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Real-time updates to behavioral strategy require animals to understand how many actions have 

been executed toward completion of a goal. These operations are essential for optimizing 

behavior and have been linked to dopaminergic innervation of prefrontal cortex networks 

(Gallistel & Gibbon, 2000; Allman et al., 2011; Lustig, 2011). It is an open question how 

networks of dopaminergic and non-dopaminergic neurons in the ventral tegmental area (VTA) 

encode information when multiple or complex behaviors are required to earn rewards (Niv et al., 

2006; Dayan & Niv, 2008; Niv & Schoenbaum, 2008). Most electrophysiological studies have 

focused on the averaged activity of dopamine neurons during reward prediction error signaling in 

simple behavioral paradigms. Thus, VTA neuronal correlates of executive processes and 

complex behavior remain elusive.  

In the current experiment, rats learned to repetitively execute actions (nose pokes) to 

receive rewarding outcomes (sugar pellets). These actions were randomly rewarded, and all 

actions were identically valued because each was equally likely to be reinforced. Actions 
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differed only by their number within a trial. While animals executed serial actions, many VTA 

neurons were activated or suppressed by unique subsets of actions within a trial. Some neurons 

fired preferentially during low numbered actions while others preferred high numbered actions. 

A population averaging approach, which is conventionally used for analysis of dopaminergic 

neuronal activity, offered poor decoding of action number. In contrast, action number within a 

trial was accurately decoded from the entire pool of unique activity patterns, considering each 

neuron independently. These results suggest that the collective activity of VTA neuronal 

ensembles signals real-time information about ongoing action number—a critical component of 

behavioral organization.  
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1.0  INTRODUCTION 

There are several aspects of ventral tegmental area (VTA) function that future research can 

address. Electrophysiological recordings of the firing patterns of dopaminergic VTA neurons 

have taught us a great deal about how these neurons encode reward-related information. In 

contrast, neurochemical, lesion, and pharmacological studies have focused on the role of 

dopamine in stress, locomotion, motivation, and executive functions (Salamone & Correa, 2002; 

Seamans & Yang, 2004; Wise, 2004; Berridge, 2007; Robbins & Arnsten, 2009). It is an open 

question how these fields can be unified into a comprehensive view of dopamine function. 

Further, while a number of studies have identified and recorded from non-dopaminergic VTA 

neurons during behavior (Steffensen et al., 1998; Lee et al., 2001; Steffensen et al., 2001; Kim et 

al., 2010; Cohen et al., 2012; Kim et al., 2012), the non-dopaminergic population of the VTA is 

less frequently studied than the dopaminergic system.  There is not yet a cohesive framework for 

understanding what information these neurons encode (Sesack & Grace, 2010; Creed et al., 

2014).  

 This thesis addresses a topic with major relevance to our knowledge of the VTA: 

how VTA neurons encode real-time information about an ongoing series of behaviors performed 

to receive rewarding outcomes. Special attention has been paid to considering these data within 

both reward prediction error and behavioral organization frameworks. Both dopaminergic and 

non-dopaminergic neurons were recorded in these experiments. Neurons were not prescreened 
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for any particular firing correlates, so that a more complete representation of the activity of VTA 

neurons could be derived (Fiorillo et al., 2003; Tobler et al., 2005). Network-wide patterns of 

information processing are not often considered in VTA recordings, but the collective activity of 

neuronal ensembles is a point of focus in this dissertation. These experimental and 

interpretational approaches may render a more unified approach to understanding the current 

findings.  

NEUROANATOMY OF THE VENTRAL TEGMENTAL AREA 

The VTA is a complex neuronal network with unique anatomical features. The region integrates 

input from diverse sources, and broadcasts a multi-neurotransmitter signal to the telencephalon, 

diencephalon, and hindbrain (Thierry et al., 1973; Swanson, 1982; Goldman-Rakic, 1998; Carr 

& Sesack, 2000b). The VTA contains mostly dopamine neurons (approximately 60%) and γ-

amminobutyric acid (GABA, approximately 30%) neurons, but glutamate neurons and dopamine 

neurons which co-release GABA and glutamate are also present (Swanson, 1982; Carr & Sesack, 

2000b; Yamaguchi et al., 2007; Nair-Roberts et al., 2008; Sesack & Grace, 2010; Stuber et al., 

2010; Tritsch et al., 2012; Tritsch et al., 2014). The region receives sparse, intermingled inputs 

from a continuous band of cells that stretches from the prefrontal cortex to the medulla oblongata 

(Ramon-Moliner & Nauta, 1966; Geisler & Zahm, 2005; Sesack & Grace, 2010; Watabe-Uchida 

et al., 2012). Thus, VTA receives projections from sensory, motor, and associative regions, and 

possesses an enormous capacity for integrating information from throughout the brain (Geisler & 

Zahm, 2005; Omelchenko & Sesack, 2007). Glutamatergic interneurons, GABAergic 

interneurons, and electrical connections are also present and may contribute to local information 
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processing (Vandecasteele et al., 2005; Allison et al., 2006; Lassen et al., 2007; Vandecasteele et 

al., 2008; Omelchenko & Sesack, 2009; Sesack & Grace, 2010; Steffensen et al., 2011). These 

patterns of connectivity are critical to understanding the function of the region, and may 

emphasize the need to approach the VTA from a new perspective, one based upon ensembles or 

network based information processing (Geisler & Zahm, 2005). 

FUNCTION OF THE VTA DOPAMINE SYSTEM 

Dopamine is often conceptualized in energetic terms, as dopaminergic manipulations lead to 

locomotor, effort, and motivational disruptions (Wise, 2004; Floresco & Magyar, 2006; 

Berridge, 2007; Salamone et al., 2007; Gruber et al., 2009). The mesocortical dopamine 

projection is also directly implicated in behavioral organization via working memory, attention, 

cognitive flexibility, and decision-making (Sawaguchi & Goldman-Rakic, 1991; Watanabe et al., 

1997; Phillips et al., 2004; Seamans & Yang, 2004; Robbins & Roberts, 2007; Vijayraghavan et 

al., 2007; Robbins & Arnsten, 2009). There is little understanding of how dopaminergic neurons 

encode information for these functions. Dopaminergic neurons do not directly encode a neuronal 

correlate of working memory (Schultz et al., 1993). Similarly, recordings from dopaminergic 

neurons during decision-making tasks suggest that the phasic responses of these neurons occur 

after behavioral decisions have been made (Morris et al., 2006; Niv et al., 2006; Roesch et al., 

2007). Our knowledge of the function of the VTA dopamine system is far more detailed than that 

of the GABAergic or glutamatergic systems, with no consensus on the role of the latter in 

cognition (Creed et al., 2014).  
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EARLY INVESTIGATIONS INTO THE FUNCTION OF DOPAMINE NEURONS 

Despite the aforementioned role of the dopamine system in behavioral organization, almost all of 

our knowledge of how dopamine neurons encode information through their firing patterns is 

singularly focused on value prediction. Early attempts to understand dopamine neuronal activity 

focused on motor movements, novel stimuli, or high intensity stimuli in the environment 

(Steinfels et al., 1983a; b; Strecker & Jacobs, 1985; Freeman & Bunney, 1987; Nishino et al., 

1987; Schultz & Romo, 1987). Several years later, Wolfram Schultz and colleagues found that 

unpredictable rewards evoked short latency, short duration, phasic increases in dopamine neuron 

firing rates (Romo & Schultz, 1990; Schultz & Romo, 1990). An early study noted that when 

reinforcing outcomes could be predicted, the outcomes themselves did not modulate neuronal 

activity (Schultz & Romo, 1990). It was later observed that this property emerged with learning; 

initially, outcomes evoked dopaminergic activity, but after learning this was no longer the case 

(Ljungberg et al., 1992; Schultz et al., 1993). This finding was of particular importance to the 

field, as it demonstrated that these neuronal responses were plastic, and did not occur because of 

changes in the animal’s actions, outcomes, or the environment. Thus, the phasic dopamine 

response cannot be related solely to sensory attributes, movement, reward, or economic value.  

THEORETICAL MODELS OF DOPAMINERGIC NEURONAL ACTIVITY  

A particularly compelling dataset from Wolfram Schultz’s group demonstrated that 78% of 

dopamine neurons responded to unpredicted juice delivery, but 0% of these neurons responded to 

predictable delivery of the same outcome (Mirenowicz & Schultz, 1994). Similarly themed 
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findings were also reported from the same group around this time (Ljungberg et al., 1992; 

Schultz et al., 1993; Hollerman & Schultz, 1998). The work by Mirenowicz and Schultz (1994) 

is particularly noteworthy because it marked one of the earliest attempts to interpret phasic 

dopamine responses in the context of a formal model of associative learning. Portending a 

critical development in the field, the authors noted the importance of prediction errors in 

mediating learning, and a possible role for dopamine in this context (Mirenowicz & Schultz, 

1994). Learning is inextricably linked to understanding how stimuli or behavior predict 

subsequent events, and psychologists have long linked errors in predicting outcomes to driving 

learning (Bush & Mosteller, 1951; Rescorla & Wagner, 1972). For an excellent review, see 

(Glimcher, 2011). Though Mirenowicz and Schultz (1994) did not explore the details of this 

relationship in detail, the notion that dopaminergic activity could be related to predictions about 

rewards, and ultimately learning, was an important turning point in our understanding of the 

dopamine system.  

A detailed theoretical framework for understanding the role of dopaminergic neuronal 

activity in learning would emerge several years later. Montague, Dayan, and Sejnowski first 

conceptualized dopaminergic responses as a component of the temporal difference (TD) 

algorithm, the TD error signal (Montague et al., 1996). This algorithm iteratively updates 

predictions about future outcome values at each time step within a trial via the TD error (Dayan 

& Abbott, 2001; Glimcher, 2011). The TD error quantifies the difference between the value of 

future rewards (bracketed terms below) and the predicted current value (the final term). 

Following Dayan and Abbott (2001), the algorithm for calculating the TD error is as follows in 

Equation 1:  

δ(t) = [r(t) + v(t + 1)] − v(t) 
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Here, δ(t) is the TD error at time (t). The current reward value is r(t). Estimated reward 

at the next time step (an estimator of future value) is v(t + 1). The predicted current reward 

value is v(t). Far more detailed considerations of this model exist (Sutton, 1988; Barto & Sutton, 

1990). The reader may also see Appendix A for additional discussion on how the TD error is 

calculated.  

THE TEMPORAL DIFFERENCE ERROR MIMICS THE ACTIVITY OF DOPAMINE 

NEURONS 

The TD error is a reward prediction error. A wealth of evidence suggests that the TD prediction 

error models the activity of dopaminergic neurons. As stated above, dopaminergic responses are 

not reflective of reward value, per se. Instead, dopaminergic responses reflect errors in predicting 

value. Errors in value prediction indicate that the value of rewards has not been fully learned. 

Because these errors are bidirectional and proportional to the magnitude of the error in 

prediction, they provide an account of how much, and in what direction, value estimates should 

be adjusted (Dayan & Abbott, 2001). For these reasons, dopaminergic prediction errors are 

thought to play an important role in value learning. Dopamine bidirectionally controls 

corticostriatal synaptic plasticity, and reward prediction errors are thought to strengthen or 

weaken synaptic weights (Reynolds & Wickens, 2002). Taken together, these theoretical and 

biological considerations detail how the dopaminergic prediction error signal could modulate 

associative learning.  
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The TD error signal follows several axiomatic patterns. Unexpected positively or 

negatively valued outcomes cause a positive or negative prediction error, respectively. These 

prediction errors manifest as phasic increases in neuronal activity (positive prediction error), or 

pauses in the firing of dopamine neurons (negative prediction error), just after the outcome is 

delivered. Unexpected outcomes generate prediction errors because the actual value at the time 

of outcome delivery is greater or less than predicted (Schultz, 1998; Dayan & Abbott, 2001; 

Glimcher, 2011). Fully predicted outcomes do not cause a prediction error because the predicted 

and actual values are roughly equivalent (Schultz, 1998; Dayan & Abbott, 2001; Glimcher, 

2011).  

The second term of the TD error calculation, v(t + 1), is an estimate of future reward 

value. New information about impeding outcome value is incorporated into the prediction error 

through this term. For this reason, stimuli that predict the value of an outcome also cause 

prediction errors. Prediction errors occur at the earliest moment in a trial that an organism is 

informed of future value. If multiple predictive stimuli are presented successively, only the first 

causes a prediction error, because the latter stimuli add no new information about outcome value 

(Schultz, 1998; Dayan & Abbott, 2001; Glimcher, 2011). The animal must learn that a stimulus 

is predictive of outcome value. It is expected that in early trials outcomes produce a prediction 

error. As the predictive relationship is learned the error occurs when the stimulus is presented. 

Thus, the prediction error moves to earlier predictors of the outcome. This phenomenon is 

termed ‘back propagation’ (Schultz, 1998; Dayan & Abbott, 2001; Glimcher, 2011).  

A great deal of work suggests phasic increases in dopaminergic firing rates approximate 

the above mentioned attributes of the TD error signal, and play a causal role in associative 

learning (Schultz et al., 1997; Schultz, 1998; Dayan & Abbott, 2001; Waelti et al., 2001; 
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Schultz, 2002; Dayan & Niv, 2008; Niv & Schoenbaum, 2008; Schultz, 2010; Glimcher, 2011; 

Steinberg et al., 2013). There is no consensus if negatively valued outcomes evoke activity 

reflecting TD errors, or if sustained changes in firing rates reflect TD errors, as conflicting 

results and theories have emerged (Mirenowicz & Schultz, 1996; Fiorillo et al., 2003; Ungless et 

al., 2004; Bayer & Glimcher, 2005; Joshua et al., 2008; Brischoux et al., 2009; Matsumoto & 

Hikosaka, 2009; Bromberg-Martin et al., 2010a; Glimcher, 2011; Mileykovskiy & Morales, 

2011; Fiorillo, 2013; Fiorillo et al., 2013a; Fiorillo et al., 2013b; Totah et al., 2013). This 

dissertation is mainly concerned with phasic changes in VTA neuronal activity in response to 

rewarding outcomes and instrumental action.  

THEORETICAL ACCOUNTS OF DOPAMINERGIC NEURONAL ACTIVITY IN 

INSTRUMENTAL BEHAVIOR 

 

Pavlovian conditioning refers to situations in which environmental stimuli predict that an 

outcome will be delivered to an animal, and no explicit behavior is required of the animal. In 

contrast, instrumental behaviors require animals to execute actions in order to receive an 

outcome. The TD framework is very well suited to describe Pavlovian conditioning (Dayan & 

Abbott, 2001; Glimcher, 2011), though it can be applied to instrumental behaviors as well. In 

fact, the data initially suggesting that dopaminergic neurons encode TD error signals were 

derived from operant behavioral experiments (Romo & Schultz, 1990; Ljungberg et al., 1992; 

Schultz et al., 1993; Montague et al., 1996).   
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There are 2 classes of models describing how actions are selected and executed: the 

actor-critic model and Q-value based models. The most widely used, the actor-critic model, 

suggests the dopaminergic TD error directly influences action selection (Houk et al., 1995; 

Dayan & Abbott, 2001; Joel et al., 2002; Morris et al., 2006; Niv et al., 2006). The few attempts 

to evaluate this idea, however, implicate Q-value based models (Morris et al., 2006; Niv et al., 

2006; Roesch et al., 2007). These models use the TD error to estimate the future value of actions 

(termed Q-values), but not for directly selecting actions (Morris et al., 2006; Niv et al., 2006; 

Roesch et al., 2007). They suggest the TD error represents the value of the action that an animal 

selects or the value of the best available option. Each of these response patterns have been 

detected in dopamine neurons (Morris et al., 2006; Roesch et al., 2007). These data suggest that 

dopamine neurons are not directly implicated in deciding which action to select, but rather 

encode reward prediction errors, which are critical to learning the value of response strategies 

(Morris et al., 2006; Niv et al., 2006; Roesch et al., 2007). In the aforementioned studies, this 

information was encoded just before action execution.  

Many studies have not focused on the execution of the instrumental action itself. The 

studies that have depicted these data, suggest actions weakly modulate neuronal activity 

(Schultz, 1986; Romo & Schultz, 1990; Schultz & Romo, 1990; Ljungberg et al., 1992). This 

may seem puzzling at first, as the dopaminergic signal theoretically conveys prediction errors 

about action values. The experimental designs used in these studies are of great importance to 

understanding these data. Many of these experiments utilize a cue at trial start, which often 

generates a phasic response, and there are often only seconds between cue, action, and outcome 

delivery (Miller et al., 1981; Schultz, 1986; Romo & Schultz, 1990; Mirenowicz & Schultz, 

1996; Nakahara et al., 2004; Matsumoto & Hikosaka, 2007; Roesch et al., 2007; Bromberg-
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Martin & Hikosaka, 2009; Takahashi et al., 2011; Totah et al., 2013). In this situation, the cue 

accurately predicts future outcome value, and actions do not provide new information about 

outcome value. Thus, actions should not evoke phasic responses resembling TD errors.  

PERFORMANCE OF SERIAL ACTIONS 

It is not well understood how actions modulate neuronal activity when they are more relevant 

predictors of outcome delivery, and thus, future value. This is exactly the case when an animal is 

required to perform multiple actions within a trial that is progressing in an uncertain fashion. 

This distinction is critical because in such settings, information necessary for real-time 

behavioral organization must be encoded as behaviors are being executed, and environmental 

stimuli at the beginning of a behavioral series cannot be used for this purpose. 

The current work investigates how VTA neurons encode information when many actions 

are performed in a series. In the only previous examination of VTA neuronal activity during 

serial actions, dopaminergic and non-dopaminergic VTA neurons had elevated and “irregularly” 

varying firing rates while actions were executed (Nishino et al., 1987). Cues at the beginning of 

each trial did not modulate neuronal activity in most neurons (Nishino et al., 1987). Those data 

suggest that networks of dopaminergic and non-dopaminergic VTA neurons encode information 

critical for serial action execution. Shared and complementary roles in encoding information by 

both types of VTA neuron have subsequently been suggested (Seamans & Yang, 2004; Kim et 

al., 2010; Kim et al., 2012), but are largely unexplored. The “irregular” variations in firing rate 

suggest that there is structure in the neuronal activity that has not been previously explored or 
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theorized, and are suggestive of a much more complex role for VTA in behavioral organization 

than has previously been described.  

