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University of Pittsburgh, 2014

Brain-machine interface (BMI) technology aims to provide individuals with movement paralysis a natural

and intuitive means for the restoration of function. Electrocorticography (ECoG), in which disc electrodes

are placed on either the surface of the dura or the cortex to record field potential activity, has been proposed

as a viable neural recording modality for BMI systems, potentially providing stable, long-term recordings of

cortical activity with high spatial and temporal resolution. Previous demonstrations of BMI control using

ECoG have consisted of short-term periods of control by able-bodied subjects utilizing basic processing and

decoding techniques. This dissertation presents work seeking to advance the current state of ECoG BMIs

through an assessment of the ability of individuals with movement paralysis to control an ECoG BMI, an

investigation into adaptation during BMI skill acquisition, an evaluation of chronic implantation of an ECoG

electrode grid, and improved extraction of BMI command signals from ECoG recordings.

Two individuals with upper-limb paralysis were implanted with high-density ECoG electrode grids over

sensorimotor cortical areas for up to 30 days, with both subjects found to be capable of voluntarily modulating

their cortical activity to control movement of a computer cursor with up to three degrees of freedom. Analysis

of control signal angular error and the tuning characteristics of ECoG spectral features during the acquisition

of brain control revealed that both decoder calibration and fixed-decoder training could facilitate performance

improvements. In addition, to better understand the capability of ECoG to provide robust, long-term

recordings, work was conducted assessing the effects of chronic implantation of an ECoG electrode grid in

a non-human primate, demonstrating that movement-related modulation could be recorded from electrode

nearly two years post-implantation despite the presence of substantial fibrotic encapsulation. Finally, it was

found that the extraction of command signals from ECoG recordings could be improved through the use of

a decoding method incorporating weight-space priors accounting for the expected correlation structure of

electrical field potentials. Combined, this work both demonstrates the feasibility of ECoG-based BMI systems

as well as addresses some of key challenges that must be overcome before such systems are translated to the

clinical realm.
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1.0 INTRODUCTION

Individuals with movement disorders due to spinal cord injury (SCI) and amyotrophic lateral sclerosis (AlS)

are often left with severely limited ability to interact with their environment. For these individuals, a

number of devices exist which seek to restore functionality, including myoelectric-controlled protheses and

eye and head tracking systems for computer control. Unfortunately, these devices are limited by both their

reliability and capability, as they typically provide only limited functional restoration while requiring a

significant amount of maintenance effort on the part of either users or qualified technicians.

Brain-machine interfaces (BMIs) seek to alleviate these shortcomings by attempting to infer assistive

device commands from signals recorded from the cerebral cortex. By inferring user intent from cortical

activity, BMIs can theoretically provide high-fidelity command signals for assistive devices and a more

naturalistic and intuitive experience for the user. Advances in neural recording technology, the development

of anthropomorphic prosthetic devices, and increased computational power of computing platforms have

made clinical BMI systems increasingly viable, enabling a number of studies evaluating BMI technology in

end-user populations.

This dissertation presents work seeking to advance the current state of electrocorticographic (ECoG)

brain-machine interfaces for continuous and proportional control of assistive devices. It is organized in

the following manner: Chapter 2 provides a background on brain-machine interface systems, reviewing the

components common to most BMIs and motivating the following work. Chapter 3 introduces electrocorticog-

raphy and its applicability for BMIs. Chapter 4 presents results of a study evaluating an ECoG BMI system

for individuals with upper-limb paralysis. Chapter 5 investigates the cortical and computational processes

underlying acquisition of control of an ECoG BMI system. Chapter 6 presents the results investigating

the effects of chronic implantation of a ECoG electrode grid in a non-human primate. Chapter 7 describes

a novel decoding algorithm for the extraction of BMI commands from ECoG signals. Finally, Chapter 8

summarizes the contents of this dissertation, outlines directions for future research, and discusses the future

of the BMI field.
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2.0 BRAIN-MACHINE INTERFACES

A brain-machine interface is a complicated system involving multiple components which work in concert to

translate a user’s intent into action. Figure 2.1 illustrates the components of a typical BMI system. The user

generates cortical activity which reflects their intent, which is recorded using one of several neural recording

modalities. Task-relevant activity is then extracted from raw neural signals using a feature extraction process,

the output from which is then passed through a decoder which converts them into command signals for an

assistive device. These components can be summarized as follows:

Neural recording modality and control strategy. The neural recording modality is the interface used

to record cortical activity. In most cases this process involves recording a time-varying voltage signal

using some type of electrode. Cortical activity reflects the BMI control strategy, which determines the

relationship between user intent and cortical activity.

Feature extraction and decoding. Raw signals recorded from the brain must be converted into control

commands for an assistive device. This is a two-stage process: neural signals are first converted into a

set of features which contain information about the intent of the user this process is commonly referred

to as feature extraction. These features are then translated into device command signals using a neural

decoder. Though the particulars of this process varies with decoder type, in general a decoder consists of

a set of equations which translate extracted features into command signals.

Assistive device. The device which is controlled by the user. Though the type of assistive device is

dictated by the needs of the user, most current BMI systems involve continuous and proportional control

of computer cursors or prosthetic limbs1.

Numerous choices in neural recording modalities, extraction algorithms, and assistive devices are available

for for use in BMIs. Researchers developing BMI systems must therefore balance the relative merits of these

options to design a system that appropriately meets the needs of a target clinical population. In order to

do this, an in-depth understanding of the advantages and disadvantages of the available design choices is

required; the following sections describe the components of a BMI in more detail and discuss the currently-

available methods and technologies for each.

1Though a great deal of research has gone into the development of BMI-based communication aids (e.g. P300 spellers
[Donchin et al., 2000]), the work contained in this dissertation focuses on the development BMIs for restoration of motor
function for individuals with movement paralysis. As such, BMI communication aids and discrete systems will not be discussed
further.
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Adapted from Leuthardt, 2006

Feature
Extraction Decoding

Assistive Device

Feedback

Figure 2.1: BMI system diagram. Neural signals are first recorded from the cortex using one of a number of

available neural recording modalities. Salient information is obtained from these recordings using a feature

extraction process. Extracted features are then passed through a decoder which converts them to command

signals, which are used to control an assistive device. The user then receives feedback about the current

state of the assistive device. Image adapted from [Leuthardt et al., 2006b].
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2.1 NEURAL RECORDING MODALITIES

A wide range of neural recording modalities are available for BMI use, including electroencephalography

(EEG), electrocorticography (ECoG), local field potentials (LFPs), single/multi-unit activity (SUA/MUA),

functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG). These methods can be

differentiated by the type of neural signal recorded, then type of electrode (or sensor) used to record the

activity, the spatial and temporal resolution of the recordings, invasiveness of the technique, and portability.

Several of these modalities, including fMRI and MEG, involve the use of a large scanner and are not portable

as a result. Though such modalities have been used successfully for brain-machine interfaces [Sudre et al.,

2010], the non-portability of these systems makes them impractical for clinical BMI use; these methods will

not be discussed further.

The chief modalities used in clinically-viable BMI systems are EEG, ECoG, LFPs, and MUA/SUA.

These methods are common in their use of electrodes to record electrical activity from the cortex, but vary

drastically in electrode design and placement. These differences have implications on the characteristics

of the neural activity recorded by the modality, and can be characterized by their performance, decoding

stability, longevity, and invasiveness.

Performance. BMI performance can be defined as the quality of control which can be achieved using a

specific modality. This capability can be dependent upon a number of factors, including the number of

neural features provided, their independence, encoding of relevant kinematic parameters, and signal-to-

noise ratio (SNR). Modalities providing large numbers of independent, high-SNR features which encode

kinematic parameters relevant to the task will typically be capable of supporting a high-performance

BMI system.

Stability. Stability can defined as the ability of the BMI system to maintain consistent performance without

frequent experimenter intervention (e.g., neural decoder updates), and is dependent upon the stability of

the neural signals recorded by the modality. If the recording modality can record activity from the same

neural population over time, and the encoding of information that neural population does not change

with time, a neural recording modality will enable stable BMI operation.

Longevity. The longevity of a neural recording modality refers to the ability of the neural interface to

record signals from the cortex for long periods of time. Longevity is a critical feature for a chronic BMI

system, as it can facilitate long-term BMI performance without the need for future surgical intervention

to repair or update the system. It should be noted that the concept of longevity is distinct from that of

stability; a neural recording modality may provide low stability yet high longevity (or vice-versa). For

example, the neural population recorded by a modality may change drastically from day-to-day, but the

ability of the modality to record signals from the cortex may remain unchanged over time.

Invasiveness. The invasiveness of a recording modality may be defined as the risk the subject is placed at

as a result of use of a particular recording modality. For example, those modalities requiring surgical
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implantation of electrodes can be considered highly invasive, while those modalities placing subjects at

low-risk are considered non-invasive or minimally-invasive.

An “ideal” brain-machine interface would be capable of high-performance, stable control over long periods

of time at low risk to the subject. Unfortunately, in reality this is not the case for currently-available recording

modalities. Generally, a tradeoff exists between the aforementioned characteristics; the choice of a neural

recording modality for a particular BMI application must balance these characteristics to achieve the desired

level of performance. The following sections briefly describe EEG, ECoG, LFP, and MUA/SUA in additional

detail, including the ability of these modalities to satisfy the requirements of a clinical BMI system.

2.1.1 Electroencephalography (EEG)

Electroencephalography (EEG) is a technique in which disc electrodes are placed on the scalp to record

electrical field potentials from the brain (Figure 2.2). As such, EEG is considered a minimally invasive

recording technology. This has led to widespread use of EEG for BMIs, including two and three-dimensional

cursor control [Wolpaw and McFarland, 2004, McFarland et al., 2010, Foldes and Taylor, 2013]. Typically,

EEG BMIs are based on volitional changes in the spectral power of electrical field potentials in the µ (8

- 12 Hz) or β (18 - 26 Hz) frequency bands, activity which as been shown to be related to motor cortical

activity [McFarland et al., 2000] (see [Wolpaw et al., 2002] for a review).

A B

Figure 2.2: (A) Standard EEG cup electrodes. (B) Example of subject wearing an EEG electrode cap.

EEG electrodes are typically affixed to the scalp daily using common electrode montages (e.g. the 10-20

sytem), which allow for relatively consistent placement of electrodes. Despite this, EEG recordings are still

prone to instability issues arising from inconsistent electrode placement across days and intra-day changes in

electrode impedance. However, EEG recordings may be considered to have high longevity, as the minimally-

invasive nature of the method mean EEG is not susceptible to the brain tissue reaction believed to result in

diminished recording quality over time for more invasive implanted microelectrodes [Polikov et al., 2005].
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Unfortunately, the distance of recording electrodes from the cortex results in both low spatial resolution

and low signal-to-noise ratio for EEG signals. Synchronous cortical activation of > 6cm2 is required to

generate measurable field potentials at the scalp [COOPER et al., 1965, Ebersole, 1997]. In general, this

drastically limits the performance of EEG-based BMI systems, requiring synchronization of large cortical

populations (∼ 60, 000, 000 neurons) to generate field potentials and reducing the number of independent

sources which can be measured using EEG.

2.1.2 Electrocorticography (ECoG)

Similar to EEG, electrocorticographic (ECoG) signals originate from electrical field potentials in the brain.

ECoG electrodes, typically grids of platinum disc electrodes several millimeters in diameter, are placed

beneath the skull either epidurally (above the dura) or subdurally (beneath the dura) as shown in Figure

2.3. Placement of ECoG electrodes is considered an invasive procedure, requiring a craniotomy and, in the

case of subdural implantation, retraction of the dura. ECoG has been shown to enable two-dimensional

closed loop control of cursors or a prosthetic limb [Leuthardt et al., 2004, Wilson et al., 2006, Schalk et al.,

2008c, Leuthardt et al., 2011, Yanagisawa et al., 2012].

B

5 mm

A

10 mm

C

Figure 2.3: (A) Standard 64-contact ECoG electrode grid used for seizure monitoring in individuals with

epilepsy. (B) Custom high-density ECoG electrode grid. (C ) Intraoperative image showing placement of a

standard ECoG electrode grid for epilepsy monitoring. Image reproduced from [Leuthardt et al., 2004].

As a result of the proximity of electrodes to the brain, ECoG recordings have increased spatial resolution

compared to that of EEG recordings, on the order of ∼ 1 mm for subdural ECoG [Freeman et al., 2000,

Slutzky et al., 2010]. This increase in spatial resolution is accompanied by an increase in the spectral content

of ECoG recordings. In addition to the µ and β bands, task-related ECoG activity is commonly observed

in the low-γ (30 – 60 Hz) and high-γ (> 60 Hz) frequency ranges. Based on the size of common electrode

sizes, modulation of ECoG activity involves synchronization of 3 – 7mm2 regions of cortical tissue, an order

of magnitude smaller than of EEG.
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ECoG recordings generally considered to have high longevity and stability, as placement of electrodes

does not compromise the integrity of cortical tissue. Furthermore, the dependence of ECoG on the activity

of large populations of neurons is believed to prevent these recordings from being sensitive to changes in the

activity of individual neurons [Moran, 2010, Leuthardt et al., 2004]. ECoG has been shown to provide stable,

offline decoding of arm movement kinematics over a period of ∼ 9 months [Chao et al., 2010]. Whether such

longevity enables long-term closed-loop control of an ECoG BCI system, however, remains to be seen.

2.1.3 Local field potentials (LFPs)

Local field potentials (LFPs) are extracellular field potentials measured with penetrating microelectrodes

(Figure 2.4). Similarly to EEG and ECoG, LFPs are commonly analyzed in the frequency domain, with the

frequency range of interest overlapping with that of ECoG (< 250 Hz). Placement of penetrating electrodes

is considered an invasive procedure, as electrodes are inserted into cortical tissue. While a number of studies

have investigated the encoding of movement-related information in LFPs (e.g., [Heldman et al., 2006]),

to-date the only examples of closed-loop BMI control using LFPs have focused on two-dimensional cursor

control by non-human primates [So et al., 2014, Flint et al., 2013].

A B C

1mm

Figure 2.4: The “Utah” penetrating microelectrode array. (A) Utah array attached to a NeuroPort pedestal.

Image reproduced from [Hochberg et al., 2006]. (B) Scanning electron micrograph of a Utah array showing

electrode details. Image reproduced from [Hochberg et al., 2006]. (C ) Arrays inserted into cortical tissue.

Image courtesy of the Human Rehabilitation and Neural Engineering Laboratory (hRNEL).

LFP recordings are believed to represent neural activity within several millimeters of the tip of the

recording electrode [Logothetis et al., 2001, Juergens et al., 1999]. It has been shown that high-gamma-band

LFP activity is highly correlated with the average firing rate recorded by microelectrodes [Ray et al., 2008a],

and that the spectral tuning of LFP activity is similar to that of individual neurons recorded on the same

electrode [Heldman et al., 2006]. Thus, LFP recordings have a greater spatial resolution that that of either

EEG or ECoG, allowing electrical field potentials to be recorded from a larger number of independent neural

populations.
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Recordings from penetrating microelectrodes have been shown to suffer from a decline in signal quality

commonly attributed to a foreign body reaction to the implanted electrodes [Collinger et al., 2012, Simeral

et al., 2011, Chestek et al., 2011]. Despite this, it has been postulated that it may be possible to record

high-gamma-band LFPs over years [Moran, 2010]. This belief has been supported by recent work showing

stable closed-loop control of a computer cursor for nearly 12 months using LFP recordings [Flint et al., 2013],

suggesting that LFPs may provide sufficiently high stability and longevity to enable clinical BMI systems.

2.1.4 Single-unit/multi-unit activity (SU/MUA)

Lastly, single and multi-unit activity (SU/MUA) represent the activity of individual neurons as recorded

by penetrating microelectrodes (Figure 2.4). As opposed to LFPs, SU/MUA recordings are obtained by

band-pass filtering recorded electrode voltages over the 300 – 5, 000 Hz range, allowing individual action

potentials to be identified [Schwartz et al., 2006]. This activity may be further broken down into the action

potentials of isolated neurons (single-unit activity), or the activity of multiple neurons measured on a single

electrode (multi-unit activity). In either case, SU/MUA action potential events are typically converted to

time-varying firing rates [Dayan and Abbott, 2001]. As SU/MUA utilizes the same electrodes as that used

for LFP recordings, it is also considered an invasive recording modality.

Single and multi-unit activity, as recorded by penetrating mircoelectrodes, is sensitive to neural activity

within several hundred microns of the electrode [Logothetis et al., 2001], making it the recording modality

with the highest spatial resolution currently used in BMI systems. This has made SU/MUA the record-

ing modality of choice for use in BMI systems, both as a result of the encoding of movement direction

kinematics in single-unit activity [Georgopoulos et al., 1982, Schwartz et al., 1988] and from early work

showing that movement kinematics can be reconstructed from populations of neurons [Georgopoulos et al.,

1986]. Combined with the advent of multi-electrode recording arrays [Campbell et al., 1991, Vetter et al.,

2004, Musallam et al., 2007], SU/MUA recording has enabled high-performance BMI control. SU/MUA has

been the prominent recording modality for BMI research, having been shown to enable closed-loop control

of computer cursors [Flint et al., 2013, Gilja et al., 2012, Simeral et al., 2011, Kim et al., 2011, Ganguly and

Carmena, 2009, Santhanam et al., 2006, Hochberg et al., 2006, Taylor et al., 2002, Wessberg et al., 2000], as

well as robotic arms [Collinger et al., 2012, Hochberg et al., 2012, Velliste et al., 2008] in both humans and

non-human primates.

Unfortunately, the access to the activity of individual neurons comes at the cost of decreased longevity for

SU/MUA-based BMIs. Penetrating microelectrodes have been shown to be prone to brain tissue responses

encapsulating implanted electrodes [Turner et al., 1999, Carter and Houk, 1993, Polikov et al., 2005]. Such

encapsulation can lead to neural degeneration around the implant site [Polikov et al., 2005, McConnell et al.,

2009, Biran et al., 2005], potentially leading to the reduction in signal quality observed in some intracortical

BMI studies [Collinger et al., 2012, Simeral et al., 2011, Chestek et al., 2011]. Conversely, some researchers

attribute such degradation in signal quality to a gradual failure of electrode array insulation [Barrese et al.,
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2013]. Despite such findings, several groups have found that SU/MUA recording can yield stable and robust

BMI control [Ganguly and Carmena, 2009, Flint et al., 2013].

2.2 THE NEURAL BASIS OF CLOSED-LOOP BMI CONTROL

The link between user intent and recorded neural activity is critical to the successful operation of a BMI.

Ideally, neural activity should directly reflect a user’s desired BMI commands. However, in practice this not

always as straight forward as it might seem; the BMI control strategy, or the cognitive process employed

by the user to generate task-modulated neural activity, can differ drastically depending on the quality and

type of recording modality. For individuals with movement paralysis, BMI control strategies are further

complicated by the inability of the users to generate overt movements to serve as the basis for control. In

these cases, congruence between neural activity during overt, attempted, and/or imagined movement can be

leveraged to obtain closed-loop control. The following section will briefly discuss the use of motor imagery

and observation-related activity to enable BMI control, as well as two of the prominent control strategies for

clinical BMI systems: naturalistic and somatotopic control strategies.

2.2.1 Cortical activity during motor imagery, attempted movement, and movement execu-

tion.

Much of the work investigating the encoding of movement-related information in the cortex has utilized able-

bodied subjects. While such studies serve to justify the feasibility of BMI systems, the potential candidates

for BMIs are no longer able to make overt movements to generate neural activity to serve as the basis

for closed-loop control. Some method of reliably generating motor cortical activity in the absence of overt

movement must therefore be used.

The use of action observation has been proposed as a method for generating neural activation in the

absence of overt movement [Collinger et al., 2014]. This approach is based on the concept of mirror neurons in

the cortex, which have been shown to exhibit similar activity during the execution and observation of specific

movements [Gallese et al., 1996]. Congruent activity has been observed between action observation and action

execution in MEG [Hari et al., 1998, Caetano et al., 2007, Press et al., 2011], EEG [Muthukumaraswamy

et al., 2004, Perry and Bentin, 2009], ECoG [Collinger et al., 2014], and penetrating microelectrodes [Tkach

et al., 2008, Dushanova and Donoghue, 2010]. An action-observation-based approach typically will begin

with the user observing automated movements of the BMI effector. Neural data collected during this task

can then be used to calibrate the neural decoder used for closed-loop control (see Section 2.3). However, it

is important to point out that pure observation-related activity is not sufficient to operate a BMI system; at

some point the user’s intent, rather than passive observation, must be used to drive cortical activity.
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A closely related method for eliciting cortical activity in individuals with movement paralysis is the use

of motor imagery or attempted movement. Here, subjects are instructed to either imagine performing or

attempt to perform a particular movement, sometimes while simultaneously observing the same movement

being performed by the BMI effector. As opposed to the action observation paradigm, using motor imagery

or attempted movement to drive neural activity requires intent on the part of the user. Cortical activation

during imagined movement has been shown in individuals with movement paralysis, with individual neurons

exhibiting cosine tuning to imagined movement direction [Truccolo et al., 2008]. While it has been shown

that there are distinct differences in neural activity during motor imagery and attempted movement [Hotz-

Boendermaker et al., 2008], both approaches provide BMI users with a volitional means with which cortical

activity can be generated. In practice, the line between these two types of activity becomes blurred dur-

ing decoder calibration (see Section 2.3.3), where a BMI based initially on observation-related activity is

eventually controlled by neural activity elicited by attempted movement.

2.2.2 The “naturalistic” control strategy

Perhaps the most straightforward approach to achieving closed-loop BMI control is the use of intended

effector movement to generate task-related neural activity. The term “naturalistic” will be used to refer to

this approach, as it attempts to utilize the natural encoding of the desired BMI movement commands in

the neural population. In theory, such a control strategy is intuitive for the user; one simply thinks of the

desired effector movement to control the system.

Early brain control efforts in non-human primates focused on neural control of computer cursors based

on overt arm and hand movements [Serruya et al., 2002, Taylor et al., 2002, Carmena et al., 2003, Ganguly

and Carmena, 2009]. In these studies, animals were first trained to perform a task under hand control of the

computer cursor. Movement of the cursor was then switched over to neural control. In some cases, animals

were permitted to continue to make arm movements during BMI control [Serruya et al., 2002], while in

others the animal’s arm was restrained [Taylor et al., 2002, Ganguly and Carmena, 2009]. Other non-human

primate studies have shown closed-loop control of prosthetic limbs [Velliste et al., 2008, Velliste et al., 2014];

here again animals were initially trained to perform the control task using overt movements and subsequently

transitioned to BMI control. Unfortunately, the use of the non-human primate model in these studies makes

it difficult to ascertain the control strategy being employed by the subject as a consequence of the inability of

experimenters to provide explicit instruction to the subjects. However, given that subjects initially perform

the BMI task under overt movement control, it is likely that some form of a naturalistic strategy is being

employed by the subjects in these studies.

Clinical BMI studies, alternatively, have the benefit of allowing explicit instructions to be provided

to subjects. Such studies have shown that naturalistic control strategies using imagined [Hochberg et al.,

2006, Truccolo et al., 2008, Hochberg et al., 2012] or observed [Collinger et al., 2012] arm and hand movements

can serve as the basis for BMI control. Though effective, these approaches are dependent upon the detailed
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encoding of movement-related information in cortical activity. When such information is not available, a

naturalistic-based approach may not be capable of providing the richness of information required to obtain

control.

2.2.3 The “somatotopic” control strategy

EEG and, to a lesser extent, ECoG recordings, do not provide sufficient encoding of detailed movement

kinematic information to enable BMI control using a naturalistic control strategy2. In these cases, an

alternative approach must be used to generate task-modulated neural activity. One commonly-used approach

is to assign imagined or attempted movements of different body parts to control different degrees of freedom

of the effector. This approach is referred to as somatotopic control strategy.

The somatotopic control strategy has been successfully used to obtain closed-loop computer cursor control

using EEG [McFarland et al., 2010] and ECoG [Leuthardt et al., 2004, Schalk et al., 2008c]. Potential

movements for closed-loop control are typically identified using some form of movement screening task, during

which neural responses are observed during a set attempted or imagined movements such as tongue protrusion

or hand movement [Wolpaw and McFarland, 1994]. Movements eliciting strong cortical modulation can then

be mapped onto the effector. For example, for a two-dimensional cursor task, one movement (e.g. hand

grasp) could be assigned to control the velocity of the cursor in the X -dimension, while a different movement

(e.g. tongue protrusion) could be used to control the velocity of the cursor in the Y -dimension.

Unfortunately, this approach typically results in a conflict between the intent of the user (e.g. to move

the cursor) and the imagined or attempted movements made by the user to generate cortical activity. This

conflict may serve to increase the cognitive load placed on the user, making the BMI system fatiguing to

control over long periods of time. This may particularly be the case during somatotopic-based control of a

prosthetic limb, where there will likely be a conflict between the attempted arm movements eliciting cortical

modulation and the intended movement of the arm. Whether or not the cognitive load of a somatotopy-based

BMI system can be reduced through long-term training remains to be seen.

2.3 FEATURE EXTRACTION, DECODING ALGORITHMS, AND DECODER

CALIBRATION.

In order to control an external device using a BMI system, recorded neural signals must somehow be trans-

lated into device command signals. This translation occurs through a multi-step process in which relevant

information, or “features”, are first extracted from neural signals and are then passed through a decoding

algorithm which maps the extracted features onto the output command signals. The specifics of this mapping

are determined in the decoder calibration process, during which parameters of the decoding algorithm are

2The encoding of movement-related activity in ECoG recordings will be discussed in more detail in Chapter 3.
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learned. The following sections will describe the feature extraction, decoding, and calibration processes in

more detail.

2.3.1 Feature extraction

In most cases it is extremely difficult to extract meaningful information directly from raw neural signals.

Typically, once neural signals have been recorded from the cortex using one of the aforementioned methods,

a set of time-varying “neural features” must be extracted from the data which are informative about the

intent of the user. This feature extraction process is highly dependent on the type of recording modality

used. For SU/MUA recording this commonly involves the identification of action potential events (“spikes”)

using a combination of thresholding and/or spike-sorting, followed by the binning of spikes in larger time

windows [Dayan and Abbott, 2001]. For electrical field potentials (EEG, ECoG, LFPs), this commonly

involves the transformation of time-domain signals into the time-frequency domain and possibly the averaging

of these signals across specific frequency bands [Schalk et al., 2008c].

2.3.2 Decoding algorithms

Once a set of relevant features has been extracted from the recorded neural signals, a neural decoder is used

to convert these features into a command signal for an external device. In contrast to feature extraction

methods, decoding algorithms are less dependent upon the choice of neural recording modality, and can vary

from extremely simple to exceedingly complex. In general, decoding methods take the following form:

y = f(x) (2.1)

where y = [y1, . . . , yM ]> is aM -dimensional vector representing the decoded output of the system (e.g. cursor

movement velocity), and x = [x1, . . . , xD]> is a D-dimensional vector of neural features. The functional form

of f(x) depends on the particulars of a given method, though nearly all involve a set of decoding weights

which map neural activity onto desired BMI commands; these weights are determined during the decoder

calibration process. A few of the most common BMI decoding methods are briefly described in the following

sections.

2.3.2.1 Manual weight assignment Perhaps the simplest decoding algorithm used for BMI systems

involves the manual assignment of neural features to command signals by the experimenter. Such an approach

has been used in both EEG [Wolpaw and McFarland, 1994] and ECoG [Leuthardt et al., 2004, Schalk et al.,

2008c] BMIs, with advanced implementations utilizing adaptive weighting of the selected neural features

to improve control [Wolpaw and McFarland, 2004]. This may be viewed as an extreme version of feature

selection where a small subset of neural features is chosen to serve as the basis for BMI control. Though

sometimes effective, these methods have limited utility, as manual assignment of decoding weights can prove

intractable as the number of neural features and output command signals increases.
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2.3.2.2 Linear-regression-based methods Linear-regression-based methods utilize a set of decoding

weights to linearly map neural features onto desired BMI command signals. Such methods take the form

yi = w>i x + εi (2.2)

where wi is a D-dimensional weight vector mapping the neural feature vector x onto the ith BMI command

signal and εi is an additive noise term. Though simple in concept, linear regression can become problematic

for large values of D (i.e. for large numbers of neural features), particularly in cases where calibration

data is limited. In these situations, a number of variants of regularized linear regression, such as L1 and

L2-regularized linear regression, can be utilized. Such methods seek to minimizes the L1 or L2 norm of wi,

respectively [Bishop, 2006, Ganguli and Sompolinsky, 2012]. Linear regression has been used for closed-loop

control of a computer cursor by an individual the spinal cord injury [Hochberg et al., 2006]. One commonly

used variant of linear regression commonly used for BMIs is the Weiner filter, which takes the following form:

yi = w0 +

N∑
u=−m

wi(u)x(t− u) + εi (2.3)

Here, weights wi(u) are determined for a predefined set of time lags (u), with x(t−u) representing the neural

activity at time t−u. Weiner filters have been successfully used in a number of BMI studies [Carmena et al.,

2003, Ganguly and Carmena, 2009].

2.3.2.3 Neuron-specific methods Several decoding algorithms utilized in BMI systems have been

developed specifically to take advantage of the characteristics of neuronal populations. Perhaps the most

well-known of these methods is the Population Vector Algorithm (PVA) [Georgopoulos et al., 1986]. The

PVA first defines an encoding model for each neuron of the form

fi = b0,i + b>i d + εi (2.4)

where fi is the firing rate of the ith neuron, d is a M -dimensional direction (or velocity) vector, b0,i is a firing

rate offset term, and bi = [b1, . . . , bM ]> is the preferred direction of the ith neuron (i.e. the direction which

the ith neuron exhibits its highest firing rate)3. This model describes the dependence of the neural firing

rate on movement kinematics, with this functional form of the encoding model is equivalent to the cosine

tuning model that has been shown to well-characterize the response of primary motor cortical neurons to two

and three-dimensional arm movements [Georgopoulos et al., 1982, Schwartz et al., 1988]. The firing rates of

individual neurons are normalized according to Equation 2.5, and the kinematic output of the population is

predicted from normalized firing rates according to Equation 2.6 [Chase et al., 2009].

ri =
fi − b0,i
‖bi‖

(2.5)

3The notation here has been changed from that of the previous section to reflect the dependence of these methods on
assumptions specific to the characteristics of SU/MUA recordings.
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d̂ = ks
M

N

N∑
i=1

ribi (2.6)

Here, d̂ is the predicted kinematic output and ks is a normalization constant. While the PVA has been

successfully used to obtain closed-loop control of a computer cursor [Taylor et al., 2002] and prosthetic

limb [Velliste et al., 2008], it assumes a uniform distribution of preferred direction vectors across the neu-

ronal population. The PVA is biased when this assumption is violated, potentially leading to decreased

performance [Chase et al., 2009].

The optimal linear estimator (OLE) [Salinas and Abbott, 1994, Kass et al., 2005] attempts to correct for

this bias by finding a new set of preferred direction vectors which optimally predict the kinematic output

from neuronal firing rates. Here, preferred direction vectors from all neurons are collected in a single matrix

B:

B =

[
b1

‖b1‖
, . . . ,

b1

‖b1‖

]>
(2.7)

The instantaneous normalized firing rate of the neuronal population, r = [r1, . . . , rN ]>, can then be expressed

as:

r = Bd (2.8)

If the kinematic prediction is formulated according to Equation 2.9, it can be shown that the optimal set of

decoding weights, W = [w1, . . . ,wM ], is found by Equation 2.10 [Chase et al., 2009].

d = Wr (2.9)

W = (B>B)−1B> (2.10)

The OLE has been shown to outperform the PVA in offline decoding of hand trajectories [Chase et al., 2009],

and has been used for online control of a prosthetic limb [Collinger et al., 2012]. However, in online control

situations subjects can compensate for biases in the PVA such that the performance of the PVA and OLE

are equivalent [Koyama et al., 2010]. Finally, it is important to note that the OLE assumes independence

between neurons [Kass et al., 2005], which may limit the applicability of this method in instances where this

assumption is not valid.

2.3.2.4 State-space methods Another common class of decoders used in BMI studies are state-space

methods. In comparison to previously-discussed methods, state-space models assume that the underlying

state of a system (e.g. intended BMI command signal) evolves smoothly over time, and that noisy measure-

ments of this state are observed (e.g. recorded neural data). Perhaps the most well-known of these models

is the Kalman Filter (KF) [Kalman, 1960]. The state model for the KF may be expressed by Equation 2.11.

yt+1 = Atyt + wt , wt ∼ N (0,Wt) (2.11)
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where yt+1 ∈ RM×1 is the state of the system at time t + 1, yt is the state of the system at time (t), and

A ∈ RM×M is a matrix relating the state of the system at time t + 1 to time t. Vector wt is an additive

noise term. The observation model relating the kinematic state of the system to the observed neural data is

xt = Ctyt + qt , qt ∼ N (0,Qt) (2.12)

where xt ∈ RN×1 is a vector of neural firing rates, Ct ∈ RN×M is a matrix relating the kinematic state to

the neural data, and qt represents the observation noise in the neural data. A detailed derivation of the KF,

particularly as applied to neural data, is provided in [Wu et al., 2006].

The form of the state model (Equation 2.11), particularly that of A, determines the smoothness with

which the state evolves. For example, for A = I, the state model takes the form of a random walk model

which encourages gradual changes in yt [Brockwell, 2004]. While smoothness can be imposed on previously-

discussed decoding methods by pre-filtering prior to decoding, state-based models such as the KF have the

advantage of combining state filtering and estimation in a single probabilistic framework [Koyama et al.,

2010].

State-space models such as the KF and the Particle Filter have been shown to outperform the PVA and

OLE in offline decoding of arm movement velocities from motor cortical data [Brockwell, 2004, Wu et al.,

2006], while the Kalman Filter has also been used successfully in real-time BMI control [Hochberg et al.,

2012, Kim et al., 2011, Kim et al., 2008]. Furthermore, several variants on this method have been developed

which seek to improve performance of the KF, such as in the extraction of speed information from neural

data [Golub et al., 2014] or incorporation into a closed-loop calibration framework [Gilja et al., 2012]. The

latter study is particularly noteworthy for the development of BMIs, as it seeks to integrate aspects of the

closed-loop decoder calibration process into the assumptions of the decoding method in order to improve

performance as well as generalizability across BMI tasks.

2.3.3 Decoder calibration

Regardless of the type of decoder used in a BMI system, the parameters of the decoder mapping extracted

neural features onto effector command signals must be determined. This occurs during the decoder calibration

process. Decoder calibration begins with the collection of neural data (calibration data), from which decoding

parameters are learned. This set of parameters is commonly referred to simply as the decoder.

Decoder calibration commonly begins with the collection of a set of neural data during a movement

observation or attempted/imagined movement task [Hochberg et al., 2006, Hochberg et al., 2012, Collinger

et al., 2012]. Decoding parameters are learned from this data, after which the user can be given closed-loop

control of the effector. However, it may be the case that performance with this decoder is poor, particularly

in case of those decoders trained on observation-related activity. Such decoders may suffer from differences

between neural activity during movement observation and that of attempted or imagined movement. In

this situation, additional rounds of decoder calibration based on closed-loop control can be used to improve
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performance. Several studies have formalized this process, referring to it as a “coadaptive” prediction

process [Taylor et al., 2002] or closed-loop decoder adaptation [Orsborn et al., 2012]. Other work has sought

to further improve the calibration process by making assumptions about the intent of the user during brain

control [Gilja et al., 2012].

In some cases, it is necessary to provide computer assistance to the user during decoder calibration.

Such assistance may come in the form of attenuation of cursor movement errors [Velliste et al., 2008], or

the addition of a control signal bias towards presented targets [Rouse et al., 2013]. Initial brain control

(i.e. immediately following decoder calibration) is aided by high levels of computer assistance; the level

of assistance provided to the user is incrementally reduced as the user becomes proficient with closed-loop

control. Additional rounds of decoder calibration may be performed in conjunction with assist level reduction

so that the neural decoder reflects the user’s improved ability to control the BMI.

Finally, the amount of time required to adequately perform decoder calibration time must be given

consideration. From a clinical perspective, it is beneficial to the user to reduce this time as much as possible,

as a lengthy calibration process would be a substantial burden for users. However, the quality of the decoder

obtained can depend on the amount of calibration data used to learn the decoding parameters. Typically,

the accuracy of decoding parameters learned from calibration data increases with the amount of data.

Furthermore, as the number of degrees of freedom (DoF) of the effector increase, the number of kinematic

conditions sampled must also increase; ultimately this leads to an increase in the amount of calibration data

required as the number of DoF increases.

Ultimately, decoder calibration is a critical step in achieving control of a BMI. Just as decoder parameters

are learned from the user’s neural data during calibration, the user learns to control the BMI system. This

interaction between the BMI user and the system, manifested as learning during closed-loop control, is

discussed in the following section.

2.4 LEARNING DURING BRAIN-MACHINE-INTERFACE CONTROL

Perhaps the most important aspect of a BMI system is the interaction of the user with the device. During

operation, the user receives some form of feedback about the current state of the system. Typically, this is

visual feedback of the state of the effector, though other forms such as vibrotactile [Godlove et al., 2014],

peripheral stimulation [Horch et al., 2011], or cortical stimulation [Venkatraman and Carmena, 2011] are

being investigated. Comparing resultant of the BMI effector with the intended movement commands allows

the user to make adjustments to their intended movements in order to improve performance. This process

will be referred to as BMI learning, and is a topic which is beginning to receive increased attention as BMI

systems have become more prevalent.
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Some of the earliest work investigating learning showed that non-human primates could learn to modulate

the firing rates of individual neurons in primary motor cortex [Fetz, 1969]. Though not specifically in a BMI

context, this work nonetheless laid the groundwork for future BMI studies, with recent work showing such

learning can be used to control a one-dimensional BMI system [Moritz and Fetz, 2011]. Similarly, non-human

primates can learn to differentially modulate the γ-band amplitude of epidural ECoG signals to control a

one-dimensional BMI [Rouse et al., 2013].

Correlates of learning have been observed in a number of BMI-specific studies. Increases in control

performance have been observed across multi-day exposure to a BMI system in non-human primates [Taylor

et al., 2002, Carmena et al., 2003, Musallam et al., 2004] as well as humans [Collinger et al., 2012], though

the cause of this presumed learning effect is unclear. In one such study it has been shown that the preferred

directions of neurons during hand control and brain control diverge during prolonged BMI use, and that

this divergence is accompanied by an increase in the tuning of neurons to the model assumed by the neural

decoder [Taylor et al., 2002].

A number of research groups have begun going beyond demonstrations of learning during BMI skill

acquisition to probe the learning which can occur during the acquisition of BMI control. Subjects have been

shown to be able to compensate for perturbations in the preferred directions of a subset of neurons during

PVA-based BMI control [Jarosiewicz et al., 2008]. It has also been found that subjects can learn to control

a fixed-decoder BMI system over the course of several weeks, and successful control persists across days

without re-calibration of the decoder [Ganguly and Carmena, 2009]. By exploring the ability subjects to

modify their cortical activity to gain control of BMI systems, studies such as these are beginning to shed

light on the mechanisms underlying the acquisition of BMI control. This work may ultimately lead to new

training and calibration methods to improve performance of BMI systems.

While most of this research has focused on learning for the perspective of demonstrating or improving

closed-loop control, BMIs are gaining increasing attention as a tool to address basic-neuroscience questions

about sensory and motor control and learning [Wander and Rao, 2014]. Commonly-used motor learning

paradigms, such as visuomotor rotations, have been applied to closed-loop BMI control in order to investigate

cortical adaptation [Chase et al., 2012], while other researchers have used BMI paradigms to investigate the

mechanisms underlying skill learning [Koralek et al., 2012]. While such studies may not be of immediately

applicable to current BMI systems, the development of a deeper understanding of the mechanisms of learning

in the cortex could ultimately lead to the development of more sophisticated BMI systems.

2.5 CONCLUSIONS: CHOOSING THE APPROPRIATE BMI SYSTEM

This chapter has highlighted the essential components and considerations in the development of a clinical

BMI system, as well as provided an overview of the currently-available technologies and methods (e.g.
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recording modalities and neural decoding algorithms) which are available. Ultimately, the relative merits of

these options must be weighted in order to develop a BMI which best satisfies the needs of a given clinical

population. For individuals with upper-limb paralysis, an ECoG-based system would appear to strike a good

balance between the aforementioned requirements, providing access population-level activity with relatively

higher spatial resolution than EEG while avoiding the consequences of implantation of microelectrodes. The

following chapter will discuss electrocorticography in further detail and provide information that is critical

to the appropriate choice of feature extraction, decoding, and decoding methods for an ECoG-based BMI

system.
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3.0 ELECTROCORTICOGRAPHY

Electrocorticography (ECoG), sometimes referred to as intracranial electroencephalography (iEEG), is an

invasive neural recording modality in which electrodes are placed on the surface of the cortex (subdural

ECoG) or dura (epidural ECoG) to record cortical field potentials. Used as early as 1939 [Penfield, 1939], this

technique has historically been used in the treatment of pharmacologically-intractable epilepsy to identify

epileptogenic foci prior to surgical resection. More recently, ECoG has emerged as a neuroscientific tool

used to study human cortical activity, and as a potential recording modality for clinical brain-machine

interfaces. This chapter will provide an overview of electrocorticography, including the physiological basis

of the electrocorticographic signal, the encoding of cortical activity in ECoG, ECoG processing techniques,

and ECoG-based BMI systems.

