/- 

10µM Nox2ds-tat.  Values represent n=6-8, three to four separate experiments, *p<0.05 one-way 

ANOVA with Bonferroni post-test as compared to vehicle treatment.   
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Figure 4-6: NoxA1ds disrupts VEGF-stimulated Nox1-NOXA1 interaction.  

FRET between Nox1-YFP and NoxA1-CFP transfected HPAEC in the presence or absence of 20 nm 

VEGF and/or 10 μM NoxA1ds. Relative fluorescence of CFP is green, and YFP is red. Traces below the 

images indicate fluorescent intensities of CFP and YFP below the arrow overlaid on each cell. A) 

transfected HPAEC were treated with vehicle for 1 h prior to imaging cells; photobleaching of Nox1-YFP 

was complete and resulted in a concomitant increase in CFP fluorescence. B) transfected HPAEC were 

treated with 20 nm VEGF for 1 h prior to imaging cells; photobleaching of Nox1-YFP was complete and 

resulted in an increase in CFP fluorescence of greater magnitude than without VEGF. C) Transfected 

HPAEC were treated with 10 μM NoxA1ds peptide for 1 h prior 20 nm VEGF for 1 h. Cells were then 

imaged after VEGF treatment. Photobleaching of Nox1-YFP was complete but did not result in a 

concomitant increase in CFP fluorescence. D) Quantification of FRET efficiency from images A-C. 

Values expressed as n = 6, two separate experiments; *, p < 0.05 versus vehicle; ***, p < 0.001 versus 

VEGF, one-way ANOVA and Bonferroni post-test. 



 85 

 

Figure 4-7: VEGF Production by HPAF is enhanced by hypoxia. 

A) VEGF production by HPAEC measured by MSD ELISA indicated that HPAEC consumed most 

VEGF present in the media after 24hrs in either hypoxic (1.0% O2) or normoxic (20% O2) media, n=3.  B) 

HPASMC produce VEGF with respect to naïve media without cells but in an oxygen-insensitive manner, 

n=3.  C) VEGF production by HPAF measured by MSD ELISA indicated that HPAF produce VEGF with 

respect to naïve media without cells and that this is enhanced by 1.5 fold in hypoxic media versus 

normoxic media, D) Normoxic HPAF conditioned media (Nrmx CM) or hypoxic HPAF-conditioned 

media (Hypx CM) was used to culture HPAEC for 24 hrs ±NoxA1ds, after which cellular proliferative 

propensity was determined by MTT assay.  Hypx CM potentiated HPAEC proliferative propensity in a 

Nox1 dependent manner.  n=3. 

2

20
% O 2

1.0
% O

Gro
wth m

ed
ia

0

20

40

60

80

100
pg

/m
l V

EG
F

2

20
% O 2

1.0
% O

Gro
wth m

ed
ia

0

200

400

600

800

pg
/m

l V
EG

F

Nrm
x C

M

Hyp
x C

M

M N
oxA

1d
s

µ

Hyp
x C

M +1
0

0
10
20
80

90

100

110
p<0.05, ANOVA

R
el

at
iv

e 
 M

TT
 A

bs
or

ba
nc

e

2

20
% O 2

1.0
% O

Gro
wth m

ed
ia

0

5

10

15

20
p<0.05

pg
/m

l V
EG

F
A B

C D



 86 

 
4.3 DISCUSSION 

 

Numerous studies have established the ability of Nox2ds-tat to inhibit Nox activity in vitro and 

in vivo [46, 122, 139, 197].  However, until now the specificity of inhibition of Nox2ds (non-

chimeric B-loop peptide) between Nox1 and Nox2 had not been investigated. To test the 

specificity of Nox2ds, we examined its potential inhibitory activity in cell-free assays using 

reconstituted systems of Nox1 while others demonstrated that Nox2ds does not inhibit Nox4 

[130]. Our data demonstrate that Nox2ds concentration-dependently inhibited O2˙- production in 

a COS-Nox2 cell-free system and that Nox2ds is a potent and efficacious inhibitor of Nox2 

NADPH oxidase with an IC50 of 0.74 μM. Furthermore, our results demonstrated that Nox2ds 

does not inhibit ROS production in the COS-Nox1 system with others determining that Nox2ds 

does not inhibit ROS production by COS-Nox4 or XO. The results of the present study 

demonstrate selectivity of Nox2ds peptide in differentiating the contribution of Nox2- vs. Nox1-

oxidase to Nox-derived ROS production. Furthermore, it was also determined that Nox2ds does 

not inhibit hybrid Nox1 systems where either NOXO1 or NOXA1 is replaced with p47phox or 

p67phox, respectively.  These findings are of particular importance as we showed that p47phox, 

which is present in Nox1 hybrid systems in vascular smooth muscle cells, is the binding target of 

Nox2ds.  These findings have broad implications for distinguishing the role of Nox2 in a wide 

range of disease processes and support its potential use as a Nox2-targeted therapeutic agent.   