GOALS OF THE CURRENT WORK 

This dissertation explores how VTA encodes information during the performance of serial 

instrumental actions. This topic is vital to our theoretical understanding of behavioral 

organization, but is poorly understood. This dissertation examines the collective activity of 

networks of dopaminergic and non-dopaminergic neurons. Previous electrophysiological 

experiments have seldom addressed non-dopaminergic neurons or network function. The 

anatomical structure of the VTA, however, suggests that distributed network function could be 

critical to how the region processes information. Thus, this work will fill several voids in our 

theories of VTA function.  
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2.0  METHODS 

SUBJECTS AND APPARATUS 

All procedures were conducted in accordance with the National Institute of Health's Guide to the 

Care and Use of Laboratory Animals, and approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee. Ten adult male Sprague-Dawley rats (Harlan, Frederick, MD) 

were utilized in the current study, and behavioral and neuronal data were collected from all 

animals. Each animal was housed on a 12-hour light cycle (lights on at 7pm). At the time of 

surgery, rats weighed approximately 350 grams. Under isoflurane anesthesia, each rat was 

implanted with 8 or 16 channel 50 µm stainless steel Teflon insulated microelectrode arrays, in 

left VTA (relative to Bregma: -5.30 mm posterior, 0.8 mm lateral, and 8.3 mm ventral) for 

chronic recording. A subset of rats was also implanted in left prelimbic cortex (data not 

presented). Implants were made through small craniotomies and head caps were sculpted from 

dental cement attached to the skull surface and bonded to skull screws for stability. All 

experiments were run in a standard operant chamber (Coulbourn Instruments, Allentown, PA). 

The operant chamber had a wire grate floor, with a custom-made adjustable food trough on one 

wall and a single nose poke port on the opposite wall. Both the food trough and nose poke port 

could be illuminated and were equipped with an infrared beam, which detected the animal’s 

entry. A house light was located at the top of the operant chamber. The operant chamber system 
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controller was configured to send the time of behavioral and environmental events to the 

recording interface via standard TTL pulses and a digital interface.  

BEHAVIOR 

 

Each rat was given 7 days to recover from surgery and food restricted to approximately 90% of 

their free feeding body weights. Rats were habituated to handling for 5 minutes per day for 3 

consecutive days, before being habituated to being handled and connected to a headstage cable in 

the procedure room. Each day of habituation, a rat was given 10 sugar pellets in his home cage. 

Following habituation, rats were given a single 30 minute magazine training session in the 

operant chamber, in which sugar pellets were delivered on a variable time 75 second 

reinforcement schedule and the only environmental stimulus present was a small light outside the 

operant chamber which provided low level ambient illumination. When each pellet was 

delivered, the pellet trough was illuminated for 4 seconds. The animal’s behavior had no 

programmed consequences in the magazine training session.  

Following the magazine training session, each animal began instrumental conditioning. 

During all instrumental conditioning sessions, each trial began with illumination of the nose poke 

port (cue light onset). This served as a discriminative stimulus that reinforcing outcomes (sugar 

pellets) were available (response period), contingent upon the animal executing actions (nose 

pokes into the lit port). In each trial, actions were reinforced randomly, according to a 

predetermined probability. When an action was executed, the behavioral system controller 

randomly drew an outcome state (either reinforcement or no programmed consequence) with 
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replacement, according to the probability of reinforcement. Each action was reinforced randomly 

and independently of the animal’s action history within that trial or session. When an action was 

reinforced, the cue light was immediately extinguished (cue light offset) and nose pokes had no 

additional programmed consequences. A 0.500 sec delay between the final action and outcome 

delivery was instituted to temporally separate these events, as done in previous work (Schultz et 

al., 1993). Following the delay, the outcome was delivered to the animal and the food trough was 

illuminated. Outcomes were delivered into the food trough from a standard pellet magazine, via 

the operation of a smaller stepper motor and dispenser. The operation of the motor created a 

sound that was audible throughout the operant chamber. The food trough remained illuminated 

and the task did not progress until the animal retrieved the outcome. Once the animal retrieved 

the outcome, a variable length intertrial interval (ITI) of 10-12 seconds was initiated. Following 

this, the next trial began with the onset of the discriminative stimulus cue light. In each session 

180 trials were administered.  

In the first instrumental conditioning session, actions were reinforced with a probability 

of 1 (each action was reinforced) equivalent to a fixed ratio 1 (FR01) reinforcement schedule. In 

the second session, the probability that an action was reinforced was decreased across three 

blocks of trials. In the first block of 60 trials, actions were reinforced with a probability of 1 

(FR01). In the second block of 60 trials, each action had a 1 in 3 chance of being reinforced 

(random ration 3, RR03). In the third block of 60 trials, the probability was further decreased to 

0.2 (random ratio 5, RR05). In sessions 3 and 4, actions were reinforced with a 0.2 probability 

for all trials (RR05). In sessions 5, 6 and 7, actions were reinforced with a probability of 0.1 for 

all trials (random ratio 10, RR10). In all trials but the FR01 trials, each animal was required to 

execute an unknown, varying, and randomly determined number of actions per trial. Except in 
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trials in which the animal was reinforced on the first action, the animal was required to execute a 

series of actions to earn the outcome. Because actions were reinforced unpredictably, the RR 

schedules limited the ability of the animal to anticipate reward delivery. Actions differed from 

each other only in terms of their location within the action series in each trial (the action number 

within a trial, e.g. 1st action, 2nd action, 3rd action, etc.).  

BEHAVIORAL ANALYSIS 

In each trial, each animal’s action rate was calculated as the number of actions (nose pokes 

executed while the nose poke port was illuminated) divided by the duration of the response 

period (time the nose poke port was illuminated). This served as a measure of behavioral 

conditioning and performance. Response latency was measured as the delay between the onset of 

the cue light at the start of each trial, and the first response in the trial, in seconds. This served as 

a measure of attention to the task, and learning about the action-outcome relationship. Outcome 

retrieval latency was measured as the delay between outcome delivery and retrieval in seconds. 

This served as a general measure of motivation. For all three measures, between-sessions 

changes in these metrics were assessed with repeated measure analysis of variance (ANOVA), 

and repeated measures contrasts were applied as appropriate.  
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HISTOLOGY 

Following the completion of experiments, animals were perfused with saline and brains were 

extracted. Each brain was stored in a mixture of sucrose and formalin. The brains were then 

frozen and sliced in 60 µm coronal sections on a cryostat, before being stained with cresyl-violet. 

The location of each implant was histologically verified under light microscope according to 

Swanson’s brain atlas (Swanson, 2004).  

ELECTROPHYSIOLOGY 

During experiments, animals were attached to a flexible headstage cable and motorized 

commutator that allowed the animal to move freely about the operant chamber, with limited 

disruption of behavior (Plexon, Dallas, TX). Neural data were recorded via the PlexControl 

software package, operating a 64-channel OmniPlex recording system (Plexon, Dallas, TX). 

Briefly, neural data were buffered by a unity gain headstage and then a preamplifier. The 

digitized broadband signal was then band-pass filtered (100 Hz – 7 KHz). High-pass filtering can 

affect spike waveform shapes and neuronal identification, but with freely moving animals it is 

necessary to apply these filters to remove artifacts from the neuronal signal (Ungless & Grace, 

2012). The filter pass bands that were utilized in the current manuscript are consistent with those 

that have previously been used to record from dopamine containing brain regions (Schultz et al., 

1993; Fiorillo et al., 2003; Tobler et al., 2005), and were chosen to be most consistent with 

previous work. Data were digitized at 40 KHz and continuously recorded to hard disk. Voltage 

thresholds were applied to the digitized spike data offline and spikes were sorted into well-
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isolated units (Offline Sorter, Plexon, Dallas, TX). Single units were sorted using standard 

techniques, and were utilized only if they had a signal to noise ratio in excess of 2/1, and were 

clearly separated from noise clusters and other single unit clusters.  

VTA neurons were classified as putative dopaminergic and non-dopaminergic neurons. A 

VTA neuron was classified as dopaminergic if it had broad action potentials, greater than 1.4 ms 

in duration, and a mean intertrial interval firing rate less than 10 Hz. These criteria are similar to 

those used in previous studies (Hyland et al., 2002; Fiorillo et al., 2003; Anstrom & Woodward, 

2005; Pan et al., 2005; Tobler et al., 2005; Anstrom et al., 2007; Totah et al., 2013). All 

remaining neurons were classified as non-dopaminergic. These criteria may be subject to both 

false positive and false negative classification errors (Margolis et al., 2006). These are standard 

criteria for identifying dopamine neurons and represent the most widely used solution with 

extracellular recordings, where direct identification (e.g. juxtacellular labeling) is not feasible. 

While some work suggests that dopamine agonists can be used to verify that a VTA neuron is 

dopaminergic (Bunney et al., 1973; Grace & Bunney, 1983a; Johnson & North, 1992), this 

approach was not suitable for the current experiments. Manipulations of the dopamine system 

can modulate behavioral performance, motor activity, and memory consolidation (Krivanek & 

McGaugh, 1969; Robbins et al., 1983; Oades et al., 1986; McGaugh, 2000; Setlow & McGaugh, 

2000; Wise, 2004; Simon & Setlow, 2006). Thus, drug administration would likely disrupt 

behavioral performance or learning in the task. All analyses were also conducted on the entire 

population of neurons that were recorded to provide a classification-free examination of the data. 

Should neurons have been misclassified, it is unlikely that this strongly affects the conclusions of 

the current work. In general, qualitatively similar responses were observed in both groups of 

neurons. Units recorded in different sessions were considered separate units, as methods to 
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estimate neuronal identity between sessions are not widely used with VTA recordings. Since 

fixed electrode arrays were utilized in the current experiments, it is likely that some of the same 

neurons were serially recorded. Though this is the case in most chronic recording experiments, it 

introduces some problems for data analysis. It is unclear which neurons would have been serially 

recorded, and thus, it is impossible to treat those neurons as repeated measures. While all units 

were assumed to be independent in the current work, a better solution would be to treat serially 

recorded neurons as a repeated measure and unique neurons as independent. This would 

necessitate a mixed-model design that cannot currently be implemented, because it is difficult, if 

not impossible to identify VTA neurons between recording sessions. Thus, care should be taken 

when interpreting these data, as some statistical assumptions may not be justified. The current 

analyses represent a compromise between opposing factors such as technical feasibility and some 

statistical assumption. 

NEURONAL DATA ANALYSIS  

Neuronal activity evoked by environmental stimuli: 

Each single unit’s spike times were binned into spike counts (0.025 sec bins) within a trial. 

Binned spike counts were aligned to all relevant environmental events (e.g. cue light onset, delay 

between cue light offset and outcome delivery, and outcome delivery). A four second portion of 

the ITI (5 seconds to 1 second prior to cue light onset) served as the neuronal activity baseline. 

Single unit firing rates were Z-score normalized relative to baseline and zero-centered before 

each unit’s smoothed activity (3 bin rectangular window) was averaged together. In addition to 
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analyzing the entire population of neurons, data were split into putative dopamine or non-

dopamine neurons, so that functional dissociations between neuronal subtypes could be assessed. 

Each unit’s normalized activity was examined in 0.250 sec windows around experimental events 

(cue onset: +0.050 – 0.300 sec, relative to cue onset; delay between last action and outcome 

delivery: +0.150 – 0.400, relative to execution of the last action; outcome delivery: +0.050 – 

0.300 sec, relative to delivery). To assess between-session changes in population-level evoked 

activity, windowed activity was compared with a between groups two way ANOVA, with 

session number and neuron type (dopamine or non-dopamine) as grouping variables. In all cases, 

protected Fisher’s least significant difference tests were applied as appropriate.  

A unit was classified as being activated or suppressed by an event if it met 2 criteria: I) a 

significant paired samples t-test comparing raw (non-normalized) baseline firing rates with raw 

evoked firing rates, and II) 3 or more consecutive bins of mean activity within the event-window, 

that were in excess of a 95% confidence interval around the baseline mean. All classifications 

were inspected visually to verify the validity of these criteria. The overwhelming majority of 

cells that were recorded either increased their firing rates or did not respond to the task events. 

Decreased firing rates were seldom, if ever, observed in any of the sessions. It should be noted 

that less stringent criteria may have yielded more frequent classification of cells as significantly 

suppressed. With respect to a given task event, the proportions of units classified as being 

activated or suppressed were calculated. Differences in the proportions of activated units 

between sessions were compared with a Chi-squared test of independence. Insufficient numbers 

of suppressed neurons (in some sessions zero) were obtained to permit reliable statistical 

analyses of this class of responses.  
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Neuronal activity evoked by the execution of actions:  

The previously described analyses involved environmental stimuli, which are by definition, 

solely external to the animal. In contrast, actions involve the animal’s motoric output in the 

context of consistent environmental stimuli. Neuronal activity around the time of the action may 

be evoked by the action, stimuli in the environment (e.g. the nose poke port, the cue light inside 

this port, etc.), or some interaction between these factors. This experiment was not designed to 

separate the contributions of these factors to neuronal activity. The terminology “action-evoked” 

neuronal responses refers to all of these factors collectively, without assuming that the action is 

solely responsible for evoking this neuronal response.  

 The time of action execution was defined as the moment that an animal broke the 

infrared photodetector beam located inside the nose poke port. Neuronal activity was aligned to 

action execution and data were windowed (-0.125 - +0.125 sec, relative to the time of action 

execution). Data were normalized as described above. Changes in action evoked neuronal 

activity were assessed with a two way ANOVA, with session and neuron type as grouping 

variables. For these analyses, all actions were grouped together. Similar to above, neurons were 

classified as activated or suppressed by action execution if action evoked neuronal activity was 

significantly different from baseline activity levels and 3 consecutive bins of activity were in 

excess of a 95% confidence interval around baseline activity levels.  

Each unit’s activity was examined as a function of action number (a unit’s mean response 

to each nth numbered action within a trial, across all trials). These analyses were restricted to the 

RR10 sessions (sessions 5-7). RR10 sessions required larger numbers of actions per trial, on 

average, and would ensure that there were a sufficient number of higher numbered actions (e.g. 

actions 18, 19, 20, etc.) for analysis. All action number analyses utilized actions 1 through 20. 
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While even higher numbered actions occurred in some trials, these actions occurred less 

frequently and were excluded from action number analyses, as there was insufficient sample size 

for reliable statistical analysis. To remove any effects of impending reward delivery on the action 

evoked neuronal responses, only unrewarded actions were used in this analysis. Preliminary 

analyses suggested that including rewarded actions had little effect on the results. Neuronal 

responses were collected in the same windows around action execution as described above. 

Mean normalized population activity as a function of action number is presented in the Results 

section. Action evoked neuronal responses were binned into 4 bins of 5 consecutive action 

numbers (actions 1-5, 6-10, 11-15, and 16-20). Statistical significance of differences between 

action number bins or neuron type were assessed with a two way repeated measures ANOVA, 

with action number as a repeated measure and neuron type as a between groups variable. Linear 

correlations between dopaminergic and non-dopaminergic neuronal responses and action 

numbers 1-20 were examined via a Pearson’s product-moment correlation. Similar to other 

analyses, a neuron’s response was defined as activated or suppressed by a bin of consecutive 

actions if the raw baseline firing rates were significantly different from action evoked firing 

rates, and 3 or more consecutive bins of mean activity that were in excess of a 95% confidence 

interval around the baseline mean.  

Individual neurons preferred different subsets of action numbers. To visualize the various 

tunings of VTA neurons to action number, each neuron’s mean activity as a function of action 

number is displayed. Because evoked firing rates could span a large range of values, each tuning 

curve was scaled so that the maximum evoked activity was equal to 1 and the minimum evoked 

activity was equal to 0. Scaled tuning curves allow effective visualization of all neuronal 

responses simultaneously. These data are used only for visualization, and unscaled tuning curves 
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are displayed for clarity.  If a neuron’s action evoked firing rates significantly differed across 

action number bins, as assed with a between groups ANOVA, then it was defined as significantly 

modulated by action number. Tuning curve maximum – minimum depth was calculated as the 

difference between the absolute maximum and minimum value of each tuning curve. Each tuning 

curve was fit with a cubic smoothing spline (smoothing parameter 0.001) and maxima were 

detected as points in the spline with derivatives equal to 0. 

Functional principal components analysis of tuning curves: 

Tuning curves across action number are inherently high dimensional and visualizing similarities 

between tuning curves requires transforming these data to a lower dimensional space. This 

necessitated the use of functional principal components analysis of the tuning curves of each 

neuron. Each neuron’s activity evoked by the 𝐴𝐴th action can be treated as a varying function of 

action number (tuning curve).  Tuning curves were projected onto smooth functional principal 

components, for visualizing and characterizing the neuronal variability in tuning. The linear 

combination of a small number of orthogonal principal components tends to explain a large 

proportion of variability between tuning curves and produce relatively accurate reconstruction of 

the original data. The principal components must all be orthogonal, and their squares must 

integrate to 1. The principal components scores, 𝑓𝑓𝑘𝑘𝑖𝑖, are defined in Equation 2: 

𝑓𝑓𝑘𝑘𝑖𝑖 = �𝑋𝑋𝑘𝑘(𝑎𝑎)𝑅𝑅𝑖𝑖(𝑎𝑎)𝑑𝑑𝑑𝑑 

Here, 𝑋𝑋𝑘𝑘(𝑎𝑎) is the principal component 𝑘𝑘, at action number (𝑎𝑎). 𝑅𝑅𝑖𝑖(𝑎𝑎) is the mean 

response of neuron 𝑖𝑖 at action number (𝑎𝑎). The principal component projection is derived from 

the scores 𝑓𝑓𝑘𝑘𝑖𝑖, which maximize Equation 3:   
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𝜆𝜆𝑘𝑘 =
1

𝑁𝑁 − 1
�(𝑓𝑓𝑘𝑘𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

Here, 𝑁𝑁 is the number of neurons, and 𝜆𝜆𝑘𝑘 is proportional to the variability in tuning 

curves, between units, that principal component k explains. Thus, the functional principal 

components represent functions, which the tuning curves can be projected onto, to maximize 

variability between the tuning curves.  

Decoding action number from neuronal activity: 

A Bayesian decoder classified binned action number using either the population average spike 

count (population average decoder) or the ensemble of individual-neuron spike counts, where 

individual neurons were assumed to spike independently (naive Bayesian decoder). Decoding 

accuracy was evaluated using cross-validation (Kass et al., 2014). Binned action number, 𝐴𝐴, was 

defined as one of 4 bins of 5 consecutive actions (1-5, 6-10, 11-15, or 16 - 20). Bayesian 

decoding finds the action number bin (𝐴𝐴) that maximizes 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝐴𝐴) 𝑝𝑝(𝐴𝐴), where 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝐴𝐴) is the 

probability density function for the data under action 𝐴𝐴. The prior probability, 𝑝𝑝(𝐴𝐴), was 0.25 for 

all 4 action number bins. In cross-validation, the whole data set is decomposed, repeatedly, into 

test data and training data. The multiple sets of test data are used to evaluate the performance of 

each classifier while, for each set of test data, the corresponding training data are used to 

estimate 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝐴𝐴). 

