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NOVEL SINGLE AND HYBRID
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Jiafeng Xie, PhD

University of Pittsburgh, 2014

With the rapid development of economic and technical progress, designers and users of

various kinds of ICs and emerging embedded systems like body-embedded chips and wearable

devices are increasingly facing security issues. All of these demands from customers push

the cryptographic systems to be faster, more efficient, more reliable and safer. On the other

hand, multiplier over GF (2m) as the most important part of these emerging cryptographic

systems, is expected to be high-throughput, low-complexity, and low-latency. Fortunately,

very large scale integration (VLSI) digital signal processing techniques offer great facilities

to design efficient multipliers over GF (2m).

This dissertation focuses on designing novel VLSI implementation of high-throughput

low-latency and low-complexity single and hybrid finite field multipliers over GF (2m) for e-

merging cryptographic systems. Low-latency (latency can be chosen without any restriction)

high-speed pentanomial basis multipliers are presented. For the first time, the dissertation

also develops three high-throughput digit-serial multipliers based on pentanomials. Then

a novel realization of digit-level implementation of multipliers based on redundant basis is

introduced. Finally, single and hybrid reordered normal basis bit-level and digit-level high-

throughput multipliers are presented. To the author′s knowledge, this is the first time ever

reported on multipliers with multiple throughput rate choices. All the proposed designs

are simple and modular, therefore suitable for VLSI implementation for various emerging

cryptographic systems.
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1.0 INTRODUCTION

Cryptographic engineering can be traced back about 2000 years ago, when two parties are

required to share a symmetric key for encryption and decryption for communications. As

technology advances, the ancient cryptographic technologies are no longer applicable, e.g.,

for the approached suggested 2000 years ago, two parities must met each other and agree on

the symmetric key. Modern cryptographic techniques have been developed a lot since 1976,

when two scientists Die and Hellman invented an algorithm which leads to today’s public

key cryptography systems [1-5]. Recently, technologies like wearable and portable devices,

deeply embedded systems, wireless sensor nodes, RFID tags develops in a significant speed

and greatly changes people’s daily life. Meanwhile, security issues arise with all these devices,

i.e., how to maintain the data processed in a correct form, how to protect the data from stolen

and so on. All these challenges require advanced or emerging cryptographic systems to meet

the critical/specific requirements. It is worth mentioning that all these cryptographic systems

need efficient realization of finite field multiplication over GF (2m). The multiplication over

GF (2m) is much more complex than the addition operation in finite fields. Besides, the

multiplication operation can be extended further to perform division, exponentiation, and

inversion [6]-[8]. Generally, the multiplication over GF (2m) can be easily implemented on a

general purpose machine. But the software implementations usually do not meet the , speed,

area, cost constrains and some environmental requirements for specific embedded systems.

Most of the real-time embedded systems, therefore, need hardware implementation of finite

field arithmetic operations. Luckily, modern very large scale integration (VLSI) provides us

opportunities to deal with these issues. All these topics can be viewed as an applied science

in the overlap between mathematics, computer engineering and electrical engineering.
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1.1 PRELIMINARY: PROBLEM STATEMENT AND MOTIVATION

Security issues arise significantly in various resource-constrained environments (such as

deeply embedded systems, smart cards, portable devices, and wearable devices) and high-

performance web server (such as online banking systems) [1]-[5]. Undoubtedly, all these

applications require highly efficient cryptographic computing systems, such as elliptic curve

cryptography (ECC). On one hand, the resource-constrained applications suffer from avail-

ability of resources like chip area. On the other hand, these systems also suffer from low

throughput ability of the current cryptographic systems. Moreover, due to increasing number

of small and connected devices to the internet servers, efficient computation of cryptographic

systems are crucial for every devices.

There are three major features determine the performance of a certain cryptographic

system: speed, area occupation and safety. Meanwhile, as more and more technologies

exposed to the public, it becomes very challenging for modern cryptographic systems to

handle those increasing heavy tasks. Therefore, researchers are still working toward the

safer and faster cryptographic systems.

Finite field multiplication over GF (2m) is widely used in emerging cryptographic systems

as a basic component, e.g., ECC and error control coding systems [1]-[5]. The multiplication

over GF (2m) is much more complex than the addition operation in finite fields. Besides, the

multiplication operation can be extended further to perform division, exponentiation, and

inversion [6]-[8]. In general, there are three major basis to perform the multiplication over

GF (2m), i.e., polynomial basis, normal basis and redundant basis. All the three basis can

be used in various application environments due to their different characteristics and usually

multiplication over certain basis will mostly be used because of its simplicity and regularity

of the structure.

The choice of basis to represent field elements can determine the performance of the

field arithmetic [9]-[11]. Modern cryptographic systems usually involve a number of arith-

metic operations such as the multiplication, squaring and so on. It is worthy mentioning

that normal basis multipliers have no hardware cost in squaring operations (only involve

bits-shifting), more and more cryptographic circuits designs prefer to use the normal basis
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multipliers compared with the multipliers based on the other two bases. There are two

special classes of normal basis for which the complexity of multiplication can be minimized,

namely the optimal normal basis (ONB) type I and II. ONB Type I and II has been widely

used for various cryptographic system designs [12]-[19].

On the other side, however, polynomial basis multipliers have advantages over normal

basis multipliers such as modularity and regularity of the multiplier, easy to be realized in

high-throughput systems. The National Institute of Standards and Technology (NIST) has

also recommended five binary finite fields for ECC implementation [8], and two of those are

generated by the trinomials, f(x) = x233 + x73 + 1 and f(x) = x409 + x87 + 1 [8], while the

other three are pentanomials. Therefore, a number of works have been done on efficient

realization of multiplication over GF (2m) based on various basis [13]-[16].

These works can be classified into two types, in terms of the design style, the systolic de-

signs and the non-systolic designs. The non-systolic designs may have low-latency, but yield

low throughput, while the systolic designs feature modularity, regularity and local intercon-

nections, which are important properties for VLSI design [20]-[25], and all the processing

elements (PEs) in a systolic array are fully pipelined to produce very high throughput rate

[26]-[34]. But, on the other hand, systolic structures usually suffer from large number of

registers in structure. In terms of the input/output style, the existing works can be classi-

fied as bit-serial, digit-serial, bit-parallel, digit-parallel and serial/parallel hybrid structures

[35]-[41]. In real application environment, however, considering the tradeoff between the

area and delay complexity of a design, most researches are focused on the low-speed imple-

mentations [42]-[54]. Therefore, there is great potential on high-throughput, low-latency and

low-complexity realization of finite field multiplication over GF (2m) [55]-[67].

The systolic implementation of finite field multiplication over GF (2m) usually has ben-

efits like high-throughput, low critical-path and stable output. But on the other side, it

suffers long latency and large number of registers used in the structure for data transferring.

Systolic structure usually needs a large number of registers in the PEs, which greatly in-

creases the overall area of the systolic structure. Therefore, we should find an efficient way

to reduce the register count. Moreover, since the latency of systolic structure is long, efforts

should be made to reduce the latency of the whole structure. Furthermore, great efforts
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should be made on the efficient digit-serial structure which not only has high-throughput

ability but also bring benefits to the area reduction.

VLSI digital signal processing (DSP) design techniques are widely used in various appli-

cation systems [20]. It is believed that with proper VLSI DSP design techniques, practical

high-throughput low-complexity digit-serial implementation of finite field multiplication over

GF (2m) can be obtained. This thesis is devoted to develop a bottom-up approach for feasi-

ble low-complexity high-throughput and low-latency multipliers over GF (2m) for emerging

cryptographic systems.

1.2 OBJECTIVES OF THE DISSERTATION

In this dissertation, novel VLSI implementation of high-throughput, low-latency and low-

complexity finite field multipliers over GF (2m) for emerging cryptographic systems are pre-

sented. A bottom-up approach is proposed in designing these efficient multipliers. Trinomial

based multiplier has been thoroughly studies in past years because of its characteristics like

simplicity and regularity of the multiplication process. In this thesis, we thus only focus on

normal basis and pentanomial based multipliers. Normal basis multipliers usually are com-

plex and once they are not preferred for cryptographic systems because of their complicate

multiplication process. But through years’ derivation, some reordered versions, like redun-

dant basis (RB) and reordered normal basis (RNB) [68], merged that the normal basis mul-

tipliers have great potential in cryptographic systems especially because of its free squaring

operations. On the other hand, low-latency high-throughput bit-level and digit-level mul-

tipliers based on pentanomials are rarely reported due to their complicated multiplication,

though three of them are recommended by NIST for real applications.

Thus, in this dissertation, we firstly propose novel bit-level and digit-level implemen-

tation of multipliers based on RB (type I ONB). Novel single and hybrid architectures for

RNB (type II ONB) multipliers are also presented. High-throughput Low-latency bit- and

digit-level pentanomial basis multipliers are discussed and presented. The objectives of this

report are to design high performance and fast finite field multipliers for emerging/advanced
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cryptographic systems for small and wearable devices based on different security level and

key size.

The major contributions of this dissertation are presented in the following:

1.2.1 Low latency systolic montgomery multiplier for finite field GF (2m) based

on pentanomials

In this chapter, a low latency bit-parallel systolic Montgomery multiplier over GF (2m) based

on irreducible pentanomials. We have presented an efficient algorithm to decompose the

multiplication into a number of independent units for parallel processing. Besides, we have

introduced a novel so-called pre-computed addition (PCA) technique to further reduce the

latency. We have also proposed a novel modular reduction (NMR) operation based on the

PCA technique, which is more suitable for deriving low latency multiplier compared to

modular reduction schemes in existing multipliers. Moreover, by suitable cut-set retiming,

we have derived here a low latency bit-level-pipelined systolic design for field multiplication

based on our proposed algorithm. The proposed design has the same critical-path as the

corresponding existing design, but offers at least one-fourth of the latency of the other. For

the pentanomial suggested by NIST, the proposed design offers 74% reduction of area-delay

product over the recently reported design.

1.2.2 Low-latency high-throughput systolic multipliers over GF(2m) for NIST

pentanomials

Recently, finite field multipliers with capabilities like low-latency and high-throughput have

gained great attention in emerging cryptographic systems. Systolic realization of low-latency

and high-throughput multipliers over GF (2m) for NIST pentanomials, however, are not so

abundant. In this chapter, we present three pairs of low-latency and high-throughput bit-

parallel and digit-serial systolic multipliers specifically based on NIST pentanomials. Novel

decomposition-technique has been proposed that the multiplier is decomposed into several

parallel processing arrays to obtain a bit-parallel systolic structure (BP-I) with a critical-

path of 2TX (TX is the propagation delay of an XOR gate). These parallel arrays are
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then projected along vertical direction to obtain a digit-serial structure (DS-I) with the

same critical-path. To increase the throughput rate, another pair of bit-parallel (BP-II)

and digit-serial (DS-II) structures are then presented based on a novel modular reduction

operation, where the critical-paths are reduced to TA + TX (TA is the propagation delay of

an AND gate). Identical data sharing between processing elements (PEs) has been proposed

to reduce area-complexity of BP-I and BP-II further. Finally, we have proposed Karatsuba

Algorithm (KA)-based bit-parallel (BP-III) and digit-serial (DS-III) multipliers to enhance

the throughput rate further. From synthesis results, it is shown that the proposed multipliers

have significantly lower latency and higher throughput than the existing designs. To the

authors’ knowledge, this is the first report on low-latency systolic multipliers based on NIST

pentanomials without any restriction on latency choice.

1.2.3 High-throughput finite field multipliers using redundant basis for FPGA

and ASIC implementations

RB multipliers over GF (2m) have gained huge popularity in ECC mainly because of their

negligible hardware cost for squaring and modular reduction. In this chapter, we have

proposed a novel recursive decomposition algorithm for RB multiplication to obtain high-

throughput digit-serial implementation. Through efficient projection of signal-flow graph

(SFG) of the proposed algorithm, a highly regular processor-space flow-graph (PSFG) is

derived. By identifying suitable cut-sets, we have modified the PSFG suitably and performed

efficient feed-forward cut-set retiming to derive three novel multipliers which not only involve

significantly less time-complexity than the existing ones but also require less area and less

power consumption compared with the others. Both theoretical analysis and synthesis results

confirm the efficiency of proposed multipliers over the existing ones. The synthesis results for

field programmable gate array (FPGA) and application specific integrated circuit (ASIC)

realization of the proposed designs and competing existing designs are compared. It is

shown that the proposed high-throughput structures are the best among the corresponding

designs, for FPGA and ASIC implementation. It is shown that the proposed designs can

achieve up to 94% and 60% savings of area-delay-power product (ADPP) on FPGA and ASIC
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implementation over the best of the existing designs, respectively. The proposed designs,

therefore, can be used in various application environments.

1.2.4 Single and hybrid architectures for multiplication over finite field GF (2m)

based on reordered normal basis

RNB, a reordered version of an ONB II, has great potential to be used in modern/emerging

cryptographic systems because of its efficient realization in multiplication and squaring op-

erations over GF (2m). In this chapter, efficient bit- and digit-level algorithms for com-

puting multiplication over GF (2m) based on RNB are presented. Novel high-throughput

low-complexity architectures are presented based on these proposed algorithms. First of

all, high-throughput bit- and digit-parallel multipliers are presented. To have an optimal

balanced trade-off between area and time complexities, novel digit-serial architectures for

RNB multiplication is proposed then. Finally, for the first time, a novel hybrid architecture

for parallel/serial realization of finite field multiplication based on RNB is introduced. The

main advantage of the novel hybrid architecture is that it offers flexible choices of throughput

of parallel/serial realization of RNB multiplication while meantime it involves little hard-

ware overhead. This feature would be a major advantage for implementing multiplication in

modern/emerging reconfigurable cryptographic systems. Both theoretical comparison and

practical simulation results from FPGA and ASIC realization are presented. It is shown

that the proposed multipliers have significantly lower area-time-power complexity than the

corresponding existing designs. Specifically, FPGA realization of the novel hybrid multiplier

is detailed presented to confirm its efficiency in FPGA based reconfigurable cryptographic

platforms.

1.3 OUTLINE OF THE DISSERTATION

The rest of this dissertation is organized as follows. In total, we have four major chapters

covering the technical problems.
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Chapter 2 gives a brief review of mathematic formulation of polynomial basis and nor-

mal basis multiplication over GF (2m). Several classes of the most frequently used basis

multipliers are also introduced. Moreover, the previous reported design styles of finite field

multipliers over GF (2m) are also presented.

Chapter 3 introduces a low latency bit-parallel systolic Montgomery multiplier over

GF (2m) based on irreducible pentanomials. This is the first report specifically focus on

pentanomial basis multipliers.

Chapter 4 proposes three pairs of low-latency and high-throughput bit-parallel and digit-

serial systolic multipliers specifically based on NIST pentanomials. This is the first report

on low-latency systolic multipliers based on NIST pentanomials without any restriction on

latency choice.

Chapter 5 introduces the design of serveral high-throughput multipliers over GF (2m)

based on RB and their implementations in both FPGA and ASIC platforms. The design

procedure of the multiplications are proposed as well as the novel architectures.

Chapter 6 presents several novel high-throughput low-complexity architectures based on

RNB. Bit- and digit-parallel, digit-serial and hybrid architectures are presented, respectively,

as well as their performance in both FPGA and ASIC platforms.

Finally, Chapter 7 gives a summary of the contributions of the entire dissertation and

provides future research directions.
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2.0 FINITE FIELD MULTIPLICATIONS OVER GF (2M)

In this chapter, we present a brief review of mathematic background of finite field mul-

tiplication over GF (2m). Some basic concepts of the finite field operations are introduced,

including addition and multiplication. Several classes of the most frequently used irreducible

polynomials are also described. Moreover, the previous reported designs of polynomial basis

multiplication over GF (2m) are given.

2.1 INTRODUCTION TO FINITE FIELD

The efficient implementation of finite field arithmetic is critical to modern cryptographic

systems like the elliptic curve systems because the operations involved in these systems are

performed using arithmetic operations in theses fields.

2.1.1 Basic concepts about finite field

Fields, expressed as F , are generally defined as abstractions of familiar number systems (such

as the real numbers R) as well as their essential properties. Usually, two operations, namely

addition (denoted by +) and multiplication (denoted by ·) are involved in the field, which

satisfy the usual arithmetic properties, such as the distributive law: (a+ b) · c = a · c+ b · c

for all a, b, c ∈ F [1]-[5]. If the field contains finite elements, then the field is called to be

finite.
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2.1.2 Field operations

Two basic operations are involved in the field arithmetic operations, i.e., addition and mul-

tiplication. Subtraction can be expressed in terms of addition: for a, b ∈ field F, a − b =

a + (−b), where −b is the unique element in the field that b + (−b) = 0. Similarly, division

of field elements can be expressed by multiplication: for a, b ∈ field F with b 6= 0, we have

a/b = a · b−1 [1]-[5].

2.1.3 Field order

The order of a certain finite field is determined by the number of elements in that field. For

a finite field F , if the order of this field is q and q is a prime power, i.e., there exists q = pm

where p is a prime number and m is a positive integer. If m = 1, then this field is defined

as a prime field. If m ≥ 2, then this field is defined as an extension field [1]-[5].

2.1.4 Binary fields

If the order of a finite field F is 2m, this field is called binary field or characteristic-two field,

expressed as GF (2m). Polynomial basis representation can be used to construct GF (2m),

where the elements of GF (2m) are binary polynomials (coefficients ∈ {0, 1}, and degree

≤ m − 1). The elements in the finite field GF (2m) are the polynomials as {0, 1, α, α +

1, α2, α2 + 1, . . . , αm−1 +αm−2 + . . .+α+ 1}, where α is the root of irreducible polynomial

f(x) over GF (2)(GF (2)={0, 1}), i.e., f(α) = 0 [1]-[5].

The irreducible binary polynomial is defined as follows: For a polynomial of degree m,

this polynomial cannot be factored as a product of binary polynomials with degree less than

m, this polynomial is called the irreducible polynomial.

The major arithmetic operations in the finite field GF (2m) are the addition and multi-

plication. Addition in field GF (2m) is simple and easy, namely the addition of polynomials,

with coefficient arithmetic performed modulo 2, which can be implemented by XOR gates

in hardware design. On the other side, the multiplication is much more complex, and it is

performed by field elements modulo the reduction polynomial. For example, for any binary
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polynomial a(x), a(x)modf(x) denotes the reminder polynomial of degree less than m. And

this operation is called reduction modulo f(x) [1]-[5].

2.2 POLYNOMIAL BASIS MULTIPLICATION OVER GF (2M)

Recently, the binary field GF (2m) has gained substantial interests due to its widely usage

in various applications, such as algebraic codes, cryptographic systems, random number

generators, VLSI DSP systems and VLSI testing platforms. Among all these applications,

the multiplication over GF (2m) is served as a common computing core and can be extended

further to obtain the operations of division, exponentiation, and inversion. Thus, in this

section, we present the basic steps of the polynomial basis multiplication over GF (2m) as

follows:

Let f(x) be a degree m irreducible polynomial over GF (2) in the form [1]-[5], [36]

f(x) = xm + fm−1x
m−1 + · · ·+ f1x+ f0 (2.1)

where fi ∈ GF (2) = {0, 1}. Then the set {1, x, . . . , xm−1} is the polynomial basis in

GF (2m) defined by f(x) as

a(x) = am−1x
m−1 + · · ·+ a1x+ a0 (2.2)

where ai ∈ GF (2).

Let a(x) and b(x) be two field elements and c(x) be the product, then

c(x) = a(x)b(x)mod f(x) (2.3)

where

b(x) = bm−1x
m−1 + · · ·+ b1x+ b0 (2.4)

c(x) = cm−1x
m−1 + · · ·+ c1x+ c0 (2.5)
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and bi, ci ∈ GF (2), for i = 0, 1, . . . ,m− 1. Then (2.3) can be expressed as another form as

follows:

c(x) = (
m−1∑
i=0

bia(x)xi)mod f(x) (2.6)

Then, (2.6) can be changed into

c(x) =
m−1∑
i=0

bi(a(x)ximod f(x)) (2.7)

Then define

a(x)0 = a(x), and a(x)j = (a(x)xjmod f(x)) (2.8)

Then

a(x)j+1 = a(x)ixmod f(x) (2.9)

Define that

a(x)j =
m−1∑
i=0

ajix
i (2.10)

Since x is the root of f(x), then we can have

xm = fm−1x
m−1 + · · ·+ f1x+ f0 (2.11)

Substituting (2.11) into (2.9)

a(x)j+1 = aj+1
m−1x

m−1 + · · ·+ aj+1
1 x+ aj+1

0 (2.12)

where

aj+1
0 = ajm−1

aj+1
i = aji−1 + ajm−1fi, for 1 ≤ i ≤ m− 1

(2.13)

The algorithm above presents the polynomial basis multiplication over GF (2m). It is

worth mentioning that the choice of the irreducible polynomial f(x) may reduce the compu-

tation complexity of modular reduction. Usually, the sparse irreducible polynomials having

fewer nonzero terms are preferred for efficient realization of multiplication over GF (2m). In

the following section, we will give some important irreducible polynomials which are widely

used in modern cryptographic systems.
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2.2.1 Important irreducible polynomials

As mentioned above, the choice of the irreducible polynomial f(x) may ease the multipli-

cation operations over GF (2m). Among all the important irreducible polynomials, usually

trinomials, pentanomials, equally spaced polynomials, and AOPs are selected for real appli-

cations [1]-[9]. In this report, however, we only focus on trinomials, pentanomials and AOPs

with several reasons as follows:

1 Trinomials are the shortest polynomials existed, and the multiplications are easy to be

performed.

2 The National Institute of Standards and Technology (NIST) has recommended five binary

finite fields for ECC implementation, and two of those are generated by the trinomials,

f(x) = x233 + x73 + 1 and f(x) = x409 + x87 + 1.

3 The NIST also suggested three pentanomials for cryptographic engineering.

4 One of the pentanomial based multiplier suggested by NIST has the smallest size for

cryptographic systems.

5 Multipliers for the AOP-based binary fields are simple and regular, very suitable for VLSI

implementation.

6 AOP-based multiplication architectures can be used as a kernel circuit for field exponen-

tiation, inversion, and division architectures.

7 AOP-based multipliers can be used for the nearly AOP (NAOP) which could be used for

efficient realization of ECC systems.

2.2.2 AOPs

An AOP is a polynomial expressed as [1]-[5]

f(x) = xm + xm−1 + · · ·+ x+ 1 (2.14)

where all the coefficients are “1”. For an AOP, if m+1 is a prime number and 2 is a primitive

modulo m + 1, this AOP is called as irreducible AOP. For example, for the values of m ∈

{2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, 130, 138, 148, 162, 172, 178, . . .},

the AOP is reducible.
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AOP has an important property, for an AOP f(x), we can have xm = 1 +x+ . . .+xm−1,

and therefore we have xm + 1 = 1. This property can be used to reduce the complexity of

arithmetic operations.

Recently, an efficient class of polynomial [34], namely the NAOP is introduced for efficient

cryptographic system realization. In practical implementation, AOP can be used to represent

the NAOP to reduce the computation complexity, i.e., some coefficients of AOP can be

replaced by “0” to represent the NAOP.

2.2.3 Trinomials

A trinomial over GF (2m) can be expressed as[1]-[5]

f(x) = xm + xk + 1 (2.15)

where 1 < k < m. The trinomial has only three nonzero coefficients and there is no other

irreducible polynomial that has fewer nonzero coefficients than the trinomial. Irreducible

trinomial basis multiplication over GF (2m) has drawn significant attention because it can

reduce the complexity of multiplication. Moreover, there are abundant irreducible trinomials

existed for every degree m.

2.2.4 Pentanomials

A pentanomial over GF (2m) can be expressed as[1]-[5]

f(x) = xm + xk3 + xk2 + xk1 + 1 (2.16)

where 1 < k1 < k2 < k3 < m. A polynomial with five nonzero coefficients, irreducible

pentanomials have drawn significant attention also because using them can reduce the com-

plexity of finite field arithmetic in GF (2m). Furthermore, it was proved in that there exists

either an irreducible trinomial or pentanomial of degree m ∈ [2, 10, 000], therefore an irre-

ducible pentanomial can be used whenever an irreducible trinomial of degree m does not

exist.
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2.2.5 Existing works about polynomial basis multiplication over GF (2m)

The multiplication over GF (2m) can be easily implemented on a software platform. But for

a number of practical applications, like the credit card, it is unpractical to embed a general

purpose machine in a card. Moreover, the software implementations usually do not meet

the speed requirement of some time critical systems. Most of the real time cryptographic

systems, therefore, need hardware implementations. The hardware implementation usually

has highly cost in terms of area and time complexity. Therefore, the designing of a high-speed

hardware structure with less area requirement has become much more demanding.

A number of works have been done on efficient realization of multiplication over GF (2m)

based on irreducible polynomials [37]-[49]. These works can be classified into three ma-

jor types, in terms of their input-output structuring: (i) serial-in serial-out structures, (ii)

parallel-in parallel-out structures and (iii) serial/parallel structures. Serial-in serial-out struc-

ture usually has low area requirement but its throughput is low and usually it is not suitable

for real applications. The parallel-in parallel-out structure, however, has a high throughput

but suffers large area complexity. To tradeoff the area-time complexity, serial/parallel is

introduced by some researches to achieve an optimal balance. These works can also be clas-

sified into two types, in terms of the design style, the systolic designs and the non-systolic

designs.The non-systolic designs may have low latency, but yield low throughput, while the

systolic designs feature modularity, regularity and local interconnections, which are impor-

tant properties for VLSI design [17]-[18], and all the PEs in a systolic array are fully pipelined

to produce very high throughput rate [19]-[20]. Along with the development of semiconduc-

tor technology, more and more transistors can be embedded in one single chip. On the other

side, more and more modern cryptographic systems require high-speed processing abilities.

Therefore, in this thesis, we only focus on the parallel-in parallel-out systolic structures for

multiplication over GF (2m).

2.2.6 Existing works on AOPs

For non-systolic realizations: In one early paper [44], Fenn et al. has presented a serial-in

serial-out structure for AOP-based multiplication. An efficient bit-parallel multiplier defined
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by AOP has been shown in [45]. A serial-in serial-out multiplier defined by AOP has been

suggested in [46]. Very recently, Meher et al. has suggested a serial/parallel structure for

AOP-based multiplication [47].

For systolic realizations: In an early paper [48], a bit-parallel systolic design of multipliers

for the field defined by AOP has been suggested by Lee et al. Another efficient bit-parallel

systolic design is presented in [49]. In a recent paper [50], a low-complexity bit-parallel

systolic Montgomery multiplier based on AOP has been suggested. Very recently [51], an

efficient systolic Montgomery multiplier based on AOP is presented.

