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Abstract

Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the
female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP) mice
with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human
MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding
adenovirus (AdCre) in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal,
and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of
MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the
anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract
(ovaries, oviducts, and uterus). Tumors showed increased expression of MUC1 glycoprotein and triggered de novo
antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and
endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower
than for endometrial tumors (p = 0.0015), yet similar to survival for ovarian cancer. Oviducts seem to favor the development
of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating
site for high grade human ovarian tumors.
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Introduction

The American Cancer Society estimates over 91,000 new cases

and 28,000 deaths due to gynecological cancers in 2013 [1].

Taken together, ovarian and endometrial tumors constitute about

78% of all female genital tract tumors. The most common

gynecologic malignancy is endometrial cancer, which is often

detected early and can be successfully treated with surgery and/or

radiotherapy. In contrast, epithelial cancer of the ovary is

relatively uncommon yet highly aggressive, accounting for most

of the mortality. Primary fallopian tube cancers (without ovarian

involvement) are also rare, accounting for 0.2% of cancer cases

diagnosed annually [2] and, like ovarian tumors, are detected late

and have a poor prognosis [3].

Traditionally, epithelial ovarian tumors have been thought to

develop from the ovarian surface epithelium into four major

histotypes: serous, endometrioid, mucinous and clear cell. It is now

apparent that ovarian tumors are highly heterogeneous and may

represent several different clinical entities, with distinct clinical

precursors. High grade serous tumors carry p53 mutations and are

considered to arise mostly in the fallopian tubes [4,5]. Although

this type of tumor has been fully characterized through The

Cancer Genome Atlas (TCGA) [6], similarly comprehensive

analyses of the other ovarian cancer subtypes are not yet available

[7–9]. Nevertheless, based on substantial evidence from several

studies, it is currently accepted that, at least in part, the

endometrioid and clear cell ovarian tumor histotypes share

endometriosis as a putative common precursor [10] and display

frequent inactivating mutations in ARID1A [7,11].

Low grade (type I) endometrial and ovarian cancers, as well as

tubal intraepithelial carcinomas are frequently associated with

oncogenic KRASG12D and PTEN deletion mutations [3,12] or

altered expression [13]. The recent TCGA study of 373

endometrial tumors identified the KRAS and PTEN genes as
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being mutated in 24.6% and 77% of endometrioid tumors

respectively, emphasizing the influence of these mutations in

gynecologic cancer pathogenesis [14].

Involvement of the KRAS and PTEN pathways has led to the

development of several genetically modified preclinical models for

type I gynecological cancers [15–20]. Using conditionally trans-

genic mice carrying both oncogenic KrasG12D and a floxed Pten

deletion, Dinulescu et al demonstrated the importance of these two

pathways in triggering ovarian tumors with endometrioid histology

[21]. Mice defective in Pten have also been reported as valuable

preclinical models for endometrioid endometrial tumors [22].

However, in vivo modeling of oviduct tumors (the murine

equivalent of fallopian tube tumors) has proven more challenging

with only few orthotopic models reported to date [15,23].

While some of the mouse models for gynecologic malignancies

have been helpful in delineating mechanisms of pathogenesis

[21,24,25], they offer limited utility for immunotherapy due to the

absence of well characterized mouse tumor antigens. To overcome

this, we generated triple transgenic MUC1+/2loxP-STOP-loxP-

KrasG12D/+PtenloxP/loxP (or briefly MUC1KrasPten) mice that, at

steady state, express physiologic levels of human mucin 1 (MUC1)

as self-antigen [26]. MUC1 is a membrane-bound glycoprotein

that is overexpressed and aberrantly glycosylated in most epithelial

cell-derived cancers, including genital tract tumors [27]. MUC1-

targeted immunotherapy is under development for several cancers

and has been administered so far to about 1200 patients, while

more than 2000 patients are currently enrolled in ongoing clinical

trials [28]. Using the MUC1KrasPten mouse model, we have

recently demonstrated that intrabursal injections of AdCre (to

activate oncogenic Kras and induce Pten loss in the ovaries)

[21,26] trigger endometrioid ovarian tumors. The tumors

overexpress human MUC1 similarly to the human disease and

respond to MUC1 immunotherapy, further strengthening the

evidence on its efficacy as a target in ovarian cancer [26].

