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COMPUTATIONAL INVERSE SOLUTION STRATEGIES FOR

CHARACTERIZATION OF LOCALIZED VARIATIONS OF MATERIAL

PROPERTIES IN SOLIDS AND STRUCTURES

Mengyu Wang, PhD

University of Pittsburgh, 2014

Computational inverse characterization approaches that combine computational physical

modeling and nonlinear optimization minimizing the difference between measurements from

experimental testing and the responses from the computational model are uniquely well-

suited for quantitative characterization of structures and systems for a variety of engineering

applications. Potential applications that are suited for computational inverse character-

ization range from damage identification of civil structures to elastography of biological

tissue. However, certain challenges, primarily relating to accuracy, efficiency, and stabili-

ty, come along with any computational inverse characterization approach. As such, proper

application-specific formulation of the inverse problem, including parameterization of the

field to be inversely determined and selection/implementation of the optimization approach

are critical to ensuring an accurate solution can be estimated with minimal (i.e. practically

applicable) computational expense.

The present work investigates strategies to optimally utilize the available measurement

data in combination with a priori information about the nature of the unknown properties

to maximize the efficiency and accuracy of the solution procedure for applications in inverse

characterization of localized material property variations. First, a strategy using multi-

objective optimization for inverse characterization of material loss (i.e., cracks or erosion) in

structural components is presented. For this first component, the assumption is made that

sufficient a priori information is available to restrict the parameterization of the unknown
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field to a known number and shape of material loss regions (i.e., the inverse problem is

only required to identify size and location of these regions). Since this type of parameter-

ization would typically be relatively compact (i.e., low number of parameters), the inverse

problem is well suited for non-gradient-based optimization approaches, which can provide

accuracy through global search capabilities. The multi-objective inverse solution approach

shown divides the available measurement data into multiple competing objectives for the

optimization process (rather than the typical single objective for all measurement data) and

uses a stochastic multi-objective optimization technique to identify a Pareto front of poten-

tial solutions, and then select one ”best” inverse solution estimate. Through simulated test

problems of damage characterization, the multi-objective optimization approach is shown

to provide increased solution estimate diversity during the search process, which results in

a substantial improvement in the capabilities to traverse the optimization search space to

minimize the measurement error and produce accurate damage size and location estimates

in comparison with analogous single objective optimization approaches. An extension of this

multi-objective approach is then presented that addresses problems for which the quantity of

localized changes in properties is unknown. Thus, a self-evolving parameterization algorithm

is presented that utilizes the substantial diversity in the Pareto front of potential solutions

provided by the multi-objective optimization approach to build up the parameterization it-

eratively with an ad hoc clustering algorithm, and thereby determine the quantity, size, and

location of localized changes in properties with minimal computational expense. Similarly as

before, through simulated test problems based on characterization of damage within plates,

the solution strategy with self-evolving parameterization is shown to provide an accurate and

efficient process for the solution of inverse characterization of localized property changes.

For the second half of the present work, a substantial change in the inverse problem

assumptions is made, in that the nature (i.e., shape) of the property variation is no longer

assumed to be known as precisely a priori. Thus, a more general (e.g., mesh-based) pa-

rameterization of the unknown field is needed, which would typically come at a cost of sig-

nificantly increased computational expense and/or loss of solution uniqueness. To balance

the generalization of the approach and still utilize some amount of the knowledge that the

solution is localized in nature, while maintaining efficiency, a hybrid compact-generalized
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parameterization approach is presented. The initial incarnation of this hybrid approach

combines a machine learning data reconstruction strategy known as gappy proper orthogo-

nal decomposition (POD) with a least-squares direct inversion approach to estimate material

stiffness distribution in solids (i.e., to solve elastography problems). The direct inversion ap-

proach uses a generalized mesh-based parameterization of the unknown field, but full-field

response measurements (i.e., measurements everywhere in the solid) are required, which are

not available for most practical inverse characterization problems. Therefore, the gappy

POD technique first identifies the pattern of potential response fields of the solid through

a collection of a priori forward numerical analyses of the solid response with a specified

compact parameterization and a corresponding collection of arbitrarily generated parameter

sets. Once the pattern is identified, the gappy POD technique is able to use the available

partial-field measurement data to estimate the full-field response of the solid to be used by

the direct inversion. Thus, the computational cost of the inverse characterization is negligible

once the gappy POD process has been completed. Through simulated test problems relating

to characterization of inclusions in solids, the direct inversion approach with gappy POD

is shown to provide highly efficient and relatively accurate inverse characterization results

for the prediction of Young’s modulus distributions from partial-field measurement data.

This direct inversion approach is further validated through an example problem regarding

characterization of the layered stiffness properties of an engineered vessel from ultrasound

measurements. Lastly, an extension of this hybrid approach is presented that uses the char-

acterization results provided by the previous direct inversion approach as the initial estimate

for a gradient-based optimization process to further refine/improve the inverse solution esti-

mate. In addition, the adjoint method is used to calculate the gradient for the optimization

process with minimal computational expense to maintain the overall computational efficien-

cy of the inverse solution process. Again, through simulated test problems based on the

characterization of localized, but arbitrarily shaped, inclusions within solids, the three-step

(gappy POD - direct inversion - gradient-based optimization) inverse characterization ap-

proach is shown to efficiently provide accurate and relatively unique inverse characterization

estimates for various types of inclusions regardless of inclusion geometry and quantity.
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1.0 ASSESSMENT OF MULTI-OBJECTIVE OPTIMIZATION FOR

NONDESTRUCTIVE EVALUATION OF DAMAGE IN STRUCTURAL

COMPONENTS

1.1 ABSTRACT

A multi-objective optimization-based computational approach to nondestructive evaluation

of damage in structural components, and more generally in solid continua, is discussed and

numerically evaluated. The multi-objective approach provides a substantial improvement in

the capabilities to traverse the optimization search space to minimize the measurement error

and produce accurate damage estimates. Through simulated test problems based on the

characterization of damage in structural steel components, including internal pipe surface

geometry as well as material loss within a plate structure utilizing steady-state dynamic mea-

surements of outer surface displacement, a multi-objective genetic algorithm optimization

approach is shown to provide substantial computational improvement over single-objective

strategies. The multi-objective approach consistently and efficiently produces more accurate

characterization results in contrast to equivalent single-objective strategies. More impor-

tantly, the multi-objective approach is shown to exhibit consistently better tolerance to test

measurement noise and measurement sparsity. Moreover, the multi-objective strategy was

found to provide improved diversity in the solution estimates for ill-posed problems, which

is an important step leading to insight into the necessary changes to the testing or pa-

rameterization to subsequently produce more accurate and unique solutions to such inverse

characterization problems.

1



1.2 INTRODUCTION

Approaches that combine computational mechanics with nonlinear optimization strategies to

solve inverse problems in nondestructive evaluation provide generalized frameworks for treat-

ing and distinguishing between various contributions to a system response, while providing

physically meaningful solutions that can be applied to predict future behaviors [8, 10, 62, 9].

However, there are several key challenges in implementing these approaches, one of which in

particular is the need for consistent and efficient nonlinear optimization to identify the un-

known system parameters that optimally reproduce the experimental measurements. Com-

plicating things further is that the optimization search spaces for nondestructive evaluation

(NDE) problems are often large (e.g., broad ranges of values for damage location and magni-

tude) as well as highly nonconvex, resulting in a propensity for many optimization approaches

to become stuck in local minima (i.e., identify incorrect solutions).

Nongradient-based algorithms such as genetic algorithms have seen substantial use to

date to overcome the nonconvexity issues [36, 30, 28]. Yet, while stochastic search al-

gorithms are well equipped for global search capabilities they often require a relatively

large number of function evaluations (e.g., finite element analyses to determine a poten-

tial solution’s accuracy), which can become computationally prohibitive with any degree

of complexity of the system under consideration. Alternatively, for structural engineering

applications (e.g., damage detection in beam or truss structures) a simple modification of

utilizing multi-objective (rather than the typical single-objective) optimization has shown

promise to significantly improve the consistency and efficiency of computational NDE strate-

gies [32, 55, 54, 53, 56, 52, 58, 12, 27, 29].

[27, 12] presented some of the earliest work on incorporating multi-objective optimization

for structural damage detection in which algorithms were discussed to determine a measure

of stiffness for each element of a discretized frame by minimizing the deviation from measured

natural frequencies and mode shapes independently in a multi-objective sense. Subsequently,

Perera and coworkers have done a considerable amount of work relating to the application

of multi-objective optimization strategies to improve NDE solution techniques for structural

applications. Specifically, in [55, 52, 54, 53] two objectives based on the mode shapes and
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natural frequencies of the structures are minimized independently through non-gradient-

based strategies (e.g., genetic algorithm or particle swarm optimization) to estimate damage

locations and magnitudes within beam or truss elements. In addition, [32] explored the po-

tential improvements to noise tolerance and sparse measurement data that can be obtained

with multi-objective optimization for determining the location and magnitude of damaged

elements in truss structures from two sets of vertical displacement measurements. In gener-

al, thus far analyses have shown that in structural mechanics applications by dividing the

physical targets for the inverse problem into multiple objective functions and minimizing

these functions simultaneously but separately, the search process is able to proceed more

effectively toward an accurate estimate of the damage properties than if the objectives had

been combined to form a single (weighted) objective.

The present work extends this concept of multi-objective optimization for NDE-type in-

verse problems from structural analysis (i.e., beam and truss modeling) to more generalized

problems through the example of solid continua. Moreover, this work uses simulated exam-

ples to provide a unique examination of the benefits of a multi-objective optimization strategy

with respect to both accuracy and efficiency for NDE applications, the relative effects to ac-

curacy caused by measurement noise and sparse measurement data, as well as the ability to

improve solution set diversity specifically for non-unique problems. In the following section

the general inverse problem solution framework is outlined, including a detailed explanation

of the multi-objective genetic algorithm optimization procedure employed. Then, simulated

NDE examples of characterizing erosion in the wall of a pipe structure and identifying holes

in a plate structure are presented, including analysis of the inverse characterization results,

which is followed by the concluding remarks.

1.3 COMPUTATIONAL INVERSE MECHANICS

Generally, computational inverse mechanics approaches for NDE (depending on implemen-

tation and application also referred to as model updating or by other monikers) consist of

first constructing a numerical representation (e.g., finite element model) (Fig. 1.1(b)) of the

3



behavior of the target structure that is parameterized with respect to the unknown struc-

tural/system properties (~α) and subject to whatever particular nondestructive test has been

chosen to be applied (Fig. 1.1(a)). Then, an objective function (γ(~α)) is constructed quan-

tifying the difference between the experimentally measured response of the structure from

the nondestructive test (~Rexp) and the response that is predicted by the numerical represen-

tation given an estimate to the structural properties (~Rsim(~α)). A nonlinear optimization

strategy is applied to minimize the objective function (Fig. 1.1(c)), and if the objective can

be minimized sufficiently the resulting structural/system parameters are deemed to be the

approximation to the “true” state of the structure/system.

The success of these computational inverse mechanics approaches is dependent upon

the accuracy of the numerical representation of the structure, the quality of the response

measurements (i.e., noise), the sensitivity of the particular response measured to variations

in the structural properties to be determined, and the capabilities of the chosen optimization

algorithm to traverse the search space. Moreover, the majority of applications will see some

degree of weakness in these requirements, leading to a certain amount of ill-posedness in the

inverse problem that challenges the ability to successfully find a unique and accurate solution.

The focus of the present work is to quantitatively examine the ability of multi-objective

optimization to overcome some of the ill-posedness in NDE problems and improve solution

capabilities in a general sense through examples of damage detection in solid continua.

1.4 MULTI-OBJECTIVE OPTIMIZATION

Although there are several suitable multi-objective optimization techniques, for context, the

present work will solely consider the example of a multi-objective genetic algorithm (GA). For

NDE applications, the key benefit of the multi-objective approach is that it maintains a high

level of diversity in the solution population, which helps to prevent stalling or convergence

to local minima. Diversity is maintained during the search process in contrast to the single-

objective strategies by evolving a set of optimal points in the solution space with respect

to the multiple objective functions known as the Pareto set. The Pareto set can be defined
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Figure 1.1: Example schematic of the computational inverse mechanics approach for NDE.
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as the set of solutions that are not dominated by any other solution in the search space.

For example, as shown in Fig. 1.2 for a two-objective optimization, potential solutions A

and B both dominate C in that they have lower values of both objective functions, but are

not dominated themselves by any other potential solution shown (they may have a higher

value of one objective, but never both), and therefore A and B belong to the Pareto set

and C does not. Another term for the Pareto set is the “First front”, and the remaining

solution estimates that are not in the Pareto set can be divided into several subsequent

fronts (Second, Third, and so on) based on the criteria that each member of a front is not

dominated by any member of the same or higher-number fronts, as shown in Fig. 1.2.

First front

(Pareto set)

Second front

Third front

A

B

C

1g

1( )Cg

1( )Ag

1( )Bg

2 ( )Ag 2 ( )Bg 2 ( )Cg 2g

Figure 1.2: Potential solution set distribution for a two-objective (γ1 and γ2) optimization

problem and their divisions into three non-dominating fronts.

Within a GA the multi-objective criteria primarily affects the ranking of the individuals in

the population, which then governs how the evolution operators of mutation, crossover, and

natural selection are applied. Specifically, a controlled elitist multi-objective GA (CEMGA)

was used for the examples considered herein. While there are alternate multi-objective

algorithms available that would likely provide similar results, the CEMGA was used for

the present work due to its documented robustness with respect to global search capability

and availability within the commercial software MATLAB ([41]). The overall procedure of
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CEMGA to evolve a set (i.e., population) of solution estimates towards obtaining the Pareto

set is as follows:

1. Randomly generate an initial population of trial solution sets (i.e., individuals) for the

unknown parameters and evaluate each parameter set to obtain the corresponding value

for each objective function.

2. Assign a priority score to each individual in the population based on their corresponding

front (see Fig. 1.2) and measure of “crowdedness” (i.e., how near the individual is to

others on the same front in the objective function space).

3. Select a subset of “parent” individuals from the population based on the priority score.

4. Generate new individuals by applying crossover and mutation to the parent individuals

and evaluate their respective priority scores.

5. Create the next generation of individuals by selecting from the current population and

offspring based on the priority scores and Pareto fraction (i.e., limitation on the number

selected from the current Pareto set).

6. IF the stopping criteria is met - OUTPUT the Pareto set of parameter solutions and

STOP;

ELSE RETURN to 3.

A higher priority score, and therefore higher chance to survive throughout generations is

assigned to individuals with lower front number and larger distance measure in the objective

function space with respect others in the same front. Typical stopping criteria include a

maximum number of generations and/or analysis time and limits placed on the change in

spread of the individuals in the Pareto set. Note that while the multi-objective approach

evolves a set of optimal solutions rather than just one, the physical reality of an NDE

problem is that there can be only one “true” solution. Therefore, a postprocessing method

is typically applied at the completion of the optimization process to produce one optimal

solution estimate from the Pareto set. See [15, 41, 32, 52] for additional details about the

CEMGA, including specifics of the operators, stopping criteria, and postprocessing methods

that can be used therein.
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1.5 EXAMPLES AND DISCUSSION

Several simulated examples of damage characterization (i.e., numerically simulated experi-

ments with chosen damage parameters) were considered to examine the potential benefits

of using the multi-objective optimization approach for NDE problems in solid continua. In

all cases the simulated nondestructive tests consisted of applying a harmonic pressure to

a small portion of the structure at an excitation frequency of 20 Hz, and then measuring

the resulting steady-state harmonic displacement amplitudes at several discrete locations

along the outer surface of the structure. Vibration testing using direct frequency response

measurements was chosen based on its documented ability to provide substantial diagnostic

information for a global evaluation of a structure [11, 39]. However, the overall approach

and benefits would be expected to yield similar results for alternate testing approaches.

For both generating the experimental data and simulating the forward problem during

the inverse solution process the structures were assumed to behave linearly and be defined

by steady-state dynamic solid mechanics and analyzed using the finite element method. For

the simulated experiments the damage was modeled by directly modifying the geometry

(e.g., creating holes), and therefore modifying the finite element mesh. By contrast, for

the simulations of the structures throughout the inverse solution process (i.e., for evalua-

tion of the individual fitness during optimization) the meshes remained constant describing

the geometry of a healthy structure (i.e., structure without damage), and the damage was

modeled by reducing both the Young’s modulus and density to negligibly small values at

all integration points within the specified damage region. This modeling procedure for the

inverse simulations allowed the model to be efficiently parameterized for the optimization

process, while also helping to alleviate the inverse crime inherent to simulated experiments

by utilizing a moderately different model to generate the experiment as that used for the

inverse solution process.

The inverse problems to determine the structural parameters defining the damage in the

example structures were briefly cast in the form of the following multi-objective optimization

problem. The multi-objective functions that define the difference between the experimental

measurements and the responses of the numerical model of the example structures are in
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terms two arbitrary groupings of the displacements measured on the surface of the structures

due to the harmonic excitation:

min
~α


γ1(~α) =

(∑n
j=1(U

exp
aj −U

sim
aj (~α))

2∑n
j=1(U

exp
aj )

2

)1/2

γ2(~α) =

(∑m
j=1(U

exp
bj −U

sim
bj (~α))

2∑m
j=1(U

exp
bj )

2

)1/2 , (1.1)

where ~α is the vector containing the parameters of the unknown damage to be determined

in the inverse problem, U exp
aj and U sim

aj are the experimentally measured and numerically

simulated displacement at the jth measurement location in the first grouping, respectively,

and U exp
bj and U sim

bj are the experimentally measured and numerically simulated displacement

at the jth measurement location in the second grouping, respectively.

While the displacement groupings were chosen arbitrarily for the two separate objectives

for the examples in the present study, it would certainly be possible to investigate additional

or alternate competing objectives, such as measurements of different directional components

and/or from multiple regions of the domain, which may provide different benefits and short-

comings depending on the nature of a particular application.

The CEMGA multi-objective optimization algorithm discussed was applied to solve the

constrained optimization problem in terms of the two objective functions, γ1 and γ2, as

outlined above. In addition, to obtain a single solution estimate from the Pareto set of

solutions provided by the CEMGA, at completion the Pareto set was postprocessed to select

the one individual with the minimum l2-norm of the two objective functions as follows:

min
~α∈P

(
γ2

1(~α) + γ2
2(~α)

)
, (1.2)

where P represents the Pareto set obtained by the CEMGA. As discussed previously, there

have been alternate methods used to select the final estimate from such results. However,

since the measurement groupings used for the examples herein are physically similar quan-

tities to each other, the above choice is somehow intuitively ideal, providing the optimal

solution estimate in an average sense.
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For comparison purposes, two additional optimization approaches were applied to solve

the inverse damage characterization problems in each example, in both cases utilizing a stan-

dard single-objective GA technique (see ([28])) for an overview of a typical single-objective

genetic algorithm procedure).

In the first set of alternate tests, referred to as the “Lumped-Objectives” trials, the

standard GA was applied to minimize the l2-norm of the two objective functions (similar to

the postprocessing equation for the Multi-Objective trials). For the second set of alternate

tests, referred to as the “Single-Objective” trials, only one of the objective functions was

minimized by the GA, either γ1 or γ2. As such, twice the number of analyses were performed

for the Single-Objective trials as for the Lumped-Objective or Multi-Objective cases, since

one set of tests were performed only using γ1 and another set only using γ2.

An initial population of 40 individuals was utilized for all GA cases (Lumped-, Single-,

and Multi-Objective), as well as scattered crossover and adaptive feasible mutation. The

CEMGA used tournament selection, while the single-objective GA used stochastic uniform

sampling. In all cases to ensure a fair comparison the stopping criteria for the optimization

was set as a maximum number of generations (which is equivalent to setting a maximum

number of finite element analyses). In addition, due to the stochastic nature of the optimiza-

tion solution strategies, the inverse problem solution procedure was repeated five times for

all test cases for all optimization methods and the mean and standard deviation of the results

were analyzed to quantify both the accuracy and the consistency of the various techniques

for each example.

1.5.1 Example 1: Simulated Pipe With Erosion

The first example consisted of evaluation of a simulated steel pipe to determine the unknown

amount of erosion from the inner wall of the pipe. As shown with the pipe cross-section in

Fig. 1.3, the pipe was taken to be 1 m long, with an outer radius of 42 cm, a wall thickness of

7.2 cm, and both ends were connected to fixed supports. The material behavior was defined

as linear elastic with a Young’s modulus of 200 GPa, Poisson’s ratio of 0.3, and density of

8000 kg/m3, and all properties were assumed to remain as defined following damage (i.e.,
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the erosion damage being characterized in this simulated problem was assumed to occur

without any observable change to the properties of the remaining material in the structure,

and therefore only changed the structure’s geometry).

r

z

Damage

Excitation Excitation

Fixed boundary

Fixed boundary

zd

b

a

Figure 1.3: Cross-sectional schematic of the damaged pipe structure for Example 1.

To generate experimental data an ellipsoidal region representing the erosion was removed

from the inner surface of the pipe in a constant manner throughout the entire circumference

of the inner wall. The eroded region was therefore defined by the axial coordinate to the

ellipse center, zd, the axial radius of the ellipse, b, and the radial radius of the ellipse, a. An

ellipsoidal geometry was chosen for the erosion because of its simplicity as well as the fact that

similar simplifications have been applied in several works to simulate pipe structural behavior

following corrosion damage ([31, 79, 6, 42]). The simulated nondestructive test consisted of

applying a 1 kPa harmonic load to a 2 cm region on the surface of the pipe centered in the

axial direction of the pipe and constant over the circumference of the outer wall, and both

the resulting axial and radial displacements were measured at 99 locations along an axial

line on the outer surface of the pipe that were equally-spaced in 1 cm increments. Note,

the erosion, boundary conditions, and nondestructive testing definitions were all chosen to

satisfy the axisymmetric condition, and therefore reduce the computational cost to examine

the problem. Table. 1.1 shows the target values for the unknown erosion parameters (i.e.,

values used to generate the experimental data) and the minimum and maximum values
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Table 1.1: Target (experimental) values for the unknown erosion centroid axial coordinate

(zd), radial radius (a), and axial radius (b), and the minimum and maximum values consid-

ered for the optimization search process for the example damaged pipe structure.

Erosion

Parameter

Target

Value

Optimization

Minimum

Optimization

Maximum

zd 0.25 -0.5 0.5

a 0.03 0.0 0.072

b 0.05 0.0 0.5

considered plausible for each parameter for the inverse solution process (i.e., optimization

constraints). For this first example, the axial displacement measurements were used to

form the first objective (γ1) and the radial displacement measurements were used to form

the second objective (γ2).

1.5.1.1 Optimization Efficiency To demonstrate the computational efficiency of the

various GA optimization approaches the first set of tests restricted the maximum number

of finite element analyses to three separate values: 400, 800, and 1200. Then, the ability of

each approach to successfully minimize the objective functions within the function evaluation

constraints was analyzed and compared. Note that for the Single-Objective tests, in which

only one of the objective functions was provided for the optimization calculations, the results

are only shown for the corresponding objective function (i.e., when axial displacement was

provided as the GA objective only the error in the axial displacement measurements was

plotted for that optimization solution, and similarly for the radial displacement).

Fig. 1.4 shows the mean and standard deviation of the measurement error for the axial

displacement (γ1) and radial displacement (γ2) produced by the solutions obtained from the

five trials of each optimization approach for each limit on total analyses. Overall, the Multi-

Objective approach showed an improved computational efficiency in comparison to both
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Figure 1.4: Mean and standard deviation (error bars) of the measurement error for each

optimization approach after the specified maximum number of finite element analyses (FEA)

for Example 1.
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single-objective strategies (separate or lumped), on average obtaining solution estimates

with both lower axial and radial displacement measurement error regardless of the limit on

the total number of finite element analyses. Moreover, after the lowest number of function

evaluations (400) the Lumped-Objective approach clearly minimized the measurement error

farther than the separate Single-Objective trials, but as the number of function evaluations

increased the difference between the Lumped-Objective and Single-Objective approaches

became almost negligible. These results particularly serve to further emphasize the challenge

in traversing the optimization search space for even such a simple inverse characterization

problem, and shows that adding more information in a lumped single-objective manner may

not actually improve the capability to solve the inverse problem as would be expected. Yet,

the Multi-Objective approach may be able to improve the capability to overcome this inverse

problem challenge by better utilizing additional measurement information to more efficiently

seek out a global minimum to the optimization problem.

