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Joel L. Weissfeld, MD, MPH 

ABSTRACT 

Geographic information systems (GIS), used to analyze spatial data, represent a powerful method 

to study human health. This research demonstrates the usage of GIS in (1) designing a pesticide 

exposure metric and (2) linking population-based data sources to conduct an epidemiologic study 

examining the association between pesticide exposure and hepatocellular carcinoma (HCC). 

 The first study presents a new GIS method to estimate individual-level agricultural 

pesticide exposure in California. Landsat remotely sensed satellite images were classified into 

crop fields and matched to California Pesticide Use Report (PUR) agricultural pesticide 

application data. Pesticide exposure was calculated using pesticide-treated crop fields 

intersecting a 500-meter buffer around geocoded locations. Compared to the standard GIS 

method of matching PUR data to infrequently updated crop land use surveys (LUS’s), our 

method was able to match significantly more PUR temporary crop pesticide applications to 

Landsat vs. LUS crops (65.4% vs. 52.4%; n=2,466; McNemar’s p<0.0001). 

 The second study explored different ways of scaling up Public Land Survey System 

(PLSS) section pesticide data, the geographic level of reporting for PURs, to the ZIP Code level. 

We observed substantial agreement between area-weighted ZIP Code pesticide application rates 

and gold standard census block rates in rural areas (weighted kappa 0.63; 95% confidence 

interval [CI] 0.57, 0.69). Area weighting was used to estimate pesticide exposure in the third 

study.
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 The third (and primary) study was a population-based case-control study examining the 

association between agricultural pesticide exposure and hepatocellular carcinoma in California 

via implementing a novel data linkage between Surveillance, Epidemiology, and End Results 

(SEER)-Medicare and PURs using Medicare ZIP Codes in a GIS. Among rural California 

residents, previous annual ZIP Code exposure to over 0.06 applied organochlorine pounds per 

acre significantly increased the risk of developing HCC after adjusting for liver disease and 

diabetes (odds ratio 1.52; 95% CI 1.02, 2.28; p=0.0415). This is the first epidemiologic study 

using GIS to examine pesticide exposure and HCC. 

 The public health significance of this research is related to using epidemiologic, GIS, and 

biostatistical methods to form a better understanding of pesticides as a potential risk factor for 

HCC, which is increasing in incidence. 
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1.0  LITERATURE REVIEW: PESTICIDES AND HEPATOCELLULAR 

CARCINOMA 

1.1 ABSTRACT 

Objective: To review evidence regarding the potential risk of hepatocellular carcinoma (HCC) 

posed by exposure to pesticides in order to highlight future directions for research. Data Sources: 

PubMed was searched between 1966 and January 2013 combining the following search terms: 

(Hepatocellular Carcinoma OR Liver Cancer) AND (Pesticides OR Environmental Exposure) 

AND Humans [MeSH] AND Risk Factors. Study Selection and Data Extraction: The following 

inclusion criteria were applied: studies reported in English, primary sources, the outcome of 

interest as hepatocellular carcinoma or primary liver cancer, an exposure of interest as pesticides, 

and investigation of risk of disease. Results: Of the 365 search results, 17 studies met inclusion 

criteria. There were 16 case-control studies and one prospective cohort study. Six studies were 

conducted in China and Vietnam, three studies in Egypt, four studies across Europe, and four 

studies in the United States. The majority of the studies used self-reported measures to ascertain 

pesticide exposure and demonstrated that pesticides moderately increased risk of HCC. The 

strongest evidence of an association was three case-control studies conducted in China showing 

significant dose-response relationships where increasing serum levels of pesticides, such as 

dichlorodiphenyltrichloroethane (DDT), significantly elevated HCC risk—odds ratios ranging 
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between 2.96 and 4.07. Overall, results were inconsistent in reaching statistical significance. 

Conclusion: There is evidence to suggest an association between exposure to pesticides and 

developing HCC. Future research should focus on biomonitoring and geospatial-based methods 

of ascertaining exposure to specific pesticides, as well as on geographic areas with rapidly 

increasing HCC incidence such as the United States. 

1.2 INTRODUCTION: EPIDEMIOLOGY OF HEPATOCELLULAR CARCINOMA 

Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third 

leading cause of cancer-related death (1). Approximately 70 to 85% of primary liver cancer cases 

are hepatocellular carcinoma (2). Over 80% of HCC cases occur in East Asia and sub-Saharan 

Africa (3). Using the World Standard Population, age-adjusted HCC incidence in China is 37.4 

per 100,000 among males and 13.7 per 100,000 among females (4). However, in traditionally 

high-risk areas, HCC incidence rates have been stabilizing, potentially due to the hepatitis B 

virus (HBV) vaccine and reducing dietary exposure to aflatoxin (AFB1)-contaminated foods, 

which is a mycotoxin produced by the Aspergillus fungus that forms on corn, rice, and peanuts in 

moist conditions (2, 3, 5). On the other hand, in traditionally low-risk areas, such as the United 

States, HCC is both the most commonly occurring type of primary liver cancer (84%) (6) and 

rapidly increasing in incidence (7). Using the 2000 U.S. Standard Population, age-adjusted 

incidence of HCC in the United States increased three-fold between 1975 and 2005, from 1.6 per 

100,000 to 4.9 per 100,000 (8) and reaching 5.7 per 100,000 in 2010 (9). Rising incidence in the 

U.S. is potentially associated with increasing obesity, hepatitis C virus (HCV) infection rates 

peaking in the 1960s and 1970s and clinically manifesting 20 years (or more) later, and 
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improving survival among cirrhosis patients with chronic HBV and/or HCV (2, 3). There were 

an estimated 28,720 new cases of HCC diagnosed in 2012 in the United States (7). 

HCC is more common among males, a potential reflection of males more commonly 

exposed to risk factors such as alcohol consumption and higher blood testosterone concentrations 

and more active androgen receptor alleles in male HBV carriers as HCC risk factors (3, 10). 

HCC occurs more frequently among individuals of Asian descent in the U.S. (3). Racial and 

ethnic differences in HCC risk indicate geographic variations in prevalence of and acquisition 

time of risk factors. The mean age of diagnosis is 65 years old (median 64 years) (3, 6, 11). The 

majority of adult-onset HCC cases occur sporadically, or among individuals with no similarly 

affect first-degree relative (3). Among patients with localized HCC, treatment includes liver 

resection or transplantation (8). Chemoembolization, combining chemotherapy and occlusion of 

the tumor’s blood supply, may improve survival in patients with unresectable HCC. However, 

most patients are diagnosed with advanced stage HCC (8). The five-year relative survival rate in 

the United States remains is 16.6% (12). 

Major risk factors for HCC are a function of geography. In East Asia and sub-Saharan 

Africa, both high HCC-risk areas, the predominant risk factors are chronic HBV infection and 

consumption of aflatoxin (3). The main route of HBV infection in Asia is through vertical 

transmission from mother-to-newborn, while the main route in Africa is through horizontal, 

sibling-to-sibling transmission at young ages and parenterally (e.g., intravenous drug use [IDU]). 

It is important to note that 90% of those exposed to risk factors at younger ages, such as through 

vertical transmission, develop chronic HBV infection (i.e., absence of immunity and longer 

duration of infection), while 90% of those exposed at older ages have infections that resolve 

spontaneously. The predominant risk factors in low HCC-risk areas, such as in North America 
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and Europe, include chronic HCV infection and heavy alcohol consumption (>50-70 grams per 

day). In the United States, common routes of exposure to HCV occur through IDU, high-risk 

sexual behavior, and formerly through blood transfusion (13, 14). 

In the United States, the population attributable risk of all known risk factors for HCC, 

including chronic HBV infection, chronic HCV infection, heavy alcohol consumption, type 1 or 

2 diabetes, obesity, and metabolic disorders (i.e., hemochromatosis, α-1 antitrypsin deficiency, 

porphyrias, tyrosinemia, and Wilson disease) after adjusting for age, sex, race is 64.5% (15). The 

attributable risks of HBV and HCV for HCC in the United States are 5.7% and 20.7%, 

respectively (16, 17). The population attributable risks of HBV and HCV for HCC in developed 

countries are 23.3% and 19.9%, respectively (58.8% and 33.4% in developing countries) (17, 

18). It is posited that non-alcoholic fatty liver disease (NAFLD), its more severe form of non-

alcoholic steatohepatitis (NASH), smoking, and oral contraceptive use are potentially linked to 

HCC development (3, 19). Most of these risk factors contribute to the formation and progression 

of cirrhosis (liver scarring) (20). Between 70 and 90% of all HCC cases occur within an 

established background of chronic liver disease and cirrhosis (3, 20). However, not all 

individuals with chronic HCV infection develop HCC, which occurs at a rate of 1 to 3% after 30 

years (3). Although HCV, HBV, and heavy alcohol consumption are the major risk factors for 

cirrhosis among individuals with HCC in the United States (6), between 15 and 50% of HCC 

cases have no established risk factors (3). 

1.2.1 Linking Pesticides to Hepatocellular Carcinoma 

Previous studies suggest a potential association between pesticide exposure and HCC (21). 

Pesticides are ubiquitous chemicals used for the treatment of pests such as insects, mice, weeds, 
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fungi, and microorganisms (e.g., bacteria and viruses) (22). Pesticides are delineated into 

functional groups, such as insecticides, herbicides, and fungicides, according to the organisms 

they control (23). Further classifications are derived from chemical classes such as 

organochlorines. Exposure to pesticides occurs through direct routes (e.g., occupational), which 

pose higher levels of exposure, versus low-level and more frequent indirect routes (e.g., drinking 

water, food, air, and dust) (23). Residential proximity to agricultural pesticide applications is a 

particularly important source of ambient environmental exposure, where pesticides applied from 

the air and ground may drift from intended sites (24). Additionally, occupational exposure may 

occur such as from work in agriculture, manufacturing, pesticide application, and landscaping 

(25). Factors affecting the magnitude of exposure include application techniques and usage of 

personal protective equipment (25).  

Three different pesticide chemical classes have been linked to HCC: (1) 

organochlorines/organochlorine pesticides (OCPs), (2) organophosphates (OPs), and (3) 

carbamates (23). OCPs, such as dichlorodiphenyltrichloroethane (DDT) and dieldrin, were used 

to combat insects (some fungi). Most have been banned in the United States due to 

environmental persistence and adverse human health effects (26). OPs, such as parathion and 

diazinon, as well as carbamate pesticides, such as carbofuran, are also used to combat insects 

(22, 23, 26). Biological plausibility linking pesticides to HCC has been previously demonstrated. 

Pesticides are hypothesized to contribute to liver carcinogenesis through mechanisms of 

genotoxicity, tumor promotion, immunotoxicity, and hormonal action (21, 27). Animal models 

have demonstrated that exposure to DDT and its metabolite, dichlorodiphenyldichloroethylene 

(DDE), precipitate development of HCC and other liver tumors (28, 29). Subsequent to OCP 

exposure, the majority of tumors in rodents occur in the liver (27). 
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Several human studies suggest a potential increase in HCC risk and/or HCC-related 

mortality due to pesticide exposure. Occupational exposure to DDT among pesticide applicators 

was significantly associated with higher liver cancer mortality in Italy (30, 31). In the United 

States, higher adipose DDE levels (32) and increased occupational exposure to the OCPs DDT, 

aldrin, and dieldrin were significantly associated with liver cancer mortality (33). However, 

some studies have yielded inconclusive and inconsistent results. Studies conducted in Egypt (34), 

Japan (35), and the United States (36) have shown that rural residence non-significantly elevated 

risk for HCC. Liver cancer-related mortality was initially reported to be elevated among males 

exposed to DDT by way of antimalarial campaigns in Italy (37), but was later observed to be 

non-significantly protective after further follow-up (38). A case-control study in France showed 

a non-significant protective effect of general farming occupation after adjusting for age, hospital, 

and alcohol consumption (39). Similar deficits in HCC risk from farming occupations were 

demonstrated in studies conducted in New Zealand (40), Japan (41), and the United States (42). 

Cohort studies and case-control studies conducted in the Nordic countries of Denmark, Finland, 

Norway, Sweden, and Iceland have demonstrated significant protective effects among 

individuals working in agriculture in the absence of adjustment for risk factors (43-53). 

HCC poses a significant and growing public health burden and studies suggest a potential 

association between pesticide exposure and risk of developing HCC. The purpose of this 

literature review was to summarize and evaluate previous research regarding pesticide exposure 

and primary liver cancer, with a focus on HCC, in order to gain better insight into their potential 

association and to guide future directions to improve research in this area. 
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1.3 METHODS 

A search of the PubMed database was conducted between 1966 and January 2013 (Figure 1), 

combining the following search terms: (Hepatocellular Carcinoma OR Liver Cancer) AND 

(Pesticides OR Environmental Exposure) AND Humans [MeSH] AND Risk Factors. The search 

yielded 365 results, whose titles and abstracts were scrutinized for the following inclusion 

criteria: (1) English language, (2) primary source (i.e., excluding reviews), (3) the outcome of 

interest as HCC or primary liver cancer, (4) an exposure of interest as pesticides, and (5) 

investigation of the risk of disease. The title and abstract review yielded 14 studies. A review of 

cited references was also performed. A total of 17 studies, 12 from the PubMed search and five 

from citation chaining, were included in the literature review. 

1.4 RESULTS 

1.4.1 Summary 

Seventeen studies, 16 case-control studies (54-69) and one prospective cohort study (70), were 

included in the literature review (Tables 1 and 2). The majority of these studies focused on the 

outcome of hepatocellular carcinoma. However, some studies investigated a broader outcome of 

primary liver cancer. Most studies were conducted in geographic areas with high rates of HCC 

incidence driven by chronic HBV infection—five studies in China, three studies in Egypt, and 

one study in Vietnam. Although Africa, overall, is characterized by high rates of HBV infection, 

development of HCC in Egypt is primarily driven by chronic HCV infection (3). Seven of these  
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Figure 1. Literature Review Search 

 

nine studies demonstrated that pesticide exposure was significantly associated with increased 

risk for HCC. The remainder of the studies were conducted in areas with low HCC incidence 

where chronic HCV infection is typically the primary risk factor for HCC—four studies in the 

United States, one study in Sweden, one study in Finland, one study in Italy, and one 

multinational study (Multicentre International Liver Tumour Study [MILTS]) spanning Europe. 

The majority of these eight studies demonstrated that pesticide exposure non-significantly 

elevated risk for HCC.   
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Table 1. Case-Control Studies Examining Pesticide Exposure and Hepatocellular Carcinoma 

Authors Geography Outcome 
Reference 
Population Results 

Exposure 
Methods 

Major 
Limitation(s) 

Persson et 
al. (2012) 

China 
(Haimen 
City 
prospective 
cohort) 

n=473 HCC 
cases (1993-
2000) 

n=492 controls, 
frequency-
matched on age, 
sex, and area of 
residence 

Highest DDT quintile (≥810 ng/g) significantly increased 
HCC risk (OR 2.96; 95% CI 1.19-7.40; trend p=0.04)—
adjusted for age, sex, area of residence, HBsAg, family 
history of HCC, history of acute hepatitis, smoking, alcohol, 
occupation, and continuous DDE levels 

Sera 
collected at 
enrollment 
(1992-1993) 

Confounding 
from SES 
status and 
AFB1 

Zhao et al. 
(2011) 

China n=345 HCC 
cases (2007-
2009) 

n=961 hospital-
based controls 

Highest DDT quartile (≥43.09 ng/mL) significantly 
increased HCC risk (OR 4.07; 95% CI 2.72-6.10; trend 
p<0.001) 
 
Highest DDE quartile (≥10.56 ng/mL) significantly 
increased risk (OR 1.96; 95% CI 1.39-2.76; trend p<0.001) 
 
Highest β-HCH quartile (≥13.43 ng/mL) significantly 
increased risk (OR 3.67; 95% CI 2.45-5.53; trend p<0.001) 
 
All results adjusted for age, sex, education, alcohol 
consumption, smoking, AFB1-alb, HBsAg, and anti-HCV 

Sera 
collected at 
enrollment 
(2007-2009) 

Hospital-
based, 
temporality 

Soliman et 
al. (2010) 

Egypt n=150 HCC 
cases (2007-
2009) 

n=150 controls, 
healthy cancer 
center visitors 
or those 
accompanying 
patients (non-
relatives), 
matched on age 
and sex 

Farmer occupation compared to non-farmer significantly 
increased HCC risk among anti-HCV-positive individuals 
(OR 9.60; 95% CI 3.72-24.76); lower risk among HCV 
antibody-positive non-farmers (OR 4.54; 95% CI 1.82-
11.15)—adjusted for age and sex 
 
Rural residence non-significantly protective (OR 0.63; 95% 
CI 0.22-1.83) compared to urban residence; agricultural 
occupation non-significantly increased risk (OR 2.13; 95% 
CI 0.89-5.09) compared to administrative occupation—
adjusted for HBsAg positivity and/or anti-HCV positivity, 
schistosomiasis, water pipe use, and smoking 

Self-
reported 
agricultural 
occupation 
(longest 
duration) 
and 
residential 
history 
(longest 
duration) 

Statistical 
imprecision, 
selection bias 

McGlynn et 
al. (2006) 

China n=168 HCC 
cases (1984-
2001) 

n=385 controls, 
frequency-
matched on sex 
and age 

Highest DDT quintile (>787 ng/g) significantly increased 
HCC risk (OR 3.8; 95% CI 1.7-8.6; trend p=0.0024)—
adjusted for age, sex, HBsAg, residential commune, and 
continuous DDE levels 

Sera 
collected at 
enrollment 
(1984-1985) 

Confounding 
from AFB1 
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Table 1 continued 

Authors Geography Outcome 
Reference 
Population Results 

Exposure 
Methods 

Major 
Limitation(s) 

Ezzat et al. 
(2005) 

Egypt n=236 
HCC cases 

n=236 
controls; 
frequency-
matched on 
age, sex, and 
urban/rural 
residence 

Among rural males and adjusted for HCV RNA, HBsAg, 
and age: 
 
Agricultural pesticides significantly increased HCC risk (OR 
2.5; 95% 1.3-5.0) 
Carbamate pesticides significantly increased risk (OR 2.9; 
95% 1.4-5.8) 
OPs significantly increased risk (OR 2.7; 95% 1.3-5.3) 

Self-reported 
occupation and 
occupational 
exposure to 
pesticides, job-
exposure 
matrix 

Recall bias 

Porru et al. 
(2001) 

Italy n=144 male 
liver cancer 
cases (n=94 
HCC) 
(1997-
1999) 

n=283 
hospital-based 
controls, 
frequency-
matched on 
age, date of 
admission, and 
hospital of 
admission 

Field-crop and vegetable farm workers non-significantly 
increased risk (OR 1.8; 95% CI 0.6-5.6) compared to those 
not in occupation—adjusted for age, residence, education, 
HBsAg, anti-HCV, and alcohol consumption 
 
Agricultural services industry non-significantly increased 
risk (OR 1.2; 95% CI 0.5-2.8) compared to those not in 
industry— adjusted for age, residence, education, HBsAg, 
anti-HCV, and alcohol consumption 

Self-reported 
occupation, 
coded using 
ISCO and ISIC  

Recall bias, 
statistical 
imprecision, 
selection bias 

Heinemann 
et al. (2000) 

Multicentre 
International 
Liver 
Tumour 
Study 
(MILTS): 
France, 
Germany, 
Greece, 
Italy, Spain, 
and United 
Kingdom 

n=317 
female 
HCC cases 
(1990-
1996) 

n=1,060 
hospital-based 
controls and 
719 population 
controls, 
frequency-
matched on 
age 

Farming occupation non-significantly increased HCC risk 
(OR 1.34; 95% CI 0.73-2.44) compared to non-farming 
occupation—adjusted for age, study center, smoking, 
alcohol, oral contraceptive use, and self-reported HBV or 
HCV infection 
 
Pesticide exposure non-significantly increased risk (OR 
1.51; 95% CI 0.57-3.97) compared to no pesticide 
exposure—adjusted for age and study center 
 
Herbicide exposure non-significantly increased risk (OR 
1.30; 95% CI 0.81-2.07) compared to no herbicide 
exposure—adjusted for age and study center 

Self-reported 
occupation and 
occupational 
exposure to 
pesticides, job-
exposure 
matrix 

Recall bias, 
statistical 
imprecision, 
selection bias 

Badawi et 
al. (1999) 

Egypt n=102 
HCC cases  

n=96 hospital-
based controls 

Pesticide exposure significantly increased HCC risk (OR 
2.19; 95% 1.41-3.43) compared to none-- adjusted for sex, 
age, occupation, smoking, family history of cancer, 
schistosome infection, and HBV infection (presence of 
HBsAg, HBsAb, or HBcAb) 

Self-reported 
exposure to 
pesticides  

Confounding 
from HCV 
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Table 1 continued 

Authors Geography Outcome 
Reference 
Population Results 

Exposure 
Methods 

Major 
Limitation(s) 

London et 
al. (1995) 

China 
(Haimen 
City 
prospective 
cohort) 

n=183 
deceased 
male HCC 
cases (1992-
1995) 

n=868 controls, 
matched on age, 
township of 
residence, and 
HBsAg status 

Pesticide exposure in the past 5 years non-significantly 
protective (OR 0.90; 95% CI 0.47-1.40) compared to no 
pesticide exposure 

Self-reported 
exposure to 
pesticides 

Recall bias 

Cordier et 
al. (1993) 

Vietnam n=152 male 
HCC cases 
(1989-1992) 

n=241 hospital-
based controls, 
frequency-
matched on age, 
sex, hospital, 
and residence 

Overall exposure to at least one pesticide type non-
significantly increased HCC risk (OR 1.2; 95% CI 0.6-
2.5) compared to none 
 
Exposure to ≥30 liters/year OPs significantly increased 
risk (OR 4.7; 95% CI 1.1-20.1) compared to none 
 
Exposure to ≥30 liters/year OCPs non-significantly 
increased risk (OR 4.8; 95% CI 0.9-25.1) compared to 
none 
 
Exposure to ≥30 liters/year other pesticides non-
significantly increased risk (OR 4.0; 95% CI 0.3-47) 
compared to none 
 
All results adjusted for age, hospital, place of residence, 
HBsAg, and alcohol consumption 

Self-reported 
occupational 
exposure to 
pesticides 

Recall bias, 
statistical 
imprecision 

Kauppinen 
et al. 
(1992) 

Finland n=344 
deceased 
HCC cases 
(1976-1978, 
1981) 

n=861 controls, 
deceased 
stomach cancer 
or coronary 
infarction, 
frequency-
matched on age 
and sex 

Other agricultural work significantly increased HCC 
risk (OR 3.46; 95% CI 1.32-9.10) compared to those not 
in occupation—adjusted for alcohol consumption 

Next-of-kin-
reported 
occupational 
history, job-
exposure matrix, 
coded using British 
classifications of 
occupations and 
industries 

Recall bias, 
selection bias 
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Table 1 continued 

Authors Geography Outcome 
Reference 
Population Results Exposure Methods 

Major 
Limitation(s) 

Brownson 
et al. 
(1989) 

United 
States 
(Missouri) 

n=74 male 
HCC cases 
(1984-1988) 

n=14,926 
other cancer 
controls 

Non-significant increased HCC risk among 
farmers compared to non-farmers (OR 1.19; 
95% CI 0.58-2.37)—adjusted for age 

Occupation reported on 
medical records, coded 
using U.S. Census 
Bureau Classified Index 
of Industries and 
Occupations (1980)  

Exposure 
misclassification 
selection bias, 
confounding 

Suarez et 
al. (1989) 

United 
States 
(Texas) 

n=1,742 
deceased 
male HCC 
cases (1969-
1980) 

n=1,742 
deceased 
controls,  
frequency-
matched on 
age, race, and 
year of death 

Non-significant increased HCC risk among 
farmworkers compared to those not employed 
in occupation (OR 1.35; 95% CI 0.82-2.23)—
adjusted for age and race 

Occupation reported on 
death certificates, coded 
using U.S. Census 
Bureau Classified Index 
of Industries and 
Occupations (1980) 

Exposure 
misclassification, 
confounding 
from major risk 
factors 

Austin et 
al. (1987) 

United 
States (five 
cities) 

n=80 HCC 
cases 

n=146 
hospital-
based 
controls, 
matched on 
age, sex, race, 
and study 
center 

Non-significant increased HCC risk in 
agriculture industry compared to no 
employment in industry (RR 1.1; 95% CI 0.6-
2.3) 
 
Pesticide exposure non-significantly increased 
risk (RR 2.1; 95% CI 0.6-6.9) compared to no 
pesticide exposure—adjusted for herbicide and 
fertilizer exposure 
 
Non-significant trend in years of farming and 
HCC risk (p=0.22) 

Self-reported occupation 
and occupational 
chemical exposure, 
coded using Standard 
Industrial Classification 
Manual and 
Standard Occupational 
Classification Manual 
(1977) 

Recall bias, 
confounding 
from HCV and 
smoking, 
statistical 
imprecision 

Hardell et 
al. (1984) 

Sweden n=102 
deceased 
male primary 
liver cancer 
cases (n=78 
HCC) (1974-
1981) 

n=200 
deceased 
controls, 
matched on 
age, sex, year 
of death, and 
municipality 

No significant difference in occupational DDT 
exposure (farming: 4.8% among HCC cases vs. 
10.0% among controls; forestry: 6.0% among 
HCC cases vs. 4.0% among controls) 

Next-of-kin-reported 
occupational and leisure 
time pesticide exposure 

Recall bias, 
confounding 
from major risk 
factors 
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Table 1 continued 

Authors Geography Outcome 
Reference 
Population Results Exposure Methods 

Major 
Limitation(s) 

Stemhagen 
et al. (1983) 

United 
States (New 
Jersey) 

n=265 alive 
and deceased 
primary liver 
cancer cases 
(n=216 HCC) 
(1975-1980) 

n=530 
controls, 
matched on 
age, race, sex, 
and county of 
residence  

Among males ever-employed for ≥6 months: 
significant HCC risk in an agricultural 
occupation (OR 1.72; 95% CI 1.06-2.79) 
compared to no employment in occupation 
 
Significant risk among farm laborers (OR 
3.20; 95% CI 1.11-9.21) compared to no 
employment in occupation 

Self- or next-of-kin-
reported occupation and 
occupational pesticide 
exposure, coded using 
U.S. Census Bureau Index 
of Industries and 
Occupations (1970) 

Confounding 
from major risk 
factors 

 
Abbreviations: anti-HCV, antibody to hepatitis C virus; CI, confidence interval; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; 
HBcAb, hepatitis B core antibody; HBsAb, hepatitis B surface antibody; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HCC, hepatocellular 
carcinoma; HCH, hexachlorocyclohexane; HCV, hepatitis C virus; ISCO, International Standard Classification of Occupations; ISIC, International Standard 
Industrial Classification of All Economic Activities; OCPs, organochlorine pesticides; OPs, organophosphate pesticides; OR, odds ratio; SES, socioeconomic 
status.

13 



 

Table 2. Cohort Studies Examining Pesticide Exposure and Hepatocellular Carcinoma 

Authors Geography Outcome 
Reference 
Population Results 

Exposure 
Methods 

Major 
Limitation(s) 

Evans et al. 
(2002) 

China n=1,092 
deceased 
HCC cases 

n=83,794 
(n=58,454 
males) subjects 
from Haimen 
City prospective 
cohort 

Pesticide exposure not significant and not 
reported 
 
Among males, significant increased HCC risk 
among peasants (RR 1.5; 95% CI 1.3-1.8) 
compared to non-peasants—adjusted for age, 
HBsAg, history of acute hepatitis, family history 
of HCC, alcohol use, tea drinking, and well water 
drinking in 1980s 

Self-reported 
occupation and 
pesticide 
exposure  

Recall bias 

 
Abbreviations: CI, confidence interval; HBsAg, hepatitis B surface antigen; HCC, hepatocellular carcinoma; RR, relative risk. 
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Overall, the majority of the 17 studies reported an increased risk of HCC associated with 

exposure to pesticides—over half of which were statistically significant. Franklin and Worgan 

(2005) distinguished between two types of pesticide exposure methods: quantitative pesticide 

exposure methods include direct biologic measurement of pesticide levels from blood, urine, etc. 

(i.e., biomonitoring), versus qualitative pesticide exposure methods acquiring information using 

questionnaires, interviews, and/or experts (25). Both quantitative and qualitative methods of 

pesticide measurement were employed (25), with quantitative assessment being adopted in more 

recent studies. Most of the studies measured pesticide exposure as self-reported or next-of-kin-

reported occupational (or overall) pesticide exposure (54, 59, 60, 62-64, 66, 70). Occupational 

measures used either job title (e.g., farmer, farmworker, farm laborer, and peasant) or industry 

(e.g., agriculture and forestry) (57, 59, 61, 64, 65, 67-70). One study used rural residence as an 

indicator of pesticide exposure (57), and three studies directly measured blood samples to 

determine biologic levels of pesticide exposure such as from dichlorodiphenyltrichloroethane 

(DDT) (55, 56, 58). Apart from the studies performing direct measurement, though Persson et al. 

(2012) additionally analyzed farmer occupation, most studies evaluated more than one measure 

of pesticide exposure (e.g., job title in addition to self-reported pesticide exposure). 

The three studies quantitatively measuring pesticide exposure via blood samples using 

study populations in China consistently yielded significant results showing pesticides elevating 

HCC risk (55, 56, 58). On the other hand, results from qualitative methods, although mostly 

showing increased risk, were inconsistent in reaching statistical significance. The three studies 

that reported non-significant protective effects used rural residence, self-reported pesticide 

exposure, and next-of-kin-reported occupation to quantify pesticide exposure (57, 63, 66).  
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1.4.2 Quantitative Pesticide Exposure Methods 

1.4.2.1 China 

All three studies employing biomonitoring pesticide exposure methods were conducted in China, 

where chronic HBV infection and aflatoxin are the major risk factors (3). China has the highest 

incidence rates for HCC in the world (age-adjusted rate 25.7 per 100,000) (4), as 50% of all HCC 

cases occur in China (3). DDT, the primary pesticide of interest in these studies, was banned in 

1983, although production continues for use in malarial control and production of dicofol, an 

insecticide (3, 55). Two of the three studies were nested case-control studies utilizing blood 

samples taken at baseline and measured serum levels of DDT and 

dichlorodiphenyldichloroethylene (DDE), a metabolite of DDT (55, 56). A third study was a 

hospital-based case-control that measured serum levels of the OCPs DDT, DDE, and 

hexachlorocyclohexane (HCH) (58). 

McGlynn et al. (2006) conducted a nested case-control study using participants from two 

randomized controlled trials (RCTs), the Dysplasia Trial (n=3,318) and General Population Trial 

(n=29,584) in Linxian, China (55). Linxian is not a high risk HCC region. Three hundred eighty-

five controls were frequency-matched according to age and sex to 168 HCC cases, diagnosed 

between 1984 and 2001. Diagnoses were based on pathologic review, biochemical assays, 

clinical examinations, ultrasonography (US), and computed tomography (CT). Higher serum 

DDT levels were significantly associated with increased risk for HCC (odds ratio [OR] 3.8 

highest quintile [>787 ng/g] versus lowest [<265 ng/g]; 95% confidence interval [CI] 1.7-8.6; 

trend p=0.0024), adjusting for age, sex, hepatitis B surface antigen (HBsAg), residential 

commune, and continuous DDE levels. On the other hand, higher serum levels of DDE were 

non-significantly protective against HCC (OR 0.8 highest quintile [>5,458 ng/g] versus lowest 
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[<1,767 ng/g]; 95% CI 0.3-1.7; adjusted for aforementioned covariates and DDT level).  

Stratification according to median DDE levels showed a significantly higher risk of HCC with 

increasing serum DDT levels when DDE levels were below the median (<2,961 mg/g) (OR 3.55 

highest tertile [≥581 ng/g] versus lowest [≤331 ng/g]; 95% CI 1.45-8.74). The authors posited 

that the presence of this interaction was a result of a higher ratio of DDT to DDE reflecting more 

recent exposure to DDT, where over time, DDT degrades to DDE. Additionally, this ratio may 

reflect genetic differences in the ability to metabolize DDT.  

These RCTs only screened for esophagus and gastric cardia-related cancers. Therefore, 

prevalent HCC may have been included in the case group, who may have different pesticide 

exposure experiences compared to incident cases. All participants of the Dysplasia Trial included 

individuals with cytologic esophageal dysplasia. Twenty-four of the 168 HCCs originated from 

the Dysplasia Trial, potentially limiting the external validity of these results. HCV infection, 

measured using the antibody for HCV (anti-HCV), was not significantly associated with HCC 

risk in this study and was therefore not included the final multivariable models. Inadequate 

serum samples did not allow for the evaluation of aflatoxin exposure. Positive confounding may 

have biased results away from the null by way of higher aflatoxin exposure being associated with 

pesticide exposure (e.g., handling of contaminated foodstuffs). However, the authors cited 

previous research reporting low serum levels of aflatoxin in Linxian.  

Zhao et al. (2011) conducted a hospital-based case-control study in Xiamen, China, a 

high-risk HCC area (58). Blood samples were acquired at recruitment. Three hundred forty-five 

HCC cases, diagnosed between 2007 and 2009, and 961 controls from three different hospitals 

participated in the study. Higher levels of all three measured OCPs significantly increased the 

risk of HCC. The highest risk was conferred by higher levels of serum DDT (OR 4.07 highest 
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quartile [≥43.09 mg/mL] versus lowest [<16.11 ng/mL]; 95% CI 2.72-6.10; trend p<0.0001), 

followed by serum HCH levels (OR 3.67 highest quartile [≥13.43 ng/mL] versus lowest [<4.20 

ng/mL]; 95% CI 2.45-5.53; trend p<0.0001), and serum DDE levels (OR 1.96 highest quartile 

[≥10.56 ng/mL] versus lowest [<2.62 ng/mL]; 95% CI 1.39-2.76; trend p<0.0001), all adjusted 

for age, sex, education, alcohol consumption, smoking, aflatoxin (aflatoxin-albumin adducts 

[AFB1-alb]), HBsAg, and anti-HCV. After adjustment for age, significant synergism was 

observed between DDT levels and HBsAg positivity, and polycyclic aromatic hydrocarbon 

albumin adducts (PAH-alb), between DDE levels and HBsAg positivity, and PAH-alb, between 

HCH levels and diabetes and AFB1-alb, and between DDT and HCH. There was also an 

antagonistic effect between DDT and heavy alcohol consumption. Consistent with McGlynn et 

al. (2006), there was a significant interaction between DDT and DDE, where increasing DDT 

levels conferred higher risk of HCC at lower levels of DDE (OR 3.18; 95% CI 2.49-4.06) 

compared to higher DDE levels (OR 3.01; 95% CI 2.26-4.01). 