Here, we show how conditional mutations in Kras and Pten

genes can be manipulated throughout the genital tract of double

(KrasPten) and triple transgenic (MUC1KrasPten) mice, using

injections of Cre-encoding adenovirus (AdCre) in the ovarian

bursa, oviduct or uterine horns. Although all tumors, regardless of

the originating site, display endometrioid histology, oviducts seem

to favor the development of high grade tumors, providing

preclinical evidence in support of the postulated role of fallopian

tubes as the originating site for high grade, human ovarian tumors.

Materials and Methods

Survival surgery and administration of recombinant
adenovirus for tumor induction

All animal experiments were performed according to the

protocol approved by the University of Pittsburgh Institutional

Animal Care and Use Committee. Figure 1 shows the gross

anatomy of the murine female genital tract from a healthy mouse,

as well as a diagram of the ovarian bursa, oviduct and uterine sites

of AdCre injection approach.

Briefly, 7–10 weeks old female mice were synchronized by intra-

peritoneal (IP) injection of 5 U of pregnant mare serum

gonadotropin (PMSG, Sigma, St. Louis, MO), followed 48 hours

later by 5 U of human chorionic gonadotropin (hCG, Calbio-

chem, Billerica, MA) as previously described [21]. Thirty six hours

later, 5 ml of 2.56107 plaque-forming units of Ad5CMVCre

(University of Iowa Gene Transfer Vector Core) were delivered

into either the ovarian bursa of the left ovary (n = 12), or the left

oviduct (n = 9) or the left uterine horn (n = 12). The contra lateral

(right) ovary/oviduct/uterine horn was used as control. A subset of

oviduct injections (n = 4) were performed after clipping the oviduct

at the proximal and distal ends using the GEM MicroClips

(Synovis Life Technologies, Birmingham, AL) to ensure retention

of the adenovirus within the oviduct.

The mice were sacrificed when the tumor mass on the injected

side and/or ascites accumulation became visible or the mice

showed signs of distress that were pre-defined as endpoints (i.e.

hunched appearance, ruffled fur, difficulty in reaching for food or

water etc).

Administration of AdLacZ adenovirus and staining for
LacZ expression

Ovulation was synchronized as above in control female mice.

Five microliters of 2.56107 plaque-forming units of the AdLacZ

adenovirus (University of Iowa Gene Transfer Vector Core) were

then delivered into proximally and distally clipped oviducts (n = 2)

or the uterus (n = 2). Mice were sacrificed 3–7 days post virus

administration and the tissues fixed and stained for LacZ

expression using the LacZ Detection Kit for Tissues, according

to the manufacturer’s instructions (Invivogen, San Diego, CA).

After staining, the tissues were embedded in paraffin and blocks

were sectioned at 5 mm, followed by H&E staining to visualize the

histology of the AdLacZ infected sites.

Tissue isolation, histopathology and
immunohistochemistry

Mouse internal organs (reproductive tract, spleen, peritoneal

tumor masses and diaphragm), blood and ascites were collected

during necropsy. Harvested tissue was fixed in 10% buffered

formalin (Fisher Scientific, Kalamazoo, MI) for 24 hours, stored in

70% ethanol for 3 days and subsequently embedded in paraffin.

Five micron sections were cut and the gross histopathology was

assessed by H&E staining. For immunohistochemistry (IHC), the

slides were blocked using 3% hydrogen peroxide in methanol and

antigen retrieval was performed by boiling the slides for 20

minutes in citrate buffer, pH 6. The following antibodies were

used for IHC: anti-human MUC-1 (HMPV, 1:100, BD Pharmin-

gen, San Diego, CA), cytokeratin 8 (B0017, 1:50, Assay Biotech,

Sunnyvale, CA), and desmin (sc7559, 1:50, Santa Cruz Biotech-

nology, Dallas, TX). Secondary antibodies used include anti-

rabbit-HRP (K4003, Dako, Carpinteria, CA) for cytokeratin 8,

and anti-goat-HRP for desmin (sc2020, 1:50, Santa Cruz

Biotechnology, Dallas, TX). Biotinylated anti-mouse IgG

(550337, 1:100; BD Pharmingen, San Jose, CA) was used as the

secondary antibody for anti-MUC1, followed by the VectaStain

ABC Kit (Vector Laboratories, Burlingame, CA). The positive

signal was detected using the DAB chromogen (DAB Substrate

Kit, Abcam, Cambridge, MA) and the slides were counterstained

using hematoxylin. To ensure specificity of staining, control

sections were stained with either isotype control antibodies or no

primary antibody.