We next conjugated Nox2ds to the cell penetrating peptide sequence “tat,”[169] thus 

enabling us to use Nox2ds-tat and NoxA1ds to comparatively analyze the role of Nox1 vs Nox2 

in whole HPAEC O2˙- production in response to hypoxia and VEGF-induced HPAEC migration 

in a scratch wound healing assay.  In vitro experiments determined that Nox2 plays an 
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insignificant role in hypoxia-induced O2˙- production as well as VEGF-induced HPAEC 

migration.  These observations are largely in agreement with those made by Garrido-Urbani et. 

al. showing that Nox1 rather than Nox2 plays a greater role in angiogenesis [98].  Finally, the 

data presented here establish that Nox1 can be directly activated by VEGF and present a new 

pathway through which Nox1 can directly influence vascular (patho)physiology.   

To investigate potential sources of VEGF in the pulmonary vasculature, HPAEC, 

HPASMC, and HPAF were incubated under normoxic and hypoxic conditions for 24 hrs and 

VEGF was quantified in the media.  Relative to naïve media devoid of cells, HPAEC consumed 

nearly all VEGF present, regardless of the oxygen tension.  HPASMC produced a substantial 

amount of VEGF relative to naïve media, but in an oxygen independent manner.  Normoxic 

HPAF produced a significant quantity of VEGF versus naïve media, and this was enhanced by 

1.5 fold through hypoxic conditioning (10.56 vs 16.81 pg/ml VEGF), with values comparable to 

physiological human serum VEGF concentrations (between 10 and 200pg/ml) [239].  When 

hypoxic HPAF conditioned media enriched in VEGF was used to culture HPAEC, the mitogenic 

propensity of the HPAEC significantly increased in a Nox1-dependent manner, suggesting that 

hypoxic HPAF may contribute to HPAEC Nox1 activation in vivo through paracrine VEGF 

signaling in addition to myriad other factors present in the extracellular milieu.  While HPAF 

conditioned media enriched in VEGF was capable of enhancing the mitogenic potential of 

HPAEC in a Nox1-dependent manner, the magnitude of this 5% increase is minor when 

compared to the 100% increase in Nox1 activity when HPAEC were treated with hypoxia alone.  

These data suggest that hypoxia, rather than HPAF-mediated paracrine signaling, is the primary 

insult that potentiates Nox1 activation in HPAEC. 
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In collaboration with Drs. Csanyi and Pagano, I observed that Nox2ds is a Nox2 specific 

inhibitor that does not inhibit canonical, induced, or hybrid Nox1 systems.  By using NoxA1ds 

and Nox2ds-tat to specifically inhibit Nox1 and Nox2, respectively, we determined that Nox1, 

but not Nox2, is responsible for hypoxic induction of O2˙- production and VEGF-stimulated cell 

migration of HPAEC.  Furthermore, we identified a novel pathway where VEGF can directly 

activate Nox1:NOXA1 assembly. Our data also demonstrated that HPAF are a potential source 

for VEGF under hypoxic conditions, although HPAF-sourced VEGF seems to play a minor role 

in HPAEC physiology when compared to hypoxia alone.  These data indicate that targeting Nox1 

with NoxA1ds may provide effective therapy for diseases of the pulmonary vasculature, 

including pulmonary arterial hypertension.   
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Figure 4-8: Vascular Nox signaling pathways identified 

NoxA1ds was developed as a specific Nox1 inhibitor preventing Nox1:NOXA1 binding while Nox2ds 

was validated as a specific Nox2 inhibitor acting at the site of p47phox:Nox2 interaction.  Fibroblasts 

produce VEGF in response to hypoxia.  VEGF promotes Nox1:NOXA1 assembly while hypoxia 

stimulated Nox1 activity.  Through VEGF and hypoxia, Nox1 promotes endothelial cell migration and 

proliferation.  Receptor-mediated activation of VEGF stimulated Nox1:NOXA1 assembly is potentially 

mediated by VEGFR2, although further work is needed to establish this.  Further research may establish 

the stimuli necessary to invoke Nox2 in pulmonary endothelial migration and proliferation, as neither 

hypoxia nor VEGF treated HPAECs responded in a Nox2-dependent manner. 
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5.0  INTERROGATE A ROLE FOR NOX1 IN PULMONARY ARTERIAL 

HYPERTENSION 

 

5.1 INTRODUCTION 

 

5.1.1 Etiology of Pulmonary Arterial Hypertension 

Pulmonary arterial hypertension (PAH) is a debilitating disease with high mortality characterized 

by a mean pulmonary artery pressure (mPAP) greater than 25 mmHg, in part a consequence of 

abnormal pulmonary vessel intimal remodeling as well as reduced NO bioavailability [170].  In 

many patients, vessel remodeling often partially or completely occludes the lumen, increasing 

pulmonary vascular resistance and pulmonary pressure eventually leading to right heart failure 

[170].  Hypoxia stimulates Nox-derived ROS production, causing reduced NO bioavailability, 

vascular cell proliferation and vessel remodeling [94, 179].  In addition to hypoxia, mitogenic 

factors promoting vascular cell proliferation, including EGF and VEGF, have been implicated in 

the development of PAH [174, 181].   Despite this association with hypoxia and growth factors, 

no cause for idiopathic PAH has been identified and current treatment regimens symptomatically 

treat the disease [170].  These treatments include prostacyclin, nitrates, beta-blockers, and sartans 