Persson et al. (2012) conducted a nested case-control study using the Haimen City 

prospective cohort, which recruited 83,794 subjects from a high-risk HCC area between 1992 

and 1993 (56). Four hundred ninety-two controls were frequency-matched according to age, sex, 

and area of residence to 473 HCC cases diagnosed between 1993 and 2000, ascertained via 

histology and/or liver imaging, elevated α-fetoprotein (AFP) levels (>400 ng/mL), clinical 

criteria, or death certificate. Serum levels of DDT were significantly associated with risk for 

HCC (OR 2.96 highest quintile [≥810 ng/g] versus lowest [≤261 ng/g]; 95% CI 1.19-7.40; trend 

p=0.04), adjusted for age, sex, area of residence, HBsAg, family history of HCC, history of acute 

hepatitis, smoking, alcohol, occupation (farmer versus non-farmer), and DDE level. On the other 

hand, serum DDE levels were non-significantly protective against HCC (OR 0.81 highest 
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quintile [≥32,222 ng/g] versus lowest [≤10,000 ng/g]; 95% CI 0.33-2.03; adjusted for the 

aforementioned covariates and DDT level). Most subjects were farmers (85% of cases and 73% 

of controls). There was also a non-significant antagonistic interaction between sex and DDT, 

with DDT exposure non-significantly elevating risk for HCC among males (OR 2.93 highest 

quintile [≥780 ng/g] versus lowest [≤256 ng/g]; 95% CI 0.98-8.75), while non-significantly 

decreasing risk among females (OR 0.77 highest quintile [≥1,091 ng/g] versus lowest [≤320 

ng/g]; 95% CI 0.10-6.03). Similar to McGlynn et al. (2006) and Zhao et al. (2011), there was a 

borderline significant interaction with increasing DDT conferring higher risk for HCC with 

decreasing DDE (OR 2.53; 95% CI 1.03-6.24). 

There was no information regarding the risk factors of socioeconomic status (SES) and 

aflatoxin exposure. Although positive confounding may have manifested itself as lower SES 

associated with greater pesticide exposure (e.g., agricultural occupation), or higher aflatoxin 

exposure associated with pesticide exposure, mentioned previously, biasing results away from 

the null, an artificial inflation of the association between pesticides and HCC is unlikely. The 

authors highlighted their adjustment for geographic area, which may be associated with SES. A 

previous analysis also did not show a significant association between corn consumption (i.e., 

main Chinese food staple associated with aflatoxin) and HCC risk. Interestingly, DDT levels 

were not significantly associated with farming occupation (p=0.88), suggesting that DDT does 

not explain the significant relationship between farming and HCC risk. However, this finding 

does lend support to other pesticides potentially underlying the association with HCC. McGlynn 

et al. (2006) and Persson et al. (2012) demonstrated non-significant protective effects of DDE on 

HCC risk, while Zhao et al. (2011) showed that DDE significantly elevated risk. These different 
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results may reflect variability in pesticide exposure across China, with more recent exposure in 

the Zhao et al. (2011) study population. 

1.4.3 Qualitative Pesticide Exposure Methods 

1.4.3.1 China 

Two earlier nested case-control studies using the Haimen City prospective cohort utilized 

questionnaire-derived measures of pesticide exposure (66, 70).  The case groups for both London 

et al. (1995) and Evans et al. (2002) were comprised of deceased individuals. Evans et al. (2002) 

noted that incidence and mortality are identical in the Haimen City area, as effective therapy is 

not available to most residents. Using a mortality endpoint also protected against differential 

reporting of incident HCC diagnoses biasing results towards the null, as these diagnoses would 

have represented non-peasants seeking care outside of Haimen City (70).  

London et al. (1995) conducted a nested case-control study with 183 male deceased HCC 

cases, occurring between 1992 and 1995 (66). Using death certificate information, validated 

through contacting doctors and reviewing hospital charts, 37% of cases were diagnosed based on 

elevated AFP levels (>400 ng/mL) and US or CT, 43.2% with US only, 17.5% through clinical 

examination, and 2.2% with AFP levels >400 ng/mL only. Eight hundred sixty-eight living 

controls were frequency-matched according to age, HBsAg status, and township of residence. A 

baseline questionnaire collected information regarding occupation and pesticide exposure. Self-

reported pesticide exposure in the past five years, compared to none, was non-significantly 

protective against HCC in the univariate analysis (OR 0.90; 95% CI 0.47-1.4). Peasant 

occupation, compared to non-peasant, was significantly associated with increased risk for HCC 

(OR 1.66; p<0.0001), adjusted for the matching factors of age, HBsAg status, and township of 
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residence, in addition to history of acute hepatitis, family history of HCC, corn consumption in 

the 1970s, and the interaction between corn consumption and HBsAg. 

Peasant occupation is comparable to an agricultural farming occupation. As the Haimen 

area is largely agricultural, with 91% of cases and 75% of controls employed as peasants, 

heterogeneity in the exact pesticide-related activities likely exist among those in this occupation 

(e.g., some peasants do not work with pesticides). Furthermore, the protective effect of self-

reported pesticide exposure is also likely affected by recall bias. This is bolstered by the 

significant association demonstrated in Persson et al. (2012), which also used participants of the 

Haimen City prospective cohort, but used an objective measure of serum measurement of DDT 

and DDE.  

Evans et al. (2002) subsequently conducted a prospective cohort study using participants 

in Haimen City, including both males (n=58,545) and females (n=25,340) (70). One thousand 

ninety-two deceased HCC cases occurring between 1992 and 2000 were included, 8.8% based on 

histology, 35.8% based on elevated AFP levels (>400 ng/mL) and US, CT, or magnetic 

resonance imaging (MRI), 39.5% based on imaging, 1.5% based on elevated AFP, 1.7% based 

on clinical criteria, and 21.5% based on death certificate and/or family and doctor interviews. 

Among males, peasant occupation, compared to non-peasant, was significantly associated with 

increased HCC risk (RR 1.5; 95% CI 1.3-1.8), adjusted for HBsAg, history of acute hepatitis, 

family history of HCC, alcohol consumption, tea drinking, and drinking well water in the 1980s. 

Peasant occupation was not significant among females (RR 2.5; 95% CI 0.9-4.2). Past pesticide 

exposure was not significantly associated with HCC among males or females; measures of 

association were not reported. 
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A selection bias may have manifested itself in the screening programs for HBV carriers 

in Haimen City. Evans et al. (2002) excluded 7,024 individuals—91% of whom due to residence 

in a township with less than 1,000 residents, where mortality reporting is believed to be 

inadequate. Rural areas are associated with agricultural pesticide use. Although the Haimen City 

area is predominantly agricultural, exclusion of the most rural areas (i.e., least populated areas) 

may have biased some of the results towards the null. 

1.4.3.2 Egypt 

Egypt is characterized by high HCC incidence rates and a high prevalence of HCV infection. The 

age-adjusted incidence rate of HCC is 14.6 per 100,000 among males and 4.2 per 100,000 among 

females (4). Three case-control studies demonstrated largely non-significant results—the 

majority of which showed elevated risk (54, 57, 60). Pesticide exposure measures included self-

reported occupation, exposure, residential history, and a job-exposure matrix supplemented with 

agricultural experts. 

Badawi et al. (1999) conducted a case-control study, recruiting 102 HCC cases from the 

National Cancer Institute outpatient clinic in Cairo, Egypt and 96 controls without any signs of 

hepatopathology (60). No confirmation of HCC versus non-disease was performed, although 

elevated AFP levels among cases (224 IU ± 203 among cases; 3.4 IU ±1.5 among controls) and 

nondifferential carcinoembryonic antigen (CEA) values (3.3 ng/mL ± 8.7 among cases; 2.1 

ng/mL ± 4.7 among controls) lent confidence to accurate disease classification. Ninety-six 

percent of HCC cases had normal CEA values, indicative of primary and not metastatic liver 

cancer. Pesticide exposure was measured as self-reported occupational history and chemical 

exposure. Although farming occupation, compared to no farming occupation, was not 

significantly associated with HCC risk (OR 1.39; 95% CI 0.95-2.04), pesticide exposure, 
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compared to no pesticide exposure, significantly elevated HCC risk (OR 2.19; 95% CI 1.41-

3.43), adjusted for age, sex, smoking, family history of cancer, schistosome infection, presence 

of HBsAg, hepatitis B surface antibody (HBsAb), or hepatitis b core antibody (HBcAb), and 

farming occupation or pesticide exposure. Schistosomiasis, also referred to as bilharzia, is an 

infection due to a parasitic worm and is a HCC risk factor in Egypt (54, 57, 60). 

Ezzat et al. (2005) conducted a case-control study in Egypt, which recruited cases from 

the National Cancer Institute of Cairo University and controls from the Cairo University 

orthopedic department (54). Pesticide exposure was captured through a job-exposure matrix 

taking into account self-reported year of agricultural activity, crop types grown, and crop-

specific pests that were controlled. Agricultural experts further incorporated information from 

pesticide registration manuals regarding pests associated with crops and pesticides used for each 

pest type. Two hundred thirty-six controls were frequency-matched according to age, sex, and 

rural/urban residence to 236 HCC cases. Included cases were characterized as definite (i.e., 

pathological or cytological confirmation, or AFP >1,000 ng/mL, or AFP >300 ng/mL and US or 

CT) or probable (i.e., AFP > 300 ng/mL, US or CT evidence, or treatment). Approximately 47% 

of HCC cases were pathologically confirmed. Among rural males, exposure to agricultural work-

related pesticides significantly increased HCC risk (OR 2.5; 95% CI 1.3-5.0), adjusted for age, 

HCV RNA, and HBsAg. Specific pesticide chemical classes associated with increased HCC risk 

were carbamates (OR 2.9; 95% CI 1.4-5.8) and organophosphates (OR 2.7; 95% CI 1.3-5.3). 

Interestingly, the authors noted that a separate analysis of rural males engaging in agricultural 

work without the use of pesticides yielded a non-significant risk (OR 1.2; 95% CI 0.53-2.82), 

which was interpreted as pesticides, and not farming practices, being associated with HCC risk.  
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Three hundred twenty-two of 866 eligible cases did not participate due to late-stage 

disease and an additional 77 refused. The participation rate among controls was 76.7%; refusal 

was predominantly related to refusal to supply a blood sample. However, controls were likely a 

non-biased sample of the population, as HCV infection rates among participating controls were 

similar to the general population (54). As advanced HCC cases are likely not represented in the 

case group, participating cases may have been healthier and were more likely to be employed 

compared to non-participants. The case group may have been exposed to less pesticides during 

their employment compared to those excluded, potentially underestimating results. The authors 

noted recall bias was likely nondifferential, as there were no significant differences in alcohol 

consumption and tobacco use between cases and controls. However, although alcohol 

consumption is forbidden according to Muslim tradition, tobacco use may be expected to be 

lower among cases. Previous research has shown farmers are less likely to smoke compared to 

the general population (71). If the participating cases who were exposed to farming occupation in 

this study were more likely to smoke, the results may have been biased towards the null. 

Soliman et al. (2010) were unable to replicate the results of Ezzat et al. (2005), which is a 

potential consequence of both studies utilizing self-reported pesticide exposure metrics (57). 

Soliman et al. (2010) conducted a hospital-based case-control study in Tanta, Gharbiah, a largely 

rural region of Egypt characterized by high rates of HCV infection (22% prevalence) and high 

HCC incidence. The authors used an interviewer-administered questionnaire to collect residential 

and occupational histories. One hundred fifty controls were matched according to age and sex to 

150 HCC cases diagnosed between 2007 and 2009, 27.3% of whom were histologically 

confirmed. Results derived from occupational measures demonstrated increased, non-significant 

HCC risks. Agricultural occupation, as the longest occupation, compared to administrative 
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occupation conferred an increased risk for HCC (OR 2.13; 95% CI 0.89-5.09). Less prominent 

results were associated with farming (i.e., ever engaged in farming activities) compared to non-

farming (OR 1.58; 95% CI 0.79-3.16) and farming exposure (i.e., ever exposed to farming 

including housewife living in rural area) compared to no farming exposure (OR 1.40; 95% CI 

0.71-2.74). However, rural residence (longest residence) compared to urban residence was non-

significantly protective against HCC (OR 0.63; 95% CI 0.22-1.83). All results were adjusted for 

HBsAg positivity and/or anti-HCV positivity, schistosomiasis, water pipe use, and smoking. 

There was also a significant qualitative interaction, where having a farming occupation is 

protective in the absence of HCV infection (OR 0.92; 95% CI 0.29-2.93), but elevates HCC risk 

in the presence of HCV infection (OR 9.60; 95% CI 3.72-24.76), adjusted for age and sex.  

All of the pesticide metrics in Soliman et al. (2010) failed to reach statistical significance. 

Twelve cases and one control were excluded due to refusal to provide a blood sample. If, for 

example, refusal among cases was associated with poorer health by virtue of residing in areas 

with greater agricultural pesticide use and poor access to healthcare, this differential selection 

bias would have biased results towards the null. Information regarding aflatoxin and alcohol 

consumption was unavailable. However, the authors stated that the Egypt’s climate is not ideal 

for fungal growth and alcohol consumption is not permitted in Muslim cultures. Measures 

derived from occupational histories were non-significantly elevated, while rural residence was 

protective. Soliman et al. (2010) stated that the effect of rural residence was explained by 

medical conditions and personal behaviors. However, all measures, whether derived from 

occupational or residential history, are non-specific with respect to actual pesticide exposure. 

Farming-related work spans a wide range of activities that may or may not involve pesticide 

exposure. Furthermore, the study area of Gharbiah was largely rural (36.4%), and the only 

25 



 

information used to derive this measure of rural residence was the participants’ living histories. 

Pesticide use likely varies over the entire region, and the particular HCC cases recruited for this 

study may live in truly rural areas that more frequently participate in livestock-related rather than 

in agricultural activities. The protective effect of rural residence was non-significant and is a 

potential artifact of the residential classification.    

1.4.3.3 Vietnam 

Vietnam has a high incidence rate of HCC, with an age-adjusted rate of 42.3 per 100,000 among 

males and 18.5 per 100,000 among females (4). Cordier et al. (1993) conducted a hospital-based 

case-control study, recruiting 152 male HCC cases diagnosed between 1989 and 1992 from two 

different hospitals in Hanoi (62). Over 85% of cases were not histologically confirmed, but 

diagnosed clinically or with echographic suspicion, and elevated AFP levels (≥500 ng/mL). Male 

controls were admitted to surgery at the hospitals for reasons unrelated to HCC (64% 

gastroduodenal ulcer, 13% urinary lithiasis, 9% prostatic adenoma, and 8% biliary lithiasis). 

Controls were frequency-matched to cases according to age and place of residence. Interviewer-

administered questionnaires asked participants to self-report occupational history and 

occupational pesticide exposure (i.e., name of products, quantity used per year, number of days 

exposed, and number of years exposed). Organophosphates, compared to no pesticide exposure, 

significantly elevated risk of HCC (OR 4.7; 95% CI 1.1-20.1), while organochlorine pesticides 

non-significantly increased HCC risk (OR 4.8; 95% CI 0.9-25.1), adjusted for age, hospital, 

place of residence, HBsAg, and alcohol consumption.  

Although the results point to an elevated risk, the wide confidence intervals of the results 

allude to statistical imprecision of the findings. The external validity is limited, which was by 

design as authors wanted to recruit males old enough to have been exposed to Agent Orange 
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during the Vietnam War. The authors stated that excluded cases (history of cancer and/or no 

histological confirmation and AFP <500 ng/mL) were slightly younger and reported less 

pesticide use compared to included cases, which indicates a potential bias away from the null. 

This selection bias also potentially limits the external generalizability of the findings, where 

included cases may represent advanced-stage HCC, indicating the study results do not represent 

the pesticide exposure experiences among all HCC cases. Selection bias is also manifest in the 

control group, with over 60% admitted to surgery for gastroduodenal ulcers, which occurs 

among individuals with high tobacco use and lower alcohol consumption. The effects of this 

selection bias depend on these risk factors’ association with pesticide use. Farmers are less likely 

to use tobacco, which indicates the control group may have been exposed to less pesticides 

compared to the general population, which would have biased results away from the null.  

1.4.3.4 Europe 

There is significant variation in HCC incidence rates across Europe. Overall, the age-adjusted 

incidence rate of HCC is 6.7 per 100,000 among males and 2.3 per 100,000 among females (4). 

Rates are heterogeneous across different countries, 13.4 per 100,000 among males in Italy (4.4 

per 100,000 among females) and 3.2 per 100,000 among males in Sweden (1.8 per 100,000 

among females). The results from these studies were largely non-significant; most demonstrated 

elevated risk, though some showed deficits in risk (63-65, 67). The exposure measures were all 

qualitative, most of which were based on self-reported occupation. Two studies used the British 

job-exposure matrix. 

Heinemann et al. (2000) conducted a hospital-based case-control study using the 

Multicentre International Liver Tumour Study (MILTS), originally designed to examine the 

relationship between sex steroid hormones (e.g., oral contraceptives [OCs]) and sex steroid drugs 
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containing chlormadinone acetate (CMA) (64). MILTS spanned six countries, with seven clinics 

in Germany, one in the United Kingdom, one in France, one in Italy, one in Greece, and one in 

Spain. Three hundred seventeen female HCC cases were included in the study—prevalent cases 

diagnosed between 1990 and 1994 and incident cases diagnosed between 1994 and 1996. 

Definite (histologically confirmed) and probable (US, CT, or MRI, and elevated AFP levels 

>500 ng/mL) were included. On average, four controls were frequency-matched to cases 

according to age (n=1,798). The majority of controls were derived from hospitals and the 

remainder from the general population through citizen registers. Exposure was ascertained as 

self-reported lifetime history of occupations, self-reported exposure to chemicals, and lifetime 

exposure calculated using a British job-exposure matrix (JEM). The British JEM required jobs to 

be coded using the British Registrar Generals’ Classification of Occupations and the 1968 

Classification of Industries. Compared to non-farming occupation, farming (overall) non-

significantly elevated risk for HCC (OR 1.34; 95% CI 0.73-2.44), while specific farming 

occupations showed higher risks (farm owner OR 1.96, 95% CI 0.81-4.77; farm laborer OR 1.43, 

95% CI 0.19-18.30), adjusted for age, study center, smoking, alcohol consumption, OC use, 

HBV or HCV infection. Self-reported occupational exposure to pesticides non-significantly 

elevated risk (OR 1.51; 95% CI 0.57-3.97), adjusted for age and study center. Using the British 

JEM, exposure to herbicides non-significantly increased risk (OR 1.30; 95% CI 0.81-2.07). 

Overall, the results point to higher risk for HCC among farm owners, who may have had more 

contact with handling pesticides. 

This study was limited in statistical power to detect an association between pesticides and 

HCC. As 136 of the 317 HCC cases were too ill to participate or deceased, next-of-kin 

interviews were conducted. Although the authors noted that inclusion of hospital-based controls 
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would minimize differential recall bias, the presence of recall bias is not completely mitigated, as 

it is likely to have non-differentially biased results towards the null. Blood samples were not 

collected for population controls; therefore, HBV and HCV information was missing. In 

addition, 57 cases were missing serology information. As the proportion of cases and population-

based controls truly infected with HBV and/or HCV was underreported, this differential 

information bias could have potentially biased results towards the null. Including prevalent cases 

introduces a potential incidence-prevalence bias, as prevalent cases may have different pesticide 

exposure experiences compared to incident cases.  

1.4.3.5 Sweden 

Hardell et al. (1984) conducted a case-control study of 102 deceased, histologically confirmed, 

male liver cancer cases that were diagnosed between 1974 and 1981 and reported to the Swedish 

Cancer Registry (63). Eighty-three cases were HCC, 15 cases were intrahepatic cholangiocellular 

carcinoma, three cases were hemangiosarcoma, and one case was unspecified sarcoma of the 

liver. Five cases of mixed HCC and cholangiocellular carcinoma were included in the HCC 

group. Two hundred and six deceased controls from the National Population Register were 

matched to cases according to age, sex, year of death, and municipality. Deaths from cancer and 

suicide were excluded. Exposure was collected as self-reported occupation and occupational 

chemical exposure. Exposure to DDT from a farming occupation was lower among HCC cases 

compared to controls (4.8% among cases versus 10% among controls). Exposure to DDT from a 

forestry occupation was slightly higher among HCC cases compared to controls (6.0% among 

cases versus 4.0% among controls). Self-reported exposure to DDT was not significantly 

different between cases and controls, which did not warrant further investigation. 
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Recall bias, particularly from questionnaires conducted with relatives for the deceased 

study subjects, likely contributed to a misclassification of past occupational exposure, which may 

explain why a smaller proportion of cases were exposed to DDT in the farming occupation. No 

details were given regarding the composition of the control group; it is unknown whether or not 

any causes of death may potentially share risk factors with HCC such as pesticides. Selection 

bias may have contributed to a larger proportion of relatives for controls reporting higher DDT 

exposure from farming.  

1.4.3.6 Finland 

Kauppinen et al. (1992) conducted a case-control study in Finland (65). Three hundred forty-four 

deceased cases (International Classification of Diseases, Ninth Revision [ICD-9] code 155.0) 

reported to the Finnish Cancer Registry between 1976 and 1987, and 1981 were included. 

Confirmed cases were included, but the exact nature of confirmation was not detailed. The 

control group was derived from stomach cancer cases reported to the Finnish Cancer Registry in 

1977 and deceased coronary infarction patients from the same hospitals as the cases. Four 

hundred seventy-six stomach cancer controls and 385 coronary infarction controls were 

frequency-matched to cases according to age and sex. Exposure was collected as self-reported 

occupational history and using a British job-exposure matrix (JEM). Occupations were coded 

using the British Classification of Occupations and Industries. Although results were 

significantly elevated for one occupational group, the majority of the results were not significant, 

likely due to lack of statistical power. Other agricultural workers compared to those not in the 

occupation significantly increased liver cancer risk (OR 3.46; 95% CI 1.32-9.10), adjusted for 

alcohol consumption. Among females, risk was non-significantly elevated (OR 2.01; 95% CI 

0.69-5.82); seven of the ten liver cancer cases that were other agricultural workers were females. 
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The majority of females in this occupational class were milkmaids. Two of the three males were 

farm laborers and the other male was a garden worker. However, a protective effect was 

demonstrated among male farmers (OR 0.77; 95% CI 0.51-1.15) and among farmers’ wives (OR 

0.63; 95% CI 0.42-0.95). Using the JEM, specific exposure to herbicides was not elevated 

beyond an OR 1.5 to warrant further analysis.  

Results were adjusted for alcohol consumption, but not for other established risk factors. 

Residual confounding due to lack of adjustment may have biased the results towards the null, 

though the authors did note that HBV infection is rare in Finland. Selection bias from utilizing 

cancer and deceased controls may have also biased results towards the null, as these controls 

may share a common risk factor in pesticides precipitating their adverse health outcomes. 

Furthermore, all information was acquired through the closest traced relatives, likely to not have 

accurately recalled the study subjects’ occupational history. 

1.4.3.7 Italy 

Porru et al. (2001) conducted a hospital-based case-control study in the Brescia province of Italy 

(67). This region is highly industrialized (e.g., metal and agricultural industries) and is associated 

with a high rate of HCC. One hundred forty-four male liver cancer cases (ICD-9 codes 155.0 and 

155.1) admitted to two different hospitals were diagnosed between 1997 and 1999. Sixty-eight 

percent of cases were confirmed through histology, 2.5% through cytology, 5.6% through 

elevated AFP levels (≥400 ng/mL), and 23.6% through US or CT imaging. Ninety-six percent of 

all liver cancer cases were confirmed as HCC via histology. Two hundred thirty-eight controls, 

admitted to various departments in the two hospitals, were frequency-matched to cases according 

to age, date of admission, and hospital of admission. Controls were admitted to hospitals for the 

following issues: genitourinary (22.6%), digestive (21.9%), circulatory (21.5%) and respiratory 
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(5.6%) systems, dermatologic (5.3%) and metabolic (4.9%) disorders, traumas (4.2%), ill-

defined symptoms (12.4%), and other conditions (1.4%). Through questionnaires, subjects self-

reported lifetime occupational history for each job lasting more than one year and occupational 

exposure to chemicals, particularly pesticides (i.e., OPs, OCPs, arsenicals, and herbicides). Job 

titles were coded using the International Standard Classification of Occupation (ISCO) and 

International Standard Industrial Classification of All Economic Activities (ISIC). Using 

information from the questionnaire, chemicals were further classified according to their 

reliability, route, intensity, and frequency. A blinded occupational physician utilized self-

reported information, as well as other relevant occupational information, to convert job titles to 

specific chemical exposures. Field crop and vegetable farmworkers (ISCO 622) compared to 

those not within this occupation were at a non-significantly increased risk for liver cancer (OR 

1.8; 95% CI 0.6-5.6). Agricultural services (ISIC 1120) compared to those not within this 

occupation were also at a non-significantly elevated risk for liver cancer (OR 1.2; 95% CI 0.5-

2.8). All results were adjusted for age, education, residence (city of Brescia versus rest of 

province), HBsAg, HCVAb, smoking habits, and heavy alcohol consumption. Less specific 

occupational groupings that may or may not have included individuals exposed to pesticides 

indicated a protective effect (agricultural and livestock production [ISIC 1110]; OR 0.8; 95% CI 

0.4-1.7). When analyzing time since first employment (TSFE) for field crop and vegetable 

farmworkers, the results were unstable, but showed a slightly higher risk for liver cancer with 

greater TSFE (OR 1.9 ≥30 years TSFE, 95% CI 0.5-6.5; OR 1.2 <30 years TSFE, 95% CI 0.1-

21.5). Analysis according to duration of exposure for agricultural workers did not show higher 

risk for liver cancer with 20 years or more employment versus less than 20 years (data not 
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shown). Furthermore, as few subjects reported exposure to pesticides (2 cases versus 12 

controls), the authors did not analyze specific occupational pesticide exposure.  

This occupational, hospital-based case-control lacked the statistical power to detect any 

real association between pesticides and liver cancer. Although some results indicated an elevated 

risk, albeit non-significant, recall bias of occupation and specific exposure to chemicals may 

have non-differentially biased results towards the null. However, the authors did note that the 

number of reported occupations was similar between cases and controls (mean number of jobs 

3.68 among cases versus 3.53 among controls). Selection bias may have occurred in utilizing a 

hospital-based control group. Although liver neoplasms were excluded, these subjects are 

potentially unhealthier compared to the general Brescia province population, potentially as a 

result of pesticide exposure—which would have further biased results towards the null. Although 

70% of cases were histologically or cytologically confirmed, those with and without 

confirmation were similar with respect to HBV, HCV, alcohol consumption, and 

sociodemographic characteristics. Selection bias may have further biased results towards the null 

as 96% of the histologically confirmed cases were HCC (65.3% cases overall). Pesticides may be 

specifically linked to HCC, and inclusion of other liver cancer types may have diluted its effect. 

1.4.3.8 United States 

The United States is a low-risk area, with HCC occurring at a rate of 5.9 per 100,000 in 2010 (4). 

One of four studies conducted in the United States demonstrated a significantly elevated risk for 

HCC associated with agricultural occupation (68). The remainder of the studies showed non-

significantly increased risk for HCC (59, 61, 69). Exposure metrics included self-reported 

occupation and exposure, in addition to occupation derived from medical records or death 

certificates.  
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Stemhagen et al. (1983) conducted a case-control study in New Jersey between 1975 and 

1980 (68). Liver cancer cases were derived from three sources: New Jersey hospitals between 

1975 and 1978, the New Jersey Cancer Registry between 1978 and 1980, and through death 

certificates between 1975 and 1979 (ICD codes 155.0 and 155.1). Death certificates with 

underlying causes of death as primary liver cancer were verified through medical records. Two 

controls were matched to each case according to age, race, sex, and county of residence. Living 

hospital controls were matched to live cases, and death certificate controls were matched to 

deceased cases. Controls with diagnoses or underlying causes of death due to liver cancer, 

hepatitis, cirrhosis, and other liver diseases were excluded. Exposure was collected through 

interviews as occupational histories and coded according to the U.S. Census Bureau Index of 

Industries and Occupations. Two hundred sixty-five cases were included in the study, 11 of 

which were alive for an interview and 254 of which were deceased (i.e., next-of-kin were 

interviewed). Approximately 82% of live and deceased cases were histologically confirmed as 

HCC. A total of 530 controls were included in the study, 22 of which were hospital controls and 

508 from death certificates. Among males employed for more than six months, all agriculture 

(industries and occupation) compared to never employment in the industry significantly 

increased HCC risk (OR 1.72; 95% CI 1.06-2.79). Agricultural production and services 

(exclusive of horticulture), compared to never employment in the industry, also significantly 

increased risk for HCC (OR 1.76; 95% CI 1.09-2.86). Farm laborers, compared to those not in 

the industry/occupation, were at a non-significantly increased risk for HCC (OR 1.49; 95% CI 

0.90-2.46). When evaluating duration of farming employment, more than half of the person-

years contributed by cases were before 1930, while the person-years contributed by controls 

were at a later time period (1930-1939). The authors pointed out that cases may have been 
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exposed at earlier ages compared to controls. After adjusting for alcohol consumption, the OR 

for liver cancer associated with the farm laborer occupation increased to 2.14 (no confidence 

interval provided).  

Utilizing hospital and death certificate controls potentially introduced a selection bias 

underestimating the true effect of pesticide exposure. The control group may have 

overrepresented smokers and heavy consumers of alcohol, as smoking and alcohol consumption 

did not significantly differ between cases and controls. Most controls died of ischemic heart 

disease, lung cancer, and cerebrovascular disease. The majority of cases and controls were 

deceased, which required use of next-of-kin interviews. Recall bias likely misclassified 

occupational information, biasing results towards the null. Lack of adjustment for known risk 

factors, such as HCV, also likely biased results towards the null. 

Austin et al. (1987) conducted a case-control study of subjects recruited from one of five 

study centers across the United States: University of Alabama at Birmingham, University of 

Miami, Duke University, University of Pennsylvania, and Harvard School of Public Health (59). 

Of the 86 HCC cases recruited, 80 were histologically confirmed and six were clinically 

diagnosed. Two hospital controls were matched to each case according to age, sex, race, and 

study center. Controls were admitted to the hospitals for cancers of the lung, oral cavity, 

esophagus, larynx, bladder, or pancreas. One hundred forty controls of 161 eligible controls with 

employment information were included in the analysis. Exposure was collected as self-reported 

exposure to select chemicals (at least 3 hours/week for at least 6 months during work/leisure 

time), and any self-reported occupation held for at least 6 months over a lifetime. Occupations 

were coded according to the Standard Industrial Classification Manual (1972) for industries and 

the Standard Occupational Classification Manual (1977) for job titles. Occupation in the 
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agricultural industry compared to those never employed in this industry slightly, though non-

significantly, increased risk of HCC (OR 1.1; 95% CI 0.6-2.3). Occupation as a farmer or 

farmworker also slightly increased HCC risk (OR 1.4; 95% CI 0.7-2.9). There was no significant 

association between years of farming and HCC risk (trend p=0.22). Exposure to pesticides 

compared to no exposure non-significantly increased HCC risk (OR 2.1; 95% CI 0.6-6.9), 

adjusted for fertilizers and herbicides. 

Recall bias of occupations and occupational chemical exposure may have biased results 

towards the null. The small number of exposed subjects makes it difficult to derive inferences 

from the results. The authors did note that adjustment for HBsAg and alcohol consumption did 

not change the results. However, blood specimens were only collected for 49 of the 86 cases and 

59 of the 161 controls (72). This information bias may have underestimated the effect of 

pesticides on HCC risk. Selection bias of hospital-based controls is problematic if the controls 

share risk factors HCC such as pesticides. However, controls with hospital admissions related to 

chronic bronchitis, emphysema, or primary liver diseases were excluded. 

Brownson et al. (1989) conducted a case-control study of 15,000 white males reported to 

the Missouri Cancer Registry (61). Men at least 20 years old at diagnosis and reported beginning 

in 1972 were included in the study. Hospital records with occupational data were extracted and 

coded using the 1980 U.S. Census Bureau codes. A total of 1,720 were registered farmers or 

farmworkers between 1984 and 1988. There were 74 liver cancer cases (ICD for Oncology 

[ICD-O] code 155) overall, 11 of which occurred among farmers and farmworkers. The control 

group was comprised of all other cancers. Farmers and farmworkers, compared to non-farming 

occupations, were at a non-significantly increased risk for liver cancer (OR 1.19; 95% CI 0.58-
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2.37), adjusted for age. When stratified by age group, older white males were at increased risk 

(OR 1.32; 95% CI 0.61-2.78) compared to younger males (OR 0.64; 95% CI 0.03-4.45).  

Brownson et al. (1989) evaluated a large number of cancers and were thus not well-

powered to assess the potential relationship between farming occupation and liver cancer. Using 

a cancer control group may have introduced selection bias, as some cancers may share common 

risk factors with liver cancer. For example, there were 2,480 prostate cancer cases; prostate 

cancer has been previously associated with pesticide exposure (73), potentially biasing results 

towards the null. Although the authors adjusted for age, residual confounding due to lack of 

adjustment for other major risk factors may exist. The authors also lacked information regarding 

type of farming and duration. Subjects may have held farming occupations before the 1984 to 

1988 registration period, misclassifying exposure and diluting the effect of farming occupation.  

