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Improved therapies for cancer and other conditions have resulted in a growing population of 

long-term survivors. Infertility is an unfortunate side effect of some cancer therapies that impacts 

the quality of life of survivors who are in their reproductive or pre-reproductive years. Some of 

these patients have the opportunity to preserve their fertility using standard technologies that 

include sperm, egg or embryo banking, followed by in vitro fertilization and/or embryo transfer.  

However, these options are not available to all patients, especially the prepubertal patients who 

are not yet producing mature gametes. For these patients, there are several stem cell technologies 

in the research pipeline that may give rise to new fertility options and allow infertile patients to 

have their own biological children. Spermatogonial stem cells are the foundation of 

spermatogenesis and may have application for preserving and restoring male fertility. However, 

majority of the knowledge about spermatogonial stem cells (SSCs) comes from rodents and not 

much is known about humans. In Chapter 2, I demonstrate that human spermatogonia have the 

phenotype of UTF1+, SALL4+, ENO2+, UCHL1+, ZBTB16+, ITGA6+, THY1dim, EPCAMdim, 

KIT- and that using the cell surface markers ITGA6, THY1, EPCAM it is possible to enrich 

human SSCs. In Chapter 3, I used this knowledge about the phenotype of human spermatogonia 

to show that the best method to cryopreserve intact human testicular pieces is controlled slow-

freezing. In Chapter 4, I used the phenotype of human spermatogonia from Chapter 2, to show 

that it is possible to separate potentially therapeutic human spermatogonial stem cells from 
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malignant contamination. This is important because a majority of our prepubertal patients will 

have a testicular biopsy taken prior to initiation of chemotherapy so we want to make sure there 

would be no malignant contamination in the sample. Progress represented by this thesis research 

will facilitate translating SSC technologies toward the clinic for preservation and restoration of 

male fertility.  
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1.0  INTRODUCTION 

Spermatogenesis is a highly organized process that produces millions of sperm each day in 

postpubertal mammals [1-3].  This productivity is dependent on the activity of spermatogonial 

stem cells (SSCs), which are the adult tissue stem cells in the testes that balance self-renewing 

divisions with differentiating divisions that maintain the stem cell pool and fuel spermatogenesis, 

respectively [4, 5]. When SSCs differentiate, they give rise to spermatogonia that undergo a 

species-specific number of transit amplifying mitotic divisions, followed by two meiotic 

divisions and spermiogenesis to produce terminally differentiated sperm (Figure 1A). SSCs 

reside in a specialized niche located on the basement membrane of the seminiferous tubules 

where they are in direct contact with Sertoli cells, which produce some of the paracrine factors 

required to regulate self-renewal and differentiation fate decisions (Figure 1B and C). Stem, 

progenitor and differentiating spermatogonia are all located on the basement membrane of the 

seminiferous tubules (Figure 1C). Differentiating spermatogonia give rise to spermatocytes that 

initiate meiosis and migrate off the basement membrane and produce spermatids and then sperm 

(Figure 1C). 
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Figure 1. Mammalian Spermatogenesis.  

 (A) The pool of diploid (2N) spermatogonial stem cells (SSCs) balance self-renewing and differentiating 

divisions to maintain the stem cell pool and also continuously produce sperm. Once committed to differentiate, 

SSCs give rise to undifferentiated and differentiating spermatogonia (2N), which undergo a species dependent 

number of transit-amplifying mitotic divisions that can dramatically increase the yield of sperm from a single 

stem cell. Differentiating spermatogonia give rise to primary spermatocytes (4N), which undergo two meiotic 
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1.1 SPERMATOGONIAL STEM CELLS AND SPERMATOGENESIS 

The majority of the knowledge about SSCs comes from rodents, where the SSC pool is 

considered to reside in the population of isolated type Asingle (As) spermatogonia. In the rodent 

testis, As spermatogonia are rare, comprising 0.03% of all germ cells in the mouse testis [5]; they 

are evenly distributed along the basement membrane of seminiferous tubules, have a relatively 

large nuclear to cytoplasmic ratio and diffuse chromatin. When As spermatogonia divide, they 

produce Apair (Apr) spermatogonia that either undergo complete cytokinesis to produce two new 

As (self-renew) or remain connected by an intercytoplasmic bridge to produce a chain of four 

Aaligned (Aal4) spermatogonia (Figure 2B). Thus, at least a portion of Apr must function as stem 

cells because they contribute to self-renewal of the As pool. Successive divisions of Aal4 produce 

chains of 8, 16 and sometimes 32 Aal spermatogonia. The synchronized development of 

spermatogonial clones is facilitated by protein and messenger RNA exchange via the 

intercytoplasmic bridges that connect the individual cells within a chain [6]. Types As, Apr and 

Aal spermatogonia are collectively termed Aundifferentiated (Aundiff) spermatogonia (Figure 2A and 

B). In rodents, undifferentiated spermatogonia give rise to differentiating types A1, A2, A3, A4, 

divisions to produce haploid spermatids (1N). The meiotic divisions are followed by spermiogenesis to produce 

terminally differentaited sperm. (B) Spermatogenesis takes place inside the seminiferous tubules of the testis. (C) 

Cut out of the seminiferous epithelium. Spermatogonia (including SSCs) located on the basement membrane of 

seminiferous tubules give rise to primary spermatocytes, which initiate meiosis and migrate off the basement 

membrane. Two meiotic divisions and spermiogenesis give rise sequentially to secondary spermatocytes, 

spermatids and terminally differentiated sperm, which are released into the lumen of the seminiferous tubule. 

Reprinted from Valli et al., Fertil Steril. 2014 Jan;101(1):3-13, Copyright (2014), with permission from Elsevier 

Ltd. 
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Intermediate and B spermatogonia, followed by primary spermatocytes, secondary 

spermatocytes, spermatids and sperm.  

Depending on whether the transition from Aal to differentiating A1 spermatogonia occurs 

from Aal chains of 4, 8, 16 or 32 spermatogonia, a clone generated from a single SSC can 

theoretically give rise to between 1024 and 8192 sperm in rodents [7, 8]. The actual yield of 

sperm is 50-80% less than what would be predicted by the clonal amplification scheme described 

above and this is due to apoptosis that occurs primarily in the A2-A4 spermatogonia in rodents 

[9-12].  

In rodents, no SSC specific marker has been identified but several markers have been 

described that are expressed by stem and/or progenitor cells (e.g. GFRα1, POU3F1, POU5F1 

(OCT4), ZBTB16 (PLZF), NGN3, NANOS2, NANOS3, SOHLH1, SOHLH2, FOXO1, ITGA6 

(α6-integrin, CD49f), LIN28, ID4, PAX7, UTF1, CDH1, GPR125, ITGB1 (β1-integrin, CD29), 

EPCAM (CD326), CD9 and THY1 (CD90) [13-43]). When the spermatogonia go through 

differentiation, expression of stem and progenitor markers is reduced and expression of 

differentiation markers (e.g., NGN3 and KIT) increases (Figure 2B). When coupled with whole 

mount immunofluorescence, clonal arrangement of spermatogonia can be determined (Figure 2A 

and B).  

In contrast to rodents, undifferentiated (Type A) spermatogonia in primates are termed  

Adark and Apale, based on differences in nuclear architecture and staining with hematoxylin in 

histological sections (Figure 2E) [44-48]. Adark and Apale are both found on the basement 

membrane of primate seminiferous tubules, but in contrast to rodents (Figure 2A and B) there are 

limited data describing their molecular characteristics or clonal arrangement [46, 48, 49] and 

conflicting views on whether one or both populations function as active stem cells in steady state 
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spermatogenesis [7, 48, 50-53]. This is an important knowledge deficit because spermatogonial 

stem cells may have application for treating male infertility.  

 

 

Figure 2. Current model of rodent, nonhuman primate and human spermatogenesis.  

  

 

 

 

 

 

 

 

 

 (A) Whole-mount immunohistochemistry staining for ZBTB16 in adult mouse seminiferous tubules. ZBTB16+ 

spermatogonia are identified as Asingle, Apaired or Aaligned. Scale bar = 100µm. (B) Rodent undifferentiated 

spermatogonia, including the SSC pool, is comprised of  Asingle and some Apaired spermatogonia and based on 

whole-mount staining analysis their phenotype is of GFRα1+, ZBTB16+, SALL4+, UTF1+, NGN3+/-and KIT-. 

Transit amplifying progenitors include some Apaired spermatogonia and Aaligned spermatogonia (chains of 4-16 

cells), with a phenotype of GFRα1+, ZBTB16+, SALL4+, UTF1+, NGN3+/- and KIT+/-. The differentiating 

spermatogonia that are made up of A1-A4, Intermediate and B spermatognia, have a phenotype of GFRα1-, 

ZBTB16-, SALL4-, UTF1-, NGN3+/- and KIT+. (C and D) In nonhuman primate and human testis, the 

undifferentiated spermatogonia are the Type-A spermatogonia that are designated Adark and Apale based on nuclear 

staining intensity with hematoxylin. The B spermatogonia are considered to be the differentiating 
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1.2 MALE INFERTILITY AFTER CANCER 

High dose chemotherapy, whole body radiation or radiation to the gonads can cause permanent 

infertility [54]. This is a significant human health concern because over 75,000 people under the 

age of 40 in the United States are diagnosed with cancer each year and most are cured [55].  

Thus, cancer patients can look beyond their diagnosis and treatment to quality of life after 

cancer. Parenthood is important to cancer survivors and distress over infertility can have long-

term psychological and relationship implications [56]. Therefore, the American Society for 

Clinical Oncology (ASCO) [57] and the American Society for Reproductive Medicine (ASRM) 

Ethics Committee [58] recommend that the reproductive risks of gonadotoxic therapies and 

options for preserving fertility be discussed with patients before initiating treatment. While 

adoption and third-party reproduction provide alternative family building options, the available 

data indicate that most cancer survivors prefer to have their own biological children [57].  

Post-pubertal adolescent and adult males have the option to cryopreserve sperm prior to 

oncologic treatment. This is a simple and established method for preserving fertile potential and 

spermatogonia and in nonhuman primates they go through 4 divisons before producing primary spermatocytes, 

whereas in human there is only one division of B spermatogonia. (E) Sections of human testis stained using 

Periodic Acid-Shiff method and counterstained with hematoxylin to show nuclear morphology. Abbreviations: 

ZBTB16, zinc finger and BTB domain containing 16; GFRα1, GDNF family receptor alpha-1; UTF1, 

undifferentiated embryonic cell transcription factor 1; SALL4, Sal-like 4; NGN3, neurogenin 3; SOHLH1, 

spermatogenesis and oogenesis specific helix-loop-helix 1. Reprinted with permission from Valli, H. et al., (in 

publication) Chapter 15: Spermatogonial Stem Cells and Spermatogenesis. In Plant TM and Zeleznik AJ, Knobil 

and Neill's Physiology of Reproduction. 
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allows men to father their own genetic children. Nearly 17,000 men between the ages of 15 and 

44 are diagnosed with cancer each year in the United States and nearly 2385 survivors will 

receive a treatment that puts them at high risk of azoospermia [55, 59]. Unfortunately, only about 

24% of men in this age range cryopreserved semen prior to their oncologic treatment [60]. 

Therefore, I calculate that each year in the United States, over 1800 adult cancer survivors will 

be infertile with azoospermia and have limited options to have their own biological children 

because they did not save a semen sample. In some cases, sperm can be recovered surgically 

from small focal areas of spermatogenesis in the testes using the testicular sperm extraction 

(TESE) method and used to fertilize oocytes by intracytoplasmic sperm injection (ICSI) [61]. 

There are no options to preserve the fertility of prepubertal boys, who are not yet making 

sperm. This is a significant problem because about 5131 boys under the age of 15 in the United 

States are expected to develop cancer each year and 83% are expected to survive [55]. A report 

from the Childhood Cancer Survivor Study indicates that the cytotoxic therapies for cancer 

reduce the number subsequently able to have children by 44% [59, 62]. Based on these statistics, 

I calculate that each year in the United States, 1874 young male cancer patients will become 

sterile due to their treatment. In addition to cancer survivors, over 500 patients under the age of 

20 receive hematopoietic stem cell (HSC) transplants each year in the United States for non-

malignant conditions (e.g., bone marrow failure, blood and immune deficiencies, autoimmune 

disorders) [63]. Myeloablative conditioning therapy prior to bone marrow transplantation is 

associated with a high risk of infertility [57, 62, 64, 65]. The ASCO report notes that “Impaired 

future fertility is difficult for children to understand, but potentially traumatic to them as adults” 

[57]. The available data indicate that most parents are interested in preserving fertility on behalf 

of their children who receive gonadotoxic therapies [66, 67].   
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The summed incidence of chemotherapy or radiation-induced male infertility that cannot be 

treated with existing reproductive therapies is approximately 4000 individuals each year in the 

United States. Therefore, responsible development of novel therapies to help these patients have 

biological children has a significant potential impact.   

1.3 SPERMATOGONIAL STEM CELL TRANSPLANTATION 

Ralph Brinster pioneered the technique for spermatogonial stem cell transplantation in mice in 

1994, demonstrating that donor SSCs could engraft the seminiferous tubules of chemotherapy-

treated recipient mice and produce spermatogenesis that was competent to produce viable 

progeny [68-73]. The SSC transplantation technique has become the experimental gold standard 

for quantifying stem cell activity and may have application for treating male infertility. 

Homologous species SSC transplantation has now been reported in mice, rats, pigs, goats, bulls, 

sheep, dogs and monkeys, including the production of donor-derived progeny in mice, rats, goats 

and sheep [70, 73-86]. SSCs from donors of all ages, newborn to adult, can regenerate 

spermatogenesis [74, 87] and SSCs can be cryopreserved and retain spermatogenic function 

upon thawing and transplantation [86, 88, 89]. We recently demonstrated that prepubertal and 

adult rhesus SSCs could be frozen, thawed and transplanted to regenerate spermatogenesis and 

produce fertilization competent sperm [83, 90]. Thus, prepubertal boys or adult men should be 

able to cryopreserve testicular tissue containing SSCs prior to treatment and have these cells 

reintroduced into their testes at a later date to regenerate spermatogenesis.   

 Radford and colleagues initially introduced the autologous SSC transplantation technique 

to the human clinic in 1999 [91]. In Manchester, the United Kingdom, testicular tissue from 12 
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male non-Hodgkin’s lymphoma patients was cryopreserved as a cell suspension prior to the 

initiation of chemotherapy. At later dates, seven of the patients had the cells injected back into 

their testes [92, 93]. To our knowledge, there have been no follow up reports on the fertility 

status of those patients so the outcome of the experiment is unknown. Even if the men in that 

study fathered children, it would be difficult to demonstrate unequivocally (in the absence of a 

unique genetic marker) that those offspring resulted from sperm produced by transplanted stem 

cells rather than from surviving endogenous stem cells. There have been no other reports of SSC 

transplantation in humans since 1999. Nonetheless, this bold, pioneering study demonstrated that 

patients are willing to pursue experimental stem cell approaches to achieve fertility. To date, I 

estimate that testicular tissue or cells have been cryopreserved for more than 150 prepubertal and 

adult male patients worldwide [66, 67, 94-100]. 

 For SSC transplantation in rodents, the testes are typically accessed via a mid-ventral 

abdominal incision. Testicular cells (including SSCs) are injected using a pulled glass capillary 

pipet inserted via the efferent ducts into the rete testis space, which can be visualized on the 

surface of the testis and is contiguous with all seminiferous tubules [101] (Figure 3A-C). Testis 

anatomy in larger animals, including nonhuman primates and humans is different than rodents, 

with the rete testis being centrally located in the testes. Stefan Schlatt and colleagues [102] 

demonstrated that ultrasound can be used to visualize the rete testis and guide an injection needle 

into the rete testis space. Ultrasound-guided rete testis injection has now been employed for SSC 

transplantation in several large animals species, including nonhuman primates [76-80, 84, 85, 

90]. In contrast to the standard method in rodents, surgery is not required for ultrasound-guided 

rete testis injection. An injection needle is simply inserted under ultrasound guidance through the 

scrotal skin and testicular parenchyma into the rete testis space [90] (Figure 3D-F). Clinical 
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translation of the SSC transplantation technique appears eminent considering successes in 

several large animal models and that many patients have already cryopreserved testicular tissue 

or cells.       

 

 

 Figure 3. Testicular cell transplantation.  

 

  

 

 

 

 

 

 

 

 (A-C) In rodents, the testicular cells are injected via the efferent ducts into the rete testis space, which can be 

visualized on the surface of the testis and is contiguous with all seminiferous tubules. (C) Trypan blue is injected 

with the testicular cells to visualize the filling of the seminiferous tubules. (D-F) Testis anatomy in large animals 

is different than rodents, with the rete testis being more centrally localized and therefore more difficult to visualize 

and access. Therefore, ultrasound is used to guide injections. (D) Rete testis (echo-dense structure) is visible on 

ultrasound. The injection needle is inserted under ultrasound guidance through the scrotal skin into the rete testis 

space, which is continuous with the seminiferous tubules. (E) Positive pressure is applied to the needle so the cells 

are slowly injected into the rete testis and seminiferous tubules. (F) The filling of the seminiferous tubules is 

observed using microbubbles. Reprinted with permission from Valli, H. et al., (in publication) Chapter 15: 

Spermatogonial Stem Cells and Spermatogenesis. In Plant TM and Zeleznik AJ, Knobil and Neill's Physiology of 

Reproduction. 
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1.4 EXPERIMENTAL METHODS TO TRACK AND QUANTIFY HUMAN 

SPERMATOGONIAL STEM CELLS 

Studies on human cells and/or tissues are a valuable stepping stone toward clinical translation.  

However, these studies are challenged by the limited experimental tools for quantifying human 

spermatogonia and testing their function. Here I propose that reliable markers of human 

spermatogonia are those with expression limited to germ cells located on the basement 

membrane of human seminiferous tubules. Proteins that meet these criteria, based on personal 

experience and review of the literature include PLZF, GFRα1, GPR125, SALL4, LIN28, 

UCHL1, UTF1, FGFR3, EXOSC10, DSG2, CBL, SSEA4, CD9, OCT2 and SSX [103-113].   

In rodents, SSC transplantation is the gold standard that allows investigators to quantify 

spermatogonial stem cells by observing their biological potential to produce and maintain 

spermatogenesis in infertile recipient animals. Homologous species transplantation to test the 

function of human spermatogonial stem cells is not possible. Our laboratory previously 

established and validated a primate-to-nude mouse xenotransplantation assay for monkey SSCs 

[53, 114]. To enable this assay, we generated a rabbit anti-primate testis cell polyclonal antibody 

that specifically recognizes antigens in primate testis cells. This antibody did not exhibit 

immunoreactivity with untransplanted mouse seminiferous tubules (Figure 4A), but it does 

recognize colonies of human spermatogonia in mouse seminiferous tubules 2 months after 

transplantation (Figure 4C and D). Monkey and human SSCs do not produce complete 

spermatogenesis in mouse seminiferous tubules (probably due to evolutionary distance between 

primates and mice). However, the colonization foci are considered to be SSC derived, because 

(a) they exhibited typical spermatogonial appearance, including arrangement as singles, pairs, 

and chains on the basement membrane of seminiferous tubules, and expressed the germ cell 
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 Figure 4. Human-to-nude mouse xenotransplantation assay. 