[240].  Unfortunately, all of these treatments fail to cure PAH and are eventually overcome by 

desensitized responses, leading to disease progression.  Inhibitors of ROS sources, including 

Nox1, have shown promise in promoting NO bioavailability, attenuating intimal and medial 

remodeling, thus lowering PVR and providing an alternative and potentially curative therapy for 

PAH [241, 242].  Despite their potential, no specific Nox inhibitor or antioxidant therapy has yet 

been identified for PAH. 
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5.1.2 Pulmonary Vascular Hemodynamics in PAH 

The defining hemodynamic phenotype in PAH is a mean pulmonary artery pressure (mPAP) 

greater than 25 mmHg, causing chronically increased afterload on the right ventricle [170, 243].  

This chronic pressure overload results in  compensatory right heart hypertrophy associated with 

preserved contractility eventually leading to decompensation and right heart failure [170].  

Indicative of right heart hypertrophy, the Fulton index is a key indicator of PAH that quantifies 

the relative size of the right heart versus the left heart + interventricular septum (Equation 2) 

[71].  Beyond simple increases in mPAP and consequent RV hypertrophy, substantial changes in 

the hemodynamic profile of the RV follow, with each parameter providing a portion of a more 

detailed picture on the pathology of PAH. 

 

Equation 2: 

Fulton index =
Right Ventricle Mass

Left Ventricle Mass + Septum Mass
 

 

Pressure-volume catheterization and the resulting pressure-volume loops (PV loops) is 

the primary method of evaluating hemodynamic function within the RV or LV in both clinical 

and scientific cardiology settings.  The PV loop quantifies simultaneous pressure and volume 

changes in the ventricle of the heart though which the catheter is inserted during the cyclical 

beating of the heart through both systole and diastole.  These loops quantitatively describe the 

filling, contraction, ejection, and relaxation of the ventricle into which the catheter is inserted 

(Figure 5-1) [65, 67].  Hemodynamic criteria evaluated by PV loop analysis include, but are not 

limited to, pressure within each ventricle of the heart, the volume of a full ventricle (end diastolic 

volume, EDV), the amount of blood pumped by the ventricle in unit time (cardiac output), and 
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the volume of the contracted heart (systolic volume).  Perhaps the most important values 

obtained from PV loop analysis are the end systolic pressure volume relationship (ESPVR) and 

end diastolic pressure volume relationship (EDPVR) (Figure 5-2).  ESPVR indicates the 

maximum pressure the heart can achieve at any given volume and is a key indicator of 

ventricular contractility while EDPVR indicates the maximum volume the heart can achieve at 

any given pressure is a key measure of ventricular compliance. Deviation of either parameter 

from the ideal slope is an indication of different cardiologic abnormalities, depending on the 

direction of the shift.  In PAH, RV EDPVR remains unchanged while ESPVR increases as a 

result of the increase in RV pressure with minimal change in volume (Figure 5-1).  ESPVR and 

EDPVR are obtained creating a series of descending PV loops where the volume of the ventricle 

is reduced by preventing blood return to the heart via vena cava occlusion. ESPVR and EDPVR 

are then calculated as the slope of a line connecting either the top-left (ESPVR) or bottom-right 

(EDPVR) inflection points of these descending PV loops (see Figure 1-3). 

The nature of closed system of the vasculature as well as the heart’s structure, (i.e. the 

shared septum of the RV and LV) allows for both ventricles to perform separately, but still in a 

tightly coordinated manner.  In performing these independent functions, each ventricle is 

susceptible to pathologies linked to either the systemic (LV) or pulmonary vasculature (RV). 

Despite the independent roles of the LV and RV, the closed system of blood flow and shared 

RV/LV anatomy can cause RV pathologies to directly influence LV function, and vice versa.  

This concept is of particular importance when considering left heart dysfunction and failure in 

the context of PAH.  While many cases of PAH are restricted to the RV and pulmonary 

vasculature, a significant portion are also associated with left heart failure.  As such, no 

phenotypic analysis of PAH is complete without both RV and LV hemodynamic consideration. 
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Figure 5-1: Normal vs PAH RV PV-loops. 

Normal RV PV-loop with corresponding EDPVR and ESPVR is shown in black.  PAH diseased PV loop 

with corresponding EDPVR and ESPVR is shown in red.  EDPVR is unchanged between normal and 

diseased RV PV-loops while ESPVR increases in PAH. 