Suarez et al. (1989) conducted a death certificate-based case-control study in Texas 

between 1969 and 1980 using the Texas Bureau of Vital Statistics (69). A total of 1,742 male 

liver cancer cases (ICD-8 and -9 code 155.0) were included. Controls (n=1,724) were frequency-

matched to cases according to age, race, ethnicity, and year of death. Causes of death in the 

control group included ischemic heart disease (40.4%), cerebrovascular diseases (12.1%), and 

external injuries (11.7%). Causes of death related to any cancers, liver diseases, gallbladder 

diseases, infectious hepatitis, and alcoholism were excluded from the control group. Exposure 

was acquired from the occupation recorded on the death certificates and coded according to the 

U.S. Census Bureau Classified Index of Industries and Occupations (1980). The overall effect of 

farming occupation, compared to those not in the occupation, non-significantly increased risk of 

liver cancer (OR 1.02; 95% CI 0.82-1.28), adjusted for age and race. Farmers were at a 
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decreased risk (OR 0.96; 95% CI 0.75-1.23), while farmworkers were at an increased risk for 

liver cancer (OR 1.35; 95% CI 0.82-2.23). 

Reliance on death certificates for occupational information is subject to misclassification, 

biasing results towards the null. As the case group was derived from death certificates, the 

external validity of the results shifts towards the impact of farming occupation on dying from 

liver cancer/advanced-stage liver cancer, reflecting different pesticide exposure experiences 

compared to other HCC cases. Furthermore, underreporting of liver cancer deaths may have 

misclassified some liver cancers into the control group. However, exclusion of causes of death 

due to liver-related diseases minimized this occurrence. Lack of adjustment, apart from age and 

race, for major HCC risk factors is also a limitation of the study. 

1.5 DISCUSSION 

There is evidence to suggest an association between exposure to pesticides and an increased risk 

of developing hepatocellular carcinoma. Of the 17 studies included in the literature review, three 

studies conducted in China using biomonitoring to quantify pesticide exposure demonstrated the 

strongest evidence for a potential association, particularly with DDT (55, 56, 58). The remaining 

studies used at least one qualitative method of exposure ascertainment such as self-reported 

occupation and/or exposure. These studies were largely inconsistent in their results. Although 

most of the studies demonstrated an elevated risk for HCC, many failed to reach statistical 

significance, and three studies showed non-significant deficits in risk.  

 Three specific pesticide classes were associated with increased risk of HCC. The 

organochlorine pesticides (OCPs) DDT, its metabolite of DDE, and HCH, are potentially 
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associated with HCC (55, 56, 58, 62). OCPs were frequently used in the United States, but many, 

such as chlordane, have been removed from the U.S. market due to environmental persistence 

and adverse health effects (74). Broad groupings of carbamates and organophosphates (OPs) 

were also associated with HCC risk (54, 62). Both carbamates and OPs are harmful to the human 

nervous system. However, OPs are not environmentally persistent. 

Despite evidence suggesting a potential association between pesticides and many human 

health outcomes, such as HCC, pesticides remain pervasive in use (23). Global pesticide 

expenditures exceeded $35 billion in 2006 and $39 billion in 2007, equated with approximately 

5.2 billion pounds of used pesticides (75). United States usage encompassed 22% of the world 

market. Usage remains high, though current regulation is in place in the United States through 

the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) of 1979, which charged the 

Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and the U.S. 

Department of Agriculture (USDA) with the regulation of production and use of pesticides (75). 

In both 2006 and 2007, a total of 5.1 billion pounds of pesticides were used in the United States 

(17% conventional use, e.g., treat insects). The agricultural sector has played a prominent role in 

pesticide usage over time. In 2007, the agricultural sector accounted for 80% of conventional 

pesticide usage (684 million pounds), followed by non-agricultural sectors (i.e., industry, 

commercial, or government; 12% or 107 million pounds), and home and garden (8% or 66 

million pounds).  

Overall, the quality of the three studies using biomonitoring, in terms of adjustment for 

established risk factors and method of exposure ascertainment, truly bolster confidence in their 

findings that link pesticides to HCC. Biomonitoring allows for the examination of specific 

pesticides, rather than heterogeneous groupings of pesticides, that may not directly affect the risk 
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of developing HCC. Although Persson et al. (2012) did not adjust for HCV infection, McGlynn 

et al. (2006) showed that, although conducted in a low-HCC risk region, HCV was not a 

significant risk factor. HBV, compared to HCV, typically drives HCC risk in East Asia (3). 

McGlynn et al. (2006) also posited that undernourishment in the source population in Linxian, 

which has been associated with elevating carcinogenic risk subsequent to DDT exposure, might 

have led to the significant results. However, these significant findings were later replicated in 

Zhao et al. (2011) and Persson et al. (2012). McGlynn et al. (2006) and Persson et al. (2012) 

measured serum DDT and DDE levels at study baseline, demonstrating temporality. All three 

studies also showed a significant dose-response relationship between DDT and HCC risk. 

Furthermore, the evidence of a biodegradation ratio of DDT to DDE, manifest as a significant 

interaction of higher risk of HCC with increasing serum DDT levels as DDE levels decreased, 

were consistent across studies (borderline significant in Persson et al. (2012)). The magnitude of 

the measures of association for DDT ranged between ORs of 2.96 and 4.07, which likely reflect 

heterogeneity in the distribution of risk factors and differences in pesticide application practices 

across China. Results from these three studies do not likely represent an artificially inflated 

association between pesticides and HCC. Neither McGlynn et al. (2006) nor Persson et al. (2012) 

were able to determine aflatoxin exposure. Positive confounding from higher aflatoxin exposure 

associated with pesticide exposure, such as through pesticide-handling peasants also handing 

aflatoxin-contaminated foodstuffs, may have biased results away from the null. However, 

McGlynn et al. (2006) cited previous research reporting low serum levels of aflatoxin in the 

study population, and Persson et al. (2012) cited a previous analysis showing no association 

between corn consumption (commonly associated with aflatoxin) and HCC risk. 
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On the other hand, a limitation across all three studies involves the accuracy of case 

ascertainment. McGlynn et al. (2006) and Persson et al. (2012) were unable to histologically 

confirm all cases of HCC. Zhao et al. (2011) did not offer any details regarding case 

confirmation, although they were all derived from hospital settings. Inclusion of cases not truly 

diseased could potentially bias results towards the null, especially if pesticides are specifically 

associated with HCC-type primary liver cancer. Another consideration is the external validity of 

the findings. In the United States, the 95th percentile of serum DDT levels was 28 ng/g between 

1999 and 2000 and 19.5 ng/g between 2003 and 2004 (26). This is considerably less than levels 

showcased in the studies conducted in China. The study population in Persson et al. (2012) was 

characterized by DDT levels with a geometric mean 468 ng/g ± 18 among cases and 478 ng/g ± 

18 among controls. This likely reflects China’s continuing use of DDT for non-agricultural 

purposes (56). 

The remainder of the 17 studies were inconsistent in their findings. The majority of the 

studies demonstrating a statistically significant association between pesticide exposure and 

increased HCC risk were conducted in East Asia and Africa (Egypt), while the majority of 

studies with non-significant findings were conducted in Europe and the United States. Three 

studies, using either rural/urban residence or self-reported pesticide exposure and occupation, 

demonstrated a non-significant protective effect. Five primary issues likely contributed to these 

inconsistent results: selection bias in sampling of controls, confounding resulting from lack of 

adjustment of HCC risk factors, lack of histological confirmation of cases, potential 

overadjustment, and most importantly, inadequate measures used to indicate pesticide exposure. 

Six case-control studies used hospital-based controls (58-60, 62, 64, 67). Usage of 

hospital controls, who likely represent less healthy individuals compared to the general 
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population, limits the external validity of the findings. Soliman et al. (2010) conducted a case-

control study in Egypt using healthy visitors and individuals accompanying patients to a cancer 

center. Brownson et al. (1989) conducted a case-control study in the United States (Missouri) 

using other cancer controls, the majority of which were lung cancer (27.6%), followed by 

prostate cancer (16.6%). However, there is evidence of an association between pesticide 

exposure and prostate cancer (73). Usage of hospital controls, visitor controls, and other cancer 

controls likely biased results towards the null as a result of potential shared common risk factors 

with HCC such as pesticide exposure.  

Four studies utilized deceased controls as comparative groups for deceased cases (63, 65, 

68, 69). These studies cited ethical reasons (e.g., HCC being associated with poor survival) and 

data limitations (e.g., usage of death certificates) as motivating factors. Deceased controls died 

from stomach cancer or coronary infarction (65), ischemic heart disease, cerebrovascular 

diseases, and external injuries (69), excluding causes of death related to liver cancer, hepatitis, 

cirrhosis, and other liver diseases (68), or from unspecified causes (63). Inferences derived from 

these studies must consider the generalizability of the findings reflecting the relationship 

between pesticide exposure and dying from HCC, or developing advanced-stage HCC associated 

with higher mortality risk. These results may also be biased towards the null when the underlying 

causes of death among controls share pesticide exposure as a risk factor. The most important 

consideration is reliance on interview-based measures of pesticide exposure, particularly next-of-

kin-reported information, subject to recall bias. However, London et al. (1995) and Evans et al. 

(2002) justified their usage of deceased HCC cases and live controls in their studies in Haimen 

City, China by stating that the incidence rate reflects the mortality rate in this region (i.e., 

extremely poor survival and poor availability of treatment options).  
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Many studies limited in available data did not adjust for established risk factors of HCC. 

Badawi et al. (1999) did not adjust for HCV, which is a major risk factor of HCC in Egypt. 

Among studies conducted in the United States, Brownson et al. (1989) presented age-adjusted 

results, Suarez et al. (1989) presented results adjusted for age and race, Austin et al. (1987) 

presented unadjusted results (matched controls according to age, sex, race, and study center), and 

Stemhagen et al. (1983) presented unadjusted results (matched controls according to age, sex, 

race, and county of residence). Depending on the geographic area, the impact of residual 

confounding from lack of adjustment varies for different risk factors. For example, lack of 

adjustment for HCV infection for studies conducted in the United States may have resulted in 

negative confounding. HCV, by virtue of its main routes of transmission through intravenous 

drug use and high-risk sexual behavior (13, 14), may be a more frequent urban phenomenon. 

Pesticide exposure occurs more frequently in rural areas (25), therefore lack of adjustment for 

HCV potentially biased results towards the null—underestimating the true effect of pesticide 

exposure. 

The majority of studies were able to identify HCC cases through histological 

confirmation, clinical examinations, imaging (e.g., ultrasonography, magnetic resonance 

imaging, and computed tomography), and elevated alpha-fetoprotein (AFP) levels, or a 

combination of different methods. Histological confirmation through biopsy or surgical resection 

is ideal (76). Therefore, other methods of confirmation introduce the potential misclassification 

cases and controls. Additionally, usage of cases derived from the underlying cause from death 

certificates is problematic in underreporting, whether if due to the absence of an autopsy, coding 

errors, absence of medical records for the certifying physician, etc. (77, 78). Selection bias may 

manifest itself as inclusion of metastatic liver cancer in the case group, biasing results away or 
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towards the null depending on its association with pesticide exposure. A related issue is inclusion 

of prevalent HCC cases, which would bias results if they differ from incident cases in their 

pesticide exposure experiences. Perhaps individuals with prevalent HCC have survived due to 

minimal pesticide exposure relative to the typical HCC case. 

Another consideration in interpreting the results from these studies is the potential 

presence of overadjustment, or inclusion of variables highly correlated with the exposure of 

interest (79). Specifically, pesticide exposure is a largely rural phenomenon, as agricultural 

activities are more common in less densely populated areas (25). Adjustment for variables that 

are inherently geographic, such as rural or urban residence, may produce comparable cases and 

controls, but may also adjust away the effect of measures designed to capture pesticide exposure 

such as agricultural employment. This effect dilutes the association between pesticides and HCC, 

biasing results towards the null. Similarly, some studies, by design, matched on geography-

related variables such as area of residence (54, 56, 62, 63, 66, 68). For example, Porru et al. 

(2001) adjusted for geographic area (residence in the city of Brescia versus outside of the city) 

when evaluating the association between self-reported occupation and HCC. A significantly 

larger proportion of cases (52.8%) lived outside of the city of Brescia compared to controls 

(31.1%). Results for field crop workers and vegetable farmworkers and the agricultural services 

industry were not significant. If the geographic areas outside of the city of Brescia are 

predominantly rural and used for agriculture, controlling for residence may have resulted in 

overadjustment, biasing results towards the null. On the other hand, several studies were able to 

achieve statistically significant results despite adjustment for geographic-related variables. 

Persson et al. (2012) matched on and adjusted for area of residence, Cordier et al. (1993) 

matched on and adjusted for place of residence, McGlynn et al. (2006) adjusted for residential 
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commune, and Badawi et al. (1999) adjusted for farming occupation and pesticide exposure in 

the same multivariable logistic model. This potentially highlights the variable effect on results 

depending on how pesticide exposure was measured and the study area. For example, 

delineations for place of residence in Vietnam may more accurately reflect variation in 

healthcare rather than rural versus urban demarcations. Furthermore, usage of more accurate, 

quantitative methods of pesticide exposure estimation is less subject to misclassification 

compared to a qualitative method such as self-reported occupation. The effect of overadjustment 

would be expected to be more pronounced when an exposure metric more accurately reflects 

pesticide exposure. Closer examination of overadjustment is warranted. 

The major limitation of the majority of the evaluated studies was how pesticide exposure 

was measured. Apart from the three studies measuring blood samples, all of the studies utilized 

qualitative methods of pesticide exposure ascertainment that contributed to the inconsistent 

results, in terms of significance and direction of effect. These methods included self-reported 

pesticide exposure, self-reported occupation, job-exposure matrices, occupational experts, and 

rural residence. If the study subject was deceased, next-of-kin were interviewed. Occupations 

were often coded using established standards such as the International Standard Classification of 

Occupations (ISCO) for occupations and the International Standard Industrial Classification of 

All Economic Activities (ISIC) for industries.  

The inherent limitation of all of these methods is the potential for recall bias. Inaccuracies 

in recalling past occupations and exposure to particular pesticides were likely nondifferential 

between cases and controls, biasing results towards the null. However, it cannot be ruled out that 

misclassification was differential in favor of better recall among cases that artificially inflated 

results. Reliance on next-of-kin reported information could have engendered even more 
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pronounced exposure misclassification. Furthermore, the exposure definitions lend themselves to 

misclassification as being heterogeneous groupings that do not truly reflect the pesticide 

exposure experienced by the study subjects. Specifically, focusing on occupations of farmers, 

which may include farm laborers and farm owners, may be problematic in that farm laborers may 

directly apply pesticides, but may not accurately recall the exact name or quantity of the 

chemical to which they were exposed, while farm owners may purchase the pesticide product. 

Using a definition of rural residence masks the heterogeneity from residing in areas that are 

proximate to urban areas or vice versa, and rural areas not near agricultural lands applying 

pesticides. Most studies using qualitative measures, such as ever-employment, did not attempt to 

examine historical pesticide exposure. Pesticide exposure may have spanned a relatively long 

time period during which an individual was employed, or where an individual resided if 

examining ambient exposures, and recent exposure may be irrelevant to hepatocarcinogenesis. 

These limitations reflect the pervasive inadequacies present in the majority of studies 

attempting to ascertain pesticide exposure (23). Most pesticide exposure-focused case-control 

studies have utilized questionnaires, and sometimes medical records, with questions regarding 

occupational histories, tasks, residences, and/or past pesticide exposure (25). Accurately 

quantifying pesticide exposure, particularly when investigating their role in chronic diseases, 

such as cancer, must consider historical exposures to take into account latency periods, or the 

time between from the initial exposure to clinical disease (23, 80). Pesticide exposure is ideally 

collected before disease onset in order to minimize recall bias from self-reported data and 

demonstrate a temporal relationship (25). When evaluating agricultural pesticide use, many 

pesticides are applied throughout a growing season, often in combination, or tank mixes, which 

is also dependent on crop type (25). Common routes of exposure should also be considered such 
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as directly through occupation, and indirectly such as through food consumption (23). Specific 

types of pesticides may also be associated with disease, which are not adequately captured with 

dichotomous (yes/no) classifications. 

Yet methods of ascertaining pesticide exposure have progressively improved over time. 

The evolution of measuring pesticide exposure began with crude surrogates, such as rural 

residence and farming occupation, to sophisticated techniques involving direct measurement of 

biological samples. Pesticide exposure methods are categorized as either qualitative or 

quantitative (25). Qualitative methods include occupational history, job exposure matrices, self-

reported exposure, and expert-reviewed estimation. Quantitative methods include usage of 

exposure databases, empirical modeling of exposure determinants, and biological measurements. 

This progressive improvement is evident in the 17 studies included in the literature review, with 

studies favoring more sophisticated and accurate quantitative methods over time. 

Qualitative methods, such as those involving questionnaires, are more reliable among 

farmers compared to farmworkers, who are often personally involved in the purchase and 

application of pesticides (23, 25). A weakness of occupational history is the lack of identification 

of specific chemicals (25). Self-reported history of pesticide exposure may overcome this 

weakness, but is also associated with potential recall bias (25). Another method is to incorporate 

a review of self-reported pesticide exposure by experts, such as occupational hygienists, as a way 

to evaluate self-reported exposures in relation to other study subjects. There are also integrated 

exposure metrics, such as job-exposure matrices (JEMs) and exposure intensity algorithms, 

which incorporate data from different sources to improve the estimation of pesticide intensity. 

JEMs utilize data regarding job title, tasks, and industry, but their reliability and validity vary 

according to the available supplementary data such as regional job data. Exposure intensity 
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algorithms derive estimates of intensity and dose by weighting cumulative pesticide exposure by 

chemical- and applicator-specific information. On the other hand, quantitative methods include 

empirical modeling, which uses information on determinants of pesticide exposure (e.g., weather 

conditions, work practices, and time since application) to estimate potential dermal exposure 

(25). Biomonitoring/biological samples, such as OCP levels in adipose tissue, can be used to 

assess long-term exposure—particularly those with long biological half-lives and whose 

concentrations may not be affected by disease when studying chronic health outcomes (23, 25). 

However, direct measurement poses challenges in terms of time and cost.  

A promising quantitative method is using geographic information systems (GIS) to 

objectively ascertain past exposure (23, 81, 82). A GIS is a system of hardware and software that 

can be used to manage, visualize, and analyze spatial (i.e., with location information) data (83). 

For example, a GIS-based method developed by Rull and Ritz (2003), validated using serum 

levels of DDE among study subjects in California’s Central Valley, incorporates multiple years 

of pesticide application records and land use data to ascertain pesticide exposure within a 500-

meter buffer around a residence. In conjunction with information regarding other routes of 

potential exposure, such as from occupations, GIS-based methods offer an accurate, objective, 

and cost-effective alternative to measuring exposure. The general population may be unaware of 

their ambient pesticide exposure. Given available data, a GIS can reconstruct historical pesticide 

exposure relevant to chronic diseases associated with long latency periods, otherwise difficult to 

perform with other methods. The effects of specific pesticides can be examined. Furthermore, 

usage of a GIS-based method would address the paucity of public health research using 

geospatial methods (84).  
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Given the inconsistent results and limitations of the existing literature investigating the 

relationship between pesticide exposure and HCC, future research should focus on quantitative 

measures of exposure ascertainment, specifically focusing on plausible pesticides and/or 

chemical classes. Recall bias associated with self-reported measures of occupation and exposure 

can be avoided through use of biomonitoring and/or geospatial methods. Quantitative methods 

should also consider multiple routes of exposure such as through residential proximity to 

agricultural pesticide applications and occupation. Usage of histologically confirmed cases of 

HCC minimizes misclassification of disease. Adjustment for established risk factors HCC, which 

are a function of the geographic region in which the study is conducted, is important. 

Confounding due to lack of adjustment for HCC risk factors that are inherently geographic is 

particularly problematic such as HCV infection in the United States. Overadjustment from 

including variables closely correlated with pesticide exposure is a potential issue that also 

deserves further attention.  

Future research should also allow for the examination of the relationship between 

pesticides and HCC among both males and females. Many of the reviewed studies utilized only 

male study subjects (61-63, 66, 67, 69), citing few cancer cases developing among females. 

Results from these studies are limited in their external validity. An exception was the Heinemann 

et al. (2000) study, whose subjects were derived from a study originally designed to evaluate the 

effect of oral contraceptive use on HCC among females. The majority of studies were also 

conducted in high-risk areas in Asia such as China. HCC has been increasing in traditionally 

lower rate countries, tripling in incidence in the United States since 1975 (8, 9). HCC is the ninth 

leading cause of cancer-related death in the United States (16). Given between 15 and 50% of 

individuals developing HCC in the United States do not have any established risk factors (3), it is 
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important to elucidate the role of potential risk factors of HCC--particularly in countries with 

rising incidence rates such as the United States.  

1.6 CONCLUSIONS 

Pesticides remain a ubiquitous environmental exposure, and overall, there is evidence supporting 

a potential association between pesticide exposure and HCC. The most convincing evidence 

includes studies conducted with study populations in China measuring pesticide levels in blood 

samples. Future research should focus on accurate and sophisticated methods of pesticide 

exposure ascertainment, such as biomonitoring and geospatial-based tools, while considering 

historical exposure, multiple exposure routes, and the impact of specific chemicals.  

 

 

 

 

 

 

 

 

 

 

50 



 

2.0  A LANDSAT REMOTE SENSING METHOD TO ESTIMATE AGRICULTURAL 

PESTICIDE EXPOSURE IN CALIFORNIA 

2.1 ABSTRACT 

Accurate pesticide exposure estimation is integral to studying pesticides and human health. 

Standard GIS methodology to estimate agricultural pesticide exposure in California matches 

pesticide applications to the most current land use survey (LUS) in Public Land Survey System 

sections. LUS’s are intermittently updated and concurrent Landsat images may better capture 

land use changes. The results of using 1985 Landsat images, classified via maximum likelihood 

and per-field, and the 1990 LUS to estimate pesticide exposure in Kern County, CA in 1985 

were compared. The Landsat and LUS methods separately matched pesticide applications to a 

crop (tier 1), all crops in a section (tier 2), or a section (tier 3). Pesticide application rates for 

residential parcels were calculated. The Landsat method achieved significantly more tier 1 

matches compared to the LUS method, notably among temporary crops. Our novel Landsat 

method can improve crop identification for use in studies to reconstruct pesticide exposure. 
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2.2 INTRODUCTION 

Pesticide exposure has been associated with adverse human health outcomes such as cancers 

(23). Pesticides are chemicals designed to treat pests such as insects and herbs (85). One source 

through which pesticide exposure may impact human health is via residential proximity to 

agricultural applications of pesticides (24, 86). Applied pesticides may drift through the air and 

the ground and through post-application volatilization (87). Gunier et al. (88) demonstrated that 

pesticides measured in carpet dust from 89 residences in California were significantly correlated 

with residential proximity to agricultural pesticide applications quantified using a geographic 

information system (GIS) (Spearman correlation coefficients 0.23 to 0.50; p<0.05). Humans are 

subsequently affected by pesticides through dermal contact and ingestion, especially as 

pesticides are less likely to degrade within houses (89). 

Elucidating the exact role pesticide exposure may play in the risk of developing adverse 

health outcomes is impacted by the methods used to quantify exposure. GIS metrics can combine 

multiple data sources to reconstruct historical exposure to specific pesticides (90). The California 

Department of Pesticide Regulation (CDPR) has collected Pesticide Use Report (PUR) data 

pertaining to agricultural use pesticide applications since 1974, including pounds of pesticides 

used to treat specified crop types on specified dates within Public Land Survey System (PLSS) 

sections (91). However, PUR data alone cannot be used to match pesticide applications to 

specific geographic locations at a scale finer than the 1 mi2 PLSS section level. This limitation 

has motivated attempts to combine PURs with land use data, notably the California Department 

of Water Resources (CDWR) land use surveys (LUS’s). Rull and Ritz (24) developed the 

standard validated GIS method of estimating agricultural pesticide exposure in California via a 

three-tier methodology that assigns PUR pounds of applied pesticides to LUS crop fields (92). 
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The notion of “tiers” refers to the level of certainty with which a PUR pesticide application can 

be assigned to a particular LUS crop field (93). Combining PURs with a LUS enables pesticide 

application rate calculations at geographic scales finer than the PLSS level. However, CDWR 

LUS’s are infrequently conducted on a county basis once every seven to 10 years, during which 

time significant land use changes can occur (94). 

Although vector data have typically dominated this research, raster data provide a 

valuable way to incorporate temporally current land use information in pesticide exposure 

estimation. Ward et al. (86) pioneered the integration of Landsat remote sensing, which has 

continuously captured satellite imagery of the Earth since 1972 (95), in estimating pesticide 

exposure. Supervised classification of a Landsat image of Nebraska from 1984 was implemented 

to classify agricultural land cover types, which were subsequently assigned crop-specific 

pesticide use probabilities. Maxwell et al. (96) demonstrated how Landsat imagery of Fresno 

County, CA could be used to downscale the identification of PUR pesticide-treated crop fields 

below the LUS level (minimum mapping unit 0.003 mi2) (94). Normalized Difference 

Vegetation Index (NDVI) values, a measure of vegetative density, were used to classify imagery 

into crop fields via a minimum distance method, and when used in conjunction with PLSS 

sections, can identify probable crops treated with pesticides (97). 

However, minimum distance classification is not widely used in practice as it cannot take 

into account the spectral variability present within land use classes (98). Alternative approaches 

include implementing per-pixel maximum likelihood classification (MLC) using NDVI values 

(99, 100) and/or per-field classification, which is useful in addressing within-field spectral 

heterogeneity (101). For example, Turker and Ozdarici (102) implemented per-field 

classification, where ML-classified pixels of SPOT, IKONOS, and QuickBird imagery of Turkey 
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in 2004 were used to classify vector fields according to the most frequently occurring land use 

class pixel. 

To estimate exposure to agricultural pesticides in a year without a concurrent LUS, we 

developed and evaluated a method to link PUR pesticide application data to concurrent Landsat 

images classified via a maximum likelihood and per-field classification approach using NDVI 

land use signatures. Our first research objective was to execute an accuracy assessment 

comparing classified Landsat images in 1990 to the 1990 LUS gold standard. As part of this first 

objective, we determined the accuracy of 1990 agricultural pesticide exposure estimates using 

classified Landsat images from 1990 vs. the 1990 LUS. Our second research objective was to 

evaluate the crop specificity of 1985 pesticide applications matching to classified Landsat 

images. As part of this second objective, we compared pesticide exposure estimates derived from 

1985 pesticide application data matched to classified Landsat images from 1985 vs. the 1990 

LUS. 

2.3 METHODS 

2.3.1 Study Area 

Kern County, CA is one of 19 counties in California’s agriculturally intensive Central Valley, 

ranked third in agricultural sales in the state (Figure 2) (103, 104). The population in Kern 

County in 2012 was an estimated 856,158, 10% of whom resided in rural areas (105, 106). The 

largest city is Bakersfield, with a population of 358,597 (106). Kern County is 8,131.92 mi2 in 

area. Agricultural croplands are predominantly found in the central and northwestern portions of 
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the county (Figure 2). The Sierra Nevada mountain range is found towards the east. In 2011, 

over 28 million pounds of pesticide active ingredients (AIs) were used in Kern County, the 

second highest total among counties in California (107). 

According to the U.S. Department of Agriculture (USDA) Census of Agriculture, 

between 1982 and 1992, both the number of farms with cropland (1,685 to 1,522) and the 

associated farm acreage (1,002,811 to 963,761 ac) decreased in Kern County (108). The majority 

of this acreage was associated with harvested cropland (76.6-86.7%), which was consistently 

dominated by cotton (34.6-36.9%). According to the Kern County Agricultural Crop Report, the 

majority of the harvested cropland (823,974 ac) in 1985 was comprised of cotton (33.4%), alfalfa 

hay (10.0%), grapes (9.5%), almonds (9.4%), wheat (6.4%), barley (3.4%), potatoes (3.2%), and 

navel oranges (2.1%) (109). Twenty-six percent (213,140 ac) of the harvested cropland in 1985 

was associated with permanent crop acres (does not require seeding after each harvest (110)) 

such as grapes. In addition, 2,292,000 ac were devoted to pasture. The majority of the harvested 

cropland (914,893 ac) in 1990 was comprised of cotton (34.1%), alfalfa hay (11.9%), grapes 

(8.2%), almonds (8.0%), wheat (3.3%), carrots (3.2%), potatoes (2.6%), navel oranges (2.2%), 

and barley (2.0%) (109). Twenty-four percent (217,684 ac) of the harvested cropland in 1990 

was associated with permanent crop acres and a total of 2,096,713 ac were devoted to pasture. 

Among the prevalent crops in Kern County, the following planting and harvesting dates 

are typically observed: cotton (plant Mar 20 to May 1; harvest Sep 15 to Nov 15); alfalfa hay 

(Sep 1 to Oct 31; Mar 20 to Oct 31); raisin grapes (Jan to Feb; Aug 15 to Sep 20); wine grapes 

(Mar 15 to Apr 15; Aug 15 to Oct 25); table grapes (May 1 to Jun 15; Jun 25 to Nov 24); 

almonds (Jan to Feb; Aug 4 to Oct 15); wheat (Nov 15 to Jan 15; Jun 1 to Jul 10); 

spring/summer-harvested carrots (Nov 15 to Mar 20; Apr 1 to Jul 15); fall/winter-harvested 
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carrots (Jul 1 to Sep 1; Oct 15 to Mar 15); fall-harvested potatoes (Aug 1 to Aug 30; Nov 25 to 

Mar 10); summer-harvested potatoes (Nov 20 to Mar 15; Apr 15 to Jul 15); oranges (Mar to Jun; 

Oct 15 to Sep 30); and barley (Nov 15 to Jan 15; May 20 to Jun 25) (111). 

2.3.2 Data Sources 

The CDPR PUR database provided pesticide application data, which has collected information 

regarding agricultural pesticide use in California since 1974 (91). Until 1989, commercial pest 

control operators were required to report all pesticide use and farmers were required to report 

restricted pesticide use (federally and/or state-designated as posing potential public health harm). 

A full-use reporting system was adopted in 1990. PUR data include the name, pounds, date, crop, 

and PLSS section associated with reported pesticide applications. The PLSS divides portions of 

the country into 1 mi2 sections for surveying purposes (112). Sections are identified by the 

county, principal meridian, township, range, and section identifier. 

Landsat images were requested from the U.S. Geological Survey (USGS) Global 

Visualization (GloVis) Viewer. The Landsat program was initiated in 1972 by the USGS and the 

National Aeronautics and Space Administration (NASA) to collect Earth imagery (95). The 

Thematic Mapper (TM) sensor onboard Landsat 4 and 5 captured seven spectral bands with at 

least 30 m spatial resolution. Each Landsat scene, defined by a Path-Row designation, spans 185 

km and is captured every 16 days. Bands 3 (red; 0.63-0.69 µm) and 4 (near-infrared; 0.76-0.90 

µm) were used in this analysis (98). The CDWR conducts LUS’s of agricultural lands to monitor 

land use changes in California on a county basis focusing on over 70 crop types (113). Aerial and 

satellite images, Global Positioning System (GPS) devices, and ground verification are used to 

classify land uses. Residential parcels were selected from the 2012 Kern County Assessor file via 
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use codes (e.g., 0100=single family residence) (114). U.S. Census Bureau TIGER/Line®  files 

provided administrative boundaries used in creating the figures (115). 

2.3.3 Pesticide Data Processing 

PUR data in 1990 (used for accuracy assessment) and in 1985 (used for pesticide exposure 

estimation in a year without a concurrent LUS) were processed using CDPR logic checks (116) 

such as duplicate removal (117). Outlier application rates in 1990 were defined using CDPR-

created flags (118). Outliers in 1985 were defined as pesticide application rates >200 lb/ac 

(>1,000 lb/ac if fumigant) or pesticide application rates greater than 50 times the median rate for 

all uses of a given pesticide product, crop, unit type, and record type. Outlier rates were replaced 

with the statewide median rate for the pesticide AI in that year, and pounds of AI were 

recalculated using the number of treated acres (24). For this analysis, a PUR application was 

defined as each unique instance of an organophosphate AI being applied given a particular date, 

crop, and PLSS section. 

A database of pesticides belonging to the organophosphate chemical class was created 

using agricultural references (23, 27, 89, 119-123). Organophosphates are pesticides pervasively 

used following the ban of organochlorine pesticides in the 1970s (124). A crosswalk between 

PUR commodity codes and CDWR LUS crop codes was created to facilitate data linkage. The 

following PUR extractions were made for inclusion into the analysis: agricultural records, 

associated with an organophosphate, and applied in Kern County in 1990 or 1985. 
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2.3.4 Accuracy Assessment in 1990 

2.3.4.1 NDVI Signatures From 1990 

The entire methodological workflow is shown in Figure 3. A time series of Landsat 4 and 5 TM 

images captured between January and October 1990 (10 monthly images from Jan 22 to Oct 28; 

no images available in November and December) was used to create NDVI land use signatures 

(Appendix A). The earliest available LUS in Kern County, conducted in 1990, served as the 

ground truth for land use types. Entire or portions of images with excessive cloud cover were 

excluded. Images from Paths 41 and 42 and Rows 35 and 36 were requested, which cover the 

geographic extent of Kern County (Figure 4). 

Using IDRISI Selva, TM images for the red (R) and near-infrared (NIR) bands were 

corrected to at-sensor reflectance using published radiometric calibration coefficients and image 

metadata (126). Atmospheric correction was implemented via the Chavez cosine estimation of 

atmospheric transmittance (COST) model to address atmospheric effects associated with using 

multitemporal images to calculate NDVI values (127, 128). Path-Row images were mosaicked. 

Negative reflectance values were recoded to 0 (129). A median spatial filter (3x3 kernel) was 

applied to each mosaicked image to reduce random noise (102, 130, 131). NDVI values were 

calculated using the following equation: (NIR-R)/(NIR+R). NDVI values harness information 

from wavelengths of electromagnetic radiation absorbed and reflected by green plants and how 

reflectance patterns change throughout the growing season (132). NDVI values range from -1 

(no or sparse vegetation) to 1 (dense vegetation). NDVI images were cropped to the 1990 NDVI 

signatures extent, which was defined by a region unaffected by clouds and/or shadows and 

within the 1990 Kern County LUS extent (Figure 5). NDVI images were re-projected to the 
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California Teale Albers (NAD83 datum; meter) coordinate system (30 m spatial resolution; 

nearest neighbor resampling to not alter pixels). 