3.1 PHYSIOLOGICAL BASIS OF THE ELECTROCORTICOGRAPHIC SIGNAL

As ECoG records extracellular voltages from the cortex, these signals share much in common with local

field potentials (LFPs) and electroencephalography (EEG), techniques which record cortical field potentials

using penetrating microelectrodes and scalp macroelectrodes, respectively. Drawing heavily upon classical

EEG techniques, ECoG activity is commonly characterized by changes in in the power of specific frequency

bands [Miller et al., 2007a]. Though the exact ranges used may vary from study-to-study, field potential

activity is generally broken down into the δ (1 – 3 Hz), θ (4 – 8 Hz), α (9 – 12 Hz, sometimes referred to

as the µ rhythm when recording from sensorimotor cortex [Crone et al., 1998b]), β (12 – 30 Hz), γ (30 – 80

Hz), and high-γ (> 80 Hz) bands [Buzsáki and Draguhn, 2004].

During movements, potentials recorded from motor cortex have been traditionally characterized by event-

related desynchronization (ERD; an decrease in band power) of the α and β ranges [Crone et al., 1998b],

or event-related synchronization (ERS; an increase in band power) of the γ and high-γ ranges [Crone et al.,

1998a]. Though the correlation of the γ and high-γ bands during simple movements may appear to suggest

they stem from similar sources, a number of studies have provided evidence that low-frequency (α and β)

and high-frequency (γ and high-γ) stem from distinct, albeit related, sources. Investigations of the spatial

distribution of motor cortical activity has shown low-frequency activity to be more spatially diffuse than
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high-frequency activity [Crone et al., 1998a, Szurhaj et al., 2006, Miller et al., 2012]. Consistent with this,

modeling of the ECoG frequency spectrum has revealed that these spectra could arise from broadband

modulation related to local neuronal processing obscured by activity in the α and β bands [Miller et al.,

2009a]. Though this suggests uniformity of the high-frequency band, significant stimulus-related responses

have been observed in narrow bands as high as 500 Hz [Gaona et al., 2011]. In addition, distinction has been

drawn between the γ and high-γ bands, where stimulus manipulations have shown that γ and high-γ field

potentials recorded from visual cortex can be decoupled, with high-γ modulation in particular believed to

reflect aggregate action potential activity [Ray and Maunsell, 2011].

Though such studies have provided strong evidence for the independence of high and low-frequency field

potential activity, the underlying sources contributing to this activity are still somewhat unclear. It is

commonly believed that β activity is associated with thalamocortical circuits [Pfurtscheller and Lopes da

Silva, 1999], while γ and high-γ activity reflects localized neuronal processing [Miller et al., 2007a]. This has

led some to believe that low-frequency oscillations, which are decreased during movements, are indicative

of resting-state activity [Miller et al., 2012]. However, others have suggested that β activity may act as a

suppressive mechanism for gating motor function on account of coupling of the β and high-frequency bands

specifically during non-movement states [Miller et al., 2012].

Unfortunately, development of a detailed model for the origin of electrical field potentials is hindered

by the ‘inverse problem’, a term used to refer to the process of inference of cortical sources from multi-

electrodes [Jewett and WILLISTON, 1971, Nunez and Srinivasan, 2006, Buzsáki et al., 2012]. As multiple

sources undoubtedly contribute to the extracellular voltage measured by a single electrode, attribution of

measured activity to any one source is problematic. Several studies have begun to address this through

the use of volume-conductor and finite element models in an effort to characterize the sensitivity of ECoG

electrodes to simulated cortical sources [Slutzky et al., 2010, Wodlinger et al., 2011]. However, much work

is needed before the relationship between localized network activity and electrical field potentials is fully

understood. Nevertheless, as the following section will discuss, this has not prevented ECoG from being

utilized to study a broad number of cortical processes.

3.2 ENCODING OF CORTICAL ACTIVITY IN ECOG

Though the exact origins of ECoG activity may not be fully understood, access to ECoG recordings obtained

from individuals undergoing monitoring for intractable epilepsy has provided researchers with a unique

opportunity to study cortical activity in humans. ECoG has been used to investigate a number of cortical

processes, including the auditory system [Edwards et al., 2005, Trautner et al., 2006], the visual system

[Lachaux et al., 2005], language [Crone et al., 2001, Mainy et al., 2007, Kellis et al., 2010, Wang et al.,

2011a, Pei et al., 2011], attention [Tallon-Baudry et al., 2005, Jung et al., 2008, Ray et al., 2008b], and the
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motor system. The encoding of motor cortical activity in ECoG is of particular interest to BMI researchers,

as it provides insight into how activity occurring during natural arm and hand movements can be utilized

in the development of brain-machine interfaces.

Early studies of motor cortical activity with ECoG were limited to characterizing responses to simple

movements. These efforts demonstrated the existence of both ERD (i.e., a decrease in the power of the α and

β bands) and ERS (i.e., an increase in the power of the γ band) during movements such as tongue protrusion

or fist-clenching [Arroyo et al., 1993, Miller et al., 2007a, Crone et al., 1993, Crone et al., 1998b, Crone

et al., 1998a]. Furthermore, characterization of ECoG responses during overt movements has shown that

low-frequency activity is more spatially diffuse than high-frequency responses, consistent with theories of

high-frequency field potentials reflecting the activity of local neuronal populations [Crone et al., 1998a, Miller

et al., 2007a]. Importantly, these responses have been shown to be somatotopically organized, consistent

with the traditional cortical homunculus [Toro et al., 1994, Miller et al., 2007a]. Based on such organization,

activation arising from movement of distal body parts (e.g., the foot or leg) is expected to occur medially

on the pre-central gyrus, while that arising from the movement of more proximal body parts (e.g., the face

or tongue) should be located laterally on the pre-central gyrus.

Building upon these findings, researchers have investigated the encoding of detailed kinematic and kinetic

parameters in ECoG recordings. It has been shown that gross movements, such as leftward and rightward

reaches, elicit stereotypical responses in ECoG recordings [Leuthardt et al., 2004] (Figure 3.1A), and are

sufficiently robust to enable the classification of reach direction [Chin et al., 2007]. Several groups have

attempted to decode continuous arm position during two-dimensional reaching tasks from human ECoG

activity with some success, showing the low-frequency component and high-γ band activity to be most infor-

mative about movements of the arm [Schalk et al., 2007, Pistohl et al., 2008, Nakanishi et al., 2013]. These

findings have been replicated in non-human primate studies, where it has been found that three-dimensional

movement trajectories can be predicted from both subdural and epidural ECoG activity [Shimoda et al.,

2012, Chao et al., 2010]. Additionally, cosine tuning of ECoG spectral features has been observed during

both circle-drawing and center-out reaching tasks [Schalk et al., 2007, Ball et al., 2009, Anderson et al.,

2012]. Aside from predictions of arm movement kinematics, ECoG activity has been shown to allow for the

prediction of muscle activity during a reach-to-grasp task [Shin et al., 2012].

More recently, studies of the encoding of motor cortical activity recorded with ECoG have focused on

movement of the hand. Characteristic ECoG modulation has been observed in response to finger movements

(Figure 3.1B), with the activity of electrodes found to be preferentially responsive to individual finger move-

ments [Miller et al., 2009b, Kubánek et al., 2009]. This has enabled the movement of individual fingers to

be classified from ECoG recordings with high accuracy [Kubánek et al., 2009, Wang et al., 2009, Chestek

et al., 2013], as well as the reconstruction of the trajectories of individual finger movements [Kubánek et al.,

2009, Acharya et al., 2010]. Perhaps not surprisingly, this has enabled the prediction of hand posture from

recordings of ECoG activity [Degenhart et al., 2011a, Pistohl et al., 2012, Chestek et al., 2013]. Encoding
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of grasp force has also been observed in ECoG activity (Figure 3.1C) [Flint et al., 2014, Degenhart et al.,

2011a], though whether such activity is distinguishable from responses to hand posture or kinematics is

unknown.

Though the aforementioned studies provide evidence for the encoding of motor cortical activity in ECoG,

it is still unclear how such encoding relates to that of single-neuron activity. Preferred directions of individual

motor cortical neurons have been shown to be well-distributed throughout 3D space during reaching [Schwartz

et al., 1988]; studies demonstrating cosine tuning in ECoG have not performed similar analyses to fully

characterize responses to arm movements. Additionally, it has been shown that the preferred directions of

neurons in primary motor cortex exhibit columnar organization in the sub-millimeter domain [Amirikian

and Georgopoulos, 2003, Georgopoulos et al., 2007]. How such structure may influence field potential

recordings obtained from electrodes several millimeters in diameter is currently unknown. Furthermore,

the discrepancy between the mixed finger movement movement representation found in single-unit activity

[Schieber and Hibbard, 1993] and observations of observations of individual-finger representation in ECoG

recordings [Miller et al., 2009b, Kubánek et al., 2009] underscores the need for a unifying framework relating

neuronal activity and field potential recordings. Ultimately, additional investigation is needed into how

the somatotopic representation of movement in ECoG recordings is related to the tuning properties of the

neuronal population in motor cortex.

3.3 ECOG RECORDING TECHNIQUES

3.3.1 Electrodes and electrode design

As shown by Figure 3.2, ECoG electrodes can vary widely in electrode size, inter-electrode distance, and

fabrication process. Traditional electrode grids, commonly used for pre-surgical mapping with individual

with intractable epilepsy, consist of platinum-iridium discs embedded in a silicon sheet with 4 mm electrode

diameters and 10 mm inter-electrode (center-to-center) spacing, and are typically arranged in 4 to 8 electrode

strips or large (8 × 8) grids (Figure 3.2A) [Crone et al., 1998b]. Variants of these grids with reduced inter-

electrode distance (4 mm) have been used in an effort to increase spatial sampling of the cortex (Figure

3.2B) [Wang et al., 2009]. In order to further reduce electrode diameter and inter-electrode distance, some

researches have utilized platinum-iridium mirco-wire grids with electrode diameters of 300µm (Figure 3.2C)

[Rouse et al., 2013], while others have used lithographic techniques to fabricate thin-film grids with electrode

diameters of 300µm and inter-electrode distances of 1 mm (Figure 3.2D) [Schendel et al., 2013, Thongpang

et al., 2011]. In perhaps the biggest departure from traditional electrode designs, flexible, high-density grids

have been fabricated utilizing nanomembrane transistors with thousands of electrodes and sub-millimeter

inter-electrode spacing (Figure 3.2D) [Viventi et al., 2011].
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Figure 3.1: Examples of ECoG modulation during arm and hand movement tasks. (A) Modulation during

leftwards and rightwards arm-directed joystick movements. Figure reproduced from [Leuthardt et al., 2004].

(B) Modulation during individual finger movements. Panels show time-frequency responses for a single

electrode for movement of different fingers. Figure reproduced from [Wang et al., 2009]. (C ) Modulation

during a two-force, two-grasp hand posture task. Panels show time-frequency responses for a single electrode

for different task conditions. Figure reproduced from [Degenhart et al., 2011a].
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Examination of the effect of electrode diameter and spacing on recording quality has provided insight

into how ECoG grid designs may be improved. Analysis of spontaneous ECoG activity in human subjects

has found that inter-electrode distances of 1.25mm are required to effectively sample cortical tissue and

avoid under-sampling and aliasing [Freeman et al., 2000]. Using finite element modeling, optimal inter-

electrode spacing values of 0.6 mm (subdural), 0.6 - 0.9mm (epidural), and 2 mm (scalp) have been suggested,

with results indicating that the main difference between subdural and epidural electrodes is the influence

of a cerebral spinal fluid (CSF) layer [Slutzky et al., 2010]. Additionally, volume conductor modeling of

cortical surface electrodes has found minimal benefit to electrode sizes smaller than 1 mm, with smaller

electrode diameters exhibiting decreased signal-to-noise values [Wodlinger et al., 2011]. Collectively, these

studies suggest that a tradeoff exists between the quality and specificity of recordings obtained with surface

electrodes; while smaller electrodes may enable recording from increasingly independent neural populations,

this independence comes at the cost of decreased signal-to-noise ration. Ultimately, determination of the

optimal ECoG electrode design must balance the encoding of information in field potentials as a function of

distance with the electrical characteristics of electrodes.

3.3.2 Signal processing and feature extraction

Before meaningful information can be extracted from ECoG recordings, these signals must undergo a number

of processing steps, including re-referencing, filtering, and transformation into the frequency domain. In order

to remove common-mode artifacts, a common average reference (CAR) is typically used [Schalk et al., 2007]:

s′i(t) = si(t)−
N∑
j=1

sj(t), (3.1)

where si(t) is the time-domain signal of the ith electrode at time t, N is the number of electrodes, and s′i(t)

is the re-referenced signal. In addition to the standard CAR, adaptive filtering methods have been developed

which are capable of adapting to channel-dependent amplitude or polarity of the common-mode signal [Kelly

et al., 2013]. Re-referenced signals can then be notch-filtered at harmonics of 60 Hz to remove power-line

noise contamination.

Once filtered, signals are then converted into a neural feature set containing task-relevant information.

Though some studies have utilized the time-domain ECoG signal, termed the low-pass filtered component

(LFC) [Pistohl et al., 2012] or local motor potential (LMP) [Schalk et al., 2007], feature extraction typically

occurs through a spectral estimation process, where time-domain field potentials are transformed into the

frequency domain. Numerous spectral estimation methods have been employed for the extraction of frequency

content from field potential signals, including bandpass filtering [Rouse et al., 2013], the fast fourier transform

(FFT) [Blakely et al., 2009, Edwards et al., 2005], wavelet [Chao et al., 2010, Gaona et al., 2011, Miller

et al., 2009b], multitaper [Ball et al., 2009, Zhuang et al., 2010] autoregressive (AR) [Leuthardt et al.,

2011, Leuthardt et al., 2004, McFarland et al., 2010, Pei et al., 2011, Wang et al., 2013a], and matching pursuit
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Figure 3.2: Examples of ECoG electrode grids. (A) Standard 64-electrode grid. (B) High-density 32-contact

electrode grid. (C ) 16-electrode microwire grid. Image reproduced from [Schalk and Leuthardt, 2011]. (D)

Micro-ECoG electrode grid fabricated using lithography. Image reproduced from [Schendel et al., 2014]. (E )

Flexible, high-density electrode grid. Image reproduced from [Viventi et al., 2011].
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[Ray et al., 2008b] algorithms. These methods range from simple (e.g., bandpass filtering) to exceedingly

complex (e.g, matching pursuit); the choice of spectral estimation method used for the analysis of ECoG

recordings must be chosen to appropriately reveal task-relevant information while meeting experimental

requirements. For example, though the matching pursuit algorithm allows for high-resolution time-frequency

analysis, this method is only suited for offline analyses, as it is both non-causal and requires substantial

computation time [Ray et al., 2008b].

For ECoG-based BMI control, the spectral estimation method used must be both causal and computa-

tionally efficient enough to be run in real-time. Thus, among the numerous spectral estimation algorithms

available, only the bandpass filter [Rouse et al., 2013], FFT [Yanagisawa et al., 2011, Yanagisawa et al.,

2012], and autoregressive [Leuthardt et al., 2004, Schalk et al., 2008c, Hinterberger et al., 2008, Blakely

et al., 2009, Leuthardt et al., 2011, Wang et al., 2013a] methods have been used during real-time control.

Of these, AR-based methods, such as the maximum-entropy (MEM) [Marple Jr, 1987] and Burg [Kay and

Marple, 1981] algorithms, are by far the most common, in part on account of their ability to reproduce both

narrowband and broadband frequency components [Kay and Marple, 1981]. With these methods, conversion

of time-domain signals into the time-frequency domain is performed using a windowed spectral estimation

process in which the frequency content of a short (windowed) segment of data is estimated, the data window

is then stepped temporally, and the process is repeated to generate a time-varying estimate of the spectral

content of the signal. It is important to note that choices of the length of the spectral estimation window

can effect the characteristics of the resultant time-frequency data. As shown by Figure 3.3, the window

length determines the influence of the most recent neural data on the spectral estimate, with shorter window

lengths increasing the influence of the most recent neural data at the expense of an increase in the variability

of the estimate. Determination of the appropriate window size for real-time BMI operation must therefore

balance the desired responsiveness of the system with the stability of the spectral estimation process.

Once transformed into the time-frequency domain, ECoG signals frequently are normalized prior to

analysis. ECoG field potentials exhibit a 1/f falloff in spectral power with frequency [Freeman et al.,

2000], which can be problematic during analysis for several reasons. First, this makes visualization of time-

frequency data difficult, as power in the in the high-frequency band is extremely small when compared to that

of the low-frequency band. Secondly, this creates difficulty when averaging spectral power across frequency

bands, resulting in a disproportionally high contribution of lower-frequency components to the average. To

account for this, spectral estimates can be normalized through transformation into change-from-baseline

values [Heldman et al., 2006] (Equation 3.2) or log-transformed and converted to pseudo-Z-scores [Tallon-

Baudry et al., 2005, Edwards et al., 2009] (Equation 3.3) relative to a “baseline” condition:

f ′i =
fi − f̄i
f̄i

, (3.2)

f ′i =
fi − f̄i
σi

, (3.3)
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where fi is the unnormalized power of the ith spectral feature (i.e., power for a particular frequency band

on a single electrode), f̄i is average power of the ith spectral feature during the baseline condition, σi is the

standard deviation of the raw band power of the ith feature during the baseline condition, and f ′i is the

normalized activity of the ith feature. Baseline data is commonly taken from the inter-trial period preceding

individual trials [Heldman et al., 2006], or from a continuous segment of resting-state data at the beginning

of a testing session [Wang et al., 2013a]. While both change-from-baseline and pseudo-Z-score normalization

methods have been utilized in the analysis of field potential data, the pseudo-Z-score method has the distinct

advantage of accounting for the variance of the baseline feature activity.

Following normalization, processed time-frequency data consists of normalized power estimates for each

frequency band for each electrode. Depending on the frequency resolution and range used during spectral

estimation, the number of features per electrode may be quite large. Furthermore, as previously described,

ECoG activity in specific frequency ranges (e.g., the µ and γ bands) is believed to reflect distinct cortical

processes. Thus, as a final pre-processing step prior to analysis, normalized spectral estimates are sometimes

averaged across larger frequency ranges, such as the 8 – 12 Hz, 18 – 24 Hz, 75 – 115 Hz, 125 – 195 Hz, and

159 – 175 Hz bands [Kubánek et al., 2009]. Benefits of such averaging include feature reduction, which can

help to prevent overfitting when decoding information from ECoG activity, and an increase in the signal-to-

noise ratio (SNR) gained by averaging out independent noise of the smaller frequency bands. However, it is

important to note that the boundaries of such bands are somewhat arbitrary, and may detrimentally affect

analyses if improperly chosen. For example, it has been shown that the upper limit of the high-frequency

range is typically determined by the noise floor of the amplifier [Miller et al., 2009a]; inclusion of frequency

bands beyond this upper bound when averaging could inadvertently reduce SNR. Furthermore, fine-grained

structure in ECoG spectra, which has been observed over narrow frequency bands [Gaona et al., 2011], may

be lost as a consequence of averaging over large frequency ranges.

3.3.3 ECoG decoding techniques

A wide range of decoding algorithms have been employed in the extraction of information from ECoG data.

These methods vary from discrete classifiers such as Näıve Bayes [Chestek et al., 2013], linear discriminant

analysis [Pistohl et al., 2012], and support vector machines [Wang et al., 2009, Kanas et al., 2014], to

continuous decoders such as linear regression [Kelly et al., 2012, Wang et al., 2013a], partial least squares

[Chao et al., 2010, Shimoda et al., 2012], Wiener filters [Nakanishi et al., 2013, Flint et al., 2014], the kalman

filter [Pistohl et al., 2008], and recurrent neural networks [Gunduz et al., 2007]. While this suggests that

most machine learning techniques can be applied to ECoG recordings, there are several characteristics of

these data which should be considered when choosing a particular decoding method. First, ECoG signals are

high-dimensional; it is not uncommon for spectral estimation to be performed with 5 Hz or smaller frequency

resolution, resulting in more than 600 features for a 32-electrode grid. Secondly, the nature of many human

ECoG experiments, particularly those performed pre-surgical clinical mapping, dictate that data must be
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collected in a short amount of time, leading to datasets with few observations with which decoders can

be trained. Combined, these characteristics can lead to over-fitting decoder parameters, resulting in poor

performance.

To combat this, a number of techniques, including feature selection, dimensionality reduction, and reg-

ularization can be employed. Feature selection, which refers to the removal of uninformative components

from the feature set used for decoding, has been employed for the prediction of arm movement trajectories

using partial least squares [Chao et al., 2010, Shimoda et al., 2012]. Additionally, the aforementioned feature

averaging process, in which the total feature set is reduced to the activity of a few pre-determined frequency

bands [Kubánek et al., 2009], can also be viewed as a type of feature selection. Dimensionality reduction,

including techniques such as Principal Components Analysis (PCA), and Factor Analysis (FA), reduces the

feature set size by projecting the original high-dimensional feature set space into a lower-dimensional space

and has been used in the prediction of finger movements from ECoG [Miller et al., 2009b, Degenhart et al.,

2011a]. Finally, regularization techniques, which impose a penalty on decoding weights solutions based on

characteristics of the weights themselves, have been utilized in the prediction of arm movement trajecto-

ries [Nakanishi et al., 2013], grasp [Pistohl et al., 2012, Flint et al., 2014], and cursor movement [Kelly et al.,

2012].

3.4 ELECTROCORTICOGRAPHIC BRAIN-MACHINE INTERFACES

Based on the encoding of movement-related information in ECoG recordings, the higher spatial resolution

and reduced susceptibility to artifact contamination compared to non-invasive recording modalities such as

EEG [Freeman et al., 2000, Slutzky et al., 2010], and access to human subjects undergoing pre-surgical

monitoring with subdural electrodes, researchers have investigated the potential for ECoG to support brain-

machine interface systems. While the majority of ECoG BMI studies have been conducted with human

subjects, non-human primate models have also been utilized to perform studies not feasible in a human

subject population. The following sections will provide a brief overview of some of the key findings of both

human and non-human primate BMI literature.

3.4.1 Human BMI studies1

Early ECoG BMI studies primarily focused on demonstrations of closed-loop control by human subjects. By

using motor cortical activity during real or imagined movements, it has been shown that human subjects are

capable of controlling computer cursors to perform one-dimensional [Leuthardt et al., 2004, Leuthardt et al.,

2006a, Felton et al., 2007] or two-dimensional [Schalk et al., 2008c] tasks. Consistent with the encoding

1Though several studies, notably [Hinterberger et al., 2008], have investigated ECoG BMIs as communication aids, this
work falls outside of the scope of BMI systems for the restoration of movement and will not be discussed further.
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of movement-related activity in ECoG recordings, these studies utilized somatotopic control strategies to

guide computer cursor movement. For one-dimensional control, this consisted of performing an overt or

imagined movement, such as opening and closing of the hand, to drive cursor movement in one direction

(e.g., the positive Y -direction) and relaxation to move the cursor in the opposing direction (e.g., the negative

Y -direction). For two-dimensional control, activity from a second overt or imagined movement was used to

guide cursor movement in the added dimension, with pairs of movement used to obtain 2D control taken from

somoatotopically-distant locations such as the tongue and the hand [Schalk et al., 2008c]. More recently,

it has been shown that ECoG can be used to control simple movements of a prosthetic limb, including by

an individual with moderate motor impairment (spasticity) [Yanagisawa et al., 2012]. However, it is worth

noting that in this study all subjects utilized overt arm and hand movements as the basis for closed-loop

control.

ECoG brain-machine interface studies in humans have also provided valuable insight into the cortical

processes underlying closed-loop brain control. Examination of activity during imagined somatotopic move-

ments has revealed that closed-loop feedback can enhance cortical modulation [Miller et al., 2010], suggesting

that subject learning may occur during the acquisition of ECoG-based BMI control. Human subjects have

also been found to be capable of learning closed-loop cursor control using auditory imagery [Wilson et al.,

2006, Felton et al., 2007], demonstrating the potential for non-motor cortical activity to serve as the neural

substrate for BMI systems. Finally, it has been shown that stable, multi-day control of a 1D ECoG BMI

system can be achieved using fixed decoding parameters, providing some evidence for the theorized stability

of ECoG activity [Blakely et al., 2009].

Unfortunately, most human ECoG studies, including work investigating the encoding of movement-related

information in ECoG, are conducted with subjects undergoing monitoring for intractable epilepsy. While

this provides access to a much larger subject population, the nature of studies performed in the epilepsy

monitoring unit (EMU) have a number of distinct disadvantages. First and foremost, studies in the EMU

are hindered by their reliance upon a non-target subject population. As individuals with epilepsy are able

to make overt movements, something that individuals with movement paralysis are incapable of doing, BMI

studies in the EMU typically rely on imagined movements to serve as the basis for closed-loop control. As

differences between imagined and attempted movements have been observed in individuals with paralysis

[Hotz-Boendermaker et al., 2008], it is unclear how brain-control results obtained with individuals with

epilepsy will generalize to the target clinical population for BMI systems. Secondly, research performed

in the EMU is limited by short study durations and low subject motivation on account of post-operative

pain and/or medication, making the study of BMI control over longer timescales difficult. In order to

fully determine the feasibility of ECoG BMI systems, an investigation into the ability of individuals with

movement paralysis to control such systems must be conducted.
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3.4.2 Non-human primate BMI studies

Though limited, a number of studies have used non-human primate models to conduct BMI studies not

feasible with human subjects. Foremost amongst these are investigations into learning during brain-machine

interface control. Such studies are typically not feasible with human subjects, as they require substantial

amounts of training time. It has been shown that through the course of multi-day BMI training, animals

are capable of de-correlating gamma-band ECoG activity between pairs of electrodes [Rouse and Moran,

2009, Rouse et al., 2013]. Such work is particularly important to the development of ECoG-based BMI

systems, as the lack of detailed kinematic information in ECoG suggests that some form of cortical adaptation

may ultimately be necessary to achieve high-performance closed-loop control.

In addition to enabling the study of learning and adaptation during ECoG BMI control, the ability to

conduct chronic studies with non-human primates has enabled the investigation of long-term stability of

ECoG signals. As ECoG recordings presumably reflect the activity of thousands of neurons, it is believed

they may be less sensitive to changes in activity from any individual neuron [Moran, 2010, Leuthardt et al.,

2004]. This has led some to postulate that ECoG may be capable of providing robust and stable recordings,

potentially eliminating the need for daily updating of decoding parameters. Several studies have begun to

shed light on this, demonstrating long-term offline decoding of movement kinematics from subdural [Chao

et al., 2010] and epidural [Shimoda et al., 2012] ECoG recordings using fixed decoding parameters. However,

to-date, long-term closed-loop control of an ECoG BMI system with a fixed neural decoder has not been

demonstrated.

3.5 CONCLUSIONS: ADVANCING THE CURRENT STATE OF ECOG BMI SYSTEMS

The capability of electrocorticography to record robust movement-related activity from the cortex, combined

with demonstrations of closed-loop BMI control, provides key evidence for the potential of ECoG to support

brain-machine interfaces. However, there are still several unanswered questions which must be addressed

before ECoG BMI technology can be fully translated to the clinical realm. The following chapters will

present work attempting to address several of these shortcomings and advance the current state of ECoG

brain-machine interfaces. First, the ability of individuals with movement paralysis to control an ECoG-

based BMI system will be assessed (Chapter 4). Second, the factors contributing to adaptation during the

acquisition of ECoG-based BMI control will be investigated (Chapter 5). Third, the capability of ECoG to

sustain robust, long-term closed-loop brain control will be evaluated (Chapter 6). Finally, a novel decoding

algorithm will be presented which attempts to improve the extraction of BMI command signals from ECoG

recordings through the incorporation of field-potential-specific correlation structure (Chapter 7).
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4.0 AN ELECTROCORTICOGRAPHIC BRAIN-MACHINE INTERFACE FOR

INDIVIDUALS WITH UPPER-LIMB PARALYSIS1

As mentioned in the previous chapter, while work with patients undergoing clinical brain mapping for

treatment of epilepsy or chronic pain has demonstrated that BMI control signals can be extracted from

ECoG recordings [Schalk et al., 2008c, Leuthardt et al., 2004, Acharya et al., 2010, Chao et al., 2010, Wang

et al., 2009, Kellis et al., 2010, Miller et al., 2009b, Yanagisawa et al., 2012], to-date successful BMI control

has not been demonstrated in individuals with movement paralysis. This chapter presents an investigation

into the feasibility of an ECoG-based BMI system in two individuals with upper-limb paralysis. High-

density ECoG grids were implanted subdurally over sensorimotor cortical areas of subjects for up to 28

days, during which they were trained to control 2D and 3D cursor movement using ECoG signals. We show

that subjects were able to voluntarily modulate their cortical activity to gain successful closed-loop control,

further validating the use of ECoG as a neural recording modality capable of supporting clinically-viable

BMI systems.

4.1 METHODS

4.1.1 Subjects and surgical procedures

All experimental procedures were approved by the Institutional Review Board at the University of Pittsburgh

and followed all guidelines for human subject research. Written informed consent was obtained before

initiating any research procedures.

Subject 1 (S1) was a 30-year-old right-handed male with tetraplegia caused by a complete C4 level

spinal cord injury seven years prior to the study. Subject 2 (S2) was a 54-year-old right-handed male with

amyotrophic lateral sclerosis (ALS) diagnosed 9 years prior to enrollment in the study. Both subjects were

capable of neck and shoulder control but could not initiate voluntary arm or hand movement. In addition,

subject S2 was ambulatory at the time of the study.

In order to guide placement of ECoG electrode grids, functional magnetic resonance imaging (fMRI)

1A version of this chapter has been published presenting the results of closed-loop BMI control by an individual with spinal
cord injury [Wang et al., 2013a]. This chapter expands upon this publication by adding results from a second subject.
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Figure 4.1: ECoG grid design and location. A. ECoG grid design for subjects S1 and S2. Gray circles repre-

sent recording electrodes. Red and green circles represent represent upside-down (skull-facing) reference and

ground electrodes, respectively. B. Post-operative x-ray imaging showing implanted ECoG grids. C. Loca-

tion of ECoG electrodes on the cortical surface. Electrode locations were determined using post-operative

head x-ray, computed tomography (CT), structural MRI images, and intra-operative images. In addition,

electrode localization for Subject S1 also utilized the coordinates of exposed electrodes recorded by the sur-

gical navigation system (Brainlab AG, Feldkirchen, Germany) during the grid implantation surgery [Hermes

et al., 2010, Miller et al., 2007b]
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was conducted prior to the implantation surgery in order to localize subjects’ sensorimotor cortex. Sub-

jects were presented with videos of isolated arm and hand movements (e.g. elbow flexion/extension, wrist

flexion/extension, hand grasp/release) interleaved with visual fixation (rest) blocks and were instructed to

attempt to make the movements depicted by the stimuli. Functional images were collected using a T2*-

weighted echoplanar imaging (EPI) pulse sequence (31 oblique axial slices, in-plane resolution 2mm× 2mm,

3mm slice thickness, no gap, TR = 2000ms, echo time TE = 29ms, FA = 90◦, GRAPPA = 2, ma-

trix size = 96 × 96, field of view FOV = 192mm). Stimulus presentation and synchronization with the

MRI scanner was performed using E-Prime (Psychology Software Tools, Inc., Sharpsburg, PA, USA). Raw

blood-oxygen-level dependent (BOLD) responses were convolved with a hemodynamic response kernel and

converted to statistical t-maps comparing BOLD activity between attempted movement and rest epochs

for each stimuli using the SPM8 toolbox (Wellcome Department of Imaging Neuroscience, London, United

Kingdom). In order to compare the cortical activity across movements, these t-maps were then coregistered

with the anatomical MRI scan for each subject, thresholded, and rendered on the cortical surface using

the Freesurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) and the SUMA toolbox for

AFNI [Cox, 1996]. Target electrode grid implantation locations were chosen based on the correspondence of

this fMRI activity with known anatomical landmarks in order to maximize coverage of sensorimotor cortex.

Subjects were implanted with high-density ECoG grids (PMT Corp, Chanhassen, MN USA) consisting of

32 (subject S1) or 34 (subject S2) platinum disc electrodes embedded in a 2cm× 4cm silicone sheet (Figure

4.1A). Electrodes were either 2mm or 3mm in diameter and were spaced 4mm apart. Electrode grids were

implanted subdurally over the hand and arm areas of left sensorimotor cortex through a small craniotomy

approximately 3cm× 3cm in size. Following placement of the electrode grid, the dura was reapproximated

and the bone flap was replaced and affixed to the skull using titanium straps. Electrode leads were tunneled

subcutaneously to the chest and exited the skin below the left clavicle. Figures 4.1B and 4.1C show post-

operative x-ray images of the implanted electrode grids and the approximate location of the electrodes on

the cortical surface2. Per U.S. FDA 510(K) regulations, electrode grids were explanted after no longer than

30 days.

4.1.2 Neural recording and preprocessing

Neural signals were recorded and digitized at 1200Hz using the g.USBamp biosignal amplification system

(Guger Technologies, Austria) and processed in 33ms blocks, resulting in a 30Hz system update rate. Upside-

down (skull-facing) electrodes served as reference and ground electrodes for all recordings (Figure 4.1A). Raw

time-domain signals were notch-filtered at 60Hz, 120Hz, and 180Hz to remove power line noise artifacts.

Spectral power of the filtered signals was the computed using the Burg autoregressive method [Kay and

2While electrodes were located primarily over the pre-central gyrus for Subject S2, for Subject S1 electrodes were placed
over the post-central gyrus. Though motor cortical areas were initially targeted for this subject, the presence of a venous lake
over a substantial region of the the target implantation site necessitated more posterior placement of the electrode grid than
originally planned.
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Marple, 1981] over the [0Hz – 200Hz] frequency range (25th order, 10Hz frequency bands) using 300ms

(subject S1) and 100ms (subject S2) sliding windows. Instantaneous power estimates for each feature were

log-transformed and then converted to pseudo Z-scores relative to a baseline resting condition typically

collected at the beginning of each testing session [Edwards et al., 2009, Ray et al., 2008b]. All signal

processing, neural decoding, and experiment control was performed using Craniux, a LabVIEW-based open-

source BMI software suite [Degenhart et al., 2011b] (See Appendix A).

4.1.3 Experimental tasks

Subjects performed two types of experimental tasks: movement screening tasks and closed-loop brain control

tasks. Movement screening tasks were performed following grid implantation in order to characterize cortical

modulation in response to attempted movements and to identify the command strategy to be used during

closed-loop control. Following this, subjects performed brain-control tasks in which they controlled the

movement of either a computer cursor or a prosthetic limb using control signals derived from their cortical

activity. The following sections describe these tasks in detail.

4.1.3.1 Motor screening task Motor screening tasks were used to identify attempted movements elic-

iting strong cortical modulation which would ultimately serve as the basis for closed-loop BMI control.

Subjects were situated in front of a display and presented with an approximately first-person view of iso-

lated, planar movements performed by either an avatar (Subject S1) or an experimenter (Subject S2). Stimuli

consisted of movements of the shoulder, elbow, wrist, and hand; the full stimulus set consisted of shoulder

ab/adduction, shoulder flexion/extension, shoulder internal/external rotation, elbow flexion/extension, wrist

flexion/extension, wrist pronation/supination, whole-hand grasp, and flexion/extension of individual fingers.

Subjects were instructed to attempt to make the movement depicted by the stimulus.

For Subject S1, movements of the avatar were presented in a continuous manner, with joint angle position

driven by a 0.5 Hz sinusoid such that each movement phase (e.g. flexion) was 1s in duration. A single

movement sequence (stimulus) consisted of 5 repetitions (cycles) of this movement. For Subject S2, individual

movements consisted of an initial hold period (2s) the first movement phase (e.g. flexion, 1s in duration),

a second hold period (2s), and the second movement phase (e.g. extension, 1s in duration), with an entire

movement sequence consisting of 5 repetitions of this. As opposed to the movement sequence used for Subject

S1, this movement sequence allowed cortical responses to the individual movement phases to be isolated. For

both subjects, individual movement sequences for selected stimuli were presented in a pseudorandom order

interleaved with 2s inter-trial interval periods.

4.1.3.2 Cursor control task The majority of brain-control sessions consisted of a center-out cursor

control task in a virtual environment [Taylor et al., 2002, Moran and Schwartz, 1999]. During this task,

subjects were given control of a “cursor”, rendered as a sphere in a three-dimensional workspace, and
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instructed to guide this cursor towards spherical targets. The virtual environment utilized a right-handed

Cartesian coordinate system where the X -axis pointed to the subjects right, the Y -axis pointed upward,

and the Z -axis pointed toward the subject. The center of the cursor was constrained to remain within the

workspace boundary at all times.

Subjects performed the cursor control task with both 2D and 3D target configurations (i.e. 2D and 3D

tasks), beginning with the 2D task and progressing to the 3D task once satisfactory 2D performance had

been achieved. The 2D target configuration consisted of a set of 4 (subjects S1, S2) or 8 (Subject S1 only)

uniformly-distributed targets presented in the X-Y plane, while the 3D target configuration (subjects S1, S2)

consisted of two 4-target planes at situated different Z -axis coordinates. Cursor movement was constrained

to remain in the X-Y plane for the 2D task. Trials consisted of presentation of one pseudo-randomly selected

target in the workspace; the subject was required to acquire this target with the cursor in order to complete

the trial; trials were considered successful if the cursor overlapped with the target at any point (i.e. no target

hold time was enforced). Maximum trial durations of 5s/7s (2D/3D) and 2s/3s were enforced for subjects

S1 and S2, respectively, with trials in which the subject was not able to acquire the target before the end of

the trial considered as failed trials. The size of the cursor and targets were adjusted in order to control task

difficulty.

4.1.3.3 Prosthetic arm control task Towards the end of the implantation period, subjects performed

a prosthetic arm task where they attempted to control the movement of the Modular Prosthetic Limb

(Subject S1, The Applied Physics Laboratory, Laurel, MD) [Harris et al., 2011], or the DEKA Arm (Subject

S2, DEKA Research and Development Corporation, Manchester, NH). This was intended only as a brief

demonstration since a more extensive study was precluded by the limited duration of the protocol.

Subjects controlled the endpoint velocity of the hand, with joint-angle feedback information used to

determine the position of the arm in the workspace. For the Modular Prosthetic Limb (MPL), joint angle

feedback was converted to 3D position by proprietary software provided by the manufacturer, with the

endpoint of the limb defined as a point 2 cm from the center of the palm. For the DEKA Arm, joint angle

positions were converted to 3D endpoint position using a 2-link forward kinematics model [Waldron and

Schmiedeler, 2008]. Wrist position was either controlled automatically with the hand in a open configuration

(Subject S1), or fixed in a neutral position with the hand in a closed-fist configuration (Subject S2).

Targets were arranged in either a 4-target 2D (Subject S1) or 8-target 3D (Subject S2) configuration,

and consisted of virtual cubes defined within the workspace of the arm. For both subjects, foam objects

were used to indicate the approximate location of targets. For Subject S1, foam blocks were placed behind

the virtual targets (e.g. away from the subject) and the subject was instructed to move the palm of the arm

such that it was in front of the blocks. For Subject S2, foam balls were presented in the workspace using a

custom automatic target presentation system, which used a set of linear stages to advance targets into the

workspace. These targets were arranged such that the location of the target ball approximately coincided
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with that of the virtual target. The position of the arm in the workspace, rather than the collision of the

arm with the presented targets, was used to assess task completion.

4.1.4 Neural signal decoding and calibration

Normalized time-frequency data were used as the basis for real-time brain control. Dura-facing electrodes,

as well as those containing high amounts of noise indicative of poor electrical connectivity, were removed

from the set of electrodes used for control. In addition, the [0–40] Hz frequency range was removed for all

electrodes prior to decoding. The resultant feature sets consisted of 448 (28 electrodes × 16 frequency bands)

and 432 (27 electrodes × 16 frequency bands) neural features for subjects S1 and S2, respectively.

Intended velocity command signals were predicted from instantaneous feature activities in real-time using

Equation 4.1,

v̂ = Wf (4.1)

where W ∈ RM×D is a decoding weight matrix mapping the D-dimensional feature vector f ∈ RD×1 onto

the M -dimensional command velocity vector v̂ ∈ RM×1. For Subject S1, linear regression was used to find

W using Equation 4.2:

W = VF† (4.2)

where V = [v1, . . . ,vN ] and F = [f1, . . . , fN ]> are concatenated matrices of the N time-averaged single-

trial observations of the desired movement direction and associated neural feature activity during decoder

calibration (see below). The superscript “†” denotes the Moore-Penrose pseudoinverse.

For Subject S2, the Optimal Linear Estimator (OLE) [Salinas and Abbott, 1994, Kass et al., 2005] was

used to find weight matrix W. This process began by first fitting an encoding model for each neural feature

of the form:

fi = b0 + b>i d + ε (4.3)

where fi is the instantaneous feature activity for the ith neural feature, b0 is a constant offset term, d ∈ RD×1

is the intended movement direction, and bi ∈ RD×1 is the preferred direction vector relating movement

direction to neural activity. Preferred direction vectors from all features were collected into a single matrix

B = [b1, . . . ,bN ], from which the decoding weight matrix was found according to Equation 4.4.

W = (B>B)−1B> (4.4)

Decoder calibration was performed in different manners for both subjects. For Subject S1, initial decoder

calibration was performed using 40 trials in which the cursor was automatically moved to the target under

computer control (observation-based calibration). Subsequently, calibration sessions consisted of 16-trial

blocks of closed-loop cursor control, during which the subject was instructed to direct the cursor to the

target as quickly as possible without correcting for movement errors. In order to ensure neural decoding
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weights changed gradually during calibration, updated decoding weights were calculated as a weighted sum

of the old decoding weights and those estimated from the newly-acquired calibration data (Equation 4.5):

Wnew = (1− α)Wold + αWcalib (4.5)

where Wold were the set of decoding weights used for control during calibration, Wcalib were the set of

weights resulting from the current decoder calibration block (Equation 4.4), and Wnew were the resultant set

of weights to be used for subsequent brain control trials. Parameter α specifies the proportion of the resultant

decoder weights contributed by the calibration data (Wcalib); a value of α = 0.2 was used throughout the

study. Updating weights in this manner allowed progression from 2D to 3D control tasks to occur seamlessly:

decoding weights for the added (e.g. third) dimension were initialized to zero, and the calibration procedure

proceeded as previously described.