The data set consisted of 𝑁𝑁 = 156 units combined from 3 consecutive RR10 sessions. We 

created pseudo-data for each action number: to create one set of spike counts from 𝑁𝑁 units, we 

resampled 1 spike count from each of the units recorded in each session. Each set of 𝑁𝑁 spike 

counts, which reflects the experimental structure of independence across sessions with 
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simultaneous recording of units within sessions, was treated as a vector of test data. The 

remaining, non-sampled data were used to train each classifier. We repeated the process 500 

times to create 500 test data vectors for each action number. We let 𝑅𝑅𝑖𝑖 denote the random 

variable representing the test data spike count for unit 𝑖𝑖, and 𝑅𝑅𝑖𝑖∗ its observed value, for 𝑖𝑖 = 1 

to 𝑁𝑁, then also let 𝑅𝑅∗ denote the population average spike count as in Equation 4: 

𝑁𝑁−1𝑅𝑅∗ =  �𝑅𝑅𝑖𝑖∗
𝑁𝑁

𝑖𝑖= 1

 

 

and 𝑅𝑅 denote the corresponding random variable. For the population average decoder, 

𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝐴𝐴) =  𝑝𝑝(𝑅𝑅 =  𝑅𝑅∗|𝐴𝐴), the probability density 𝑝𝑝(𝑅𝑅|𝐴𝐴) was estimated from the training data 

by resampling 300 sets of pseudo-data and then applying a Gaussian kernel density estimate 

(Gaussian filter, standard deviation = 0.04 spikes). 

 

For the naive Bayesian decoder (Equation 5):, 

𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝐴𝐴) =  �𝑝𝑝(𝑅𝑅𝑖𝑖 =  𝑅𝑅𝑖𝑖∗|𝐴𝐴)
𝑁𝑁

𝑖𝑖= 1

 

 

and we estimated 𝑝𝑝(𝑅𝑅𝑖𝑖 =  𝑅𝑅𝑖𝑖∗|𝐴𝐴) as the empirical proportion of counts for which 𝑅𝑅𝑖𝑖 =  𝑅𝑅𝑖𝑖∗ within 

the training data. For both classifiers, the cross-validated classification probability was the 

percent correct out of the 500 test data vectors, for each action number. 

 

Statistical Testing of Decoders: 

 
Correct classification may be considered as success in a Bernoulli trial, and the sum of Bernoulli 

trials is binomially distributed. We evaluated decoder performance, first, by comparing with 
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chance levels, taking the null hypothesis to be that the binomial probability of success was .25. 

To test for a significant difference between decoders, we fit a binomial generalized linear model 

and controlled for action number. For each trial of action bin, tested on decoder, the log odds of 

the probability of correct classification was given by the regression function as in Equation 6: 

 
logit�𝔼𝔼�𝐼𝐼𝐴𝐴�𝐴̂𝐴� | (𝐼𝐼𝑑𝑑 ,𝐴𝐴)�� = log � 𝑝𝑝𝑑𝑑(𝐴𝐴)

1−𝑝𝑝𝑑𝑑(𝐴𝐴)
� = 𝛽𝛽0 + 𝛽𝛽𝑑𝑑 ⋅ 𝐼𝐼𝑑𝑑 + 𝛽𝛽𝐴𝐴 ⋅ 𝐴𝐴. 

 
Here, 𝐼𝐼𝐴𝐴�𝐴̂𝐴� is an indicator signifying correct or incorrect classification, and 𝐼𝐼𝑑𝑑 is an indicator for 

the two decoders. The data provides evidence for improved classification using the naive Bayes 

decoder when 𝛽𝛽𝑑𝑑 is found to be significantly greater than zero. Correct classification can be 

conceptualized as success in a Bernoulli trial. The sum of Bernoulli trials is binomially 

distributed. Thus, the proportion of correct classifications at each action number was compared 

to a binomial distribution in which correct classifications (successes) occurred at chance levels 

(0.25). The resulting probability of observing a classification rate as extreme, or more extreme, 

than the empirical classification rate was significant if less than 0.05.   
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3.0  RESULTS 

This dissertation examines how VTA neurons encoded information during execution of serial 

behaviors, a topic that is poorly understood. Animals were trained to execute actions (nose pokes 

into a lit cue port) in order to receive rewarding outcomes (sugar pellets). Because the most 

obvious difference between actions was their corresponding action number within a trial (action 

number), special attention was paid to analyzing neuronal activity as a function of action 

number. Stimuli predicting trial start (cue light onset) and outcome delivery are also examined to 

understand how VTA neurons process information about these events during trials requiring 

serial action execution.  

TASK DESCRIPTION 

In the task, animals learned to execute actions to earn rewards. In the first session, each action 

was reinforced. In session 2, the probability that an action was rewarded was decreased from 1 to 

0.2, in a block-wise fashion. In sessions 3 and 4, actions were reinforced at a probability of 0.2. 

In sessions 5 – 7, actions were reinforced at a probability of 0.1 (Figure 3.1). Random 

reinforcement ensured that each action was equally likely to lead to reinforcement, and thus, was 

equally valued. Further, reward anticipatory effects would likely be minimized in such a design. 

In all trials that were randomly reinforced, unpredictable and varying numbers of actions were 
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required. For example, a given trial may require only 1 action or dozens of actions. The 

probability that an action would be reinforced did not change based upon how many actions had 

been completed up to that point in the trial. In each trial, onset of a cue light signaled rewards 

were available to be earned. Rats then began nose poking for rewards. If an action was not 

reinforced, there was no change in the environment. When an action was reinforced the cue light 

turned off and reward delivery occurred after a half second delay (Figure 3.1).  
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Figure 3.1. Experimental Design.  

Instrumental actions (nose pokes into a lit port) were reinforced probabilistically with delivery of sucrose pellets 

(outcomes). In session 1, each action was reinforced (fixed ratio 1). During session 2 the probability that an action 

was reinforced was decreased in 3 blocks of trials (block 1, p = 1; block 2, p = 0.3; block 3, p = 0.2; transition 

session). In sessions 3 and 4, the probability of reinforcement was 0.2 (random ratio 5 reinforcement schedule). In 

the final 3 sessions (5-7), actions were reinforced at a probability of 0.1 (random ratio 10). These sessions are 

referred to as FR01, TRANS, RR05 and RR10. There were 180 trials per session. A cue light was illuminated at the 

start of each trial, signaling that reinforcement could be earned through action execution. If a rat executed an 

unreinforced action, there were no changes in the environment. When an action was reinforced (white circle), the 

cue light was immediately extinguished, and following a 0.5 sec delay, the outcome was delivered. At outcome 

delivery, the reward trough was illuminated and a small stepper motor turned to dispense sucrose pellets. The sugar 

pellet then rolled into the reward trough. The motor created a clearly audible mechanical sound. Thus, outcome 

delivery was associated with visual and auditory stimuli that immediately preceded the actual delivery of the 

outcome. The task proceeded to the ITI once the animal retrieved the outcome. Only one action was reinforced per 

trial. 
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ANIMALS LEARNED TO EXECUTE SERIAL ACTIONS 

Animals learned to perform and sustain serial actions until outcomes were earned in each trial. In 

nearly every session, all 180 trials were routinely completed and all outcomes consumed. Action 

rate, defined as the number of actions executed per second when outcomes were available, was a 

behavioral index of learning and performance in each reinforcement schedule. As expected, 

action rates were greater in all random ratio sessions than in the fixed ratio 1 session (Figure 

3.2). Action rates in the last two random ratio 10 sessions were significantly higher than all other 

sessions, and action rates in the random ratio 5 sessions were significantly higher than the 

preceding sessions (Figure 3.2; F(6,24) = 4.726, p = 0.003; repeated measures contrasts p < 0.05). 

Thus, consistent with behavioral theory, increasing the average action requirement increased 

action rate (Reynolds, 1975). The latency to begin executing actions once the cue light was 

illuminated was significantly faster in all sessions than during the initial fixed ratio 1 session 

(F(6,24) = 8.996, p = 0.003; all repeated measures contrasts p < 0.05). This effect is consistent with 

animals learning that cue onset predicted outcome delivery. The latency to retrieve outcomes, 

measured from the time of delivery to retrieval, did not differ between sessions (F(6,24) = 1.928, p 

= 0.226). Thus, rewarding outcomes equally motivated animals in all sessions, and differences in 

behavioral performance across sessions are most likely unrelated to affective processes. Taken 

together, these data suggest that animals readily learned to perform serial actions and that 

behavioral performance was sensitive to the action-outcome contingency. Contingency is 

reflective of the average number of actions performed to receive an outcome, and these data 
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suggest that the animals were also sensitive to this aspect of the FR01, RR05, and RR10 

reinforcement schedules.   

There was no correlation between the latency to retrieve outcomes and the number of 

actions in the current trial (r(3468) = -0.017, p = 0.309). Similarly, the latency to begin responding 

in the next trial (measured from onset of the cue light) was not correlated with the number of 

actions performed in the previous trial (r(3445) = 0.015, p = 0.389). The lack of correlation 

between action number and latency to retrieve outcomes or initiate the next trial suggests that 

performing more or less actions did not alter fatigue, attention, or motivation. Inter-action 

interval increased significantly at higher action number bins (Figure 3.3; F(3,66) = 8.665, p < 

0.001). This outcome suggests that animals were sensitive to the number of actions performed 

within each trial. Inter-action intervals in the first half of each session were not statistically 

different from those in the second half of each session (t(21) = 1.458, p = 0.160). These data, 

coupled with the lack of correlation between retrieval latency and the number of actions in a 

trial, further suggest that increasing inter-action intervals were not a byproduct of fatigue or 

decreased motivation.  

Taken together, the change in action rate between reinforcement schedules, and the 

increased inter-action interval at higher action numbers, may suggest that animals perceived the 

accumulation of successive actions. It should also be noted that the increased inter-action interval 

for higher numbered actions was not associated with overt changes in the way that actions were 

performed (e.g. according to visual observation, actions were still performed with similar 

patterns of motor output, etc.) This is important because it suggests that actions did not 

systematically differ from each other in a way that would confound the analyses of neuronal 

activity as a function of action number.  
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Figure 3.2. Action Rate. 

Data depict the mean ± SEM action rate of all animals in each recording session. Animals learned to perform serial 

actions. Action rates were greater in RR sessions than the FR1 session. RR10 action rates were greater than RR05 

action rates. There were no differences in action rate during the final RR sessions (F(6,24) = 4.726, p = .003; repeated 

measures contrasts p < 0.05).  
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Figure 3.3. Inter-Action Interval as a Function of Action Number. 

Data depict the mean ± SEM inter-action interval all animals in all RR10 recording sessions as a function of binned 

action number. Action number has been binned into 4 bins of 5 consecutive action numbers. Note that there were 

significantly greater inter-action intervals at higher action numbers (F(3,66) = 8.665, p < 0.001).  

 32 



NEUROPHYSIOLOGICAL CLASSIFICATION  

The current dataset consists of 375 units recorded from 10 rats in 7 sessions. All recording arrays 

were verified under light microscope to be located in the VTA via standard histological 

approaches (Figure 3.4). Cells were identified as putative VTA dopamine units (‘dopamine 

neurons’, n = 155) if they had spike waveforms wider than 1.4 ms and baseline firing rates below 

10 Hz (Fiorillo et al., 2003; Tobler et al., 2005) (Figure 3.4). The remaining 220 units were 

classified as putative non-dopamine units (‘non-dopamine neurons’) (Figure 3.5). It should be 

noted that there were not natural distinctions, or ‘clusters’, formed between these two 

subpopulations using this approach. This ultimately means that the classification is somewhat 

arbitrary. For this reason, all neuronal analyses are also performed on all neurons, without 

respect to neuronal classification. While some previous work has suggested that interspike 

intervals can be used to classify neurons as dopaminergic or non-dopaminergic (Hyland et al., 

2002), there was no evidence of this in the current dataset. Both classes of neurons (according to 

the above described criteria) had similar coefficients of variation of baseline interspike intervals 

(dopamine neurons: 1.13 ± 0.04, non-dopamine neurons: 1.19 ± 0.04; t(373) = -1.039, p = 0.300). 

Examples of cell sorting and raw voltage traces demonstrate typical unit separation in principal 

component space, and typical signal to noise ratios (Figure 3.6). Accompanying those raw data 

are example rasters demonstrating task-evoked neuronal responses for each event in the 

experiment (Figure 3.6).  
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Figure 3.4. Locations of Recording Electrodes within VTA. 

Each section shows estimated locations of each recording array plotted as a black circle. All placements were 

verified under light microscope. Insets show midsagittal diagram of rodent brain with vertical lines representing the 

approximate location of the most anterior and posterior coronal sections shown. 
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Figure 3.5. Electrophysiological Classification of VTA Units. 

Each point represents a single unit and data from all sessions are depicted. Units with wide spike widths (>1.4 ms) 

and low firing rates (< 10 Hz) are enclosed in the box. These units were considered putative dopamine neurons. The 

remaining units were considered putative non-dopamine neurons.  
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Figure 3.6. Representative Examples of Sorting, Recordings, and Responses.  

(A) Spikes from unit A, a dopamine neuron, sorted according to the first 2 principal components of all threshold 

crossing waveforms (left). Purple points represent spikes that were assigned to unit A, and gray points represent 

noise that was not sorted into single unit spikes. A raw voltage trace (band pass filtered between 100 Hz and 7 KHz) 

corresponding to the same unit is depicted in the middle column. Examples of spikes belonging to unit A are notated 

in the trace. Unit A represents a typical cue-responsive unit. Raster plot depicts the unit’s response aligned to cue 

onset (right). Each dash represents a single spike, and each row represents a single trial (first trial in the top row). 
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Note the increased spike density just after cue onset (time 0) across all trials. (B) Representative delay period 

responsive,   non-dopaminergic, neuron. Data plotted with the same conventions as (A). In this example 

recording, two units were simultaneously recorded (left). Raster (right) depicts delay period (-0.5 – 0s) spikes 

aligned to the time of reward delivery. Note the consistent increase in spike density after cue offset and preceding 

outcome delivery. (C) Data from a representative non-dopaminergic, outcome delivery responsive neuron is plotted 

with similar conventions as (A). Raster (right) depicts neuronal activity aligned to the time of outcome delivery. 

Note the consistent delivery evoked response. (D) Data from a typical dopaminergic neuron that preferred low 

action numbers. Spike sorting (left) plotted with similar conventions as (A). Several units were simultaneously 

recorded and the example voltage trace contains spikes from multiple units (middle). Only a spike corresponding to 

unit D (yellow) is notated. The raster (right) shows spikes aligned to the time of action execution (time 0). Each row 

of the raster represents one action evoked response and rows are arranged by action number. Each arrow on the right 

represents action numbers 1-20. For each action number, the earlier occurrences of an Nth numbered action are 

arranged toward the top. Thus, the first row of the raster represents the first occurrence of an action number 1, and 

the second row represents the second occurrence of action number 1 (i.e. trials one and two, respectively). The inset 

depicts the averaged response across action numbers 1-20 ± SEM. Note that the neuron most strongly prefers actions 

1 and 2, which is reflected in the tuning curve (inset) and the spike density in the raster. 
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ACTIONS EVOKED MODEST INCREASESES IN POPULATION ACTIVITY 

Neuronal responses were divided into those from dopamine and non-dopamine neurons and 

population averaged activity was aligned to a 0.250 sec window centered on the time of action 

execution. In this analysis, all actions were considered together, without respect to action 

number. Action execution evoked a modest increase in neuronal activity. The magnitude of the 

evoked population responses was not statistically different between sessions or dopaminergic 

and non-dopaminergic neurons (Figure 3.7 A, B; main effect of session, F(6,361) = 0.919, p = 

0.481; main effect of neuron type, F(1,361) = 2.204, p = 0.139; interaction, F(6,361) = 0.660, p = 

0.682). It should be noted a phasic increase in the activity of dopamine neurons was present in 

the first session, though this was not significantly greater than other sessions (Figure 3.7 A). 

When single neurons were examined, suppressed firing rates were observed in only a minority of 

single neurons (Figure 3.7 C). The most common response evoked by action execution was 

activation (Figure 3.7 C). The proportion of dopaminergic or non-dopaminergic neurons that 

were activated in the peri-action window did not differ across sessions (Figure 3.7 C; dopamine 

neurons, Χ2
(6) = 4.323, p = 0.633; non-dopamine neurons, Χ2

(6) = 2.318, p = 0.888). Too few 

neurons were suppressed in the peri-action window to permit reliable statistical analysis. Taken 

together, these data suggest that action execution, on the whole, weakly increased population 

averaged activity via consistent proportions of dopaminergic and non-dopaminergic neurons 

being activated during action execution. 
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Figure 3.7. Action-Evoked Neuronal Activity. 

(A) The mean population response evoked by action execution in select sessions. Data are depicted for the FR01 

session (session 1) the final RR05 session (session 4) and the final RR10 session (session 7). All actions in all trials 

were utilized for these analyses. The main figure depicts the normalized population response for all dopamine units 

(solid line) and non-dopamine units (dashed line), aligned to the time of action execution (0.025 sec bin). Inset 

depicts data plotted identically, for all neurons grouped together (both dopamine and non-dopamine neurons). The 

same axes are used in the inset. The legend for (A) appears to the lower right of that panel. (B) Mean ± SEM 

neuronal response evoked by action execution. Each unit’s data were averaged inside a 0.250 sec time window 

centered on the action. Data are depicted separately for all putative dopamine and non-dopamine neurons, as well as 

all VTA units pooled together. Note that in each grouping of units, the evoked population response was stable across 

sessions, with no difference between groups in action evoked neuronal response (main effect of session, F(6,361) 

=.919, p = .481; main effect of neuron type, F(1,361) = 2.204, p = .139; interaction, F(6,361) =.660, p = .682). (C) The 

proportion of units classified as either significantly activated (solid lines) or suppressed (dashed lines) by action 

execution. Data are depicted across all sessions, for putative dopamine, non-dopamine and all VTA neurons. Note 

that for all groupings of neurons, suppression was rarely evoked and the proportion of activated neurons did not 

change across sessions (All VTA units, Χ2
(6) =3.977, p = .680; dopamine units, Χ2

(6) =4.323, p = .633; non-

dopamine units, Χ2
(6) =2.318, p = .888). Note that the legend for (C) appears to the lower right. 
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SERIAL ACTIONS EVOKE UNIQUE ACTIVITY PATTERNS IN DIFFERENT VTA 

NEURONS 

The previous analysis examined how actions modulated neuronal activity, but did not elucidate 

how neuronal activity was modulated throughout a series of actions. To understand this, neuronal 

activity was aligned to the time of action execution and examined as a function of action number 

within a trial (e.g. all first, second, or third actions that occurred across all trials). The random 

ratio 10 sessions were used for this analysis, as this reinforcement schedule resulted in greater 

average numbers of actions per trial, and larger samples of each action number. The random 

nature of reinforcement resulted in a geometric distribution of the number of times that each 

action number would be required before outcomes were delivered. Thus, higher numbered 

actions occurred less frequently than lower numbered actions. In a small number of trials, very 

high numbered actions were required (e.g. 50 or 60 actions). To ensure that a sufficient number 

of observations of each action number were collected, neuronal activity was only analyzed as a 

function of action number for actions 1 – 20. 