2.2.7 Existing works on trinomials

In an early paper [53], a bit-parallel systolic design for multiplication over GF (2m) have been

suggested by Yeh et al.. Several other works have been suggested for efficient realization

of finite field multiplication over GF (2m) [38]-[40]. In [36], the authors propose a systolic

structure for polynomial based multiplication. In a recently reported paper [37], Meher has

suggested systolic and super-systolic structures for multiplication over GF (2m).

2.2.8 Existing works on pentanomials

There are only a small number of papers specifically focusses on pentanomials [61]. And

Because pentanomial is more complicate than the other polynomials, it is rare to find a

design with low-latency high-throughput abilities. Structures about penatanomials proposed

in this thesis are all the brand new designs.

2.2.9 Research direction

NIST has recommended five polynomials for ECC implementation, two of them are trinomial-

s, the others are pentanomials [8] (unfortunately, AOP is not selected here). Trinomial based

multiplier is simpler than pentanomial based multiplier, and hence is thoroughly studies in

past years because of its characteristics like simplicity and regularity of the multiplication.

On the other hand, low-latency high-throughput bit-level and digit-level multipliers based
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on pentanomials are rarely reported due to their complicated multiplications, though three

of them are recommended by NIST for real applications.

Keeping this in view, in this thesis, we will only focus on pentanomial based multipliers.

Bit-parallel systolic multipliers are preferred for high-speed applications, but to lower the

latency would be a real challenge. To obtain balance between area and time complexities,

digit-serial multipliers would be a good choice. Overall, area-time efficient bit-parallel and

digit-serial multipliers based on pentanomial will be the current/future research direction.

2.3 NORMAL BASIS MULTIPLICATION OVER GF (2M)

Define an element β ∈ GF (2m), then N = [β20 , β21 , . . . , β2m−1
] is called a Normal Basis

of GF (2m) over GF (2) (β20 , β21 , . . . , β2m−1
are linearly independent). We can also say that

β generates the normal basis N , or β is one of the normal elements of GF (2m) over GF (2).

It is already proved that for all positive integers m there exists a normal basis in the field

GF (2m) over GF (2) [1]-[5]. Based on the above definition, any element A ∈ GF (2m) can be

expressed as (using a normal basis):

A =
m−1∑
i=0

aiβ
2i = a0β + a1β + · · ·+ am−1β

2m−1

(2.17)

where ai ∈ GF (2) and 0 ≤ i ≤ m − 1 (ai can be called the ith coordinates of A). For

simplicity of discussion, A can be expressed as A = (a0, a1, . . . , am−1) for short.

Squaring operation, carried out by only cyclic right shift, is the simplest and easiest

operation in normal basis arithmetic. And hence there is nearly no cost in hardware re-

alization, which automatically makes normal basis a preferred choice of representation in

systems based on hardware implementation. On the other side, normal basis multiplication

is not that simple as squaring, even much more complicated. Lots of efforts have been made

to reduce the complexity of normal basis multiplication. Hardware realization of two two

finite field elements represented in a normal basis was first described by Massey and Omu-

ra [69] (people usually call normal basis multiplication after their names as Massey-Omura
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multipliers). Nevertheless, normal basis multipliers offer high complexity in hardware when

compare to polynomial basis multipliers [70]-[87].

There are some efforts have been made to reduce the complexity of normal basis multipli-

er. Mullin et al. proposed a serial of normal bases, called ONB, which has lower complexity

in hardware realization. There are two special types of normal bases, i.e., type-I and type-II

ONB. RB is a variance of type-I ONB, while RNB is a reordered form of type-II ONB [68].

The use of the RB and RNB can reduce significantly the complexity of various arithmetic

operations.

2.3.1 Some properties

Any two elements and β∈ GF (2m), we have (α+β)2 = α2+β2. Furthermore, for any element

α ∈ GF (2m), we can have α2m = α. Therefore, we can have 1 = β + β2 + β4 + · · · + β2m−1

for any element β ∈ GF (2m). We can say that for (1, 1, 1, . . ., 1) is the normal basis

representation of 1 [1]-[5].

DefineN = [β20 , β21 , . . . , β2m−1
] as a normal basis ofGF (2m) overGF (2) (β20 , β21 , . . . , β2m−1

are linearly independent). While one polynomial has roots are linearly independent over

GF (2) in binary field is called an irreducible N -polynomial. Moreover, it has already been

proven that the elements of a normal basis are exactly the same roots of an N -polynomial.

Therefore, we can describe a normal basis as another N -polynomial.

For practical applications, the normal basis arithmetic operation should have a complex-

ity as low as polynomial. Given an integer m and the field GF (2), generate a normal basis

of GF (2m) over finite field, or equivalently, construct an N -polynomial of degree m, is quite

important.

2.3.2 Squaring

Define N = [β20 , β21 , . . . , β2m−1
] is a normal basis of GF (2m) over finite field. For any A

and B∈ GF (2m), we can have (A+B)2 = A2 +B2 since 2AB = 0. From Fermats theorem,

we can have A2m−1
= 1 and A2m = A [1]-[5]. Thus, we can have the following equations

to depict the squaring process (Normal basis squaring operation is widely used in many
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applications due to its efficient realization, i.e., it involves nearly free hardware cost since no

extra operation is involved except cyclic shift):

A =
m−1∑
i=0

aiβ
2i = a0β + a1β + · · ·+ am−1β

2m−1

(2.18)

then we can have

A2 = a0β
21 + a1β

22 + · · ·+ am−1β
2m

= am−1β
20 + a0β

21 + · · ·+ am−2β
2m−1

(2.19)

Therefore, we can express A = (a0, a1, . . . , am−1), A
2 = (am−1, a0, . . . , a

m−2). From

the above expression, we can see that squaring is executed by a simple cyclic right shift.

And therefore there is almost no hardware involved in this operation.

2.3.3 Normal basis multiplication and its example

In this subsection, the work originally presented by Massey and Omura is briefly reviewed.

Let [β20 , β21 , . . . , β2m−1
] be a normal basis of GF (2m) over finite field. And we define two

elements A and B represented in the normal basis as A =
∑m−1

i=0 aiβ
2i and B =

∑m−1
i=0 biβ

2i ,

respectively. Represent A and B in vector notation by A = (a0, a1, . . . , am−1) and B =

(b0, b1, . . . , bm−1), respectively. Then the product C can be expressed as C = AB =

(c0, c1, . . . , cm−1) in vector form [1]-[5].

Here we give an example to explain the normal basis multiplication [2].

Let f(x) = x4 + x3 + 1 be the generating irreducible polynomial for GF (24) and α

is the root of f(x). Any two elements A and B in GF (24) can be represented as A =

a0α+a1α
2 +a2α

4 +a3α
8 and B = b0α+ b1α

2 + b2α
4 + b3α

8. Therefore, the product C = AB

can be expressed as follows:

C = AB = (a0α + a1α
2 + a2α

4 + a3α
8)(b0α + b1α

2 + b2α
4 + b3α

8)

= c0α + c1α
2 + c2α

4 + c3α
8

= α12(a2b3 + a3b2) + α10(a1b3 + a3b1) + α9(a3b0 + a0b3)

+α8(a2b2) + α6(a2b1 + a1b2) + α5(a2b0 + a0b2)

+α4(a1b1) + α3(a0b1 + a1b0) + α2(a0b0) + α(a3b3)

(2.20)
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and then based on the above equations, we can have following steps to show a detailed

multiplication process:

c3 = a2b2 + a3b2 + a2b3 + a3b1 + a1b3 + a3b0 + a0b3 + a1b0 + a0b1

c2 = a1b1 + a2b1 + a1b2 + a2b0 + a0b2 + a2b3 + a3b2 + a0b3 + a3b0

c1 = a0b0 + a1b0 + a0b1 + a1b3 + a3b1 + a1b2 + a2b1 + a3b2 + a2b3

c0 = a3b3 + a0b3 + a3b0 + a0b2 + a2b0 + a0b1 + a1b0 + a2b1 + a1b2

(2.21)

while the other normal basis multiplications have similar operations as (2.20) and (2.21).

2.3.4 Existing works on RB (Type-I ONB)

Several digit-level serial/parallel structures for RB multiplier over GF (2m) have been re-

ported in the last years [68], [70]-[73] after its introduction by Wu et al. [68]. An efficient

serial/parallel multiplier using redundant representation has been presented in [70]. A bit-

serial word-parallel (BSWP) architecture for RB multiplier has been reported by Namin

et. al [71]. Several other RB multipliers also have been developed by the same authors in

[72]-[73] for reducing the complexity of implementation and for high-speed realization. We

find that the hardware utilization efficiency and throughput of existing structures of [70]-[73]

can be improved by efficient design of algorithm and architecture.

2.3.5 Existing works on RNB (Type-II ONB)

There are two special classes of normal basis for which the complexity of multiplication

can be minimized, namely the ONB type-I and -II. ONB Type-II has been selected as

potential candidate for various cryptographic system designs. RNB is a version of ONB

type II which has been proposed in [67] for efficient multiplication implementation. Later,

efficient multipliers are suggested in [68] based on this basis. Very recently, two high-speed

architectures for multiplication using RNB are proposed in [80].
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2.3.6 Research direction

Normal basis multipliers usually are complex and once they are not preferred for cryp-

tographic systems because of their high area-complexity of multiplication operation. But

through years’ derivation, some reordered versions, like RB and RNB, merged that the nor-

mal basis multipliers have great potential in cryptographic systems especially because of its

free squaring operations. On the other hand, because of their high-complexity in hardware

implementation, resource reusable technique, i.e., hybrid architecture, will be much more

demanding in the future.

Based on the above consideration, in this thesis, we will not only focus on normal basis

multipliers with low-complexity and high-throughput capabilities, but also will develop a

hybrid architecture with various throughput rate choices. Overall, area-time efficient bit-

parallel and digit-serial single and hybrid multipliers based on normal basis will be the

current/future research direction.
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3.0 LOW LATENCY SYSTOLIC MONTGOMERY MULTIPLIER FOR

FINITE FIELD GF (2M) BASED ON PENTANOMIALS

In this chapter, we present a low latency systolic Montgomery multiplier over GF (2m) based

on irreducible pentanomials. We have presented an efficient algorithm to decompose the

multiplication into a number of independent units for parallel processing. Besides, we have

introduced a novel so-called PCA technique to further reduce the latency. We have also

proposed a NMR operation based on the PCA technique, which is more suitable for deriv-

ing low latency multiplier compared to traditional modular reduction schemes in existing

multipliers. Moreover, by suitable cut-set retiming, we have derived here a low latency bit-

level-pipelined systolic design for field multiplication based on our proposed algorithm. The

proposed design has the same critical-path as the corresponding existing design, but offers

at least one-fourth of the latency of the other. For the pentanomial suggested by NIST,

the proposed design offers significant reduction of area-delay product over the recently re-

ported design. The proposed design is simple and modular, and therefore suitable for VLSI

implementation.

3.1 INTRODUCTION

Cryptographic applications in ECC and error control coding systems require field operations

over GF (2m) [1]-[5]. The implementation of multiplication over GF (2m) greatly impacts

the overall system performance. Accordingly, many efforts have been made for efficient

realization of multiplication over GF (2m) [3]-[14]. Out of the three bases, i.e., dual basis,

normal basis, and polynomial basis, the polynomial basis designs have gained much more
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popularity compared with the multipliers due to its several advantages over the other two

bases [5-6]. The pentanomial based Galois field is widely used in public-key cryptography

systems, since the NIST has recommended three pentanomials for ECC application [8].

All the existing designs for multiplication over GF (2m) based on polynomials could be

categorized as non-systolic and systolic designs [8]-[15]. Both the non-systolic and systolic

designs have advantages. The systolic designs have efficiency in area-time complexity, being

supported by their features such as modularity and regularity of the structures [16]-[17], and

usually, the systolic structures have high throughput rate.

The structures for multiplication over GF (2m) based on irreducible trinomials and gen-

eral polynomials have been extensively explored [37]-[40]. There are, however, only a few

systolic realizations of pentanomial-based multiplier. In a recent report [25], Meher has p-

resented an efficient systolic structure for multiplication over GF (2m) based on irreducible

pentanomial. The design involves significantly less area-time complexity compared with

other designs.

The systolic structure for field multiplication in [25] has a latency of m cycles. In this

section, we have extended further to obtain a lower latency systolic structure for multiplica-

tion over GF (2m) based on irreducible pentanomial. First of all, we have shown an efficient

algorithm for Montgomery multiplication over GF (2m) based on irreducible pentanomial. It

is shown that the multiplication can be decomposed into a number of independent compo-

nents, which could be processed in parallel without changing the critical-path. Furthermore,

we have introduced a novel PCA technique such that the latency of a multiplier can be

reduced further. Accordingly, a NMR operation is introduced based on the PCA technique.

The proposed structure achieves significantly less time complexity than the corresponding

existing structure.

3.2 ALGORITHM

In this section, we firstly present an efficient Montgomery algorithm, which can reduce the

latency of the multiplier followed by the proposed PCA technique. Some examples and
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extensions of the proposed PCA technique are also given as well as the detailed algorithm

steps and processes.

3.2.1 Montgomery multiplication

Let f(x) be an irreducible polynomial over GF (2) as

f(x) = xm + fm−1x
m−1 + · · ·+ f1x+ 1 (3.1)

where fj ∈ GF (2) = {0, 1}.{1, x, , xm−1} is the polynomial basis in GF (2m), such that we

can have the Montgomery multiplication algorithm as [2]

C = A ·B · r−1modf(x) (3.2)

where

A = am−1x
m−1 + · · ·+ a1x+ a0

B = bm−1x
m−1 + · · ·+ b1x+ b0

C = cm−1x
m−1 + · · ·+ c1x+ c0

(3.3)

and aj, bj, cj ∈ GF (2), for j = 0, 1, ,m−1. r is Montogomery factor that satisfies gcd(r, f(x)) =

1, where gcd means the greatest common divisor. In [78], r = xm−1.

In practical applications, m is an odd number, such as the pentanomial suggested by

NIST, e.g., f(x) = x163 + x7 + x6 + x3 + 1. In that case we can define r = xu = x(m−1)/2 as

the Montgomery factor, and then (3.2) can be expressed as

C =
m−1∑
i=0

bi(A · xi · x−umodf(x)) = C− + C+ (3.4)

where ∑u−1
i=0 bi · A · xi−umodf(x)) = C−∑m−1
i=u bi · A · xi−umodf(x)) = C+

(3.5)

Let us define

A(0) = A (3.6)

and

A(1) = A · x−1modf(x)A(2) = A · x−2modf(x) . . . A(u) = A · x−umodf(x) (3.7)
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Such that based on the above discussions, we can have the following steps to give a

detailed description of proposed technique:

A(i+1) = (A(i) · x−1modf(x)) (3.8)

For simplicity of discussion, (3.5) can be rewritten as

C− =
u∑

i=1

Xi (3.9)

where Xi = bu−iA
(i).

Therefore, we can have

A(i+1) = a
(i)
0 x
−1 + a

(i)
1 + · · ·+ a

(i)
m−1x

m−2 (3.10)

where

A(i) = a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
m−1x

m−1 (3.11)

Since x is the root of f(x), one can also have xm + fm−1x
m−1 + · · · + f1x = 1 and

x−1 = xm−1 + fm−1x
m−2 + + f1. After substituting x−1 into (3.10), we can find

A(i+1) = a
(i+1)
0 + a

(i+1)
1 + · · ·+ a

(i+1)
m−1 x

m−1 (3.12)

where

a
(i+1)
m−1 = a

(i)
0

a
(i+1)
j = a

(i)
j+1

⊕
fj · a(i)0

(3.13)

for j = 1, 2, . . . ,m− 1.

For the C+ of (3.5), similarly, we can have

C+ =
m−1∑
i=u

Yi (3.14)

where Yi = biA
′(i), for A′(i) = A and A′(i) = (A · xi−umodf(x)). Such that A′(i+1) can be

obtained from A′(i) recursively as A′(i+1) = (A′(i) · x modf(x)).

We can also have

A′(i+1) = [a
′(i)
0 x+ a

′(i)
1 x2 + · · ·+ a

′(i)
m−1x

m] modf(x) (3.15)
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A′(i) = a
′(i)
0 + a

′(i)
1 x+ · · ·+ a

′(i)
m−1x

m−1 (3.16)

Substituting xm into (3.15), we find

A′(i+1) = a
′(i+1)
0 + a

′(i+1)
1 x+ · · ·+ a

′(i+1)
m−1 x

m−1 (3.17)

where

a
′(i+1)
0 = a

′(i)
m−1

a
′(i+1)
j = a

′(i)
j−1

⊕
fj · a′(i)m−1

(3.18)

for j = 1, 2,m−1. Let us define C+ of (3.5) as the forward block, and C− as the inverse block.

Similarly, we define the operation of (3.13) as inverse modular reduction (IMR) operation,

then the operation of (3.18) can be defined as forward MR (FMR) operation. Each of the

IMR and FMR operations requires a duration of TX , where TX is propagation delay of XOR

gate.

One can define an irreducible pentanomial of degree m as f(x) = xm+xk1+xk2+xk3+1,

for 1 ≤ k3 < k2 < k1 ≤ m− 1, and comparing pentanomial with (3.1), one can have

fj =

 1 for j = k1, k2, k3

0 for 1 ≤ j ≤ m− 1 and j 6= k1, k2, k3
(3.19)

Then, we can substitute (3.19) into (3.13) and (3.15) to obtain the details of the IMR

and FMR operations. It is possible to extend IMR and FMR operations to derive the

reduced forms A′(i+l) (A(i+l)) concurrently from A′(i) (A(i)) for reducing the degree by l for

l = min{m− k1, k1− k2, k2− k3}, as follows

a
′(i+l)
j =



a
′(i)
m−l+j for 0 ≤ j ≤ l − 1

a
′(i)
j−l

⊕
a
′(i)
m−l+j−kl for k1 ≤ j ≤ k1 + l − 1

a
′(i)
j−l

⊕
a
′(i)
m−l+j−k2 for k2 ≤ j ≤ k2 + l − 1

a
′(i)
j−l

⊕
a
′(i)
m−l+j−k3 for k3 ≤ j ≤ k3 + l − 1

a
′(i)
j−1 otherwise

(3.20)

Note that the inverse block involves similar operations as the forward block, which is the

same as in rest of the chapter.
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Now let us consider u = l × P + r, where l, P and r are integers, and 0 ≤ P ≤ l and

0 ≤ r ≤ l, we can rewrite (3.7) in a form

C− =
∑u

i=1Xi = (X1 +Xl+1 + · · ·+XPl+1) −→ 1st unit

+ · · ·+

(Xr +Xl+r + · · ·+Xu) −→ rth unit

+ · · ·+

(Xl +X2l + · · ·+XPl) −→ lth unit

(3.21)

Similarly, for (m − u) = l × Q + t, where l, Q and t are integers, and 0 ≤ Q ≤ l and

0 ≤ t ≤ l, we can express (3.11) as

C+ =
∑m−1

i=u Yi = (Yu + Yl+u + · · ·+ YQl+u) −→ 1st unit

+ · · ·+

(Yu+t + Yl+u+t + · · ·+ Ym−1) −→ rth unit

+ · · ·+

(Yu+L−1 + Y2l+u−1 + · · ·+ Yu+Ql−1) −→ lth unit

(3.22)

Therefore, according to (3.21) and (3.22), the multiplier can be implemented by 2l parallel

units having the same critical-path.

3.2.2 PCA technique

For pentanomials with l=1, e.g., f(x) = x13 + x4 + x3 + x2 + 1, the derivation of A′(i+l)

(A(i+l)) concurrently from A′(i) (A(i)) requires more logic-time as the degree of modular

reduction“l”increases. Therefore, we introduce a novel PCA technique here to reduce this

delay. For simplicity of discussion, we illustrate here only the forward block. For f(x) =

x13 + x4 + x3 + x2 + 1, from (3.13) we can find that

C+ =
∑12

i=6 Yi

= (A′(6)b6 + A′(8)b8 + A′(10)b10 + A′(12)b12) −→ 1st unit

(A′(7)b7 + A′(9)b9 + A′(11)b11) −→ 2nd unit

(3.23)

Define M1 = [A′(6) A′(8) A′(10) A′(12)] and M2 = [A′(7) A′(9) A′(11)], and the detail of M1

and M2 is in Fig. 1(a) and (b), respectively.
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Fig. 1. Detailed expression of M1 and M2. (a) The detail of M1. (b) The detail of M2.                                                 

Figure 1: Detailed expression of M1 and M2. (a) The detail of M1. (b) The detail of M2.
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Figure 2: An example of bit-addition involved in M2.

It is clear from Fig. 1 that if we want to derive the operand A′(i+2) directly from A′(i),

it would involve a delay of 2TX . To reduce this duration, we introduce here a novel PCA

technique. Let us first take M2 as illustration. It is observed that some bits of A′(9) of M2 can

be expressed as addition of two bits, as shown in Fig. 2, e.g., a0+a11+a10 = (a0)+(a11+a10).

It is also observed that if we add an additional value (a11 + a10), then we can obtain A′(9)

directly from A′(7) in time TX only, as shown in Fig. 3, while the other bits of A′(7)) can
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Figure 3: Process of derivation of A′(9) directly from A′(7).

be obtained through bits-shifting/ adding, e.g., a12 + a10 = (a10) + (a12). We can compute

(a11 + a10) concurrently during the time we obtain A′(7) from A′(6). Such pre-computed

addition (PCA) therefore can be used to reduce the delay to obtain A′(9) directly from A′(7)

from 2TX to TX . Similarly, we can obtain A′(11) directly from A′(9 in time of TX . The process

can be expressed as Fig. 4(a), where the bits contained in the brackets are the PCA bits.

Then, we can also have the process of Fig. 4(b).

Accordingly, the inverse block can have similar operations as those shown in Fig. 4. The

PCA technique can be used in case of l ≥ 1 such that (3.21) and (3.22) can be expressed

further as follows:

C− =
∑u

i=1Xi

= (X1 +Xl+2 + · · · ) −→ 1st unit

+ · · ·+

(Xr +Xl+r+1 + · · · ) −→ rth unit

+ · · ·+

(Xl+1 +X2l+2 + · · · ) −→ (l + 1)th unit

(3.24)

and

C+ =
∑m−1

i=u Yi = (Yu + Yl+u+1 + · · · ) −→ 1st unit

+ · · ·+

(Yu+t + Yl+u+t+1 + · · · ) −→ rth unit

+ · · ·+

(Yu+L + Y2l+u+1 + · · · ) −→ (l + 1)th unit

(3.25)

29



 















































































































)()(

)()(

)()(

)()(

)(

)()(

)()(

)()(

)()(

)(
910110

891012

8911

108

89

11122

1011121

10110

1012

1011

123

122

121

)11(')9(')7('

aaaa

aaaa

aaa

aa

aa

aaa

aaaa

aaa

aa

aa

aa

aa

aa

AAA















































































































































)()(

)()(

)()(

)()(

)(

)()(

)()(

)()(

)()(

)(

)()(

)()(

)()(

)()(

)(
810912

87119

8710

97

87

1012111

109110

10912

119

109

123

12112

12111

110

1211

12

11

)12(')10(')8(')6('

aaaa

aaaa

aaa

aa

aa

aaaa

aaaa

aaa

aa

aa

aa

aaa

aaa

aa

aa

a

a

AAAA

Figure 4: Process of PCA technique. (a) Process of derivation. (b) Process of derivation.

where each of the last terms in each unit depends on the pentanomial-used. It is clear

that the multiplier can be realized by (2l + 2) parallel units, and consequently the latency

is reduced further compared to that of (3.24) and (3.25). The PCA technique allows the

derivation of A′(i+l+1) and A(i+l+1) from A′(i) and A(i), respectively, to remain unchanged

with number of degree “l”to be reduced.

Note that the operations of Fig. 4 are defined as novel MRs (NMR)s. The inverse block

has similar operations. Note that the process of deriving A′(11) directly from A′(9) (see Fig.

4(a)) is also an NMR operation, though there are no additional bits contained in the operand

A′(11). Similar operation can be seen in Fig. 4(b) as well.

The multiplication over GF (2m) based on pentanomials can be performed according to

(3.24) and (3.25) as follows:
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1 Use the proposed Montgomery algorithm to represent the multiplier into the two blocks,

as shown in (3.5).

2 Represent each block of (3.5) in the form of (3.18) and (3.20), and use the proposed PCA

technique to have (3.21) and (3.22).

3 Use the signal-flow graph (SFG) to represent (3.21) and (3.22), and derive the structure

by suitable cut-set retiming [12].

3.3 PROPOSED STRUCTURES

Based on the proposed algorithm, we derive here the proposed structure of the multiplier.

We have taken f(x) = x13 + x4 + x3 + x2 + 1 as the irreducible pentanomial to illustrate

the proposed low latency systolic structure (for l = 1). It can however easily be extended to

other pentanomials.

From C+ of (3.22), similarly, we can get C− as

C− = (A′(1)b4 + A′(3)b2 + A′(5)b0) −→ 3rd unit

(A′(2)b5 + A′(4)b3 + A′(6)b1) −→ 4th unit
(3.26)

For simplicity of discussion, we have defined the two parallel units in (3.26) as the 3rd and

4th units, respectively, those are different from the definition in (3.21). Using the proposed

PCA technique, one can derive A′(i+2) and A(i+2) from A′(i) and A(i), which involves a delay

of only TX . Both the forward and inverse blocks consist of three major steps, i.e., the NMR

operation (Fig. 4), the bit-multiplication operation, and the bit-addition operation ((3.8)

and (3.11)). For systolic implementation of multiplication over GF (2m), the operations of

these steps are represented by the SFG of Fig. 5, where each section (within the dotted

box, only two units are presented) corresponds to one of the units of (3.21). The 1st unit

consists of 3 nodes R, 3 bit-multiplication nodes M(i) and 2 bit-addition nodes AD, while

the 2nd unit has one more node R, one more node M(i) and one more node AD compared

with the 1st unit. Besides, 2 bit-addition nodes AD are required for the final addition of

these units. Functions of node R, node M(i) and node AD are depicted in Fig. 5(b), (c)
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Figure 5: SFG for forward block of (3.21) for m=13. (a) SFG and cut-set retiming. (b)

Functional description of node R. (c) Functional description of the ith bit-multiplication

node M(i). (d) Functional description of the bit-addition node AD.

and (d), respectively. To reduce the critical-path further, a cut-set retiming (shown in Fig.

5(a)) is performed to introduce a delay between the NMR node and its corresponding bit-

multiplication and bit-addition nodes to form the processing elements (PE), where we just

show the 1st unit as an example for illustration.