 

 

 

 

 

 

 

 

 

 

 

marker, VASA (Figure 4E and F). (b) Clusters are not “just survivors of the transplant,” because 

the transplanted cells were a single cell suspension (confirmed visually on a hemocytometer) that 

was filtered through a 35-μm strainer. The presence of chains of human germ cells clearly 

A rabbit anti-primate testis cell polyclonal antibody was previously generated that specifically recognizes 

antigens on primate (human and nonhuman) testis cells. (A) The antibody does not exhibit immunoreactivity 

with untransplanted mouse seminiferous tubules. (B) An isotype control antibody (rabbit IgG) does not exhibit 

immunoreactivity with mouse seminiferous tubules transplanted with human testicular cells. (C and D) The 

primate testis cell antibody cross-reacts with human testis cells and can be used to identify colonies of human 

spermatogonia in mouse seminiferous tubules 2 months after transplantation. Cells in colonies have a typical 

spermatogonial appearance, with large nuclear-to-cytoplasmic ratios, and are arranged as singles, pairs, and 

chains located on the basement membrane of seminiferous tubules. (E and F) The colonizing cells recognized by 

the primate testis cell antibody also express the germ cell marker VASA. Mouse seminiferous tubules are 

demarcated by dashed white lines. Scale bar: 100 μm. Reprinted with permission from Dovey SL and Valli H et 

al., J Clin Invest. 2013 Apr 1;123(4):1833-43, Copyright (2014). 

http://www.ncbi.nlm.nih.gov/pubmed/23549087
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indicates proliferation after engraftment. (c) These colonies are unlikely to arise from 

differentiating B spermatogonia, because a colonizing human B spermatogonia would produce a 

spermatocyte at its next division and migrate off the basement membrane. Therefore, 

spermatogonial colonies with 4 or more cells located on the basement membrane of seminiferous 

tubules must originate from human Adark or Apale spermatogonia, which are considered reserve 

and active SSCs, respectively [114-117].  

Additionally, immunohistochemical assessment of human colonizing events in recipient 

mouse testes indicate that colonizing cells are located on the basement membrane of 

seminiferous tubules and contain enolase 2 (ENO2) positive undifferentiated human 

spermatogonia as well as ENO2 negative human cells that are presumably more differentiated 

germ cells (Figure 5).  

 

 Figure 5. Rabbit anti-primate antibody and ENO2 co-staining of recipient mouse testes 

xenotransplanted with human testis cells in cross-section. 

 

 

 

At present, human to nude mouse xenotransplantation is the best functional assay to test 

the spermatogonial stem cell-like potential of a test cell population [94, 95, 104, 106, 112, 118-

120]. This method does not recapitulate complete spermatogenesis from transplanted cells like 

Immunofluorescence co-staining for the primate antibody (A and C) and ENO2 (B and C) in human to nude mouse 

xenotransplants testis. DAPI staining (blue) identifies all the nuclei. Scale bars = 50 µm. Reprinted from Valli et al., 

Fertil Steril. 2014 Aug;102(2):566-580, with permission from Elsevier Ltd. 
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mouse to mouse SSC transplantation, probably due to evolutionary distance between humans and 

mice. However, human-to-nude mouse xenotransplantation does assay the ability of transplanted 

cells to migrate to the basement membrane of seminiferous tubules, proliferate to produce 

characteristic colonies of spermatogonia and persist long term [104, 106, 112, 118, 119].  
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2.0  CHARACTERIZATION OF HUMAN SPERMATOGONIAL STEM CELLS 

2.1 INTRODUCTION 

Spermatogenesis is a process that produces millions of sperm per day in postpubertal mammals 

[1-3]. At the foundation of spermatogenesis are spermatogonial stem cells (SSCs) that balance 

self- renewing divisions with differentiating divisions to maintain the stem cell pool and fuel 

spermatogenesis, respectively [4, 5, 44]. Despite their importance to male fertility, there is 

limited knowledge about the molecular characteristics of the human SSCs, which are typically 

described as Adark and Apale spermatogonia based on nuclear staining intensity with hematoxylin 

[44, 48, 121].  

The majority of information about the molecular phenotype of spermatogonia has been 

generated using rodent models and although no SSC specific marker has been identified several 

markers that are expressed by stem and/or progenitor cells have been described (e.g. GFRα1, 

POU3F1, POU5F1 (OCT4), ZBTB16 (PLZF), NGN3, NANOS2, NANOS3, SOHLH1, 

SOHLH2, FOXO1, ITGA6 (α6-integrin, CD49f), LIN28, ID4, PAX7, UTF1, CDH1, GPR125, 

ITGB1 (β1-integrin, CD29), EPCAM (CD326), CD9 and THY1 (CD90) [13-43]). Rodent SSCs 

are only definitively identified by their ability to produce spermatogenesis when transplanted 

into the testes of infertile recipient mice, an assay that was first described by Brinster and 

colleagues [122, 123]. In the transplant bioassay, each colony of spermatogenesis produced in 
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the recipient testis arises from a single SSC and therefore allows quantification of the starting 

population of stem cells [124-127]. The combination of the transplant technique with 

fluorescence activated cell sorting (FACS) has provided insights about additional phenotypic 

features that can be used to isolate and enrich mouse spermatogonia. Mouse spermatogonia have 

the phenotype: ITGA6+, ITGB1+, THY1+, CD9+, GFRα1+, mitochondrial membrane potentialhigh, 

Rhodamine 123 (Rho123)low,  ITGAV (αv-Integrin, CD51)-, KIT (cKIT, CD117)-, MHC-I-, 

ALDH (aldehyde dehydrogenase) activity- and CD45-  [20, 29, 31, 128-133]. There is a lack of 

consensus about whether SSC activity can also be recovered in the Hoechst side population 

fraction of mouse testes [19, 134-136]. 

In humans, undifferentiated stem and progenitor spermatogonia have been described by 

classical descriptions of nuclear morphology as Adark and Apale spermatogonia [48, 137]. 

Information about the molecular phenotype of human spermatogonia has begun to emerge in the 

last few years. Based on immunofluorescence and colorimetric staining of adult human testicular 

sections, human spermatogonia on the basement membrane of the seminiferous tubules express 

UTF1, SALL4, ZBTB16, GFRα1, UCHL1, GPR125, LIN28,  EXOSC10, FGFR3, DSG2, CBL, 

SSX2 and OCT2 [26, 108, 109, 138-146]. Less is known about cell surface markers that could be 

used to isolate and enrich human SSCs. A few studies have reported enrichment of putative 

human SSCs by sorting based on cell surface marker expression of GPR125, SSEA4, ITGA6 and 

CD9 [112, 143, 145, 147], but currently only two studies have confirmed their results by 

demonstrating SSC colonizing activity in the xenotransplant assay. Magnetic activated cell 

sorting (MACS) revealed enrichment of SSC colonizing activity in the SSEA4+ and CD9+  

fractions of human testis cells [112, 145]. 
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THY1, a glycophosphatidylinositol anchored cell surface protein, that belongs to the 

immunoglobulin-like superfamily of genes [148], has been shown to be expressed by neuronal 

cells, CD34 positive hematopoietic stem cells, fibroblasts and endothelial cells [149-155].  

THY1 is involved in diverse processes, including cell migration, cell-cell/cell-matrix interactions 

[156] and T-cell activation [157]. In testis, THY1 has been shown through transplantation assay 

to be a conserved spermatogonial stem cell marker in mice [19], rats [29] and non-human 

primates [53]. However, the expression of THY1 in human spermatogonia has been 

contradictory. He et al. [143] showed that THY1 expression is limited to a few rare cells on the 

basement membrane of seminiferous tubules, whereas Izadyar et al. [112] showed staining in the 

germ cells located toward the lumen of  the tubule and also in peritubular and interstitial cells. 

Both of these reports are based on immunofluorescence staining and no transplants were 

performed. Human to human transplants are not possible as a routine bioassay, but 

xenotransplants into the testes of infertile nude mice has emerged as a quantitative assay for 

human and nonhuman primate spermatogonia [26, 53, 94, 95, 112, 114, 118, 119, 145, 158, 159]. 

To help clarify this issue of whether THY1 is expressed by human SSCs, I fractionated 

human testis cell suspensions based on THY1 expression using FACS and MACS. The presence 

of undifferentiated stem or progenitor spermatogonia in the sorted fractions was evaluated by 

immunocytochemistry for SALL4 and human to nude mouse xenotransplantation. Similar 

experiments were performed for the cell surface markers ITGA6 (CD49f) and EPCAM (CD326), 

which are established markers of rodent spermatogonia [20, 29, 160]. 

ITGA6 is the integrin alpha chain 6. Integrins are cell surface proteins that are made up 

of an alpha chain and a beta chain and they provide a link between extracellular matrix proteins 

and the cytoskeleton [161]. ITGA6 has been shown to regulate glioblastoma stem cells [162] and 

http://en.wikipedia.org/wiki/Glycophosphatidylinositol
http://en.wikipedia.org/wiki/Protein
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is expressed by mouse mammary stem cells [163] and is crucial for the survival of the MCF-7 

cell line stem cells [164]. EPCAM (epithelial cell adhesion molecule) is a transmembrane 

glycoprotein that mediates homophilic cell-cell adhesion [165]. Modulation of Epcam activity is 

thought to affect cell migration, proliferation and invasion [165, 166] and overexpression of 

Epcam plays a role in cancer development [166-168]. 

Currently, no human data are available regarding whether spermatogonial markers used 

in FACS are also appropriate for MACS and vice versa. The choice of whether to use FACS or 

MACS depends on the desired output. FACS has limited throughput (~30 x 106 cells per day); it 

is fairly time consuming and requires specialized equipment and a skilled operator, but it allows 

high resolution selection of sorting gates. MACS has a lower resolving power, but is generally a 

faster and is a higher throughput sorting strategy that can be performed on the laboratory bench 

and does not require specialized equipment. A single adult human testis that can be obtained for 

research through an organ donor program can contain over 1 billion cells, which is far beyond 

the typical sorting capacity of FACS. MACS can easily be scaled to accommodate this number 

of cells and maximize the use of this valuable human tissue resource for fundamental research. In 

addition, MACS is technically accessible and affordable, which will facilitate application for 

enriching SSCs in the clinical setting. 

FACS fractions were analyzed by immunocytochemistry for the human spermatogonial 

marker SALL4 [118, 139] and human-to-nude mouse xenotransplantation. SALL4 is a member 

of sal-gene family of transcription factors that is highly conserved between species [169-175]. 

SALL4 is expressed by the cells in an early embryo and is important for maintaining 

pluripotency of ES cells [176, 177].  In addition SALL4 is a conserved marker of spermatogonia 
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[139, 178, 179] and has been implicated in the regulation of spermatogonial differentiation in 

mice [178]. MACS fractions were analyzed by human-to-nude mouse xenotransplantation.  

Analyses of FACS fractions indicated that, all three cell-surface markers, EPCAMdim, 

ITGA6+ and THY1dim can be used to effectively isolate and enrich human SSCs from a 

heterogeneous testis cell suspension.  In contrast, only ITGA6 was suitable for sorting human 

SSCs by MACS, as THY1 and EPCAM provided no enrichment. 

2.2 MATERIALS AND METHODS 

Animals 

All experiments utilizing animals were approved by the Institutional Animal Care and 

Use Committees of the Magee-Womens Research Institute and the University of Pittsburgh and 

were performed in accordance with the National Institute of Health guidelines for the care and 

use of animals (assurance # A3654-01).  

 

Preparation of Human Testicular Tissue 

Deidentified, normal adult human testicular tissue was obtained through the University of 

Pittsburgh Health Sciences Tissue Bank and Center for Organ Recovery and Education (CORE) 

under University of Pittsburgh IRB #0506140. Following the removal of tissue, it was 

transported to the laboratory on ice in Lactated Ringer’s solution. Cells were recovered from 

human testicular tissue using a two-step enzymatic digestion described previously [53, 114, 118]. 

Briefly, testicular tissue was digested with collagenase type IV for 5 minutes at 37°C on the 

shaker (250 rpm), then shaken vigorously and incubated for another 3 minutes and if necessary 2 



 20 

additional minutes at 37°C on the shaker. The tubules were then sedimented by centrifugation at 

200xg for 5 minutes and washed with Hank’s Balanced Salt Solution (HBSS, Gibco). The 

tubules were then digested with 0.25% trypsin/EDTA and DNase I. The suspension was 

triturated vigorously 3-5 times and incubated at 37°C for 5 minutes. The process was repeated in 

5 minute increments for up to 15 minutes total. The digestion was stopped by adding 10% fetal 

bovine serum (FBS) and the cells were strained through 70µm strainer (Becton Dickson). The 

cells were pelleted by centrifugation at 600xg for 15 minutes. Cells were then suspended in 

minimal essential medium α (MEM α) + 10% FBS at a concentration of 40 x 106 cells/mL and 

aliquoted in cryovials. An equal volume of cryopreservation medium consisting of MEMα + 

20% FBS + 20% dimethylsulphoxide (DMSO) was added drop-wise, making the final 

concentration 20 x 106/mL in MEMα/15% FBS/10% DMSO). The vials were frozen at a 

controlled rate using Nalgene freezing containers (Nalgene-Nunc International) or a CryoMed 

controlled-rate freezer (Thermo Scientific) and then stored in liquid nitrogen. For experiments, 

the cells were thawed rapidly at 37°C, washed and suspended in MEMα medium containing 10% 

FBS.   

 

Fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) 

For FACS, the frozen and thawed human testis cell suspension was stained on ice in 

Dulbecco’s phosphate-buffered saline (D-PBS) containing 10% FBS for 20 min with 

fluorescent-conjugated antibodies (THY1-APC, clone 5E10, 0.5 µg/106 cells and ITGA6 -PE 

clone GoH3, 20 µl/106 cells; Becton Dickinson; EPCAM-PE, clone 9C4, 20 µl/106 cells; 

BioLegend). Cells were then washed twice with D-PBS to remove unbound primary antibody, 

and filtered through a 35µm strainer (Becton Dickinson). Propidium iodide (0.5µg/ml, BD 
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Bioscience) was added to distinguish between live and dead cells. FACS analysis was done using 

FACSvantage SE (Beckton, Dickinson) and the positive staining was identified by comparison to 

appropriate isotype control in order to correct for non-specific binding. Sorting gates were 

established based on level of marker expression as well as exclusion of dead cells stained with 

propidium iodide and exclusion of cells exhibiting non-specific binding or autofluorescence.  

The MACS protocol was similar to that of FACS, except after fluorescent-conjugated antibody 

staining (THY1-PE, ITGA6 –PE; Becton Dickson; and EPCAM-PE; BioLegend) and washes, 

anti-PE Microbeads (2 µl/106 cells; Miltenyi Biotec) were used to detect the fluorophore on the 

primary antibody. The cells were then sorted on a MACS column (Miltenyi Biotec) into positive 

(bound) and negative (flow through) fractions.  

 

Immunocytochemistry 

Cells from FACS and MACS were spotted on Superfrost slides and fixed with methanol. 

The cells were then rehydrated with D-PBS and blocked with a buffer containing 3% bovine 

serum albumin and 5% normal goat serum in order to eliminate nonspecific binding. Rabbit anti- 

SALL4 (1:500; ab29112, Abcam) antibody was added to the cells and incubated for 90 min at 

room temperature. Isotype matched normal IgG was used as negative control. Primary antibody 

was detected using goat anti-rabbit AlexaFluor-488 conjugated secondary antibody (1:200, 

Invitrogen). The slides were mounted with VectaShield (Vector Laboratories) mounting medium 

containing DAPI for detection of all nuclei and the staining was observed with a Nikon Eclipse 

E600 Fluorescence microscope and images captured with MetaView Digital Imaging software.  
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Immunofluorescence 

Human testicular tissue fragments were fixed with 4% paraformaldehyde (PFA) 

overnight, paraffin-embedded and sectioned (5 µm). The tissue slides were de-paraffinized, 

rehydrated, incubated for 30 minutes in sodium citrate buffer (10 mM sodium citrate, pH 6.0, 

0.05% Tween-20) for antigen retrieval. The tissue was then blocked with a buffer containing 3% 

bovine serum albumin and 5% normal serum from the host species of the secondary antibody. 

Subsequently, sections were stained for 90 minutes at room temperature with the following 

primary antibodies in antibody diluent: mouse anti-UTF1 (1:50, MAB4337, Millipore) goat anti-

ZBTB16 (1:50; AF2944, R&D Systems),  rabbit anti- KIT; goat anti-KIT (1:400; A4502, 

DakoCytomation; 1:50; AF332, R&D Systems), rabbit anti-SALL4 (1:500; ab29112, Abcam; 

1:40; ab181087, Abcam), mouse anti-ENO2 (1:500, LS-B2890, LSBio), rabbit anti-UCHL1 

(1:1000, 7863-0507, Biogenesis), rabbit anti-EPCAM (1:200; ab71919, Abcam), rabbit anti-

ITGA6 (1:100; ab75737, Abcam). Isotype matched normal IgG was used as negative control. 

Primary antibodies were detected using AlexaFluor-488 or AlexaFluor-568 conjugated 

secondary antibodies (1:200, Invitrogen). The slides were mounted with VectaShield mounting 

medium containing DAPI (Vector Laboratories) for detection of nuclei. Sections were observed 

with a Nikon Eclipse E600 fluorescence microscope and images captured with MetaView Digital 

Imaging software. For the quantification of marker overlap, single-positive cells for each marker 

and double-positive cells were counted in cross-sections of seminiferous tubules. Total stained 

cell numbers were divided by the number of tubular cross-sections (at least 100 per sample x 3 

replicate samples). 

 

 



 23 

Colorimetric immunohistochemistry 

Human testicular tissue fragments were fixed with 4% PFA overnight, paraffin-

embedded and sectioned (5 µm). The tissue slides were de-paraffinized, rehydrated, incubated 

for 30 minutes in sodium citrate buffer (10 mM sodium citrate, pH 6.0, 0.05% Tween-20) for 

antigen retrieval. The tissue was then incubated in peroxidase block for 10 minutes and washed 

in PBS and blocked with a buffer containing 3% bovine serum albumin and 5% normal goat 

serum. Subsequently, sections were stained for 90 minutes at room temperature with rabbit anti-

UCHL1 (1:1000, 7863-0507, Biogenesis). Isotype matched normal IgG was used as negative 

control. Primary antibody was detected using goat anti-rabbit HRP conjugated secondary 

antibody (1:200, sc-2054, Santa Cruz Biotechnology) for 30 minutes. Metal enhanced DAB 

substrate kit was used to detect staining (Thermo Scientific). The tissue was then counterstained 

with Periodic acid-Schiff and hematoxylin (Sigma-Aldrich) to enable identification of Adark and 

Apale spermatogonia. 