Human serous tubal intraepithelial carcinoma (n = 1), human

endometrioid endometrial carcinoma (n = 4) and human endo-

metrial hyperplasia (n = 3) were obtained as per IRB guidelines

from the Health Science Tissue Bank of the Magee Women’s

Hospital, Pittsburgh. The protocols for processing and IHC

staining of human tumors were similar to those described above,

for mouse tumors.

Image processing and analysis
Images were acquired with the Nikon Eclipse 90i microscope

and Nikon DS-Ri1 CCD camera, using NIS Elements AR

software or the Nikon Eclipse 600 microscope with the DS-L3

Novel Mouse Models for MUC1+ Genital Tract Tumors

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e102409



CCD camera. Images acquired were processed with Adobe

Photoshop CS5.

DNA isolation and PCR analysis of Cre-mediated
recombination

DNA was isolated from 5 mm tissue sections of primary tumors

using All Prep RNA/DNA/Protein isolation kit as per the

manufacturer’s instructions (Qiagen, Valencia, CA). Tails from

non-tumor bearing, healthy control mice were snap-frozen after

collection and DNA was later isolated using Puregene DNA

purification system (Gentra Systems, Minneapolis, MN), according

to manufacturer’s instructions. The primers and complete PCR

protocols to detect K-rasG12D and Pten deletion mutations have

been described previously [26].

Flow cytometry
Spleens were collected at necropsy and a single cell suspension

was obtained by passing the tissue fragments through a 70 mm cell

strainer (BD Falcon, Franklin Lake, NJ, USA). Cells were stained

with fluorescent antibodies for CD3 (PerCP), CD4 (Pacific Blue),

and CD8 (APC-Cy7) (all antibodies from BD Biosciences, San

Jose, CA), followed by intracellular staining for Foxp3

(eBioscience, San Diego, CA), according to the manufacturers’

protocols.

To detect anti-MUC1 antibodies, samples were incubated with

IG10-MUC1 cells [29] expressing extracellular human MUC1.

To detect bound antibodies, the cells were then stained with

fluorescein tagged anti-mouse IgG and positive cells analyzed with

LSRII (BD Biosciences) and processed in FACSDiva (BD

Biosciences). Gates for positive cells were set using control ascites,

from tumor bearing KrasPten (i.e. human MUC1 negative) mice.

ELISA
To detect MUC1-specific antibodies in sera from MUC1K-

rasPten mice with tumors (n = 5 ovarian, n = 4 oviductal and n = 4

uterine tumors) we performed ELISA, as previously described by

us and others [29]. Briefly, ELISA plates were coated with 10 mg/

Figure 1. Induction of floxed KrasG12D and Pten mutations in the female genital tract results in large tumors at the primary site,
accompanied at late stages by numerous peritoneal implants. (A) Left panel: female genital tract anatomy of a healthy mouse (Ov, ovaries;
OvB, ovarian bursa; OvD, oviduct; UT, uterus). Right panel: schematic representation of the murine female genital tract showing the ovaries, oviducts
and uterine horns. Arrows indicate AdCre delivery routes: under the ovarian bursa, inside the oviduct and inside the uterine horn. All injections were
unilateral, keeping the contralateral site as control. (B) Mice carrying conditional mutations in oncogenic KrasG12D and tumor suppressor Pten
pathways were injected with AdCre either under the left ovarian bursa (n = 12), left oviduct (n = 9), or left uterine horn (n = 12). Representative gross
images of primary tumors (left column) are shown for ovarian, oviductal and uterine injections. Right column shows numerous loco- regional
metastatic small tumor deposits (arrows) that accompany the corresponding primary tumor. The nodules were often located on the diaphragm
(upper and lower panels) and liver (middle panel).
doi:10.1371/journal.pone.0102409.g001
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ml 100mer MUC1 peptide comprising five 20 amino-acid long

tandem repeats from the MUC1 extracellular domain. Similarly

diluted sera from two mice with MUC1 negative (wild type)

tumors, as well as dilution medium alone were chosen as negative

controls. Samples were run in duplicate for each of the two

dilutions (1:20 and 1:40, respectively). Horseradish peroxidase

(HRP) –conjugated secondary antibody specific for mouse IgG

(Sigma, 1:500) was used for detection. Median and standard errors

were plotted in Excel.