Examination of individual neurons revealed that few had firing rates that were uniformly 

modulated by the execution of all actions (Figure 3.8). Instead, unique subsets of actions 

activated or suppressed individual neurons (Figure 3.8). For instance, the pair of simultaneously 

recorded neurons in the top row of Figure 3.8 preferred only the lowest numbered actions and the 

highest numbered actions, respectively (Figure 3.8). Some neurons, such as the pair in the middle 

row of Figure 3.8, were activated by a larger number of actions. Other neurons preferred more 

complex combinations of actions, such as the pair of simultaneously recorded neurons in the 

 40 



bottom row of Figure 3.8. Note that in Figure 3.8, the most obvious patterns of modulation are 

activation, and not suppression, around individual actions. These examples were chosen to 

illustrate the diversity of neuronal responses, and the non-uniformity of firing rate modulation 

across action numbers. In some cases, neurons had firing rates that increased at some actions and 

decreased during others (see below). The fact that heterogeneous patterns of activation and 

suppression were observed amongst neurons recorded simultaneously, suggests that these diverse 

patterns of neuronal activity were not attributable to behavioral idiosyncrasies, attention, 

motivation, or response vigor. Because heterogeneous activity patterns were present in multiple 

animals, no single animal could account for the amount of diversity observed in the entire 

population.  

One alternative possibility is that neuronal activity could also reflect how much time had 

elapsed since the start of each trial. As elapsed time and action number are correlated, it may be 

impossible to discount this interpretation entirely. In order to gain insight into this possibility, 

action evoked spike counts were regressed on these two predictor variables in a generalized 

linear model (Poisson regression). In this model, action number was the sole significant predictor 

of spike count in 29% (45/156) of the neurons (Figure 3.9). In contrast, time elapsed since trial 

start was a significant predictor of spike count in only 7% (11/156) of the neurons (Figure 3.9). 

Owing to the fact that action number and time elapsed are correlated, both variables were 

significant predictors of spike in an additional 22% (35/156) of the neurons (Figure 3.9). Thus, 

time elapsed since trial start rarely modulated spike count by itself, while action number 

modulated the activity of a much larger proportion of the population. The results of this 

regression analysis strongly suggest that the aforementioned action evoked neuronal activity was 

representing something related to action number, and not time elapsed in a trial, in the majority 
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of neurons firing selectively to subsets of action numbers. The fact time elapsed since trial start 

was seldom a strong predictor of neuronal activity, and most frequently predicted spike counts 

only when action number also was a strong predictor of neuronal activity, further buttresses the 

notion that action number, but not time, modulated neuronal activity. This likely owes to the fact 

that actions, and not time, were causally related to outcome delivery. However, these data should 

be interpreted carefully, as action number and time elapsed are somewhat confounded. Taken 

together, these data suggest that differently numbered actions modulated VTA neuronal activity 

in a heterogeneous fashion.  
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Figure 3.8. Example Neuronal Responses Around Actions 1 - 20. 

Normalized firing rate is plotted as a function of color, and aligned to the time of action execution (0.025 sec bins). 

Data are depicted as the average response evoked by each nth action, across all occurrences of that action. Neurons 

responded to unique subsets of action numbers. The neurons depicted in each row were recorded simultaneously, 

and each row represents a pair from a different sessions. These 3 pairs of neurons were chosen to highlight the 

diversity of responses that were found in the data, and are highly representative of the patterns of activation found 

throughout the dataset. For simplicity, bi-directionally modulated or suppressed neurons are not depicted but, were 

present in the dataset.  
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Figure 3.9.  Action Number and Elapsed Time as Predictors of Neuronal Activity.  

Action evoked spike counts from each neuron were regressed on action number and time elapsed since 

trial start (Poisson regression). This model was utilized to determine what proportion of neurons activity 

had significantly predicted by action number or time. Color plot indicates the significance (white versus 

black) of each predictor variable for each neuron in dataset. Each row represents one neuron. Note that 

more neurons have activity that is predicted by action number (left column), and that very few neurons 

have activity predicted solely by elapsed time (right column). A summary of the data is presented in a pie 

chart, which depicts the percentage of units with activity predicted only by action number (dark blue), 

only elapsed time (yellow), both variables (cyan), or neither (brown). Note that over half the units have 

activity predicted by action number, and that time alone only predicts the activity of a small percentage of 

neurons.  
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To visualize each neuron’s tuning curve as a function of action number, neuronal activity 

for every neuron that was recorded during the random ratio 10 sessions are plotted (Figure 3.10 

A). Examination of scaled tuning curves (smallest evoked response equal to zero and the largest 

evoked response equal to one) indicated individual neurons had firing rates that were maximized 

and minimized around different subsets of actions (Figure 3.10 A). Further, each action was 

associated with unique patterns of activation and suppression of activity amongst different 

neurons (Figure 3.10 A). For clarity, unscaled tuning curves are plotted similarly to Figure 3.10 

A. Note that while transforming the neuronal data to scaled tuning curves improves visualization 

of these effects, they are also apparent without this transformation (Figure 3.10 B). Diverse 

activity patterns occurred in both dopaminergic and non-dopaminergic neurons (Figures 3.11 A, 

B). Tuning curve peak to valley depths did not differ by neuron type (Figure 3.12 A). 

Approximately half of the neurons that were recorded were significantly modulated by action 

number. Of these neurons, most had a single maximum in their tuning curve peaks (Figure 3.12 

B). This did not differ by neuron type. Different groups of neurons had tuning curve global 

maxima in each bin of actions numbers (actions 1-5, 6-10, 11-15, 16-20) with substantial 

proportions of neurons preferring each action number bin (Figure 3.13). Thus, unexpected levels 

of heterogeneity and a mosaic of activity patterns were evoked by execution of serial actions. 

The fact that both populations of neurons carry comparable signals suggests that they both 

process similar information. These data suggest that together, both populations of VTA neurons 

transmit a complex, multi-neurotransmitter signal to target brain regions. 
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Figure 3.10. Tuning Curves of Neuronal Responses Across Action Number. 

(A) Scaled tuning curves of neuronal activity across action number (0.25 sec window centered on action execution). 

Because neurons had different magnitude activations and suppressions of activity around individual actions, data are 

scaled so each neuron’s full range of evoked firing rates span 0 – 1 (plotted by color). Figures depict neurons 

recorded from each of the three RR10 sessions. Each neuron is depicted in a separate row. This transformation is 

done solely for data visualization, and subsequent analyses of neuronal activity as a function of action number 

utilize raw spike counts. Data are sorted by the location of the peak of the tuning function, with higher action 

number peaks towards the bottom. Dopaminergic (white) or non-dopaminergic neurons (black) are indicated by 

inner color bar at the right. Note that different neurons are tuned to prefer different subsets of action numbers. Each 

action maximizes or minimizes the firing rates of a subset of neurons. (B) Tuning curves of neuronal activity across 

action number. Data plotted similarly to (A), except that data are displayed un-scaled. Note that while scaling the 

data improved visualization of the effect, the same trend is present in (B) as in (A). 
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Figure 3.11. Tuning Curves of Dopaminergic and Non-Dopaminergic Neurons. 

(A) Scaled tuning curves of neuronal activity evoked by actions (0.25 sec window centered on action execution) 

across action numbers 1-20, for each dopamine neuron recorded in the three RR10 sessions. Each neuron is depicted 

in a separate row. Data are sorted by the location of the peak of the tuning function, with higher action number peaks 

towards the bottom. Note that even amongst only dopamine neurons there is an unexpected degree of tuning 

function heterogeneity. (B) Data depicted identically for non-dopamine neurons. Note the similarity between (A) 

and (B), which suggests that both pools of neurons encode similar information about serial actions.   
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Figure 3.12. Quantification of Tuning Curve Attributes. 

(A) Mean ± SEM difference between each tuning curve’s maximum and minimum. Inset depicts the entire 

distribution of values, which approached, but did not reach statistical significance (t(154) = 3.224, p = 0.084). (B) The 

proportion of neurons that were significantly modulated by binned action number with either 1 or 2 local maxima in 

their tuning curve. 49.4% of neurons were significantly modulated by action number, with no effect of neuron type 

(χ2
(1) = 0.099, p = 0.753). Most neurons had a single maxima in their tuning curve (χ2

(1) = 8.00, p = 0.005), with no 

effect of neuron type (χ2
(1) = 1.779, p = 0.182). Also note that amongst neurons that were significantly modulated by 

action number, a smaller but substantial proportion contained two maxima in their tuning curves. The inset depicts 

all VTA neurons (dopamine and non-dopamine) plotted identically to main figure. Note the same trend is present.  
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Figure 3.13. Location of Tuning Curve Global Maxima. 

Data depict the proportion of neurons with a tuning curve global maximum in each action number bin. The main 

figure presents this analysis for dopamine and non-dopamine neurons, separately. Note the similarity of each 

population (χ2
(3) = 1.069, p = 0.785) and note that each action number bin contains a sizeable proportion of neurons 

that fire most preferentially for actions in that bin. This distribution was non-uniform (χ2
(3) = 55.026, p < 0.001), with 

more neurons preferring the highest numbered actions. The inset to the upper right depicts the same data for each 

VTA neuron. Note the similarity in the data.  
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Many patterns of action-evoked activity were present in the dataset. Functional principal 

components analysis was utilized to inspect the tuning curves in low dimensional space. Each 

tuning curve is plotted as a single point against functional principal components 1 and 2 (Figure 

3.14). The first principal component is the linear vector that accounts for the most variation 

between tuning curves. The second principal component accounts for the second most variation 

between tuning curves and is orthogonal to the first. These two components accounted for a total 

of 68% of the variation between tuning curves. Principal components transformation did not 

produce strong clustering of the data (Figure 3.14). Taken together with the variety of tuning 

curves that were observed, these data suggest there is not a preponderance of any particular 

shape of tuning curve in the dataset. There is a diverse array of tunings to action number in the 

current data. It bears mentioning that the lack of clear clustering in these data must be interpreted 

cautiously. These data could be visualized along another set of dimensions that may reveal a 

pattern that is not readily apparent in function principal component space. Alternatively, if 

additional recordings were added to the current dataset, a more robust clustering that is not 

currently apparent could emerge. 
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Figure 3.14. Functional Principal Components Transformation of the Tuning Curves. 

Each tuning curve plotted in lower dimensional functional principal component space to determine if some aspect of 

the tuning functions of these neurons appeared regularly. Because tuning curves across action number were 

inherently high dimensional, functional principal components analysis was utilized to plot each scaled tuning curve 

in a two dimensional space that would capture a large proportion of the variance between tuning curves. Each point 

represents one neuron’s tuning curve. The weightings of the first two principal components are plotted for all 

neurons from all RR10 sessions. Color represents the location of the peak of the tuning function (hot colors 

represent peaks at higher action numbers). Note that there is not a clear clustering of points, but rather points are 

scattered, indicating that there is no preponderance of similar tuning functions. The first principal component 

explains the most variability between tuning curves. This dimension correlates highly with whether or not the tuning 

functions are maximal at low numbered action numbers. 
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POPULATION AVERAGE ACTIVITY IS INVARIANT WITH ACTION NUMBER 

Most analyses of VTA or dopaminergic neuronal activity focus on population averaging. As a 

first step, this traditional approach was utilized to examine how information may be processed 

during the execution of serial actions. As expected from the previously described exploratory 

data analyses, averaging the action evoked neuronal activity in either group of neurons concealed 

the unique firing patterns of these neurons, and produced modestly elevated population activity 

(Figures 3.15 A, B). There was not a significant difference in population activity between action 

numbers or neuron type in any session (Figure 3.15 A, B) (session 5, main effect of action 

number, F(3,150) = 0.877, p = 0.454; main effect of neuron type, F(1,50) = 1.479, p = 0.230; 

interaction, F(3,150) = 0.513, p = 0.674; session 6, main effect of action number, F(3,144) = 2.185, p 

= 0.092; main effect of neuron type, F(1,48) = 0.804 , p = 0.374; interaction, F(3,144) = 0.598, p = 

0.618; session 7, main effect of action number, F(3,156) = 2.163, p = 0.095; main effect of neuron 

type, F(1,52) = 0.006, p = 0.937; interaction, F(3,156) = 0.326, p = 0.806). Dopaminergic neuronal 

activity was uncorrelated with action number (Session 5, r = 0.01, p = 0.797; Session 6, r = 0.06, 

p = 0.250; Session 7, r = 0.05, p = 0.253). Similar results were obtained with non-dopamine 

neurons (Session 5, r = 0.05, p = 0.244; Session 6, r = 0.05, p = 0.258; Session 7, r = 0.02, p = 

0.633). Thus, action evoked neuronal activity patterns yielded a population average function that 

is invariant with action number. See Table 3.1 for a description of what proportion of units were 

significantly activated or suppressed by each action bin. The results detailed so far lead to the 

conclusion that actions modulate the activity of individual neurons in a unique fashion, and the 

population average is not likely to convey information about ongoing action number.  
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Figure 3.15. Population Averaged Activity Evoked by Actions 1 – 20. 

(A) The mean dopaminergic neuronal response as a function of action number. Data are depicted in all RR10 

sessions (sessions 5- 7), for actions 1 – 20 (0.25 sec window centered on action execution). Data are depicted as 

mean ± SE. Note that the population average is invariant with action number. These data suggest averaged activity is 

not likely to encode action number. (B) Non-dopamine neuronal responses to serial actions. Data plotted identically 

to (A). Note that similar results were obtained in non-dopamine neurons.  
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   Activated      Suppressed  

Actions  1-5 6-10 11-15 16-20  1-5 6-10 11-15 16-20 

           

Session 6  0.17 0.19 0.25 0.23  0.12 0.10 0.13 0.12 

Session 7  0.22 0.22 0.20 0.28  0.06 0.06 0.06 0.06 

Session 8  0.24 0.17 0.24 0.20  0.06 0.09 0.07 0.06 

 

Table 3.1. Proportion of Neurons Activated by Different Action Numbers. 

The proportion of neurons that were activated (left of table) or suppressed (right of table) by each bin of 5 

consecutive action numbers is listed for each of the RR10 sessions. Note that for each of the 4 action bins, 

approximately one quarter to one third of the neurons had significantly activated or suppressed action-evoked 

activity levels. Though it is not depicted explicitly in this table, please note that there is some overlap between 

neurons that were significantly modulated by each action bin. For example, some neurons were significantly 

activated by more than one bin. However, there are a large number of neurons that are selectively modulated for 

each bin of actions. Also note that activation was the most common activity pattern evoked by a group of actions.   
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ACTION NUMBER IS ACCURATELY DECODED FROM VTA ENSEMBLE 

ACTIVITY, BUT NOT THE POPULATION AVERAGE 

The heterogeneity of neuronal activity evoked by action execution suggested VTA could encode 

information about actions via the collective activity of ensembles of neurons. Actions were 

reinforced randomly, so animals could not predict which action would be reinforced. Each action 

was equally likely to be reinforced. Thus, individual actions did not differ in terms of value, but 

instead differed only by action number. These observations prompted us to quantify the degree to 

which action number could be decoded from the activity of many differently tuned neurons. As a 

point of comparison the population average was used to decode action number as well.  

The same basic approach was utilized in all decoding analyses. A basic description of 

these analyses is detailed here, and some aspects of the approach are omitted for the sake of 

clarity. See the Methods Section for a more detailed account of the approach. Two different 

decoders were utilized in the current work (discussed below). For these analyses, four categories 

that corresponded to five consecutive action numbers were created (actions 1 - 5, 6 - 10, 11 - 15, 

and 16 - 20). Each decoder classified observed action-evoked spike counts as belonging to one of 

the aforementioned four possible categories. Thus, decoder performance depended on how well 

action number corresponded to firing rate. All the observed firing rates were divided into two 

datasets. One dataset, the training dataset, was used to build expectations about how firing rate 

related to action number. The decoder classified the remaining data, which is referred to as the 

test dataset. Each decoder estimated the probability that an observed firing rate belonged to the 
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four classes of actions, based on the relationship between firing rates and category in the training 

data. The decoder classified an each observation of a firing rate as the most likely category of 

action to have evoked that response.  

The first decoder, the population average decoder, used the averaged activity of VTA 

neurons to classify actions (Figure 3.16 A). This decoder does not take advantage of the fact the 

VTA neurons were diversely tuned for action number, because it utilizes the average evoked 

response. A second decoder, the naïve Bayesian ensemble decoder, simply considered each 

neuron as independent (Figure 3.16 B). This decoder did not assume any structure between 

neurons, and did not average or otherwise collapse together the activity of multiple neurons into 

a single quantity. This decoder capitalizes on the fact that neurons are differently tuned to action 

number. By doing so, this decoder takes into account the collective activity of ensembles of VTA 

neurons. In the case of the naïve Bayesian ensemble decoder, the process of assessing the 

probability that an observed firing rate belonged to each category was repeated for every neuron. 

Within each class, these probabilities were multiplied, and the decoder estimated the observed 

action class as the class with the highest resulting product of these probabilities. The population 

average decoder (Figure 3.16 A) serves as a useful point of comparison against the naïve 

Bayesian ensemble decoder (Figure 3.16 B), as it does not capture the collective activity of the 

ensemble.  

The population average decoder did not decode action number accurately (Figure 3.16 

C), as most actions (12 of 20) were correctly decoded at or below chance levels (Table 2.1). Only 

actions 1-6, and 13-14, were correctly decoded more frequently than chance levels (Table 2.1). 