 

In this study we quantified RV and LV hemodynamic function in a SU5416 and chronic 

hypoxia (SUCH) rat model of PAH.  As Nox1 was previously shown to be the major Nox 

isoform responsible for HPAEC migration and hypoxia-induced O2˙- production, we tested 

whether Nox1 inhibition by aerosolized NoxA1ds can prevent the decline of RV and LV 

cardiological function in the severe SUCH model of PAH. 
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5.2 RESULTS 

 

5.2.1 Aerosolized NoxA1ds inhibits SUCH induced RV O2˙- production and 

insignificantly reduces RV hypertrophy 

Female Sprague-Dawley rats injected with 100mg/kg subcutaneous injection of SU5416 

followed by a 3 wk course of hypoxia at 10% O2 (SUCH) to induce severe PAH.  After this time, 

rats were sacrificed and tissues harvested.  Cytochrome c detection of O2˙- in RV homogenates 

indicated that SUCH treatment potentiated O2˙- production in the RV and that this increase was 

inhibitable by twice weekly treatment with aerosolized NoxA1ds (Figure 5-3).  Aerosolization 

was used for NoxA1ds delivery to bypass potential degradation of orally administered peptides.  

Additionally, SUCH treatment caused a significant increase in the Fulton index (0.22±.02 vs 

0.59±0.05, control vs SUCH).  Twice a week treatment with NoxA1ds aerosol had a statistically 

insignificant effect on the Fulton index (0.59±0.05 vs 0.50±0.03, SUCH vs SUCH+NoxA1ds) 

(Figure 4-4). These experiments were conducted as part of a collaboration with Dr. Imad Al 

Ghouleh, Dr. Stevan Tofovic and coworkers in the Vascular Medicine Institute. 

 

5.2.2 Nox1 inhibition does not improve RV hemodynamic dysfunction in severe PAH 

Female Sprague-Dawley rats at the completion of SUCH treatment were phenotyped by in vivo 

PV loop analysis of the right heart.  SUCH treated rats exhibited a marked increase in mPAP, 

RV max pressure, and ESPVR vs control rats (mPAP: 15.5±1.2 vs 38.0±2.4mmHg, 

23±1.8mmHg vs 57.6±3.7mmHg, ESPVR: 0.094±0.02 vs 0.67±.22 all values control vs SUCH) 

and a mild but insignificant increase in RV end diastolic volume (186±38µl vs 295±109µl, 
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control vs SUCH).  Twice weekly delivery of NoxA1ds aerosol had no significant effect on any 

hemodynamic parameters of RV dysfunction (Fig. 5-4 & Fig. 5-5). 
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Figure 5-2: SUCH treatment enhances Nox1 mediated O2˙- production in the RV. 

RV tissue homogenates from SUCH treated rats produced significantly more O2˙- than RV tissue 

homogenates from either untreated control animals or SUCH animals treated with aerosolized NoxA1ds, 

n= 4 rats per group, *p<0.05 via ANOVA followed by Bonferroni post-test compared to control. 
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Figure 5-3: SUCH treatment causes RV hypertrophy with a marginal, but insignificant, effect of 

NoxA1ds. 

Fulton index of rat heats indicate a significant increase in RV hypertrophy resulting from SUCH 

treatment with an insignificant effect of NoxA1ds on RV hypertrophy in SUCH treatment (n=8). 
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Figure 5-4: Minimal therapeutic benefit of aerosolized NoxA1ds in RV hemodynamic dysfunction. 

SUCH treatment significantly increased rat A) mPAP, B) RV Max Pressure and D) ESPVR with mild but 

insignificant increases in C) RV EDV and E) EDPVR.  In no phenotypic measurement did NoxA1ds 

aerosol attenuate the effects of SUCH treatment, in all panels n = 6-7 rats per treatment. 
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Figure 5-5: Representative Right Ventricle PV-loops. 

 

5.2.3 Nox1 inhibition prevents LV dilatory cardiomyopathy 

Immediately after subjecting rats to RV catheterization and PV loop analysis, the LV was 

catheterized and PV loops from the LV were subsequently recorded.  SUCH treatment had no 

detectable effect on LV pressures or LV ESPVR.  Unexpectedly, SUCH caused a significant 

increase in EDV and a corresponding increase in LV cardiac output.  SUCH rats treated with 

twice weekly NoxA1ds via aerosol did not display an increase in either LV EDV or cardiac 

output (Fig. 5-7 & Fig. 5-8).  Considering both LV pressures and volumes, the LV EDPVR was 

decreased by SUCH treatment and this decrease was prevented by NoxA1ds aerosol.  Statistical 

analysis was not performed on LV EDPVR as there was no detectable difference between the LV 

EDPVRs of SUCH treated animals. 
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Figure 5-6. SUCH causes LV dysfunction that is prevented by NoxA1ds. 

SUCH treatment had no significant effect on A) LV max pressure or D) LV ESPVR but significantly 

increased B) LV EDV and C) LV cardiac output with a corresponding decrease in E) LV EDPVR.  

NoxA1ds prevented the effect of SUCH treatment on LV EDV, cardiac output, and LV EDPVR.  

Statistical analysis was not performed on the data in “E” as all animals with SUCH treatment exhibited an 

identical LV EDPVR (0.01), in all panels n=6-7 rats per treatment. 
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Figure 5-7: Representative Left Ventricle PV-loops. 

