Litman, D and Swerts, M and Hirschberg, J
(2006)
Characterizing and predicting corrections in spoken dialogue systems.
Computational Linguistics, 32 (3).
417 - 438.
ISSN 0891-2017
![[img]](http://d-scholarship.pitt.edu/style/images/fileicons/text_plain.png) |
Plain Text (licence)
Available under License : See the attached license file.
Download (1kB)
|
Abstract
This article focuses on the analysis and prediction of corrections, defined as turns where a user tries to correct a prior error made by a spoken dialogue system. We describe our labeling procedure of various corrections types and statistical analyses of their features in a corpus collected from a train information spoken dialogue system. We then present results of machine-learning experiments designed to identify user corrections of speech recognition errors. We investigate the predictive power of features automatically computable from the prosody of the turn, the speech recognition process, experimental conditions, and the dialogue history. Our best-performing features reduce classification error from baselines of 25.70-28.99% to 15.72%. © 2006 Association for Computational Linguistics.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Altmetric.com
Actions (login required)
 |
View Item |