Survival curve and statistical analysis
The Kaplan-Meyer survival curve was plotted using the

GraphPad Prism 6 software. The same software, as well as Excel

were used to perform ANOVA or Student’s t test and to compute

p values for statistical significance.

Results

Induction of oncogenic KrasG12D and deletion of Pten in
the oviduct or the uterine horns triggers progression to
ductal and endometrial tumors, respectively

To explore the tumorigenic contributions of oncogenic Kras

and tumor suppressor Pten pathways throughout the female

genital tract of genetically engineered, Cre-loxP mice [21,26], we

injected AdCre adenovirus at three different anatomical locations

(Fig. 1A). The mice received one, unilateral AdCre injection either

in the ovarian bursa (n = 12), oviduct (the fallopian tube

equivalent, n = 9) or uterine horn (n = 12). Activation of Kras

and deletion of Pten transformed the oviductal and endometrial

tissues, resulting in establishment of primary tumors at these sites

(Fig. 1B). Oviductal tumors showed 100% tumor penetrance

(n = 9), similarly to ovarian tumors [21,26]. Tumor penetrance

was lower (at 50%) following intrauterine (IU) AdCre injections.

Intrabursal injections triggered primary ovarian tumors as shown

previously [21,26] and were used as reference standard (Fig. 1B).

Gross loco-regional metastases were often observed in late stage

tumors of oviduct and uterus (Fig. 1B) and were detected as tumor

implants on the diaphragm, liver, and spleen. Only one of the 12

uterine-injected mice presented with ascites (8%) while 5 out of 9

oviduct injected mice showed ascites (56%, p = 0.0163). Ascites,

when detected, was of the hemorrhagic type. No tumors were

detected in the ovaries, oviduct and uterine-AdCre injected mice

carrying mutations in either Kras alone (MK mice) or Pten alone

(MP mice, data not shown), suggesting that, as with ovarian

tumors [26], both pathways need to be active in order for tumors

to occur. AdCre was also injected in MUC1 single transgenic mice

(included as controls) which, as expected, remained healthy

throughout the duration of the experiment. This demonstrates

that in the absence of floxed mutations in the host genome,

adenoviral infection is non-consequential for the host.

DNA of all primary tumors was analyzed by PCR to confirm

the activation of the floxed sites in Kras and Pten genes [26]. As

expected, the oviductal and uterine tumors showed the presence of

both the active KrasG12D and the wild type Kras alleles, along with

homozygous deletion of Pten (Fig. S1A–C). Normalization results

of mutant (floxed) Kras to wild type Kras from tumors are in line

with the expected 1:1 ratio (50% mutant Kras), although the

oviduct and endometrial show slightly lower and higher ratios,

respectively (Fig. S1D). A similar efficiency of recombination was

observed for floxed Pten that could be detected in these lesions

(Fig. S1E). In contrast, no wild type was detected, consistent with

the fact that macro-dissected tissue consisted mostly of epithelium.

However, a weak band for wild type Pten could be detected in the

ex vivo isolated ovarian tumor cell line using freshly isolated DNA,

Figure 2. Primary tumors of the ovary, oviduct and uterus have epithelial origin. Immunohistochemistry staining of tumors occurring in
the ovary (upper panels), oviduct (middle panels) or endometrium (lower panels). Antibodies to mouse cytokeratin 8 (an epithelial cell marker, left
column) and mouse desmin (right column) were used at 1:50 dilution. Representative images shown. Scale bar 250 mm.
doi:10.1371/journal.pone.0102409.g002
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also suggesting the negative result can in part be due to a limitation

in detecting residual Pten by PCR when using paraffin-extracted

DNA (Fig. S1F). Through reporter gene (AdLacZ) experiments,

we further confirmed that injections remain anatomically confined

and effectively trigger local epithelial infection of uterus, oviduct

and ovaries (Fig. S2).