These results are consistent with the interpretation that that the population average obscures the 

unique tuning of each neuron. By averaging each neuron’s activity, unique action-evoked 
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patterns of activity are mostly cancelled out, so that the population average does not contain 

substantial information about action number. In sharp contrast to the performance of the 

population average decoder, the naïve Bayesian ensemble decoder correctly classified 14 of 20 

action numbers, actions 1-4 and 6-15, above chance levels (Figure 3.16 C, Table 2.1). Only the 

highest numbered actions were classified below chance levels (Table 2.1). The naïve Bayesian 

ensemble decoder performed significantly better than the population average decoder (Figure 

3.16 C; 𝛽̂𝛽 = 0.914, t(19) = 26.620, p < 0.001). Thus, simple conceptualizations of VTA ensemble 

activity, independent activity between dopaminergic and non-dopaminergic neurons, signal 

information about ongoing action number. These data suggest that, unlike the population 

average, the collective activity of VTA ensembles is a viable signal for post-synaptic networks to 

decode action number from. The current data demonstrate a novel and surprising form of 

information processing by VTA neurons. It should also be noted that both decoders, and 

especially the naïve Bayesian decoder, performed better at low numbered versus high numbered 

actions. This is because the variance in spike counts evoked by higher numbered actions was 

greater, possibly due to the decreased sample size associated with higher numbered actions 

(Figure 3.17). 
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Figure 3.16. Decoding Analyses.  

(A) The population average decoder classified activity that was averaged across neurons, and does not take 

advantage of the unique patterns of activity evoked in each neuron. (B) The naïve Bayesian ensemble decoder used 

each neuron’s action-evoked activity to classify test data (e.g. no averaging), and the decoder is able to take 

advantage of the diverse tunings of each neuron. (C) Decoding accuracy for actions 1-20. Data are depicted as the 

mean ± SEM proportion of correction classifications for each decoder. Chance levels (0.25) of correctly classifying 

actions are depicted as the solid black line. Note that the naïve Bayesian ensemble decoder was significantly more 

accurate than the population decoder (𝜷𝜷� = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗, t(19) = 26.620, p < 0.001). 
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Decoder  Population Average Naïve Bayesian 
    
Action 1  P < 0.001, Above Chance P < 0.001, Above Chance 
Action 2  P < 0.001, Above Chance P < 0.001, Above Chance 
Action 3  P < 0.001, Above Chance P < 0.001 , Above Chance 
Action 4   P < 0.001, Above Chance P < 0.001, Above Chance 
Action 5  P < 0.001, Above Chance P = 0.113, NS 
Action 6  P = 0.002, Above Chance P < 0.001, Above Chance 
Action 7  P < 0.001, Below Chance P < 0.001, Above Chance 
Action 8  P < 0.001, Below Chance P < 0.001, Above Chance 
Action 9  P = 0.003, Below Chance P < 0.001, Above Chance 
Action 10  P < 0.001, Below Chance P < 0.001, Above Chance 
Action 11  P < 0.001, Below Chance P < 0.001, Above Chance 
Action 12  P = 0.056, NS P < 0.001, Above Chance 
Action 13  P < 0.001, Above Chance P < 0.001, Above Chance 
Action 14  P = 0.004, Above Chance P = 0.049, Above Chance 
Action 15  P < 0.001, Below Chance P < 0.001, Above Chance 
Action 16  P < 0.001, Below Chance P = 0.112, NS 
Action 17  P < 0.001, Below Chance P = 0.004, Below Chance 
Action 18  P < 0.001, Below Chance P = 0.435, NS 
Action 19  P < 0.001, Below Chance P = 0.027, Below Chance 
Action 20  P < 0.001, Below Chance P < 0.001, Below Chance 
Totals  Above (8/20) 

Below (11/20) 
Above (14/20) 

Below (3/20) 
 

Table 3.2. Decoder Performance Compared to Chance Levels.  

Each decoder’s correct classification rate was assessed against chance levels. For each decoder and action number, 

the resulting probability of obtaining a value as extreme, or more extreme, than chance levels (0.25) is listed in the 

cells of the table.  If probability of correct classification is statistically above or below chance, this is listed in each 

cell, as are non-significant differences from chance (NS). Summed totals are listed in the bottom row. Note that the 

population decoder performs below chance levels for the majority of actions. In contrast the naïve Bayesian 

ensemble decoder performed above chance levels for the majority of actions.  
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Figure 3.17. Spike Count Variance as a Function of Action Number.  

Data depicted as the variability in spike count evoked by differently numbered actions. Each neuron’s variability in 

action evoked spike counts was averaged across neurons to yield population averaged variability. Note the increase 

in variability as action number increases, which likely accounts for the decreased decoding accuracy at higher action 

numbers. 
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SUMMARY OF ACTION EVOKED NEURONAL DATA 

In general, actions modestly increased neuronal activity, and individual neurons were tuned to 

limited and divergent subsets of actions. Action number was accurately decoded by considering 

the unique action-evoked activity of each neuron, without modeling any interaction between 

these neurons, and treating them as independent. The population-averaged activity was invariant 

with action number and offered only poor decoding of action number. These results suggest the 

collective activity of groups of VTA neurons signals real-time information about action number. 

CUE-EVOKED NEURONAL ACTIVITY ABSENT IN RANDOM RATIO SESSIONS  

To determine how environmental stimuli that predict outcome availability modulate neuronal 

activity in the task, neuronal responses that were evoked by the onset of the cue light at the start 

of each trial were examined. In the FR01 session (session 1), cue onset evoked a strong phasic 

increase in neuronal activity (Figure 3.18 A, B). The phasic population average response evoked 

by cue onset significantly diminished in all subsequent recording sessions (Figure 3.18 A, B; 

main effect of session, F(6,361) = 2.667, p = .015; all post hoc tests versus session 1 p < 0.05). Cue 

evoked responses in sessions 2 – 7 did not differ from each other (all post hoc tests p > 0.05). 

There was no difference in response magnitudes between dopamine neurons and non-dopamine 

neurons, and no interaction between neuron type and session (main effect of neuron type, F(1,361) 

= 1.543, p = .215; interaction, F(6,361) =.493, p = .814). Activation was the most common pattern 

of activity that was evoked by cue onset, and suppressed firing rates were rarely evoked (Figure 

3.18 C). The proportion of dopaminergic neurons activated by cue onset decreased across 
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recording sessions (Figure 3.18 C; Χ2
(6) = 20.109, p = .003). There was no change in the number 

of non-dopamine neurons activated by cue light onset across sessions (Figure 3.18 C; Χ2
(6) = 

10.636, p = .100). This may be due to a floor effect as a smaller proportion of non-dopaminergic 

neurons were activated by cue onset in the initial session. Thus, in the initial FR01 recording 

session, cue onset evoked a phasic response that diminished in subsequent random ratio 

reinforcement schedule sessions, and was present in decreasing number of dopaminergic 

neurons. Because minimal numbers of VTA neurons responded to cue onset in random ratio 

sessions, cue evoked neuronal responses are not likely to guide the execution of serial actions. 

These data further highlight the importance of the previously mentioned action-evoked neuronal 

responses, in terms of encoding information about ongoing behaviors.  
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Figure 3.18. Cue-Evoked Neuronal Responses. 

(A) The mean population response evoked by cue light onset is depicted for the FR01 session (session 1) the final 

RR05 session (session 4) and the final RR10 session (session 7). The main figure depicts the normalized population 

response for all dopamine neurons (solid lines) and non-dopamine neurons (dashed lines), aligned to the time of cue 

light onset. Inset depicts data plotted identically, for all neurons grouped together.  (B) Mean ± SEM neuronal 

response evoked by cue onset, across all sessions. Each neuron’s data were averaged across a time window +0.05 - 

+0.3 sec, relative to cue onset. Data depict responses of putative dopamine and non-dopamine neurons, as well as all 

VTA units grouped together. Note that in each grouping of units, the evoked population response was strongest in 

session 1 and significantly declined in subsequent sessions (main effect of session, F(6,361) = 2.667, p = .015). There 

was no difference in response magnitudes between dopamine units and non-dopamine units, and no interaction 

between neuron type and session (main effect of neuron type, F(1,361) = 1.543, p = .215; interaction, F(6,361) =.493, p = 

.814). (C) The proportion of units classified as either significantly activated (solid lines) or suppressed (dashed lines) 

by cue light onset are depicted across all sessions, for putative dopamine, non-dopamine, and all VTA neurons. Note 

that suppression was rarely evoked. The proportion of activated neurons decreased in later sessions (All VTA units, 

Χ2
(6) = 23.844, p = .001; dopamine neurons, Χ2

(6) = 20.109, p = .003). There was no change in the number of non-

dopamine neurons activated by cue light onset across sessions (Χ2
(6) = 10.636, p = .100).  
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PERI-OUTCOME NEURONAL DATA 

In each trial, once animals performed a reinforced action, the cue light was immediately 

extinguished, there was a half second delay, and then the outcome was delivered to the animal. 

Dopaminergic and non-dopaminergic population averaged activity was examined around these 

events in all sessions. For clarity, the mean population activity from selected sessions is plotted 

in Figure 3.19. 
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Figure 3.19. Neuronal Responses Aligned to Outcome Delivery. 

The normalized population response aligned to outcome delivery (time zero). The final action in each trial (left 

arrow), which was reinforced, occurred 0.5 sec prior to outcome delivery (right arrow). Cue light offset was 

simultaneous with execution of the final action, which signaled the completion of the trial and pending outcome 

delivery. Thus, the animal executed the last action in the trial (left arrow), there was a delay period, and then the 

outcome was delivered (right arrow). Data are depicted for the FR01 session (session 1) the final RR05 session 

(session 4) and the final RR10 session (session 7). The main figure depicts the normalized population response for 

all dopamine units (solid lines) and non-dopamine units (dashed lines), aligned to the time of cue light onset. Inset 

depicts data plotted identically, for all neurons grouped together.   
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STABLE OUTCOME EVOKED POPULATION ACTIVITY ACROSS SESSIONS 

Neuronal responses evoked by outcome delivery (+0.050 – 0.300 sec) were examined in 

each session (Figure 3.20 A). The magnitude of the outcome delivery evoked response did not 

change across sessions and, dopaminergic neurons had larger evoked responses than non-

dopamine neurons (Figure 3.20 A; main effect of neuronal type, F(1,361) = 9.159, p = .003; main 

effect of session type, F(6,361) = 1.352, p = .233; interaction, F(6,361) = 0.276, p = .960). The most 

common response that was evoked by outcome delivery was activation, and suppressed firing 

rates were only evoked in a very small number of cases (Figure 3.20 B). Non-systematically 

varying proportions of non-dopaminergic neurons were activated by outcome delivery (Figure 

3.20 B). This variation between sessions reached significance, but the proportion of activated 

non-dopaminergic neurons does not relate well to changes in reinforcement schedule (Figure 

3.20 B; Χ2
(6) = 13.234, p = .039). These fluctuations may relate to some aspect of the 

experimental design that is currently elusive, or could be a spurious effect. The proportion of 

dopaminergic neurons activated by outcome delivery did not differ between sessions (Figure 

3.20 B; Χ2
(6) = 3.664, p = .722). These data suggest that outcome delivery evokes robust and 

stable increases in dopaminergic neuronal activity. Further, these data are compatible with 

previous reports that outcome delivery evokes dopaminergic activation well into learning 

(Fiorillo et al., 2003).  
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Figure 3.20. Outcome Delivery Evoked Neuronal Activity. 

(A) Mean ± SEM neuronal responses evoked by outcome delivery (+0.050 - +0.300 sec) in each session. Data depict 

responses of putative dopamine and non-dopamine neurons, as well as all VTA units grouped together. Note that 

dopamine neurons had greater magnitude outcome evoked responses than non-dopamine neurons (main effect of 

neuronal type, F(1,361) = 9.159, p = .003; main effect of session type, F(6,361) = 1.352, p = .233; interaction, F(6,361) = 

0.276, p = .960). (B) The proportion of units classified as either significantly activated (solid lines) or suppressed 

(dashed lines) by outcome delivery. Data are depicted across all sessions, for putative dopamine, non-dopamine and 

all VTA neurons. Note that the proportion of dopaminergic neurons that were activated by outcome delivery did not 

change across sessions (dopamine neurons, Χ2
(6) = 3.664, p = .722).  There were modest, but significant, fluctuations 

in the proportion of non-dopamine neurons that were activated in each session (non-dopamine neurons, Χ2
(6) = 

13.234, p = .039). 
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DELAY PERIOD NEURONAL ACTIVATION INCREASES WITH LEARNING 

Reward prediction errors should be generated by stimuli that precede and are informative of the 

value of an outcome. In the FR01 session (session 1), only 1 action was required of the animal. 

In all subsequent sessions, the animal could not predict which action would be the final action, 

and therefore could not predict when outcomes would be delivered. Thus, immediately following 

execution of the final action (signaled by cue light offset), or in the delay between the final 

action and outcome delivery, prediction errors could occur. These responses should emerge with 

learning. Final action evoked and delay period neuronal responses were analyzed separately.  

To begin, each neuron’s data were averaged in a 0.250 sec window centered on the final 

action. The evoked population response did not adapt across sessions (Figure 3.21 A; main effect 

of session, F(5,321) = 0.621, p = .684). Dopaminergic and non-dopaminergic neurons had similar 

responses in all sessions (Figure 3.21 A; main effect of neuronal type, F(1,321) = 0.230, p = .632; 

interaction, F(5,321) = 1.677, p = .140). Suppressed neuronal activity was seldom observed when 

the final action in a trial was executed (Figure 3.21 B).  More, but still relatively modest numbers 

of neurons, were activated by the final action. The proportion of dopaminergic and non-

dopaminergic neurons that were activated by this event did not change across sessions (Figure 

3.21 B; dopaminergic neurons, Χ2
(5) = 0.575, p = .989; non-dopaminergic neurons, Χ2

(5) = 3.526, 

p = .619). Taken together, these data suggest that the final action in a trial activated a small 

numbers of neurons, which did not change across recording sessions.  
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Figure 3.21. Neuronal Activity Evoked by the Final Action in Each Trial. 

(A) Mean ± SEM neuronal response evoked by execution of the final action in each trial. Each unit’s data were 

averaged across a time window -0.125 - +0.125 sec, relative to action time. This is the same time window as is used 

in all other analyses of action-evoked neuronal activity. Data are depicted separately for all putative dopamine and 

non-dopamine neurons, as well as all VTA units pooled together. Note that the evoked population response did not 

change magnitudes across sessions, nor differ by neuron type (main effect of neuronal type, F(1,321) = 0.230, p = .632; 

main effect of session, F(5,321) = 0.621, p = .684; interaction, F(5,321) = 1.677, p = .140). (B) The proportion of units 

classified as either significantly activated (solid lines) or suppressed (dashed lines) by action execution. Data are 

depicted across all sessions, for putative dopamine, non-dopamine and all VTA neurons. Note that for all groupings 

of neurons, suppression was rarely evoked and the proportion of neurons, which were activated, did not change 

across sessions (dopamine neurons, Χ2
(5) = 0.575, p = .989; non-dopamine neurons, Χ2

(5) = 3.526, p = .619). 
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Population averaged activity during the delay period between the final action and 

outcome delivery was measured in a 0.250 sec window (Figure 3.22 A; +0.150 - +0.400 sec, 

relative to final action). Note that this window begins 0.050 sec after the window utilized to 

examine the final action in each trial, and ends 0.100 sec before the outcome is delivered. The 

evoked population response increased across sessions, with all random ratio 10 sessions being 

significantly greater than sessions 1 and 2 (Figure 3.22A; main effect of session, F(6,361) = 4.776, 

p < .001; post hoc tests p < 0.05). This response did not differ between non-dopaminergic or 

dopaminergic neurons (Figure 3.22 A; main effect of neuronal type, F(1,361) = 1.585, p = .209 

interaction, F(6,361) = 1.131, p = .343). Similar to neuronal activity around other task events, 

suppression was rarely evoked at a single unit level, and occurred at an insufficient frequency for 

reliable statistical analysis (Figure 3.22 B). The proportion of both dopaminergic and non-

dopaminergic neurons that were activated during the delay period significantly increased across 

recording sessions (Figure 3.22 B; dopaminergic neurons, Χ2
(6) = 22.093, p = .001; non-

dopamine neurons, Χ2
(6) = 29.744, p < .001). Taken together, delay period population averaged 

activity and the proportion of neurons activated during this period, increased across sessions. It is 

also important to note that this effect is confined to a narrow window of time. Neither the action, 

which immediately preceded the delay period, nor outcome delivery, which immediately 

followed the delay, were associated with population activity that changed magnitudes across 

recording sessions. Further, these data are consistent with a large body of evidence that suggests 

that environmental stimuli that offer new information about outcome value (including outcome 

magnitude and the delay until outcomes are received) evoke reward prediction error signals from 

dopaminergic neurons. The current data suggest that this signal is also carried by non-

dopaminergic neurons.  
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Figure 3.22. Neuronal Activity in the Delay Between the Final Action in Each Trial and the 

Subsequent Delivery of the Outcome.  

(A) Mean ± SEM neuronal response during the delay period (+0.150 - +0.400 sec, relative to final action). Data are 

depicted for all groups of VTA neurons. Note that in each groups of neurons, the evoked population response 

increased across sessions (main effect of session, F(6,361) = 4.776, p < .001). The neuronal response did not differ 

between non-dopamine and dopaminergic neurons (main effect of neuronal type, F(1,361) = 1.585, p = .209; 

interaction, F(6,361) = 1.131, p = .343). (B) The proportion of units classified as either significantly activated (solid 

lines) or suppressed (dashed lines) during the delay. Data are depicted across all sessions, for putative dopamine 

neurons, non-dopamine neurons, and all VTA neurons. Note that for all groupings of neurons, suppression was 

rarely evoked and the proportion of neurons that were activated increased across sessions (all units, Χ2
(6) = 45.949, p 

< .001; dopamine units, Χ2
(6) = 22.093, p = .001; non dopamine units, Χ2

(6) = 29.744, p < .001). 
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CUE AND OUTCOME DELIVERY EVOKED DATA SUMMARY 

 

In the initial session, cue light onset evoked a strong phasic increase in population activity that 

diminished in magnitude during the random ratio sessions. This suggests that information about a 

series of actions is most likely processed by VTA neurons during, but not prior to, serial 

behaviors. Outcome delivery evoked phasic activations were greater in dopamine neurons than 

non-dopamine neurons and the delay period was associated with increased population activity in 

all groups of neurons as learning progressed. Taken together, the delay period (signaled by cue 

offset) and outcome delivery-evoked neuronal responses are in agreement with previous work 

suggesting that VTA neurons, especially dopamine neurons, encode reward prediction errors. 
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4.0  DISCUSSION 

SUMMARY OF THE CURRENT WORK 

In the current work, animals were trained to execute a series of repetitive, self-organized, 

instrumental actions that were randomly reinforced with a sugar pellet. At the start of each trial a 

cue light was illuminated and then extinguished once reinforcement was earned. Serial actions 

evoked heterogeneous patterns of activity in both dopaminergic and non-dopaminergic VTA 

neurons. Different neurons preferred unique subsets of actions, and each action was preferred by 

a subset of VTA neurons. Averaging the activity of all neurons across action number obfuscated 

this pattern, and the resulting population average was uncorrelated with action number. Because 

VTA neurons produced dozens of distinct and complementary patterns of activation during 

action execution, a naïve Bayesian decoder was able to classify ensemble neuronal activity above 

chance levels and more accurately than the population averaged activity could be classified. 

