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Abstract:

Dengue is currently the fastest growing vector-borne disease which causes fever, headache,

muscle aches, and other flu-like symptoms, affecting 50-100 million people worldwide yearly.

Modeling dengue incidence over time is challenging because of multiple virus serotypes, high

asymptomaticity, and the limited data availability. Different dengue modeling approaches

have been explored in the public health literature such as economic models, agent-based (AB)

models, and ordinary differential equation (ODE) models. ODE models are the standard to

model dynamic systems involving interactions between various populations because of their

solid mathematical/statistical foundation and ease of implementation in standard software

packages. The assumptions of the homogeneity and perfect mixing of the ODE model,

however, may not accurately represent the real world. On the other hand, AB models may

lack the solid mathematical/statistical theory, but can model heterogeneity at the individual

level. In the first part of this dissertation, we propose a simplified new ODE model (vSEIR)

and compare this model with three existing ODE models. We also compare two discretization

methods for initial value problems: derivative-free mesh adaptive direct search method with

quadratic models (MADSQ) and derivative trust region (DTR) method. The simulation

studies show that MADSQ can provide a better solution to the ODE compared to DTR when

the parameter space has many local minima. We also demonstrate that the proposed vSEIR

ODE model provides a better fit to the data than the other existing ODE models. In the

second part of this dissertation, we validate a dengue ComputationaL ARthropod Agents
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(CLARA) AB model, by comparing with its corresponding ODE model and the real world

data. We not only show the similarity between the two models, but also contrast them. Our

future plan is to continue to improve dengue ODE models by providing a stochastic version.

Improved dengue models will provide public health researchers tools to better understand

dengue disease outbreaks.

Keywords: Ordinary differential equation, Mesh adaptive direct search, Trust region, Non-

stationary time series, Agent-based model, Nonlinear model, Dengue fever, Vector borne

disease.
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1.0 INTRODUCTION

Dengue fever is currently the world’s fastest growing vector-borne disease. While more

than 2.5 billion people living in areas of risk, around 50-100 million people are infected

every year, mostly in urban and semi-urban areas [Halstead, 2007]. Although countries have

implemented different vector control strategies [Yeap et al., 2011], these interventions have

achieved only limited success, and the trend of the global spread is expanding [Horstick et al.,

2010]. No licensed dengue vaccine is available for the public either, although several vaccine

candidates are currently being evaluated in clinical studies [Guy et al., 2011]. Thus, global

control of dengue fever is a major public health problem with significant economic, political,

and social impact [Kyle and Harris, 2008] and developing different models to tackle the

problem is the main task in this field. However, modeling the spread of dengue is challenging

not only because it involves numerous complex factors such as the interactions between

humans and mosquitoes, multiple coexisting virus serotypes, and high asymptomaticity of

the initial infection [Kyle and Harris, 2008], but also because of the lack of existing data

[Andraud et al., 2012].

Modeling dengue fever has been explored from different perspectives in the public health

literature. From the economic point of view, the actual cost of dengue fever is very high

as shown in a study from Puerto Rico [Halasa et al., 2012]. Using economic models, the

impact of dengue fever was investigated [Beatty et al., 2011] and the study concluded that

the economic literature is relatively sparse and results have often been conflicting due to

the use of inconsistent assumptions. Additionally, the economic impact of dengue fever in

Thailand was investigated by the disability-adjusted life years (DALYs)[Clark et al., 2005].

The authors suggested the governments and international funding agencies should consider

giving equal priority to DF/DHF research, prevention, and control as diseases currently

1



receiving more resources. In addition, a Markov simulation model was developed to evaluate

the potential health and economic value of administering a dengue vaccine to infants in

Thailand [Lee et al., 2011].

If the dynamics of the disease outbreak simulation is the main interest, using the ordinary

differential equation (ODE) or agent-based (AB) model approach, however, would be what

we resort to. The standard approach is to use compartmental models involving ordinary

differential equations for the human and the mosquito populations. Several ODE models

with different sets of assumptions have been proposed [Andraud et al., 2012]. Using an

ODE model with one virus serotype of dengue, for example, different biting rates of normal

and infected female Aedes aegypti (Ae. aegypti) have been explored [Luz et al., 2011]. The

results showed that increasing the biting rate can lead to increased numbers of primary

and secondary infections in humans, therefore leading to more severe biennial epidemics.

Various vector control strategies using the ODE model with deterministic time lags have

been modeled [Atkinson et al., 2007] and the results showed that the proportional policy

outperforms a release policy in which the released mosquito population is held constant.

Additionally, in multiple-serotype models, symptomatic and asymptomatic compartments

have been considered [Sciprom et al., 2007]. The authors assumed only virus transmission

from symptomatic infected individuals to susceptible mosquitoes and concluded that the

number of asymptomatic individuals could affect the two serotype equilibrium state. On the

other hand, an increasingly popular approach is to applying agent-based models to observe

the dynamics of the complex system. Chao et al. [2012] explored how dengue transmission

dynamics are affected by the vaccination and suggested that children should be prioritized

to receive vaccine. Another model which used high quality outbreak data and mosquito

trapping data from Cairns was developed by Karl et al. [2014]. Their study suggested that

the reason that the observed explosive outbreak of 2008/2009 was due to the a shorter virus

strain-specific extrinsic incubation period, but not the warmer weather and increased human

movement.

However, which approach is better? Which model can support a potential public health

policy with more reliable explanations? Which model can be used to predict the future

disease outbreak more accurately? Public health policy makers always face similar dilemma.

2



Table 1 summarizes the historical dengue outbreak data from 2001 to 2009 at Queensland,

Australia. The existing strategies implement vector control interventions immediately if

there is a new infected human case, despite the fact that we can see not all outbreaks have

long duration. For example, the duration of the 2001 outbreak at Townsville was 3 weeks.

This implies that if there is a model that can predict accurately the magnitude of the infected

incidences, it would help the public health policy maker choose between the magnitude of the

infected incidences and the intervention cost. The standard approach to modeling dengue

incidence is to use ODE models. One limitation of the ODE approach is the assumption of

perfect mixing between compartments and homogeneity. In contrast, we can imagine there

are geographic barriers to humans and mosquitoes not being to be perfect mixing. Also,

the ODE approach does not consider the spatial components. In contrast, AB models do

not have these constraints. Hence, ODE and AB models need to be validated by reasonable

methods.

Therefore, the objective of this dissertation is twofold. First, given the sparse data

availability, we would like to develop a better model that can explain the dynamics of the

disease outbreak. We propose a new ODE model (vSEIR) and compare this model with three

existing ODE models. We also compare two discretization methods for initial value problems:

derivative-free mesh adaptive direct search method with quadratic models (MADSQ) and

derivative trust region (DTR) method. Then we would like to show which method can

perform more efficiently when the parameter space has many local minima. Second, we

would like to validate the CLARA AB model. We propose two methods to validate the model

by comparing with its corresponding ODE model and the real world data. We hope these

methods can not only be a robust method for validating the Computational ARthropod

Agents (CLARA) AB model, but also be easily applied to various parts of operations in

the real world. Moreover, we hope our CLARA AB model is convincing and can be used to

assist with policy making in the future. The completed work on Aim 1 and Aim 2 will be

shown in Chapter 2 and 3, respectively. In the remaining part of this chapter, we describe

the concepts behind the ODE and AB models.

3



1.1 ORDINARY DIFFERENTIAL EQUATIONS AND RELATED DENGUE

MODELS

Using ordinary differential equation (ODE) models is a standard approach to describe com-

plex systems in various fields. For example, consider modeling the human population growth

over time where one is interested in the estimation of the human population at a certain

time point. If we assume that the growth rate of the human population depends linearly on

the human population itself, the model can be represented as:

dNH(t)

dt
= θHN

H(t), NH(0) = N0

where NH(t) is the number of humans at time t, N0 is the number of humans at time 0, and

θH is a proportional parameter. Then the corresponding solution will be:

NH(t) = N0e
θH t (1.1)

Because the human population can not indefinitely continue to grow exponentially, there

are limits to the population growth. A more realistic assumption would be to let the growth

rate of the human population become smaller when the human population becomes larger.

Then the corresponding model can be derived as follows [Pearl, 1927, Tsoularis and Wallace,

2002]:
dNH(t)

dt
= θHN

H(t)(1− NH(t)

K
), NH(0) = N0

where NH(t) is the number of humans at time t, N0 is the number of humans at time 0, θH is

a proportional parameter, and K is the carrying capacity. Then the corresponding solution

will be:

NH(t) =
KN0

(K −N0)e−θH t +N0

(1.2)

In addition, ODE models can help us to understand the interactions between various

populations. When dengue fever becomes the world’s fastest growing vector-borne disease

and has a huge disease impact, people are interested in the estimation of the disease outbreak

at a certain future time point. When we understand how Ae. aegypti interact with humans

4



(more description in Chapter 2), a simplified SIR model without the exposed states has been

developed as follows [Andraud et al., 2012]:

NV (t) = SV (t) + IV (t)

dSV (t)

dt
= ηV −

βV

NH(t)
SV (t)IH(t)− µV S

V (t)

dIV (t)

dt
=

βV

NH(t)
SV (t)IH(t)− µV I

V (t)

NH(t) = SH(t) + IH(t) +RH(t)

dSH(t)

dt
= − βH

NH(t)
SH(t)IV (t)

dIH(t)

dt
=

βH

NH(t)
SH(t)IV (t)− δHI

H(t)

dRH(t)

dt
= δHI

H(t)

where NV (t) is the total number of female Ae. aegypti at time t and SV (t) and IV (t) are the

number of susceptible and infectious female Ae. aegypti, respectively at time t; Additionally,

NH is the total fixed number of humans at time t, which is calculated as a total of the

number of susceptible, infectious, and recovered humans at time t denoted as SH(t), IH(t),

and RH(t), respectively.

There are five parameters in the SIR model: ηV is the recruitment rate of female

Ae. aegypti in the model with the fixed birth of the female Ae. aegypti, δH is the human

recovery rate, µV is the female Ae. aegypti death rate, and βV (βH) is the virus transmission

rate from humans to female Ae. aegypti (from female Ae. aegypti to humans).

On the other hand, when the aquatic stages of the Ae. aegypti are taken into considera-

tion, a more complicated model has also been proposed as follows [Atkinson et al., 2007]:
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dNV (t)

dt
= γNV (t− τe)

K −NV (t− τe)

K
− µVN

V (t)

dEV (t)

dt
=

ac

NH
(NV (t)− EV (t)− IV (t))IH(t)

− e−µV τV
ac

NH
(NV (t− τV )− EV (t− τV )− IV (t− τV ))I

H(t− τV )− µVE
V (t)

dIV (t)

dt
= e−µV τV

ac

NH
(NV (t− τV )− EV (t− τV )− IV (t− τV ))I

H(t− τV )− µV I
V (t)

dEH(t)

dt
=

ab

NH
(NH − EH(t)− IH(t))IV (t)

− e−µHτH
ab

NH
(NH − EH(t− τH)− IH(t− τH))I

V (t− τH)− µHE
H(t)

dIH(t)

dt
= e−µHτH

ab

NH
(NH − EH(t− τH)− IH(t− τH))I

V (t− τH)

− µHE
H(t)− (γ + µH)I

H(t)

where NV (t) is the number of the total number of female Ae. aegypti at time t and EV (t)

and IV (t) are the number of exposed and infectious female Ae. aegypti, respectively at time

t; Additionally, NH is the total fixed number of humans, which is calculated as a total of

the number of susceptible, exposed, infectious, and recovered humans at time t denoted as

SH(t), EH(t), IH(t), and RH(t), respectively.

There are 10 parameters in this more complicated model. γ is the birth rate of Ae. aegypti

in the model with the varied birth of the female Ae. aegypti. a is the biting rate (number

of bites per unit time), b is the probability that a bite from an infected Ae. aegypti will

infect a susceptible human, and c is the probability that a susceptible Ae. aegypti is infected

from biting an infected human. τe, τV , and τH are the eggs, female Ae. aegypti, and human

incubation periods, respectively. µV and µH are the female Ae. aegypti and human death

rates, respectively. K is a population parameter related to the carrying capacity of the larval

population.

When we do not have data on aquatic stages of the Ae. aegypti and we recognize that

longer incubation periods of dengue fever require the exposed states, we strike a happy

medium between the simplified SIR model and the more complicated model mentioned above.

The result of this compromise is the proposed vSEIR model described in Chapter 2.
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1.2 AGENT-BASED MODELS AND THE COMPUTATIONAL

ARTHROPOD AGENTS ABM

In contrast to the assumption of the homogeneous mixing between populations in ODE

models, agent-based (AB) models try to model the heterogeneous interaction relationships

at an individual level under different conditions. A typical agent-based model has three

elements: agents, including their attributes and behaviors; the relationship between agents;

how agents interact with the environment [Macal and North, 2010]. Then, the model will

depend on the relationship between different types of agents and the interaction between

agents and the environment at each time unit. Following these guidelines, theComputational

ARthropod Agents (CLARA) AB model has been developed.

CLARA is an AB model that represents both individual hosts (humans) and vectors

(multiple life stages of Ae. aegypti: eggs, larvae, and the adults). The model infrastructure

is shown in Figure 1. The human hosts, which were simulated from the 2000 census data in

Australia, go to work or school (based on their age) for eight hours per day, return to their

neighborhoods in the evening, and reside indoors at night. As a vector, their full life cycle is

modeled by a variety of agents in the system. Eggs and larvae are stored in oviposition sites.

Adult male mosquitoes seek to mate with females whenever possible until their death. Each

adult female mosquito, as depicted in Figure 2, mating with adult male mosquitoes, moves

based on either the human host volatiles when biting human hosts, or the volatiles emanating

from oviposition sites when laying eggs. Given the spatial and temporal resolution of ABM,

this model is well suited to explore heterogeneity in both intervention strategies and disease

spread. The detailed model description is described elsewhere [Stone et al.].

However, how to validate an AB model is a challenge. We use two methods to validate

the model by comparing with its corresponding ODE model and the real world data. The

details are described in Chapter 3
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1.3 FIGURES AND TABLES

Figure 1: CLARA infrastructure
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Figure 2: A female Ae. aegypti in CLARA

Table 1: Summary statistics for parts of Dengue outbreaks from

2001 to 2009 at Queensland, Australia

Year Location Reported Cases Duration Dengue Type

2001 Townsville 9 3 weeks Dengue 2

2002 Cairns 2 3 weeks Dengue 4

2003-4 Cairns 536 69 weeks Dengue 2

2005 Townsville 18 22 weeks Dengue 4

2006 Cairns 29 18 weeks Dengue 2

2007 Townsville 46 13 weeks Dengue 3

2008-9 Cairns, Townsville 931 29 weeks Dengue 3
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2.0 ESTIMATING DENGUE ORDINARY DIFFERENTIAL EQUATION

MODELS WITH THE QUADRATIC MESH ADAPTIVE DIRECT SEARCH

METHOD

2.1 INTRODUCTION

Ordinary differential equation (ODE) models are not only a standard approach to describe

complex systems in many areas such as physics and biology, but also provide a way to un-

derstand the interactions between various populations [Fussmann et al., 2000]. In dengue

studies, several ODE models with different sets of assumptions have been proposed [Andraud

et al., 2012]. For example, using an ODE model with one serotype of dengue, a two-age-

classes dengue transmission model with vaccination was explored [Luz et al., 2011]. The

results showed that if there is an unintended vaccination of asymptomatic infectious chil-

dren that effectively extends the infectious period, then the vaccination will cause a negative

effect on disease prevention and treatment [Supriatna et al., 2008]. A severe Dengue Hemor-

rhagic Fever (DHF) compartment in a multi-serotype model was added [Nuraini et al., 2007].