The proposed systolic-like structure for field multiplication over GF (2m) based on pen-

tanomial (for m = 13) is shown in Fig. 6(a). It consists of 4 systolic arrays, where each of the

arrays corresponds to one of the units in (3.21) and (3.23). The first systolic array consists

of 5 PEs, while each of the other arrays (2nd, 3rd, and 4th systolic arrays) consists of 4

PEs and a delay cell (the delay cell is required to meet the data dependence requirement).

Although one can use a systolic adder array consisting of 4 addition cells (ACs) for the final
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Figure 6: Proposed systolic-like structure for m=13. (a) Proposed structure. (b) Design of

the PE-1. (c) Design of a regular PE. (d) Design of the second PE in the array (from right).

(e) Structure of NMRC in the PE-1 of the 2nd array. (f) An example of structure of the

AND cell.

addition of the 4 arrays, we use a pipelined adder-tree consisting of 3 ACs for a low latency

implementation. The four arrays can function concurrently, such that after 5 cycles, the

adder-tree receives its first input and yields its first output in 2 cycles.

The detailed design of the PEs of the proposed structure is shown in Fig. 6. PE-1 of

the arrays contains only one NMR cell (NMRC), as shown in Fig. 6(b). The regular PE, as
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Table 1: Hardware- and time-complexities of proposed and the existing structures for mul-

tiplication over GF (2m) based on pentanomials

design NAND AND XOR register latency CP

[25]1 m2 0 m2 + 2m− 1 2m2 − 2m m TN + TX

[56] 0 2m2 + 2m m2 +m 3.5m2 + 3.5m m+ 1 TA + 2TX

[57] 0 2m2 2m2 7m2 3m TA + TX

[58] 0 2m2 2m2 3m2 m+ 1 TA + TX

[59] 0 m2 2m2 +m 2m2 m TA + 2TX

proposed2 m2 0 2m+ 2lm 2m2 − 2m α1 TA + TXN

1: There are extra m2 number of INV gates, which are not listed here.

2: There are extra m2 number of XNOR gates, which are not listed here.

α1: α1 = m/(2l + 2)
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shown in Fig. 23(c) consists of one AND cell, one XOR cell and one NMRC. The AND cell

and XOR cell correspond to the bit multiplication node and bit addition node of the SFG

of Fig. 5, respectively. Each AND cell and XOR cell, respectively, consists of m number of

AND gates and XOR gates working in parallel. Fig. 6(f) gives an example of the design,

where m is assumed to be 4. Note that in PE-3 (PE-4 in the 1st array), as shown in Fig.

6(d), the output of NMRC consists of m bits. Moreover, we have also shown the design

detail of the NMRC (PE-1 of the 2nd array) in Fig. 6(e). Note that the number of XOR

gates in NMRC in the PEs depends on the generating irreducible pentanomial.

Since the delay of NMRC is only TX , the duration of a PE amounts to TX +TA = maxTX ,

TX + TA, where TA is the delay of an AND gate. There is one additional XOR gate in the

NMRC except the PE-3 in the array (PE-4 in the 1st array). In the previous work of [9],

the author has used NAND gate to replace the AND gate in a PE, here we extend further to

use XNOR gate to replace XOR gate such that the inverter (INV) in the PE can be saved.

3.4 HARDWARE AND TIME COMPLEXITY

Here, we discuss the estimation of hardware and time complexity of the proposed structure

and compare that with that of the existing designs. For any pentanomials, the proposed

structure requires (2l + 2) parallel arrays. If we define P = Q = (2l + 2), then each

array requires nearly (m/(2l + 2) + 1) XOR gates and (m2/(2l + 2)) NXOR gates. The

pipelined adder-tree requires (2lm + m) XOR gates. Besides, m2 NAND gates and nearly

(2m2− 2m− 2lm− 2l− 2) bit-registers are used in the structure. It is noted that the actual

gate-counts may vary with different pentanomials, though this variation is minor. The gate-

counts, register-counts, latency in cycles and critical-path of the proposed structure and the

existing systolic structures of [25] and [56]-[59] (general polynomial (GP)) are listed in Table

1, for pentanomial-based systolic multiplier. For l=1, the proposed design has a latency

of (m/4+3) cycles, so that for the NIST recommended pentanomials 163, 283 and 571, it

involves nearly one-fourth of the latency of the structure of [25]. For the example of proposed

structure described in Section III, we have latency = 7 cycles (for m=13), which is nearly
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Table 2: Comparison of area and time complexities

design area (nm2) CP (ns) power ADP PDP latency

[25] 5693 0.13 1.24 740 0.16 1.69

proposed 4782 0.13 1.04 622 0.14 0.91

half of the other. It is clear that the proposed design outperforms the existing designs.

Although the proposed design has nearly the same gate-counts as [25], the proposed one

requires shorter latency. Compared with [56] and [57], the proposed design not only has less

area-complexity, but also has shorter latency. Designs of [58] and [59] involve either larger

area or larger time-complexity when compared with the proposed one.

The proposed design (Fig. 6) has been coded in VHDL and synthesized by Synopsys

Design Compiler using TSMC 90nm library [43] for f(x) = x13+x4+x3+x2+1 along with the

best of the existing designs of [25]. The critical-path (CP), area and power consumption (at

100MHz frequency) thus obtained are listed in Table 2. The proposed design has nearly 16%

less area-delay product (ADP), 12.5% lower power-delay product (PDP) and 46% shorter

latency compared to the existing one.

3.5 CONCLUSTION

In this chapter, we have presented a novel PCA technique and modular reduction scheme for

Montgomery multiplication over GF (2m) based on irreducible pentanomials. To illustrate

the efficiency of the proposed approach, we have designed the multiplier for the irreducible

pentanomial f(x) = x13 +x4 +x3 +x2 + 1, for simplicity of discussion. We have decomposed

the Montgomery multiplication into two concurrent blocks and we have derived a lower-

latency multiplier using the proposed modular reduction scheme using PCA. The proposed

design involves significantly less area-delay and power-delay complexities than the newly
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reported multiplier for irreducible pentanomial, with nearly one-fourth of the latency of the

other, for the NIST recommended pentanomials.
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4.0 LOW-LATENCY HIGH-THROUGHPUT SYSTOLIC MULTIPLIERS

OVER GF (2M) FOR NIST PENTANOMIALS

In this chapter, we present three pairs of low-latency and high-throughput bit-parallel and

digit-serial systolic multipliers specifically based on NIST pentanomials. Novel decomposition-

technique has been proposed that the multiplier is decomposed into several parallel pro-

cessing arrays to obtain a bit-parallel systolic structure (BP-I) with a critical-path of 2TX .

These parallel arrays are then projected along vertical direction to obtain a digit-serial struc-

ture (DS-I) with the same critical-path. To increase the throughput rate, another pair of

bit-parallel (BP-II) and digit-serial (DS-II) structures are then presented based on a novel

modular reduction operation, where the critical-paths are reduced to TA + TX . Identical

data sharing between PEs has been proposed to reduce area-complexity of BP-I and BP-II

further. Finally, we have proposed KA-based bit-parallel (BP-III) and digit-serial (DS-III)

multipliers to enhance the throughput rate further. This is the first report on low-latency

systolic multipliers based on NIST pentanomials without any restriction on latency choice.

4.1 INTRODUCTION

Finite field multipliers are widely used in various cryptographic systems such as ECC and

error control coding [1-2]. A good multiplication design depends on the choice of a basis.

Basically, there are three bases of representation, e.g., dual basis, normal basis, and poly-

nomial basis, have been widely used in practical application [3]-[5]. Among the three basis

multipliers, the polynomial-based designs have gained much more popularity compared with

the multipliers based on the other two representations [6]-[7]. The pentanomial is one of
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the most important polynomials which have been widely used in public-key cryptography

systems. And the NIST [8] has also recommended three pentanomials for ECC implemen-

tation, such as the f(x) = x163 + x7 + x6 + x3 + 1. A few efforts have been done on efficient

realization of multiplication over GF (2m) based on irreducible pentanomials [9]-[18].

The systolic design usually has an efficient area-time implementation, being supported

by its feature such as modularity and regularity of the structure; each processing element

(PE) in the structure has the same or similar circuit design; one PE can pass the signals to

its neighboring PE at a high speed since all PEs of the structure are pipelined [19].

Among all these designs, however, systolic realization (bit-parallel or digit-serial) of field

multiplications over GF (2m) based on pentanomials are not so abundant. A systolic mul-

tiplier based on general polynomial is presented in [56]. Then, a semi-systolic multiplier is

proposed in [57]. Two systolic multipliers have been proposed for error detection in [58] and

[59], respectively. In a recent report [25], Meher has presented an efficient bit-parallel systolic

structure for multiplication over GF (2m) based on irreducible pentanomial. A low-latency

bit-parallel systolic multiplier is introduced in [60]. A novel low-latency Montgomery mul-

tiplier is newly reported in [61]. To achieve area-time tradeoff, digit-serial multipliers based

on pentanomials are reported in [62] and [63], respectively. Very recently, low-latency digit-

serial systolic multipliers are proposed in [64]. But the design strategy in [64] is only suitable

for almost equally spaced polynomial (AESP) and can not be applied to NIST pentanomial-

based multiplier. Generally, all the existing systolic multipliers, including bit-parallel and

digit-serial structures, suffer several issues:

For bit-parallel systolic multipliers

• 1. Bit-parallel systolic structures usually have long latency and there are few reports

about low-latency systolic realization

• 2. Critical-paths are large due to complexity of pentanomial based multiplication

• 3. Bit-parallel systolic structures usually have large register-complexity

For digit-serial systolic multipliers

• 1. Critical-paths of digit-serial systolic structures usually are a function of digit-size or

field-order, which reduces throughput rate
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• 2. Average computation time (ACT) of the structure increases with digit-size or field-

order

Keeping these in view, in this chapter, we introduce three pairs of low-latency high-

throughput bit-parallel and digit-serial systolic structures specifically for NIST pentanomials.

A novel decomposition scheme is proposed first that we can decompose the multiplication

into several parallel processing arrays to obtain a low-latency bit-parallel systolic structure

with a critical-path of 2TX . These parallel arrays are then projected along vertical direction

to obtain a digit-serial structure with the same critical-path. To increase the throughput

rate, a novel modular reduction is introduced that the critical-paths of the bit-parallel and

digit-serial structures are reduced to (TA +TX). We have presented two modified bit-parallel

structures with low area-complexity based on identical data sharing technique. Finally,

we have proposed KA-based [65] bit-parallel and digit-serial multipliers to reduce the time

complexity further.

The rest of the chapter is organized as follows. The proposed bit-parallel and digit-serial

multipliers-I for finite field multiplication over GF (2m) based on irreducible pentanomial-

s are presented in Section 4.2. In Section 4.3, the proposed bit-parallel and digit-serial

multipliers-II are depicted. In Section 4.4, the proposed KA-based bit-parallel and digit-

serial multipliers-III are proposed. In Section 4.5, the comparison and discussion of the

hardware and time complexities are described. And the conclusion is given in Section 4.6.

4.2 PROPOSED BIT-PARALLEL AND DIGIT-SERIAL MULTIPLIERS-I

4.2.1 Proposed algorithm

Let A, B and C are field elements in GF (2m), such that we can have the multiplication

algorithm as

C = A ·B mod f(x) (4.1)
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where A =
∑m−1

i=0 aix
i, B =

∑m−1
i=0 bix

i, C =
∑m−1

i=0 cix
i, for ai, bi and ci ∈ {0, 1}. Then,

we can express (4.1) in expanded form of

C =
m−1∑
i=0

ai(B · xi mod f(x)) =
m−1∑
i=0

Xi =
m−1∑
i=0

Bi · ai (4.2)

where B0 = B, and Bi = (B · xi mod f(x)) =
∑m−1

j=0 b
i
jx

i.

Let w and d be two integers such that m = wd + r, where 0 ≤ r < d. For simplicity

of discussion, we assume1 r = 0, and decompose the input operand A into w number of

bit-vectors Au for u = 0, 1, · · · , w − 1, as follows:

Au = [au aw+u · · · am−w+u] (4.3)

Similarly, we can generate w number of operand vectors Bu for u = 0, 1, · · · , w − 1, as

follows:

Bu = [Bu Bw+u · · · Bm−w+u] (4.4)

The product given in (4.1) can be decomposed into w inner- products of vectors Au and

Bu for u = 0, 1, · · · , w − 1 as:

C = B0A
T
0 +B1A

T
1 + · · ·+Bw−1A

T
w−1

=
w−1∑
u=0

BuA
T
u =

w−1∑
u=0

Cu

(4.5)

where Cu = BuA
T
u . Note that each Au for u = 0, 1, · · · , w − 1 is a d-point bit-vector and

each Bu for u = 0, 1, · · · , Q − 1 is a d-term operand-vector. From (4.5) we can find that

the desired multiplication can be performed by w cycles of successive accumulation of Cu for

u = 0, 1, · · · , w − 1, while each Cu can be computed as Cu =
∑d−1

v=0B
u+vwau+vw.

Define field GF (2m) is constructed from pentanomial of degree m as f(x) = xm + xk1 +

xk2 + xk3 + 1, for 1 ≤ k3 < k2 < k1 ≤ m− 1. Then we can have B1 from B as:

B1 = B · x mod f(x) = b1m−1x
m−1 + . . .+ b11x+ b10 (4.6)

1When r 6= 0, we can append (w − r) number of zeros to the operands to have m = wd.
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b10 = bm−1

b1k3 = bk3−1 + bm−1

b1k2 = bk2−1 + bm−1

b1k1 = bk1−1 + bm−1

b1j = bj−1, for j = 1, . . . ,m− 1 and j 6= k1, k2, k3

(4.7)

And we can also obtain Bi from B for i > 2 for NIST pentanomials as (usually i is not

a big number since we want to decompose the multiplier into i arrays):

Bi = B · xi mod f(x) = bim−1x
m−1 + . . .+ bi1x+ bi0 (4.8)

where

bi0 = bm−i

bik3+j = bm+k3−i+j + bm−i+j, for 0 ≤ j ≤ k2− 1− k3

bik2+j = bm−i+k2+j + bm−i−k3+k2+j + bm−i+j,

for 0 ≤ j ≤ k1− 1− k2

bik1+j = bm−i+k1+j + bm−i−k3+k1+j + bm−i+k1−k2+j

+bm−i+j, for 0 ≤ j ≤ i− 1− k1

bii+j = b0+j + bm−k3+j + bm−k2+j + bm−k1+j,

for 0 ≤ j ≤ k3− 1

bik3+i+j = bk3+j + bm−k2+k3+j + bm−k1+k3+j,

for 0 ≤ j ≤ k2− k3− 1

bik2+i+j = bk1−1+j + bm−k1+k2+j, for 0 ≤ j ≤ k1− k2− 1

bij = bj−i, for j = others

(4.9)

Following (4.8) and (4.9), we can obtain Bw from B0 (i is substituted as w). Moreover,

we can extend (4.8) and (4.9) further to obtain B(v+1)w+u from Bvw+u for v = 0, 1, . . . , d− 1

and u = 0, 1, . . . , w − 1 (it is the similar process as (4.9)).
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The proposed combined (bit-parallel and digit-serial) multiplication algorithm thus based

on (4.5), (4.7)-(4.9) is described in Algorithm 4.1.

Algorithm 4.1 Proposed combined (bit-parallel and digit-serial) multiplication algorithm

Inputs: A and B are the pair of elements in GF (2m) to be multiplied.

Output: C = A ·B mod f(x)

1. Initialization step

1.1 D = 0 (for digit-serial multiplication)

2. Multiplication step

2.1. for u = 0 to w − 1

2.2. for v = 0 to d− 1

2.3-I. C =
∑w−1

u=0 BuA
T
u (for bit-parallel multiplication)

2.3-II. D = D +BuA
T
u (for digit-serial multiplication)

2.4. end for

2.5. end for

3. Final step

3.1. C = D (for digit-serial multiplication)

where step 2.3-I and 2.3.-II refer to the digit-serial and bit-parallel multiplication processes,

respectively. According to our proposed algorithm, for bit-parallel realization, we can have

several arrays of partial products processed in parallel to lower the latency; while for digit-

serial realization, we can have partial products accumulated as soon as they are computed,

which shortens the ACT significantly.

To reduce the complexity of modular reduction operation, we introduce here an identi-

cal data sharing technique. Define xm, xm+1, . . . , xm+3w−2 as extended polynomial basis,

and based on this definition we can write the equations into following steps (to reduce the

register complexity in the structure, thus the whole area complexity of the structure will be
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significantly reduced, and this proposed register-sharing technique can also be used in other

structures):

Bw−1
(E) =

m+3w−2∑
i=0

bw−1i xi = Bw−1 +
m+3w−2∑

i=m

bw−1i xi (4.10)

where

m+2k1−k2−2∑
i=m

bw−1i =
2k1−k2−2∑

i=0

bi

m+w+k1−k3−1∑
i=m+2k1−k2−1

bw−1i =
m−1∑

i=m−w+k1−k2+k3−1

bi

m+w+k1−k3+1∑
i=m+w+k1−k3

bw−1i =
2∑

i=1

bik2

m+2w+k1−k3∑
i=m+w+k1−k3+2

bw−1i =
w−1∑
i=3

bik2−1

m+3w−2∑
i=m+2w+k1−k3+1

bw−1i =
w−1∑
i=3

bik1−1

(4.11)

where we can find that bits {bw−1i (0 ≤ i ≤ k3−1, k1+w−1 ≤ i ≤ m+w+k1−k3−1)} can

be selected to construct operand B0, . . . and bits {bw−1i (0 ≤ i ≤ m− 1)} can be selected to

construct Bw−1, i.e., B0 to Bw−1 can be obtained through bit-select operations from Bw−1
(E) .

And we can further define

Bw−1
(E)bs{0} = B0

Bw−1
{E}bs{1} = B1

· · · · · · · · ·

Bw−1
{E}bs{w−1} = Bw−1

(4.12)

where bs{·} denotes the bit-select operations to obtain corresponding operand. This strategy

can significantly reduce the register complexity in the systolic multiplier since many bits can

be shared.
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Figure 7: Proposed bit-parallel systolic multiplier-I (BP-I) over GF (2m), where 4 denotes a

unit delay and black block denotes register cell. (a) Proposed systolic structure. (b) Internal

structure of PRC cell. (c) Internal structure of PE-1. (d) Internal structure of regular PE.

(e) Internal structure of PE-d.

4.2.2 Proposed bit-parallel systolic multiplier-I (BP-I)

The proposed bit-parallel systolic multiplier-I (BP-I) based on Algorithm 4.1 is shown in

Fig. 7. It consists of one pre-computing (PRC) cell, one pipelined adder tree (PAT) cell and

w systolic arrays (each array has d PEs). The PRC cell, as shown in Fig. 7(b), consists of a

M-I cell and a bit rewiring cell, yields w outputs (B0, B1, . . ., Bw−1) to corresponding arrays

(M-I cell in PRC derives Bw−1
(E) from B). The internal structure of PEs, i.e., PE-1, regular

PE (PE-2 to PE-(d − 1) and PE-d, are shown in Fig. 7(c)-(e), respectively. A regular PE
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consists of a M-II cell (M-II cell in PE-1 to PE-(d − 1) derives B(v+1)w+u from Bvw+u for

v = 0, 1, . . . , d − 1 and u = 0, 1, . . . , w − 1), an AND cell and an XOR cell. During each

cycle period, the result of AND cell is added together in XOR cell with another input from

left and the result is then latched out to the right. Meanwhile, the output of M-II cell is

latched out to the next PE to be used for the next cycle. Thus, critical-path of BP-I shall

be max{TPRC , TM−II , TA + TX}=2TX (M-II cell has a duration of 2TX according to (9)),

where TPRC and TM−II refer to the propagation time of PRC cell and M-II cell, respectively.

BP-I yields its first output (d+ 1 + log2w) cycles after the operands are fed to the structure,

and the successive output will be available in every cycle.

4.2.3 Proposed modified BP-I (MBP-I)

To reduce the area-complexity of BP-I further, we can extend the strategy introduced in

(4.10) and (4.11), identical data sharing technique, to all PEs of BP-I. Here we define as:

B
(v+1)w+u
(E) =

m+3w−2∑
i=0

b
(v+1)w+u
i xi

= B(v+1)w+u +
m+3w−2∑

i=m

b
(v+1)w+u
i xi

(4.13)

where

m+2k1−k2−2∑
i=m

b
(v+1)w+u
i =

2k1−k2−2∑
i=0

b
(v+1)w
i

m+w+k1−k3−1∑
i=m+2k1−k2−1

b
(v+1)w+u
i =

m−1∑
i=m−w+k1−k2+k3−1

b
(v+1)w
i

m+w+k1−k3+1∑
i=m+w+k1−k3

b
(v+1)w+u
i =

2∑
i=1

b
(v+1)w+i
k2

m+2w+k1−k3∑
i=m+w+k1−k3+2

b
(v+1)w+u
i =

w−1∑
i=3

b
(v+1)w+i
k2−1

m+3w−2∑
i=m+2w+k1−k3+1

b
(v+1)w+u
i =

w−1∑
i=3

b
(v+1)w+i
k1−1

(4.14)
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Similarly we can obtain B(v+1)w+u from B
(v+1)w+u
(E) through bit-select operation, for u =

0, 1, . . . , w − 1. And we can also easily obtain B
(v+1)w+u
(E) from Bvw+u

(E) :

For b
(v+1)w+u
i xi (0 ≤ i ≤ m− 1):

b
(v+1)w+u
0 = bvw+u

m−w

b
(v+1)w+u
k3+j = bvw+u

m+k3−w+j + bvw+u
m−w+jfor 0 ≤ j ≤ k2− 1− k3

b
(v+1)w+u
k2+j = bvw+u

m−w+k2+j + bvw+u
m−w−k3+k2+j + bvw+u

m−w+j

for 0 ≤ j ≤ k1− 1− k2

b
(v+1)w+u
k1+j = bvw+u

m−w+k1+j + bvw+u
m−w−k3+k1+j

+bvw+u
m−w+k1−k2+j + bm−w+j, for 0 ≤ j ≤ i− 1− k1

b
(v+1)w+u
w+j = bvw+u

0+j + bvw+u
m−k3+j + bvw+u

m−k2+j + bvw+u
m−k1+j

for 0 ≤ j ≤ k3− 1

b
(v+1)w+u
k3+w+j = bvw+u

k3+j + bvw+u
m−k2+k3+j + bvw+u

m−k1+k3+j

for 0 ≤ j ≤ k2− k3− 1

b
(v+1)w+u
k2+w+j = bvw+u

k1−1+j + bvw+u
m−k1+k2+j

0 ≤ j ≤ k1− k2− 1

b
(v+1)w+u
j = bvw+u

j−w , for j = others

(4.15)

For b
(v+1)w+u
i xi (m ≤ i ≤ m+ 3w − 2):

m+2k1−k2−2∑
i=m

b
(v+1)w+u
i =

2k1−k2−2∑
i=0

bvw+u
i

m+w+k1−k3−1∑
i=m+2k1−k2−1

b
(v+1)w+u
i =

m−1∑
i=m−w+k1−k2+k3−1

bvw+u
i

m+w+k1−k3+1∑
i=m+w+k1−k3

b
(v+1)w+u
i =

2∑
i=1

bvw+u+i
k2

m+2w+k1−k3∑
i=m+w+k1−k3+2

b
(v+1)w+u
i =

w−1∑
i=3

bvw+u+i
k2−1

m+3w−2∑
i=m+2w+k1−k3+1

b
(v+1)w+u
i =

w−1∑
i=3

bvw+u+i
k1−1

(4.16)
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Figure 8: Proposed modified bit-parallel systolic multiplier-I (MBP-I) over GF (2m), where

4 denotes a unit delay and black block denotes register cell. (a) Proposed systolic structure.

(b) Internal structure of PRC cell. (c) Internal structure of regular PE of Array-1. (d)

Internal structure of regular PE of Array-2 to Array-w−1, where 2 ≤ i ≤ w−1. (e) Internal

structure of regular PE of Array-w.

where
∑2

i=1 b
vw+u+i
k2 ,

∑w−1
i=3 b

vw+u+i
k2−1 and

∑w−1
i=3 b

vw+u+i
k1−1 can be obtained from bits of operand

Bvw+u according to (9).

Based on the above strategy, we can have modified BP-I (MBP-I) as shown in Fig. 8.

The internal structures of PRC cell and regular PE of various arrays are shown in Fig. 8(b)-

(e), respectively. M-III cell in regular PE of Array-1 derives B
(v+1)w+u
(E) from Bvw+u

(E) , and

(m + 3w − 6) bits are spontaneously selected/shared by (w − 1) PEs in the same position

(vertically in one column) of Array-2 to Array-w. The proposed data sharing strategy
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Figure 9: Proposed digit-serial systolic multiplier-I (DS-I), where ∆ denotes unit delay and

black block denotes register cell. (a) Proposed structure. (b) Internal structure of PE[0],

where 0 ≤ u ≤ w − 1. (c) Internal structure of a regular PE. (e) Internal structure of AC

cell.

significantly reduces XOR gate and register numbers Since there is no M-III cell in PEs

except Array-1. Thus, the area-complexity of MBP-I is smaller than that of BP-I. While the

critical-path and latency of MBP-I are exactly the same as BP-I.

4.2.4 Proposed digit-serial systolic multiplier-I (DS-I)

Based on proposed Algorithm 4.1, we can project these parallel arrays of BP-I along vertical

direction to have the proposed digit-serial systolic multiplier-I (DS-I) as shown in Fig. 9.

DS-I consists of (m+1) PEs and one accumulation (AC) cell. The internal structures of PE-

0, regular PE and AC cell are shown in Fig. 9(b)-(d), respectively. As shown in Fig. 9(b), all

bits of operand B are pre-loaded in m bit-registers and then are latched out (meanwhile the

m output bits are also yielded to the next PE) to the M-IV cell to perform modular operation
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by one degree during each cycle period (obtain Bu+1 from Bu, for u = 0, 1, . . . , w − 1). The

m output bits of M-IV cell is then latched into registers to be used in next cycle period.

The regular PE, from PE-2 to PE-(d − 1), contains a M-II cell, an AND cell, a XOR cell

and a register cell, the same as that in BP-I. The AC cell, as shown in Fig. 9(d), contains

m parallel bit-level finite field accumulators. During each cycle period, the newly received

input is then added with the previously accumulated result and the result is stored in the

register cell to be used during the next cycle. DS-I has the same critical-path as that of

BP-I/MBP-I, and it gives the first output of desired product (d+w) cycles after the pair of

operands are fed to the structure, while the successive output are produced at the interval

of w cycles thereafter.