 

5.3 DISCUSSION 

 

In this study, we tested the therapeutic potential of Nox1 inhibition in a rodent model of PAH 

utilizing the combination of SUCH.  Of the current leading rodent models of PAH, SUCH was 

utilized as it exhibits the greatest severity of pulmonary vessel remodeling among rodent models 

of PAH [206].  Reduced NO bioavailability and endothelial remodeling are both major 

contributors to increased pulmonary vascular resistance and clinical PAH.  Independently of 

clinical data and in vivo models, these factors have also been linked to Nox1 [9, 230].  As Nox1 

is more closely linked with endothelial pathophysiology in PAH, we therefore hypothesized that 

Nox1 inhibition, reduces PAH progression and leading to corresponding changes in pulmonary 

vascular resistance, RV hemodynamics, and RV remodeling.  Beyond its effects on endothelial 

remodeling, secondary benefits of Nox1 inhibition in PAH likely include potentiation of 

vasodilation through reduced NO scavenging by Nox1-derived O2˙-.  Together, these provide 

ample rationale for investigating the therapeutic potential of Nox1 inhibition in PAH. 
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Through the established SUCH model of PAH [206], female rats were treated with twice 

weekly aerosol delivery of either PBS or 10 mg/kg/day NoxA1ds as calculated to deliver 10 µM 

NoxA1ds to the lung epithelia.  Female rats were utilized to as PAH is predominately observed in 

human female patients.  Biweekly aerosolized NoxA1ds effectively inhibited O2˙- produced in 

RV tissue homogenates, indicating favorable pharmacokinetics and pharmacodynamics of 

NoxA1ds.  Despite the clear effect of NoxA1ds on RV O2˙- production, PV loop analysis of the 

right ventricle revealed that NoxA1ds treatment had no therapeutic benefit on RV hemodynamics 

of PAH rats while the Fulton index displayed a marginal, but insignificant, effect of NoxA1ds on 

RV hypertrophy.   

These data displaying a minimal therapeutic benefit of Nox1 inhibition on RV 

hypertrophy/hemodynamics in the SUCH model of PAH indicate that Nox1 may not be the 

primary protein responsible for RV dysfunction in PAH.  Among the many established 

contributors to the progression, other likely contributors to RV dysfunction PAH aside from 

Nox1 include Nox2, Nox4, XO, uncoupled eNOS, and estradiol metabolites [6, 196, 244, 245].  

Indeed, at the time of writing, a current publication indicates that PAH in SUCH treated rats is 

not only Nox4 dependent, but that all of the activating/organizing subunits of Nox1 and Nox2 

(p47phox, p67phox, NOXO1, and NOXA1) are significantly downregulated during SUCH, likely 

precluding enzyme activity [246].  These data, along with those in the present study, strongly 

suggest that the SUCH model of PAH is independent of Nox1 and Nox2 activity.  Beyond simple 

downregulation of Nox1, SUCH instigated PAH may be independent of Nox1 also through 

inhibition of VEGFR2 by SU5416 and subsequent inhibition of direct signaling between VEGF 

and Nox1.  
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Simultaneous with the PV loop analysis of RV hemodynamics in SUCH treated rats, PV 

loop analysis of the LV of SUCH treated rats was also performed.  Unexpectedly, SUCH rats 

demonstrated LV dilatory cardiomyopathy as indicated by increased EDV, cardiac output, and 

reduced EDPVR.  This LV dilated cardiomyopathy was independent of left heart failure, as 

evidenced by unchanged LV systolic and diastolic pressures and unchanged ejection fraction and 

heart rate (Fig. 5-9).   Interestingly, development of LV dysfunction was almost completely 

inhibited by NoxA1ds treatment.  Nox2 has previously been identified as a contributor to LV 

dilatory cardiomyopathy, but prior to this study, it was previously unknown whether Nox1 

played a role in this pathology [247].  Clinically, dilatory cardiomyopathy is often seen in 

patients displaying symptoms of heart failure with preserved ejection fraction (HFpEF).  HFpEF 

has been suspected to be correlated with ROS production, and to our knowledge, Nox1 has not 

been investigated as a contributor to this disease [248].  While this study was not designed to 

directly investigate the role of Nox1 in HFpEF, our data present Nox1 as an interesting potential 

therapeutic target for HFpEF, a disease with poor treatment options and outcomes.  As in vivo 

models for HFpEF are developed we may be able to test this indication for Nox1 inhibition more 

conclusively. 

Other groups have reported that both SU5416 and hypoxia are independently associated 

with LV dysfunction and systemic hypertension in animals and humans [249-252].  Indeed, the 

initial clinical trials testing the efficacy of SU5416 against tumor progression noted systemic 

hypertension as well as cardiac dysfunction as significant side effects [253-255].  Unfortunately, 

no systemic measures of vascular tone were obtained in the present study, and the effect of Nox1 

inhibition on LV dysfunction must be evaluated independently of potential systemic effects, 

although there is abundant evidence from other studies indicating that SU5416 and hypoxia each 
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contribute to LV dysfunction in part through systemic hypertension.  Future studies will evaluate 

the effect of Nox1 inhibition in systemic models of hypertension and associated LV dysfunction. 