From the 1990 Kern County LUS, polygons of single-use (i.e., excluding double- or 

triple-cropped, intercropped, or mixed), representing classified areas (i.e., excluding not 

surveyed [NS], entry denied [E], or outside study area [Z]), and within the 1990 NDVI signatures 

extent were selected (15,997 polygons). A negative buffer (-30 m; spatial resolution of Landsat 

images) was created around each selected LUS polygon to exclude potential mixed pixels (e.g., 

raster cells along LUS crop field boundaries potentially associated with multiple crop types, 

roads, etc.) (133). After collapsing urban LUS polygons into a single category, LUS polygons 

with valid geometries (15,565 polygons) were intersected with the NDVI images. Land uses 

represented by fewer than 100 pixels in each month in 1990 were excluded from consideration 

for training data (134), resulting in 57 distinct land use classes. 

2.3.4.2 Classification of 1990 Landsat Images 

Site-specific error matrices were created to quantify the accuracy of classified 1990 Landsat 

images compared to the 1990 Kern County LUS gold standard. Stratified random sampling 

(SRS) selected 60% of the buffered polygons from the 1990 LUS within the 1990 NDVI 

signatures extent (133). Strata were defined by the land use classes. Processed NDVI images 

from January to October 1990 were overlain with the SRS-selected polygons to be used as 

training data. The remaining 40% of the 1990 NDVI signatures extent was segmented and 

classified via a maximum likelihood and per-field classification approach. Using ArcGIS 10.1, 

the NDVI signatures training data were used to execute per-pixel maximum likelihood 

classification of the monthly 1990 NDVI images within the 40% classification extent. The 

sample option was selected to assign a priori probabilities to land use classes in proportion to the 
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number of cells represented in the NDVI signatures training data (135). Using IDRISI Selva, 

segmentation was performed on the monthly 1990 NDVI images within the 40% classification 

extent using the following parameters: window of 3, tolerance of 0.01, weight mean factor of 0.5, 

and weight variance factor of 0.5. Using the ML-classified pixels, per-field classification (using 

the segments) was implemented based on the modal class or a majority rule (102, 136).  

2.3.4.3 Error Matrices 

Classified segments and the LUS were intersected and compared by segment and by total 

acreage using error matrices. Using the mean NDVI value for each land use class for each 

month, the SAS 9.3 Proc Cluster centroid method grouped together land use classes based on the 

distance between two clusters, or the squared Euclidean distance between their centroids or 

means, to form phenological groups (99, 137, 138). Agreement, kappa and 95% confidence 

intervals (CIs), producer’s accuracy, user’s accuracy, omission error, and commission error were 

calculated according to CDWR land use (i.e., specific crop), CDWR broad land use group (e.g., 

field crops), and phenological group. 

2.3.4.4 Pesticide Exposure Estimation in 1990 

The three-tier method (24) was implemented to estimate pesticide application rates in 1990 using 

either classified 1990 Landsat imagery (referred to as the Landsat method) or the 1990 Kern 

County LUS (referred to as the LUS method). Segments classified as agricultural use (grain, rice, 

field, pasture, truck, deciduous, citrus, vineyard, or idle) were spatially joined to the 2,337 PLSS 

sections intersecting the 40% classification extent. Segments were dissolved according to crop 

type and section, the geographic level of reporting of the PUR database (91). Agricultural use 
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LUS polygons selected from the 40% classification extent were spatially joined to sections and 

dissolved according to crop type and section.  

Separately for the Landsat method and the LUS method, PUR-derived pounds of applied 

organophosphates were assigned to crop fields or PLSS sections according to crop type and 

section of application. Tier 1: Pesticides were matched to a crop field according to crop type and 

section. Tier 2: Pesticides were matched to all other crop fields in a section. Tier 3: Pesticides 

were matched to the entire section. A key difference between the established three-tier method 

and the LUS method implemented in this study was that non-permanent crop fields were not 

collapsed into a single category to facilitate the examination of specific crop types. 

Using the tier-matched organophosphates, pesticide application rates (lb/ac) were 

calculated for residential parcels separately using the Landsat and LUS methods. SRS selected at 

most three residential parcel centroids from each of the 2,337 sections (strata) within the 40% 

classification extent, and 500 m (radius) buffers were created around the centroids of sampled 

residential parcels. Acreage estimates were derived from Landsat, LUS, and section data. 

Pesticide application rates were weighted by the proportion of pesticide-treated crop fields and/or 

sections intersecting the buffer. Rural and urban parcels were identified using the 2000 U.S. 

Census Bureau Urbanized Areas (UAs) and Urban Clusters (UCs) (139). Parcel centroids 

intersecting a UA or UC were categorized as urban. 
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2.3.5 Comparing Pesticide Exposure Estimation in 1985 Using 1985 Landsat Images vs. 

1990 LUS 

2.3.5.1 Classification of 1985 Landsat Images 

Path 41-42 and Row 35-36 Landsat 5 TM images were requested for January through October 

1985 (10 monthly images from Jan 31 to Oct 14) to parallel the 1990 NDVI signature time points 

(Appendix A). Portions of the February 1985 image missing Path 42 (majority of Kern County 

agricultural fields) were imputed with the average of the January and March 1985 images (140). 

Images were processed using the same workflow as the 1990 images (Section 2.3.4.1). All 

training data from the 1990 NDVI signatures extent, as opposed to the 60% sample used during 

the accuracy assessment, were used to classify the 1985 Landsat images. Using an MLC and per-

field (using segments) approach, the 1990 NDVI signatures classified monthly 1985 NDVI 

images cropped to the 1985 imagery extent, a cloud- and shadow-free area within the 1990 Kern 

County LUS extent (Figure 5). A priori probabilities from the entire 1990 NDVI signatures 

extent were utilized. Segments, derived from monthly 1985 NDVI images, were classified (per-

field) according to a majority rule. 

2.3.5.2 Pesticide Exposure Estimation in 1985 

Using the three-tier method (Section 2.3.4.4), PUR data from 1985 were matched to classified 

1985 Landsat images (Landsat method) or the 1990 Kern County LUS (LUS method). 

Agricultural use segments were spatially joined to the 2,491 PLSS sections within the 1985 

imagery extent and dissolved according to crop type and section. The 1990 Kern County LUS 

was selected to calculate comparative pesticide application rates as it was the LUS conducted 

closest in time to the 1985 PUR data. Agricultural use LUS polygons selected from the 1990 
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LUS within the 1985 imagery extent were spatially joined to sections and dissolved according to 

crop type and section. Pesticide application rates were calculated for at most three residential 

parcels selected via SRS from each of the 2,491 sections (strata) within the 1985 imagery extent. 

2.3.6 Statistical Analysis 

Bowker’s test of symmetry for paired data compared the proportion of tier 1, tier 2, and tier 3 

matches when using the Landsat vs. the LUS method. McNemar’s tests compared the proportion 

of tier 1 vs. tier 2 and 3 matches, and tier 1 and 2 vs. tier 3 matches, when using the Landsat vs. 

LUS method, as well as the proportion of tier 1 vs. tier 2 and 3 matches by crop type according 

to each method. Wilcoxon signed-rank tests (non-parametric version of paired t-test) compared 

pesticide application rates estimated using each method, and Spearman rank coefficients 

quantified the correlation between rates. Weighted kappa coefficients quantified the agreement in 

pesticide exposure categorizations according to each method. The data analysis was generated 

using the SAS System for Windows software, Version 9.3 (Cary, NC, USA). 

2.4 RESULTS 

2.4.1 Accuracy Assessment in 1990: Error Matrices 

A total of 898,076.90 ac were used to create NDVI signatures in 1990 (60% SRS of 1990 NDVI 

signatures extent), which in turn classified 625,760.59 ac. The segments were on average 6.57 ± 

4.99 ac (median 5.34) in size, compared to LUS polygons that were on average 84.32 ± 119.61 
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ac (median 49.30). There was an average of 29 ± 22 pixels (median 24) available to classify each 

segment.  

When selecting the intersections between the segments and the single-use LUS polygons 

comprising the majority of each segment’s original area, CDWR land use (i.e., crop-specific) 

kappa was 0.700 (95% CI 0.696, 0.703) (top row of Table 3). The highest producer’s accuracy 

was observed for asparagus (15/15=100%). Asparagus-classified segments were on average 7.64 

± 3.30 ac (median 7.53). The highest user’s accuracy was observed for cotton 

(19,059/20,605=92.5%). Cotton-classified segments were on average 5.42 ± 3.48 ac (median 

4.67). Kappa statistics improved when aggregating segments and LUS polygons into CDWR 

broad land use groups (kappa 0.732 [95% CI 0.728, 0.735]) and into phenological groups (kappa 

0.779 [95% CI 0.776, 0.782]). Select phenological groups out of a total 17 representing NDVI 

patterns over a calendar-year time period are shown in Figure 6. All kappa statistics 

demonstrated substantial agreement beyond chance in terms of the performance of Landsat 

imagery in classifying the agricultural landscape as indicated by the LUS gold standard (143). 

Comparable overall percent agreement and kappa statistics were observed when examining the 

entire acreage of the intersections (bottom row of Table 3). 

A closer examination of the accuracy assessment aggregated to CDWR broad land use 

groups reveals satisfactory producer’s and user’s accuracy for the majority of the agricultural 

broad land use groups (Table 4). Producer’s accuracy was upwards of 82.6% for pasture crops 

and user’s accuracy was upwards of 88.6% for field crops. Among agricultural broad land use 

groups, the highest omission error (96%) and commission error (91.9%) was observed for idle 

(i.e., fallow) lands. Truly idle lands were often misclassified as native vegetation (76.7%), while 

idle-classified segments were truly field crops (35.6%) or native vegetation (19.8%) - all of 
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which belong to the same phenological group (Figure 6). It is important to note that among 

segments that were classified as agricultural use, a high proportion (73.9-98.9%) truly belongs to 

an agricultural broad land use group as opposed to a non-agricultural group (NV, NW, S, or U) 

according to the LUS (Table 4). 

2.4.2 Accuracy Assessment in 1990: Pesticide Exposure Estimation 

According to 7,495 PUR applications in 1990, LUS (mean 1.69 lb/ac; median 0.40 lb/ac) and 

Landsat (mean 2.31 lb/ac; median 0.46 lb/ac) pesticide application rates in 1990 were not 

significantly different for the 1,291 sampled residential parcels (Wilcoxon signed-rank 

p=0.8513). Rates were significantly correlated (Spearman correlation 0.83; p<0.0001). A similar 

average number of crop types were present within any given section when using the LUS (mean 

1.3; median 1.0) and Landsat layers (mean 2.8; median 2.0). A similar average number of 

pesticide-treated crop types intersected any given 500 m buffer when using the LUS (mean 1.4; 

median 1.0) and Landsat layers (mean 1.8; median 1.0). 

Using quartiles defined by the distribution of LUS pesticide application rates, agreement 

between LUS and Landsat pesticide exposure classifications was high (weighted kappa 0.766 

[95% CI 0.739, 0.792]) (Table 5). A small proportion of truly non-exposed parcels was 

misclassified as highly exposed using the Landsat method (14/481=2.9%). A small proportion of 

truly highly exposed parcels was misclassified as not exposed using the Landsat method 

(14/323=4.3%). Pesticide application rates were also comparable when stratified by rural/urban 

status. Among 463 urban parcels, LUS rates (mean 0.78 lb/ac; median 0 lb/ac) were similar to 

Landsat rates (mean 0.87 lb/ac; median 0 lb/ac) (p=0.1934) (weighted kappa 0.742 [95% CI 

0.689, 0.796]). Among 828 rural parcels, LUS rates (mean 2.20 lb/ac; median 0.81 lb/ac) were 
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similar to Landsat rates (mean 3.11 lb/ac; median 0.88 lb/ac) (p=0.3896) (weighted kappa 0.742 

[95% CI 0.706, 0.777]). 

2.4.3 Land Use Classification and Pesticide Exposure Estimation in 1985 

A total of 50,441 segments (mean 34.09 ± 28.30 ac; median 26.69 ac) derived from 1985 

Landsat imagery were classified (Figure 7). There was an average of 153 ± 127 pixels (median 

120) available to classify each segment. The majority of segments were classified as alfalfa 

(19.5%), followed by cotton (19.3%), field crop (18.7%), and native vegetation (8.6%). 

According to 3,909 PUR applications in 1985, the proportion of tier matches were 

significantly different when using the Landsat method vs. the LUS method (Bowker’s p<0.0001; 

Table 6). The Landsat method achieved a significantly higher proportion of tier 1 matches 

(60.3%) compared to the LUS method (57.4%) (McNemar’s p=0.0002). The Landsat method 

(99.2%) achieved significantly more combined tier 1 and 2 matches vs. tier 3 matches compared 

to the LUS method (96.6%; p<0.0001). Among the 2,466 PUR applications associated with 

temporary crops (i.e., sown after each harvest; e.g., cotton), the Landsat method (65.4%) 

achieved a significantly higher proportion of tier 1 matches compared to the LUS method 

(52.4%; p<0.0001). Among the 1,443 PUR applications associated with permanent crops (e.g., 

oranges), the LUS method (66.0%) achieved a significantly higher proportion of tier 1 matches 

compared to the Landsat method (51.6%; p<0.0001). 

A larger proportion of PUR applications associated with the following temporary crops 

were matched at tier 1 to Landsat compared to the LUS: alfalfa (N=468; Landsat 98% vs. LUS 

76%; McNemar’s p<0.0001), dry beans (N=75; 67% vs. 7%; p<0.0001), cotton (N=792; 97% vs. 

83%;p<0.0001), and potatoes (N=300; 65% vs. 51%; p=0.0001). Assuming PUR data are 
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accurate, a larger proportion of tier 1 matches among temporary crops is indicative of the 

capacity of Landsat imagery to delineate agricultural use lands not otherwise present in an 

outdated LUS. For example, Figure 8 shows a residential parcel that was sampled in the 1985 

imagery extent and located in section 15M29S25E10. PUR data indicated one organophosphate 

application of 27.9619 lb occurred in PLSS section 15M29S25E15 (section south of parcel but 

intersecting parcel buffer) on alfalfa on October 5, 1985. No alfalfa fields were present in this 

section using the 1990 LUS (left), resulting in a tier 2 match and an estimated rate of 0.82 lb/ac 

for the selected residential parcel. However, 1985 Landsat imagery (right) identified alfalfa-

classified segments in this section, achieving a tier 1 match and an estimated rate of 1.15 lb/ac. 

The crop types present in section 15M29S25E15 according to the LUS and Landsat methods - 

alfalfa, cotton, and sugar beet - belong to three different phenological groups, providing support 

that the alfalfa-classified segments are not a result of phenological misclassification (i.e., 

misclassification of a segment as another land use belonging to the same phenological group). 

PUR applications associated with the following permanent crops achieved more LUS vs. 

Landsat tier 1 matches: almonds (N=588; LUS 85% vs. Landsat 75%; p<0.0001), oranges 

(N=322; 91% vs. 75%; p<0.0001), and peaches/nectarines (N=89; 85% vs. 46%; p<0.0001). 

Further examination of the crops associated with a greater number of LUS tier 1 matches 

revealed potential phenological misclassification. Among the 58 PLSS sections associated with 

LUS tier 1 almond matches, but no Landsat tier 1 matches, 95% contained segments classified as 

alfalfa, 26% with mixed pasture, and 12% with apples - all three of which belong to the same 

phenological group as almonds (Figure 6). These occurrences demonstrate the difficulty 

associated with classifying crop types with similar phenological patterns. 

67 



 

LUS rates were significantly different from Landsat rates (Wilcoxon signed-rank 

p=0.0448; Table 7). Assuming Landsat rates are accurate, LUS rates overestimated exposure for 

35.7% of parcels and underestimated exposure for 32.5% of parcels - although differences were 

typically within 1 lb/ac. A similar number of crops intersected any given section using the LUS 

(mean 3.1; median 3.0) and Landsat layers (mean 4.0; median 4.0). A similar number of 

pesticide-treated crops also intersected any given buffer using the LUS (mean 2.2; median 2.0) 

and Landsat layers (mean 2.7; median 2.0). Pesticide exposure classification according to LUS 

quartiles (none: 0 lb/ac; low: >0-0.18 lb/ac; moderate: 0.18-0.60 lb/ac; high: >0.60 lb/ac) 

demonstrated good agreement between both methods (weighted kappa 0.711 [95% CI 0.682, 

0.740]). 

Stratification according to rural/urban status revealed some differences. LUS (mean 0.29 

lb/ac; median 0 lb/ac) and Landsat (mean 0.24 lb/ac; median 0 lb/ac) rates among 452 urban 

parcels were significantly different (p=0.0363) (weighted kappa 0.649 [95% CI 0.589, 0.708]). 

As shown in the Bland-Altman plots (Figure 9), LUS rates typically overestimated exposure 

among urban parcels compared to Landsat rates (mean difference 0.05 lb/ac). LUS (mean 0.64 

lb/ac; median 0.31 lb/ac) and Landsat (mean 0.74 lb/ac; median 0.27 lb/ac) rates among 841 rural 

parcels were comparable (p=0.2553) (weighted kappa 0.694 [95% CI 0.656, 0.732]). Differences 

were typically characterized by LUS rates underestimating exposure (mean difference -0.10 

lb/ac).  

Two discrepant parcel pairs associated with large differences in LUS and Landsat rates 

are presented in Figure 10. The top row of images shows a rural parcel with an LUS rate of 3.24 

lb/ac and Landsat rate of 50.73 lb/ac. Oranges were treated with 1,565.47 lb in the section in 

which the parcel is located (15M29S29E33). The discrepancy in estimated rates is due to the 
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parcel’s buffer intersecting large orange orchards using the LUS (i.e., pesticides distributed over 

larger area), while a relatively smaller orange orchard intersected the buffer using Landsat. The 

bottom row of images shows an urban parcel (within the Bakersfield Urbanized Area) with an 

LUS rate of 21.03 lb/ac and Landsat rate of 2.38 lb/ac. Discrepant rates resulted from almonds 

treated with 1,160.59 lb in the section in which the parcel is located (15M29S26E27), and the 

buffer intersecting the entire (and only) almond crop field present in the LUS in this section. The 

Landsat method classified multiple almond crop fields in section 15M29S26E27. 

2.5 DISCUSSION 

GIS-based metrics are powerful tools in examining the relationship between pesticide exposure 

and human health outcomes. Important underlying issues when examining chronic diseases 

include long latency periods, or the time between initial exposure and the clinical diagnosis of 

disease, which can be 20 years or more among cancers (85, 144). Historical reconstruction of 

past exposure is integral in capturing the potential effect of a latency period. Multiple routes of 

exposure exist such as dermal, inhalational, and oral, and humans are potentially exposed to a 

wide variety of pesticides at different points in time (90). Recall bias regarding past pesticide 

exposure may under- or overestimate true exposure. GIS-based pesticide exposure metrics 

address all of these issues through the capacity to incorporate multiple data sources with 

locational, dated information and specific chemicals. For example, the standard GIS method used 

to estimate agricultural pesticide exposure in California combines residential locations with  
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CDPR PURs and CDWR LUS’s (24). Additional information such as biologic samples can be 

acquired to quantify human pesticide exposure occurring through other routes such as ingestion 

(90). 

However, dynamic agricultural landscapes, as a result of crop rotation and land use 

conversion (e.g., urbanization) (145), contribute to relevant changes that may impact GIS-based 

methods of estimating pesticide exposure. CDWR LUS’s are intermittently updated every seven 

to 10 years on a county basis. Pesticide exposure estimation during a year lacking a current LUS 

will be affected as the utilized LUS may not adequately capture agricultural lands during that 

particular time period. Methods of incorporating remote sensing such as Landsat, which provide 

multispectral and multitemporal imagery capable of distinguishing landscape features (95, 146), 

allow for a useful approach to improving pesticide exposure estimation. The primary strengths of 

this research include the implementation of an improved MLC and per-field approach to classify 

Landsat imagery (compared to minimum distance methods) and the demonstration of a linkage 

between PUR data and agricultural crops derived from Landsat to estimate agricultural pesticide 

exposure in California in a year without a concurrent LUS. Our presented Landsat GIS method 

can be used in epidemiologic studies to reconstruct individual-level historical agricultural 

pesticide exposure using residential locations, especially as both PUR and Landsat data date back 

to the 1970s. 

2.5.1 Accuracy Assessment in 1990 

An accuracy assessment comparing classified 1990 Landsat images to the 1990 LUS gold 

standard demonstrated substantial agreement, with kappa statistics ranging from 0.700 to 0.789. 

Manifest in the varying producer’s and user’s accuracies across broad land use groups, some 
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agricultural classes were associated with greater misclassification compared to others (e.g., idle 

lands). Despite any land use misclassification, a large proportion of agricultural use segments 

(using Landsat images) truly belonged to an agricultural broad land use group (according to the 

LUS), which may be beneficial to pesticide exposure estimation. Specifically, if a PUR 

application was unable to achieve a tier 1 Landsat match, it would be likely matched at tier 2 to 

the other classified crops in the section. 

The non-significant difference in pesticide application rates in 1990 estimated using the 

LUS and Landsat methods bolsters the potentially negligible impact of any land use 

misclassification on pesticide exposure estimates. This is further supported by a weighted kappa 

of 0.766 demonstrating substantial agreement in pesticide exposure classification. Given the 

importance of specificity in low prevalence exposures (<10%) regarding attenuating study results 

(144), such as an approximately 2.2% pesticide exposure prevalence in the California population 

(104), encouraging results were observed in the high probability of parcels being classified as not 

exposed given no exposure (90.9%, few false positives; Table 5). 

2.5.2 Pesticide Exposure Estimation in 1985 

Pesticide exposure was estimated in a year without a concurrent LUS - 1985. A lower number of 

pesticide applications in 1985 vs. 1990 is a result of requiring farmers to change from reporting 

restricted pesticide usage to reporting all pesticide usage, the documented increases in pesticide 

usage in California in the early to mid-1990s, pest outbreaks (e.g., cotton aphids), and inclusion 

of different PLSS sections associated with the 40% classification extent vs. the 1985 imagery 

extent (118, 147, 148). LUS and Landsat rates were significantly different, where the Landsat 

method achieved a significantly higher proportion of tier 1 matches compared to the LUS 
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method. Assuming Landsat rates are accurate, LUS rates typically overestimated pesticide 

exposure among urban residential parcels. Such differences may be a reflection of land use 

conversion occurring between 1985 and 1990. Ancillary data beyond Landsat imagery (e.g., 

aerial photographs) would help clarify observed differences in LUS and Landsat rates, for 

example, through showing the presence or absence of farmlands in 1985 vs. 1990. On the other 

hand, the observed difference between LUS and Landsat rates in 1985 may not be generalizable 

to comparisons between the LUS and Landsat methods during other years. Furthermore, the 

difference in median pesticide application rates was 0.04 lb/ac (LUS median 0.18 lb/ac vs. 

Landsat median 0.14 lb/ac), which may not be meaningful in terms of affecting pesticide 

exposure categorizations (e.g., change from low to high exposure). This is supported by a 

weighted kappa of 0.711 demonstrating good agreement in pesticide exposure classification 

between the LUS and Landsat methods. 

Assuming segments in 1985 were accurately classified, the linkage between PUR data 

and Landsat-derived agricultural crop fields was most beneficial to PUR applications associated 

with several truck, field, and pasture crops. Agricultural growing practices are not limited to 

monocultures (i.e., repetitive growing of the same crop on the same land), but may include 

multiple cropping systems (149). Multiple cropping, also known as mixed cropping or 

polyculture, intensifies agricultural production through maximizing the efficiency of space and 

time, which serves to bio-diversify and stabilize the land, fertilize the crops in sequence, and 

promote pest control (149, 150). For example, crop rotation consists of the repetitive growing of 

different crops in a systematic and recurring sequence on the same field (151). Crop rotation is 

characterized by annual crop changes. For example, a legume crop (e.g., pea) may be planted to 

serve as a nitrogen source, followed by a sod crop to maintain organic matter and a cereal or root 
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crop to complete the rotation (151). Crop rotation is widely practiced across the U.S., evidenced 

by the infrequency of farmers continuously growing the same crop each year on the same field 

(152). Between 1996 and 2010, 84 to 94% of corn, soybean, and wheat acreage in the U.S. was 

associated with crop rotation. 

The important theme underlying multiple cropping systems is the dynamic nature of 

agriculture, where any given year or growing season does not remain static. Promising results 

that serve to support the utility of a Landsat and PUR database linkage were demonstrated 

among the crops associated with Landsat tier 1 matches. A significantly higher proportion of 

1985 organophosphate PUR applications associated with alfalfa, beans, cotton, and potatoes 

were able to be matched to classified segments using the Landsat method as opposed to the 

1990-dated LUS method. These specific crops have been associated with documented crop 

rotation cycles in California. Alfalfa is often rotated with crops that are not hosts to pests that 

typically damage alfalfa populations (e.g., nematodes) such as cotton and beans (153). Potatoes 

can be rotated every three or more years with alfalfa to control wireworms (154). These results 

were bolstered by Landsat achieving a significantly higher proportion of tier 1 matches among 

temporary crops. Temporary crops are sown/seeded and harvested during the same crop growing 

season (e.g., cotton), as opposed to permanent crops (trees [e.g., apples] and vines [e.g., grapes]), 

which are sown or planted once and do not require replanting following harvests as they occupy 

the land for a long period of time (110). Results may differ when examining different pesticide 

chemical classes used more frequently on other crops, especially those that may or may not be 

adequately captured using the presented classification methodology. 

The established three-tier method of linking PUR data with LUS’s collapses several crops 

due to the uncertainty of their rotation such as cotton and tomatoes (24, 122). In other words, 
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PUR data are distributed to all crop fields belonging to this non-permanent class, which may 

include crops to which pesticides were not applied - potentially problematic in under- or 

overestimating pesticide exposure. Neither the Landsat nor the LUS method in this analysis 

collapsed crops to allow for a direct comparison of the crops benefiting from using current 

Landsat imagery vs. an outdated LUS to match PUR applications. 

Conservative NDVI signature sample size constraints were implemented, requiring land 

use classes to have at least 100 pixels per land use class per month to ensure the inclusion of 

representative classes (134). A sensitivity analysis requiring at least 10 pixels revealed similar 

accuracy assessment results (data not shown). The classification of Landsat imagery can be 

implemented in epidemiologic studies estimating historical pesticide exposure from 1972 to the 

present (95). However, Landsat usage must be reconciled against the availability of ground truth 

data to derive NDVI land use signatures, as well as differences in the sensors (e.g., Multispectral 

Scanner [MSS]) that capture the images used to create signatures vs. the images used for 

classification - e.g., spatial resolution. 

2.5.3 Combined LUS and Landsat Pesticide Three-Tier Matching Methodology 

Harnessing the observed results regarding phenological misclassification in addition to 

differential capabilities of capturing temporary vs. permanent crops, a refined three-tier 

methodology could be developed that addresses the demonstrated strengths and limitations of 

both the LUS and Landsat methods (Appendix B). For example, a tier 1 match could be defined 

as when both LUS and Landsat crop fields match a PUR-reported crop. However, when LUS and 

Landsat data disagree in terms of crop types present in a section, among temporary crop PUR 

pesticide applications, Landsat data could be given more weight. A pesticide application would 
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be matched to a Landsat crop field if the Landsat and PUR crop match and the LUS crop field(s) 

present in that portion of the section belong to a different phenological group from that of the 

Landsat crop. Among permanent crop PUR pesticide applications, LUS data could be given 

more weight. A pesticide application would be matched to a LUS crop field if the LUS and PUR 

crop match, assuming that the PUR crop occupies the land for a long period of time. This 

alternative three-tier approach would have to reconcile differences between LUS vs. Landsat 

crop field boundaries and multiple crop fields belonging to the same crop type in a section. 

2.5.4 Strengths 

Strengths included the classification method, which was an improvement over previous 

approaches to classifying NDVI imagery into agricultural land use classes. Maxwell 2011 (97) 

implemented a minimum distance method, classifying each segment using the median NDVI 

value of each CDWR LUS land use class via a sum of squared differences measure across 

multiple time points in a year. Each LUS polygon in the training data was represented by a single 

pixel value at the label point or that was seemingly representative of the polygon, which does not 

take into account the variability within a LUS polygon and across polygons within the same 

class. The supervised classification method in this analysis was comprised of per-pixel MLC 

followed by per-field classification using segments - offering several advantages compared to 

minimum distance methods. MLC is a parametric method based on Bayes’ Theorem, classifying 

a pixel through maximizing the probability of correct classification (98). Training data from the 

1990 LUS and 1990 NDVI images were used to estimate a mean vector and covariance matrix 

for each land use class. The sample a priori weighting logic was selected, which assigned greater 

weight to the more frequently occurring pixels (i.e., land use classes) (135). MLC is useful when 
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land use classes overlap in spectral space, which is evident in the phenological groups comprised 

of crops with similar temporal NDVI patterns (98). For example, this Bayesian methodology was 

able to incorporate information regarding particular land use classes (e.g., cotton) having 

consistently dominated the agricultural landscape in Kern County throughout the study time 

period (108). 

Per-field classification integrates raster and vector data in order to account for within-

field spectral variability (102). Pixels are impacted by variability due to soil moisture conditions, 

pests, and disease, ultimately altering the captured spectral signature (99, 100). Through 

implementing a majority rule, the spatial autocorrelation of agricultural crop fields is addressed, 

as pixels close in proximity are likely of the same agricultural crop field, essentially averaging 

out the noise caused by the typical salt-and-pepper effects of per-pixel classifiers (101). 

Furthermore, fields were created using a local behavior-based image segmentation procedure in 

IDRISI, which implemented a watershed delineation, or region extraction, method of 

merging/growing pixels across input bands (monthly NDVI images) exhibiting minimal 

variance, or spectrally similar pixels that are likely of the same land use (155). Although the 

vector fields used in per-field classification are typically parcels dividing the landscape (i.e., 

segments used may not parallel crop field boundaries) (101, 156), classified segments were 

dissolved according to crop type and PLSS section, which was meaningful in terms of linking the 

PUR database to agricultural crop fields. 

2.5.5 Limitations 

Limitations of the classification approach included MLC per-pixel classifiers ignoring the mixed 

pixel problem, which is present with moderate spatial resolution imagery such as Landsat (101). 
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Mixed pixels occur when a pixel is not completely occupied by a single homogeneous category 

such as at the edge of large discrete objects (e.g., agricultural fields) and due to linear features 

(e.g., roads) (98). Sub-pixel classifiers can be used to address the mixed pixel problem such as 

the fuzzy set technique, where a soft classification method assigns a pixel to multiple 

memberships. Mixed pixels could have translated to issues regarding classification if features 

(e.g., streams) were within a segment’s boundaries and were not otherwise made distinct from 

the other spectral signatures used to classify the segment (100). De Wit and Clevers (100) 

recommended segmenting within the parcel boundaries of a large-scale topographic map to 

account for non-agricultural features such as roads. Although per-field classification is affected 

by field size and shape, sensitivity analyses of the accuracy assessment using different segment 

sizes demonstrated similar results (phenological group kappas ranging from 0.70 to 0.75). 

Misclassification of crops exhibiting similar phenological patterns was evident in some 

high omission and commission errors, and potentially contributed to a higher proportion of LUS 

tier 1 matches compared to Landsat among some crops. Almonds, oranges, and 

peaches/nectarines are permanent crops that were better captured using an outdated LUS 

compared to the classified Landsat images. Almond trees require four years after planting to 

mature before the nuts can be harvested (157). Given a five-year difference between the LUS and 

Landsat imagery, such longstanding crops could be expected to be present in both datasets. Their 

absence may be a result of phenology-related misclassification. A soft classification approach 

could be adopted to incorporate the uncertainty posed by phenological similarities. Another 

alternative includes combining phenologically similar crops into a single category (e.g., tomatoes 

and peppers) (99, 102), although such combinations may result in misclassification of pesticide 

exposure. Another limitation is associated with the hard classification used to assign each 
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segment to one land use class. Although precautions were taken at the land use NDVI signature 

creation stage (single-use LUS, negative buffers, ≥100 pixels per month required), the 

classification method could not account for intra-annual crop rotation, for example, when two or 

more crops are successively grown on the same field each year (149). Focusing the analysis on 

acquiring imagery to classify specific crop types with known planting and harvesting dates may 

minimize this issue. 

Implementing sophisticated classification techniques that incorporate ancillary 

information to further enhance classification accuracy, and thus pesticide exposure estimation, 

should be explored. For example, Yu et al. (155) classified Digital Airborne Imagery System 

(DAIS) images of Point Reyes National Seashore, CA into land use classes in conjunction with 

ancillary data to enhance class discrimination - e.g., elevation and slope (using a USGS digital 

elevation model [DEM]), distance to watercourses, intensity, hue, and saturation. A 

Classification and Regression Tree (CART) algorithm selected features most important for 

classification and a k-nearest neighbor classifier assigned segments to vegetative classes. Conrad 

et al. (158) segmented SPOT 5 imagery of Uzbekistan in 2006 for use in per-field classification. 

Using Tasseled Cap vegetative indices derived from bi-temporal Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) images from 2007 and expert knowledge 

regarding vegetative density and soil wetness, a rule-based algorithm determined final land use 

classifications. 

Other limitations include the absence of post-stratification weighting to derive 

representative residential parcel pesticide application rates and a Kern County population 

prevalence of organophosphate exposure (159). Although weighting would have been useful in 

an epidemiologic context to provide estimates of residential pesticide exposure experienced by 
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this population and to take into account unequal probabilities of selecting residential parcels into 

the sample, the purpose of this study was to compare and contrast two methods of estimating 

agricultural pesticide exposure. The temporal resolution of the NDVI signatures used to classify 

imagery, acquired for 10 months in 1990, may have limited land use classification. Landsat 

sensors capture images every 16 to 18 days (95). Using additional images may highlight intra-

month NDVI variability to further enhance land use discrimination. The utility of the land use 

signatures is also affected by the extent to which NDVI values may change from year-to-year. 