 

Whole mount immunohistochemistry 

Human testicular tissue was teased apart using Collagenase type IV (1mg/mL) and 

DNase I (1mg/mL) in D-PBS. The tissue was then fixed overnight with 4% PFA. The tubules 

were permeabilized using PBS and 0.1% Triton-X and blocked with a blotto milk solution in D-

PBS (D-PBS +0.02 mg/mL blotto dry milk powder + 5%Triton-X) and stained with a rabbit anti-

UCHL1 (1:500, 7863-0507, Biogenesis) and goat anti-KIT (1:50; AF332, R&D Systems) 

primary antibodies overnight at 4°C. The primary antibodies were detected with donkey anti- 

rabbit IgG AlexaFluor568 and donkey anti-goat IgG AlexaFluor488 (1:200, Invitrogen). Finally, 
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the seminiferous tubules were mounted with VectaShield mounting media containing DAPI 

(Vector Laboratories) with raised cover slips and imaged with fluorescent microscopy.   

 

Xenotransplantation and whole mount immunofluorescent quantification of human SSC 

colonizing activity in mouse seminiferous tubules 

The human-to-nude mouse xenotransplantation was performed as a biological assay to 

investigate colonizing activity of putative human SSCs. Following FACS and MACS , unsorted 

and sorted testicular cell fractions were transplanted into the testes of busulfan-treated (40 

mg/kg; Sigma, at 5–6 weeks of age), immune-deficient nude mice (NCr nu/nu; Taconic, 

Germantown, NY), as previously described [53, 114, 118, 159].  Briefly, xenotransplantation 

was performed 5 weeks after busulfan treatment by injecting cell suspensions containing 10% 

trypan blue (Invitrogen) into the seminiferous tubules of recipient mouse testes via the efferent 

ducts.  Approximately 7 µl of cell suspension was injected per testis. For quantitative analysis of 

colonization by human donor spermatogonia, the testes were recovered 8 weeks following 

transplantation, the tunica was removed, and the intact seminiferous tubules were dispersed 

gently with Collagenase IV (1mg/mL) and DNase I (1mg/mL) in D-PBS. The tubules were fixed 

for 4 hours in 4% PFA and the whole mount immunofluorescence was carried out by 

dehydrating samples in a graded series of methanol dilutions before incubating in 

MeOH:DMSO:H2O2 (4:1:1) solution for three hours. The tubules were then rehydrated, blocked 

with a blotto milk solution in D-PBS (D-PBS + 0.02 mg/mL blotto dry milk powder + 5%Triton-

X) and stained with a rabbit anti-primate testis cell primary antibody [114] at a 1:800 dilution 

overnight at 4°C. The primary antibody was detected with goat anti-rabbit IgG AlexaFluor488 

(1:200, Invitrogen). Finally, the seminiferous tubules were mounted with VectaShield mounting 
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media containing DAPI (Vector Laboratories) with raised cover slips and imaged with 

fluorescent microscopy.  Spermatogonial colonies were counted based on the following criteria: 

at least 4 cells exhibiting spermatogonial morphology (ovoid shape with high nuclear to 

cytoplasmic ratio) and located on the basement membrane in a continuous area of recipient 

seminiferous tubule ( 100 µm between cells). 

Statistical Analysis 

I  analyzed the data using linear mixed effect models, and performed Tukey’s tests, as 

described in [180], to compare differences among the percent of SALL4+ cells in unsorted versus 

sorted cell fractions in the immunocytochemistry experiments and colonizing activity in the 

human-to-nude mouse xenotransplant bioassay.      

2.3 RESULTS 

2.3.1 Acquisition of human testicular tissue 

Testicular tissues used in this study were obtained from a total of 12 post-pubertal organ donors 

(Age 14-50). Testes weighed 11.3 to 26.0 grams and produced a theoretical yield (after 

correcting for tissue removed for pathology and immunofluorescence studies) of 1.4 x 109 ± 0.14 

x 109 cells per donor. All human testis cell suspensions used in this study were cryopreserved as 

described above and thawed at a later date for experimentation. Human testicular cells used in 

this study were frozen for periods of time ranging from 1 month to 15 months.   
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2.3.2 Immunohistochemical staining of human testicular sections 

Immunohistochemical co-staining analysis was done to investigate the co-expression of known 

mouse and/or non-human primate spermatogonia markers in adult human testis. ZBTB16 and 

SALL4, which mark most stem and progenitor spermatogonia in rodents [179], were expressed 

in cells located on the basement membrane, consistent with location of undifferentiated 

spermatogonia. Roughly 89% of ZBTB16 positive cells were also positive for SALL4 (Figure 6 

A-D), but also a small population of ZBTB16 positive cells (11%) did not express SALL4. 

Similarly, a sub-population of SALL4 positive cells also did not express ZBTB16 (11%) (Figure 

6 D). Co-staining with SALL4 and KIT, an established marker of differentiating spermatogonia, 

revealed almost no overlap between these two markers (Figure 6E-H). These results suggest that 

SALL4 is not expressed by differentiating spermatogonia in human testis. UTF1 expression was 

also restricted to cells on the seminiferous tubule basement membrane (Figure 6 I-L). Co-

staining with UTF1 and SALL4 indicated that 65% of the SALL4 positive cells express UTF1, 

whereas 35% of expressed SALL4 only. Seventeen percent of UTF1 positive cells express UTF1 

only (Figure 6L). To confirm that UTF1 is not expressed by differentiating spermatogonia, I co-

stained UTF1 with a differentiation marker KIT (Figure 6M-P) and found that there is no overlap 

between these two markers. Based on these results, I believe that UTF1 is a more restricted 

marker of stem and progenitor spermatogonia than SALL4. This interpretation is consistent with 

results of van Bragt and colleagues [28] who concluded that UTF1 is restricted to Asingle, Apaired 

and Aaligned4 spermatogonia in rats. Similar to SALL4, UCHL1 expression is less restricted than 

UTF1 (Figure 6Q-T) with 75% of UCHL1 positive cells co-expressing UTF1 and 25% 

expressing UCHL1 only. UTF1 positive cells were UCHL1 positive 87% of the time and UTF1 

only positive13% (Figure 6T). Co-staining with KIT, confirms that UCHL1 is not expressed 
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Figure 6. Expression of ZBTB16, UTF1, SALL4, UCHL1, ENO2 and KIT in human seminiferous 

epithelium. 

  

 

 

 

 

 

 

 

by differentiating cells, demonstrated by limited overlap with KIT (Figure 6U-X). I also 

analyzed the expression pattern of a novel marker, ENO2, which exhibited nearly complete 

overlap of expression with UCHL1 (Figure 6Y-BB). By transitive logic, ENO2 is a marker of 

undifferentiated spermatogonia in humans because it exhibits nearly complete overlap with 

UCHL1, which has very little overlap with KIT.  The overlap between ENO2 and SALL4 is less 

complete, with 78% of the ENO2 positive cells expressing SALL4 and 12% expressing ENO2 

only (Figure 6CC-FF). These results indicate that ENO2 expression is slightly broader than 

SALL4 expression in human undifferentiated spermatogonia. Figure 7 summarizes our 

interpretation of these results in terms of the order and breadth of marker expression by human 

spermatogonia.   

Immunofluorescence co-staining for SALL4 and ZBTB16 (A-D), SALL4 and KIT (E-H), UTF1 and SALL4 (I-

L), UTF1 and KIT (M-P), UTF1 and UCHL1 (Q-T), UCHL1 and KIT (U-X), UCHL1 and ENO2 (Y-BB) and 

SALL4 and ENO2 (CC-FF) in adult human testis. DAPI staining (blue) identifies all the nuclei. The bar graphs 

show quantification and relative proportion of each co-staining. The quantification is shown as the mean number 

of positive cells per cross-section of a seminiferous tubule. At least 100 seminiferous tubules were counted from 3 

different organ donors. Bar graphs in D, H, L, P, T, X and BB indicate the mean number of marker positive cells 

per cross-section. Error bars represent SEM. Scale bars = 100 µm. Reprinted from Valli et al., Fertil Steril. 2014 

Aug;102(2):566-580, with permission from Elsevier Ltd. 
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Figure 7. Summary of marker expression in adult human testis. 

 

 

 

 

 

2.3.3 Correlation of spermatogonial markers with dark and pale descriptions of nuclear 

morphology and clone size 

To correlate molecular markers of human spermatogonia described in this study with classical 

descriptions of nuclear staining intensity (Adark and Apale), I performed colorimetric 

immunohistochemistry for UCHL1 followed by Periodic Acid-Schiff and hematoxylin 

Colored bars indicate the overlap of markers based on data from Figure 6. Shaded area indicates range in data. 

UTF1 seems to be the most restricted marker of human spermatogonia, followed by ZBTB16 and SALL4. 

There is also almost no overlap between these markers and differentiation marker KIT. UCHL1 and ENO2 are 

more widely expressed in cells on the basement membrane of the seminiferous tubule and have slightly more 

overlap with KIT. Reprinted from Valli et al., Fertil Steril. 2014 Aug;102(2):566-580, with permission from 

Elsevier Ltd. 
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counterstaining. The results in Figure 8A confirm that UCHL1 is expressed by human Adark and 

Apale  spermatogonia.  

 

 

Figure 8. UCHL1 expression in adult human testis.  

 

 

 

.  

 

 To correlate UCHL1 expression with clone size, I performed immunofluorescent 

spermatogonia, which are considered the reserve and active stem cells of the human testis, 

respectively [51, 181]. To correlate UCHL1 expression with clone size, I performed 

immunofluorescent analysis of UCHL1 expression in whole mount preparations of human 

seminiferous tubules. UCHL1 was expressed by cells located on the basement membrane of the 

 (A) UCHL1 staining in Periodic Acid-Schiff & Hematoxylin stained adult human testis section. UCHL1 is 

expressed by Adark and Apale spermatogonia. (B and D) UCHL1 and (C and E) KIT staining in whole mount 

staining of adult human testis. (F) UCHL1 clones are smaller (mostly 1-4 cells), whereas KIT clones tend to be 

bigger (more than 8). Scale bar = 50 µm. Reprinted from Valli et al., Fertil Steril. 2014 Aug;102(2):566-580, 

with permission from Elsevier Ltd. 

 



 31 

seminiferous tubules and arranged as single cells and clones of 2, 4 and sometimes 8 

interconnected cells.  In contrast, KIT expressing cells were typically arranged in clones of 4, 8 

and sometimes 16 interconnected cells (Figure 8B-F). The density of undifferentiated 

spermatogonia on the basement membrane of human seminiferous tubules appears greater than 

in rodents (Figure 9A and D), whereas KIT+ differentiating spermatogonia are considerably less 

dense in human tubules than in mouse (Figure 9B and E). 

  

Figure 9. Whole-mount immunohistochemistry of seminiferous tubules from mouse and human 

testes. 

 

 

 

2.3.4 Immunohistochemical evaluation of cell surface markers in adult human testes 

THY1, ITGA6 and EPCAM are cell surface markers that have each been used to isolate and 

enrich spermatogonial stem cells in other species [19, 20, 29, 53].  Previous studies indicated that 

Whole-mount immunofluorescence analysis of the undifferentiated spermatogonia marker, SALL4 (A), 

differentiating spermatogonia marker, KIT (B) and co-staining of SALL4 and KIT (C) in mouse. Whole-mount 

immunofluorescence analysis of undifferentiated spermatogonia marker UCHL1 (D), differentiating spermatogonia 

marker KIT (E) and co-staining of UCHL1 and KIT (F) human. Scale bar = 100µm.  
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these cell surface markers are conserved in human testes [112, 118, 143, 147] and I hypothesized 

that each could be used to isolate and enrich human SSCs by FACS and/or MACS.  I was not 

able to confirm the expression of THY1 in adult human testes by immunohistochemistry in this 

study. However, others have reported that this marker is expressed in human testes [112, 143, 

147].  

Immunohistochemical analysis of ITGA6 expression in normal adult human testis 

sections indicated that this antigen is expressed by many germ cells, including cells located on 

the basement membrane of seminiferous tubules (Figure 10A-C) and that EPCAM is expressed 

primarily by cells on the basement membrane of the seminiferous tubules, as well as a few cells 

located more towards the lumen (Figure 10D-F). 

 

Figure 10. ITGA6 and EPCAM expression in adult human testis sections.  

 

 

 

 

Immunofluorescence staining for ITGA6 (A and C) and EPCAM (D and F) in adult human testis. DAPI staining 

(blue) (B and E) identifies all the nuclei. Scale bars = 50 µm. Reprinted from Valli et al., Fertil Steril. 2014 

Aug;102(2):566-580, with permission from Elsevier Ltd. 
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2.3.5 Expression of THY1 in adult human testicular cell suspensions 

THY1 is a marker of mouse, rat and non-human primate SSCs [19, 29, 53] as well as a marker 

for mouse and human hematopoietic stem cells [182-184]. Therefore, I hypothesized that THY1 

is a marker for human SSCs and analyzed the expression on adult human testicular cells using 

FACS and MACS. Staining of adult human testis cell suspensions with THY1 identified three 

populations of cells, designated THY1 bright, THY1 dim and THY1 negative, based on their 

level of fluorescence, plotted against a negative PE axis, which helps to identify and eliminate 

autofluorescence (Figure 11A). The THY1 bright, dim and negative fractions represented 12.2 ± 

4.2%, 19.0 ± 4.0% and 46.5 ± 7.0% of the live cells, respectively. Immunofluorescence staining 

revealed that 6.8 ± 0.1% of unsorted human testicular cells express human spermatogonia marker 

SALL4, compared to 7.2 ± 0.3% in the THY1 negative fraction (p<0.01), 15.5 ± 0.9% in the 

THY1 dim fraction (p<0.01) and only 0.4 ± 0% in the THY1 bright  fraction (p<0.01) (Figure 

11B). To confirm the immunocytochemistry results and to functionally correlate THY1 

expression in adult human testis to SSC colonizing activity, the human-to-nude mouse 

xenotransplantation assay was performed. The transplant results confirm that SSC colonizing 

activity was depleted from THY1 bright fraction (0.57 ± 0.6 colonies/105 cells; p<0.01 compared 

to the unsorted controls). The majority of SSC colonizing activity was recovered in the THY1 

dim fraction (48.2 ± 36.3 colonies/105 cells; p<0.01 compared to the unsorted controls), 

compared to 9.03 ± 3.8 and 9.67 ± 8.1 colonies/105 cells in unsorted and THY1 negative 

fractions, respectively (Figure 11C). Based on these results, there is roughly a 5-fold enrichment 

of SSC colonizing activity in the THY1 dim fraction of human testis cells.  
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 Figure 11. FACS sorting and characterization of THY1 expression in adult human testes. 

 

 

 

 

 

 

 

 

 

 

 

 

(A) FACS was used to characterize and sort human testicular cells based on the level of THY1 expression. Based 

upon THY1-APC staining intensity and negative PE autofluorescence, three populations were identified – 

THY1bright, THY1dim and THY1neg. Negative gates were defined by analysis of human testis cells stained using 

APC-conjugated isotype control antibodies. (B) After the sort, all sorted fractions, as well as the unsorted cells, 

were fixed and immunocytochemistry for SALL4 was performed. SALL4 positive cells were enriched in the THY1 

dim fraction compared to the unsorted cells. (C) To confirm the ICC results, human-to-nude mouse xenotransplants 

were also performed. Two months after transplant, colonies of human spermatogonia were identified in mouse 

recipient testes. (C inset) Examples of colonies of human spermatogonia in whole mount preparations of recipient 

mouse seminiferous tubules stained with the rabbit anti-primate antibody.  Colonies in each recipient testis were 

counted and normalized to 105 viable cells transplanted per testis. (D-G) Representative images of SALL4 staining 

from each sorted fraction and unsorted cells. At least 10 views were counted from each fraction based on DAPI 

staining and SALL4 staining. Different letter indicate P < 0.01, same letters indicate P > 0.05. Bar graphs in B and 

C are presented as mean ± SEM. Scale bar = 100 µm. Reprinted from Valli et al., Fertil Steril. 2014 

Aug;102(2):566-580, with permission from Elsevier Ltd. 
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2.3.6 Expression of ITGA6 in adult human testicular cell suspension 

To determine whether ITGA6 is expressed on human spermatogonia and could be used as a 

positive selection marker to enrich human SSCs, adult human testicular cell suspensions were 

stained with a PE-conjugated antibody against ITGA6 and sorted by FACS. Two distinct 

populations of cells were gated; ITGA6 negative and ITGA6 positive (Figure 12A), which 

represented 27.6 ± 7.6% and 11.6 ± 3.0% of the live cells, respectively. Immunocytochemistry of 

the ITGA6 sorted fractions and unsorted cells revealed that 13.8 ± 6.2% of cells in the ITGA6 

positive fraction were SALL4 positive (Figure 12B and F), compared to 2.6 ± 0.2% in the 

unsorted cell population (p<0.01) (Figure 12B and D). SALL4 positive cells were depleted from 

the ITGA6 negative fraction (0.38 ± 0.1%; p<0.01 compared to the unsorted controls; Figure 12B 

and E). To confirm the immunocytochemistry results, colonizing activity in ITGA6 sorted and 

unsorted cells was assessed by xenotransplantation into nude mouse testes.  
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 Figure 12. FACS sorting and characterization of ITGA6 expression in adult human testes. 

 

 

 

 

 

 

 

 

 

 

 

 

On average, cells in the ITGA6 positive fraction produced significantly more colonies in 

recipient mouse testis (49.3 ± 14.0 colonies/105 cells transplanted) than the unsorted controls (4.1 

± 1.5 colonies/105 cells, p<0.01) or ITGA6 negative cells  (3.7 ± 3.5 colonies/105 cells) (Figure 

12C). Thus, SSC colonizing activity resides predominantly in the ITGA6 positive fraction of 

human testis cells and is enriched approximately 12-fold compared to the unsorted population. 

2.3.7 Expression of EPCAM in adult human testicular cell suspension 

To determine whether EPCAM is expressed on human spermatogonia and could be used as a 

positive spermatogonial selection marker, human testicular cell suspensions were stained with a 

PE-conjugated antibody against EPCAM and sorted using FACS. As demonstrated in Figure 13 

(A) FACS sorting for ITGA6 in human testis resulted in 2 different populations based upon ITGA6 -PE staining 

intensity and negative FITC autofluorescence – ITGA6 positive and ITGA6 negative. Negative gates were defined 

by analysis of human testis cells stained using PE-conjugated isotype control antibodies. (B) After the sort, all 

sorted fractions, as well as the unsorted cells, were fixed and immunocytochemistry for SALL4 was performed. 

SALL4 positive cells were enriched in the ITGA6 positive fraction compared to the unsorted cells. (C) To confirm 

the ICC results, human to nude mouse xenotransplants were also performed. Two months after transplant, colonies 

of human spermatogonia were identified in mouse recipient testes. (C inset) Example of a colony of human 

spermatogonia in whole mount preparations of recipient mouse seminiferous tubules stained with the rabbit anti-

primate antibody. Colonies in each recipient testis were counted and normalized to 105 viable cells transplanted per 

testis. (D-F) Representative images of SALL4 staining from each sorted fraction and unsorted cells. At least 10 

views were counted from each fraction based on DAPI staining and SALL4 staining. Different letters indicate P < 

0.01, same letters indicate P > 0.05. Bar graphs in B and C are presented as mean ± SEM. Scale bar = 100 µm. 