In addition, a study, addressing n serotypes of dengue (n = 2-6), suggested that ADE may

provide a competitive advantage to those serotypes that undergo enhancement compared

with those that do not. This advantage increases with increasing numbers of cocirculating

serotypes, but there are limits to the selective advantage provided by increasing levels of

ADE [Cummings et al., 2005]. However, although various ODE models have been proposed

and more complicated ODE models can be constructed, given the sparse data availability,

we would like to know which model can really represent the complex real-world environ-

ment. Here, we consider four slightly different single serotype dengue models, compare their

performance, and propose a better one given sparse data.
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Estimation of ODE parameters from real-world data can be challenging because analytic

solutions can be difficult to derive in most ODE models. Currently, there are two main

approaches to fitting ODE models to real-world data. The first approach is to use the

discretization methods for initial value problems, which means that the numerical solution

of the ODE is constructed discretely at given time points [Bard, 1974]. The other approach

to fitting the ODE model to real-world data, called the collocation methods, involves using

basis function expansion. The general idea of this approach is to estimate the parameter by

optimizing an objective function after the numerical solution of the ODE model in terms of

a finite basis function expansion is obtained by satisfying the given equations at the given

collocation points [Ramsay et al., 2007].

However, some issues exist in this spline-based method. Liang and Wu [2008] criti-

cized that the penalized spline approaches require more efficient optimization techniques

and complicated iterative computation algorithms to obtain an estimator. In addition, when

the model includes a medium to large number of nonlinear parameters, or the data is incom-

plete or sparse, the results from the spline-based methods are not stable. In contrast, when

using the discretization methods for initial value problems, the explicit information about

the analytical or numerically approximated gradient or the Hessian matrix of objective func-

tion is likely to be unavailable or unreliable. Under these circumstances, the direct search

method, one of the derivative free discretization methods for initial value problems, may be

a reasonable alternative for finding a global minimizer of a real-valued objective function,

even for problems in which the cost function is discontinuous, nondifferentiable, or stochastic

[Conn et al., 2009].

The Nelder-Mead simplex algorithm, the most widely cited of the direct search meth-

ods, generates a new test position by extrapolating the behavior of the objective function

measured at each test point, and replaces some of the parameters with new positions at the

next iteration [Nelder and Mead, 1965]. However, for dimensions of parameters higher than

1, its convergence is uncertain [Lagarias et al., 1998]. For instance, it could converge to a

nonminimizer even in a strictly convex unconstrained two-dimensional minimization problem

[McKinnon, 1998].
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Considering the shortcomings of these methods, we used a different method, namely,

mesh adaptive direct search with quadratic models (MADSQ) to estimate the parameters

in a proposed dengue ODE model. We used this method because it is derivative free, has

much stronger convergence properties than the Nelder-Mead simplex algorithm, and performs

better than the MADS algorithm without models [Conn and Le Digabel, 2013]. The MADSQ

results are then compared with the results from a derivative trust region algorithm (DTR)

included in the Intel Math Kernel Library (MKL) [Conn et al., 2000].

2.2 MODEL FORMULATION

Although the adult stage of Ae. aegypti mosquitoes cannot be represented separately from

their stages of the aquatic life cycle, people attempted not to model the aquatic stages but

only to develop a simplified continuous ODE model to reflect the interaction of humans with

Ae. aegypti [Bailey, 1975]. An understanding of how Ae. aegypti interacts with humans is

briefly described before developing a simplified one serotype dengue ODE model.

Female Ae. aegypti lay eggs that develop into larvae during an emergence period with a

relatively high survival probability. Larvae feed on microorganisms and particulate organic

matter, and change into pupae during an emergence period with a density-dependent survival

probability. Pupae transform into adult Ae. aegypti. The entire aquatic life cycle lasts

approximately 10-14 days until emerging into adult Ae. aegypti.

Female Ae. aegypti seek blood after they have mated with male Ae. aegypti. If the target

humans are infected, the dengue virus transmits from the humans to the female Ae. aegypti

given a certain probability, and the female Ae. aegypti become infectious in 10 to 14 days.

On average, adult female Ae. aegypti can live about 10 days. Similarly, humans infected

by the infectious female Ae. aegypti become infectious 4-7 days after exposure and remain

infectious for up to 12 days. For up to 6 months, they are not susceptible to other dengue

virus infections (i.e. serotypes have cross-immunity) and then become susceptible to the

other serotypes of the dengue virus. Generally, humans can be infected with dengue fever

twice during their lifespan although tertiary infections have been observed.
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We make the following assumptions in our dengue ODE model

a) There are enough male Ae. aegypti for successful mating with female Ae. aegypti.

b) The birth of the female Ae. aegypti is a fixed number or a number which depends on the

total number of the female Ae. aegypti.

c) Infected female Ae. aegypti go through susceptible (S), exposed (E), and infectious (I)

states. No recovered state is assumed.

d) No extra vector control intervention parameters are added into the model due to the lack

of statistical identifiability.

e) All infected humans are symptomatic. These infected humans go through susceptible (S),

exposed (or not) (E), infectious (I), and recovered (R) states.

f) No human mortality exists due to the short time spans of observation.

g) The initial condition of the ODE model is known.

In addition, only one serotype of dengue virus is modeled to compare to DENV-2 or

DENV-3 infected humans in our real-world data from 2003 and 2008, respectively.

The standard dengue model is derived from the SIR (Susceptible-Infectious-Recovered)

infectious disease model [Andraud et al., 2012]. We form four different models by consider-

ing the fixed (f) or varied (v) birth of the female Ae. aegypti, and by including/excluding

the exposed (E) state. These are denoted by fSIR [Andraud et al., 2012], vSIR [Derouich

et al., 2003], fSEIR [Syafruddin and Noorani, 2012], and vSEIR, respectively. The general

transition between various states can be represented using a vSEIR compartmental model

shown in Figure 1. Basically, susceptible, exposed, infected female mosquitoes die at the

same constant rate. Susceptible (infected) mosquitoes interact with infected (susceptible)

humans, spreading the dengue virus. Natural transitions from S to E to I and to R in hu-

mans and from S to E to I in female Ae. aegypti occur at various rates. The vSEIR model

depicted in Figure 3 can be presented as a system of ODEs as follows:
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NV (t) = SV (t) + EV (t) + IV (t)

dSV (t)

dt
= θVN

V (t)− βV

NH(t)
SV (t)IH(t)− µV S

V (t)

dEV (t)

dt
=

βV

NH(t)
SV (t)IH(t)− γVE

V (t)− µVE
V (t)

dIV (t)

dt
= γVE

V (t)− µV I
V (t)

NH(t) = SH(t) + EH(t) + IH(t) +RH(t)

dSH(t)

dt
= − βH

NH(t)
SH(t)IV (t)

dEH(t)

dt
=

βH

NH(t)
SH(t)IV (t)− γHE

H(t)

dIH(t)

dt
= γHE

H(t)− δHI
H(t)

dRH(t)

dt
= δHI

H(t)

where NV (t) is the number of the total number of female Ae. aegypti at time t and SV (t),

EV (t), and IV (t) are the number of susceptible, exposed, and infectious female Ae. aegypti,

respectively at time t; Additionally, NH is the total fixed number of humans at time t,

which is calculated as a total of the number of susceptible, exposed, infectious, and recovered

humans at time t denoted as SH(t), EH(t), IH(t), and RH(t), respectively.

There are seven parameters in the SEIR model. θV is the birth rate of Ae. aegypti in

the model with the varied birth of the female Ae. aegypti (or ηV is the recruitment rate of

female Ae. aegypti in the model with the fixed birth of the female Ae. aegypti). γV (µV ) is

female Ae. aegypti infection (death) rate, γH (δH) is the human infection (recovery) rate,

and βV (βH) is the virus transmission rate from humans to female Ae. aegypti (from female

Ae. aegypti to humans). In contrast, there are only five parameters in the SIR model (no

γV and γH).

Traditionally, while considering the vector control intervention, a model with a break-

point (before and after the vector control intervention) is considered. That is, some param-

eters (θV or ηV , µV , βV , and βH) should have different values before and after the vector

control intervention. However, the data before the vector control are too limited to estimate
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parameters accurately. Thus, we take an alternative approach where we assume these pa-

rameters have a combined effect across the whole episode of dengue outbreak and directly

fit the model without a breakpoint in the data.

2.3 MODEL PROPERTIES

2.3.1 Stability Analysis

The properties of equilibria and their stability are analyzed separately for three cases: θV =

µV , θV < µV , and θV > µV .

2.3.1.1 θV = µV : Because
dNV (t)

dt
= 0 and

dNH(t)

dt
= 0, NV and NH are constant.

Thus, the vSEIR model can be reformulated as follows:

dEV (t)

dt
=

βV

NH
(NV − EV (t)− IV (t))IH(t)− γVE

V (t)− µVE
V (t)

dIV (t)

dt
= γVE

V (t)− µV I
V (t)

dEH(t)

dt
=

βH

NH
(NH − EH(t)− IH(t)−RH(t))IV (t)− γHE

H(t) (1)

dIH(t)

dt
= γHE

H(t)− δHI
H(t)

dRH(t)

dt
= δHI

H(t)

The dynamical properties of the system (1) are described by the following results:

Theorem 1. Let D = {(EV , IV , EH , IH , RH)ϵR̄5
+, 0 ≤ EV +IV ≤ NV , 0 ≤ EH+IH+RH ≤

NH}. Assuming that the initial conditions lie in D, the system (1) has a unique solution

that remains in D for t ≥ 0.

Proof. For system (1), we find that EV = 0 implies
dEV

dt
≥ 0; IV = 0 implies

dIV

dt
≥ 0;

EH = 0 implies
dEH

dt
≥ 0; IH = 0 implies

dIH

dt
≥ 0; RH = 0 implies

dRH

dt
≥ 0. In

addition, EV + IV = NV implies
dEV

dt
+

dIV

dt
≤ 0, and EH + IH + RH = NH implies

dEH

dt
+

dIH

dt
+

dRH

dt
≤ 0. Thus, the set D is invariant.
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Theorem 2. The system (1) has a set of equilibrium points, xdfe = (0,0,0,0,RH) and 0 ≤

RH ≤ NH .

Proof. In order to find the solutions in the equilibrium state, we set all derivatives are equal

to zero. Then, the solutions of the disease free equilibrium are xdfe = { EV , IV , EH , IH , RH

} = { 0, 0, 0, 0, RH } and 0 ≤ RH ≤ NH .

Theorem 3. The subset of equilibrium points, xdfe = (0,0,0,0,RH), where R̄H < RH ≤ NH

and R̄H is the critical point (R̄H = NH − (γV + µV )µV δH(N
H)2

γV βV βHNV
) is comprised of equilibria

that are locally stable in the sense of Lyapunov.

Proof. See the Appendix A.

2.3.1.2 θV < µV : Because
dNH(t)

dt
= 0, NH is constant. Thus, the vSEIR model can be

reformulated as follows:

dSV (t)

dt
= θVN

V (t)− βV

NH
SV (t)IH(t)− µV S

V (t)

dEV (t)

dt
=

βV

NH
SV (t)IH(t)− γVE

V (t)− µVE
V (t)

dIV (t)

dt
= γVE

V (t)− µV I
V (t) (2)

dEH(t)

dt
=

βH

NH
(NH − EH(t)− IH(t)−RH(t))IV (t)− γHE

H(t)

dIH(t)

dt
= γHE

H(t)− δHI
H(t)

dRH(t)

dt
= δHI

H(t)

The dynamical properties of the system (2) are described by the following results:

Theorem 4. Let D = {(SV , EV , IV , EH , IH , RH) ϵ R̄6
+, 0 ≤ SV + EV + IV ≤ NV , 0 ≤

EH + IH + RH ≤ NH}. Assuming that the initial conditions lie in D, the system (2) has a

unique solution that remains in D for t ≥ 0.

Proof. For system (2), we find that SV = 0 implies
dSV

dt
≥ 0; EV = 0 implies

dEV

dt
≥ 0;

IV = 0 implies
dIV

dt
≥ 0; EH = 0 implies

dEH

dt
≥ 0; IH = 0 implies

dIH

dt
≥ 0; RH = 0
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implies
dRH

dt
≥ 0. In addition, SV + EV + IV = NV implies

dSV

dt
+

dEV

dt
+

dIV

dt
≤ 0, and

EH + IH +RH = NH implies
dEH

dt
+

dIH

dt
+

dRH

dt
≤ 0. Thus, the set D is invariant.

Theorem 5. The system (2) has a set of equilibrium points, xdfe = (0,0,0,0,0,RH) and

0 ≤ RH ≤ NH .

Proof. In order to find the solutions in the equilibrium state, we set all derivatives are equal

to zero. Then, the solutions of the disease free equilibrium are xdfe = { SV , EV , IV , EH ,

IH , RH } = { 0, 0, 0, 0, 0, RH } and 0 ≤ RH ≤ NH .

Theorem 6. The set of equilibrium points, xdfe = (0,0,0,0,0,RH), where 0 ≤ RH ≤ NH is

comprised of equilibria that are locally stable in the sense of Lyapunov.

Proof. The Jacobian of the system (2) at equilibrium points xdfe is given by:

J(xdfe) =



−γV − µV 0 0 0 0 0

γV −µV 0 0 0 0

0
βH(N

H −RH)

NH
−γH 0 0 0

0 0 γH −δH 0 0

θV θV 0 0 (θV − µV ) 0

0 0 0 δH 0 0



Since the Jacobian is a triangular matrix, all eigenvalues are found on the diagonal of the

Jacobian: 0, −(γV + µV ), −µV , −γH , −δH , and (θV − µV ). Since θV < µV , all eigenvalues

except 0 are real negative. The eigenvector corresponding to λ = 0, { EV , IV , EH , IH ,

SV , RH }T = { 0, 0, 0, 0, 0, 1 }T , is the vector tangential to the equilibrium manifold.

Thus, each equilibrium point is locally asymptotically stable within the invariant set of the

dynamical system containing that equilibrium point. In addition, it follows that all equilibria

are Lyapunov stable.
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2.3.1.3 θV > µV : Because
dNH(t)

dt
= 0, NH is constant. Thus, the vSEIR model can be

reformulated as follows:

dSV (t)

dt
= θVN

V (t)− βV

NH
SV (t)IH(t)− µV S

V (t)

dEV (t)

dt
=

βV

NH
SV (t)IH(t)− γVE

V (t)− µVE
V (t)

dIV (t)

dt
= γVE

V (t)− µV I
V (t) (3)

dEH(t)

dt
=

βH

NH
(NH − EH(t)− IH(t)−RH(t))IV (t)− γHE

H(t)

dIH(t)

dt
= γHE

H(t)− δHI
H(t)

dRH(t)

dt
= δHI

H(t)

The dynamical properties of the system (3) are described by the following results:

Theorem 7. Let D = {(SV , EV , IV , EH , IH , RH)ϵR̄6
+, 0 ≤ EH+IH+RH ≤ NH}. Assuming

that the initial conditions lie in D, the system (3) has a unique solution that remains in D

for t ≥ 0.