These ensembles are comprised of dopaminergic and non-dopaminergic VTA neurons that 

function as a network in which each individual neuron is tuned to a specific subset of actions. 

This real-time representation of ongoing action number is likely decoded by post-synaptic 

regions for flexible adaptations of behavior and future decision-making.  

Cue light onset did not strongly modulate neuronal activity during random ratio sessions, 

and is unlikely to influence serial action performance. These data further demonstrate the 
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importance of the aforementioned action-evoked data in encoding information for real-time 

behavioral organization. Outcome delivery increased activity in both populations of neurons, 

though more substantially in dopaminergic neurons. With training, activation also occurred at 

earlier predictors of outcome delivery (the delay following cue light offset and preceding 

outcome delivery). These data are qualitatively consistent with the predictions of TD models of 

dopaminergic activity. They also suggest that non-dopaminergic VTA neurons may process 

complementary information (Nishino et al., 1987; Seamans & Yang, 2004; Kim et al., 2010; 

Kim et al., 2012).  

It stands to reason that action number, in the current experimental design, could be 

reflective of a number of variables. This includes, but is not limited to, progress toward 

completion of a goal, energy or effort expenditure, time since trial start, or an explicit 

representation of action number. It is difficult, if not impossible, to completely disentangle these 

explanations, as all of the aforementioned variables are correlated. Explanations based upon time 

elapsed in a trial are somewhat weakened by the fact that this variable, by itself, only explained 

the action evoked activity of a small number of neurons. While dopamine is important for 

various aspects of timing or time perception, time is not a critical element of the current 

experimental design. It stands to reason that if designs which require animals to process timing 

were utilized, a different result may have been obtained.  

Dopamine is also necessary for effortful behavioral output, though it is not presently clear 

how dopamine release or firing patterns may modulate effort (Salamone & Correa, 2002; 

Salamone et al., 2007; Day et al., 2010; Gan et al., 2010; Wanat et al., 2010; Wassum et al., 

2012; Pasquereau & Turner, 2013). A series of instrumental behaviors likely requires consistent 

or sustained levels of effort to complete. This is particularly true when high numbers of 
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instrumental actions are required of the animal. In addition to providing a signal that contains 

information about action number for behavioral organization, the ensemble code for action 

number may also subserve some aspect of motivation, potentially through connections with the 

nucleus accumbens (Salamone et al., 2007). The ensemble signal may be necessary for 

sustaining motivation in the face of multiple unrewarded actions or perhaps serve as a surrogate 

reinforcement signal to engender serial behavioral responding via phasic dopamine release 

events 

All discussion of the concept of ‘action number’ in this thesis acknowledges the fact that 

action number may either involve an explicit representation of number, or abstract concepts 

related to number, such as, goal completion or effort expenditure. Given the role of the VTA in 

motivated behavioral output, and the diverse patterns of projections from the VTA, it seems 

likely that the action evoked ensemble signal in the current work could be employed for multiple 

purposes. A strict role in numerosity seems outside of the scope of the many functions the VTA 

subserves. Through representations of action number, the VTA most likely represents task 

completion, progress toward a goal, effort expended, or some other aspect of action number, 

rather than numerosity, per se. All of these concepts may be generally thought of as behavioral 

organization-related forms of cognition, and are further discussed below.  

DECODING ACTION NUMBER FROM VTA ENSEMBLE ACTIVITY 

A pair of decoding approaches was utilized to estimate action number from neuronal activity. 

Population averaged activity was largely invariant with action number. This is an important 

finding because most previous attempts to understand how dopaminergic neurons or VTA 
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neurons encode information have focused on population averaging (Schultz, 1998), and 

ensemble encoding of information has seldom been suggested in the VTA. A burgeoning body of 

evidence implicates dopamine and the VTA in an animal’s estimates of action number (Gallistel 

& Gibbon, 2000; Allman et al., 2011; Lustig, 2011). Thus, the fact that the population average 

transmitted little information about action number is surprising, and suggests that VTA neurons 

may encode this information using alternative coding regimes.  

The naïve Bayesian ensemble decoder estimated action number from the activity of each 

individual neuron. In this sense, the decoder is analogous to a post-synaptic network that receives 

equally weighted input from the entire ensemble of VTA neurons. This decoder represents a 

simple solution for decoding neuronal output, and it makes minimal assumptions about how 

neuronal activity may be combined into an ensemble signal. By merely reading out the activity 

of each VTA neuron’s firing rate, and assessing what action number would most likely 

correspond to that level of activity, action number could be accurately decoded. VTA 

dopaminergic and non-dopaminergic neurons project in parallel to target brain regions with a 

high degree of convergence on target neurons (Swanson, 1982; Van Bockstaele & Pickel, 1995; 

Carr & Sesack, 2000b; Sesack & Grace, 2010). While the naïve Bayesian ensemble decoder was 

not biologically inspired per se, it is reasonable to suggest that many neurons that receive VTA 

inputs would be capable of analogous computations.  

It is also important to point out that the naïve Bayesian ensemble decoder treated each 

neuron equivalently, though this need not be the case. By weighting the contribution of different 

neurons to decoding action number, according to various parameters (e.g. how strongly actions 

modulate firing rate), it may be possible to achieve more accurate decoding. The current 

approach represents the simplest solution, which is to include all neurons into the analysis. This 
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approach is preferable, as little is known about VTA ensemble encoding and it may be imprudent 

to exclude or discount the activity of some neurons. It is reasonable to suggest, however, that in 

vivo networks could decode the activity of select neurons, and potentially improve decoding. 

This outcome would only strengthen the argument that action number is encoded via an 

ensemble signal.  

Taken together, the current data suggest an entirely novel means by which VTA neurons 

encode information. Through this previously undescribed ensemble signal, VTA neurons process 

information that has not been previously observed in electrophysiological studies of the region. 

The current data directly implicate VTA neurons in processing information that subserves 

behavioral organization. While dopamine has long been linked to executive function, 

dopaminergic neurons have seldom been observed to encode information that is exclusively 

linked with traditional executive processes (e.g. working memory, cognitive flexibility, etc.). 

Rather, these neurons have been largely associated with encoding reward prediction errors. Thus, 

the current data also demonstrate a complementary role for these neurons in encoding 

information that is conceptually distinct from that observed in most previous 

electrophysiological experiments.  

Non-dopaminergic and dopaminergic neurons were incorporated into the current analyses 

of VTA ensembles, though this is not the case in most previous analyses of VTA activity. 

Similar patterns of activity were found in both types of neurons, and it stands to reason that both 

populations of VTA neurons serve similar roles in encoding action number.  For this reason, 

their activity was combined, and this approach is not without precedent. Previous work has 

suggested that dopaminergic and non-dopaminergic VTA neurons may encode similar or 

complementary information (Nishino et al., 1987; Seamans & Yang, 2004; Kim et al., 2010; 

 77 



Cohen et al., 2012; Kim et al., 2012), though there have been very few direct demonstrations of 

this phenomenon. Thus, the current data are important because they explicitly demonstrate that 

multiple types of VTA neurons may work together to encode information. The majority of the 

non-dopaminergic cells in the VTA are GABAergic. These neurons are implicated in slowing the 

rate of conditioning and reducing reward consumption (Tan et al., 2012; van Zessen et al., 2012), 

though there is still a great deal to learn about the role of GABAergic VTA neurons in cognition 

(Sesack & Grace, 2010; Creed et al., 2014). GABAergic neurons represent approximately one 

third of the neurons in the VTA and can be either long range projection neurons, which run 

parallel to dopaminergic projection neurons, or make local inhibitory connections which 

modulate dopaminergic output (Swanson, 1982; Johnson & North, 1992; Carr & Sesack, 2000b; 

Nair-Roberts et al., 2008; Omelchenko & Sesack, 2009; Dobi et al., 2010; Sesack & Grace, 

2010; Creed et al., 2014). Thus, in addition to serving a local modulatory role in the VTA, non-

dopaminergic neurons may encode and transmit information to post-synaptic networks in a 

similar fashion to dopaminergic neurons. The current dataset point to a previously unrecognized 

role in cognition for this population of VTA neurons, and suggest that non-dopaminergic neurons 

transmit this action number information to other brain regions similarly to dopaminergic 

neurons. Further, these data suggest that both dopamine and non-dopamine signals may be 

combined together to form a multi-neurochemical signal.  

The current analyses provide insight into how neuronal networks may use different 

approaches to decode action number from VTA ensemble activity. Verifying that any network in 

the brain decodes neuronal activity in a manner analogous to these approaches is difficult. These 

approaches were meant to highlight some possibilities for how the brain may interpret the VTA 

signal, but were not an exhaustive account of the possibilities. These statistical algorithms were 
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not meant to replicate a biological process, but rather highlighted the relationship that exists 

between action number and neuronal activity. These decoders demonstrated that population 

average activity is not strongly related to ongoing action number. In contrast, there was a strong 

relationship between ensemble activity and action number, and neuronal networks may leverage 

this relationship in a myriad of ways. These analyses highlight ensemble encoding as a key 

feature of VTA neuronal activity, and demonstrate how this is related to encoding information 

about ongoing behaviors. Traditional approaches to analyzing VTA neuronal data do not capture 

this aspect of neuronal activity, and future work should continue to develop novel ways of 

decoding information from VTA activity, as well as investigate the biological feasibility of these 

analyses.     

It should be noted that the current experimental design did not require the animals to be 

aware of how many actions they had performed in each trial, nor is there explicit evidence that 

the animals were tracking this information throughout the task. However, the rate that actions 

were performed did increase as the reinforcement schedule was changed, which suggests that the 

animals had some sense of average action number requirement. Further, inter-action intervals 

increased from lower to higher numbered actions. This finding demonstrates behavioral 

sensitivity to ongoing action number. It could be the case that the VTA signal is necessary for 

this calculation, though additional work is necessary to substantiate this claim. Lesion, 

inactivation, or optogenetic studies could be utilized to demonstrate the necessity of the VTA for 

processing this information (see Future Directions, below).  

Naturalistic settings are marked by uncertainty, and in such an environment an animal 

would need to track ongoing action number (via task completion, trial progress, effort expended, 

etc.) to update behavioral policies. Perhaps the VTA processes action number information in the 
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current task, despite the fact that it does not confer an advantage to the animal, because this is 

information that the region processes in naturalistic settings. Regardless of how, or if, animals 

employed the information about action number encoded by VTA neurons, the fact remains that 

these neurons clearly encode something related to ongoing action number. Because each neuron 

responded to a unique set of action numbers, the ensemble signal, by definition, contains 

information about action number.  It stands to reason that if a signal containing information 

about action number exists in the brain, that a downstream brain region may have evolved to 

decode this information  

VTA ENSEMBLE ACTIVITY 

Instead of focusing on network phenomena, most VTA electrophysiology experiments have 

focused on averaged activity, with several notable exceptions. VTA firing rate correlations 

increase when stimuli predict rewarding outcomes and decrease when stimuli predict negative 

outcomes (Kim et al., 2012). Similarly, substantia nigra dopamine neurons become increasingly 

correlated following rewarding events (Joshua et al., 2009). Additionally, several groups have 

observed synchronous firing between VTA or substantia nigra dopaminergic neurons (Hyland et 

al., 2002; Joshua et al., 2009; Li et al., 2011). Together, these data suggest that coordinated 

activity is a prominent feature of the VTA, or of the dopamine systems, and that network-wide 

interactions or information processing may contribute to information processing in the region.  

In a previous experiment, animals learned two sets of Pavlovian associations (Kim et al., 

2012). Information about stimulus identity encoded by pairs of VTA neurons was equivalent to 

the summed information encoded by each neuron separately. In that study, like many others, 
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stimulus identity was most likely encoded by the population average. These results were 

generally consistent with existing views of VTA information processing. In contrast, the current 

data point to a different conclusion: VTA neurons can also encode information in a 

heterogeneous fashion with unique patterns of activity that can be decoded as an ensemble for an 

accurate estimate of action number.  

One key difference between action number in the current study, and stimulus identity in 

previous work (Kim et al., 2010), is the dimensionality of these variables. While only two 

stimuli were used in the previous work, action number can take on many values. In situations 

where state space (the set of values of a variable can take on) is limited (e.g. variables with only 

2 values), redundant encoding may be unavoidable, because limited numbers of neuronal activity 

patterns are possible in the small state space. In contrast, heterogeneous responses may emerge 

from larger state spaces, in which there are additional opportunities for different neuronal 

responses to occur. Heterogeneity scaled to dimensionality may emerge naturally, without the 

need for the system to switch between encoding modes. If this is the case, then previous 

observations of homogenous and redundant encoding in VTA may be limited to low dimensional 

variables. Importantly, this suggestion highlights the compatibility of the current results with a 

great deal of previous work. Indeed, the overwhelming majority of recordings from 

dopaminergic neurons utilize designs, in which only low dimensional variables are built into the 

task. Taken together, these data suggest VTA ensembles encode information when more 

complex information needs to be processed. 
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ANATOMICAL AND PHYSIOLOGICAL CONTRIBUTIONS TO ENSEMBLE 

ACTIVITY PATTERNS 

Heterogeneous tuning to subsets of action numbers may arise from extrinsic or intrinsic sources 

(Paladini & Roeper, 2014). Intrinsic characteristics like pacemaker currents, auto-inhibition, 

baseline firing rate, or resting potential, may modulate each neuron’s tuning and are easily 

observed phenomena in VTA dopamine and non-dopamine neurons (Grace & Bunney, 1983a; b; 

Grace & Bunney, 1984a; Grace & Bunney, 1984b; Steffensen et al., 1998; Lee et al., 2001). 

Differences in these characteristics could contribute to unique action-evoked response patterns, 

though it is unclear how this may occur. Divergent afferent inputs may also give rise to 

heterogeneous patterns of activation. Many regions innervate the VTA in a sparse and 

intermingled fashion (for representative illustrations see Geisler and Zahm, 2005). Therefore, 

small pockets of VTA (spatial scales similar to those recorded in the current work) may receive 

inputs arising from many brain regions, and individual neurons within these microdomains may 

have unique sets of inputs. It seems likely that many VTA neurons have some common inputs as 

well, because correlated firing rates are common in the VTA and indicative of shared inputs 

(Cohen & Kohn, 2011). The confluence of shared and unique connections could contribute to 

neurons in close proximity being uniquely tuned to different subsets of actions. Together, these 

anatomical and physiological attributes could ultimately engender heterogeneous action-evoked 

neuronal responses amongst different VTA neurons. Recently, differing cognitive functions have 

been related to distinct patterns of connectivity and intrinsic properties in subsets of VTA 

neurons (Lammel et al., 2008; Matsumoto & Hikosaka, 2009; Lammel et al., 2011; Lammel et 

al., 2012; Roeper, 2013; Volman et al., 2013; Lammel et al., 2014). The current work is part of 

an emerging field focusing on the heterogeneity inherent to VTA neuronal networks, but is 
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unique because it shows how this heterogeneity can subserve cooperative information 

processing.  

At first glance, real-time information about ongoing action number could be 

conceptualized as a fairly complex computation, perhaps involving cortical circuitry. While it is 

unclear if this is an accurate assumption, if this is indeed the case, it raises an interesting point. 

The projection from the prefrontal cortex to the VTA is the only identified source of cortical 

input to the VTA (Sesack & Grace, 2010). If VTA representations of action number rely upon 

cortical input, then it stands to reason that the prefrontal cortex may provide some aspect of this 

information to the VTA. If the prefrontal cortex, however, needs the information about action 

number for executive cognition (as discussed above), and already possesses some information 

about action number, it is unclear why the region would need to rely upon the VTA for this 

computation. The prefrontal cortex may need action number representations to reflect some other 

information that is encoded by VTA neurons (e.g. reward prediction errors or motivation related 

information). This information may be multiplexed together with action number representations 

or modulate action number representations. In the current work, synthesis of such information 

was not identifiable, but future experimentation may uncover these factors with the proper 

experimental designs. Another possibility is that the prefrontal cortex conveys action number 

information to the VTA, so the VTA can act as a relay station and transmit this information to a 

large number of additional brain regions. VTA has a diverse series of projections, and may be 

ideally suited for this role. A third possibility is that brain may require the action number signal 

to be encoded by neurotransmitters contained within the VTA, such as dopamine and GABA. In 

such a configuration, prefrontal cortex would be incapable of encoding this signal, as all 

corticofugal fibers are glutamatergic. Thus, in this scheme, VTA could convert a glutamatergic, 
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cortical signal into a dopaminergic and GABAergic signal. It is presently unclear if this is the 

case. 

DIVERGENT VIEWS OF THE DOPAMINERGIC SYSTEMS 

The most influential views of the function of the dopamine system can be divided into several 

camps. The first emphasizes the role that dopamine plays in incentive salience, motivation, 

effort, locomotion and movement. This view notes that dopaminergic manipulations or diseases 

alter energy expenditure, motoric output, and reward seeking (Salamone & Correa, 2002; Wise, 

2004; Salamone et al., 2005; Berridge, 2007). A second camp emphasizes the role that dopamine 

plays in stress responses, because of strong increases in dopaminergic neurotransmission and 

firing during stress (Abercrombie et al., 1989; Finlay et al., 1995; Anstrom & Woodward, 2005).  

This dissertation largely focuses on two additional frameworks that implicate the 

dopaminergic systems in different aspects of cognition- executive functions and reward 

prediction error signaling. The current discussion of these data will appear as two parallel and 

compatible interpretations based on these frameworks. The first concerns the role of the 

dopamine system in high-order aspects of cognition, which subserves behavioral organization. 

These functions are often thought of as ‘executive functions’ and are dependent upon 

dopaminergic neurotransmission from the VTA to the prefrontal cortex (Seamans & Yang, 2004; 

Robbins & Arnsten, 2009). The discussion below concerns how the current action-evoked 

neuronal data relate to this powerful framework for understanding the function of the 

dopaminergic system. Cue and outcome evoked neuronal responses may play a role in behavioral 
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organization as well, but a clear role for these VTA neuronal responses is lacking in the current 

data.  

While these data are discussed in the context of the VTA projection to the prefrontal 

cortex, the projection targets of VTA neurons cannot be discerned using only chronic recording 

techniques. Moreover, VTA neurons with differing projection targets are intermingled (Swanson, 

1982), and a neuron’s projection targets cannot be assumed based upon intra-VTA localization. 