NDVI values are affected by remote sensing system characteristics (e.g., sensor resolution), 

meteorological conditions (e.g., clouds and snow), ecosystem disturbances (e.g., fires), and 

seasonality (e.g., prolonged warm temperatures extending the growing season; prolonged 

droughts) (160). Maxwell and Sylvester (161) showed high between-year variability in 

maximum annual NDVI values for cropped lands between 1984 and 2010 derived from Landsat 

images of southwestern Kansas. Usage of signatures closer in time to the imagery to be classified 

and under similar physical conditions may provide more accurate agricultural land use 

classifications - although this is limited by ground truth data availability. The external validity of 

using NDVI signatures to classify images from other geographic areas around California and at 

different points in time should be explored. More sophisticated approaches to identify clouds 

could be implemented to minimize the inclusion of affected pixels such as harnessing spectral 

reflectance information (162). 
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2.6 CONCLUSIONS 

GIS-based methods provide a powerful way to quantify agricultural pesticide exposure, 

addressing important facets of exposure estimation in the context of epidemiologic studies (e.g., 

minimizing recall bias, identifying specific pesticides, and reconstructing historical exposure). A 

methodology to classify Landsat imagery using NDVI signatures via a maximum likelihood and 

per-field classification approach was presented. An accuracy assessment demonstrated 

substantial agreement with the LUS gold standard and minimal pesticide exposure 

misclassification. Use of classified Landsat imagery to estimate agricultural pesticide exposure in 

1985, a year lacking a current LUS, was demonstrated through a linkage with the California PUR 

database using crop type and PLSS section. The Landsat method achieved significantly more tier 

1 PUR matches compared to the LUS method, particularly among temporary crops associated 

with annual crop rotation. Estimated pesticide application rates were significantly different. 

Future research should explore the combined use of the LUS and Landsat methods to estimate 

pesticide exposure, in addition to image classification methods using ancillary data to improve 

the accuracy of both land use classification and pesticide exposure estimation. 
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2.7 TABLES 

Table 3. Accuracy Assessment of Classified Landsat Imagery vs. LUS in 1990 

 CDWR land usea CDWR broad  
land use groupa Phenological groupa 

N Agreement Kappa  
(95% CI) Agreement Kappa  

(95% CI) Agreement Kappa  
(95% CI) 

87,197 
segmentsb 75.1 

0.700  
(0.696, 
0.703) 

78.5 0.732  
(0.728, 0.735) 82.7 0.779  

(0.776, 0.782) 

559,908 acc 76.4 
0.701  

(0.699, 
0.702) 

79.5 0.731  
(0.730, 0.733) 84.4 0.789  

(0.788, 0.790) 
 
a The accuracy assessment was performed on classified imagery from the 40% classification extent that was derived 
from the 1990 NDVI signatures extent and not used for training data. Results are presented for the intersections 
between segments and single-use LUS polygons. 
b N=86,060 segments for phenological groups. 
c N=554,312 ac for phenological groups. 
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Table 4. Accuracy Assessment of Landsat Imagery vs. LUS in 1990 Using Number of Segments: CDWR Broad Land Use Groups 

  Land use survey (gold standard)    
  C D F G I NV NW P R S T U V Total User’s Agra 

L
an

ds
at

 

C 2,058 44 17 9 5 76 1 8 0 19 23 76 42 2,378 86.5 92.8 
D 27 4,977 42 7 33 291 22 190 0 30 23 203 456 6,301 79.0 91.3 
F 68 201 20,884 312 111 517 24 499 0 35 628 50 242 23,571 88.6 97.3 
G 10 17 466 2,292 65 364 3 32 0 2 228 4 0 3,483 65.8 89.3 
I 13 63 406 91 92 226 6 58 0 33 97 33 24 1,142 8.1 73.9 

NV 242 418 1,887 148 1,774 22,770 20 93 0 121 78 1,262 43 28,856 78.9 16.2 
NW 0 2 16 1 2 53 38 0 0 0 2 10 0 124 30.6 18.5 

P 48 136 775 47 89 29 0 6,133 0 10 81 45 176 7,569 81.0 98.9 
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -- -- 
S 1 2 1 0 1 9 0 3 0 2 0 1 3 23 8.7 47.8 
T 6 20 985 139 52 133 0 195 0 1 2,130 7 31 3,699 57.6 96.2 
U 95 203 262 28 63 571 10 56 0 174 30 3,208 94 4,794 66.9 17.3 
V 33 583 164 7 27 230 6 161 0 25 91 40 3,890 5,257 74.0 94.3 

 Total 2,601 6,666 25,905 3,081 2,314 25,269 130 7,428 0 452 3,411 4,939 5,001 87,197   
 Producer’s 79.1 74.7 80.6 74.4 4.0 90.1 29.2 82.6 -- 0.4 62.4 65.0 77.8    
 Agra 87.0 90.6 91.6 94.3 20.5 7.4 47.7 98.0 -- 34.3 96.8 9.3 97.2    

 
Abbreviations: C = citrus and subtropical; D = deciduous fruits and nuts; F = field; G = grain and hay; I = idle; NV = native vegetation; NW = water surface;  
P = pasture; R = rice; S = semi-agricultural; T = truck, nursery, and berry; U = urban; V = vineyard. 
b Agr = agricultural; proportion of land use class classified as agricultural use (all classes except NV, NW, S, and U).

82 



 

Table 5. Classification of Residential Parcels According to 1990 Pesticide Exposure Quartiles: Landsat vs. 

LUS Methods 

  LUS (gold standard)a  

  None Low 
exposure 

Moderate 
exposure 

High 
exposure Total Weighted 

kappa 

Landsata 

None 437 30 18 14 499 0.766 
(0.739, 0.792) Low exposure 14 91 19 8 132 

Moderate 
exposure 16 30 222 57 325  

High exposure 14 14 63 244 335  
Total 481 165 322 323 1,291  

 
a None: 0 lb/ac; low: >0-0.40 lb/ac; moderate: 0.40-1.74 lb/ac; high: >1.74 lb/ac. 
 

 

Table 6. Pesticide Application Tier Matching In 1985: LUS vs. Landsat Methods 

  LUSa,b  
  Tier 1 Tier 2 Tier 3 Total pc 

Landsata,b 

Tier 1 1,864 452 40 2,356 <0.0001 

Tier 2 381 1,081 58 1,520  

Tier 3 0 0 33 33  

Total 2,245 1,533 131 3,909  
 

 a 3,909 organophosphate applications (549,158.76 lb) in 1985 imagery extent. 
b Landsat achieved more tier 1 vs. tier 2 and 3 matches (McNemar’s p=0.0002) and more tier 1 and 2 vs. tier 3 
matches compared to LUS (p<0.0001). 

 c Bowker’s test of symmetry. 
 

 

Table 7. Pesticide Application Rates in 1985: LUS vs. Landsat Methods 

 Pesticide application rates (lb/ac)a 

Method Min Median; Mean ± SD Max pb 

LUS 0 0.18; 0.52 ± 1.13 21.03 0.0448 

Landsat 0 0.14; 0.56 ± 2.14 50.73  
 

a 1,293 sampled residential parcels in 1985 imagery extent. 
b Wilcoxon signed-rank test. 
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2.8 FIGURES 

 

(Data Source: USDA FSA Aerial Photography, 2012) 

Figure 2. Kern County, CA Study Area: National Agriculture Imagery Program (NAIP) Compressed County 

Mosaic (CCM) of Kern County From August 2012 (Left); Kern County Within California’s Central Valley 

Agricultural Region (Right) 
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Figure 3. GIS Workflow for Accuracy Assessment and 1985 Pesticide Exposure Estimation 
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Figure 4. Landsat Paths 41 and 42 and Rows 35 And 36 Intersecting Kern County, CA 
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Figure 5. Geographic Extent of NDVI Training Data and Classification Data: NDVI Signatures for Land Use 

Classes Derived From Images Within the 1990 NDVI Signatures Extent (Pink Region) Used for Accuracy 

Assessment in 1990 and as Training Data for Maximum Likelihood Classification of 1985 Images Within the 

1985 Imagery Extent (Red Region) 
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Figure 6. Phenological Groups Comprised of Land Uses Sharing Similar Annual NDVI Patterns Derived 

From Cluster Analysis: Land Uses Exhibiting (a) Gradual Summer NDVI Peak, (b) Stable NDVI Pattern, (c) 

Moderate Vegetative Density Peak, and (d) Low NDVI Pattern 
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Figure 7. Segments Overlaying an August 1985 NDVI Image 
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Figure 8. LUS vs. Landsat Pesticide Exposure Estimation in 1985: One Organophosphate Alfalfa Application 

(27.96 lb) in Section 15M29S25E15 With Tier 2 LUS Match (LUS Pesticide Application Rate 0.82 lb/ac; Left) 

and Tier 1 Landsat Match (Rate 1.15 lb/ac; Right) 
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Figure 9. Bland-Altman Plots of LUS vs. Landsat Rates in 1985: Mean vs. Difference Between LUS and 

Landsat Pesticide Application Rates for Sampled Residential Parcels Stratified by Rural (Left) and Urban 

(Right) Location 
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Figure 10. Discrepant Pesticide Application Rates According to LUS and Landsat Methods and Rural/Urban 

Status: Rural Parcel With 3.24 lb/ac LUS Rate and 50.73 lb/ac Landsat Rate due to Fewer Landsat Orange 

Fields in Parcel’s Section (Top Row); Urban Parcel With 21.03 lb/ac LUS Rate and 2.38 lb/ac Landsat Rate 

Due To More Landsat Almond Fields in Parcel’s Section (Bottom Row) 
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3.0  ZIP CODE-LEVEL GIS PESTICIDE EXPOSURE METRICS: ACCURACY OF 

AREA, POPULATION, AND NETWORK-ATTRIBUTED WEIGHTING METHODS 

3.1 ABSTRACT 

Spatial data are often available at an aggregated, ecologic scale (analysis scale) that may not 

reflect the finer scale at which the feature of interest operates (operational scale). When the 

source unit (unit of data in its current form) is smaller in size relative to the target unit (unit at 

which data are available), spatial aggregation can be applied to scale up the data from the source 

unit to the target unit. Usage of relevant ancillary data in a weighting method, as part of spatial 

aggregation, can address the discrepancy between the analysis and operational scales. We 

explored three different weighting methods while scaling up California agricultural pesticide 

exposure data from the Public Land Survey System (PLSS) 1 mi2 section level to the ZIP Code 

level: area, population, and network-attributed/road. The research goal was to develop a GIS-

based ZIP Code pesticide exposure metric that most accurately estimates exposure occurring 

among the population residing in California. California Pesticide Use Report pounds of applied 

pesticides were matched to PLSS sections and pesticide application rates calculated using the 

three ZIP Code weighting methods in a GIS were compared to rates calculated using the census 

block-level gold standard method. Compared to population and road weighting, area weighting 

achieved the most accurate pesticide application rates when compared to the gold standard. Area-
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weighted rates were in moderate agreement with the gold standard (weighted kappa 0.55; 95% 

confidence interval [CI] 0.52, 0.58) and in substantial agreement in rural locations (0.63; 95% CI 

0.57, 0.69). Area weighting is the most accurate approach to estimate agricultural pesticide 

exposure if scaling up California pesticide data from PLSS sections to ZIP Codes. The proposed 

weighting and aggregation approach can be applied in epidemiologic studies to study 

environmental exposures that affect human populations in the absence of large scale spatial data.  

3.2 INTRODUCTION 

The use of spatial data, or data with locational information, and geographic information systems 

(GIS) provide a powerful approach to studying the effects of environmental exposures on human 

health outcomes. In the context of epidemiologic studies, environmental exposure data available 

in a spatial format can be linked with georeferenced health outcome data, ranging from small-

scale ecologic units (e.g., ZIP Codes) to large-scale individual-level units (e.g., geocoded 

residential locations) (164). However, a fundamental issue underlying the use of spatial data in 

epidemiology involves reconciling the analysis scale vs. the operational/phenomenon scale. The 

scale at which a feature of interest is measured or aggregated (i.e., analysis scale) may not 

correspond to the scale at which that feature of interest operates (i.e., operational scale) (165, 

166). 

One example surrounds pesticide exposure, which has been associated with the risk of 

developing many adverse human health outcomes such as cancers (23). Pesticides are chemicals 

designed to treat pests such as insects, potentially affecting humans through a variety of different 

routes (e.g., drinking water, food, air, and dust) (167). One important route of exposure affecting 
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rural populations occurs via residential proximity to agricultural pesticide applications (86). 

Previous epidemiologic studies recognized that meaningfully quantifying pesticide exposure 

occurring through this route requires high resolution data sources at the level of an individual’s 

place of residence (i.e., operational scale). For example, the standard GIS method to estimate 

agricultural pesticide exposure in California links California Department of Pesticide Regulation 

Pesticide Use Report (PUR) data with California Department of Water Resources land use 

surveys (LUS’s) (24). Specifically, PUR pounds of applied pesticides, reported according to crop 

type and 1 mi2 Public Land Survey System (PLSS) section, are matched to LUS vector crop 

fields. Pesticide exposure is estimated using the pesticide-treated crops within a 500 m (radius) 

buffer around an individual’s geocoded residence. 

However, geocoded residential locations may not be available due to aggregation to 

protect patient confidentiality and lack of data availability (164, 168). As a consequence, 

epidemiologic studies can be constrained to smaller scale spatial units such as ZIP Codes (164). 

When the source units, or the unit of the data in its current form (e.g., PUR data reported by 

PLSS sections) are nested within or smaller in size than the target units, or the unit at which the 

data are available (e.g., ZIP Codes), scaling-up or spatial aggregation methods must be employed 

to aggregate the source units to the target units (169, 170). For example, Clary and Ritz (171) 

implemented a summation approach when examining the association between ZIP Code-level 

organochlorine pesticide exposure and pancreatic cancer mortality in California. As only ZIP 

Code data was available on death certificates, PUR pounds of pesticides were matched to PLSS 

sections and aggregated to the ZIP Code level. 

Given a particular spatial aggregation (e.g., PLSS section level to ZIP Code level) and a 

particular phenomenon of interest (e.g., human agricultural pesticide exposure), a specific 
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weighting method that uses ancillary data to convert information from the source unit to target 

unit level may be more appropriate. For example, a simple summation of PLSS section-level 

applied pounds of pesticides to an aggregated areal unit does not take into account individuals 

who may or may not reside near the PLSS sections in which pesticides were applied. The 

weighting component of a spatial aggregation method represents one way to address the 

discrepancy between the analysis and operational scales by incorporating ancillary data to craft 

an aggregated metric that best reflects the finer scale at which pesticide exposure impacts human 

health. 

We conducted a validity study to explore three different methods of weighting when 

spatially aggregating PLSS sections to the ZIP Code level to determine which method best 

reflects, or is the most accurate indicator of, agricultural pesticide exposure at the higher 

resolution census block level. Although this study specifically addresses spatial scale in the 

context of agricultural pesticide exposure at the ZIP Code level, the proposed weighting methods 

can be adapted to study other environmental exposures and other geographic units of analysis. 

3.3 METHODS 

3.3.1 Study Area and Data Sources 

California is the most agriculturally productive state in the U.S. (172). It is comprised of 58 

counties and is 158,706 mi2 in area (173). The state population was 29,760,021 in 1990; 

33,871,648 in 2000; and 37,253,959 in 2010 (174). U.S. Census Bureau TIGER/Line®  files 

provided administrative boundaries used in creating the figures (115). 
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3.3.1.1 Pesticide Data 

The California Department of Pesticide Regulation (CDPR) has collected Pesticide Use Report 

(PUR) data since 1974 (91). PURs contain information regarding agricultural use pesticide 

applications reported by farmers and commercial pest control operators, including the chemical 

name, pounds, crop type, date, and Public Land Survey System (PLSS) section of application. 

PLSS sections are vector data used for surveying purposes that are 1 mi2 in area and span parts of 

the U.S. (112). 

3.3.1.2 U.S. Census Bureau Data 

The U.S. Census Bureau conducted the 2000 Census of Population and Housing starting on April 

1, 2000 (175). As part of the 2000 Census, the Summary File 1 (SF1) contains information (e.g., 

age) asked of all persons and housing units in the U.S. (176). Census blocks are the smallest 

statistical units for which data are collected (177). Census blocks in urban areas are bound by 

streets and typically smaller than census blocks in rural areas, which are bound by roads and 

streams. ZIP Code Tabulation Areas (ZCTAs) were used to approximate U.S. Postal Service ZIP 

Code boundaries in California, which are used as the basis of mail delivery in the U.S. (178).  

ZCTAs are created by determining the most frequently occurring ZIP Code within each census 

block (179). Census blocks are hierarchically nested within ZCTAs. In this paper, the term ZIP 

Code will be used in place of ZCTA. U.S. Census Bureau roads include Federal Interstate 

highways, state highways, and local, neighborhood, and rural roads (180). TIGER/Line® vector 

files for census blocks, ZIP Codes, and roads and Census population data from 2000 were used 

as this year coincided with the time period during which PUR data was analyzed (1995 to 2005).   
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3.3.1.3 Dasymetric Data 

The National Land Cover Dataset 1992 (NLCD1992) is a raster file of 21 land cover classes 

(e.g., mixed forest) spanning the 48 coterminous U.S. states (181, 182). The NLCD1992 is 

associated with 30 m spatial resolution and created via unsupervised classification of 1992 

Landsat 5 Thematic Mapper images incorporating ancillary data such as elevation and population 

density. The California Protected Areas Database (CPAD) is a vector file of California lands 

owned in fee and protected for open space purposes (e.g., national and state forests) updated in 

March 2014 (183). The California Conservation Easement Database (CCED) is a vector file of 

California lands protected under conservation easements (e.g., legal agreement between land 

owner and government to conserve land) (183).  

3.3.2 Pesticide Data Processing and Application Matching 

Agricultural use PUR data from 1995 to 2005 were processed using CDPR-provided error files 

(errors with corrected values were retained) or logic checks (e.g., duplicate removal) if error files 

were unavailable (116). Outlier application rates were defined using three CDPR-created flags 

(e.g., >200 lb/ac if non-fumigant pesticide) (118) and replaced with the statewide median rate for 

the pesticide active ingredient in that year (24). Pounds of active ingredient were recalculated 

using the number of treated acres. Pesticide applications associated with the organochlorine, 

organophosphate, and carbamate chemical classes were extracted (23, 27, 89, 119-123, 184). 

Pounds of pesticides were matched and summed according to PLSS section, the geographic level 

of reporting of the PUR database (185). 
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3.3.3 Gold Standard Pesticide Exposure Metric: Dasymetric Mapping 

Three ZIP Code metrics were compared to a gold standard pesticide exposure metric, which was 

calculated by first implementing the U.S. Geological Survey (USGS) dasymetric mapping 

method to identify potential locations where individuals in California likely reside (USGS, 186). 

California NLCD1992 raster files were reprojected to the California Teale Albers (NAD83 

datum) coordinate system and mosaicked. A majority filter (3x3 kernel) was implemented and 

land cover classes were reclassified into four mutually exclusive classes: (1) high intensity 

residential (NLCD code 22), (2) low intensity residential (NLCD code 21), (3) non-urban 

(remaining 18 NLCD codes excluding water), and (4) water/excluded (NLCD code 11). High 

intensity residential, low intensity residential, and non-urban will be referred to as the three 

habitable classes. The water/excluded class includes geographic areas where humans are not 

expected to reside; thus, pesticide exposure was not estimated within these areas. CPAD and 

CCED data were combined via union into an open space layer, dissolved, and rasterized to 30 m 

pixels (spatial resolution of NLCD1992 layer). All open space pixels were recoded to a value of 

10. Using map algebra, the NLCD and open space layers were summed and any pixels with 

values of 10 or greater were reclassified into the water/excluded class (i.e., all open space lands 

were excluded), creating the NLCD-open space layer. 

The NLCD-open space layer was converted to a polygon vector layer. Census block-level 

total population estimates from the 2000 U.S. Census Bureau SF1 were joined with the 2000 

California census blocks layer. Census blocks with >0 population were intersected with the 

NLCD-open space layer (habitable classes only) and dissolved according to census block and 

habitable class. Centroids for each unique census block-habitable class polygon were generated 

and 500 m (radius) buffers (meaningful distance regarding pesticide drift used in previous 
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studies) were created around each centroid (24, 86). Buffers were intersected with PLSS 

sections. For each centroid, annual pesticide application rates (lb/ac) were calculated by dividing 

the summed pounds of applied pesticides by the PLSS section acreage, weighting the rate by the 

proportion of the sections intersecting the buffer, and dividing by 11 years. 

3.3.4 ZIP Code Pesticide Exposure Metrics: Area, Population, and Network-

Attributed/Road Weighting 

After intersecting PLSS sections with ZIP Codes, PLSS section pesticide application rates were 

spatially aggregated to the ZIP Code level according to three different ZIP Code weighting 

methods. Area weighting: PLSS section pesticide application rates were weighted by the 

proportion of the ZIP Code area comprised by that particular section. Population weighting: 

After intersecting PLSS sections with census blocks, areal interpolation was implemented to 

disaggregate the population of each census block according to the proportion of the census block 

area intersecting PLSS sections (187). For PLSS sections intersecting multiple census blocks, 

interpolated population totals were summed. PLSS section pesticide application rates were 

weighted by the proportion of the ZIP Code population assigned to that particular PLSS section 

via areal interpolation. Network-attributed/road weighting: TIGER/Line® roads with Census 

Feature Class Codes (CFCCs) A21 to A48 were selected, which include local roads and state 

highways (180). Selected roads were intersected with PLSS sections and ZIP Codes. PLSS 

section pesticide application rates were weighted by the proportion of the ZIP Code roads 

assigned to that particular PLSS section. For all three ZIP Code metrics, recalculated pounds and 

intersecting PLSS section acreage were summed by ZIP Code and divided to calculate ZIP Code 

pesticide application rates. Annual rates were calculated by dividing by 11 years. 
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3.3.5 Statistical Analysis 

Wilcoxon signed-rank tests compared ZIP Code pesticide application rates estimated using each 

weighting method. For each centroid, gold standard and ZIP Code rates were categorized into 

five mutually exclusive groups defined by each ZIP Code metric: values below the 75th 

percentile and quartiles of the values above the 75th percentile. Using the ZIP Code in which 

each centroid is located, weighted kappas were calculated for each ZIP Code metric and 95% 

confidence intervals (CIs) were estimated using a bootstrap method taking into account 

clustering of centroids within ZIP Codes (188). After dichotomizing gold standard rates using the 

75th percentile (pesticide-exposed if ≥75th percentile), likelihood ratios (LRs) quantified how 

likely a pesticide-exposed gold standard rate was classified into each ZIP Code-derived pesticide 

exposure category compared to unexposed rates. Results were stratified by rural/urban location 

using Version 2.0 Rural-Urban Commuting Area (RUCA) codes (189). Using Categorization C, 

all ZIP Codes with RUCA codes of 1.0, 1.1, 2.0, 2.1, 3.0, 4.1, 5.1, 7.1, 8.1, or 10.1 were 

categorized as urban; all other RUCA codes were categorized as rural.  

3.4 RESULTS 

From 1995 to 2005, approximately 117,380,168 lb (53,243 metric tons) of pesticides belonging 

to the organochlorine (3,720 metric tons), organophosphate (28,872 metric tons), and carbamate 

(20,651 metric tons) chemical classes were applied in California. Among the 163,812 PLSS 

sections in California, 22,871 sections (13.96%) were treated with pesticides between 1995 and 

2005 with annual rates ranging between 0 and 100.27 lb/ac (Figure 11). The highest rates were 
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concentrated in the Central Valley agricultural region spanning north-central to south-central 

California (190). Seventy-eight percent (N=127,983) of PLSS sections intersect ZIP Codes and 

98% (N=22,435) of treated sections intersect ZIP Codes, which represent the sections used to 

calculate gold standard pesticide application rates and that were scaled up or spatially aggregated 

to calculate ZIP Code rates. 

3.4.1 Gold Standard Pesticide Application Rates 

There was a total of 694,087 unique polygons included in the analysis representing census blocks 

with a population total >0 that intersected a habitable class (i.e., high intensity residential, low 

intensity residential, or non-urban) and intersected a ZIP Code. These polygons correspond to 

343,449 census blocks.  

Figure 12(a) depicts pesticide application rates for each unique aforementioned polygon 

(N=694,087) - each rate calculated using 500 m buffers created around that particular polygon’s 

centroid (mean 0.08 lb/ac ± 0.41, median 0 lb/ac; Table 8). The majority of rates were 0 lb/ac 

(57.31%). Higher rates were observed along the Central Valley region. Sixty-one percent 

(N=422,688) of the buffers intersected one or two PLSS sections. Among the 296,276 buffers 

intersecting at least one pesticide-treated PLSS section, 82.7% (N=245,020) intersected one or 

two pesticide-treated PLSS sections. A large proportion of California was associated with 

geographic areas corresponding to an absence of census blocks with >0 population intersecting 

habitable areas, as depicted by the white areas in Figure 12(a). These areas accounted for 70.89% 

(112,363.61 mi2) of California’s total area. These geographic areas were not considered for gold 

standard pesticide application rate calculations as it was assumed that no individuals resided in 

these areas.  
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3.4.2 ZIP Code Pesticide Application Rates 

Average ZIP Code pesticide application rates ranged between 0.13 to 0.16 lb/ac (Table 8). 

Between 27.18 and 29.03% of ZIP Codes were 0 lb/ac. The geographic distribution of area-

weighted rates is similar to the distribution of gold standard rates - higher rates observed along 

the Central Valley region >1.01 lb/ac (Figure 12). Among the 1,678 ZIP Codes in California, 

four were uninhabited in 2000 (90261, 91608, 94128, and 96095) and one did not contain any 

roads (96095). 

3.4.3 Accuracy Assessment of ZIP Code Rates vs. Gold Standard Rates 

ZIP Code rates (N=1,674) were significantly different from each other (area vs. population 

signed-rank p<0.0001; area vs. road p<0.0001; population vs. road p<0.0001). There were 

between 1 and 3,007 census block-habitable class polygon centroids (median 317; 25th pctl 81; 

75th pctl 650) located within each ZIP Code. Gold standard pesticide application rates were 

categorized into one of five mutually exclusive pesticide exposure classes defined by values of 

each ZIP Code metric: none, low, low-moderate, moderate, and high (Table 9). Area weighting 

achieved the highest weighted kappa (0.55; 95% CI 0.52, 0.58), demonstrating moderate 

agreement with the gold standard (143). After stratifying ZIP Codes according to rural/urban 

location (N=90,999 rural centroids within 475 rural ZIP Codes; N=603,067 urban centroids 

within 1,199 urban ZIP Codes), area weighting demonstrated substantial agreement with the gold 

standard in rural locations (weighted kappa 0.63; 95% CI 0.57, 0.69). Population (weighted 

kappa 0.40; 95% CI 0.37, 0.44) and road weighting (0.42; 95% CI 0.39, 0.46) demonstrated fair 

to moderate agreement with the gold standard. 

103 



 

Gold standard rates were dichotomized using the 75th percentile (exposed if ≥0.004 lb/ac) 

to calculate likelihood ratios (LRs) according to each ZIP Code-level pesticide exposure category 

(Table 10). Across all ZIP Code metrics, LRs >1 indicate a higher probability of exposed gold 

standard rates compared to unexposed gold standard rates classified into the specified ZIP Code-

level pesticide exposure categories. LRs <1 indicate a higher probability of unexposed gold 

standard rates vs. exposed rates being classified into the specified ZIP Code-level pesticide 

exposure category. Overall, area weighting achieved the highest LR for the high exposure 

category, where a truly exposed gold standard rate was 30.91 times more likely to be classified 

as highly exposed compared to an unexposed gold standard rate (overall 30.91; rural 45.00; 

urban 27.49). Area weighting was also associated with the greatest spread between the none and 

high categories (i.e., none category with low LR close to 0 and high category with high LR >1; 

30.59), indicating its capacity to discriminate between exposure and non-exposure to pesticides 

(191). The highest likelihood ratios for the high exposure category in rural areas were observed 

when using population and road weighting. 

Figure 13 includes dot plots categorizing gold standard rates according to ZIP Code-

defined categories. Gold standard rates distributed towards higher values in accordance with ZIP 

Code pesticide exposure class. However, gold standard rates of 0 lb/ac were present in all ZIP 

Code pesticide exposure categories, although occurring less frequently with increasing ZIP Code 

exposure.  

The proportion of census blocks within each ZIP Code exposed to pesticides (>0.004 

lb/ac; 75th percentile of gold standard rates) was examined according to rural/urban location. 

Overall, 44.74% (N=749) of the 1,674 ZIP Codes with >0 population contained no census blocks 

exceeding the 75th percentile rate. On average, a higher proportion of the census blocks within 
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the 475 rural ZIP Codes (26.61%) exceeded the 75th percentile rate compared to urban ZIP 

Codes (24.01%). 

3.5 DISCUSSION 

Beyond trying to capture spatial data at as fine a scale as possible, spatial data are ideally 

captured at the scale at which the phenomenon under study operates. In practice, many issues 

may arise that can prevent spatial data from being available at an operational scale, including 

protecting patient confidentiality. In the context of agricultural pesticide exposure estimation in 

California, geocoded residential data are ideal for estimating pesticide exposure. However, data 

availability can constrain the analysis scale to an aggregated areal unit such as the ZIP Code. In 

our study, different methods of aggregating PLSS section information to the ZIP Code level were 

explored and compared according to how well they were able to estimate the pesticide exposure 

of census blocks classified according to ZIP Code. 

We compared ZIP Code pesticide application rates to a gold standard method, which 

considered pesticide-treated PLSS sections intersecting a 500 m buffer around census block-

habitable class polygon centroids (24). We utilized population count data at the finest scale 

available via the U.S. Census Bureau - the census block - to determine where Californians likely 

reside and the pesticide exposure likely experienced by these individuals at these locations. 

USGS dasymetric mapping, a validated method that takes advantage of land cover information, 

typically to distribute population totals to habitable areas within areal units (192), was used to 

determine habitable areas in which to intersect with census blocks to calculate gold standard 

pesticide exposure.  
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The research goal was to design a ZIP Code pesticide exposure metric that best reflected 

the gold standard. As the source units (PLSS sections) are smaller in size relative to the target 

units (ZIP Codes), three different weighting methods were explored to scale up PLSS sections to 

the ZIP Code level: area, population, and network-attributed/road. Ancillary data was used to 

weight PLSS section-level rates. As PLSS sections are typically 1 mi2, area weighting was the 

simplest method to apply while both population and road weighting were intuitive approaches 

that directly addressed the number of individuals living within each PLSS section. Population 

weighting used census block population totals areally interpolated into PLSS sections to weight 

rates, while network-attributed weighting used roads intersecting each PLSS section to weight 

rates. ZIP Codes are linear features representing mail delivery, which are directly associated with 

roads, and using roads to weight rates directly addressed human activity within the ZIP Codes as 

individuals live and work in and around roads (193). 

In practice, ecologic metrics can be used in a variety of ways in epidemiologic studies. A 

ZIP Code pesticide exposure metric, for example, could be used as an independent variable in an 

ecologic epidemiologic study where the outcome is similarly aggregated to avoid a spatial 

mismatch (194). An alternative approach could be to use the ZIP Code metric as a predictor in a 

hierarchical (multilevel) model to study an individual-level outcome while taking into account 

clustering within the ZIP Code, as individuals within the same geographic unit will be more 

similar and ignoring such a lack of independence would lead to inaccurate standard errors (195).  

3.5.1 Accuracy Assessment 

Area weighting was superior to both population and road weighting in terms of the weighted 

kappa and some likelihood ratio results. Area weighting achieved moderate agreement with the 

106 



 

gold standard and substantial agreement among rural locations (143). Area-weighted LRs 

increased with increasing ZIP Code pesticide exposure (none to high) and were associated with 

the greatest spread. The LR observed in the high pesticide exposure category was 30.91, while an 

even higher LR of 45.00 was observed among rural locations, which are both greater than 10, 

demonstrating strong evidence of ‘ruling in’ pesticide exposure (196). In the same vein, LRs for 

the none pesticide exposure category (overall 0.32; rural 0.11; urban 0.37) were <1, 

demonstrating evidence of ‘ruling out’ pesticide exposure. Furthermore, improved accuracy 

results in rural locations lends support to the utility of area weighting approaches in a geographic 

setting where pesticide exposure is both more prevalent and important to accurately estimate. It 

is interesting to note that population and road weighting achieved significantly higher LRs in 

rural areas compared to area weighting, which potentially demonstrates their effectiveness in 

correctly classifying rates that are truly pesticide-exposed in these areas, especially in the high 

pesticide exposure category. Yet when considering weighted kappa and LR results in addition to 

being less time and resource intensive, area weighting represents an acceptable method to 

employ. Furthermore, area weighting was associated with the LR closest to 0 for the none 

pesticide exposure category in rural areas, demonstrating evidence of ‘ruling out’ pesticide 

exposure and reflecting high specificity in rural areas. 

Area weighting is a straightforward technique that can be applied within any GIS to take 

into account the extent to which the geographic units under study intersect. Area weighting did 

not modify the source units (PLSS sections) when spatially aggregating to the ZIP Code level, 

which is similar to how the gold standard rates were calculated (i.e., pesticide-treated PLSS 

sections intersecting buffers were directly used). Although area weighting did not use any 

ancillary data beyond what was provided regarding the spatial intersection of the PLSS sections 
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and ZIP Codes, this method still incorporates all pesticide-treated and untreated PLSS sections 

within a ZIP Code when deriving a pesticide application rate to represent the exposure 

experience of those residing in that ZIP Code. On the other hand, population and road weighting 

were calculated in a way that provided a measure of how important pesticide exposure is with 

respect to how many individuals within a particular PLSS section are potentially affected. 

Population and road weighting then had the effect of altering the source units so that resultant 

weighted rates were in less agreement, although still in fair to moderate agreement, with the gold 

standard as compared to area-weighted rates. 