Reprinted from Valli et al., Fertil Steril. 2014 Aug;102(2):566-580, with permission from Elsevier Ltd. 
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populations of cells were identified following staining with EPCAM, based on their level of 

fluorescence and on side scatter of incident light, which provides a measure of intracellular 

complexity: EPCAM negative, EPCAM dim, and EPCAM bright. EPCAM is known to be 

expressed on SSCs in rats [29, 185]. Following sorting, each fraction of cells was fixed and 

stained with an antibody directed against SALL4 to quantify undifferentiated human 

spermatogonia. The majority of SALL4 positive spermatogonia were recovered in the EPCAM 

dim fraction (Figure 13B and F). Compared with 7.4 ± 1.8% of cells expressing SALL4 in the 

unsorted testicular cell population, 22.5 ± 3.3 % of cells in the EPCAM dim fraction expressed 

SALL4 (P < 0.0001). The EPCAM negative and EPCAM bright fractions were virtually depleted 

of SALL4–expressing cells (P < 0.0001 compared with unsorted). The human-to-nude mouse 

xenotransplantation assay was used to quantify SSC activity in unsorted, EPCAM negative, 

EPCAM dim, and EPCAM bright fractions. Unsorted human testicular cells produced 8.5 ± 1.5 

colonies of spermatogonia per 105 viable transplanted cells (Figure 13C). The EPCAM dim 

fraction produced 49 ± 9.2 colonies of spermatogonia per 105 viable transplanted cells, 

representing an approximate 6-fold enrichment compared with the unsorted population (P < 

0.0001). Mirroring the SALL4 data, colony numbers were significantly reduced in the EPCAM 

negative and EPCAM bright fractions (P < 0.01 compared with unsorted controls). Thus, I 

conclude, based on SALL4 immunocytochemistry (Figure 13B and D-G) and the 

xenotransplantation results (Figure 13C), that SSC activity resides in the EPCAM dim fraction of 

human testis cells. 

 

http://www.jci.org/articles/view/65822#F2
http://www.jci.org/articles/view/65822#F3
http://www.jci.org/articles/view/65822#F2
http://www.jci.org/articles/view/65822#F3
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Figure 13. FACS sorting and characterization of EPCAM expression in adult human testes.  

 

 

 

 

 

 

 

  

 

 

 

 (A) FACS was used to characterize and sort human testicular cells based on the level of EPCAM expression. 

Based upon EPCAM-PE staining intensity and negative PE autofluorescence, three populations were identified – 

THY1bright, THY1dim and THY1neg. Negative gates were defined by analysis of human testis cells stained using 

APC-conjugated isotype control antibodies. (B) After the sort, all sorted fractions, as well as the unsorted cells, 

were fixed and immunocytochemistry for SALL4 was performed. SALL4 positive cells were enriched in the 

THY1dim fraction compared to the unsorted cells. (C) To confirm the ICC results, human-to-nude mouse 

xenotransplants were also performed. Two months after transplant, colonies of human spermatogonia were 

identified in mouse recipient testes. (C inset) Examples of colonies of human spermatogonia in whole mount 

preparations of recipient mouse seminiferous tubules stained with the rabbit anti-primate antibody. Colonies in 

each recipient testis were counted and normalized to 105 viable cells transplanted per testis. (D-G) Representative 

images of SALL4 staining from each sorted fraction and unsorted cells. At least 10 views were counted from each 

fraction based on DAPI staining and SALL4 staining. Different letters indicate P < 0.01, same letters indicate P > 

0.05. Bar graphs in B and C are presented as mean ± SEM. Scale bar = 100 µm. Reprinted with permission from 

Dovey SL and Valli H et al., J Clin Invest. 2013 Apr 1;123(4):1833-43, Copyright (2014). 

 

http://www.ncbi.nlm.nih.gov/pubmed/23549087
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2.3.8 Enrichment of human spermatogonia using MACS  

Analysis of FACS indicated that ITGA6, THY1 and EPCAM can be used to effectively isolate 

and enrich human SSCs from a heterogeneous testis cell suspension. However, the FACS sorting 

approach has limited throughput (~30 x 106 cells per day). Therefore, I evaluated a higher 

throughput sorting approach (MACS) to maximize the use of human testicular cells and compare 

the results to FACS. I evaluated the fractionation of human testis cells by THY1 MACS where 

there is no option to distinguish between bright and dim expression of THY1. The cells were 

sorted into THY1 positive (bound) and negative (flow through) fractions using MACS and then 

transplanted into nude mouse testes to analyze SSC colonizing activity relative to unsorted 

human testis cells. Unsorted cells produced 4.8 ± 2.5 colonies/105 cells, compared to 6.1 ± 2.0 

and 7.3 ± 3.7 colonies/105 cells in THY1 negative and THY1 positive fractions, respectively (P 

>0.05, compared to unsorted and each other), indicating that MACS did not effectively 

fractionate SSC colonizing activity based on THY1 expression (Figure 14A). Similar to the 

THY1 FACS results in this study, the SSC colonizing activity is enriched in the EPCAM dim 

fraction of human testis cells. Therefore, it is not surprising that MACS did not effectively 

fractionate SSC colonizing activity from human testis cells based on EPCAM expression (Figure 

14B). 
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Figure 14. MACS sorting of human testicular cells for THY1, EPCAM and ITGA6. 

 

 

 

 

 

 

 

 

In contrast, MACS was effective for isolation and enrichment of human SSC colonizing 

activity based on ITGA6 expression (Figure 14C). SSC colonizing activity in the ITGA6 positive 

MACS fraction was enriched over 3-fold  (9.6 ± 0.9 colonies/105 cells) compared to the unsorted 

fraction (2.9 ± 0.8 colonies/105 cells ; P < 0.05; Figure 14C). SSC colonizing activity was nearly 

depleted in the ITGA6 negative fraction, which produced only 0.3 ± 0.2 colonies/105 cells, 

indicating that almost all SSCs were recovered in the ITGA6 positive fraction.  

2.4 DISCUSSION 

In rodents, SSCs are defined by their ability to establish and maintain spermatogenesis when 

transplanted into infertile mouse testis [101, 122, 123, 186]. Although there is no specific 

molecular marker of rodent SSCs (except possibly ID4 and PAX7 [22, 43]), stem and progenitor 

spermatogonia can be described collectively by expression of some or all of the following 

markers GFRα1, POU3F1, POU5F1, ZBTB16, NGN3, NANOS2, NANOS3, SOHLH1, 

Human testicular cells were MACS sorted into 2 fractions – negative (flow through) and positive (bound). Both 

positive and negative fractions from MACS, as well as unsorted cells, were transplanted into nude mouse testis. 

(Inset A, B and C) Two months after transplant, colonies of human spermatogonia were identified in whole 

mount preparations of recipient mouse seminiferous tubules using the rabbit anti-primate antibody. Colonies in 

each recipient testis were counted and normalized to 105 viable cells transplanted per testis. (A and B) For THY1 

and EPCAM, no significant difference was found between the unsorted cells and the sorted fractions (P > 0.05). 

(C) ITGA6 positive fraction was enriched roughly 3 fold compared to unsorted cells (P < 0.05). Bar graphs are 

presented as mean ± SEM. Scale bar = 100 µm. Reprinted from Valli et al., Fertil Steril. 2014 Aug;102(2):566-

580, with permission from Elsevier Ltd. 
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SOHLH2, FOXO1, ITGA6, LIN28, ID4, PAX7, UTF1, CDH1, GPR125, ITGB1, EPCAM, CD9 

and THY1 [13-43, 160, 187], and by their clonal arrangement on the basement membrane of 

seminiferous tubules (Asingle, Apaired, Aaligned; [188]). In humans, stem spermatogonia are 

described primarily as Adark and Apale based on the intensity of nuclear staining with hematoxylin 

[44, 48, 121]. There is limited information about how dark and pale descriptions of nuclear 

morphology correlate with transplantation potential, molecular markers or clone size. 

Here I show that spermatogonia on the basement membrane of human seminiferous 

tubules have the phenotype of SALL4+, ZBTB16+, UTF+, UCHL1+ and ENO2+ (Figure 6). The 

expression of SALL4, ZBTB16, UTF1 and UCHL1 in human testes has been reported previously 

[26, 109, 138, 139, 143, 146]. ENO2 is a gene that was identified by Oatley and co-workers 

because it is upregulated in ID4-GFP positive spermatogonia [189]. This is the first study to 

demonstrate that ENO2 is expressed by human spermatogonia and co-expressed with established 

markers of human stem and progenitor spermatogonia (i.e., UCHL1 and SALL4) [139, 143].   

This is also the first study to quantify the expression of these markers at the cellular level and 

describe their expression relative to other stem and progenitor markers by co-staining. I believe 

this systematic molecular profiling will identify subpopulations of cells (e.g., putative stem, 

progenitor and differentiating cells) that will become the subject of future investigations.   

The majority of cells that express SALL4, ZBTB16, UTF1, UCHL1 and ENO2, do not 

express the differentiation marker KIT, as demonstrated by direct co-staining (i.e., UCHL1/KIT, 

SALL4/KIT and UTF1/KIT) or transitive logic (UCHL1/ENO2; Figure 6).  These results suggest 

that SALL4, ZBTB16, UTF1, UCHL1 and ENO2 mark human undifferentiated spermatogonia 

and immunohistochemical analysis confirms that UCHL1 is expressed by Adark and Apale 

spermatogonia, the putative SSCs in human testes (Figure 8). Examination of these markers in 
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whole mount preparations of seminiferous tubules provides novel insights about human 

spermatogenic lineage development. Our results indicate that UCHL1 tended to be expressed by 

smaller clones (1-4 cells) while KIT is expressed in larger clones (usually 8 or more cells). 

Collectively, these results indicate that several markers of rodent stem and progenitor 

spermatogonia are conserved in humans and that spermatogonial differentiation in humans is 

correlated with increased clone size and initiation of KIT expression, similar to rodents [21, 

179].   

Spermatogenesis is an extremely productive system that produces millions of sperm per 

gram of testicular tissue each day in rodents and humans [1-3].  However, our results suggest that 

the dynamics of spermatogenic lineage development in humans may be different than rodents.  

In rodents, rare undifferentiated spermatogonia are heavily outnumbered by transit-amplifying 

differentiated spermatogonia [9]. In contrast, I found that number of undifferentiated 

spermatogonia in human testes was greater than the number of KIT+ differentiated 

spermatogonia (Figure 6, 8 and 9). Thus, it appears that the highly productive spermatogenic 

system in rodents depends on a small pool of stem and progenitor spermatogonia and a large 

pool of transit-amplifying cells while the human spermatogenic lineage is characterized by a 

relatively larger pool of undifferentiated stem and progenitor cells and a smaller pool of transit 

amplifying cells. 

FACS is suitable for characterizing relatively small cell populations (≤30 x 106) and can 

be used to achieve significant enrichment of spermatogonial stem cells [19, 29, 53, 118, 133, 

160, 190-193]. When coupled with molecular marker screening (using markers that are restricted 

to stem and progenitor spermatogonia) and the stem cell transplant assay to validate sorted 

fractions, FACS can be a powerful tool for dissecting the molecular phenotype of SSCs.  In the 
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current study, I used SALL4 immunocytochemistry (ICC) to screen sorted cell populations.  I 

considered SALL4 an excellent marker for screening human stem and progenitor spermatogonia 

because it is conserved in mice [139, 178, 179], rats (Gassei and Orwig, unpublished), monkeys 

[139] and humans [139], including expression by human Adark and Apale spermatogonia [139]. 

SALL4 ICC provided a rapid assessment of sorted fractions and was an excellent predictor of the 

results from human-to-nude mouse SSC xenotransplantation, which has an inherent two month 

delay to analysis. Based on the data presented here, I believe that UTF1, ZBTB16, UCHL1 and 

ENO2 would also be good markers to rapidly screen for human stem and progenitor 

spermatogonia. 

SSC transplantation is the experimental “gold standard” for assaying spermatogonial 

stem cells [194, 195]. SSC transplantation in humans may someday be feasible in the clinical 

setting [196], but cannot be used as a routine bioassay. However, Nagano and coworkers 

demonstrated that human SSCs can engraft the testes of infertile, immune compromised mice 

[197]. Human SSCs do not produce complete spermatogenesis in mouse seminiferous tubules, 

but they do execute several functions that are consistent with the activity of SSCs: 1) they 

migrate to the basement membrane of seminiferous tubules without being phagocytosed by 

mouse Sertoli cells; 2) they proliferate to produce characteristic chains and networks of 

spermatogonia and 3) they persist for several months. Human-to-nude mouse 

xenotransplantation is becoming a routine bioassay for human SSCs [26, 94, 95, 112, 118, 145, 

197].    

Studies employing FACS followed by transplantation of sorted fractions have established 

that ITGA6, THY1 and EPCAM are markers of SSCs in rodents [19, 20, 29]. Similar 

methodology with FACS or MACS sorting followed by human-to-mouse xenotransplantation 
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has been used to demonstrate that CD9 and SSEA4 are markers of human SSCs [112, 145]. 

Human testis cells have also been fractionated by MACS based on expression of GPR125, THY1 

and ITGA6 [143, 147, 198], but stem cell activity in sorted fractions was not tested by 

transplantation.    

Flow cytometry analyses in the current study identified two distinct THY1 positive 

populations in the human testis that I designated dim and bright. SALL4 staining as well as 

xenotransplant results suggested that the majority of the SSCs were in the THY1 dim fraction 

and SSC colonizing activity in that fraction was enriched approximately 5-fold compared to 

unsorted human testis cells (Fig. 11C). Almost no SSCs are found in the THY1 bright fraction.  I 

obtained similar results for EPCAM, where the SSC colonizing activity was recovered in the 

EPCAM dim fraction of human testis cells and depleted in the EPCAM bright and EPCAM 

negative fractions (Figure 13). Interestingly, neither of these markers could be used to effectively 

fractionate and enrich SSC colonizing activity from the human testis using MACS. SSC 

colonizing activity was recovered in both the bound and flow through fractions and colonizing 

activity in each fraction was similar to unsorted controls (Figure 14A and B). Perhaps this result 

can be attributed to the low expression level of these two antigens in human SSCs. Considering 

our MACS results, it is noteworthy that THY1 MACS is routinely used to sort SSCs from mouse 

testes [192, 199-203]. These results may indicate that there are species-specific differences in the 

level of THY1 expression. Alternatively, these results may indicate technical differences 

between direct labeling with bead-conjugated THY1 primary antibodies (mouse) and indirect 

labeling using bead conjugated secondary antibodies (current study). The bead conjugated anti-

mouse THY1 antibodies did not cross-react with the human THY1 antigen (data not shown). 

Flow cytometric analysis of ITGA6 in human testis cells revealed only two distinct populations, 
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positive and negative, and the majority of SSC colonizing activity was recovered in the 

ITGA6positive fraction, which was enriched 12-fold compared to unsorted controls (Figure 

12C). In contrast to THY1 and EPCAM, cells with SSC colonizing activity could be effectively 

isolated and enriched from heterogeneous human testis cell suspensions using ITGA6 MACS. 

However, the level of enrichment achieved by ITGA6 MACS (3.3-fold) was less than ITGA6 

FACS (12-fold). Sorting resolution by FACS is typically greater than MACS because FACS 

allows for gating of cell populations based on simultaneous evaluation of several parameters, 

including viability (PI-), cell size (forward scatter of incident light), cell complexity (side scatter 

of incident light) and specific immunoreactivity (autofluorescent-, nonspecific binding-).   

I identified several proteins with expression limited primarily to undifferentiated 

spermatogonia (KIT- cells) located on the basement membrane of seminiferous tubules in human 

testes. These markers may provide insights into the molecular mechanisms that regulate the 

function of human SSCs and can be used to screen human cell populations or tissues for putative 

SSCs. In addition they can be used to validate newly discovered markers of human stem and 

progenitor spermatogonia using co-staining approaches similar to those employed in the current 

study to validate the expression of ENO2 in human undifferentiated spermatogonia. In this study 

I demonstrated that human SSCs have the cell surface phenotype THY1 dim, EPCAM dim, 

ITGA6 positive. SSEA4 and CD9 are also cell surface markers of human SSCs that have been 

validated by human-to-mouse xenotransplantation [112, 145]. These markers can now be used 

alone or in combination to achieve significant enrichment of human SSCs for downstream 

studies. MACS can also be used for isolation and enrichment of SSCs prior to initiation of SSC 

cultures, as previously described for mice [192, 204]. ITGA6 (current study), CD9 [145] and 

SSEA4 [112] are also amenable to immunomagnetic sorting, which has virtually unlimited cell 
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sorting capacity and will facilitate isolation of SSCs from human testes that can contain over one 

billion cells.   
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3.0  CRYOPRESERVATION OF HUMAN SPERMATOGONIAL STEM CELLS 

3.1 INTRODUCTION 

Improved therapies for cancer and other conditions have resulted in growing population of long-

term survivors. Unfortunately, some cancer treatments, like whole body radiation or alkylating 

chemotherapy, can render the patient infertile [205]. For grown men and pubertal boys, the 

established fertility preservation protocol involves cryopreserving a semen sample (Figure 15, 

top). However, that is not an option for prepubertal boys who do not make sperm yet. For these 

patients, there are several stem cell based technologies in the research pipeline that in the future 

may offer novel techniques to preserve and restore their fertility. Even though these techniques 

are not yet available, prepubertal patients could in the future benefit from testicular tissue 

cryopreservation now. The technique(s) might be available by the time the patients are ready to 

have a family. In that case, the prepubertal patient and his parents are counseled on the 

reproductive risks of the cancer therapy and if the parents decide to cryopreserve testicular 

tissue, a testicular biopsy is taken from the patient prior to the initiation of cancer treatment. The 

testicular biopsy is then cryopreserved in liquid nitrogen for possible future use [196, 206].  

The techniques in the research pipeline that may be available for these patients in the 

future include testicular tissue grafting (Figure 15, bottom, yellow boxes), organ culture (Figure 

15, bottom, yellow boxes), induced pluripotent stem cell (iPSC) derived germ cells (Figure 15, 
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bottom, red boxes) and SSC transplantation (Figure 15, bottom, blue boxes). Testicular tissue 

grafts from newborn mice, pigs and goats produced complete spermatogenesis when grafted 

under the skin of nude mice [207] and sperm obtained from the grafts were used to produce 

offspring in mice [208]. Prepubertal monkey testis tissue also produced complete 

spermatogenesis with fertilization-competent sperm after xenografting into nude mice [209]. 

Xenografting human testicular tissue has been less successful. No studies report production of 

full spermatogenesis; the most advanced stage of germ cell development reported is a 

spermatocyte [210-212]. Sato and colleagues demonstrated that organ culture of mouse testicular 

tissue pieces produces sperm that can be used to fertilize an oocyte and generate live offspring 

[213, 214]. Spermatogonial stem cell transplantation technique has been reported to regenerate 

spermatogenesis in mice, rats, goats, pigs, bulls, dogs and monkeys; donor derived progeny were 

produced in mice, rats, goats and sheep [70, 73-85, 90].  