1.5.1.2 Solution Accuracy The second set of tests was intended to examine the consis-

tency and accuracy of the solution methods by increasing the stopping criteria to 6000 total

finite element analyses, an amount sufficient to ensure all optimization trials reached conver-

gence (whether to a local or global minimum). Fig. 1.5 again shows the mean and standard

deviation of the measurement error for the axial displacement and the radial displacement

produced by the solutions obtained from the five trials of each optimization approach with

6000 finite element analyses. What is most interesting is that the results for the two single-

objective strategies (separate and lumped) are minimally different from those obtained in

the prior tests with 1200 finite element analyses, with both the mean and standard deviation

of the measurement errors remaining relatively high. By contrast the Multi-Objective results

noticeably improved when the number of analyses was increased to 6000, with both a lower

mean error and substantially lower standard deviation of the error results. These results

imply that in most cases the single-objective strategies experienced premature convergence

to local minima, while the Multi-Objective strategy was able to consistently overcome the

nonconvexity of the search space given a sufficient number of analyses in nearly all trials to

accurately match the measurement data.
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Figure 1.5: Mean and standard deviation (error bars) of the measurement error for each

optimization approach after 6000 finite element analyses for Example 1.

To display the effect of the difference in measurement error on the accuracy of the

inverse problem solution (i.e., erosion parameters) Fig. 1.6 shows the mean and standard

deviation of the erosion parameter values obtained from the five trials of each optimization

approach with 6000 finite element analyses in comparison to the target (experimental) values.

Even though the modeling approach to generate the experimental data and that for the

inverse solution simulations was slightly different (discussed above), the accuracy of the

inverse solution estimate to the erosion parameters correlated well with the minimization of

the measurement error. As such, the improved ability of the Multi-Objective approach to

minimize the measurement error led to improved accuracy in the estimates to the erosion

parameters in comparison to both the Single-Objective and Lumped-Objective approaches.

1.5.1.3 Measurement Noise The third set of tests was intended to examine the effect

of measurement noise on the solution capabilities for damage inverse characterization of the

structures. As it is guaranteed in practice to have some degree of measurement noise, which

is likely correlated to the cost of the sensing systems used, it is critically important that the

inverse procedure for damage characterization is not strongly affected by this measurement

noise. Weak noise tolerance of the inverse procedure could lead to more ill-posed solutions.
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Target Value

(a) Axial Coordinate

Target Value

(b) Radial Radius

Target Value

(c) Axial Radius

Figure 1.6: Mean and standard deviation (error bars) of the optimal erosion parameter solu-

tions from each optimization approach: Single-Objective (SO) using either axial displacement

(AD) or radial displacement (RD), Lumped-Objectives (LO), and Multi-Objective (MO) af-

ter 6000 finite element analyses compared to the target (experimental) values for Example

1.
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Therefore, varying levels of Gaussian white noise was added to the simulated experimental

measurements of the structures as follows:

U expn = U exp (1 + kυ) , (1.3)

where U expn is the experimental displacement measurement (either axial or radial displace-

ment) with noise that replaced the previously used measurement without noise, U exp, k is

the noise amplitude multiplier, and υ is a normally distributed random variable with unit

variance and zero mean. k was chosen to produce and test three different signal to noise

ratios (SNR) (ordered from least noise to most): 40 dB, 30 dB, and 20 dB, based on the

following definition:

SNR(dB) = 10log10

(
1

k

)2

, (1.4)

After the addition of noise the three optimization approaches were again applied for five

independent trials each with the stopping criteria set to 6000 finite element analyses and the

results were analyzed.

Fig. 1.7 shows the mean and standard deviation of the measurement error for the axial

displacement and radial displacement and Fig. 1.8 shows the mean and standard deviation of

the erosion parameter values produced through the five trials of each optimization approach

with each of the three noise levels. Analogously to the previous noise-free results, the Multi-

Objective optimization approach clearly outperformed both the Single-Objective and the

Lumped-Objective trials to minimize the measurement error and produce accurate estimates

to the erosion parameters. Furthermore, while the final measurement error increases in all

cases with increasing noise, the erosion parameter results of the Multi-Objective trials stay

highly accurate, particularly in comparison to the other optimization techniques. These

results thoroughly emphasize the importance of having the optimization algorithm minimize

the measurement error as much as possible within the noise limitations to yield an accurate

estimate of the damage parameters, something which the Multi-Objective approach was

superior in accomplishing.
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(b) 30 dB
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(c) 20 dB

Figure 1.7: Mean and standard deviation (error bars) of the measurement error for each

optimization approach subject to the specified level of measurement noise after 6000 finite

element analyses for Example 1.

18



Target Value

(a) Axial Coordinate

Target Value

(b) Radial Radius

Target Value

(c) Axial Radius

Figure 1.8: Mean and standard deviation (error bars) of the optimal erosion parameter so-

lutions from each optimization approach: Single-Objective (SO) using either axial displace-

ment (AD) or radial displacement (RD), Lumped-Objectives (LO), and Multi-Objective

(MO) subject to the specified level of measurement noise after 6000 finite element analyses

compared to the target (experimental) values for Example 1.
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1.5.1.4 Measurement Sparsity There are commonly practical limitations on the num-

ber of measurements that can be obtained for any given nondestructive test (e.g., there are

limits to the number of sensors that can be installed), and the amount of measurements is

typically strongly correlated with the ill-posedness of the inverse characterization problem

(i.e., less measurement data often leads to a higher likelihood of a nonunique solution and

at least a more nonconvex error surface). Therefore, for the last set of tests for Example 1,

varying numbers of discrete (noise-free) measurements of the axial and radial displacement

along the pipe surface were utilized within the optimization approaches and the evaluation

results were again analyzed and compared. In addition to the original 99 measurement points

equally spaced at 1 cm intervals, two additional cases were examined: 24 locations at 4 cm

intervals and 9 locations at 10 cm intervals. The three optimization approaches were again

applied with each quantity of experimental data, in turn, for five independent trials each

with the stopping criteria set to 6000 finite element analyses.

Fig. 1.9 shows the mean and standard deviation of the measurement error for the ax-

ial displacement and radial displacement produced through five trials of each optimization

approach with each case of measurement point intervals. There is negligible difference in

the results for measurement intervals of 1 cm and 4 cm, implying that both data quantities

have sufficient information to determine a unique and accurate solution, particularly when

provided with the optimization capabilities of the multi-objective approach. Alternatively,

there is a substantial difference in the resulting error minimization for measurement intervals

of 10 cm when compared to the larger experimental datasets. There is clearly convergence

to local minima and there was substantial variation in the resulting erosion parameter esti-

mates (not shown for brevity), indicating that the nondestructive test performed with surface

measurements at 10 cm intervals is insufficient to produce unique and accurate damage esti-

mates and produces a substantially more nonconvex error surface than the cases with more

measurement information. However, the multi-objective approach was able to minimize the

measurement error consistently to a far lower value than the single-objective approaches, and

although there was higher deviation in the solutions than previously, the multi-objective ap-

proach produced more accurate damage estimates than the single-objective strategies even

when using more dense measurements.
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(b) 4 cm
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(c) 10 cm

Figure 1.9: Mean and standard deviation (error bars) of the measurement error for each

optimization approach subject to the specified measurement point intervals after 6000 finite

element analyses for Example 1.
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1.5.2 Example 2: Simulated Plate With Holes

A second set of simulated test cases for a different inverse characterization example was

considered in order to examine the capabilities of the multi-objective approach to generalize

to other similar NDE problems in solid continua. This second example consisted of evaluation

of a simulated steel plate to determine the unknown size and location of small circular holes

occurring throughout the domain. As shown in Fig. 1.10, the plate was taken to be an

arbitrarily thin 1 m × 1 m square section with the bottom fixed to a rigid support. The

Excitation

Fixed boundary

DamageDDD gem

x

y

ch

cr
cvc

Figure 1.10: Schematic of the damaged plate structure for Example 2.

elastic material properties were defined identically to the previous pipe example, and again

the material properties were assumed to be unaffected by damage (i.e., damage only changed

geometry).

To generate the experimental data circular regions representing the damage defined by

the horizontal and vertical coordinates of their centers (ch and cv) and corresponding radii

(cr) were removed from the plate. As in the previous example, the circular assumption

was used for simplicity and its similarity to previous related NDE efforts [36, 43, 20, 7, 40,

21]. The simulated nondestructive test consisted of applying a 1 kN/m (factoring out the

arbitrary thickness) harmonic excitation to the top surface of the plate and measuring the

vertical and/or horizontal displacements at several locations (detailed in the following) on
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Table 1.2: Target (experimental) values for the unknown damage centroid horizontal and

vertical coordinates (ch and cv) and radius (cr), and the minimum and maximum values

considered for the optimization search process for the example plate structure with a single

damage location.

Damage

Parameter

Target

Value

Optimization

Minimum

Optimization

Maximum

ch 0.3 0.0 1.0

cv 0.7 0.0 1.0

cr 0.05 0.0 1.0

the surface of the plate, and all simulations utilized the plane stress assumption. In addition,

Gaussian white noise was added to the experimental data with a SNR of 40 dB.

1.5.2.1 Single Damage Location For the first set of tests a single damage location

was used to generate the simulated experiment, and then the inverse characterization prob-

lem sought to determine the location and size of this single damage. Table. 1.2 shows

the target values for the unknown damage parameters and the minimum and maximum

values considered reasonable for each parameter for the inverse solution process. For the

measurement data both the horizontal and vertical displacements resulting from the applied

harmonic excitation were measured at 19 locations along the right surface of the plate that

were equally-spaced vertically in 5 cm increments. Again, the data was divided into two

objectives with the vertical displacement measurements used to form the first objective (γ1)

and the horizontal displacement measurements used to form the second objective (γ2).

The same three optimization strategies as were used in the previous example (Lumped-

, Single-, and Multi-Objective) were each applied to estimate the location and size of the

unknown damage in the plate, again with five trials for each optimization approach and with

a stopping criteria of 2000 total finite element analyses for each trial. The stopping criteria
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Figure 1.11: Mean and standard deviation (error bars) of the measurement error for each

optimization approach after 2000 finite element analyses for Example 2 with a single exper-

imental damage location.

was deemed sufficient for this example to ensure all optimization trials reached convergence

(whether to a local or global minimum). Fig. 1.11 shows the mean and standard deviation

of the measurement error for the vertical displacement (γ1) and the horizontal displacement

(γ2) and Fig. 1.12 shows the mean and standard deviation of the damage parameter values

produced by the solutions obtained from the five trials of each optimization approach.

Similarly to the first example, the Multi-Objective approach showed a superior ability to

minimize all measurement errors, and therefore, produced more accurate estimates to the

damage parameters than any of the Single- or Lumped-Objective approaches. Moreover,

the Single-Objective results when using only the vertical displacement are noticeably more

accurate than either the Single-Objective approach with the horizontal displacement or the

Lumped-Objective approach. These results again imply that one measurement quantity

was more sensitive to the damage parameters than the other, and when combining the

two measurement groupings the Lumped-Objective approach is negatively affected by the

additional data, whereas the Multi-Objective strategy benefits from all information available.
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Target value

(a) Horizontal Coordinate

Target value

(b) Vertical Coordinate

Target value

(c) Radius

Figure 1.12: Mean and standard deviation (error bars) of the optimal damage parame-

ter solutions from each optimization approach: Single-Objective (SO) using either vertical

displacement (VD) or horizontal displacement (HD), Lumped-Objectives (LO), and Multi-

Objective (MO) after 2000 finite element analyses compared to the target (experimental)

values for Example 2 with a single experimental damage location.
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1.5.2.2 Multiple Damage Locations In contrast to all of the previous examples, the

last set of tests was intended to examine the capabilities of the Multi-Objective optimization

approach for problems in which the “true” solution does not exist in the optimization search

space, leading to a higher propensity for multiple global (or nearly global) minima that have

substantially different parameter values. Therefore, for the final set of tests two damage

locations were used to generate the simulated experiment, but the inverse characterization

problem sought to determine the location and size of only a single damage. Table. 1.3 shows

the experimental (“true”) values of the damage parameters for the two damage locations,

and the same minimum and maximum values for the damage parameters as were used for

the previous example and shown in Table. 1.2 were employed for the optimization process

to determine the estimated single damage location.

Table 1.3: Target (experimental) values for the unknown damage centroid horizontal and

vertical coordinates (ch and cv) and radius (cr) for each damage location for the example

plate structure with two damage locations.

Damage Parameter Target Value 1 Target Value 2

ch 0.7 0.7

cv 0.7 0.3

cr 0.05 0.05

For the measurement data only the horizontal displacements resulting from the applied

harmonic excitation were measured at 99 locations that were equally-spaced vertically in

1 cm increments along both the left and right surfaces of the plate. The measurements were

divided into two objectives with the displacement measurements from the left surface used

to form the first objective (γ1) and the displacement measurements from the right surface

used to form the second objective (γ2).

For these final tests the focus was on the ability of the stochastic optimization approaches

to maintain diversity in their solution populations and ultimately reveal multiple potential

solutions when they exist. As such, for simplicity only the Multi-Objective and the Lumped-

Objective approaches were applied to the multiple damage location cases to estimate the
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location and size of a single unknown damage in the plate, again with five trials for each

optimization approach and with a stopping criteria of 2000 total finite element analyses for

each trial. Furthermore, to examine the capabilities to maintain solution diversity and reveal

multiple possible damage characterization results the analysis of the trial results focused on

the solution distribution in the final populations of the optimization cases. In particular,

for the Multi-Objective approach the analysis focused on the distribution of characterization

solutions on the resulting Pareto fronts, which given the Pareto fraction used of 0.35 produced

14 solution estimates at the completion of optimization. Alternatively, since the Lumped-

Objective strategy does not specifically produce a Pareto front, simply the 14 individuals in

the final population with the best combined fitness (according to Eqn. (2.7)) were extracted

and analyzed at the completion of optimization.

The results of the five optimization trials were consistent, and therefore, a representative

example from the five trials of each optimization approach are presented. Fig. 1.13 shows

the overall distribution as well as the mean and standard deviation of the measurement error

for the left surface horizontal displacement (γ1) and the right surface horizontal displace-

ment (γ2) from the 14 optimal solution sets obtained in one trial of the Multi-Objective

strategy and one trial of the Lumped-Objective strategy. Overall, the resulting measure-

ment errors were considerably higher for all cases in comparison to the previous examples,

particularly the right surface measurements, which is expected since the parameterization

of the characterization problem can not capture the “true” solution used to generate the

experimental data. However, the distribution of measurement errors in the populations of

the two optimization approaches (Multi- and Lumped-Objective) are considerably different

from each other. The Lumped-Objective strategy yielded a population with consistently

lower total error (left and right surface) than the Multi-Objective approach, although still

with error high enough to suggest the characterization problem failed to find an accurate

damage representation (as expected). More importantly, the Lumped-Objective results con-

sistently converged to an entire population (considering even the entire final population of

40 and not just the 14 plotted herein) with nearly the same level of error, whereas the Multi-

Objective approach had significant diversity in the measurement errors for the solutions in

the final Pareto set and in many cases with substantially lower measurement error for the
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Figure 1.13: (a) Distribution and (b) mean and standard deviation of the measurement error

for the 14 individuals in the Pareto set from a representative trial of the Multi-Objective

optimization approach and the 14 individuals with the lowest total measurement error in the

final population from a representative trial of the Lumped-Objective optimization approach

after 2000 finite element analyses for Example 2 with two experimental damage locations.

28



right surface measurements. Moreover, as shown in Fig. 2.1 for the corresponding 14 solu-

tion estimates for the plate damage in comparison to the “true” (i.e., target) damage, the

Lumped-Objective approach converged the entire population to essentially a single solution

estimate, providing for minimal insight into the nature of the “true” solution in this failed

characterization attempt. By contrast, the Multi-Objective approach produced a diverse

set of solution estimates, that for this specific example, happen to cluster near to the two

“true” damage locations. As such, there is clearly a benefit to utilizing a Multi-Objective

optimization strategy for such a characterization problem to maintain diversity in the so-

lution population. Specifically, the Lumped-Objective results provide minimal insight into

potential follow-up strategies to solve the characterization problem more accurately, such as

suggesting the “true” number of damage locations or allowing application of coevolutionary

strategies to design an improved nondestructive test [35, 34]. Whereas, the results of the

Multi-Objective optimization presented could be interpreted to suggest optimization should

be repeated with an assumption of two damage locations in the plate and potentially lead

to an accurate estimate of the “true” solution. Although, more investigation is required

to deduce the ability of a Multi-Objective optimization approach to consistently produce

estimates to multiple damage locations under the assumption of only a single damage for

the optimization process.

1.6 CONCLUSIONS

A multi-objective optimization-based computational inverse problem solution method for

damage characterization in solid continua was presented. In general, the procedure was

shown to be a relatively simple change to the standard optimization-based NDE strategies,

while providing a substantial improvement in the capabilities to maintain a high level of

diversity in the solution population during the search process, and therefore, traverse the

optimization search space to minimize the measurement error and produce accurate damage

estimates. Within the context of genetic algorithm optimization, the capabilities of a mulit-

objective approach were displayed quantitatively in comparison to standard approaches of
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Figure 1.14: Distribution of the optimal damage solution estimates compared to the “true”

(target) damage solution for (a) the 14 individuals in the Pareto set from a representative

trial of the Multi-Objective optimization approach and (b) the 14 individuals with the lowest

total measurement error in the final population from a representative trial of the Lumped-

Objective optimization approach after 2000 finite element analyses for Example 2 with two

experimental damage locations.
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casting the NDE problem in terms of a single objective through a numerical study of two

simulated damage characterization problems based on vibration testing using direct frequen-

cy response displacement measurements. Through the example of a steel pipe structure with

inner wall erosion damage, the multi-objective approach was shown to improve both efficien-

cy and accuracy of the NDE process, while also having improved tolerance to measurement

noise and measurement sparsity in comparison to equivalent single-objective techniques. In

addition, an example of identifying holes within a steel plate showed that the multi-objective

approach was capable of some degree of generalization to alternate NDE problems. More-

over, the plate example showed that the multi-objective approach can provide a substantial

benefit in NDE problems where no accurate solution and/or multiple solutions may exist.

By providing diverse solution estimates the multi-objective approach may better indicate

the actual solution space when a solution does not exist within the current parameterization

or otherwise provide insight into potential changes to the testing or parameterization to

produce more accurate and unique solutions to the NDE problem.
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2.0 A COMPUTATIONAL NONDESTRUCTIVE EVALUATION

ALGORITHM COMBINING SELF-EVOLVING PARAMETERIZATION

AND MULTI-OBJECTIVE OPTIMIZATION FOR QUANTITATIVE

DAMAGE CHARACTERIZATION

2.1 ABSTRACT

A self-evolving parameterization approach for nondestructive evaluation (NDE) of damage

in structural components is presented and numerically evaluated. Focused herein on prob-

lems relating to characterizing an unknown quantity of localized changes in properties, the

adaptive approach utilizes the substantial solution diversity that is uniquely provided by

multi-objective optimization to iteratively build up the parameterization and accurately

characterize all localized property changes with the minimum dimensional parameterization.

Through simulated test problems based on the characterization of damage within plates,

the NDE approach with self-evolving parameterization is shown to provide an accurate and

efficient process for the solution of inverse characterization problems.

2.2 INTRODUCTION

Computational inverse mechanics approaches for nondestructive evaluation (NDE) that com-

bine computational mechanics and nonlinear optimization are uniquely well-suited for quan-

titative inverse characterization for a variety of engineering systems and physical properties,

particularly when measurement information is limited [8, 10, 62, 9, 81, 5]. However, these ap-

proaches can often become computationally prohibitive, particularly since the computational
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expense of the inverse problem solution procedure for many commonly used algorithms (e.g.,

non-gradient-based optimization approaches [9]) increases significantly with the dimension-

ality of the parameterization of the unknown variable(s) to be determined (e.g., the number

of unknown material parameters). Therefore, it is of paramount importance in many appli-

cations to carefully select an efficient parameterization that can represent the nature of the

potential inverse problem solutions accurately with a minimal number of parameters.

To maintain reasonable computational efficiency, many applications will attempt to uti-

lize a priori knowledge of the potential inverse problem solution space to select a parameter-

ization with relatively few coefficients to be determined. For example, in several applications

the spatial distribution of a quantity (e.g., material property) to be determined is known

a priori to be spatially localized in nature. For such a localized property a parameteri-

zation that utilizes basis functions with compact or quasi-compact support in combination

with parameters defining the location information for these basis functions (e.g., the center

point of the basis function) may lead to being able to use a relatively small number of these

basis functions and require substantially fewer parameters to be determined by the inverse

routine in comparison to a more generalized dense point-by-point (or element-by-element)

parameterization. Examples of such implementations include [1], which used Gaussian ra-

dial basis functions to parameterize the distribution of elastic modulus for applications in

tissue (particularly tumor) characterization, [71], which assumed that corrosion damage of

internal pipe walls could be parameterized as a small number of elliptic regions of material

loss, and [68], which used so-called “damage functions” that amounted to using a coarse

finite element-type mesh to describe the damage in a reinforced concrete beam in terms of

the length-wise distribution of the elastic modulus and thereby restrict the number of search

parameters. However, these approaches may also present significant challenges, including a

potential that the parameterization will be too restricted, possibly leading to nonexistence

issues in that a sufficiently accurate solution will not exist, whereas if a relatively large

number of basis functions are utilized then the likelihood of a sufficient solution existing

increases, but computational expense and/or nonuniqueness may similarly increase.

To further improve the solvability of inverse characterization problems with known lo-

calized spatial distributions, some methods have been developed that utilize multi-stage

33



inverse solution procedures. These multi-stage procedures typically begin with some form

of a localization algorithm to first identify the region of the unknown localized change in

properties, and thus reduce the spatial search domain (and computational expense) for the

subsequent stages. The work in [54] extended the previously mentioned “damage function”

approach applied to beam structures by introducing a multi-stage scheme that first used a

coarse mesh parameterization to identify the damage region(s) and then applied a finer mesh

parameterization to these regions in subsequent steps to refine the solution approximation.

Similarly, several works have developed approaches that use modal analysis to localize re-

gions of property changes and then apply various approaches to efficiently create a more

refined/accurate approximation [33, 24, 80, 44]. There have also been similar efforts for

characterization problems in solid continua, which can often be even more challenging to

parameterize efficiently than those problems using structural simplifications. One approach

that has shown significant potential for being applicable to efficiently characterizing spatially

localized properties in continua being developed relies primarily on the concept of topological

derivatives [20, 25, 7]. For instance, the work in [20] presented an approach that used the

topological derivative field to efficiently create an estimate of the geometry of an inclusion

(i.e., scatterer) in a transparent homogeneous medium, which could directly provide the in-

verse solution estimate or potentially be refined further with a subsequent more standard

iterative optimization-based inverse characterization approach. However, the topological

derivative approach is thus far only directly applicable to cavity or inclusion problems and

requires extensive mathematical formulation that is dependent upon the governing physics of

the problem. Moreover, while many other of these multi-stage approaches (including those

discussed previously) are less complex to implement, they are similarly difficult to generalize,

whether to more complicated structures/systems, to alternate physics/testing methods, or

to non-binary and/or continuously distributed properties.