In general, other populations of neurons may carry a similar signal, other signals may be encoded 

by mesocortical neurons, and the neurons in the current dataset could project to non-cortical 

regions. The prefrontal cortex is discussed only as an archetypal region that may decode action 

number for behavioral organization, although this does not preclude the involvement of other 

regions in decoding this information.  

Another equally important concept is that dopaminergic neurons encode reward 

prediction errors (Schultz, 1998). This phenomenon is well approximated as the error signal in 

TD models, as discussed in the Introduction section of this dissertation. Below, the cue and 

outcome delivery evoked data are discussed in relation to this framework. Following this is a 

discussion of how to integrate the action-evoked neuronal data into this framework, and the 

implications of these notions.  

BEHAVIORAL ORGANIZATION FRAMEWORK 

Planning behavior and processing ongoing information about behavior, such as action number, is 

the central role of the prefrontal cortex (Goldman-Rakic, 1988; Fuster, 1991; Constantinidis & 

Goldman-Rakic, 2002), which also requires dopaminergic input for these functions. The VTA 
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dopamine projection to the prefrontal cortex regulates working memory, cognitive flexibility, 

decision-making, attention, goal directedness, and response inhibition (Goldman-Rakic, 1998; 

Seamans & Yang, 2004; Floresco & Magyar, 2006; Naneix et al., 2009; Robbins & Arnsten, 

2009; Sesack & Grace, 2010). To understand how the current VTA data may contribute to 

behavioral organization, it is first necessary to understand how dopamine contributes to other 

aspects of executive function. 

Dopaminergic regulation of working memory has been extensively studied. Endogenous 

dopamine levels in the prefrontal cortex increase during working memory tasks (Watanabe et al., 

1997; Phillips et al., 2004), which suggests that dopamine release is critical for proper working 

memory function. Dopamine affects working memory via an “inverted-U shaped” function of D1 

receptor activation (Arnsten & Li, 2005; Robbins & Arnsten, 2009). Thus, excessive activation 

or blockade of prefrontal D1 receptors disrupts working memory (Brozoski et al., 1979; 

Sawaguchi & Goldman-Rakic, 1991; Sawaguchi & Goldman-Rakic, 1994; Arnsten & Li, 2005), 

and low concentrations of dopamine agonists improve working memory performance (Cai & 

Arnsten, 1997; Aultman & Moghaddam, 2001). Dopamine’s effects on working memory can be 

traced to the cellular level. During working memory delays, some primate prefrontal cortex 

neurons represent information across the delay period, via sustained elevations in firing rate. 

Direct application of D1 agonists to these cells bi-directionally modulates this signal (Sawaguchi 

et al., 1988; Williams & Goldman-Rakic, 1995). Dopaminergic neurons, however, do not appear 

to represent information in working memory, as these neurons only fire phasically at the start of 

working memory trials (Schultz et al., 1993). As discussed in the Introduction section and again 

below, these firing patterns also occur in tasks without a strong working memory component. 
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Thus, prefrontal dopamine modulates working memory, but neuronal firing patterns do not 

appear to encode information specific to working memory. 

Prefrontal dopamine release (or dopamine metabolite concentration) also increases during 

periods of cognitive flexibility, rule learning or decision-making (Stefani & Moghaddam, 2006; 

Winstanley et al., 2006). Low doses of dopamine agonists can improve these aspects of 

cognition, while dopaminergic lesions or antagonists have detrimental effects (Granon et al., 

2000; Crofts et al., 2001; Ragozzino, 2002; Chudasama & Robbins, 2004; Floresco et al., 2006; 

Robbins & Roberts, 2007). Dopaminergic drugs also modulate decision-making, albeit in a more 

complex fashion (Evenden & Ryan, 1996; Cardinal et al., 2000; Floresco & Magyar, 2006; 

Setlow et al., 2009). Despite clear roles for dopamine in these cognitive processes, definitive 

dopaminergic neuronal correlates remain elusive. There is no known dopaminergic signal 

exclusive to cognitive flexibility. Very little work has documented dopaminergic signals 

correlated with attention (Bromberg-Martin et al., 2010b; Totah et al., 2013). Further, behavioral 

choices are actually decoupled from VTA dopamine responses (Roesch et al., 2007). Instead, 

dopaminergic activity is consistent with models that use the dopaminergic signal for value 

learning, but not directly selecting behaviors (Morris et al., 2006; Niv et al., 2006; Roesch et al., 

2007). Taken together, prefrontal dopamine is necessary for multiple aspects of behavioral 

organization, but how this relates to the firing of dopamine neurons remains unknown. 

Instead of hypothesizing that dopamine encodes information exclusively for behavioral 

organization, dopamine is often thought to “…curtail or prolong, augment, or diminish effects of 

fast signaling in neuronal networks” (Robbins & Arnsten, 2009). This type of neuromodulation 

may alter the lability of prefrontal networks and allow cortical representations to be strengthened 

or weakened (Seamans & Yang, 2004; Robbins, 2005; Floresco & Magyar, 2006; Floresco et al., 
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2006). According to this view, dopamine adjusts the messages encoded by other neuronal 

systems, but does not encode information directly. Extracellular dopamine is cleared slowly and 

diffuses widely in prefrontal cortex, and these spatiotemporal aspects of dopamine signaling are 

consistent with a neuromodulatory role (Seamans & Yang, 2004; Schultz, 2007). Thus, 

conceiving of dopamine as a neuromodulator is compatible with basic neurochemical aspects of 

dopamine signaling and may partially explain how dopamine contributes to behavioral 

organization.  

Previous emphasis on a neuromodulatory role of dopamine in behavioral organization 

may also arise from a paucity of evidence correlating the firing of dopamine neurons with these 

cognitive processes. Electrophysiological experiments suggest dopamine neurons encode a 

temporally precise and informative signal, reward prediction errors, which does not seem 

consistent with a neuromodulatory signal (Seamans & Yang, 2004). Instead of being used for 

behavioral organization, this signal is related to value prediction and association formation 

(Schultz, 1998). It should be noted, however, that there are no strict definitions for what form a 

neuromodulatory signal may take. A signal may function as either a direct encoder of 

information or as a neuromodulator, depending on how the post-synaptic neuron receives and 

acts upon that signal. It is nearly impossible to determine how any neuron in the brain extracts 

information from a signal. For these reasons, it is difficult to truly assess to what extent the 

dopamine signal resembles either a direct encoder of information or a neuromodulator. It should 

be noted that most speculation that dopamine acts as a neuromodulator is technically speculative, 

and based upon the aforementioned time course of dopamine clearance and spatial diffusion of 

dopamine. This view is not based upon firing patterns of dopamine neurons.  
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The current data suggest that VTA ensembles, including dopaminergic neurons, may 

directly encode a detailed and informative account of ongoing behaviors. Thus, the current data 

suggest VTA ensembles may encode a signal that could be decoded by the prefrontal cortex for 

behavioral organization, as opposed to being strictly utilized as a neuromodulator. This does not 

preclude the dopaminergic component of the ensemble signal from also acting in a 

neuromodulatory fashion. Distributed activation of subsets of dopamine neurons during a series 

of behaviors may optimize prefrontal dopaminergic tone in a traditional, neuromodulatory role. 

The current data, however, also suggest that action number is encoded directly by VTA 

ensembles. Moving forward, it is important to consider ensemble activity in models of dopamine 

and VTA function, especially signals for behavioral organization. These ideas can incorporate 

neuromodulation and direct encoding of information.  

VTA ensemble signals may utilize several neurotransmitters that cooperatively encode 

information. The mesocortical projection contains a sizeable number of dopamine neurons, but is 

mostly GABAergic (Carr & Sesack, 2000b). Dopamine release exerts complex effects on 

prefrontal cortex physiology, and is capable of exciting or inhibiting pyramidal cells (Seamans & 

Yang, 2004). These effects are likely mediated by multiple types of dopaminergic receptors on 

pyramidal cells, local interneurons, and the GABAergic component of the mesocortical 

projection (Sesack & Bunney, 1989; Pirot et al., 1992; Zhou & Hablitz, 1999; Carr & Sesack, 

2000a; Lewis & O'Donnell, 2000; Gorelova et al., 2002; Gao & Goldman-Rakic, 2003; 

Trantham-Davidson et al., 2004; Tseng et al., 2006; Tierney et al., 2008). The effects of 

dopamine release on prefrontal cortex physiology are dependent upon a myriad of factors, such 

as background activity level, dopamine release pattern, and dopaminergic tone. For an excellent 

review, see (Seamans & Yang, 2004). The spatially and temporally imprecise nature of the 
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dopaminergic signal may be offset if combined with non-dopaminergic VTA signals (Seamans & 

Yang, 2004; Kim et al., 2010; Kim et al., 2012; Tritsch et al., 2012; Tritsch et al., 2014). This 

arrangement would allow fast, focal neurotransmission to complement dopamine release. The 

current data support this notion by demonstrating that dopaminergic and non-dopaminergic 

neurons in the VTA encode similar signals, as has been previously suggested (Kim et al., 2010; 

Kim et al., 2012).  

Sustaining or adapting behavior until goals are met is a central theme of prefrontal 

cortex’s role in executive function (Goldman-Rakic, 1988; Fuster, 1991; 2001). In an excellent 

review, Fuster (2001) wrote, “Here are two critical questions to be resolved: (1) How are the 

components of an executive cortical network timely and selectively activated in the execution of 

a goal-directed sequence of behavior? (2) How is a cortical network maintained active in the 

process of bridging temporally separate components of the sequence?” 

In other words, it is unknown what input patterns activate, or silence, prefrontal neurons 

during critical moments in a behavioral sequence. The VTA ensemble signal in the current 

dataset is a prime candidate. The ensemble signal in the current dataset could evoke or silence 

the activity of networks in the prefrontal cortex. This, in turn, could sculpt the flow of 

information through these networks in service of executive function. These input patterns could 

transmit a real-time account of how many actions have been executed could be sent to the 

prefrontal cortex. By comparing the current action number with predictions about action 

requirement, an animal could evaluate and adapt the current behavioral policy. Further, the 

current action number signal “bridges” the actions within a behavioral series, and dopaminergic 

lesions disrupt performance of behavioral sequences (Veeneman et al., 2012). Thus, ensemble 

patterns encoding action number may partially answer the pair of questions posed above. Both 
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humans and non-human animals possess a sense of numerosity, which is dopamine-dependent 

(Gallistel & Gibbon, 2000; Allman et al., 2011; Lustig, 2011). This sense of numerosity could 

underlie multiple aspects of executive function. It remains unknown how this information is 

processed by the dopamine system. The current study casts new light on this idea by suggesting 

that VTA ensembles encode a running account of the current action number.  

 In summary of the ideas above, VTA ensembles encode a real-time account of 

action number within a trial. This information is consistent with a well-accepted role for the 

VTA dopamine system in executive functions and behavioral organization. This role may be 

extended to the non-dopaminergic populations of the VTA as well. The prefrontal cortex, 

amongst other regions, could decode ongoing action number to alter or sustain behavior until 

goals are met.  

REWARD PREDICTION ERROR SIGNALING FRAMEWORK 

As discussed in the Introduction section, dopaminergic neurons encode reward prediction errors, 

which are modeled by the TD error term. These prediction error signals represent actual and 

estimated future reward values, minus the predicted reward value. The prediction error is 

generated at the earliest predictor of future value, often a stimulus that predicts impending 

rewards. Because this signal predicts future value, it is implicated in associative learning.  
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Cue-Evoked Neuronal Data: 

Reward prediction errors are often associated with cues that predict the consequences of actions 

or impending rewards (Miller et al., 1981; Schultz, 1986; Romo & Schultz, 1990; Mirenowicz & 

Schultz, 1996; Schultz, 1998; Nakahara et al., 2004; Matsumoto & Hikosaka, 2007; Roesch et 

al., 2007; Bromberg-Martin & Hikosaka, 2009; Kim et al., 2010; Takahashi et al., 2011; Cohen 

et al., 2012; Totah et al., 2013). In instrumental behavior tasks, these cues almost always precede 

actions, and instruct an animal to begin responding.  

In the current study, during the FR01 session (session 1), a sizeable proportion of neurons 

responded to cue light onset with phasic increases in firing rate. This activation was observed 

across all populations of VTA neurons. These data are generally consistent with previous work 

demonstrating that cues predicting outcomes generate reward prediction errors. Approximately 

two thirds of dopaminergic neurons were activated by cue onset in the current dataset, and it has 

previously been suggested that roughly 70% of dopaminergic neurons encode prediction error 

signals (Schultz, 1998; 2010). Thus, the current FR01 data are also generally consistent with the 

prevalence of reward prediction error signaling amongst dopaminergic neurons. The current data 

further suggest that non-dopaminergic neurons, albeit only a third of the non-dopamine neurons, 

also encode this information. This observation is consistent with prior suggestions that 

dopaminergic and non-dopaminergic neurons may encode similar or complementary signals 

(Seamans & Yang, 2004; Kim et al., 2010; Kim et al., 2012).  

The cue-evoked population response magnitude decreased in random ratio reinforcement 

sessions (sessions 2-7). At first glance, this may seem incompatible with most previous research, 

although cue evoked responses have been observed to disappear or diminish with training in 

some previous studies (Schultz & Romo, 1990; Ljungberg et al., 1992; Schultz et al., 1993). 
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Schultz and colleagues briefly discussed a compelling explanation for this phenomenon. The 

authors explained that when predictive cues are placeholders (e.g. do not lead directly to reward 

or strongly predict when reward will be delivered), they do not generate phasic dopamine 

responses (Schultz et al., 1993). Moreover, cues that are temporally distant from outcome 

delivery are known to evoke smaller magnitude neuronal activations (Roesch et al., 2007; 

Fiorillo et al., 2008; Kobayashi & Schultz, 2008). Thus, it is not enough to state that cues that 

provide new information about impending outcome value should generate reward prediction 

errors. Instead, the reward prediction error response also appears to depend upon the temporal 

contiguity and contingency of the cue and the outcome.  

In the current random ratio reinforcement sessions, the cue was often separated from 

outcomes by many actions and lengthy temporal delays. Further, there was no contingency 

between cue and outcome. This contrasts sharply with FR01 reinforcement schedules, in which 

cue onset is separated from outcome delivery by minimal behavioral output. Therefore, it is not 

surprising that the cue did not continue to evoke phasic responses in any group of VTA neurons 

during random ratio reinforcement. Similar results were also obtained in the only other recording 

of VTA neurons during serial actions (Nishino et al., 1987). Taken together, diminished cue-

evoked VTA responses are consistent with a number of previous reports. Previous recordings 

have suggested that dopaminergic neurons have high learning rates (Hollerman & Schultz, 1998) 

but see (Pan et al., 2005).  This theoretical consideration could explain why cue onset evoked a 

neuronal response within the first recording session. It is less clear how to model the 

disappearance of this neuronal response. While it has been observed several times, and even 

mentioned explicitly in the first formalization of dopaminergic responses as TD errors 

(Montague et al., 1996), this aspect of neuronal activity has not been well studied in the context 
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of TD models. Future TD models could potentially weight stimulus value by contiguity and 

contingency to produce diminished cue responses.  

Outcome Delivery Evoked Neuronal Data: 

VTA neuronal activity increased during outcome delivery. In all populations of VTA neurons, 

outcome evoked population activity was stable across all sessions, and was larger in 

dopaminergic neurons than non-dopaminergic neurons. These data are generally consistent with 

previous reports that dopaminergic neurons are responsive to the delivery of reinforcing 

outcomes (see below). Qualitatively similar responses between dopaminergic and non-

dopaminergic neurons suggest that these neurons process this information similarly.  

Historically important work, largely from Wolfram Schultz’s group, suggests that 

predicted rewards should not evoke a dopaminergic response (Ljungberg et al., 1992; Schultz et 

al., 1993; Mirenowicz & Schultz, 1994; Hollerman & Schultz, 1998; Waelti et al., 2001). 

Though predicted rewards evoking dopaminergic responses has also been reported by Schultz 

and colleagues (Fiorillo et al., 2003), as well as other groups (Morris et al., 2004; Pan et al., 

2005; Morris et al., 2006; Roesch et al., 2007; Joshua et al., 2008; Kim et al., 2010; Takahashi et 

al., 2011; Cohen et al., 2012; Pasquereau & Turner, 2013; Totah et al., 2013). It should be noted 

that in some of these experiments multiple outcomes were delivered or available. In this case, 

interpreting outcome-evoked phasic activation becomes more complicated, as the response may 

partially reflect errors in predicting which reward would be delivered (Tobler et al., 2005). 

Taken together, it is not surprising to continue to see reward evoked neuronal responses, even 

after thousands of trials have been completed.  
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Even though rewards were delivered at the conclusion of each trial, there may still have 

been a reward prediction error. Reward prediction errors incorporate the timing of reward 

delivery (Fiorillo et al., 2008), and the delay between the final action and outcome in each trial 

could have created larger prediction errors. Similarly, requiring animals to execute random 

numbers of actions prevented animals from predicting how many actions would be required per 

trial. This uncertainty may ultimately create a larger outcome delivery evoked prediction error. 

Thus, it is not clear to what extent reward delivery was fully predictable by the animals. Under 

these circumstances, it seems reasonable to suggest outcome delivery would evoke neuronal 

responses in all sessions.  