For patients who did not cryopreserve sperm or spermatogonial stem cells or testicular 

tissue before cancer treatment, generation of transplantable germ cells or haploid gametes from 

patient-derived induced pluripotent stem cells (iPSCs) has been investigated (Figure 15, red 

boxes). Mouse ESCs and iPSCs can give rise to primordial germ cells, that when transplanted 

into an infertile mouse testes, restored spermatogenesis [215]. The sperm from the recipient mice 

were capable of fertilizing oocytes and produced live offspring. Generation of germ cells from 

nonhuman primate ESCs [216, 217] and human ESCs and/or iPSCs [218-221] has been reported, 

including evidence of haploid cells in some cases. 

To date, published reports document that over 150 prepubertal and adult males have 

cryopreserved their testicular tissue or cells [91, 93-95, 100, 222-224] worldwide. Therefore, it is 

incumbent on the medical and research community to responsibly develop technologies 
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Figure 15. Standard and experimental options for preserving male fertility. 

    

 

 

 

 

 

 

 

 

 

 

Top, sperm obtained by ejaculation or surgical retrieval from the testes or epididymis are competent to fertilize 

oocytes using assisted reproductive techniques including intrauterine insemination (IUI), in vitro fertilization 

(IVF) or IVF with intracytoplasmic sperm injection (ICSI)) that are standard in most fertility clinics. These options 

are not available to prepubertal boys who are not producing sperm or to adult azoospermic men. Bottom, testis 

tissue obtained via biopsy from prepubertal boys contains SSCs that can produce sperm in the context of the intact 

tissue by xenotransplant, organ culture or autologous transplantation back into the individual (orange boxes). 

Sperm retrieved from cultured or transplanted tissue can be used for ICSI. Cells in suspension obtained from 

biopsied testicular tissue can be transplanted back into the endogenous seminiferous tubules of the patient (blue 

boxes). SSCs in the suspension can regenerate spermatogenesis and, in some cases, fertility. For infertile 

individuals who did not preserve germs cells before gonadotoxic therapy, induced pluripotent stem cells (IPSCs) 

may be produced from his somatic cells (e.g., skin or blood) to differentiate into transplantable germ cells (PGCs 

or SSCs) or haploid germ cells that can be used for ICSI (red boxes). Reprinted by permission from Macmillan 

Publishers Ltd: Clark AT, Phillips BT, Orwig KE, Nat Med. 2011 Dec 6;17(12):1564-5. 
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that will allow patients to use their tissue for reproductive purposes in the future. Our laboratory 

demonstrated previously that testicular tissue could be obtained from rhesus macaques by biopsy 

prior to the initiation of gonadotoxic therapy [86]. The testicular tissue (containing SSCs) was 

then digested with enzymes to produce a cell suspension that was cryopreserved. At a later date, 

cells were thawed and transplanted by ultrasound-guided rete testis injections into the testes of 

chemotherapy treated animals. The frozen and thawed cells engrafted recipient testes, 

regenerated spermatogenesis and produced functional sperm. Thus, clinical translation of the 

SSC transplantation technique appears to be on the horizon.  

To maximize the use of cryopreserved SSCs for future use, I investigated the colonization 

activity and UTF1 expression of cryopreserved intact testicular tissue pieces compared to 

cryopreserved cell suspension. Intact tissue pieces have the advantage that they can be used for 

tissue based or cell based approaches; whereas a cell suspension can only be used for cell culture 

or SSC transplantation. In case organ culture or testicular tissue grafts are a viable option to 

restore male fertility in the future, an optimal cryopreservation technique needs to be established.  

Slow-freezing is the preferred method for cryopreserving intact testicular tissue pieces in 

mice [225-227] and it has been validated with achieved live births using spermatozoa from the 

tissue grafts [225]. Some laboratories are also starting to cryopreserve intact human testicular 

tissue by slow-freezing [212, 224, 228, 229] as well as vitrification [230-232]. In both cases, 

differentiation of spermatogonia up to pachytene spermatocyte stage was observed in prepubertal 

testicular tissue after tissue grafting into nude mice [211, 212, 232].  

Slow-freezing and vitrification are both cryopreservation techniques that are designed to 

minimize damage by ice crystal formation within the cells. Slow-freezing involves cooling the 

cells at a low rate and as the temperature decreases, ice crystals form in the extra-cellular 
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solution [233, 234]. The concentration of cryoprotectant increases around the cells and that 

draws out the water from inside the cell, minimizing the formation of intracellular ice crystals in 

the cell cytoplasm. Slow cooling rates are necessary to allow enough time for the water to efflux 

from the cells.  Vitrification is a method of cryopreservation that uses higher concentrations of 

cryopreservation agent and faster cooling rates [235]. With this technique the transformation 

process from a liquid to a solid glass-like state happens rapidly without crystallization.   

It has been reported that both slow-freezing and vitrification do equally well at 

cryopreserving intact testicular tissue pieces [231, 232, 236-238] and maintain at least some 

functionality as demonstrated by tissue grafting experiments [212, 232]. Additionally, 

Pacchiarotti and colleagues compared slow-freezing of sexual reassignment patient testicular 

tissue to a cell suspension and showed that there is a trend that cryopreserving testicular tissue 

has a better viability and recovery of SSEA4 (undifferentiated spermatogonia marker) positive 

and VASA (germ cell marker) positive cells than cryopreserved cell suspension. The results in 

this study were not statistically significant [239] and spermatogonial  stem cell activity was not 

assessed.  

In this study, I compared cryopreservation efficiency of slow-frozen and thawed cell 

suspension to small (3-5 mm3) and large (6-10 mm3) intact tissue pieces with slow-freezing (SF) 

and vitrification. I hypothesized that the recovery of stem and progenitor spermatogonia is better 

from frozen and thawed cell suspension than from frozen and thawed intact testicular tissue 

pieces. In a cell suspension the distribution of cryopreservation media is uniform and all the cells 

are cryopreserved at a similar rate, compared to an intact piece of tissue, where I can only control 

the freezing rate and cryopreservation media concentration on the outside of the tissues [240]. 
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The experiments were analyzed by ICC staining for a marker of human stem and 

progenitor spermatogonia, UTF1, (see Figure 6) and also human-to-nude mouse 

xenotransplantation (see Section 1.4).  ICC for UTF1 revealed that cryopreserved intact tissue 

has more UTF1 positive cells per gram of tissue than cryopreserved cell suspension. Human to 

nude mouse xenotransplantation demonstrates that cryopreservation of intact pieces does at least 

as well as cryopreserving a cell suspension and slow-freezing small and large pieces of intact 

tissue  is significantly better than cryopreserving a cell suspension. 

3.2 MATERIALS AND METHODS 

Animals 

All experiments utilizing animals were approved by the Institutional Animal Care and 

Use Committees of the Magee-Womens Research Institute and the University of Pittsburgh and 

were performed in accordance with the National Institute of Health guidelines for the care and 

use of animals (assurance # A3654-01).  

 

Preparation of Human Testicular Tissue 

Normal adult human testicular tissue was obtained through the University of Pittsburgh 

Health Sciences Tissue Bank and Center for Organ Recovery and Education (CORE) under 

University of Pittsburgh IRB #0506140. Following the removal of tissue, it was transported to 

the laboratory on ice in Lactated Ringer’s solution. The tissue was either cut in to small pieces 

(3-5mm3) or large pieces (6-10mm3), or made into a cell suspension with a two-step enzymatic 

digestion described above (see section 2.2).  
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Controlled slow freezing and vitrification 

Testicular tissue was cryopreserved either as cell suspension or intact pieces of tissue. 

Cell suspension was cryopreserved using controlled slow freezing and intact pieces of tissue 

were cryopreserved with either controlled slow freezing (SF) or vitrification. For cell suspension, 

the vials were cooled at 1°C per minute in a -80°C freezer using Nalgene freezing containers 

(Nalgene-Nunc International) and then stored in liquid nitrogen. For slow freezing of intact 

pieces of tissue, 4-5 pieces of small tissue or 1-2 pieces of large tissue was put into 2.0ml 

cryovials containing 1.5ml of cryoprotectant medium consisting of 5%DMSO, 5% Serum 

Supplement Substitute (SSS) (Irvine Scientific) in Quinn’s Advantage Blastocyst (QAB) 

(SAGE) medium (as described in [224], except clinical grade media was used). The tissue was 

then equilibrated on ice for 30 minutes and then cooled using a programmable freezer as 

described before [224, 230]. The cooling rate was 1°Cmin-1 with holding at 0°C for 5 min, 

followed by cooling at 0.5°Cmin-1 until -8°C. At this temperature, the tissue was manually 

seeded and held for 10 min. The program continued to cool to -40°C at a rate of 0.5°Cmin-1, held 

for 10min and continued to -70°C at 7°Cmin-1, the cryovials were then plunged into liquid 

nitrogen. The tissue was thawed in 37°C water bath and washed in clinical grade PBS (Irvine 

Scientific). 

For vitrification of tissue pieces, the tissue was submerged into equilibration solution 

consisting of 7.5% DMSO, 7.5% ethylene glycol and 20% Dextran Serum Supplement (DSS, 

Irvine Scientific) in QAB medium for 10 minutes. The tissue was then transferred into 

vitrification solution consisting of 15% DMSO, 15% ethylene glycol, 20% DSS and 0.5M 

sucrose in QAB medium for 5 minutes (according to Vitrification Kit from Irvine Scientific). 
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The pieces were then placed in cryovials and stored in liquid nitrogen. Samples were thawed in 

pre-warmed (37°C) thawing solution consisting of 20% DSS and 1M sucrose in QAB medium 

for 5 minutes (Vitrification Kit; Irvine Scientific). They were then transferred into dilution 

solution consisting of 20% DSS and 0.5M sucrose in QAB medium for 5 minutes and finally 

washed in 20% DSS in QAB medium for 10 minutes, followed by two 5 minute washes.  

 

Human to nude mouse xenotransplantation 

Human to nude mouse xenotransplantations were done to analyze colonizing activity of 

putative human SSCs. All cryopreserved intact testicular tissue pieces were made into cell 

suspensions after thawing using a two–step enzymatic digestion with clinical grade enzymes, as 

described above in Preparation of Human Testicular Tissue (see section 2.2). Cell suspensions 

were transplanted into the testes of busulfan-treated (40 mg/kg; Sigma, at 5–6 weeks of age), 

immune-deficient nude mice (NCr nu/nu; Taconic, Germantown, NY) as described above (see 

section 2.2).   

 

Whole mount immunofluorescent quantification of human SSC colonizing activity in mouse 

seminiferous tubules 

Human to nude mouse xenotransplantation was analyzed by whole mount 

immunofluorescence. The testes were recovered 8 weeks following transplantation, the tunica 

was removed, and the intact seminiferous tubules were dispersed gently with Collagenase IV 

(1mg/mL) and DNase I (1mg/mL) in D-PBS. The tubules were fixed for 4 hours in 4% PFA and 

the whole mount immunofluorescence was carried out as described in section 2.2. 

Spermatogonial colonies were counted based on the following criteria: at least 4 cells exhibiting 
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spermatogonial morphology (ovoid shape with high nuclear to cytoplasmic ratio) and located on 

the basement membrane in a continuous area of recipient seminiferous tubule (≤100 µm between 

cells). 

 

Immunocytochemistry 

Frozen and thawed cells were spotted on Superfrost slides and fixed with methanol. The 

cells were then rehydrated with D-PBS and blocked with a buffer containing 3% bovine serum 

albumin and 5% normal goat serum in order to reduce nonspecific binding. Rabbit anti- UTF1 

(1:500; MAB4337, Millipore) antibody was added to the cells and incubated for 90 min at room 

temperature. Isotype matched normal IgG was used as negative control. Primary antibody was 

detected using goat anti-rabbit AlexaFluor-488 conjugated secondary antibody (1:200, 

Invitrogen). The slides were mounted with VectaShield (Vector Laboratories) mounting medium 

containing DAPI for detection of all nuclei and the staining was observed with a Nikon Eclipse 

E600 Fluorescence microscope and images captured with MetaView Digital Imaging software.  

 

Statistical analysis  

I present descriptive statistics (mean, standard deviation, min, median, and max) of the 

number of colonies per gram of tissue and UTF1 positive cells per gram of tissue for each of the 

five groups (frozen thawed cell suspension, vitrified large tissue pieces, vitrified small tissue 

pieces, slow-freezing large tissue pieces and slow-freezing small tissue pieces).  The number of 

colonies per gram of tissue and the number of UTF1 positive cells per gram of tissue were 

compared between groups using the Dwass, Steel, Critchlow-Fligner (DSCF) multiple 

comparison analysis, which is based on pairwise two-sample Wilcoxon rank sum comparisons.  I 
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chose this technique instead of parametric analysis of variance (ANOVA) because the skewed 

distribution of colonies per gram of tissue violates the assumptions required for proper 

application of ANOVA, necessitating the use of a non-parametric test.  The DSCF analysis 

compares the median dependent variable in each possible combination of the five groups (frozen 

thawed cell suspension, vitrified large tissue pieces, vitrified small tissue pieces, slow-freezing 

large tissue pieces and slow-freezing small tissue pieces).  The DSCF test is an extension of the 

standard Wilcoxon rank-sum test, but adjusts for pairwise comparisons of multiple groups.  

Within this test, a statistically significant result for any particular comparison (i.e. slow-freezing 

small tissue pieces vs. frozen thawed cell suspension) indicates that the center of the distribution 

of the dependent variable in one group differs significantly from the center of the distribution in 

the other group (i.e. that the median number of colonies per gram of tissue in slow-frezing small 

tissue pieces is significantly greater than the median number of colonies per gram of tissue in 

frozen thawed cell suspension). 

3.3 RESULTS 

3.3.1 Acquisition of human testicular tissue 

All the tissue used in the experiments came from 5 organ donors between the ages 15-49. The 

testis weight ranged from 8.5 to 23.9 g (after pathology) and yielded 44.7x106±5.8x106 cells per 

gram of tissue. The tissues were cryopreserved between 1 and 1.5 month before performing the 

experiments.  
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3.3.2 UTF1 staining of cryopreserved cells and tissues 

Human testicular tissue was cryopreserved with slow-freezing (SF) as a cell suspension and as 

small and large intact pieces of tissue. Testicular tissue pieces (small and large), were also 

cryopreserved by vitrification (Table 1). At a later date, the cells and tissues were thawed and all 

the intact pieces of tissues were made into cell suspensions. The cell suspensions from each 

group were stained for UTF1 (spermatogonia marker, see Figure 6) by immunocytochemistry.  

Table 1. Descriptive statistics for UTF1 positive cells per gram of tissue for human testicular cell and 

tissue cryopreservation. 

 

The results were normalized to UTF1 positive cells per gram of tissue frozen. The median UTF1 

positive cells per gram of tissue was highest in the SF large tissue piece samples (median=8.6, 

range [0-77]) and SF small tissue piece samples (median=6.9, range [0.003-43.4]) (Table 1 and 

Figure 16). These were significantly greater than the median UTF1 positive cells per gram of 

tissue in the frozen thawed cell suspension group (median=1.1, range [0.11-3.9], P < 0.0001), 

vitrified large tissue pieces group (median=3.7, range [0-17.1], P < 0.01), and the vitrified small 

 Mean SD Min Median Max 

Frozen thawed 
cell suspension 

1.47 1.11 0.11 1.1 3.9 

Vitrified large 
tissue pieces 

4.4 3.6 0 3.7 17.1 

Vitrified small 
tissue pieces 

5.4 7.2 0 2.9 32.9 

Slow-freezing 
large tissue 

pieces 

14.9 16.9 0 8.6 77.2 

Slow-freezing 
small tissue 

pieces 

10.4 9.9 0.003 6.9 43.4 
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tissue pieces group (median=2.9, range [0-32.9], P < 0.01). Recovery of the UTF1 positive cells 

in the SF large tissue pieces group was not significantly different than the SF small tissue piece 

group (P = 0.7712).   
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Figure 16. ICC for UTF1 of cryopreserved human testicular cells and tissue pieces. 

  

 

 

 

 

 

 

 

Similar to the SF small and large tissue pieces, recovery of UTF1 positive cells was 

significantly greater from vitrified small and large tissue pieces than from the frozen thawed cell 

suspension (P = 0.0119 and P < 0.0001, respectively) (Table 1 and Figure 16). 

3.3.3 Colonizing activity in cryopreserved cells and tissues 

The results from UTF1 staining of cryopreserved cells and tissues were confirmed by human-to-

nude mouse xenotransplantation experiments. The cryopreserved cell suspension and intact 

tissue pieces were thawed and the intact tissue pieces were made into a cell suspension before 

xenotransplantation into nude mice. The median number of colonies per gram of tissue frozen 

was highest in the SF small tissue piece samples (median=426.3, range [0-3209]) (Table 2 and 

Figure 17). This was significantly greater than the median number of colonies per gram of tissue 

in the frozen thawed cell suspension group (median=28.0, range [0-185], P = 0.0003), vitrified 

large tissue piece group (median=0, range [0-420], P < 0.0001), and the vitrified small tissue 

piece group (median=17.9, range [0-1941], P = 0.0472). Colonies per gram of tissue in the SF 

Human testicular cells and tissue pieces were cryopreserved and thawed. All the tissue pieces were made into a 

cell suspension after thawing and all groups were stained with UTF1. (A) Slow-freeze (SF) large and SF small 

tissue pieces have significantly higher UTF1 positive cells per gram of tissue than other groups. Different letter 

indicate P < 0.05, same letters indicate P > 0.05. Black line in the brown box indicates median, the bottom of the 

brown box is quartile 1(Q1), the top is quartile 3 (Q3). The top error bar indicates max and bottom error bar 

indicates minimum. (B-F) Representative images of UTF1 staining from each sorted fraction and unsorted cells. 

At least 10 views were counted from each fraction based on DAPI staining and UTF1 staining. N=5. Scale bar = 

50 µm.  

 

 



 61 

small tissue piece group was not significantly different was the SF large tissue piece group 

(median=375.9, range [0-2243], P = 0.9960).  

 

Table 2. Descriptive statistics for xenotransplant colonies per gram of tissue for human testicular cell 

and tissue piece cryopreservation 

 

 Mean SD Min Median Max 

Frozen thawed 
cells 

49.6 52.8 0 28.0 185.2 

Vitrified large 
tissue pieces 

48.0 108.8 0 0 420.6 

Vitrified small 
tissue pieces 

370.3 661.5 0 17.9 1941.1 

Slow-freezing 
large tissue 

pieces 

487.3 501.9 0 375.9 2243.9 

Slow-freezing 
small tissue 

pieces 

760.2 922.1 0 426.3 3209.1 

 

 

SF large tissue piece group was also significantly greater than frozen thawed cell 

suspension (P < 0.0001), vitrified large tissue piece group (P < 0.0001), and borderline 

significant compared to vitrified small tissue piece group (P = 0.0528). Colonizing activity in the 

frozen thawed cell suspension, vitrified large tissue pieces, and vitrified small tissue pieces 

groups were not significantly different (Table 2 and Figure 17). 
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Figure 17. Colonization of cryopreserved human testicular cells and tissue pieces. 