Calibration was typically performed in 5-block sequences (“rounds”), with decoding weights updated after

each block. Following this, the subject performed the closed-loop cursor control task until performance (as

determined by success rate) was deemed to plateau, at which point an additional round of decoder calibration

was performed. By interleaving decoder calibration and closed-loop control, the subject was trained to use

the BMI in a “coadaptive” manner. This allowed adaptation on the part of both the neural decoder and

the subject to occur gradually, and attempted to allow these adaptation processes to reinforce, rather than

interfere with, one another. Such coadaptative approaches to BMI training have been successfully used in

other BMI studies [Taylor et al., 2002, Orsborn et al., 2012].

For Subject S2, decoder calibration occurred more frequently and was commonly performed at the start

of each experimental testing session. Calibration sessions were was run in 80-trial (2D) or 96-trial (3D)

blocks. As with Subject S1, initial decoder calibration was performed using an observation-based calibration

procedure. Subsequent decoder calibration was performed under closed-loop control when possible, though

observation-based control was used in cases where closed-loop performance using the most recent decoder

was poor. In order to optimize the coadaptation process, we attempted to identify the optimal value of α in

Equation 4.5 by minimizing the cross-validated sum-of-squared error over the full range of possible α values.

However, in practice this always resulted in an optimal α value of 1.0; thus, updated decoding weights for

Subject S2 were solely based on the data collected during the most recent decoder calibration block.
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4.1.5 Computer assistance during closed-loop control

Computer assistance was used to facilitate brain control training by attenuating the component of the cursor

control signal perpendicular to the vector from the cursor to the target by an experimenter-controlled assist

factor [Velliste et al., 2008]. To accomplish this, the instantaneous movement control signal was decomposed

into two components: one pointing towards the target and a second, perpendicular to the target direction,

representing the instantaneous movement error (see Equations 4.6 and 4.7). The updated (assisted) control

signal is then found according to Equation 4.8.

vc = vt + ve , vt ⊥ ve (4.6)

vt =
pt − pc
‖pt − pc‖

(
v>t

pt − pc
‖pt − pc‖

)
(4.7)

v̂c = vt + γ(vc − vt) (4.8)

Here, vc is the instantaneous (unassisted) control signal, vt and ve are target and error components of the

control signal, pc and pt are the positions of the cursor and target, γ is the assist level, and v̂c is the updated

control signal. An conceptual illustration of this process is provided by Figure 4.2. At full computer assist

(γ = 0), the cursor is constrained to remain on a line from the starting position to the target, while at γ = 1,

the cursor is under full brain control (i.e. no constraints on cursor movement).

vt vc

veγve

v̂c

pc

pt

Figure 4.2: Illustration of computer assistance of cursor movement. Instantaneous cursor and target positions

are indicated by the black and green circles, respectively. The instantaneous control signal vector vc is

decomposed into components pointing towards the target (vt) and a perpendicular error vector (ve). The

error vector is attenuated by the assist level γ and added back to the target vector to produce the assisted

control signal vector v̂c.
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Figure 4.3: Illustration of the somatotopic control strategy. Circles represent target directions, with the

associated attempted movement shown next to the target (e.g. ‘M1’, ‘M2’, ‘M3’). ‘+’: attempted movement,

‘ø’: relaxation. Strategies are shown for both two-dimensional (left) and three-dimensional (middle, right)

cursor tasks. For the sake of clarity, control strategies for the 3D cursor task has been broken into that used

for targets in the far plane (away from the subject, negative Z-axis), and that used for targets in the near

plane (towards the subject, positive Z-axis).

The level of computer assistance provided to the subjects was adjusted depending on performance. For

Subject S1, assistance was used only during initial attempts at brain control, while for Subject S2, computer

assistance was used more regularly throughout brain control sessions. In general, for Subject S2 the assist

level was set to 1.0 immediately following decoder calibration, and was reduced by a set amount (typically 0.1

or 0.25) if the success rate over a block of trials was at least 70%. Controlling the assist level in this manner

attempted to keep the subject motivated while still providing sufficient visual feedback of the subject’s actual

performance to allow for improvements in performance.

4.1.6 Determination of BMI control strategies

In order to generate directionally-modulated cortical activity to serve as the basis for closed-loop control,

subjects were instructed to use a somatotopic control strategy in which they associated attempted arm

and hand movement with desired cursor movement direction. Time-frequency responses during the motor

screening task (see Section 4.1.3.1) were examined to identify those movements eliciting robust gamma-band

modulation. A subset of movements were then chosen which exhibited spatially-distinct patterns of gamma-

band activity. Once three such movements were identified, they were mapped onto the cursor movement

workspace as shown by Figure 4.3.

The first two movements were arranged in a “push–pull” configuration to control movement of the cursor

along the X -axis such that attempting Movement 1 would move the cursor in the positive X -direction and
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attempting Movement 2 would move the cursor in the negative X -direction. Movement in the positive Y -

direction was generated by attempting Movements 1 and 2 simultaneously, while movement in the negative Y -

direction movement was generated by relaxing (i.e. no movement). For three-dimensional control, Movement

3 was directly mapped to the Z -axis such that attempting Movement 3 would move the cursor in the positive

Z -direction. Alternative somatotopic mappings have been used for EEG control which utilize a one-to-one

correspondence between attempted movements and cardinal movement directions (e.g. Movement 1: Positive

X -direction, Movement 2: Positive Y -direction) [Foldes and Taylor, 2013]. However, such mappings result in

complicated movement combinations for movements along the cardinal axis directions, potentially increasing

the cognitive burden on the subject. By orienting attempted movements in the manner described by Figure

4.3, it was hoped that movement along the cardinal axis directions placed the lowest cognitive burden on

the subject possible.

4.1.7 Characterization of brain-controlled cursor movement

A number of performance metrics were used to characterize different aspects of brain control performance,

including success rate, corrected success rate, time to target, path efficiency, movement error, and fraction

of time spent at the boundary of the workspace. Success rate was defined as the number of successful trials

divided by the total number of trials. The corrected success rate was calculated in a similar manner, but

with successful trials defined as the number of trials in which the presented target was acquired before the

cursor would have made contact with any of the other possible targets would all targets have been presented

simultaneously. Only the success rate metrics were calculated using all trials; the remaining metrics were

calculated using data from successful trials only.

Time to target was defined as the average time from the onset of brain control until first contact with

the target. Path efficiency (also referred to as the distance ratio [Simeral et al., 2011]) was defined according

to Equation 4.9,

PE =
1

N

N∑
i=1

1

‖pit − c‖ − rt

Mi−1∑
j=1

‖pj+1
c − pjc‖ (4.9)

where PE is the path efficiency, N is the number of trials, Mi is the number of time points in the ith trial,

pjc is the position of the cursor at the jth time point, pit is the position of the target for the ith trial, c is

the center of the workspace, and rt is the radius of the target. Lower path efficiency scores indicate more

accurate trajectories; a path efficiency score of 1 indicates a perfectly straight trajectory. Movement error

was defined as the mean perpendicular distance of the cursor position to the ideal straight-line trajectory

normalized by the distance to the target, and was calculated according to Equation 4.10,

ME =
1

N

N∑
i=1

1

Mi(‖pit − c‖ − rt)

Mi∑
j=1

{
‖pjc − c‖2 −

[
(pjc − c)>

pit − c

‖pit − c‖

]2} 1
2

(4.10)

Both path efficiency and movement error metrics seek to quantify the deviation of cursor trajectories from an

ideal, straight-line path. Finally, the boundary fraction, indicating the fraction of time in which the cursor
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was at the edge of the workspace boundary, was calculated as the number of time points in which the cursor

was at a workspace boundary divided by the total number of time points. This metric provided a means

with which to assess subjects’ reliance upon the workspace boundary constraint to successfully complete the

task.

4.2 RESULTS

4.2.1 Cortical Activity during motor screening

ECoG signals recorded from the sensorimotor cortex of both subject demonstrated robust modulation dur-

ing attempted arm and hand movement, even in the absence of overt movements. Figures 4.4 and 4.5

show time-frequency responses for all recording electrodes during selected attempted movements for sub-

jects S1 and S2, respectively. Typical event-related synchronization (ERS, increase in spectral power) of

the gamma/high-gamma frequency bands and event-related desynchronization (ERD, decrease in spectral

power) for the sensorimotor rhythm (10–30 Hz), tightly time-locked to stimulus onset, was observed for

a number of attempted movements. Spatial patterns of gamma/high-gamma modulation followed the ex-

pected somatotopic organization of motor (Subject S2) and sensory (Subject S1) cortices, with the centroids

of activity for distal movements medial and those of proximal movements lateral on the pre-central (S2) and

post-central (S1) gyri.

Once cortical responses to attempted arm and hand movements were examined, a subset of movements

were chosen to serve as the basis for cursor control using a somatotopic control strategy as described in

Section 4.1.6. For Subject S1, attempted hand flexion and elbow flexion were chosen for two-dimensional

control (Figure 4.6, top row, first column) and attempted hand flexion, elbow flexion, and wrist flexion were

chosen to serve as the basis of three-dimensional control (Figure 4.6, top row, second and third columns).

For Subject S2, attempted thumb flexion and middle finger flexion were chosen for two-dimensional control

(Figure 4.6, bottom row, first column) and attempted thumb flexion, little finger flexion, and elbow flexion

were chosen to serve as the basis of three-dimensional control (Figure 4.6, bottom row, second and third

columns). For Subject S1, the control strategy used for 2D control was preserved when transitioning to 3D

control; though this was attempted for Subject S2 poor 3D performance necessitated using a new set of

attempted movements for 3D control (see Section 4.2.2).
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Figure 4.4: Averaged electrode grid time-frequency responses across all electrodes for Subject S1 for selected

attempted movements. Each plot shows the time-frequency response for a single electrode averaged across

repetitions of one attempted movement. Instructed kinematic profiles are indicated by the black line in each

plot. (A) Hand flexion/extension. (B) Elbow flexion/extension. (C ) Wrist flexion/extension. Electrode

layout and numbering are as depicted in Figure 4.1.
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Figure 4.5: Averaged electrode grid time-frequency responses across all electrodes for Subject S2 for selected

attempted movements. Each plot shows the time-frequency response for a single electrode averaged across

repetitions of one attempted movement. Instructed kinematic profiles are indicated by the black line in each

plot. (A) Thumb flexion/extension. (B) Middle finger flexion/extension. (C ) Little finger flexion/extension.

(D) Elbow flexion/extension. Electrode layout and numbering are as depicted in Figure 4.1. Note that

the qualitative differences in time-frequency responses for Subject S2 as compared to Subject S1 (Figure

4.4), particularly the time course and strength of modulation are in large part due to the different spectral

estimation window lengths used for the two subjects.
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Figure 4.6: Control strategies utilized to obtain closed-loop BMI control. Circles represent target directions,

with the associated attempted movement shown next to the target. ‘+’: attempted movement, ‘ø’: relaxation.

Strategies are shown for both two-dimensional and three-dimensional cursor tasks. For the sake of clarity,

control strategies for the 3D cursor task has been broken into that used for targets in the far plane (away

from the subject, middle column), and that used for targets in the near plane (towards the subject, right

column).
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4.2.2 Cortical control of cursor movement

The general progression of the cursor control task, including success rate, is shown by Figure 4.7. Subjects

began with a 4-target 2D task and progressed to an 8-target 3D task once satisfactory 2D control was

achieved. Subject S1 also performed an 8-target 2D task between 4-target 2D and 8-target 3D control; this

was not performed for Subject S2 in favor of transitioning to 3D control as quickly as possible3.

For Subject S1, control performance using the decoder calibrated on the first day of brain control (day

15) decreased as the computer assist level was decreased (Figure 4.7A). Only after removing the assist

altogether and re-calibrating the decoder on Day 19 were improvements in performance observed. Additional

calibration sessions on days 20 and 24 facilitated further improvements in performance. On day 24, the

subject transitioned to 3D cursor control. Three-dimensional brain control was built upon the subject’s

existing 2D control capability in two ways. First, the existing association between attempted movement and

2D cursor movement direction was preserved, while a third attempted movement, wrist flexion/extension,

was added to control cursor movement along the Z-axis. Second, the existing set of decoding weights used

during 2D control was used during decoder calibration for the 3D task (see Equation 4.5). This attempted

to prevent the decoding weights from changing rapidly during initial periods of 3D control, and ensure the

control strategy used for 2D control was preserved during 3D control. It is worth noting that for Subject S1,

3D cursor control performance declined after testing day 25, likely due to a change in the control strategy

employed by the participant. On testing day 26, the subject reported that they had begun using cursor

movement imagery (i.e. imagining the size of the cursor increase/decrease) to drive movement of the cursor

in the Z-dimension; performance during this period was poor. Though efforts were made to transition back

to the original 3D control strategy, the subject was not able to re-establish satisfactory control.

Subject S2 also began with a 4-target 2D cursor control task. Unlike Subject S1, the assist level was

reduced much more rapidly and the decoder re-calibrated more often for Subject S2 in an effort to increase

the rate at which the subject acquired control (Figure 4.7B). Early efforts at control utilized a thumb/index

finger control strategy; after 4 days of mediocre performance this was changed to a thumb/middle finger

strategy on day 11, which yielded improved performance. The subject transitioned to a 3D task on Day 13,

but required two additional changes in control strategy before peak 3D performance was achieved using a

thumb/little finger/elbow control strategy on day 25. Unlike Subject S1, initial plans for closed-loop control

with subject S1 were to use three different finger movements as the basis for 3D control, with attempted elbow

movement serving as the basis for the grasp dimension of a 4 degree-of-freedom reach-and-grasp prosthetic

arm task. However, attempts at achieving satisfactory 3D control using only attempted finger movement

were ultimately unsuccessful, and this strategy was abandoned in favor of the thumb/little finger/elbow

control strategy used at the end of the 3D control testing.

3As Subject S1 was the first subject participating in the study, we were unsure whether 3D cursor control would be possible
using ECoG. Thus, we elected to fully evaluate Subject S1’s 2D cursor control ability using an 8-target task in the event that
3D control was unsuccessful. For Subject S2, we were confident of the ability of the subject to achieve 3D control (based on
the results from Subject S1) and thus chose to forgo the 8-target 2D task.
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Figure 4.7: BMI control performance across days for subjects S1 (A) and S2 (B). BMI control success rate

(black) and computer assist level (red) is plotted as a function of testing day. Each point represents a single

“block” of closed-loop control consisting of 40 trials. Alternating white and gray regions mark individual

days, while vertical blue lines mark the occurrence of neural decoder calibration. White bars above each

panel indicate the somatotopic control strategy used for that period, while the green, yellow, and red bars

indicate the task difficulty. Days without success rate data (days 16, 22, and 23 for Subject S1, days 8, 15,

22 for Subject S2) were planned days off.
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Averaged cursor movement trajectories for subjects S1 and S2 are shown by Figure 4.8. Qualitatively,

2D trajectories were relatively straight for both subjects, with the exception of those towards the left target

for Subject S2, which exhibited a curved trajectory. Curvature in the movement trajectories was more

pronounced during 3D control. In particular, cursor movements during 3D control generally began with

movement in the X–Y plane before moving in the Z -dimension. This suggests that subjects utilized a “step-

wise” strategy in which they first attempted to move the cursor to the appropriate location in the X–Y

plane before the Z -dimension. This may have been due to subjects’ greater familiarity with the 2D control

strategy, or an effort on the part of the subjects to reduce the cognitive burden of the task by performing

movement in the X–Y plane and Z -dimension in a sequential manner.

As expected, increases in the spectral power of the gamma/high-gamma range and decreases in the

sensorimotor rhythm were observed surrounding the onset of cursor movement. Time-frequency responses

during closed-loop cursor control reflected the instructed control strategies; several representative examples

of such responses are shown by Figure 4.9 for selected electrodes from subjects S1 and S2. For example,

time-frequency responses for electrode 15 exhibited increases in gamma-band activity for targets in the

upper-right quadrant of the workspace (Figure 4.9B). This is consistent with the response of electrode 15

during attempted elbow flexion/extension (Figure 4.4B), and the instructed control strategy (Figure 4.6, top-

left), which associated attempted elbow flexion with movements to the upward and right targets. Consistent

with the subjects’ ability to successfully control the cursor, pairs of electrodes were observed which exhibited

modulation for different target directions. For Subject S1, time-frequency data from electrode 5 (Figure 4.9A)

and electrode 15 (Figure 4.9B) were preferentially modulated for the upper-left and upper-right quadrants

of the workspace, respectively. For Subject S2, electrodes 5 (Figure 4.9C) and 27 (Figure 4.9D) showed

exhibited similar responses.

Performance metrics for 2D and 3D cursor control are summarized in Table 4.1. Though Subject S1

achieved marginally higher success rates than Subject S2, Subject S2 performed substantially more trials.

Success rates for Subject S1 were 0.87 (2D, calculated over 176 trials) and 0.71 (3D, 160 trials), while those

for Subject S2 were 0.78 (2D, 680 trials) and 0.68 (3D, 2, 160 trials). Corrected success rates for Subject S1

(0.82/0.70, 2D/3D) and S2 (0.77/0.48) suggest that Subject S1 was capable of more accurate cursor control;

path efficiency, movement error, and boundary fraction values corroborate this, as all metrics are higher for

Subject S2 than S1, indicating greater deviation from straight-line trajectories. However, time-to-target was

substantially higher for Subject S1 (2.27s/3.25s, 2D/3D) than for S1 (0.72/0.86). Figure 4.10 shows success

rate, time-to-target, and path efficiency broken down by target. Non-uniformity across targets was observed

across these metrics, indicative of difficulty by the subjects to reach specific targets. For example, Subject

S1 had difficulty acquiring the rightmost target in the workspace (Target 1) during 2D control, as evidenced

by a lower success rate, longer time-to-target, and higher path efficiency for this target relative to others.

Similarly, Subject S2 had difficulty acquiring the leftmost target (Target 3) during 2D control; this is also

evidenced by the curved trajectory towards this target (Figure 4.8, second row, first column).
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Figure 4.8: Average trajectories during two and three-dimensional cursor control. Averaged trajectories

(successful trials only) are shown for subjects S1 (top row) and S2 (bottom row) for the 2D (left column)

and 3D (middle and right columns) tasks. Colors of the individual trajectories correspond to their respective

targets. Trajectories for the 3D task have been separated into three views (front, top, and side) for the

sake of clarity. Trajectories towards targets in the far plane of the workspace are indicated by dashed lines.

Note that each 3D view results in the obstruction of one or more targets; while the targets themselves are

obscured the trajectories are plotted as normal. Thus, some pairs of trajectories appear to terminate at the

same target (e.g. all pairs of trajectories toward each target in the middle-left column); one of each of the

pairs of these trajectories correspond to the obstructed (non-visible) target.
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Figure 4.9: Averaged time-frequency data for selected electrodes during two-dimensional cursor control. In-

dividual panels represent time-frequency data for a single electrode, averaged across trials, towards a single

target. Responses are shown for the following: (A) Subject S1, electrode 5, (B) Subject S1, electrode 15, (C )

Subject S2, electrode 5, (D) Subject S2, electrode 27. The layout of the time-frequency plots corresponds

to the position of the targets in the workspace (see Figure 4.8, left column). Dashed black lines indicate the

onset of cursor control.
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Table 4.1: Cursor control performance metrics. Number of trials, success rate, corrected success rate, time-to-

target, path efficiency, movement error, and boundary fraction are provided for selected peak performance

periods for 2D and 3D control. Data for time-to-target, path efficiency, movement error, and boundary

fraction are presented as mean ± standard deviation.

Subject S1 Subject S2

2D 3D 2D 3D

Trials 176 160 680 2160

Success rate 0.87 0.71 0.78 0.68

Success rate (corrected) 0.82 0.70 0.77 0.48

Time to target (s) 2.27± 1.02 3.25± 1.31 0.72± 0.45 0.86± 0.71

Path efficiency 1.95± 0.74 2.45± 0.95 1.97± 0.98 5.11± 3.96

Movement error 0.20± 0.09 0.30± 0.15 0.28± 0.22 0.70± 0.38

Boundary fraction 0.00± 0.00 0.01± 0.04 0.01± 0.03 0.17± 0.21

4.2.3 Prosthetic limb control

After achieving satisfactory 3D cursor control, subjects performed closed-loop control of either the MPL

(Subject S1) or the DEKA Arm (Subject S2). For Subject S1, arm control was performed on the last testing

day prior to explantation of the electrode grid (day 27), and was limited to a brief demonstration consisting

of 15 trials of a two-dimensional center-out task. Successful trajectories from these trials are shown by Figure

4.11; the subject was able to achieve a success rate of 0.467 (7/15 trials). Though performance was poor, 3D

cursor control during testing days 26 and 27, the decoding weights from which were used for arm control,

was also poor as a result of a change in the control strategy by the participant4.

Subject S2 performed DEKA Arm control sessions on testing days 24, 25, and 26. For these three days,

the subject began with a 3D cursor control task; once satisfactory control had been achieved (typically after

200 – 300 trials), the subject was transitioned to arm control. As with Subject S1, decoding weights obtained

during 3D cursor control were used for arm control. Computer assistance was used to aid the acquisition

of arm control. Though performance was relatively high during computer assisted trials, the subject was

only able to achieve a maximum unassisted success rate of 0.417 over 48 trials; trajectories for these trials

are shown in Figure 4.12. Though performance for targets in the near target plane was relatively poor,

acquisition of of the right, left, and downward targets in the far target plane was fairly reliable.

4See Section 4.2.2.
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Figure 4.10: Performance metrics by target location during closed-loop cursor control. Success rate (left

column), time to target (middle column), and path efficiency per target (right column) are shown for

subjects S1 and S2 during 2D and 3D control. Dashed black lines indicate the average across all targets

(all plots), while dashed red lines (time-to-target plots only) indicate the maximum trial duration. Error

bars (time-to-target and path efficiency plots) indicate mean ± SEM. Differences in time to target and path

efficiency metrics were statistically significant for all conditions (one-way ANOVA, p < 0.01).
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10 cm

Figure 4.11: Arm control trajectories for Subject S1. The subject was able to achieve a success rate of 0.467

over 15 trials of unassisted arm control.
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Figure 4.12: Arm control trajectories for Subject S2. The subject was able to achieve a success rate of 0.417

over 48 trials. Trajectories towards the far plane of targets (i.e. away from the subject) are indicated by

dashed lines.
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4.3 DISCUSSION

The presented study investigated the feasibility of an ECoG-based BMI in two individuals with upper

limb paralysis. We show that subjects were capable of voluntarily modulating cortical activity in motor

and somatosensory cortex during attempted movement, and that, consistent with previous fMRI studies,

the somatotopic orgainzation of this activity was preserved from that exhibited by able-bodied individuals

[Cramer et al., 2005, Shoham et al., 2001]. High-gamma band activity, believed to represent local neuronal

population activity [Crone et al., 2006, Miller et al., 2009a], was found to be tightly coupled to attempted

arm and hand movement, as expected from previous reports of motor cortical neuronal activity recorded with

intracortical microelectrode arrays in individuals with tetraplegia [Hochberg et al., 2006, Hochberg et al.,

2012, Truccolo et al., 2008, Collinger et al., 2012]. Furthermore, we have shown that subjects were able to

modulate their cortical activity using a somatotopic control strategy in order to achieve three-dimensional

cursor control. Finally, and perhaps most importantly, the entirety of the study, including implantation and

explantation of the electrode grid, was performed without complications.

When comparing control performance between subjects, we found that Subject S1 was more accurate

(lower path efficiency, movement error, and boundary fraction) while Subject S2 was faster (shorter time-to-

target). While it may be tempting to attribute such differences in performance to methodological differences

between subjects, it is difficult to draw conclusions from such a comparison. Performance differences may be

the result of any number of factors, including grid placement, decoder calibration, target size, cursor gain,

subject instruction or motivation. Future work is needed in order to determine the effect of these factors on

BMI control quality.

Interestingly, we find that both somatosensory (Subject S1) and motor (Subject S2) cortical activity

can be used to control an ECoG-based BMI system. The ability of Subject S1 to voluntarily modulate

somatosensory cortical activity is particularly notable, if not surprising. Activation of both pre and post-

central gyri is often observed in individuals with chronic spinal cord injury during attempted movement

[Cramer et al., 2005, Shoham et al., 2001, Hotz-Boendermaker et al., 2008] and in able-bodied individuals

during motor imagery in the absence of overt movement [Miller et al., 2010, Christensen et al., 2007, Lacourse

et al., 2005, Porro et al., 1996]. Such somatosensory cortical activity may represent efferent copies of

motor control signals [Christensen et al., 2007, Crapse and Sommer, 2008, Gritsenko et al., 2007], or reflect

engagement of sensory imagery [Hotz-Boendermaker et al., 2008]. Somatotopic organization of sensory cortex

has been shown in both humans [Penfield and Rasmussen, 1950, Penfield and Jasper, 1954, Penfield and

Boldrey, 1937] and non-human primates [Merzenich et al., 1978]. More recent work has shown that functional

magnetic resonance imaging reveals somatotopic organization of both primary motor and somatosensory

cortex during hand movements, with somatosensory cortex exhibiting less overlap between cortical volumes

responsive to different finger movements [Hlušt́ık et al., 2001]. This suggests that somatosensory cortex
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may actually be a more ideal source of cortical activity for a BMI based on a somatotopic control strategy

than primary motor cortex, though more work is needed in characterizing the relative organization and

discriminability of activity in these regions during attempted movement.

Previous studies have demonstrated ECoG-based BMI control by able-bodied individuals undergoing

presurgical brain mapping [Schalk et al., 2008c, Leuthardt et al., 2004, Miller et al., 2010]. To our knowledge,

the brain control results presented here are the first demonstration of continuous and porportional three-

dimensional BMI control using ECoG. We believe that our results can be attributed to several factors.

First, we utilized custom “high-density” electrode grids with both smaller electrode diameter and inter-

electrode spacing than standard ECoG grids. This design allows for the sampling of more localized neuronal

populations on account of the smaller electrode area and greater spatial resolution on account of the decreased

inter-electrode distance. We believe that combined, these characteristics allow for better sampling of the

somatotopic organization of sensorimotor cortex. Such sampling is likely critical for the development of high

degree-of-freedom BMIs utilizing somatotopic control strategies, where cortical activity related to a number

of different attempted movements must be discriminated.

Second, the decoding algorithms and decoder calibration process used in the presented work likely con-

tributed to the ability of subjects to obtain closed-loop control. Whereas other ECoG BMI studies have

utilized manual weight assignment to map neural features onto BMI command signals [Leuthardt et al.,

2004, Schalk et al., 2008c], we took advantage of population-level decoding algorithms, such as the Optimal

Linear Estimator (OLE). Such algorithms are able to learn decoding parameters from calibration data with-

out the need for experimenter intervention. As these methods utilize all available neural features, they are

able to take advantage of the redundant encoding of attempted movements in the population, generating

output control signals as weighted summations of all input features and thereby increasing the signal-to-noise

ratio of the predicted output. In addition, the co-adaptive training process used, which alternated between

periods of decoder calibration and fixed-decoder BMI practice, likely facilitated incremental learning by the

participant [Ganguly and Carmena, 2009] and gradual refinement of decoder weights. Previous work has

shown that incremental updates to decoding parameters over short time scales results in both a convergence

of parameters and improvements in performance [Orsborn et al., 2012]. Though the co-adaptative process

we utilized differed from this in that we updated parameters less frequently and over longer time scales,

we nonetheless observe that performance improvements are driven by both decoder calibration and fixed-

decoder closed-loop training. A more thorough examination of the contributions of decoder calibration and

fixed-decoder training to improvements in ECoG BMI performance is presented in Chapter 5.

Finally, the duration of the study likely played a substantial role in the ability of subjects to obtain closed-

loop control. Previous demonstrations of two-dimensional cursor control using ECoG in patients undergoing

presurgical mapping have been limited to less than an hour of training time [Schalk et al., 2008c]. In contrast,

subjects in the presented study performed BMI control experiments for as many as 17 testing days, increasing

their exposure to the BMI task and providing an opportunity for performance improvements resulting from
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the aforementioned co-adaptive training process to be retained across experimental sessions. Though our

study was not specifically designed to assess the stability of ECoG-based BMI control over time, we observed

that decoding parameters could often be retained from one day to the next with no discernible change in

performance. This finding is in agreement with other work showing stable offline prediction of movement

kinematics from ECoG recordings for up to 9 months with fixed decoding parameters [Chao et al., 2010].

However, further work is needed in order to characterize the nature of day-to-day instabilities in chronic

ECoG recordings.

Unfortunately, our efforts at translating closed-loop cursor control to the control of a prosthetic limb

yielded limited success. Increases in cognitive load have been shown to reduce BMI control performance

[Foldes and Taylor, 2013]. It may be the case that the presence of the physical limb and targets presented

additional distractions, potentially increasing cognitive burden placed on subjects. However, a more likely

cause for the poor performance may be a conflict between cortical activity during attempted movement

and that occurring while observing movements of the prosthetic limb. Congruent activity between action

observation and action execution has been demonstrated in ECoG recordings [Collinger et al., 2014], and

well as in a number of different recording modalities (see Chapter 2.2.1). When using a somatotopic control

strategy based on attempted arm and hand movements to control a prosthetic limb, attempted movements

used to control the limb will inevitably differ from the resultant movements which are observed by the

subject. Further work is required investigating the effect of such discrepancies on cortical activity and its

implications for somatotopic BMIs.

The difficulties encountered during prosthetic limb experiments allude to problems which may arise

in the development of a generalizable BMI system. Performance of a clinically-viable BMI, particularly

those seeking to restore arm and hand function, must be invariant to differences in application and/or

context. Differences in motor cortical activity have been observed in goal-directed and non-goal-directed

movements [Nishitani and Hari, 2000, Järveläinen et al., 2004]; such differences suggest that a BMI system

trained on one task may not necessarily perform well on a different task. It may be the case that a BMI based

on a somatotopic control strategy, which breaks the association between observation-related and attempted-

movement-related cortical activity, could result in a system which is more generalizable across applications.

The extent to which ECoG-based somatotopic BMI control can be generalized through training, however,

remains to be seen.

Unfortunately, our findings are not without their limitations. Though the duration of electrode implan-

tation in the presented work is longer that that of previous human ECoG BMI studies, the necessity that

electrode grids be removed after 30 days precluded the us from answering a number of questions of interest.

As the goal of the study was to demonstrate reliable closed-loop control, in-depth study of the stability of

ECoG recordings or a detailed investigation of the learning processes underlying ECoG control were forgone

in favor of attempting to maximize the degrees-of-freedom which could be obtained with an ECoG BMI. De-

spite this, the three degrees-of-freedom obtained in the presented work are lower than that which has been
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demonstrated using penetrating microelectrodes [Collinger et al., 2012]; further study into the maximum

number of independent control signals which can be extracted from motor cortex using ECoG is required.

Such efforts may be aided by the use of new electrode technology which increases the spatial resolution of

cortical surface recordings [Viventi et al., 2011]. Finally, the capability of ECoG to sustain long-term, stable

BMI performance, as has recently been demonstrated for up to a year using multi-unit activity and local

field potentials [Flint et al., 2013], must be evaluated.

It is difficult to draw conclusions from a direct comparison between the results obtained from subjects

S1 and S2. Such comparisons are limited by the numerous methodological differences between the subjects,

including electrode implant location (sensory cortex versus motor cortex), decoder calibration procedure

(closed-loop versus observation), and decoding algorithm (linear regression versus OLE). In addition, the

cause of limb paralysis also differed between the two subjects (SCI for Subject S1; ALS for Subject S2).

It is possible that any one of these differences could have effects on the characteristics of the BMI control

achieved by the subjects; additional carefully-controlled studies are required in order to assess the effects of

these differences on closed-loop control. Despite these differences, however, the fact that both subjects were

capable of successfully achieving closed-loop control provides some evidence for the robustness of ECoG BMI

systems.

In conclusion, we have shown that individuals with upper-limb paralysis can successfully control a BMI

using ECoG with up to three degrees of freedom. Our results, combined with the promise of ECoG to pro-

vide robust, long-term recordings [Chao et al., 2010, Blakely et al., 2009] with relatively low hardware and

software requirements suggest that an ECoG BMI system is a viable solution for the restoration of function

for individuals with movement paralysis. We believe that further development into novel decoding algo-

rithms, BMI user training approaches, and fully-implantable devices with telemetry [Rouse et al., 2011], will

ultimately allow for longer studies with more subjects, further facilitating the translation of this technology

to the clinical realm.
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5.0 CORTICAL AND DECODER ADAPTATION EFFECTS DURING

ELECTROCORTICOGRAPHIC BRAIN-MACHINE INTERFACE SKILL ACQUISITION

In the previous chapter it was shown that individuals with upper-limb paralysis were able to successfully

control a brain-machine interface with control signals derived from ECoG recordings from sensorimotor

cortex. While this serves as an important demonstration of the feasibility of an ECoG BMI system, we

nonetheless desire to advance such systems through the identification of means by which control performance

can be improved. In this chapter, we investigate the contribution of decoder calibration and fixed-decoder

training to changes in closed-loop control performance, and attempt to characterize the extent of neural

adaptation which can occur during acquisition of ECoG-based BMI control.

5.1 BACKGROUND

An understanding of the learning processes underlying the acquisition of closed-loop brain control is essential

to advancing the state-of-the-art of BMI systems. Though limited, some studies are beginning to address the

concept of learning during BMI skill acquisition. Early work by Fetz and colleagues has demonstrated the

ability of non-human primates to learn to control the firing rate of motor cortical neurons when provided with

visual or auditory feedback about their instantaneous activity [Fetz and Finocchio, 1975, Fetz and Baker,

1973, Fetz, 1969]. More recently, it has been shown that subjects can learn to control three-dimensional

cursor movement using population SU/MUA activity [Taylor et al., 2002]. In this study, improvements

in performance were observed both within and across testing days, and were facilitated both by iterative

neural decoder updates and the adaptation of the tuning characteristics of individual neurons. Moreover,

performance was found to continue to improve even after fixation of decoding parameters. The ability of

subjects to learn fixed decoding parameters was further demonstrated by Ganguly and Carmena, where

it was found that stable BMI control could be obtained over a 19-day period using a fixed decoder, with

prominent learning effects observed during initial brain control sessions [Ganguly and Carmena, 2009]. This

work has been extended to the realm of ECoG, where closed-loop BMI training has been found to allow

non-human primates to de-correlate micro-ECoG signals from neighboring electrodes [Rouse and Moran,

2009, Rouse et al., 2013].
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Taken together, these studies provide strong evidence that improvements in brain control performance are

driven by both subject adaptation and by refinement of the neural decoder. However, little is known about

the relationship of these two processes to improvements in control performance; if the decoder calibration

process can be tailored to work with the learning process of the subject, it is possible that both the subject

and the decoder can quickly converge upon a stable BMI control solution. Therefore, it is important to

understand the contributions of each of these agents (decoder and user) on improvements in BMI control.

Unfortunately, these two processes are inextricably related, as neural decoder improvements are driven

by the user’s ability to consistently modulate their neural activity and user learning is driven by feedback

provided by the neural decoder. To improve performance the user must interact with the decoder calibration

process, stabilizing their neural responses during calibration to allow optimal decoding parameters to be

estimated, then potentially adapting these parameters during closed-loop control. Recently, a number of

groups have begun formalizing such “co-adaptive” BMI training algorithms, showing that iterative updates

of decoding parameters based off of closed-loop control can be used to achieve successful cursor control by

non-human primates [Gage et al., 2005, Mahmoudi and Sanchez, 2011, Gilja et al., 2012, Orsborn et al.,

2012, Dangi et al., 2014].

Our work demonstrating closed-loop ECoG-based brain control by individuals with upper-limb paralysis

presented in the preceding chapter utilized a two-agent co-adaptation training process which alternated

between periods of decoder calibration and participant training. During decoder calibration, the human

participants were instructed to adopt a consistent cursor control strategy while not correcting for errors in

the resultant cursor movement. During training, the participant was then allowed to correct for errors in

the resultant cursor movement to maximize performance. This approach aims to improve the BMI training

process by attempting to ensure that only one agent (i.e. the neural decoder or participant) is adapting at a

given time. However, in order for this to be effective, the human subject must be capable of modulating their

neural activity in a consistent manner during decoder calibration. Furthermore, the participant must also

be capable of adapting their neural activity during fixed decoder trials in order to maximize performance.

To better understand the effects of decoder calibration and subject learning on brain-control performance,

we analyzed data from subjects S1 and S2 during periods of BMI skill acquisition.
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5.2 METHODS

We utilized two approaches to investigate the factors contributing to the acquisition of closed-loop brain

control. First, we evaluated the contributions of fixed-decoder training and decoder calibration to improve-

ments in performance by identifying changes in the angular error of BMI command signals. Secondly, we

sought to uncover evidence of neural adaptation during brain control acquisition by tracking changes in the

preferred directions of ECoG spectral features over time. The following section will describe these analyses

in detail.

5.2.1 Angular error estimation during closed-loop cursor control

5.2.1.1 Datasets In order to assess the contribution of fixed-decoder training and decoder calibration

on changes in control signal angular error, we analyzed data from subjects S1 and S21 during closed-loop

brain control. Figure 5.1 depicts the data sets chosen for analysis for both subjects. For each of the analysis

conditions (fixed-decoder and calibration), we selected pairs of 80-trial blocks which either surrounded a

period of fixed decoder training or were immediately before and after decoder calibration. For the sake of

simplicity, we refer to these as pre-adaptation and post-adaptation trial blocks for each condition, where the

adapting agent is either the subject (fixed-decoder training) or the decoder (decoder calibration).

Trials in which computer assistance was provided to subjects were excluded from analysis in order to

eliminate effects resulting from the masking of the true (unassisted) cursor movement. Furthermore, we

restricted our analysis to data collected during two-dimensional cursor control, both due to the small amount

of 3D control data available for Subject S1 as well as the difficulties in resolving bias for 3D control signals.

In total, we analyzed 3 fixed-decoder and 4 calibration data sets for Subject S1, and 3 fixed-decoder and 2

calibration data sets for Subject S2. All data sets analyzed for Subject S1 utilized a consistent “hand/elbow”

control strategy, but varied in the number of targets (either 4-target or 8-target). For Subject S2, data sets

contained trials utilizing either “thumb/index” or “thumb/middle” control strategies during a 4-target task.

5.2.1.2 Analysis Control signal angular error was estimated by computing the angle between the instan-

taneous control signal vector and the idealized target direction for each trial. To do this, we first computed

normalized target directions according to Equation 5.1:

p̂t =
pt − pc
‖pt − pc‖

, (5.1)

where p̂t is the normalized target direction and pt and pc are normalized target and center positions,

respectively. Using these direction vectors, we calculated the target angle as:

θt = atan2(pt,y, pt,x), (5.2)

1See Chapter 4 for detailed subject descriptions.
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Figure 5.1: Data sets used in angular error analysis. Trial sets used in angular error analysis are shown

for subjects S1 (A) and S2 (B). Black dots indicate the brain control success rate calculated over 40-trial

blocks, while the shaded orange regions marked by black arrows indicate the trial blocks used in analysis. ‘F ’:

Fixed-decoder training. ‘C ’: Decoder calibration. Subscripts indicate the set number for a given condition

(fixed-decoder training or decoder calibration).

61



where atan2(y, x) is the quadrant-resolved arctangent of the vector defined by [x, y]>:

atan2(y, x) =



arctan y
x x > 0

arctan y
x + π y ≥ 0, x < 0

arctan y
x − π y < 0, x < 0

+π
2 y > 0, x = 0

−π2 y < 0, x = 0

(5.3)

A rotation matrix R for each target direction could then be calculated using Equation 5.4:

Rt =

cos θt − sin θt

sin θt cos θt

 , (5.4)

which was then used to rotate instantaneous control signal vectors yi towards the origin:

ŷi = Ryi. (5.5)

Instantaneous angular error estimates, θe, were then calculated according to Equation 5.6:

θe = atan2(yi,y, yi,x), (5.6)

where yi,x and yi,x are the x and y components of the instantaneous control signal vector. Calculating

angular error in this manner preserved the sign of the angle between p̂t and yi, allowing biases in error to

be resolved.

For each data set, instantaneous angular error was calculated over the [0 − 500 ms] interval relative

to the onset of cursor control and merged across trials to generate pre and post-adaptation angular error

distributions. Pairs of distributions were generated for all trials, irrespective of target direction, as well as

for individual targets. For purposes of comparison, we characterized angular error distributions by both

their mean (µpre, µpost) and standard deviation (σpre, σpost), and used equations 5.7 and 5.8 to evaluate the

change in the mean and standard deviation of angular error distributions:

∆µ = |µpost| − |µpre|, (5.7)

∆σ = σpost − σpre. (5.8)

Two-tailed t-tests were used to determine the presence of bias for each distribution (i.e. µpre = 0,

µpost = 0), while two-sample t-tests assuming unequal variances were used to determine the significance of

differences in the means between pre and post-adaptation distributions (i.e. µpre = µpost). A two-sample

F -test was used to determine the significance of differences in variance between the pre and post-adaptation

distributions (i.e. σ2
pre = σ2

post). All statistical comparisons were considered significant at p < 0.05.
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5.2.2 Estimation of preferred directions for ECoG spectral features

5.2.2.1 Dataset To investigate cortical adaptation during acquisition of closed-loop brain control, we

examined data from Subject S12 during two-dimensional brain control. As shown by Figure 5.1A, 2D brain-

control training for Subject S1 encompassed 7 testing days spanning 10 calendar days. All 2D brain control

trials (excluding decoder calibration trials), 3, 640 in total, were used in our analysis.