As a whole, our results demonstrate that Nox1 plays a key role in dilatory 

cardiomyopathy with preserved ejection fraction and that Nox1’s role in the development of PAH 

is likely superseded by other proteins in the SUCH model of PAH.  These data indicate that other 

models of PAH independent of VEGFR inhibition may be better suited for evaluating the role of 

Nox1 in PAH and also strongly suggest further investigation concerning Nox1’s role in the 

systemic vasculature, LV dysfunction, and HFpEF. 
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Figure 5-8: LV ejection fraction and heart rate during SUCH treatment 

There was no detectable difference in LV ejection fraction or heat rate between control, SUCH, and 

SUCH + NoxA1ds treated rats. 
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6.0  GENERAL DISCUSSION AND CONCLUSION 

6.1 GENERAL DISCUSSION 

Nox1-derived O2˙- is associated with morbidity and mortality of multiple diseases including 

atherosclerosis, systemic hypertension, inflammatory bowel disease, and cancer [9, 83, 101, 137, 

256].  Specific pharmacological inhibitors of Nox1 have long been desired as potential 

therapeutics for these diseases and as tools to evaluate the role of Nox1 while avoiding the 

confounding factors inexorably tied with genetic manipulation of cellular and animal models.  In 

a major step towards meeting this great unmet clinical and scientific need, we have developed 

the first specific Nox1 inhibitor with a validated target and established mechanism of action and 

called this inhibitor NoxA1ds.  After verifying Nox2 specificity of the established Nox inhibitor 

Nox2ds-tat, NoxA1ds and Nox2ds-tat were then used to evaluate the role of Nox1 vs Nox2 in 

hypoxia stimulated O2˙- production and VEGF-stimulated migration by HPAECs in vitro.  As 

Nox1 was established as the primary contributor to pathways linked to the pathophysiology of 

PAH (endothelial O2˙- production and VEGF stimulated migration), NoxA1ds was tested as a 

potential therapeutic in an in vivo model of PAH.  Although limited therapeutic benefit of 

NoxA1ds in the RV was observed in the tested models in vivo, a therapeutic benefit of NoxA1ds 

was observed in the LV, bearing implications for left ventricular HFpEF in association with PAH 

and systemic cardiovascular dysfunction. 
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6.1.1 Specific Aim 1: Develop and Characterize an Isoform Specific Nox1 Inhibitor  

The lack of specific Nox inhibitors has stymied progress into the role of these enzymes in 

physiology and disease.  To date, major existing Nox inhibitors include diphenyleneiodonium 

(DPI), ML171, GKT137831, and Nox2ds-tat among others [112, 157-160].  DPI has long been 

considered a potent Nox inhibitor, yet it is burdened by its lack of specificity for any Nox 

isoform and its inhibition of other flavoproteins [157, 158].  The compound ML171 was recently 

reported as a specific Nox1 inhibitor with no reported inhibition of Nox2 or Nox4 activity [159].  

Unfortunately, the mechanism of action and protein target of ML171 remain unanswered 

questions.   It also remains unknown whether ML171 acts on Nox4, Nox5, or XO-derived ROS 

production.   The compound GKT137831 is a potent Nox1/4 inhibitor and bears the distinction 

of being the first Nox inhibitor to have reached phase I clinical trials [160].  Of the above 

compounds, DPI and GKT137831 are plagued by their lack of specificity against a single Nox 

isoform while the reports on ML171 and GKT137831 lack mechanistic insight.  However, these 

compounds remain potentially useful in situations where multiple Noxes contribute to a single 

phenotype. 

The design and mechanistic clarity of the Nox1 inhibitor NoxA1ds represents a 

significant step forward in the investigation of NADPH oxidase roles in physiology and 

pathophysiology.  Indeed, prior to this study, a specific Nox1 inhibitor with validated target and 

established mechanism did not exist.  By recapitulating residues 195-205 of NOXA1 reputed to 

activate Nox1 and including the F199A first made by Maehara et al, we generated the peptide 

NoxA1ds [195-EPVD(FA)LGKAKV-205][129].  NoxA1ds was added in increasing 

concentrations to cell-free preparations of vascular Nox isoforms Nox1, Nox2, Nox4, Nox5 and 

XO.  Resulting ROS production demonstrated that NoxA1ds, but not its scrambled control, 
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inhibited Nox1 derived O2˙- with an IC50 of 20nM.  Neither NoxA1ds nor SCRMB had any 

inhibitory effect on Nox2, Nox4, Nox5, or XO, demonstrating that NoxA1ds is specific for Nox1 

and does not scavenge either O2˙- or H2O2.   