Proof. For system (3), we find that SV = 0 implies
dSV

dt
≥ 0; EV = 0 implies

dEV

dt
≥ 0;

IV = 0 implies
dIV

dt
≥ 0; EH = 0 implies

dEH

dt
≥ 0; IH = 0 implies

dIH

dt
≥ 0; RH = 0

implies
dRH

dt
≥ 0. In addition, EH + IH +RH = NH implies

dEH

dt
+

dIH

dt
+

dRH

dt
≤ 0. Thus,

the set D is invariant.

Theorem 8. The system (3) has a set of equilibrium points, xdfe = (0,0,0,0,0,RH) and

0 ≤ RH ≤ NH .

Proof. In order to find the solutions in the equilibrium state, we set all derivatives are equal

to zero. Then, the solutions of the disease free equilibrium are xdfe = { SV , EV , IV , EH ,

IH , RH } = { 0, 0, 0, 0, 0, RH } and 0 ≤ RH ≤ NH .

Theorem 9. The set of equilibrium points, xdfe = (0,0,0,0,0,RH), where 0 ≤ RH ≤ NH , is

not locally stable in the sense of Lyapunov.
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Proof. The Jacobian of the system (3) at equilibrium points xdfe is given by:

J(xdfe) =



−γV − µV 0 0 0 0 0

γV −µV 0 0 0 0

0
βH(N

H −RH)

NH
−γH 0 0 0

0 0 γH −δH 0 0

θV θV 0 0 (θV − µV ) 0

0 0 0 δH 0 0


Since the Jacobian is a triangular matrix, all eigenvalues are found on the diagonal of the

Jacobian: 0, −(γV +µV ), −µV , −γH , −δH , and (θV −µV ). Since θV > µV , there is a positive

eigenvalue. Thus, none of the equilibrium points are locally stable. One can easily show that

NV (t)→∞ as t→∞.

2.3.2 Basic Reproduction Number, R0:

When θV = µV , the basic reproduction number R0 can be derived by the next generation

operator approach Castillo-Chavez et al. [2002]. Using the notation of that paper, for system

(1), we let X = (RH), Y = (EV , EH), Z = (IV , IH), and xdfe = (X∗, 0, 0) ϵ R̄5. When

assuming that g(X∗, Y, Z) = 0, Y = g̃(X∗, Z) = (g̃1(X
∗, Z), g̃2(X

∗, Z)) with

g̃1(X
∗, Z) =

βV

NH
(NV − IV )IH(

βV

NH
IH + γV + µV )

−1

g̃2(X
∗, Z) =

βH

NH
(NH − IH −RH)IV (

βH

NH
IV + γH)

−1

Then since A = DZ(X
∗, g̃(X∗, Z), Z)|Z=0, we have

A =

 −µV
γV βVN

V

NH(γV + µV )
βH

NH
(NH −RH) −δH

 .

Additionally, A = M - D, with M > 0, and D > 0. Then,

M =

 0
γV βVN

V

NH(γV + µV )
βH

NH
(NH −RH) 0

 , D =

µV 0

0 δH
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giving

D−1 =

µ−1
V 0

0 δ−1
H

 .

Thus, in accord with Castillo-Chavez et al. [2002], the reproduction number for system (1)

is R0 = ρ(MD−1) =
√

βV βHγV (NH−RH)NV (0)
µV (γV +µV )δH(NH)2

, where ρ(C) denotes the spectral radius of a

matrix C.

2.3.3 Expose State Excluded

In order to compare the vSEIR model to fSIR model, we reformulated the fSIR model and

find the invariant set D and the set of the equilibrium points.

Since
dNV (t)

dt
= 0 and

dNH(t)

dt
= 0, it follows that NV and NH are constant. Thus, the

fSIR model can be reformed as follows:

dIV (t)

dt
=

βV

NH
(NV − IV (t))IH(t)− µV I

V (t)

dIH(t)

dt
=

βH

NH
(NH − IH(t)−RH(t))IV (t)− δHI

H(t) (4)

dRH(t)

dt
= δHI

H(t)

Theorem 10. Let D = {IV , IH , RH) ϵ R̄3
+, 0 ≤ IV ≤ NV , 0 ≤ IH +RH ≤ NH}. Assuming

that the initial conditions lie in D, the system of equations for the fSIR model has a unique

solution that remains in D for t ≥ 0.

Proof. For system (4), we find that IV = 0 implies
dIV

dt
≥ 0; IH = 0 implies

dIH

dt
≥ 0;

RH = 0 implies
dRH

dt
≥ 0. In addition, IV = NV implies

dIV

dt
≤ 0, and IH + RH = NH

implies
dIH

dt
+

dRH

dt
≤ 0. Thus, the set D is invariant.

Theorem 11. The system (4) has a set of equilibrium points, xdfe = (0,0,RH) and 0 ≤

RH ≤ NH .

Proof. In order to find the solutions in the equilibrium state, we set all derivatives are equal

to zero. Then, the solutions of the disease free equilibrium are xdfe = { IV , IH , RH } = { 0,

0, RH } and 0 ≤ RH ≤ NH .

20



Theorem 12. The set of equilibrium points, xdfe = (0,0,RH), where R̄H < RH ≤ NH and

R̄H is the critical point (R̄H = NH − (µV δH(N
H)2

βV βHNV
), is locally stable.

Proof. The Jacobian of the system (4) at equilibrium points xdfe is given by:

J(xdfe) =


−µV

βVN
V

NH
0

βH(N
H −RH)

NH
−δH 0

0 δH 0



The characteristic polynomial is as follows:

−λ{(−µV − λ)(−γH − λ)− βV βHN
V (NH −RH)

(NH)2
}, 0 ≤ RH ≤ NH .

Therefore, the Jacobian has one zero eigenvalue and two non-zero eigenvalues. According to

the criteria of Routh Hurwitz, the non-zero eigenvalues of J(xdfe) have negative real parts if
βV βHN

VNH

(NH)2
− µV δH <

βV βHN
VRH

(NH)2
.

Thus, the equilibrium point (0,0,RH) is stable if R̄H = NH − (µV δH(N
H)2

βV βHNV
< RH .

We can take advantage of the Routh-Hurwitz criterion a0 > 0 to compare the ranges of

stability of the vSEIR and fSIR models. For the vSEIR model as derived above,

a0 = γV γH

[
γV + µV

γV
µV δH −

βV βHN
V (NH −RH)

(NH)2

]

For the fSIR model,

a0 = µV δH −
βV βHN

V (NH −RH)

(NH)2

Because
γV + µV

γV
> 1, the equilibrium points are stable for a larger range of RH in vSEIR

than fSIR. Thus, the presence of exposed state improves the stability of equilibria in these

epidemiological models.
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2.4 MODEL FITTING

Presence of parameters in various scales makes numerical implementation challenging, and

hence we let the scale of all parameters are in [0, 1] (ηV is rescaled here). Then we kept

the range of those combined effect parameters in [0, 1] since no supported studies can help

us narrow the space of these parameters, but narrowed the space of other parameters based

on some previous clinical studies [Gubler, 1998, Watts et al., 1987]. Finally, we assume

that the virus transmission rate from humans to female Ae. aegypti is the same as the

virus transmission rate from female Ae. aegypti to humans; the female Ae. aegypti and the

human infection rates are known. Even so, fitting the above complex models to the data is

challenging due to the sparse nature of the data. The data contains only the number of the

new infectious humans (IHN ) at different time points.

Our postulated model can be written as:

IHN (t) = m(θ, t) + Zt, t = 1,. . . ,n

where m(θ, t) = EIHN (t) is taken as the solution to the differential equation in terms of IHN (t),

and Zt is the error term. For SEIR and SIR models, m(θ, t) = γHE
H(t) and βH

NHS
H(t)IV (t),

respectively. The estimation of the parameter vector θ is carried out by minimizing the sum

of squared error:

minθ fΘ(θ) =
n∑

t=1

[IHN (t)−m(θ, t)]2

Note that m(θ, t) does not have a closed-form expression, and the solution m(θ, t) is highly

non-linear in θ. There are two main approaches to fitting such models.

In the discretization methods, the parameters are estimated iteratively starting with

an initial value, many of the methods developed under this approach are gradient-based

methods. For example, the nonlinear least squares (NLS) methods, which use a numerical

gradient and Hessian matrix of a real-valued objective function to search the optimal ODE

parameter values, was proposed by Bard [1974]. Later, the asymptotic properties of the

proposed estimators were proved by Xue et al. [2010]. Others have proposed Markov Chain

Monte Carlo (MCMC) methods [Gelman et al., 2004], which assume observations follow some
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density functions conditional on the parameters of interest and estimate the parameters from

the Metropolis-Hastings or other sampling algorithms.

A spline-based method which uses a three-level criteria scheme was proposed by Ramsay

et al. [2007]. While fixing the outer level criterion, the penalty parameter λ, the B spline

coefficients are selected first at the inner level criterion. Then the optimal model parameter

values are estimated at the middle level criterion. Not only its computational efficiency is as

fast or faster than NLS and much faster than the MCMC method, but the bias and sampling

variance estimation performance is also at least as good as other approaches such as MCMC

and NLS. These concepts were further extended to partial differential equation estimation

[Xun et al., 2013]. Simulation studies showed that the performance of their method is

comparable to the MCMC and outperforms other available methods such as the two-stage

method proposed by Marx and Eilers [2005].

Alternative approaches such as the Nelder-Mead approach are based on direct search

methods. A generalized pattern search method (GPS) for unconstrained optimization was

developed [Torczon, 1997]. This algorithm systematically evaluates test points that lie on

a mesh or lattice centered at the current iteration, but local exploration of the space of

variables is only restricted to a finite number of directions. The MADS algorithm, which

was derived from GPS, was used to weaken the finite search direction restriction in GPS

with much stronger convergence properties [Audet and Dennis JR., 2006] and was shown

to perform better than GPS through simulations [Abramson and Audet, 2006]. The MADS

algorithm is also more likely to achieve the optimal solution, and more efficient than the

genetic algorithm (GA) [Das et al., 2011]. Later, the MADS algorithm was modified to

form quadratic models at each iteration and the MADS algorithm with quadratic models

(MADSQ) has been demonstrated to perform better than the MADS algorithm in many

cases [Conn and Le Digabel, 2013].

2.4.1 Mesh Adaptive Direct Search with Quadratic Models

MADSQ is an iterative algorithm where points are generated (SEARCH and POLL steps)

at each iteration based on the criteria presented below and the associated objective function
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values fΘ(θ) are compared with the current best feasible objective function value fΘ(θk)

found so far. The iteration will be ended when one of the termination criteria is satisfied.

The algorithm in our case is as follows [Conn and Le Digabel, 2013]:

a) The initial point θ0 ∈ Θn, the mesh size ∆m
k , the poll size ∆p

k, the radius factor ρ, and

the quadratic basis { 1, x1, x2, ..., xn,
x2
1

2
,

x2
2

2
, ..., x2

n

2
, x1x2, ..., xn−1xn } are given. Let the

iteration k be 0 as well.

b) SEARCH step: construct an interpolation set Y first and then build a quadratic model

mf (θ) in B∞(θ, ρ∆p
k). The trial point θk is obtained from the minimization of that

quadratic model. Test θk to see if it is an improved mesh point.

c) POLL step: if the SEARCH step cannot find an improved mesh point, another quadratic

model mf (θ) in B∞(θ, ρr), where r is the smallest radius including all Y. The trial point

θk is obtained from the minimization of that quadratic model. Test θk if an improved

mesh point.

d) Update ∆m
k+1 and ∆p

k+1. Increment k ← k + 1 and go to the SEARCH and POLL step.

A detailed definition of the MADS frame work can be found in Audet and Dennis JR.

[2006].

The objective function to be considered here is the least squares error fΘ(θ). The al-

gorithm is implemented in C++ NOMAD which links to the OPTI optimization toolbox in

MATLAB [Le Digabel, 2011]. Thus, we can implement in MATLAB and use this method via

the OPTI optimization toolbox. The termination criteria are if either the maximal number

of function evaluations is reached (105), the number of iterations the algorithm performs is

reached (104), the step length is less or equal than 10−12, the minimum distance between the

current points at two consecutive iterations is less or equal than 10−6, or the tolerance for

the objective function is less or equal than 10−6. The procedure provides the least square

estimators for θ, θ̂. Since MADSQ is a direct search method, it does not provide a Hes-

sian matrix. Therefore, for estimating the variance of θ̂, we resort to the sieve bootstrap

developed in the time series literature to estimate variances for non-stationary time series

models.
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2.4.2 Sieve Bootstrap

The sieve bootstrap for nonstationary time series has been applied, since the dengue disease

outbreak has a deterministic trend. Before the vector control intervention, numbers of new

infectious cases increased; during the vector control intervention, numbers of new infectious

cases decreased.

We consider the model, Yt = m(t) + Zt,n, where {m(t)}t∈Z is the deterministic differential

equation function. Then, the sieve bootstrap procedure is the approximation of a stationary

process with mean zero Zt,n by an autoregressive sequence of infinity lag with n time points.

The procedure can be implemented in the following steps:

a) Construct a kernel smoothers m̃(t) for m(t), t = [δn] + 1,. . ., [(1 - δ)n], 0 < δ < 1/2,

since kernel smoothers are known to have larger bias near the end points. Then form the

residuals, Ẑt,n = Yt - m̃(t).

b) The kernel smoothing estimator m̂ has the bandwidth h̃ = ch5/9, where c is an arbitrary

constant, and optimal bandwidth h is obtained from minimizing the following equation:

n∑
t=1

[IHN (t)− m̂(θ, t)]2.

c) Base on the Akaike information criterion (AIC) in a range of [0, 10log10(n)] to decide on

the order of p of the autoregressive model.

d) By using the Yule-Walker method [Yule, 1927, Walker, 1931], compute the coefficient of

AR(p) model ϕ̂1,n,. . .,ϕ̂p,n based on Ẑt,n.

e) Form and center the residuals ε̃t,n = ε̂t,n -
∑

t ε̂t,n, and ε̂t,n =
∑p

j=0 ϕ̂t,nẐt−j,n,

t = p+[δn]+1,. . ., [(1 - δ)n].

f) Resample ε∗t i.i.d. ∼ Fε̃,n, the empirical cumulative distribution function of {ε̃t,n}t,

t = [δn] + 1, . . ., [(1 - δ)n].

g) Compute the residuals {Z∗
t }t based on

∑p
j=0 ϕ̂t,nZ

∗
t−j,n = ε∗t,n, Z

∗
1 = ε∗1. Then generate

the bootstrap observations Y ∗
t = m̂(t) + Z∗

t , t = [δn] + 1,. . ., [(1 - δ)n].

Here δ is the reciprocal of the time point plus one, and the detailed assumptions and

definitions of the sieve bootstrap can be found in Bühlmann [1998].
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2.5 SIMULATIONS

We carried out a simulation study to evaluate the performance of the MADSQ and the DTR

algorithms in how they obtain the optimal solution in the vSEIR model. Data was generated

from the model:

IHN (t) = m(θ, t) + Zt, t = 1,. . . ,n

with values of the true parameters θ = ( θV , βV (= βH), µV , δH ) chosen based on the

two data sets that motivated this study. We assumed γV and γH are known. We assumed

the following initial conditions, { SV (0), EV (0), IV (0), SH(0), EH(0), IH(0), RH(0) } = {

22422, 0, 0, 2827, 1, 0, 0 } for scenarios I and II, and { 148019, 0, 0, 18669, 1, 0, 0 } for

scenarios III and IV. The initial parameter values are calculated by taking the true values

plus or minus ten percent of the true values.