4.3 PROPOSED BIT-PARALLEL AND DIGIT-SERIAL SYSTOLIC

MULTIPLIERS-II

4.3.1 Proposed algorithm

Both BP-I/MBP-I and DS-I have critical path of 2TX , which is also the duration time of

M-I/M-II/M-III cell. To have a higher throughput rate design (lower critical-path), we need

to reduce the duration time of M-I/M-II/M-III cell. In this section, we introduce a novel

modular reduction operation that the delay time is reduced to TX , and it can be extended

further to apply the data sharing technique to reduce the area complexity of the structure.

Let us reconsider the operation of (4.9) (derive Bi from B for i > 2) first: we can define

g = (2i− k1 + k3) number of extended polynomial basis as xm, xm+1, . . ., xm+g−1. Then we

can define as

B0
{P} =

m+g−1∑
j=0

b0{P}jx
j (4.17)
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b0{P}j = bj, for 0 ≤ j ≤ m− 1

b0{P}j = bm−i+k2+e + bm−i−k3+k2+e (0 ≤ e ≤ k1− 1− k2)

for m ≤ j ≤ m+ k1− 1− k2

b0{P}j = bm−i+k1+e + bm−i−k3+k1+e (0 ≤ e ≤ i− 1− k1)

for m+ k1− k2 ≤ j ≤ m− k2 + i− 1

b0{P}j = bm−i+k1−k2+e + bm−i+e (0 ≤ e ≤ i− 1− k1)

for m− k2 + i ≤ j ≤ m− k2− k1 + 2i− 1

b0{P}j = be + bm−k3+e (0 ≤ e ≤ k3− 1)

for m− k2− k1 + 2i ≤ j ≤ m− k2 + g − 1

b0{P}j = bm−k2+e + bm−k1+e (0 ≤ e ≤ k3− 1)

for m− k2 + g ≤ j ≤ m− k2 + g + k3− 1

b0{P}j = bm−k2+k3+e + bm−k1+k3+e (0 ≤ e ≤ k2− k3− 1)

for m− k2 + g + k3 ≤ j ≤ m+ g − 1

(4.18)

Then, if we obtain Bi from B0
{P}, we can have

bi0 = b{P}m−i

bik3+j = b{P}m+k3−i+j + b{P}m−i+j, 0 ≤ j ≤ k2− 1− k3

bik2+j = b{P}m+j + bm−i+j, 0 ≤ j ≤ k1− 1− k2

bik1+j = b{P}m+k1−k2+j + b{P}m−k2+i+j, 0 ≤ j ≤ i− 1− k1

bii+j = b{P}m−k2−k2+2i+j + b{P}m−k2+g+j, 0 ≤ j ≤ k3− 1

bik3+i+j = bk3+j + b{P}m−k2+g+k3+j, 0 ≤ j ≤ k2− k3− 1

bik2+i+j = bk1−1+j + bm−k1+k2+j, 0 ≤ j ≤ k1− k2− 1

bij = b{P}j−i, j = others

(4.19)

where we define the operation of (4.19) as novel modular reduction operation, and the

modular reduction time is reduced from 2TX to TX .
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Similarly, we can define Bi
{P} =

∑m+g−1
j=i bi{P}jx

j as (4.17), and thus we can get B2i from

Bi
{P} as similar operation as (4.19) in a duration of TX .

We can also extend further the operations of (4.18) and (4.19), i.e., combine the opera-

tions of (4.18) and (4.19) together to derive Bi
{P} from B0

{P} as follows:

For Bi
{P} (0 ≤ j ≤ m− 1), we have similar operation as (4.19):

bi{P}0 = b{P}m−i

bi{P}k3+j = b{P}m+k3−i+j + b{P}m−i+j, 0 ≤ j ≤ k2− 1− k3

bi{P}k2+j = b{P}m+j + bm−i+j, 0 ≤ j ≤ k1− 1− k2

bi{P}k1+j = b{P}m+k1−k2+j + b{P}m−k2+i+j, 0 ≤ j ≤ i− 1− k1

bi{P}i+j = b{P}m−k2−k2+2i+j + b{P}m−k2+g+j, 0 ≤ j ≤ k3− 1

bi{P}k3+i+j = bk3+j + b{P}m−k2+g+k3+j, 0 ≤ j ≤ k2− k3− 1

bi{P}k2+i+j = bk1−1+j + bm−k1+k2+j, 0 ≤ j ≤ k1− k2− 1

bi{P}j = b{P}j−i, j = others

(4.20)

For Bi
{P} (m ≤ j ≤ m+ g − 1), we have similar operation as (4.18):

bi{P}j = b{P}m−i+k2+e + b{P}m−i−k3+k2+e (0 ≤ e ≤ k1− 1− k2)

for m ≤ j ≤ m+ k1− 1− k2

bi{P}j = b{P}m−i+k1+e + b{P}m−i−k3+k1+e (0 ≤ e ≤ i− 1− k1)

for m+ k1− k2 ≤ j ≤ m− k2 + i− 1

bi{P}j = b{P}m−i+k1−k2+e + b{P}m−i+e (0 ≤ e ≤ i− 1− k1)

for m− k2 + i ≤ j ≤ m− k2− k1 + 2i− 1

bi{P}j = b{P}e + b{P}m−k3+e (0 ≤ e ≤ k3− 1)

for m− k2− k1 + 2i ≤ j ≤ m− k2 + g − 1

bi{P}j = b{P}m−k2+e + b{P}m−k1+e (0 ≤ e ≤ k3− 1)

for m− k2 + g ≤ j ≤ m− k2 + g + k3− 1

bi{P}j = b{P}m−k2+k3+e + b{P}m−k1+k3+e (0 ≤ e ≤ k2− k3− 1)

for m− k2 + g + k3 ≤ j ≤ m+ g − 1

(4.21)
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and we can extend further to derive B
(v+1)w+u
{P} from Bvw+u

{P} for v = 0, 1, . . . , d − 1 and

u = 0, 1, . . . , w − 1. Define again as Bi
bs{P} = Bi, where bs refers to bit-select operation of

Bi
{P} to obtain Bi, then (4.5) can be rewritten as:

C = B0A
T
0 +B1A

T
1 + · · ·+Bw−1A

T
w−1

=
w−1∑
u=0

BuA
T
u =

w−1∑
u=0

d−1∑
v=0

Bu+vw
bs{P}au+vw =

w−1∑
u=0

Cu

(4.22)

where Cu =
∑d−1

v=0B
u+vw
bs{P}au+vw.

The proposed combined (bit-parallel and digit-serial) multiplication algorithm 2 thus

based on (4.18)-(4.22) is described in Algorithm 4.2.

Algorithm 4.2 Proposed combined (bit-parallel and digit-serial) multiplication algorithm

Inputs: A and B are the pair of elements in GF (2m) to be multiplied.

Output: C = A ·B mod f(x)

1. Initialization step

1.1 D = 0 (for digit-serial multiplication)

2. Multiplication step

2.1. for u = 0 to w − 1

2.2. for v = 0 to d− 1

2.3-I. C =
∑w−1

u=0 BuA
T
u =

∑w−1
u=0

∑d−1
v=0B

u+vw
bs{P}au+vw (for bit-parallel multiplication)

2.3-II. D = D +BuA
T
u = D +

∑d−1
v=0B

u+vw
bs{P}au+vw (for digit-serial multiplication)

2.4. end for

2.5. end for

3. Final step

3.1. C = D (for digit-serial multiplication)
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Figure 10: Proposed bit-parallel systolic multiplier-II (BP-II), where ∆ denotes unit delay

and black block denotes register cell g = (2w − k1 + k3). (a) Proposed structure. (b)

Internal structure of PRC, where M-I cell is designed into two-stage pipeline to reduce the

critical-path to TX . (c) Internal structure of a regular PE. (d) Detailed structure of M-V

cell in PRC (derives B0
{P} from B0).

where step 2.3-I refers to the digit-serial multiplication process and step 2.3.-II refers to

the bit-parallel multiplication process. According to our proposed algorithm, for both bit-
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parallel and digit-serial realizations, the duration time of novel modular reduction operation

is reduced to TX , which increases throughput rate of the proposed structures based Algorithm

4.2.

4.3.2 Proposed bit-parallel systolic multiplier-II (BP-II)

The proposed bit-parallel systolic multiplier-II (BP-II) based on Algorithm 4.2 is shown in

Fig. 10. BP-II has nearly the same structure as BP-I except the internal structures of PRC

and PE. The internal structure of PRC is shown in Fig. 10(b), where it yields w outputs

to corresponding w arrays. To maintain the critical-path of PRC as TX , we have also used

a two-stage pipelined M-I cell to realize the operation of (4.10). The internal structure of

regular PE is shown in Fig. 10(c). Fig. 10(d) gives the detail design of M-V cell in PRC

to derive B0
{P} from B0, while another novel modular reduction cells, M-VI, have similar

structures to realize similar operations as (4.20) and (4.21). The time duration of M-V cell

and M-VI cell, according to (4.18), (4.20) and (4.21), is TX . BP-II thus has a critical-path of

max{TM−V , TM−V I , TA+TX}=TA+TX (M-I cell is two-stage pipelined and thus critical-path

of PRC is TX), where TM−V and TM−V I refer to the propagation time of M-V cell and M-VI

cell, respectively. BP-II yields its first output (d+1+log2w) cycles after the operands are fed

to the structure, while the successive output can be obtained in every cycle thereafter. BP-II,

therefore, has higher throughput rate than BP-I at the cost of some small number of XOR

and registers. The overhead of hardware complexity, however, is minor when compare to the

achievement in throughput rate increase, especially for those high-throughput application

systems.

4.3.3 Proposed modified BP-II (MBP-II)

To reduce the area-complexity of BP-II further, we can follow the data sharing operations

of (4.13), and we can define as follows (where g = (2w − k1 + k3)):

We first define (3w − 3 + g + w − 1 = 4w + g − 4) number of extended polynomial

basis as xm, xm+1, . . ., xm+4w+g−3. Then we can have the following steps based on the above

definition (likewise, this proposed strategy can significantly reduce the area-complexity of the
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Figure 11: Proposed modified bit-parallel systolic multiplier-II (MBP-II) overGF (2m), where

4 denotes a unit delay and black block denotes register cell g = (2w−k1+k3). (a) Proposed

systolic structure. (b) Internal structure of PRC cell. (c) Internal structure of regular PE of

Array-1. (d) Internal structure of regular PE of Array-2 to Array-w−1, where 2 ≤ i ≤ w−1.

structure, especially the register complexity, and this technique can be extended to various

applications):

B
(v+1)w+u
(NE) =

m+3w−2+g+w−1∑
i=0

b
(v+1)w+u
i xi =

m+3w−2∑
i=0

b
(v+1)w+u
i xi

+

m+3w−2+g∑
i=m+3w−3

b
(v+1)w+u
i xi +

m+3w−2+g+w−1∑
i=m+3w−2+g+1

b
(v+1)w+u
i xi = B

(v+1)w+u
(E)

+

m+3w−2+g∑
i=m+3w−3

b
(v+1)w+u
i xi +

m+4w+g−3∑
i=m+3w−1+g

b
(v+1)w+u
i xi

(4.23)
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m+3w−2+g∑
i=m+3w−3

b
(v+1)w+u
i =

m+g−1∑
i=m

b
(v+1)w+u
{P}i

m+4w+g−3∑
i=m+3w−1+g

b
(v+1)w+u
i =

w−1∑
i=0

bvw+u+i
{P}m−k2+w

=
w−1∑
i=0

bvw+u+i
m−w+k1−k2 + bvw+u+i

m−w

(4.24)

for 0 ≤ u ≤ w − 1.

Thus we can obtainBvw+u+i
(P ) fromB

(v+1)w+u
(NE) through bit-select operation, for i = 0, 1, . . . , w−

1. And we can also easily obtain B
(v+1)w+u
(NE) from Bvw+u

(NE) :

• Derive B
(v+1)w+u
(E) : b

(v+1)w+u
i (0 ≤ i ≤ m + 3w − 2) from Bvw+u

(E) according to (4.15) and

(4.16)

• Derive b
(v+1)w+u
i (m+ 3w− 3 ≤ i ≤ m+ 3w− 2 + g) from Bvw+u

(P ) according to (4.20) and

(4.21)

• Derive b
(v+1)w+u
i (m+ 3w − 1 + g ≤ i ≤ m+ 4w + g − 3) from Bvw+u+j(0 ≤ j ≤ w − 1)

according to (4.18) and (4.24)

Based on the above derivation, we can have modified BP-II (MBP-II) as shown in Fig.

11. The internal structures of PRC cell and regular PE of various arrays are shown in Fig.

11(b)-(d), respectively. The critical-path and latency of MBP-II are exactly the same as

BP-II. M-VI cell in regular PE of Array-1 derives B
(v+1)w+u
(NE) from Bvw+u

(NE) . Since there is no

M-VI cell in PEs of Array-2 to Array-w, the area-complexity of MBP-II is smaller than that

of BP-II. Because of its efficiency in area-complexity and high-throughput ability, it can be

used in various environments with requirement of low area-complexity and high-throughput.

4.3.4 Proposed digit-serial systolic multiplier-II (DS-II)

Based on proposed Algorithm 4.2, we can have the proposed digit-serial systolic multiplier-

II (DS-II) as shown in Fig. 12. DS-II consists of (m + 1) PEs and one accumulation (AC)

cell. The internal structures of PE-0, regular PE and AC cell are shown in Fig. 12(b)-(d),

respectively. As shown in Fig. 12(b), all bits of operand B are fed to the M-V cell and the
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Figure 12: Proposed digit-serial systolic multiplier-II (DS-II), where ∆ denotes unit delay

and black block denotes register cell g = (2w−k1+k3). (a) Proposed structure. (b) Internal

structure of PE[0], where 0 ≤ u ≤ w− 1. (c) Internal structure of a regular PE. (d) Internal

structure of AC cell.

output is then loaded in (m+g) bit-registers and then are latched out (meanwhile the (m+g)

output bits are also yielded to the next PE) to the M-VII cell to perform modular operation

by one degree during each cycle period (obtain Bu+1
{P} from Bu

{P}, for u = 0, 1, . . . , w − 1).

The (m+ g) output bits of M-VII cell are then latched into registers to be used in next cycle

period. The regular PE, from PE-2 to PE-(d − 1), contains a M-VI cell, an AND cell, a

XOR cell and a register cell, the same as that in BP-II. The AC cell, as shown in Fig. 12(d),

contains m parallel bit-level finite field accumulators. During each cycle period, the newly

received input is then added with the previously accumulated result and the result is stored

in the register cell to be used during the next cycle. DS-II has the same critical-path as

that of BP-II, and it gives the first output of desired product (d+w) cycles after the pair of

operands are fed to the structure, while the successive output are produced at the interval

of w cycles thereafter.
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4.4 PROPOSED BIT-PARALLEL AND DIGIT-SERIAL SYSTOLIC

MULTIPLIERS-III

KA-based digit-level systolic multiplier is reported in a newly reported paper [18]. The struc-

ture presented in [18], however, is only suitable for AESP rather than NIST pentanomials.

Therefore, in this section, we present a pair of bit-parallel and digit-serial systolic multipliers

based on Karatsuba decomposition to achieve more efficiency in time-complexity.

4.4.1 Proposed algorithm

For simplicity of discussion, we present here a bit-parallel/digit-serial systolic multiplier

based on two-term Karatsuba decomposition, which can be easily extended to n-term Karat-

suba decomposition.

For two-term KA [20], element A =
∑m−1

i=0 aix
i (ai ∈ GF (2)) can be expressed as:

A = A2
L + A2

Hx (4.25)

where

AL =

dm/2−1e∑
j=0

a2jx
j

AH =

dm/2−1e∑
j=0

a2j+1x
j

(4.26)

Similarly, B =
∑m−1

i=0 bix
i (bi ∈ GF (2)) can be expressed as B = B2

L + B2
Hx. Product of

A and B then is:

C = AB mod f(x) = (A2
L + A2

Hx)(B2
L +B2

Hx)

= (ALBL)2(1 + x) + (AL + AH)2(BL +BH)2x

+(AHBH)2(x2 + x) mod f(x)

(4.27)

We define three partial products of (27) as: CL = ALBL, CLH = (AL + AH)(BL + BH)

and CH = AHBH . For simplicity of discussion, we introduce here the proposed algorithm to
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obtain ALBL, and it can be extended to obtain other two partial products: (AL +AH)(BL +

BH) and AHBH . Let CL be expressed as

CL =

dm/2−1e∑
i=0

a2i(BL · xi) =

dm/2−1e∑
i=0

XL,i (4.28)

where XL,i = a2i ·Bi
L, for B0

L = BL, and Bi
L = BL · xi.

Define m/2 = wd, we can decompose operand AL into w number of bit-vectors AL,u as

AL,u = [a2u a2w+2u · · · am−2w+2u] for u = 0, 1, · · · , w − 1. We can also generate w number

of operand vectors BL,u = [Bu
L B

w+u
L · · · Bm−w+u

L ] for u = 0, 1, · · · , w − 1.

Equation (4.28) can then be expressed as:

CL = BL,0A
T
0 +BL,1A

T
1 + · · ·+BL,w−1A

T
w−1

=
w−1∑
u=0

BL,uA
T
L,u =

w−1∑
u=0

CL,u

(4.29)

where CL,u = BL,uA
T
L,u, and each CL,u can be obtained as

CL,u =
d−1∑
v=0

Bwv+u
L a2wv+2u (4.30)

For one specific value of v, we can derive Bwv+u+s
L from Bwv+u

L , for 1 ≤ s ≤ d as

Bwv+u+s
L = Bwv+u

L xs (4.31)

while Bwv+u
L can also be obtained directly from B0

L as Bwv+u
L = B0

Lx
wv+u.

The proposed combined (bit-parallel and digit-serial) algorithm based on two-term Karat-

suba decomposition (4.29)-(4.31) is described in Algorithm 4.3.

Algorithm 4.3 Proposed combined (bit-parallel and digit-serial) algorithm based on two-

term Karatsuba decomposition

Inputs: A and B are the pair of elements in GF (2m).

Output: C = A ·B mod f(x)

1. Initialization step
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1.1 DL = 0, DLH = 0, and DH = 0 (for digit-serial multiplication)

1.2 Decompose as AL,u = [a2u · · · am−2w+2u], BL,u = [Bu
L · · · Bm−w+u

L ], similar operations

to AL + AH , BL +BH , AH and BH

2. Multiplication step

2.1. for u = 0 to w − 1

2.2. for v = 0 to d− 1

2.3.1 CL,u =
∑d−1

v=0B
wv+u
L a2wv+2u

2.3.1-I CL =
∑w−1

u=0 CL,u (for bit-parallel multiplication) 2.3.1-II DL = DL +CL,u (for

digit-serial multiplication)

2.3.2-I CLH =
∑w−1

u=0 CLH,u (similar as 2.3.1-I, for bit-parallel multiplication)

2.3.2-II DLH = DLH +
∑w−1

u=0 CLH,u (similar as 2.3.1-II, for digit-serial multiplication)

2.3.3-I CH =
∑w−1

u=0 CH,u (similar as 2.3.1-I, for bit-parallel multiplication)

2.3.3-II DH = DH + CH,u (similar as 2.3.1-II, for digit-serial multiplication)

2.4. end for

2.5. end for

3. Final step

3.1. C = C2
L(1 + x) + C2

LHx+ C2
H(x2 + x) mod f(x) (for bit-parallel multiplication)

3.1. C = D2
L(1 + x) +D2

LHx+D2
H(x2 + x) mod f(x) (for digit-serial multiplication)

where steps 2.3.1 to 2.3.3 refer to the parallel bit-parallel/digit-serial multiplication process.

The proposed multiplication algorithm based on two-term KA, however, can be extended to

n-term Karatsuba decomposition.

Step 3.1 of Algorithm 4.3 can be obtained as follows:

C = C2
L(1 + x) + C2

LHx+ C2
H(x2 + x) mod f(x)

= C2
L(1 + x) mod f(x) + C2

LHx mod f(x)

+C2
H(x2 + x) mod f(x)

(4.32)

For simplicity of discussion, here we only cover the steps to obtain C2
L(1 + x) mod f(x),

and it is similar steps to obtain C2
LHx mod f(x) and C2

H(x2 + x) mod f(x) (In step 3.1 of
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Algorithm 3, C2
L(1 + x) is equal to D2

L(1 + x), as well as the other two partial terms). Let

us define CL as follows:

CL =
m−1∑
i=0

cL,ix
i (4.33)

where cL,i ∈ GF (2). Such that we can have

C2
L = cL,0 + cL,1x

2 + cL,2x
4 + · · ·+ cL,m−1x

2m−2

=
m−1∑
i=0

cL,ix
2i

(4.34)

And we can further have

C2
L(1 + x) =

m−1∑
i=0

cL,ix
2i(1 + x)

= cL,0 + cL,0x+ cL,1x
2 + cL,1x

3 + cL,2x
4

+cL,2x
5 + · · ·+ cL,m−1x

2m−2 + cL,m−1x
2m−1

=
m−1∑
i=0

cL,bi/2cx
i + xm ·

m−1∑
i=0

cL,(m−1)/2+bi/2cx
i

(4.35)

Since x is the root of f(x) (f(x) is a pentanomial of degree m as f(x) = xm +xk1 +xk2 +

xk3 + 1, for 1 ≤ k3 < k2 < k1 ≤ m− 1). Thus we can have

f(x) = xm + xk1 + xk2 + xk3 + 1 = 0 (4.36)

Then, we can have

xk1 + xk2 + xk3 + 1 = xm (4.37)

Replace xm in (4.27) with (4.29), and C2
L(1 + x) mod f(x) can be computed as

C2
L(1 + x) mod f(x) =

m−1∑
i=0

cL,bi/2cx
i mod f(x)

+xm ·
m−1∑
i=0

cL,(m−1)/2+bi/2cx
i mod f(x)

= C2
L1 + (xk1 + xk2 + xk3 + 1)C2

L2

= C2
L1 + C2

L2 + C2
L2 · xk1 + C2

L2 · xk2 + C2
L2 · xk3

(4.38)
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where C2
L1 =

∑m−1
i=0 cL,bi/2cx

i mod f(x) and C2
L2 =

∑m−1
i=0 cL,(m−1)/2+bi/2cx

i mod f(x). And

according to (4.8) and (4.9), we can obtain C2
L2 · xk1, C2

L2 · xk2 and C2
L2 · xk3 directly from

C2
L2, respectively, for NIST pentanomials. Similarly, we can have nearly the same steps to

obtain C2
LHx mod f(x) and C2

H(x2 + x) mod f(x).

4.4.2 Proposed bit-parallel systolic multiplier-III (BP-III)

The proposed bit-parallel systolic multiplier-III (BP-III) based on Algorithm 4.3 is thus

shown in Fig. 13. It consists of three systolic-array modules (one gray box is one module),

where each module consists of w systolic arrays (each array consists of d PEs). BP-III also has

one pre-computing-adder (PCA) cell and one shift pipelined adder tree (SPT) cell. Besides,

a final modular addition (FMA) cell is needed for the operation of step 3.1 of Algorithm 4.3.

The internal structure of a regular PE (PE-2 to PE-d) is shown in Fig. 13(b). Comparing

with regular PE, PE-1 does not have XOR cell. The internal structures of SPT and PCA

are shown in Fig. 13(c) and (d), respectively. The design detail of FMA is shown in Fig.

13(e), where step 3.1 of Algorithm 4.2 is executed to obtain the output. There are two PAT

cells used in FMA to maintain the systolic pipeline. It is noted that the internal structures

of cell deriving C2
LHx mod f(x) and C2

H(x2 +x) mod f(x) are similar to structure of deriving

C2
L(1 + x) mod f(x). The critical-path of proposed structure is (TA + TX), which is the

same as that of BP-II. The proposed design gives the first output (d+log2w+6) cycles after

operands are fed to the structure, while the successive outputs are obtained in every cycle

thereafter.

4.4.3 Proposed digit-serial systolic multiplier-III (DS-III)

The proposed digit-serial systolic multiplier-III (DS-III) based on Algorithm 4.3 is shown

in Fig. 14. It consists of three systolic arrays, where each array consists of d PEs and one

shift-accumulation (SAC) cell. The internal structures of PCA cell, SPT cell and FMA cell

are exactly the same as those of BP-III. The critical-path of proposed structure is (TA +TX),

which is the same as that of BP-III. The proposed design gives the first output (d+ w + 6)

cycles after operands are fed to the structure, while the successive outputs are obtained
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Figure 13: Proposed bit-parallel systolic multiplier-III (BP-III), where ∆ denotes unit delay

and black block denotes register cell. (a) Proposed structure, where each gray box represents

a systolic-array module. (b) Internal structure of a regular PE, where 1 ≤ v ≤ d− 1 (there

is no XOR cell in PE-1). (c) Internal structure of SPT. (d) Internal structure of PCA.(e)

Internal structure of FMA.
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Figure 14: Proposed digit-serial systolic multiplier-III (DS-III), where ∆ denotes unit delay

and black block denotes register cell.

in every w cycles thereafter. Therefore, the proposed DS-III not only has efficient area

complexity but also has high-throughput ability.

4.5 AREA AND TIME COMPLEXITIES

4.5.1 Complexities of BP-I and DS-I

BP-I requires w systolic arrays, where each array consists of d PEs. Each of regular PE

has (m + 3w) XOR gates (m XOR gates in XOR cell, and 3w XOR gates in M-II cell), m

AND gates and 2m bit-registers. PRC cell requires (3w − 3) XOR gates and (m + 3w − 3)

registers. PAT requires (mw − w) XOR gates and equal number of registers. In total, BP-I

has (m2 + 2mw − 3w2 + 3w +md− d− 3) XOR gates, m2 AND gates and (2m2 + 3w − 3)

registers. BP-I has a latency of (d+ 1 + log2w) cycles of duration of 2TX .
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MBP-I has similar structure as BP-I, but it requires less registers and XOR gates. In

total, MBP-I has (m2−m+3wd−3) XOR gates, m2 AND gates and (m2+md+wm+2m−3d)

registers. The latency and critical-path of MBP-I are the same as BP-I.

DS-I consists of (d+ 1) PEs, where each of regular PE requires (m+ 3w) XOR gates, m

AND gates and m bit-registers, the same as that of BP-I. PE-0 requires 3 XOR gates (M-IV

cell) and m bit-registers. While the AC cell contains m bit-registers and equal number of

XOR gates. DS-I, in total thus requires (md + 3m − 3w + 3) XOR gates, dm AND gates

and (2dm+m) registers. After a latency of (d+w) cycles, DS-I yields its desired output in

every w cycles (duration of each cycle is 2TX).