We investigated two electrode subsets in an effort to better understand the potential influences of control

strategy on cortical adaptation. As Subject S1 used a consistent “hand/elbow” somatotopic strategy during

all 2D brain control trials, we defined two electrode subsets on the basis of their responses during attempted

hand and elbow movements (see Figure 4.4). The “elbow” electrode subset included electrodes 7, 15, 23, and

31, while the “hand” subset included electrodes 4, 12, 20, and 28. The analyses described in the following

section were preformed on these two subsets in addition to the full set of all electrodes.

5.2.2.2 Analysis Cortical adaptation during closed-loop brain control was evaluated by estimating the

preferred directions (PDs) of ECoG spectral features during blocks of brain control trials. Normalized time-

frequency data for each trial was averaged over the [0− 500 ms] time window relative the the onset of cursor

control. Data from ground and reference electrodes, as well as the activity of the [0− 10 Hz] frequency band

for each electrode, was excluded from analysis. Averaged time-frequency data for each of the remaining

features were Z-scored and fit to a 2D cosine tuning model:

xi = bi,0 + bi,xdx + bi,ydy + ε, (5.9)

where xi is the normalized activity for the ith neural feature, dx and dy are the x and y components of the

normalized target direction vector d = [dx, dy]>, bi,0 is a constant offset, and bi = [bi,x, bi,y]> is the preferred

direction of the ith feature. All neural features not found to be significantly tuned to target direction at

p < 0.05 were excluded from further analysis. To compare PDs across all features, we converted preferred

direction vectors to angles using Equation 5.10:

θi = atan2(by, bx). (5.10)

Distributions of preferred directions were compared for selected 2D brain control trial sets to identify

changes in the encoding of intended movement direction as a result of closed-loop training. On account

of differences in the spatial specificity of the low (f < 40 Hz) and high (f ≥ 40 Hz) frequency bands, we

analyzed PD distributions for these bands independently. A two-sided rank sum test was used to determine

the significance of differences in the medians of PD distributions for early and late brain control trials, while

a two-sample F -test was used to compare the variance of these distributions.

To investigate changes in the encoding of intended movement direction in the neural population, we

also computed PDs for non-overlapping 40-trial blocks for all 2D brain control trials. Preferred directions

2We did not analyze brain control data from Subject S2 due the relatively short duration of 2D training combined with
frequent changes in the brain control strategy employed by the subject.
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across trial blocks were compared by calculating the average PD vector for each electrode from the set of

significantly-tuned features independently for both the low and high frequency bands. Averaged PD vectors

for each electrode were then converted to angles using Equation 5.10 and re-referenced to the PD for the

first 40-trial block:

∆θi(k) = θi(k)− θi(1), (5.11)

where θi(k) is the PD of the ith electrode for trial block k, θi(1) is the PD of the ith electrode for the first

trial block, and ∆θi(k) is the change in PD of the ith electrode between the first and kth blocks. Calculated

∆θi(k) values were then averaged across all electrodes for each trial block and regressed against block number

to determine if the PD distributions for the low and high frequency bands changed in a systematic manner

over the course of brain control training. This was accomplished by fitting PD changes calculated using

Equation 5.11 to the following model:

∆θ(k) = mk + ∆θ0, (5.12)

where ∆θ(k) is the predicted mean change in preferred direction for the kth trial block, m is the rate of change

of the preferred direction, and ∆θ0 is a PD offset term. We regressed the average number of tuned features

for each trial block against the block number in order to determine if the number of significantly-tuned

neural features changed as a result of training in a similar manner.

5.3 RESULTS

5.3.1 Changes in angular error during fixed-decoder training and decoder calibration

In order to identify the effects of fixed-decoder training and decoder calibration on brain-control performance,

we examined both cursor command signals and distributions of angular error surrounding periods of subject

adaptation (fixed-decoder training) and decoder adaptation (decoder calibration). Figures 5.2 and 5.3 depict

control signal and angular error distributions for Subject S1 during fixed-decoder training and decoder

calibration, respectively, while Figures 5.4 and 5.5 depict control signal and angular error distribution for

Subject S2. A summary of all angular error distributions and p-values from associated statistical tests is

provided by Table 5.1.
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Figure 5.2: Control signal error for Subject S1 before and after fixed-decoder training. (A) Mean control signal

vectors (solid lines) for each target before fixed-decoder training. Dashed lines indicate ideal (straight-line)

control signal vectors towards each target. Shaded regions around mean control signal vector endpoints

represent one standard deviation covariance ellipses. (B) Mean control signal vectors after fixed-decoder

training. (C ) Histograms of control signal angular error before (black) and after (red) fixed-decoder training.

Results are provided for fixed-decoder data sets F1, F2, and F3 (see Figure 5.1).
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Figure 5.3: Control signal error for Subject S1 before and after decoder calibration. (A) Mean control signal

vectors for each target before decoder calibration. (B) Mean control signal vectors after decoder calibration.

(C ) Histograms of control signal angular error before and after decoder calibration. Results are provided for

calibration data sets C1, C2, C3, and C4 (see Figure 5.1).
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Figure 5.4: Control signal error for Subject S2 before and after fixed-decoder training. (A) Mean control

signal vectors for each target before fixed-decoder training. (B) Mean control signal vectors after fixed-

decoder training. (C ) Histograms of control signal angular error before and after fixed-decoder training.

Results are provided for calibration data sets F1, F2, and F3 (see Figure 5.1).
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Figure 5.5: Control signal error for Subject S2 before and after decoder calibration. (A) Mean control signal

vectors for each target before decoder calibration. (B) Mean control signal vectors after decoder calibration.

(C ) Histograms of control signal angular error before and after decoder calibration. Results are provided for

calibration data sets C1 and C2 (see Figure 5.1).
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Table 5.1: Summary of angular error distributions. Calculated mean and standard deviation values are provided for all angular error distributions.

In addition, p-values for all statistical tests comparing pre and post-adaptation distributions are shown. Values listed in bold indicate those statistical

comparisons considered significant at p < 0.05.

Subject Dataset µpre µpost σpre σpost p(µpre = 0) p(µpost = 0) p(µpre = µpost) p(σ2
pre < σ2

post) p(σ2
pre > σ2

post)

S1
F1 −1.92 −2.30 88.33 80.84 0.453 0.326 0.912 0.999 0.001
F2 6.47 −13.03 63.36 67.35 4.22e−4 3.16e−11 3.79e−11 0.0174 0.983
F3 4.72 0.17 103.20 65.37 0.114 0.929 0.197 1.000 1.14e−54

S1

C1 0.34 6.47 81.15 63.36 0.887 4.22e−4 0.0398 1.000 9.09e−18
C2 −11.46 −2.13 70.87 101.61 2.67e−8 0.469 0.0092 2.77e−35 1.000
C3 −4.18 4.72 90.28 103.20 0.109 0.114 0.0246 1.91e−6 1.000
C4 14.48 −2.94 73.47 67.71 1.42e−11 0.133 1.82e−9 0.998 0.0024

S2
F1 −3.96 −5.02 68.19 65.23 0.0539 0.0098 0.706 0.931 0.0686
F2 10.22 12.15 73.90 99.40 4.23e−6 8.12e−5 0.610 1.49e−22 1.000
F3 −11.53 −14.80 52.97 55.45 2.83e−12 2.94e−18 0.161 0.0674 0.932

S2
C1 −17.01 −5.63 65.43 75.92 5.98e−18 0.0120 1.23e−4 2.55e−7 1.000
C2 4.01 7.92 76.64 70.54 0.0882 1.88e−4 0.216 0.997 0.0031
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Upon examination of these data, several characteristics become apparent. First, we observe instances

where both fixed-decoder training and decoder calibration result in decreases in the variability and overall

error of the angular error distributions. For example, average control signal vectors for dataset F3 from

Subject S1 exhibit a strong bias towards the lower-right quadrant of the workspace before decoder training

(Figure 5.2A); after training these vectors are much more closely aligned with their respective targets (Figure

5.2B). This is confirmed by an examination of the angular error distributions before and after fixed-decoder

training for this dataset (Figure 5.2C). Here, we find that the distribution of angular error after fixed-

decoder training exhibits a prominent peak near θ = 0 which was not present in the pre-training distribution,

indicative of a significant decrease in the variance of the angular error distribution as a result of fixed-decoder

training (see Table 5.1). Similar changes in error distributions were observed for dataset C1 from Subject

S1 (Figure 5.3) and dataset C2 from Subject S2 (Figure 5.5).

Surprisingly, in several instances decoder calibration resulted in an increase in overall angular error for

Subject S1. For datasets C2 and C3 for Subject S1, control signals after calibration exhibited a strong

bias towards the lower-right quadrant of the workspace (Figure 5.3B). This is also evident in the pre and

post-calibration angular error distributions for these datasets (Figure 5.3C), with the post-calibration error

distributions found to be more variable than the pre-calibration distributions. This is in contrast to all other

calibration datasets, where angular error was either decreased or unaffected following decoder calibration.

While the cause for the increase in angular error post-calibration for these datasets is unclear, it is important

to note that these calibration sessions were performed shortly following a change from a 4-target to an 8-

target cursor control task. It may be the case that this change in task difficulty adversely affected the ability

of Subject S1 to control the computer cursor, resulting in poorly-estimated decoding parameters.

In order to identify if consistent changes in angular error were evident across datasets, we examined the

change in the mean and standard deviation of angular error distributions for individual target directions

before and after decoder calibration and fixed-decoder training for each subject; these results are shown by

Figure 5.6. By plotting the mean and standard deviation of the pre and post-adaptation distributions as

a two-dimensional vector, we can compare the observed angular error changes to those expected by pure

bias correction (Figure 5.6A) or variance reduction (Figure 5.6B). In general, we find that angular error

exhibited greater changes from the pre to post-adaptation distributions for Subject S1, as indicated by the

larger magnitude of angular error change vectors for Subject S1 (Figure 5.6C,D) than Subject S2 (Figure

5.6E,F). However, we did not observe consistent changes in the angular error distributions for either subject

which were consistent with that expected from bias correction or variance reduction.

To better investigate changes in angular error during adaptation periods, we plotted the change in the

standard deviation between pre and post-adaptation distributions (∆σ, Equation 5.8) against that of the

mean of the same distributions (∆µ, Equation 5.7) for individual targets; these results are shown by Figure

5.7. By charactering angular error distributions in this manner, systematic reductions in bias and/or variance

could be identified by the specific quadrant of the ∆µ−∆σ space in which data points for specific data sets
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Figure 5.6: Change in angular error distributions during adaptation. Pre and post-adaptation angular

error distributions are represented as a single vector for each target direction, with the tail of each vector

representing the mean and standard deviation of the pre-adaptation distribution and the head representing

mean and standard deviation for the post-adaptation distribution. Colors represent angular error change

vectors for individual target directions. (A) Conceptual example of angular error change vectors expected

as a result of a reduction in control signal bias. (B) Conceptual example of angular error change vectors

expected as a result of a reduction in control variance. (C ) Angular error change vectors resulting from

decoder calibration for Subject S1. (D) Angular error change vectors resulting from fixed-decoder training

for Subject S2. (E ) Angular error change vectors resulting from decoder calibration for Subject S1. (F )

Angular error change vectors resulting from fixed-decoder training for Subject S2.
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were found to reside (Figure 5.7A). While we find that this analysis confirms our observations for specific data

sets, such as the reduction in variance for dataset C1 for Subject S1 (Figure 5.7B) and the bias correction

observed during adaptation period F3 for Subject S1 (Figure 5.7C), neither decoder calibration or fixed

decoder training resulted in systematic changes in either the mean or variability of control signal angular

error across all datasets.

5.3.2 Cortical adaptation during closed-loop training

Analysis of changes in angular error during closed-loop brain control provides a means by which control

performance improvements can be investigated in more detail. However, as demonstrated by the findings in

Section 5.3, investigating changes in BMI command signals alone makes dissociating the effects of decoder

calibration and subject training on performance changes difficult. In an effort to overcome this limitations,

we investigated the neural encoding of intended movement direction during closed-loop brain control by

tracking changes in the preferred directions of ECoG spectral features over the course of 2D brain control

training.

To accomplish this, changes in preferred direction were calculated for non-overlapping 40-trial blocks

for all 2D brain control trials. Figure 5.8A shows the trend in average change in preferred direction for

both the low and high-frequency bands as a function of trial block. A significant linear trend for both

the low and high-frequency bands was found (mL = 0.539◦/block, pL = 2.76e−7; mH = 0.539◦/block,

pH = 3.00e−6), corresponding to predicted counter-clockwise rotation of 49◦ for both the low and high-

frequency bands. We also examined whether the number of significantly-tuned features significantly changed

as a function of trial block (Figure 5.8B). The number of significantly-tuned low-frequency spectral features

was not found to vary significantly as a function of trial block (mL = 0.062 features/block, pL = 0.327),

while the number of high-frequency spectral features was found to vary significantly as a function of trial

block (mH = 0.318 features/block, pH = 0.0212).

Trends in preferred direction change and the number of significantly-tuned neural features were also

examined for “elbow” and “hand” electrode subsets. As shown by Figure 5.8C, significant linear relationships

between preferred direction change and trial block were found for both the low and high-frequency bands

(mL = 0.747◦/block, pL = 9.16e−6; mH = 0.656◦/block, pH = 8.96e−22) for the subset of electrodes

preferentially responsive to attempted elbow movement, though a significant relationship between the number

of significantly-tuned features and trial block was not found for either frequency band (Figure 5.8D: mL =

0.000◦/block, pL = 0.986; mH = 0.089◦/block, pH = 0.054). Interestingly, when the preferred direction

analysis was restricted to this electrode subset, the seemingly gradual change in preferred direction shown

by Figure 5.8A appeared to be a sudden shift occurring at trial block 56, coinciding with the decoder

calibration performed on testing day 19 (see Figure 5.1A). When the change in preferred direction was

examined for the subset of electrodes preferentially responsive to attempted hand movement, we observed

that while a significant linear trend was found to exist for the low-frequency band, the high-frequency band
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Figure 5.7: Effect of decoder and subject adaptation on angular error distributions. Shown are changes
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(B) Change in angular error distributions as a result of decoder calibration for Subject S1. (C ) Change in

angular error distributions as a result of fixed-decoder training for Subject S1. (D) Change in angular error

distributions as a result of decoder calibration for Subject S2. (E ) Change in angular error distributions as

a result of fixed-decoder training for Subject S2.
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Figure 5.8: Trends in preferred direction changes during closed-loop training. Shown are trends in the

change in preferred direction (left column) and the number of significantly-tuned features (right column)

over the course of 2D brain-control training for Subject S1. Data are shown for all electrodes (top row),

electrodes responsive to attempted elbow movement (middle row), and electrodes responsive to attempted

hand movement (middle row). Dots indicate values calculated over 40-trial blocks, with lines indicating the

results of a linear regression fit. Solid lines indicate those fits with a slope significantly different than zero

at p < 0.05; dashed lines indicate non-significant fits. Blue and red colors indicate results for low-frequency

(f < 40 Hz) and high-frequency (f ≥ 40 Hz) features, respectively. (A) Change in preferred direction for

all electrodes. (B) Change in number of tuned features for all electrodes. (C ) Change in preferred direction

for the elbow electrode subset. (D) Change in number of tuned features for the elbow electrode subset. (E )

Change in preferred direction for the hand electrode subset. (F ) Change in number of tuned features for

the hand electrode subset.
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no longer exhibited a significant relationship between preferred direction change and trial block (Figure

5.8E: mL = 0.400◦/block, pL = 8.57e−4; mH = −0.002◦/block, pH = 0.994). As with the subset of elbow

electrodes, a significant change in the number of tuned features as a function of trial block was not found for

the hand electrode subset (Figure 5.8D: mL = 0.024◦/block, pL = 0.062; mH = 0.008◦/block, pH = 0.762).

Noting the apparent shift in preferred direction occurring near decoder calibration on testing day 19, we

examined the distribution of preferred directions of all significantly-tuned features for two specific sets of

trials: (1) the initial and final 80 trials of brain control, and (2) the 480 trials surrounding (240 before/240

after) decoder calibration on day 19. Figure 5.9A shows the distribution of preferred directions of the

significantly-tuned features for the low frequency (f < 40 Hz) and high frequency (f ≥ 40 Hz) bands for

the first 80 trials of 2D brain control, while Figure 5.9B shows the PD distributions for the final 80 trial

of brain control; Figure 5.9C provides a histogram of preferred direction angles for the same data. For

initial brain control trials, the distribution of the preferred direction for the high-frequency features was

found to be centered in the upper-right quadrant of the workspace (θ̄H,pre = 62.8◦), while that of the low-

frequency features was found to be approximately centered in the negative-Y direction (θ̄L,pre = 254.7◦).

However, after 7 days of 2D cursor control, the preferred directions for all features was found to rotate

counter-clockwise, with the distributions of the high and low-frequency features now centered in the upper-

left (θ̄H,post = 124.9◦) and lower-right (θ̄L,post = 315.4◦) quadrants of the workspace, respectively. This

rotation corresponded to changes in the means of the preferred direction distributions of 60.7◦ and 62.1◦ for

the low and high-frequency bands. Additionally, we observed a significant increase in the variance of the

preferred direction distribution for the high-frequency band after 2D brain control (p = 1.48e−5); a similar

effect was not found for the low-frequency band (p = 0.51).

When preferred directions were examined surrounding decoder calibration on testing day 19, we observe

a similar shift between the pre-calibration (Figure 5.9D) and post-calibration (Figure 5.9E) distributions.

As seen in Figure 5.9F, the shift in the preferred direction distribution for the low-frequency band (θ̄L,pre =

244.4◦, θ̄L,post = 297.4◦, ∆θ̄L = 53.1◦) was similar to that occurring between the initial and final brain

control trials, while that of the high-frequency band (θ̄H,pre = 88.5◦, θ̄H,post = 115.1◦, ∆θ̄H = 32.1◦) was

found to be less than that occurring throughout the course of 2D brain control training. However, preferred

direction distributions for the post-calibration (Figure 5.9E) and final brain control (Figure 5.9B) trials were

found to be similar to one another, suggesting little cortical adaptation occurred between decoder calibration

on day 19 and the final 2D brain control trials on day 24.

We next investigated the spatial distribution of preferred directions for both the initial/final and pre/post-

calibration sets of 2D brain control trials. As shown by Figure 5.10B, electrodes in the medial half of the

electrode grid exhibited similar preferred directions during early brain control trials, while few electrodes in

the lateral half of the grid were found to be significantly-tuned to target direction. However, by the end

of 2D brain control training, preferred directions for medial electrodes were found to have rotated counter-

clockwise, with electrodes in the lateral aspect of the electrode grid now exhibiting a substantial number
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Figure 5.9: Change in distributions of preferred directions during 2D computer cursor control. (A) Preferred

directions for significantly-tuned spectral features for the first 80 trials of 2D brain control. Blue vectors

indicate preferred directions for low-frequency (f < 40 Hz) features, while red vectors indicate preferred

directions for high-frequency (f ≥ 40 Hz) features. (B) Preferred directions for the last 80 trials of 2D

brain control. (C ) Histograms of preferred directions for early and late brain control trials. Blue-shaded

regions indicate preferred direction distributions for low-frequency (f < 40 Hz) features, while red -shaded

regions vectors indicate preferred direction distributions for high-frequency (f ≥ 40 Hz) features. For each

frequency range, light-shaded regions indicate early brain control trials, while dark-shaded regions indicate

late brain control trials. Vertical black lines indicate the mean of each preferred direction distribution. (D)

Preferred directions for significantly-tuned spectral features for the 240 trials preceding decoder calibration

on testing day 19. (E ) Preferred directions for the 240 trials following decoder calibration on testing day 19.

(F ) Histograms of preferred directions for pre and post-calibration trials.
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of significantly-tuned spectral features. When the spatial distribution of preferred directions was examined

surrounding decoder calibration (Figure 5.10C), we observe that while the pre-calibration distributions for

the medial electrodes are similar to those of initial brain control trials, there was less consistency between

the PD distributions of the initial brain control and pre-calibration trials for the medial half of electrodes.

Following decoder calibration, however, the spatial distribution of preferred directions was found to closely

match that of the final brain control trials. Furthermore, for the post-calibration and final brain control trial

sets we observe that high-frequency features exhibit a preferred direction gradient, with medial electrodes

having preferred directions near θ = 90◦, transitioning to θ = 180◦ for lateral electrodes.

Finally, we compared the preferred direction vectors of the elbow and hand electrode subsets to those

expected from the instructed control strategy. Based on this strategy (Figure 5.11A), elbow and hand

electrodes would exhibit preferred directions vectors towards the upper-right and upper-left quadrants of the

workspace, respectively (Figure 5.11B). During initial brain control trials, the preferred direction vectors for

elbow electrodes were found to align with that expected from the instructed strategy, while the subset of

hand electrodes exhibited similar tuning to that of the set of elbow electrodes (Figure 5.11C). However, by

day 19, prior to decoder calibration, we find that the distribution of PDs for the hand subset had rotated

nearly 90◦ (Figure 5.11D). Following decoder calibration, the preferred directions of the hand electrode

subset were now found to align closely with that expected from the instructed control strategy, while the

PDs of the elbow subset had rotated to approximately θ = 90◦ (Figure 5.11E). A slight counter-clockwise

rotation of the PDs for both electrode subsets was observed from the post-calibration trials on day 19 to the

final 2D brain control trials (Figure 5.11F). The preferred direction vectors for the elbow and hand electrode

subsets on day 24, rotated approximately 45◦ from that expected from the instructed control strategy, was

consistent with a rotated control strategy in which attempted elbow movement was used to move the cursor

to the upper-right, attempted hand movement was used to move the cursor the the lower-left, attempted

hand and elbow movement was used to move the cursor to the upper-left, and relaxation was used to move

the cursor to the lower-right (Figure 5.11H).

5.4 DISCUSSION

We have examined the influences of adaptation, both on the part of the decoder and of the neural population,

to improvements in ECoG BMI performance. To accomplish this, we compared angular error before and

after decoder calibration and fixed-decoder training. In addition, we tracked changes in the neural encoding

of attempted movement directions during the course of 2D brain control training. The following sections

will discuss our findings in additional detail, highlight the limitations of the presented work, and propose

additional experiments which could be performed to address these shortcomings.
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Figure 5.10: Spatial distribution of preferred directions during closed-loop cursor control for Subject S1.

Shown are preferred direction distributions for all electrodes for the initial and final brain control trials, as

well as those trials surrounding decoder calibration on testing day 19. (A) Electrode schematic for Subject

S1. (B) Spatial distribution of preferred directions for the first and last 80 trials of two-dimensional brain

control training. Each circular plot shows the preferred directions of significantly-tuned spectral features for

an individual electrode. Plots for individual electrodes are arranged as depicted by the electrode schematic.

Blue vectors indicate preferred directions for low-frequency (f < 40 Hz) features, while red vectors indicate

preferred directions for high-frequency (f ≥ 40 Hz) features. (C ) Spatial distribution of preferred directions

before and after decoder calibration on testing day 19. Green and orange regions in all panels indicate those

electrodes deemed to be responsive to attempted elbow and hand movements, respectively.
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over the course of 2D cursor control. (A) Instructed 2D control strategy for Subject S1. (B) Expected
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the final 80 trials of closed-loop cursor control on day 24. (G) Final normalize preferred direction vectors for

elbow and hand electrode subsets. (H ) Final control strategy inferred from final preferred direction vectors.
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5.4.1 Changes in angular error during decoder calibration and fixed-decoder training

By comparing the angular error between ideal and actual BMI control signals surrounding decoder calibration

events and periods of fixed-decoder training, we are able to characterize changes in brain control performance

beyond that which is possible by simply examining target acquisition success rate. For example, as shown

by Figure 5.1A, performance, as judged by overall cursor control success rate, during fixed-decoder dataset

F2 for Subject S1 is relatively consistent (success rate: ∼75%). However, as shown by Figure 5.2, angular

error distributions for early trials for this dataset are characterized by a strong control signal bias, which

is reduced through closed-loop training. The fact that this reduction in control signal angular error is not

evident in the overall success rate highlights the sensitivity of our approach for identifying changes in cursor

control performance.

Not surprisingly, we find cases where decoder calibration significantly improves brain control performance

(Subject S1, datasets C1 and C4 ; Subject S2, dataset C2 ). Over time, changes in neural activity, either

resulting from non-stationarities in the neural population [Perge et al., 2013] or learning on the part of

the subject [Taylor et al., 2002, Ganguly and Carmena, 2009], may change the patterns of neural activity

expressed during closed-loop control. By re-estimating decoder parameters using newly-acquired neural

data, these changes can be accounted for and control performance can be improved. Unfortunately, as

demonstrated by calibration datasets C2 and C3 for Subject S1, we find that decoder calibration can also

lead to dramatic increases in angular error, manifested as strong biases in BMI control signals. Interestingly,

the success rate following these calibration events does not reflect the high degree of angular error present

in the instantaneous control signal; in fact, the success rate following calibration for dataset C2 shows a

substantial increase in performance. As control signal angular error was calculated over the first 500 ms of

each trial, this indicates that Subject S1 was able to rapidly correct for biases in the instantaneous control

signal to successfully complete the brain control task.

It is tempting to attribute control signal biases during the first 500 ms of cursor control3 for each trial to

slow reaction times on the part of the subject. With the somatotopic control strategy used for both subjects,

cortical activity during rest is used to drive cursor movement in the downward direction. This results in

a confound between resting-state activity during the inter-trial interval of the task and cortical activity

during intended downwards movement of the cursor. As a result, slow reaction times would be manifested as

downward biases in the control signal during the early period of each trial. However, as evidenced by the low

degree of control signal angular error for other datasets for this subject (e.g., dataset C1, post-calibration;

dataset C2, pre-calibration), Subject S1 was capable of generating target-aligned control signal vectors during

this cursor control epoch. Thus, it is unlikely that the control signal biases observed post-calibration for

Subject S1 are solely due to slow reaction times on the part of the subject and are likely at least in part due

to poor estimation of decoding parameters during calibration.

3As described in Chapter 4, subjects were presented with the target for 500 ms prior to the start of cursor control for each
trial.
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In addition to changes in angular error resulting from decoder calibration, we find that fixed-decoder

training can result in a decreases both angular error and angular error variance. Specifically, for dataset

F3, Subject S1 was able to correct for a strong control signal bias resulting from decoder calibration over

the course of nearly 600 trials spanning two days (Figure 5.2). This is consistent with previous findings of

performance increases resulting from fixed-decoder training in non-human primates [Ganguly and Carmena,

2009, Sadtler et al., 2014] and during short-term ECoG BMI control by individuals undergoing pre-surgical

monitoring for epilepsy management [Leuthardt et al., 2004]. Perhaps surprisingly, we do not observe

reductions in angular error resulting from fixed-decoder training for any of the other datasets analyzed.

Considering the low cursor control success rate for several of these datasets (notably, F1 and F2 for Subject

S1), based on previous studies it might be expected that performance improvements could be gained through

fixed-decoder training. Though it is difficult to ascertain the reason for the lack of fixed-decoder adaptation in

these cases, it may be the case that the somatotopic brain control strategy constrains the type of adaptation

possible for ECoG BMI systems. We will discuss this possibility further in the following section.

5.4.2 Cortical adaptation during acquisition of brain control

To assess the extent of cortical adaptation during the acquisition of ECoG BMI control, we calculated the

preferred direction of all neural features over the course of 2D brain control training. In general, we find

that the preferred directions of both the low-frequency (f < 40 Hz) and high-frequency (f ≥ 40 Hz) features

exhibited a significant change in preferred direction of approximately 60◦. Furthermore, this rotation was

accompanied by a significant increase in the number of significantly-tuned features for the high-frequency

band across all electrodes. An examination of changes in preferred direction for specific somatotopic electrode

subsets revealed a sudden shift in preferred direction for the subset of electrodes found to be active during

attempted elbow movement; no such change was observed for the subset of electrodes active during attempted

hand movement. This shift in tuning was observed for both low and high frequency features, despite the

exclusion of low frequency features from the decoder used for cursor control. In addition, the observed

change in preferred directions was found to coincide with the decoder calibration performed on testing day

19, with the distribution of preferred directions for post-calibration trials closely resembling that of the final

brain control trials on testing day 24. Furthermore, this shift in preferred direction was accompanied by a

dramatic increase in brain-control performance post-calibration.

Recent work has shown that co-adaptive BMI training can facilitate improvements in performance char-

acterized by a convergence of decoder parameters [Orsborn et al., 2012]. Similarly, a number of other BMI

studies have shown that decoder calibration based on periods of closed-loop control can result in success-

ful BMI operation [Gage et al., 2005, Mahmoudi and Sanchez, 2011, Gilja et al., 2012]. The performance

improvements observed after decoder calibration on day 19 are consistent with these finding, as the combina-

tion of closed-loop training and re-estimation of decoder parameters facilitated an increase in cursor control

success rate not possible with the initial decoder, despite over 3 days of fixed-decoder training. Furthermore,
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we also show that decoder calibration resulted in a change in the tuning of the neural population, suggesting

that co-adaptive training may facilitate cortical adaptation as well as refinement of decoding parameters.

Interestingly, we observed a gradient of preferred directions across electrodes for the high-frequency range,

particularly for post-calibration (day 19) and final brain control trial blocks. Perhaps not surprisingly, the

preferred directions of the low-frequency band did not show this behavior, consistent with the differing

degrees of spatial correlation expected from the low and high frequency bands [Brunner et al., 2009, Schalk

and Leuthardt, 2011]. For the high-frequency band, we found that the preferred directions exhibited a gradual

counter-clockwise rotation along the medial-lateral axis, and that the spatial correlation between preferred

directions appears to be preserved throughout the course of closed-loop brain control. While the reason for

this gradient is unclear, we speculate that it is a consequence of the spatial correlation between the elbow

and hand-related ECoG activity. As found during BMI screening tasks (Chapter 4, Figure 4.4), attempted

movements of the elbow and hand elicited gamma-band activity across large numbers of electrodes. Though

this activity was sufficiently independent to enable closed-loop cursor control, a number of electrodes were

found to be responsive for both elbow and hand movements. During brain control these electrodes would be

activated during both attempted elbow hand movements, resulting in preferred directions between those of

“elbow-only” or “hand-only” electrodes.

The spatial correlation of preferred directions highlights a key question in the development of ECoG-

based BMI systems, namely, whether or not ECoG can provide the requisite signal independence to support

high degree-of-freedom (DoF) control. Recent demonstrations of high-dimensional prosthetic limb control

[Collinger et al., 2012, Hochberg et al., 2012] require highly-independent population activity; our finding of

a preferred direction gradient across electrodes suggests that ECoG activity during attempted movements

may not naturally be sufficiently independent to enable high DoF control. However, analysis human ECoG

recordings has shown that intermittent synchronization of gamma-band activity does not exist beyond inter-

electrode distances of 2 cm [Menon et al., 1996]. In addition, volume conductor analysis of ECoG electrode

characteristics has shown that, for electrode diameters similar to those used in the presented work, sensitivity

drops by more than 80% for sources at radial distances greater than 3 mm from the recording site [Wodlinger

et al., 2011]. These findings provide evidence that the observed spatial correlation of ECoG recordings is

primarily a cortical, rather than electrical, phenomena. Thus, through closed-loop training it may be possible

to sufficiently de-correlate these sources to enable high-DoF BMI control. Recently, it has been shown that

non-human primates are capable of de-correlating epidural ECoG signals between randomly-chosen pairs

of electrodes [Rouse et al., 2013]. Additional work investigating the extent to which such de-correlation is

possible, and how best to facilitate it, is likely needed before the full potential of ECoG BMI systems can

be realized.

Perhaps our most intriguing finding is the rotation of preferred directions observed over the course of

closed-loop training. Preferred direction vectors during initial brain control trials were found to be highly

correlated for elbow and hand electrode subsets. Through closed-loop training, Subject S1 was able to de-
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correlate this activity, resulting in a rotation of the preferred direction for the hand subset of electrodes away

from that of the elbow electrodes. Global rotation of the preferred directions for the majority of electrodes

was then observed after decoder re-calibration, resulting in an increase in success rate. Based on these

results, we postulate that Subject S1 covertly employed changes in their BMI control strategy in order to

facilitate improvements in closed-loop control. Previously, adaptation of the encoding models of individual

neurons has been observed during closed-loop control [Taylor et al., 2002], as well as in response to various

perturbations [Jarosiewicz et al., 2008, Chase et al., 2012]. Unfortunately, a comparison of single-unit and

ECoG adaptation is complicated by the use of a somatotopic control strategy for ECoG BMI control. It

is likely that the type of adaptation possible during ECoG BMI control is constrained by subjects’ reliance

upon such abstract strategies. Thus, while it is possible to independently modify the tuning characteristics

of individual neurons during closed-loop control, adaptation during ECoG control may be limited to gross

modifications of the somatotopic control strategy (e.g., global rotations of PDs). Though researchers have

begun investigating adaptation of ECoG signals in a BMI framework [Rouse et al., 2013], future work is

needed to fully understand the limitations on such adaptation, specifically in the context of closed-loop BMI

control by human subjects.

5.4.3 Limitations

There are a number of limitations to the presented work that make it difficult to draw conclusions from our

findings. Perhaps most obvious of these is the experimental design. The goal of the experiments generating

the data analyzed in this chapter was to assess the ability of individuals with upper-limb paralysis to control

an ECoG-based BMI system. As such, decoder calibration and fixed-decoder training were used in an attempt

to facilitate brain-control improvements, and not to directly assess the effects of these events. It may be the

case that our inability to identify effects of decoder calibration or fixed-decoder training on is a consequence

of manner in which this training was performed. For example, decoder calibration and fixed-decoder training

could potentially facilitate improvements in brain-control performance at different points in the acquisition

of closed-loop control. To adequately investigate this, it is likely that experiments systematically varying the

BMI training procedure would have to be performed across a large subject population; such an experiment

is outside of the goals of the work described in Chapter 4.

Additionally, our findings are complicated by the fact that data from Subject S2 could not be utilized to

assess cortical adaptation during the acquisition of closed-loop brain control. For this subject, the goal of

brain control experiments was to maximize the degrees of freedom extracted from ECoG recordings. As a

consequence of this, the control strategy used for 2D brain control changed multiple times over the course of

BMI experiments. Furthermore, once satisfactory brain control was achieved, the subject progressed from

2D brain control to 3D brain control; this prevented the analysis methods utilized for data from Subject S1

from being applied to data from Subject S1.
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5.4.4 Additional experiments

As described in the preceding section, a number of factors prevented us from fully assessing the effects of

decoder and cortical adaptation on ECoG BMI performance. In this section, we outline several additional

experiments which could potentially address these shortcomings.

5.4.4.1 Effects of cortical adaptation and decoder calibration on ECoG BMI performance. In

this chapter, we attempted to assess the contributions of decoder calibration and cortical adaptation during

fixed-decoder training on improvements in BMI control. However, interpretation of our findings was difficult

on account of the nature in which BMI experiments with subjects S1 and S2 were performed. To remedy

this, we propose an experiment in which 2D BMI performance is assessed during acquisition of brain control

using a somatotopic control strategy.

As opposed to individuals with upper-limb paralysis, a limited subject population, adaptation during

brain control will be assessed in individuals with intractable epilepsy undergoing pre-surgical mapping. By

focusing on this subject population, which should allow for an increased number of subjects, it is expected

that inter-subject variability can be accounted for. The somatotopic screening procedure described in Chap-

ter 4 will be utilized to identify those electrodes active for selected overt arm and hand movements. These

movements will be mapped on to the cursor workspace in a similar manner as that utilized for subjects S1

and S2. Subjects will then perform closed-loop brain control experiments under the following conditions:

1. Fixed decoding parameters. Activity for individual electrodes will be classified as being preferentially

active for specific arm and hand movements based on the results of the previously-described somatotopic

screening procedure. Using the desired control strategy, decoding weights will be directly assigned for

specific electrodes. Blocks of closed-loop cursor control will be performed with these fixed decoding

parameters.

2. Initial calibration only. An initial decoder will be trained using a set of fully-assisted trials. Subjects will

then proceed to perform blocks of cursor control, with no additional updates to the decoder performed.

3. Co-adaptive decoder calibration with fixed updates. Similar to [Orsborn et al., 2012], BMI training will

proceed in a manner consisting of alternating periods of fixed-decoder training and decoder calibration.

The number of trials between decoder calibration events will remain fixed.

4. Co-adaptive decoder calibration with varying updates. Rather than update decoding parameters over a

fixed timescale, decoding calibration will be performed only after brain control performance has been

found to plateau.

It is expected that both the rate of acquisition of closed-loop control, as well as the maximum level of

performance achieved, will vary with the type of closed-loop training utilized. By identifying the training

and calibration procedures which allow subjects to most rapidly acquire robust closed-loop control, we can

optimize the BMI training process to maximize performance and reduce training time.
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5.4.4.2 Decorrelation of ECoG signals through closed-loop BMI training. The spatial structure

of the correlation between preferred directions throughout the course of closed-loop BMI training raises a key

question regarding the nature of ECoG recordings, namely, how does the ability of subjects to de-correlate

field potential signals from different electrodes vary as a function of inter-electrode distance? The results

presented in this chapter suggest that inter-electrode correlation is preserved during closed-loop training. To

better understand this, we propose an experiment in which the ability of subjects to modify the mapping

for a somatotopic control strategy is assessed.

Individuals with upper-limb paralysis will be implanted with ECoG electrode in a similar manner as

described in Chapter 4. Electrodes will be classified by their responses during attempted arm and hand

movements; those exhibiting preferential activity for individual movements will be used as the basis for

closed-loop cursor control. Similar to BMI experiments with subjects S1 and S2, these movements will be

mapped onto the cursor control space using a somatotopic control strategy. However, rather than fit a set of

decoding parameters during a calibration procedure, a modified version of the population vector algorithm

(PVA) will be used, with the preferred directions for electrodes assigned based on the desired somatotopic

mapping. Brain control experiments will then be performed under the following conditions:

1. Baseline control. Subjects will first perform a set of closed-loop experiments using the standard somato-

topic control strategy to character baseline control performance.

2. Visuomotor rotation of the PVA decoder. Once satisfactory control has been obtained using the standard

somatotopic mapping, a visuomotor rotation will be applied to the PVA decoder such that all preferred

directions are rotated in a similar manner. Subjects will then be required to re-establish closed-loop con-

trol. As the target directions will remain unchanged from the baseline control condition, the visuomotor

rotation will assess the ability of subjects to generalize the somatotopic mapping in order to generate

cursor movements in arbitrary directions.

3. Rotation of preferred directions for individual movements. Finally, the preferred directions of electrodes

corresponding to individual arm and hand movements will be rotated in the PVA decoder. As opposed

to a pure visuomotor rotation, this will require subjects to generate a new somatotopic mapping in order

to re-establish control.

In addition to assessing the quality of closed-loop control achieved for these conditions, the effect of the

various experimental conditions on inter-electrode correlation will be determined. By providing a better

understanding of the constraints on the adaptability of ECoG activity, it is believed that this work will

provide insight into the capability of ECoG to support high degree-of-freedom BMI systems.

5.4.5 Conclusions

Though interpretation of our analysis investigating changes in angular error as well as cortical adaptation

during closed-loop ECoG control are complicated by the particulars of the experimental design used, we
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nonetheless believe the presented work provides crucial insight into the potential for adaptation during

electrocorticographic BMI control. By better understanding the interplay between decoder calibration and

subject training, better BMI training procedures may be developed which shorten subject training time

and maximize control performance. Furthermore, improved understanding the ability of users to modify

the tuning properties of neural features combined with the stability of ECoG recordings may allow for en-

hancement in the degree of control capable possible with ECoG-based BMI systems in a chronic implantation

scenario. Ultimately, we believe that these findings, as well as the additional experimental work proposed, lay

the groundwork for the development of high-performance, clinically-viable brain-machine interface systems

using ECoG.
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6.0 EVALUATION OF A CHRONICALLY-IMPLANTED ELECTROCORTICOGRAPHIC

ELECTRODE GRID IN A NON-HUMAN PRIMATE1

In Chapter 4, it was shown that individuals with upper-limb paralysis can learn to control an ECoG-based

BMI system over a the course of 28 days. Though this serves as an essential demonstration of the potential of

an ECoG-based brain-machine interface, a clinical BMI system must be capable of sustaining performance

over a much longer period of time, preferably without the need for experimenter interventions such as

decoder re-calibration. Unfortunately, apart from limited work investigating the stability of offline decoding

of arm movement trajectories from ECoG recordings [Chao et al., 2010], relatively little is known about

the capability of electrocorticography to support a chronically-implanted BMI system. In this chapter, we

explore BMI control capability and longevity of ECoG implants for BMI applications through an evaluation

of a chronically-implanted ECoG electrode grid in a non-human primate. First, BMI control capability

using an ECoG array implanted over premotor, primary motor, and sensory cortex is demonstrated. Next,

recording quality over time is examined by freezing the neural decoder used for real-time control and observing

performance over multiple days. Finally, the viability of ECoG implants for long term applications is

investigated by examining recording quality obtained during overt hand movement and histological data.

6.1 BACKGROUND

ECoG recordings presumably reflect the activity of thousands of neurons, and as a result may be less

sensitive to changes in activity from any individual neuron [Moran, 2010, Leuthardt et al., 2004]. It has been

postulated that ECoG may be capable of providing robust and stable recordings, thus eliminating the need

for daily updating or retraining of the decoder which translates multi-channel neural recordings into BMI

control signals. Several studies have begun to shed light on this, demonstrating long-term offline decoding of

movement kinematics from subdural [Chao et al., 2010] and epidural [Shimoda et al., 2012] ECoG recordings

using fixed decoding parameters. To-date, long-term closed-loop control of an ECoG BMI system with a

fixed neural decoder has not been demonstrated.