For simplicity, instead of an autoregressive sequence of infinity lag, we generated Zt from

ARMA(1,1) model [Bühlmann, 1998]:

Zt = 0.8Zt−1 − 0.5εt−1 + εt, t = 1,. . . ,n

where εt i.i.d. ∼ N(0,1)/
√
1.2 (hereafter called normal for short), and Var(Zt) was rescaled to

0.16 (hereafter called variance for short). All simulation results are based on 200 realizations

of such processes. For scenarios I and II, number of time points (n) was set to 124 (the same

number as in the Cairns data set from 2003). For scenarios III and IV, number of time points

(n) was set to 209 (the same number as in the Cairns data set from 2008). The estimates

from different algorithms will be compared by the mean square error (MSE) of prediction

defined by

MSE =

∑n
t=1[m(θ, t)−m(θ̄, t)]2

n

where θ̄ is the mean of the estimators from 200 simulation realizations.

Table 2 displays the estimators and the Monte Carlo standard error (MCSE) of the pa-

rameters from 200 simulation realizations for different true parameter values. In scenarios

I, the optimal mean estimator by MADSQ and DTR is unbiased and slightly biased, re-

spectively. In scenarios II, optimal mean estimators by both algorithms are slightly biased.
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However, the MADSQ algorithm estimates produce a prediction of new infectious humans

closer to the number based on the true parameter value. The MSEs in these scenarios are

smaller for MADSQ (MADSQ v.s. DTR: 0.001 v.s 0.089 in scenario I; 0.051 v.s. 0.158 in

scenario II). The MCSE of the parameters is smaller for MADSQ than for DTR. In contrast,

in scenarios III and IV, the optimal mean estimator by DTR is nearly unbiased. In addition,

the data shows that the DTR algorithm estimates produce a prediction of new infectious

humans closer to the number based on the true parameter value. The MSEs in these sce-

narios are smaller for DTR (DTR v.s. MADSQ: 0.613 v.s 3.474 in scenario III; 1.042 v.s.

6.723 in scenario IV). Furthermore, the MCSE of the parameters is smaller for DTR than

for MADSQ in scenario III.

Table 3 displays the estimators and the MCSE of the parameters for 200 simulated data

sets for two sets of initial parameter values (Init I and II) in scenario II. The results show that

both algorithms depend on starting values to converge to the optimal estimator. Although

optimal mean estimators by both algorithms are slightly biased, the MSEs in these two

scenarios are smaller in MADSQ (MADSQ v.s. DTR: 0.051 v.s. 0.158 in Init I; 0.0001 v.s.

0.221 in Init II). In addition, the MCSE of the estimators is smaller in MADSQ.

The parameter space of the ODE system may not always have many local minima. For

example, there are many local minima in scenario II but not in scenario III. We examined

the parameter space in scenarios II (Figure 5.a) and III (Figure 5.b) in 2-D scenarios . When

we varied two parameters (µV in [0,1] and δH) in [0.08,0.33] (µV : the death rate of the female

Ae. aegypti and δH : the recovery rate of humans) but fixed others (θV and βV ), we could see

multiple local minima ((θV , βV ) = (0.24, 0.1125), (0.23, 0.19), (0.22, 0.295)) in scenario II

(Figure 5.a) but not in scenario III (Figure 5.b). This is one reason why the estimators by

both algorithms were slightly biased in scenarios II but the estimators by DTR were nearly

unbiased in scenario III.
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2.6 ANALYSIS OF CAIRNS DATA

We fitted all four models (fSIR, fSEIR, vSIR, and vSEIR) to two data sets from two of the

largest outbreaks that had occurred in the city of Cairns, Australia and the Cairns region of

Australia (Cairns North, Clifton Beach, Whitfield, Parramatta Park, and Edge Hill) in 2003

and 2008, respectively. We describe the data sets first and discuss the modeling results in

the following subsections.

2.6.1 The outbreak in 2003

In the 2003 outbreak (Figure 4.a), the onset of symptoms in the imported case occurred on

January 22 in Parramatta Park (PP), but the dengue spread was not identified until March

2, and mosquito control measures were initiated the next day. A total of 383 laboratory-

confirmed mild DENV-2 symptomatic cases were registered within urban Cairns over the

25-week epidemic period, but only the 233 cases in the neighborhood of PP over the 18-

week epidemic period were included in this analysis. Differential equation models assume

homogeneity and perfect mixing within compartments. If the confirmed symptomatic cases

beyond PP regions were included, these assumptions would be more likely to be violated

because there are some natural geographical barriers within urban Cairns that interfere with

the interactions between different populations. The detailed data description can be found

in Vazquez-Prokopec et al. [2010].

In 2003, the human population in PP was estimated to be 2,828 according to the data

from the Australian Bureau of Statistics. Based on simulated models, we assumed the

population of female Ae. aegypti was approximately 22,422 in PP during the outbreak period

[Williams et al., 2013].

A clinical study reported that the extrinsic incubation period of dengue virus (EIP =
1

γV
) and the intrinsic incubation period in humans (IIP =

1

γH
) ranged between 10 and 14

days, and 3 and 14 days (average 4.5 to 7 days), respectively [Ritchie et al., 2013]. They

also reported a total incubation period (TIP = EIP + IIP) of 17 days. Since we assumed

the female Ae. aegypti (γV ) and the human infection rates (γH) are known, we considered
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two values of (EIP,IIP), satisfying TIP = 17 days, namely, (13,4) and (4,13), which cover

the clinical range in the studies. These two assumptions will be denoted by A1 and A2. The

model fits will be assessed based on the MSE defined by

MSE =

∑n
t=1[I

H
N (t)−m(θ̂, t)]2

n

where θ̂ is the estimator of the parameters.

For model comparisons, we let the dimension of the parameter space be the same (dim(Θ)

= 4) in all models and the results are shown in Table 4.a and Figure 6. We look at the fSIR

model first. The top panel (a) of Table 4 provides parameter estimates for the model fits

of the 2003 Cairns outbreak. The fSIR model could not fit the data well and the estimate

of the recruitment rate of female Ae. aegypti ηV was 0. For the fSEIR model fit under the

assumption A1, the virus transmission rate from female Ae. aegypti to humans (βV ) and the

human recovery rate (δH) was slightly overestimated by the MADSQ algorithm compared to

the DTR algorithm, whereas for the recruitment rate of female Ae. aegypti (ηV ), the result

was the opposite. The parameter estimates for the vSIR model were consistently higher

for DTR compared to MADSQ, whereas for the vSEIR model, MADSQ provided larger

estimates. In Figure 6, in the left panel, we show various model fits with the actual data.

The MADSQ algorithm estimates in assumptions A1 and A2 produce similar new infectious

humans, so the results were not added in. As we mentioned before, the fSIR model did not fit

well to this data. We think it is because the total incubation period of the 2003 outbreak is

longer (around 17 days). The longer incubation periods suggest the existence of the exposed

state variables, which is not considered in the fSIR model and hence the fSIR model cannot

fit the data well. However, for the vSIR and the vSEIR models, the fitted curve was closer

to the observed values than the fSEIR model. The MSEs of the fSIR, fSEIR, vSIR, and

vSEIR models fitted by the MADSQ method in the 2003 data set are 2.93, 2.58, 2.35, and

2.27, respectively, showing that vSIR and vSEIR models perform similarly for this data set.

We presented a 95% pointwise confidence interval for the number of new infections pre-

dicted using the vSEIR model under assumption A1 in Figure 5 where we let the bandwidth

constant c to be 2.5. For comparison, we also constructed the confidence interval from

the parametric bootstrap with the Poisson distribution [Chowell et al., 2007], and this 95%
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pointwise confidence interval Figure (7.a) is wider than the one from the sieve bootstrap

Figure (7.b).

2.6.2 The outbreak in 2008

In the 2008 outbreak (Figure 4.b), the onset of symptoms in the imported case occurred

on November 5 in the Cairns North suburb; however, the dengue spread was not identified

until November 28, and mosquito control measures were initiated on December 1. A total

of 852 laboratory-confirmed mild DENV-3 symptomatic cases were registered within the

Cairns region over the 30-week epidemic period, and all of the cases were included in this

analysis because the geolocation data is confidential. The detailed data description can be

found in Ritchie et al. [2013]. Compared to the outbreak in 2003, the epidemic covered

a larger region. For this reason, the assumptions of the homogeneity and perfect mixing

within compartments are more likely to be violated in the 2008 outbreak. For the initial

settings, the human population in the Cairns region was estimated to be 18,669 in 2008, and

we assumed the population of female Ae. aegypti was approximately 148,019 in the Cairns

region during the outbreak period [Williams et al., 2013].

A clinical study reported that the total incubation period (TIP = EIP + IIP) is only

9 to 11 days [Ritchie et al., 2013]. After assuming TIP is 10 days, we considered two

values of (EIP,IIP): (7,3) and (6,4), which cover the clinical range in the studies. These two

assumptions will be denoted by A1 and A2.

For model comparisons, we let the dimension of the parameter space be the same (dim(Θ)

= 4) in all models and the results are shown in Table 4.b and Figure 6. We look at the fSIR

model first. The bottom panel (b) of Table 4 provides parameter estimates for the model

fits of the 2003 Cairns dataset. The fSIR model did not fit the data well. For the fSEIR

model fit under the assumption A1, in half of cases, the virus transmission rate from female

Ae. aegypti to humans (βV ) and the human recovery rate (δH) was slightly overestimated by

the MADSQ algorithm compared to the DTR algorithm, whereas for the recruitment rate

of female Ae. aegypti (ηV ), the result was the opposite. In most instances, the parameter

estimates for the vSIR model were slightly higher for DTR compared to MADSQ except
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for the human recovery rate (δH), whereas for the vSEIR model, in every instance, the

parameter estimates were reliably higher for DTR compared to MADSQ. In 6, in the right

panel, we show various model fits with the actual data. The MADSQ algorithm estimates

in assumptions A1 and A2 produce similar new infectious humans, so the results were not

added in. As we mentioned before, the fSIR model did not fit well to this data because of

the same reasons in the above subsection. However, for the vSEIR model, the fitted curve

was closer to the observed values than others. The MSEs of the fSIR, fSEIR, vSIR, and

vSEIR models fitted by the MADSQ method in the 2008 data set are 8.07, 6.29, 7.21, and

5.81, respectively, showing that vSEIR model perform the best for this data set.

2.7 DISCUSSION AND CONCLUSIONS

Scientists are used to applying ODE to model dynamic systems involving interactions be-

tween various populations. Here, we propose a new set of ODEs to model the incidence

of dengue virus infection that elucidates the interaction between humans and mosquitoes

throughout the life cycle of Ae. aegypti. When compared to other existing models (fSIR,

fSEIR, and vSIR), both factors in the proposed model are necessary: the existence of the ex-

posed state variables and the varied birth rate of the female Ae. aegypti which depends on the

total number of the female Ae. aegypti. First, the incubation periods of female Ae. aegypti

and humans are modeled by the exposed state variables in the model and longer incubation

periods need the existence of the exposed state variables. Second, the implemented vector

control interventions decrease the birth of the female Ae. aegypti. In other words, if the

fixed birth rate models were used, the number of the total female Ae. aegypti would finally

be at the equilibrium state, but in reality the vector control intervention would break the

equilibrium state. Moreover, the MSE of the proposed model is the smallest among all mod-

els. Thus, after considering the results in both data sets qualitatively and quantitatively, we

think the vSEIR model is a better choice. This model is in the class for which explicit in-

formation about the analytical or numerically approximated gradient or the Hessian matrix

of objective function is unavailable or unreliable. We introduce mesh adaptive direct search
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with quadratic models (MADSQ) to obtain the least squares estimator which avoids calculat-

ing a numerically approximated gradient or a Hessian matrix. To obtain the standard errors

of estimates and confidence intervals, we think the sieve bootstrap for non-stationary time

series is more reasonable than the parametric bootstrap because the correlation between the

new infected humans at different time points is considered.

We have shown through simulation studies that the MADSQ algorithm performs more

efficiently than the DTR algorithm when the parameter space has many local minima. How-

ever, the parameter space may not always have many local minima, so it is better to visualize

the parameter space before deciding which optimization algorithm to use. Like many other

non-linear optimization algorithms, the algorithm depends on a good starting value to con-

verge to the optimal value, so it is better to choose more than one set of starting values and

choose the set of the optimal value with the smallest mean squared error.

The MADSQ algorithm is available at OPTI toolbox linking to the NOMAD software

in C++. It is easy to use and modify if necessary. However, the disadvantage of this

approach is that it is computationally more expensive than the DTR algorithm, since it

constructs quadratic models by interpolation, possibly leading to iterations where little or

no improvement is seen. Parallel computing can significantly reduce the computational time.

The proposed method has the flexibility to be modified within intermediate steps or to

be combined with other methods to improve efficiency. The variable neighborhood search

(VNS) metaheuristic is incorporated into the search step of the MADS algorithm for explor-

ing further test points to avoid trapping at local minima [Audet et al., 2008]. Compared to

the classic MADS, this approach shows better simulation results, but the computational time

is even longer. The optimization framework can be adapted to a large number of problems

beyond ordinary differential equations. The MADS algorithm is extended to the stochastic

constrained optimization and showed a better computational efficiency than Monte-Carlo

schemes for problems with strict probabilistic constraints [Sankaran et al., 2010].
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2.8 FIGURES AND TABLES

Figure 3: The diagram of the simplifed vSEIR model of the interaction between humans and

mosquito in different stages
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Figure 4: Number of new infectious humans per day in 2003 (a) and 2008 (b).
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Figure 5: Examples of objective functions from scenarios II (a) and III (b) plotted as a

function of (µV and δH) for fixed (θV and βV )
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Figure 6: All Fitted results using MADSQ in two data sets: vSEIR (-.), fSEIR (–), vSIR (.),

fSIR (-) and data (Red-)
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Figure 7: Bootstrap C.I. using MADSQ (–) in the 2003 data set by Sieve bootstrap and

Parametric bootstrap with Poisson distribution

37



Table 2: Summary statistics for parameter estimates and M.C.S.E.

for 200 simulated samples; variance=0.16; normal error; the band-

width constant of the kernel smoothing (h̃ = ch5/9) is chosen to be

2 in all scenarios.

DTR MADSQ

Scenario Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.029 0.036 0.006 0.004

I βV 0.32 0.336 0.026 0.089 0.321 0.008 0.001

µV 0.08 0.096 0.029 0.079 0.003

δH 0.13 0.157 0.057 0.135 0.007

Scenario Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.16 0.211 0.094 0.151 0.060

II βV 0.54 0.581 0.083 0.158 0.576 0.062 0.051

µV 0.23 0.279 0.089 0.217 0.054

δH 0.19 0.172 0.072 0.271 0.064

Scenario Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.03 0.032 0.012 0.043 0.043

III βV 0.14 0.146 0.013 0.613 0.159 0.013 3.474

µV 0.06 0.064 0.010 0.075 0.039

δH 0.11 0.124 0.063 0.150 0.063

Scenario Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.21 0.219 0.075 0.072 0.077

IV βV 0.24 0.234 0.047 1.042 0.162 0.032 6.723

µV 0.23 0.236 0.073 0.100 0.071

δH 0.22 0.195 0.061 0.148 0.063
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Table 3: Summary statistics for parameter estimates and M.C.S.E.

for 200 simulated samples; variance=0.16; normal error; the band-

width constant of the kernel smoothing (h̃ = ch5/9) is chosen to be

2 using different initial points (Init) in scenarios II.