With a particular focus on accurate and efficient characterization of an unknown quantity

of localized changes in properties in solid continua, the current work presents an algorithm

to automatically evolve the parameterization for inverse characterization utilizing a compu-

tational inverse mechanics approach with multi-objective optimization. This adaptive ap-

proach utilizes the substantial solution diversity that is uniquely provided by multi-objective
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optimization in combination with an ad hoc clustering algorithm to iteratively expand the

parameterization of the inverse problem and accurately characterize all localized property

changes computationally efficiently with the minimum dimensional parameterization. In

the following section the general framework for nondestructive evaluation utilizing multi-

objective optimization is outlined. Then, the self-evolving parameterization algorithm is

presented, including a detailed explanation of the ad hoc clustering algorithm and decision

criteria used to automatically expand the parameterization. Lastly, numerically simulat-

ed examples relating to characterization of localized regions of material loss in structures

from frequency-response-based testing are presented to examine the capabilities of the NDE

algorithm with self-evolving parameterization, which is followed by the concluding remarks.

2.3 NONDESTRUCTIVE EVALUATION UTILIZING MULTI-OBJECTIVE

OPTIMIZATION

While an adaptive parameterization strategy could be of use within the context of a variety

of inverse problem application areas, the primary focus of the present work is NDE. In par-

ticular, the overarching focus herein is on NDE of solid continua given some nondestructively

tested response field measurements over some portion of the domain of the structure/solid.

Furthermore, this work will utilize the common approach of casting the inverse character-

ization problem as an optimization problem to determine the unknown parameters of the

structure to minimize the difference between the measured response and those predicted by a

numerical representation of the structure (e.g., finite element or boundary element analysis)

subject to the nondestructive testing conditions, such as

Minimize
~α

‖~Rsim(~α, ~x)− ~Rexp(~x)‖Γ, (2.1)

where ~α is the vector of parameters to be determined to characterize the desired structural

properties, ~Rsim is the simulated response field to estimate the nondestructive test (NDT)

response for a given set of parameters, ~Rexp is the experimentally measured response field

(i.e., optimization target), and ‖·‖Γ is some suitable metric norm with respect to the domain,
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Γ, of the nondestructive measurements. This type of optimization strategy to approximate

the solution of inverse characterization problems provides several benefits, including the ca-

pability to address a variety of physical processes/measurements, even simultaneously, and

providing quantitative results. However, there are also inherent challenges in addition to the

ubiquitous ill-posedness associated with inverse problems, most prevalent being the large

computational expense of this optimization approach. In many implementations the com-

putational expense of the numerical approximation of the structural response (i.e., forward

problem) is substantial. In addition, many optimization algorithms require a large number of

objective functional evaluations to identify a suitable minimum. Therefore, the combination

of the forward problem expense and the number of functional evaluations required can lead

to this optimization approach to the inverse solution approximation becoming impractical.

Thus, considerable effort is often placed on improving this computational expense for this

type of optimization strategy for the solution of inverse problems in mechanics [10, 9, 32, 48].

Previous work of the authors [71] showed a simple yet effective approach to utilize multi-

objective optimization rather than the standard single objective optimization (as shown in

Eqn. (2.3)) to substantially reduce the computational expense and improve the consistency of

the solution accuracy for inverse characterization of solid continua. The key to the approach

is as simple as dividing up the measurement components or spatial distribution into several

separate objective functionals to be minimized simultaneously, but separately, which could

be viewed as (e.g., for the case of dividing the spatial distribution of the measurements)

Minimize
~α



‖~Rsim(~α, ~x)− ~Rexp(~x)‖Γ1

‖~Rsim(~α, ~x)− ~Rexp(~x)‖Γ2

...

‖~Rsim(~α, ~x)− ~Rexp(~x)‖Γn

, (2.2)

where Γi is the ith subdivision of the domain of the response field measurements obtained

from nondestructive testing and n is the total number of subdivisions. Then, any preferred

multi-objective optimization algorithm can be employed to determine the Pareto front for

(2.2), which can be thought of as the set of all possible solutions to the inverse problem that
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have a lower value for at least one of the separate objective functionals in comparison to any

other solution estimate seen throughout the optimization process. The previous work of the

authors employed a controlled elitist multi-objective genetic algorithm (CEMGA) [16, 17]

to determine the Pareto front in the example cases considered therein. When the multi-

objective optimization process is complete, a single solution estimate for the inverse problem

can be attained through some chosen final decision criteria, such as the minimum sum of all

objective functionals, e.g.,

Minimize
~α∈{~αi}pi=1

n∑
j=1

‖~Rsim(~α, ~x)− ~Rexp(~x)‖Γj
, (2.3)

where {~αi}pi=1 is the set of p potential solutions identified as part of the Pareto front. Note

that there are many other “postprocessing” methods available to select the final solution

estimate from the Pareto front, with the basic equation above being a potentially suitable

heuristic choice in cases where the measurement quantities have similar magnitudes and

physical meaning, for example.

The primary feature of the multi-objective optimization that leads to improved inverse

solution capabilities is that substantial diversity of the solution estimates is maintained

throughout the search process by evolving a set of optima (i.e., the Pareto front) rather than

a single optimum throughout an iterative optimization process. By maintaining diversity,

the multi-objective optimization process is uniquely able to traverse the large parameter

search spaces that are typical of inverse characterization problems efficiently and consistently,

avoiding stalling and convergence to local minima. An additional benefit of the diversity

in the solution estimates provided by multi-objective optimization, which is particularly

relevant to the present work, is the resulting improvement in the ability to reveal the variety

of solutions that may exist for ill-posed (particularly non-unique) problems.

As a direct reason for non-uniqueness can be insufficiency of the parameterization of the

properties to be determined, the solution diversity provided by multi-objective optimization

can thus be assumed to be able to provide insight into the changes to the parameterization

necessary to subsequently produce more unique and accurate inverse solutions. As a simple

example of this potential from the previous study by the authors, Fig. 2.1 shows the Pareto

front solutions from a multi-objective optimization process to estimate the size and location
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of circular loss of material within a plate from numerically simulated NDT data (see [71] for

all details of this particular example problem).

Actual Solution

Pareto Front Solutions

Figure 2.1: Distribution of the Pareto front solution estimates from multi-objective opti-

mization having assumed one region of material loss compared to the two “actual” regions

of material loss used to simulate the experimental measurements for a numerically simulated

nondestructive evaluation problem of damage characterization in a plate structure.

Of particular importance is that the NDT data was simulated for this example from a

computational analysis with two circular voids (i.e., the true/correct solution to the NDE

problem should be two circular voids), while the inverse characterization process was per-

formed assuming that there was only one circular void. Naturally, none of the obtained

Pareto front solutions that are shown here minimized the total measurement error particu-

larly well, implying that no “true” solution was found. However, the distribution of these

“best” possible solutions given the assumption of only one circular void shows distinct clus-

ters surrounding the two actual voids used to simulate the NDE (i.e., the correct solution).

In other words, the set of Pareto front solutions obtained for this example problem quite

clearly provides intuitive evidence of how the parameterization (i.e., selection of the number

of voids to search for) could be improved towards achieving an accurate inverse solution es-

timate. Extending this concept, the present study focused on the development of a strategy

to improve solution capabilities for this and similar classes of inverse characterization prob-
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lems utilizing this diversity provided by multi-objective optimization through a self-evolving

parameterization approach.

2.4 NONDESTRUCTIVE EVALUATION WITH SELF-EVOLVING

PARAMETERIZATION

To provide additional context, the following discussion will provide example scenarios based

upon the class of NDE problems relating to characterizing an unknown quantity of localized

changes in properties (e.g., damage or defect characterization). However, this approach

should be able to be similarly implemented for a variety of inverse characterization problems,

particularly those for which some property of the unknown field is known a priori to be

(semi-) localized in the parameter space. The overall structure of the optimization-type

NDE algorithm incorporating an adaptive self-evolving parameterization approach is shown

in Fig. 2.2.

The algorithm begins with some minimum parameterization of the inverse characteri-

zation problem (i.e., a parameterization of the unknown field of the inverse problem with

a minimum number of parameters to be determined subject to constraints of the system

and any a priori physical information). For a localized damage characterization problem,

this could imply first assuming that there is a single localized region of damage. The multi-

objective optimization solution approach is then applied to determine the Pareto front of

potential solutions to the characterization problem (e.g., the set of potential damage loca-

tions and associated breadth and magnitude). Next, the self-evolving parameterization step

is employed, including an ad hoc hierarchical clustering algorithm to determine whether there

are any distinct clusters of Pareto front solutions in the parameter space (e.g., distinct spatial

groupings of damage locations, such as the two groupings shown in Fig. 2.1), and if so, then

how many clusters exist. Based upon the number of parameter clusters a decision criteria is

employed to expand the parameterization (e.g., based on the results shown in Fig. 2.1 as-

sume the parameterization should allow for two damage locations). If no additional clusters

are found for a given iteration, then the algorithm is completed and the “best” possible char-
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Figure 2.2: Flowchart of the optimization-type NDE algorithm with adaptive self-evolving

parameterization.
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acterization solution is chosen from the current Pareto front. Otherwise, the multi-objective

optimization solution approach is applied again with the updated parameterization and the

process is repeated until the parameterization converges or a maximum number of iterations

have been performed. The hierarchical clustering algorithm and parameterization expansion

decision criteria comprising the self-evolving parameterization component of the algorithm

are elaborated upon in the following.

As stated, the core hypothesis of the self-evolving parameterization component of the

algorithm developed is that the distribution of solutions in the parameter space produced

through multi-objective optimization provides guidance as to whether a specific physical

parameter should be expanded. In the localized property characterization context, in which

the primary method to expand the parameterization could be to increase the number (n) of

basis functions with compact (or semi-compact) support used to define the property distri-

bution along with their associated unknown parameters to be determined by the inversion,

the self-evolving parameterization component of the characterization algorithm could be

implemented as follows:

Given - The Pareto front of potential solutions to the inverse characterization problem (e.g.,

spatial coordinates of the centroid for each localized property change and any associated

parameters) subject to the current value of n (i.e., the number of compactly or quasi-

compactly supported basis functions used to define the localized change).

Step 1 - Identify the n+1 regions of localized property change whose centroids are separated

by the largest Euclidean distance from the entire Pareto set of solutions (noting that each

solution set could contain multiple localized property changes depending on the value of

n), referred to as the n+ 1 “Parameterization Poles”.

Step 2 - Identify and average all regions of localized property changes that overlap with each

Parameterization Pole to produce the n + 1 “Cluster Means” of the localized property

changes.

Step 3 - Do any of the Cluster Means overlap?

Yes → STOP (do not update the parameterization further).

No → SET n = n+ 1 and GO TO Step 1.
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2.5 EXAMPLES AND DISCUSSION

To examine the capability of the self-evolving parameterization approach utilizing multi-

objective optimization for NDE to efficiently and accurately characterize localized proper-

ty changes in solid continua several simulated examples of damage characterization within

structural steel plates (as could potentially be affected by erosion) were considered. More

specifically, the example NDE cases sought to characterize the size and location of circular

regions of material loss within the steel plates considered. This circular defect assumption

was used for simplicity and based on several other related NDE works by a variety of authors

that used a similar assumption [43, 20, 36, 7, 21, 40]. The material behavior for all cases

was defined as linear elastic with a Young’s modulus of 200 GPa, Poisson’s ratio of 0.3,

and density of 8000 kg/m3, and all properties were assumed to remain as defined following

damage (i.e., the erosion damage being characterized in this simulated problem was assumed

to occur without any observable change to the properties of the remaining material in the

structure, and therefore only changed the structure’s geometry). In all cases the simulated

nondestructive tests consisted of applying a harmonic pressure to a portion of the struc-

ture at an excitation frequency of 20 Hz, and then measuring the resulting steady-state

harmonic displacement amplitudes at several discrete locations along the outer surface of

the structure. Vibration testing using direct frequency response measurements was chosen

based on its documented ability to provide substantial diagnostic information for a global

evaluation of a structure [11, 39, 3]. However, the overall inverse characterization approach

and corresponding benefits would be expected to yield similar results for alternate testing

approaches.

For both generating the experimental data and simulating the forward problem during

the inverse solution process the structures were assumed to behave linearly and be defined

by steady-state dynamic plane stress solid mechanics, and all analyses were performed using

the finite element method. Standard linear plane stress continuum elements were employed,

and the mesh sizes were ensured to be sufficiently small through mesh convergence to provide

accurate analysis for all cases considered. In addition, for all analyses the meshed domains

remained constant describing the geometry of a healthy structure (i.e., structure without
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damage), and the damage was modeled as total material loss within the specified regions by

reducing both the Young’s modulus and density to negligibly small values at all integration

points within the specified damage regions. This modeling procedure for the inverse simu-

lations allowed the numerical analyses to be efficiently parameterized for the optimization

process. To add realism and to alleviate the inverse crime inherent in simulated experiments

Gaussian white noise was added to the simulated experimental measurements as

U expn = U exp (1 + kυ) , (2.4)

where U expn and U exp are the experimental displacement measurements with noise and with-

out noise, respectively, k is the noise amplitude multiplier, and υ is a normally distributed

random variable with unit variance and zero mean. For the majority of cases examined here

(only the results discussed in Section 2.5.1.3 used a higher noise level) k was chosen as 0.01

to produce an approximate signal to noise ratio (SNR) of 40 dB, which was deemed to be a

sufficiently realistic value, calculated as

SNR(dB) = 10log10

(
1

k

)2

. (2.5)

The inverse problems to determine the parameters defining the damage in the example

structures were cast in the form of the following multi-objective optimization problem, arbi-

trarily having selected to divide the displacement measurements into four groupings based

on measurement direction and spatial location,

min
~α



γ1(~α) =

(∑n
j=1(U

exp
1j −U

sim
1j (~α))

2∑n
j=1(U

exp
1j )

2

)1/2

γ2(~α) =

(∑m
j=1(U

exp
2j −U

sim
2j (~α))

2∑m
j=1(U

exp
2j )

2

)1/2

γ3(~α) =

(∑k
j=1(U

exp
3j −U

sim
3j (~α))

2∑k
j=1(U

exp
3j )

2

)1/2

γ4(~α) =

(∑l
j=1(U

exp
4j −U

sim
4j (~α))

2∑l
j=1(U

exp
4j )

2

)1/2

, (2.6)

where ~α is the vector containing the parameters of the unknown damage to be determined

in the inverse problem, U exp
1j , U exp

2j , U exp
3j and U exp

4j are the experimentally measured dis-

placement at the jth measurement location in the four groupings, and U sim
1j , U sim

2j , U sim
3j and
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U sim
4j are the numerically simulated displacement at the jth measurement location in the four

groupings. Note that it would certainly be possible to utilize additional or alternate com-

peting objectives than those discussed in the following, such as measurements of different

directional components and/or from alternate regions of the domain, and tests (not shown

here for brevity) have been completed with such variations with results consistent with those

presented herein. Beyond ensuring that the chosen measurement quantities were sensitive

to the parameters of the unknown damage to be determined, the selection and division of

the measurement data into the multiple objectives in the following case studies was entirely

arbitrary. For the inverse solution process the parameters of the unknown damage to be

determined were constrained such that all damage estimates were within the domain of the

structure and were non-overlapping.

A CEMGA ([16, 17]) was applied to solve the constrained optimization problems in

terms of the four objective functions outlined above for all examples considered. An initial

population of 80 individuals was utilized for all cases, as well as scattered crossover, adaptive

feasible mutation, and tournament selection. In all cases to ensure a fair comparison the

stopping criteria for the optimization was set as a maximum number of 40 generations (which

is equivalent to setting a maximum number of 3200 finite element analyses). To obtain a

single solution estimate from the Pareto front of solutions provided by the CEMGA at

completion of the inversion algorithm the Pareto front was postprocessed to select the one

solution estimate with the minimum l2-norm of the four objective functions as

min
~α∈P

(
γ2

1(~α) + γ2
2(~α) + γ2

3(~α) + γ2
4(~α)

)
, (2.7)

where P represents the set of Pareto front solution estimates obtained by the CEMGA.

Note that there have been alternate methods used in related works to select the final inverse

solution estimate for such results (e.g., [32]). However, since the measurement groupings

used for the examples herein are physically similar quantities to each other, the above choice

is somehow intuitively ideal, providing the optimal solution estimate in an average sense.

In addition, due to the stochastic nature of the optimization solution strategy, the inverse

problem solution procedure was repeated five times for all test cases to ensure that the

results presented were consistent, yet results of only one representative trial from each test
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Figure 2.3: Schematic of the damaged square plate structure for Example 1.

case will be presented here for brevity and simplicity since the results were found to be highly

consistent.

2.5.1 Example 1: Simulated Square Plate

The first set of example cases considered NDE of a simulated square steel plate to determine

the size and location of a varying number of damages throughout the plate. As shown in

Fig. 2.3, the plate was taken to be an arbitrarily thin 1 m × 1 m square section with the

bottom fixed to a rigid support.

The simulated NDT consisted of applying a 1 kN/m (factoring out the arbitrary thick-

ness) harmonic excitation to the top surface of the plate and measuring the vertical and

horizontal displacements at 99 equally-spaced increments along the left and right surfaces,

as indicated in Fig. 2.3. The four objective functions for the multi-objective optimization

were simply defined by dividing the measurements with respect to the two sides and the

two directional components. In the following, three different damage scenarios are consid-

ered to explore the self-evolving NDE algorithm, which are primary distinguished by the

number of “actual” damage locations to be determined (with the implication that the diffi-
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culty of the NDE problem substantially increases with the number of damage locations to

be determined).

2.5.1.1 One Damage Region This first case with one damage region was tested to not

only examine the effectiveness for the simplest possible scenario, but to also show that the

adaptive approach will typically not “over-evolve” the parameterization to overestimate the

number of damaged regions provided that the algorithm begins with the minimum parame-

terization (e.g., parameterization for one damage region). Table 2.1 shows the actual values

for the unknown damage parameters (i.e., values used to simulate the experimental mea-

surements) and the minimum and maximum values (i.e., constraints) considered reasonable

for each parameter for the inverse solution process.

Table 2.1: Actual (experimental) values for the unknown damage centroid horizontal and

vertical coordinates (ch and cv) and radius (cr), and the minimum and maximum values

considered for the optimization search process for the example square plate structure with

a single damage location.

Damage

Parameter

Actual

Value

Optimization

Minimum

Optimization

Maximum

ch 0.3 0.0 1.0

cv 0.7 0.0 1.0

cr 0.05 0.0 0.5

Two versions of the inverse solution process were completed for this example, the first

version starting the inverse solution process with the assumption of one damage region (i.e.,

3 unknown parameters), and the second starting the inverse solution process with the as-

sumption of two damage regions (i.e., 6 unknown parameters), effectively using twice the

minimum parameterization for the problem in the second case. Fig. 2.4 shows representative

examples of the Pareto front solution estimates (i.e., the distribution of all damage estima-

tions in the Pareto fronts) from a single iteration of the two versions of the inverse solution

process (i.e., without any evolution of the parameterization). In addition, Fig. 2.5 shows
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the measurement error for the four objectives (γ1, γ2, γ3, and γ4) for the “best” individual

(based on the criteria in (2.7)) from each of the Pareto fronts shown from the single iteration

of the inverse solution process.

Of particular significance is that all damage estimates for the version that started with

a single damage parameterization can be seen to be relatively closely clustered around the

actual solution to the simulated inverse characterization problem, whereas there are three

distinct clusters of damage estimates in the solution set that started with a two damage

parameterization. The primary reason for the discrepancy between the results for the two

different starting parameterizations is that the optimization process is considerably more

challenging for the “over-parameterized” two damage parameterization case leading to the

inability to sufficiently minimize the measurement errors and identify an accurate solution

(Fig. 2.5), particularly in comparison to the single damage parameterization. Although

the two damage parameterization can represent any scenario that the single damage pa-

rameterization can, the increase in the number of inaccurate solutions in the search space

of the higher-dimensional parameterization substantially hinders the search process, which

highlights one of the core motivations of the adaptive algorithm presented to keep the pa-

rameterization at a minimum. In addition, these results further display the importance of

initializing the parameterization with the minimum physically meaningful number of param-

eters (e.g., begin the algorithm with a parameterization for a single damage region) in the

context of the adaptive algorithm, as the results shown in Fig. 2.4 would actually lead to

the parameterization being expanded further in the subsequent iteration to a three damage

parameterization and likely lead to the solution diverging, while the single damage param-

eterization converged after a single iteration and the “best” solution estimate from this one

iteration matched the actual solution nearly exactly (as shown in Fig. 2.6).

Simply put, there is no method to differentiate an insufficient error minimization caused

by under-parameterization versus over-parameterization, since the relatively high measure-

ment error for the two damage case could be caused by insufficient optimization iterations or

insufficient parameterization, and therefore it is critically important to build up the solution

approximation from the minimum possible parameterization.
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Figure 2.4: Representative results of the Pareto front damage region solution estimates

obtained from multi-objective optimization (a) with the assumption of one damage region

and (b) with the assumption of two damage regions, along with the “best” individual from

each Pareto front, and compared to the actual (experimental) single damage region for the

simulated example square plate structure.
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Figure 2.5: Measurement error for the four objectives for the “best” individual in the Pareto

front damage region solution estimates obtained from multi-objective optimization with the

assumption of one damage region (One Damage Assumption) and with the assumption of two

damage regions (Two Damages Assumption) for the representative results for the simulated

example square plate structure with a single damage region.
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Figure 2.6: Final (“best”) solution estimate obtained from multi-objective optimization with

the assumption of one damage region compared to the actual (experimental) single damage

region for the simulated example square plate structure.

2.5.1.2 Two and Three Damage Regions Two additional cases were considered for

the simulated square plate example to further test the capabilities of the NDE algorithm

with self-evolving parameterization, a case with two actual damage regions in the simulated

experiment and a case with three actual damage regions in the simulated experiment. Tables

2.2 and 2.3 show the actual values for the unknown damage parameters (i.e., the parameter

values used to simulate the experimental measurements) for the two damage and three

damage cases, respectively, noting that the minimum and maximum values (i.e., constraints)

for each individual parameter were identical to those used previously for the one damage

case (as shown in Table 2.1).

Fig. 2.7 shows a representative example from the five trials of the inverse solution process

of the Pareto front solution estimates and Fig. 2.8 shows the corresponding measurement

error for the four objectives for the “best” individual from each of the Pareto fronts at each

solution iteration (as the parameterization evolved), and Fig. 2.9 shows the final solution

estimate from the converged algorithm for the example with two actual damage regions.
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Table 2.2: Actual (experimental) values for the unknown damage centroid horizontal and

vertical coordinates (ch and cv) and radius (cr) for each damage region for the example

square plate structure with two damage locations.

Damage Parameter Region 1 Region 2

ch 0.5 0.8

cv 0.5 0.8

cr 0.05 0.025

Table 2.3: Actual (experimental) values for the unknown damage centroid horizontal and

vertical coordinates (ch and cv) and radius (cr) for each damage region for the example

square plate structure with three damage locations.

Damage Parameter Region 1 Region 2 Region 3

ch 0.2 0.8 0.8

cv 0.5 0.8 0.2

cr 0.075 0.075 0.05
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Figure 2.7: Representative results of the Pareto front damage region solution estimates

obtained from the NDE algorithm with self-evolving parameterization after (a) the first

iteration with a single damage region parameterization and (b) the second iteration for

which the parameterization had been automatically updated to two damage regions, along

with the best individual from each Pareto front, and compared to the actual (experimental)

two damage regions for the simulated example square plate structure.
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Figure 2.8: Measurement error for the four objectives for the (best) individual in the Pareto

front damage region solution estimates obtained from the NDE algorithm with self-evolving

parameterization after the first iteration with a single damage region parameterization (One

Damage Assumption) and the second iteration for which the parameterization had been auto-

matically updated to two damage regions (Two Damages Assumption) for the representative

results for the simulated example square plate structure with two damage regions.
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Figure 2.9: Final (best) solution estimate obtained from the NDE algorithm with self-

evolving parameterization compared to the actual (experimental) two damage regions for

the simulated example square plate structure.