1This chapter consists of a modified version of a manuscript currently in review: Degenhart AD, Eles J, et al., Histological
evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. The version presented here
incorporates the results of a fixed-decoder BMI experiment which has been excluded from the manuscript in preparation based
on the apparent contribution of artifacts to closed-loop control.
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Such stability is in contrast to SU/MUA activity, where recordings from single electrodes are much

more sensitive to small changes in the local environment surrounding the recording site. Several research

groups have demonstrated recording variability over time using single and multi-unit activity [Schwartz et al.,

2006, Rousche and Normann, 1998, Schwartz, 2004, Flint et al., 2013]. However, it has also been shown that

SU/MUA as well as LFP activity can provide long-term stable recordings, enabling closed-loop control of a

computer cursor for up to a year with a fixed decoder [Ganguly and Carmena, 2009, Flint et al., 2013].

Single and multi-unit recordings can suffer from signal deterioration, manifested as a reduction in the

number of electrodes recording individual neurons or a decrease in signal amplitude [Collinger et al., 2012,

Simeral et al., 2011, Chestek et al., 2011]. This degradation has been attributed to a host tissue response that

begins with trauma from initial probe penetration. The mechanical disruption of tissue from implantation

develops into a chronic inflammatory response hallmarked by an aggregation of astrocytes and microglia in

a glial scar around the probe, as well as progressive neurodegeneration within a 100µm radius around the

implantation site [Polikov et al., 2005, McConnell et al., 2009, Biran et al., 2005]. Glial ensheathment is

theorized to act as an electrical insulator for the electrodes, and along with neurodegeneration, is believed

to contribute to signal decay [Turner et al., 1999]. Neurodegeneration is associated with the presence

of neurotoxic cytokines in the “kill zone” around the implant, which could be produced by the reactive

astrocytes and microglia of the glial scar [Biran et al., 2005]. It has been theorized that mismatch between

the stiffness of electrode devices and the brain produce shear force during natural head movements; this

chronic mechanical stress may underlie chronic inflammation [Biran et al., 2007]. Additionally, blood-brain

barrier disruption following implantation leads to a build-up of neurotoxic species in the vicinity of the

electrodes [Saxena et al., 2013, McConnell et al., 2009].

Since ECoG arrays do not penetrate the cortex, they avoid intracortical shear and blood-brain barrier

disruption, potentially making encapsulation less likely to occur during long-term implantation [Szarowski

et al., 2003, Bjornsson et al., 2006, Biran et al., 2005]. Despite the promise of ECoG in BMI and neuroscience

applications, very few studies evaluating long-term host-tissue response to either epidural or subdural grids

have been conducted. While arrays have been implanted for over 1 year in humans and in non-human

primates with viable neural recording [Shimoda et al., 2012, Morrell and RNS System in Epilepsy Study

Group, 2011], connective tissue overgrowth has been observed in epidural implants after only one week in

rats, and leptomeningeal inflammation has been seen after 6 months of sub-dural implantation in the same

model [Schendel et al., 2013, Schendel et al., 2014, Henle et al., 2011]. It has been shown that tissue growth

around epidural ECoG grids implanted in rats exhibits dural thickening and scar tissue encapsulation over the

top of the array as early as one month following implantation [Schendel et al., 2014]. While the relationship

between connective tissue proliferation and electrical impedance change is unclear, it is possible that the

tissue acts as insulation between electrode sites and the brain, reducing signal quality. While no evidence of

tissue fibrosis has been noted in epilepsy monitoring arrays implanted in humans for up to 30 days [Fountas

and Smith, 2007, Van Gompel et al., 2008, Wong et al., 2009, Wang et al., 2013a], the long-term outlook
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remains unclear. Further, while qualitative evidence exists showing that epidural ECoG grids do not result

in inflammatory microglia or astrocyte activation in the cortical tissue beneath the implant, there appear to

be no studies exploring the impact of subdural grids on cortical tissue health.

6.2 METHODS

All experimental procedures were approved by the Institutional Animal Care and Use Committee of the

University of Pittsburgh and were in accordance with the National Institutes of Health’s Guidelines for the

Care and Use of Laboratory Animals.

The major events in the study were as follows: after implantation, a series of closed-loop brain control

experiments were performed to evaluate the performance of an ECoG-based BMI system utilizing a static

decoder. Shortly before explantation of the electrode grid, 15 sessions of a standard center-out reaching

task were conducted in order to characterize the ECoG signal modulation during overt hand movements.

Following explantation, a histological analysis of the electrode and cortical tissue was performed to evaluate

the nature of the foreign body response to the electrode grid.

6.2.1 ECoG grid implantation surgery

A male Rhesus macaque (mucaca mulatta) was anesthetized, and a craniotomy was performed over the left

motor and premotor cortex. The dura was retracted to expose an area approximately 2x2 cm between the

arcuate and central sulci (Figure 6.1B). A custom-built 15-channel ECoG grid (Figure 6.1A, PMT Corp,

Chanhassen, MN, USA) was placed directly on the exposed brain surface (Figure 6.1C), and the dura and the

bone were reapproximated. Wires from the grid were connected to a Cereport pedestal connector (Blackrock

Microsystems, Salt Lake City, UT, USA) affixed to the skull.

6.2.2 Neural recording and task control

Signals from the ECoG grid were recorded with a g.USBamp Biosignal Amplifier (g.tec Medical Engineering),

and sampled at 1200 Hz. All recording, online processing, decoding, task control and presentation was

performed using the Craniux Brain Computer Interface system [Degenhart et al., 2011b]. Dura-facing

electrodes 4 and 13 were used as reference and ground electrodes for all recordings (Figure 6.1A). Visual

stimuli were presented on a 22-inch computer monitor placed approximately 2.5 feet from the animal.

89



A CB rostral

lateral

CeS
ArS1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

20 mm

20 mm
4 mm

Ø  2 mm

Ø 3 mm

D F

e1

E

CeS
ArS

Figure 6.1: (A). Schematic of the electrode grid. Shaded gray areas indicate the exposed area for each

electrode. Electrodes 4 (green) and 13 (red) are upside-down (i.e. dura-facing) and serve as the reference

and ground, respectively, for neural recordings. A top view of grid is shown (i.e. the dura-facing side).

(B). Craniotomy detail showing the exposed cortex (ArS: arcuate sulcus, CeS: central sulcus). (C ). Place-

ment of the electrode grid. (D). Brain immediately following removal from the skull during postmortem

explantation. Black marks indicate the rostral-medial and caudal-lateral corners of the grid. (E ). Cortical

tissue underneath the ECoG grid indicated by the black box in (D). (F ). Underside of the encapsulated grid

following explantation. The location of electrode 1 (e1) is indicated by the white arrow.
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6.2.3 Brain control task

Brain control experimental sessions began on day 208 post-implant and ended on day 299 (51 testing sessions

spanning 85 calendar days)2.

In order to derive neural features for closed-loop control, spectral estimation was performed in real-time

using the Burg Autoregressive (AR) method [Robinson, 1982] over the 40 to 180 Hz range (25th order, 10

Hz bands). These gamma and high gamma bands were chosen because they are typically spatially localized

and informative about underlying neural processes [Crone et al., 1998a, Crone et al., 2006, Miller et al.,

2007a, Heldman et al., 2006]. Spectral estimates were calculated every 33 ms using a sliding window of 300

ms of raw data. AR data were log-transformed, then normalized to pseudo Z-scores relative to a baseline

condition [Degenhart et al., 2011b]. Normalized spectral estimates were used as the neural features for

closed-loop BMI control. Twelve of the 15 channels available on the grid were used for control, excluding

those electrodes providing reference and ground signals (e4 and e13), and a third (e2) to which electrical

connectivity was lost before experiments began3

Linear regression was used to determine a mapping between neural features and cursor movement. This

mapping took the form of a matrix of weights (W) to be applied to the neural features (f) for decoding such

that the predicted cursor movement velocity (v̂) was a weighted sum of neural feature input as described by

Equation 6.1. The decoding weights were calculated using Equation 6.2:

v̂ = Wf (6.1)

W = VF† (6.2)

where V = [v1, . . . ,vN ] and F = [f1, . . . , fN ]> are concatenated matrices of observations of the desired

cursor movement direction and associated neural features, respectively, collected during decoder calibration.

For calibration data, the desired cursor movement direction was defined as the instantaneous unit vector

pointing from the cursor to the target, averaged over a trial. The superscript “†” denotes the Moore-Penrose

pseudoinverse. Initial calibration data was acquired from one block of trials during which the animal observed

automated movements of the cursor, with subsequent updates of the decoder using all trials from a single

block (see below) of closed-loop brain control data.

The monkey was trained to perform a two-dimensional 8-target center-out cursor task. At the beginning

of each trial, a cursor appeared at the center of a computer screen. Simultaneously, a pseudo-randomly

selected target appeared at one of 8 possible targets approximately 10cm from the starting position of the

cursor. During a 500 ms “hold” window immediately after target onset, the cursor was held fixed at the

2Delays resulting from connector damage and exploratory BMI sessions prevented initiation of experimental procedures
until 208 days post-implantation. Additional closed-loop control experiments were conducted between days 300 and 541 post-
implantation. Unfortunately, complications arising from the presence of artifacts during closed-loop control (see Section 6.3.2)
limited the utility of these experimental sessions. As a result, these sessions were excluded from further analysis

3It was later found that this was an issue with the cable connecting the Cereport pedestal and the neural amplifiers and
not that of the electrode grid specifically.
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center of the visual display. Afterwards, the cursor moved under brain control. The monkey was required to

move the cursor to the displayed target within 3 seconds. If the cursor overlapped with the target for 100-200

ms (randomly determined each trial), the trial was considered successful and the monkey was immediately

given a water reward.

The task was run in 40-trial blocks, with multiple blocks run each testing day. In the initial testing

sessions, the task software guided training for brain control by actively moving the cursor directly to the target

(“active assist”). Following one fully assisted observation block (100% active assist) an initial decoder was

trained, and the amount of assistance provided to the animal was reduced. This assistance was incrementally

lowered between blocks until the cursor was under full brain control (0% active assist). The decision to lower

the assist level was based on the success rate, such that high success rates over multiple blocks prompted a

decrease in the assist level. Computer assistance was not provided to the animal after testing day 7, thus

success rates reported for subsequent sessions represent proficiency with full brain control.

During the initial period of training, the decoding weights were updated periodically between blocks.

Updates consisted of a weighted average of the old and new decoding weight parameters, such that changes in

the decoder were gradual [Wang et al., 2013a]. Once satisfactory closed-loop performance was achieved under

full brain control (testing day 6) the neural decoder was frozen, and remained constant for the remainder of

the brain-control experiment.

6.2.4 Hand control task

Hand control experiments began on day 542 post-implant and ended on day 562 (15 testing days spanning 21

calendar days). During these experiments, the animal performed a standard 2D center-out task in a virtual

environment, with the position of the hand controlling the location of a computer cursor in a two-dimensional

plane. Hand position was tracked in real-time using the Phasespace optical tracking system (Phasespace,

San Leandro, CA) and rendered on a computer screen as a sphere in a virtual workspace. Trials began with

the appearance of the cursor and central target; the animal was then required to move the cursor to the

central target, holding the cursor over the target for 400–600 ms. One of eight peripheral targets would then

appear, to which the animal was required to reach. A target hold time of 200 ms was enforced. The animal

was provided with water rewards immediately following successful completion of a trial.

Time domain data was transformed into the time-frequency domain using the Burg autoregressive method

(0 - 200Hz range, 2Hz frequency bands, 100th order, 100ms non-causal window, 33ms step size)4, log-

transformed, then normalized to pseudo Z-scores relative to the spectral power during the central target

hold period. Trials were then manually aligned to movement onset using the cursor speed profile for each

trial.

4As opposed to closed-loop control, where spectral estimates parameters were constrained by real-time processing require-
ments, spectral estimates performed for offline analysis were performed using parameters more suitable for a detailed examination
of the spectral content of recorded signals.
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6.2.5 Artifact identification

Hand and brain control trials were visually examined for artifacts in both the time and time-frequency

domains. These artifacts were characterized by large-amplitude, broadband transients across the majority

recording electrodes, and were believed to be the result of jaw movements based on their consistent appear-

ance during the reward period of each trial [Kelly et al., 2013]. Time-domain ECoG signals were band-pass

filtered from 5 - 250 Hz (4th order butterworth filter) and plotted along with time-frequency data for all elec-

trodes. Trials were marked as containing artifacts if they exhibited both large-amplitude voltage transients

and broadband frequency modulation (> 40Hz) across all electrodes. Trials containing artifacts during the

central hold or target acquisition periods were excluded from further analysis (hand control data only).

6.2.6 Cosine tuning analysis

ECoG signals were fit to a standard cosine tuning model [Georgopoulos et al., 1982] in order to characterize

the directional modulation of ECoG signals during both brain and hand control tasks. Normalized spectral

data was first averaged over the [70−110] Hz frequency band and from movement onset to target acquisition

(brain control) or the [−100ms, 100ms] interval relative to movement onset (hand control) for each trial.

Cosine tuning curves were fit to this averaged data using equation 6.3.

f = b0 + bxx+ byy + ε (6.3)

6.2.7 Explant

The total implant duration was 666 days. Surgical complications negated the possibility of perfusing the

animal before removing the brain. After exposure of the skull, the original bone flap was removed to expose

the dura. The skull, dura, and encapsulated electrode grid were then removed as a single piece and the

entire brain was extracted. The brain and the encapsulated array were then placed in a 10% formalin + 10%

glycerin solution for 8 days followed by 10% formalin + 20% glycerin for 26 days to fixate the tissue. Fixated

tissue was then frozen and sectioned into 50µm sections for staining. Sections were cut perpendicular to

the central sulcus. The electrode grid was carefully removed from the encapsulation “envelope,” which was

similarly fixed for 6 days and then stored in phosphate tris azide (PTA) solution until it was cut into 50µm

sections for staining. Encapsulation tissue was cut perpendicular to the placement of the grid.
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6.2.8 Immunohistochemistry

Cortical sections from implanted (left hemisphere) and non-implanted (control, right hemisphere) hemi-

spheres were mounted on the same slide, and all slides for comparison were processed in the same session to

minimize variability. A sample of dura mater distant from the periphery of the tissue encapsulation (> 2cm)

served as control dura mater for analysis of the encapsulation tissue. Encapsulation tissue and control dura

mater were processed on separate occasions, but were held to identical staining parameters.

Antibodies for cortical tissue were directed to neurons (NeuN, 1:200, Millipore), astrocytes (GFAP, 1:200,

SeroTec), or microglia (Iba-1, 1:500, Fisher); antibodies for encapsulation/dura mater tissue were directed

to macrophages (Iba-1, 1:500, Fisher) or fibroblasts/macrophages (Vimentin, 1:250, Millipore). Tissue was

first blocked for 30 minutes in sodium citrate buffer (0.1M citric acid, 0.1M sodium citrate, pH 6.0) in room

temperature followed by a peroxidase block (10% methanol, 3% hydrogen peroxide) for 20 minutes in room

temperature on a shaker. Finally, tissue was blocked in a serum blocking buffer (5% normal goat serum,

Jackson Labs; 0.1% Triton X-100, Sigma) for one hour. Tissue was incubated in primary antibody for 12-24

hours. Following washes in 1X phosphate buffer saline (PBS), tissue was incubated in 1:250 Alexa Fluor

488 and/or 633 (Invitrogen) for 2 hours in room temperature, followed by more 1X PBS washes, 10 minute

incubation in Hoescht 33342 (1uL/1mL; Invitrogen) stain, PBS washes, and coverslips were mounted with

Fluoromount-G (Southern-Biotech) overnight.

6.2.9 Confocal imaging

Confocal imaging was performed with an Olympus Fluoview 1000 confocal scanning microscope (Olympus).

All images were taken with a 20X or 40X objective to optimize cellular resolution and image frame size, and

were taken at multiple focal depths for each frame as to image the full depth of a tissue slice. This ensured

that image analysis was not biased by choice of a single image depth. Confocal laser power, photomultiplier

tube voltage (the sensitivity of the image detector), and photomultiplier offset (background level of image

detector) were selected to ensure that image pixels did not exceed upper or lower detection limits. Images

(n = 5 per stain) were collected from cortical regions directly under randomly selected electrode sites on the

ECoG array or random sites of both the dura-facing and cortex-facing sides encapsulation from the middle

of the tissue envelope. For cortical imaging, images from the contralateral hemisphere were collected for

comparison. Images were matched to the same sagittal slice depth and anterior-posterior region of interest

as the ipsilateral hemisphere. Tissue encapsulation images were compared to images from random regions

of interest of control dura mater retrieved from > 2cm from the tissue encapsulation.

To determine cortical layers and cortical thickness, disconnected images of cortex were stitched to create

continuous high-resolution images of the entire cortical depth using Fiji, an Image-J (NIH) plug-in [Preibisch

et al., 2009]. Layers I/II-III were discerned from layer V by the location of layer V giant pyramidal cells

[Matelli et al., 1991]. Stitched images were used to measure cortical depth (n = 5) between conditions.

94



Neuronal and microglial cell densities were determined for layers I/II-III and V with hand counting facilitated

by Image J Cell Counter (n = 5). Because GFAP labels extensive networks of astrocytic processes, discerning

individual cell bodies for cell counting is inconclusive. Thus, the proportion of cortex occupied by reactive

astrocytic signal (% GFAP signal) was determined by first setting a pixel intensity threshold to the mean

pixel value of layer I/II-III, where the most intense signal was localized. Because the majority of pixels in a

given image are not GFAP-signal, the pixels below the mean can be discounted as noise. Once thresholded,

the GFAP signal was determined by automating a count of the non-zero pixels (n = 5). Implanted cortex

and contralateral cortex were compared for all metrics by t-tests with significance defined to be p < 0.05.

Encapsulation and dura mater images were qualitatively analyzed to determine the identities and mor-

phologies of encapsulation cells. Based on the cell specificity of the antibodies, vimentin(+)/Iba-1(+) and

vimentin(-)/Iba-1(+) cells were considered to be macrophages/microglia, while vimentin(+)/Iba-1(-) cells

were considered to be fibroblasts. Multi-nucleated cells were considered cells that contained more than one

Hoescht 33342 labeled nuclei in a single cell body.

6.2.10 Collagen-I imaging

Collagen I, a key component of tissue encapsulation, can be visualized using second-harmonic generation

(SHG) imaging. SHG imaging takes advantage of a second order non-linear optical property of collagen type

I to visualize an intrinsically generated optical signal that can be used to locate and quantify collagen I in

tissue. This is preferred to traditional histological staining protocols, which have been shown to have less

signal specificity and require chemical processing that may alter the tissue quality [Strupler et al., 2007].

SHG images of tissue encapsulation and dura mater were captured using a laser through a Nikon A1Plus

multiphoton scanning confocal microscope and Nikon NIS-Elements Microscope Imaging Software. SHG

was generated at an 830nm wavelength, and signal was collected via a bandpass filter that isolated tissue

auto-fluorescence (435 − 700nm) and SHG signal (380 − 400nm). Images were taken with a 25X objective

to maximize signal resolution and imaging frame; stitching software (EIS-Elements Microscope Imaging

Software, Nikon) was used to consolidate disconnected images to make a seamless, high-resolution image of

the encapsulation through the dorsal-ventral plane.

Encapsulation and dura mater thickness was determined by measuring average thickness of tissue extent

as denoted by auto-fluorescence. Because SHG signal was confined within an uninterrupted, fibrous area,

percent SHG-signal was measured by dividing the average thickness of SHG area divided by the total tissue

thickness. Such measures were generated for encapsulation tissue from the cortex-facing and dura-facing

sides, as well as for control dura mater (n = 5 for all groups). Encapsulation and dura matter thickness

and percent SHG signal were compared between cortex-facing encapsulation, skull-facing encapsulation,

and control dura mater groups by one-way ANOVA tests with Tukeys post-hoc tests. Significance for all

comparisons was defined to be p < 0.05.

95



6.3 RESULTS

6.3.1 Closed-loop brain control with a static decoder

Across 46 testing days (77 calendar days) of BMI control with a static decoder, performance was often over

70% correct (Figure 6.2). This would appear to be impressive control, considering not only that the decoder

was held constant, but also the tight timing constraints in the task: the animal had three seconds in which

to acquire the presented targets. Of particular interest is a gradual upward trend in performance between

testing days 16 and 33; with a static decoder, performance improvements can most likely be attributed to

learning on the part of the animal. Note that the decoder was being calibrated for the first six days; we

include these data for the sake of completeness.
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Figure 6.2: Task performance is high during closed-loop cursor control with a static decoder. Success rate

for 40-trial blocks are indicated by black dots. Assist level and surgical events are indicated by the red and

blue lines, respectively. Alternating gray and white bands indicate individual testing days.

Daily brain-control sessions were typically characterized by higher success rates during early trials and

decreasing success rates at the end of each session; this reduction in performance was attributed to a decrease

in motivation during the day. Intermittent days with abnormally low performance were observed (testing

day 24), though subsequent days showed performance return to a high level. Figure 6.3 shows the maximum

and mean success rates per testing day as a function of day post-implantation.

Surgical procedures were performed following experimental testing days 15, 34, and 39. These procedures

involved attempts to repair exposure of the wire bundle running form the electrode grid to the pedestal.

Drastic decreases in performances were observed following each of these interventions. Following the last of

these procedures performance was observed to continue to decrease until testing day 52, when brain-control

with the static decoder was halted. Reductions in performance during this period were characterized by an

inability of the animal to move the cursor towards the lower-right quadrant of the workspace.

96



210 220 230 240 250 260 270 280 290
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Day Post−Implant

Su
cc

es
s 

R
at

e

Success Rate

 

 
Success Rate (Max)
Success Rate (Mean)
Surgical Events

Figure 6.3: Task performance across testing days during fixed-decoder brain control. Maximum (red) and

mean (black) success rate are shown for each testing day. Blue lines indicate days in which surgical inter-

ventions were performed.

6.3.2 Influence of artifacts on brain control

Unfortunately, offline examination of data collected during closed-loop brain control revealed the presence

of artifacts presumed to be the result of jaw movement. Artifacts were identified during the reward period

of the majority of trials, but were also observed during the target acquisition period of a number of trials.

Figure 6.4 shows an example of a trial where artifacts were identified during ITI (inter-trial interval), center-

hold, and reward trial states, while Figure 6.5 shows an example of a trial containing artifacts during all

trial states.

In order to determine if the presence of artifacts influenced the animal’s ability to control the computer

cursor, trials were examined for artifacts for four days spanning the entirety of the fixed-decoder experiment.

Table 6.1 presents data summarizing the presence of successful trials containing artifacts for testing days 2

(brain control calibration), 7 (early brain control performance), 33 (peak brain control performance), and 52

(final brain control performance). While relatively few successful trials contained artifacts during decoder

calibration (9%), the presence of artifacts increased during early brain control (22%), peak brain control

(41%), and final brain control (23%).

When the relationship between artifact rate and target direction was examined, it was found that artifacts

were predominately present for the bottom-left and bottommost targets. Figure 6.6 depicts artifact rate as

a function of target direction for the selected brain control sessions. Artifact rates were particularly biased

with target direction for later brain control sessions (peak brain control performance and final brain control

performance), suggesting that artifacts likely contributed to the animal’s ability to control the computer

cursor.
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Figure 6.4: Example of a brain-control trial without artifacts during the target acquisition period. Time-

domain ECoG voltages (top), time-frequency data (middle), and cursor position (bottom) for a representative

trial without artifacts during the target acquisition trial state. Vertical dashed lines indicate onset of trial

states. Red-shaded regions on the top plot indicate manually-identified artifacts. X and Y cursor position

is indicated by the black and blue lines, respectively, in the bottom plot.
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Figure 6.5: Example of a brain-control trial with artifacts during the target acquisition period. Time-domain

ECoG voltages (top), time-frequency data (middle), and cursor position (bottom) for a representative trial

with artifacts during the target acquisition trial state. Vertical dashed lines indicate onset of trial states.

Red-shaded regions on the top plot indicate manually-identified artifacts. X and Y cursor position is

indicated by the black and blue lines, respectively, in the bottom plot.
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Table 6.1: Summary of artifacts in brain-control data for selected testing days. Data are provided for four

exemplar testing days spanning the duration of closed-loop cursor control experiments. Artifact rates are

calculated based on the number of successful trials where at least one artifact was identified during the target

acquisition (control) trial epoch. ST : Successful trials, AT : Artifact trials, AR: Artifact rate.

Target Direction AR (ST)

Day ST AT AR 1 2 3 4 5 6 7 8

2 156 14 0.09 0.15 (20) 0.00 (20) 0.05 (21) 0.05 (19) 0.05 (19) 0.12 (17) 0.30 (20) 0.00 (20)

7 274 59 0.22 0.06 (35) 0.09 (35) 0.06 (33) 0.31 (36) 0.29 (34) 0.44 (36) 0.19 (26) 0.26 (39)

33 450 185 0.41 0.33 (55) 0.05 (56) 0.07 (59) 0.20 (55) 0.45 (55) 0.83 (58) 0.75 (55) 0.61 (57)

52 117 27 0.23 N/A (0) 0.10 (10) 0.00 (26) 0.06 (32) 0.35 (31) 0.69 (16) 1.00 (2) N/A (0)

6.3.3 ECoG modulation during brain and hand-controlled cursor tasks

Figure 6.7 shows time-frequency data for one selected electrode (e10) at various points during the lifetime of

the implant5. Early calibration trials were characterized by weak modulation of spectral power with target

direction (Figure 6.7A). However, by the beginning of the static decoder experimental sessions modulation

was observed to increase (Figure 6.7B), with electrodes remaining strongly modulated by the task throughout

periods of high performance (Figure 6.7C). This characteristic pattern of modulation was found to disappear

by the end of fixed decoder sessions (Figure 6.7D), with electrodes exhibiting drastically reduced modulation

by the end of closed-loop experiments (testing day 52).

Normalized spectral data for each target and electrode during peak brain control performance is shown

by Figure 6.8. While many of the electrodes (e.g. e10, e14, e15) are modulated strongest by targets in the

down-right direction, a few electrodes (e12, e16) exhibit strongest modulation for targets in the down-left

direction. Based on the prevalence of artifacts during these trials (Figure 6.6C), it appears that modulation

for these electrodes is likely driven by the presence of artifacts.

Figure 6.9 shows the results of 2D cosine tuning analysis performed on brain control data. Tuning curves

during initial brain control training did not exhibit significant modulation with target direction. After initial

brain control training, all electrodes were found to become significantly tuned, with preferred directions

tightly clustered in the lower-right quadrant of the workspace. The distribution of preferred directions was

found to become less clustered during peak brain control performance. In addition, a slight increase in

depth of modulation was also observed from initial to peak brain control sessions. By the end of the fixed

decoder experiment preferred directions were found to have shifted dramatically, with a decrease in depth

5As shown by Figures 6.5 and 6.6, it appears that the presence of artifacts contributed to the animal’s ability to control the
computer cursor. Thus, these data contain artifacts which resulted in broadband increases in spectral power which overlap with
the gamma-band modulation expected in ECoG recordings. As the intent of this (and subsequent) figures is to demonstrate
spectral modulation underlying closed-loop cursor control, trials containing artifacts have not been removed from these data.
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Figure 6.6: Artifact presence rate per target direction for selected brain-control testing days. Fraction of

successful trials with artifacts during the target acquisition state is shown for testing days 2, 7, 33, and 52

for each of the 8 target directions.
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Figure 6.7: ECoG signal modulation is directionally-tuned during 8-target center-out brain-control. Averaged

time-frequency data is shown for a single electrode (e10) for all tasks. Averaged trajectories for each target

are shown in the center plot of each panel. (A). Initial brain control training (testing days 2 and 3, N = 328

trials). (B). Initial brain control performance (testing days 7 and 8, N = 720). (C ). Peak brain control

performance (testing days 32 and 33, N = 760). (D) Final brain control performance (testing days 51 and

52, N = 600). Time-frequency data was normalized with respect to a fixed set of “baseline” parameters

collected during the first brain control session (i.e. converted to pseudo-Z-scores). Note that the color scale

for panels (A) – (D) is identical.
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of modulation also observed. The similarity between the distribution of movement artifacts (Figure 6.6)

and the spatial pattern of gamma-band modulation suggest that artifacts contributed substantially to the

observed tuning of ECoG modulation.

ECoG signals recorded during hand control experiments, conducted between day 542 and 562 post-

implantation, also exhibited clear modulation with target direction (Figures 6.10, 6.11). Characteristic

decreases in the mu and beta frequency bands, in conjunction with increases in the gamma band, were

observed. Gamma band modulation was found to be strongest over the 70 – 100 Hz frequency range, and

was tightly locked to movement onset. As opposed to data collected during brain control, trials containing

artifacts were removed prior to analysis of hand control data. Thus, the modulation observed during hand

control can only be attributed to arm movements on the part of the animal.

Figure 6.11 shows normalized spectral data for each target and electrode during center-out hand control

trials. As opposed to brain control trials, nearly all electrodes show preferential modulation for upper-left

targets. This is confirmed by the results of the cosine tuning analysis shown in Figure 6.12. The preferred

directions of high-gamma band activity from all electrodes was tightly clustered during the hand control

task, as would be expected by the highly correlated time-frequency data shown by Figure 6.11. Though the

distribution of preferred directions observed during hand control differ from those seen during brain control,

it is not necessarily the case that similar distributions would be expected given that no constraints were

imposed on hand movement position during the brain control task. In addition, as previously mentioned,

the presence of artifacts during brain control likely was responsible for the tuning of gamma-band activity

to target direction; thus, it should not be expected that brain control and hand control data should exhibit

similar preferred direction distributions.

6.3.4 Cortical architecture

Chronic ECoG implantation did not significantly affect cortical cytoarchitecture. Using Nissl staining and

immunohistochemistry with antibodies targeted to neurons (NeuN), microglia (Iba-1), and reactive astrocytes

(GFAP), we evaluated cortical thickness and cell densities in layers I/II-III and V in cortical regions under

the ECoG array and in the same regions in the contralateral hemisphere. These results are shown in Figure

6.13.

Noting a mechanical depression of the brain under the ECoG grid post-explantation, we measured and

compared cortical thickness between hemispheres. Despite the gross morphological depression, thickness of

the cortical tissue under the grid (2.8±0.04mm) was not statistically different from that of the contralateral

cortex (Figure 6.13D; 2.7 ± 0.09mm; t-test: p = 0.19). Further investigation of changes in cell densities of

neurons and microglia in layers I/II–III and V between cortex under the grid versus contralateral cortex

showed no significant change in neuronal density between hemispheres, and significant increases only for

the microglia of the superficial layers (I/II–III; p = 0.027). There were no significant differences in per-

centage of reactive astrocyte signal for either layer I/II-III or V between groups (summarized in Table 6.2).
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Figure 6.8: Directional modulation of ECoG signals during brain control. Data is shown for the peak brain

control performance epoch (sessions 32 and 33, N = 760). Movement onset is indicated by the dashed black

line for each plot. Data for electrodes 4 and 13 are not available on account of these electrodes serving as

ground and reference electrodes, respectively. Data for electrode 2 is not available on account of connectivity

to this electrode being lost shortly after grid implantation.
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Figure 6.9: Cosine tuning of ECoG signals during brain control. Cosine tuning curves are shown for brain

control calibration, early, peak, and final epochs (see Figure 6.8). Tuning curves for electrode 10 are shown

in red; all other tuning curves are shown in black. Solid lines indicate electrodes exhibiting significant tuning

to target direction (p ≤ 0.05), while dashed lines indicate non-significant fits. Inset. Normalized preferred

directions for each channel plotted on a unit circle. The mean of each curve (b0) has been removed prior to

plotting.
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Figure 6.10: ECoG signal modulation during 8-target center-out hand-controlled cursor tasks. Averaged time-

frequency data are shown for a single electrode (e10) for all tasks. Averaged (thick lines) and individual

trajectories (thin lines) for each target are shown in the center panel. Time-frequency data was normalized

with respect to the spectral data during a central hold period preceding each trial. Black lines show average

speed profiles for each target.

Qualitatively, microglia in both cortex under the array and the contralateral cortex exhibited a ramified

morphology [Stence et al., 2001].

6.3.5 Fibrotic encapsulation

Chronic subdural ECoG implantation resulted in fibrotic encapsulation of the grid. The grid was removed

by making an incision along the anterior portion of the encapsulation and pulling the grid with forceps.

Surprisingly, the grid offered little resistance to removal, indicating that mechanical tethering between the

grid and encapsulation tissue was minimal. Using second-harmonic generation (SHG) imaging, we detected

collagen I in sections of the tissue encapsulation and control dura mater (> 2cm from implantation site).

Using filters to simultaneously image second-harmonic signals as well as tissue autofluorescence, we quantified

both the thickness of encapsulation tissue and the percentage of encapsulation tissue that was collagen

I-positive (Figure 6.14). Because the distal portion of the encapsulation (dura-facing) was the original,
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Figure 6.11: Directional modulation of ECoG signals during hand control. Data is shown for all successful

hand control trials (N = 1, 145). Movement onset is indicated by the dashed black line for each plot. Data

for electrodes 4 and 13 are not available on account of these electrodes serving as ground and reference

electrodes, respectively. Data for electrode 2 is not available on account of connectivity to this electrode

being lost shortly after grid implantation.
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autografted dura mater, we analyzed it separately from the cortex-facing portion of the encapsulation,

which grew de novo following initial implantation. Both aspects of the tissue encapsulation were compared

to control dura mater taken more than 2cm from the implantation site. There were statistically significant

differences in the thicknesses of the tissues (one-way ANOVA: F (2, 14) = 136.13, p < 0.001), with both

dura-side encapsulation (0.82± 0.04mm) and cortex-side encapsulation (1.76± 0.09mm) being thicker than

control dura mater (0.36 ± 0.03mm; Tukeys post-test: p < 0.001). The cortex-side encapsulation was also

significantly thicker than dura-side encapsulation (p < 0.001).

SHG imaging revealed encapsulation tissue to be comprised of a cellular region that did not express strong

SHG signal and a collagenous region that was strongly SHG(+) (schematic: Figure 6.14B,E). Using the tissue

thickness derived above, we were able to assess the relative proportions of cellular and collagenous regions

by measuring the area of collagenous region (SHG(+) region) and divide it by tissue thickness. This showed

that the proportion of collagenous region was significantly different between the tissues (one-way ANOVA:

F (2, 14) = 44.33 ; p < 0.001). Control dura mater had a significantly higher percentage of collagenous
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Figure 6.12: Cosine tuning of ECoG signals during hand control. The tuning curve for electrode 10 is shown

in red; all other tuning curves are shown in black. Solid lines indicate electrodes exhibiting significant tuning

to target direction (p ≤ 0.05), while dashed lines indicate non-significant fits. Inset. Normalized preferred

directions for each channel plotted on a unit circle. The mean of each curve (b0) has been removed prior

to plotting. Note that spectral data during hand control was normalized with respect to different baseline

parameters than brain control, making comparisons of the depth of modulation between this figure and

Figure 6.9 invalid.
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Figure 6.13: Cortical histology shows minimal damage resulting from long-term ECoG grid implantation.

All sections were counterstained with Hoescht 33342 to label cell nuclei (red). (A–B). Neither neurons (A;

green) nor astrocytes (B; green) were significantly affected by implantation in either layer I/II–III or layer V.

(C ). Microglial signal was significantly increased in layer I/II–III following implantation, but not in layer V.

Data presented as mean ± SEM; ‘*’ denotes significant difference from control (p < 0.05). (D). Comparison

of Nissl-stained motor cortex between implanted and control hemispheres. Cortical layers are indicated by

roman numerals I - VI.

tissue (96.4 ± 0.33%) than either brain-side encapsulation (82.5 ± 2.3%; Tukeys post-test: p < 0.01) or

dura-side encapsulation (58.9± 4.5%; p < 0.001). The percentage of collagenous tissue in the cortex-facing

encapsulation was also significantly greater than that of the dura-facing encapsulation (p < 0.001).

In order to determine the cellular composition of the encapsulation we used immunohistochemistry (de-

scribed in Section 6.2.8). We identified fibroblasts (vimentin(+)/Iba-1(-)) and macrophages (vimentin(+/-

)/Iba-1(+)) in all tissue groups. Control dura mater was largely composed of fibroblasts, many of which ex-

hibited elongated nuclei (Figure 6.15C), consistent with previous literature [Adeeb et al., 2012]. Macrophages

were sparsely distributed. This closely resembled the collagenous region (> 300µm from the array; Figure

6.15B) of the tissue encapsulation, which also contained elongated fibroblasts and macrophages. The “cel-

lular region” of encapsulation (< 300µm from the array; Figure 6.15A) was highly cell dense with round,
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Table 6.2: Cell density (neurons and microglia, counts/mm2) and % signal (astrocytes) in cortical layers

I/II–III and layer V. Data presented as mean ± SEM, significance (p < 0.05) denoted by (*).

Cortical Layer Implanted Cortex Control Cortex p-value

Layer I/II–III

Neurons (counts/mm2) 356.39± 36.76 326.02± 21.37 0.5

Astrocytes (% signal) 24.88± 1.99 27.94± 0.58 0.18

Microglia (counts/mm2) 126.63± 6.33 106.93± 3.7 0.027∗

Layer V

Neurons (counts/mm2) 214.85± 26.19 181.19± 18.65 0.32

Astrocytes (% signal) 0.74± 0.33 0.18± 0.08 0.73

Microglia (counts/mm2) 103.47± 5.45 92.08± 7.07 0.24

mononuclear macrophages as well as multinuclear, foreign body giant cells (vimentin(+)/Iba-1(+)). Mononu-

clear/multinuclear distinction was based on nuclei count (Figure 6.15A, inset).

6.4 DISCUSSION

We have shown that a chronically-implanted subdural ECoG electrode grid is capable of recording physio-

logical signals from the cortex for nearly two years, with no electrode failure occurring during the implant

lifetime. Furthermore, signals were sufficiently stable over time to allow closed-loop brain control perfor-

mance with a static decoder to be sustained for a period of 78 days, though it is likely that performance was

aided by activity generated as a result of jaw movement artifacts. Upon removal of the electrode grid, it was

found that the grid was encapsulated in fibrotic tissue on both the cortex-facing and dura-facing aspects.

Histological analysis of explanted cortical tissue showed no damage resulting from the electrode implant,

as neuronal and glia density and cortical thickness were found to be comparable to control (contralateral

hemisphere) tissue.

6.4.1 Closed-loop brain control

The ability of the monkey to perform closed-loop control of a computer cursor with a fixed decoder appears

to provide evidence that ECoG may facilitate stable, long-term control of BMI systems. Previous ECoG

studies have shown offline hand reconstruction from subdural ECoG recordings can be sustained for up

to approximately 150 days [Chao et al., 2010], with epidural signals yielding stable decoding for up to 10

days [Shimoda et al., 2012]. In comparison, closed-loop BMI control has been demonstrated for up to 19

days using single-unit recordings [Ganguly and Carmena, 2009]. Notably, recent work has shown multi-unit
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of encapsulation tissue to control dura. (D) The percentage of SHG(+) tissue was significantly reduced
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and LFP recordings can sustain stable closed-loop BMI performance for up to 203 and 348 days, respectively,

using penetrating microelectrode arrays [Flint et al., 2013].

Our results show a marked decline in performance beginning approximately 50 days after the start of

fixed-decoder experimental sessions. The reason for such a decline is unclear, though several factors may be

responsible. It is tempting to attribute this to surgical interventions (covering of an exposed wire bundle)

given the proximity of the performance decline to that of the surgical events. As these surgeries did not

involve opening the skull, it is difficult to imagine they could be responsible for the observed changes in

performance. Similarly, it is unlikely that motivational issues could be solely responsible for the decline in

performance, as the time-frequency data from late fixed-decoder experimental sessions showed a noticeable

decline in amplitude from that of peak brain control performance, more indicative of a baseline shift in

spectral power.

The encapsulation seems a natural cause for the decline in performance, increasing the distance of the

recording electrodes from the cortical source and, as a result, decreasing the overall signal amplitude. How-

ever, the time course of the decline does not seem to be consistent with that expected from a typical foreign

body reaction, which may plateau at 3 months post-implant (see Section 6.4.3).
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It has recently been shown that performance of a skilled task over a period of months results in decreased

metabolic activity in primary motor cortex, likely due to a decrease in presynaptic activity [Picard et al.,

2013]. In the present study, we observe a decrease in ECoG activity during a brain control task utilizing a

fixed decoder over a period where brain control performance appeared to either improved or remained static.

It may be the case that increased metabolic efficiency resulted in a decrease in the baseline ECoG spectrum

as a result of continued practice, i.e. development of a BMI “skill”. Such a decrease, when combined with a

fixed neural decoder (including fixed baseline normalization parameters), could be responsible for the decline

in performance observed towards the end of the brain control experiment.

Unfortunately, the presence of artifacts in these data make it difficult to attribute the observed changes in

the ECoG power spectrum to one particular source. Artifacts were present even during periods of declining

brain control performance, suggesting that these artifacts may not have contributed to the observed decrease

in spectral amplitude observed over the course of the fixed-decoder brain control experiment. Additional

experiments are needed in order to appropriately assess the factors contributing to changes in ECoG spectral

amplitude during prolonged BMI experiments.

6.4.2 Influence of artifacts on closed-loop brain control

Recording artifacts detrimentally influenced our closed-loop BMI experiments. Post-hoc examination of

neural recordings during closed-loop BMI control revealed the presence of a large number of artifacts. These

artifacts have been described previously [Kelly et al., 2013], and we believe they are related to jaw movements

based on their timing coinciding with that of the reward period during the brain control task. We found that

the number of artifacts increased with improvements in closed-loop performance, and that the presence of

artifacts during successful trials was biased towards the lower-left quadrant of the workspace. The presence

of such a bias strongly suggests that the animal adopted a strategy of utilizing artifact-related activity to

drive movement of the computer cursor.

It is likely that the animal was able to learn to use artifacts to control the BMI as a result of the task

timing. The animal was provided with a liquid reward immediately following successful acquisition of the

target during brain control. This task sequence may have resulted in anticipation of the liquid reward, and

resultantly an incorporation of artifacts into the data used for decoder calibration. Subsequent decoder

calibrations may have then unintentionally reinforced the animal’s use of artifacts for brain control. As

suggested by the increase in the number of artifacts with increasing task performance, the animal likely

learned over the course of brain control experiments that these artifacts resulted in stereotyped movement

of the cursor and that they could be used to improve performance in the task.