DTR MADSQ

Parameter True Init I Estimate MCSE MSE Estimate MCSE MSE

θV 0.16 0.173 0.211 0.094 0.151 0.060

βV 0.54 0.592 0.581 0.083 0.158 0.576 0.062 0.051

µV 0.23 0.203 0.279 0.089 0.217 0.054

δH 0.19 0.170 0.172 0.072 0.271 0.064

ParameterTrue Init IIEstimateMCSEMSE EstimateMCSE MSE

θV 0.16 0.142 0.126 0.089 0.182 0.003

βV 0.54 0.484 0.538 0.071 0.221 0.568 0.009 0.0001

µV 0.23 0.248 0.198 0.078 0.247 0.003

δH 0.19 0.207 0.218 0.059 0.210 0.005
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Table 4: Summary statistics for model fitted parameter

estimates in both data sets using different estimation

algorithms in different scenarios.

a. 2003 Cairns outbreak

fSIR fSEIR A1

Parameter DTR MADSQ DTR MADSQ

ηV 5.753 ×10−8 0 0.031 0.001

βV 0.100 0.118 0.305 0.335

µV 0.815 0.041 0.079 0.075

δH 0.227 0.326 0.080 0.166

vSIR vSEIR A1

Parameter DTR MADSQ DTR MADSQ

θV 0.130 0.055 0.010 0.107

βV 0.133 0.094 0.318 0.388

µV 0.157 0.089 0.082 0.157

δH 0.251 0.108 0.130 0.184

b. 2008 Cairns outbreak

fSIR fSEIR A1

Parameter DTR MADSQ DTR MADSQ

ηV 1.17 ×10−17 0.002 0.015 0.003

βV 0.100 0.100 0.131 0.150

µV 0.026 0.027 0.040 0.037

δH 0.330 0.330 0.080 0.173

vSIR vSEIR A1

Parameter DTR MADSQ DTR MADSQ

θV 0.133 0.127 0.169 0.050

βV 0.101 0.096 0.217 0.139

µV 0.141 0.134 0.186 0.079

δH 0.249 0.250 0.231 0.090
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3.0 VALIDATION OF A DENGUE AGENT-BASED MODEL BY

COMPARING TO AN ODE MODEL, AND MATCHING WITH A REAL

WORLD DATA SET

3.1 INTRODUCTION

Agent-based (AB) models have been developed to model the heterogeneous interaction re-

lationships at an individual level under different conditions such as the container-inhabiting

mosquito simulation model (CIMSiM) and the dengue simulation model (DENSiM) [Focks

et al., 1995]. Given various epidemiological factors such as humans, mosquitoes, and environ-

ments from clinical studies [Watts et al., 1987, Kuno, 1995, Gubler, 1998], a study explored

how dengue transmission dynamics are affected by the super-production phenomenon, when

it is not able to be studied under the assumption of the homogeneous mixing between hu-

mans and mosquitoes [Padmanabha et al., 2012]. Recently, our group has been developing a

Computational Arthropod Agents (CLARA) AB model. It represents both individual hosts

(humans) and vectors (multiple life stages of Ae. aegypti: eggs, larvae, and the adults) via

simulating the individual-level dynamics: the spread of the dengue virus and the effects of

specific interventions. In addition, CLARA, which is spatially explicit, can track natural

movement of both hosts and vectors as well as structural features (buildings), landscape (fa-

vorable and unfavorable zones), and individual oviposition sites. This framework allows us

to explore spatial correlations in disease incidence and their dependence upon interventions.

Nonetheless, model validation for such models can be challenging and subject to criticism

due to lack of solid statistical theory.

Some previous studies have used ABM approaches [Deng et al., 2008, Perez and Dragice-

vic, 2009] but lack a clear validation procedure to build confidence in the modeling method-
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ology representing the spatially and temporally heterogeneous spread of the disease. On the

other hand, a study validated an AB model by comparing it with coarse epidemic curves

[Jacintho et al., 2010]. In addition, a simplified human-only SEIR AB model and its cor-

responding ODE model were compared [Rahmandad and Sterman, 2008]. An interesting

comparison result showed that the epidemic curve of the human infected cases in the AB

model under the fully connected or the random move network circumstances is close to the

curve in the ODE model because the fully connected or the random move networks in the

AB model are similar to the ODE assumptions: homogeneity and perfect mixing within

compartments.

Here, we propose a new ODE system with deterministic time lags and extend the idea

in Rahmandad and Sterman [2008] to compare this ODE system with CLARA at a two-

population model, since the interaction of different population is considered in both models.

In addition, we propose a novel validation approach. After linking the spatial and tempo-

ral distances of the human infected cases together and forming a spatial-temporal cluster

by the Laplacian matrix, we determine if there is a linear relationship between the spa-

tial and temporal distances to a putative index case (PIdC) within a space-time cluster.

The simulated data has been compared to the real world data in Cairns, Australia in 2003

[Vazquez-Prokopec et al., 2010]. These methods produce a robust approach for validating

the CLARA model, which can provide insights that are easily applied to various parts of

operations in the real world.

3.2 MODEL FORMULATION

3.2.1 Differential Equation Model

Direct comparison to our selected AB model requires a representation of coupled aquatic and

adult stages in the mosquito population. Therefore, we developed a simplified continuous

ODE model to reflect the interaction of humans with Ae. aegypti throughout the whole

mosquito life cycle: from eggs to larvae to their adulthood [Bailey, 1975, Atkinson et al.,
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2007]. An understanding of the life cycle of Ae. aegypti and how it interacts with humans is

described before developing a dengue model.

Female Ae. aegypti lay eggs that develop into larvae during an emergence period with a

relatively high survival probability. Larvae feed on microorganisms and particulate organic

matter and change into pupae during an emergence period with a density-dependent survival

probability. Pupae transform into adult Ae. aegypti. The entire aquatic life cycle lasts

approximately 10-14 days until emerging into adult Ae. aegypti.

Female Ae. aegypti begin seeking blood after they have mated with male Ae. aegypti. If

the target humans are infected, the dengue virus transmits from the humans to the female

Ae. aegypti. Then the female Ae. aegypti become infectious in 10-14 days if they survive

that long. On average, adult female Ae. aegypti can live about 10 days. Similarly, humans,

infected by the infectious female Ae. aegypti, become infectious 4-7 days after exposure and

remain infections for up to 12 days. For up to 6 months, they are not susceptible to other

dengue virus infections (i.e. serotypes have cross-protection) and then become susceptible

to the other serotypes of the dengue virus. Generally, humans can be infected with dengue

fever twice during their lifespan although tertiary infections have been observed [Alvarez

et al., 2006].

We make the following assumptions in our dengue ODE model

* Transition of larvae into adult Ae. aegypti is modeled directly without an intermediate

pupae status.

* Only female Ae. aegypti are modeled while assuming there are enough males for successful

mating with females.

* Only one-serotype of dengue virus is modeled (corresponding to a small outbreak).

* Infected female Ae. aegypti go through susceptible (S), exposed (E), and infectious (I)

states (no recovered state and they remain at this state until death).

* Vector control interventions and seasonal effects of the outdoor household carrying-

capacity of oviposition sites are not considered in the model.

* Symptomaticity is ignored in both the ODE model and the CLARA ABM for comparison.
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* Humans go through susceptible (S), exposed (E), infectious (I), and recovered (R) states.

* The human mortality rate is ignored because of the short time spans in these simulations.

* The initial conditions of the ODE model are known.

The transition between various states can be represented using an SEIR compartmental

model shown in Figure 8. Eggs and adult female mosquitoes die at a constant rate, but

the larval mortality depends on the larval density [Legros et al., 2009]. Infected mosquitoes

transmit the virus to susceptible humans, and infected humans transmit the virus to sus-

ceptible mosquitoes. Natural transition from S to E to I and to R in humans and from S to

E to I in female Ae. aegypti occurs at various rates drawn from the literature. The model

depicted in Figure 8 can be presented as a system of ODEs, which is similar to the model

described in Chapter 1 [Atkinson et al., 2007] as follows:

NV (t) = SV (t) + EV (t) + IV (t)

dEgV (t)

dt
= θVN

V (t)− γEEgV (t)− µEEgV (t)

dLV (t)

dt
= γEEgV (t)− γLL

V (t)− µL(L
V )LV (t)

dSV (t)

dt
= ηV γLL

V (t)− βV

NH
SV (t)IH(t)− µV S

V (t)

dEV (t)

dt
=

βV

NH
SV (t)IH(t)− (1− PV )

1/γV
βV

NH
SV (t− 1

γV
)IH(t− 1

γV
)− µVE

V (t)

dIV (t)

dt
= (1− PV )

1/γV
βV

NH
SV (t− 1

γV
)IH(t− 1

γV
)− µV I

V (t)

NH = SH(t) + EH(t) + IH(t) +RH(t)

dSH(t)

dt
= − βH

NH
SH(t)IV (t)

dEH(t)

dt
=

βH

NH
SH(t)IV (t)− βH

NH
SH(t− 1

γH
)IV (t− 1

γH
)

dIH(t)

dt
=

βH

NH
SH(t− 1

γH
)IV (t− 1

γH
)− δHI

H(t)

dRH(t)

dt
= δHI

H(t)
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where EgV (t), LV (t), and NV (t) are the number of eggs, larvae, and the total number

of female Ae. aegypti, respectively at time t. SV (t), EV (t), and IV (t) are the number of

susceptible, exposed, and infectious female Ae. aegypti, respectively at time t. NH is the

total fixed number of human, which is calculated as a total of the number of susceptible,

exposed, infectious, and recovered humans at time t, and are denoted by SH(t), EH(t), IH(t),

and RH(t), respectively. Note that in the third equation, the death rate of larvae is usually

modeled as µL(L
V ) = σ(1 + LV /κ), where κ is the carrying capacity of all oviposition

sites. In addition, (1 − PV )
1/γV βV

NHS
V (t − 1

γV
)IH(t − 1

γV
) represents the number of new

infected humans per day in the fourth and fifth equations, where PV , γV , and βV are the

death probability of female Ae. aegypti, the female Ae. aegypti infection rate, and the virus

transmission rate from humans to female Ae. aegypti, respectively. Although the factor

e−µV /γV is used in Atkinson et al. [2007], where µV is the death rate of female Ae. aegypti,

this factor is replaced by (1−PV )
1/γV . That is because this ODE system is to compare with

CLARA and the replaced factor more directly represents the survival probability of female

Ae. aegypti. This replacement leads to increase the new infected female Ae. aegypti per day

but decrease the exposed female Ae. aegypti per day.

There are 14 parameters including κ, σ, PV , γV , βV , and µV in the model in total. θV

is the egg laying rate from the effective female Ae. aegypti (defined below). γE is the egg

hatching rate. γL is the larvae eclose rate. ηV is the female to male Ae. aegypti ratio. γH

and δH are the human infection and recovery rates. µE is the death rate of eggs. βH is the

virus transmission rate from female Ae. aegypti to humans. Note that µV is a function of

PV and it can be formulated as follows:

Eagev =
1

µV

=
n∑

i=1

i
(1− PV )

i∑n
i=1(1− PV )i

where Eagev and n are expected and maximum ages of female Ae. aegypti, respectively.

Here, some standard parameters are substituted by a combined parameter because of

the statistical identifiability. Those combined parameters are as follows:

* The egg laying rate from the effective female Ae. aegypti (θV ) combines the number of

progeny per female Ae. aegypti and the proportion of the effective female Ae. aegypti.

Here an effective female Ae. aegypti means that a female Ae. aegypti is ready to lay eggs.
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* The virus transmission rate from humans to female Ae. aegypti (βV ) combines the base

biting rate and the probability that a bite infects a susceptible female Ae. aegypti.

* The virus transmission rate from female Ae. aegypti to humans (βH) combines the base

biting rate and the probability that a bite infects a susceptible human.

3.2.2 Experimental Design

For model comparisons, we link those parameters in CLARA to the ODE model based on

the following procedures and parameter values from both models are in Table 1:

* The total carrying capacity (κ), σ, the female to male Ae. aegypti ratio (ηV ), and the

egg death rates (µE) are the same in both models.

* The extrinsic incubation period (Te) of female Ae. aegypti, the intrinsic incubation period

(Ti) and the disease duration (Tr) of humans are the inverse of the female Ae. aegypti

infection rate (γV ), the human infection rate (γH), and the recovery rate (δH), respec-

tively.

* The egg hatched time (Th), the larvae eclose time (Tl), and the averaged death age (Td)

of female Ae. aegypti are the inverse of the egg hatching rate (γE), the larvae eclose rate

(γL), and the female Ae. aegypti death rates (µV ), respectively.

* The multiplication of the number of progeny (Ne) per female Ae. aegypti and the pro-

portion (Pe) of the effective female Ae. aegypti is the egg laying rate from the effective

female Ae. aegypti (θV ). Here the proportion of the effective female Ae. aegypti is a

function of the genotrophic cycle length and other parameters related to the genotrophic

cycle. It is a complicated relationship and we are not able to derive an explicit formula,

but the empirical value is calculated directly in the AB model simulation.

* The multiplication of the base biting rate (Br) and the probability (PV ) that a bite

infects a susceptible female Ae. aegypti is the virus transmission rate from humans to

female Ae. aegypti (βV ).
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* The multiplication of the base biting rate (Br) and the probability (PH) that a bite

infects a susceptible human is the virus transmission rate from female Ae. aegypti to

humans (βH).

In addition, we let the number of female Ae. aegypti be close at least in both models

because female Ae. aegypti interact with humans directly.

Besides model comparisons, the model flexibility of CLARA can be performed by indi-

vidual heterogeneity and network topology. In the previous study [Rahmandad and Sterman,

2008], in order to compare a simplified human-only SEIR AB model with a corresponding

ordinary differential equation model, five different network structures of contacts among hu-

mans were created and the degree of human heterogeneity in the ABM could be varied. In

our study, we varied the degree of heterogeneity in human and female Ae. aegypti, but only

created two network structures of contacts among humans and female Ae. aegypti which are

similar to the random move (RM) and small world (SW) in Rahmandad and Sterman [2008].

These two networks have important meaning and will be explained later. More detailed

descriptions of the individual heterogeneity and the network topology are as follows. For het-

erogeneity among humans and female Ae. aegypti in CLARA, some parameters are allowed

to vary in each individual. These are drawn from appropriate probability distributions. Two

examples for each human are the intrinsic incubation period (IIP) and the disease duration.

Female Ae. aegypti are more varied, examples being the extrinsic incubation period (EIP),

the death rates of eggs and larvae, the genotrophic cycle length, and the factors related to

the genotrophic cycle. In the heterogeneous condition, each human and female Ae. aegypti

has their own personal settings for each parameter. Each parameter follows a certain distri-

bution: IIP and EIP (Rayleigh distribution), the death rates of eggs and larvae (binomial),

and others (uniform distribution between two certain values from previous clinical studies).

In the homogeneous condition, the values of the parameter set in CLARA in each agent is

identical to the values in the ODE model. However, the genotrophic cycle length and the

factors related to the genotrophic cycle for each Ae. aegypti are varied in order to maintain

the equilibrium states in the number of the eggs, larvae, and the female Ae. aegypti. Thus,

both models are compared under the same equilibrium states.