Oviductal and uterine tumors are of epithelial origin and
show endometrioid histology

Both oviductal and uterine tumor cells were positive for

cytokeratin 8, an epithelial marker, and negative for desmin, a

stromal cell marker (Fig. 2), confirming the epithelial origin of

these tumors. Similarly to KrasPten- induced ovarian tumors

obtained via AdCre injections under the ovarian bursa [21], both

the oviductal and uterine primary tumors displayed endometrioid

histology (Fig. 3). The endometrioid histology was also preserved

in loco-regionally spread tumor implants (Fig. 3). Our findings

demonstrate that, in this preclinical model, co-involvement of Kras

and Pten tumorigenic pathways throughout the genital tract

(ovaries, oviduct and uterus) consistently triggers gynecologic

tumors with endometrioid histology. Notably however, some of the

uterine lesions in mice sacrificed early, potentially before tumor

onset, showed glandular hyperplasia with cystic dilation (Fig. S3).

KrasPten-driven oviductal and uterine tumors express
human MUC1 and trigger spontaneous anti-MUC1
antibodies

We have previously shown that triple transgenic MUC1KrasP-

ten mice, injected with AdCre under the ovarian bursa, develop

human MUC1-expressing ovarian tumors, closely mirroring the

human disease [21,26]. In this study, we examined whether the

oviductal and uterine tumors also expressed MUC1 upon Kras

activation and Pten deletion in MUC1KrasPten mice. Our IHC

results demonstrate that the tumors lost polarized MUC1

expression normally seen on healthy epithelia (Fig. S4), and show

abundant cell surface and cytosolic MUC1 (Fig. 4), similar to the

staining pattern observed in human tumors (Fig. S5 and references

[30,31]).

In patients, MUC1 overexpression on developing adenocarci-

nomas leads to spontaneous humoral responses to various MUC1

epitopes from its extracellular domain [32,33]. We asked here

whether the gynecologic tumors in MUC1KrasPten mice that

express MUC1 antigen as self also trigger MUC1-specific humoral

immunity. ELISA measurements show that although the ampli-

tude of the response varies, presence of MUC1-specific IgG

antibodies can be detected in serum of tumor bearing mice

(Fig. 4B) and the levels are significantly higher in mice with

ovarian and oviduct tumors. Since the target peptide is a 100mer

MUC1 peptide comprising five tandem repeats from the

Figure 3. Oviductal and endometrial tumors show endometrioid histology at both primary and satellite locations. Formalin fixed and
paraffin embedded primary and metastatic tumor tissues were analyzed for histo-pathology. Representative images of H&E stained tumor sections
are shown. Left column: primary tumors of the genital tract show endometrioid histology in the ovary, oviduct and endometrium. Right column:
secondary tumors, including ovarian metastases to the diaphragm (upper), oviduct metastases to the pancreas (middle) and endometrial metastases
to the diaphragm (lower) also show endometrioid histology. Scale bar 220 mm.
doi:10.1371/journal.pone.0102409.g003
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extracellular portion of MUC1, these responses are indicative of

humoral immunity against underglycosylated, tumor-like MUC1,

as previously shown by us and others [26]. Furthermore, mice

with endometrial hyperplasia also have detectable levels of

MUC1-specific antibodies, suggesting that MUC1 humoral

immunogenicity is an early event, triggered by early precursors

(Fig. S3D).

Overall, these results demonstrate that MUC1KrasPten mice

represent the first immune competent, orthotopic, human MUC1-

expressing preclinical tumor model for epithelial cell- derived

oviduct and endometrial tumors. The tumors have well defined

(endometrioid) histology, and, as with ovarian tumors [26],

overexpress MUC1 and trigger detectable levels of spontaneous

MUC1-specific humoral responses, closely mirroring the immu-

nogenicity seen in the respective human diseases [32,33].

KrasPten- induced oviductal and uterine tumors differ in
their nuclear grade, survival and immune
microenvironment

Although all genital tract tumors were endometrioid, a detailed

analysis of the H&E histo-pathology revealed that only oviduct

tumors developed as poorly differentiated, high nuclear grade

tumors, in contrast to the uterine and ovarian tumors which

occurred primarily as low/intermediate grade tumors (Fig. 5A).

Furthermore, mice with oviduct tumors had the lowest median

survival (12 weeks), significantly shorter than mice with endome-

trial tumors (Fig. 5B, p = 0.001). Surprisingly, no significance was

reached when compared with mice bearing ovarian tumors (13

weeks median survival, Table S1). Thus, the ovarian and oviductal

tumors mirror the characteristics of the human ovarian [1] and

fallopian tube cancers and share a similarly low survival, in spite of

the high nuclear grade observed only in the latter.