As with all studies exploring the use of an aggregated spatial unit, the modifiable areal 

unit problem (MAUP) is a prominent issue, referring to observing different patterns and 

relationships as a result of how the data are aggregated (197). Two manifestations of the MAUP 

are the aggregation effect, or observing different results due to different hierarchical nesting of 

units (e.g., census block rates vs. census block group rates), and the zoning effect, or observing 

different results due to different methods of partitioning geographic space (e.g., census tracts vs. 

ZIP Codes). Therefore, it is important to note that different accuracy assessment results may be 

observed if examining pesticide exposure aggregated to a different spatial unit (e.g., census 

tract).  

3.5.2 Strengths 

To the best of our knowledge, this is the first study to explore the accuracy of an ecologic metric 

to estimate agricultural pesticide exposure. Research investigating optimal weighting methods to 

spatially aggregate data is important to address as larger scale geographic data are often 

unavailable. The framework used to execute spatial aggregation in this study can be applied to 
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study other environmental exposures and other geographic units, particularly when the goal is to 

develop a metric that estimates exposure for a specific population for use in an epidemiologic 

study. All of the data used to execute area weighting can be implemented in any basic GIS 

software.  

3.5.3 Limitations 

Attempting to reconcile the discrepancy between the operational and analysis scales via spatial 

aggregation and weighting inevitably manifests in some misclassification. In this study, 

attempting to use a ZIP Code to estimate large-scale census block resulted in ZIP Code rates 

typically overestimating exposure. For example, the dot plots show a large proportion of 0 lb/ac 

gold standard rates misclassified in all ZIP Code pesticide-exposed categories (low, low-

moderate, moderate, and high). In other words, many false positives were observed, where 0 

lb/ac gold standard rates were inaccurately classified as pesticide-exposed using ZIP Codes. It 

would useful to explore the extent to which using ZIP Code pesticide application rates biases 

results compared to using a gold standard method in an epidemiologic analysis, as the lb/ac 

differences between true and aggregated results may or may not substantially impact results. 

The gold standard rates were calculated using the centroid of each populated census 

block-habitable class polygon. Conservation easements were incorporated into the dasymetric 

method as geographic areas in which individuals do not reside. Although easements are devoted 

to open space purposes, some California counties allow minimal development within easements 

for residential purposes. For example, a land parcel between 20 and 39 ac may have ≤5% of its 

area developed for residential use (198). Therefore, some easement areas may have been 

misclassified as uninhabitable when the area could have actually been considered when creating 
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census tract-habitable class polygons. However, a small proportion of California is associated 

with easements (2,716 mi2; 1.71% of California’s total area). 

As PLSS sections intersecting a 500 m buffer around these centroids were used to 

calculate rates, it is conceivable that individuals may not reside at each centroid’s location. 

Although great care was taken to determine habitable areas within each census block using 

dasymetric methods, more comprehensive approaches could be employed to locate residential 

locations to estimate pesticide exposure, including incorporating tax parcel data, elevation, or 

generating multiple points within habitable areas as opposed to one centroid. Furthermore, 

constraining the study area to the state of California may have underestimated exposure for 

individuals residing along the edges of the state, where pesticides applied in neighboring states 

(Oregon, Nevada, and Arizona) would impact exposure estimates. Such exposure would have 

affected both gold standard and ZIP Code rates. However, the majority of lands along 

California’s perimeter were coded as water/excluded using the dasymetric method (data not 

shown). Therefore, only a small proportion of California’s population likely resided along the 

state’s periphery.  

3.6 CONCLUSIONS 

The aggregated spatial scale at which data is available may necessitate the use of a spatial 

aggregation method to scale up the data for use in epidemiologic settings. As a way to reconcile 

the differences between the scale at which a phenomenon of interest operates and the scale at 

which the data is available, weighting methods using ancillary data relevant to the feature under 

study can be explored. Area weighting of pesticide application rates from the PLSS section level 
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to the ZIP Code level, applied by weighting PLSS section rates according to its percentage area 

within the ZIP Code, provided the most accurate results compared to a finer scale census block 

gold standard, as compared to population and network-attributed/road weighting. Future research 

should formally compare the impact of using an aggregated ZIP Code pesticide metric vs. a 

larger scale gold standard metric in an epidemiologic study. 
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3.7 TABLES 

Table 8. Annual Gold Standard and ZIP Code Pesticide Application Rates (lb/ac) 

 N Min 25th pctl Mean ± SD Median 75th pctl Max 
Gold standard 694,087 0 0 0.08 ± 0.41 0 0.004 24.77 
ZIP Code: area weighta 1,674 0 0 0.13 ± 0.38 0.001 0.02 5.13 
ZIP Code: population weighta 1,674 0 0 0.16 ± 3.22 0.00002 0.001 95.29 
ZIP Code: road weighta 1,674 0 0 0.16 ± 3.08 0.00003 0.001 95.29 

 

Abbreviations: min, minimum; pctl, percentile; SD, standard deviation; max, maximum. 
a Rates are expressed in lb/ac. Rates do not include ZIP Codes with a zero population according to the SF1 (90261, 
91608, 94128, and 96095). 
 

 
 
Table 9. Weighted Kappa and Agreement: ZIP Code Weighting Methods vs. Gold Standard 

ZIP Code weighting method Weighted kappa (95% CI) Agreement (%) 
Area weighta 0.55 (0.52, 0.58) 75.08 

Rural 0.63 (0.57, 0.69) 68.15 
Urban 0.51 (0.47, 0.55) 76.12 

Population weightb 0.40 (0.37, 0.44) 65.40 
Rural 0.38 (0.29, 0.46) 61.15 

Urban 0.41 (0.37, 0.45) 66.04 
Road weightc 0.42 (0.39, 0.46) 65.95 

Rural 0.40 (0.33, 0.47) 60.48 
Urban 0.43 (0.39, 0.47) 66.78 

 
Abbreviations: CI, confidence interval. 
a Area weight pesticide exposure categories: none (≤0.02 lb/ac); low (>0.02 to 0.07 lb/ac); low-moderate (>0.07 to  
0.29 lb/ac); moderate (>0.29 to 0.67 lb/ac); high (>0.67 lb/ac). 
b Population weight pesticide exposure categories: none (≤0.001 lb/ac); low (>0.001 to 0.002 lb/ac); low-moderate 
(>0.002 to 0.005 lb/ac); moderate (>0.005 to 0.02 lb/ac); high (>0.02 lb/ac). 
c Road weight pesticide exposure categories: none (≤0.001 lb/ac); low (>0.001 to 0.003 lb/ac); low-moderate 
(>0.003 to 0.01 lb/ac); moderate (>0.01 to 0.02 lb/ac); high (>0.02 lb/ac). 
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Table 10. Likelihood Ratios: ZIP Code Weighting Methods vs. Gold Standard 

ZIP Code weighting method 
 Centroidsa,b  Likelihood ratio 

N Pesticide
-exposed 

Pesticide-
unexposed 

 Overall Rural Urban 

Area weight        
None (≤0.02 lb/ac) 500,932 47,892 453,040  0.32 0.11 0.37 

Low (>0.02 to 0.07 lb/ac) 55,201 22,071 33,130  2.00 2.09 2.11 
Low-moderate (>0.07 to 0.29 lb/ac) 53,030 33,123 19,907  4.99 6.13 4.82 

Moderate (>0.29 to 0.67 lb/ac) 50,103 38,695 11,408  10.18 8.59 9.68 
High (>0.67 lb/ac) 34,821 31,740 3,081  30.91 45.00 27.49 

Population weight        
None (≤0.001 lb/ac) 515,544 56,768 458,776  0.37 0.37 0.37 

Low (>0.001 to 0.002 lb/ac) 61,948 30,618 31,330  2.93 8.67 2.51 
Low-moderate (>0.002 to 0.005 lb/ac) 54,371 37,408 16,963  6.62 13.78 6.53 

Moderate (>0.005 to 0.02 lb/ac) 43,204 31,457 11,747  8.03 42.64 7.68 
High (>0.02 lb/ac) 19,020 17,270 1,750  29.61 200.32 26.62 

Road weight        
None (≤0.001 lb/ac) 507,893 53,216 454,677  0.35 0.35 0.35 

Low (>0.001 to 0.003 lb/ac) 66,640 32,701 33,939  2.89 7.13 2.72 
Low-moderate (>0.003 to 0.01 lb/ac) 57,345 37,985 19,360  5.89 12.30 5.44 

Moderate (>0.01 to 0.02 lb/ac) 40,758 30,714 10,044  9.17 48.18 8.42 
High (>0.02 lb/ac) 21,451 18,905 2,546  22.28 187.64 21.53 

 
a Centroids of the census block-habitable class polygons were used to calculate gold standard rates. The 
75thpercentile of gold standard rates (0.004 lb/ac) was used to determine whether or not a centroid was exposed 
(≥0.004 lb/ac) or unexposed (<0.004 lb/ac). 
b Pesticide-exposed and unexposed centroids, used to calculate gold standard rates, were tabulated by ZIP Code 
location and compared to ZIP Code rates calculated using three different methods, each applying a different 
weighting method to aggregate pesticide exposure from the PLSS section to ZIP Code level. 
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3.8 FIGURES 

 

Figure 11. Annual PLSS Section Pesticide Application Rates (lb/ac) From 1995 to 2005 in California 
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Figure 12. Annual Pesticide Application Rates (lb/ac) Calculated Using the (a) Gold Standard, (b) Area 

Weighting, (c) Population Weighting, and (d) Road Weighting; (e) ZCTA Boundaries Shown for Reference 
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Figure 13. Dot Plots of Gold Standard Pesticide Application Rates (lb/ac) Categorized According to ZIP Code 

None, Low, Low-Moderate, Moderate, and High Categories: (a) Area Weight, (b) Population Weight, and (c) 

Road Weight 
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4.0  USING GIS TO LINK SEER-MEDICARE AND CALIFORNIA PESTICIDE 

DATA: A POPULATION-BASED CASE-CONTROL STUDY OF PESTICIDE 

EXPOSURE AND HEPATOCELLULAR CARCINOMA RISK 

4.1 ABSTRACT 

Background: Hepatocellular carcinoma (HCC), or primary liver cancer, is associated with low 

survival. U.S. studies examining pesticide exposure in relation to HCC have demonstrated 

inconclusive results, relying on self-reported exposure. Objective: We aimed to clarify the 

association between agricultural pesticide exposure and HCC by implementing a novel data 

linkage between Surveillance, Epidemiology, and End Results (SEER)-Medicare and California 

Pesticide Use Report (PUR) data using Medicare ZIP Codes in a geographic information system 

(GIS). Methods: HCC cases diagnosed between 2000 and 2009 in California were frequency-

matched to controls by year, age, race, sex, and duration of residence in California. Potential 

confounders were extracted from Medicare claims. From 1974 to 2008, PUR pounds of applied 

organophosphate, organochlorine, and carbamate pesticides were summed according to 1-square-

mile Public Land Survey System (PLSS) sections and aggregated to the ZIP Code level using 

area weighting in a GIS. ZIP Code estimates were linked to subjects using Medicare ZIP Codes 

to calculate pesticide exposure. Multivariable conditional logistic regression estimated the 

association between pesticide exposure and HCC. Results: Among rural California residents, 
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annual exposure to over 0.06 pounds/acre of organochlorine pesticides (median among controls) 

was associated with an increased risk of HCC after adjusting for liver disease and diabetes 

(adjusted odds ratio [OR] 1.52; 95% confidence interval [CI] 1.02, 2.28 P = 0.0415). Risk 

increased after accounting for a 20-year exposure lag (adjusted OR 1.81, 95% CI 1.19, 2.75; P = 

0.0058). Conclusions: This is the first epidemiologic study using GIS to study pesticide exposure 

and HCC. Given potential evidence of organochlorine pesticides increasing HCC risk, future 

research should explore usage of finer spatial resolution data. 

4.2 INTRODUCTION 

Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the second 

leading cause of cancer-related death (199). Between 70 and 85% of primary liver cancer cases 

are HCC (200). HCC incidence is highest in East Asia and Africa but has been rising in the U.S. 

(1, 12). U.S. HCC incidence, adjusted to the 2000 U.S. Standard Population, significantly 

increased 29% from 4.4 per 100,000 (2000 to 2004) to 5.7 per 100,000 (2005 to 2009) (rate ratio 

1.29, 95% confidence interval: 1.27, 1.32, P < 0.0001) (201). Overall, HCC incidence between 

2000 and 2009 was 5.1 per 100,000. Rising incidence has been attributed to increasing rates of 

obesity and diabetes, hepatitis C virus (HCV) infection rates peaking in the 1960s and 70s and 

HCC clinically manifesting 20 years later, and improving survival among cirrhosis patients (3, 

200). 

In the U.S., HCC is more common among males and among individuals of Asian descent 

(3). The mean age at diagnosis is 64 years (median 63) (202). The majority of adult-onset HCC 

cases occur sporadically, or among individuals with no similarly affected first-degree relative 
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(3). Early stage HCC is treatable via liver transplantation, surgical resection, and ablation (203). 

Embolization (occlusion of tumor’s blood supply) or chemoembolization (combined 

chemotherapeutic and embolization agents) may improve survival in patients with later stage 

HCC. However, many HCC cases are diagnosed at a regional or distant stage (49% between 

2000 and 2009) (202), which contributes to the low five-year 16.6% relative survival rate in the 

U.S. (12). 

Predominant HCC risk factors in high-risk areas, such as Asia, include chronic hepatitis 

B virus (HBV) infection and consumption of aflatoxin-contaminated foods (3). Predominant risk 

factors in low-risk areas, such as the U.S., include chronic HCV infection and heavy alcohol 

consumption (>50 to 70 g per day) (3). Approximately 64.5% (95% confidence interval: 63.3, 

65.6) of all HCC cases occurring in the U.S. population aged 68 years and older are attributed to 

HCV, HBV, alcoholic liver disease (e.g., alcoholic cirrhosis of liver), rare metabolic disorders 

(e.g., hemochromatosis), and diabetes and/or obesity (15). Most of these risk factors contribute to 

the formation and progression of cirrhosis, or scarring of the liver (20). Between 70 and 90% of 

all HCC cases occur within an established background of chronic liver disease and cirrhosis (3, 

20). Although HCV, HBV, and heavy alcohol consumption are the major risk factors for 

cirrhosis among HCC cases in the U.S., between 15 and 50% of all HCC cases have no 

established risk factors (3, 6). 

Epidemiologic studies have shown that pesticide exposure may increase the risk of HCC. 

Pesticides are chemicals used frequently in agriculture to treat pests such as insects (27, 204). 

Pesticides are hypothesized to contribute to liver carcinogenesis through mechanisms of 

genotoxicity, tumor promotion, immunotoxicity, and hormonal action (21, 27). Several case-

control studies conducted in China demonstrated statistically significant increased risks for HCC 
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(55, 56, 58). Persson et al. (56) showed that the highest quintile of serum 

dichlorodiphenyltrichloroethane (DDT) (≥810 ng/g), an organochlorine pesticide, compared to 

≤261 ng/g significantly increased HCC risk after adjusting for risk factors including age, 

hepatitis B surface antigen (HBsAg), and alcohol consumption (adjusted odds ratio [OR] 2.96; 

95% confidence interval: 1.19, 7.40). However, some studies have shown inconclusive results. In 

the U.S., three studies reported non-significant increased risks for HCC among those employed 

in farming (59, 61, 69). However, farming in New Jersey conferred significantly higher risk for 

HCC compared to no employment in this occupation (adjusted OR 3.20; 95% confidence 

interval: 1.11, 9.21) (68). 

In the U.S., pesticide exposure occurs most frequently via diet (82). Additional routes of 

exposure include via occupation (e.g., pesticide application), drinking water, and very 

importantly, residential proximity to agricultural pesticide applications. Applied pesticides can 

drift from their intended sites through the air and ground via spray drift and post-application 

volatilization (24). Vulnerable populations include rural residents and farming families (86), as 

pesticides can enter homes through drift and from clothing (82). Gunier et al. (88) demonstrated 

that residential proximity within 1,250 m to pesticide-treated crops in California was 

significantly correlated with pesticide concentrations in sampled carpet dust. Pesticides are less 

likely to degrade within homes due to the absence of moisture, sunlight, and microorganisms 

(82, 88), and humans can be subsequently exposed via dermal contact and ingestion (89).   

To clarify the relationship between pesticide exposure and HCC in the U.S., we 

conducted a population-based case-control study in California, the most agriculturally productive 

state in the U.S. (205). Cases and controls, in addition to claims used to identify comorbidities, 

were derived from the Surveillance, Epidemiology, and End Results (SEER)-Medicare database. 
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Pesticide exposure was estimated using California Pesticide Use Reports (PURs). We 

implemented a novel data linkage between SEER-Medicare and PUR data using Medicare ZIP 

Codes in a geographic information system (GIS). 

4.3 METHODS 

4.3.1 Study Population 

SEER-Medicare represents a data linkage between SEER cancer data and Medicare claims (206, 

207). SEER is a National Cancer Institute (NCI) program collecting information on cancer 

incidence and survival from 18 population-based cancer registries covering 28% of the U.S. 

Medicare is a U.S. federal health insurance program for qualifying individuals ≥65 years old, 

covering 97% of this age group, in addition to those <65 years with end-stage renal disease 

(ESRD) or medical disability. All Medicare beneficiaries are entitled to Part A (hospital 

insurance), approximately 96% enroll in Part B (medical insurance), 24% enroll in Medicare 

Advantage or a managed care plan (e.g., health maintenance organization [HMO]), and 38% 

enroll in Part D prescription drug coverage (206, 208). Part C does not process bills through 

Medicare. The SEER-Medicare data linkage includes all SEER cancer cases who are found in 

the Medicare Enrollment DataBase. Medicare claims are linked to cases via personal identifiers, 

e.g., Social Security number. The 2012 data linkage includes SEER cases from 1991 to 2009 and 

Medicare claims from 1991 to 2010, which is 94% successful among those 65 years and older 

(3% of elderly do not receive Medicare and 3% have insufficient linkage information). SEER 

cancer data for the entire state of California has been available since 2000 (209).  
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4.3.2 Case and Control Ascertainment 

Eligible study participants were not of unknown race and ≥66-year-old California residents with 

at least 13 months of continuous Parts A and B, non-HMO coverage and at least one California 

ZIP Code by the time of diagnosis/selection. Cases were defined using the following criteria: 

International Classification of Diseases for Oncology, Third Edition (ICD-O-3) topography code 

C22.0 (primary liver cancer) and ICD-O-3 histology codes 8170 to 8175 (210); diagnostic 

confirmation (e.g., positive histology) excluding clinical diagnosis only (211); sequence number 

00 or 01; reported to a California cancer registry; diagnosed between 2000 and 2009; and not 

reported via autopsy or death certificate only. Controls were selected from a 5% random sample 

of Medicare beneficiaries residing in SEER geographic areas who are not found in any SEER 

data (i.e., they are not diagnosed with any cancer according to SEER). Cases included in the 5% 

random sample were considered during control selection. For each year between 2000 and 2009, 

eligible controls who were not a case and alive as of July 1 of that year were enumerated. 

Eligible controls may have included cases diagnosed after July 1 in the year they were selected. 

Cases and controls were frequency-matched according to age, sex, race (white, black, Asian, 

other, Hispanic, Native American), and years of non-continuous California residence (using 

available Medicare ZIP Codes not carried back, categorized using tertiles among cases: 1-5, 6-

10, ≥11). Controls were sampled with replacement. 

4.3.3 Pesticide Exposure 

Agricultural pesticide exposure was estimated by linking California Department of Pesticide 

Regulation (CDPR) Pesticide Use Report (PUR) data with available Medicare ZIP Codes from 
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1991 until the year before diagnosis/selection (last billing ZIP Code in that year) in a GIS (212). 

PUR data include pounds of applied pesticides, crop type, chemical name, date, and Public Land 

Survey System (PLSS) 1 mi2 section of application (213). Agricultural use PURs from 1974 to 

2008 were checked for errors (e.g., duplicates). Outlier application rates (pounds per acre; lb/ac), 

defined using CDPR flags (e.g., >200 lb/ac if non-fumigant pesticide) from 1990 to 2008 and as 

rates >200 lb/ac (>1,000 lb/ac if fumigant) or 50 times the median rate for all uses of a given 

pesticide product, crop, unit type, and record type from 1974 to 1989, were replaced with the 

statewide median rate for that pesticide in that year (24). Pounds of active ingredient were 

recalculated using PUR number of treated acres. Pesticide applications belonging to the 

organophosphate, organochlorine, and carbamate chemical classes, which have been previously 

associated with HCC, were extracted (54, 56, 62). For each year between 1974 and 2008, pounds 

were matched and summed according to PLSS section and divided by section acreage to 

calculate pesticide application rates (lb/ac) (185, 214). PLSS sections and California 

TIGER/Line® ZIP Code Tabulation Areas (used to approximate ZIP Code boundaries) were 

intersected (215). PLSS section rates were spatially aggregated to the ZIP Code level using area 

weighting, where section rates were weighted by the proportion of the ZIP Code area comprised 

by that section. For each study subject, using available California ZIP Codes from 1991 up until 

the year before diagnosis/selection and carrying back the earliest available ZIP Code to 1974, 

ZIP Code pesticide application rates were summed and divided by the number of years of 

California residence. This study examined two ZIP Code pesticide exposure metrics: annual 

pesticide application rates and average annual applied pounds of pesticides.  
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4.3.4 Covariates 

The following were extracted from inpatient (Part A), outpatient (Part B), and carrier (e.g., 

physician) Medicare claims: HCV (ICD-9-CM [Ninth Revision, Clinical Modification] codes 

070.41, 070.44, 070.51, 070.54, 070.70, V02.62), HBV (070.22, 070.23, 070.32, 070.33, 

V02.61), unspecified hepatitis (070.9, 070.59, 070.49, 571.4, 571.8, 571.9), diabetes (250), 

obesity (278.00, 278.01, 278.02, V77.8, 259.9), alcoholic liver disease (571.0, 571.1, 571.2, 

571.3; 571.5 or 571.6 in the presence of 303, 291, 305.0, V11.3, or V79.1), non-specific cirrhosis 

(571.5 or 571.6 not in the presence of HCV, HBV, unspecified hepatitis, or alcoholic liver 

disease), rare genetic disorders (α1 antitrypsin deficiency 273.4, hemochromatosis 275.0, 

porphyria 277.1, tyrosinemia 270.2, Wilson disease 275.1), human immunodeficiency virus 

(HIV) (042, V08), and smoking (V15.82, 305.1, 989.84; ever-smoking as there is not enough 

information to identify former smokers) (15, 211, 216). Conditions were considered present if 

there was a single Part A diagnosis or two Part B or carrier claim diagnoses separated by at least 

30 days (206). Due to differential availability of claims data depending on when cases were 

diagnosed (claims from 1991 to 2010 if diagnosed before 2003; from 1998 to 2010 if diagnosed 

between 2003 and 2005; from 2000 to 2010 if diagnosed between 2006 and 2007; and from 2002 

to 2010 if diagnosed between 2008 and 2009) (207), Medicare claims within six years of 

diagnosis/selection were examined. Claims within one year of diagnosis/selection were excluded 

due to potential medical detection bias (206). As eligible study subjects were required to have at 

least 13 months of continuous Parts A and B, non-HMO enrollment prior to diagnosis/selection, 

no Medicare claim diagnosis codes identifying a particular health condition indicated the absence 

of that condition (i.e., there were no missing variables in our study). State buy-in, or Medicare 

Savings Programs where states pay for Medicare premiums, deductibles, and/or coinsurance due 
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to limited income, was used as an indicator for socioeconomic status (211, 217). State buy-in 

was considered present if a subject was enrolled in Parts A or B state buy-in at any time point 

beginning in the year before diagnosis/selection. The proportion of each ZIP Code’s ≥16-year-

old population employed in the agriculture industry was provided by the 2000 Census Summary 

File 3 (218). The Medicare ZIP Code in or closest to 2000 was matched to Census data. 

4.3.5 Statistical Analysis 

Pesticide exposure was examined using all combined pesticide chemical classes 

(organophosphates, organochlorines, and carbamates) and each class separately. Exposure 

defined as a rate and as applied pounds were modeled separately. We used random-intercept 

logistic regression to explore the extent to which cases and controls within the same ZIP Code 

might have similar risk for HCC and thus, pesticide exposure. After exploring a random intercept 

defined as the ZIP Code at diagnosis/selection and the ZIP Code occurring most frequently, a 

low intraclass correlation coefficient indicated little variability between clusters (ZIP Codes) and 

that a random intercept was not necessary. Univariable conditional logistic regression using 

robust variance estimation and taking into account the frequency matching factors of year, age, 

sex, race, and California residence was used to assess the association between each variable and 

case control status. Chi-square, one-way analysis of variance (ANOVA), and Kruskal-Wallis 

tests evaluated the association between each variable and pesticide exposure (i.e., independent 

variable of interest). Using variables significantly associated with HCC and/or pesticide exposure 

(P < 0.05), backward elimination methods (P > 0.20 removed), confirmed with forward selection 

(P < 0.20 to enter), were utilized to build final models in which significant predictors (P < 0.05) 

were included. Regression diagnostics were performed on final models. Odds ratios (ORs) and 
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95% confidence intervals (CIs) were estimated using the final multivariable conditional logistic 

regression models (robust variance estimation) taking into account frequency matching factors. 

The effect of 10-, 15-, and 20-year lags were examined, where pesticide exposure occurring 

outside of the lag window (before diagnosis/selection) was considered.  

In a supplemental analysis, statistical analyses were limited to rural California residents, 

defined as individuals who resided in California ZIP Codes associated with ≥0.20 lb/ac the 

majority of the time from 1974 until the year before diagnosis/selection. This cutoff was 

determined by comparing ZIP Code pesticide application rates (all classes) for each year from 

1974 to 2008 between rural and urban ZIP Codes (defined using Rural-Urban Commuting Area 

[RUCA] categorization C codes) (219). Rural ZIP Codes were typically characterized by rates 

≥0.20 lb/ac. Usage of a pesticide application rate to identify rural residents addresses how 

rurality occurs on a continuum, where a geographic area defined as rural according to a given 

metric may be sparsely populated, but is associated with few agricultural land uses and thus 

minimal agricultural pesticide exposure (220). Categorical pesticide exposure was explored 

using cutoffs defined by the 50th percentile of rates and 75th percentile of applied pounds among 

rural controls. Interactions between pesticide exposure and each covariate and matching factor 

were examined. All reported P values are two-sided. Analyses were conducted in 2014 using 

SAS, version 9.4 (SAS Institute, Inc., Cary, North Carolina). 

4.4 RESULTS 

There were 3,034 hepatocellular carcinoma cases in California diagnosed between 2000 and 

2009 and 14,991 frequency-matched controls included in the analysis. Among 10,408 individuals 
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diagnosed with HCC as a first cancer in California between 2000 and 2009 who were not of 

unknown race and in the Medicare Enrollment DataBase, 29% were included in our study. 

Figure 14 shows cases excluded from our study according to each eligibility criterion. Thirty-

three percent of all considered cases were excluded due to age and 29% due to HMO coverage. 

A comparison of characteristics for included vs. excluded HCC cases is shown in Table 11. 

Excluded cases were more likely to be urban-dwelling younger white males of higher 

socioeconomic status having resided in California for a shorter period of time (reflecting younger 

age). Table 12 compares the SEER-Medicare HCC source population of the case group to all 

SEER HCC cases in California, or all HCC cases irrespective of having Medicare coverage. 

Similarly, Table 12 also compares the included case group to all HCC cases in California over 

age 65 years, which reflects the Medicare elderly in California (most individuals ≥65 years 

receive Medicare) to whom we would like to generalize our results. Our case series (n = 3,034) 

compared to SEER HCC cases aged 65 years and older (n = 7,185) was slightly older, comprised 

of fewer whites, and less urban. However, differences in age and race are affected by SEER not 

individually reporting diagnosis ages >85 years and not excluding Hispanics from any race 

categories, respectively. 

Table 13 presents population characteristics of cases and controls included in our study. 

Cases were on average 75.1 years old (median 74.0), typically males, of white race, and residing 

in California for over 6 years. By design, matching factors did not differ between cases and 

controls. When considering the time period of six years before diagnosis/selection during which 

claims were examined for health conditions, most cases (75.1%) and controls (75.1%) 

contributed between 4.1 and 6.1 years of claims to the study. As expected, a higher proportion of 

cases were diagnosed with HCV, HBV, unspecified hepatitis, alcoholic liver disease, non-
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specific cirrhosis, diabetes, obesity, rare genetic disorders, and smoking (P < 0.0001). Cases 

were more likely than controls to be of low socioeconomic status (i.e., enroll in state buy-in) and 

reside in an urban area at diagnosis (P < 0.0001). Controls typically resided in ZIP Codes with a 

slightly higher percentage of ≥16-year-olds employed in agriculture (P = 0.0002). A lower, or 

comparable, proportion of cases vs. controls were exposed to both moderate and high levels of 

ZIP Code-level pesticide exposure across all pesticide classes when examining both rates and 

applied pounds (Table 14). Among controls, high pesticide exposure to all classes was more 

frequent among younger whites with alcoholic liver disease living in California for a longer 

period of time, while low pesticide exposure occurred more frequently among those with HCV, 

HBV, state buy-in, and urban residence (Table 15). Table 16 presents results for the random-

intercept logistic regression; a low ICC of 0.03 was observed when defining the random intercept 

as the ZIP Code at diagnosis/selection and the ZIP occurring most frequently. The majority of 

the total variance is due to within-cluster, or within-ZIP Code, variance and thus the random 

intercept was not included in subsequent models. 

After adjusting for liver disease, diabetes, rare genetic disorders, and state buy-in, 

previous ZIP Code-level exposure to organophosphates, organochlorines, and carbamates was 

not associated with HCC (Table 17). Similar null effects were observed when separately 

examining pesticide chemical classes according to rates and applied pounds. Pesticide exposure 

was not significantly associated with HCC after taking into account exposure lags (data not 

shown). 

Among study subjects identified as rural residents (n = 306 cases and n = 1,758 controls), 

liver disease, diabetes, obesity, rare genetic disorders, HIV, smoking, and state buy-in were more 

common among cases (Table 18). Organophosphate, organochlorine, and carbamate exposure 
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(rates) were univariably associated with HCC, where moderate and high vs. low exposure 

conferred higher risk for HCC (Table 19). Among rural controls, high pesticide exposure was 

significantly associated with Hispanic race, diabetes, state buy-in, and ZIP Code agricultural 

occupation (Table 20). Organochlorines were the only pesticide chemical class remaining 

significant after adjustment for other risk factors. When examining exposure lags of 15 and 20 

years, a 1 lb per ac increase in previous annual ZIP Code-level organochlorine pesticide 

exposure was significantly associated with a 2.74-fold and 2.43-fold increase in HCC risk, 

respectively (Table 21). A 1 lb per ac increase may be interpreted as a large increase as the 

median organochlorine pesticide application rate for the 220 rural ZIP Codes in which rural 

residents resided ranged between 0 and 0.10 lb/ac from 1974 to 2008. Fifteen of these 220 rural 

ZIP codes were associated with organochlorine pesticide application rates exceeding 1 lb per ac 

in any given year. Significant results irrespective of exposure lag were observed when 

considering pesticide application rates dichotomized using the median among controls. For 

example, past ZIP Code-level exposure to ≥0.06 lb/ac of applied organochlorine pesticides was 

significantly associated with a 52% increase in HCC risk after adjustment for liver disease and 

diabetes. Organochlorine exposure (as categorized rates) conferred increasingly higher risk for 

HCC in the time period of 10, 15, and 20 years before diagnosis. 

Organochlorine pesticide exposure defined as applied pounds (continuous) demonstrated 

statistically significant results, although confidence intervals were wide (Table 21). There were 

no significant interactions between pesticide exposure and liver disease, diabetes, or any 

matching factors (data not shown). Furthermore, among rural residents with no known risk 

factors for HCC (n = 106 cases, n = 1,412 controls), previous organochlorine pesticide exposure 

conferred significantly higher risk for HCC when examining categorized application rates, 
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particularly when examining a 15-year exposure lag (OR 2.15; 95% confidence interval: 1.29, 

3.58) (Table 22). Sensitivity analyses excluding individuals originally entitled to Medicare due to 

disability and/or end-stage renal disease demonstrated both stronger and more significant 

positive associations between organochlorine pesticide exposure and HCC among rural residents 

(Table 23). 

4.5 DISCUSSION 

Among rural California residents in the SEER-Medicare population, previous ZIP Code-level 

exposure to organochlorine pesticides was significantly associated with an increased risk for 

HCC after adjusting for liver disease and diabetes. Implementing organochlorine pesticide 

exposure lags of 10, 15, and 20 years before diagnosis/selection was also significantly associated 

with increased HCC risk. HCC is a significant public health concern, rising in incidence and 

associated with low survival in the U.S. As HCC occurs among many individuals with no known 

risk factors (3, 6), it is important to explore the role of other exposures that might contribute to 

liver carcinogenesis. Several epidemiologic studies have demonstrated that pesticide exposure 

significantly increases the risk of HCC (55, 56, 58). Pesticides are pervasively used chemicals in 

the U.S. (23). In 2007, the agricultural sector accounted for approximately 80% of conventional 

U.S. pesticide usage (e.g., treating insects; 684 million pounds) (221). The three specific 

pesticide chemical classes explored in this study have been previously associated with HCC. 

Organophosphates and carbamates are mostly insecticides, widely used in the 1980s and 90s 

after many organochlorines were banned, but have since declined in usage in favor of more 

environmentally friendly chemicals (222). Some highly toxic organophosphates (e.g., parathion) 
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and carbamates (e.g., aldicarb) have been banned in the U.S. (223, 224). Organochlorines are 

also mostly insecticides, were widely used in the 1940s to 60s, but have largely been banned in 

the U.S. due to adverse health effects and environmental persistence (225, 226). Animal models 

have demonstrated that exposure to DDT, an organochlorine banned in the U.S. in 1972, and its 

metabolite, dichlorodiphenyldichloroethylene (DDE), lead to the development of HCC and other 

liver tumors (28, 29). 