In addition, Fig. 2.10 shows a representative example of the Pareto front solution esti-

mates and Fig. 2.11 shows the corresponding measurement error for the four objectives for

the “best” individual from each of the Pareto fronts at each solution iteration, and Fig. 2.12

shows the final solution estimate from the converged algorithm for the example with three

actual damage regions.

Both of the trials shown converged after only two iterations, with the measurement

error being substantially reduced after each iteration and the clustering results of the first

iteration (Figs. 14(a) and 10(a)) leading to an evolution of the parameterization to the

correct number of damage regions, even for the three damage case. All trials for the two

damage case similarly converged after two iterations, however, a portion of the trials for the

three damage case required three iterations to converge. For some trials of the three damage

case (not shown for brevity) the first iteration lead to an expansion of the parameterization

to two damage regions, the second iteration lead to an expansion of the parameterization to
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three damage regions, and finally convergence at three damage regions. The final solution

estimates for all trials of both test cases were similarly accurate as the examples shown, with

both the sizes and locations of the damage regions being relatively accurate, but noticeably

less accurate than the first example with a single actual damage region. This reduction in

accuracy is not unexpected, however, with the difficultly of the inverse problems increasing

substantially with the increase in the number of damage regions (i.e., increase in problem

complexity). Yet, the consistent identification of the exact number of damaged regions with

approximate sizes and locations is a significant accomplishment. One final note is that the

NDE process is sensitive to the (relative) size of the disturbances to be characterized, and the

process is progressively more likely to fail in identifying a damage region for the examples

discussed herein as that damage region becomes smaller. However, this sensitivity of the

solution capabilities to the magnitude of the change in the property to be determined is

a fundamental challenge to any NDT/NDE method, regardless of the solution algorithm

employed.

2.5.1.3 Robustness to Measurement Noise To examine the potential affects of ad-

ditional errors/noise in the measurement data on the NDE algorithm with self-evolving

parameterization, two additional higher noise levels of approximately 30 dB (i.e., k = 0.03)

and 25 dB (i.e., k = 0.06) SNR were considered for the example with two actual damage

regions in the simulated experiment (using the same damage parameters as were defined for

Section 2.5.1.2). Fig. 2.13 and 2.14 show representative examples from the five trials of the

inverse solution process of the Pareto front solution estimates corresponding to the measure-

ment data with 30 dB and 25 dB SNR, respectively. In addition, Fig. 2.15 and 2.16 show the

corresponding measurement error for the four objectives for the “best” individual from each

of the Pareto fronts at each solution iteration (as the parameterization evolved) with the

two levels of measurement error. Even with the substantial increase in the level of Gaussian

white noise, both cases were able to converge after only two iterations and the measurement

errors were able to be minimized to relatively low levels. However, after the first iteration

the Pareto front solution distributions were noticeably more diverse (i.e., spread throughout

the potential solution space) as the level of noise increased. In addition, the overall accuracy
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Figure 2.10: Representative results of the Pareto front damage region solution estimates

obtained from the NDE algorithm with self-evolving parameterization after (a) the first

iteration with a single damage region parameterization and (b) the second iteration for

which the parameterization had been automatically updated to three damage regions, along

with the best individual from each Pareto front, and compared to the actual (experimental)

three damage regions for the simulated example square plate structure.
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Figure 2.11: Measurement error for the four objectives for the (best) individual in the Pareto

front damage region solution estimates obtained from the NDE algorithm with self-evolving

parameterization after the first iteration with a single damage region parameterization (One

Damage Assumption) and the second iteration for which the parameterization had been

automatically updated to three damage regions (Three Damages Assumption) for the repre-

sentative results for the simulated example square plate structure with three damage regions.
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Figure 2.12: Final (best) solution estimate obtained from the NDE algorithm with self-

evolving parameterization compared to the actual (experimental) three damage regions for

the simulated example square plate structure.

of the solution estimate degraded to some degree with the increase in noise, which is to be

expected. Overall, the NDE algorithm with self-evolving parameterization was found to be

relatively robust to potential noise in the measurement data.

2.5.2 Example 2: Simulated Trapezoidal Plate

The final set of tests were intended to somewhat examine the generalization of the NDE algo-

rithm with self-evolving parameterization by considering a more irregularly shaped structure.

Thus, as shown in Fig. 2.17, an arbitrarily selected trapezoidal steel plate was analyzed to

again determine the size and location of a number of damages throughout the plate.

As before, the plate was taken to be arbitrarily thin, the left side fixed to a rigid sup-

port, and the simulated NDT consisted of applying a 1 kN/m (factoring out the arbitrary

thickness) harmonic excitation to the right (angled) surface of the plate and measuring the

vertical and horizontal displacements at 1 cm increments along the top and bottom surfaces,

as indicated in Fig. 2.17. The four objective functions for the multi-objective optimization
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Figure 2.13: Representative results of the Pareto front damage region solution estimates

obtained from the NDE algorithm with self-evolving parameterization after (a) the first

iteration with a single damage region parameterization and (b) the second iteration for which

the parameterization had been automatically updated to two damage regions, along with

the best individual from each Pareto front, and compared to the actual (experimental) two

damage regions for the simulated example square plate structure with 30 dB measurement

SNR.
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Figure 2.14: Representative results of the Pareto front damage region solution estimates

obtained from the NDE algorithm with self-evolving parameterization after (a) the first

iteration with a single damage region parameterization and (b) the second iteration for which

the parameterization had been automatically updated to two damage regions, along with

the best individual from each Pareto front, and compared to the actual (experimental) two

damage regions for the simulated example square plate structure with 25 dB measurement

SNR.
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Figure 2.15: Measurement error for the four objectives for the (best) individual in the Pareto

front damage region solution estimates obtained from the NDE algorithm with self-evolving

parameterization after the first iteration with a single damage region parameterization (One

Damage Assumption) and the second iteration for which the parameterization had been

automatically updated to two damage regions (Two Damages Assumption) for the repre-

sentative results for the simulated example square plate structure with two damage regions

with 30 dB measurement SNR.
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Figure 2.16: Measurement error for the four objectives for the (best) individual in the Pareto

front damage region solution estimates obtained from the NDE algorithm with self-evolving

parameterization after the first iteration with a single damage region parameterization (One

Damage Assumption) and the second iteration for which the parameterization had been

automatically updated to two damage regions (Two Damages Assumption) for the repre-

sentative results for the simulated example square plate structure with two damage regions

with 25 dB measurement SNR.
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Table 2.4: Actual (experimental) values for the unknown damage centroid horizontal and

vertical coordinates (ch and cv) and radius (cr) for each damage region for the example

trapezoidal plate structure with three damage locations.

Damage Parameter Region 1 Region 2 Region 3

ch 0.3 0.3 0.5

cv 0.8 0.2 0.5

cr 0.05 0.05 0.075

were defined by dividing the measurements with respect to the top and bottom and the two

directional components.

A single three damage case was analyzed and Table 2.4 shows the actual values for

the unknown damage parameters used to simulate the experimental measurements. The

constraints for the parameters for the inverse solution process were such that the damage

centers were within the plate domain and the damage radii were between 0 m and 0.5 m.

Fig. 2.18 shows a representative example from the five trials of the inverse solution process

of the Pareto front solution estimates at each iteration of the adaptive algorithm, and Fig.

2.19 shows the final solution estimate from the converged algorithm for the trapezoidal plate

example.

Similarly to the previous two and three damage cases for the square plate, the majority

of the trials for this case converged after two iterations (as shown), with a minority requiring

three iterations, while all trials consistently determined the actual number of three damage

regions. In addition, there was again an observable reduction in accuracy in the estimation

of the damage locations and sizes for this relatively more challenging example case. Yet, the

ability of the adaptive inverse solution process to consistently and efficiently determine the

exact number of damage regions and provide relatively accurate estimations of the location

and size of these damages based solely on surface measurements is significant.
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Figure 2.17: Schematic of the damaged trapezoidal plate structure for Example 2.

2.6 CONCLUSIONS

An approach for nondestructive evaluation for material characterization of solid continua in-

corporating a self-evolving parameterization strategy within a multi-objective optimization

framework was presented. In general, the adaptive procedure shown utilizes the substantial

solution diversity that is uniquely provided by multi-objective optimization to iteratively

adapt the parameterization of the unknown field of the inverse problem to improve both

computational efficiency and solution accuracy. More specifically, the presentation was fo-

cused on problems relating to characterization of an unknown quantity of localized changes

in properties, such as those potentially caused by damage or degradation. In this context

and starting from the minimum physically-relevant parameterization (e.g., parameterization

of one damage location), the iterative solution process was shown to be capable of uti-

lizing an ad hoc hierarchical clustering algorithm applied to the Pareto front results of a

multi-objective optimization procedure to sequentially build up the parameterization (e.g.,

add potential damage regions to the parameterization) to provide an accurate inverse so-

lution approximation with the minimum dimensional parameterization. The capabilities of

the adaptive inverse characterization approach were displayed through a a series of tests

of two simulated damage characterization problems based on vibration testing using direct
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Figure 2.18: Representative results of the Pareto front damage region solution estimates

obtained from the NDE algorithm with self-evolving parameterization after (a) the first

iteration with a single damage region parameterization and (b) the second iteration for

which the parameterization had been automatically updated to three damage regions, along

with the best individual from each Pareto front, and compared to the actual (experimental)

three damage regions for the simulated example trapezoidal plate structure.
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Figure 2.19: Final (best) solution estimate obtained from the NDE algorithm with self-

evolving parameterization compared to the actual (experimental) three damage regions for

the simulated example trapezoidal plate structure.

frequency response displacement measurements. Through the simulated test problems based

on the characterization of material loss within structural steel plates, the adaptive inverse

characterization approach was shown in all cases to efficiently determine the exact minimum

parameterization necessary to capture the material loss while also providing sufficiently ac-

curate approximations of the size and locations for multiple regions of material loss utilizing

only surface response measurements and without any a priori knowledge of the number of

damage regions.
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3.0 A COMPUTATIONALLY EFFICIENT APPROACH FOR INVERSE

MATERIAL CHARACTERIZATION COMBINING GAPPY POD WITH

DIRECT INVERSION

3.1 ABSTRACT

An approach for computationally efficient inverse material characterization from partial-field

response measurements that combines the Gappy proper orthogonal decomposition (POD)

machine learning technique with a physics-based direct inversion strategy is presented and

evaluated. Gappy POD is used to derive a data reconstruction tool from a set of potential

system response fields that are generated from available a priori information regarding the

potential distribution of the unknown material properties. Then, the Gappy POD technique

is applied to reconstruct the full spatial distribution of the system response from whatever

portion of the response field has been measured with the chosen system testing method.

Lastly, a direct inversion strategy is presented that is derived from the equations governing

the system response (i.e., physics of the system), which utilizes the full-field response recon-

structed by Gappy POD to produce an estimate of the spatial distribution of the unknown

material properties. The direct inversion technique is a particularly computationally efficient

inversion technique, requiring a cost equivalent to a single numerical analysis. Therefore,

the majority of the computational expense of the presented approach is the one-time po-

tential response generation for the Gappy POD technique, which leads to an approach that

is substantially computationally efficient overall. Two numerically simulated examples are

shown in which the elastic modulus distribution was characterized based on partial-field dis-

placement response measurements, both static and dynamic. The inversion procedure was

shown to have the capability to efficiently provide accurate estimates to material property
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distributions from partial-field response measurements. The direct inversion with Gappy

POD response estimation was also shown to be substantially tolerant to noise in comparison

to the direct inversion given measured full-field response. Lastly, a physical example regard-

ing elastography of an arterial construct from ultrasound imaging response measurements

is shown to validate the practical applicability of the direct inversion approach with Gappy

POD response reconstruction.

3.2 INTRODUCTION

Inverse problems relating to the characterization of various material properties of a variety

of solids/structures and systems are of paramount importance in a wide range of science and

engineering fields. For instance, structures, from industrial to biological, could be evaluated

to determine their current state of health based upon their material properties, whether

mechanical, thermal, or electrical. Corresponding to this substantial interest in material

property characterization, a wide variety of inverse problem solution strategies have been

developed relating to a variety of applications, such as structural health monitoring and

nondestructive evaluation [32, 71] and biomechanical imaging [8, 10, 5, 48, 22], among other

applications [63, 26].

Since it is often not possible to find analytical solutions for inverse problems in practice,

due to problem ill-posedness and/or complexities in geometry and boundary conditions,

among other challenges, computational inverse characterization solution approximation ap-

proaches have become common. Overall, computational inverse characterization approaches,

which are typically based around some type of computational representation of the mechan-

ics of the system of interest (e.g., finite element analysis), have been shown through several

studies [26, 5, 8] to provide generalized frameworks for treating and distinguishing between

various contributions to a system response, while providing physically meaningful solutions

that can be applied to predict future behaviors. However, there is as wide a variety of com-

putational inverse problem approaches as there are applications, with each having different

strengths and weaknesses, and their effectiveness is significantly dependent upon the specifics
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of the application of interest. Moreover, the different computational approaches often differ

significantly in the tradeoff between computational efficiency and solution accuracy.

One general way that computational inverse problem solution approaches can be divided

is into those that use iterative optimization and those that are non-iterative/direct. Typi-

cally, the optimization-based approaches attempt to determine the unknown properties that

minimize the difference between the measured system response and the response predicted

by the computational representation of the mechanics of the system [71, 4, 23]. The opti-

mization approaches can be divided further into those that use gradient-based optimization

(e.g., Newton’s method, conjugate gradient, etc.) and those that use non-gradient-based

optimization (e.g., random search, genetic algorithm, etc.) to minimize the response error.

Gradient-based optimization methods typically require substantially less iterations to con-

verge to a solution approximation in comparison to non-gradient-based methods (i.e., are less

computationally expensive), but often become trapped in local minima (i.e., an inaccurate so-

lution), while non-gradient-based (since they commonly include some stochastic component)

often have closer to global search capabilities. Alternatively, non-iterative methods attempt

to somehow directly relate the measured response to the unknown parameters [81, 51]. As

such, once set up, non-iterative methods are naturally almost negligible in computing cost

in comparison to the optimization-based approaches.

Non-iterative methods include machine learning approaches that use experimentally

and/or numerically generated datasets of potential inverse problems solution parameters

and the corresponding system responses to train a “surrogate” mapping (e.g., artificial neu-

ral network) to approximate the relationship between the system response (as inputs to the

mapping) and inverse unknowns (as outputs of the mapping) [77, 38]. Then, provided with a

measured system response, the surrogate mapping can estimate inverse solution parameters

in fractions of a second. Although relatively simple to implement, these machine learning

approaches completely exclude any knowledge of the mechanics of the system beyond what

can be naturally discerned from the dataset, and can have significant problems creating the

surrogate mapping at all, since the input-output relationship is often not one-to-one, leading

to substantial accuracy concerns in many cases. Alternatively, there are several different

approaches (referred to as “direct inversion” methods herein) that instead manipulate the
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equations governing the mechanics of the system (i.e., the forward boundary value problem)

to create a solution process similar to that of solving the forward problem itself (e.g., similar

in process to a finite element analysis to predict the deformation response of a solid given

geometry, material properties, and boundary conditions). Therefore, the direct inversion

methods provide a solution estimate based upon the measured response and the mechanics

assumed to govern the response of the system considered at a cost on the order of a single

numerical analysis of the forward problem.

Direct inversion approaches have seen considerable application in problems relating to

characterization of the distribution of elastic properties from mechanical testing. Further-

more, these approaches include those that solve for the material properties over the entire

(or almost the entire) domain at once (i.e., global methods), as well as those that break the

domain into subregions and determine the properties for each subdomain in sequence (i.e.,

local). Global methods typically use some variation of either the finite difference method

(FDM) or the finite element method (FEM) to create a system of equations based on the

forward boundary value problem to solve the node or element-based elastic modulus dis-

tribution everywhere in the domain. FDM approaches for global direct inversion include

the seminal work of Raghavan and Yagle [57] for simultaneously characterizing stiffness and

hydrostatic pressure distribution of tissue from strain measurements, as well as other sub-

sequent similar approaches for characterization of relative elastic modulus [65] and relative

shear modulus [66] distributions. FEM approaches have shown some benefits over FDM

approaches for global direct inversion in that they can be cast in a way so as to only require

the gradient of displacement (i.e., a single derivative) rather than the divergence of strain

(i.e., two derivatives of displacement). In this way, FEM approaches can be more tolerant to

noise and other measurement errors than FDM approaches. Examples of FEM approaches

for global direct inversion include the work by Zhu et al. [81] for elasticity reconstruction

from displacement measurements and the work by Park and Maniatty [51] for shear modulus

reconstruction from measured steady-state dynamic displacement fields. The local methods

are often similar to the global methods, with several approaches similarly using principles

from FDM and FEM (although not all), with the fundamental difference being just how the

system is discretized/solved. Oliphant et al.[49, 50] presented a local approach that used
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polynomial fit of the measured dynamic displacement field and the strong form of the gov-

erning equation of motion to characterize the elasticity distribution in tissues, while Romano

et al. [61, 60] used a weak form FEM-type approach for element-by-element characterization

of the ratio between both Lamé constants and density from dynamic displacement measure-

ments. One particularly unifying aspect of the direct inversion approaches is that the entire

(or nearly entire) spatial distribution (i.e., full-field) of the system response (e.g., displace-

ment) must be measured/available to successfully characterize the unknown properties. Due

to this requirement, the use of direct inversion (particularly of mechanical properties) has

been mainly limited to biomechanical imaging applications (e.g., characterization of elastic

properties of tissues from medical imaging data), where full-field or nearly full-field deforma-

tion information is regularly available. An additional common challenge of direct inversion

approaches is their noise sensitivity. Most direct inversion approaches are not capable of

producing a useable solution estimate with any significant level of measurement noise, which

has resulted in several investigations into strategies for signal denoising prior to applying

direct inversion [51, 50].

This work presents an approach to utilize measurement data from only a portion of the

system domain (i.e., partial-field data) for direct inversion of material properties. In partic-

ular, the approach is presented in the context of characterizing the spatial distribution of

the elastic modulus of solids (i.e., elastography) provided with displacement response mea-

surements over some portion of the solid domain. The core component of this approach is

the use of the Gappy proper orthogonal decomposition (POD) machine learning strategy

to build a data reconstruction tool that can predict the full-field response of a system from

the available partial-field measurements. This data reconstruction tool is built from a set

of potential solution fields that are generated based upon information known a priori about

the nature of the potential inverse problem solutions (e.g., arbitrarily generated approxi-

mate potential elastic modulus distributions). Once the full-field response reconstruction is

complete, the full-field response is applied in a finite element-type direct inversion strate-

gy to estimate the unknown material property distribution everywhere in the domain at a

computational expense approximately equivalent to a single finite element analysis of the

system. In addition, the Gappy POD approach can also act as somewhat of a noise filter
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during the reconstruction process, thereby, providing an added benefit of reducing the effects

of measurement noise on the subsequent direct inversion solution procedure.

The following section presents the details of the Gappy POD approach to reconstruct

full-field data from partial-field measurements. Then, Section 3.4 shows the direct inversion

algorithm to calculate the spatial distribution of elastic modulus provided with the full-field

displacement response and the boundary conditions corresponding to the test method used

to produce the measurements (i.e., the constraints on the solid and the excitation used to

generate the displacement measurements). The complete direct inversion with Gappy POD

algorithm is summarized in Section 3.5. Section 3.6 presents two simulated case studies re-

lating to characterization of localized elastic modulus distributions in solids to evaluate the

capabilities of the inverse characterization procedure, which are followed by an example uti-

lizing (actual) experimentally obtained displacement measurements to evaluate the stiffness

distribution of an arterial construct to validate the “real-life” applicability of the approach.

3.3 GAPPY PROPER ORTHOGONAL DECOMPOSITION

Gappy POD is an extension of the traditional POD approach that was first developed and

presented by Everson and Sirovich [19] for the purpose of filling in missing information to

reconstruct marred photos. Subsequently, Gappy POD has shown substantial capabilities

to accurately reconstruct physical processes from partial-field measurement data, especially

for fluid flow problems [69, 67, 74, 78, 64], and has even been investigated for use in creating

surrogate mappings (as described in Section 3.2) to solve design-type inverse problems [67].

To discuss the Gappy POD process, it is first necessary to outline the standard POD

method. Given a set of n fields (referred to as “snapshots”), {~uk (~x)}nk=1, POD can be

interpreted as an approach to determine the set of m orthogonal basis functions (i.e., modes),{
~φi(~x)

}m
i=1

, that are optimal in some sense for representing each given field and, if the given

fields are representative, any similar field as:

~u (~x) ≈ ~u∗ (~x) =
m∑
i=1

ai~φi (~x) , (3.1)
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where ~x is the spatial position vector and ai is the modal coefficient corresponding to the

ithe mode (~φi(~x)). More specifically, POD identifies the modes that minimize the average

L2-error between the given snapshots and the best approximation of the snapshots from the

modes (i.e., the projection of each snapshot onto the modes) as:

Minimize
{~φi(~x)}m

i=1

〈
‖~u(~x)− ~u∗(~x)‖2

L2(Ω)

〉
, (3.2)

where 〈~u〉 = 1
n

∑n
k=1 ~uk. Based on this optimization problem and applying the method of

snapshots (see [2] for additional details), a maximum of n POD modes can be calculated

through the solution of the following eigenvalue problem:

1

n

n∑
k=1

AjkCk = λCj, (3.3)

where

Ajk =

∫
Ω

~uj

(
~ξ
)
· ~uk

(
~ξ
)
d~ξ, (3.4)

and then the ith mode is given as:

~φi (~x) =
1

λ(i)n

n∑
k=1

~uk (~x)C
(i)
k . (3.5)

An important point is that only a portion (m << n) of the set of modes that can

be obtained is typically necessary to be retained for further use, whether it be for data

representation for pattern recognition purposes [76], reduced-basis model reduction [2], or

otherwise. As the associated eigenvalues from the solution of Eqn. (3.3) relate to the value

of each mode for the representation of the given dataset, a common heuristic is to retain the

number of modes such that the sum of the associated eigenvalues is some amount greater

than 99% of the sum of all n eigenvalues.

The Gappy POD process starts by following the above described standard POD proce-

dure to obtain a set of orthogonal modes from a given set of snapshots. The point in which

Gappy POD diverges from standard POD is how those modes are utilized. If the full distri-

bution (specifically, full spatial distribution for the cases herein) of a field is available, the
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modal coefficients (ai) needed to reconstruct that field with the POD modes can be easily

obtained by projecting the modes onto the field as:

ai =

∫
Ω

~u
(
~ξ
)
· ~φi
(
~ξ
)
d~ξ. (3.6)

However, projection is no longer applicable to determine the values of the modal coefficients

to reconstruct the field if the entire spatial distribution is not available. Thus, the objective

of Gappy POD is to provide a means to reconstruct the full spatial distribution of a field

using the POD modes, but with only a partial spatial distribution of the field given. Defining

~̂u (~x) as the given partial distribution of the field of interest such that ~̂u (~x) is (incorrectly)

0 anywhere data is unavailable, then ~̂u (~x) can be expressed in terms of the corresponding,

but unknown, full spatial distribution as:

~̂u (~x) = β (~x, ~u) ~u (~x) , (3.7)

where β (~x, ~u) is a mask function that is defined as 0 where data is unavailable and 1 where

data is available. Assuming that the full spatial distribution can be approximated with the

POD modes as defined in Eqn. (3.1), an approximation of ~̂u (~x) can be written in terms of

the POD modes as:

~̂u∗ (~x) = β (~x, ~u)
m∑
i=1

ai~φi (~x) . (3.8)

Then, based upon a least-squares criteria, the optimal set of modal coefficients to reconstruct

the full spatial distribution of the field can be defined as that which minimizes an error

function of the form:

ε =

∫
Ω

[
β (~x, ~u) ~u (~x)− β (~x, ~u)

m∑
i=1

ai~φi(~x)

]2

d~x. (3.9)

Lastly, applying the necessary condition for extrema of a function by setting the derivative

of the error function with respect to the modal coefficients to zero, the optimal set of modal

coefficients, {a}, to reconstruct the full spatial distribution of the field can be determined

from the solution of:

[M ]{a} = {f}, (3.10)
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where

Mij =

∫
Ω

β (~x, ~u) ~φi(~x) · ~φj(~x) d~x. (3.11)

and

fi =

∫
Ω

β (~x, ~u) ~u(~x) · ~φi(~x) d~x. (3.12)

3.4 DIRECT INVERSION OF ELASTIC MODULUS

As discussed, although potentially applicable to a variety of different physical systems, the

application of the present work is characterization of the elastic modulus distribution of a

solid from displacement measurements (full-field displacement response once Gappy POD has

been utilized). Furthermore, the following formulation is presented with respect to a steady-

state dynamic testing procedure (as could be applicable to frequency response function-based

evaluation), but could easily be converted to a static problem by simply setting the excitation

frequency to zero. To provide a foundation for the formulation, the following presents the

standard forward problem (i.e., finite element formulation), as would be used to calculate

the steady-state harmonic displacement response of the solid given material properties and

boundary conditions (also, note that this forward problem was used to generate the snapshots

for the Gappy POD procedure), followed by the numerical direct inversion procedure (i.e.

inverse problem) to approximate the elastic modulus distribution.