  

 

 

 

 

 

3.4 DISCUSSION 

Spermatogonial stem cells are the adult tissue stem cells of the testes that may have the 

potential to treat some cases of male infertility. For example, the SSC freezing and 

transplantation methods could be used to preserve and restore fertility of prepubertal boys who 

Human testicular cells and tissue pieces were cryopreserved and thawed. All the tissue pieces were made into a 

cell suspension after thawing and all groups were transplanted into nude mouse testis. (Inset) Two months after 

transplant, colonies of human spermatogonia were identified in whole mount preparations of recipient mouse 

seminiferous tubules using the rabbit anti-primate antibody. Colonies in each recipient testis were counted and 

normalized to colonies per gram of frozen tissue. Different letter indicate P < 0.05, same letters indicate P > 0.05. 

Black line in the brown box indicates median, the bottom of the brown box is quartile 1(Q1), the top is quartile 3 

(Q3). The top error bar indicates max and bottom error bar indicates minimum. N = 5. Scale bar = 100 µm. 
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are undergoing chemotherapy or radiation for cancer or other conditions that may render them 

infertile. These boys do not make sperm yet, so they do not have the option to cryopreserve a 

semen sample. Currently, there are several stem cell based techniques in the research pipeline 

that may in the future offer opportunities for these prepubertal patient to have their own 

genetically related children (Figure 15, bottom). These techniques are still experimental, but 

several centers around the world are cryopreserving testicular tissues from prepubertal boys 

because it is anticipated that stem cell therapies will be available in the future [91, 93-95, 100, 

222-224]. Methods currently in the research pipeline include SSC transplantation [70, 73-85, 90], 

testicular tissue grafting [207-212, 241-247], testicular organ culture [213, 214]  and induced 

pluripotent stem cell (iPSC) technologies [215-221]. Because it is uncertain which of the fertility 

preservation/restoration technique(s) will be translated to the clinics in the future, it is important 

to preserve tissues in a way that will maximize access to downstream applications. Many studies 

have demonstrated that testicular cell suspensions can be frozen, thawed and transplanted to 

regenerate spermatogenesis [70, 72, 73, 86, 122, 248-252]. However, freezing testicular tissues 

as cell suspension eliminates the possibility of using testicular tissue grafting or organ culture to 

produce sperm. Some laboratories are cryopreserving patient tissues as intact tissue pieces and 

have shown that this method cryopreserves the SSCs for testicular tissue grafting in mice [212, 

232]. Therefore, to maximize the potential use of the cryopreserved prepubertal patient tissues in 

the future, I wanted to test whether cryopreserving intact pieces of tissue will compromise the 

SSC activity for SSC transplantation technique.   

Here, I evaluated the recovery of stem and progenitor spermatogonia from human 

testicular tissue frozen as a cell suspension versus pieces of intact tissue. The intact tissue pieces 

were cryopreserved either by slow-freezing or vitrification. Slow-freezing has been used to 
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successfully cryopreserve rodent testicular tissue [225-227] and human testicular tissue for 

xenografting purposes [230-232]. Vitrification is a technique that is used in oocyte and embryo 

cryopreservation [253, 254]. Vitrification and slow-freezing are both techniques that minimize 

ice crystal formation and therefore prevent cell damage [233, 234]. Vitrification uses higher 

cryopreservative concentration and faster cooling rates to eliminate ice crystal formation in the 

intracellular and extracellular space [234, 235]. Slow-freezing uses a slow cooling rate to allow 

water to exit the cell to minimize intracellular ice crystal formation [234]. Vitrification has the 

advantage that it does not require expensive freezing machines and can be performed fast in 

almost any clinical laboratory.  

I hypothesized that the recovery of stem and progenitor spermatogonia is more efficient 

from frozen and thawed cell suspension than from frozen and thawed intact pieces of tissue. I 

analyzed the cryopreservation conditions with ICC for UTF1 (spermatogonia maker, Figure 6) 

for a quick readout assay and also confirmed the results by human-to-nude mouse 

xenotransplantation assay. I found that all freezing conditions for intact pieces of tissues were at 

least as effective, if not more effective than slow-freezing a cell suspension (Figures 16 and 17). 

To our surprise, the recovery of stem and progenitor spermatogonia from slow-frozen small or 

large pieces of intact tissues was significantly better than slow-freezing a cell suspension. 

Recovery of UTF1 positive cells from vitrified small and large pieces of testicular tissue pieces 

was also significantly better than frozen thawed cell suspension, but not as good as from slow-

frozen tissue pieces. Colonization activity in xenotransplants assay between vitrified tissue 

pieces and frozen thawed cell suspension was not statistically significant, the reason for that 

could be high variability within each sample. The variability is due to variation between different 

human samples. Cryopreserving a cell suspension requires more processing steps before (cell 
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digestion, washing, centrifugation) and after freezing (washes to remove cryoprotectant) than 

cryopreserving intact tissue pieces.  The additional processing steps may reduce the recovery of 

stem and progenitor spermatogonia.  

 Vitrification of intact testicular tissue has been shown to be at least as effective as slow-

freezing in some cases [231, 232, 236-238] but that was not the case here. One of the reasons 

could be that the functional endpoint in some of these studies was grafting of the cryopreserved 

tissue into nude mice. In tissue grafting, the SSCs remain in their niche, compared to SSC 

transplantation, where the tissue is made into a cell suspension. This difference could explain 

why one method works better for SSC transplantation than the other. It could also be that there 

are small differences in the technique between laboratories. In any case, it is advantageous to 

cryopreserve prepubertal patient testicular biopsies as intact pieces of tissues so that the potential 

to use it for different techniques is maximized.  

These studies were conducted using human tissues and the same clinical grade reagents 

that one used to process patient testicular tissues in our fertility preservation center. Therefore 

the results can be immediately implemented in protocols for processing patient tissues. 
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4.0  ELIMINATING MALIGNANT CONTAMINATION FROM THERAUPEUTIC 

HUMAN SPERMATOGONIAL STEM CELLS 

4.1 INTRODUCTION 

Over 12,000 children are diagnosed with cancer every year in the US, and it has been estimated 

that a male infant has a 1 in 300 chance of being diagnosed with a malignancy by the age of 20 

[255]. Fortunately, success rates in treating childhood cancer have increased dramatically over 

the past few decades, and now over 80% of children survive following treatment [256, 257]. 

Given this growing cohort of adult survivors of childhood cancers, emphasis is now being placed 

on quality of life issues following successful treatment. Many therapies to treat cancer are 

gonadotoxic and can lead to infertility, and fertility potential has an important impact on quality 

of life according to cancer survivors [57, 258-260]. In fact, the American Society of Clinical 

Oncology [57] and American Society of Reproductive Medicine  [58] now recommend that the 

reproductive risks of cancer therapies and fertility preservation options should be routinely 

discussed with patients before beginning treatment. 

In men, freezing semen samples is an efficient and well-established technique to preserve 

fertility for those facing gonadotoxic treatments, such as chemotherapy or radiation. 

Unfortunately, this is not an option for boys who have not yet entered puberty and do not have 

sperm. However, these boys do have spermatogonial stem cells (SSCs) in their testes that are 
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poised to produce spermatogenesis at the start of puberty [7, 95, 224]. SSCs maintain 

spermatogenesis throughout postpubertal life, and they are defined by their ability to undergo 

both self-renewing cell divisions and differentiation, leading to the production of haploid sperm. 

Brinster and colleagues provided the initial demonstration that testicular cells from a fertile 

mouse could be transplanted into the seminiferous tubules of an infertile recipient, in which they 

produced complete spermatogenesis and sometimes restored fertility [68-73]. Regeneration of 

spermatogenesis following SSC transplantation has now been established in several animal 

models, including rodents, goats, sheep, pigs, dogs, and monkeys [70, 72, 73, 86, 122, 248-252]. 

The potential of using SSCs to preserve and restore fertility in patients receiving 

gonadotoxic therapies has been extensively discussed [94, 222, 261-268]. In theory, testicular 

cells obtained via biopsy prior to cancer treatment could be cryopreserved and then 

retransplanted following clinical remission. Several centers around the world, including our own 

Fertility Preservation Program in Pittsburgh (http://www.mwrif.org/220), are now performing 

testicular biopsies on boys prior to the initiation of cancer therapy in hopes that this tissue can be 

used in the future to restore fertility [95, 222, 224, 267]. However, to make SSC transplantation a 

realistic clinical option for the prepubertal patient cohort, two major hurdles must be overcome. 

First, we need to learn the characteristics of human SSCs to facilitate their isolation and 

enrichment. Second, techniques to remove malignant contamination from the testis cell 

suspension are needed to eliminate the risk of reintroducing cancer back into survivors. 

Unfortunately, there is a real potential for malignant contamination in testicular tissue 

obtained from patients prior to cancer treatment, especially for those with hematologic cancers. 

One study demonstrated that 20% of boys with acute lymphocytic leukemia possessed malignant 

cells in a testicular biopsy taken prior to the initiation of chemotherapy [269]. Furthermore, it has 
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been demonstrated in a rat model of leukemia that transplantation of testicular cells from 

leukemic donors consistently transmitted leukemia to healthy recipients [270]. Fujita and 

colleagues were the first to demonstrate that FACS could be used to successfully remove 

malignant cells from a testicular sample prior to SSC transplantation [262]. They used antibodies 

directed against cell surface antigens CD45 and MHC class I (HLA-ABC) to remove the 

malignant cells from testis cell suspension. Sorted and unsorted cell suspensions were then 

transplanted into the seminiferous tubules of infertile recipient mice. In this landmark study, 

recipient mice that received transplants with unsorted cells consistently developed leukemia, 

whereas those transplanted with sorted cells did not. Additionally, viable offspring were 

generated from the infertile recipients following transplantation of the sorted germ cells [262]. 

Fujita and colleagues followed up this initial report by demonstrating that 7 out of 8 human 

leukemic cell lines also expressed the cell surface antigens CD45 and MHC class I, and thus 

these leukemic markers could theoretically be used to separate leukemic cells from testicular 

cells in humans as well, but this was not assessed experimentally in that study and transplants 

were not performed [263]. Hermann and coworkers demonstrated the feasibility of removing 

contaminating leukemic cells from nonhuman primate testis cell suspensions by FACS sorting 

with THY1 (spermatogonial marker) and CD45 (leukemia marker) but also did not perform 

transplants to assess malignant potential [159]. 

However, not all studies using immune-based sorting technologies to separate malignant 

cells from testicular cell suspensions have been as successful [185, 264]. Using a leukemic rat 

model, Hou and colleagues concluded that a single marker sort is generally not adequate to 

remove malignant contamination [185]. Moreover, studies using human tissue to assess 

decontamination methods have been very limited to date, likely due to difficulties in obtaining 
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such material for research. However, human studies are needed to demonstrate feasibility and 

safety before SSC transplantation can be translated to the clinic. 

In this chapter, I characterized the cell surface phenotype of human spermatogonia in 

testicular tissue obtained from organ donors as well as the MOLT-4 leukemic cell line derived 

from a patient with acute T cell lymphoblastic leukemia. I used this information to devise sorting 

strategies to isolate and enrich human SSCs and to remove malignant contamination from human 

testicular cell suspensions that had been “spiked” with MOLT-4 leukemia cells. A human-to-

nude mouse xenotransplantation biological assay was used to assess SSC activity and malignant 

contamination in fractions obtained from FACS of MOLT-4-contaminated human testis cell 

suspensions. 

4.2 MATERIALS AND METHODS 

Animals 

All experiments using animals were approved by the Institutional Animal Care and Use 

Committees of the Magee-Womens Research Institute and the University of Pittsburgh and 

performed in accordance with the NIH guidelines for the care and use of animals (assurance no. 

A3654-01). 

Procurement and processing of human testicular tissue. 

Deidentified human testicular tissue was obtained through the Center for Organ Recovery 

and Education and the University of Pittsburgh Health Sciences Tissue Bank under University of 

Pittsburgh IRB no. 0506140. Tissue was obtained from postpubertal male organ donors and 
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transported on ice in Lactated Ringer’s solution following procurement. The time of tissue 

processing ranged from 7 to 21 hours following organ procurement. A single cell suspension of 

human testicular parenchyma was prepared with two step enzymatic digestion as described in 

Chapter 2. 

 

MOLT-4 cell line culture 

The MOLT-4 cell line, derived from a 19-year-old man with acute T cell lymphoblastic 

leukemia in relapse [271], was obtained from American Type Culture Collection (ATCC). 

Cultures were established in RPMI-1640 media (GIBCO, Invitrogen) with 10% FBS and 

supplemented with antibiotic-antimycotic solution containing penicillin, streptomycin, and 

amphotericin (Antibiotic-Antimycotic, GIBCO Cell Culture, Invitrogen). Fresh media was added 

every 2 to 3 days, and cells were subcultured at or before they reached a density of 2 × 

106 cells/ml, as per manufacturer recommendations. 

Flow cytometry 

Flow cytometry was used to characterize the expression of a panel of cell surface 

antigens on MOLT-4 and human testicular cells. To assess antigen expression, 0.5 × 106 cells 

were stained with fluorophore-conjugated primary antibodies for 20 minutes on ice. Cells were 

also stained with isotype control antibodies to correct for nonspecific antibody binding. 

Preliminary titration experiments were carried out with each antibody to determine the optimal 

antibody concentration for both MOLT-4 cells and human testicular cells. Following staining, 

cells were washed 3 times with cold Dulbecco’s PBS (D-PBS; GIBCO, Invitrogen) containing 

10% FBS. A FACSDiva (Becton Dickinson) machine was used to perform flow cytometry, and 

the percentage of cells expressing the antigen of interest was determined by quantifying the 



 71 

percentage of cells with higher fluorescence intensity than the isotype control. Each experiment 

was replicated 3–5 times. 

Fluorescence-activated cell sorting 

Based on flow cytometry results, markers that were expressed on >95% of MOLT-4 cells 

were considered markers of MOLT-4 leukemia cells. In contrast, markers expressed by <1% of 

MOLT-4 cells and 5% or more of human testis cells were considered potential SSC markers. 

CD49e (α5 integrin) and HLA-ABC were expressed by >95% of MOLT-4 cells and therefore 

met the criteria for potential MOLT-4 markers. EPCAM was expressed by <1% of MOLT-4 

cells and 5% or more of human testis cells and met the criteria for a potential SSC marker. These 

markers were selected for further analysis by FACS and immunocytochemical analysis of human 

testis cell fractions. 

Human testis cell suspensions were stained with fluorescent-conjugated antibodies (anti-

human CD49e clone NKI-SAM-1, BioLegend; anti-human HLA-ABC clone G46-2.6, BD 

Biosciences; anti-human EPCAM clone 9C4, BioLegend) and sorted using FACSvantage SE 

fluorescence-activated cell sorter (Becton Dickinson) as described in Chapter 2.  

Immunocytochemistry  

Cell fractions were collected in Opti-MEM (GIBCO, Invitrogen) supplemented with 10% 

FBS, spotted onto slides (Superfrost Plus; Fisher Scientific), and fixed with methanol. The slides 

were stained as described in Chapter 2 with rabbit anti–SALL4 (1:500, Abcam). To quantify the 

percentage of cells expressing SALL4 in each sorted fraction, at least 10 random images of each 

fraction were recorded and the number of SALL4 positive cells as well as the total number of 

cells was quantified. An unsorted sample of testicular cells was also stained to determine the 
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percentage of unsorted testicular cells that express SALL4. These experiments were replicated 3 

times for each representative antibody (HLA-ABC, CD49e, and EPCAM) using testicular tissue 

from different male donors. 

Xenotransplantation and whole mount immunofluorescent quantification of colonization activity 

of undifferentiated spermatogonia  

Following FACS, unsorted and sorted testicular cell fractions were transplanted into the 

testes of busulfan-treated, immune-deficient nude mice (NCr nu/nu; Taconic) as previously 

described in Chapter 2. For experiments involving FACS of contaminated testicular cell 

suspensions, MOLT-4 cells were mixed with human testicular cells such that MOLT-4 cells 

made up approximately 10% of the final cell suspension prior to sorting. The concentration of 

cells transplanted into seminiferous tubules from each fraction varied based on the total number 

of cells collected following sorting. An average of 996,845 cells were transplanted per recipient 

mouse testis from the unsorted spiked cell suspension, 63,780 cells were transplanted from the 

EPCAM dim/CD49e negative/HLA-ABC negative (spermatogonial) fraction, and 5,000 cells 

were transplanted from the EPCAM negative/CD49e positive/HLA-ABC positive (MOLT-4) 

fraction. A prior sensitivity analysis demonstrated that as few as 10 MOLT-4 cells were capable 

of inducing tumor formation when transplanted into the testes of immunodeficient mice treated 

with busulfan, and injection of 1,000 MOLT-4 cells reliably induced tumor formation in the 

majority of mice (83%) [159]. This experiment was designed primarily to assess SSC activity in 

each fraction. Malignant contamination of each fraction was also evaluated by injection into the 

testicular interstitial space, which is an excellent environment for tumor formation (see Human-

to–nude mouse tumor bioassay below). 
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Human-to–nude mouse tumor bioassay  

In addition to the intratubular transplant bioassay for human spermatogonia, 

xenotransplants into the interstitial space (between seminiferous tubules) of nude mouse testes 

were performed to assess tumorigenic potential of unsorted and sorted cell fractions. I found that 

the interstitial space was more conducive to tumor formation than the intratubular space and was 

therefore a more sensitive bioassay for malignant contamination. Approximately 10 μl of cell 

suspension was transplanted into the interstitial space at cell concentrations of 0.5 × 106 cells/ml 

to 5 × 106 cells/ml (50,000 cells per recipient mouse testis in the unsorted spiked arm, 5,000 cells 

per testis in all other experimental arms) by initially cannulating the efferent duct and then 

advancing the needle through the rete testis into the interstitial space. As indicated above, as few 

as 10 MOLT-4 cells are sufficient to produce tumors following transplantation into the testes of 

nude mice [159]. Therefore, the human-to–nude mouse tumor assay has the sensitivity to detect a 

0.2% contamination with cancer cells (10 cells in a transplanted fraction of 5,000 cells). 

Following interstitial transplantation, the mice were monitored and palpated regularly to assess 

for tumor formation and sacrificed for analysis when palpable tumors were present or by 4 

months following transplantation. The testes were removed and examined grossly for tumor 

formation. 

 

TF-1a lymphoblastic leukemia cell line: marking with GFP, phenotyping and sorting 
 

To determine if the multi-parameter FACS approach would be successful across different 

human malignancies, another human leukemic cell line, TF-1a was used in a second spiked 

sorting experiment. TF-1a, a lymphoblastic cell line derived from a 35 year old Japanese male 

with erythroblastic leukemia was obtained from ATCC [272]. 
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Previous sensitivity analyses had demonstrated that TF-1a cells do not form solid tumors 

as consistently as MOLT-4 cells when transplanted into the testes of immune-deficient nude 

mice. Thus, TF-1a cells were transduced with a lentivirus containing GFP driven by the 

ubiquitin-C promoter (generously provided by Dr. Carlos Lois, University of Massachusetts 

[273]) to enable tracking of malignant cells through the multi-parameter FACS experiments. The 

cell culture was then expanded and cloned by limiting dilution. Cells derived from a single GFP-

expressing clone, TF-1a (C2), were used for all experiments in this study. Cultures were 

established in RPMI-1640 media (GIBCO, Invitrogen) with 10% FBS and supplemented with 

Antibiotic-Antimycotic solution containing penicillin, streptomycin, and amphotericin (GIBCO 

Invitrogen Cell Culture). Fresh media was added every 2-3 days and cells were passaged at or 

before they reached a density of 2 x 106
 cells/mL as per manufacturer recommendations. 