Three case-control studies conducted in China using serum DDT provide the most 

convincing evidence of an association between pesticides and HCC (55, 56, 58). In particular, 

these studies showed a link between HCC and DDT, which belongs to the organochlorine 

pesticide chemical class demonstrating a significant association with HCC among rural 

California residents in our study. These studies utilized biomonitoring to estimate pesticide 

exposure, considered the gold standard method of capturing exposure from specific chemicals 

via all routes of human exposure (227). However, these findings may not be generalizable to the 

U.S. population, as China continues to use DDT as an anti-malarial agent (56). In the U.S., the 

95th percentile of serum DDT levels was 28 ng/g between 1999 and 2000 and 19.5 ng/g between 

2003 and 2004, compared to the Persson et al. (56) Chinese study population associated with a 

geometric mean of 468 ng/g (standard deviation 18) DDT among cases and 478 ng/g (18) among 

controls (sera collected in 1992-1993).  

Other research examining pesticides in relation to HCC has demonstrated inconclusive 

results, ranging from significant increases to non-significant deficits in risk (54, 57, 59-70). Most 

studies have relied on self-reported pesticide exposure and occupation, job-exposure matrices, 

occupational experts, and rural residence. Recall bias may have obscured or inflated study 

results. Accurately quantifying pesticide exposure, particularly when investigating their role in 
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chronic diseases such as cancer, must consider historical exposures to take into account latency 

periods, or the time from initial exposure to clinical disease (23, 228). Specific pesticides may be 

associated with disease, which are not adequately captured with dichotomous (yes/no) 

classifications. Four case-control studies conducted in the U.S. accounted for few confounders 

(e.g., age, race, sex) during analysis and/or study design and potentially introduced a selection 

bias in using other cancer or hospital controls (59, 61, 68, 69). 

We focused on the Medicare elderly population in California, which represented a unique 

opportunity to study HCC as California is the most agriculturally productive state in the U.S. 

(205) and is characterized by relatively high HCC incidence. California age-adjusted HCC 

incidence between 2000 and 2009 is 6.3 per 100,000, 24% higher than the overall U.S. rate 

(201). Furthermore, the California Pesticide Use Reports database is the world’s most 

comprehensive pesticide reporting system, collecting agricultural pesticide use since 1974 (213). 

Prior to 1990, California farmers were only required to report restricted use pesticides. As full-

use reporting began in 1990, we confirmed that pesticide application rates across all three 

chemical classes were not significantly different between 1974 to 1989 and 1990 to 2008 (data 

not shown). We sought to improve upon the limitations of previous HCC U.S. epidemiologic 

studies by using population-based data sources providing information on HCC cases, controls 

representative of the same reference population as the cases, comorbidities as potential 

confounders, and pesticide exposure. PURs allowed for examining specific pesticides to 

reconstruct historical exposure, addressing a potential latency period. Medicare ZIP Codes 

allowed us to link SEER-Medicare and PUR data in a GIS. GIS is a powerful method allowing 

for the overlay of multiple spatial data sources based on a common geographic frame of 

reference (9). Specifically, we were able to overlay PLSS sections, the geographic level of 
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reporting of PURs, with TIGER/Line® ZIP Code Tabulation Areas (to approximate ZIP Codes) 

to estimate pesticide exposure for each study subject. 

When examining the entire sample of SEER-Medicare cases and controls, pesticide 

exposure was not associated with HCC after adjustment for confounders. This reflects a study 

design that sampled cases and controls without considering geographic area of residence, or their 

opportunity for pesticide exposure. Agricultural pesticide applications predominantly occur in 

rural, less densely populated geographic areas (86). The majority of sampled HCC cases (76.5%) 

resided in highly urbanized areas (counties with metropolitan areas of ≥1,000,000 population) at 

diagnosis, defined using SEER-Medicare-provided Rural/Urban Continuum Codes. Similarly, 

72.1% of controls resided in highly urbanized areas at selection. 

After restricting analyses to cases and controls with the opportunity for pesticide 

exposure (i.e., rural residents), previous exposure to organochlorines significantly increased risk 

for HCC after adjusting for liver disease and diabetes. Applied organochlorines in California 

between 1974 and 2008 included endosulfan, toxaphene, and dicofol. When defining pesticide 

exposure as an annual application rate (categorical predictor), previous exposure to 

organochlorines conferred between 52 and 85% greater risk for HCC compared to those not 

exposed after adjustment. In analyses, we considered exposure to pesticides as typically residing 

in ZIP Codes that applied over the median rate among rural controls, ranging between 0.06 and 

0.08 lb/ac depending on the exposure lag. Risk for HCC increased when taking into account 

longer exposure lags of 10, 15, and 20 years. This potentially reflects temporal trends in 

organochlorine usage, which has dramatically declined since the 1970s. Thus, exposure 

occurring in the time period of at least 20 years before diagnosis between 2000 and 2009 is more 

relevant in elevating HCC risk, as opposed to considering exposure from all years before 
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diagnosis. Our results were further bolstered by demonstrating that organochlorine exposure 

increases HCC risk among rural residents absent of HCC risk factors, e.g., hepatitis. 

We did not exclude individuals who were originally entitled to Medicare due to disability 

and/or end-stage renal disease. Although these individuals are not considered representative of 

Medicare beneficiaries in terms of their clinical and demographic characteristics (211, 229), the 

majority of both cases (89.2%) and controls (91.8%) in our study were entitled to Medicare due 

to attaining the age of 65 years. Furthermore, individuals with a disability, such as chronic liver 

disease and alcoholism, represent those with risk factors who would likely develop HCC (230). 

Sensitivity analyses excluding those entitled not due to age demonstrated stronger positive, 

significant associations between organochlorines and HCC among rural residents. This 

potentially demonstrates how this subgroup of Medicare beneficiaries, due to their health, may 

have been confined to their homes, minimizing agricultural pesticide exposure, or living in 

relatively less rural areas to facilitate their healthcare access (e.g., dialysis centers for ESRD). 

4.5.1 Strengths 

Our study included many strengths. We conducted the first epidemiologic study using GIS to 

study pesticides and HCC by implementing a novel data linkage between SEER-Medicare cancer 

outcomes and health conditions data with PUR pesticide applications using Medicare ZIP Codes. 

ZIP Codes have been used previously to study pesticides and cancer mortality in California 

(171). While all previous U.S. studies have relied on self-reported exposure, we utilized all 

agricultural use pesticide applications of specific chemicals reported to the California state 

government by farmers and commercial pest control operators. Our population-based study was 

able to sample from all HCC cases reported to California cancer registries between 2000 and 
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2009 as part of the SEER program who were aged 65 years and older enrolled in Medicare. 

Controls were sampled from the same population that gave rise to the cases, using a 5% random 

sample of Medicare beneficiaries residing in SEER areas. Great care was taken to include HCC 

cases with the greatest specificity, including diagnostically confirmed first cancer cases, 

minimizing inclusion of metastatic liver cancer. Using claims from Medicare, a federal health 

insurance program servicing 97% of the ≥65-year-old population (206), important HCC risk 

factors were included in the statistical analysis to address potential confounding. We carried back 

the earliest available Medicare ZIP Code to 1974 and were able to craft a comprehensive and 

historical pesticide exposure metric for all cases and controls. This addresses the documented 

latency period of some HCC risk factors, where 20 years can pass between initial exposure and 

clinical diagnosis of disease (3). Our study results are consistent with previous literature linking 

organochlorines with HCC. Although PURs began reporting pesticide use in 1974 and DDT was 

banned in 1972, statistically significant positive associations were observed in our study between 

HCC and organochlorines, the pesticide chemical class to which DDT belongs. Pesticides within 

a given chemical class have similar chemical structures and biological mechanisms of action 

(23), therefore, other organochlorines may pose similar risks for liver-related outcomes. 

4.5.2 Limitations 

Several limitations provide opportunities for future research. Our study was not able to take into 

account other routes of pesticide exposure such as individual-level occupation, diet, and 

residential pesticide use. However, the route of exposure addressed in this study, residential 

proximity, has been used as a surrogate for pesticide exposure occurring through a variety of 

routes, including dermal contact in crop fields (89). Our study was likely underpowered to detect 
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a difference between pesticides and HCC particularly in the rural setting, manifest in the wide 

confidence intervals when examining the continuous rate and applied pounds metrics. In 

sensitivity analyses, categorical pesticide exposure calculated using cutoffs from the rural control 

sample demonstrated significant increased risks. Usage of Medicare claims is associated with 

inherent limitations as only conditions diagnosed and recorded by a healthcare provider are 

captured. Claims lack sensitivity with some conditions, including HCV, which are 

underdiagnosed in the elderly population (206). In this sample, a high proportion of all sampled 

controls (10.6%) were tested for HBV and/or HCV at least one year before selection according to 

Healthcare Common Procedure Coding System (HCPCS) codes (Appendix C). The 

generalizability of our findings are somewhat limited given the median age of HCC diagnosis in 

the U.S. is 63 years (12) and sampled cases were at least 66 years old. Yet, a comparable 

proportion of our case series (76.5%) and of all HCC cases diagnosed between 2000 and 2009 in 

California aged 64 years and younger (78.6%) resided in highly urbanized areas at diagnosis 

(202). Thus, our results potentially extend to this relatively younger population of cases when 

considering the entire state of California irrespective of rural/urban residence. The impact on 

rural results is less clear, although it is possible that younger cases in rural areas who were alive 

before the 1970s when organochlorines were still widely used were exposed. Furthermore, these 

individuals, although alive for a shorter period of time compared to older cases, might have been 

exposed during a critical period when pesticide exposure poses significant risks to biological 

development (231, 232). We excluded individuals enrolled in Part C due to their lack of 

Medicare claims. Between 2000 and 2009, approximately 31.0 to 37.9% of Medicare 

beneficiaries in California enrolled in Part C (208). Approximately 87.9% of cases excluded 

from our study due to HMOs resided in urban areas. When considering all California Medicare 
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beneficiaries enrolled in Part C sometime between 2000 and 2009, between 64.9 and 94.4% 

resided in urban areas (208). Assuming the association between urban residence and Part C 

enrollment is nondifferential between cases and controls, excluding Part C enrollees may have 

biased results towards the null. 

The major limitation of our study was exposure misclassification. By carrying back the 

earliest available Medicare ZIP Code, we assumed individuals were residentially stable as early 

as their 30s and into midlife. This assumption may be conceivable given 89.6% of cases and 

90.7% of controls had one to two ZIP Codes (using available Medicare ZIP Codes from 1991 

until year before diagnosis/selection). Furthermore, only 3% of cases and 3% of controls moved 

from rural to urban areas or vice versa, potentially demonstrating that the exposure assigned to 

these individuals using their carried-back ZIP Code is representative of what they would have 

experienced anyway by virtue of typically residing in only urban, or only rural, areas during their 

lifetime. Medicare ZIP Codes represent the last available billing ZIP Code in that year, which 

may not reflect residence. ZIP Codes are coarse spatial resolution spatial variables, ranging from 

0.005 to 2,028.7 mi2 in California. ZIP Codes in rural areas, in which the population at risk for 

pesticide exposure reside, are typically larger than urban ZIP Codes. ZIP Codes are frequently 

modified and represent linear features created for the purposes of mail delivery (178). ZIP Code-

level pesticide exposure metrics are ecologic, taking into account pesticide exposure occurring 

within an entire ZIP Code. As a result, exposure could have been over- or underestimated for any 

given study subject. A more meaningful GIS pesticide exposure metric would use finer spatial 

resolution data, such as geocoded residential locations, taking into account agricultural pesticide 

use occurring within a 500 m (radius) buffer (previously associated with impacting human health 

and used in epidemiologic studies) (24). 
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4.6 CONCLUSIONS 

Among rural-dwelling California Medicare beneficiaries, previous ZIP Code-level 

organochlorine pesticide exposure was significantly associated with an increased risk of 

developing HCC after taking into account liver disease and diabetes. This is the first 

epidemiologic study using GIS to study pesticide exposure and HCC. Our study highlights 

another potential risk factor for HCC in the U.S. population that should be further examined. We 

used Medicare ZIP Codes to estimate pesticide exposure, which is a coarse spatial resolution 

variable subject to changes over time. Future research should explore the use of finer spatial 

resolution data, such as geocoded residences, in addition to collecting information regarding 

other routes of pesticide exposure to further elucidate the association between pesticides and 

HCC. 
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4.7 TABLES 

Table 11. Included vs. Excluded Hepatocellular Carcinoma Cases From SEER-Medicare in California, 2000-

2009 

Characteristic 

Included casesa 
(n = 3,034) 

n (%) 

Excluded casesa,b 
(n = 7,374) 

n (%) P Valuec 
Age in years: mean (SD) 75.1 (6.3) 66.1 (11.0) <0.0001 
Year   0.1754 

2000 236 (7.8) 544 (7.4)  
2001 235 (7.8) 616 (8.4)  
2002 278 (9.2) 598 (8.1)  
2003 260 (8.6) 665 (9.0)  
2004 316 (10.4) 654 (8.9)  
2005 309 (10.2) 813 (11.0)  
2006 326 (10.7) 829 (11.2)  
2007 344 (11.3) 876 (11.9)  
2008 349 (11.5) 857 (11.6)  
2009 381 (12.6) 922 (12.5)  

Sex   <0.0001 
Male 1,915 (63.1) 5,407 (73.3)  

Female 1,119 (36.9) 1,967 (26.7)  
Race   <0.0001 

White 1,548 (51.0) 4,178 (56.7)  
Black 152 (5.0) 529 (7.2)  
Other 265 (8.7) 789 (10.7)  
Asian 793 (26.1) 1,185 (16.1)  

Hispanic 256 (8.4) 642 (8.7)  
Native American 20 (0.7) 51 (0.7)  

California residence   <0.0001 
1-5 years 838 (27.6) 4,164 (56.5)  

6-10 years 1,077 (35.5) 1,611 (21.9)  
≥11 years 1,119 (36.9) 1,599 (21.7)  

State buy-in 1,586 (52.3) 2,149 (29.1) <0.0001 
Urban residence at 
diagnosisd 

2,322 (76.5) 5,971 (81.0) <0.0001 

 
Abbreviations: SD, standard deviation. 
a The source population of SEER-Medicare cases included all individuals diagnosed with hepatocellular carcinoma 
(ICD-O-3 C22.0 and 8170-8175) as a first cancer between 2000 and 2009, reported to a California registry, not of 
unknown race, and in the Medicare Enrollment DataBase (requirement to be included in SEER-Medicare data 
linkage). 
b Cases were excluded from the study due to lack of diagnostic confirmation, being reporting on death certificate or 
autopsy only, <66 years old at diagnosis, not having ≥13 months of continuous Parts A and B, non-HMO enrollment 
before diagnosis, or no available California Medicare ZIP Codes by diagnosis. 
c Two-sided P values from two-sample t-tests for continuous variables and from chi-square tests for categorical 
variables are presented. 
d Urban residence was defined using 2003 Rural/Urban Continuum Codes (RUCC) corresponding to metropolitan 
vs. nonmetropolitan counties at diagnosis. Urban was defined as residence in counties with metropolitan areas of ≥1 
million population (RUCC code 1). 
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Table 12. SEER-Medicare Hepatocellular Carcinoma Cases From Source Population, Included Cases, and 

From SEER (65 Years and Older) in California, 2000-2009 

Characteristic 

Source population 
of casesa 

(n = 10,408) 
n (%) 

Included cases 
in study 

(n = 3,034) 
n (%) 

SEER casesb 
(n = 17,291) 

n (%) 

SEER cases ≥65 
years oldc 

(n = 7,185) 
n (%) 

Age in years: mean (SD) 68.7 (10.7) 75.1 (6.3) 62.2 (14.6) 73.9 (6.0) 
Year     

2000 780 (7.5) 236 (7.8) 1,252 (7.2) 585 (8.1) 
2001 851 (8.2) 235 (7.8) 1,359 (7.9) 626 (8.7) 
2002 876 (8.4) 278 (9.2) 1,396 (8.1) 655 (9.1) 
2003 925 (8.9) 260 (8.6) 1,492 (8.6) 639 (8.9) 
2004 970 (9.3) 316 (10.4) 1,657 (9.6) 692 (9.6) 
2005 1,122 (10.8) 309 (10.2) 1,844 (10.7) 741 (10.3) 
2006 1,155 (11.1) 326 (10.7) 1,934 (11.2) 756 (10.5) 
2007 1,220 (11.7) 344 (11.3) 2,018 (11.7) 795 (11.1) 
2008 1,206 (11.6) 349 (11.5) 2,035 (11.8) 812 (11.3) 
2009 1,303 (12.5) 381 (12.6) 2,304 (13.3) 884 (12.3) 

Sex     
Male 7,322 (70.4) 1,915 (63.1) 13,111 (75.8) 4,702 (65.4) 

Female 3,086 (29.7) 1,119 (36.9) 4,180 (24.2) 2,483 (34.6) 
Raced     

White 5,726 (55.0) 1,548 (51.0) 11,036 (63.8) 4,436 (61.7) 
Black 681 (6.5) 152 (5.0) 1,373 (7.9) 412 (5.7) 
Other 1,054 (10.1) 265 (8.7) -- -- 
Asian 1,978 (19.0) 793 (26.1) 4,718 (27.3) 2,290 (31.9) 

Hispanic 898 (8.6) 256 (8.4) -- -- 
Native American 71 (0.7) 20 (0.7) 164 (0.9) 47 (0.7) 

California residencee     
1-5 years 838 (27.6) 838 (27.6) -- -- 

6-10 years 1,077 (35.5) 1,077 (35.5) -- -- 
≥11 years 1,119 (36.9) 1,119 (36.9) -- -- 

Urban residence at 
diagnosis 

8,293 (79.7) 2,322 (76.5) 13,888 (80.3) 5,947 (82.8) 

 
Abbreviations: SD, standard deviation. 
a Includes all SEER-Medicare hepatocellular carcinoma cases included or excluded from the study. 
b SEER cases were derived from SEER*Stat (202): ICD-O-3 C22.0 topography and 8170-8175 histology codes, 
sequence number 00 or 01, diagnosed between 2000 and 2009, reported to a California registry, diagnostically 
confirmed, not reported via autopsy or death certificate only, not of unknown race, and with no age restriction. 
c SEER cases aged ≥65 years at diagnosis. Ages >85 years are not individually reported in SEER (n = 512 cases 
were categorized as 85+ years). 
d SEER recoded race is comprised of four categories where Hispanics are not mutually exclusive of any of these 
groups. Other race is not a category. 
e California residence was calculated using Medicare ZIP Codes, and was thus not available when using SEER.  
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Table 13. Population Characteristics of Hepatocellular Carcinoma Cases and Frequency-Matched Controls 

From SEER-Medicare in California, 2000-2009 

Characteristic 

Casesa 
(n = 3,034) 

n (%) 

Controlsa 
(n = 14,991) 

n (%) P Valueb 
Age in years: mean (SD) 75.1 (6.3) 75.1 (6.3)  
Year    

2000 236 (7.8)  1,168 (7.8)  
2001 235 (7.8) 1,170 (7.8)  
2002 278 (9.2) 1,369 (9.1)  
2003 260 (8.6) 1,289 (8.6)  
2004 316 (10.4) 1,548 (10.3)  
2005 309 (10.2) 1,516 (10.1)  
2006 326 (10.7) 1,617 (10.8)  
2007 344 (11.3) 1,703 (11.4)  
2008 349 (11.5) 1,735 (11.6)  
2009 381 (12.6) 1,876 (12.5)  

Sex    
Male 1,915 (63.1) 9,469 (63.2)  

Female 1,119 (36.9) 5,522 (36.8)  
Race    

White 1,548 (51.0) 7,739 (51.6)  
Black 152 (5.0) 743 (5.0)  
Other 265 (8.7) 1,266 (8.5)  
Asian 793 (26.1) 3,924 (26.2)  

Hispanic 256 (8.4) 1,252 (8.4)  
Native American 20 (0.7) 67 (0.5)  

California residence    
1-5 years 838 (27.6) 4,145 (27.7)  

6-10 years 1,077 (35.5) 5,307 (35.4)  
≥11 years 1,119 (36.9) 5,539 (36.9)  

Duration of Medicare coverage 
(years)c 

   

1.1-4.3 747 (24.6) 3,761 (25.1)  
4.4-8.1 765 (25.2) 3,813 (25.4)  

8.2-11.5 775 (25.5) 3,524 (23.5)  
11.6-19 747 (24.6) 3,893 (26.0)  

Duration of Medicare coverage 
within 6 years of 
diagnosis/selection (years)d 

   

1.1-4.1 755 (24.9) 3,736 (24.9)  
4.2-6.1 2,279 (75.1) 11,255 (75.1)  

HCV 672 (22.2) 71 (0.5) <0.0001 
HBV 177 (5.8) 20 (0.1) <0.0001 
Unspecified hepatitis 379 (12.5) 75 (0.5) <0.0001 
Alcoholic liver disease 212 (7.0) 44 (0.3) <0.0001 
Non-specific cirrhosis 516 (17.0) 41 (0.3) <0.0001 
Liver diseasee   <0.0001 

None 1,861 (61.3) 14,783 (98.6)  
Hepatitis only  592 (19.5) 133 (0.9)  

Cirrhosis 581 (19.2) 75 (0.5)  
Diabetes 1,300 (42.9) 2,054 (13.7) <0.0001 
Obesity 125 (4.1) 365 (2.4) <0.0001 
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Table 13 continued 
 

Characteristic 

Casesa 
(n = 3,034) 

n (%) 

Controlsa 
(n = 14,991) 

n (%) P Valueb 
Rare genetic disorders 43 (1.4) 17 (0.1) <0.0001 
HIVf <11 <11 0.0072 
Smoking 262 (8.6) 795 (5.3) <0.0001 
State buy-in 1,586 (52.3) 6,070 (40.5) <0.0001 
ZIP Code percentage employed in 
agriculture: median (IQR) 

0.2 (0.1, 0.7) 0.2 (0.1, 1.0) 0.0002 

Urban residence at 
diagnosis/selectiong 

2,322 (76.5) 10,801 (72.1) <0.0001 

 
Abbreviations: HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IQR, 
interquartile range; SD, standard deviation. 
a Twenty-one controls subsequently became cases; 11,613 controls served once, 1,347 served twice, 195 served 
three times, 21 served four times, and 3 served five times. 
b No statistical tests are presented for matching factors age, year, sex, race, and California residence. For all other 
variables, two-sided P values from univariable conditional logistic regression models (robust variance estimation) 
accounting for the matching factors are presented.  
c Years of non-continuous enrollment in Parts A and B, non-HMO coverage. Coverage was categorized using 
quartiles among cases. 
d Years of non-continuous enrollment in Parts A and B, non-HMO coverage within 6 years of diagnosis/selection. 
Coverage was categorized using the 25th percentile among cases (4.1 years). 
e Liver disease was used in statistical modeling, representing none (no hepatitis, alcoholic liver disease, and non-
specific cirrhosis), hepatitis only (hepatitis without alcoholic liver disease and cirrhosis), and cirrhosis (alcoholic 
liver disease or non-specific cirrhosis with or without hepatitis). 
f In accordance with the SEER-Medicare data use agreement, cell sizes <11 are suppressed. 
g Urban residence was defined using 2003 Rural/Urban Continuum Codes (RUCC) corresponding to metropolitan 
vs. nonmetropolitan counties at diagnosis. Urban was defined as residence in counties with metropolitan areas of ≥1 
million population (RUCC code 1). 
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Table 14. Pesticide Exposure and Hepatocellular Carcinoma Using Pesticide Use Reports and SEER-

Medicare in California, 2000-2009 

 
Pesticide 
exposure 

category (lb/ac)a 

Cases 
(n = 3,034) 

n (%) 

Controls 
(n = 14,991) 

n (%) OR (95% CI)b P Valueb 
ZIP Code pesticide 
exposure, annual 
pesticide application 
rate (lb/ac) 

     

All classesc     0.0578 
Low exposure ≤0.001 1,054 (34.7) 4,949 (33.0) --  

Moderate exposure 0.001-0.02 1,007 (33.2) 4,944 (33.0) 0.96 (0.87, 1.05)  
High exposure ≥0.02 973 (32.1) 5,098 (34.0) 0.89 (0.81, 0.98)  

Organophosphates     0.0366 
Low exposure ≤0.0003 1,059 (34.9) 4,946 (33.0) --  

Moderate exposure 0.0003-0.01 999 (32.9) 4,949 (33.0) 0.94 (0.86, 1.04)  
High exposure ≥0.01 976 (32.2) 5,096 (34.0) 0.89 (0.81, 0.98)  

Organochlorines     0.0499 
Low exposure ≤0.00001 1,057 (34.8) 4,949 (33.0) --  

Moderate exposure 0.00001-0.001 977 (32.2) 4,946 (33.0) 0.93 (0.84, 1.02)  
High exposure ≥0.001 1,000 (33.0) 5,096 (34.0) 0.92 (0.83, 1.01)  

Carbamates     0.1685 
Low exposure ≤0.0001 1,039 (34.3) 4,945 (33.0) --  

Moderate exposure 0.0001-0.004 1,018 (33.6) 4,950 (33.0) 0.98 (0.89, 1.08)  
High exposure ≥0.004 977 (32.2) 5,096 (34.0) 0.91 (0.83, 1.00)  

ZIP Code pesticide 
exposure, average 
annual applied pounds 

     

All classesc     0.0078 
Low exposure ≤3.74 1,074 (35.4) 4,947 (33.0) --  

Moderate exposure 3.74-158.48 1,008 (33.2) 4,948 (33.0) 0.94 (0.86, 1.03)  
High exposure ≥158.48 952 (31.4) 5,096 (34.0) 0.85 (0.78, 0.94)  

Organophosphates     0.0101 
Low exposure ≤2.19 1,071 (35.3) 4,947 (33.0) --  

Moderate exposure 2.19-87.87 1,025 (33.8) 4,946 (33.0) 0.96 (0.87, 1.05)  
High exposure ≥87.87 938 (30.9) 5,098 (34.0) 0.84 (0.77, 0.93)  

Organochlorines     0.0096 
Low exposure ≤0.04 1,072 (35.3) 4,946 (33.0) --  

Moderate exposure 0.04-13.27 1,005 (33.1) 4,949 (33.0) 0.94 (0.85, 1.03)  
High exposure ≥13.27 957 (31.5) 5,096 (34.0) 0.86 (0.78, 0.95)  

Carbamates     0.0789 
Low exposure ≤0.46 1,049 (34.6) 4,947 (33.0) --  

Moderate exposure 0.46-42.35 1,026 (33.8) 4,948 (33.0) 0.98 (0.89, 1.07)  
High exposure ≥42.35 959 (31.6) 5,096 (34.0) 0.88 (0.80, 0.97)  

 
Abbreviations: ac, acre; CI, confidence interval; lb, pound; OR, odds ratio. 
a Pesticide application rates or applied pounds were categorized using tertiles among controls. 
b Odds ratios, 95% confidence intervals, and two-sided P values from univariable conditional logistic regression 
models (robust variance estimation) accounting for the matching factors are presented for cases vs. controls.  
c Refers to all combined chemical classes: organophosphates, organochlorines, and carbamates. 
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Table 15. Factors Associated with Pesticide Exposure Among Controls Using SEER-Medicare in California, 

2000-2009 

Characteristic 

Low exposurea 
(n = 4,949) 

≤0.001 lb/ac 
n (%) 

Moderate exposurea 
(n = 4,944) 

0.001-0.02 lb/ac 
n (%) 

High exposurea 
(n = 5,098) 
≥0.02 lb/ac 

n (%) P Valueb 
Age in years: mean (SD) 75.5 (6.3) 75.1 (6.3) 74.8 (6.2) <0.0001 
Year    0.2533 

2000 401 (8.1) 372 (7.5) 395 (7.8)  
2001 381 (7.7) 384 (7.8) 405 (7.9)  
2002 446 (9.0) 478 (9.7) 445 (8.7)  
2003 434 (8.8) 413 (8.4) 442 (8.7)  
2004 482 (9.7) 533 (10.8) 533 (10.5)  
2005 480 (9.7) 506 (10.2) 530 (10.4)  
2006 520 (10.5) 511 (10.3) 586 (11.5)  
2007 581 (11.7) 584 (11.8) 538 (10.6)  
2008 611 (12.4) 559 (11.3) 565 (11.1)  
2009 613 (12.4) 604 (12.2) 659 (12.9)  

Sex    0.3161 
Male 3,099 (62.6) 3,108 (62.9) 3,262 (64.0)  

Female 1,850 (37.4) 1,836 (37.1) 1,836 (36.0)  
Race    <0.0001 

White 2,283 (46.1) 2,457 (49.7) 2,999 (58.8)  
Black 283 (5.7) 265 (5.4) 195 (3.8)  
Other 467 (9.4) 409 (8.3) 390 (7.7)  
Asian 1,630 (32.9) 1,433 (29.0) 861 (16.9)  

Hispanic 271 (5.5) 362 (7.3) 619 (12.1)  
Native American 15 (0.3) 18 (0.4) 34 (0.7)  

California residence    0.0065 
1-5 years 1,406 (28.4) 1,376 (27.8) 1,363 (26.7)  

6-10 years 1,804 (36.5) 1,744 (35.3) 1,759 (34.5)  
≥11 years 1,739 (35.1) 1,824 (36.9) 1,976 (38.8)  

Duration of Medicare coverage 
within 6 years of 
diagnosis/selection (years)c 

   0.3116 

1.1-4.1 1,203 (24.3) 1,267 (25.6) 1,266 (24.8)  
4.2-6.1 3,746 (75.7) 3,677 (74.4) 3,832 (75.2)  

HCV 28 (0.6) 31 (0.6) 12 (0.2) 0.0087 
HBVd 13 (0.3) <11 <11 0.0037 
Unspecified hepatitis 30 (0.6) 26 (0.5) 19 (0.4) 0.2408 
Alcoholic liver diseased <11 <11 25 (0.5) 0.0051 
Non-specific cirrhosisd 18 (0.4) <11 16 (0.3) 0.0848 
Liver disease    0.0006 

None 4,871 (98.4) 4,873 (98.6) 5,039 (98.8)  
Hepatitis only  53 (1.1) 55 (1.1) 25 (0.5)  

Cirrhosis 25 (0.5) 16 (0.3) 34 (0.7)  
Diabetes 677 (13.7) 697 (14.1) 680 (13.3) 0.5415 
Obesity 114 (2.3) 119 (2.4) 132 (2.6) 0.6417 
Rare genetic disordersd <11 <11 <11 0.8229 
HIVd,e <11 <11 <11 0.3643 
Smoking 260 (5.3) 249 (5.0) 286 (5.6) 0.4315 
State buy-in 2,257 (45.6) 2,028 (41.0) 1,785 (35.0) <0.0001 
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Table 15 continued 
 

Characteristic 

Low exposurea 
(n = 4,949) 

≤0.001 lb/ac 
n (%) 

Moderate exposurea 
(n = 4,944) 

0.001-0.02 lb/ac 
n (%) 

High exposurea 
(n = 5,098) 
≥0.02 lb/ac 

n (%) P Valueb 
ZIP Code percentage employed 
in agriculture: median (IQR) 

0.1 (0.1, 0.2) 0.2 (0.1, 0.4) 1.2 (0.3, 4.4) <0.0001 

Urban residence at 
diagnosis/selectionf 

4,365 (88.2) 4,105 (83.0) 2,331 (45.7) <0.0001 

 
Abbreviations: ac, acre; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IQR, 
interquartile range; lb, pound; SD, standard deviation. 
a Pesticide application rates from all chemical classes (organophosphates, organochlorines, and carbamates) were 
categorized using tertiles among controls. 
b Two-sided P values from one-way analysis of variance for age, chi-square tests for categorical variables, and the 
Kruskal-Wallis test for occupation are presented.  
c Years of non-continuous enrollment in Parts A and B, non-HMO coverage within 6 years of diagnosis/selection. 
Coverage was categorized using the 25th percentile among cases (4.1 years). 
d In accordance with the SEER-Medicare data use agreement, cell sizes <11 are suppressed. 
e Two-sided P value presented from Fisher’s exact test. 
f Urban residence was defined using 2003 Rural/Urban Continuum Codes (RUCC) corresponding to metropolitan vs. 
nonmetropolitan counties at diagnosis. Urban was defined as residence in counties with metropolitan areas of ≥1 
million population (RUCC code 1). 
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Table 16. Random-Intercept Logistic Regression Examining Clustering Within ZIP Codes Using SEER-

Medicare Cases and Controls in California, 2000-2009 

 Random intercept: ZIP 
Code  at diagnosis/selection 

Adjusted OR (95% CI)a 
P 

Valuea 

Random intercept: ZIP Code 
occurring most frequently 
Adjusted OR (95% CI)a 

 
 P 

Valuea  
ICC 0.03  0.03  
ZIP Code pesticide 
exposure, annual 
pesticide application rate 
(lb/ac), all classes 

1.00 (1.00, 1.00) 0.1710 1.00 (1.00, 1.00) 0.1220 

Age in years 1.00 (0.99, 1.01) 0.8130 1.00 (0.99, 1.01) 0.7930 
Year  >0.999  >0.999 

2000 --  --  
2001 0.98 (0.81, 1.20)  0.99 (0.81, 1.20)  
2002 1.00 (0.82, 1.22)  1.00 (0.82, 1.22)  
2003 1.00 (0.82, 1.21)  1.00 (0.82, 1.21)  
2004 1.01 (0.84, 1.21)  1.01 (0.84, 1.21)  
2005 1.01 (0.83, 1.21)  1.01 (0.84, 1.21)  
2006 1.00 (0.83, 1.20)  1.00 (0.83, 1.21)  
2007 1.00 (0.83, 1.21)  1.00 (0.83, 1.20)  
2008 0.99 (0.82, 1.20)  0.99 (0.82, 1.19)  
2009 1.00 (0.84, 1.20)  1.00 (0.83, 1.20)  

Sex  0.8510  0.8300 
Male --  --  

Female 0.99 (0.91, 1.08)  0.99 (0.91, 1.08)  
Race  0.5861  0.5652 

White --  --  
Black 1.00 (0.82, 1.21)  1.00 (0.83, 1.21)  
Other 1.02 (0.88, 1.19)  1.02 (0.87, 1.19)  
Asian 0.95 (0.85, 1.06)  0.95 (0.85, 1.06)  