Following cessation of the fixed-decoder brain control experiment and the discovery of the prevalence

of artifacts in data collected during this experiment, we performed additional brain control sessions where

we attempted to prevent the animal from using jaw movement artifacts during brain control. These efforts

involved the incorporation of common-average referencing (CAR) of neural signals [Schalk et al., 2007],
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improved task sequencing separating the brain control and reward periods of trials, and root-mean-square

threshold detection for invalidation of trials containing artifacts. Unfortunately, none of these efforts were

successful in preventing the animal from generating artifacts during closed-loop brain control.

Though it has been suggested that ECoG is less sensitive to artifacts than EEG [Schalk and Leuthardt,

2011], we nonetheless observed a high prevalence of artifacts in the neural recordings obtained in the presented

study. It may be the case that artifacts in ECoG recordings are more common than previously believed,

and may be particularly problematic for clinical BMI systems where control must be robust in the presence

of mouth, head, and neck movements. In many BMI experiments, such movements are minimized though

subject instruction (in the case of human experiments) or head fixation (for non-human primates); such

interventions are impractical for a clinical BMI.

Finally, it is unclear whether the presence of encapsulation tissue surround the electrode grid influence

the presence of artifacts. It has also been shown that chewing artifacts may be larger for epidural ECoG

recordings than for subdural recordings [Shimoda et al., 2012]. Though the time course of the encapsulation

growth in our study is unknown, it is possible that the presence of encapsulation tissue exacerbated the

severity of the artifacts observed in this study. It is likely that better electrode grid and amplification

hardware designs, innovations in signal filter algorithms such as automated common-mode rejection [Kelly

et al., 2013], and careful decoder calibration paradigms will be necessary to limit the influence of artifacts

on ECoG-based BMI systems.

6.4.3 Histological findings

During the grid implantation surgery, we resected the dura mater, replaced it over the ECoG array, and

sutured it in place. After 666 days of implantation, dura mater/fibrous encapsulation tissue was found in a

contiguous piece surrounding the top of the ECoG array where it was placed during surgery as well as under

the ECoG array. In order to examine the foreign body response to the chronically-implanted electrode, we

examined both the cortical tissue underlying the grid and the fibrotic encapsulation tissue surrounding the

grid.

The characteristics of the cerebral cortex underneath the ECoG grid was consistent with that of the

tissue of the control contralateral hemisphere. Most importantly, cortical thickness and neuronal density of

the tissue under the array were statistically indistinguishable from the contralateral tissue, with no mor-

phological differences apparent at any spatial scale. Measurements of thickness and neuronal density for

both hemispheres agreed with those of previous anatomical studies of primate frontal cortex [Matelli et al.,

1991, Gittins and Harrison, 2004]. Only the microglial density of the superficial cortical layers was signif-

icantly different between the implanted and non-implanted hemispheres. Despite their increased density,

these cells were in a “resting” microglia morphology, which indicates that these microglia were not actively
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responding to trauma or other noxious stimuli [Stence et al., 2001]. It is possible that the persistent, un-

activated microglia population is part of the foreign body response to the implanted ECoG array, where

increased macrophage density persists in the vicinity of the implant for its lifetime [Anderson, 2001, Sanders

et al., 2000]. We observed a concavity of the brain under the electrode array; it is also conceivable that this

mechanical deformation incited an independent tissue response that resulted in tissue changes at the locus

of mechanical stress [Ding et al., 2008]. The astrocytic GFAP expression between control and implanted

hemispheres was not different. Healthy cortical tissue shows low levels of GFAP expression in gray matter,

protoplasmic astrocytes, and strong expression at the surface of the brain in the glia limitans. Expression

becomes drastically higher in pathological and traumatic situations [Eng et al., 2000]. Qualitatively, our

finding of low levels of gray-matter GFAP(+) cells under the array suggests that the array was not actively

causing trauma to the cortex.

The cellular distribution in the encapsulation tissue implies that the wound-healing response to implanta-

tion consisted of a stereotypic foreign body response, which involved aggregation of mononuclear macrophages

and multinucleated foreign body giant cells to the implant site and encapsulation of the device in a collagenous

envelope. Aggregated cells and tissue encapsulation generally persist through the lifetime of the implant,

with pro-inflammatory cytokine expression diminishing within the first month as anti-inflammatory/pro-

wound healing cytokines are expressed [Lynn et al., 2011, Brodbeck et al., 2003, Anderson et al., 2008]. The

fibrous encapsulation demarcates the final stage of wound healing in which the tissue disrupted by implan-

tation is either regenerated from cells of the original cell type, or replaced with fibrous connective tissue.

Given that dura mater is already largely fibrous connective tissue and mesenchymally derived fibroblasts, it

was unclear to us the extent to which the tissue encapsulation was fibrous encapsulation or regrown dura

mater [Adeeb et al., 2012, Anderson, 2001, Anderson et al., 2008]. We observed a gradient where tissue

proximal to the implant more closely resembled fibrous encapsulation, and tissue distal to the implant more

closely resembled control dura mater.

We found that both the dura-facing encapsulation and cortex-facing encapsulation were thicker than the

control dura mater, which would be expected of a foreign body tissue encapsulation. Dural thickening may

be an inevitable consequence of craniotomy and/or durotomy that is simply exacerbated by the presence of

a foreign body. Previously, it has been shown that merely performing a craniotomy in New Zealand white

rabbits resulted in a 3.8 fold increase in dural thickness at 3 weeks, with a reduction to a 2.6 fold increase at 3

months [Nunamaker and Kipke, 2010]. Replacing dura with an alginate hydrogel resulted in a 2.8 fold increase

of dural thickness at 3 weeks and a 3.1 fold increase at 3 months. Dural thickening of 2mm 8 weeks after a 2cm

dural incision has been observed in coonhound dogs; following application of a poly(ethylene) glycol based

dural sealant, the healed dura was found to have thickened as much as 4mm [Preul et al., 2003]. Furthermore,

it has been found that mengineal cells almost double collagen production following injury [Sajanti et al.,

1999], with computational models of collagen I fibrosis following biomaterial implantation corroborating

this finding [Su et al., 2011]. In these experiment-validated models, increasing numbers of fibroblasts at
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the implant site results in significantly increased collagen deposition. Since the predominating cell type of

dura mater is the fibroblast, it is plausible that we might expect pronounced collagen I production following

implantation.

While we have shown that the foreign body response to chronic ECoG grid implantation can result in grid

encapsulation, the time course for this response is still unknown. ECoG electrodes implanted up to 30 days

clinically for epilepsy monitoring do not exhibit such encapsulation [Fountas and Smith, 2007, Van Gompel

et al., 2008, Wong et al., 2009, Wang et al., 2013a], while it has recently shown that encapsulation for

epidural ECoG grids can occur as early as one month post implantation [Schendel et al., 2013, Schendel

et al., 2014]. Mild chronic inflammation, restricted to the leptomeninges, has been observed after 25 weeks

(6 months) in mirco-ECoG electrodes implanted subdurally in a rat model [Henle et al., 2011] while other

dural manipulations resulting in fibrosis may plateau within 3 months [Nunamaker and Kipke, 2010, Preul

et al., 2003, Su et al., 2011].

6.4.4 Study limitations

Unfortunately, the nature of the closed-loop brain-control experiments we conducted prevented cortical

responses from being observed under constant experimental conditions. Evaluation of ECoG activity during

a stereotypical motor task (e.g. a center-out reaching task) at regular intervals during periods of closed-loop

brain control would likely have shed light on the cause of declining performance. However, such experiments

were not able to be performed for practical reasons. Ultimately, the decline in closed-loop brain control

performance with a static decoder may be the result of a combination of factors, including the presence of

the encapsulation, declining motivation, and perhaps even cortical changes resulting from BMI skill learning.

Furthermore, a more thorough analysis of signal quality over time is difficult given the nature of the

brain-control experiment. Changes in ECoG signal characteristics associated with BMI learning are likely

occurring concurrently with those changes associated with electrode encapsulation, making dissociation of

these two effects problematic. The time course of such changes will need to be studied in detail, as these

will likely affect the stability of BMI control with static decoding parameters. Nevertheless, the fact that

chronic implantation of the ECoG electrode grid did not result in cortical damage provides evidence for the

utility of ECoG as a recording modality for a BMI system. This, combined with the ease with which the

electrode grid could be removed from the encapsulating tissue, suggest that a chronic ECoG BMI system

could in theory be upgraded if a more promising electrode technology becomes available.

The effect of encapsulation tissue on ECoG signal independence also warrants further investigation. While

it has been shown that ECoG can be used to obtain three-dimensional BMI control [Wang et al., 2013a], it

is unknown if ECoG signals are sufficiently independent to enable higher degree-of-freedom (DoF) control.

It has previously been shown through finite element modeling that human epidural electrical field potentials

exhibit lower spatial resolution than those recorded subdurally [Slutzky et al., 2010], suggesting that the

presence of encapsulation is likely to decrease the spatial resolution of ECoG recordings due to an increased
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distance of the recording electrodes from the cortex. Considering this, any encapsulation-related decreases

in electrode independence could decrease the utility of an ECoG BMI system for higher degree-of-freedom

control.

6.4.5 Implications and future directions

Given the current interest in both epidural and subdural ECoG recordings for BMI and other clinical

applications, it is worth considering the implications of our findings on the utility of subdurally-implanted

ECoG grids. Epidural implantation of ECoG grids is argued to result in a lower risk of infection than

subdural ECoG, while an acute study in humans showed subdural implantation provides higher amplitude

neural signals [Bundy et al., 2014]. The current work suggests that long-term subdural implantation could

result in a tissue encapsulation, though it is unclear how this encapsulation may affect recording quality.

Furthermore, encapsulation has also been observed in epidural implantations [Schendel et al., 2013, Schendel

et al., 2014]. Because these studies were conducted in different animal models with different ECoG arrays,

direct comparison is not possible. A long-term study to evaluate the effect of implantation location on tissue

response and recording quality is necessary to fully understand any potential tradeoffs between locations.

Regardless, the fact that a similar reaction type is observed despite implantation location suggests that

cutting the dura is not solely responsible for the response observed in this study. Further, the fact that

profound dura thickening, increased collagen deposition, and microglial and astrocytic activation is also

observed following a craniotomy without interruption of the dura mater [Nunamaker and Kipke, 2010, Sajanti

et al., 1999, Xu et al., 2007] suggests the extent of tissue encapsulation may be exacerbated by other factors

beyond cutting the dura. Subdural and epidural implants also have the potential to mechanically irritate

either dura or neural tissue based on the relative micromotion of the brain/dura and implant, which could

exacerbate fibrosis [Schendel et al., 2013, Gilletti and Muthuswamy, 2006].

Many strategies can and have been pursued to minimize the foreign body response to ECoG electrodes. To

mitigate dural thickening from craniotomy and durotomy, minimally invasive ECoG insertion techniques can

be used, such as the expandable shape memory alloy guidewires [Yamakawa et al., 2010]. It is postulated that

micromotion of the ECoG array at the surface of the brain/dura may irritate surrounding tissue, causing

inflammation and fibrosis [Schendel et al., 2013]. Using flexible materials such as polyimide as an array

substrate may mitigate this inflammation [Yeager et al., 2008, Rubehn et al., 2009]. Additionally, dissolvable

silk fibroin shuttles have been used to introduce ultracompliant, thin polyimide mesh ECoG arrays to cortex.

Such arrays can conform to the brains topography upon contact which could reduce micromotion, and have

been shown to mitigate some of the tissue proliferation under the ECoG grid when compared to traditional

grids [Kim et al., 2010, Schendel et al., 2013, Schendel et al., 2014]. Many biomaterials applications achieve

reduced biofouling with hydrophilic polymer coating that inhibit serum protein binding [Brodbeck et al.,

2003, Collier et al., 2004]. Additionally, biomolecule surface immobilization has been used to “camouflage”

implants against the bodys defense mechanisms [Azemi et al., 2011, Kolarcik et al., 2012]. Further, controlled
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release of anti-inflammatory or other therapeutics can be achieved by trapping the drug in either degradable

or conductive polymer surface modification. In the former case, drug is released as hydrolytic or enzymatic

degradation of the polymer exposes encapsulated drug [Norton et al., 2005, Rujitanaroj et al., 2013, Bridges

and Garcia, 2008, Wang et al., 2013b, Wadhwa et al., 2012]. In the latter case, electrical stimulation of

the conductive polymer electrostatically releases ensnared drug, allowing it to diffuse out of the coating and

enabling on-demand release [Svirskis et al., 2010, Weaver et al., 2014, Luo et al., 2011]. Anti-mitotic drugs

applied directly to a chronic durotomy site have been shown to safely prevent dura regrowth and could be

a viable candidate for controlled release at the ECoG-brain interface [Spinks et al., 2003]. These strategies

should be assessed in the context of long-term ECoG implantation and neural recording to determine the

optimal strategy for more biocompatible arrays.

Clearly, brain-surface dwelling implants present different challenges from cortex-penetrating neural elec-

trodes where there is little fibrous encapsulation, but slow signal decay likely due to neuronal degenera-

tion [Barrese et al., 2013, Freire et al., 2011, Collinger et al., 2012, McConnell et al., 2009, Saxena et al.,

2013]. While it is predicted that intracortical devices will last 8 years [Barrese et al., 2013], the lifespans of

surface dwelling grids are unknown. To our knowledge, our 666-day implant is the longest reported to date.

Our results suggest that these devices do not affect neuronal density even after nearly two years of implanta-

tion. Thus, if ECoG arrays do fail over time, we do not expect it to be from the same mode as intracortical

electrodes. Rather, our results suggest that the only likely failure mode would be signal loss due to excessive

fibrous encapsulation. However, even after 666 days and 1.7mm of fibrous encapsulation, our ECoG grid

showed robust movement-related modulation during hand-control tasks. Because we have only explored one

time point, it is unclear whether the encapsulation is stagnant, growing, or shrinking. Other studies of

sub-dural implants found that fibrous encapsulation plateaued by 3 months post-implantation [Nunamaker

and Kipke, 2010, Preul et al., 2003, Su et al., 2011]. Further experiments with more time points must be

conducted to understand the progression of fibrous encapsulation in the sub-dural ECoG context. Further-

more, the effect of fibrous encapsulation on electrode independence must also be evaluated. Though we

observe significant modulation of ECoG activity during overt hand movements, nearly all electrodes exhibit

similar preferred directions, indicative of a high degree of spatial correlation between electrodes. What effect

fibrotic encapsulation has on this correlation is unclear, and requires further investigation.

We believe our results also have implications for the viability of ECoG for long-term high-resolution brain

recording. ECoG has increasingly become a neuroimaging method of choice in a variety of neuroscience fields,

including the study of speech and language processes [Bouchard et al., 2013, Pasley et al., 2012, Kellis et al.,

2010, Wang et al., 2011a, Cervenka et al., 2011, Pei et al., 2011]. The fact that subdural ECoG grids can

remain implanted for extended periods of time without damaging the cortex will facilitate the study of

cognitive processes over long timescales. The ease with which ECoG electrode grids can be removed from

encapsulation tissue may provide for repeated implants, thereby enabling long-term studies using ECoG in

appropriate patient populations.
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Our results may also inform other fields that use implantable brain surface electrodes for non-BMI

neural recording and neuromodulation applications, such as pain management and the treatment of epilepsy

and mental disorders. For example, work is currently in progress investigating the efficacy of chronically-

implanted depth and subdural electrodes for purposes of epilepsy management through responsive cortical

stimulation [Morrell and RNS System in Epilepsy Study Group, 2011]. It may be the case that stimulation

parameters would need to be updated over time in order to account for the effects of encapsulation. Long-

term studies of epilepsy or other neurological disorders, specifically those tracking disease progression or

recovery, may also be enabled through the use of chronically-implanted of ECoG electrodes.
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7.0 SPECTRALLY AND SPATIALLY-CONSTRAINED DECODING OF ELECTRICAL

FIELD POTENTIALS USING EMPIRICAL BAYES

We have previously discussed both the efficacy of ECoG BMI systems (Chapter 4) and the chronically-

implanted ECoG BMI systems (Chapter 6). While these results provide an essential evidence for the feasibil-

ity of a clinical BMI system, we ultimately seek the realization of a high-degree-of-freedom, high-performance

BMI. Integral to this is maximizing the extraction of information from the cortex with the neural decoder,

the component of the brain-machine interface which is responsible for the translation of cortical activity

into BMI command signals. In this chapter, we present a novel decoding algorithm which uses empirical

Bayes in conjunction with weight-space covariance priors to find spectrally and spatially-constrained decod-

ing weight solutions. Using both simulated data and ECoG recordings from individuals with upper-limb

paralysis, we show that by imposing prior distributions over decoding weights which encourage spectral and

spatial correlation, decoding performance can be achieved which surpasses that of standard least-squares

linear regression, and in some cases, Optimal Linear Estimation. Additionally, we find that the benefits of

this method are greatest in data-limited regimes, making it particularly appropriate for ECoG BMI systems.

7.1 BACKGROUND

ECoG signals are commonly recorded from between 16 and 128 electrodes simultaneously and are analyzed in

the time-frequency domain. As a result, the number of potential features (i.e., spectral power in a particular

frequency band for a single electrode) available for use in analysis can easily exceed several thousand. For

example, 128 channels of data analyzed with 5 Hz frequency resolution results in over 5,000 potential features.

With growing interest in high-density and micro ECoG grids [Degenhart et al., 2011a, Rouse and Moran,

2009, Wang et al., 2009], local field potentials [Zhuang et al., 2010], and expansion of the frequency range

of interest [Gaona et al., 2011], this number is only expected to increase. Such large feature set sizes can be

problematic for two reasons. First, large feature sets can lead to ad-hoc feature selection methods which may

fail to identify important features. Second, ECoG features are often highly correlated temporally, spectrally,

and spatially due to the biophysics of field potentials and choices in signal preprocessing. This can result

in large numbers of highly dependent features, problematic for certain decoding methods (e.g. Näıve Bayes
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classification) as well as for making inferences about the structure of ECoG signals, such as the functional

specificity of broadband spectral modulation. Finally, the high-dimensional space is typically undersampled,

as the number of features (the number of channels times the number of frequency bands) often exceeds

the number of data points. If not properly handled, this can easily lead to overfitting of neural decoder

parameters and consequently a reduction in performance for BMI systems.

Several solutions are available for handling the problem of overfitting, including dimensionality reduction,

feature selection, or sparse decoding methods. Ad hoc feature selection has been widely employed in ECoG

literature as a means of controlling the size of feature sets. Frequently this takes the form of averaging

the frequency spectra for individual channels across larger bands [Kubánek et al., 2009], or the use of

movement screening paradigms to restrict the feature space to task-modulated channels and frequency bands

[Schalk et al., 2008c]. Other, more principled feature selection approaches, such as “greedy” (forward)

feature selection [Zhuang et al., 2010] have been applied to the decoding of field potential signals. Principal

components analysis (PCA) has been applied to extract low-dimensional sets of features from ECoG data,

enabling the prediction of individual finger movements [Miller et al., 2009b, Wang et al., 2009], as well as

classification of hand posture and force levels [Degenhart et al., 2011a]. We have recently shown that sparse

decoding methods, such as L1 and elastic net regularized linear regression, can be used offline to decode

BMI cursor control trajectories and overt hand posture from large (>1000) ECoG feature sets with greater

accuracy than non-regularized methods, with elastic net regularization allowing a sparse set of decoding

parameters to be found which retains correlations between important features [Kelly et al., 2012].

The preservation of the influence of inter-feature correlations, particularly for frequency spectra calculated

with fine spectral resolution, is likely to be important for the realization of high-performance ECoG-based

BMI systems. It has been hypothesized that the ECoG frequency spectrum modulation occurs in a broadband

manner for frequencies between 80 and 500 Hz [Miller et al., 2009a], though other evidence suggests that

functional modulation of ECoG signals may exist within sub-bands of the high gamma (>60 Hz) range [Gaona

et al., 2011]. Furthermore, it has been shown that non-human primates are capable of de-correlating the

spectral modulation of neighboring micro-ECoG electrodes in narrow frequency bands through closed-loop

BMI training [Rouse and Moran, 2009]. The use of such a priori information may prove beneficial within

the context of ECoG BMI decoding, allowing for an increase in the signal-to-noise ratio of BMI control

commands through the identification and inclusion of functionally-distinct patterns of spectral and spatial

modulation into neural decoding schemes.

The incorporation of prior knowledge into decoding algorithms has been utilized with multiple neu-

ral recording modalities, including magnetoencephalography (MEG), functional magnetic imaging (fMRI),

ECoG, and LFP. Prior information about the constraints governing finger movements has been used to

improve the accuracy of finger movement prediction from ECoG signals, though in this case ad hoc feature

selection was still used [Wang et al., 2011b]. In the field of neuroimaging, decoding of joystick movements

using MEG has been shown to be improved by the incorporation of a prior constraint on the cortical region of
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interest over which movement-related information is expected to be recorded [Zhang et al., 2011]. A similar

approach has been shown to aid in the prediction of brain state from BOLD responses, where prior spatial

information about the cortical regions expected to be activated by a given set of stimuli has been used to

enhance prediction [Chu et al., 2011]. Finally, the encoding of visual stimuli by LFP recordings has been

uncovered using implicit assumptions of the functional similarity of neighboring frequency bands to divide

a frequency range of interest into sub-bands which maximize information content [Magri et al., 2011]. This

suggests that a similar treatment of a priori information about the spectral and spatial correlation structure

of field potentials may aid in the decoding of information from these signals.

7.2 MOTIVATION AND APPROACH

We motivate the proposed approach by first identifying the key characteristics of ECoG time-frequency re-

sponses to naturalistic stimuli. An example of ECoG modulation during an attempted movement task is

shown in Figure 7.1. There are several notable characteristics present in these data. First, time-frequency

responses for individual electrodes exhibit a substantial degree of correlation across frequency, with neigh-

boring frequencies having similar activity. Secondly, ECoG responses are highly correlated spatially, with

neighboring electrodes showing similar responses.

Further insight into the nature of ECoG features can be gained by examining the correlation structure

of recordings directly. Figure 7.2 shows covariance matrices for ECoG brain-control subjects S1 and S21. As

seen in these matrices, the spectral modulation of neighboring frequency bands on individual electrodes tend

to co-vary with one another, as indicated by the high degree of covariance along the diagonal of Figures 7.2C

and 7.2F. In addition, neighboring electrodes also exhibit a substantial degree of covariance, as indicated

by the high covariance of the off-diagonal elements in Figures 7.2B and 7.2E. For example the covariance

of neighboring electrodes 7 and 15 is high quite high for subject S1 (Figure 7.2B), as expected by the close

proximity of these electrodes to one another on the electrode grid (Figure 7.2A).

These signal characteristics allow us to define our decoding approach. Given the high degree of correlation

of spectrally and spatially-similar ECoG features, we make the assumption that the decoding weights should

exhibit the same correlation structure as the neural features. Such structure can be imposed on the set

of decoding weights by using a priori information of the correlation of ECoG features to define a prior

distribution over the set of decoding weights. As will be shown in the following section, this approach can

be formalized as a special case of Bayesian linear regression.

1A thorough description of these subjects can be found in Chapter 4.
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Figure 7.1: ECoG time-frequency responses during attempted hand flexion. Time-frequency data are shown

for an individual with upper-limb paralysis implanted with a 32-electrode ECoG grid. Individual panels

show the time-frequency responses for individual electrodes, with the instructed attempted hand aperature

indicated by the black line. Refer to Chapter 4, Figure 4.1 for grid layout and placement details.

7.3 METHODS

7.3.1 Bayesian linear regression

Incorporation of prior knowledge of the correlation structure of ECoG recordings into the decoding method

begins by first defining the functional form of the model used. We first assume that kinematic variables are

a linear function of neural activity, as defined the standard linear regression model shown by Equation 7.1:

y = w>x + ε , ε ∼ N (0, σ2
n), (7.1)

where y is a single kinematic variable (e.g. X -axis velocity), x ∈ RD×1 is a vector of instantaneous neural

activity, w ∈ RD×1 is the vector of decoding weights relating neural activity to kinematics, and ε is zero-

mean additive observation noise with variance σ2
n. Such models have been used successfully in BMI systems

(see Chapter 2), including the closed-loop control results presented in Chapter 4.

Based on the observation that the neural feature vector x exhibits a characteristic pattern of covariance,

we make the assumption that the elements of the decoding weights vector w share this correlation structure.

This is accomplished by setting a prior distribution over w. By specifying the form of this prior such that

it matches our a priori knowledge about the expected correlation structure of the neural feature set, we can

attempt to find a solution to Equation 7.1 which reflects this structure.
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Figure 7.2: Example of covariance structure of human ECoG recordings. Covariance matrices are shown

for selected electrode subsets for human ECoG subjects S1 (top row) and S2 (bottom row). (A) Electrode

schematic for Subject S1. The subset of electrodes for which the covariance matrix is provided is shown by

the red box. (B) Detail of covariance for a single electrode (e5) for Subject S1. (C) Covariance matrix for

selected electrodes for Subject S1. Divisions between electrodes are indicated by black lines. (D) Electrode

schematic for Subject S2. (E) Detail of covariance for a single electrode (e2) for Subject S2. (F). Covariance

matrix for selected electrodes for Subject S2.
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We define the prior distribution over w is defined as a zero-mean Gaussian distribution with covariance

Σp as shown by Equation 7.2:

p(w) ∼ N (0,Σp). (7.2)

Under this prior, the decoding weights are calculated according to Equation 7.3: [Rasmussen and Williams,

2006]:

w = σ−2n A−1Xy, (7.3)

where A = σ−2n XX> + Σ−1p , X = [x1, . . . ,xN ] ∈ RD×N is an matrix of neural feature observations, and

y = [y1, . . . , yN ]> is a vector of kinematic observations. A detailed derivation of these equations is provided

in Appendix C.

7.3.2 Parametric prior covariance matrices

The functional form of the covariance prior over the decoding weights, Σp, specifies the desired correlation

structure of the decoding weights vector w. We specify the general form of Σp to be:

Σp = σ2
w,fK + σ2

w,nI, (7.4)

where σ2
w,f and σ2

w,n are the functional and noise variance of the prior over w, respectively, and K is a

matrix which specifies the functional form of the prior. The diagonal term σ2
w,nI ensures that Σp is full-rank

and thus invertible. Parametric covariance matrices are defined by specifying the elements of K according

to a particular kernel with the general form:

K(xi, xj) = g(xi, xj , θ), (7.5)

which indicates that the kernel specifying the covariance prior over the decoding weights is a function of

features xi and xj as well as the set of hyperparameters of the prior θ.

We investigate three specific covariance kernels. The first of these, referred to here as the diagonal kernel,

is the simplest of the three and is defined as:

Kd(xi, xj) = δ(xi, xj), (7.6)

where δ(xi, xj) = 1 if i = j and 0 otherwise. As this implies that Σp is proportional to the identify matrix, use

of the diagonal prior makes the assumption that the elements of w do not co-vary and are thus independent

from one another. In this case, the probabilistic linear regression model is equivalent to L2-regularized

linear regression (“ridge regression”), and prevents overfitting by penalizing solutions for w by the L2 norm

|x| [Park and Pillow, 2011].

The two other covariance kernels, the frequency-block-diagonal and frequency-spatial kernels, attempt

to incorporate the known correlation structure of ECoG recordings into Σp. The frequency-block-diagonal
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kernel specifies correlations between features for a single electrode as a function of the distance in frequency

between the features and assumes independence between electrodes:

Kf (xi, xj) = exp

{
− 1

2`2f
[f(xi)− f(xj)]

2

}
δel(xi, xj) (7.7)

where f(xi) is the frequency band corresponding to feature xi, hyperparameter `2f is the “spectral length

constant” determining the correlation between elements of w as a function of the difference in frequency

between their corresponding features, and delta function δel(xi, xj) is 1 if features xi and xj are on the same

electrode, and 0 otherwise. The frequency-spatial kernel builds upon the frequency block-diagonal kernel by

incorporating covariance as a function of the spatial distance between electrodes:

Kf,s(xi, xj) = Kf (xi, xj)Ks(xi, xj) = exp

{
− [f(xi)− f(xj)]

2

2`2f

}
exp

{
−d

2(xi, xj)

2`2s

}
, (7.8)

where d2(xi, xj) is the square of the spatial distance between electrodes for features xi and xj and `s is the

“spectral length constant” hyperparameter determining the correlation between elements of w as a function

of the distance between the electrodes for their corresponding features.

Figure 7.3 shows example prior covariance matrices for the diagonal, frequency-block-diagonal, and

frequency-spatial kernels for a simulated 3 × 3 electrode grid with inter-electrode distance of 3 mm. As

the length constant hyperparameters (`2f and `2s) increase, the degree of inter-feature correlation incorpo-

rated into the prior increases. Furthermore, as `2s → 0, the frequency-spatial kernel becomes equivalent to

the frequency block-diagonal kernel, and as `2f → 0, the frequency-block-diagonal kernel becomes equivalent

to the diagonal kernel. Thus, the frequency-spatial kernel can be considered the most general case of the

three, with the diagonal and frequency block-diagonal special cases of the frequency-spatial kernel for spe-

cific values of `2f and `2s. For the sake of brevity, the prior covariance matrices for the diagonal, frequency

block-diagonal, and frequency-spatial kernels will be referred to as the diagonal, frequency block-diagonal,

and frequency-spatial priors for the remainder of this chapter, with the decoders for these priors abbreviated

by EBd, EBf , and EBfs, respectively.

7.3.3 Evidence-based maximization of parameters and hyperparameters

The previous sections have shown how decoding weights can be calculated provided training data and the

set of hyperparameters governing the prior over the covariance matrix Σp. While it is possible to specify

the values of the hyperparameters, we choose to learn these values directly from the training data. This

is accomplished by maximizing the likelihood of the kinematic observations given the neural observations,

p(y|X), which can be expressed as:

p(y|X) =

∫
p(y|X,w)p(w) dw. (7.9)
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Figure 7.3: Example of covariance priors. Example covariance matrix priors (Σp) are shown for three

classes of covariance priors. ‘Diagonal’: diagonal prior. ‘FreqBlockDiag’: frequency-block-diagonal prior.

‘FreqSpatial’: frequency-spatial prior. (A) Schematic of electrode grid used for generating covariance priors

(‘frequency-spatial’ prior only). (B) Diagonal prior. (C ) Frequency block diagonal prior, `2f = 1 Hz−2. (D)

Frequency block diagonal prior, `2f = 250 Hz−2. (E ) Frequency block diagonal prior, `2f = 5000 Hz−2. (F )

Frequency-spatial prior, `2f = 250 Hz−2, `2s = 0.1 mm−2. (G) Frequency-spatial prior, `2f = 250 Hz−2,

`s = 1 mm−2. (H ) Frequency-spatial prior, `2f = 250 Hz−2, `2s = 3 mm−2.
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This quantity is commonly referred to as the marginal likelihood or evidence [Linden and Sahani, 2003].

Replacing the probabilities in Equation 7.9 with their respective distributions allows us to express the log-

evidence as a function of known quantities y, w, X, A, Σp, σ
2
n [Linden and Sahani, 2003]:

ln E(σ2
n, θ) =

1

2
ln |2πA| − N

2
ln(2πσ2

n)− 1

2
ln |2πΣp| −

1

2
y>
(

I

σ2
n

− X>AX

σ4
n

)
y. (7.10)

By taking the derivative of Equation 7.10 with respect to σ2
n and the set of hyperparameters of the prior

θ, the optimal values of these (hyper)parameters can be found using gradient ascent. Appendix C provides

a detailed description of this process, including derivation of the evidence function and the partial deriva-

tives with respect to the each of the (hyper)parameters. Estimating the prior distribution over the set of

decoding weights from the data in this manner is known as empirical Bayes, and has been used previously

to characterize the receptive fields in visual and auditory cortex [Linden and Sahani, 2003, Park and Pillow,

2011].

7.4 CHARACTERIZATION AND VALIDATION

Simulations were performed in order to validate the implementation of the method and characterize its

performance under specific conditions. These simulations included assessing the ability of our implementation

of to recover known (hyper)parameters, as well as evaluating the performance of empirical Bayes relative to

that of standard least-squares as a function of characteristics of the training set.

7.4.1 Simulation

We generated simulated data according to the linear regression model provided by Equation 7.1 using

decoding weights randomly drawn from a Gaussian distribution with zero-mean and covariance Σp. This

procedure is outlined by Algorithm 1.

Briefly, simulation of data began by choosing the form of the covariance prior, specifying the set of

hyperparameters governing the prior, and then evaluating Σp. A single set of weights w were then drawn at

random from N (0,Σp), the prior distribution over the decoding weights. A set of simulated neural responses

were generated by drawing at random from a zero-mean uniform distribution; these responses were then

transformed into noiseless kinematic observations through multiplication with the decoding weights vector.

Zero-mean noise with variance σ2
n was then added to these observations to generate the final set of noisy

kinematic data.

Hyperparameter fitting was performed by minimizing the negative-log-evidence function through nonlin-

ear optimization using the conjugate gradient method [Rasmussen, 2006]. As the optimization procedure is

only guaranteed to find the local minimum of the negative-log-evidence function, multiple random restarts

of the optimization procedure were used in an attempt to find the best set of (hyper)parameters. Once
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Algorithm 1 Generation of simulated data (Frequency block-diagonal covariance prior)

Input

yf = [yf,1, . . . , yf,N ]> . known function values

N . number of desired observations

D . number of features

σ2
n . observation model noise variance

θ = {σ2
p,f , σ

2
p,n, `

2
f} . covariance prior hyperparameters

1: for i = 1 : D do

2: for j = 1 : D do

3: Σp(i, j) = σ2
p,f exp

[
− 1

2`2f
(fi − fj)2

]
δel(i, j) + σ2

p,nδij

4: end for

5: end for

6: Draw w from N (0D,Σp)

7: Draw N instances of xi at random; X = [x1, . . . ,xN ]

8: yf = (w>X)>

9: yn = [yn,1, . . . , yn,N ]>, where yi ∼ N (0, σ2
n)

10: y = yf + yn

the optimal parameter values were obtained from the simulated training data, the resultant set of decoding

weights were obtained using Equation 7.3. For comparison, we also computed the standard least-squares

solution (LS):

wls = (XX>)−1Xy = X†y, (7.11)

where X† is the Moore-Penrose pseudoinverse of X. Estimated weights (both least-squares and empirical

Bayes solutions) were compared to the known weights vector generated during the simulation procedure,

with the the quality of the fit assessed using mean-squared-error (MSE):

MSE =
1

D
w>actualwfit, (7.12)

where D is the number of features, w>actual is the set of known decoding weights, and w>fit is the set of

decoding weights fit with either EB or LS.

Figure 7.4 shows the results of a single example simulation comparing least squares to empirical Bayes with

the frequency-spatial prior for a 3×3 electrode grid with inter-electrode distance of 3mm. Figure 7.4A, 7.4B,

and 7.4C show the actual, empirical-Bayes-fit, and least-squares-fit decoding weights vectors, respectively,

while Figure 7.4D and 7.4E show the covariance priors calculated from the known and fit hyperparameters.

Finally, Figure 7.4F depicts the mean-squared error for empirical Bayes and least-squares. As expected,

estimating the decoding weights using empirical Bayes does a better job of recovering the known decoding
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Figure 7.4: Example of Empirical Bayes simulation results for the frequency-spatial prior. An example of

the validation procedure for the Empirical Bayes method is shown for the frequency-spatial covariance prior

with parameters σ2
n = 1, σ2

p,f = 2, `2f = 1000 Hz−2, `2s = 1 mm−2, N = 400, ∆f = 5 Hz for the 9-electrode

grid shown in Figure 7.2A. (A) Simulated decoding weights. Red lines demarcate weights for simulated

individual electrodes. (B) Weights recovered using Empirical Bayes (frequency-spatial prior). (C ) Weights

recovered using least-squares. (D) Actual covariance prior. (E ) Covariance prior calculated using estimated

hyperparameters. (F ) Mean-squared error of recovered decoding weights for Empirical Bayes (EBfs) and

least squares (LS) decoders.
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weights vector than least-squares. Furthermore, the similarity of the actual and fit covariance priors (Figure

7.4D and 7.4E) show that the evidence-optimization method is successful at approximating the known set

of hyperparameters.

7.4.2 Recovery of parameters

In order to verify our implementation of empirical Bayes, we evaluated the ability of the evidence maxi-

mization process to recover known (hyper)parameter values using the simulation procedure described in the

previous section. For each of the three covariance priors investigated, we compared known and recovered

(hyper)parameters over a range of known values chosen to encompass those values likely for ECoG recordings.

The values of all other (hyper)parameters were held constant when sweeping a particular (hyper)parameter

through its range of likely values, with 50 simulations performed for each known value.

The recovery of (hyper)parameters for each of the 3 evaluated covariance priors is shown in Figure 7.5.

As expected, the median values of the fit parameters match the known values. In general, parameters of

the model (i.e., σ2
n) were recovered more accurately than those of the prior (i.e., `2f ). Estimates of `2s, the

spatial length constant of the frequency-spatial prior, were found to be quite variable, particularly for small

values of the hyperparameter. Furthermore, we observe that as the model becomes increasingly complex

through the incorporation of additional hyperparameters in the prior, the ability to accurately recover the

set of (hyper)parameters decreases.

In order to investigate this further, we compared the error in length constant hyperparameter recovery

to the log ratio of EB to LS decoding weight recovery error. Hyperparameter recovery error was calculated

according to Equation 7.13, while decoding weight recovery error ratio was calculated according Equation

7.14:

E` = log |`actual − `fit| (7.13)

ERw = log

(
MSEEB
MSELS

)
, (7.14)

where `actual and `fit are the actual and fit length constants, and MSEEB and MSELS are the mean-

squared-error for the EB and LS decoders, respectively. Figure 7.6 shows ERw plotted against E` for

the frequency-block-diagonal (Figure 7.6A) and frequency-spatial (Figure 7.6B and 7.6C) priors. For the

frequency-block-diagonal prior, nearly all of the data points lie below the Rw = 0 line, indicating that the

empirical Bayes method does a better job of recovering the true decoding weights than least-squares for this

prior, regardless of the spectral length constant recovery error. This was not found to be the case for the

frequency-spatial prior, however. Here, hyperparameter recovery was more error-prone than for frequency-

block-diagonal prior. Furthermore, in cases where hyperparameter recovery error was high, the EBfs decoder

tended to do a poorer job recovering the true decoding weights than the LS decoder. Additionally, we observe

that when length constant recovery error is high for one hyperparameter of the EBfs decoder, it is typically
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Figure 7.5: Validation of ability Empirical Bayes to recover known (hyper)parameters. Plots of actual (hy-

per)parameters versus recovered (fit) hyperparameters are shown for simulated data generated using the

diagonal (top row), frequency-block-diagonal (middle row), and frequency-spatial (bottom row) covariance

priors. (A) Diagonal prior, parameter σ2
n. (B) Diagonal prior, hyperparameter σ2

p,f . (C ) Frequency-block-

diagional prior, parameter σ2
n. (D) Frequency-block-diagional prior, hyperparameter σ2

p,f . (E ) Frequency-

block-diagional prior, hyperparameter `2f . (F ) Frequency-spatial prior, parameter σ2
n. (G) Frequency-spatial

prior, hyperparameter σ2
p,f . (H ) Frequency-spatial, hyperparameter `2f . (I ) Frequency-spatial, hyperparam-

eter `2s. Black dots indicate the median fit parameter value, while shaded gray regions indicates the middle

50% quantile range of fit values. Each panel shows the results obtained by sweeping the value of the speci-

fied (hyper)parameter over the indicated range, with simulations were repeated 50 times for each condition

(N = 1000, ∆f = 5Hz) for a 3× 3 electrode configuration with an inter-electrode distance of 4mm. Unless

swept, constant values of σ2
n = 1, σ2

p,f = 2, `2f = 1000 Hz−2, `2s = 1 mm−2 were used for all simulations.

132



high for the other hyperparameter as well. In general, these results indicate that hyperparameter estimation

is more accuate for the frequency-block-diagonal prior than for the frequency-spatial prior, with inaccurate

length constant estimates for the frequency-spatial prior leading to decreased performance of the EBfs

decoder relative to the LS decoder.

7.4.3 Characterization of performance

In order to better understand the potential advantages of the EBf and EBfs decoders, we characterized

the behavior of empirical Bayes with the frequency-block-diagonal covariance prior as a function of both

the number of training observations and the number of electrodes. To accomplish this, simulations were

performed in which we varied either the number of observations or the number of electrodes, holding all

other (hyper)parameters constant. The results of these simulations are shown by Figure 7.7.

When varying the number of observations (Figure 7.7, top row), we find that the error in the recover

of the decoding weights for the EBf decoder decreases as the number of observations is increased. Apart

from small values of Nobs, where the two methods are equivalent, the recovery of the decoding weights

using the EBf decoder is more accurate than using least-squares. Performance of the LS decoder exhibits

a peak in weight recovery error where the number of observations is equal to the number of features. The

region to the left of this peak corresponds to those conditions where the number of observations is less than

the number of features (the under-determined region), while the region to the right corresponds to those

conditions where the number of observations exceeds the number of features (the over-determined region).

For the under-determined region, the least-squares solution is computed using the minimum-norm estimate

of pseudoinverse of X in Equation 7.112, with the standard pseudoinverse used for the over-determined

region. As the number of observations is increased (i.e. as Nobs →∞), the error of the two methods begins

to converge, as evidenced by the increase in the error ratio (MSEEB/MSELS) for increasingly large values

of Nobs. Furthermore, the variability in the recovery of (hyper)parameters σ2
n and `2f is reduced for larger

numbers of training observations.