3.4.1 Forward Problem

Neglecting body forces and damping, assuming displacements and strains are small, and

assuming that the system variables vary harmonically in time at angular excitation frequency

ω, the steady-state dynamic governing equations describing the forward elasticity problem

(i.e., the strong form) can be given as:

∇ · σ(~x, ω) + ω2ρ(~x)~u(~x, ω) = ~0 on Ω, (3.13)

σ(~x, ω) = CIV (~x) : ε(~x, ω), (3.14)
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ε(~x, ω) =
1

2

(
∇~u(~x, ω) + (∇~u(~x, ω))T

)
, (3.15)

σ(~x, ω) · ~n(~x) = ~T (~x, ω) on Γ~T , (3.16)

and

~u(~x, ω) = ~u0(~x, ω) on Γ~u, (3.17)

where ρ(~x) is the mass density, σ(~x, ω) is the Cauchy stress amplitude tensor, ~u(~x, ω) is the

displacement amplitude vector, Ω is the domain of the structure, ε(~x, ω) is the small strain

amplitude tensor, CIV (~x) is the 4th-order elasticity tensor, ~n(~x) is the unit outward normal

vector to the surface of the domain, ~T (~x, ω) and Γ~T are the applied traction amplitude

vector and the portion of the domain surface where this traction is applied, respectively,

and ~u0(~x, ω) and Γ~u are the applied displacement amplitude vector and the portion of the

domain surface where displacement is known, respectively.

Applying standard procedures for the weak form finite element method [59], the weak

form of this steady-state dynamic boundary value problem can be written as:∫
Ω

δε(~x) : σ(~x, ω) d~x−
∫

Ω

ρ(~x)ω2δ~u(~x) · ~u(~x, ω) d~x =∫
Γ~T

δ~u(~x) · ~T (~x, ω) d~x,
(3.18)

where δ~u(~x) is the virtual displacement vector field (i.e., weight function or test function) and

δε(~x) is the associated virtual strain tensor. Further applying the standard finite element

procedure and converting to Voigt notation, the domain can be discretized into a collection

of elements, and the displacement and virtual displacement fields and their corresponding

strain vectors can be approximated as:

~u(~x, ω) ≈ [N~u(~x)]{~ue(ω)}, (3.19)

δ~u(~x) ≈ [N~u(~x)]{δ~ue}, (3.20)

{ε(~x, ω)} ≈ [B~u(~x)]{~ue(ω)}, (3.21)
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and

{δε(~x)} ≈ [B~u(~x)]{δ~ue}, (3.22)

where [N~u(~x)] is the standard matrix of shape functions for displacement interpolation and

[B~u(~x)] is the matrix of shape function spatial derivatives for strain interpolation. Substitut-

ing these field approximations into Eqn. (3.18), eliminating the arbitrary virtual response

field vector, and assembling individual element contributions, the final finite element equa-

tions are depicted as:

[K]{u} − [M ]{u} = {P}, (3.23)

where

[K] =
∑

element

∫
Ωe

[B~u(~x)]T [D][B~u(~x)] d~x, (3.24)

[M ] =
∑

element

∫
Ωe

ρ(~x)ω2[N~u(~x)]T [N~u(~x)] d~x, (3.25)

{P} =
∑

element

∫
Γe

~T

[N~u(~x)]T ~T (~x, ω) d~x, (3.26)

and [D] is elasticity matrix, such that:

{σ(~x, ω)} = [D]{ε(~x, ω)} (3.27)

The summation over elements refers to the assembly process.

3.4.2 Inverse Problem

With the objective of the inverse problem being characterization of the elastic modulus

distribution provided with the entire displacement field everywhere in the domain, the first

step in the inverse solution formulation is to separate the elastic modulus (E(~x)) from the

elasticity matrix as:

[D] = [DI ]E(~x), (3.28)

where DI is now only a function of Poisson’s ratio (ν). Applying the same general weak

form procedure as was done previously for displacement, but now for the elastic modulus,
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the inverse problem weak form for the steady-state dynamic boundary value problem can be

written as: ∫
Ω

∇δ ~E(~x) : σI(~x, ω)E(~x) d~x =

∫
Ω

ρ(~x)ω2δ ~E(~x) · ~u(~x, ω) d~x+∫
Γ~T

δ ~E(~x) · ~T (~x, ω) d~x,
(3.29)

where

{σI(~x, ω)} = [DI ]{ε(~x, ω)}, (3.30)

and δ ~E is the virtual elastic modulus vector (matching the dimension of the displacement

field, and therefore, the number of equilibrium equations, even though the modulus itself is

a scalar). Now discretizing the domain into finite elements to represent the elastic modulus

and again using Voigt notation where applicable, the elastic modulus and virtual elastic

modulus vector and their corresponding gradients can be approximated as:

E(~x) ≈ [NE(~x)]{Ee}, (3.31)

δ ~E(~x) ≈ [Nδ ~E(~x)]{δ ~Ee}, (3.32)

{∇E(~x)} ≈ [BE(~x)]{Ee}, (3.33)

and

{∇δ ~E(~x)} ≈ [Bδ ~E(~x)]{δ ~Ee}, (3.34)

where [NE(~x)] is now the matrix of shape functions for elastic modulus interpolation, [Nδ ~E(~x)]

is the expanded version (to match the dimensions of the displacement) of the matrix of shape

functions for elastic modulus interpolation, and [BE(~x)] and [Bδ ~E(~x)] are the respective ma-

trices of these shape function spatial derivatives. Substituting these field approximations as

well as the previously-defined discretization of the given displacement field into Eqn. (3.29),

eliminating the arbitrary virtual elastic modulus field vector, and assembling individual el-

ement contributions, the final finite element equations for the direct inversion elastography

problem are depicted as:

[KI ]{E} = {PI}+ [MI ]{u}, (3.35)
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where

[KI ] =
∑

element

∫
Ωe

[Bδ ~E(~x)]T [DI ][B~u(~x)]{~ue}[NE(~x)] d~x, (3.36)

[MI ] =
∑

element

∫
Ωe

ρ(~x)ω2[Nδ ~E(~x)]T [N~u(~x)] d~x, (3.37)

and

{PI} =
∑

element

∫
Γe

~T

[Nδ ~E(~x)]T ~T (~x, ω) d~x. (3.38)

Since [KI ] is typically non-square and Eqn. (3.35) is typically an overdetermined system

([KI ] has dimensions 3N ×N , where N is the number of nodes in the mesh if the same mesh

is used for both fields), the elastic modulus cannot be estimated by simply inverting [KI ].

Thus, as is common, a least-squares approach was used here to solve Eqn. (3.35) for {E}.

As such, the nodal values of elastic modulus can be determined as:

{E} =
(
[KI ]

T [KI ]
)−1

[KI ]
T ({PI}+ [MI ]{u}) . (3.39)

One final important point is that it is necessary to invalidate the equations corresponding to

the essential boundary conditions (i.e., known displacement values) prior to the solution of

Eqn. (3.39). Eliminating these equations is a common approach that is necessary to obtain

a well-behaved solution to the direct inversion problem. Thus, prior to solving Eqn. (3.39)

the rows in Eqn. (3.35) corresponding to nodes where essential boundary conditions are

present are set to zero, such that:

[KI ][i, :] = 0, if ~xi ∈ Γ~u, (3.40)

[MI ]{u}[i] = 0, if ~xi ∈ Γ~u, (3.41)

and

{PI}[i] = 0, if ~xi ∈ Γ~u. (3.42)
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3.5 ALGORITHM FOR DIRECT INVERSION FROM PARTIAL-FIELD

MEASUREMENTS WITH GAPPY POD

The overall algorithm for direct inversion of a material property distribution from partial-

field response measurements with Gappy POD can be summarized as follows:

Given: The geometry of the structure of interest, the boundary conditions and partial-

field response measurements from a nondestructive testing procedure, and any available

material properties.

Find: The unknown material property distribution.

Step 1: Generate (e.g., randomly or through some other sampling procedure) a set of po-

tential distributions for the unknown material property, using any information available

a priori relating to the likely nature of the unknown distribution, and use a forward

analysis procedure (e.g., Section 3.4.1) to produce the corresponding full-field structural

responses for each property distribution from the nondestructive testing conditions.

Step 2: Calculate the POD modes from the set of full-field structural responses (Eqn. (3.5)),

and select the modes (based on a user-defined criteria, such as the eigenvalue energy) to

be retained for Gappy POD field reconstruction.

Step 3: Reconstruct the full-field structural response from the given partial-field measure-

ments with Gappy POD (Eqs. (3.10) and (3.1)).

Step 4: Calculate an estimate to the unknown material property distribution using the

direct inversion procedure (e.g., Section 3.4.2) with the reconstructed full-field structural

response and nondestructive test boundary conditions.

An additional note is that the vast majority of the computational expense resides in Steps

1 and 2 (i.e., generating the POD modes),which is only necessary to be completed one time

for a given problem (e.g., geometry, boundary conditions, parameterization, etc.). Then,

the remaining Steps 3 and 4 can be repeated as many times as is desired based on these

POD modes. Therefore, the same structure at different times in the structure’s life or

different, but similar structures could be evaluated to characterize their material property
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distributions without having to create new snapshots (i.e., without having to evaluate the

forward boundary value problem again), and therefore, with minimal computational expense.

3.6 EXAMPLES AND DISCUSSION

Three examples were considered and evaluated to examine the potential benefits and capa-

bilities of using the direct inversion approach with Gappy POD to characterize the elastic

modulus distribution in solids from partial-field measurements. In all three cases, the partial-

field measurements were assumed to be obtained from some type of nondestructive testing

in the linear range of the solid behavior. First, two numerical examples were considered in

which the “experiment” was simulated through finite element analysis, as described in Sec-

tion 3.4.1, then a physical (i.e., “real life”) example was considered relating to elastography

of an arterial construct [18].

For all three examples, the finite element method was used to generate the snapshots

for the POD process. In addition, the criteria used to determine the number of modes (m)

out of the total number available (n) to use for data reconstruction with Gappy POD was

to select the mode with the highest associated eigenvalue (λ in Eqn. 3.3) as well as the

minimum number of the remaining modes, such that:∑m
j=2 λ

(j)∑n
i=2 λ

(i)
× 100% > 99.9% (3.43)

This criteria was determined to be sufficient to ensure that enough modes were retained

from POD for Gappy POD to produce accurate reconstructions, while excluding the modes

associated with low eigenvalues that can often cause the matrix [M ] in Eqn. 3.10 to be

ill-conditioned.

3.6.1 Numerically Simulated Examples

The two numerically simulated experiments were based upon characterization of elastic mod-

ulus distributions with circular inclusions (hard or soft), as shown schematically in Fig. 3.1.
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Excitation 

Inclusion 

Matrix Material 

Figure 3.1: Schematic for the numerically simulated examples representing characterization

of an elastic modulus distribution with an inclusion.

The circular inclusion assumption was used for simplicity, but more importantly, it is based

on several other related characterization works for a variety of applications [20, 26, 37].

In addition, both examples used the plane stress assumption to reduce the computation-

al expense. A Gaussian radial basis function (RBF) representation was chosen to define

the localized elastic modulus variations, which was based upon several other similar works

[14, 1, 13]. The RBF representation of elastic modulus distribution was defined as:

E(~x) = E0

[
1 +

NI∑
i=1

αiexp

(
−(~x− ~ci)2

r2
i

)]
, (3.44)

where E0 is the elastic modulus of the matrix material, αi is the relative change in elastic

modulus at the ith inclusion center, ~ci, is the location of the ith inclusion center, ri is the

breadth of the ith inclusion, and NI is the total number of inclusions. In addition, for the

inverse characterization process, it was assumed to be known a priori that the variation in

elastic modulus was similarly localized in nature (of course, with the size, amplitude, and

location of this variation to be estimated by characterizing the entire spatial distribution of

the elastic modulus with the direct inversion procedure). Therefore, the process to create the

POD modes used snapshots generated with this same RBF parameterization of the elastic

82



modulus distribution. To add realism to the simulated experiments, for all trials Gaussian

white noise was also added to the simulated measurements as:

uexpn = uexp (1 + kυ) , (3.45)

where uexpn and uexp are the simulated experimental displacement measurements with noise

and without noise, respectively, k is the noise amplitude multiplier, and υ is a normally

distributed random variable with unit variance and zero mean.

3.6.1.1 Example 1: Simulated Soft Matrix with a Hard Inclusion - Static Test

The first example of a simulated soft matrix with a hard inclusion was intended to relate to

potential applications of tissue characterization (e.g., tumor characterization) from (quasi-)

static mechanical testing [22, 48]. A tissue block was modeled as a 50 mm× 50 mm square

domain with the bottom fixed to a rigid support. The entire material (matrix and inclusion)

was assumed to be known to be nearly incompressible, and a Poisson’s ratio of 0.49999 was

assigned. The simulated static test was implemented by applying a 0.2 N/mm (factoring out

the arbitrary thickness) excitation uniformly to the top surface of the tissue block. Then,

the static vertical displacement response to the loading was measured at 100 uniformly

spaced discrete locations, as shown in Fig. 3.2. 5% Gaussian white noise was added to the

measurements for this first example, which was deemed to be reasonable level of noise that

could be expected from similar tests (note that this level of noise is commensurate with

the highest levels of noise used in prior referenced works on direct inversion strategies with

full-field response measurements).

For the process of generating the snapshots for POD, the elastic modulus of the back-

ground material (i.e., matrix material) was assumed to be fixed at 15 kPa, which was based

on normal glandular breast tissue [81, 51]. Alternatively, the parameters defining the in-

clusion based on the RBF description were assumed to be variable. The specific parameter

values used to create the snapshots were chosen arbitrarily by uniformly sampling the space

of the four variable parameters (the two spatial coordinates, amplitude, and breadth). Three

values were chosen for each spatial coordinate of the inclusion center and two values were

chosen each for the amplitude and breadth of the inclusion, and one last scenario with no
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Measurement Point 

Figure 3.2: Schematic of the vertical displacement sensor locations (red dots) for Example

1: Simulated Soft Matrix with a Hard Inclusion.

inclusion (i.e., homogeneous matrix material) was added, for a total of 37 parameter com-

binations used to create snapshots. Fig. 3.3 shows the nine location combinations of the

inclusion center used to generate the snapshots. The values of the other two parameters

used to create the parameter combinations were chosen based on an expectation of what the

lower and upper-end would be for the application, using 1 and 3 for the amplitude parameter

α (i.e., modulus at inclusion center of 30 kPa and 60 kPa) and 5 mm and 15 mm for the

breadth parameter r. To be clear, note that each of elastic modulus distribution realizations

used to create a snapshot contained only one inclusion (other than the homogeneous case,

which contained none). 15 out of the 37 total available POD modes were necessary to sat-

isfy the criteria defined in Eqn. 3.43 and were retained for the Gappy POD reconstruction

process.

A 50 × 50 mesh of quadratic triangular elements was determined to be sufficient for

accurately analyzing the tissue deformation (i.e., solving the forward problem) for all possible

material property distributions. For simplicity, this same mesh was used to discretize the

elastic modulus distribution for the direct inversion procedure. However, to reduce the

dimensionality slightly the elastic modulus was described with linear triangular elements

rather than quadratic.
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Figure 3.3: Schematic of the nine inclusion centers used separately to generate the snapshots

for POD for the numerically simulated examples.

Results:

As an example of the appearance of the POD modes, Fig. 3.4 shows the distributions of

the components of the first two POD modes (i.e., the modes corresponding to the two highest

eigenvalues from the POD procedure). More importantly, Fig. 3.5 shows a representative ex-

ample trial of a simulated displacement response field from a randomly generated parameter

set and including the 5% Gaussian white noise in comparison to the displacement response

field reconstructed from the 100 response measurements of that response field with the Gap-

py POD procedure. In general, the Gappy POD reconstruction of the displacement response

from partial-field measurements was found to be accurate, producing response distributions

that were nearly identical to the full simulated responses, with errors consistent with the

example shown, which had relative L2 and L∞ errors in the displacement reconstruction of

7.4% and 18.5%, respectively.

Fig. 3.6 shows a representative example of an elastic modulus distribution used to

generate simulated experimental measurements (i.e., target modulus distribution) and the

corresponding elastic modulus distribution estimated by the direct inversion procedure with

Gappy POD displacement reconstruction. There was a noticeable amount of error in the

modulus reconstruction, and the relative L2 and L∞ errors in the modulus estimation com-

pared to the target distribution were 21% and 43%, respectively. However, the localization of
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Figure 3.4: (a) Horizontal and (b) vertical components of the first (i.e., highest eigenvalue)

mode and (c) horizontal and (d) vertical components of the second mode for Example 1:

Simulated Soft Matrix with a Hard Inclusion.
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Figure 3.5: Representative example of the (a) horizontal and (b) vertical components of a

simulated experimental displacement field with 5% Gaussian white noise and the (c) hor-

izontal and (d) vertical components of the corresponding reconstructed displacement field

from Gappy POD with only the discrete measurement data (color contours in units of m)

for Example 1: Simulated Soft Matrix with a Hard Inclusion.
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Figure 3.6: Representative example of (a) the elastic modulus distribution used to simulate

experimental measurements (i.e., the target modulus distribution) and (b) the corresponding

elastic modulus distribution estimated with the direct inversion approach with Gappy POD

full-field displacement reconstruction from the partial-field measurements (color contours in

units of Pa) for Example 1: Simulated Soft Matrix with a Hard Inclusion.
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Figure 3.7: Example of an elastic modulus distribution estimated with the direct inversion

approach applied directly to the full-field simulated experimental data with noise (i.e., with-

out using Gappy POD) (color contours in units of Pa) for Example 1: Simulated Soft Matrix

with a Hard Inclusion.

the modulus distribution was accurate, indicating a single harder region within the solid, and

the matrix modulus value and the maximum inclusion modulus value were nearly identical to

the target distribution. Again, it should be noted that the direct inversion process does not

restrict the distribution of the modulus to be localized, which emphasizes the significance of

having recovered the correct localization with the inversion procedure. Moreover, the accura-

cy of the modulus reconstruction was commensurate, if not qualitatively better, than in the

alternate previously referenced works in the literature on direct inversion techniques [81, 51],

with those approaches using full-field response measurements, rather than the partial-field

measurements used here. To further expand on the benefits of the direct inversion with Gap-

py POD, Fig. 3.7 shows the elastic modulus distribution estimated by the direct inversion

procedure with the original simulated full-field displacement with the added 5% Gaussian

white noise. Clearly, the direct inversion procedure applied to the noisy data was unable

to remotely come close to estimating the target elastic modulus distribution, indicating the

significance of the noise filtering capability of the Gappy POD field reconstruction prior to

direct inversion. Lastly, to show the generalization capabilities and robustness of the direct

inversion with Gappy POD procedure, five additional elastic modulus reconstruction trials
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Table 3.1: The mean and standard deviation of the relative L2 and L∞ errors with respect

to the reconstructed displacement and corresponding elastic modulus distribution estimate

for the five randomly generated trials of the direct inversion procedure with Gappy POD for

Example 1: Simulated Soft Matrix with a Hard Inclusion.

Field
Relative L2 Error Relative L∞ Error

Mean Std. Dev. Mean Std. Dev.

Displacement 7.9% 0.3% 23.1% 4.7%

Elastic Modulus 17.3% 3.4% 41.6% 3.8%

were performed with randomly generated target localized elastic modulus distributions (sim-

ilar to the representative example shown in Fig. 3.6 (a)), and the direct inversion technique

was applied with the Gappy POD displacement reconstruction from the simulated measure-

ment data with noise for each trial. Table 3.1 shows the mean and standard deviation over

the five trials for the relative L2 and L∞ errors in the displacement reconstruction and the

elastic modulus estimation comparing the direct inversion with Gappy POD results to the

target simulated experimental cases. For all trials the Gappy POD with direct inversion

procedure was able to reconstruct the full-field displacement and then estimate the elastic

modulus distribution with an accuracy consistent with the representative example shown.

In particular, the capability of the Gappy POD with direct inversion procedure to correctly

localize and accurately estimate the magnitude of the elastic modulus distribution remained

consistent.

3.6.1.2 Example 2: Simulated Hard Matrix with Soft Inclusions - Steady-State

Dynamic Test The second example of a simulated hard matrix with soft inclusions was

considered to illustrate the potential applications of nondestructive evaluation of civil or

aerospace structures (e.g., characterizing damage in structural components as could be rep-

resented by a reduction in stiffness) from frequency response-based testing. A metal plate

90



Measurement Point 

Figure 3.8: Schematic of the horizontal and vertical displacement sensor locations (red dots)

for Example 2: Simulated Hard Matrix with Soft Inclusions.

was modeled as a 1 m × 1 m square section with the bottom fixed to a rigid support. The

entire material (matrix and inclusions) was again assumed to be known to be linear elastic,

with a known Poisson’s ratio of 0.3 and a known density of 2700 kg/m3. The simulat-

ed steady-state dynamic test was implemented by applying an excitation with excitation

frequency of 20 Hz and amplitude of 1 kN/m (factoring out the arbitrary thickness) uni-

formly to the top surface of the plate. Then, the steady-state dynamic amplitude of the

horizontal and vertical displacement response to the loading was measured at 10 uniformly

spaced discrete locations on both the left and right surfaces, as shown in Fig. 3.8. For

this second simulated example, 1% Gaussian white noise was added to the measurements.

Testing (not shown here for brevity) showed a significant tradeoff between the level of noise

and the amount of measurement information in terms of the measurement accuracy. The

testing showed that the more measurement information (i.e., the more sensor locations) the

more tolerant the inverse solution procedure would be to measurement noise. Therefore, for

this second simulated example in which significantly less measurement information was used

than the first example, less measurement noise was added to ensure the simulated inverse

problems would be sufficiently accurately solvable.

The process of generating the snapshots for POD was almost identical to the first sim-

ulated example, with the elastic modulus of background material assumed to be fixed at
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69.0 GPa for this case, which was based upon aluminum. Again, 37 parameter combination-

s were used to create the snapshots. The same nine location combinations of the inclusion

center were used as the first example (Fig. 3.3), the two values of the amplitude parameter

used were −0.3 and −0.7 (i.e., modulus at the inclusion center of approximately 21 GPa

and 48 GPa), and the two values of the breadth parameter used were 0.1 m and 0.3 m.

Note that, as before, each snapshot material property distribution other than the homoge-

neous case contained only one inclusion. 13 out of the 37 total available POD modes were

necessary to satisfy the criteria defined in Eqn. 3.43 and were retained for the Gappy POD

reconstruction process. The same mesh configurations were used for the forward and inverse

problem as were used for the first simulated example, with the displacement mesh having

been verified to be sufficiently refined for accurately analyzing the plate deformation for all

possible material property distributions.