Figure 4. Increased human MUC1 protein expression in Kras- and Pten- driven genital tract tumors of MUC1KrasPten triple
transgenic mice triggers humoral immunity. (A) MUC1 immunohistochemistry staining of tumors occurring in the ovary (upper panel), oviduct
(middle panel) or endometrium (lower panel). An antibody specific to the human MUC1 extracellular domain (clone HMPV, mouse IgG1) was used at
1:100. Polarized MUC1 expression throughout the genital tract of healthy female mice at baseline is shown in Fig. S2. Mouse tumor MUC1 mimics
human tumor expression (shown in Fig. S5). Representative immunohistochemical images shown. Scale bar 250 mm. (B) ELISA measurement of
human MUC1 peptide-specific IgG antibodies in sera from MUC1KrasPten mice with tumors (n = 5 ovarian, n = 4 oviductal and n = 4 uterine). Upper
panel: presence of antibodies at two different dilutions, using sing as target peptide a 100mer peptide comprising fie 20-aminoacid long peptide
from the MUC1 extracellular domain of MUC1. Background levels were detected using sera from KrasPten mice with MUC1 negative tumors (i.e. wild -
type for MUC1). Vehicle only was also included as an additional negative control. The assay was run in duplicate and values were plotted as means
with standard deviations. Lower panel: box and whisker diagrams (min, Q1, median, Q3, max) of readings at 1:20 dilution. Antibody levels are
significantly higher (compared to control readings) in the ovarian and oviduct tumor group (one way ANOVA p,0.05; *two tail t test; p,0.05).
Uterine tumors, p = 0.052.
doi:10.1371/journal.pone.0102409.g004
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To explore the relationship between survival, the observed

phenotype of oviduct tumors and the immune status of the host,

we phenotyped the splenic T cells via multicolor flow cytometry

and analyzed the percentages of all CD8 and CD4 T lymphocytes,

and of Foxp3 + (Treg) subset. The ratio of suppressors (Tregs) to

effectors (CD8 T lymphocytes) has been shown to correlate

inversely with survival of patients with ovarian [34] or other types

of tumors [35–37]. In line with these reports, we observed an

increased Foxp3 + T cell accumulation in the spleen of oviduct

tumor- bearing mice and a higher ratio of Treg/CD8 in these

mice compared to mice with uterine tumors (Fig. 5C, p,0.01). No

differences were noted between mice with ovarian and oviduct

tumors, suggesting that both anatomical locations are similar in

inducing an immune suppressive phenotype in the host, despite

the high nuclear grade observed only in the latter.

Discussion

Studies on targeted therapies, including immune-based ap-

proaches, require the development of adequate preclinical models

that best reflect the pathogenic changes seen in the human disease.

In this study, we generated two novel human MUC1- expressing

mouse models of oviductal and endometrial cancers respectively,

based on simultaneous KrasG12D activation and Pten deletion

mutations [21,26]. Using triple transgenic MUC1KrasPten mice

[26] we show for the first time that concomitant activation of

oncogenic Kras and deletion of Pten tumor suppressor throughout

the female mouse genital tract consistently triggers MUC1 positive

epithelial tumors with endometrioid histology. We previously

showed that MUC1 distribution throughout the genital tract of

MUC1KrasPten healthy mice is similar to the one seen in women

[26]. Here, we demonstrate that progression to genital cancers

triggers loss of polarized distribution and significant increase in

Figure 5. Kras- and Pten- induced tumors differ in nuclear grade and survival based on the anatomical site of mutation activation.
(A) Nuclear grade of primary tumor tissues of the ovary, oviduct and the uterus. Representative H&E images are shown. Scale bars: Main 220 mm,
Inset 2100 mm. (B) Kaplan Meyer curve shows that mice with uterine tumors survive significantly more than those with ovarian tumors (* p = 0.0015)
or those with ductal tumors (# p = 0.0016). Individual group comparison after post ANOVA Bonferroni correction (p,0.016). The numbers of mice in
each tumor group and median survival time for each tumor type are listed Table S1. Mice with premalignant lesions in the uterine tumor category
were excluded from analyses. (C) Splenic Treg/CD8 T cell ratios in mice with ovarian, oviduct or uterine tumors (n = 5 mice/group), represented as box
and whisker diagrams (min, Q1, median, Q3, max). CD4 and CD8 T lymphocytes were gated under the CD3 population. Foxp3 cells were gated under
the CD4 population. One way ANOVA for comparison of all means (p,0.03) and two tail t tests between any two groups show significant differences
between the ratios in uterine tumors and any of the other two tumor types, ovarian and oviduct (p,0.02 and p,0.01, respectively).
doi:10.1371/journal.pone.0102409.g005
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MUC1 protein expression. Furthermore, these changes trigger