On the other hand, we find that the performance of both methods decreases as the number of electrodes,

and consequently the number of simulated neural features, is increased (Figure 7.7, bottom row). In addition,

the ratio of the error in the recovery of the simulated decoding weights decreases with increasing numbers

of electrodes. This indicates that while performance of both the EBf and LS decoders should be expected

to decrease for increasing numbers of electrodes, the performance decrease for EBf should be less than that

of LS. The ability of empirical Bayes to estimate observation noise parameter σ2
n shows little change with

increasing numbers of electrodes, while estimates of hyperparameter `2f become increasingly more accurate.

This is to be expected, as increasing the number of electrodes (and consequently, the number of features)

provides additional pairwise comparisons of the neural feature activity which are used to estimate the spectral

length constant characterizing the correlation between features as a function of frequency.

2See Appendix B.
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Figure 7.6: Effect of hyperparameter fit on recovery of decoding weights. The ratio of decoding weight recovery

error of empirical Bayes to that of least-squares regression is plotted as a function of hyperparameter recovery

error for the EBf and EBfs decoders. (A) Hyperparameter recovery error for `2f for the frequency-block-

diagonal covariance prior. (B) Hyperparameter recovery error of `2f for the frequency-spatial covariance

prior. Colors indicate the hyperparameter recovery error of `s. (C ) Hyperparameter recovery error of `2s

for the frequency-spatial covariance prior. Colors indicate the hyperparameter recovery error of `2f . Dashed

lines indicates equivalent performance of Empirical Bayes and least-squares decoders. Results are shown for

the simulation results from the “sweep σn” condition for the frequency-block-diagonal and frequency-spatial

covariance priors (Figure 7.5C and 7.5F, respectively).

134



200 400 600 800 10000.0

0.5

1

1.5

2.0

 

 
Actual
Fit

200 400 600 800 10000

500

1000

1500

2000

 

 
Actual
Fit

200 400 600 800 1000−6

−4

−2

0

2

4

6

8

 

 
LS
EB

200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35

0.8

0.9

1

1.1

1.2

 

 
Actual
Fit

5 10 15 20 25 30 350

500

1000

1500

2000

 

Actual
Fit

5 10 15 20 25 30 35−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

 

 
LS
EB

5 10 15 20 25 30 350.0

0.2

0.4

0.6

0.8

1.0

A B C D

E F G H

Figure 7.7: Characterization of the performance of the EBf decoder as a function of the number of observa-

tions and features. EBf performance and (hyper)parameter recovery is shown as a function of the number of

observations (top row) and the number of electrodes (bottom row). (A) Log-mean-squared error (log MSE )

of fit decoding weights for the LS and EBf decoders as a function of the number of observations Nobs. (B)

Ratio of EB to LS MSE as a function of Nobs. (C ) Recovery of parameter σ2
n as a function of Nobs. (D)

Recovery of spectral length constant `2f as a function of Nobs. (E ) Log-mean-squared error of fit decoding

weights for the LS and EBf decoders as a function of the number of electrodes Nel. (F ) Ratio of EB to

LS MSE as a function of Nel. (G) Recovery of parameter σ2
n as a function of Nel. (H ) Recovery of spectral

length constant `2f as a function of Nel. (Hyper)parameters σ2
n = 1 and `2f = 1000 Hz−2 were fixed for all

simulations. Simulations of performance as a function of Nobs were performed for a 9-electrode grid with

∆f = 10 Hz, while simulations of performance as a function of Nel were performed with Nobs = 1000 and

∆f = 10 Hz. Results are presented as the mean ± standard deviation over 50 repetitions at each condition.

The dashed black line in panels (A) and (B) indicate the point at which Nobs is equal to the number of

features.
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Taken together, the simulations summarized by Figure 7.7 suggest that the performance benefits of the

empirical Bayesian decoders with the frequency-block-diagonal and frequency-spatial priors should be great-

est when estimating decoding weights for large numbers of neural features using few training observations. As

this is commonly the case for many ECoG BMI experiments, these results illustrate the potential advantage

of the EBf and EBfs methods.

7.5 APPLICATION TO ELECTROPHYSIOLOGICAL DATA

In order to evaluate the performance of empirical Bayes in decoding movement-related activity from ECoG

recordings, we assessed the ability of the EBf and EBfs decoders in predicting BMI command signals from

human ECoG recordings obtained during closed-loop cursor control. The following sections will describe the

datasets and methods used in this comparison, as well as the performance of empirical Bayesian decoding

compared to several commonly-used methods.

7.5.1 Datasets

Electrocorticographic recordings from two human subjects (subjects S1 and S2) with upper limb paralysis

were used to assess the performance of proposed empirical Bayes decoding method. Detailed descriptions of

these subjects are provided in Chapter 4. Data sets for each subject consisted of 160 trials of two-dimensional

closed-loop computer cursor control. Subject S1 performed an 8-target variant of the 2D cursor task, while

Subject S2 performed a 4-target task. Specific trial sets were selected from the peak performance period for

each subject.

7.5.2 Evaluation of performance

We compared the performance of empirical Bayes with the three previously-described priors (diagonal,

frequency-block-diagonal, and frequency-spatial) to two methods commonly utilized in brain-machine inter-

face systems: linear-least-squares regression and Optimal Linear Estimation. Least-squares linear regression

was performed according to Equation 7.11, while OLE was implemented as described in Chapter 4.

Time-domain ECoG recordings were transformed to the time-frequency domain using the Burg method

[Kay and Marple, 1981] over the 0 – 200 Hz frequency range (25th order, 100ms window size) at frequency

resolutions of 5Hz, 10Hz, and 20Hz. Dura-facing electrodes, as well as those exhibiting a high degree of noise,

were excluded from the decoding analysis, yielding 26 and 27 electrodes for Subjects S1 and S2, respectively.

Time-frequency data were normalized to pseduo-Z-scores relative to responses during the target presentation

epoch of the task [Edwards et al., 2009, Ray et al., 2008b]. Normalized time-frequency data were averaged

over the 0 – 500ms time window relative to the onset of cursor control in an attempt to reduce the influence
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of error correction on the decoding results. The resultant feature sets consisted of 260, 520, and 1040 features

(20Hz, 10Hz, and 5Hz frequency resolution, respectively) for Subject S1 and 270, 540, and 1080 features for

Subject S2.

Least-squares (LS), optimal linear estimation (OLE), and empirical Bayesian decoders with diagonal

(EBd), frequency-block-diagonal (EBf ), and frequency-spatial (EBfs) priors were used to predict 2D target

direction from the neural feature sets. In order to assess the influence of the amount of training data on

performance, 2, 4, and 20-fold cross validation was used (80, 120, and 152 training trials, respectively).

Both neural and kinematic data were normalized prior to decoding by subtracting the mean of the training

set of data. Decoding accuracy was evaluated using squared-error (SE) and was averaged over the two

kinematic dimensions. Performance between decoding conditions was compared using one-tailed t-tests,

with differences in mean squared error considered significant at p < 0.05. In all, we examined performance

of the 5 decoding methods at a total of 9 different conditions (3 frequency resolutions × 3 cross validation

splits).

7.5.3 Decoding results

Figure 7.8 depicts the mean squared error of all for all decoders across all evaluated conditions for subject

S1 and S2. Generally, we find that the mean squared error of the predicted kinematics for the EBf and

EBfs decodes is lower than that of the LS, OLE, and EBd decoders for Subject S1, and lower than the

LS and EBd decoders for Subject S2. We observe several interesting characteristics when the MSE of the

predicted kinematics is examined across conditions. First, we observe that the error for empirical Bayesian

decoders tend to decrease as the amount of training data is increased (i.e. the fraction of training data, FTD,

is increased), consistent with simulations showing that the accuracy of the recovered weights increases as

the number of training observations is increased. Secondly, decoding accuracy of the EB decoders does not

appear to be substantially affected by the number of features, regardless of the amount of training data.

This is intriguing, as the number of features is increased fourfold from the 20Hz frequency resolution to the

5Hz frequency resolution with no decline in performance.

Interestingly, we find that performance using the LS decoder decreases as the number of observations

increases or the number of features decreases. While this may seem counter-intuitive, it is important to note

that in all the conditions evaluated, the number of features (260 – 1080) exceeded the number of observations

(80 – 152). In this case, the system of equations y = X>w is under-determined, and the minimum norm

estimate3 was used to estimate the pseudoinverse X† = (XX>)−1X in the least-squares solution for decoding

weights vector w.

An example of the comparison of mean squared error for a single experimental condition is provided

by Figure 7.9, while the p-values for all statistical comparisons are provided by Figure 7.10. One tailed

t-tests were used to identify the conditions for which EBf and EBfs out performed standard LS and OLE

3See Appendix XX
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Figure 7.8: Decoding performance across experimental conditions. A comparison of mean squared error

(MSE) for all decoding methods and evaluation conditions is shown for subjects S1 and S2. (A) Performance

evaluated on data from Subject S1, plotted as a function of fraction of the training data (FTD). (B). Subject

S1, plotted as a function of frequency resolution (∆f). (C ) Subject S2, plotted as a function of FTD. (D)

Subject S2, plotted as a function of ∆f . Black, red, green, light-blue, and dark-blue lines show performance

for the LS, OLE, EBd, EBf , and EBfs decoders, respectively. Error bars indicate SEM. Note that the

pairs of plots for each subject (i.e. A and B) contain the same data, but are plotted differently in order to

show decoding accuracy as a function of both FTD and ∆f .
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Figure 7.9: Decoding accuracy for a single experimental condition. Comparison of mean squared error (MSE)

for all evaluated decoding methods is shown for subjects S1 (A) and S2 (B) for the ∆f = 10Hz, FTD = 0.75

condition. Error bars indicate SEM, while asterisks indicate significance at p < 0.05.

decoders, as well as those conditions where the standard decoders outperformed the empirical Bayesian

decoders. Finally, a summary of the comparisons between the three empirical Bayes decoders, least-squares,

and OLE decoders is provided by Figure 7.11. Together, these figures confirm the qualitative comparisons

apparent in Figures 7.8: EBf and EBfs decoders outperform LS for data from both subjects S1 and S2,

with EBf and EBfs also outperforming OLE when evaluated on data from Subject S1. Performance for

the EBf , EBfs, and OLE decoders was found to be comparable for data from Subject S2.

Finally, we examined the hyperparameters of the prior covariance matrix Σp fit using evidence maxi-

mization for both the EBf and EBfs decoders; a summary of these values is provided by Figure 7.12. While

there is a degree of overlap in the value of the spectral length constant `f fit by EBf and EBfs, the values

found by the EBfs decoder are noticeably higher than those found by the EBf decoder for both subjects

S1 and S2. In addition, we a tendency of the length constants (both `f and `s) fit by the EBfs decoder to

approach zero, though as shown by Figure 7.12D and 7.12H, both `f and `s were not fit to near-zero values

simultaneously.

7.6 DISCUSSION

We have developed a empirical Bayesian framework which seeks to improve the decoding of information from

ECoG recordings. We propose two parametric covariance matrix priors, the frequency-block-diagonal and
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Figure 7.10: Comparison of decoding accuracy across decoders. Negative-log-p-values resulting from one-

sided t-tests comparing squared error distributions between decoders are shown for subjects S1 (A) and S2

(B). Non-significant comparisons are indicated by white squares, while colored squares indicate comparisons

which were significant at p < 0.05. Comparisons of decoding accuracy for a single condition (i.e. frequency

resolution and fraction of training data) are represented by a single 5×5 square as shown by the schematic in

(C ). The upper triangular half of each 5×5 square indicates the results of a left-tailed test evaluating whether

the squared-error distribution of the decoder on the X -axis (Decoder 1) is significantly less than that of the

decoder on the Y -axis (Decoder 2). The lower triangular half of each 5× 5 square indicates the results of a

right-tailed test evaluating whether the squared-error distribution of Decoder 1 is significantly greater than

that of the Decoder 2. The green-shaded regions in (C ) indicate statistical comparisons which, if significant,

indicate that the Empirical Bayesian decoders (EBf and EBfs) out-perform the other evaluated decoders.

The red -shaded regions in (C ) indicate those comparisons which the EBf and EBfs were significantly worse

than the least-squares or OLE decoders.
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Figure 7.11: Summary of statistical comparisions between Empirical Bayes decoders and traditional decoders.

Counts of significant differences in decoding accuracy for all conditions are shown for subject S1 and S2. (A)

Empirical Bayesian decoders compared to least-squares. (B) Empirical Bayesian decoders compared to OLE.

Blue bars indicate counts of conditions where the empirical Bayesian decoder outperformed the traditional

decoder (either LS or OLE), red bars indicate conditions where the traditional decoder outperformed the

empirical Bayesian decoder, and gray bars indicate experimental conditions where there was no significant

difference in decoding accuracy between the two decoders.
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Figure 7.12: Hyperparameters fit to data from electrophysiological recordings. Shown are distributions of

hyperparameters `f and `s fit to data from subjects S1 (top row) and S2 bottom row. (A) Subject S1:

frequency-block-diagonal prior, hyperparameter `f . (B) Subject S1: frequency-spatial prior, hyperparameter

`f . (C ) Subject S1: frequency-spatial prior, hyperparameter `s. (D) Scatter plot of `f versus `s for Subject

S1. (E ) Subject S2: frequency-block-diagonal prior, hyperparameter `f . (F ) Subject S2: frequency-spatial

prior, hyperparameter `f . (G) Subject S2: frequency-spatial prior, hyperparameter `s. (H ) Scatter plot of

`f versus `s for Subject S2.
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frequency-spatial priors, which impose specific spectral and spatial correlation structure on decoding weights

fit using probabilistic linear regression. Using simulated data, we show that hyperparameters of these priors

can be fit using evidence maximization, and that recovery of decoding weights is improved relative to linear

least-squares regression when simulated weights are randomly drawn from these priors. This framework was

found to out-perform least-squares regression, and in some cases Optimal Linear Estimation, when predicting

intended target direction from ECoG recordings obtained during closed-loop cursor control by individuals

with upper-limb paralysis.

By placing a prior distribution over the decoding weights, probabilistic linear regression constrains the

resultant set of weights by effectively penalizing those solutions which do not match the correlation structure

of the prior. As such, it is important to ensure that the form of the priors chosen match those expected

from the data. The frequency-block-diagonal and frequency-spatial priors employed here were chosen to

capture two characteristics of ECoG recordings: correlation amongst neighboring frequency bands (spectral

correlation), and correlation amongst neighboring electrodes (spatial correlation). As shown by Figures 7.2

and 7.2, the forms of the covariance matrix prior chosen reflect the prominent correlation structure of ECoG

signals.

The performance benefits of the EBf and EBfs decoders could possibly attributed to regularization of

the decoding weights solution. As the hyperparameters of the covariance priors are fit to training data using

evidence maximization, empirical Bayes with the frequency-block-diagonal and frequency-spatial covariance

priors can potentially reduce to L2-regularized linear regression (ridge regression) for specific length constant

values. This provides a check against overfitting by preventing magnitude of the decoding weights from

growing too large, and has been used to control overfitting when decoding kinetic information from ECoG

signals [Flint et al., 2014]. Furthermore, this allows for the estimation of the weights in cases where the

number of training observations is less than the number of neural features; this is commonly the case for

BMI studies, where the number of training observations is limited on account of time and motivational

considerations. To determine whether the performance benefits of EBf and EBfs were solely an effect of

regularization, we compared the EBf and EBfs decoders to empirical Bayes with a diagonal prior, which is

equivalent to ridge regression [Park and Pillow, 2011]. In addition, we assessed performance of all decoders

in a data-limited regime (i.e., the number of observations is less than the number of features), where the

least-squares solution is that which minimizes the norm of the decoding weights (see Appendix XX). We

find that the EBf and EBfs decoders outperform both the minimum-norm least-squares estimate and ridge

regression in nearly all conditions evaluated. Thus, we attribute the performance benefits of EBf and EBfs

to something beyond those conveyed by regularization.

By imposing spectrally and spatially-constrained priors when solving for the decoding weights, solutions

can be obtained in which neighboring features have similar weight values. This allows cortical activity

from functionally-similar frequency bands to be combined, potentially increasing the signal-to-noise ratio

of predicted kinematics by averaging out independent observation noise across neural features. Previously
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this has been performed by averaging features in an ad-hoc manner [Acharya et al., 2010]. We find that

decoding performance using the proposed empirical Bayesian approach does not appreciably change when

the frequency band resolution of ECoG recordings is changed from 20Hz to 5Hz, despite the resultant 4-

fold increase in the number of features. While not a direct comparison to prediction using ad-hoc feature

averaging, this suggests that the proposed EB decoder may provide the de-noising effect of averaging across

larger frequency bands while simultaneously allowing for the de-correlation of frequency bands which may

occur during closed-loop training [Rouse and Moran, 2009].

It is important to note that the framework presented here has the potential to be extended through

the development of more descriptive covariance priors. Such priors could theoretically account for the anti-

correlated nature of the low frequency (f < 40Hz) and high frequency (f > 40Hz) bands, as well as

allow for spatial correlation to vary as a function of frequency. However, as implied by the differences

in hyperparameter recovery between the frequency-block-diagonal and frequency-spatial priors, increasing

the complexity of the covariance prior through the incorporation of additional hyperparameters may make

maximization of the evidence function more difficult. Furturemore, the probabilistic nature of empirical

Bayes also may allow this work to be extended to more advanced decoding methods, such as Kalman filters

which utilize probabilistic linear regression to track parameter updates over time [Li et al., 2011].

There are several limitations to the presented work. First, we observe that the values of the hyperpa-

rameters fit to simulated data, particularly for the frequency-spatial covariance prior, can be prone to error.

Ultimately this resulted in an inability of the method to recover the true decoding weight parameters, and

consequently, diminished performance of the method. We also find that the distributions of length constant

hyperparameter values fit to human ECoG recordings using the EBfs method exhibited exhibited promi-

nent peaks near `2 = 0. These findings appear to be indicative of an inability of the evidence maximization

procedure to find the global maximum of the evidence function. It may be the case that more advanced

optimization methods will improve the ability of the EBfs method to recover reasonable estimates of length

constant hyperparameters.

Interestingly, we find that OLE performs comparably to the EBf and EBfs decoders when applied

to data from Subject S2. It is worth noting that OLE was used to obtain closed-loop brain-control with

this subject. It is possible that brain control training resulted in neural adaptation which improved the fit

of neural activity to the cosine-tuning model assumed by OLE; such adaptation has been observed during

closed-loop brain control by non-human primates [Taylor et al., 2002]. An evaluation of decoding performance

on electrical field potential data collected during an open-loop task, such as a center-out reaching task, will

prevent closed-loop adaptation effects from influencing decoding results.

Furthermore, performance of OLE when evaluated on data from Subject S2 calls into question one of

the assumptions of the proposed empirical Bayes approach: namely, that correlation between the neural

population implies correlation between decoding weights. In the case of independent sets of features, it

may be preferable to de-correlate weights for those features exhibiting significant correlation. In fact, such
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de-correlation allows the Optimal Linear Estimator to correct for biases in the distribution of the encoding

models of the neural population; this allows OLE to improve decoding performance over traditional methods

such as the Population Vector Algorithm [Chase et al., 2009]. It is possible that improvements in decoding

performance over the proposed empirical Bayesian approach may be achieved by placing a prior distribution

over the encoding parameters of the population (i.e. the preferred directions of the individual neural features)

rather than the decoding parameters themselves. Such an approach is not possible within the empirical

Bayesian framework applied here, as the weights are calculated independently for each kinematic dimension.

Despite these potential shortcomings, we show that an empirical Bayesian framework utilizing covariance

priors encouraging spectral and spatial correlation amongst decoding weights has the potential to improve

the decoding of information from electrocorticographic signals. We believe that this method is particularly

well-suited for use in decoding command signals for ECoG-based BMI systems given the data-limited nature

of BMI experiments. However, the approach developed here may be equally applicable for the decoding

of semantic [Wang et al., 2011a] or language [Pei et al., 2011, Pasley et al., 2012] information from field

potentials recorded from the cortex using a number of different recording modalities. Ultimately, we hope

that the use the empirical Bayesian decoding framework presented here can yield further insight into the

information contained in large-scale cortical recordings.
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8.0 CONCLUSIONS

This dissertation has presented work attempting to advance the state of electrocorticographic brain-machine

interfaces. In In Chapter 4, it was shown that individuals with upper-limb paralysis are capable of modulating

sensorimotor cortical activity to successfully control a brain-machine interface with three degrees of freedom.

This work is the first demonstration of successful ECoG-based BMI control by individuals with upper-

limb paralysis, as well as the first instance of three-dimensional BMI control using ECoG. Though these

results are encouraging, there are several key limitations worthy of mention. First, though satisfactory

three-dimensional control was demonstrated, the level of performance achieved was limited compared to

recent work showing high-dimensional control using intracortical electrodes [Hochberg et al., 2012, Collinger

et al., 2012]. Second, it was found that translation of three-dimensional cursor control to three-dimensional

robotic arm control was difficult, suggesting the generalization of somatotopic-based closed-loop control may

be problematic. Such shortcomings may be overcome through long-term closed-loop training, which could

facilitate learning on the part of the subject, or through improved extraction of BMI command signals

from ECoG recordings. These shortcomings were addressed through investigation into cortical adaptation

during acquisition of ECoG-based BMI control, an evaluation of a chronically-implanted BMI system in a

non-human primate, and the development of an improved decoding method for ECoG signals.

To better understand how subject learning and decoder calibration could improve control performance,

both cortical and decoder adaptation were investigated during the acquisition of somatotopic BMI control,

with it found that decoder calibration as well as cortical adaptation during fixed-decoder training could

facilitate performance improvements (Chapter 5). In order to better understand the capability of ECoG to

provide robust, long-term recordings, work was conducted assessing the effects of chronic implantation of

an ECoG electrode grid, demonstrating that movement-related modulation could be recorded from a ECoG

electrode grid nearly two years post-implantation despite the presence of substantial fibrotic encapsulation

(Chapter 6). Finally, to improve the extraction of information command signals from ECoG, a decoding

method was developed which improved BMI decoding performance through the incorporation of weight-space

priors accounting for the expected correlation structure of electrical field potentials (Chapter 7). Combined,

this work both demonstrates the feasibility of ECoG-based BMI systems as well as addresses some of key
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challenges which must be overcome before such systems are translated to the clinical realm. We will conclude

by briefly discussing the implications of this work as well as the future of electrocorticographic brain-machine

interfaces.

8.1 IMPLICATIONS AND FUTURE DIRECTIONS

In order for a brain-machine interface system to truly improve the quality of life for individuals with movement

disorders, it must be capable of restoration of function while being both robust and easy to use. The work

presented in this dissertation provides evidence that an electrocorticography-based BMI could potentially

meet these requirements. The demonstration of closed-loop cursor control by two subjects with upper-limb

paralysis shows that voluntary modulation of sensorimotor cortex is possible long after spinal cord injury or

onset of ALS. Furthermore, it was found that a somatotopic control strategy can enable closed-loop control

with at least three degrees of freedom, despite the increased cognitive burden likely placed on subjects as a

consequence of this strategy. Future studies are required to determine the upper bound on the number of

independent command signals which could potentially extracted from ECoG recordings using this strategy.

Though the quality of closed-loop control demonstrated here may be considered by some to be mediocre

compared to that shown by studies utilizing penetrating microelectrodes, it is important to note that the

goal of this work was to demonstrate the feasibility of an ECoG-based BMI system, and not to maximize

control performance. Such efforts are better suited for long-term studies providing sufficient training time to

fully evaluate the quality of closed-loop control. In addition, long-term studies will provide an opportunity

to determine if the difficulties encountered when transitioning from cursor control to prosthetic limb control

can be overcome through prolonged training.

Such efforts will likely be enhanced by the investigation into a chronically-implanted BMI system pre-

sented in Chapter 6. By showing that recordings can be obtained from subdural electrodes implanted for

nearly 2 years, evidence for the likely failure mode for current subdural ECoG electrode technology, namely,

fibrotic grid encapsulation, is provided. The characterization of the nature of this encapsulation provided

by the histological analyses presented will aid in the development of novel technologies seeking to reduce the

foreign body response to implanted electrode grids and enable a robust, long-term brain interface. While

such an interface is necessary for BMI systems, this also enables long-term studies of cortical activity using

ECoG. Such work would inevitably include an evaluation of long-term ECoG BMI performance, necessary to

confirm the often-theorized stability of ECoG suggested by offline decoding of electrical field potentials [Chao

et al., 2010, Flint et al., 2013].

The ability to obtain stable, long-term ECoG recordings will also allow for the improved study of cortical

adaptation during acquisition of BMI control, including additional investigation into the results presented
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in Chapter 5. As evidenced by the preservation of the relationship between the preferred directions of

individual neural features during cortical adaptation, use of the the somatotopic control strategy could

constrain the cortical adaptation possible during closed-loop control. By studying such adaptation over

longer timescales, as well as in response to perturbations requiring modification of the instructed control

strategy, the existence of such constraints can be determined. This could allow for the development of novel

training strategies specifically developed for the somatotopic control strategy, potentially providing for both

an enhancement in control performance and a reduction in training time.

The seeming reliance of ECoG BMI systems on the somatotopic strategy highlights a key problem for

the realization of high degree-of-freedom BMI control using ECoG, namely, whether a somatotopic-based

ECoG BMI system can provide the signal independence required for assistive devices with many DoF.

Control of a prosthetic limb for reaching and grasping will requires a minimum of 4 independent command

signals, with more required for fine wrist and hand control. As demonstrated by the spatial correlation of

preferred directions during periods of closed-loop brain control, the number of independent neural populations

which can be activated using a somatotopic control strategy may be limited. Thus, in order to achieve

high DoF control using ECoG, some form of cortical adaptation may be required. Recent efforts at de-

correlating ECoG signals through closed-loop training [Rouse et al., 2013] provide a crucial demonstration

of the capacity of subjects to increase the independence of ECoG signals. However, additional work is

needed to fully assess the capacity of human subjects to adapt their cortical activity over time. Whether the

adaptation mechanisms observed in Chapter 5 persist over longer timescales, and how cortical adaptation

is constrained by somatotopic BMI control strategies, is an area worthy of further study. In addition, the

cognitive burden imposed by somatotopic-based BMI control must be better understood. BMI systems

based on SU/MUA recordings seemingly enable intuitive control for users, as such systems directly translate

movement intention into action without the need for abstract control strategies. In order for an ECoG BMI

system to truly approach clinical relevancy, a better understanding of the potential for the internalization of

the somatotopic control strategy through closed-loop training, and how such internalization may be affected

by adaptation, will be required.

Such efforts could potentially be avoided altogether through the use of a naturalistic control strategy. Such

a strategy would likely result in a more intuitive control interface for the user, and is seemingly supported

by work demonstrating that arm movement kinematics can be predicted from ECoG recordings [Nakanishi

et al., 2013, Shimoda et al., 2012, Chao et al., 2010]. Unfortunately, the potential for these findings to be

translated to online control is currently unknown, as successful closed-loop control of a virtual or prosthetic

limb during natural reaching movements has not yet been demonstrated. Additional studies are required to

fully understand the encoding of arm and hand movements in field potentials. Such efforts should include

theoretical modeling work to determine how single-neuron tuning properties are reflected in population-level

ECoG activity to predict which spatial scales, if any, tuning to extrinsic movement might be expected at. It

may be possible that by increasing the spatial sampling of cortex through the use of high-density electrode
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grids [Viventi et al., 2011] combined with the use of decoding algorithms tailored to high-dimensional field

potential signals, such as that presented in Chapter 7, some degree of ECoG-based BMI control using a

naturalistic control strategy can be achieved.

8.2 THE FUTURE OF ELECTROCORTICOGRAPHIC BRAIN-MACHINE

INTERFACES

Ultimately, the work presented in this dissertation provides an important demonstration of the potential of

ECoG to support brain-machine interfaces for functional restoration for individuals with movement paralysis,

and provides a foundation for additional research seeking to fully translate ECoG BMI technology to the

clinical realm. At this point in time, however, it is still unclear whether such a system will ever truly be

realized, as a number of significant scientific and technological hurdles must first be overcome. Considering

the success of recent demonstrations of high-dimensional control using SU/MUA recordings, the case against

ECoG-based BMI systems appear quite strong: the encoding of movement parameters in ECoG is extremely

coarse compared to that of single and multi-unit activity, ECoG signals appear lack the sufficient spatial

resolution and independence to support high degree of freedom control, and ECoG-based control currently

relies heavily upon abstract control strategies which likely impose a heavy cognitive burden on users.

However, based on the work presented here as well as previous investigation into ECoG-based BMI

systems, we can speculate as to what the ideal ECoG brain-machine interface might look like. High-density

electrode grids, utilizing surface treatments to reduce the foreign body response and prolong electrode life,

will enable the recording of field potentials from the surface of the cortex with high spatial resolution over

long periods of time. Though the use of a somatotopic control strategy and training procedures, individuals

with movement disorders will gradually learn to independently modulate the activity of small electrode

subsets to achieve high-dimensional control, with control becoming increasingly internalized and natural

over the course of training. Sophisticated co-adaptive decoding algorithms, specifically designed to handle

the high-dimensional and correlated nature of electrical field potential signals, will facilitate the process,

resulting in a system that successfully provides functional restoration, is stable and robust, and easy to use.

While it may seem unlikely to some that such a system will ever come to pass, it is important to consider

all BMI research as part of a much larger enterprise in the development of assistive and restorative technology.

At this point in time, we can only guess as to what a clinical-viable BMI system might look like. It is not

unreasonable to expect that systems may vary widely in design depending on the nature of the movement

disorder and the restoration of function desired, potentially incorporating signals from multiple cortical

recording modalities. Though much work still remains, the collective efforts of researchers, clinicians, and

subject volunteers continue to move us closer to the realization of a brain-machine interface system which

will make a profound impact in the lives of individuals with movement disorders.
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APPENDIX A

CRANIUX: A LABVIEW-BASED MODULAR SOFTWARE FRAMEWORK FOR

BRAIN-MACHINE INTERFACE RESEARCH1

A.1 INTRODUCTION

Brain-machine interface (BMI) technology aims to establish a direct link for transmitting information be-

tween the brain and external devices. It offers a rich and natural assistive device control interface for individ-

uals with disabilities [Schwartz et al., 2006, Wang et al., 2010], and is a rapidly-progressing, extremely active

research area in the field of neuroscience and neural engineering. Various neural signal modalities, including

electroencephalography (EEG) [McFarland et al., 2010], magnetoencephalography (MEG) [Mellinger et al.,

2007], electrocorticography (ECoG) [Schalk et al., 2008c], intracortical local field potentials (LFPs) [Heldman

et al., 2006], and neuronal firing rates [Hochberg et al., 2006, Velliste et al., 2008, Ganguly and Carmena,

2009], have been used for BMI research. Regardless of the input modality, all BMI systems require an

essential suite of software capable of acquiring neural signals continuously and converting them in real-time

or near real-time into specific BMI control commands for an external device, such as a prosthetic hand, in

order to accomplish a specific task.

To conduct innovative and unique BMI studies, researchers very often need to implement new signal

processing techniques, neural decoding algorithms, or experimental paradigms in a BMI software package.

Given the rapid progression of the field, it is desirable to reduce the time it takes from the conception of a

new idea to software implementation, data collection, and data analysis. However, the increasing complexity

of BMI systems has made this problematic. For example, sophisticated neural decoding algorithms previ-

ously studied in offline analysis are now being investigated for real-time BMI control [Koyama et al., 2010].

Additionally, more advanced external devices are being controlled by BMI systems, such as the dexterous

prosthetic arm and hand system developed by the Revolutionizing Prosthetics project [Adee, 2008, Adee,

2009]. These advancements call for an open-source software framework that enables BMI researchers to bet-

ter focus on the essential engineering and scientific questions they are investigating and to develop advanced

1The contents of this appendix have been published [Degenhart et al., 2011b] and have been reproduced here as the version
accepted for publication.
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BMI features more efficiently. This framework should be able to manage the basic software operations com-

mon to many BMI studies, and should be easily extendable in a high-level programming environment that

offers the ease and flexibility for programming new BMI modules.

One successful open-source general purpose BMI software package is BCI2000, a modular C++-based

system for neural signal acquisition, data saving, stimulus presentation, and more [Schalk et al., 2004], which

has been widely distributed among academic institutions and used in numerous research studies [Schalk,

2014]. Source code as well as binary executable files are freely available for download, allowing end users

to either use the software as-is or modify it to suit their own needs. One of the greatest advantages of

BCI2000 is its modular, lightweight, and portable design, making it extremely popular and successful in

the BMI research community. Recently, the BCPy2000 open-source framework [Hill, 2008] has been made

available as a user contribution package to BCI2000. This framework follows the same system architecture

as BCI2000, but it allows BMI researchers to develop new modules in Python, a high-level language that

greatly reduces software programming complexity for fast prototyping of new BMI software.

This paper presents an open-source open-access real-time BMI software framework inspired by BCI2000

termed “Craniux,” developed using LabVIEW (National Instruments, Inc.), a high-level multi-platform

graphical development environment. Craniux implements a core framework for BMI operation, including

modular architecture, network communications between modules, data flow control, data visualization, data

storage, and graphical user interfaces. Craniux offers a unique set of advantages that can greatly facilitate

BMI software development and research. First, it enables BMI researchers to develop and share new BMI

modules in the LabVIEW development environment and take full advantage of many features inherent to

this environment, such as:

• High-level graphical programming for fast development and run-time debugging.

• A rich set of data visualization options and graphical user interface elements.

• Ease of multi-threading and parallel processing programming, including automatic parallelism and multi-

core processor support.

• A large number of high-quality LabVIEW function libraries for signal processing and streamlined inte-

gration with a wide range of engineering hardware (e.g. National Instruments controller cards).

• Re-use and sharing of custom-made LabVIEW modules as sub-VI (virtual instrument) blocks.

Second, facilitated by the above-mentioned LabVIEW features, we have further implemented functionality

critical for BMI research:

• Real-time operation in which the system is capable of acquiring a block of neural data, processing this

data, and generating an output before the next block of data is received [Schalk et al., 2004, Wilson

et al., 2010].

• Online neural decoder training capability accomplished through data sharing between real-time operations

and parallel decoder training.
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• ‘On-the-fly’ data visualization and online experiment parameter control.

• Deterministic control of system execution, including parameter updates and display of visualization data.

• Streaming and storage of raw neural data, various intermediate processing data, and experimental pa-

rameters to disk for offline analysis.

• Distribution of BMI modules across computers using well-defined generic network communication proto-

cols optimized for data transmission between software modules.

Finally, Craniux has been developed to be a lightweight, extendable, and portable software framework.

Its modular architecture, well-defined user interfaces, and generic network communication protocol make it

very easy to maintain and develop BMI engines. The existing engines and standard template engines provide

a starting point for new engine development.

In the following sections, we will first introduce the basic system architecture of the Craniux software.

We will then provide system performance testing results based on both simulated and real experimental

data. The last section will further discuss the uniqueness of this software framework as compared to other

existing BMI software tools, its advantages and limitations, and future directions.

A.2 SYSTEM ARCHITECTURE

The Craniux software package has been designed to be a highly modularized system, capable of operating

across both a distributed network of computers and on a single computer. To accomplish this, and to make

data transfer between engines as reliable as possible, all data communication is conducted using the TCP/IP

protocol. Data saving is implemented using the LabVIEW TDMS (Technical Data Management Streaming)

framework [National Instruments, 2014], ensuring all system data are streamed to disk as quickly as possible

in order to maximize system performance. The following sections describe the system framework, engine

execution, GUI operation, communication protocols, and data saving operation in further detail.

A.2.1 Distributed engine framework

Figure A1 depicts the design of the Craniux system. Inspired by the BCI2000 framework, this system consists

of five distinct components: the System Launcher, Acquisition engine, Signal Processing engine, Application

engine, and data saving manager, and may be distributed across as many as four computers. Furthermore,

each engine has an associated graphical user interface (GUI), through which the user interacts with the

engine. The main system components perform the following functions:

System Launcher. The System Launcher is the initial interface the user is presented with when

running the software, and allows the user to specify system-level parameters at runtime. It is here that

the specific engines, their network locations, and high-level experimental parameters (e.g. subject ID,
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date, investigators, and session number) are specified. Additionally, the System Launcher controls the

start and stop of execution, though it itself is not a part of the real-time operation of the system.

Acquisition engine. Acquisition engines are responsible for the acquisition and initial pre-processing

(e.g. spectral estimation) of neural data from some signal source such as an amplifier or user datagram

protocol (UDP) connection.

Signal Processing engine. Signal Processing engines receive data from the Acquisition engine and are

responsible for the processing of this data, such as the generation of a control signal.

Application engine. Application engines receive data from the Signal processing engine and are re-

sponsible for the control of interaction between the subject and the BMI.

Data saving manager. The data saving manager is responsible for the saving of Craniux data and

receives input from the Acquisition, Signal Processing, and Application engines.

In order to ensure sequential processing of data through each engine, system execution proceeds from

the Acquisition engine to the Signal Processing engine, then to the Application engine, and finally from the

Application engine back to the Acquisition engine; only one of each type of engine may be running at a

given time. This cyclical data flow guarantees that each block of data received by the Acquisition engine is

processed and a system output is generated before processing of the next block of data begins.

At any point in operation, the system may be suspended and any of the engines replaced with another of

the same type, preserving the state of those engines that remain running. This is desirable for BMI operation,

as system parameters such as neural decoder weights obtained during operation with a specific application

(e.g. a center-out computer cursor task) may be retained and immediately used for a new application (e.g.

the control of a robotic arm). Table 1 provides a list of the current engines available in the Craniux system.

A.2.2 Engine execution

Each engine in the system operates in a basic sequence, first receiving data from a previous engine, processing

the received data, and sending the relevant results of that processing to the next engine in the signal chain.

Figure A2 outlines the basic flow of the execution of an individual engine. Engine execution first begins

with the initialization of all parameters, including the loading of user-specified parameter files, and the

identification of those engine-specific parameters to be saved. From here, execution proceeds into the main

sequence of the engine, where the engine: (1) waits for data from the previous engine in the signal chain,

(2) processes the received data (or performs some other action), and (3) sends the results of this processing

to the next engine in the signal chain. Execution then proceeds back to (1), where the engine waits for

the next block of input data. Operating in parallel to this main sequence are a number of additional

threads, such as data saving, engine-specific processes not capable of or not requiring real-time operation

(e.g. neural decoder training), and communication with the engine’s GUI. A detailed description of engine
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Acquisition GUI Signal Processing GUI Application GUI

System Launcher

Acquisition Engine

Acquisition Host

Signal Processing Engine

Signal Processing Host

Application Engine

Application Host

User Interface Host

Neural
Data

Data
Saving

UDP or Hardware Interface
TCP/IP

Figure A1: Craniux system framework. The Craniux system is comprised of the Acquisition, Signal Process-

ing, and Application engines, their associated GUIs, the System Launcher, and the data saving manager.

Engines and user interface elements are spread across four network hosts: the Acquisition Host, the Signal

Processing Host, the Application Host, and the User Interface Host, though the same computer may serve as

multiple hosts. Network communication between system engines, as well as communication between engines

and GUIs, is performed using the TCP/IP protocol. A block of neural data enters the system through the

Acquisition engine, which sends preprocessed data to the Signal Processing engine. The Signal Processing

engine generates a control signal, which is then sent to the Application engine. The Application engine

then communicates any relevant application-specific data (e.g. target information used for neural decoder

training) back to the Acquisition engine, which reads the next block of neural data. Bidirectional data trans-

fer occurs between engine-specific GUIs and their associated engines, with system parameters transferred

from the GUI to the engine and visualization data transferred from the engine to the GUI. Finally, the

System Launcher is responsible for loading the desired engines, tracking general experimental parameters,

and experimental control.
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Table A1: List of current Acquisition, Signal Processing, and Application engines.

Module Name Typical Location Description

gUSBamp Acquisition Reads signals from the gUSBamp amplification system.
SimECoG Acquisition Generates simulated ECoG signals modulated by the com-

puter cursor position.
SignalFiltering Chain Performs filtering (band-pass, notch) of time-domain sig-

nals, as well as visualization.
SpectralEstimation Chain Calculates the power spectra of input signals.
MATLABDecoder Ring Performs linear decoding of input signals, as well as buffer-

ing of feedback data and decoder training in MATLAB.
StimulusPresentation Application Controls sequencing and display of text, image, and video

stimuli.
CursorTask Application StateMachine-based cursor control task in 3-dimensional

space.
VirtualArmControl Application StateMachine-based control of a virtual arm.
DEKAArmControl Application StateMachine-based control of the DEKA prosthetic arm,

including presentation of targets using the Automatic Tar-
get Presentation (ATP) system.

execution, including the enforcement of deterministic execution within engine components, is provided in

the Supplemental Materials.

A.2.3 Graphical user interface (GUI) elements

The GUI for each engine is responsible for both on-the-fly control of engine-specific parameters as well as the

visualization of engine-specific data. Permitting on-the-fly control is essential to successful BMI operation,

as during real-time closed-loop BMI operation it is often necessary to dynamically adjust parameters such

as the computer assist level or computer cursor speed [Velliste et al., 2008]. As opposed to a traditional

graphical user interface, which simply serves as a front end user interface for a LabVIEW application, GUIs in

the Craniux system exist as stand-alone applications. It is through these applications that the user interacts

with each engine. GUIs and their associated engines maintain reciprocal two-way communication; parameter

value change events are monitored by the GUI and transmitted to its associated engine via TCP/IP, while

data to be visualized is transmitted from the engine to the GUI. It should be noted that parameter value

changes are instantaneously transmitted from the GUI to the engine and are accessed by the engine at the

beginning of its main sequence in order to ensure the consistency of all parameter values throughout the

processing of a single block of data. Parameter value changes are also index-stamped and saved to disk,

allowing the complete reconstruction or replay of the full system state during offline analysis. In order

to allow for data visualization on-the-fly, all data elements are transmitted from the engine to the GUI,

providing the experimenter with the most accurate representation of the state of the engine. This occurs in

parallel with the real-time main sequence execution so that this communication does not interfere with the

timing of the execution of the main sequence of the engine.
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Main SequenceParallel Processes

Initialization

Wait on Data from Previous Engine

Get Visualization and Save DataSend Visualization Data to GUI
Send Save Data to Data Saving Manager

Get Parameter Value Updates from GUI

Non-RT Engine Operations Engine-speci�c Operations

Send Data to Next Engine

Update Parameter Values

Figure A2: Engine execution. After initialization, each engine proceeds into the ‘main sequence’ loop, in

which core engine processes are executed sequentially. Data are first received from the previous engine in

the signal chain, and any parameter value changes received from the engine’s GUI are updated locally. The

system next performs any actions specific to the individual engine (e.g. calculation of a control signal or

updating of a display), and sends the results of these actions to the next engine in the signal chain. Current

values of any data items to be visualized are placed in a queue, and data is sent to the data saving manager.