Single Inclusion Case - Results:

Fig. 3.9 shows a representative example of a target elastic modulus distribution with a s-

ingle inclusion used to generate simulated experimental measurements and the corresponding

elastic modulus distribution estimated by the direct inversion with Gappy POD procedure.

The relative L2 and L∞ errors in the displacement reconstruction were 1.7% and 4.4%, re-

spectively, while the relative L2 and L∞ errors in the modulus estimation compared to the

target distribution were 6.2% and 36%, respectively. The overall displacement reconstruc-

tion and modulus estimation were somewhat more accurate than the first example, most

likely due to the reduction in the added measurement noise. One of the most significant

observations is again that the localization of the inclusion and the matrix/inclusion modulus

magnitudes were highly accurate, and with using the measurement information from only

one fifth of the measurement locations as was used for the first example. To again show

the consistency of these characterization results, Table 3.2 shows the mean and standard

deviation over five randomly generated trials for the relative L2 and L∞ errors in the dis-

placement reconstruction and the elastic modulus estimation comparing the direct inversion

with Gappy POD results to the target simulated experimental cases. As previously, the

results of the five random trials were consistent with the representative example shown.
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Figure 3.9: Representative single-inclusion example of (a) the elastic modulus distribution

used to simulate experimental measurements (i.e., the target modulus distribution) and (b)

the corresponding elastic modulus distribution estimated with the direct inversion approach

with Gappy POD full-field displacement reconstruction from the partial-field measurements

(color contours in units of Pa) for Example 2: Simulated Hard Matrix with Soft Inclusions.
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Table 3.2: The mean and standard deviation of the relative L2 and L∞ errors with respect to

the reconstructed displacement and corresponding elastic modulus distribution estimate for

the five randomly generated trials with a single inclusion of the direct inversion procedure

with Gappy POD for Example 2: Simulated Hard Matrix with Soft Inclusions.

Field
Relative L2 Error Relative L∞ Error

Mean Std. Dev. Mean Std. Dev.

Displacement 1.6% 0.2% 4.3% 0.8%

Elastic Modulus 5.6% 0.6% 32.2% 6.2%

Two and Three Inclusion Case - Results:

To examine the capability of the inverse procedure to characterize more complicated

material property distributions, and particularly, to characterize distributions that are fun-

damentally different than the material property distributions used to generate the POD s-

napshots, trials were performed in which the target elastic modulus distribution had multiple

soft inclusions (even though all snapshots were generated from material property distribu-

tions with at most only one inclusion). This case further addresses the common inverse

characterization challenge of having a priori knowledge of variations being localized, but

not knowing the number of these localized variations (e.g., not knowing the number of tu-

mors or the number of damage locations). Figs. 3.10 and 3.11 show examples of target

elastic modulus distributions with two and three inclusions, respectively, used to generate

simulated experimental measurements and the corresponding elastic modulus distributions

estimated by the direct inversion with Gappy POD procedure. For the two-inclusion case

shown, the relative L2 and L∞ errors in the displacement reconstruction were 2.88% and

8.52%, respectively, and the relative L2 and L∞ errors in the modulus estimation compared

to the target distribution were 9.56% and 28.19%, respectively. For the three-inclusion case

shown, the relative L2 and L∞ errors in the displacement reconstruction were 2.73% and

8.25%, respectively, and the relative L2 and L∞ errors in the modulus estimation compared
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Figure 3.10: Representative two-inclusion example of (a) the elastic modulus distribution

used to simulate experimental measurements (i.e., the target modulus distribution) and (b)

the corresponding elastic modulus distribution estimated with the direct inversion approach

with Gappy POD full-field displacement reconstruction from the partial-field measurements

(color contours in units of Pa) for Example 2: Simulated Hard Matrix with Soft Inclusions.
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Figure 3.11: Representative three-inclusion example of (a) the elastic modulus distribution

used to simulate experimental measurements (i.e., the target modulus distribution) and (b)

the corresponding elastic modulus distribution estimated with the direct inversion approach

with Gappy POD full-field displacement reconstruction from the partial-field measurements

(color contours in units of Pa) for Example 2: Simulated Hard Matrix with Soft Inclusions.
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to the target distribution were 12.98% and 40.71%, respectively. Overall, the direct inversion

with Gappy POD continued to produce relatively accurate representations of the modulus

distribution, but the accuracy did degrade some amount as the number of inclusions in the

target distribution increased (i.e., as the target distribution become increasingly different

from the snapshot distributions). What is most impressive is that, although the estimations

of the modulus distributions are more dispersed than the target distributions, they were still

capable of clearly identifying the number of inclusions and accurately approximate the inclu-

sion and matrix modulus magnitudes for both the two-inclusion and three-inclusion cases.

Moreover, it is worth stating again that all of these estimations (Figs. 3.9, 3.10, and 3.11)

were performed using the same set of snapshots, and therefore, all three inverse problems

were estimated at the combined expense of approximately 40 finite element analyses (i.e., 37

snapshots and 3 direct inversions).

3.6.2 Ultrasound Imaging Experiment: Elastography of an Arterial Construct

The final test case was intended to validate the “real-life” applicability of the approach for

direct material property inversion with Gappy POD full-field response reconstruction. This

test case considered an elastography problem regarding nondestructive and noninvasive char-

acterization of the elasticity distribution of an engineered arterial construct from ultrasound

measurement of the vessel deformation due to the known internal pressure. Such nondestruc-

tive capabilities could be beneficial to monitoring the progression of engineered tissues in

bioreactor environments, providing accurate information with less variance between samples.

Successful translation of such technologies, especially with aids of Gappy POD for realistic

computational power, can result in significant savings in time and money for both noninva-

sive preclinical studies and clinical uses. The example followed a a nearly identical format as

the work shown in [18], with the exception of the inverse solution estimation procedure (the

prior work used a computationally expensive non-gradient-based optimization procedure).

For simplicity, the behavior of the artery for all analyses was assumed to obey the plane

strain condition, and the initial cross-sectional geometry of the artery was estimated from

ultrasound imaging, as shown in Fig. 3.12. Although clearly not a perfect cylinder, the ap-
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Figure 3.12: Schematic of the testing procedure used to estimate the cross-sectional elastic

modulus distribution for the arterial construct from ultrasound imaging.

proximate inner and outer radius of the artery were 2.5 mm and 3.0 mm, respectively. The

nondestructive and noninvasive test consisted of measuring the vertical displacement of the

artery cross-section due to the known internal pulse pressure of 692 Pa using two-dimensional

ultrasound speckle tracking. The behavior of the artery for all analyses was assumed to be

quasi-static and linear elastic with respect to this test. In addition, to sufficiently support

the artery for the analyses, the vertical displacement of an approximately 2 mm long region

vertically centered on both the left and right sides of the outer surface and the horizontal

displacement of an approximately 3 mm long region centered horizontally on both the top

and bottom of the outer surface were assumed to be fixed. As was similarly used in [18],

only 15 discrete vertical displacement measurements in the approximately 0.4 mm×0.6 mm

rectangular region shown in Fig. 3.12 were used as the partial-field measurements for the

inverse solution estimation process, as those measurements were considered the most reliable

with the largest signal-to-noise ratio.

The Poisson’s ratio of the entire artificial arterial construct material was assumed to

be constant as 0.3 for the analyses. Therefore, the objective of the inverse characterization

was again to determine the spatial distribution of the elastic modulus. However, rather

than assuming the distribution was localized (as was done with the RBFs in the previous

simulated examples), the stiffness of the artery was assumed to have a layered variation,
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which is a realistic expectation for this application. As such, to generate the snapshots

a two-layer description of the elastic modulus distribution was utilized. The two layers

were defined based on a dividing ellipse centered at the centroid of the artery with a vertical

radius and horizontal radius of 1.8 mm and 2.6 mm, respectively, and the modulus of the two

layers was assumed to be variable between 50 kPa and 450 kPa. In addition, all snapshots

were generated with the constraint that the inner layer (with modulus value Ein) is stiffer

than the outer layer (with modulus value Eout) (i.e., Eout < Ein). Again, two layers were

chosen with the specified constraint to be consistent with the prior referenced work, which

accounted for the nonuniform cell growth in the construct with respect to the distance to

the lumen. The specific modulus values used to generate the snapshots were chosen as every

combination of the set [50, 150, 250, 350, 450] kPa satisfying the specified stiffness constraint,

which produced a total of 10 snapshots. 6 out of the 10 total available POD modes were

necessary to satisfy the criteria defined in Eqn. 3.43 and were retained for the Gappy POD

reconstruction process. A mesh of approximately 3100 quadratic triangular elements was

used to simulate the snapshots for POD, and similarly to the simulated examples, the same

mesh, but with linear triangular elements was used for the elastic modulus distribution

estimation.

Fig. 3.13 shows the vertical displacement response field reconstructed from the 15 re-

sponse measurements with the Gappy POD procedure, and more importantly, the elastic

modulus distribution estimated by the direct inversion procedure. The estimated two-layer

elastic modulus distribution was consistent with the referenced previous study, with the inner

modulus of approximately 330 kPa considerably higher than the outer modulus of approxi-

mately 110 kPa. Furthermore, as stated in [18], the artery was tested destructively through

a tensile testing method following the imaging experiment, and the bulk (i.e., averaged)

elastic modulus of the artery was determined to be approximately 184 kPa. Therefore, the

approximate average modulus of the distribution estimated herein of 220 kPa was relatively

accurate in comparison to the destructive test (noting that the conditions for the two testing

procedure were substantially different). Overall, the consistency of the results of this last

example with the prior study confirm the “real-life” applicability of the approach for direct

material property inversion with Gappy POD full-field response reconstruction.
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Figure 3.13: (a) The vertical displacement distribution reconstructed from Gappy POD (col-

or contours in units of m) and (b) the estimated cross-sectional elastic modulus distribution

from the direct inversion procedure for the arterial construct tested with ultrasound imaging

(color contours in units of Pa).

3.7 CONCLUSIONS

An approach for inverse material characterization that combines Gappy proper orthogonal

decomposition with direct inversion for computationally efficient characterization with data

measurements from only a portion of the system domain was presented and analyzed. The

approach first uses the Gappy POD method to estimate the response field over the entire sys-

tem domain from the available measurements along with any available a priori information

regarding the potential solution distribution. Then, the full-field response is utilized within

a physics-based direct inversion procedure to estimate the spatial distribution of the desired

unknown material property. Through numerically simulated example inverse problems based

on characterization of elastic modulus distributions with localized variations (e.g., materials

with hard or soft inclusions), the inverse procedure was shown to efficiently provide accurate

estimates to elastic modulus distributions from partial-field displacement measurements in

both static and dynamic problems. In particular, the expense of the inverse characteriza-

tion procedure, including the generation of the POD modes, was equivalent to less than
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40 standard finite element analyses for the simulated examples, and once the POD modes

were obtained (a one-time expense for a given system) the inversion is equivalent to a single

standard finite element analysis. In addition, the direct inversion with Gappy POD response

reconstruction was found to be substantially tolerant to noise in comparison to the direct

inversion given the full-field noisy response (i.e., without applying Gappy POD), and this

noise tolerance improved with the increase in the amount of measurement information avail-

able. The simulated examples also showed that the inversion procedure could characterize

material property distributions that were substantially more complex than the distributions

used to create the POD modes for the Gappy POD method (i.e., the inversion procedure

had significant extrapolation capabilities). Lastly, through a physical example regarding

elastography of an arterial construct from ultrasound imaging response measurements, the

direct inversion approach with Gappy POD response reconstruction was validated and the

practical applicability was confirmed.
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4.0 A GENERALIZED AND COMPUTATIONALLY EFFICIENT INVERSE

MATERIAL CHARACTERIZATION APPROACH COMBINING DIRECT

INVERSION SOLUTION INITIALIZATION WITH THE ADJOINT

METHOD

4.1 ABSTRACT

A computationally efficient gradient-based optimization approach for inverse material char-

acterization from incomplete system response measurements that can utilize a generally

applicable parameterization (e.g., finite element-type parameterization) is presented and e-

valuated. The key to this inverse characterization algorithm is the use of a direct inversion

strategy with Gappy proper orthogonal decomposition (POD) response field estimation to

initialize the inverse solution estimate prior to gradient-based optimization. Gappy POD is

used to estimate the complete (i.e., all components over the entire spatial domain) system re-

sponse field from incomplete (e.g., partial spatial distribution) measurements obtained from

some type of system testing along with some amount of a priori information regarding the

potential distribution of the unknown material property. The estimated complete system

response is used within a physics-based direct inversion procedure with a finite element-

type parameterization to estimate the spatial distribution of the desired unknown material

property with minimal computational expense. Then, this estimated spatial distribution of

the unknown material property is used to initialize a gradient-based optimization approach,

which uses the adjoint method for computationally efficient gradient calculations, to produce

the final estimate of the material property distribution. The three-step ((1) Gappy POD, (2)

direct inversion, and (3) gradient-based optimization) inverse characterization approach is

evaluated through simulated test problems based on the characterization of elastic modulus
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distributions with localized variations (e.g., inclusions) within simple structures. Overall,

this inverse characterization approach is shown to efficiently and consistently provide accu-

rate inverse characterization estimates for material property distributions from incomplete

response field measurements. Moreover, the solution procedure is shown to be capable of

extrapolating significantly beyond the initial assumptions regarding the potential nature of

the unknown material property distribution.

4.2 INTRODUCTION

Computational methods for the solution of inverse problems (e.g., characterization, design,

etc.) in mechanics (e.g., relating to solid mechanics, heat transfer, etc.) are becoming

ever more popular in a variety of fields in science and engineering. In particular, appli-

cations in the characterization of material property distributions span interest areas from

civil engineering (e.g., structural damage characterization [72, 80]) to medicine (e.g., tissue

characterization for disease diagnosis [8, 46]), where quantitative estimation of a variety of

material parameters can provide critical information relating to the state of the system. A

common structure of quantitative inverse material characterization approaches is to couple a

numerical representation of the system forward problem (e.g., a finite element representation

of the system response given the material properties) with some type of optimization to esti-

mate the material properties that lead to a “best match” between the response estimated by

the forward numerical representation and the available experimentally measured response.

Such computational methods to estimate inverse solutions provide quantitative solutions and

are generally applicable regardless of the physics of interest and response measurement type.

However, there are several significant challenges depending on the application of interest

as well, with a wide range of variations in the inverse solution method specifics. Common

differences include variations in the parameterization of the unknown material field, numer-

ical analysis technique, and optimization approach, with each having significant tradeoffs in

terms of generalization of the applicability, solution accuracy, and computational efficiency.
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One way in which computational inverse solution strategies can be divided is into those

that are iterative and those that are non-iterative (i.e., direct). A common direct approach

is to relate the measured response to the unknown material property distribution parame-

ters based on the manipulation of the forward boundary value problem and a least-squares

criteria, which creates a solution process similar to that of solving the forward problem itself

(e.g., similar in process to a finite element analysis to predict the deformation response of

a solid given geometry, material properties, and boundary conditions) [51, 81, 50]. Thus,

the solution estimate can be obtained at a cost on the order of a single numerical analysis

of the forward problem, even with a relatively generalized parameterization of the spatial

distribution of the unknown property (e.g., finite element-type parameterization). However,

one common challenge of the direct inversion approaches is that the entire (or nearly en-

tire) spatial distribution (i.e., full-field) of the system response (e.g., displacement) must be

measured to successfully characterize a distribution of unknown material properties. In ad-

dition, direct approaches are often relatively noise sensitive, with solution quality degrading

relatively quickly with increasing levels of measurement noise.

Iterative optimization-based approaches are typically better equipped than direct meth-

ods to estimate inverse solutions provided with response measurements from only a portion

of the system domain (i.e., partial-field measurements) or otherwise incomplete measure-

ment information (e.g., single directional components of displacement). Conceptually these

iterative approaches can be further divided into those that use use non-gradient-based opti-

mization (e.g., random search, genetic algorithm, etc.) [9, 73] and those that use gradient-

based optimization (e.g., Newton’s method, conjugate gradient, etc.) [46, 22]. Non-gradient-

based methods often have more significant global search capabilities in comparison to the

gradient-based optimization approaches, which can become trapped in local minima (i.e.,

an inaccurate solution). However, non-gradient-based methods typically require substantial-

ly more iterations (i.e., computational time) to converge to a solution approximation than

gradient-based approaches, which can be prohibitive for many applications. Moreover, the

computational expense of non-gradient-based methods increases substantially with increas-

ing number of unknown parameters (i.e. the curse of dimensionality), leading to the use of

simplified (i.e., less generally applicable) parameterizations of the unknown property field.
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In contrast, gradient-based methods are not only substantially more computationally effi-

cient overall, but are also not as affected by the curse of dimensionality, particularly if using

an adjoint approach or something similar to calculate the gradients [26, 20, 48]. Therefore,

gradient-based methods are capable of converging to a solution estimate with relative com-

putational efficiency, even with a generally applicable high-dimensional finite-element type

parameterization of the unknown material property field. Unfortunately, as stated, gradient-

based methods are local in nature, and unless the initial estimate of the unknown property

field provided is relatively accurate, the final solution estimate is likely to be inaccurate.

Furthermore, limitations in the amount of measurement data and/or high-dimensional pa-

rameterizations of the unknown field often leads to complicated (non-convex) error surfaces

for the optimization, and while regularization approaches can somewhat relieve this challenge

[47, 46, 63], the importance of the initial estimate accuracy is increased significantly.

The present work investigates an approach to utilize information that is available a priori

regarding the nature of the unknown property distribution (e.g., that the distribution has

localized variations) to initialize a gradient based optimization procedure to achieve a unique

level of efficiency and accuracy to estimate generalized (i.e., arbitrarily shaped) distributions

of material properties from partial-field measurements without the need for regularization

or any kind of direct initial solution estimate. In particular, the approach is presented in the

context of characterizing the spatial distribution of the elastic modulus (i.e., elastography)

provided with displacement response measurements over some portion of the solid domain.

The approach utilizes the Gappy proper orthogonal decomposition (POD) machine learning

technique to build a data reconstruction tool based on the available a priori solution knowl-

edge that can estimate the full-field response distribution given the available partial-field

measurements. The estimated full-field response is then applied within a direct inversion

strategy with a general finite element-type parameterization of the unknown field to produce

an initial estimate of the spatial distribution of the unknown material property over the entire

domain. Lastly, this initial estimate is refined with a gradient-based optimization strategy

using the adjoint method for computationally efficient gradient calculations to produce the

final estimate of the material property distribution.
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The following section presents the details of the inverse material characterization al-

gorithm, including (1) the adjoint formulation for efficient gradient calculation within the

gradient-based optimization approach, (2) the direct inversion algorithm to estimate the

spatial distribution of elastic modulus provided with a full-field displacement response dis-

tribution and the boundary conditions corresponding to the test method used to produce

the measurements, and (3) the Gappy POD to reconstruct a full-field response estimate from

given partial-field measurements. Then, simulated examples relating to characterization of

localized elastic modulus distributions in solids are presented to examine the capabilities

of the generalized inverse characterization approach, which is followed by the concluding

remarks.

4.3 INVERSE MATERIAL CHARACTERIZATION ALGORITHM

As discussed, although potentially applicable to a variety of different physical systems, ma-

terial properties, and testing methods, the inverse characterization approach is presented in

the specific context of characterization of the elastic modulus spatial distribution of a solid

from partial-field displacement measurements. In particular, for the following presentation,

it is assumed that some type of steady-state dynamic mechanical testing has been applied,

with the solid of interest excited to steady state at one or more excitation frequencies and

the resulting steady-state displacement amplitude measured at several locations throughout

the solid. Thus, neglecting body forces and damping, assuming displacements and strains

are small, and assuming that the system variables vary harmonically in time at angular exci-

tation frequency ω, the steady-state dynamic governing equations describing the associated

forward elasticity problem (i.e., the strong form) can be given as:

∇ · σ(~x, ω) + ω2ρ(~x)~u(~x, ω) = ~0, ∀~x ∈ Ω, (4.1)

σ(~x, ω) = CIV (~x) : ε(~x, ω), (4.2)
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ε(~x, ω) =
1

2

(
∇~u(~x, ω) + (∇~u(~x, ω))T

)
, (4.3)

σ(~x, ω) · ~n(~x) = ~T (~x, ω), ∀~x ∈ Γ~T , (4.4)

and

~u(~x, ω) = ~u0(~x, ω), ∀~x ∈ Γ~u, (4.5)

where ρ(~x) is the mass density, σ(~x, ω) is the Cauchy stress amplitude tensor, ~u(~x, ω) is the

displacement amplitude vector, Ω is the domain of the structure, ε(~x, ω) is the small strain

amplitude tensor, CIV (~x) is the 4th-order elasticity tensor, ~n(~x) is the unit outward normal

vector to the surface of the domain, ~T (~x, ω) and Γ~T are the applied traction amplitude

vector and the portion of the domain surface where this traction is applied, respectively,

and ~u0(~x, ω) and Γ~u are the applied displacement amplitude vector and the portion of the

domain surface where displacement is known, respectively. Note that the entire formulation

is applicable and easily converted to the static case by simply setting the momentum term

to zero.

The first step in setting up the optimization-based computational inverse solution pro-

cedure is to construct an appropriate objective functional. This objective functional should

somehow quantify the difference between the experimentally measured system response and

the corresponding response that is predicted by the numerical representation of the system

(i.e., solution to Eqns. (4.1)-(4.5)) given an estimate to the unknown material properties,

as (note that dependencies on ~x and ω should be inferred and were left off of the following

presentation for brevity):

f(~p) =
∥∥~u (~p)− ~uM

∥∥
ΩM , (4.6)

where, for this example, ~uM would be the experimentally measured displacement amplitudes,

~u(~p) is the numerical simulated displacement amplitudes for a given estimate to the material

parameter vector, ~p, and ‖·‖ΩM is some chosen suitable metric norm that combines the

contribution of all measurement locations and excitation frequencies to produce a scalar

measurement error. Then, all that is necessary is to apply a suitable optimization algorithm,
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to minimize the objective functional, f , with respect to the unknown material parameters,

subject to the constraint of the above boundary value problem (BVP) and any physical

bounds on the unknown parameters. There are several different gradient-based optimization

algorithms that can be (and have been in prior studies [75]) applied to minimize the objective

functional with respect to the unknown material parameters, and thereby, estimate the

inverse problem solution. For example, the standard interior point method was used for

the examples presented herein, which among other algorithmic details that can be found

in [70], uses the gradient to approximate the inverse of the Hessian with a BFGS method

[75] to update the solution estimate at each iteration. Therefore, much like many other

commonly used gradient-based optimization algorithms, the gradient is the main driver of the

optimization, and therefore, the most critical calculation within the optimization procedure.

By far the most challenging aspect (at least computationally) of calculating the gradient

of the objective functional presented above is the need to calculate the partial derivative of

the displacement response with respect to the material parameters (~p), with the relationship

between those two quantities being defined by the above BVP. As such, to maintain com-

putational efficiency, the present work used the adjoint method for the gradient calculation

[63]. The adjoint method requires only two numerical solutions of BVPs to calculate the

necessary gradient, the given BVP and a corresponding adjoint BVP, with both having the

same approximate computational expense. Therefore, the adjoint method represents a sub-

stantial computational savings in comparison to alternate methods, such as finite difference

methods, which require at least N + 1 BVP solutions, or direct differentiation of the BVP,

which requires N BVP solutions, where N is the number of unknown parameters in the

optimization problem [46]. Particularly for generalized (e.g., finite element-type) parameter-

izations of the unknown property with large numbers of parameters to be determined, the

adjoint method, or something similar, is a necessity for practical applicability.