All of the initial assays testing the specificity of NoxA1ds were conducted in cell-free 

assays to maximize our ability to identify putative Nox1 inhibitors.  As such, we proceeded to 

verify that NoxA1ds was also effective in whole cells.  We first verified the ability of NoxA1ds 

to penetrate cells through the observation that FITC-tagged NoxA1ds crossed the plasma 

membrane of intact cells within 1 hr.  We next tested the effect of NoxA1ds on HT-29 cells that 

exclusively express Nox1 and not any other Nox isoform and determined that NoxA1ds inhibited 

O2˙- production by HT-29 cells with an IC50 of ~100nM.  Using ELISA, we demonstrated that 

NoxA1ds bound to Nox1, but not Nox2.  Furthermore, using FRAP, we determined that 

fluorescently labeled NoxA1ds is less mobile in cells transfected with Nox1, further confirming 

that NoxA1ds either directly binds to Nox1 or it binds to an as of yet unidentified closely 

associating protein.  Finally, a FRET assay utilizing Nox1-YFP as the energy acceptor and 

NOXA1-CFP as the energy donor indicated that NoxA1ds disrupted energy transfer between 

Nox1-YFP and NOXA1-CFP.  These data provide a complete mechanistic paradigm where 

NoxA1ds directly binds to Nox1 and prevents Nox1:NOXA1 association and subsequent enzyme 

activation, and that inhibition of Nox1 by NoxA1ds is highly specific and efficacious. 

 

Specific Aim 2: Determine Relative Roles of Nox1 vs Nox2 in Endothelial O2
·- Production 

and Cell Migration  

After fully characterizing the mechanism of NoxA1ds, we sought to evaluate the contribution of 

Nox1 vs Nox2 derived O2˙- in vitro using specific pharmacological inhibitors.  To this end, we 
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first validated that an established Nox inhibitor, Nox2ds, does not inhibit Nox1 in reconstituted 

cell-free heterologous Nox systems transiently expressed in either COS22 or HEK293 cells.  

Through our characterization of Nox2ds, we discovered that this peptide targets a cytosolic 

component of the Nox2 oxidase (p47phox).  Initially, this raised serious concerns as the cytosolic 

organizing and activating Nox subunits have the potential to activate either Nox1 or Nox2 and 

that these hybrid systems would not be specifically inhibited by compounds targeting the 

cytosolic subunits.  For this reason, we confirmed that p47phox can substitute for NOXO1 and that 

p67phox can substitute for NOXA1 in the organization and activation of Nox1 and thus create a 

hybrid Nox1 system.  As this hybrid Nox1 could potentially be inhibited by Nox2ds, we utilized 

heterologous cell-free systems to verify that Nox2ds does not inhibit any permutation of hybrid 

Nox1 oxidases with either p47phox substituting for NOXO1 or p67phox substituting for NOXA1.  

These data, as part of a larger study conducted by Csanyi et al [130], indicate that Nox2ds is a 

specific Nox2 inhibitor. 

With newly-validated specific Nox1 and Nox2 inhibitors, we proceeded to utilize these 

inhibitors (NoxA1ds and Nox2ds) to determine relative signaling contribution of Nox1 and Nox2 

in vitro.  HPAEC were identified as an ideal cell type to test the relative role of Nox1 vs Nox2 in 

vitro, as both the Nox1 and the Nox2 isoforms are transcribed in equal amounts.  ROS 

production in HPAEC incubated for 24 hrs in hypoxia (1.0% O2) was significantly increased, as 

measured by cytochrome c reduction, and was inhibitable by NoxA1ds and Nox1 siRNA, but not 

Nox2ds conjugated to the cell penetrating peptide “tat”.  Our data indicate that Nox1 is 

responsible for O2˙- produced by HPAEC in response to hypoxia and that Nox1 is also 

responsible for the migration of HPAEC in response to VEGF stimulation.  Further investigation 

revealed that VEGF directly stimulates Nox1:NOXA1 assembly and that pulmonary artery 
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fibroblasts secrete VEGF during hypoxia and are capable of promoting Nox1-dependent 

endothelial cell metabolism and its associated proliferation.  These data suggested that Nox1 is a 

more significant contributor than Nox2 to pulmonary endothelial dysfunction. 

 

6.1.2 Specific Aim 3: Interrogate a Role for Nox in Pulmonary Arterial Hypertension 

Pulmonary arterial hypertension is a debilitating disease with few effective treatment options.  

Historical treatment options for PAH include endothelin receptor antagonists, agents that 

increase NO bioavailability, and prostacyclin [240].  Endothelin receptor antagonists, such as 

bosentan, prevent vasoconstriction initiated by the ET1 receptor while inhaled NO, nitrates, or 

PDE5 inhibitors (i.e. sildenafil) are used to facilitate vasodilation via enhanced NO 

bioavailability.  Unfortunately, each of these treatments is eventually overcome by side effects or 

acquired resistance to the therapy.  Recent research has identified soluble guanylate cyclase 

(sGC) activators as effective therapies for PAH that can bypass endogenous NO scavenging, 

although it remains to be seen whether these compounds are eventually overcome by acquired 

resistance as well [195, 215].  Nevertheless, clinical management of PAH remains a difficult 

goal while curative treatments are completely elusive.   