humoral immune responses, most likely due to the release of

MUC1 from tumor cell surface followed by expansion of MUC1-

specific B cells in tumor draining lymph nodes [32,33,38]. Patients

with premalignant and malignant conditions of the genital tract

(mostly uterus and ovaries), as well as those affected with other

cancers [39] have increased MUC1 antibody titers, although the

intensity of these responses is variable. In line with these findings,

the triple transgenic MUC1KrasPten mice employed here, which

express human MUC1 as self, are able to undergo similar

pathogenic changes leading to local (ascites) and systemic (serum)

IgG antibody responses in ovarian, tubal and endometrial tumors.

This demonstrates the versatility of MUC1KrasPten mice in

modeling, with high fidelity, immunobiology of MUC1 in

gynecologic cancers.

A second major finding of our studies stems from the fact that

although the same genetic changes were turned on, at a similar

rate, throughout the genital tract epithelium (in the ovaries,

oviduct, endometrium), the tumor microenvironment seems to be

a key determinant of tumor grade and survival. Though

contiguous with the uterus and the ovary, and triggered via the

same KrasG12D and Ptendel mutations, the oviductal tumors show

a higher nuclear grade than those arising in the other organs. In

women, the high grade serous ovarian tumors are believed to arise

from fallopian tubes [4,5,15,40]. This hypothesis is further

validated by recent preclinical studies from Perets et al. who

reported a genetic model of de novo high grade serous carcinoma

that originates in fallopian tube epithelium and recapitulates the

biology of human invasive ovarian cancer [23]. Our results raise

the previously unexplored possibility that fallopian tubes may also

play a causative role in (albeit rare) cases of high grade

endometrioid or mixed endometrioid-serous ovarian carcinomas.

There are several examples in human carcinogenesis where the

anatomical site of initiating lesions dictates the cancer risk,

including the cervical epithelial transformation zone with HPV

[41], the esophageal-gastric junction and Barrett’s esophagus [42],

and the squamous cell metaplasia in lung cancer [43]. Here we

report that the intrinsic nature of the mucoso-epithelial biology of

the fallopian tube may promote a more aggressive phenotype, as

compared to the adjacent uterine mucosa when exposed to the

same carcinogenic influence. Our approach opens the door for

future studies focused on the identification of fallopian tube-

specific molecular pathways engaged in tumorigenesis and

development of new therapies that target these pathways. It also

provides further support to the rationale of scrutinizing the

fallopian tubes when searching for premalignant or early

precursors to high grade ovarian tumors, regardless of their

histology.

Preclinical mouse models to study oviductal cancer, the murine

equivalent of human fallopian tube carcinoma, are difficult to

develop. Recent studies from Kim et al utilized the anti-müllerian

hormone receptor 2 (Amhr2) gene locus to deliver the Cre

recombinase and conditionally delete the Dicer and the Pten genes

in the müllerian ducts to establish ductal cancer closely resembling

the human disease [15]. However, the Amhr2 gene is expressed

not only in oviductal cells but also in the uterine epithelium as well

as the ovarian granulosa cells [19], making this model non-

exclusive for primary oviductal tumors. Similarly, we acknowledge

the technical challenges posed by induction of oviduct tumors in

our MUC1KrasPten mice. Oviducts are minute tubes that provide

a space continuum between the uterine horns and the ovarian

bursa. To diminish the risk of leakiness, and to ensure that AdCre

injections remain anatomically confined to the oviducts, we

clipped the proximal and distal ends of the tubes, prior to AdCre

injections. The contrasting histomorphology (high grade in

oviducts versus low grade in ovaries and uterus) suggests that the

originating cells were indeed from the oviduct and that tumors

were not merely spreading from the contiguous genital tract areas

(ovary and uterus, respectively).