47



For network structures of contacts among humans and female Ae. aegypti, RM is ex-

pected to create a scenario similar to the ODE model. Because the ODE model assumes

homogeneity and perfect mixing within compartments, humans are allowed to be at any

position at any time and the biting radius of the female Ae. aegypti is as large as the whole

environment in RM. On the other hand, the SW, closer to the real world scenario, is used

to compare with RM and SW means each human to be at their work place or school for two

hours per day and at home for the rest of the day. Besides, the biting radius of the female

Ae. aegypti is only a small number (Rb), roughly corresponding to the size of a house.

Moreover, two factors need to be controlled in order to compare different network topol-

ogy. First, the number of female Ae. aegypti should be close at least in both network struc-

tures. The number of female Ae. aegypti is controlled by the number of larvae and it depends

on the structure of the oviposition sites. If the locations of all oviposition sites are distributed

in or on the houses (OVIP-In), the likelihood that female Ae. aegypti hatch eggs in the same

oviposition sites will increase. Then the total number of larvae will decrease because the

death rate of larvae is density dependent. However, if the locations of all oviposition sites

are randomly distributed throughout the whole environment (OVIP-Random), the likelihood

that female Ae. aegypti lay eggs in the same oviposition sites will decrease and the total num-

ber of larvae will increase. Therefore, under the distribution of OVIP-In, we compare SW

with RM. In addition, under the distribution of OVIP-Random, RM is compared with the

ODE model (more explanations of the realistic approach below).

Second, the mean number of links per node should be the same in both networks. The

outbreak spreading depends on the mean number of links per node. If the mean number

of links per node is larger, spreading is faster. Previously, a fixed number of real links is

used to parameterize the model so that two networks have the same mean number of links

per node [Rahmandad and Sterman, 2008]. Here, we considered a more flexible method to

keep the mean number of links per node the same in both network topology. The details are

described as follows:

The mean number of links per node in CLARA can be defined as the number of female

Ae. aegypti multiplied by the base contact frequency and the percentage that the overall

moving range of female Ae. aegypti and the human moving range overlap, divided by the
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number of humans around those female Ae. aegypti. The overall moving range means the

union of the biting and moving range of female Ae. aegypti in a certain area. First, let the

mean number of links per node per day per property in RM and SW be denoted by L̄r

and L̄s, respectively; the base biting rate be denoted by Br [Scott et al., 1993]; the total

number of female Ae. aegypti in RM and SW be denoted by n1 and n2, respectively; the

percentage that the overall moving range of female Ae. aegypti and the human moving range

are overlapped in RM and SW be denoted by P1 and P2, respectively; the number of humans

be the same in both networks and denoted by T ; the number of houses be denoted by H

(area surrounding a house); the number of the humans per property be t; the number of the

female Ae. aegypti per property be nij, i = 1 for RM, 2 for SW, j from 1 to H. Then the mean

number of links per node per day per property in RM (L̄r) are
n1BrP1

T
. Because humans

are allowed to be at any position at any time and the biting radius of female Ae. aegypti is

as large as the whole environment in RM, P1 will equal to 1. In addition, the mean number

of links per node per day per house in SW (L̄s) are
n2jBrP2

t
, j from 1 to H. Because both

female Ae. aegypti and humans are in the properties in SW, P2 will equal to 1 as well. Thus,

if the number of female Ae. aegypti per property are the same in SW and the total number

of the female Ae. aegypti in both networks are the same, the mean number of links per node

per day per property in both networks will be the same. It can be shown in the following

formulas:

L̄s =
n2BrP2

Ht
=

n2BrP2

T
=

n2Br

T
=

n1Br

T
=

n1BrP1

T
= L̄r

n2 =
H∑
j=1

n2j = Hn2j, n2s = n2t, s, t ∈ {1, . . . , H}

In order to let the number of female Ae. aegypti per property be the same in SW and because

the number of female Ae. aegypti is proportional to the carrying-capacity of ovi-site under

the same structure of the oviposition sites (OVIP-In), we let the carrying capacity of ovi-site

be the same in each house and no ovi-site outside the house. Additionally, the number of

ovi-sites and the carrying capacity of ovi-site are the same in both networks, so the total

number of female Ae. aegypti in both networks will be the same. Of course, this is an ideal

approach. In a more realistic approach, we would let all houses contain the majority of the
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ovi-sites and some ovi-sites can be outside. On the other hand, in OVIP-Random, all houses

contain 50% of the ovi-sites and the other 50% are randomly outdoor. In addition, household

sizes and age structures are drawn from the census data, but the sizes of the workplaces and

schools are varied. The number of ovi-sites in both structures are similar. Thus, the mean

number of links per node per property in both networks will be close but not the same.

Under the above settings, we can see differences between the ODE model and RM in

OVIP-Random are due to heterogeneity among individuals or the discrete and stochastic

effect of individuals in CLARA. Differences between RM and SW in OVIP-In, however, are

due to the network topology or the discrete and stochastic effect of individuals in CLARA.

3.2.3 New features in CLARA

The vector control interventions and the seasonality effect are in the real world data in

Cairns, Australia in 2003 (the data is described in the section of Results) but the basic

CLARA model did not have these features, so we added these features to the base model

first. In order to test the linear relationship between the spatial and temporal distances to

a PIdC within a space-time cluster, we implemented the clustering algorithm as described

in Vazquez-Prokopec et al. [2010] as well.

3.2.3.1 Vector Control Intervention Algorithm We developed an intervention ker-

nel using algorithms that match real world control strategies for reducing mosquitoes, larva,

and containers. First, the interventions are scheduled either when a person is infected by

the dengue virus and the fever is symptomatic, or when a small probability random event

occurs. Then, at a scheduled date, the interventions are carried out within a certain dis-

tance of the house where the infected person lives. If there is any household member who

does not consent to the indoor intervention, the intervention will only be implemented in

a certain range outside of their house. In addition, the differences between the algorithms

among these three interventions are as follows: the mosquitoes and larva which are sprayed

by the insecticide are assigned a higher death rate, and the rate follows the distribution that

has a fixed value before a certain date and decreases exponentially after that certain date.
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However, a certain percentage of the eggs and larva is removed from the oviposition sites in

the container-reduced intervention.

3.2.3.2 Seasonality Algorithm When considering that the outdoor household carry-

ing capacity of oviposition sites is a seasonal function of time, we let the outdoor household

carrying capacity of oviposition sites (Kout) be the mean outdoor carrying capacity of ovipo-

sition sites (Kmean) times a cosine function whose maximum value is at the day (Dhr) with

the highest rainfall precipitation at that certain location in a given year and periodic cycle

length (Dyear) is a year. The formula is as follows:

Kout(t) = Kmean(1 + cos(2π(t−Dhr)/Dyear))

3.2.3.3 Clustering Algorithm In order to form a space-time cluster in a simulation,

the Laplacian clustering matrix is first formed based on time and distance criteria given the

simulated data of the infected humans at a certain time and location. The time and distance

criteria are the total incubation periods and the mosquito dispersal distance, respectively.

Each row of the Laplacian matrix has the number 1 or 0 to represent the relationship between

these infected humans. 1 means the two assigned infected humans are in the same cluster and

0 means the two assigned infected humans are not in the same cluster. Even if two assigned

infected humans in the same row are not in the same cluster, they will be collected into the

same cluster if there are other mutually infected humans in these two rows of the Laplacian

matrix. Then, all infected humans are grouped into distinct clusters and the spatial and

temporal distances to a PIdC within a space-time cluster is plotted.

3.3 RESULTS

3.3.1 Model Comparison

Key parameter values from both models are in Table 5 and the procedures to link them are

described in the method section above. In addition, total human population is 502, initial
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female Ae. aegypti population is 2 times larger than total human population [Williams et al.,

2013], the simulation time period is 180 days, and all AB model results in the Figures are

an average of 100 simulations. Since the time unit in CLARA and the ODE model is an

hour and a day, respectively, the results in CLARA are rescaled to match the time unit in

the ODE model.

In this study, different models or networks are compared by exploring three standard

measures of the SEIR model [Rahmandad and Sterman, 2008]: the maximum symptomatic

infected population (peak prevalence, Imax), the time from initial exposure to the maximum of

the symptomatic infected population (the peak time, Tp), and the fraction of the population

ultimately infected (the final size, F ).

The differences between the ODE model and RM in the OVIP-Random structure for

different state variables in the heterogeneous/homogeneous condition are shown in Figure 9.

The number of the total female Ae. aegypti are similar in both models (Figure 9.c-e). The

averaged epidemic grows faster in the ODE model (Figure 9.e and 9.h: Tp = 55 versus 81/82

days in the female Ae. aegypti and 39 versus 67/67 days in humans). Both models have

similar averaged peak prevalence (Figure 9.e and 9.h: Imax = 701 versus 1,106/1,061 female

Ae. aegypti and 114 versus 130/117 humans). In both models, all humans are ultimately

infected. Unfortunately, the number of eggs and larvae of the Ae. aegypti are not able

to be matched in both models (Figure 9.a-b). Given the same egg laying rate from the

effective female Ae. aegypti in both models, although the number of the eggs and larvae of

the Ae. aegypti are close (shown in Figure S1.a-b), the number of the female Ae. aegypti

will be more in the ODE model and the rest of the results will differ in both models (Figure

S1.c-h). However, it is more important to have the same magnitude in the total number

of the female Ae. aegypti for model comparison, because this directly affects transmission.

Thus, the egg laying rate from the effective female Ae. aegypti is rescaled from 1.3 to 0.61

per day in the ODE model.

The differences of RM in both structures of the oviposition sites for different state vari-

ables in the heterogeneous condition are shown in Figure 10. Since the likelihood that female

Ae. aegypti hatch eggs in the same oviposition sites in both structures is different, the num-

ber of the eggs, larvae, and the total female Ae. aegypti are more in the OVIP-Random
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structure (Figure 10.a-e). The averaged epidemic grows faster in the OVIP-Random struc-

ture (Figure 10.e and 10.h: Tp = 81 versus 109 days in the female Ae. aegypti and 67 versus

95 days in humans), and has a larger averaged peak prevalence (Figure 10.e and 10.h: Imax

= 1106 versus 121 female Ae. aegypti and 130 versus 53 humans), as well as finally infecting

more humans (F = 100% versus 98%).

The differences between RM and SW in the OVIP-In structure for different state variables

in the heterogeneous condition are shown in Figure 11. When the number of the eggs, larvae,

and the total female Ae. aegypti are similar in both networks (Figure 11.a-e), the averaged

epidemic grows faster, has larger averaged peak prevalence, and finally infects more humans

in the RM network (F = 98% versus 40%). However, the peak time of SW is unobtainable

within the duration of this simulation.

In addition, we show some results for alternative scenarios. The difference between RM

in the OVIP-In structure in the heterogeneous and the homogeneous condition are shown in

Figure S2. When the number of the eggs, larvae, and the total female Ae. aegypti are similar

in both conditions (Figure S2.a-e), the averaged epidemic grows similarly (Figure S2.e and

S2.h: Tp = 109 versus 110 days in the female Ae. aegypti and 95 versus 96 days in humans),

and both conditions ultimately have similar averaged peak prevalence (Figure S2.e and S2.h:

Imax = 121 versus 121 female Ae. aegypti and 53 versus 52 humans) and infect humans at

a same level (F = 98% versus 98%). When comparing the difference between SW in the

OVIP-In structure in the heterogeneous and the homogeneous condition, similar patterns

for both conditions are shown in Figure S3. However, the peak time of SW is unobtainable

within the duration of this simulation.

Moreover, for the sensitivity analysis of the population scale, we create two more scenarios

for 800 and 210 human populations in 180 and 118 simulation days, respectively [Rahmandad

and Sterman, 2008]. The differences between the ODE model and two ABM networks in

the heterogeneous condition for the 800 human population scenario are shown in Figure

S4. The results are similar to those in the 502 human population scenario (Figure 9-10-11).

When the number of the total female Ae. aegypti are similar in the ODE model and RM

in OVIP-Random (Figure S4.c-e), the averaged epidemic grows faster in the ODE model

(Figure S4.e and S4.h: Tp = 58 versus 83 days in the female Ae. aegypti and 42 versus 68
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days in humans). RM in OVIP-Random has a larger averaged peak prevalence of female

Ae. aegypti but its averaged peak prevalence is similar to the ODE model’s averaged peak

prevalence in humans (Figure S4.e and S4.h: Imax = 1,020 versus 1,903 female Ae. aegypti

and 163 versus 221 humans). Finally, both models infect all humans. On the other hand,

when the number of the total female Ae. aegypti are similar in RM and SW in OVIP-In

(Figure S4.c-e), the averaged epidemic grows faster in the RM structure. RM in OVIP-In

has larger averaged peak prevalence. Finally, more humans are infected in the RM network

(F = 98% versus 42%). However, the differences between RM and SW are very large and

the peak time of SW is unobtainable within the duration of this simulation because of the

large simulation environment. When comparing the differences between the ODE model and

two ABM networks in the heterogeneous condition for the 210 human population scenario,

patterns (Figure S5) are similar to those of the 800 human population (Figure S4).

3.3.2 Data Validation

The data set is from one of the largest outbreaks that occurred in the city of Cairns, Australia

in 2003. The onset of symptoms in the first reported case occurred on January 22 in Parra-

matta Park (PP) but the dengue spread was not identified until March 2. Mosquito control

measures were initiated the next day. A total of 383 laboratory-confirmed mild DENV-2

symptomatic cases were registered within urban Cairns over the 25-week epidemic period.

There is a linear relationship between the spatial and temporal distances to a PIdC within

a space-time cluster in Cairns (Figure 12) [Vazquez-Prokopec et al., 2010], and the detailed

data description can be found in Vazquez-Prokopec et al. [2010] as well.

In order to see if this observation of the linear relationship can be replicated in CLARA,

some initial settings for those new features in CLARA are listed:

* The time and space criteria of the clustering algorithm are 20 days and 100 meters,

respectively.

* The first day of the control interventions is the 42nd day after the date that the first

human was infected.

* The intervention coverage radius is 100 meters.
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* 80% of Ae. aegypti within 100 meters will be sprayed.

* The mortality rate of larvae and Ae. aegypti will be 0.9 per day before the 21st day

and have a 0.083 exponential decay after the 21st day of each vector and larvae control

intervention.

* 60% of the eggs and larvae will be removed under each container control intervention.

* The intervention compliance ratio of the infected household is 40%.

* The symptomatic ratio of the symptomatic to inapparent infections is 25%.

* The time region to schedule the interventions is from the 1st day to the 25th day after

the infection or from the 5th day to the 25th day after the infection for either the

symptomatic cases or the random event cases.

* The maximum value of the seasonality function is the 55th day after the date that the

first human was infected.

* Total realizations are 10 with the human population 2,828.