4.5.2 Complexities of BP-II and DS-II

BP-II requires w systolic arrays, where each array consists of d PEs. Each of regular PE has

(m+ 3w) XOR gates (m XOR gates in XOR cell, and 3w XOR gates in M-VI cell), m AND

gates and (2m+ 2w− k1 + k3) bit-registers. PRC cell requires (2w2−wk1 +wk3 + 3w− 3)

XOR gates and (mw + 2w2 −wk1 +wk3 + 2m+ 5w − k1 + k3− 3) registers. PAT requires

(mw−w) XOR gates and equal number of registers. In total, BP-II has (3dw2−w2 +m2 +

2w−wk1 +wk3− 3) XOR gates, m2 AND gates and (2m2 + 2dw2 − dwk1 + dwk3 +wm+

2m+ 4w − k1 + k3− 3) registers. BP-II has a latency of (d+ 3 + log2w) cycles of duration

of (TA + TX).

MBP-II has similar structure as BP-II, but it requires less registers and XOR gates. In

total, MBP-II has (m2 − 3w2 + 5w + 3wm −m − 3 − k1 + k3) XOR gates, m2 AND gates

and (m2 +md+wm+ 3wd− dk1 +dk3 + 5w−k1 +k3− 4d+ 4m− 3) registers. The latency

and critical-path of MBP-II are the same as BP-II.

DS-II consists of (d + 1) PEs, where each of regular PE requires (m + 3w) XOR gates,

m AND gates and 2m+ 2w− k1 + k3 bit-registers, the same as that of BP-II. PE-0 requires

(2w − k1 + k3 + 3) XOR gates and (m + 2w − k1 + k3) bit-registers. While the AC cell

contains m bit-registers and equal number of XOR gates. DS-II, in total thus requires

(2m+ 3wd−w− k1 + k3 + 3) XOR gates, dm AND gates and (2dm+m+ 2wd− dk1 + dk3)

registers. After a latency of (d + w + 1) cycles, DS-II yields its desired output in every
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Table 3: Comparison of area-time complexity of bit-parallel systolic multipliers

Design AND XOR Register Latency Critical-path ACT

[25]∗ m2 m2 + 2m− 1 2m2 − 2m mTcp TA + TX Tcp

[56] 2m2 + 2m m2 +m 3.5m2 + 3.5m (m+ 1)Tcp TA + 2TX Tcp

[57] 2m2 2m2 7m2 3mTcp TA + TX Tcp

[58] 2m2 2m2 3m2 (m+ 1)Tcp TA + TX Tcp

[59] m2 2m2 +m 2m2 mTcp TA + 2TX Tcp

[60] 2m2 2m2 5m2/2 (bm/2c+ 2)Tcp TA + TX Tcp

[61]∗1 m2 γ1 γ2 γ3 TA + TX Tcp

BP-I m2 γ4 2m2 + 3w − 3 (d+ 1 + log2w)Tcp 2TX Tcp

MBP-I m2 γ5 γ6 (d+ 1 + log2w)Tcp 2TX Tcp

BP-II m2 γ7 γ8 (d+ 3 + log2w)Tcp TA + TX Tcp

MBP-II m2 γ9 γ10 (d+ 3 + log2w)Tcp TA + TX Tcp

BP-III 3m2/4 γ11 γ12 (d+ 6 + log2w)Tcp TA + TX Tcp

For BP-I/BP-II/MBP-I/MBP-II/DS-I/DS-II: wd = m; while for BP-III/DS-III:

wd = m/2 Tcp: Time duration of critical-path. ∗: We have used XOR and AND gates to

replace XNOR and NAND gates for this structure, just for a fair comparison. 1: Here

l=min{m− k1, k1− k2, k2− k3}.

γ1 = m2+2m+2lm+2l+2 γ2 = 2m2−2m−2lm−2l−2 γ3 = [m/(2l+2)+1+log2(2l+2)]Tcp

γ4 = m2+2mw−3w2+3w+md−d−3 γ5 = m2−m+3wd−3 γ6 = m2+md+wm+2m−3d

γ7 = 3dw2 − w2 +m2 + 2w − wk1 + wk3− 3 γ8 = 2m2 + 2dw2 − dwk1 + dwk3 + wm+

2m+ 4w − k1 + k3− 3 γ9 = m2 − 3w2 + 5w + 3wm−m− 3− k1 + k3 γ10 =

m2 +md+ wm+ 3wd− dk1 + dk3 + 5w − k1 + k3− 4d+ 4m− 3 γ11 =

9m2/8− 3wm/4 + 6w+ 13m+ 7k1 + 7k2 + 7k3 + 9 γ12 = 9m2/8 + 3wm/4 + 6w+ 25m/2
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Table 4: Comparison of area-time complexity of digit-serial systolic multipliers

Design AND XOR Register Latency Critical-path ACT

[62] γ1 γ2 2m+ d+ t (dm/de+ 1)Tcp γ3 (dm/de+ 1)Tcp

[63]1 2md+m 2md γ4 3dm/deTcp γ5 3dm/deTcp

DS-I md γ6 2dm+m (d+ w)Tcp 2TX wTcp

DS-II md γ7 γ8 (d+ 1 + w)Tcp TA + TX wTcp

DS-III 3md/2 γ9 9dm/4 + 67m/4 (d+ 6 + w)Tcp TA + TX wTcp

For BP-I/BP-II/MBP-I/MBP-II/DS-I/DS-II: wd = m; while for BP-III/DS-III:

wd = m/2 Tcp: Time duration of critical-path. 1: (s+ 1) refers to the pipelined stage in

the PE, and 2m of MUX gates are not listed here.

γ1 = md+ 2k1d− k1 + 2d− 1

γ2 = md+ 2k1d− k1 + d− 1

γ3 = TA + dlog2(d+ 1)eTX
γ4 = dm/de(10d+ 1 + 9sd/2 + s)

γ5 = d(TA + TX + TMUX)/(s+ 1)

γ6 = md+ 3m− 3w + 3

γ7 = 2m+ 3wd− w − k1 + k3 + 3

γ8 = 2dm+m+ 2wd− dk1 + dk3

γ9 = 9md/4 + 63m/4 + 7k1 + 7k2 + 7k3 + 9
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w cycles (duration of each cycle is (TA + TX)). DS-II is regular and has high-throughput

ability.

4.5.3 Complexities of BP-III and DS-III

BP-III requires three systolic-array modules, where each module has w systolic arrays (each

array consists of d PEs). Each of regular PE has (m/2 + vw) XOR gates (1 ≤ v ≤ d − 1),

m/2 AND gates and (m/2 + vw) bit-registers. PCA cell requires m XOR gates and m

registers. SPAT requires (2w + wm/2 − m/2) XOR gates and equal number of registers.

FMA requires (14m+ 7k1 + 7k2 + 7k3 + 9) XOR gates and 27m/2 registers. In total, BP-III

has (9m2/8− 3wm/4 + 6w+ 13m+ 7k1 + 7k2 + 7k3 + 9) XOR gates, 3m2/4 AND gates and

(9m2/8 + 3wm/4 + 6w + 25m/2) registers. BP-III has a latency of (d+ 6 + log2w) cycles of

duration of (TA + TX).

DS-III consists of 3d PEs, where each of regular PE requires (m+ vw) XOR gates, m/2

AND gates and (m/2 + vw) bit-registers, the same as that of BP-III. While the SAC cell

contains m bit-registers and equal number of XOR gates. PCA cell requires m XOR gates

and m registers. FMA requires (14m+7k1+7k2+7k3+9) XOR gates and 27m/2 registers.

DS-III, in total thus requires (9md/4 + 63m/4 + 7k1 + 7k2 + 7k3 + 9) XOR gates, 3dm/2

AND gates and (9dm/4 + 67m/4) registers. After a latency of (d + 6 + w) cycles, DS-III

yields its desired output in every w cycles (duration of each cycle is (TA + TX)).

4.5.4 Comparison of area and time complexities

The area complexity, in terms of logic gate count, register count; and time complexity in

terms of latency, critical-path and ACT of proposed structures and existing structures of

[25], [56-63] are listed in Tables 3 and 4, repsectively.

For bit-parallel systolic structures, proposed structures have the lowest latency and s-

maller area-complexity when compared with the existing designs. It is worth mentioning that

this is the first time ever reported that proposed structures achieve flexible low-latency real-

ization without any restriction. For digit-serial systolic structures, proposed structures have

fixed critical-path, while the critical-paths of existing designs are a function of either filed-
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Figure 15: Comparison of latency of proposed and existing bit-parallel systolic multipliers.
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Figure 16: Comparison of area-delay products (ADP)s of proposed and existing bit-parallel

systolic multipliers.

order or digit-size. The proposed structures have significant performance in time-complexity

when compare to existing ones.
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Figure 17: Comparison of area-delay products (ADP)s of proposed and existing digit-serial

multipliers. (a) Comparison of ADPs of proposed and existing structures. (b) Detailed

comparison.

4.5.5 ASIC implementation

We have also synthesized the proposed structures and the existing structures using NanGate’s

Library Creator by North Carolina State University’s 45nm FreePDK [21] to obtain the area,

time and power complexities of the designs for NIST pentanomials, i.e., f(x) = x163 + x7 +

x6 + x3 + 1, f(x) = x283 + x12 + x7 + x5 + 1 and f(x) = x571 + x10 + x5 + x2 + 1. We have
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Figure 18: Comparison of average computation time (ACT) of proposed and existing digit-

serial multipliers.

used d = w =
√
m for BP-I/MBP-I/DS-I and BP-II/MBP-II/DS-II and all existing designs

of [9-17] (d = w =
√
m/2 for BP-III/DS-III).

We have used those synthesis results to plot the latency and ADP for all bit-parallel

designs as shown in Figs. 15 and 16, ADP and ACT for all digit-serial structures in Figs. 17

and 18, respectively, for three NIST pentanomials. As shown in Figs. 15 and 16, proposed

bit-parallel structures significantly outperform the existing design, i.e., have lower latency

and smaller ADP (MBP-I, MBP-II and BP-III). From Figs. 11 and 12, proposed digit-

serial structures are found to involve significantly less ADP and ACT (the smaller the ACT,

the higher the throughput rate) than the corresponding designs in [16-17]. Note that for

a detailed comparison, Fig. 17(b) gives a more detailed comparison with [16] since Fig.

17(a) cannot give a clear comparison with [16]. It is noted that the PDP is found to be of

similar trend as the ADP and found to be significantly less than those of competing designs.

The proposed multipliers have significantly shorter latency, lower area-time complexity and

higher throughput than the existing competing designs. The proposed designs can be used

in various real application systems.
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4.6 CONCLUSION

Low-latency high-throughput bit-parallel and digit-serial systolic structures for multipliers

over GF (2m) based on NIST pentanomials are presented. We have proposed an algorithm

where the multiplier is decomposed into several parallel processing arrays to lower the latency,

and based on it we have suggested a pair of bit-parallel and digit-serial systolic multipliers.

Another pair of bit-parallel and digit-serial structures are then presented based on a novel

modular reduction operation, where the critical-paths are reduced to (TA +TX) (throughput

rate is increased). Data sharing strategy has been proposed to reduce area-complexity of

the two pairs of systolic multipliers. The third pair of designs, KA-based bit-parallel and

digit-serial multipliers, are proposed to enhance the throughput rate further. The synthesis

results show that the proposed multipliers have significantly shorter latency, lower area-

time complexity and higher throughput than the existing competing designs. The proposed

designs, because of their flexibilities in latency choices, low area-time complexity and high

throughput rate, can be used in various real application systems.
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5.0 HIGH-THROUGHPUT FINITE FIELD MULTIPLIERS USING

REDUNDANT BASIS FOR FPGA AND ASIC IMPLEMENTATIONS

In this chapter, we have proposed a novel recursive decomposition algorithm for RB multipli-

cation to obtain high-throughput digit-serial implementation. Through efficient projection

of SFG of the proposed algorithm, a highly regular processor-space flow-graph (PSFG) is

derived. By identifying suitable cut-sets, we have modified the PSFG suitably and performed

efficient feed-forward cut-set retiming to derive three novel multipliers which not only in-

volve significantly less time-complexity than the existing ones but also require less area and

less power consumption compared with the others. Both theoretical analysis and synthesis

results confirm the efficiency of proposed multipliers over the existing ones. The synthesis

results for FPGA and ASIC realization of the proposed designs and competing existing de-

signs are compared. It is shown that the proposed high-throughput structures are the best

among the corresponding designs, for FPGA and ASIC implementation. It is shown that

the proposed designs can achieve up to 94% and 60% savings of ADPP on FPGA and ASIC

implementation over the best of the existing designs, respectively.

5.1 INTRODUCTION

Finite field multiplication over GF (2m) is a basic operation frequently encountered in modern

cryptographic systems such as the ECC and error control coding [1-3]. Moreover, multipli-

cation over a finite field can be used further to perform other field operations, e.g., division,

exponentiation, and inversion [4-6]. Multiplication over GF (2m) can be implemented on a

general purpose machine, but it is expensive to use a general purpose machine to implement
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cryptographic systems in cost-sensitive consumer products. Besides, a low-end microproces-

sor cannot meet the real-time requirement of different applications since word-length of these

processors is too small compared with the order of typical finite fields used in cryptographic

systems. Most of the real-time applications, therefore, need hardware implementation of

finite field arithmetic operations for the benefits like low-cost and high-throughput rate.

The choice of basis to represent field elements, namely the polynomial basis, normal

basis, triangular basis and RB has a major impact on the performance of the arithmetic

circuits [7-9]. The multipliers based on RB [6, 10] have gained significant attention in recent

years due to their several advantages. Not only do they offer free squaring, as normal basis

does, but also involve lower computational complexity and can be implemented in highly

regular computing structures [13-14].

Several digit-level serial/parallel structures for RB multiplier over GF (2m) have been

reported in the last years [13-14] after its introduction by Wu et al. [68]. An efficient

serial/parallel multiplier using redundant representation has been presented in [70]. A bit-

serial word-parallel (BSWP) architecture for RB multiplier has been reported by Namin

et. al [71]. Several other RB multipliers also have been developed by the same authors in

[13-14] for reducing the complexity of implementation and for high-speed realization. We

find that the hardware utilization efficiency and throughput of existing structures of [13-14]

can be improved by efficient design of algorithm and architecture.

In this chapter, we aim at presenting efficient digit-level serial/parallel designs for high-

throughput finite field multiplication over GF (2m) based on RB. We have proposed an

efficient recursive decomposition scheme for digit-level RB multiplication, and based on that

we have derived parallel algorithms for high throughput digit-serial multiplication. We have

mapped the algorithm to three different high-speed architectures by mapping the parallel

algorithm to a regular 2-dimensional SFG array, followed by suitable projection of SFG to

1-dimensional PSFG, and the choice of feed-forward cut-set to enhance the throughput rate.

Our proposed digit-serial multipliers involve significantly less area-time-power complexities

than the corresponding existing designs. FPGA has evolved as a mainstream dedicated

computing platform. FPGAs however do not have abundant number of registers to be used

in the multiplier. Therefore, we have modified the proposed algorithm and architecture
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for reduction of register-complexity particularly for the implementation of RB multipliers

on FPGA platform. Apart from these we also present a low critical-path digit-serial RB

multiplier for very high throughput applications.

The rest of this chapter is organized as follows: The proposed algorithm for finite field

RB multiplication over GF (2m) is presented in Section 5.2. The proposed structures for

high-throughput digit-serial realization of the multiplications are derived from the proposed

algorithm in Section 5.3. In Section 5.4, we have discussed the estimation of hardware and

time complexities along with the comparative performance of proposed designs over the

recent competing designs. Conclusions are presented in Section 5.5.

5.2 MATHEMATICAL FORMULATION

5.2.1 Brief review of existing digit-serial RB multiplier

Assuming x to be a primitive nth root of unity, elements in finite field GF (2m) can be

represented in the form:

A = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 (5.1)

where ai ∈ GF (2), for 0 ≤ i ≤ n− 1, such that the set {1, x, x2, . . . , xn−1} is defined as the

RB for finite field elements, where n is a positive integer not less than m [68], [70].

For a finite field GF (2m), when (m+1) is prime and 2 is a primitive root modulo (m+1),

there exists a type I ONB [68], where x is an element of GF (2m), and n = m+ 1.

Let A, B ∈ GF (2m) be expressed in RB representation as

A =
n−1∑
i=0

aix
i (5.2)

B =
n−1∑
i=0

bix
i (5.3)
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where ai, bi ∈ GF (2). Let C be the product of A and B, which can be expressed as following

equations

C = A ·B =
n−1∑
i=0

(xibi) · A

=
n−1∑
i=0

(
n−1∑
j=0

bix
(i+j))aj

=
n−1∑
j=0

(
n−1∑
i=0

b(i−j)nx
i)aj

=
n−1∑
i=0

(
n−1∑
j=0

b(i−j)naj)x
i

(5.4)

where (i − j)n denotes modulo n reduction. Define C =
∑n−1

i=0 cix
i, where ci ∈ GF (2), we

have

ci =
n−1∑
i=0

b(i−j)naj. (5.5)

In the recently proposed RB multipliers of [13] and [14], both operands A and B are

decomposed into a number of blocks to achieve digit-serial multiplication, and after that

the partial products corresponding to these blocks are added together to obtain the desired

product word. The existing digit-serial RB multiplication algorithm is stated as follows:

Existing Algorithm Existing digit-serial multiplication algorithm [13] and [14]

Inputs: A = (a0 . . . aw−1︸ ︷︷ ︸
A′0

aw . . . a2w−1︸ ︷︷ ︸
A′1

. . . a(t−1)w . . . an−1︸ ︷︷ ︸
A′t−1

)

= (A′0, . . . , A
′
t−1),

and B = b0 . . . bw−1︸ ︷︷ ︸
B′0

bw . . . b2w−1︸ ︷︷ ︸
B′1

. . . b(t−1)w . . . bn−1︸ ︷︷ ︸
B′t−1

= (B′0, . . . , B
′
t−1)

are two RB representation elements, for t = dn/we.

Output: C = A ·B = (c0, . . . , cn−1)

1. Initialization: t = dn/we, r(−1)e,i = 0 for e = 0, . . . , t− 1 and i = 0, . . . , n− 1

2. For all values of i = 0, 1, 2, . . . , n− 1, compute
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3. For all values of e = 0, 1, 2, . . . , t− 1, compute

4. For g = 0 to w − 1, compute

5. r
(g)
e,i = r

(g−1)
e,i + aew+gb(i−ew−g)n

6. End For

7. End For

8. ci =
∑t−1

e=0 r
(w−1)
e,i

9. End For

Step 5 of existing algorithm refers to the computation of digit-wise partial products for

the digit-serial multiplication where operands A and B are decomposed into a number of

digits, and step 8 refers to the addition of those partial products to compute the product

word.

Although the existing algorithm of [13] and [14] is the most efficient one out of all reported

algorithms for digit-serial multiplication, we find that the hardware utilization efficiency and

throughput of existing structures of [13]-[14] could be improved further by efficient design

of algorithm and architecture. Particularly, due to its larger number of digit-wise partial

products (step 5), and extra time for addition of those partial products (step 8), which

not only increases the ACT to perform the multiplication but also involves extra hardware

resources for storage and addition of larger number of partial products.

5.2.2 Proposed digit-serial RB multiplication algorithm

Alternatively, we can write (5.5) into a bit-level matrix-vector form as the following steps:


c0

c1
...

cn−1

 =


b0 bn−1 · · · b1

b1 b0 · · · b2
...

...
. . .

...

bn−1 bn−2 · · · b0




a0

a1
...

an−1

 . (5.6)
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Looking at the structure of bit matrix in (5.6), we can define n bit-shifted (reduced)

forms of operand B as follows

B0 =
n−1∑
i=0

b0ix
i = b0 + b1x+ · · ·+ bn−1x

n−1

B1 =
n−1∑
i=0

b1ix
i = bn−1 + b0x+ · · ·+ bn−2x

n−1

· · · · · · · · ·

Bn−1 =
n−1∑
i=0

bn−1i xi = b1 + b2x+ · · ·+ b0x
n−1

(5.7)

where

bi+1
0 = bin−1

bi+1
j = bij−1, for 1 ≤ j ≤ n− 2.

(5.8)

The recursions on (5.8) can be extended further to have

bi+s
j =

bin−s+j, for 0 ≤ j ≤ s− 1

bij−s, otherwise
(5.9)

where 1 ≤ s ≤ n− 1.

Let Q and P be two integers such that n = QP + r, where 0 ≤ r < P . For simplicity

of discussion, we assume1 r = 0, and decompose the input operand A into Q number of

bit-vectors Au for u = 0, 1, · · · , Q− 1, as follows:

A0 = [a0 aQ · · · an−Q]

A1 = [a1 aQ+1 · · · an−Q+1]

· · · · · · · · ·

AQ−1 = [aQ−1 a2Q−1 · · · an−1].

(5.10)

1When r 6= 0, we can append (Q − r) number of zeros to each of the operands to satisfy the condition
n = QP .
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Similarly, we can generate Q number of shifted operand vectors Bu for u = 0, 1, · · · , Q−1,

as follows:

B0 = [B0 BQ · · · Bn−Q]

B1 = [B1 BQ+1 · · · Bn−Q+1]

· · · · · · · · ·

BQ−1 = [BQ−1 B2Q−1 · · · Bn−1].

(5.11)

The product C = AB given by the bit-level matrix-vector product in (5.6) can be

decomposed into Q inner-products of vectors Au and Bu for u = 0, 1, · · · , Q− 1 as:

C = AB = B0A
T
0 +B1A

T
1 + · · ·+BQ−1A

T
Q−1

=

Q−1∑
u=0

BuA
T
u =

Q−1∑
u=0

Cu

(5.12)

where Cu denotes

Cu = BuA
T
u . (5.13)

Note that each Au for u = 0, 1, · · · , Q − 1 is a P -point bit-vector and each Bu for

u = 0, 1, · · · , Q− 1 is P bit-shifted forms of operand B. From (5.12) and (5.13) we can find

that the desired multiplication can be performed by Q cycles of successive accumulation of

Cu for u = 0, 1, · · · , Q − 1, while each Cu can be computed as Cu =
∑P−1

v=0 B
u+vQau+vQ.

The proposed digit-serial multiplication algorithm based on (5.12) and (5.13) is described in

Algorithm 5.1.

Algorithm 5.1 Proposed digit-serial multiplication algorithm

Inputs: A and B are the pair of elements (in RB representation) in GF (2m) to be multiplied.

Output: C = A ·B

1. Initialization step

1.1 D = 0
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2. Multiplication step

2.1. for u = 0 to Q− 1

2.2. for v = 0 to P − 1

2.3. D = D +BuA
T
u

2.4. end for

2.5. end for

3. Final step

3.1. C = D

where step 2.3 refers to the digit-serial multiplication process. According to our proposed

algorithm, we generate less number of partial products, and partial products are accumulated

as soon as they are computed, which not only shortens the ACT, but also significantly reduces

register and adder complexities of proposed structures over that of existing ones in [13] and

[14].

5.3 DERIVATION OF PROPOSED HIGH-THROUGHPUT STRUCTURES

FOR RB MULTIPLIERS

In this section, we derive the proposed multipliers from the SFG of the proposed Algorithm

5.1.

5.3.1 Proposed structure-I

According to (5.12) and (5.13), the RB multiplication can be represented by the 2-dimensional

SFG (shown in Fig. 19) consisting of Q parallel arrays, where each array consists of (P − 1)

bit-shifting nodes (S node), P multiplication nodes (M nodes) and (P − 1) addition nodes

(A nodes). There are two types of S nodes (S-I node and S-II node). Function of S nodes

is depicted in Fig. 19(b), where S-I node performs circular bit-shifting by one position and
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Figure 19: Signal-flow graph (SFG) for parallel realization of RB multiplication over GF (2m)

based on (12) and (13). (a) The proposed SFG. (b) Functional description of S node, where

S-I node performs circular bit-shifting of one position and S-II node performs circular bit-

shifting by Q positions. (c) Functional description of M node. (d) Functional description of

A node.
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For 1 ≤ T ≤ Q:
R ← R + xin; T ← T + 1.
If T = Q then yout ← R;
T ← 0; R ← 0; Endif.

(b)

xin yout

Figure 20: Processor-space flow graph (PSFG) of digit-serial realization of finite field RB

multiplication over GF (2m). (a) The proposed PSFG. (b) Functional description of add-

accumulation (AA) node.

S-II node performs circular bit-shifting by Q positions for the degree reduction requiremen-

t. Functions of M nodes and A nodes are depicted in Fig. 19(c) and 19(d), respectively.

Each of the M nodes performs an AND operation of a bit of serial-input operand A with

bit-shifted form of operand B, while each of the A nodes performs an XOR operation. The

final addition of the output of Q arrays of Fig. 1 can be performed by bit-by-bit XOR of the

operands in (Q− 1) number of A nodes as depicted in Fig. 19. The desired product word is

obtained after the addition of Q parallel output of the arrays.

For digit-serial realization of RB multiplier, the SFG of Fig. 19 can be projected along

j-direction to obtain a PSFG as shown in Fig. 20, where P input bits are loaded in parallel to

multiplication nodes during each cycle period. The functions of nodes of PSFG are the same

as those of corresponding nodes in the SFG of Fig. 19 except an extra add-accumulation

(AA) node. The function of the AA node is, as described in Fig. 20(b), to execute the

accumulation operation for Q cycles to yield the desired result thereafter. For efficient

realization of a digit-serial RB multiplier, we can perform feed-forward cut-set retiming in a
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Figure 21: Cut-set retiming of PSFG of finite field RB multiplication over GF (2m), where

“D” denotes delay.

regular interval in the PSFG as shown in Fig. 21. As a result of cut-set retiming of the Fig.

21, the minimum duration of each clock period of PSFG is reduced to (TA + TX).

The PSFG of Fig. 21, is mapped to the high-throughput digit-serial RB multiplier (shown

in Fig. 22), referred to as proposed structure-I (PS-I). PS-I contains three modules, namely

the bit-permutation module (BPM), partial product generation module (PPGM) and finite

field accumulator module. The BPM of Fig. 22 performs rewiring of bits of operand B to

feed its output to P partial product generation units (PPGU)s according to the S nodes of

PSFG of Fig. 21, as shown in Fig. 22(b). The AND cell, XOR cell and register cell of PPGM

perform the function of M node, A node and delay imposed by the retiming of PSFG of Fig.

21, respectively. Structures and functions of AND cell, XOR cell and register cell are shown

in Fig. 22(c), (d) and (e), respectively. The input operands are fed to PPGU in staggered

manner to meet the timing requirement in systolic pipeline. The accumulator consists of n

parallel bit-level accumulation cells (as shown in Fig. 22(f)). The newly received input is

then added with the previously accumulated result and the result is stored in the register

cell to be used during the next cycle. The duration of minimum cycle period of the PS-I is

(TA +TX). The proposed digit-serial design gives the first output of desired product (P +Q)

cycles after the pair of operands are fed to the structure, while the successive output are

produced at the interval of Q cycles thereafter.
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Figure 22: Proposed structure-I (PS-I) for RB multiplier, where “R” denotes a register cell.