The engine then proceeds to the beginning of the main sequence loop to await the arrival of the next input.

Parallel to the main sequence loop are any parallel processes designed to operate asynchronously. These

processes will always include receiving parameter value updates from the GUI and sending visualization data

to the GUI, and may include individual engine-specific operation such as decoder training or monitoring for

events. Shaded blocks represent those areas to be modified by the developer during the creation of new

engines, while white blocks represent sections of code providing core functionality.
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A.2.4 Communication between components

Communication between Craniux components utilizes self-establishing and self-repairing network connections

that provide efficient, reliable data flow robust to any data type or combination of variables that is sent over

them. For communication between engines, these connections take the form of a ring that maintains data

flow and controls program execution. For communication between engines and their GUIs or the data saving

manager a single TCP connection is established. When creating new engines, this ring requires no input

and single connections only require the developer to provide a network host name. The only user input

necessary is the IP address of each engine, which is specified on the System Launcher. Available ports are

automatically selected for each connection.

All network connections use the TCP protocol. TCP was chosen over UDP because its superior reliability

is important in a ring structure responsible for the control of program execution; a dropped packet between

engines would break the ring and leave each engine waiting for data that will never arrive. It is also important

to note that Nagle’s algorithm [Nagel, 1984] was disabled for all connections used in the Craniux system. The

Nagle algorithm attempts to reduce TCP packet overhead and bandwidth usage by intentionally delaying

transmission so that multiple packets can be combined before being sent. Here, the latency introduced by

this algorithm is unacceptable and bandwidth usage is not a concern. The concept behind Nagle’s algorithm

is retained in our system, however, as all data to be sent simultaneously is combined into a single packet

before transmission.

To send variables over the network, the developer must only create a list of the variable names on the

sending side of the connection. No information on variable type or size is needed. The provided variable

names are packed together with their values into a single variable of LabVIEW’s ‘variant’ data type, which

is then sent over the network. On the receiving side of the connection, the data is read and parsed into the

correct values, which are written to those existing variables on the receiving side with the same name and

data type as the sent variables. Additional information on the transfer of information between components

has been provided in the Supplemental Materials.

A.2.5 Data saving

The Craniux framework for saving data is a reliable process that minimizes latency introduced by saving

and creates highly accessible data. Data saving is conducted by an independent data saving manager,

which receives data from all engines. This data is initially saved in LabVIEW’s TDMS format, which was

specifically created for quickly and continuously streaming large amounts of data to the hard drive to help

eliminate data-saving bottlenecks in speed normally introduced by slow writes to disk [National Instruments,

2014]. When saving data, a packet containing all the variable values to be saved and the data packet index

is placed into a first-in-first-out (FIFO) buffer. Parallel to the main execution of Craniux, these packets are

removed from the buffer and sent to the data saving manager, located on the user interface host, via the
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communications framework described in Section A.2.4. Upon receiving a packet, the data saving manager

streams the data to a TDMS file. When creating new engines it is only necessary to provide a list of variable

names to be saved; these items will be automatically identified and their values saved accordingly.

A single TDMS file is saved for each experimental run; stopping or suspending system execution closes

all references to the current data file. Within each data file, data saved by each engine is separated into two

groups: sampled variables and controls. Sampled variables are data sampled continuously at each update

of the BMI system, such as cursor position during a brain-controlled cursor movement task. As controls are

normally parameter settings that are infrequently updated (e.g. the number of targets), these values are

only saved when changed. The current data packet number is included in every save operation so that the

experiment can be reconstructed afterwards with the data properly aligned in time. A separate LabVIEW VI

has been created to convert Craniux TDMS files into the MATLAB (Mathworks, Inc.) MAT format. These

MAT files contain structures for each engine paired with each data type (sampled variables and controls).

The saved values for each variable are stored in an array, with the data packet number array providing the

time index for each element. Array variables are stored as cell arrays, allowing them to be aligned with their

associated data packet numbers and enabling the data structure to handle dynamic changing of array sizes

during a BMI session.

A.3 SYSTEM VALIDATION

A.3.1 Closed-loop cursor movement control using simulated ECoG signals

Validation of the operation of the Craniux system was initially conducted using an electrocorticographic

(ECoG) signal simulator in which experimenter-controlled mouse cursor movement was used to modulate

the high gamma band activity of a number of synthetic signals. This simulator is capable of generating 32

channels of analog signals with directionally tuned high-gamma band (70-120Hz) activity emulating ECoG

signals recorded from human subjects [Leuthardt et al., 2004, Wang et al., 2010] according to Equation

A.1 [Georgopoulos et al., 1986, Heldman et al., 2006]:

S = S1 + d cos(θ)S2 (A.1)

where S is a single simulated directionally modulated ECoG signal, S1 is a pink noise signal with a

1/frequency power falloff [Keshner, 1982]. S2 is a second pink noise signal band-pass filtered between

70-120Hz, d controls the depth of modulation of the high-gamma band, and θ is the angle between the pre-

ferred direction of the simulated ECoG signal and the vector pointing from the center of the computer screen

to the current mouse cursor position on the computer screen. The preferred directions of the 32 simulated

signals were uniformly distributed over two-dimensional (2D) space. Simulated signals were generated at

2400Hz using a National Instruments NI PCI-6723 32 channel analog output board on a simulation computer
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Figure A3: Simulated ECoG experimental setup. Experimenter-controlled mouse position on the simulation

computer modulates the high-gamma power of simulated directionally tuned ECoG signals. These signals

are output at 2400Hz using a National Instruments D/A card and are read into the Craniux system using

the g.USBamp amplification system and BCI2000. The Craniux system then decodes the desired cursor

position from the simulated signals using the Population Vector Algorithm.

(Windows XP x86 operating system, AMD Athlon 64 FX-62 Dual Core CPU @ 2.81 GHz, 3.5 GB RAM,

NVIDIA GeForce 7900 GS video card) and then stepped down to match the amplitude of typical ECoG

signals recorded from human subjects.

Simulated ECoG signals were then sampled at 1200Hz using the g.USBamp amplification system (Guger

Technologies, OEG) on a separate computer (Windows XP x86 operating system, Intel Core i7 CPU 920

@ 2.67 GHz, 2.49 GB RAM, 2 NVIDIA GeForce 9800 GT video cards) and sent to the Craniux system

as binary UDP packets using a simplified version of the BCI2000 software package. BCI2000 was used in

this case due to its reliability and efficiency in interfacing with the g.USBamp amplification system. These

raw time-domain signals entering the Craniux system were first converted into the frequency domain using

LabVIEW’s built-in autoregressive (AR) spectral estimation function (10Hz bins, 500ms window) in the

Read UDP Binary Acquisition engine and then passed to the Population Vector Signal Processing engine.

Here, signals were normalized to pseudo Z-scores based on Equation A.2 [Tallon-Baudry et al., 2005, Edwards

et al., 2009]:

fnorm,i,j =
fi,j − f̄i,j
σi,j

(A.2)

where fnorm,i,j , fi,j , and f̄i,j are the normalized, raw, and mean power of the ith channel and jth frequency

band, respectively, and σi,j is the standard deviation of the raw band power of the ith channel and jth

frequency band. Mean and standard deviation values were calculated based on data collected during a

baseline condition in which the computer cursor on the simulation computer remained in the center of the

screen (i.e. no modulation of high-gamma band activity).
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The brain control task used was a typical 2-D center-out design, with the movement direction of a

cursor controlled by multiple ECoG signal features across 32 channels according to the Population Vector

Algorithm [Georgopoulos et al., 1986]:

fi = b0,i + bx,imx + by,imy (A.3)

P =

N∑
i

(di − b0,i)Ci (A.4)

where fi is the activity of individual feature i, mx and my are the desired movement in the x and y direction,

b0,i, bx,i and by,i are coefficients found using linear regression relating desired movement to the activity of

feature i, Pi is the trajectory vector predicted by the activity of feature i, di is the instantaneous activity of

feature i, and Ci = [bx,i by,i]/(b
2
x,i + b2y,i)

1/2 is a vector representing the preferred direction of feature i.

The standard workflow used to achieve ECoG-controlled 2D cursor movement with the Craniux framework

is described below. Though simulated ECoG signals were used here to validate the system, this workflow

will be similar for real neural signals.

1. Collection of baseline data. Once the Craniux system is started, approximately 3 minutes of baseline data

is collected, from which the Craniux system will calculate feature mean and standard deviation values.

These will then be used in the calculation of pseudo-Z scores for all ECoG signal features in real-time.

2. Collection of training data for the neural decoder. During this period, the experimenter will use the

ECoG signal simulator to generate modulated ECoG signals based on the target position (i.e. desired

cursor movement direction). The ECoG data along with target position are automatically buffered by

Craniux for neural decoder training.

3. Training of the neural decoder. During this period, the buffered data is used to train the neural decoder.

A multiple linear regression procedure is used to determine the degree of directional tuning and preferred

direction for each ECoG signal feature as mentioned above [Schwartz et al., 1988, Wang et al., 2007].

The resulting R-squared values and preferred directions are displayed by the Population Vector GUI,

allowing experimenters to visualize the results on-the-fly and interactively select a subset of directionally

tuned ECoG signal features for brain control.

4. Real-time brain control. Activities of ECoG signal features selected during step (3) are then used to

generate the population vector, a 2D velocity control signal that drives the cursor. Figure A4 shows the

Population Vector GUI during closed-loop brain control, illustrating the user interface elements provided

to the user during this process.

It is worth noting that all the above procedures are conducted in a continuous BMI session without

stopping and restarting the Craniux system. This streamlined workflow allows BMI studies to be conducted

smoothly and efficiently. Furthermore, steps (2) and (3) can be conducted at any time during a BMI session

in parallel with step (4). This allows the neural decoder to be re-calibrated on-the-fly to adapt to any
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Figure A4: Craniux system screenshot during Population Vector-based control. A. Plot of the instantaneous

activity of each feature used for cursor control along its preferred direction (blue) and the resultant population

vector (red). B. R2-value plot indicating the distribution of R2 values obtained during Population Vector

training (blue) compared to the mean, 80th, 90th, and 95th percentile R2 values obtained after training on

1000 iterations of target-shuffled data (red, dark orange, light orange, and yellow lines). The threshold above

which features are chosen for use in the decoder is shown by the pink line. C. R2 values obtained during

Population Vector training arranged by channel and frequency band. Note that the 70-120Hz frequency band

features show high R2 values across all channels, consistent with the method used to generate the simulated

ECoG signals. D. The preferred direction distribution of all features. Red lines correspond to those features

with R2 values above the user-determined threshold, while white lines are those features falling below the

threshold.
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potential changes or non-stationarities of input neural signals, a key element for achieving and maintaining

reliable brain control [Taylor et al., 2002]. Figure A5 shows an example of directionally modulated normalized

time-frequency data for one ECoG signal saved by the Craniux system, as well as trajectories of the cursor

during real-time brain control.

A.3.2 Brain-controlled cursor movement using real ECoG signals recorded from a human

subject

Further validation of the Craniux system was conducted in a human subject undergoing subdural epilepsy

monitoring. Informed consent was obtained from the subject prior to testing; all experimental procedures

were approved by the University of Pittsburgh Institutional Review Board and followed all guidelines for

human subject research. Experimental methods used were similar to those presented in [Wang et al., 2009],

with the exception that the Craniux system was used for data collection and brain control. Standard

ECoG electrodes exhibiting high-gamma band modulation in response to overt movement screening tasks

were chosen for use in closed-loop control. High-gamma band power (70-110Hz) of two neighboring ECoG

electrodes were used to control the vertical movement of a cursor with a push-pull scheme, with the cursor

control signal calculated according to Equation A.5:

cy = a(s1 − s2)− b (A.5)

Where cy is the one-dimensional control signal, s1 and s2 are the high-gamma band power of the two

neighboring electrodes used for control, and a and b are gain and offset terms used to normalize the control

signal to zero-mean and unit-variance. Thus, in order to achieve satisfactory brain control, the subject had

to de-correlate the activity of the two electrodes to generate the desired cursor control signal. Brain control

sessions began with the collection of baseline data for normalization purposes as described in the previous

section. Individual trials began with the placement of the cursor at the center of the computer screen along

with the presentation of one of two peripheral targets located in the vertical plane of the workspace (e.g. a

“center-out” task). Trials in which the subject was able to hit the presented target within the maximum

trial length of 10 seconds were deemed successful; failure to do so resulted in an unsuccessful trial. All trials

were followed by an inter-trial interval of 2 seconds in which neither the cursor nor the target were visible.

Figure A6 shows the results of one brain control session, during which the subject was able to achieve an

88% success rate.

A.3.3 System timing

To evaluate the consistency of system performance, timing characteristics were analyzed for a typical Craniux

setup using 15th order autoregressive (AR) spectral estimation of 10 Hz frequency bins over 0.5 second

windows of simulated neural data (see Section A.3.1), the Linear Decoder Signal Processing engine, and the
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Figure A5: Closed-loop brain control using simulated ECoG signals. Left. Time-frequency plots of a single

simulated ECoG signal averaged across all repetitions of an 8-target center-out cursor control task. Plots

are aligned to target presentation at time t = 0 (dashed white line). In all, a total of 32 channels of

simulated directionally tuned ECoG signals were generated. Right. Real-time cursor trajectories controlled

by simulated ECoG signals using the Population Vector Algorithm.
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Figure A6: Closed loop ECoG-based computer cursor control. One-dimensional computer cursor control

using the Craniux system in a subject implanted with ECoG electrodes. Top. Raw time-domain ECoG

signal for one of two electrodes used for cursor control. Top-middle. Time-frequency data saved by the

Craniux system for the same electrode. Bottom-middle. Control signal generated by the Craniux system

to control computer cursor movement. Positive control signal values move the cursor in the up direction,

while negative control signal values will move the computer cursor down. Note that control signal values are

unitless as they have been normalized to zero-mean and unit variance. Bottom. Vertical cursor positions

generated by the neural control signal. Dashed black lines represent target onset, green circles indicate the

position of presented targets, blue lines indicate cursor trajectories for successful trials, and red lines indicate

cursor trajectories for unsuccessful trials.
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Center-out Cursor Control Application engine. Analog and digital data were sampled by the g.USBamp

amplification system at 1200 Hz and acquired directly by Craniux at a 33.3 ms frame rate. To trigger timing

events, a digital signal was sent from Craniux back to the digital input of the amplifiers so that the timing

events could be acquired precisely and synchronously with the raw analog input signal at 1200 Hz.

Three different timing tests were conducted: a system processing test, a display update rate test, and an

overall system latency test. The first two tests (system processing and display update rate) were performed

on both a single computer (Windows XP x86 operating system, Intel Core i7 CPU 920 @ 2.67 GHz, 2.49

GB RAM, 2 NVIDIA GeForce 9800 GT video cards) and with Craniux distributed across the network so

that data acquisition, spectral estimation, and GUIs were hosted on one computer (the same as that used

for local timing test, see above) while Signal Processing and Application engines, including the 3D render

window, were hosted on a separate computer (Windows XP x86 operating system, AMD Athlon 64 FX-62

Dual Core CPU @ 2.81 GHz, 3.5 GB RAM, NVIDIA GeForce 7900 GS video card). For both configurations

tests were conducted using 16, 32, and 64 channels of data. The third test (system latency) was run only on

the single-computer configuration with processing performed on 32 channels of data.

The first test used 5,000 consecutive frames of collected data to measure the system processing time, the

time between the arrival of a block of data from the amplifier and the time when the Craniux system had

finished all processing on the data and begun waiting on the next block. These results are shown in the

second column of Table 2. As expected, processing time was found to increase with the number of processed

channels, but remained below the 33.3 ms time required to maintain a consistent frame rate and prevent the

loss of data. Distributing Craniux across the network showed improvements in processing time for all channel

configurations. Since processing time is only required to remain below the frame rate, running Craniux as

a distributed system is not necessary unless the system is under a heavy load. AR spectral estimation was

found to require the most processing time, especially as the number of channels increased. These results

indicate the extra processing time made available when Craniux is run as a distributed system could easily

be utilized to run more complex signal processing algorithms or to decrease the frame rate.

The second test also used 5,000 consecutive frames of data, but now measured the refresh rate, the

amount of time between consecutive display updates on the Center-out Cursor Control engine. The results

are shown in the third column of Table 2. The refresh time was found to be 33.3 ms for all configurations,

precisely what would be expected given the system frame rate. Furthermore, the low variability of this

timing indicates that the user would experience a consistent cursor update with no noticeable jitter.

The final test measured system latency, the elapsed time between a neural signal event and the point

in time when the Craniux system can generate an action in response to this event. A 10 Hz sine wave

with zero offset was input to 1 channel of the amplifier; this channel of data was fed through the Craniux

system to the point at which the display was updated in the Center-out Cursor Control engine, occurring

just before processing fully completes and the system begins waiting on the next data block. At this point, if

a zero-crossing was detected on the sine wave, the digital output bit being written back to the amplifier was
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Table A2: Characterization of system timing. Craniux system processing time, refresh rate, and latency

for local and network system configurations under various processing loads. Values shown are mean timing

values plus or minus one standard deviation from the mean.

System Configuration Processing Time (ms) Refresh Rate (ms) Latency (ms)

Local, 16 channels 12.8± 0.7 33.3± 0.5 N/A
Network, 16 channels 9.9± 0.6 33.3± 0.5 N/A
Local, 32 channels 17.8± 0.8 33.3± 0.7 33.2± 9.6
Network, 32 channels 15.2± 1.0 33.3± 0.4 N/A
Local, 64 channels 28.0± 1.3 33.3± 0.7 N/A
Network, 64 channels 24.9± 0.9 33.3± 0.4 N/A

flipped. In this case, the elapsed time between a zero-crossing of the sine wave (a simulated neural event)

and the bit value change (the time of the system response) indicates the system latency. Data was collected

for 5,000 consecutive sine wave zero-crossings, with zero-crossing events symmetrically distributed about the

center of each 33.3 ms data frame. In distributing the zero-crossings in this way it is known that the latency

should have an average of slightly less than half the frame length plus the mean processing time (33.9 ms

for this configuration) and a range nearly equal to the frame length. The latency was found to have a mean

and standard deviation of 33.2± 9.6 ms, meeting all expectations.

A.4 DISCUSSION

Craniux is a powerful, yet simple and easily extendable, open-source framework for BMI studies that require

high-performance real-time BMI software. Currently, a number of open-source software solutions for BMI

research are available for academic use. These software packages include extremely specialized, high-overhead

systems used in non-human primate BMI research [Taylor et al., 2002, Bacher et al., 2008, Velliste et al.,

2008], highly-modular, visual-programming based software platforms such as OpenViBE [Renard et al., 2010],

as well as portable, lightweight systems for human BMI research [Schalk et al., 2004]. Software tools for more

specific BMI research applications have also been made available, from toolboxes allowing for the interfacing

of MEG systems in real-time for BMI use [Sudre et al., 2010, Oostenveld, 2014] to real-time brain mapping

software capable of quickly identifying signals from electrocorticographic electrodes related to cortical activity

corresponding to overt movement, speech, and sensory stimulation [Schalk et al., 2008b, Schalk et al., 2008a].

The Craniux framework is inspired by the system architecture design of BCI2000, and we believe that

it takes advantage of several unique features of the LabVIEW graphical development environment for de-

veloping real-time BMI software. By making it an open-access and open-source software framework, we

hope to serve the research community on at least two fronts. First, at the basic level, Craniux is a BMI
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software solution with an easy-to-use graphical user interface. Those researchers interested in BMIs can

use this software to conduct research without writing custom software. Second and most importantly, we

hope this framework will facilitate the development of new BMI paradigms and signal processing algorithms

by the research community through providing the basic functionalities of BMI system operation, allowing

researchers to focus on the development of their specific research questions. Finally, as this framework is

set up in the LabVIEW environment, it naturally inherits the many advantages offered by the high-level

graphical nature of LabVIEW programming.

In its current form, the Craniux framework demonstrates the benefits and ease with which it can be used

and modified to develop new BMI paradigms and algorithms. The simplicity of the LabVIEW programming

language makes the creation of new BMI engines accessible to individuals who may not be familiar with

object-oriented programming. Would-be developers can simply take one of the provided engine templates,

implement their desired operation, and save the engine under a new name (this process is described in

greater detail in the Supplemental Materials). This new engine will then be available for use in the Craniux

framework, without the need for the compiling of code down to executables as required by programming

languages such as C/C++. The debugging of newly created engines can also be easily performed during run-

time through the use of LabVIEW’s built-in debugging tools. The dataflow-driven nature of Craniux further

simplifies debugging, allowing system execution to be halted and resumed at any point during operation

without the loss of the current state of the system. These tools, along with advanced data visualization

options, make the rapid prototyping of highly sophisticated neural signal processing techniques possible.

Craniux currently offers a rich set of options to visualize BMI data on-the-fly at multiple processing stages

in various formats. Neural signals, such as EEG, MEG, or ECoG, can be viewed as scrolling time-frequency

plots or dynamic spatiotemporal plots in the frequency domain. This is beneficial for online examination

of neural signal quality, as certain features may be difficult to view in a simple plot of time-domain raw

neural signals. The results of calculations performed during the training and application of neural decoding

algorithms can also be visualized on-the-fly, providing researchers with the opportunity to select neural

signal features, visualize decoding weights, and examine decoder outputs without suspending operation

of the system. For example, our implementation of the Population Vector Algorithm allows researchers

to dynamically change the value of the R-squared threshold used for feature selection, view the preferred

direction distribution of the currently selected features, as well as view the instantaneous contribution of

all features to the control signal output by the algorithm. This visualization capability is of particular

importance when using and developing sophisticated decoding algorithms, as it allows BMI researchers to

judge the validity of the decoding weights on-the-fly and make adjustments of neural signal processing and

other BMI experiment parameters accordingly.
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We have also shown the potential for enhancement in Craniux performance through its distribution across

multiple network hosts, as assigning individual engines to separate computers eliminates the possibility of

competition between engines for system resources. The separation of graphical user interface elements from

real-time engines further improves system performance by ensuring the real-time engine execution is not

affected by user interface interaction events or data visualization. Furthermore, the capability to distribute

the Craniux system across multiple network hosts could prove especially useful in long-term human BMI

studies. Experimental sessions could be run remotely on a daily basis, eliminating the need for either subjects

or investigators to travel to participate in these sessions. This will become important as BMI technology

moves into preclinical and clinical trials.

Craniux also offers a streamlined workflow for BMI research. It allows for on-the-fly control of specific

experimental parameters, offering experimenters great flexibility for BMI user training. For example, an

experimenter can quickly adjust the output gain of a neural decoder if it is deemed that a brain-controlled

cursor is moving in the correct direction but with a very low speed. In our experience, this flexibility

is critical for effective BMI training. Meanwhile, the Craniux system is capable of capturing all changes

in experimental parameters along with BMI data, allowing researchers to perform offline analysis of BMI

sessions. Furthermore, various BMI procedures, including the collection of baseline data for the normalization

of neural signals and the training of neural decoding algorithms may be performed without the cessation of

system operation. This provides both BMI researchers and experimental subjects with a seamless experience

in which system parameters can be continuously updated to improve BMI performance.

It should be noted that the timing of the Craniux system is dependent on the timing of the Acquisition

engine, which currently can be driven by UDP packets sent from neural acquisition hardware or controlled

explicitly by the Acquisition engine itself (e.g. the ‘SimECoG’ engine). Any number of neural recording

hardware solutions may be used for BMI operation provided that data recorded by these devices can be

packaged and transmitted via UDP. Additionally, hardware-specific acquisition engines can also be created

within the Craniux framework.

In addition, it is important to mention that editing or developing new BMI engines in the Craniux

framework requires the purchase of LabVIEW. However, it is not uncommon for open-source research tools

to be built upon commercial software; two such examples are the EEGLAB [Delorme and Makeig, 2004] and

FieldTrip packages for neural data analysis. These packages are both built upon MATLAB, an extremely

powerful commercial data analysis software package. Just as many researchers are now using MATLAB

instead of custom-written C programs for data analysis, we believe that the time and effort saved by the

use of the Craniux system in BMI software development will outweigh the cost of the LabVIEW software.

Furthermore, if the Craniux software is to be used as a self-contained out-of-the-box software package,

all engines can be compiled down to binary executable files and run using the freely available LabVIEW

Runtime Engine, eliminating the need for the LabVIEW software. Finally, as demonstrated in Section

A.3, given the computing capability of current personal computers and the code optimization inherently
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performed by the LabVIEW environment, the overall performance of the Craniux system is comparable

to BMI systems developed using other programming languages. Hence, the gain from using the high-

level LabVIEW programming environment does not come at the expense of significant sacrifices in system

performance.

The Craniux software package, including in-depth documentation and detailed operation instructions

for all engines, has been made available free of charge to academic institutions and can be accessed at

http://www.engr.pitt.edu/rnel/hRNEL/software.html. The Craniux software package can be downloaded

as a library of LabVIEW virtual instruments (VIs), and all stable system updates will be made available for

download.

A.5 CONCLUSIONS

While other open-access open-source BMI software solutions are currently available, we feel that the Craniux

software package fills a specific need in the realm of BMI research. Powerful yet lightweight, this system allows

experimenters to rapidly develop and test cutting-edge technology in an online environment, whether it be

new neural signal processing techniques, new neural decoders, or advanced prosthetic devices. This system

offers an easy-to-use “out-of-the-box” solution for BMI research as well as other neural data visualization

and processing purposes. Additionally, the Craniux system provides an extendable framework through

the provision of template engines. The provided framework possesses the basic fundamental architecture

for running closed-loop BMI experiments, and enables other researchers to take advantage of LabVIEW

functionality to design and conduct novel experimental paradigms without the need to implement their own

core system framework. It is also worth noting that functionality offered by the Craniux framework also

lends itself useful for other neuroscience research and even neurorehabilitation applications that could benefit

from real-time processing and visualization of neural data, such as cortical source imaging using EEG or

MEG recordings. It is with these characteristics in mind that we feel the Craniux software package will

prove an important addition to the BMI research community.
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APPENDIX B

MINIMUM NORM ESTIMATION

B.1 THE STANDARD LEAST-SQUARES SOLUTION

Considering the standard linear regression problem:

y = w>x,

where w ∈ RM×1 is a vector of decoding weights mapping the feature observation vector x ∈ RM×1 to

the predicted kinematic output. Given the set of N kinematic observations y = [y1, . . . , yN ]> and feature

observations X = [x1, . . . ,xN ], this can be expressed as:

y = X>w.

Solving for w, the standard least-squares solution is obtained:

w = (XX>)−1Xy.

However, this solution requires XX> ∈ RM×M to be invertible. As the rank of XX> is the minimum of M

and N , for instances where the number of observations is greater than the number of features (e.g., N > M),

XX> will be full-rank and thus invertible. However, in cases where the number of features exceeds the

number of observations (e.g., N < M), XX> will not be full-rank and thus cannot be inverted. In such

cases, an alternative solution for w must be found.

B.2 THE MINIMUM NORM SOLUTION

One particular solution for w in the underdetermined regime (e.g., N < M) is the minimum norm solution.

This solution is defined as that which has the smallest norm of all possible solutions. Finding the minimum

norm solution can be formulated as the constrained minimization problem [Boyd, 2007]:

minimize w>w
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subject to y = X>w,

which can be solved using Lagrange multipliers. The Lagrangian is:

Λ(w, λ) = w>w + λ(X>w − y),

which gives gradients:

∇wΛ(w, λ) = 2w + Xw = 0 (B.1)

∇λΛ(w, λ) = X>w − y = 0. (B.2)

Solving for w in Equation B.1:

w = −1

2
Xλ. (B.3)

Replacing w in Equation B.2, the expression for λ may be found:

X>(−1

2
Xλ)− y = 0

−1

2
X>Xλ = y

λ = −2(X>X)−1y.

Inserting this into Equation B.3 gives the final decoding weights solution:

w = X(X>X)−1y (B.4)

The minimum norm solution is that which is returned in the MATLAB programming environment when

using the pinv function to find the pseudoinverse of a non-square matrix where N < M .
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APPENDIX C

DERIVATION OF EMPIRICAL BAYES

The following appendix will outline the derivation of the Empirical Bayes decoding method presented in

Chapter 7. First, the terminology and notation used in the derivation of this method is provided in Section

C.1. A derivation of probabilistic liner regression is provided in Section C.2. Finally, the evidence maximiza-

tion method and resultant partial differential equations used during parameter optimization is presented in

Section C.3.

C.1 TERMINOLOGY AND NOTATION

The notation included below will be used in the subsequent sections. Non-bold font (e.g. x) is used to

indicate scalar values, lower-case bold font (e.g. x) is used to indicate vectors, and capital bold font (e.g. X)

is used to indicate matrices. All vectors are assumed to be column vectors.

N Number of observations.

D Number of parameters (features).

y N × 1 vector of kinematic observations.

w D × 1 vector of parameters (“decoding weights”).

X D ×N design matrix of feature observations. Columns represent independent observations.

Σp Covariance prior.

`2x Length constant. Subscript x specifies the type of length constant.

C.2 PROBABILISTIC LINEAR REGRESSION

The following presents a derivation of probabilistic linear regression based upon that presented by [Rasmussen

and Williams, 2006], with the expansion of selected steps for the sake of completeness. In order to enforce
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a prior distribution over w, the standard linear regression model must be formulated in a probabilistic

framework. Considering the previously-described regression model:

y = w>x + ε , ε ∼ N (0, σ2
n),

the likelihood of a single kinematic observation, p(yi|w,x) is defined as:

p(yi|w,xi) =
1√

2πσn
exp

[
− (yi −w>xi)

2

2σ2
n

]
.

The likelihood of a set of N independent kinematic observations y = [y1, . . . , yN ]> given the set of neural

feature observations X = [x1, . . . ,xN ] can be expressed as the product of the individual probabilities as

follows:

p(y|w,X) =

N∏
i=1

p(yi|w,xi)

=

N∏
i=1

1√
2πσn

exp

[
− (yi −w>xi)

2

2σ2
n

]

=
1

(2πσ2
n)N/2

exp

[
− 1

2σ2
n

N∑
i=1

(yi −w>xi)
2

]

=
1

(2πσ2
n)N/2

exp

[
− 1

2σ2
n

(y −X>w)>(y −X>w)

]
= N (w>X, σ2

nI).

We seek to find the set of decoding weights w that is most likely given both the kinematic and neural

observations (y and X, respectively), which is is equivalent to maximizing the probability distribution

p(w|y,X), the posterior distribution over the decoding weights. This can be expressed as a function of the

likelihood using Bayes’ rule:

p(y,w|X) = p(y|X,w)p(w|X) = p(w|X,y)p(y|X)

p(w|y,X) =
p(y|X,w)p(w|X)

p(y|X)
. (C.1)

Noting that the prior distribution over w is independent of X, and that the marginal likelihood is a constant

and independent of w, Equation C.1 reduces to

p(w|y,X) ∝ p(y|X,w)p(w). (C.2)

The prior distribution over w is defined as a zero-mean Gaussian distribution with covariance Σp:

p(w) ∼ N (0,Σp). (C.3)

Combining Equations C.1 and C.2 allows the posterior distribution over w to be re-written as:
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p(w|y,X) ∝ p(y|X,w)p(w)

∝ exp

[
− 1

2σ2
n

(y −X>w)>(y −X>w)

]
exp

[
−1

2
w>Σ−1p w

]
∝ exp

[
− 1

2σ2
n

(y −X>w)>(y −X>w)− 1

2
w>Σ−1p w

]
∝ exp

[
− 1

2σ2
n

(y>y − y>X>w −w>Xy + w>XX>w)− 1

2
w>Σ−1p w

]
∝ exp

[
− 1

2σ2
n

w>XX>w − 1

2
w>Σ−1p w +

1

2σ2
n

y>X>w +
1

2σ2
n

w>Xy

]
exp

[
− 1

2σ2
n

y>y

]
Disregarding those terms which are independent of w (which are thus constant and do not change the

proportionality) and collecting terms:

p(w|y,X) ∝ exp

[
−1

2
w>(σ−2n XX> + Σ−1p )w +

1

2σ2
n

y>X>w +
1

2σ2
n

w>Xy

]
∝ exp

{
−1

2

[
w>(σ−2n XX> + Σ−1p )w − σ−2n w>Xy − σ−2n y>X>w

]}
In this form it becomes apparent that the first term in the exponential is that of a Gaussian over w with

covariance (σ−2n XX> + Σ−1p )−1. Letting A = σ−2n XX> + Σ−1p , the posterior probability can be written as:

p(w|y,X) ∝ exp

[
−1

2

(
w>Aw − σ−2n w>AA−1Xy − σ−2n y>X>A−>A>w

)]
.

Letting w̄ = σ−2n A−1Xy, and noting that A> = A due to symmetry, this reduces to:

p(w|y,X) ∝ exp

[
−1

2

(
w>Aw −w>Aw̄ − w̄>Aw

)]
,

which can be further simplified by completing the square through the addition and subtraction of the term(
− 1

2w̄>Aw̄
)

in the exponential:

p(w|y,X) ∝ exp

[
−1

2

(
w>Aw −w>Aw̄ − w̄>Aw + w̄>Aw̄ − w̄>Aw̄

)]
∝ exp

[
−1

2
(w − w̄)>A(w − w̄)

]
exp

[
−1

2
w̄>Aw̄

]
.

Finally, as the second exponential term does not depend on w, it may be safely disregarded to yield:

p(w|y,X) ∝ exp

[
−1

2
(w − w̄)>A(w − w̄)

]
p(w|X,y) ∼ N (w̄,A−1),

Given a new feature observation x∗, the kinematic prediction y∗ is obtained by maximizing the probability

distribution:

p(y∗|x∗,X,y),
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the probability of the kinematic prediction given the new feature observation, the set of kinematic training

data y, and the set of neural training data X. This is equivalent to the joint probability distribution of y∗

and w, integrated over w:

p(y∗|x∗,X,y) =

∫
p(y∗,w|x∗,X,y)dw

. By factoring w out of the joint probability distribution p(y∗,w|x∗,X,y), this reduces to:

p(y∗|x∗,X,y) =

∫
p(y∗|x∗,X,y,w)p(w|x∗,X,y)dw.

This can be further reduced by noting that w is independent of x∗, and that y∗ is independent of X and y

given w:

p(y∗|x∗,X,y) =

∫
p(y∗|x∗,X,y)p(w|x∗,X,y)dw

= N
(

1

σ2
n

x>∗ A−1Xy,x>∗ A−1x∗

)
.

As the maximum of a Gaussian distribution occurs at its mean, this give the final equation for kinematic

predictions y∗ given observed feature activity x∗:

y∗ =
1

σ2
n

x>∗ A−1Xy

= w̄>x∗.

C.3 EVIDENCE MAXIMIZATION

The previous section described how decoding weights and kinematic predictions are obtained for probabilistic

linear regression. However, this is dependent upon knowing Σp, the covariance prior over the decoding

weights. As Σp can be determined by a number of hyperparameters, the values for these hyperparameters

must be found before the final decoding weights solution can be calculated. One way in which this can be

accomplished is through evidence maximization, where the probability distribution for the evidence p(y|X, θ),

the probability of the data given hyperparameters, is maximized with respect to the set of hyperparameters.

This can be expressed using known probability distributions as:

E(θ) = p(y|X) =

∫
p(y|X,w)p(w)dw, (C.4)

where θ is used to indicate the set of hyperparameters, p(y|X,w) ∼ N (X>w, σ2
nI), and p(w) ∼ N (0,Σp).

Replacing the probability distributions in Equation C.4 with their known values, this becomes [Linden and
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Sahani, 2003]:

E(θ) =

∫
N (X>w, σ2

nI)N (0,Σp)dw

=

∫
1

(2πσ2
n)M/2

exp

[
− 1

2σ2
n

(y −X>w)>(y −X>w)

]
1

(2π)M/2|Σp|1/2
exp

[
−1

2
wΣ−1p w>

]
dw

= (2πσ2
n)−

M
2 (2π)−

M
2 |Σp|

−1
2

∫
exp

[
−1

2
(w − w̄)>A(w − w̄)

]
dw

= (2πσ2
n)−

M
2 |Σp|−

1
2 |A−1| 12 exp

(
−1

2
w̄>Aw̄

)
This equation must be maximized with respect to noise variance parameter σ2

n and hyperparameters of Σp

(indicated by θ), which is equivalent to maximizing the log-evidence:

ln E(σ2
n, θ) =

1

2
ln |2πA| − N

2
ln(2πσ2

n)− 1

2
ln |2πΣp| −

1

2
y
(
σ−2n I− σ−4n X>AX

)
y>.

As σn is required to remain positive, constrained maximization of ln E(σ2
n, θ) can be re-formulated under the

change of variable σ2
n = eαn as an unconstrained maximization of:

ln E(α, θ) =
1

2
ln |2πA| − N

2
ln(2πeα)− 1

2
ln |2πΣp| −

1

2
y
(
e−αI− e−2αX>AX

)
y>. (C.5)

In order to maximize this using gradient ascent, the partial derivatives with respect to all of the parameters

must be computed. Taking partial derivative of Equation C.5 with respect to αn yields the following:

∂

∂α
ln E(α, θ) = −N + Tr(I−AΣ−1p ) + e−α(y −w>X)(y −w>X)>

= −N + Tr(I−AΣ−1p ) + e−α(yy> − yX>w −w>Xy> + w>XX>w).

In order to compute the partial derivatives with respect to θ, the set of hyperparameters of Σp, the partial

derivative of the log-evidence function can be expressed as a function of the partial derivative of Σp:

∂

∂θ
ln E(α, θ) =

1

2
Tr

[
Σp
−1
(
∂

∂θ
Σp

)
Σp
−1(Σp −A−ww>)

]
. (C.6)

The following sections will outline calculation of the partial derivatives for the various covariance prior forms.

C.3.1 General covariance prior

The general form of the covariance prior is expressed as:

Σp = σ2
w,fK + σ2

w,nI.

Under the change of variables σ2
w,f = e−αw,f and σ2

w,n = e−αw,n , this becomes:

Σp = e−αw,f K + e−αw,nI,

which leads to expressions for the partial derivatives with respect to αw,f and αw,n

∂

∂αw,f
Σp = −e−αw,f K, (C.7)
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∂

∂αw,n
Σp = −e−αw,nI. (C.8)

In order to compute partial derivatives with respect to hyperparameters of the kernel K, the partial

derivative of the covariance prior is expressed as a function of the partial derivative of the kernel:

∂

∂θ
Σp = e−αw,f

∂

∂θ
K (C.9)

C.3.2 L2-regularized linear regression

For the L2-regularized linear regression, K = I. As this kernel does not contain any parameters, no additional

partial derivatives are required.

C.3.3 Frequency-block-diagonal prior

For the frequency-block-diagonal prior, the kernel is defined as:

Kf (xi, xj) = exp

{
− 1

2`2f
[f(xi)− f(xj)]

2

}
δel(xi, xj)

where f(xi) is the frequency band corresponding to feature xi, hyperparameter `2f is the “spectral length

constant”, and delta function δel(xi, xj) is 1 if features xi and xj are on the same electrode, and 0 otherwise.

Under the change of variable `2f = eγf , the partial derivative of the covariance kernel with respect to γf is:

∂

∂γf
Kf (xi, xj) =

1

2
e−γf [f(xi)− f(xj)] Kf (xi, xj). (C.10)

C.3.4 Frequency-spatial prior

For the frequency-spatial prior, the kernel is defined as:

Kf,s(xi, xj) = Kf (xi, xj)Ks(xi, xj) = exp

{
− [f(xi)− f(xj)]

2

2`2f

}
exp

{
−d

2(xi, xj)

2`2s

}
,

where d2(xi, xj) is the square of the spatial distance between electrodes for features xi and xj and `s is the

“spectral length constant” hyperparameter determining the correlation between elements of w as a function

of the distance between the electrodes for their corresponding features. Under the change of variable `2f = eγf

and `2s = eγs , the partial derivatives of the covariance kernel with respect to γf and γs are:

∂

∂γf
Kf,s(xi, xj) =

1

2
e−γf [f(xi)− f(xj)] Kf (xi, xj)Ks(xi, xj), (C.11)

∂

∂γs
Kf,s(xi, xj) =

1

2
e−γsd2(xi, xj)Kf (xi, xj)Ks(xi, xj), (C.12)
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C.4 IMPLEMENTATION

Evidence maximization was preformed through minimization of the negative-log-evidence function via. gra-

dient descent. Gradient descent was performed using the minimize.m function by Carl Edward Rasmussen

(http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m), which uses Polack-Ribiere conju-

gate gradients to compute search directions, a line search using quadratic and cubic polynomial approxima-

tions, and the Wolfe-Powell stopping criteria used together with the slope ratio method for guessing initial

step sizes [Rasmussen, 2006]. Random restarts (n = 5) were used to define initial parameter values, with

the final parameter set chosen as that minimizing the negative log-evidence of the data. All methods were

implemented in the MATLAB programming environment.
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