When using the clustering algorithm, we require the number of the elements in each

cluster be more than 2. We can see that there is a linear relationship between the spatial

and temporal distances to a PIdC within a space-time cluster from one of the CLARA

realizations in Figure 12.b. In addition, we tried to fit a linear regression line to the data

of the spatial and temporal distances to a PIdC within each space-time cluster in the real

world data and the CLARA realizations. The mean and the standard deviation of the slope

(measured in meters per week) of the line in the real world data and CLARA are (25.87,

24.07) and (25.5033, 32.9605), respectively. From another point of view (Figure 12.c-d),

except there are some outliers of the slopes in each realization, most of the slopes in CLARA

realizations are similar to the ones in the real world data.
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3.4 DISCUSSION

Computational modelers always face trade-offs. ODE models are the standard to model

dynamic systems involving interactions between various populations because of their solid

statistical theory and quick calculations. The assumptions of the homogeneity and perfect

mixing of the ODE model may not accurately represent the real world. On the other hand,

AB models may lack the solid statistical theory, but can model heterogeneity at the individual

level. Here, we propose a set of ODEs with deterministic time lags to model the incidence of

dengue virus infection and compare it with our CLARA AB model. In CLARA AB model,

we compare different network topology as well. The results not only show similarity in both

models, but also indicate the flexibility of CLARA.

Differences between the ODE model and CLARA are due to the heterogeneity among

individuals or the discrete and stochastic effect of individuals in CLARA. In three standard

public health measures, the peak time resulting from the ODEs is earlier than that in the

AB model networks, but the mean peak time in RM is closer to the ODE model. This

establishes the correspondence of ODE and AB models in the fully randomized case, con-

firming the flexibility of AB model to explore meaningful differences between heterogeneous

and homogeneous dynamics. In addition, the results of the human peak prevalence and the

final size in the ODE model are similar to RM, but have huge differences compared to SW

in heterogeneous or homogeneous conditions (in Figure 9-10-11 and S4-S5). Moreover, there

are only small differences in both conditions no matter what the structures of the network

or the oviposition sites are (in Figure 9, S2, and S3).

For validation purposes, we took a different approach than comparing the coarse epidemic

curve to the real world data because of the high asymptomaticity of incidences and the

limited data availability. The ratio of symptomatic to inapparent infections varies from one

reference to another [Yoon et al., 2012, Endy et al., 2011]. Even if a specific ratio can be

calibrated by one data set, the ratio may not be able to be validated from another similar

data set. Thus, we compare the simulated pattern to the pattern in the real world data and a

linear relationship between the spatial and temporal distances to a PIdC within a space-time

cluster which is shown in the real world data can be reproduced from CLARA in a small
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population scale. Although the linear relationship is replicated under the assumption of 25%

symptomatic ratio of symptomatic to inapparent infected humans, the relationship can be

shown no matter what value of symptomatic ratio is specified.

Unfortunately, the number of eggs and larvae of the Ae. aegypti are not able to be

matched in both models in the original settings, so the egg laying rate from the effective

female Ae. aegypti needs to be rescaled to a smaller value in the ODE model to match the

number of the female Ae. aegypti. We still observe some differences between a homogeneous

and perfectly mixed scenario and the current CLARA. However, these results demonstrate

preliminary validation of CLARA at a certain level and provide us with the confidence that

our simulation results correspond to a well constructed ODE model and to the real world.

3.5 FIGURES AND TABLES

Figure 8: The diagram of the simplifed model of the interaction between humans and

mosquito in different stages
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Figure 9: Model comparison between ODE (Red-) and heterogeneous (Blue-.) or homoge-

neous (Green–) RM network ABM for different state variables when the number of total

female Ae. aegypti are at the same level in both models
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Figure 10: Heterogeneous RM network ABM in OVIP-Random (Blue-.) and OVIP-In

(Green–) for different state variables
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Figure 11: Heterogeneous RM network ABM (Blue-.) and SW network ABM (Green–) for

different state variables
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Figure 12: The linear relationship between the spatial and temporal distances to a putative

index case (PIdC) within a space-time cluster in Cairns (left) and CLARA (right)
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Table 5: Parameters in both models: ODE (above) and CLARA (below)

Parameter Value Units Parameter Value Units

σ 0.025 θV 0.61 1/Day

ηV 0.5 γE 0.25 1/Day

κ 13000 γL 0.07 1/Day

βH 0.51 1/Day µE 0.01 1/Day

γH 0.174 1/Day βV 0.51 1/Day

δH 0.207 1/Day µV 0.141 1/Day

γV 0.086 1/Day

Parameter Value Units Parameter Value Units

σ 0.025 Ne 8 egg

ηV 0.5 Pe 0.076

κ 13000 Th 4 Day

Br 0.567 1/Day Tl 14 Day

PH 0.9 µE 0.01 1/Day

Ti 5.75 Day PV 0.11

Tr 4.831 Day Td 7.1 Day

Rb 5 Meter Te 11.6 Day
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4.0 CONCLUSIONS AND DISCUSSION

4.1 SUMMARY

In the first part of this dissertation (Chapter 2), we proposed a new ODE model (vSEIR). The

proposed model, unlike the simplified SIR model, includes the exposed state variables and the

varied birth rate of the female Ae. aegypti. Additionally, it does not require the information

about the aquatic stages of the Ae. aegypti. We demonstrated that the proposed vSEIR

ODE model provides a better fit to the data than the other three existing ODE models.

We also compared two discretization methods for initial value problems: a derivative-free

mesh adaptive direct search method with quadratic models (MADSQ) and a derivative trust

region (DTR) method.

Our simulation studies showed that MADSQ can provide a better solution to the ODE

compared to DTR when the parameter space has many local minima. Further simulation

results for parameter estimation in different scenarios are included in Appendix B. Table S1,

S2, S3, and S4 summarize the performance of the parameter estimation in both methods when

the simulated data variance (Zt) ranges between 0.1 to 2.0 for scenarios I to IV. The results

showed that approximately unbiased estimators may be obtained in scenario I by MADSQ

(Table S1) and in scenario IV by DTR (Table S4) even if the simulated data variance (Zt)

is large. The MADSQ estimates are poor in scenario IV even when the simulated data

variance (Zt) was small. However, approximately unbiased estimators may be obtained

by both methods in scenario presented in Table S5 which follows the same assumption as

in scenario IV even if the simulated data variance (Zt) was large. Table S6 displays the

estimator and the Monte Carlo standard error (MCSE) of the virus transmission rate from

humans to female Ae. aegypti (βV ) keeping all others fixed using only the simulated data
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before the date of the vector control intervention when the simulated data variance (Zt)

equals to 2.0 for scenarios I to IV. The results showed that the unbiased estimator would be

achieved in scenarios I and II, which include 40 time points, but only approximately unbiased

estimator are obtained in scenarios III and IV, since these two scenarios only have 22 time

points. However, as the simulated data variance get small, unbiased estimators tend to be

obtained as shown in Table S7.

In the second part of this dissertation, we proposed two methods to validate a dengue

ComputationaL ARthropod Agents (CLARA) AB model. First, we compared our CLARA

AB model with a proposed ODE model with deterministic time lags. The results showed

the similarity of the two models. Second, because the ratio of symptomatic to inapparent

infections varies from one reference to another [Yoon et al., 2012, Endy et al., 2011] and

the lack of existing data, we avoided comparing the epidemic curve to the real world data,

but matched the simulated data to the real world data by a documented linear relationship

between the spatial and temporal distances to a putative index case (PIdC) within a space-

time cluster. The results showed that the linear relationship can be replicated.

4.2 FUTURE WORK

4.2.1 A Proposed Dengue ODE Model with Asymptomatic Compartment

In Chapter 2 we assumed that all infected humans are symptomatic. We would like to

extend the model to consider the fact that a fraction of infected humans may be asymp-

tomatic in reality. In addition, we may assume that only a portion of the asymptomatically

infected humans can transmit the virus and assume that the virus transmission rate from

female Ae. aegypti to humans and vice versa are time dependent [Reiner Jr. et al., 2014].

After following the same assumptions in Chapter 2 except that not all infected humans are

symptomatic, the vSEAIR model can be presented as an ODE model as follows:
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NV (t) = SV (t) + EV (t) + IV (t)

dSV (t)

dt
= θVN

V (t)− βV (t)

NH(t)
SV (t)(αHA

H(t) + IH(t))− µV S
V (t)

dEV (t)

dt
=

βV (t)

NH(t)
SV (t)(αHA

H(t) + IH(t))− γVE
V (t)− µVE

V (t)

dIV (t)

dt
= γVE

V (t)− µV I
V (t)

NH(t) = SH(t) + EH(t) + AH(t) + IH(t) +RH(t)

dSH(t)

dt
= − βH(t)

NH(t)
SH(t)IV (t)

dEH(t)

dt
=

βH(t)

NH(t)
SH(t)IV (t)− γHE

H(t)

dAH(t)

dt
= γH(1− κH)E

H(t)− δHA
H(t)

dIH(t)

dt
= γHκHE

H(t)− δHI
H(t)

dRH(t)

dt
= δH(A

H(t) + IH(t))

where NV (t) is the number of the total number of female Ae. aegypti at time t and SV (t),

EV (t), and IV (t) are the number of susceptible, exposed, and infectious female Ae. aegypti,

respectively at time t; Additionally, NH is the total fixed number of humans at time t and

is calculated as a total of the number of susceptible, exposed, infectious symptomatically,

infectious asymptomatically, and recovered humans at time t denoted by SH(t), EH(t),

IH(t), AH(t), and RH(t), respectively.

There are nine parameters in the vSEAIR model mentioned above. θV is the birth rate of

Ae. aegypti in the model with the varied birth of the female Ae. aegypti, κH is the proportion

of the symptomatically infected humans, and αH is the proportion of the asymptomatically

infected humans which can transmit the virus. γV (µV ) is female Ae. aegypti infection (death)

rate. γH (δH) is the human infection (recovery) rate. The virus transmission rates from

humans to female Ae. aegypti and from female Ae. aegypti to humans are time-dependent

and are denoted by βV (t) and βH(t), respectively.
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Compared to the vSEIR model, this model involves three non-identifiable parameters:

αH , γH , and κH . This issue needs to be resolved before fitting the model to the data. One

way to address it is to assume one of the parameters to be known. For example, γH is easier

to be determined in the literature but κH has larger variability [Yoon et al., 2012, Endy

et al., 2011].

4.2.2 Other Estimation methods in Ordinary Differential Equation Models

In Chapter 2, we considered estimating parameters in a simplified dengue ODE model by

using the derivative free MADSQ method. We demonstrated via simulations that the deriva-

tive free MADSQ method is better than derivative trust region (DTR) when the parameter

space has many local minima. However, we would like to confirm this by comparing the es-

timation results with another derivative estimation method, interior-point filter line-search

algorithm [Wächter and Biegler, 2006]. There are two iterative approaches to find parameter

estimates: trust region and line search. When using the trust region approach, DTR first

chooses a step size (the size of the trust region) and then a step direction. The interior-point

filter line-search follows an inverse mechanism: choose a step direction and then a step size.

When seasonality such as recruitment, mortality and biting rates, and duration of EIP of the

dengue ODE model is included in the model [Bartley et al., 2002], the interior-point filter

line-search algorithm can perform well [Word et al., 2012].

4.2.3 Dengue Stochastic Differential Equation (SDE) Models and Parameter

Estimation

While parameters can be estimated well by minimizing an objective function via least squares

for nonlinear deterministic ODE system in Chapter 2, the stochastic nature of the problem

is usually unaccounted for. Thus, we would like to develop and implement a nonlinear

stochastic differential equation system (SDE) for dengue dynamics. Three main approaches

have been proposed in the literature. The first approach is to estimate a numerical solution

set of the SDE system directly. But it is difficult to have an accurate numerical solution set of

the SDE system by using an objective function based on least squares with the discretization
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methods for initial value. Solutions approximated by higher order integration schemes are

hardly tractable; solutions approximated by lower order integration schemes such as Euler

are biased unless the time scales of integrating and sampling are equal and extremely small,

such as 0.0001s [Timmer, 2000]. The other two approaches are likelihood-based. The first

likelihood-based approach is to use simulated maximum likelihood estimation. This is based

on the fact that the likelihood function for a sampled time series of length N with the Markov

property can be written as

L(x(t1), x(t2), . . . , x(tN); θ) = π(x(t1))Π
N−1
i=1 p(x(ti+1)|x(ti)), θ).

Then the conditional densities p(x(ti+1)|x(ti)) can be estimated by methods such as kernel

estimation. While this approach works in univariate models [Singer, 2002], it is not applicable

in multivariate models due to its high computational burden. The second likelihood-based

approach is to use the Bayesian imputation or approximated function methods. The Markov

chain Monte Carlo (MCMC) scheme is used in the Bayesian imputation method. This

strategy works well in univariate models [Elerian et al., 2001], as well as in multivariate

models with partial state variables and observed errors [Golightly and Wilkinson, 2008].

On the other hand, the extended Kalman filter (EKF) scheme offers an iterative procedure

to approximate the likelihood function. This strategy works efficiently in univariate models

[Singer, 2002]. It can also be used to approximate the posterior distribution of the parameters

and a reasonable set of estimators can be obtained from it [Mbalawata and Särkkä, 2013].

Therefore, we would like to see if the Bayesian imputation or approximated function methods

can be applied to our model and used to develop an accurate solution, as it is computationally

more efficient than other methods.

4.3 PUBLIC HEALTH SIGNIFICANCE

As mentioned in Chapter 1, dengue fever is currently the world’s fastest growing vector-

borne disease. While more than 2.5 billion people living in areas of risk, around 50-100

million people are infected every year, mostly in urban and semi-urban areas [Halstead,
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2007]. Although countries have implemented different vector control strategies [Yeap et al.,

2011], these interventions have achieved only limited success, and the trend of the global

spread is expanding [Horstick et al., 2010]. No licensed dengue vaccine is available for the

public either, although several vaccine candidates are currently being evaluated in clinical

studies [Guy et al., 2011]. Thus, global control of dengue fever is a major public health

problem with significant economic, political, and social impact [Kyle and Harris, 2008] and

developing different models to tackle the problem is the main task in this field. Modeling

the spread of dengue, however, is challenging not only because it involves numerous complex

factors such as the interactions between humans and mosquitoes, multiple coexisting virus

serotypes, and high asymptomaticity of the initial infection [Kyle and Harris, 2008], but also

because of the lack of existing data [Andraud et al., 2012].

An efficient dengue surveillance system can provide decision makers with a reasonable

solution to existing and potential public health problems preventing the speed of dengue

during an outbreak. Accuracy in modeling of dengue incidence over time is an important

first step to develop such a system.

In this dissertation, we proposed and validated several methods of modeling that can be

easily used in practice. This will provide better understanding of the mechanisms of dengue

outbreaks and hence allow public health professionals to develop proper interventions.
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APPENDIX A

PROOF OF MATHEMATICAL PROPERTIES OF VSEIR MODEL

A.1 PROOF OF MATHEMATICAL PROPERTIES

Proof of Theorem 3 To prove theorem 3, the Jacobian of the system (1) at equilibrium

points xdfe is given by:

J(xdfe) =



−γV − µV 0 0 βV NV

NH 0

γV −µV 0 0 0

0
βH(N

H −RH)

NH
−γH 0 0

0 0 γH −δH 0

0 0 0 δH 0


Additionally, the characteristic polynomial is as follows:

−λ{(−γV − µV − λ)(−µV − λ)(−γH − λ)(−δH − λ)− γV γHβV βHN
V (NH −RH)

(NH)2
}

= λ4+(γV +µV +µV +γH+δH)λ
3+{(γV +µV )(µV +γH+δH)+µV (γH+δH)+γHδH}λ2+{(γV +

µV )(µV γH +µV δH +γHδH)+µV γHδH}λ+{(γV +µV )µV γHδH −
γV γHβV βHN

V (NH −RH)

(NH)2
}

= a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0, 0 ≤ RH ≤ NH .