(a) Detailed structure of the RB multiplier. (b) Structure of the bit-permutation module

(BPM). (c) Structure of the AND cell in the partial product generation module (PPGM).

(d) Structure of the XOR cell in the PPGM. (e) Structure of the register cell in the PPGM.

(f) Structure of the finite field accumulator.
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Figure 23: PS-I for RB multiplier when d = 2. (a) Proposed cut-set retiming of PSFG when

d = 2. (b) Detailed internal structure of merged regular PPGU. (c) Corresponding PS-I for

the case d = 2.

5.3.2 Modification of proposed structure-I

For any integer value of P , we can have (P = kd+ l), where 0 ≤ l < d and d < P . Without

loss of generality, for simplicity of discussion, we can assume l = 0. The approach proposed

here for l = 0 however can be easily extended to the cases where l 6= 0. Define 0 ≤ h ≤ k−1,

and 0 ≤ f ≤ d− 1, such that (5.13) can be rewritten as

Cu =
k−1∑
h=0

d−1∑
f=0

Bu+fhQau+fhQ (5.14)
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Based on (5.14), we can modify the retiming of PSFG of Fig. 21 to derive suitable

digit-level architecture for RB multiplier over GF (2m). For example, to obtain the proposed

structure for d = 2, a pair of S nodes, a pair of M nodes and a pair of A nodes of the PSFG

of Fig. 21 can be merged to form a macro-node as shown within the dashed-lines in Fig.

23. Each of these macro-nodes can be implemented by a new PPGU to obtain a PPGM of

P/2 PPGUs. Accordingly, two regular PPGUs in the structure of Fig. 22 can be emerged

into a new regular PPGU as shown in Fig. 23(b), which consists of two AND cells and

two XOR cells (the first PPGU requires only one XOR cell). The functions of AND cell,

XOR cell and register cell are the same as those described in Fig. 4. The critical path of

the structure of Fig. 23(c) amounts to (TA + 2TX). The first output of desired product is

available from this structure after a latency of (P/2+Q) cycles, while the successive outputs

are available thereafter in each Q cycles of duration (TA + 2TX). The technique used to

derive the structure for d = 2 may be extended for any value of d, to obtain a structure

consisting of (P/d) PPGUs.

The technique based on (5.14) can significantly reduce the register complexity of the

proposed structure, since P consecutive PPGUs of the PS-I can be merged together to form

(k = P/d) units to be processed concurrently. This strategy is quite useful for FPGA-based

implementation since the value of d can be chosen appropriately, such that the PSFG nodes

selected to be processed in a cycle can be mapped to a basic unit of FPGA with low register

complexity.

5.3.3 Proposed structure-II

We can further transform the PSFG of Fig. 21 to reduce the latency and hardware complexity

of PS-I. To obtain the proposed structure, (P −1) serially-connected A nodes of the PSFG of

Fig. 21 are merged into a pipeline form of (P − 2) A nodes as shown within the dashed-box

in Fig. 24(a). These pipelined A nodes can be implemented by a pipelined XOR tree, as

shown in Fig. 24(b). Since all the AND cells can be processed in parallel, there is no need

of using extra “0”s on the input path to meet the timing requirement in systolic pipeline.

The critical path and throughput of PS-II are the same as those of PS-I. Similarly, PS-II can
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Figure 24: Proposed structure-II (PS-II) for RB multiplier, where “R” denotes a register

cell. (a) Modified PSFG. (b) Structure of RB multiplier.

be easily extended to larger values of d to have low register-complexity structures to achieve

lower hardware complexity implementation.
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Cut-set retiming. (b) BPM and PPGM of PS-III.

5.3.4 Proposed structure-III

Since the S nodes of Fig. 21 perform only the bit-shifting operations they do not involve

any time consumption. Therefore, we can introduce a novel cut-set retiming to reduce the

critical-path further, as shown in Fig. 25(a). It can be observed that the cut-set retiming

allows to perform the bit-addition and bit-multiplication concurrently, so that the critical-

path is reduced to max{TA, TX}=TX , i.e., the throughput of the design is increased. The

proposed high-throughput structure (PS-III) of RB multiplier thus derived is shown in Fig.

25(b). It consists of (P + 1) PPGUs, and each PPGU consists of one AND cell, one XOR
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cell and two register cells. The proposed structure yields the first output of desired result

(P + Q + 1) cycles after the first input is fed to the structure, while the successive outputs

are available in each Q cycles.

5.4 AREA-TIME-POWER COMPLEXITIES

5.4.1 Complexities of PS-I, PS-II and PS-III

PS-I requires P PPGUs, where each of the (P − 1) regular PPGUs consists of n XOR gates

and n AND gates. The finite field accumulator requires n XOR gates and n bit-registers.

The proposed design in total requires Pn XOR gates, Pn AND gates and (Pn + 2n) bit-

registers. After a latency of (P + Q) cycles, PS-I gives the desired output word in every Q

cycles of duration (TA + TX).

PS-I for any value of d consists of (P/d) PPGUs. The complete structure of the multiplier

thus requires Pn XOR gates, Pn AND gates and (Pn/d+ 2n) bit-registers. The latency of

the structure amounts to (P/d + Q) cycles, where the duration of minimum cycle period is

{TA + (1 + dlog2de)TX}.

PS-II has similar area-time complexities as those of PS-I except that it involves less

registers and lower latency than the latter. In total, PS-II requires (Pn + n) registers and

yields its first result after a latency of (log2P +Q) cycles. For any value of d, PS-II requires

{Pn/d+ n} registers.

PS-III requires (P + 1) PPGUs, where each of the (P − 2) regular PPGUs consists of n

XOR gates, n AND gates and 2n bit-registers. The proposed design in total would require

Pn XOR gates and Pn AND gates. Besides, it needs a total of (2Pn + 2n) bit-registers.

After a latency of (P +Q+ 1) cycles, PS-III gives the desired output word in every Q cycles

of duration TX .
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Table 5: Comparison of area-time complexities of digit-serial RB multipliers

Design AND XOR Register Latency Critical-path ACT

[68] Pn P (n− 1) n QTcp γ1 QTcp

[70] Pn Pn 2n QTcp γ2 QTcp

[71] Pn Pn+ n n QTcp γ2 QTcp

[13] Pn (2P − 1)n (P + 1)n QTcp + dlog2P eTX TA + TX γ3

[14] γ4 (2P − 1)n Pn+ dlog2Qe QTcp + dlog2P eTX TA + TX γ3

PS-I1 Pn Pn Pn+ 2n (P +Q)Tcp TA + TX QTcp

PS-II1 Pn Pn Pn+ n (dlog2P e+Q)Tcp TA + TX QTcp

PS-I2 Pn Pn Pn/d+ 2n (P/d+Q)Tcp γ5 QTcp

PS-II2 Pn Pn Pn/d+ n (dlog2P e+Q)Tcp γ5 QTcp

PS-III Pn Pn 2Pn+ 2n (P +Q+ 1)Tcp TX QTcp

Tcp: Time duration of critical-path.

d: d is the number of bits of operand A fed to each PPGU during each cycle period.

1: refers to the structure with d = 1.

2: refers to the structure with 1 < d < P .

γ1 = TA + dlog2neTX
γ2 = TA + dlog2(P + 1)eTX
γ3 = QTcp + dlog2P eTX
γ4 = Pn+ dlog2Qe

γ5 = TA + (1 + dlog2de)TX
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Table 6: Comparison of area-time complexities of different multipliers where there exist a

type I ONB (n = m+ 1)

Design AND XOR Register Latency CP ACT

[69]ONBI P (2m− 1) P (2m− 2) 2m QTcp τ 1 QTcp

[74]ONBI Pm P (2m− 2) 2m QTcp τ 1 QTcp

[75]ONBI0 Pm/2 +m/2 τ 2 2m QTcp τ 1 QTcp

[75]ONBI1 Pm− P +m τ 3 2m QTcp τ 1 QTcp

[77]ONBI2 τ 4 τ 5 3m QTcp τ 6 QTcp

[76]ONBI3 τ 7 τ 3 3m QTcp τ 8 QTcp

[77]ONBI4 Pm+ P 2Pm+ P 3m QTcp τ 9 QTcp

PS-I! Pm+ P Pm+ P (P + 2)(m+ 1) (P +Q)Tcp τ 10 QTcp

PS-II! Pm+ P Pm+ P (P + 1)(m+ 1) (dlog2P e+Q)Tcp τ 10 QTcp

PS-I∗ Pm+ P Pm+ P τ 11 (P/d+Q)Tcp τ 12 QTcp

PS-II∗ Pm+ P Pm+ P τ 13 (dlog2P e+Q)Tcp τ 12 QTcp

PS-III Pm+ P Pm+ P 2(P + 1)(m+ 1) (P +Q+ 1)Tcp TX QTcp

CP: Critical-path. Tcp: Time duration of critical-path. 0: AND-efficient digit-serial

(AEDS). 1: XOR-efficient digit-serial (XEDS). 2: ω-sequential multipliers with parallel

output I (ω-SMPOI). 3: ω-sequential multipliers with parallel output II (ω-SMPOII). 4:

Type I ONB structure.

τ 1 = TA + (1 + dlog2me)TX τ 2 = 1.5Pm− 2P + 1.5m− 1 τ 3 = Pm+m+ P − 1 τ 4 =

Pm/2 +m+ P + 1 τ 5 = 3Pm/2 +m+ P − 1 τ 6 = 2TA + (3 + dlog2(P − 1)e)TX τ 7 =

Pm+m+P + 1 τ 11 = 2TA + (3 + dlog2(P −1)e)TX τ 9 = TA + (1 + dlog2P + 1e)TX τ 10 =

TA+TX τ 11 = P (m+1)/d+2(m+1) τ 12 = TA+(1+dlog2de)TX τ 13 = P (m+1)/d+m+1

!: d = 1, where d is the number of bits of operand A fed to each PPGU during each cycle

period. ∗: Refers to 1 < d < P .
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5.4.2 Comparison with existing digit-serial RB multipliers

The area-time complexities of proposed structures and existing structures of [13]-[14], [68],

[70]-[71] for RB multiplier are listed in Table 5. For simplicity of discussion, we refer PS-I

of Fig. 22 and PS-II of Fig. 24 as the case of d = 1, respectively.

In [13] and [14], the authors have shown that their structures outperform the previous

structures in [68], [70]-[71]. Therefore we compare the performance of proposed structures

only with those of [13] and [14]. PS-I and PS-II (for d = 1), not only involve less time

complexity (shorter ACT), but also have less XOR gates than those of existing designs of

[13] and [14]. PS-I and PS-II (for 1 < d < P ) require less registers, at the cost of a small

increase in critical-path. And PS-III has the lowest time-complexity among all the structures

listed in Table 5.

5.4.3 Comparison with existing digit-serial multipliers having a type I ONB

The complexity of RB multiplier is almost the same as that of type I ONB [68]. The area-

time complexities of the proposed multipliers and architectures of [69], [74]-[77] (for which

there exists a type I ONB) are shown in Table 6. Note that these complexities are estimated

by substituting n for m+ 1, according to the definition in [68].

The authors in [13] and [14] have shown that their multipliers outperform the previously

proposed structures in [69], [74]-[76]. Therefore we compare our proposed structures only

with [13-14] and [77]. PS-I and PS-II not only require less number of logic gates and registers

(P number less XOR gates and nearly m number less registers), but also have shorter ACT

compared to the structure in [77].

5.4.4 Comparison of synthesis results for FPGA implementation

We have used Altera Quartus II 12.0 and chosen Arria II GZ EP2AGZ225FF35C3 FPGA

device to synthesize the proposed designs as well as the existing competing designs. The key

synthesis results are obtained, in terms of area, maximum frequency and power consumption

with respect to various P , Q and d. The number of adaptive look-up table (ALUT) is taken
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Figure 26: Comparisons of key metrics of various structures for n = 268. (a) Comparisons

of area-complexity (number of ALUT). (b) Comparisons of maximum frequency (MHz). (c)

Comparisons of power consumption (mW).
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Figure 27: Comparisons of area-delay-power complexities of various structures for n = 268

(delay refers to the ACT of a structure. Area, delay and power are measured in number of

ALUT, 10−4s and mW, respectively). (a) Comparisons of area-delay product (ADP). (b)

Comparisons of power-delay product (PDP). (c) Comparisons of area-delay-power product

(ADPP).
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as the area measure. For fair estimation, we have used the same input data and the same

clock frequency (100MHz) to obtain the synthesis results using Quartus II PowerPlay Power

Analyzer. The metrics, i.e., area, maximum usable clock frequency and power consumption

of various structures estimated from the synthesis results are shown in Fig. 26. We have also

estimated the ADP, PDP and ADPP of proposed and existing structures from the synthesis

results as shown in Fig. 27, where the delay refers to the ACT estimated from the minimum

data arrival time.

For a detailed comparison, we have listed the synthesis results (area, delay, power, ADP,

PDP and ADPP) of proposed designs (PS-I/PS-II and PS-III) along with the best of the

existing designs of [13]/[14] in Table 7, for {P = 32, Q = 9, and d = 8}, {P = 16, Q = 17,

and d = 4}, and {P = 8, Q = 34, and d = 2}, respectively.

It can be seen that for FPGA implementation, the proposed structures (except PS-III)

outperform the existing designs. As shown in Figs. 26, 27 and Table 7, PS-I can provide a

saving of upto 94% of ADP and ADPP and 65% of PDP over the existing design of [13], for

{P = 32, Q = 9, and d = 8}. Besides, as shown in Fig. 27 and Table 7, as the value of d

increases, the ADP of proposed structures decreases. It is worth noting that the ALUT of

Altera FPGA devices can be mapped to logic function involving multiple Boolean operations,

so that the number of synthesized ALUT decreases as d increases. This feature also explains

why the ADP of PS-III is worse than others.

5.4.5 Comparison of synthesis results for ASIC implementation

We have also synthesized the proposed structures and the existing structures using Synopsys

Design Compiler by North Carolina State University’s 45nm FreePDK [15] to obtain the area,

time and power complexities of the designs. Using those synthesis results, we have plotted

the area, delay and power consumption (at 1GHz) in Fig. 28, and we have calculated the

ADP, PDP and ADPP of the designs (shown in Fig. 29).

As shown in Figs. 28 and 29, proposed structures outperform the existing designs.

Basic structures of PS-I and PS-II (d = 1) have the lowest ADP and PDP among all these

structures. As d increases, the ADP and PDP of proposed structures also increase a little
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Table 7: Area-time-power complexities comparison of various multipliers based on FPGA

implementation

Design Area1 Delay1,2 Power1 ADP PDP ADPP

{P = 32, Q = 9, and d = 8}

[13] 19637 3.7 989 7.3 3660 7222

PS-I 2966 1.42 902 0.42 1281 379

PS-III 34701 1.98 1069 6.87 2117 7345

{P = 16, Q = 17, and d = 4}

[13] 9953 4.72 943 4.7 4453 4434

PS-I 2959 2.97 898 0.88 2669 791

PS-III 17485 3.31 977 5.79 3234 5658

{P = 8, Q = 34, and d = 2}

[14] 5111 7.09 916 3.64 6496 3335

PS-II 2421 6.69 900 1.62 6021 1458

PS-III 8877 6.33 934 5.62 5910 5247

1: Area, delay and power are measured in number of ALUT, 10−4s and mW, respectively.

2: Delay refers to the ACT of a structure.
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Figure 28: Comparisons of key metrics of various structures for n = 268. (a) Compar-

isons of area-complexity (µm2). (b) Comparisons of delay (ns). (c) Comparisons of power

consumption (mW).
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Figure 29: Comparisons of area-delay-power complexities of various structures for n = 268

(delay refers to the ACT of a structure. Area, delay and power are measured in µm2, ns and

mW/GHz, respectively). (a) Comparisons of area-delay product (ADP). (b) Comparisons

of power-delay product (PDP). (c) Comparisons of area-delay-power product (ADPP).
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while the ADPP decreases, so that the ADP and the PDP of PS-II are the lowest among all

the structures for the case of {P = 32, Q = 9, and d = 1}, while the ADPP of PS-II is the

lowest for the case of {P = 32, Q = 9, and d = 8}. For a detailed comparison, synthesis

results in terms of area-delay-power complexities of proposed designs of PS-II, and PS-III;

and the best of the existing designs [14] are listed in Table 8 for the case of {P = 32, Q = 9,

and d = 8}, {P = 16, Q = 17, and d = 4}, and {P = 8, Q = 34, and d = 2}, respectively.

As shown in Figs. 28 and 29 and Table 8, especially for the case of {P = 32, Q = 9,

and d = 8}, PS-II can save at most 18% ADP, 17.8% PDP and 60% ADPP over the existing

design of [14], as shown in Fig. 29 and Table 8. Moreover, as shown in Table 8, PS-III of

Fig. 25 has the lowest time complexity among all the structures.

5.4.6 Design selection

From Figs. 26, 27, 28 and 29, we find that PS-I and PS-II outperform the other structures

in both FPGA and ASIC platforms in terms of area, time and power complexities. Besides,

because of their low area-time-power complexities and high throughput rate, PS-I and PS-II

can be used in various real time applications. Especially for FPGA implementation, it is

suggested to use either PS-I/II (for 1 < d < P ) based on the area constraint and speed

requirement of applications. For ASIC implementation, PS-I and PS-II of Figs. 22 and 24

or PS-III of Fig. 25 are preferred for their efficiency in area-time-power complexities. For

applications requiring highest throughput, PS-III of Fig. 25 is the best choice. In summary,

we can choose different structures according to the requirements of different application

environments.

5.5 CONCLUSION

We have proposed a novel recursive decomposition algorithm for RB multiplication to de-

rive high-throughput digit-serial multipliers. By suitable projection of SFG of proposed

algorithm and identifying suitable cut-sets for feed-forward cut-set retiming, three novel
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Table 8: Area-time-power complexities comparison of various multipliers based on ASIC

implementation

Design Area1 Delay1,2 Power1 ADP PDP ADPP

{P = 32, Q = 9, and d = 8}

[14] 185957 2.7 56.3 499852 151.3 28135

PS-II 90567 4.5 27.4 410814 124.3 11262

PS-III 197746 1.9 59.9 373742 113.1 22371

{P = 16, Q = 17, and d = 4}

[14] 91407 4.6 28.1 422299 130.0 11884

PS-II 49676 7.1 15.3 354689 109.2 5815

PS-III 100631 3.6 31.0 359251 110.6 11130

{P = 8, Q = 34, and d = 2}

[14] 44136 8.8 13.9 389283 122.9 5423

PS-II 29231 11.4 9.2 333932 105.4 3081

PS-III 52072 7.1 16.4 371796 117.3 6111

1: area, delay and power are measured in µm2, ns and mW(1GHz), respectively.

2: delay refers to the ACT of a structure.
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high-throughput digit-serial RB multipliers are derived to achieve significantly less area-

time-power complexities than the existing ones. Moreover, efficient structures with low

register-count have been derived for area-constrained implementation; and particularly for

implementation in FPGA platform where registers are not abundant. The results of synthe-

sis show that proposed structures can achieve saving of up to 94% and 60%, respectively,

of ADPP for FPGA and ASIC implementation, respectively, over the best of the existing

designs. The proposed structures have different area-time-power trade-off behavior. There-

fore, one out of the three proposed structures can be chosen depending on the requirement

of the application environments.
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6.0 SINGLE AND HYBRID ARCHITECTURES FOR MULTIPLICATION

OVER FINITE FIELD GF (2M) BASED ON REORDERED NORMAL BASIS

In this chapter, efficient bit- and digit-level algorithms for computing multiplication over

GF (2m) based on RNB are presented. Novel high-throughput low-complexity architectures

are presented based on these proposed algorithms. First of all, high-throughput bit- and

digit-parallel multipliers are presented. To have an optimal balanced trade-off between area

and time complexities, novel digit-serial architectures for RNB multiplication is proposed

then. Finally, for the first time, a novel hybrid architecture for parallel/serial realization of

finite field multiplication based on RNB is introduced. The main advantage of the novel hy-

brid architecture is that it offers flexible choices of throughput of parallel/serial realization

of RNB multiplication while meantime it involves little hardware overhead. This feature

would be a major advantage for implementing multiplication in modern/emerging reconfig-

urable cryptographic systems. Both theoretical comparison and practical simulation results

from FPGA and ASIC realization are presented. It is shown that the proposed multipliers

have significantly lower area-time-power complexity than the corresponding existing designs.

Specifically, FPGA realization of the novel hybrid multiplier is detailed presented to confirm

its efficiency in FPGA based reconfigurable cryptographic platforms.

6.1 INTRODUCTION

Finite field multiplication over GF (2m) is widely used in modern/emerging cryptographic

systems such as ECC [1]-[3]. Due to the essential requirements of real time applications

like high-throughput, low-cost and small-size, area-time-power-efficient hardware design for
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field multiplication is therefore quite critical. In general, there are three bases of represen-

tation, e.g., dual basis, normal basis, and polynomial basis representations of the element

of GF (2m) [4]-[9]. Meanwhile, modern cryptographic systems usually involve a number of

arithmetic operations such as the multiplication, squaring and so on. It is worthy mention-

ing that normal basis multipliers have no hardware cost in squaring operations (only involve

bits-shifting), more and more cryptographic circuits designs prefer to use the normal basis

multipliers compared with the multipliers based on the other two bases [10]-[12].

There are two special classes of normal basis for which the complexity of multiplication

can be minimized, namely the ONB type I and II. ONB Type II has been widely used for

various cryptographic system designs. RNB is a version of ONB type II which has been

proposed in [74] for efficient multiplication implementation. Later, efficient multipliers are

suggested in [68] and [70] based on this basis. Very recently, two high-speed architectures

for multiplication using RNB are proposed in [79].

Basically, there are three types of design styles for finite field multiplications, namely

the fully-serial, fully-parallel and digit-serial. Fully-serial architecture usually suffers low-

throughput and it is not frequently used. While the fully-parallel architecture has advantage

like high-throughput at the cost of large area-complexity. Digit-serial architecture is widely

used in many real-time cryptographic systems due to its tradeoff in area-time complexities

between fully-serial and fully-parallel designs.

As technology advances, e.g., more and more gates can be fabricated in one single chip,

fully-parallel realization of finite field multiplication is becoming more and more popular

in many cryptographic systems due to its high-throughput capability. Therefore, high-

throughput low-complexity implementation of finite field multiplier is indeed in demanding.

On the other hand, emerging computing systems such as the reconfigurable cryptographic

systems, require field multipliers have the ability to provide flexible input/output through-

put choices to meet various real-time application requirements. While the traditional design

only focusses on single style multiplier designing. Thus, designing a multiplier has multiple

throughput choices with small hardware overhead would be a real challenge.

In this chapter, we present efficient bit- and digit-level algorithms for multiplication

over GF (2m) based on RNB. Efficient bit- and digit-parallel (BP and DP) multipliers are
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proposed first. Then, novel digit-serial (DS) multipliers are introduced to achieve optimal

tradeoff between area-time complexities. Most importantly, a novel hybrid architecture for

parallel/serial realization of RNB multiplication is proposed. To the best of the authors’

knowledge, this is the first hybrid RNB multiplier which provides flexible choices of through-

put for parallel/serial realization ever reported. The proposed hybrid multiplier also involves

little hardware overhead when compared with BP multiplier. Based on its characteristics, the

proposed hybrid multiplier can be used in applications such as reconfigurable cryptographic

systems. To get the actual implementation results, we have used VHDL to synthesize these

architectures in both FPGA and ASIC platforms for different digit sizes.

The organization of this chapter is as follows: in Section 6.2, we briefly review prelim-

inaries of multiplication in RNB over GF (2m). In Section 6.3, efficient algorithms for bit-

and digit-level realization of RNB multiplication are proposed. In Section 6.4, we present

high-throughput low-complexity DS RNB multipliers. Then, we have presented a highly

efficient hybrid architecture for RNB multiplication in Section 6.5, which can offer multiple

throughput choices. Performance and comparison of the proposed and existing multipliers

are presented in Section 6.6. And conclusion of this paper is given in Section 6.7.

6.2 PRELIMINARIES

RNB is a reordered version of an ONB type II and it is proposed firstly in [74] by Gao and

Vanstone, and then it is used in efficient realization of multipliers in [78] and [70].

Define function s[i] as follows, for 1 ≤ i ≤ m [10]-[11]:

s[i] =



i mod 2m+ 1

(if 0 ≤ i mod 2m+ 1 ≤ m)

2m+ 1− i mod 2m+ 1

(if m ≤ i mod 2m+ 1 ≤ 2m)

(6.1)

Then let A, B and the product C be A, B, C ∈ GF (2m). The RNB {x1, x2, ..., xm}

be used to represent the field elements, so that A, B, C can be presented as the following
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steps (all these following equations can be written in a algorithm standard form for easy

understanding and access):

A =
m∑
i=1

aixi, B =
m∑
i=1

bixi, C =
m∑
i=1

cixi, (6.2)

where ai, bi, ci ∈ {0, 1}, for 1 ≤ i ≤ m.

Then, we can have [11]

ci =
m∑
j=1

ajbs[i+j] +
m∑
j=1

ajbs[j−i] (6.3)

for i, j ∈ {1, 2, ..., m}, and b0 is defined as 0.

6.3 PROPOSED BIT- AND DIGIT-PARALLEL RNB MULTIPLIERS

6.3.1 Proposed bit-parallel (BP) RNB multiplication algorithm

First of all, we can rewrite (6.3) into another matrix-vector form as shown in the following

steps


c1
...

cm

 =


bs[2] · · · bs[m+1]

...
. . .

...

bs[m+1] · · · bs[2m]



a1
...

am



+


bs[0] · · · bs[m−1]

...
. . .

...

bs[1−m] · · · bs[0]



a1
...

am


(6.4)
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Then, according to (6.1), (6.4) can be expressed as another matrix-vector multiplication

form:


c1

c2
...

cm

 =


b2 b3 · · · bm

b3 b4 · · · bm−1
...

...
. . .

...

bm bm−1 · · · b1




a1

a2
...

am

+



b0 b1 · · · bm−1

b1 b0 · · · bm−2

b2 b1 · · · bm−3
...

...
. . .

...

bm−1 bm−2 · · · b0




a1

a2
...

am



(6.5)

Moreover, we can also express second matrix of (6.5) into the form as


c1

c2
...

cm

 =


b2 b3 · · · bm

b3 b4 · · · bm−1
...

...
. . .

...

bm bm−1 · · · b1




a1

a2
...

am

+


bm−1 bm−2 · · · b0

bm−2 bm−3 · · · b1
...