Delay Period Neuronal Activity: 

Population averaged activity increased during the delay between the final action in a trial and 

outcome delivery. Previous reports have suggested that pre-delivery delay period activity may be 

specific to non-dopaminergic VTA neurons (Cohen et al., 2012). In the current dataset, this 

pattern occurred in all groups of VTA neurons and increased in strength across sessions. The 

beginning of the delay period, at cue offset, predicted when outcomes would be delivered. In this 

sense, the delay strongly resembles important aspects of a traditional Pavlovian conditioned 

stimulus or discriminative stimuli from other instrumental tasks. Once this predictive relationship 

is learned, cue offset may evoke prediction errors, and the delay period data are potentially 

consistent with TD models. It is also interesting that cue-evoked responses developed during the 

first session, when delay period responses were negligible. Thus, events more distal to the 

outcome generated phasic responses before the delay period began modulating neuronal activity.  
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Summary of Cue and Outcome Evoked Neuronal Data:  

Taken together, the current cue evoked, delay period and outcome delivery evoked dopamine 

data are generally consistent with previous findings. Weak cue evoked dopaminergic responses 

after training have been observed previously. Likewise, persisting outcome evoked dopaminergic 

activity has also been reported numerous times, and may be related to difficulty predicting when 

rewards would be earned. The emergence of delay period activity across learning may also be 

explained within the context of TD models, and the late development of this response relative to 

the cue evoked response is quite interesting. The current data extend the general patterns of 

activity seen in dopaminergic neurons to non-dopaminergic neurons, as has been noted 

previously (Kim et al., 2010; Kim et al., 2012). The TD error signal is the most widely used 

theoretical model of dopaminergic phasic firing patterns, and the aforementioned data seem 

qualitatively consistent with many aspects of the model’s predictions. This information is likely 

sent to many brain regions (Glimcher, 2011). Phasic dopamine signals are particularly prominent 

in ventral striatum, and neurochemical studies suggest that prediction errors are transmitted to 

this region (Robinson et al., 2003; Heien & Wightman, 2006; Hart et al., 2014). These signals 

may facilitate action sequence learning (Suri & Schultz, 1998; Wassum et al., 2012), as well as 

acquisition of appetitive behaviors (Phillips et al., 2003; Day et al., 2007). Further, cortical 

regions receiving VTA inputs have also been implicated in utilizing traditional reward prediction 

error signals to update outcome values (Takahashi et al., 2009). 
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Serial Action Evoked Neuronal Data: 

In the current dataset, neuronal activity was only weakly modulated when averaged over all 

actions. Actions are not generally associated with generating reward prediction errors in many 

instrumental designs. With all actions averaged together, the current data are similar to previous 

reports in this sense. Different neurons fired preferentially during the execution of unique subsets 

of actions, and it is unclear if an underlying process that mimics the TD error signal produces 

this phenomenon, and if so, how this might work. It is common to suggest that the error signal 

should back-propagate to the earliest predictor of the outcome. This could be the first action 

within a trial, and there were a sizeable number of neurons tuned to prefer the first few actions in 

a trial. Many neurons, however, preferred higher numbered actions. It does not seem likely that 

reward prediction errors had incompletely back propagated to the first action in these neurons, 

because these responses were present even after hundreds of trials had been completed. Perhaps 

most importantly, the TD error can only take on one value at each time step, which is 

inconsistent with an ensemble signal comprised of heterogeneous responses. It is conceivable 

that a TD algorithm could reproduce the population average activity as a function of action 

number. This, however, would not reflect the most interesting aspect of this data: the ensemble 

nature of the signal. Likewise, the information about action number that is encoded by the 

ensemble would be lost.  

The fact that other events, such as the delay period and outcome delivery, are generally 

consistent with a reward prediction error framework is critical. It confirms a widely replicated 

observation, and suggests the current dataset conforms to prior assumptions about VTA function. 

In light of this, the difficulty to explain serial action evoked neuronal activity in the context of 

TD error signaling is, therefore, all the more striking. The earliest event in random ratio trials 
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that generates a response mimicking the TD error is the delay period between the final action and 

outcome delivery. A great deal of theoretical and experimental considerations suggests reward 

prediction errors should occur before the animal begins responding (Montague et al., 1996; 

Schultz et al., 1997; Dayan & Abbott, 2001; Morris et al., 2006; Roesch et al., 2007).  

The subset of neurons responsive to any single action may be encoding a TD error-like 

response forecasting the value of each action. Because several actions were often executed over 

the course of just a few seconds, this would necessitate multiple reward prediction errors in a 

short amount of time. In most prior work, it is rare to observe more than 2 reward prediction 

errors in the course of a trial (e.g. one at a predictive cue and another at reward delivery). There 

may be an upper limit on how many of these responses each neuron can produce in a short period 

of time. Potentially, reward prediction errors may be spread across subsets of neurons to 

minimize the activity of individual neurons. Thus, the ensemble signal could function as a 

traditional reward prediction error signal that is distributed across multiple subsets of neurons. 

Under such a scheme, reward prediction error representations from activated neurons may be 

utilized in the standard way, and ensemble encoding of action number could be utilized for 

behavioral organization. Thus, different networks could decode the signal for divergent purposes.  

The notion that large numbers of reward prediction errors in a trial would need to be 

encoded by distinct subsets of neurons, in a revolving fashion, raises the intriguing possibility 

that the heterogeneity of VTA neuronal activity patterns scales to the complexity of behavioral 

requirements. If a neuron is tuned to specialize in encoding information about a limited subset of 

action numbers, metabolic energy expenditure is limited. The VTA could therefore encode 

information about a large state-space with ensembles of neurons that are energetically cheap 

encoders. Most prior experiments have utilized tasks with far fewer events per trial (Dayan & 
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Niv, 2008; Niv & Schoenbaum, 2008), and would not be expected to uncover this previously 

hidden aspect of VTA activity.  

PREVIOUS VTA RECORDINGS DURING SERIAL ACTIONS 

In the only previous VTA recording in a task that required animals to execute large numbers of 

actions per trial, Sasaki and colleagues (1987) observed irregularly fluctuating firing rates of 

dopaminergic and non-dopaminergic neurons throughout an action sequence. In that experiment, 

monkeys bar pressed multiple times per trial for rewards. Thus, the animals executed serial 

actions for rewards, similar to the current work. There are several notable differences between 

their work and the current study (Nishino et al., 1987), but the potential similarities in the data 

are striking. In both datasets, action evoked activity occurred in dopaminergic and non-

dopaminergic VTA neurons. It appears that different neurons may be tuned to different actions in 

their data, and that each neuron preferred subsets of the action numbers (Nishino et al., 1987). 

Finally, the cue at trial start failed to elicit a phasic response in both cases (Nishino et al., 1987). 

This suggests that the current findings are reliable and replicable. In the case of both datasets 

there is one critical point, stated previously in the introduction as well, that bears repeating here. 

The heterogeneity of activity patterns suggests there is underlying structure in the responses of 

VTA neurons that has not been incorporated into a theoretical framework.  
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SUMMARY 

To summarize, the current data suggest that VTA neurons may support multiple aspects of 

cognition, through several information processing regimes. A conceptual schematic is presented 

in Figure 4.1, which details some hypothesized aspects of these phenomena. The diverse 

response patterns evoked by action execution may ultimately be derived from sources both inside 

and afferent to the VTA. For the sake of clear presentation, VTA intrinsic properties are not 

depicted in Figure 4.1. Unique afferent inputs may partially produce divergent tunings to action 

number and may originate in distinct brain regions, or from parallel projections from the same 

region. These inputs likely synapse on intermingled dopaminergic and non-dopaminergic 

projection neurons. In the schematic, action numbers are conceptualized as high, medium, or 

low, though action number may be decoded at a different resolution in the brain. Neurons with 

differing action number preferences likely project in parallel to target brain regions, including the 

prefrontal cortex. Prefrontal cortex could potentially decode these parallel signals by simply 

assessing each neuron’s current activity in relation to its previously learned tuning. By 

considering each neuron independently, and not averaging neuronal activity across neurons with 

differing tunings, action number could be accurately decoded on an action-by-action basis. While 

many regions could potentially utilize this information, prefrontal cortex stands out in particular, 

because of the well-described role of this region in behavioral organization. Theoretically, the 

prefrontal cortex could utilize information about action number to adapt, sustain, and plan 

behavior on the basis of estimated task completion, proximity to a goal state, or optimality of the 

behavioral policy.  

In addition to information about actions, VTA neurons responded prominently to 

outcome delivery, and during the delay preceding outcome delivery. For simplicity, in the 
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schematic these events are represented simply as “outcome delivery”. These events evoked 

responses in approximately 2/3 of the dopaminergic and non-dopaminergic neurons, which are 

intermingled with non-responsive neurons. The same neurons that were diversely tuned to action 

number were homogeneously activated by outcome delivery or during the delay. Theoretically, 

these neurons could be encoding reward prediction errors related to outcome delivery. Target 

regions, such as ventral striatum, could decode the population averaged activity level. The 

ventral striatum, or other regions that receive this signal, could utilize the information for 

associative, value-based, learning. 

It should be noted, that delay period responses developed with learning, while outcome 

evoked responses were present in the earliest sessions. Delay period input strength likely 

changed across sessions, and delay period and outcome delivery information could be 

transmitted to VTA neurons by separate pools of afferent input. Additionally, in all recordings, 

the projection targets of recorded neurons are not known. Instead, the ideas expressed in the 

schematic are purely for the sake of illustration.  
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Figure 4.1. Theoretical Schematic.  

Heterogeneous representations of action number could arise from distinct pools of afferent inputs (represented as 

blue, gold, maroon diamonds at the top level of the schematic). These inputs could arise from one or from multiple 

brain regions. Many dopamine (white circles) and non-dopamine (black circles) neurons represented subsets of the 

actions in the current data. The schematic depicts action numbers grouped into low, medium, and high bins of action 

number. On the left of the middle level of the schematic, a group of neurons is depicted projecting in parallel to both 

pyramidal neurons and interneurons (light grey triangles and oval in the lower left level of the schematic) in the 

prefrontal cortex (PFC). Because each neuron is tuned to prefer a subset of action numbers, prefrontal cortex could 

decode the current action number by reading out each input separately. This information could theoretically be 

utilized to update ongoing behavioral strategies, plan new behavioral strategies, and keep a running account of 

ongoing behaviors (behavioral organization).  
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Many VTA neurons responded to outcome delivery or the preceding delay period after learning had occurred (both 

notated as outcome delivery). Thus, the majority of dopaminergic and non-dopaminergic neurons likely receive 

information about these events. This is depicted as inputs arising from the dark grey diamond (top level of 

schematic). The lines representing these inputs are dashed to add visual clarity and, are not meant to be reflective of 

input strength. The averaged activity of these neurons could represent reward prediction errors (right set of merged 

inputs to the bottom level of the schematic). Regions such as ventral striatum could utilize this signal for value-

based associative learning (right bottom level of schematic).  
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FUTURE DIRECTIONS 

The current work suggests several avenues of future research: modifications to theoretical 

models of VTA neuronal activity, and demonstrating a causal role for the current ensemble 

patterns of activity in encoding action number. These future research directions are discussed 

below.  

TD error signals are not modeled as an ensemble with heterogeneous tunings, though the 

current data suggest this may be critical to explore. One possibility is that the standard approach 

to calculating the TD error, δ(t), could be used with few modifications. As detailed in the 

Introduction and Appendix A, the TD error is calculated in Equation 1 (from Introduction): 

δ(t) = [r(t) + v(t + 1)] − v(t). 

This equation could be potentially modified to weight each neuron’s response by action 

number preference with a single term, 𝜃𝜃𝑛𝑛𝑛𝑛, where 𝜃𝜃 is the scaled tuning of each nth neuron’s 

activity at the ath action (this is conceptually identical to the manner in which tuning curves were 

scaled in Figure 3.7 A and Figure 3.8). Values of 𝜃𝜃𝑛𝑛𝑛𝑛 would range from 0 to 1 (0 = least 

preferred action and 1 = most preferred action). Action number would weight each neuronal 

response as follows (Equation 7): 

δ𝑛𝑛𝑛𝑛(t) = 𝜃𝜃𝑛𝑛𝑛𝑛  ×  ([r(t) + v(t + 1)] − v(t)) 

By doing so, the TD error that each neuron generates is scaled to its relative preference 

for that action. When actions that are highly preferred occur a typical TD error is produced. 

When actions that are less preferred occurred, weights approaching zero minimize the other 

terms and the result is a TD error for that neuron that is close to zero. This would qualitatively 
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replicate some aspects of the current data. Namely, each neuron would produce phasic TD error 

like activation for only a subset of actions.  This is not an exhaustive account of all possibilities. 

For instance, 𝜃𝜃𝑛𝑛𝑛𝑛 may also be weighted with negative and positive values to capture bidirectional 

firing rate modulations. Other modeling approaches have suggested that only the first action of a 

series should generate the prediction error, though these have used very different experimental 

designs than the current experiments (Suri & Schultz, 1998). While it remains unsettled which 

approach is the optimal manner to model the current data, future work should rigorously explore 

the question of when and how TD errors are generated during trials requiring serial actions.  

 Optogenetic or electrical modulations of VTA activity could provide one way to 

test the necessity of VTA ensemble signaling for estimating ongoing action number. Briefly, rats 

could be trained to execute a given number of actions before rewards were made available. Once 

this action requirement had been met, animals could then execute a different action to cause 

outcome delivery. This could be accomplished with the use of two operant levers in a simple 

behavioral chamber. If both levers were available during the response period, and no cues were 

given when the outcome was available for delivery, then the animal would need to keep track of 

ongoing action number to perform this task correctly. If the second lever was pressed before or 

after the precise action requirement was met it could be penalized, inducing motivated animals to 

keep track of action number as they performed the behavior.  

 Optical or electrical stimulation could be utilized to test the necessity of VTA 

signaling for an animal to estimate how many actions have been executed in a trial. Briefly, 

animals could perform the task as described above in a subset of trials to demonstrate that they 

understand task rules and are able correctly estimate action number. In another subset of trials, 

VTA neurons could be optogenetically inhibited during or just after action execution. This would 
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prevent or decrease neuronal activation and potentially prevent the animal from accurately 

estimating action number. This approach would target those neurons that were activated by the 

current action. On the other hand, electrical or optogenetic stimulation could activate those 

neurons that were normally silent during the execution of that action. This would also potentially 

disrupt ongoing estimates of action number. In either case, perturbations of the VTA should 

disrupt the animal’s ability to correctly track ongoing action number, and demonstrate the 

necessity of intact VTA signaling for this cognitive function. More elaborate designs may target 

specific VTA projection systems with retrograde transportation of optogenetic constructs, 

demonstrating the involvement of VTA subsystems in this phenomenon.  

IMPACT OF THE CURRENT WORK 

The mosaic of neuronal activity patterns as a function of action number represents an unexpected 

level of heterogeneity. There is a general consensus that the dopamine system, and by extension 

the VTA, lacks diversity, complexity, or synergy of information processing (Schultz, 1998; 

Glimcher, 2011; Schultz, 2013) but see (Roeper, 2013; Volman et al., 2013). The current data 

suggest that this notion falters when VTA activity is examined through the lens of more complex 

behavioral paradigms, and following different approaches to analysis of neuronal data. 

Ultimately, the current data could serve as a catalyst for challenging popular notions of the 

capabilities of the VTA and how it contributes to behavior. The current work has the capacity to 

invigorate future research and offer new insight into VTA function by demonstrating how VTA 

neurons process previously unexpected information. Many excellent electrophysiological studies 

of the VTA, and specifically the dopaminergic component of the region, have myopically 
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focused on population-averaged activity and reward prediction error signaling by dopamine 

neurons. The result is that sub populations of the system (non-dopaminergic neurons) and 

information encoding regimes (ensemble encoding) that may be critical to the function of the 

system are neglected. Thus, the current data can contribute to a burgeoning reconceptualization 

of ideas about the VTA (Volman et al., 2013), as well drive future research.  

 The current work may also be extended to disease treatments, insofar as it 

suggests a novel direction in therapeutic research. For instance, the dopamine system was 

amongst the first neuronal systems to be linked to schizophrenia, and every approved 

pharmacological treatment for the disease has affinity for dopaminergic receptors (Seeman & 

Lee, 1975). Patients with schizophrenia, however, do not consistently demonstrate coarse 

disruptions of the dopaminergic system, such as cell death or altered levels of dopamine 

metabolites (Davis et al., 1991; Howes & Kapur, 2009; Moghaddam & Wood, 2014). Further, 

approaches to understanding schizophrenia through unidirectional dysregulation of the dopamine 

system, such as global hyperdopaminergic neurotransmission, have been rejected in favor of 

more subtle interpretations (Davis et al., 1991; Howes & Kapur, 2009). In short, cognitive 

impairment most likely does not result from simple, unidirectional, or static alterations in 

neurotransmission.  

 Instead, the integrity of neuronal networks, and the resulting information 

processing of the network, may be the key to understanding cognitive impairments in a number 

of diseases such as addiction disorders or schizophrenia (Moghaddam & Homayoun, 2008; 

Bassett & Bullmore, 2009; Akil et al., 2010; Malsburg et al., 2010; Uhlhaas & Singer, 2010; 

Wood et al., 2012; Moghaddam & Wood, 2014). These data provide one of the first direct 

observations of VTA information processing that emphasize the integrity of the network. Disease 
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processes may corrupt ensemble signaling, though this has not been explored in the context of 

disease previously. It stands to reason that while gross disruptions of the VTA are not as 

prominent in these diseases, impaired ensemble signaling may underlie much of the 

symptomology. Indeed, impaired behavioral organization is a hallmark of these diseases 

(Goldman-Rakic, 1999; Jentsch et al., 2000; Nuechterlein et al., 2004; Everitt & Robbins, 2005; 

Kalivas & Volkow, 2005; Robbins, 2005; Schoenbaum et al., 2006). 

Taken together, these data suggest it is fundamentally important to study network 

signaling in diseased and healthy brains. While these concepts are often applied to other brain 

regions, such as the cortex, they have seldom been applied to subcortical regions, such as the 

VTA. The intricate patterns of activity in the current dataset suggest that the VTA accomplishes 

far more than has been previously suggested. In fact, it is exciting to note that heterogeneous 

patterns of action-evoked activation may balance specialization and diversity, as this type of 

scheme leads to optimal information encoding (Tripathy et al., 2013). Moving forward, the VTA 

should be conceptualized as a complex network, which is capable of encoding diverse types of 

information through multiple encoding regimes.  
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Appendix A 

SUPPLEMENTAL EXPLANATION OF TD ALGORITHM 

The TD model predicts the value of each future moment in a trial (Dayan & Abbott, 2001). 

Equation 8: 

v(t) =  �w(
t

τ=0

τ)u(t − τ) 

Where value, v, is simply reflective of a weighted representation of u, a single time 

dependent stimulus (u = 1 if the stimulus is present, u = 0 if the stimulus is absent), and w is the 

weight for that stimulus.  

The value of the weight, w, is updated by δ, the difference between actual and expected 

future rewards. This is a reward prediction error. The parameter, ϵ, describes a learning rate, and 

controls how much weight is given to the prediction error signal in terms of updating the weight, 

w. Equation 9: 

w(τ) →  w(τ) +  ϵδ(t)u(t −  τ) 
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The TD prediction error signal cannot be calculated directly. The signal represents the 

difference between actual and expected future rewards. But because future rewards have yet to 

occur, this quantity must be estimated. The key to accomplishing this comes from the notion that 

the estimated value at the next moment in time, plus the current reward, is a good estimator of 

future value (Dayan & Abbott, 2001). Equation 10: 

� r(
T− t

τ=0

t + τ) ≈ r(t) + v(t + 1) 

The term δ can be calculated from Equation 10. Equation 1 (from Introduction section): 

δ(t) = r(t) + v(t + 1) − v(t). Thus, the error signal represents an estimate of the actual and 

current reward value plus estimated value of future rewards, minus the prediction of the current 

value. The final two terms, v(t + 1) − v(t), are where the name ‘temporal difference’ is derived 

from. This term represents the difference between estimates at successive time steps (Dayan & 

Abbott, 2001). 
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