In this study, we tested the efficacy of a novel and specific Nox1 inhibitor (NoxA1ds) as 

a treatment during the development of PAH in a rodent model.  Nox1 was chosen as the target 

molecule due to mounting evidence that Nox1, rather than Nox2, plays a greater role in 

endothelial phenotypes observed in PAH, including hypoxia induced O2˙- production, VEGF-

stimulated migration, and angiogenic signaling [98, 230].  We report that NoxA1ds significantly 

inhibited RV O2˙- production.  Despite the observed reduction in RV O2˙-, no corresponding 

improvement in RV hemodynamics was observed in SUCH rats treated with NoxA1ds.  These 
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results indicate that while NoxA1ds is effective in vivo at preventing enzymatic O2˙- production, 

Nox1 is likely not responsible for cardiomyocyte mediated RV dysfunction in SUCH PAH and 

that RV O2˙- production is not the primary instigator of RV hypertrophy and dysfunction.  

Rather, other groups have proposed that Nox4 is the primary isoform responsible for RV 

dysfunction in this context.  Beyond Nox4, it remains possible that other pathways, including 

growth receptor signaling and fibrosis contribute to the disease in this model.  It remains possible 

that Nox1 indirectly contributes to RV dysfuction in PAH through modulation of pulmonary 

vascular remodeling.  Future studies will elucidate Nox1’s direct effect on pulmonary vascular 

remodeling in PAH. 

As an unexpected side effect of SUCH treatment, the LV of SUCH treated rats exhibited 

a dilatory cardiomyopathy, as indicated by the increased LV EDV and cardiac output paired with 

a decreased LV EDPVR.   Indeed, dilatory cardiomyopathies have previously been associated 

with Nox activity and hypoxia, but it was completely unknown whether Nox1 contributes to this 

pathology [247, 251].  Most interestingly, the LV dilatory cardiomyopathy in SUCH treated rats 

was prevented via NoxA1ds aerosol treatment.  These data indicate that Nox1 may play a more 

significant pathophysiological in LV vs the RV. 

Prior to this study, virtually nothing was known about the role of Nox1 in the LV or RV 

in the context of pulmonary hypertension.  Through this study where we treated rats in the 

SUCH model of pulmonary hypertension with a novel Nox1 inhibitor NoxA1ds, we determined 

that while NoxA1ds effectively inhibits RV O2˙- production in PAH, Nox1 inhibition is an 

ineffective treatment for the SUCH model of PAH as measured by the Fulton index, ESPVR, and 

mPAP.  Surprisingly, we identified a novel role for Nox1 in LV dilatory cardiomyopathy, 
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indicating that Nox1 inhibition may be a potential target for the treatment of HFpEF.  It remains 

to be seen whether Nox1 inhibition is effective in alternative models PAH. 

 

6.2 CONCLUSION 

The overarching goal of this thesis was the effort to pharmacologically test the role of Nox in 

vitro and in vivo through the design and characterization of a novel Nox1 inhibitor.  In this 

respect, I was successful in designing NoxA1ds; a peptide that has proven to be a highly 

efficacious and specific inhibitor of Nox1that is effective in vitro and in vivo.  

Following a thorough literature review and through creative insight, NoxA1ds was 

designed to mimic the putative activation domain of NOXA1.  Progressing from the initial 

design of NoxA1ds we characterized its pharmacological profile and verified its specificity 

against Nox1 and its ability to penetrate and attenuate Nox1 activity in whole cells. Further 

studies showed that mechanistically, NoxA1ds inhibits Nox1 by binding Nox1 and preventing its 

interaction with NOXA1.  

After the successful design and characterization of NoxA1ds, I then proceeded to 

investigate the role of Nox1 vs Nox2 in HPAECs, a cell line that transcribes Nox1 and Nox2 in 

equal amounts.  To do this, we first validated that the established Nox inhibitor, Nox2ds, is 

specific for Nox2 over Nox1.  Then, using NoxA1ds and Nox2ds to specifically inhibit either 

Nox1 or Nox2, I determined that Nox1, rather than Nox2, is responsible for O2˙- produced by 

HPAEC in response to hypoxia and HPAEC migration in response to VEGF stimulation.   
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As Nox1 rather than Nox2 was responsible for pulmonary endothelial phenotypes 

associated with PAH, we proceeded to test the role of Nox1 in the development of PAH, a 

disease thought to be, in part, mediated by dysfunctional endothelium.  Through an in vivo model 

of PAH, we demonstrated that NoxA1ds is effective at inhibiting RV O2˙- production in vivo, but 

that this inhibition is insufficient to prevent RV dysfunction in severe PAH.  Unexpectedly, this 

same in vivo model of PAH revealed that LV dilatory dysfunction in the context of PAH can be 

prevented through Nox1 inhibition, bearing implications for the treatment of HFpEF associated 

with PAH.  Future studies will investigate the effect of Nox1 inhibition in other models of 

cardiovascular disease, including systemic hypertension and associated left heart failure. 

Concerning public health, this dissertation has contributed to a greater understanding of 

Nox1’s role in the endothelium in cardiovascular disease, potentially catalyzing the development 

of treatments for cardiovascular diseases driven by Nox1.  Additionally, the Nox1 inhibitor 

described here, NoxA1ds, may be utilized as a tool to elucidate Nox1’s role in cellular biology 

and animal physiology in any number of disease models. 
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