In brief (see the provided references for additional details), the adjoint method for the

type of elastography problem considered here begins by constructing a Lagrangian of the

form:

L (~u (~p) , ~γ, ~p) = f(~p) + a (~u(~p), ~γ; ~p)−
(
~T ,~γ

)
, (4.7)

108



such that:
dL
d~p

=
df

d~p
=
∂L
∂~p

+
∂L
∂~u

∂~u

∂~p
, (4.8)

where,

a(~u(~p), ~γ) =

∫
Ω

1

2

(
∇~γ + (∇~γ)T

)
: CIV (~p) :

1

2

(
∇~u(~p) + (∇~u(~p))T

)
d~x

−
∫

Ω

ρω2~γ · ~u(~p)d~x,

(4.9)

(
~T ,~γ

)
=

∫
Γ~T

~γ · ~T d~x, (4.10)

and ~γ is a Lagrange multiplier. To avoid the previously mentioned computationally expensive

component, without loss of generality, the multiplying term in the Lagrangian gradient

expansion can be set to zero to produce the adjoint BVP of the form:

∇ ·
(
CIV (~p) :

1

2

(
∇~γ (~p) + (∇~γ (~p))T

))
+ ω2ρ~γ (~p) = ~0, ∀~x ∈ Ω, (4.11)

CIV (~p) :
1

2

(
∇~γ (~p) + (∇~γ (~p))T

)
=

df

d~u (~p)
, ∀~x ∈ Γ~T , (4.12)

and

~γ (~p) = ~0, ∀~x ∈ Γ~u. (4.13)

Finally, using the solution of the original BVP (~u from Eqns. (4.1)-(4.5)) and the solution

of the adjoint BVP (~γ from Eqns. (4.11)-(4.13)) for a given set of material parameters, the

gradient of the objective functional for those material parameters can be calculated as:

dL
d~p

=
∂L
∂~p

=
∂a (~u,~γ; ~p)

∂~p
. (4.14)

As discussed in the Introduction, providing a sufficiently accurate initial guess for the

unknown material parameters is critical to ensuring an accurate final solution estimate using

the computational inverse characterization procedure with gradient-based optimization. The

importance of this initial guess is even further heightened when applying a generalized pa-

rameterization of the unknown field and when not using any kind of solution regularization

(as is the case in the above presentation). To overcome this challenge/limitation, the present

work uniquely uses a direct inversion strategy to estimate an initial guess for the unknown

material property distribution, which is detailed in the following.
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4.3.1 Direct Inversion for Material Property Distribution Estimation

Note that the following direct inversion formulation assumes that a complete displacement

response field is available or has been approximated from the response measured with the

given testing method. Then, the first step in the inverse solution formulation to estimate

the spatial distribution of the elastic modulus of a solid is to separate the elastic modulus

(E(~x)) from the elasticity matrix [D] (i.e., the Voigt notation version of CIV ) as:

[D] = [DI ]E(~x), (4.15)

where [DI ] is now only a function of Poisson’s ratio (ν). Applying the same general Galerkin

weak form procedure as is typically done for the forward BVP [59] to approximate displace-

ment, but now to approximate the elastic modulus, the inverse problem weak form for the

steady-state dynamic boundary value problem can be written as:∫
Ω

{∇δ ~E(~x)}T{σI(~x, ω)}E(~x) d~x =

∫
Ω

ρ(~x)ω2δ ~E(~x) · ~u(~x, ω) d~x+∫
Γ~T

δ ~E(~x) · ~T (~x, ω) d~x,
(4.16)

where

{σI(~x, ω)} = [DI ]{ε(~x, ω)}, (4.17)

{ε(~x, ω)} is the Voigt notation version of the small strain amplitude tensor, δ ~E(~x) is the

virtual elastic modulus vector (matching the dimension of the displacement field, and there-

fore, the number of equilibrium equations, even though the modulus itself is a scalar), and

{∇δ ~E(~x)} is the corresponding gradient in Voigt notation.

Applying standard procedures of the finite element method to discretize the domain into

finite elements to represent the elastic modulus as well as the displacement (assuming that

the given full-field displacement response has been discretized as such), and again using

Voigt notation where applicable, the elastic modulus, the virtual elastic modulus vector, the

displacement vector, and their corresponding gradients can be approximated as:

E(~x) ≈ [NE(~x)]{Ee}, (4.18)
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δ ~E(~x) ≈ [Nδ ~E(~x)]{δ ~Ee}, (4.19)

~u(~x, ω) ≈ [N~u(~x)]{~ue(ω)}, (4.20)

{∇E(~x)} ≈ [BE(~x)]{Ee}, (4.21)

{∇δ ~E(~x)} ≈ [Bδ ~E(~x)]{δ ~Ee}, (4.22)

and

{ε(~x, ω)} ≈ [B~u(~x)]{~ue(ω)}, (4.23)

where [NE(~x)] is the matrix of shape functions for elastic modulus interpolation, [Nδ ~E(~x)] is

the expanded version (to match the dimensions of the displacement) of the matrix of shape

functions for elastic modulus interpolation, [N~u(~x)] is the standard matrix of shape functions

for displacement interpolation, and [BE(~x)], [Bδ ~E(~x)], and [B~u(~x)] are the respective matrices

of these shape function spatial derivatives. Substituting the discretization (Eqns. (4.18)-

(4.23)) into Eqn. (4.16), eliminating the arbitrary virtual elastic modulus field vector, and

assembling individual element contributions, the final finite element equations for the direct

inversion elastography problem can be depicted as:

[KI ]{E} = {PI}+ [MI ]{u}, (4.24)

where

[KI ] =
∑

element

∫
Ωe

[Bδ ~E(~x)]T [DI ][B~u(~x)]{~ue}[NE(~x)] d~x, (4.25)

[MI ] =
∑

element

∫
Ωe

ρ(~x)ω2[Nδ ~E(~x)]T [N~u(~x)] d~x, (4.26)

and

{PI} =
∑

element

∫
Γe

~T

[Nδ ~E(~x)]T ~T (~x, ω) d~x. (4.27)

Since [KI ] is typically non-square and Eqn. (4.24) is typically an overdetermined system

(e.g., [KI ] has dimensions 3N × N , where N is the number of nodes in the mesh if the
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same mesh is used for both displacement and elastic modulus), the elastic modulus cannot

be estimated by simply inverting [KI ]. Thus, as is common, a least-squares approach was

used here to solve Eqn. (4.24) for {E}. As such, the nodal values of elastic modulus can be

determined as:

{E} =
(
[KI ]

T [KI ]
)−1

[KI ]
T ({PI}+ [MI ]{u}) . (4.28)

One final important point is that it is necessary to invalidate the equations corresponding to

the essential boundary conditions in the forward BVP prior to the solution of Eqn. (4.28).

Eliminating these equations is a common approach that is necessary to obtain a well-behaved

solution to the direct inversion problem. Thus, prior to solving Eqn. (4.28) the rows in Eqn.

(4.24) corresponding to nodes where essential boundary conditions are present are set to

zero, such that:

[KI ][i, :] = 0, if ~xi ∈ Γ~u, for i = 1, 2, ..., N, (4.29)

[MI ]{u}[i] = 0, if ~xi ∈ Γ~u, for i = 1, 2, ..., N, (4.30)

and

{PI}[i] = 0, if ~xi ∈ Γ~u, for i = 1, 2, ..., N. (4.31)

Again note that the above formulation requires the complete displacement response field

to be available, yet the intention of the overall inverse characterization procedure presented

herein is to be capable of utilizing only partial-field response measurements. As such, it is

necessary to have a means to estimate the full-field response from partial-field measurements

to use this direct inversion strategy. To address this need the following presents a machine

learning approach to create a tool based on information available a priori regarding the

expected nature of the full-field response distribution that can estimate a full-field response

from partial-field measurements.

4.3.2 Gappy Proper Orthogonal Decomposition

Gappy POD is an extension of the traditional POD approach that was first developed and

presented by Everson and Sirovich [19] for the purpose of filling in missing information to
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reconstruct marred photos. Subsequently, Gappy POD has shown substantial capabilities

to accurately reconstruct physical processes from partial-field measurement data, especially

for fluid flow problems [69, 67, 74, 78, 64].

The Gappy POD process begins with the standard POD method. Given a set of n

fields (referred to as “snapshots”), {~uk (~x)}nk=1, POD can be interpreted as an approach

to determine the set of m orthogonal basis functions (i.e., modes),
{
~φi(~x)

}m
i=1

, that are

optimal in the average L2-error sense for representing each given field and, if the given fields

are representative, any similar field as:

~u (~x) ≈ ~u∗ (~x) =
m∑
i=1

ai~φi (~x) , (4.32)

where ai is the modal coefficient corresponding to the ithe mode (~φi(~x)). Then, the POD

optimization problem to define these modes can be written as:

Minimize
{~φi(~x)}m

i=1

〈
‖~u(~x)− ~u∗(~x)‖2

L2(Ω)

〉
, (4.33)

where

〈~u〉 =
1

n

n∑
k=1

~uk, (4.34)

and ~u∗ is the best approximation of the snapshots from the modes (i.e., the projection of each

snapshot onto the modes). Based on this optimization problem and applying the method

of snapshots (see [2] for additional details), a maximum of n POD modes can be calculated

through the solution of the following eigenvalue problem:

1

n

n∑
k=1

AjkCk = λCj, (4.35)

where

Ajk =

∫
Ω

~uj (~x) · ~uk (~x) d~x, (4.36)

and then the ith mode is given as:

~φi (~x) =
1

λ(i)n

n∑
k=1

~uk (~x)C
(i)
k . (4.37)
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Gappy POD diverges from standard POD in how the modes are utilized. If the full

spatial distribution of a field is available, the modal coefficients (ai) needed to reconstruct

that field with the POD modes can be easily obtained by projecting the modes onto the field

as:

ai =

∫
Ω

~u (~x) · ~φi (~x) d~x. (4.38)

Alternatively, the objective of Gappy POD is to provide a means to reconstruct the full spa-

tial distribution of a field using the POD modes, but with only a partial spatial distribution

of the field given. Defining ~̂u (~x) as the given partial distribution of the field of interest such

that ~̂u (~x) is (incorrectly) 0 anywhere data is unavailable, then ~̂u (~x) can be expressed in

terms of the corresponding, but unknown, full spatial distribution as:

~̂u (~x) = β (~x, ~u) ~u (~x) , (4.39)

where β (~x, ~u) is a mask function that is defined as 0 where data is unavailable and 1 where

data is available. Assuming that the full spatial distribution can be approximated with the

POD modes as defined in Eqn. (4.32), an approximation of ~̂u (~x) can be written in terms of

the POD modes as:

~̂u∗ (~x) = β (~x, ~u)
m∑
i=1

ai~φi (~x) . (4.40)

Then, based upon a least-squares criteria, the optimal set of modal coefficients to reconstruct

the full spatial distribution of the field can be defined as that which minimizes an error

function of the form:

ε =

∫
Ω

[
β (~x, ~u) ~u (~x)− β (~x, ~u)

m∑
i=1

ai~φi(~x)

]2

d~x. (4.41)

Applying the necessary condition for extrema of a function by setting the derivative of

the error function with respect to the modal coefficients to zero, the optimal set of modal

coefficients, {a}, to reconstruct the full spatial distribution of the field can be determined

from the solution of:

[M ]{a} = {f}, (4.42)

where

Mij =

∫
Ω

β (~x, ~u) ~φi(~x) · ~φj(~x) d~x. (4.43)
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and

fi =

∫
Ω

β (~x, ~u) ~u(~x) · ~φi(~x) d~x. (4.44)

A last important implementation aspect for this Gappy POD approach is that only a portion

(m << n) of the set of modes that can be obtained with POD are typically necessary to

be retained for further use in the full-field estimation process. As the associated eigenvalues

from the solution of Eqn. (3.3) relate to the value of each mode for the representation of the

given dataset, typically some heuristic is used based on the relative sum of the associated

eigenvalues to determine the modes to retain for further use [67, 74].

One additional note is that the Gappy POD approach can also act as somewhat of a noise

filter during the reconstruction process, thereby providing an added benefit of reducing the

effects of measurement noise on the subsequent direct inversion solution procedure. Howev-

er, any reconstructed full-field response is still only an approximation of the true full-field

response, with the accuracy of the response estimation and direct inversion solution estimate

significantly dependent upon the amount of measurement data (higher accuracy with more

data).

4.4 EXAMPLES AND DISCUSSION

Two sets of numerically simulated inverse characterization problems were considered to e-

valuate the potential benefits and capabilities of the gradient-based optimization approach

initialized with direct inversion from Gappy POD response approximation. Both example

sets involved characterization of an elastic modulus distribution with localized inclusions

(hard or soft) in plate structures from partial-field response measurements. Furthermore,

both inverse characterization problems were based upon some type of simulated nondestruc-

tive testing (dynamic or static) in the linear range of the solid behavior (such that the

governing equations shown in Section 4.3 apply), with an actuation force applied uniformly

to the top surface, the bottom surface fixed, and with the horizontal and vertical displace-

ment response to the loading measured at 10 uniformly spaced discrete locations on both
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Figure 4.1: Schematic for the numerically simulated examples representing characterization

of an elastic modulus distribution with an inclusion based on mechanical testing involving

the excitation and measurement points shown.

the left and right surfaces. Fig. 4.1 shows a schematic of the example cases, including the

boundary conditions and sensor locations.

The “experimental” nondestructive test measurements were simulated using the standard

finite element method. In addition, both examples used the plane stress assumption to reduce

the computational expense. To add realism to the simulated experiments, for all trials 1%

Gaussian white noise was also added to the simulated measurements as:

uexpn = uexp (1 + 0.01υ) , (4.45)

where uexpn and uexp are the simulated experimental displacement measurements with noise

and without noise, respectively, and υ is a normally distributed random variable with unit

variance and zero mean. Note that testing (not shown here for brevity) showed a significant

tradeoff between the level of noise and the amount of measurement information in terms

of the final solution accuracy. The testing showed that the more measurement information
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(i.e., the more sensor locations) the more tolerant the inverse solution procedure would be

to measurement noise.

It was assumed that a priori knowledge would be available that the elastic modulus dis-

tributions to be characterized in the examples would be localized (e.g., as could be expected

in applications of damage characterization of civil structures [45] or tumor characterization

of biological structures [48]). As such, the snapshot response fields used for the Gappy POD

procedure were generated using a Gaussian radial basis function (RBF) representation of

the elastic modulus (see [14, 1, 13] for other similar works utilizing a RBF representation to

define localized elastic modulus variations), as:

E(~x) = E0

[
1 + α · exp

(
−(~x− ~c)2

r2

)]
, (4.46)

where E0 is the elastic modulus of the matrix material, α is the relative change in elastic

modulus at the inclusion center, ~c, is the location of the inclusion center, and r is the breadth

of the inclusion. Note, as will be shown in the following example cases, although snapshots

were generated based upon single circular inclusion cases (defined by Eqn. (4.46)), the

approach presented is capable of being applied to substantially more complicated cases (e.g.,

multiple inclusions and/or irregularly shaped inclusions).

The finite element method was again used to generate all snapshots for the POD process.

In addition, the criteria used to determine the number of modes (m) out of the total number

available (n) to use for data reconstruction with Gappy POD was to select the mode with

the highest associated eigenvalue (λ in Eqn. 4.35) as well as the minimum number of the

remaining modes, such that: ∑m
j=2 λ

(j)∑n
i=2 λ

(i)
× 100% > 99.9% (4.47)

This criteria was determined to be sufficient to ensure that enough modes were retained

from POD for Gappy POD to produce accurate reconstructions, while excluding the modes

associated with low eigenvalues that can often cause the matrix [M ] in Eqn. (4.42) to be

ill-conditioned.
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The specific objective function used for the gradient-based optimization procedure to

estimate the inverse solutions in both examples was the square of the l2-error as:

f(~p) = ‖~u (~p)− ~uexpn‖2
l2
, (4.48)

In addition, the same finite element-type parameterization of the unknown elastic modulus

distribution was utilized for both the direct inversion and subsequent gradient-based opti-

mization processes (note that all meshes, including both the forward and inverse problems,

were verified to be sufficiently refined for accurately analyzing all potential system responses

and material property distributions). As noted previously, the interior point optimization

method [70] was the specific gradient-based optimization algorithm chosen, with the adjoint

method utilized to calculate the necessary gradient at each iteration, to minimize the asso-

ciated objective function and estimate the solution to the example inverse characterization

problems. The scientific analysis software MATLAB [? ] was used to implement the interior

point method, largely with default settings, including calculation of the Hessian with a dense

quasi-Newton approximation in which both Newton steps and conjugate gradient steps were

both allowed at each iteration. For all cases, the stopping criteria was set to 50 iterations,

which was sufficient for convergence.

4.4.1 Example 1: Steady-State Dynamic Test of Hard Matrix with Soft Inclu-

sions

The first example consisted of a simulated 1 m× 1 m aluminum plate. The entire material

(matrix and inclusions) was assumed to be known to have a Poisson’s ratio of 0.3 and

a density of 2700 kg/m3. The simulated steady-state dynamic test was implemented by

applying the harmonic excitation at a frequency of 20Hz and amplitude of 1 kN/m (factoring

out the arbitrary thickness) uniformly to the top surface of the plate. This particular scenario

could be relevant to applications in nondestructive evaluation of civil or aerospace structures

(e.g., characterizing damage in structural components as could be represented by a reduction

in stiffness) from frequency response-based testing.

For the process of generating the snapshots for POD, the elastic modulus of the back-

ground material (i.e., matrix material) was assumed to be fixed at 69.0 GPa. Alternatively,
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Figure 4.2: Schematic of the nine inclusion centers used separately to generate the snapshots

for POD for the numerically simulated examples.

the parameters defining the inclusion based on the RBF description were assumed to be

variable. The specific parameter values used to create the snapshots were chosen arbitrarily

by uniformly sampling the space of the four variable parameters (the two spatial coordinates,

amplitude, and breadth). Three values were chosen for each spatial coordinate of the inclu-

sion center and two values were chosen each for the amplitude and breadth of the inclusion,

and one last scenario with no inclusion (i.e., homogeneous matrix material) was added, for

a total of 37 parameter combinations used to create snapshots. Fig. 4.2 shows the nine

location combinations of the inclusion center used to generate the snapshots. The values of

the other two parameters used to create the parameter combinations were chosen based on

an expectation of what the lower and upper-end would be for the application, using −0.3

and −0.7 for the amplitude parameter α (i.e., modulus at soft inclusion center of 21 GPa

and 48 GPa) and 0.1 m and 0.3 m for the breadth parameter r. To be clear, again note

that each of elastic modulus distribution realizations used to create a snapshot contained

only one inclusion (other than the homogeneous case, which contained none). 13 out of the

37 total available POD modes were necessary to satisfy the criteria defined in Eqn. 4.47 and

were retained for the Gappy POD reconstruction process. Also note that to provide a fair

evaluation of the methods presented, none of the modulus distributions considered in the

test cases matched the modulus distributions used to generate the snapshots.
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4.4.1.1 Case 1 Results: Single Circular Inclusion First, the case of a single circular

inclusion within the simulated aluminum plate was examined. A preliminary analysis was

done to provide some direct perspective on the capability of the Gappy POD process to

estimate the full-field displacement response from the 20 measurement locations provided.

Fig. 4.3 shows a representative example of a full-field simulated response including the 1%

Gaussian white noise (i.e., the “true response”) for a randomly generated single-inclusion

elastic modulus distribution in comparison to the full-field displacement estimation from

the 20 measurements of this noisy simulated response with the Gappy POD procedure.

The relative L2 and L∞ errors over the entire domain of this displacement reconstruction

in contrast to the true displacement response are 1.8% and 5.0%, respectively. As such,

the analysis of the full-field response estimation procedure showed that the Gappy POD

approach could reconstruct such a displacement response from partial field measurements

with a relatively high level of accuracy.

Next, the complete inverse characterization procedure with Gappy POD response esti-

mation, direct inversion, and gradient-based optimization was examined. Fig. 4.4 shows

a representative example of a randomly generated single-inclusion elastic modulus distri-

bution used to simulate experimental measurements (i.e., the “target distribution”), the

corresponding elastic modulus distribution estimated by the direct inversion procedure with

Gappy POD full-field response estimation (i.e., the initial guess for the gradient based op-

timization), and the corresponding final elastic modulus distribution estimation from the

subsequent gradient-based optimization. In addition, to provide a baseline, Fig. 4.4 also

shows results from an attempt to estimate the elastic modulus distribution applying the

gradient-based optimization procedure with a homogeneous (i.e., no inclusion) elastic mod-

ulus distribution as the initial solution guess (as would be a natural selection without any

other information provided), rather than using the results of the direct inversion as the ini-

tial guess. It is clear that without the direct inversion-Gappy POD initialization procedure,

the gradient-based optimization is entirely ineffectual at providing an accurate estimation

of the inverse problem solution, not even qualitatively indicating the presence of an inclu-

sion. Alternatively, the direct inversion with Gappy POD was capable of a significantly more

accurate estimation of the elastic modulus distribution, clearly identifying the presence of
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Figure 4.3: Representative single circular inclusion example of the (a) horizontal and (b)

vertical components of a simulated experimental displacement field with 1% Gaussian white

noise and the (c) horizontal and (d) vertical components of the corresponding reconstructed

full-field displacement from Gappy POD with the partial-field measurements for the simu-

lated aluminum plate example (color contours are in units of m).
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Figure 4.4: Representative single circular inclusion example of (a) the target elastic modulus

distribution, (b) the elastic modulus distribution estimated with gradient-based optimiza-

tion initialized with a homogeneous material distribution, (c) the elastic modulus distribu-

tion estimated with the direct inversion approach with Gappy POD full-field displacement

reconstruction, and (d) the elastic modulus distribution estimated with gradient-based op-

timization initialized with the direct inversion solution for the simulated aluminum plate

example (color contours in units of Pa).
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Table 4.1: The mean and standard deviation of the relative L2 and L∞ errors with respect to

the elastic modulus distribution estimated with the direct inversion approach and the elastic

modulus distribution estimated with the gradient-based optimization approach initialized

with the direct inversion result for the five randomly generated trials with a single circular

inclusion for the simulated aluminum plate example.

Approach
Relative L2 Error Relative L∞ Error

Mean Std. Dev. Mean Std. Dev.

Direct Inversion 5.5% 1.2% 27.0% 7.4%

Gradient Optimization

with Direct Inversion
3.7% 1.1% 21.9% 7.2%

an inclusion, but still with an erroneous prediction of dispersed softening throughout the

domain. Finally, the application of the gradient-based optimization to the results of the di-

rect inversion was able to significantly “clean up” the approximation, considerably reducing

the dispersed softening in the solution estimation. Moreover, for this specific example, the

gradient-based optimization was able to improve the relative L2-error in the elastic modulus

estimation by almost a factor of two, from a value of 6.4% after the direct inversion to a

final value of 3.6%. The relative L∞-error was reduced less significantly, going from 23.5%

after direct inversion to a final value of 20.9%, but the L∞-error is a less reliable prediction

of the solution quality for localized distributions such as these, since a relatively small shift

in the prediction of the inclusion location can result in a disproportionately high L∞-error.

As a final test for this case, five trials of the inverse characterization procedure, each with

a different randomly generated single-inclusion elastic modulus distribution, were performed

to examine the consistency of the solution strategy. Table 4.1 shows the mean and standard

deviation over the five random trials of the relative L2 and L∞ errors corresponding to the

elastic modulus distributions estimated with only the direct inversion Gappy POD procedure

and with the complete approach including the subsequent gradient-based optimization.
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The results from these random trials were highly similar to the results from the represen-

tative example shown previously. The inverse procedure was consistently able to accurately

predict the elastic modulus distribution over all trials, and the gradient-based step was con-

sistently able to significantly refine the estimation in comparison to the initial guess provided

by direct inversion with a relatively small increase in computational expense when using the

adjoint method for gradient calculations.

4.4.1.2 Case 2 Results: Two Circular Inclusions The second case considered two

circular inclusions within the simulated aluminum plate, and was intended to display the

capabilities of the inverse solution procedure for predicting more complicated material prop-

erty distributions, and particularly distributions that are fundamentally different than those

used to simulate the snapshots. Furthermore, this case addresses a common inverse charac-

terization challenge in which the property distribution may be known priori to be localized,

but the number of localizations (e.g., damage regions) is unknown.