Unlike oviduct tumors, several preclinical models of uterine

carcinomatosis are currently available. Conditional deletions of

tumor suppressors such as Pten and p53 in the endometrium

trigger invasive endometrial adenocarcinomas [17,18]. In line with

these studies, our endometrial cancer mouse model did not show

100% penetrance. Mice with no visible tumors showed signs of

endometrial hyperplasia. The lesions were immunogenic and

triggered MUC1 antibodies, making this model attractive for

studies on MUC1 in uterine premalignancy.

The tumor microenvironment, composed of stroma and

immune cells, has recently received emphasis as a target in

treatment of ovarian cancer [44]. Our study reinforces its role in

the development of gynecological cancers. In addition, oviduct

tumor-bearing mice have Treg to CD8 ratios that are higher than

in mice with uterine tumors, yet not significantly different from

mice with ovarian tumors. This suggests that the oviducts promote

a more immune suppressive environment, perhaps similarly to

ovaries, via CXCL12 [45], although the exact mechanisms remain

to be identified.

Taken together, our studies establish two new, highly versatile

human MUC1- expressing mouse models of Kras- and Pten-

induced oviductal and endometrial cancers with endometrioid

histology, which closely mirror the pathology and immunogenicity

of human disease, and demonstrate the influence of the tumor

microenvironment on gynecological cancer development.

Supporting Information

Figure S1 Cre-mediated recombination at Kras and Pten loci,

in tumor-extracted DNA. PCR analysis of tumor-extracted DNA

shows concomitant activation of oncogenic KrasG12D mutation

(A) and deletion of Pten (B). Non-deleted Pten is shown in (C).

DNA from a healthy transgenic mouse was used as negative

controls in and B and positive control in C. DNA from an ovarian

cancer cell line was used as positive control in A and B. (A) Floxed

out, activated Kras shows up as upper band. (B) Floxed out Pten

shows as a single band; no band demonstrates absence of Cre-loxP

recombination. (C) Wild type Pten allele (arrow). (D) Activated

Kras levels expressed as percentage of total K-Ras in each sample.

(E, F) Pten deletion and wild type Pten allele, respectively; y axis,

signal intensity (arbitrary units). Signal in D-F were quantified

using Image Studio Lite (LI-COR). Ov T; ovarian tumor; Od T;

oviduct tumor; Endom; endometrial tumor.

(TIF)

Figure S2 AdLacZ administration into the oviduct or the uterus

was performed followed by staining for b-galactosidase expression.

4 micron sections of the specific tissue were cut and HE stained to

reveal the tissue histology. b-galactosidase expression in epithelia

of oviduct and the endometrium indicate successful delivery of the

adenovirus. A representative section is shown for each oviduct and

uterine anatomical site (Scale bars: low magnification 2100 mm,

high magnification 250 mm.

(TIF)

Figure S3 (A) Baseline endometrial histology of a healthy mouse.

(HE stain) (B) Premalignant lesions display cystic dilation and

endometrioid hyperplasia. (HE) stain) (C) The cyst lining as well as

the hyperplasic endometrial glands express human MUC1 (IHC

for MUC1 using anti-human MUC1 antibody, clone HMPV).
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Scale bar 2200 mm. (D) Dot plot of IG10-MUC1 cells incubated

with serum from uterine injected female mouse with endometrial

hyperplasia. Gated population represents percent tumor cells

stained by MUC1-specific antibodies present in the serum.

(TIF)

Figure S4 Histomorphology and MUC1 expression in the

normal mouse female genital tract. Left column: HE stain of a

female genital tract of a healthy, MKP mouse showing normal,

baseline histology of the ovary, oviduct and the uterus. Right

column: IHC stain for human MUC1 expression in the ovary,

oviduct and uterus of a healthy MKP female mouse. Scale bar 2

50 mm.

(TIF)

Figure S5 Histomorphology and MUC1 expression in human

gynecologic tumors. Left column: HE stains of human fallopian

tube carcinoma, endometrial carcinoma and endometrial hyper-

plasia. Right column: IHC stain for human MUC1 expression.

Representative images shown. Scale bar 250 mm.

(TIF)

Table S1 Median survival and number of mice in each tumor

group.

(DOCX)
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