...
. . .

...

b0 b1 · · · bm−1




am

am−1
...

a1



(6.6)

The equation (6.6) can be seen as the addition of two matrix-vector multiplications, and

can be rewritten as one matrix-vector multiplication if we add some additional bits.

Here we define {cm+1, cm+2, . . . , c2m, c2m+1} and {am+1} as additional bits, such that

we can have the equation in Fig. 30, where the bits in the dashed boxes are extra bits
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Figure 30: Extended expression of equation (6.6), where the bits in the dashed box are extra added
bits.

added to meet the multiplication requirement (these bits are filled to meet multiplication

requirement, but they won’t be really used in real structure implementation), where

am+1 = 0

cm+1 = bm−1a1 + · · ·+ b1am + · · ·+ bmam+1

· · · · · · · · ·

c2m = b2a1 + · · ·+ bm−1am + · · ·+ b0am+1

c2m+1 = b1a1 + · · ·+ bmam + · · ·+ b1am+1

(6.7)

Define {xm+1, xm+2, . . . , x2m+1} as extended RNB, and then according to the equation

in Fig. 30 we can also define as followings

C =
2m+1∑
i=1

cix
i = c1x1 + · · · cm+1xm+1 + · · · c2m+1x2m+1

B =
2m+1∑
i=1

bix
i = b1x1 + · · · bmxm+1 + · · · b0x2m+1

A =
2m+1∑
i=1

aix
i = a1x1 + · · · amxm+1 + · · · am+1x2m+1

(6.8)
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From (6.8), based on the expression of B and Fig. 30, we can also define as following

equation steps:

B
1

=
2m+1∑
i=1

b
1

ix
i

= b2x1 + · · ·+ bm−1xm+1 + · · ·+ b1x2m+1

B
2

=
2m+1∑
i=1

b
2

ix
i

= b3x1 + · · ·+ bm−2xm+1 + · · ·+ b2x2m+1

· · · · · · · · ·

B
2m

=
2m+1∑
i=1

b
2m

i xi

= b0x1 + · · ·+ bmxm+1 + · · ·+ b1x2m+1

(6.9)

where

b
i+1

2m = b
i

1

b
i+1

j = b
i

j+1, for 1 ≤ j ≤ 2m− 1
(6.10)

The recursions on (6.10) can be extended further to have

b
i+v

j =

b
i

2m−v+j, for 1 ≤ j ≤ v

b
i

j+v, otherwise
(6.11)

where 1 ≤ v ≤ 2m− 1, such that all 2m+ 1 bits of B
1
, B

2
, . . ., B

2m
are the same as B and

can be obtained through bit-shifting operation from B, respectively.

And from Fig. 30 we can have

C =
2m∑
i=1

B
i
ai = B

1
a1 +B

2
a2 + · · ·+B

2m
a1 (6.12)

for am+1 = 0 as defined above, and this definition can be used in rest sections including

subsections of this chapter.
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Based on the above equations, similarly, we also can define as the following equation

steps:

CS =
m∑
i=1

cixi = c1x1 + · · ·+ cmxm = C

B
1

S =
m∑
i=1

b
1

Sixi = b2x1 + · · ·+ bmxm

B
2

S =
m∑
i=1

b
2

Sixi = b3x1 + · · ·+ bm−1xm

· · · · · · · · ·

B
2m

S =
m∑
i=1

b
2m

Si xi = b0x1 + · · ·+ bm−1xm

AS =
m∑
i=1

aixi = a1x1 + · · ·+ amxm = A

(6.13)

where

b
1

Si = b
1

i , for 1 ≤ i ≤ m

b
2

Si = b
2

i , for 1 ≤ i ≤ m

· · · · · · · · ·

b
2m

Si = b
2m

i , for 1 ≤ i ≤ m

ai = ai, for 1 ≤ i ≤ m

(6.14)

thatB
1

S, B
2

S, . . . , B
2m

S can be obtained through bit-selecting operation fromB
1
, B

2
, . . . , B

2m
,

respectively. According to Fig. 30, the former RNB multiplication can be rewritten as

C = AB = CS

=
m∑
i=1

B
i

Sai +
2m∑

i=m+1

B
i

Sa2m+1−i

=
2m∑
i=1

B
i

Sai

(6.15)

The proposed BP multiplication scheme based on (6.15) is described in Algorithm 6.1.

Algorithm 6.1 Proposed BP multiplication algorithm
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Figure 31: Proposed bit-parallel (BP) RNB multiplication architecture, where 4 stands for unit
delay. (a) Proposed architecture. (b) Function of the first PE. (c) Function of the regular PE
(PE[2] to PE[2m]).

Inputs: A andB are the pair of elements (in RNB representation) inGF (2m) to be multiplied.

Output: C = A ·B

1. Initialization step

1.1 define extended RNB {xm+1, xm+2, . . . , x2m+1} to obtain B
1
, B

2
, . . ., B

2m
, A

2. Multiplication step

2.1. obtain B
1

S, B
2

S, . . . , B
2m

S , from B
1
, B

2
, . . ., B

2m
through bit-selecting operation

2.2. for i = 1 to 2m

2.3. C = CS =
∑2m

i=1B
i

Sai

2.4. end for

We can also rewrite (6.15) into another form as

C = AB = CS

=
m∑
i=1

B
i

Sai +
2m∑

i=m+1

B
i

Sa2m+1−i

=
m∑
i=1

(B
i

Sai +B
i+m

S am+1−i)

=
m∑
i=1

(B
i

S +B
2m−i+1

S )ai

(6.16)
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Based on (6.16), we can have another BP algorithm as described in Modified Algorithm

6.1.

Modified Algorithm 6.1 Proposed BP multiplication algorithm

Inputs: A andB are the pair of elements (in RNB representation) inGF (2m) to be multiplied.

Output: C = A ·B

1. Initialization step

1.1 define extended RNB {xm+1, xm+2, . . . , x2m+1} to obtain B
1
, B

2
, . . ., B

2m
, A

2. Multiplication step

2.1. obtain B
1

S, B
2

S, . . . , B
2m

S , from B
1
, B

2
, . . ., B

2m
through bit-selecting operation

2.2. for i = 1 to m

2.3. C = CS =
∑m

i=1(B
i

S +B
2m−i+1

S )ai

2.4. end for

6.3.2 Proposed BP architecture for RNB multiplier

The proposed architecture for BP multiplier based on Algorithm 6.1 is shown in Fig. 31.

It consists of 2m processing elements (PE)s along with a bit-permutation module (BPM).

The BPM performs rewiring of bits (executed by bit rewiring cell) of operand B to feed its

output to 2m PEs according to Algorithm 6.1. Function of the first PE (PE[1]) is described

in Fig. 31(b), while the function of regular PEs (PE[2] to PE[2m]) is depicted in Fig. 31(c).

The bits of operand A are delayedfed to the individual PEs respectively to meet the data-

path requirement. During each cycle, a regular PE performs an AND operation of a bit of

operand A with the input polynomial B
i

S followed by bit-by-bit XOR of the result of AND

operations with the complement of the accumulated result available to the PE from its left.

According to Modified Algorithm 6.1, we can have two kinds of modified architectures

(the number of PEs in the structures is reduced), namely MBP-I and MBP-II, as shown
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Figure 32: Proposed modified bit-parallel-I (MBP-I) RNB multiplication architecture, where 4
stands for unit delay. (a) Modified architecture. (b) Internal structure of parallel adder arrays.

later. First of all, we can have the modified bit-parallel-I (MBP-I) architecture based on

Modified Algorithm 6.1 as shown in Fig. 32, where the number of PEs is reduced from 2m

to m at the cost of extra parallel adder arrays in the BPM. To meet the data processing

requirement, bits of operand A fed to each PE have one more delay than that of Fig. 31.

The detail design of parallel adder arrays is shown in Fig. 32(b), which consists of m XOR

cells and equal number of registers. Compare with Fig. 31, MBP-I structure of Fig. 32 has

less area complexity since m PEs are reduced. Thus, we choose MBP-I of Fig. 32 as one of

our preferred designs.

The detailed designs of proposed MBP-II multiplier shown in Fig. 33, where the registers

in parallel adder arrays are removed to reduce the area-complexity further at the cost of minor
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4 stands for unit delay. (a) Design of proposed architecture. (b) Design of BPM. (c) Structure of
the AND cell. (d) Structure of the XOR cell. (e) Structure of the register cell.

increase in critical-path. (2m+1) bits of operand B originally extended from B are preloaded

in (2m + 1) bit-registers, and after that yields corresponding 2m outputs to parallel adder

arrays to produce m outputs to PEs according to Modified Algorithm 6.1. A regular PE,
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as shown in Fig. 33(a), consists of three cells: an AND cell, an XOR cell and a register

cell. Structure and function of AND cell, XOR cell and register cell are shown in Fig. 33(c),

(d) and (e), respectively. AND cell consists of m AND gates working in parallel to perform

the bit-multiplication operations of the input ai with the corresponding bit-shifted forms of

operand B
i

S + B
2m−i+1

S , for 1 ≤ i ≤ 2m. XOR cell consists of m XOR gates to perform

bit-by-bit XOR operations. The output of the XOR cell is then latched out to the next PE

in the next clock cycle. The duration of minimum cycle period of the structure in Fig. 33

is (TA + 2TX). The proposed bit-parallel design gives the first output of desired product m

cycles after the pair of operands are fed to the structure, while the successive outputs are

produced in each cycle thereafter.

In real-time applications, MBP-I and -II can be chosen according to specific requirement,

since MBP-I has advantage on critical-path, while MBP-II has merit on area-complexity. For

simplicity of discussion, in the following sections, we all refer them as MBP, except in the

comparison section.

6.3.3 Proposed digit-parallel (DP) architecture for RNB multiplier

Using the architectures of Fig. 33, we derive here the proposed digit-level parallel architecture

for implementation of RNB multiplier over GF (2m), where bits of operand A are fed digit-by-

digit to the corresponding PEs of the architecture. Define d as the parallel digit-size (number

of bits of operand A fed to each PE during each cycle period), to obtain the structure for

d = 2, a pair of PEs of the architecture of Fig. 33(a) can be merged to form a new PE

as shown in Fig. 34(a) and (b). Likewise, the internal structure of merged PE (shown in

Fig. 34(d)) is the merged form of two regular PE of bit-parallel architecture (shown in Fig.

34(c)), which consists of two AND cells, two XOR cells (the first PE requires only one XOR

cell) and one register cell. The functions of AND cell, XOR cell and register cell are the same

as those described in Fig. 34. The design detail of proposed digit-parallel RNB multiplier

consisting of m PEs is shown in Fig. 34(e). Two bits of operand A are fed to the AND

cell in parallel and the results are fed as inputs first to two parallel XOR cell. The partial

result available from left is then added together with the outputs of two AND cells of PE
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merged PE. (e) Design detail of proposed RNB multiplier for d = 2.

to generate the output to be latched out to next PE. The critical-path of the structure of

Fig. 34(e) amounts to (TA + 2TX). The first output of desired product is available from this

architecture after a latency of m cycles, while the successive outputs are available thereafter

in each cycle of duration (TA +2TX). The technique used to derive the architecture for d = 2

may be extended for any value of d, to obtain an architecture consisting of (m/d) PEs.

The proposed DP realization strategy, on one hand, can result in reduction of the number

of registers of the multiplier; on the other hand, can significantly enhance the efficiency of
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FPGA implementation: the strategy is quite useful for FPGA-based implementation since

value of d can be chosen appropriately, such that the logic gates contained in a PE could

be mapped to a basic unit of FPGA (on increase on critical path) to achieve low area-time-

complexities implementation (number of registers is reduced).

6.3.4 Proposed low-latency bit- and digit-parallel (LBP) (LDP) architectures

for RNB multiplier

MBP architectures presented in Figs. 32 and 33 provides very high throughput and involves

low area-time complexity. However, it has latency of m cycles which could be too high for

real-time applications, particularly when the order of the finite field m is large. While in

the DP architecture of Fig. 34, the latency in terms of the number of cycles is less, but

the critical-path is relatively high. Keeping these in view, we derive here reduced latency

high-throughput implementations of RNB multiplier.

For any value of m where exists the ONB type II, let Q and P be two integers such that

m = QP + r, where 0 ≤ r < P . For simplicity of discussion, we can assume r = 0 (and can

append (Q − r) number of zeros to the operands to satisfy m = QP , when r 6= 0) to have

the following steps. We can first decompose extended input operand A into Q number of

bit-vectors Al for l = 0, 1, . . . , Q− 1, as follows:

A0 = [a1 aQ+1 · · · am−Q+1]

A1 = [a2 aQ+2 · · · am−Q+2]

· · · · · · · · ·

AQ−1 = [aQ a2Q · · · am]

(6.17)

Define (B
i

S + B
2m−i+1

S ) of (6.16) as B
i

S{M}. Then similarly, we can generate Q number

of shifted operand vectors Bl for l = 0, 1, · · · , Q− 1, as follows:

B0 = [B
1

S{M} B
Q+1

S{M} · · · B
m−Q+1

S{M} ]

B1 = [B
2

S{M} B
Q+2

S{M} · · · B
m−Q+2

S{M} ]

· · · · · · · · ·

BQ−1 = [B
Q

S{M} B
2Q

S{M} · · · B
m

S{M}]

(6.18)
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Based on the above discussions, the product C = AB can thus be rewritten as the

following steps:

C = AB

= B0A
T
0 +B1A

T
1 + · · ·+BQ−1A

T
Q−1

(6.19)

where

B0A
T
0 =

B
1

S{M}a1 +B
Q+1

S{M}aQ+1 · · ·+B
m−Q+1

S{M} am−Q+1

B1A
T
1 =

B
2

S{M}a2 +B
Q+2

S{M}aQ+2 · · ·+B
m−Q+2

S{M} am−Q+2

· · · · · · · · ·

BQ−1A
T
Q−1 =

B
Q

S{M}aQ +B
2Q

S{M}a2Q · · ·+B
m

S{M}am

(6.20)

Then, we can have proposed low-latency bit-parallel multiplication scheme based on

(6.19) as described in Algorithm 6.2.

Algorithm 6.2 Proposed low-latency bit-parallel multiplication algorithm

Inputs: A andB are the pair of elements (in RNB representation) inGF (2m) to be multiplied.

Output: C = A ·B

1. Initialization step

1.1 define extended RNB {xm+1, xm+2, . . ., x2m+1} to obtain B
1
, B

2
, . . ., B

2m
, A

2. Multiplication step

2.1. obtain B
1

S, B
2

S, . . . , B
2m+1

S , from B
1
, B

2
, . . ., B

2m
through bit-selecting operation

2.2. for i = 1 to m

2.3. C = B0A
T
0 +B1A

T
1 + · · ·+BQ−1A

T
Q−1

2.4. end for
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Figure 35: Proposed low-latency bit-parallel (LBP) architecture for RNB multiplier.

The proposed low-latency bit-parallel (LBP) structure for RNB multiplier based on Al-

gorithm 6.2 is shown in Fig. 35. It consists of Q arrays, where each of the arrays consists of

P PEs, and an addition cell (AD) (the first array does not require any AD). Function of the

PEs of this structure is the same as that depicted in Fig. 33, while the AD performs finite

field addition of its input available from the top with the input available from the left and

latches out the output to its adjacent AD downward (each AD consists of m XOR gates to
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Figure 36: Proposed LBP architecture for d = 2.

perform the bit-by-bit operations of the two m-bit input words). The input bits of operands

A fed to PE in each array are in staggered manner to meet the timing requirement in systolic

pipeline. After (P + 1) cycles, array-1 generates the first partial result B0A
T
0 and feeds that

to the AD of array-2 to be added with the partial result B1A
T
1 (array-1 has one cycle delay).

Each of the successive ADs then generates the partial result in subsequent cycles to produce

the output C after a latency of (P +Q) cycles at the last AD of array-Q. After the latency
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period, it gives one output word in every successive cycle. And the duration of cycle period

is the same as that of MBP.

Using the strategy of Fig. 34, the structure of Fig. 35 can be modified as shown in

Fig. 36 for d = 2, where the critical path and throughput are the same as those of Fig. 34.

Similarly, it could be easily extended to higher values of d to have similar structures.

6.4 PROPOSED DIGIT-SERIAL (DS) RNB MULTIPLIER

In this section, we first give a brief review of existing digit-serial (DS) RNB multiplication

algorithm, and then we present our proposed digit-serial algorithm as well as the structure.

6.4.1 Brief review of existing DS RNB multiplier

In the recently proposed RNB multipliers of [79], both operands A and B are decomposed

into a number of blocks to achieve DS multiplication, and after that the partial products

corresponding to these blocks are added together to obtain the desired product word. The

existing DS RNB multiplication algorithm is stated as follows:

Existing Algorithm Existing DS multiplication algorithm [79]

Inputs: A = (a1, . . . , am), B = (b1, . . . , bm) are two RNB representation elements, and

t = dm/we

Output: C = A ·B = (c0, . . . , cm)

1. Initialization: e
(0)
i,k = 0, g

(0)
i,k = 0, for i = 1, . . . ,m and k = 0, . . . , t− 1

2. Compute in parallel for all i = 1, 2, . . . ,m

3. Compute in parallel for all k = 0, 1, 2, . . . , t− 1

4. Compute in serial for f = 1, 2, . . . , w

(Steps 5, 6 and Steps 7, 8 are computed in parallel)
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5. tem1 := akw+fbs(i+kw+l)

6. e
(f)
i,k := e

(f−1)
i,k + tem1

7. tem2 := akw+fbs(i−kw−l)

8. g
(f)
i,k := g

(f−1)
i,k + tem2

9. End

(The summation of 2t terms in Step 10 is performed in parallel)

10. ci =
∑dm/we−1

k=0 [e
(w)
i,k + g

(w)
i,k ]

11. End

12. End

Steps 5, 6, 7 and 8 of existing algorithm refer to the computation of digit-wise partial

products for the DS multiplication where operands A and B are decomposed into a number

of digits, and step 10 refers to the addition of those partial products to compute the product

word.

Although the existing algorithm of [79] is the most efficient one out of all reported algo-

rithms for DS multiplication, we find that the hardware utilization efficiency and throughput

of existing structures of [70] could be improved further by efficient design of algorithm and

architecture. Particularly, due to its larger number of digit-wise partial products (steps 5, 6,

7 and 8), and extra time for addition of those partial products (step 10), which not only in-

creases the average computation time (ACT) to perform the multiplication but also involves

extra hardware resources for storage and addition of larger number of partial products.

6.4.2 Proposed DS RNB multiplier

To derive efficient DS structures with efficient tradeoff between area and time complexities,

first of all, let us rewrite (6.19) asQ inner-products of vectors Al and Bl for l = 0, 1, · · · , Q−1:
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C = AB

= B0A
T
0 +B1A

T
1 + · · ·+BQ−1A

T
Q−1

=

Q−1∑
l=0

BlA
T
l =

Q−1∑
l=0

Cl

(6.21)

where Cl denotes

Cl = BlA
T
l

(6.22)

Note that each Al for l = 0, 1, · · · , Q − 1 is a P -point bit-vector and each Bl for

l = 0, 1, · · · , Q − 1 is a P -term operand-vector. From (6.21) and (6.22) we can find that

the desired multiplication can be performed by Q cycles of successive accumulation of Cl for

l = 0, 1, · · · , Q−1, while each Cl can be computed as Cl =
∑P−1

h=0 B
l+hQ

S{M}al+hQ. The proposed

digit-serial multiplication algorithm based on (6.21) and (6.22) is described in Algorithm 6.3.

Algorithm 6.3 Proposed DS multiplication algorithm

Inputs: A andB are the pair of elements (in RNB representation) inGF (2m) to be multiplied.

Output: C = A ·B

1. Initialization step

1.1 define extended RNB {xm+1, xm+2, . . ., x2m+1} to obtain B
1
, B

2
, . . ., B

2m
, A

1.2 D = 0

2. Multiplication step

2.1. obtain B
1

S, B
2

S, . . . , B
2m+1

S , from B
1
, B

2
, . . ., B

2m
through bit-selecting operation

2.2. for l = 0 to Q− 1

2.3. for h = 0 to P − 1

2.4. D = D +BlA
T
l

2.5. end for

2.6. end for
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Figure 37: Proposed digit-serial (DS) architecture for RNB multiplier. (a) Proposed DS architec-
ture. (b) Function of AA cell.

3. Final step

3.1. C = D

where step 2.4 refers to the DS multiplication process. According to our proposed algorithm,

we generate less number of partial products and partial products are accumulated as soon as

they are computed, which not only shortens the ACT, but also significantly reduces register

and adder complexity of proposed structures over that of existing ones in [79].

The proposed DS RNB multiplier based on Algorithm 6.3 is shown in Fig. 37(a), where

it consists a BPM, P number of PEs and an addition-accumulation cell (AA). The bits
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of operand B are firstly loaded in the circular shift-register, and then throughput the bit

rewiring cell and parallel adder arrays to yield output to P PEs, which is exactly the same as

that of array-1 in Fig. 35. The function of AA cell is described in Fig. 37(b), which consists

of m parallel bit-level accumulation cells (consisting of an XOR gate and a bit-register). The

newly received input is then added with the previously accumulated result and the result

is stored in the register cell to be used during the next cycle. The accumulated output

is obtained after Q cycles, and the duration of minimum cycle period is (TA + TX). The

proposed DS design gives the first output of desired product (P +Q+1) cycles after the pair

of operands are fed to the structure, while the successive output are produced at the interval

of Q cycles thereafter. Similarly, we can extend the architecture in Fig. 37 further to obtain

architectures with larger values of d, where P numbers of PEs are merged into P/d PEs as

introduced in Section 6.3. Note that parallel adder array in BPM is based on MPB-I.

Many real-time applications, however, need DS architecture with various throughput

rate to meet various area-time requirement. Thus, for any value of Q, let u and v be two

integers such that Q = uv+ z, where 0 ≤ z < u. For simplicity of discussion, we can assume

z = 0 (and can append (v− z) number of zeros to satisfy Q = uv, when z 6= 0). Define T as

throughput rate of a structure for 1/Q ≤ T < 1. Then, we can rewrite (6.21) as

C = AB = B0A
T
0 +B1A

T
1 + · · ·+BQ−1A

T
Q−1

=
v−1∑
i=0

BiA
T
i +

2v−1∑
i=v

BiA
T
i + · · ·+

Q−1∑
i=Q−v−1

BiA
T
i︸ ︷︷ ︸

u terms

=
u−1∑
j=0

v−1∑
i=0

Bi+jvA
T
i+jv

(6.23)

The architecture of Fig. 37 has throughput rate as T = 1/Q, i.e., can produce one

product in every Q cycles. Based on (6.23), we can have the digit-serial algorithm for

various throughput rate, i.e., T = u/Q, as stated in Algorithm 6.4.

Algorithm 6.4 Proposed digit-serial multiplication algorithm for throughput of T = u/Q

Inputs: A andB are the pair of elements (in RNB representation) inGF (2m) to be multiplied.
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Figure 38: Proposed DS architecture for RNB multiplier for T = 2/Q.

Output: C = A ·B

1. Initialization step

1.1 define extended RNB {xm+1, xm+2, . . ., x2m+1} to obtain B
1
, B

2
, . . ., B

2m
, A

1.2 D = 0

2. Multiplication step

2.1. obtain B
1

S, B
2

S, . . . , B
2m+1

S , from B
1
, B

2
, . . ., B

2m
through bit-selecting operation

2.2. for j = 0 to u− 1
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2.3. for i = 0 to v − 1

2.4. for h = 0 to P − 1

2.5. D = D +Bi+jvA
T
i+jv

2.6. end for

2.7. end for

2.8. end for

3. Final step

3.1. C = D

To have higher throughput rate, e.g., T = 2/Q, we can have the structure as shown in

Fig. 38, where double arrays of PEs (array-1 and array-Q/2 of Fig. 35) are used to achieve

higher throughput rate compare with the former in Fig. 36. To meet the data processing

requirement, the input bits to each PE of array-Q/2 are staggered by one cycle period, as

shown in Fig. 38. After (P+Q/2+2) cycles, the proposed architecture yields the first output

and the successive output can be obtained in every Q/2 cycles. Likewise, the architecture of

Fig. 38 can be extended to have architecture with other values of throughput rate (T = u/Q)

and other values of d.

6.5 PROPOSED HYBRID RNB MULTIPLIER

The proposed multipliers presented in Sections 6.3 and 6.4 are very efficient in realization, but

all these architectures can only meet one specific area/time requirement, i.e., for one specific

architecture, it can not provide multiple choices of throughput rate. While for emerging com-

puting platform, e.g., reconfigurable cryptographic system or resource constrained system,

where one multiplier is required to meet various area-time requirement to achieve maximum

resource utilization. Keeping these in view, we derive here a hybrid RNB multiplier with

multiple throughput rate choices with small hardware overhead.
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6.5.1 Algorithm

Ideally, the algorithm for the proposed hybrid RNB multiplier can be stated as follows:

Algorithm 6.5 Proposed hybrid multiplication algorithm

Inputs: A andB are the pair of elements (in RNB representation) inGF (2m) to be multiplied.

Output: C = A ·B

1. Initialization step

1.1 define extended RNB {xm+1, xm+2, . . ., x2m+1} to obtain B
1
, B

2
, . . ., B

2m
, A

1.2 D = 0

2. Multiplication step

2.1. obtain B
1

S, B
2

S, . . . , B
2m+1

S , from B
1
, B

2
, . . ., B

2m
through bit-selecting operation

If T = 1/Q

Then:

2.2. for l = 0 to Q− 1

2.3. for h = 0 to P − 1

2.4. D = D +BlA
T
l

2.5. end for

2.6. end for

2.7. C = D

If T = 2/Q

Then:

2.2. for j = 0 to 1

2.3. for i = 0 to Q/2− 1

2.4. for h = 0 to P − 1

2.5. D = D +Bi+j(Q/2)A
T
i+j(Q/2)

2.6. end for

2.7. end for
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2.8. end for

2.9. C = D

· · · · · · · · ·

If T = Q/Q = 1

Then:

2.2. for i = 1 to m

2.3. C = B0A
T
0 +B1A

T
1 + · · ·+BQ−1A

T
Q−1

2.4. end for

6.5.2 Architecture

In this subsection, we give here the detailed design of proposed hybrid multiplier step by

step. For simplicity of discussion, we only focus on the case of d = 1, though all these

architectures can be extended further to have designs with larger values of d.

6.5.2.1 Architecture with two throughput choices The basic hybrid multiplier can

have two throughput choices: T = 1/Q and T = 1, i.e., it is the combination of architecture

in Fig. 37 and Fig. 35. The proposed hybrid multiplier with two throughput choices is

shown in Fig. 39. The architecture is nearly the same as that of Fig. 35 except a 1-to-2

demultiplexer (DM) cell and an AA cell. The function of DM cell is shown in Fig. 39(b),

where S is the selector of throughput (S=0 refers to T = 1 and S=1 refers to T = 1/Q).