Fig. 4.5 shows a representative example of a randomly generated two-inclusion elastic

modulus distribution used to simulate experimental measurements, the corresponding ini-

tial elastic modulus distribution estimation from only the direct inversion procedure (with

relative L2 and L∞ errors of 10.1% and 33.7%), and the corresponding final elastic modulus

distribution estimation from the subsequent gradient-based optimization (with relative L2

and L∞ errors of 8.8% and 33.6%). Similarly to the previous case, Table 4.2 additionally

shows the mean and standard deviation over five randomly generated two-inclusion elastic

modulus distribution trials of the relative L2 and L∞ errors corresponding to the elastic mod-

ulus distributions estimated with only the direct inversion Gappy POD procedure and with

the complete approach including the subsequent gradient-based optimization. Although this

case represented a considerably more challenging problem than the single-inclusion case, the

inverse characterization procedure was still able to accurately estimate the elastic modulus

distributions, clearly identifying two inclusion regions in all tests, even though the snapshot

set was built only from single-inclusion scenarios. Furthermore, the gradient-based optimiza-

tion continued to successfully refine the initial approximation provided by direct inversion,

substantially reducing the erroneous dispersion seen in the initial estimates of the modulus
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Figure 4.5: Representative two circular inclusion example of (a) the target elastic modulus

distribution, (b) the elastic modulus distribution estimated with the direct inversion ap-

proach with Gappy POD full-field displacement reconstruction, and (c) the elastic modulus

distribution estimated with gradient-based optimization initialized with the direct inversion

solution for the simulated aluminum plate example (color contours in units of Pa).
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Table 4.2: The mean and standard deviation of the relative L2 and L∞ errors with respect to

the elastic modulus distribution estimated with the direct inversion approach and the elastic

modulus distribution estimated with the gradient-based optimization approach initialized

with the direct inversion result for the five randomly generated trials with two circular

inclusions for the simulated aluminum plate example.

Approach
Relative L2 Error Relative L∞ Error

Mean Std. Dev. Mean Std. Dev.

Direct Inversion 7.6% 1.4% 32.5% 6.7%

Gradient Optimization

with Direct Inversion
6.5% 1.4% 28.1% 6.5%

distributions. However, the increase in complexity did lead to a reduction in the level of

solution improvement from the gradient-based optimization, which was only able to improve

the relative L2-error of the solution estimation by approximately 10%− 15% for this case.

4.4.1.3 Case 3 Results: Single Irregular Inclusion The final case for the simulated

aluminum plate example explored the potential complexity of the material property distribu-

tion further by considering the presence of an irregularly shaped (i.e., non-circular) inclusion

within the domain. Again, Fig. 4.6 shows a representative example of an elastic modulus

distribution with a randomly selected irregularly shaped inclusion used to simulate experi-

mental measurements, the corresponding initial elastic modulus distribution estimation from

only the direct inversion procedure, and the corresponding final elastic modulus distribution

estimation from the subsequent gradient-based optimization. Similar to the two inclusion

case, the inverse characterization procedure was still able to predict an accurate final es-

timate to the elastic modulus distribution, even though the full-field response estimation

toolset was built only from scenarios with perfectly circular inclusions and the target was

irregular. However, in contrast to the two inclusion case, the gradient-based optimization
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Figure 4.6: Representative irregular inclusion example of (a) the target elastic modulus dis-

tribution, (b) the elastic modulus distribution estimated with the direct inversion approach

with Gappy POD full-field displacement reconstruction, and (c) the elastic modulus distribu-

tion estimated with gradient-based optimization initialized with the direct inversion solution

for the simulated aluminum plate example (color contours in units of Pa).
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step in the process led to a more substantial improvement in the inverse solution accuracy

(closer to that of the single-inclusion case). In qualitative terms, the direct inversion solution

appears to indicate the presence of two relatively circular inclusions in the modulus distri-

bution, while the gradient-based refinement correctly resolves only one irregularly shaped

inclusion. Moreover, the relative L2 and L∞ errors over the domain for the elastic modulus

estimation respectively improved from 8.2% and 47.1% for the initial direct inversion esti-

mation to 5.8% and 36.3% following gradient based optimization (i.e., an improvement in

the relative L2-error of approximately 30% and an improvement in the relative L∞-error of

approximately 23%).

4.4.2 Example 2: Static Test of Soft Matrix with a Hard Inclusion

To explore a different physical system and potential application, the final example consisted

of a simulated 50 mm × 50 mm tissue block. The entire material (matrix and inclusion)

was assumed to be known to be nearly incompressible with a Poisson’s ratio of 0.49999.

For this example the simulated test was assumed to be static, with a 0.2 N/mm (factoring

out the arbitrary thickness) excitation applied uniformly to the top surface of the tissue

block. Note that the only difference in the formulation presented herein to convert to static

rather than steady-state dynamic is that the momentum terms are set to zero. This second

example scenario was intended to relate to potential applications of tissue characterization

(e.g., tumor characterization) from (quasi-) static mechanical testing [22, 48].

Overall, the POD snapshot generation process was almost identical to the previous sim-

ulated aluminum plate example. Again, 37 parameter combinations were used to create the

snapshots, and the same nine location combinations of a single circular RBF inclusion center

were used as the first example (Fig. 4.2). Alternatively, the elastic modulus of the matrix

(i.e., healthy) material was assumed to be fixed at 15 kPa, which was based on normal

glandular breast tissue [81, 51]. The two values of the amplitude parameter used were 1 and

3 (i.e., modulus at the hard inclusion center of approximately 30 kPa and 60 kPa), and the

two values of the breadth parameter used were 5 mm and 15 mm. Note that, as before,

each snapshot material property distribution other than the homogeneous case contained
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only one inclusion. 15 out of the 37 total available POD modes were necessary to satisfy the

criteria defined in Eqn. 4.47 and were retained for the Gappy POD reconstruction process.

4.4.2.1 Results: Single Irregular Inclusion One case involving a single irregularly

shaped inclusion was considered for the final simulated experiment with the statically tested

tissue block. Fig. 4.7 shows a representative example of an elastic modulus distribution

with a randomly selected irregularly shaped inclusion used to simulate experimental mea-

surements, the corresponding initial elastic modulus distribution estimation from only the

direct inversion procedure (with relative L2 and L∞ errors of 21.8% and 53.5%), and the cor-

responding final elastic modulus distribution estimation from the subsequent gradient-based

optimization(with relative L2 and L∞ errors of 17.8% and 38.6%). Although a different

mechanical testing method was considered and the properties of the system examined were

substantially different, the inverse characterization results for this tissue block example were

consistent with those shown for the aluminum plate example. The initial direct inversion

estimation approximated the location of the inclusion relatively well, but the distribution

and magnitude had significant error. Moreover, similarly to the prior test case with an irreg-

ular inclusion, although less dramatic, the initial direct inversion results appear to estimate

two inclusions. The gradient-based optimization was then able to substantially improve the

estimation of the elastic modulus distribution, and indicating a single irregularly shaped

inclusion. One possible explanation for the slight increase in the overall solution error for

this case compared to the prior test case could be the increase in the range of the elastic

modulus magnitude for this tissue example. Yet, the final estimate of the elastic modulus

distribution is still clearly a qualitatively accurate estimate of the location, size, and shape of

the hard inclusion, which was produced at the relatively small computational cost of no more

than approximately 100 finite element analyses (neglecting the one-time cost of creating the

POD modes) without the need to provide a specific initial guess for the inverse solution or

complicated regularization in the optimization procedure.
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Figure 4.7: Representative irregular inclusion example of (a) the target elastic modulus dis-

tribution, (b) the elastic modulus distribution estimated with the direct inversion approach

with Gappy POD full-field displacement reconstruction, and (c) the elastic modulus distribu-

tion estimated with gradient-based optimization initialized with the direct inversion solution

for the simulated tissue block example (color contours in units of Pa).
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4.5 CONCLUSIONS

A gradient-based optimization approach for computationally efficient inverse material char-

acterization from partial-field system response measurements capable of using a generally

applicable parameterization (e.g., finite element-type parameterization) was presented and

analyzed. The approach first builds a Gappy POD machine learning tool for full-field re-

sponse estimation from the partial-field measurements using available a priori information

regarding the potential unknown material property distribution. Then, a physics-based di-

rect inversion approach with a finite element-type parameterization uses the Gappy POD

estimated full-field response to produce a first estimate of the spatial distribution of the

unknown material property. Lastly, the direct inversion results of the material property

distribution are further refined with a gradient-based optimization strategy, which uses the

adjoint method to calculate the gradients efficiently, to produce the final estimate of the

material property distribution. Through numerically simulated example inverse problems

based on the characterization of elastic modulus distributions with localized variations in

simple structures, the inverse characterization approach was shown to efficiently estimate

spatial distributions of the elastic modulus with relatively high solution accuracy from limit-

ed partial-field displacement response measurements. Furthermore, the final gradient-based

optimization component was shown to be a necessary step in the characterization procedure

to provide substantial and physically significant improvement in the inverse solution estima-

tion in comparison to the direct inversion estimate alone. In addition, the complete inverse

characterization approach was shown to have the capability to accurately predict material

property distributions that are significantly more complicated, and particularly those that

are potentially fundamentally different than the assumed material property distributions

used to create the Gappy POD component. For instance, the examples presented generat-

ed the Gappy POD response estimation tool assuming elastic modulus distributions with a

single perfectly circular inclusion. Yet, the inverse characterization approach was then ca-

pable of estimating elastic modulus fields with multiple inclusions and inclusions that were

irregularly shaped.
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5.0 CURRENT CAPABILITIES AND FUTURE DIRECTIONS

Computational inverse solution strategies consisting of compact parameterization approach-

es and hybrid compact-generalized (i.e., mesh-based) parameterization approaches have been

developed and validated for the characterization of localized variations of material proper-

ties in solids and structures. The proposed solution strategies are proven to be efficient

and accurate to characterize the localized variations of material properties through various

numerical and experimental examples according to different applications, such as crack iden-

tification and elasticity imaging. For the compact parameterization approaches, a strategy

using multi-objective optimization for inverse characterization of material loss (i.e., cracks or

erosion) in structural components was presented first. For this first component, the assump-

tion is made that sufficient a priori information is available to restrict the parameterization

of the unknown field to a known number and shape of material loss regions (i.e., the inverse

problem is only required to identify size and location of these regions). Through simulated

test problems of damage characterization, the multi-objective optimization approach was

shown to provide increased solution estimate diversity during the search process, which re-

sults in a substantial improvement in the capabilities to traverse the optimization search

space to minimize the measurement error and produce accurate damage size and location

estimates in comparison with analogous single objective optimization approaches. An exten-

sion of this multi-objective approach was then presented that addresses problems for which

the quantity of localized changes in properties is unknown. Thus, a self-evolving parameter-

ization algorithm was presented that utilizes the substantial diversity in the Pareto front of

potential solutions provided by the multi-objective optimization approach to build up the

parameterization iteratively with an ad hoc clustering algorithm, and thereby determine the

quantity, size, and location of localized changes in properties with minimal computational
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expense. Similarly as before, through simulated test problems based on characterization of

damage within plates, the solution strategy with self-evolving parameterization was shown

to provide an accurate and efficient process for the solution of inverse characterization of

localized property changes.

For hybrid compact-generalized parameterization approaches, the nature (i.e., shape) of

the property variation is no longer assumed to be known as precisely a priori, while still

some amount of the knowledge that the solution is localized in nature is used to balance

computational cost induced by the the generalized (mesh-based) parameterization. The ini-

tial approach established combines a machine learning data reconstruction strategy known

as Gappy proper orthogonal decomposition (POD) with a least-squares direct inversion ap-

proach to estimate material stiffness distributions in solids (i.e., to solve elastography prob-

lems). The direct inversion approach uses a generalized mesh-based parameterization of

the unknown field, but full-field response measurements (i.e., measurements everywhere in

the solid) are required, which are not available for most practical inverse characterization

problems. Therefore, the gappy POD technique first identifies the pattern of potential re-

sponse fields of the solid through a collection of a priori forward numerical analyses of the

solid response with a specified compact parameterization and a corresponding collection of

arbitrarily generated parameter sets. Once the pattern is identified, the gappy POD tech-

nique is able to use the available partial-field measurement data to estimate the full-field

response of the solid to be used by the direct inversion. Through simulated test problems

relating to characterization of inclusions in solids, the direct inversion approach with gappy

POD was shown to provide highly efficient and relatively accurate inverse characterization

results for the prediction of Young’s modulus distributions from partial-field measurement

data. This direct inversion approach was further validated through an example problem

regarding characterization of the layered stiffness properties of an engineered vessel from

ultrasound measurements. Lastly, an extension of this hybrid approach was presented that

uses the characterization results provided by the previous direct inversion approach as the

initial estimate for a gradient-based optimization process to further refine/improve the in-

verse solution estimate. In addition, the adjoint method is used to calculate the gradient for

the optimization process with minimal computational expense to maintain the overall com-
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putational efficiency of the inverse solution process. Again, through simulated test problems

based on the characterization of localized, but arbitrarily shaped, inclusions within solids,

the three-step (gappy POD - direct inversion - gradient-based optimization) inverse charac-

terization approach was shown to efficiently provide accurate and relatively unique inverse

characterization estimates for various types of inclusions regardless of inclusion geometry

and quantity.

For future directions of inverse characterization of material properties variation, two

important issues are necessary to be considered further. First, more accurate numerical

modeling should be established considering different physical problems. For instance, the

extended finite element method is well suited for modeling crack problems; for tissue charac-

terization, viscoelastic constitutive models should be considered for higher fidelity modeling.

In addition, the uncertainty of boundary conditions is usually necessary to be considered,

especially for biological tissue modeling in vivo. Secondly, inclusions with more complex

geometry or distributions should be considered and quantified. Parameterization with the

assistance of cubic splines has been shown to be capable of identifying arbitrarily shaped

inclusion, although a priori information of inclusion quantity is still assumed. Mesh-based

parameterization also has shown great potential and capability to characterize any type of

material property variation, however the optimization algorithm is a great challenge due to

the large dimensionality of parameterization. Thus, it is important to optimize the sensor

placement to obtain more sensitive measurement information towards better inverse solu-

tions. Moreover, adaptive parameterization refinement can be used to evolve the accuracy

of the inverse solutions for characterization from coarse to fine. In addition, mesh-based

parameterization can also be developed as an efficient and useful technique for fast inclusion

localization and identification, which has the similar benefit as the topological derivative or

source sensitive approaches. After the inclusion is localized, compact paramterization with

small dimensionality can be employed to obtain more accurate characterization solutions.

134



BIBLIOGRAPHY

[1] M.A. Aguilo, W. Aquino, J.C. Brigham, and M. Fatemi. An inverse problem approach
for elasticity imaging through vibroacoustics. Medical Imaging, IEEE Transactions on,
29(4):1012–1021, 2010.

[2] W Aquino, JC Brigham, CJ Earls, and N Sukumar. Generalized finite element method
using proper orthogonal decomposition. International Journal for Numerical Methods
in Engineering, 79(7):887–906, 2009.

[3] JV Araujo dos Santos, Mota Soares, CA Mota Soares, and NMM Maia. Structural
damage identification in laminated structures using frf data. Composite Structures,
67(2):239–249, 2005.

[4] Biswanath Banerjee, Timothy F Walsh, Wilkins Aquino, and Marc Bonnet. Large scale
parameter estimation problems in frequency-domain elastodynamics using an error in
constitutive equation functional. Computer methods in applied mechanics and engineer-
ing, 253:60–72, 2013.

[5] Paul E Barbone and Jeffrey C Bamber. Quantitative elasticity imaging: what can and
cannot be inferred from strain images. Physics in Medicine and Biology, 47(12):2147,
2002.

[6] A. Benhamena, L. Aminallah, B. Bachir Bouiadjra, M. Benguediab, A. Amrouche, and
N. Benseddiq. J integral solution for semi-elliptical surface crack in high density poly-
ethylene pipe under bending. Materials and Design, 32(5):2561 – 2569, 2011.

[7] Marc Bonnet and Bojan B. Guzina. Sounding of finite solid bodies by way of topological
derivative. International Journal for Numerical Methods in Engineering, 61(13):2344–
2373, 2004.

[8] J. C. Brigham, W. Aquino, F. G. Mitri, J. F. Greenleaf, and M. Fatemi. Inverse estima-
tion of viscoelastic material properties for solids immersed in fluids using vibroacoustic
techniques. Journal of Applied Physics, 101(2):023509 –023509–14, jan 2007.

[9] John C. Brigham and Wilkins Aquino. Surrogate-model accelerated random search
algorithm for global optimization with applications to inverse material identification.

135



Computer Methods in Applied Mechanics and Engineering, 196(45C48):4561 – 4576,
2007.

[10] John C. Brigham and Wilkins Aquino. Inverse viscoelastic material characterization
using pod reduced-order modeling in acousticcstructure interaction. Computer Methods
in Applied Mechanics and Engineering, 198(9C12):893 – 903, 2009.

[11] E. Peter Carden and Paul Fanning. Vibration based condition monitoring: A review.
Structural Health Monitoring, 3(4):355–377, 2004.

[12] Konstantinos Christodoulou, Evaggelos Ntotsios, Costas Papadimitriou, and Panagiotis
Panetsos. Structural model updating and prediction variability using pareto optimal
models. Computer Methods in Applied Mechanics and Engineering, 198(1):138 – 149,
2008.

[13] C Compas, E Wong, Xiaojie Huang, Smita Sampath, B Lin, X Papademetris, D Dione,
A Sinusas, M O’Donnell, and J Duncan. Radial basis functions for combining shape
and speckle tracking in 4d echocardiography. 2014.

[14] M Contreras, S Nagarajaiah, and S Narasimhan. Real time detection of stiffness change
using a radial basis function augmented observer formulation. Smart Materials and
Structures, 20(3):035013, 2011.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182
–197, apr 2002.

[16] Kalyanmoy Deb. Multi-objective optimization. Multi-objective optimization using evo-
lutionary algorithms, pages 13–46, 2001.

[17] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and eli-
tist multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Trans-
actions on, 6(2):182–197, 2002.

[18] Debaditya Dutta, Kee-Won Lee, Robert A Allen, Yadong Wang, John C Brigham,
and Kang Kim. Non-invasive assessment of elastic modulus of arterial constructs dur-
ing cell culture using ultrasound elasticity imaging. Ultrasound in medicine & biology,
39(11):2103–2115, 2013.

[19] R. Everson and L. Sirovich. Karhunencloeve procedure for gappy data. J. Opt. Soc.
Am. A, 12(8):1657–1664, Aug 1995.

[20] Gonzalo R Feijoo. A new method in inverse scattering based on the topological deriva-
tive. Inverse Problems, 20(6), 2004.

[21] Victor Giurgiutiu, Andrei Zagrai, and Jingjing Bao. Damage Identification in Aging Air-
craft Structures with Piezoelectric Wafer Active Sensors. Journal of intelligent Material
Systems and Structures, 15:673–687, 2004.

136



[22] Sevan Goenezen, Paul Barbone, and Assad A. Oberai. Solution of the nonlinear elas-
ticity imaging inverse problem: The incompressible case. Computer Methods in Applied
Mechanics and Engineering, 200(13C16):1406 – 1420, 2011.

[23] Nachiket H Gokhale, Paul E Barbone, and Assad A Oberai. Solution of the non-
linear elasticity imaging inverse problem: the compressible case. Inverse Problems,
24(4):045010, 2008.

[24] H.Y. Guo and Z.L. Li. A two-stage method to identify structural damage sites and ex-
tents by using evidence theory and micro-search genetic algorithm. Mechanical Systems
and Signal Processing, 23(3):769 – 782, 2009.

[25] B. B. Guzina and M. Bonnet. Topological derivative for the inverse scattering of elastic
waves. The Quarterly Journal of Mechanics and Applied Mathematics, 57(2):161–179,
2004.

[26] Bojan B Guzina and Marc Bonnet. Topological derivative for the inverse scattering of
elastic waves. The Quarterly Journal of Mechanics and Applied Mathematics, 57(2):161–
179, 2004.

[27] Yiannis Haralampidis, Costas Papadimitriou, and Maria Pavlidou. Multi-objective
framework for structural model identification. Earthquake Engineering and Structural
Dynamics, 34(6):665–685, 2005.

[28] K. C. Hari, M. Nabi, and S. V. Kulkarni. Improved fem model for defect-shape con-
struction from mfl signal by using genetic algorithm. IET Science, Measurement and
Technology, 1(4):196 – 200, 2007.

[29] Bijaya Jaishi and Wei-Xin Ren. Finite element model updating based on eigenvalue and
strain energy residuals using multiobjective optimisation technique. Mechanical Systems
and Signal Processing, 21(5):2295 – 2317, 2007.

[30] W.Y. Jeong, C.J. Earls, W.D. Philpot, and A.T. Zehnder. Inverse thermographic char-
acterization of optically unresolvable through cracks in thin metal plates. Mechanical
Systems and Signal Processing, 27(0):634 – 650, 2012.

[31] Tracy S. Gendron John P. Slade. Flow accelerated corrosion and cracking of carbon steel
piping in primary water - operating experience at the point lepreau generating station.
2005.

[32] Sungmoon Jung, Seung-Yong Ok, and Junho Song. Robust structural damage iden-
tification based on multi-objective optimization. International Journal for Numerical
Methods in Engineering, 81(6):786–804, 2010.

[33] J.M. Ko, Z.G. Sun, and Y.Q. Ni. Multi-stage identification scheme for detecting damage
in cable-stayed kap shui mun bridge. Engineering Structures, 24(7):857 – 868, 2002.

137



[34] B. Kouchmeshky, W. Aquino, and Adam E. Billek. Structural damage identification
using co-evolution and frequency response functions. Structural Control and Health
Monitoring, 15(2):162–182, 2008.

[35] B. Kouchmeshky, W. Aquino, J. C. Bongard, and H. Lipson. Co-evolutionary algo-
rithm for structural damage identification using minimal physical testing. International
Journal for Numerical Methods in Engineering, 69(5):1085–1107, 2007.

[36] Yue Li, L. Udpa, and S.S. Udpa. Three-dimensional defect reconstruction from eddy-
current nde signals using a genetic local search algorithm. Magnetics, IEEE Transactions
on, 40(2):410 – 417, march 2004.

[37] Yue Li, L. Udpa, and S.S. Udpa. Three-dimensional defect reconstruction from eddy-
current nde signals using a genetic local search algorithm. Magnetics, IEEE Transactions
on, 40(2):410 – 417, march 2004.

[38] Shaw-Wen Liu, Jin H Huang, Jen-Chun Sung, and CC Lee. Detection of cracks using
neural networks and computational mechanics. Computer Methods in Applied Mechanics
and Engineering, 191(25):2831–2845, 2002.

[39] N.M.M. Maia, J.M.M. Silva, E.A.M. Almas, and R.P.C. Sampaio. Damage detection
in structures: From mode shape to frequency response function methods. Mechanical
Systems and Signal Processing, 17(3):489 – 498, 2003.

[40] G. Manson, K. Worden, and D. Allman. Experimental validation of a structural health
monitoring methodology: Part iii. damage location on an aircraft wing. Journal of
Sound and Vibration, 259(2):365 – 385, 2003.

[41] MathWorks. Matlab r2011b documentation. MATLAB R2011b Documentation, 2011.

[42] B. Mechab, B. Serier, B. Bachir Bouiadjra, K. Kaddouri, and X. Feaugas. Linear and
non-linear analyses for semi-elliptical surface cracks in pipes under bending. Interna-
tional Journal of Pressure Vessels and Piping, 88(1):57 – 63, 2011.

[43] Jennifer E Michaels. Detection, localization and characterization of damage in plates
with an in situ array of spatially distributed ultrasonic sensors. Smart Materials and
Structures, 17(3):035035, 2008.
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