Initial flow cytometry experiments using the TF-1a-GFP clone demonstrated that over 

>95% of cells expressed the markers CD45 and CD49e, but not HLA-ABC (as I had observed 

for the MOLT-4 leukemic cells). Additionally, EPCAM was expressed on <1% of the TF-1a 

cells. Thus, our multi-parameter sorting approach with TF-1a utilized CD45-PE and CD49e-PE 

as markers for TF-1a leukemic cells, and EPCAM-APC as a marker of spermatogonia. Spiked 

sorting experiments were carried out as described above by adding TF-1a-GFP cells to a 

suspension of human testicular cells and performing multi-parameter FACS. 

 

Immunohistochemistry of testicular tumors with NuMA 
 

To demonstrate that the testicular tumors observed after transplantation of MOLT-4 cells 

and the EPCAM-/CD49e+/HLA-ABC+
 fraction resulted from the MOLT-4 cells injected and are 

of human origin, immunohistochemistry was performed with a human-specific polyclonal 
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antibody directed against the nuclear mitosis apparatus protein (NuMA), a protein involved in 

the formation and maintenance of the mitotic spindle. To accomplish this, the tumors were fixed 

with 4% paraformaldehyde overnight, paraffin-embedded and sectioned (5 μm). The tissues were 

then stained as in Chapter 2.2 using anti-NuMA antibody (1:100, Abcam, Cambridge, MA).  

Statistics  

Analysis of variance on nested linear mixed-effect models was used to compare 

differences among the percentage of SALL4 positive cells in unsorted versus sorted cell fractions 

in the immunohistochemistry experiments and colonizing activity in the human-to–nude mouse 

xenotransplant bioassay. P values of less than 0.05 were considered significant. 

4.3 RESULTS 

4.3.1 Surface antigen expression on human testicular cells and MOLT-4 lymphoblastic 

leukemia cells.  

To characterize cell surface antigens on human testicular cells and MOLT-4 acute lymphoblastic 

leukemia cells [271], respectively, flow cytometry was performed for a panel of 24 markers, 15 

of which exhibited positive immunoreactivity with human testis cells and/or MOLT-4 leukemic 

cells (Table 3). Our aim with this set of experiments was to characterize the cell surface 

phenotypes of human spermatogonia and human MOLT-4 leukemia cells to identify antigens 

that could be used to distinguish these 2 cell populations. For MOLT-4 markers, I selected  
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Table 3. Expression pattern of various cell surface antigens on MOLT-4 lymphoblastic leukemia cells 

and human testicular cell suspensions (expressed in percentage)    

Cell surface antigen MOLT-4 Human testis 

CD4 75.9 ± 13.5 0.14 ± 0.02 

CD9 68.9 ± 6.0 16.1 ± 0.4 

CD24 0.17 ± 0.07 2.46 ± 0.3 

ΙΤGΒ1 (CD29) 98.3 ± 0.5 24.4 ± 3.7 

CD31 (PECAM-1) 51.8 ± 2.3 1.1 ± 0.3 

CD34 4.5 ± 1.7 15.96 ± 1.1 

CD45 97.9 ± 0.9 3.56 ± 0.6 

ΙΤGΑ5 (CD49e) 97.6 ± 0.9 23.2 ± 4.2 

ITGA6 (CD49f) 12.5 ± 1.7 53.2 ± 8.7 

CD54 56.1 ± 7.7 26.1 ± 3.5 

CD71 91.6 ± 1.0 0.46 ± 0.2 

THY1 (CD90) 2.2 ± 0.5 21.1 ± 1.3 

CD147 98.3 ± 0.5 53.1 ± 14.6 

EPCAM (CD326) 0.1 ± 0.0 16.4 ± 3.9 

HLA-ABC 96.9 ± 1.2 9.42 ± 0.7 

 

antigens that were expressed on greater than 95% of MOLT-4 cells for further study. CD29, 

CD45, CD49e, CD147, and HLA-ABC met these criteria (Table 3), and HLA-ABC, CD49e, and 

CD147 were selected for use in subsequent experiments. To identify potential spermatogonial 

markers that were distinct from MOLT-4 cells, our goal was to identify antigens that were 
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expressed by less than 1% of MOLT-4 cells and by 5% or more of human testis cells. ITGA6 

(CD49f), THY1 (CD90), and EPCAM (CD326) were of particular interest because these markers 

are expressed by human spermatogonia (see Chapter 2). ITGΒ1 (CD29) has been demonstrated 

to be expressed on spermatogonia in other animal models [20, 29, 185, 263]. ITGA6, ΙΤGB1, 

and THY1 were rejected for further consideration, because they were expressed by >1% of 

MOLT-4 cells. EPCAM satisfied the criteria (expressed on 0.1% of MOLT-4 cells and 16.4% of 

human testis cells; see Table 3) and was selected for further study. 

 

4.3.2 Expression of HLA-ABC and CD49e in adult human testicular cell suspension 

FACS experiments were performed to determine whether putative MOLT-4 markers CD49e, 

HLA-ABC, and CD147 (expressed by >95% of MOLT-4 cells) were also expressed by SALL4 

positive spermatogonia in human testis cell suspensions. The goal of these experiments was to 

identify markers that can distinguish MOLT-4 leukemia cells from human spermatogonia. FACS 

analysis of human testis cells for HLA-ABC (Figure 18A), followed by immunocytochemistry of 

positive and negative fractions for SALL4 (Figure 18B–E), revealed that the majority of SALL4 

positive human spermatogonia were recovered in the HLA-ABC–negative fraction (P < 0.0001). 

Similarly, the majority of SALL4 positive spermatogonia were recovered in the CD49e-negative 

fraction of human testis cells (P < 0.0001; Figure 18F–J). SALL4 positive spermatogonia were 

found in both the CD147-positive and -negative fractions (data not shown), and, thus, the CD147 

marker was not deemed useful for separating MOLT-4 cells from spermatogonia. 
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 Figure 18. SALL4–positive human spermatogonia do not express HLA-ABC or CD49e. 

 

 

 

 

 

 

 

 

 

4.3.3 Analysis of FACS sorted fraction for human spermatogonia  

Human testicular cell suspensions were contaminated with 10% MOLT-4 cells to simulate a 

clinical situation in which a patient preserves a testicular biopsy that contains SSCs and might be 

used in the future to restore fertility (i.e., by SSC transplantation). To safely use the preserved 

tissue for autologous transplantation, the malignant cells must be identified and completely 

removed. The objectives of this set of experiments were to determine (a) whether spermatogonia 

could be successfully sorted from a contaminated testicular cell population, (b) whether 

spermatogonia could be enriched, and (c) whether contaminating malignant cells could 

successfully be separated from spermatogonia. To achieve these goals, I sorted the contaminated 

human testis cell suspension into fractions based on relative expression of EPCAM 

(spermatogonial marker) as well as CD49e and HLA-ABC (MOLT-4 markers). As shown in 

Figure 19  populations of cells were gated: EPCAM–/CD49e–/HLA-ABC– (fraction I); EPCAM–

 (A) To determine whether human spermatogonia express HLA-ABC, human testicular cell suspensions were 

stained with APC-conjugated HLA-ABC antibodies and sorted into positive and negative fractions by FACS. 

Negative gates were defined by analysis of human testis cells using APC-conjugated isotype control antibodies. 

(B–E) Following FACS, each fraction of cells was fixed and immunocytochemistry was performed to assess 

SALL4 expression; then, fractions were counterstained with DAPI to quantify total cells. (B) The percentage of 

cells in each unsorted and sorted fraction that displayed SALL4 staining (SALL4 positive green cells/DAPI-

stained total cells). (F–J) A similar experiment was conducted using APC-conjugated CD49e antibodies. Scale 

bar: 50 μm (C–E and H–J). Bars in B and G indicate the mean percentage of SALL4–positive cells (SALL4–

positive cells/total cells) in each fraction. Error bars in B and G represent SEM from 3 replicate sorting 

experiments. *P < 0.001, compared with unsorted cells. Reprinted with permission from Dovey SL and Valli H et 

al., J Clin Invest. 2013 Apr 1;123(4):1833-43, Copyright (2014). 

 

http://www.ncbi.nlm.nih.gov/pubmed/23549087
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/CD49e+/HLA-ABC+ (fraction II); EPCAM+/CD49e–/HLA-ABC– (fraction III); and 

EPCAM+/CD49e+/HLA-ABC+ (fraction IV). The EPCAM+/CD49e–/HLA-ABC– fraction (III) 

was further fractionated based on level of EPCAM expression and side scatter of incident light 

(Figure 19B, fractions IIIa and IIIb) into EPCAMdim/SSchigh (Figure 19A, fraction III, green) and 

EPCAMbright/SSclow (Figure 19A, fraction III, blue). Based on data in Figures 13 and 18 and 

Table 3, I hypothesized that human spermatogonia would be recovered in fraction IIIa (Figure 

19A and B, green) and that MOLT-4 cells would be recovered in fraction II (Figure 19A, red). 

As expected, immunocytochemical staining of sorted fractions revealed significant 

enrichment of SALL4 positive cells in the EPCAMdim/SSchi/CD49e–/HLA-ABC– fraction (IIIa) 

compared with unsorted testicular cells (33.9 ± 1.0% vs. 4.5 ± 0.6% SALL4 positive cells in the 

unsorted population, P = 0.0005; Figure 19C–F). This fraction will be described as 

EPCAMdim/CD49e–/HLA-ABC– from this point forward and in Figures 19 and 20. No SALL4 

positive cells were found in the EPCAM–/CD49e+/HLA-ABC+ fraction (II) (Figure 19E and F). 

Furthermore, the xenotransplantation analysis of spermatogonial colonies in the seminiferous 

tubules of nude mice confirmed that colonization activity was enriched in the 

EPCAMdim/CD49e–/HLA-ABC– fraction compared with unsorted (unspiked) testicular cells (133 

± 25.2 colonies per 105 viable transplanted cells vs. 10.9 ± 2.1 colonies per 105 viable 

transplanted cells in the unsorted control, P < 0.0001; Figure 19G). This represents 

approximately 12-fold enrichment of spermatogonial colonizing activity in the human-to–nude 

mouse xenotransplant assay. 
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Figure 19. The EPCAM dim /CD49e negative/HLA-ABC negative fraction of MOLT-4–spiked 

human testis cell suspension is enriched for human spermatogonia.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.4 Tumor formation of FACS sorted cells following transplantation into the testes of 

nude mice. 

To determine whether MOLT-4 cells had been successfully removed from the sorted population 

of spermatogonia, tumor formation was assessed following transplantation of the sorted fractions 

into the testes of nude mice. In a prior sensitivity analysis, it was demonstrated that 

transplantation of as few as 10 MOLT-4 cells into the testes of nude mice could induce tumor 

formation [159]. 

 (A) Human testicular cell suspensions were spiked with 10% MOLT-4 cells and then FACS sorted using 

EPCAM-PE, HLA-ABC-APC and CD49e-APC antibodies. (B) Fraction III in A was further analyzed with side 

scatter, as described in Figure 11, to identify the SSC fraction, EPCAM dim/side scatter high (green, Fraction IIIa). 

Only cells that (A) primarily fell within fraction III and (B) secondarily fell within fraction IIIa were collected. 

(C–F) Immunocytochemistry was performed to assess relative SALL4 expression in unsorted and sorted fractions. 

We focused specifically on fractions II and IIIa (green), because this is where we expected to find MOLT-4 

leukemia cells and human spermatogonia, respectively, based on data in Figures 13 and 18. Scale bar: 50 μm (C–

E). Bars in F indicate the mean percentage of SALL4–positive cells (SALL4–positive cells/total cells) in each 

fraction. Error bars in F represent SEM from 6 replicate sorting experiments. (G) The human-to–nude mouse 

xenotransplantation assay was used to assess spermatogonial colonizing activity in unsorted (unspiked) and sorted 

(spiked) testis cell fractions (I, IIIa, and IV), as described in Figure ?. Bars indicate the mean number of colonies 

per 106 viable cells in each fraction. Error bars represent SEM from 6 replicate sorting experiments. *P < 0.001, 

compared with unsorted cells. A typical colony of human spermatogonia in recipient mouse seminiferous tubules 

is shown in the inset. Scale bar: 50 μm. Reprinted with permission from Dovey SL and Valli H et al., J Clin 

Invest. 2013 Apr 1;123(4):1833-43, Copyright (2014). 

 

http://www.jci.org/articles/view/65822#F2
http://www.jci.org/articles/view/65822#F3
http://www.ncbi.nlm.nih.gov/pubmed/23549087
http://www.ncbi.nlm.nih.gov/pubmed/23549087
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 Figure 20. EPCAM–/CD49e+/HLA-ABC+ cells form testicular tumors following transplantation into 

nude mice, but EPCAMdim/CD49e–/HLA-ABC– cells do not form tumors. 

 

 

 

 

Following sorting of the spiked testicular cell population, the EPCAMdim/CD49e–/HLA-

ABC– (putative SSCs, fraction IIIa) and EPCAM–/CD49e+/HLA-ABC+-sorted (putative MOLT-

4 cells, fraction II) fractions (Figure 19A and B) were transplanted into the seminiferous tubules 

of nude mice. Uncontaminated testicular cells, a pure population of MOLT-4 cells, and unsorted 

spiked cells were transplanted in the same manner to serve as negative and positive controls, 

respectively. When a pure population of MOLT-4 cells was transplanted into the seminiferous 

tubules, tumor formation was observed 18% of the time (Table 4). The unsorted spiked 

population of cells produced tumors in 41% of testes transplanted (Figure 20A and Table 4). The 

EPCAM–/CD49e+/HLA-ABC+ fraction produced tumors in 23% of transplanted testes 

(Figure 20B and Table 4), whereas tumors were never observed in the EPCAMdim/CD49e–/HLA-

ABC– fraction (Figure 20C and Table 4). 

(A and B) Unsorted spiked testicular cells and cells from fraction II (see Figure 19A) produced tumors in 

recipient mouse testes. (C) Cells from fraction IIIa (see Figure 19A and B) that contained human spermatogonia 

colonizing the seminiferous tubule of nude mice (see Figure 19G) did not produce tumors. Reprinted with 

permission from Dovey SL and Valli H et al., J Clin Invest. 2013 Apr 1;123(4):1833-43, Copyright (2014). 

 

http://www.ncbi.nlm.nih.gov/pubmed/23549087
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Table 4. Quantitative assessment of tumor formation in recipient mouse testes 

 Testis number (n) Tumor formation [n(%)] 
Before sort* Intratubular Interstitial Intratubular Interstitial 
Testis cells 29 n/a 0 (0%) n/a 

MOLT-4 cells 28 25 5 (18%) 18 (72%) 
Testis cells + 10% MOLT-4 

cells 32 26 13 (41%) 16 (62%) 

After sort  

EPCAMdim/CD49e-/HLA-
ABC- 25 30 0 (0%) 0 (0%) 

EPCAM-/CD49e+/HLA-ABC+ 22 29 5 (23%) 16 (55%) 
*Unsorted (before sort) and sorted (after sort) cell fractions were transplanted into seminiferous 
tubules or interstitial space of recipient mouse testes. n/a – not applicable.  
 

For additional confirmation that MOLT-4 contamination had been successfully removed from 

the EPCAMdim/CD49e–/HLA-ABC– fraction, interstitial testicular transplants were performed. 

Earlier work with MOLT-4 testicular transplantation suggested that tumor formation may be 

more efficient when cells are introduced into the interstitial space, thus increasing the sensitivity 

of the tumor bioassay. The same cell fractions were transplanted into the interstitial space of the 

testes in nude mice. Approximately 5,000 MOLT-4 cells were transplanted per testis in the 

control arms of this cancer cell–spiking experiment (i.e., 5,000 MOLT-4 cells or 50,000 unsorted 

testis cells spiked with 10% MOLT-4 cells). Unlike in the intratubular transplantation 

experiments above, tumor analysis was not performed until 16 weeks following transplantation, 

or sooner if palpable tumors were present, to maximize the sensitivity of the tumor bioassay. 

With the interstitial transplants, 72% of testes transplanted with pure MOLT-4 cells developed 

tumors, as did 62% of testes transplanted with an unsorted spiked suspension of cells (Table 4). 

Following sorting, tumor formation was observed in 55% of testes transplanted with the 

EPCAM–/CD49e+/HLA-ABC+ (putative MOLT-4) fraction, whereas there was no tumor 

formation in any of the testes transplanted with the EPCAMdim/CD49e–/HLA-ABC– (putative 
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SSC) fraction. Pathological analyses of the samples (by C.A. Castro) indicated that they are 

consistent with lymphocytic tumoral growth, with characteristic malignant invasion through the 

tunica albuginea and into abdominal organs. Furthermore, immunohistochemical analyses of 

testicular tumors with a human-specific antibody directed against the nuclear mitosis apparatus 

protein (NuMA) demonstrated that the tumors are of human origin (Figure 21). Thus, a 

multiparameter sort strategy effectively segregated undifferentiated spermatogonia from MOLT-

4 leukemia cells. FACS reanalysis of the EPCAMdim/CD49e–/HLA-ABC– fraction demonstrated 

a purity range of 98.8%–99.8%. 

  

 

 



 86 

Figure 21. Testicular tumors observed after transplantation of the EPCAM-/CD49e+/HLA-ABC+ 

fraction following FACS are of human origin. 

 

 

 

 

 

 

 

 

 

To demonstrate that the multiparameter sorting strategy could be generalized to other  

cancer cell lines, I contaminated human testis cell suspensions with TF-1a human leukemia cells 

[272]. TF-1a cells did not efficiently make solid tumors following xenotransplantation to nude 

mouse testes, so I labeled them with ubiquitin-C-GFP to enable tracking and assess 

contamination of sorted fractions (Figure 22). TF-1a cells did not express HLA-ABC to the same 

degree as the MOLT-4 cell line, so an alternate epitope, CD45, was used instead. A 

multiparameter FACS procedure was performed using EPCAM-APC (spermatogonial marker), 

CD49e-PE (TF-1a marker), and CD45-PE (TF-1a marker) on a human testicular cell suspension 

spiked with TF-1a cells, as described for the MOLT-4 line above (Figure 22). A purity check 

indicated that the putative spermatogonial fraction (IIIa) was 99.4% pure (Figure 22C and E). 

This fraction contained SALL4 positive spermatogonia (Figure 22H) but was devoid of 

GFP+ TF-1a cells (Figure 22F and H). 

(A, D, G) Cross-section of a nude mouse testis showing normal morphology. (A) Stained with H&E, (D) staining 

with the human-specific nuclear mitotic apparatus protein (NuMA) and (G) is an IgG isotype control. (B, E and 

H) MOLT-4 leukemic cell suspension. (B) MOLT-4 cells stained with H&E, (E) NuMA antibody, and (H) with 

an IgG isotype control. NuMA is expressed by a variety of human malignancies, including MOLT-4 leukemic 

cells, as demonstrated in (E) but not expressed by mouse testicular cells (B). (C, F and I) Testis from nude 

mouse demonstrating gross tumor formation following transplantation of EPCAM-/CD49e+/HLA-ABC+ cells. 