The DM cell consists of m bit 1-to-2 demultiplexer (BDM) (the internal structure of BDM

is shown in Fig. 39(b)) working in parallel (DM also contains 2m bit-registers to latch the

output of m BDM during each cycle period, which are not shown in Fig. 39(b)).

In real applications, if we choose T = 1/Q, DM will connect the output of array-1 to

the AA cell on its right to achieve DS realization (In this case, only array-1 is on the status

of working, since input bits of operand A are serially loaded into the corresponding PEs

according to Algorithm 5). After (P + Q + 2) cycles (extra one cycle period is for DM

cell), the AA cell produces the first result, and the successive one can be obtained in every
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Figure 39: Proposed hybrid architecture for RNB multiplier with two throughput choices. (a)
Proposed hybrid architecture. (b) Functional description of demultiplexer (DM) cell.

Q cycles. If we choose T = 1, DM cell will connect the output of array-1 to outputs of

other arrays to achieve fully parallel realization (all the arrays will under working since the

throughput rate is T = 1). After (P +Q+ 2) cycles (extra one cycle period is for DM cell),

the last AD cell produces the first result, and the successive one can be obtained in every

cycle thereafter. Note that the bits of operand A fed to each array (except array-1) will have

one cycle delay compare to that of Fig. 35 to meet data path requirement.

Comparing to the architecture in Fig. 35, the proposed hybrid multiplier involves small

hardware overhead: one extra DM cell and AA cell (though because of change of input style,
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Figure 40: Proposed hybrid architecture for RNB multiplier with three throughput choices.

the BPM will be different, which is not discussed here). Overall, at the cost small area and

time (one extra cycle) overhead, the hybrid multiplier can provide two throughput choices.

6.5.2.2 Architecture with three throughput choices Similarly, for three throughput

choices: T = 1/Q, T = 2/Q and T = 1, we can have proposed architecture as shown in Fig.

40.

The architecture of Fig. 40 has two extra DM cells and two extra AA cells to achieve

three throughput capabilities. For choice of T = 1/Q, after a latency of (P +Q+ 2) cycles,

the AA cell can have the first desired output word. For choice of T = 2/Q, the latency will

be (P + Q + 4) cycles, while for choice of T = 1, the latency for fist output is (P + Q + 4)

cycles. Likewise, each array (except array-1) will have certain cycles of delay to meet data

processing requirement.
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Figure 41: Proposed hybrid architecture for RNB multiplier with four throughput choices.

6.5.2.3 Architecture with four throughput choices The architecture with four through-

put choices, i.e., T = 1/Q, T = 2/Q, T = 3/Q and T = 1 is shown in Fig. 41, where involves

extra three DM cells and three AA cells. The hybrid multiplier has latency of (P + Q + 2)

cycles, (P +Q+ 4) cycles, (P +Q+ 6) cycles and (P +Q+ 6) cycles for T = 1/Q, T = 2/Q,

T = 3/Q and T = 1, respectively.

Following the architectures of Figs. 39, 40 and 41, we can have a hybrid multiplier with

u+ 1 throughput choices, i.e., T = 1/Q, T = 2/Q, . . ., T = u/Q and T = 1, which requires

extra u DM cells and u AA cells. For the choice of T = u/Q, the proposed hybrid multiplier
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Figure 42: Design diagram for proposed hybrid RNB multiplier. (a) Proposed diagram. (b)
Functional description of selector signals.

can yield its first output word after a latency of (P +Q+ 2u) cycles. Meanwhile, the input

bits of operand fed to each PE in array-u should have (2u − 2) cycles’ delay to meet data

transferring requirement. The proposed hybrid multiplier is highly modular and therefore

can be applied in various application systems.

It is worth mentioning that for every throughput choice, we need a suitable BPM (the

parallel adder arrays are fixed while the bit rewiring cell needs to be redesigned for each

throughput choice) to meet the requirement of data processing. In real-time applications,

we can have the major part of multiplier as a fixed multiplier core, while we can design

individual BPM fit for each throughput choice (compare with the multiplier core, this part

of area overhead is minor). The whole design diagram can be seen in Fig. 42 as well as the
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functional description of selector signals. The proposed hybrid structure, therefore, can be

used various application environments to meet specific requirements.

6.6 COMPLEXITY COMPARISON

6.6.1 Complexities of proposed MBP and DP architectures

Proposed MBP-I of Fig. 32 requires m PEs, where each of the (m−1) regular PEs consists of

m XOR gates and m AND gates, while the first PE (from left) requires only m AND gates.

The proposed design in total requires (2m2 −m) XOR gates (parallel adder arrays require

m2 XOR gates) and m2 AND gates. Besides, it needs a total of (2m2 + 2m) bit-registers,

where m2 registers are used for transferring data to the adjacent PE, (m2 + 2m) registers

are used for registers in BPM. After a latency of (m + 1) cycles, the proposed architecture

gives the desired output word in every cycle of duration (TA + TX).

MBP-II of Fig. 33 has similar area-complexity as MBP-I, i.e., MBP-II has m2 AND

gates, (2m2 −m) XOR gates and (m2 + 2m) bit-registers. Its critical-path is (TA + 2TX),

while the latency is m cycles.

For simplicity of discussion, the following architectures discussed only refer to those with

BPM of MBP-I.

Proposed LBP architecture of Fig. 35 has the nearly same area-time complexities as that

of Fig. 32 except the register count and latency (architecture of Fig. 35 has (2m2 +m+Qm)

bit-registers and has a latency of (P + Q + 1) cycles). Note that when P = Q =
√
m, the

architecture has shortest latency of 2
√
m cycles.

Proposed BP architecture for d = 2 is presented in Fig. 5. The technique used to reduce

the register complexity for d = 2, however, can be extended further for any value of d, to

obtain a structure of (m/d) PEs, where each of the regular PEs requires d AND cells and

d XOR cells. The complete structure of the multiplier thus requires (2m2 −m) XOR gates,

m2 AND gates and (m2/d + m2 + 2m) bit-registers. The latency of the structure amounts

to m/d+ 1 cycles, where the duration of minimum cycle period is {TA + (1 + dlog2de)TX}.
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Proposed LDP architecture with larger values of d, similarly, has (2m2−m) XOR gates,

m2 AND gates and (m2/d+m2 +m+Qm) registers. It has a latency of (P/d+Q+1) cycles

with the critical path as {TA + (1 + dlog2de)TX}.

6.6.2 Complexities of proposed DS architectures

Proposed DS architecture of Fig. 37 requires P PEs, where each of the (P − 1) regular

PEs consists of m XOR gates, m AND gates and m bit-registers. The first PE (from left)

requires m AND gates and equal number of registers. Meanwhile, the AA cell requires m

XOR gates and m registers. The proposed design in total would require 2Pm XOR gates

(another Pm is used in parallel adder arrays) and Pm AND gates. Besides, it needs a total of

(2Pm+ 3m) bit-registers, where Pm registers are used for transferring data to the adjacent

PE, Pm registers are used in parallel adder arrays, m registers are used in the accumulator

and another 2m registers are used for shift-registers in BPM. After a latency of (P +Q+ 1)

cycles, proposed architecture gives the desired output word in every Q cycles of duration

(TA + TX).

Architecture of Fig. 37 with larger values of d requires 2Pm XOR gates, Pm AND gates

and (Pm/d+Pm+3m) bit-registers. The latency of the structure amounts to (P/d+Q+1)

cycles, where the duration of minimum cycle period is {TA + (1 + dlog2de)TX}.

Proposed DS architecture with throughput T = u/Q requires u arrays of PEs and (u−

1) AD cells. In total, it requires (Pum + Pm + um − m) XOR gates, Pum AND gates

and (Pum + Pm + um + 2m) registers. After a latency of (P + Q + u) cycles, proposed

architecture gives the desired output word in every Q/u cycles of duration TA + TX . If we

apply the low-complexity technique with larger values of d, the proposed architecture in total

requires the same XOR and AND gates as those of architecture for d = 1. Besides, it needs

(Pum/d+Pm+um+ 2m) registers and a latency of (P/d+Q+u) cycles with critical path

of {TA + (1 + dlog2de)TX}.
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Table 9: Comparison of area-time complexities of proposed RNB multipliers

Design AND XOR Register Latency Critical-path ACT

Fig. 32 m2 2m2 −m 2m2 + 2m m+ 1 TA + TX Tcp

Fig. 33∗ m2 2m2 −m m2 + 2m m+ 1 TA + 2TX Tcp

Γ0 m2 2m2 −m m2/d+m2 + 2m m/d+ 1 τ 0 Tcp

Fig. 35 m2 2m2 −m 2m2 +m+Qm P +Q+ 1 TA + TX Tcp

Γ1 m2 2m2 −m m2/d+m2 +m+Qm P/d+Q+ 1 τ 0 Tcp

Fig. 37 Pm 2Pm 2Pm+ 3m P +Q+ 1 TA + TX QTcp

Γ2 Pm 2Pm Pm/d+ Pm+ 3m P/d+Q+ 1 τ 0 QTcp

Γ3 Pum τ 1 Pum+ Pm+ um+ 2m P +Q+ u TA + TX QTcp/u

Γ4 Pum τ 1 Pum/d+ Pm+ um+ 2m P/d+Q+ u τ 0 QTcp/u

Γ5 m2 + 2um τ 2 2m2 + 3um+Qm+m Γ7 TA + TX Γ9

Γ6 m2 + 2um τ 2 2m2/d+ 3um+Qm+m Γ8 τ 0 Γ10

∗: For simplicity of discussion, the following architectures listed only refer to those with

BPM of MBP-I.

Tcp: Time duration of critical-path. ACT: Average computation

time. τ 0 = TA + (1 + dlog2de)TX τ 1 = Pum+ Pm+ um−m τ 2 = 2m2 + um−m

Γ0: Referring to BP architecture with larger values of d. Γ1: Referring to LBP

architecture with larger values of d. Γ2: Referring to DS architecture with larger values of

d. Γ3: Referring to DS architecture with throughput T = u/Q. Γ4: Referring to DS

architecture with throughput T = u/Q for larger values of d. Γ5: Referring to hybrid

architecture with with (u+ 1) throughput choices. Γ6: Referring to hybrid architecture

with larger values of d. Γ7, Γ8: The latency of hybrid architecture depends on the

throughput choice. Γ9, Γ10: The ACT of hybrid architecture depends on the throughput

choice.
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6.6.3 Complexity of proposed hybrid architecture

Proposed hybrid architecture with (u + 1) throughput choices requires nearly the same

area complexity as that of Fig. 35 except u extra DM cells and AA cells, where each

DM cell requires 2m AND gates, m inverters and 2m registers and each AA cell needs m

XOR gates and m registers. In total, the hybrid architecture (including the BPM) requires

(2m2+um−m) XOR gates, (m2+2um) AND gates, um inverters, and (2m2+3um+Qm+m)

bit-registers. The critical path is the same as that of Fig. 35, i.e., (TA + TX).

Proposed hybrid multiplier with larger values of d requires (2m2 + um−m) XOR gates,

(m2+2um) AND gates, um inverters, and (2m2/d+3um+Qm+m) bit-registers. Its critical

path is {TA + (1 + dlog2de)TX}.

6.6.4 Comparison of area and time complexities between proposed architec-

tures

The area and time complexities, i.e., gate and register-counts, latency, critical-path, and

average computation time (ACT) of all proposed multipliers are listed in Table 9 that d-

ifferent architecture has different area-time complexity. It is noted that when comparing

with proposed LBP architecture of Fig. 35, proposed hybrid architecture involves only a

little hardware overhead. Considering of its capability of providing multiple throughput rate

choices, our proposed hybrid architecture can be used in various application environment.

6.6.5 Comparison with existing digit-serial multipliers

Since RNB is a reordered version of type II ONB, it is interesting to have comparison of

proposed RNB multipliers with existing multipliers for the class of fields where having a

type II ONB. The gate-counts, register-counts, latency, critical-path, and ACT of proposed

digit-serial structures and existing structures of [68]-[70], [74], [77], [79]-[85] are listed in

Table 10.

The authors in [79] and [82] have shown that their multipliers outperform the previously

proposed structures in [68]-[70], [74], [77], [80]-[81], [83-85], respectively. Therefore we com-
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Table 10: Comparison of area- and time-complexities of different digit-serial multipliers

where there exist a type II ONB

Design AND XOR Register Latency Critical-path ACT

[77] Pm 2Pm− P 3m QTcp TA + (1 + dlog2(P + 1)e)TX QTcp

[80] Pm 3Pm/2− P/2 3m QTcp TA + (1 + dlog2(P + 1)e)TX QTcp

[81] Pm 2Pm− 2P +m 2m QTcp TA + (2 + dlog2P e)TX QTcp

[82] Pm 2Pm− P/2− P 2/2 2m QTcp TA + (1 + dlog2(P + 1)e)TX QTcp

[69] τ 0 2Pm− 2P 2m QTcp TA + dlog2(2m− 1)eTX QTcp

[74] Pm 2Pm− 2P 2m QTcp TA + (1 + dlog2me)TX QTcp

[83]0 τ 1 4Pm/3− P 2 − 2P 2m QTcp TA + (1 + dlog2me)TX QTcp

[83]1 τ 2 2Pm− P 2 − 3P/2 2m QTcp TA + (1 + dlog2me)TX QTcp

[84]2 τ 3 2Pm− P 3m QTcp 2TA + (3 + dlog2(P − 1)e)TX QTcp

[84]3 τ 4 Pm+ Pm/2 3m QTcp 2TA + (3 + dlog2(P − 1)e)TX QTcp

[85]4 Pm 2Pm− P 2/2− 3P/2 3m QTcp TA + (1 + dlog2me)TX QTcp

[85]5 Pm 3Pm/2− P/2 3m QTcp TA + (1 + dlog2(P + 1)e)TX QTcp

[68] Pm 2Pm− P 2m QTcp TA + (1 + dlog2me)TX QTcp

[70] Pm 2Pm 3m QTcp TA + (1 + dlog2(P + 1)e)TX QTcp

[79]-a6 2Pm 4Pm−m τ 5 τ 8 TA + TX τ 5

[79]-b7 Pm 2Pm τ 6 τ 9 TA + 2TX τ 6

Fig. 37∗ Pm 2Pm τ 6 τ 10 TA + 2TX QTcp

Fig. 37 Pm 2Pm τ 7 τ 10 TA + TX QTcp
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Table 11: Comparison of area- and time-complexities of different digit-serial multipliers

where there exist a type II ONB (continual)

Design AND XOR Register Latency Critical-path ACT

8 Pm 2Pm (Pm/d+ Pm+ 3m) τ 8 TA + (1 + dlog2de)TX QTcp

9 Pum τ 11 Pum+ Pm+ um+ 2m τ 9 TA + TX QTcp/u

10 Pum τ 11 Pum/d+ Pm+ um+ 2m τ 10 TA + (1 + dlog2de)TX QTcp/u

∗: For simplicity of discussion, the following architectures listed only refer to those with

BPM of MBP-I. Tcp: Time duration of critical-path. ACT: Average computation time.

0: Referring to the AND-efficient digit-serial (AEDS). 1: Referring to the XOR-efficient

digit-serial (XEDS).

2: Referring to the ω-sequential multipliers with parallel output I (ω-SMPOI). 3:

Referring to the ω-SMPOII.

4: Referring to digit-level Gaussian normal basis multiplier with serial output (DLGMS).

5: Referring to digit-level Gaussian normal basis multiplier with parallel output (DLGMP ).

6: Referring to word-level reordered normal basis multiplier type-a (WL-RNB-a). 7:

Referring to WL-RNB-b.

8: Referring to proposed DS architecture with larger values of d. 9: Referring to

proposed DS architecture for T = u/Q.

10: Referring to proposed DS architecture with larger values of d for T = u/Q.

τ 0: τ 0 = 2Pm− P . τ 1: τ 1 = Pm− P 2/2 + P/2. τ 2: τ 2 = 2Pm− P 2. τ 3:

τ 3 = Pm/2 + P +m. τ 4: τ 4 = Pm+m.

τ 5 = 2Pm+ 2m+ 2 τ 6 = Pm+ 2m+ 1 τ 7 = 2Pm+ 3m+ 1

τ 8 = QTcp + dlog22P eTX . τ 9 = QTcp + dlog2P eTX .

τ 10 = P +Q+ 1. τ 11 = Pum+ Pm+ um−m τ 8: τ 8 = P/d+Q+ 1. τ 9:

τ 9 = P +Q+ u. τ 10: τ 10 = P/d+Q+ u.
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pare our proposed structures only with [79] and [82]. The proposed DS architecture (Fig.

37) has shorter ACT compared to the structure in [79] and [82]. Moreover, we have also

proposed DS architectures with low register-complexity and high throughput rate, which are

not covered in [79] and [82].

Note that for FPGA and ASIC implementation, we have chose P = Q = d
√
me, since

when P = Q, the latency of structure is the least among other choices of P and Q.

6.6.6 FPGA implementation

6.6.6.1 Optimal implementation FPGA based platform has been used in various com-

puting system. However, it usually does not have abundant number of registers. We have

proposed low register-complexity architectures, i.e., PEs in the arrays are merged together

to reduce the register number, to enhance the FPGA implementation efficiency. While dif-

ferent series of FPGAs have different basic elements, here we just use one FPGA device to

show the detailed process of achieving optimal realization (can be extended further to other

FPGA devices).

We have used Altera Quartus II 12.0 and chosen Arria II GZ EP2AGZ225HF40C3 FPGA

device to synthesize the proposed design (for simplicity of discussion, we just use the MBP

architecture, though it can be used in other architectures) with various values of d (d =

1, 2, 4, 8). We have selected the field size of 233, where exists a type II ONB. After

obtained the synthesis results, we have plotted the area-delay product (ADP) of MBP-I

with various values of d, as shown in Fig. 43 (the number of ALUT is taken as the area

measure, and the delay refers to the ACT). It can be seen that as d increases, ADP becomes

more efficient. Due to the fact that one adaptive look-up table (ALUT) can contain multiple

logic gates. In the following experiments, we decide to choose d = 8 as our default choice.

6.6.6.2 Comparison of FPGA implementation The key synthesis results of pro-

posed designs (Fig. 37 and Fig. 37∗) and existing designs ([79] and [82]) are obtained,

in terms of area, maximum frequency and power consumption. Meanwhile, we have used

the same input data and the same clock frequency (100MHz) to obtain the power synthe-
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Figure 43: Area-delay product (ADP) trend along with d for proposed MBP-I. Unit: number of
ALUT·10−6.
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Figure 44: Area-delay product (ADP) comparison of proposed and existing structures. Unit:
number of ALUT·10−6s.

sis results using Quartus II PowerPlay Power Analyzer. We have also estimated the ADP,

power-delay product (PDP) for various structures from the synthesis results are shown in

Figs. 44 and 45, respectively.

It can be seen that for FPGA implementation, the proposed structures outperform the

existing designs, for both ADP and PDP. It is worth noting that the ALUT of Altera FPGA

devices can be mapped to logic function involving multiple Boolean operations, so that the
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number of synthesized ALUT decreases as d increases. This technique is very useful in FPGA

based designs.

6.6.7 ASIC implementation

6.6.7.1 Optimal implementation Similarly, we have also synthesized the proposed

structure: MBP-I using Synopsys Design Compiler by North Carolina State University’s

45nm FreePDK [55] to obtain the area and time complexities of the designs for various

values of d. Using those synthesis results, we have plotted the ADP along with d in Fig. 46.

It can be seen that the performance of ADP decreases as d increases. This is due to the

fact the ACT of the proposed structure increases with d. Thus, we choose d = 1 for default

choice on ASIC implementation, though we can choose other values of d for implementation

test.

6.6.7.2 Comparison of ASIC implementation We have also synthesized the pro-

posed structures and the existing structures using Synopsys Design Compiler by North Car-

olina State University’s 45nm FreePDK [55] to obtain the area, time and power complexities

of the designs (m = 233). Using those synthesis results, we have obtained the area, and
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Figure 46: Area-delay product (ADP) trend along with d for proposed MBP-I. Unit: um2·ns.
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delay, and we have calculated the ADP of the designs (shown in Fig. 37), where proposed

structures outperform the existing designs.
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FPGA: Arria II GZ 
EP2AGZ225HF40C3

ALUT: 12579
Fmax: 476.53 MHz 
Power: 1243.53 mW 

@100MHz

Figure 48: Chip-view of proposed hybrid architecture in FPGA device.

6.6.8 FPGA implementation of hybrid architecture

For the hybrid architecture proposed in Fig. 42, we have specifically implement it on FPGA

platform, since its capability of providing various choices of throughput rate. Besides, it can

also be used as an IP core for those reconfigurable cryptographic systems.

We have selected hybrid architecture with two throughput choices for m = 233, P =

Q =
√

233 and d = 8. And we have synthesized the architecture and obtained the result. In

total, proposed architecture has 12579 ALUT, maximum frequency is 476.53MHz and power

consumption is 1243.54mW at 100MHz. We have also shown the detailed chip in Fig. 38.

6.7 CONCLUSION

Efficient bit- and digit-level algorithms for computing multiplication over GF (2m) based

on RNB are proposed. high-throughput low-latency bit- and digit-parallel multipliers are

presented first. Then, a novel digit-serial architecture for RNB multiplication is proposed.

Finally, a novel hybrid architecture with various throughput rate choices is introduced for

the first time with little hardware overhead. Both theoretical comparison and synthesis
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simulation results from FPGA and ASIC implementation are presented. It is shown that

the proposed high-throughput low-complexity multipliers have significantly lower area-time-

power complexity than the corresponding existing designs. Specifically, FPGA realization of

the novel hybrid multiplier is presented to confirm its potential application in FPGA based

reconfigurable cryptographic platforms.
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7.0 SUMMARY AND FUTURE WORK

7.1 DISSERTATION SUMMARY

In this dissertation, we have presented novel single and hybrid finite field multipliers over

GF (2m) for emerging cryptographic systems. The following summarizes the contribution of

this thesis.

In Chapter 3, which has been presented in [61], we have presented a novel PCA tech-

nique and modular reduction scheme for low-latency realization of bit-parallel Montgomery

multiplication over GF (2m) based on irreducible pentanomials. We have decomposed the

Montgomery multiplication into two concurrent blocks and we have further decomposed each

block into several parallel processing arrays based on to proposed modular reduction scheme

using PCA derive a lower- latency multiplier. The proposed design involves significantly less

area-delay-power complexity than the newly reported multiplier for irreducible pentanomial,

with at least one-fourth of the latency of the other, for the NIST recommended pentanomials.

In Chapter 4, which has been presented in [95], we have presented three pairs of low-

latency high-throughput bit-parallel and digit-serial systolic structures for multipliers over

GF (2m) based on NIST pentanomials. We have decomposed the multiplier into several

parallel processing arrays to derive a pair of low latency bit-parallel and digit-serial systolic

multipliers. Another pair of bit-parallel and digit-serial structures are then presented based

on a novel modular reduction operation, where the critical-paths are smaller than those of the

first pair ones. The third pair of designs, KA-based bit-parallel and digit-serial multipliers,

are proposed to enhance the throughput rate further. The proposed designs, because of their

flexibilities in latency choices, low area-time complexity and high throughput rate, can be

used in various emerging cryptographic systems.
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In Chapter 5, which has been presented in [96], we proposed three novel high-throughput

digit-serial RB multipliers based on a novel recursive decomposition algorithm. We have suit-

ably projected SFG of proposed algorithm and identified suitable cut-sets for feed-forward

cut-set retiming to derive less area-time-power complexity implementation. Efficient struc-

tures with low register-count have been derived for area-constrained implementation; and

particularly for implementation in FPGA platform where registers are not abundant. The

results of synthesis show that proposed structures can achieve significant saving of ADPP

for FPGA and ASIC implementation, respectively, over the best of the existing designs. The

proposed structures have different area-time-power trade-off behavior, suitable for various

application environments.

In Chapter 6, which has been presented in [97], we have proposed efficient bit- and

digit-level algorithms for computing multiplication over GF (2m) based on RNB. We have

firstly introduced high-throughput low-latency bit- and digit-parallel multipliers. Then, a

novel digit-serial architecture for RNB multiplication is proposed. Finally, a novel hybrid

architecture with various throughput rate choices is proposed for the first time with little

hardware overhead. Both theoretical comparison and synthesis simulation results from FP-

GA and ASIC implementation are presented. It is shown that the proposed high-throughput

low-complexity multipliers have significantly lower area-time- power complexity than the cor-

responding existing designs. Specifically, we have presented FPGA realization of the novel

hybrid multiplier to confirm its potential application in FPGA based reconfigurable crypto-

graphic systems.

Based on the above summary, the contributions of this dissertation are:

• Presenting low-latency bit-parallel Montgomery multiplier based on pentanomials.

• Introducing three pairs of low-latency (without any restriction) bit-parallel and digit-

serial pentanomial basis multipliers

• Proposing three digit-serial RB multipliers with different characteristics for various ap-

plication environments.

• For the first time, introducing several bit-parallel and digit-serial (single and hybrid)

RNB multipliers for reconfigurable cryptographic systems.
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7.2 FUTURE WORK

In the future, we would like to extend our research in the following aspects: (1) novel

VLSI cryptographic systems for deeply embedded system security; (2) novel VLSI finite field

arithmetic circuits.

• Novel VLSI cryptographic systems for deeply embedded system security. The focus of

this theme of research includes design of hardware micro structure and specific platforms

software. We will work on high-speed, power-efficient, lightweight, and small-size imple-

mentations of cryptographic systems that provide various security properties in various

platforms, e.g., ASIC/FPGA and embedded processors, applicable to constrained, sensi-

tive nodes in different applications ranging from industrial workstations to implantable

and wearable medical devices. We will particularly explore solutions for extreme sensi-

tive applications where crypto-measures are not feasible due to constraints in applications

performance and implementation metrics, including low-power applications and wireless

sensor networks. Moreover, we will focus on reliable approaches protecting various vul-

nerable implementations of cryptographic systems from attacking. At the same time,

we will investigate to differentiate fault analysis attacks, VLSI defects, and denial-of-

service attacks, considering a compromise between security and implementation metrics

to realize the best system performance.

• Novel VLSI finite field arithmetic circuits. The focus of this theme of research includes

design of hardware realization of finite field division, exponentiation and inversion. Al-

though multiplication over finite field can also be transformed to these arithmetic oper-

ations, there are still great potential to realize these operations directly. Other methods

of realization of finite field multiplication, e.g., Tom-Cook multiplication algorithm, will

be applied to obtain more efficient realization.
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