Then, when using the criteria of Routh Hurwitz, the characteristic polynomial needs to

satisfy the following three conditions.

a3a2 − a4a1

= (γV + µV + µV + γH + δH){(γV + µV )(µV + γH + δH) + µV (γH + δH) + γHδH} − {(γV +
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µV )(µV γH + µV δH + γHδH) + µV γHδH}

= (γV +µV +µV + γH + δH)(γV +µV )(µV + γH + δH)+ (µV + γH + δH)µV (γH + δH)+ (γH +

δH)γHδH ≥ 0, and

a3a2a1 − a4a
2
1 − a23a0

= (γV + µV + µV + γH + δH){(γV + µV )(µV + γH + δH) + µV (γH + δH) + γHδH}{(γV +

µV )(µV γH + µV δH + γHδH) + µV γHδH}

−{(γV +µV )(µV γH+µV δH+γHδH)+µV γHδH}{(γV +µV )(µV γH+µV δH+γHδH)+µV γHδH}

− (γV + µV + µV + γH + δH)
2{(γV + µV )µV γHδH −

γV γHβV βHN
V (NH −RH)

(NH)2
}

= {(γV + µV )(µV γH + µV δH + γHδH) + µV γHδH}{(γV + µV + µV + γH + δH)(γV + µV )(µV +

γH + δH) + (µV + γH + δH)µV (γH + δH) + (γH + δH)γHδH}

− (γV + µV + µV + γH + δH)(γV + µV + µV + γH + δH)(γV + µV )µV γHδH + (γV + µV + µV +

γH + δH)(γV + µV + µV + γH + δH)
γV γHβV βHN

V (NH −RH)

(NH)2

= (γV + µV )(µV γH + µV δH + γHδH){(γV + µV + µV + γH + δH)(γV + µV )(µV + γH + δH) +

(µV + γH + δH)µV (γH + δH) + (γH + δH)γHδH}

− (γV + µV + µV + γH + δH)(γV + µV )(γV + µV )µV γHδH + (γV + µV + µV + γH + δH)(γV +

µV + µV + γH + δH)
γV γHβV βHN

V (NH −RH)

(NH)2

= (γV + µV )(µV γH + µV δH)(γV + µV + µV + γH + δH)(γV + µV )(µV + γH + δH) + (γV +

µV )γHδH(γV +µV +µV +γH+δH)(γV +µV )(γH+δH)+(γV +µV )(µV γH+µV δH+γHδH){(µV +

γH + δH)µV (γH + δH) + (γH + δH)γHδH}+ (γV + µV + µV + γH + δH)(γV + µV + µV + γH +

δH)
γV γHβV βHN

V (NH −RH)

(NH)2
≥ 0, and

a0 = (γV + µV )µV γHδH −
γV γHβV βHN

V (NH −RH)

(NH)2
≥ 0.

That is,
γV γHβV βHN

VNH

(NH)2
− (γV + µV )µV γHδH <

γV γHβV βHN
VRH

(NH)2
.

Thus, R̄H = NH − (γV + µV )µV δH(N
H)2

γV βV βHNV
< RH .

Then, when RH > R̄H using the criteria of Routh Hurwitz, all eigenvalues of the char-

acteristic polynomial except one are real negative, where the last eigenvalue is 0. The

eigenvector corresponding to λ = 0, { EV , IV , EH , IH , RH }T = { 0, 0, 0, 0, 1 }T , is the

vector tangential to the equilibrium manifold. Thus, each equilibrium point is locally asymp-
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totically stable within the invariant set of the dynamical system containing that equilibrium

point.
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APPENDIX B

SIMULATION RESULTS FOR PARAMETER ESTIMATION IN

DIFFERENT SCENARIOS
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Table S1: Summary statistics for parameter estimates and M.C.S.E.

for 200 simulated samples with various variances; normal error; the

bandwidth constant of the kernel smoothing (h̃ = ch5/9) is chosen

to be 2 in scenario I.

DTR MADSQ

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.012 0.009 0.005 0.003

0.01 βV 0.32 0.322 0.010 0.004 0.321 0.003 0.001

µV 0.08 0.082 0.006 0.079 0.002

δH 0.13 0.142 0.030 0.137 0.006

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.029 0.036 0.006 0.004

0.16 βV 0.32 0.336 0.026 0.089 0.321 0.008 0.001

µV 0.08 0.096 0.029 0.079 0.003

δH 0.13 0.157 0.057 0.135 0.007

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.053 0.065 0.007 0.006

1.0 βV 0.32 0.356 0.049 0.300 0.323 0.018 0.002

µV 0.08 0.116 0.054 0.080 0.005

δH 0.13 0.163 0.049 0.134 0.012

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.049 0.066 0.009 0.009

2.0 βV 0.32 0.359 0.049 0.298 0.324 0.028 0.005

µV 0.08 0.114 0.054 0.082 0.008

δH 0.13 0.168 0.048 0.128 0.017
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Table S2: Summary statistics for parameter estimates and M.C.S.E.

for 200 simulated samples with various variances; normal error; the

bandwidth constant of the kernel smoothing (h̃ = ch5/9) is chosen

to be 2 in scenario II.

DTR MADSQ

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.16 0.203 0.079 0.146 0.054

0.01 βV 0.54 0.571 0.074 0.093 0.582 0.060 0.025

µV 0.23 0.270 0.074 0.212 0.047

δH 0.19 0.172 0.068 0.293 0.049

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.16 0.211 0.094 0.151 0.060

0.16 βV 0.54 0.581 0.083 0.158 0.576 0.062 0.051

µV 0.23 0.279 0.089 0.217 0.054

δH 0.19 0.172 0.072 0.271 0.064

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.16 0.212 0.096 0.122 0.065

1.0 βV 0.54 0.584 0.084 0.185 0.557 0.061 0.090

µV 0.23 0.280 0.090 0.193 0.058

δH 0.19 0.168 0.070 0.270 0.060

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.16 0.198 0.101 0.111 0.060

2.0 βV 0.54 0.583 0.096 0.217 0.552 0.066 0.79

µV 0.23 0.269 0.092 0.184 0.053

δH 0.19 0.171 0.073 0.264 0.062
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Table S3: Summary statistics for parameter estimates and M.C.S.E.

for 200 simulated samples with various variances; normal error; the

bandwidth constant of the kernel smoothing (h̃ = ch5/9) is chosen

to be 2 in scenario III.

DTR MADSQ

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.03 0.029 0.003 0.065 0.048

0.01 βV 0.14 0.145 0.011 0.317 0.162 0.013 3.758

µV 0.06 0.062 0.003 0.094 0.043

δH 0.11 0.122 0.055 0.140 0.059

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.03 0.032 0.012 0.043 0.043

0.16 βV 0.14 0.146 0.013 0.613 0.159 0.013 3.474

µV 0.06 0.064 0.010 0.075 0.039

δH 0.11 0.123 0.064 0.150 0.063

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.03 0.047 0.042 0.031 0.036

1.0 βV 0.14 0.154 0.020 2.315 0.155 0.013 2.206

µV 0.06 0.077 0.037 0.065 0.032

δH 0.11 0.134 0.067 0.148 0.059

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.03 0.046 0.056 0.027 0.032

2.0 βV 0.14 0.156 0.080 3.471 0.153 0.013 1.727

µV 0.06 0.078 0.051 0.061 0.029

δH 0.11 0.140 0.071 0.148 0.057
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Table S4: Summary statistics for parameter estimates and M.C.S.E.

for 200 simulated samples with various variances; normal error; the

bandwidth constant of the kernel smoothing (h̃ = ch5/9) is chosen

to be 2 in scenario IV.

DTR MADSQ

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.21 0.222 0.049 0.046 0.051

0.01 βV 0.24 0.236 0.030 0.175 0.148 0.020 3.36

µV 0.23 0.238 0.048 0.076 0.046

δH 0.22 0.198 0.038 0.126 0.053

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.21 0.219 0.075 0.072 0.077

0.16 βV 0.24 0.234 0.047 1.042 0.162 0.032 6.723

µV 0.23 0.235 0.073 0.100 0.071

δH 0.22 0.195 0.061 0.148 0.063

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.21 0.214 0.077 0.065 0.066

1.0 βV 0.24 0.233 0.049 1.635 0.171 0.106 30.959

µV 0.23 0.231 0.075 0.124 0.166

δH 0.22 0.195 0.067 0.149 0.066

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.21 0.238 0.084 0.070 0.069

2.0 βV 0.24 0.244 0.053 2.292 0.177 0.121 30.915

µV 0.23 0.254 0.082 0.129 0.164

δH 0.22 0.195 0.074 0.147 0.061
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Table S5: Summary statistics for parameter estimates and M.C.S.E.

for 200 simulated samples with various variances; normal error; the

bandwidth constant of the kernel smoothing (h̃ = ch5/9) is chosen

to be 2 in scenario V.

DTR MADSQ

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.011 0.003 0.011 0.001

0.01 βV 0.13 0.131 0.008 0.069 0.126 0.005 0.222

µV 0.05 0.046 0.002 0.043 0.002

δH 0.10 0.105 0.035 0.115 0.001

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.013 0.007 0.011 0.001

0.16 βV 0.13 0.132 0.010 0.107 0.128 0.004 0.094

µV 0.05 0.047 0.006 0.044 0.002

δH 0.10 0.108 0.040 0.115 0.001

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.020 0.027 0.011 0.003

1.0 βV 0.13 0.134 0.014 0.417 0.130 0.005 0.035

µV 0.05 0.053 0.024 0.044 0.002

δH 0.10 0.110 0.036 0.116 0.004

Variance Param True Estimate MCSE MSE Estimate MCSE MSE

θV 0.01 0.018 0.026 0.012 0.004

2.0 βV 0.13 0.135 0.013 0.605 0.131 0.005 0.033

µV 0.05 0.052 0.022 0.045 0.003

δH 0.10 0.114 0.044 0.115 0.005
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Table S6: Summary statistics for parameter estimate and M.C.S.E.

of the virus transmission rate from humans to female Ae. aegypti

(βV ) keeping all others fixed for 200 simulated samples using only

the simulated data before the date before the vector control inter-

vention; variance=2.0; normal error; the bandwidth constant of the

kernel smoothing (h̃ = ch5/9) is chosen to be 2 in all scenarios.

DTR MADSQ

Scenario Param True Estimate MCSE Estimate MCSE

I βV 0.32 0.317 0.017 0.317 0.017

II βV 0.54 0.538 0.024 0.538 0.024

III βV 0.14 0.156 0.054 0.156 0.054

IV βV 0.24 0.223 0.103 0.223 0.104

Table S7: Summary statistics for parameter estimate and M.C.S.E.

of the virus transmission rate from humans to female Ae. aegypti

for 200 simulated samples using only the simulated data before the

date before the vector control intervention with various variances;

normal error; the bandwidth constant of the kernel smoothing (h̃

= ch5/9) is chosen to be 2 in scenario IV.

DTR MADSQ

Variance Param True Estimate MCSE Estimate MCSE

0.01 βV 0.24 0.237 0.014 0.237 0.014

0.16 βV 0.24 0.222 0.054 0.222 0.054

1.0 βV 0.24 0.204 0.089 0.204 0.089

2.0 βV 0.24 0.223 0.103 0.223 0.104
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APPENDIX C

SIMULATION RESULTS FOR MODEL AND NETWORK COMPARISONS

IN DIFFERENT SCENARIOS
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Figure S1: Model comparison between ODE (Red-) and heterogeneous (Blue-.) or homoge-

neous (Green–) RM network ABM for different state variables when the number of eggs or

larvae of Ae. aegypti are at the same level
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Figure S2: heterogeneous ABM (Blue-.) and homogeneous ABM (Green–) for different state

variables in the RM network and OVIP-In structure
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Figure S3: heterogeneous ABM (Blue-.) and homogeneous ABM (Green–) for different state

variables in the SW network and OVIP-In structure
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Figure S4: Model or network types comparison with populations of 800 humans for different

state variables when the number of total female Ae. aegypti are at the same level: ODE

curve(Red-) and heterogeneous RM network ABM (Blue-.) in OVIP-Random; heterogeneous

RM network (Green–) and SW network (Black–) in OVIP-In
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Figure S5: Model or network types comparison with populations of 210 humans for different

state variables when the number of total female Ae. aegypti are at the same level: ODE

curve(Red-) and heterogeneous RM network ABM (Blue-.) in OVIP-Random; heterogeneous

RM network (Green–) and SW network (Black–) in OVIP-In
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APPENDIX D

MATLAB PROGRAM FOR PARAMETER ESTIMATION
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%The following settings are for scenario I.
%Scenario II - IV follow the same logic with different settings.

%error term
load('N_124_sim_1_param_4_sd_0.4_error500.mat')
e = Nzsample500;

% ODE System: vSEIR model

ode = @(t,z,p) [ p(1)*(z(1)+z(2)+z(3)) - (p(2)*z(1)*z(6))/2828 - p(3)*z(1);
(p(2)*z(1)*z(6))/2828 - 0.077*z(2) - p(3)*z(2);
0.077*z(2) - p(3)*z(3);
-(p(2)*z(4)*z(3))/2828;
0.25*(p(2)*z(4)*z(3))/2828 - 0.25*z(5);
z(5) - p(4)*z(6)];

% Initial Conditions
z0 = [22422; 0; 0; 2827; 0.25; 0];

% Parameter Boundary
lb = [0; 0.1; 0; 0.08];   % Lower bound
ub = [0.4; 1; 1; 0.33];  % Upper bound

% True Parameter Values
p = [0.0101; 0.3176; 0.0815; 0.1304]; %(1/0.077+1/0.25)

% Generate Fitting Data
t  = 0:1:123;                 %measurement times
odeInt = @(t,z) ode(t,z,p);    %ODE function for ODE15s
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4 1e-4 1e-4 1e-4]);
%[~,z] = ode45(odeInt,t,z0,options);  %Can try ode45 first to solve ODEs
[~,z] = ode15s(odeInt,t,z0,options);  %Solve ODEs

% Starting Guess
p0 = [0.011; 0.35; 0.089; 0.143];

%Generate derivatives using symbolic toolbox
%DTR method
%[dfdz,dfdp] = symDynJac(ode,size(z0,1),size(lb,1));

%dopts = optidynset('stateIndex',5,'integrator',...
%'ode15s','dfdp',dfdp,'dfdz',dfdz)
%opt = optiset('solver','mkltrnls','display',...
%'iter','dynamicOpts',dopts);

%MADSQ method. If using DTR, the part should be commented. Vice versa
dopts = optidynset('integrator','ode15s','sensitivity',...
    'none','stateIndex',5);
nomadopts = nomadset('direction_type','ortho n+1 quad',...
    'vns_search',0);
opt = optiset('solver','nomad','solverOpts',nomadopts,...
    'dynamicOpts',dopts);
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% Solve Simulation

%iteration = 200;
iteration = 1; %for demonstration
thetalist = zeros(iteration,size(lb,1));
fvallist = zeros(iteration,1);
exitflaglist = zeros(iteration,1);

for i = 1:iteration
  % Create OPTI Object
  Opt=opti('ode',ode,'data',t,z(:,5)+e(i,:)','z0',z0,...

'bounds',lb,ub,'theta0',p0,'options',opt);
  [theta,fval,exitflag,info] = solve(Opt);
  thetalist(i,:) = theta;
  fvallist(i,:) = fval;
  exitflaglist(i,:) = exitflag;
end

Published with MATLAB® 7.14
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