Disruption of the normal morphology of the seminiferous tubules by the MOLT-4 leukemic cells can be 

visualized in (C) (bottom right), and these cells stain positively for NuMA (F). (I) MOLT-4-derived tumor 

stained with an IgG isotype control. Scale bar = 100µm. Reprinted with permission from Dovey SL and Valli H 

et al., J Clin Invest. 2013 Apr 1;123(4):1833-43, Copyright (2014). 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/23549087
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Figure 22. Separation of TF-1a–GFP cells and human spermatogonia from a contaminated human 

testis cell suspension using a multi-parameter FACS approach.  

 

 

 

 

 

 (A and D) Human testicular cell suspensions were “spiked” with TF-1a-GFP cells (15.6%) and then FACS was 

performed using EPCAM-APC, CD49e-PE and CD45-PE. (B) Fraction III in (A) was further analyzed with side 

scatter, as previously described, to identify the spermatogonial fraction, EPCAM dim/side scatter high (green, 

fraction IIIA). (C and E) Purity check indicated that the EPCAM dim/side scatter high (green, fraction IIIA) 

fraction was 99.4% pure and contained no GFP positive cells (E and F), representing the TF-1a leukemic  
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4.4 DISCUSSION 

SSCs may have application for preserving and restoring spermatogenesis in men who are 

rendered infertile due to chemotherapy or radiation treatment for cancer or other conditions. A 

boy or man could theoretically cryopreserve testicular tissue or cells (containing SSCs) before 

the gonadotoxic therapy and have these cells reintroduced into his testis after he is cured of his 

primary disease. For a cancer survivor, this approach has the inherent and unacceptable risk of 

reintroducing malignant cells. I created this scenario in this study by contaminating human testis 

cell suspensions with MOLT-4 leukemia cells. I then used a multiparameter sorting approach to 

prove that it is feasible to isolate and enrich SSCs from a heterogeneous human testis cell 

suspension and also remove malignant contamination.  

EPCAM, our selected spermatogonial marker, is a calcium-independent adhesion 

molecule that is expressed by murine embryonic stem cells, primordial germ cells of both sexes, 

and spermatogonia in adult mice [274]. Furthermore, Ryu and colleagues demonstrated that 

EPCAM could be used as a cell surface marker to isolate and enrich transplantable SSCs in the 

rat [29]. The majority of SALL4 positive spermatogonia were recovered in the 

EPCAMdim fraction of human testis cells, and xenotransplant colonizing activity in this fraction 

 cells. (G-I) Unsorted and sorted cell fractions were evaluated by immunocytochemistry for SALL4 (human 

spermatogonia) and GFP (TF-1a-GFP). We focused on fractions II (red) and IIIA (green) because these were 

expected to contain TF-1a leukemic cells and human spermatogonia, respectively. The EPCAMdim/CD49e-

/CD45-fraction (IIIA) contained SALL4 positive spermatogonia, but not GFP positive TF-1a cells (H). The 

EPCAM-/CD49e+/CD49+fraction (II) contained GFP positive TF-1a cells, but not SALL4 positive 

spermatogonia (I). Scale bars = 100 µm. Reprinted with permission from Dovey SL and Valli H et al., J Clin 

Invest. 2013 Apr 1;123(4):1833-43, Copyright (2014). 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/23549087
http://www.ncbi.nlm.nih.gov/pubmed/23549087
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was enriched nearly 6 fold compared with that in unsorted controls (Figure 13). It is important to 

confirm experimentally that rodent spermatogonial markers are conserved in humans. CD29 (β1-

integrin), for example, is a marker of rodent SSCs that does not appear to be conserved in 

humans [181] (Valli and Orwig, data not shown). Others have reported that SSEA4 [112] and 

GPR125 [143] are cell surface markers of human spermatogonia. I did not observe 

immunoreactivity for either marker with human testis cell suspensions in this study. These 

disparate results might be attributed to differences in cell processing (i.e., trypsin concentration) 

that affect cell surface antigens or the use of different antibodies. 

I further refined our sorting strategy by adding 2 MOLT-4 leukemia cell markers (CD49e 

and HLA-ABC) to the staining cocktail that was then used to analyze and fractionate MOLT-4–

contaminated human testis cell suspensions. The putative spermatogonial fraction 

(EPCAMdim/CD49e–/HLA-ABC–) was enriched 12-fold for colonizing activity in the human-to-

nude mouse xenotransplant assay. This fraction never produced a tumor following 

transplantation into seminiferous tubules or into the testicular interstitial space. In contrast, the 

putative MOLT-4 leukemia cell fraction was depleted of SALL4 positive spermatogonia and 

produced tumors in seminiferous tubules as well as in the testicular interstitial space. Similar 

results were obtained by Hou and colleagues, who used EPCAM in combination with leukemia 

markers to remove malignant contamination in a rat model of Roser’s T cell leukemia [185] and 

concluded that a multiparameter sorting strategy that included both spermatogonial and leukemia 

markers was required to eliminate malignant contamination and leukemia transmission. 

I then replicated this finding using a different human leukemic cell line, TF-1a, to 

demonstrate that the multiparameter FACS strategy to remove malignant cells from therapeutic 

spermatogonia can be applied across different malignancies (Figure 22). It is important to note, 
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however, that I needed to use different cell surface antigens when sorting the TF-1a cells from 

spermatogonia, as their cell surface phenotype was somewhat different than that of MOLT-4 

cells. Through a series of similar experiments, it may be possible to identify a broad panel of 

markers that can be used in a generalized approach to remove a variety of malignant cell types 

from human testis cell suspensions. 

Two prior studies have attempted to separate spermatogonia from cancer cells in a human 

model. In 2006, Fujita and colleagues demonstrated via flow cytometry that several human 

leukemic cell lines uniformly expressed cell surface antigens MHC class I and CD45 [263]. They 

then performed FACS on human testicular cells and demonstrated that the MHC class I–/CD45–

 fraction contained germ cells (assessed qualitatively by RT-PCR for germ cell markers), 

suggesting that these cell surface antigens could be used to sort leukemic cells away from germ 

cells. However, the authors of that study did not report sorting and transplantation of 

contaminated human testis cell suspensions, as they had previously reported for mice [262]. 

Geens and coworkers did contaminate human testis cell suspensions with B cell acute 

lymphoblastic leukemic cells but were not able to remove the malignant contamination using 

FACS-based selection for HLA-ABC [264]. 

Our study adds significantly to the current literature by demonstrating that a 

multiparameter sorting strategy can enrich spermatogonia and eliminate cancer contamination 

from a human testis cell suspension. These conclusions are supported by quantitative in vitro and 

in vivo assessments, including transplant of selected fractions into the seminiferous tubules of 

recipient mice. This human-to-nude mouse xenotransplant assay is most relevant to the cancer 

survivor paradigm in which the ultimate objective will be to transplant a patient’s cells back into 

the seminiferous tubules of his testes to reinitiate spermatogenesis. However, these bioassays 
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require a large number of cells and time. Ultimately, it will be necessary to identify specific, 

sensitive markers of SSCs and cancers cells so that assessment of stem cell activity and 

malignant contamination can be conducted quickly and with a relatively smaller portion of the 

patient’s tissue. Molecular readouts, such as PCR, are rapid and likely have the best sensitivity to 

detect occult tumor cells, and, indeed, evaluation of minimal residual disease (MRD) with PCR 

is now being investigated as a more precise means to screen tissue for transplantation [275]. 

Alarmingly, assessment of MRD in ovarian tissue destined for autotransplantation in patients 

with leukemia identified malignant contamination in the majority of samples, even after a 

negative histology and immunohistochemistry examination [275, 276]. 

One current limitation to performing MRD screening routinely prior to transplantation is 

the need to identify a PCR target unique to the cancer of interest. However, identifying a 

distinctive PCR target for MRD screening is just half of the equation. What is the clinical 

significance of very-low-level contamination detected only by PCR for a given malignancy? 

How likely is this to result in clinical relapse if the tissue is transplanted? Courbiere and 

colleagues discussed this issue eloquently in an editorial describing a patient with chronic 

myeloid leukemia who underwent ovarian tissue harvesting in which autotransplantation of the 

tissue was debated after histology evaluation was negative but PCR demonstrated a small 

number of BCR-ABL transcripts in the cortical tissue (0.001%) [277]. Considering that the 

survival and engraftment of tumor cells will depend on the type of cancer and number infused, it 

was felt clinically that the likelihood of inducing relapse was low if transplantation was 

performed, but the absolute risk is virtually impossible to quantify. 

The findings in our study parallel this clinical dilemma, in that the FACS reanalysis 

purity check demonstrated that the EPCAMdim/CD49e–/HLA-ABC– fraction was 98.8%–99.8% 
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pure. Furthermore, this fraction did not produce tumors in 55 transplanted testes (intratubular and 

interstitial). Do these results indicate that approximately 99% purity should be considered safe 

for autologous transplantation? In the bone marrow transplant field, “purging” malignant cells 

from HSC samples prior to autologous transplant has been studied extensively for over 2 

decades, as autologous bone marrow transplant is considered standard treatment for patients with 

various malignancies [278]. Overall, there is limited convincing evidence that transfusing a small 

number of cancer cells in HSC grafts causes relapse or that purging HSC grafts decreases rates of 

relapse, and results from phase II and III clinical trials have been mixed [278, 279]. Clearly, HSC 

transplantation and spermatogonial and/or ovarian transplantation are not clinically equivalent, 

considering that HSC transplantation is required to treat or cure life-threatening conditions, 

whereas fertility preservation procedures are elective. Nonetheless, HSC graft purging studies do 

highlight the point that in vitro measures of decontamination efficiency, such as PCR, may not 

always be appropriate surrogates of clinical outcome. Short of performing a clinical trial, 

biological readouts, such as xenotransplantation, may be the most relevant end points to assess 

the adequacy of decontamination. Indeed, as our ability to detect MRD through molecular 

methods improves, it is likely that clinicians will face this challenging scenario on a more 

frequent basis. Thus, it will be important to not only improve MRD screening techniques, but 

also to correlate MRD screening results with xenotransplantation studies, so that the clinical risk 

of inducing a relapse following transplantation of tissue with trace MRD can be estimated. 

Progress in culturing human SSCs has been reported by several laboratories in the past 

few years [26, 94, 95, 143, 280] and may provide an alternative approach for removing 

malignant contamination. In theory, it may be possible to amplify human SSCs clonally from 

individual cells or from small enriched fractions of testis cells and thereby alleviate malignant 
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contamination. This will require continued progress to establish robust culture conditions in 

which human SSCs survive and can be expanded over several passages to produce a sufficient 

number of stem cells for therapeutic application. 

I have demonstrated that it is feasible to enrich SSCs and remove malignant 

contamination from a heterogeneous human testis cell suspension. As the panels of 

spermatogonial and cancer markers expand, it will be important to test sorting strategies on 

primary human cancers, which are likely to be more heterogeneous than the MOLT-4 and TF-1a 

leukemia lines used in this study. In addition, it will be important to develop methods to rapidly 

screen cell populations for malignant contamination and establish criteria for assessing safety 

prior to transplant. Continued work in this field is important, because clinics are already 

cryopreserving testicular tissue and ovarian tissue for patients with cancer in anticipation that 

this tissue can be used in the future to restore fertility. Autologous transplantation of tissue or 

cells is among the techniques being considered for both sexes, so risk of reintroducing cancer is 

of paramount concern.  
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5.0  SUMMARY AND CONCLUSIONS 

Spermatogonial stem cells are adult tissue stem cells that balance self-renewal and differentiation 

to support spermatogenesis throughout a male’s life. These cells may also one day be used in 

clinics to treat some cases of male infertility. The SSCs can only be definitively identified by 

their biological potential to produce and maintain spermatogenesis after transplantation. This 

assay was first described by Brinster and colleagues [122, 123] and is widely used to analyze 

SSC activity in any given rodent testis cell population. Obviously, human-to-human transplants 

as a routine bioassay are not possible and there is a lack of experimental tools to analyze SSCs in 

human testis tissues or cell suspensions.  

For grown men and pubertal boys, the effective and well established method to preserve 

their fertility while undergoing cancer treatment or bone marrow transplant is to cryopreserve a 

semen sample (Figure 15, top). Unfortunately, many post-pubertal patients (especially 

adolescence boys) do not preserve a semen sample and this is not an option for prepubertal boys 

who do not yet make sperm. However, these boys do have spermatogonial stem cells in their 

testis that will initiate spermatogenesis at puberty. There are several experimental stem cell based 

options in the research pipeline that may be available for the patients in the future (Figure 15). 

Several centers around the world are already cryopreserving testicular biopsies from prepubertal 

patients in hopes that when these patients are ready to have kids, the techniques to restore their 

fertility are available in clinics [91, 93-95, 100, 222-224].  



 95 

Feasibility and safety studies using human tissues are important to ensure responsible 

translation of stem cell reproductive technologies to the clinic. Techniques currently under 

investigation involve using either a cell suspension or intact pieces of tissues and it is uncertain 

which technologies will progress to clinical application. Therefore, it is important to optimize 

tissue processing and cryopreservation to maximize patient access to downstream applications. 

Additionally, the biopsies taken from prepubertal patient may have malignant contamination 

since they are obtained prior to the initiation of chemotherapy. Therefore, methods are needed to 

eliminate the risk of reintroducing cancers when using these cells. 

To begin addressing these issues, I had to develop experimental tools to analyze and 

quantify human SSCs. A modification of the mouse SSC transplant method has been used in 

humans and is becoming the gold standard for quantifying human SSC-like activity [94, 95, 104, 

106, 112, 118-120]. In our lab, we have generated a rabbit anti-primate antibody that recognizes 

primate cells (including human) in mouse testis [53, 114, 118, 120, 159] (Figures 4 and 5). The 

human-to-nude mouse xenotransplantation assay has 2 month delay from transplant to analysis. 

Therefore, I also developed a quick read out assay that involves staining for human 

spermatogonia markers by immunocytochemistry. 

SALL4, PLZF, UTF1, ENO2 and UCHL1 were identified as markers of undifferentiated 

human spermatogonia. All of these markers are expressed by cells on the basement membrane of 

seminiferous tubules but do not co-express the differentiation marker KIT (Figure 6). Therefore, 

all of the markers can be used in immunocytochemistry to identify human stem and progenitor 

spermatogonia.  

Next, I used ICC and human-to-nude mouse xenotransplantation to identify cell surface 

markers that can be used to isolate and enrich human spermatogonia. I demonstrated that cell 
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surface markers THY1, EPCAM and ITGA6 can all be used to enrich human SSCs with FACS 

sorting (Figures 11-13). Out of the three markers, only ITGA6 was amenable to MACS sorting 

(Figure 14), which is a higher throughput method than FACS.  

 It is not known which fertility restoration technique will be translated to the clinics in the 

future, therefore, optimization of testicular tissue cryopreservation methods is extremely 

important. The preferred cryopreservation technique should maximize the access to downstream 

technologies to restore fertility for the patients. Great progress has been made in SSC 

transplantation technique (Figure 15, blue boxes). Homologous species SSC transplantation has 

now been reported in mice, rats, pigs, goats, bulls, sheep, dogs and monkeys, including the 

production of donor-derived progeny in mice, rats, goats and sheep [70, 73-85, 90]. In contrast to 

SSC transplantation, which involves disaggregation of SSCs from their cognate niches, testicular 

tissue grafting and testicular tissue organ culture maintain the integrity of the stem cell/niche 

unit. Testicular tissues obtained from newborn mice, pigs and goats could produce complete 

spermatogenesis when grafted under the skin of nude mice [207].  In mice, the resulting sperm 

were used to fertilize eggs by ICSI and gave rise to live offspring [208]. Xenografting with 

prepubertal rhesus macaque also successfully produced complete spermatogenesis with 

fertilization competent sperm [281]. Survival and spermatogenesis from adult testicular tissue 

grafts have been less successful than immature grafts [242]. Human tissue grafting into nude 

mice has been less successful as no one has reported the production of haploid gametes or sperm 

[210, 211, 282-285]. The most advanced stage of germ cell development reported from human 

testicular tissue grafts to date has been pachytene spermatocytes [211, 212, 232]. The results of 

the monkey studies suggest that autologous transplantation may be an option if suitable 

cryopreservation conditions are developed. Similar to SSC transplantation, autologous grafting 
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will be problematic in cases where malignant contamination of the testicular tissue is suspected.  

Xenografting of human testicular tissue into animals could circumvent this problem, but is 

associated with additional concerns about xenobiotics and has been unsuccessful to date.   

Sato and colleagues [213, 214] reported production of sperm and live offspring from an 

organ culture method (Figure 15, yellow boxes). If these results in mice can be translated to 

humans, testicular organ culture would circumvent the need to put tissues or cells back into the 

patient and may be a safe option for patients with malignancies that contaminate the testes.   

 I validated and compared methods for cryopreserving human testicular cells or tissues 

and subsequent recovery of stem and progenitor spermatogonia in order to optimize processing 

of patient tissues. I found that slow-freezing small (3-5mm3) or large (6-10 mm3) tissue pieces is 

the optimal method to preserve SSC colonizing activity (Figure 17). In our hands, recovery of 

human spermatogonia after tissue vitrification was not as effective as slow-freezing.  

Nonetheless, this method was equal to or slightly better than freezing a cell suspension and 

therefore could be used if no slow-freezing machine is available.  Freezing intact tissues retains 

the options for either tissue based or cell based therapies in the future [196]. 

The biopsies obtained from the prepubertal patients are taken prior to their cancer 

treatment and therefore have a chance of malignant contamination. It has been shown that 20% 

of boys with acute lymphocytic leukemia have cancer cells in a testicular biopsy taken prior to 

the initiation of chemotherapy [269]. That is an important concern because prior to translating 

the SSC transplantation technique to the clinics, we have to be sure that we do not reinitiate 

cancer in these survivors. Here, I provided proof in principle that by combining positive selection 

with human spermatogonia marker EPCAM with negative selection for MOLT-4 leukemia cell 

like markers HLA-ABC and CD49e in FACS, it is possible to remove the malignant 
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contamination from the potentially therapeutic SSCs. In this case, I used a fairly homogenous 

cancer cell line and therefore, these experiments have to be replicated using primary human 

cancers, which are more heterogeneous than a cell line. This is necessary to make sure no 

malignant contamination remains in the patient samples. Development of cell culture or organ 

culture methods to expand transplantable stem cells or produce sperm could also circumvent the 

concerns about transplanting malignant cells or tissues (Figure 15, bottom, blue and yellow 

boxes). 

Stem cell technologies for treating male infertility have the potential to impact the clinic 

in the near future and therefore it is important to establish criteria to monitor progress and 

analyze the outcomes. Although it is not popular in the current era that prioritizes the highest 

impact, innovative and novel science; descriptive studies of human germ lineage development 

are essential to guide experimental design and enable accurate interpretation of results of human 

stem cell studies. This knowledge is critical, as I believe it is reasonable to expect that SSCs or 

other stem cells will be used to preserve and restore male fertility in the coming decades.     
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