Hispanic 1.00 (0.86, 1.16)  1.01 (0.86, 1.17)  
Native American 1.49 (0.88, 2.55)  1.51 (0.89, 2.56)  

California residence  0.9718  0.9694 
1-5 years --  --  

6-10 years 1.00 (0.89, 1.12)  1.00 (0.89, 1.12)  
≥11 years 0.98 (0.85, 1.14)  0.99 (0.85, 1.14)  

 
Abbreviations: ac, acre; CI, confidence interval; ICC, intraclass correlation coefficient; lb, pound; OR, odds ratio. 
a Adjusted odds ratios, 95% confidence intervals, and two-sided P values from random-intercept logistic regression 
models using robust variance estimation, defining the random intercept as the ZIP Code, and adjusting for all other 
variables are presented. 
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Table 17. Adjusted Odds Ratios for Hepatocellular Carcinoma: Pesticide Exposure in California Using 

SEER-Medicare, 2000-2009 

Predictor Adjusted ORa 95% CIa P valuea 
ZIP Code pesticide exposure, annual 
pesticide application rate (lb/ac) 

    

All classesb,c 0.92 0.80 1.07 0.3009 
Organophosphates 0.85 0.65 1.11 0.2322 

Organochlorines 0.82 0.29 2.29 0.6981 
Carbamates 0.83 0.56 1.22 0.3411 

ZIP Code pesticide exposure, average 
annual applied pounds (per 10,000 lb) 

    

All classesb 0.98 0.96 1.01 0.1710 
Organophosphates 0.98 0.94 1.02 0.3107 

Organochlorines 0.95 0.80 1.12 0.5230 
Carbamates 0.94 0.88 1.00 0.0663 

 
Abbreviations: ac, acre; CI, confidence interval; lb, pound; OR, odds ratio. 
a Odds ratios, 95% confidence intervals, and two-sided P values were estimated using multivariable conditional 
logistic regression (robust variance estimation) adjusting for liver disease, diabetes, rare genetic disorders, and state 
buy-in in addition to taking into account the matching factors. 
b Refers to all combined chemical classes: organophosphates, organochlorines, and carbamates. 
c The following are adjusted odds ratios for the other predictors in the multivariable conditional logistic regression 
model: hepatitis only vs. no liver disease (OR 35.99; 95% confidence interval 23.96, 54.05), cirrhosis vs. no liver 
disease (OR 62.43; 95% confidence interval 27.41, 142.23), diabetes (OR 4.44, 95% confidence interval 3.81, 5.16), 
rare genetic disorders (OR 6.17, 95% confidence 1.56, 24.45), state buy-in (OR 1.39, 95% confidence interval 1.21, 
1.61). 
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Table 18. Rural Residents: Population Characteristics of Hepatocellular Carcinoma Cases and Frequency-

Matched Controls From SEER-Medicare in California, 2000-2009 

Characteristic 

Casesa 
(n = 306) 

n (%) 

Controlsa 
(n = 1,758) 

n (%) P Valueb 
Age in years: mean (SD) 74.9 (6.0) 74.6 (6.2)  
Year    

2000 24 (7.8) 155 (8.8)  
2001 27 (8.8) 142 (8.1)  
2002 32 (10.5) 157 (8.9)  
2003 29 (9.5) 160 (9.1)  
2004 31 (10.1) 178 (10.1)  
2005 40 (13.1) 190 (10.8)  
2006 28 (9.2) 196 (11.2)  
2007 25 (8.2) 169 (9.6)  
2008 34 (11.1) 189 (10.8)  
2009 36 (11.8) 222 (12.6)  

Sex    
Male 190 (62.1) 1,168 (66.4)  

Female 116 (37.9) 590 (33.6)  
Racec    

White 194 (63.4) 1109 (63.1)  
Black <11 58 (3.3)  
Other 28 (9.2) 125 (7.1)  
Asian 23 (7.5) 151 (8.6)  

Hispanic 48 (15.7) 301 (17.1)  
Native American <11 14 (0.8)  

California residence    
1-5 years 68 (22.2) 440 (25.0)  

6-10 years 105 (34.3) 589 (33.5)  
≥11 years 133 (43.5) 729 (41.5)  

Duration of Medicare coverage 
(years)d 

   

1.1-4.3 68 (22.2) 386 (22.0)  
4.4-8.1 63 (20.6) 414 (23.6)  

8.2-11.5 85 (27.8) 413 (23.5)  
11.6-19 90 (29.4) 545 (31.0)  

Duration of Medicare coverage 
within 6 years of diagnosis/selection 
(years)e 

   

1.1-4.1 66 (21.6) 408 (23.2)  
4.2-6.1 240 (78.4) 1,350 (76.8)  

Liver diseasef 98 (32.0) 21 (1.2) <0.0001 
Diabetes 146 (47.7) 242 (13.8) <0.0001 
Obesity 21 (6.9) 57 (3.2) 0.0303 
Rare genetic disordersc <11 <11 <0.0001 
HIVc <11 <11 <0.0001 
Smoking 29 (9.5) 98 (5.6) 0.0077 
State buy-in 143 (46.7) 601 (34.2) <0.0001 
ZIP Code percentage employed in 
agriculture: median (IQR) 

4.7 (2.6, 7.7) 5.0 (2.6, 7.5) 0.5097 
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Table 18 continued 
 

Characteristic 

Casesa 
(n = 306) 

n (%) 

Controlsa 
(n = 1,758) 

n (%) P Valueb 
Urban residence at 
diagnosis/selectiong 

48 (15.7) 207 (11.8) 0.1629 

 
Abbreviations: HCV, hepatitis C virus; HBV, hepatitis B virus; HIV, human immunodeficiency virus; IQR, 
interquartile range; SD, standard deviation. 
a Four controls subsequently became cases; 1,583 controls served once, 157 served twice, and 18 served three times. 
b No statistical tests are presented for matching factors age, year, sex, race, and California residence. For all other 
variables, two-sided P values from univariable conditional logistic regression models (robust variance estimation) 
accounting for the matching factors are presented.  
c In accordance with the SEER-Medicare data use agreement, cell sizes <11 are suppressed. 
d Years of non-continuous enrollment in Parts A and B, non-HMO coverage. Coverage was categorized using 
quartiles among cases from the full study sample. 
e Years of non-continuous enrollment in Parts A and B, non-HMO coverage within 6 years of diagnosis/selection. 
Coverage was categorized using the 25th percentile among cases from the full study sample (4.1 years). 
f Liver disease defined as yes/no hepatitis, alcoholic liver disease, or non-specific cirrhosis. 
g Urban residence was defined using 2003 Rural/Urban Continuum Codes (RUCC) corresponding to metropolitan 
vs. nonmetropolitan counties at diagnosis. Urban was defined as residence in counties with metropolitan areas of ≥1 
million population (RUCC code 1). 
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Table 19. Rural Residents: Pesticide Exposure and Hepatocellular Carcinoma Using Pesticide Use Reports 

and SEER-Medicare in California, 2000-2009 

 Pesticide exposure 
category (lb/ac)a 

Cases 
(n = 306) 

n (%) 

Controls 
(n = 1,758) 

n (%) OR (95% CI)b 
P 

Valueb 
ZIP Code pesticide 
exposure, annual pesticide 
application rate (lb/ac): 

     

All classesc     0.7995 
Low exposure ≤0.48 104 (34.0) 579 (32.9) --  

Moderate exposure 0.48-0.92 94 (30.7) 582 (33.1) 0.92 (0.66, 1.29)  
High exposure ≥0.92 108 (35.3) 597 (34.0) 1.17 (0.83, 1.65)  

Organophosphates     0.0209 
Low exposure ≤0.26 89 (29.1) 582 (33.1) --  

Moderate exposure 0.26-0.50 110 (36.0) 574 (32.7) 1.37 (0.98, 1.92)  
High exposure ≥0.50 107 (35.0) 602 (34.2) 1.48 (1.05, 2.09)  

Organochlorines     0.0015 
Low exposure ≤0.04 89 (29.1) 581 (33.1) --  

Moderate exposure 0.04-0.10 98 (32.0) 580 (33.0) 1.44 (1.02, 2.04)  
High exposure ≥0.10 119 (38.9) 597 (34.0) 1.93 (1.35, 2.77)  

Carbamates     0.0160 
Low exposure ≤0.13 81 (26.5) 579 (32.9) --  

Moderate exposure 0.13-0.30 115 (37.6) 584 (33.2) 1.51 (1.06, 2.15)  
High exposure ≥0.30 110 (36.0) 595 (33.9) 1.44 (1.01, 2.06)  

ZIP Code pesticide 
exposure, average annual 
applied pounds 

     

All classesc     0.8192 
Low exposure ≤22,301.80 103 (33.7) 576 (32.8) --  

Moderate exposure 22,301.80-61,174.03 103 (33.7) 583 (33.2) 0.99 (0.72, 1.36)  
High exposure ≥61,174.03 100 (32.7) 599 (34.1) 1.08 (0.76, 1.54)  

Organophosphates     0.8147 
Low exposure ≤12,402.68 102 (33.3) 581 (33.1) --  

Moderate exposure 12,402.68-28,453.40 94 (30.7) 580 (33.0) 0.87 (0.62, 1.24)  
High exposure ≥28,453.40 110 (36.0) 597 (34.0) 1.23 (0.88, 1.72)  

Organochlorines     0.2031 
Low exposure ≤1,795.52 103 (33.7) 581 (33.1) --  

Moderate exposure 1,795.52-5,273.83 97 (31.7) 580 (33.0) 1.06 (0.76, 1.48)  
High exposure ≥5,273.83 106 (34.6) 597 (34.0) 1.38 (0.98, 1.94)  

Carbamates     0.5831 
Low exposure ≤5,951.53 98 (32.0) 577 (32.8) --  

Moderate exposure 5,951.53-18,425.59 108 (35.3) 581 (33.1) 1.14 (0.83, 1.56)  
High exposure ≥18,425.59 100 (32.7) 600 (34.1) 1.04 (0.73, 1.47)  

 
Abbreviations: ac, acre; lb, pound; OR, odds ratio. 
a Pesticide application rates or applied pounds were categorized using tertiles among rural controls. 
b Odds ratio, 95% confidence intervals, and two-sided P values from univariable conditional logistic regression 
models (robust variance estimation) accounting for the matching factors are presented for cases vs. controls.  
c Refers to all combined chemical classes: organophosphates, organochlorines, and carbamates. 
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Table 20. Rural Residents: Factors Associated with Organochlorine Pesticide Exposure Among Controls 

Using SEER-Medicare in California, 2000-2009 

Characteristic 

Low exposurea 
(n = 581) 

≤0.04 lb/ac 
n (%) 

Moderate exposurea 
(n = 580) 

0.04-0.10 lb/ac 
n (%) 

High exposurea 
(n = 597) 

≥0.10 lb/ac 
n (%) P Valueb 

Age in years: mean (SD) 74.2 (6.1) 74.6 (6.1) 74.8 (6.2) 0.2070 
Year    0.1194 

2000 47 (8.1) 45 (7.8) 63 (10.6)  
2001 38 (6.5) 43 (7.4) 61 (10.2)  
2002 42 (7.2) 56 (9.7) 59 (9.9)  
2003 58 (10.0) 51 (8.8) 51 (8.5)  
2004 49 (8.4) 63 (10.9) 66 (11.1)  
2005 78 (13.4) 55 (9.5) 57 (9.6)  
2006 66 (11.4) 68 (11.7) 62 (10.4)  
2007 55 (9.5) 56 (9.7) 58 (9.7)  
2008 67 (11.5) 64 (11.0) 58 (9.7)  
2009 81 (13.9) 79 (13.6) 62 (10.4)  

Sex    0.2399 
Male 396 (68.2) 391 (67.4) 381 (63.8)  

Female 185 (31.8) 189 (32.6) 216 (36.2)  
Racec,d    <0.0001 

White 413 (71.1) 350 (60.3) 346 (58.0)  
Black 12 (2.1) 25 (4.3) 21 (3.5)  
Other 31 (5.3) 50 (8.6) 44 (7.4)  
Asian 38 (6.5) 56 (9.7) 57 (9.6)  

Hispanic 78 (13.4) 97 (16.7) 126 (21.1)  
Native American <11 <11 <11  

California residence    0.1198 
1-5 years 165 (28.4) 136 (23.5) 139 (23.3)  

6-10 years 174 (30.0) 202 (34.8) 213 (35.7)  
≥11 years 242 (41.7) 242 (41.7) 245 (41.0)  

Duration of Medicare coverage 
within 6 years of 
diagnosis/selection (years)e 

   0.5137 

1.1-4.1 143 (24.6) 135 (23.3) 130 (21.8)  
4.2-6.1 438 (75.4) 445 (76.7) 467 (778.2)  

Liver diseasec <11 <11 <11 0.9981 
Diabetes 57 (9.8) 87 (15.0) 98 (16.4) 0.0026 
Obesity 18 (3.1) 18 (3.1) 21 (3.5) 0.8966 
Rare genetic disordersc,d <11 <11 <11 0.2187 
HIVc,d <11 <11 <11 0.6604 
Smoking 24 (4.1) 39 (6.7) 35 (5.9) 0.1458 
State buy-in 169 (29.1) 212 (36.6) 220 (36.9) 0.0066 
ZIP Code percentage employed 
in agriculture: median (IQR) 

3.7 (2.3, 5.8) 4.7 (2.7, 8.8) 5.4 (3.0, 9.6) <0.0001 

Urban residence at 
diagnosis/selectionf 

57 (9.8) 90 (15.5) 60 (10.1) 0.0029 

 
Abbreviations: ac, acre; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IQR, 
interquartile range; lb, pound; SD, standard deviation. 
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Table 20 continued 
 

a Pesticide application rates from the organochlorine chemical class were categorized using tertiles among rural 
controls. 
b Two-sided P values from one-way analysis of variance for age, chi-square tests for categorical variables, and the 
Kruskal-Wallis test for occupation are presented.  
c In accordance with the SEER-Medicare data use agreement, cell sizes <11 are suppressed. 
d Two-sided P value presented from Fisher’s exact test. 
e Years of non-continuous enrollment in Parts A and B, non-HMO coverage within 6 years of diagnosis/selection. 
Coverage was categorized using the 25th percentile among cases from the full study sample (4.1 years). 
f Urban residence was defined using 2003 Rural/Urban Continuum Codes (RUCC) corresponding to metropolitan vs. 
nonmetropolitan counties at diagnosis. Urban was defined as residence in counties with metropolitan areas of ≥1 
million population (RUCC code 1). 
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Table 21. Rural Residents: Adjusted Odds Ratios for Hepatocellular Carcinoma, Organochlorine Pesticide 

Exposure Using SEER-Medicare, 2000-2009 

Predictor Laga Adjusted ORb 95% CIb P valueb 
ZIP Code organochlorine, annual pesticide 
application rate (lb/ac) 

     

 Nonec 3.32 0.89 12.39 0.0742 
 10 2.91 0.98 8.63 0.0538 
 15 2.74 1.03 7.30 0.0442 
 20 2.43 1.04 5.70 0.0414 

ZIP Code organochlorine rate (lb/ac): 
exposed if ≥50th pctl among rural controls 

     

≥0.06 lb/ac None 1.52 1.02 2.28 0.0415 
≥0.07 lb/ac 10 1.53 1.01 2.32 0.0459 
≥0.08 lb/ac 15 1.85 1.22 2.81 0.0038 
≥0.08 lb/ac 20 1.81 1.19 2.75 0.0058 

ZIP Code organochlorine, average annual 
applied pounds (per 10,000 lb) 

     

 None 1.26 1.00 1.58 0.0501 
 10 1.24 1.02 1.50 0.0314 
 15 1.24 1.02 1.51 0.0284 
 20 1.24 1.03 1.50 0.0242 

ZIP Code organochlorine pounds: exposed 
if ≥75th pctl among rural controls 

     

≥8,292.13 None 1.61 1.02 2.54 0.0430 
≥10,110.64 10 1.71 1.08 2.69 0.0219 

≥9,897.86 15 1.54 0.98 2.43 0.0617 
≥10,266.64 20 1.67 1.06 2.63 0.0274 

 
Abbreviations: ac, acre; CI, confidence interval; lb, pound; OR, odds ratio; pctl, percentile. 
a An exposure lag of 10, 15, or 20 years considered pesticide exposure occurring outside of that particular window 
before diagnosis/selection (e.g., 20-year lag considered exposure between 1974 and 1980 for case diagnosed in 
2000). 
b Odds ratios, 95% confidence intervals, and two-sided P values were estimated using multivariable conditional 
logistic regression (robust variance estimation) adjusting for liver disease (yes/no hepatitis, alcoholic liver disease, 
or non-specific cirrhosis) and diabetes, in addition to taking into account the matching factors. 
c The following are adjusted odds ratios for the other predictors in the multivariable conditional logistic regression 
model: liver disease (OR 32.60; 95% confidence interval 6.42, 165.44), diabetes (OR 8.49; 95% confidence interval 
4.93, 14.64). 
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Table 22. Rural Residents With No Known Risk Factors: Odds Ratios for Hepatocellular Carcinoma, 

Organochlorine Pesticide Exposure Using SEER-Medicare, 2000-2009 

Predictor Lag ORa 95% CIa P valuea 
ZIP Code organochlorine, annual 
pesticide application rate (lb/ac) 

     

 None 3.02 0.55 16.51 0.2015 
 10 2.38 0.62 9.17 0.2067 
 15 2.29 0.71 7.35 0.1650 
 20 2.04 0.77 5.40 0.1490 

ZIP Code organochlorine rate 
(lb/ac): exposed if ≥50th pctl among 
rural controls 

 
 

  
 

≥0.06 lb/ac None 1.51 0.93 2.45 0.0970 
≥0.07 lb/ac 10 1.35 0.84 2.18 0.2179 
≥0.08 lb/ac 15 2.15 1.29 3.58 0.0032 
≥0.08 lb/ac 20 1.69 1.02 2.82 0.0432 

ZIP Code organochlorine, average 
annual applied pounds (per 10,000 
lb) 

 
 

  
 

 None 1.15 0.90 1.47 0.2587 
 10 1.12 0.91 1.37 0.2826 
 15 1.12 0.91 1.37 0.2890 
 20 1.14 0.93 1.39 0.2024 

ZIP Code organochlorine pounds: 
exposed if ≥75th pctl among rural 
controls 

 
 

  
 

≥8,292.13 None 1.60 0.92 2.79 0.0994 
≥10,110.64 10 1.94 1.12 3.34 0.0173 

≥9,897.86 15 1.62 0.94 2.79 0.0830 
≥10,266.64 20 1.63 0.95 2.79 0.0749 

 
Abbreviations: ac, acre; CI, confidence interval; lb, pound; OR, odds ratio; pctl, percentile. 
a Odds ratios, 95% confidence intervals, and two-sided P values were estimated using univariable conditional 
logistic regression models (robust variance estimation) taking into account the matching factors and only among 
those without HCC risk factors (no liver disease, diabetes, obesity, rare genetic disorders, smoking, and HIV) (n = 
106 cases, n = 1,412 controls). 
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Table 23. Rural Residents Entitled to Medicare Due to Age: Adjusted Odds Ratios for Hepatocellular 

Carcinoma, Organochlorine Pesticide Exposure Using SEER-Medicare, 2000-2009 

Predictor Lag Adjusted ORa 95% CIa P valuea 
ZIP Code organochlorine, annual 
pesticide application rate (lb/ac) 

     

 None 4.20 1.11 15.88 0.0342 
 10 3.39 1.14 10.03 0.0277 
 15 3.10 1.18 8.16 0.0217 
 20 2.70 1.16 6.28 0.0217 

ZIP Code organochlorine rate 
(lb/ac): exposed if ≥50th pctl among 
rural controls 

 
 

  
 

≥0.06 lb/ac None 1.86 1.22 2.85 0.0041 
≥0.07 lb/ac 10 1.80 1.15 2.82 0.0106 
≥0.08 lb/ac 15 2.03 1.31 3.17 0.0017 
≥0.08 lb/ac 20 2.08 1.33 3.23 0.0012 

ZIP Code organochlorine, average 
annual applied pounds (per 10,000 
lb) 

 
 

  
 

 None 1.31 1.03 1.67 0.0298 
 10 1.27 1.03 1.57 0.0268 
 15 1.27 1.02 1.57 0.0295 
 20 1.26 1.03 1.54 0.0277 

ZIP Code organochlorine pounds: 
exposed if ≥75th pctl among rural 
controls 

 
 

  
 

≥8,292.13 None 1.81 1.12 2.93 0.0150 
≥10,110.64 10 1.81 1.13 2.89 0.0134 

≥9,897.86 15 1.68 1.05 2.70 0.0321 
≥10,266.64 20 1.77 1.09 2.87 0.0203 

 
Abbreviations: ac, acre; CI, confidence interval; lb, pound; OR, odds ratio; pctl, percentile. 
a Odds ratios, 95% confidence intervals, and two-sided P values were estimated using multivariable conditional 
logistic regression (robust variance estimation) adjusting for liver disease (yes/no hepatitis, alcoholic liver disease, 
or non-specific cirrhosis) and diabetes, in addition to taking into account the matching factors and only among those 
originally entitled to Medicare due to attaining age 65 years (n = 258 cases, n = 1,543 controls). 
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4.8 FIGURES 

 

Figure 14. Eligibility Criteria Applied to First Cancer Hepatocellular Carcinoma Cases in California 

Diagnosed From 2000 to 2009 Using SEER-Medicare 
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5.0  GENERAL DISCUSSION 

5.1 SUMMARY OF FINDINGS 

Location is the fundamental focus of geographic information systems (GIS). Using a GIS, 

multiple data sources can be combined to both visualize and analyze spatial data, or data 

associated with locational information. Location can also play an important role in population 

health, where an individual’s environment, including where an individual lives and works, has a 

direct effect on future health outcomes. Thus, location is extremely relevant to epidemiology, a 

branch of science seeking to describe and analyze determinants of human health. Specifically, 

GIS provides great utility in epidemiologic studies as a way to incorporate the location of both 

environmental exposures and humans to further our understanding of factors impacting human 

health. The three studies comprising this dissertation demonstrate the usage of GIS in studying 

human health via (1) presenting a new GIS method to estimate pesticide exposure for use in an 

epidemiologic study, (2) demonstrating the use of GIS to estimate pesticide exposure given 

aggregated spatial scale data, and (3) using GIS to link cancer and pesticide data to conduct an 

epidemiologic case-control study. 

The first study presented a new GIS and remote sensing method to estimate individual-

level agricultural pesticide exposure for use as an exposure metric in an epidemiologic study. 

This method, called the Landsat method, classifies Landsat satellite images into crop fields using 

157 



 

a maximum likelihood and per-field (segments) classification approach. These Landsat-classified 

crop fields are then matched to California Pesticide Use Report (PUR) data using the crop type 

and Public Land Survey System (PLSS) section of application. Pesticide exposure is 

subsequently estimated according to the pesticide-treated Landsat crop fields within a 500 m 

(radius) buffer around an individual’s geocoded residence. Our study demonstrated that 

significantly more pesticide applications (60.3% vs. 57.4%; p=0.0002) were matched to Landsat 

crop fields compared to crop fields using the standard crop dataset called the land use survey 

(LUS). Furthermore, significantly more temporary crop pesticide applications were matched to 

Landsat crop fields compared to LUS crop fields (65.4% vs. 52.4%; p<0.0001). The Landsat 

method offers the opportunity to bridge the temporal gap between when pesticide exposure is to 

be estimated and the crop fields with which pesticide applications are matched, providing an 

alternative GIS pesticide exposure estimation method compared to the standard method that uses 

infrequently updated crop LUS’s. 

The second study explored three different methods of estimating ZIP Code-level 

pesticide exposure. The basis for each pesticide exposure estimation method was PLSS section 

pesticide application rates. Gold standard pesticide application rates were calculated according to 

pesticide-treated PLSS sections intersecting 500 m buffers around centroids of populated census 

block-habitable class polygons. ZIP Code rates were calculated using area weighting (PLSS 

section rates weighted by proportion of ZIP Code’s area comprised by section), population 

weighting (section rates weighted by proportion of ZIP Code’s population comprised by section), 

and road weighting (section rates weighted by proportion of ZIP Code’s roads comprised by 

section). Area weighting achieved moderate agreement with the gold standard overall (weighted 

kappa 0.55; 95% confidence interval [CI] 0.52, 0.58) and substantial agreement in rural areas 
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(weighted kappa 0.63; 95% CI 0.57, 0.69). The results of this second study directly informed the 

methodological approach to estimate pesticide exposure in the third study, where the 

Surveillance, Epidemiology, and End Results (SEER)-Medicare database provided ZIP Codes 

for each study subject as a spatial variable capable of being linked to PUR data in a GIS.  

The third study is the primary dissertation project - an epidemiologic case-control study 

examining the association between agricultural pesticide exposure and hepatocellular carcinoma 

(HCC). Cases and controls were sampled from the SEER-Medicare database, representing SEER 

cancer cases linked with Medicare enrollment data along with non-cancer Medicare beneficiaries 

in SEER catchment areas. Comorbidities as potential confounders were extracted from Medicare 

claims. Pesticide exposure was calculated using Medicare ZIP Codes, where area-weighted ZIP 

Code rates calculated using PLSS section pesticide application rates were summed and divided 

by the number of years of available Medicare data. Among rural California Medicare 

beneficiaries, previous annual ZIP Code exposure to ≥0.06 lb/ac of applied organochlorine 

pesticides was associated with a 52% increase in HCC risk compared to exposure <0.06 lb/ac 

after adjusting for liver disease and diabetes (adjusted odds ratio [OR] 1.52; 95% CI 1.02, 2.28; 

p=0.0415). HCC risk increased after accounting for a 20-year exposure lag (adjusted OR 1.81; 

95% CI 1.19, 2.75; p=0.0058). Our study represents the first epidemiologic study examining 

pesticide exposure and HCC using GIS as well as the first epidemiologic study conducted among 

the U.S. population not relying on self-report to estimate pesticide exposure. 
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5.2 PUBLIC HEALTH SIGNIFICANCE 

All three dissertation studies demonstrate significance in the field of public health as 

representing research that seeks to promote population health and disease prevention. Public 

health is an all-encompassing field, comprised of such disciplines as epidemiology and 

biostatistics, and is focused on measures to improve health via implementing educational 

programs, informing policymaking, and conducting research on disease detection and 

prevention. This dissertation contributes to the mission of public health by providing a new 

methodological technique by which to estimate pesticide exposure, associated with adverse 

human health outcomes such as cancers, that can be used in an epidemiologic study investigating 

pesticides and a disease outcome. Most importantly, this dissertation adds to a body of 

epidemiologic literature linking particular pesticides with HCC. In the context of understanding 

the role of an environmental exposure in human health, the capacity for the field of public health 

to impact and promote population health partly hinges on the research conducted to elucidate the 

impact of such exposures on diseases. If research can provide a substantive link between a 

purported exposure and disease, then efforts to mitigate exposure can be subsequently explored. 

And very importantly, the field of public health as a whole can move forward as we have formed 

a more comprehensive understanding of the factors that contribute to developing a particular 

disease. 

The first study presented a new exposure method to capture an environmental 

determinant of health - pesticides. Accurate estimation of environmental exposures that could 

potentially impact human health allows us to form a better understanding of their exact role in 

human health outcomes. This specifically contributes to public health from the vantage point of 

providing another methodological tool to accurately estimate this environmental exposure that 
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incorporates multiple relevant data sources and is capable of considering multiple points in time. 

Thus, this study serves to push the bounds of using GIS in epidemiologic studies, adding to a 

research toolbox of environmental exposure assessment methods that can be used by public 

health investigators seeking to estimate this exposure. 

The second study is relevant to public health from a research standpoint via 

demonstrating how data available at different scales can be combined for use in an epidemiologic 

study. An common issue encountered when conducting research using spatial data manifests 

itself as a discrepancy between the scale at which a phenomenon of interest operates, also called 

the operational scale, and the scale at which data is available, also called the analysis scale. For 

example, for purposes of patient confidentiality, a variable of interest may be available at some 

aggregated scale, such as ZIP Codes, while the scale at which the variable operates is much finer 

(e.g., residential level). The second study presented GIS methods to reconcile pesticide exposure 

estimation between the two spatial scales of PLSS sections and ZIP Codes. GIS overlay 

operations allowed for California PUR data, reported at the 1 mi2 PLSS section level, to be 

aggregated, or scaled up, to the ZIP Code level, which are typically much larger in size 

compared to PLSS sections. This study addressed an important practical issue regarding the 

SEER-Medicare study (third study), where PURs reported according to PLSS sections had to be 

reconciled with SEER-Medicare-provided ZIP Codes for study subjects. Our approach of 

applying various spatial weighting methods to scale up spatial data and comparisons to a finer 

scale gold standard can be applied to study other environmental exposures relevant to public 

health research. Specifically, exploring different spatial weighting methods relevant to 

addressing human activity (i.e., road and population weighting) and a weighting method capable 

of being applied using any GIS (i.e., area weighting) can be applied towards investigating other 
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environmental exposures aggregated at other spatial scales (e.g., census tracts) in public health 

research. 

The third and primary study addresses a disease significantly increasing in incidence in 

the U.S. population and associated with low survival - hepatocellular carcinoma. From a public 

health perspective, a disease associated with vast consequences in terms of morbidity, mortality, 

and quality of life demands research efforts to elucidate its risk factors. Furthermore, up to 50% 

of all HCC cases diagnosed in the U.S. population occur among those with no known risk 

factors. Given the epidemiologic evidence regarding pesticide exposure as a risk factor for HCC 

in the U.S. is inconsistent, the opportunity to utilize SEER-Medicare, a population-based data 

source providing access to comorbidities as potential confounders and high quality cancer 

outcomes data, served as an advantageous public health research endeavor addressing this often 

fatal disease. The results of this study demonstrated that previous exposure to organochlorines, a 

pesticide chemical class comprised of many chemicals, e.g., dichlorodiphenyltrichloroethane 

(DDT), that have since been banned in the U.S. due to environmental persistence and adverse 

health effects, was associated with an increased risk of developing HCC between 2000 and 2009 

among rural Californians. Therefore, this research provides potential evidence of organochlorine 

exposure affecting HCC risk that warrants further investigation, especially as past agricultural 

pesticide application practices may continue to impact human health outcomes in U.S. 

populations outside of California. This research provides an epidemiologic foundation upon 

which to build and improve upon our understanding of agricultural pesticide exposure and HCC. 
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5.3 STRENGTHS AND LIMITATIONS 

The three studies of this dissertation offer many methodological strengths that both improve on 

previous studies and provide tools and evidence with which future research can be pursued. The 

strengths of the first study include presenting a novel GIS method to estimate pesticide exposure 

that is superior to the standard method in using temporally current remote sensing data sources. 

This work is built on a small body of previous research that pioneered the use of remote sensing 

in pesticide exposure estimation through using modern and improved image classification 

methods (maximum likelihood and per-field via segmentation) as compared to previously 

utilized methods (minimum distance classification). Ultimately, we sought to create a new and 

improved GIS-based pesticide exposure estimation method that would address a current 

limitation of the standard GIS pesticide exposure method in California - land use changes. The 

standard method relies on a crop field dataset (LUS’s) that can be up to 10 years removed from 

the year in which pesticide exposure is to be estimated. During this temporal gap, substantial 

land use changes can occur such as urbanization, crop field changes, etc. The fundamental issue 

underlying this limitation is that California pesticide data, available from 1974 until present day, 

is matched to crop fields from a LUS in a particular PLSS section that may no longer be present 

or have since changed. Therefore, the primary strength of this research is that it allows an 

investigator to estimate agricultural pesticide exposure using a GIS for any given time period 

without having to use outdated crop fields. Rather, Landsat remotely sensed satellite images can 

be classified into crop fields using images from the year in which pesticide exposure is to be 

estimated, which attempts to close the temporal gap between pesticide application data and crop 

field data. 
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Limitations of the first study include a hard classification method where only one crop 

type is assigned to each segment. This is problematic as some farmers practice intra-annual crop 

rotations, where crops can be rotated within a given year, while our method was better suited to 

capture annual crop rotations. However, our results demonstrated that even when we were unable 

to achieve tier 1 matches between pesticide data and Landsat crop fields, we were able to achieve 

tier 2 matches and classify truly agricultural crop fields into some type of agricultural land use. 

In other words, even if a direct pesticide application-to-crop field match could not be achieved 

(tier 1), tier 2 matches were achieved, which distributed pesticides to all other agricultural land 

uses as classified by Landsat images in a PLSS section (preferred over distributing to the entire 

section [tier 3 match]). Another limitation was the sole reliance on Normalized Difference 

Vegetation Index (NDVI) values to classify images into crop fields. Although we used a time 

series of NDVI images to help classify crops, crop misclassification was still manifest in the 

accuracy assessment, particularly among native vegetation, field, and idle crops. Crop 

misclassification has a direct impact on pesticide exposure estimation in terms of the 

aforementioned tiers 1 to 3 matches. For example, if tier 1 matches are not achieved when they 

should be since there truly were particular crop types in a PLSS section in 1985, pesticide 

exposure estimated using 500 m buffers around residential locations nearby to these crop fields 

will be over- or underestimated. 

Strengths of the second study include being the first study, to the best of our knowledge, 

to explore the accuracy of ecologic metrics estimating pesticide exposure. Particularly when 

examining spatial data that is inherently associated with some geographic location on Earth, 

issues will emerge regarding spatial scale discrepancies related to data availability and 

useful/relevant data. To address working with datasets of different spatial scales, the second 
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paper offers a framework that can be used to explore other environmental exposures available at 

various spatial scales: incorporate ancillary data to spatially weight one scale of data up to the 

other (i.e., spatial aggregation if source unit of data in its current form is smaller in size relative 

to the target unit at which data are available) and calculate statistics (e.g., weighted kappa) to 

compare to a finer scale (relative to the ecologic metric) gold standard. The greatest strength of 

this research was internal, where the results of this project directly informed the primary SEER-

Medicare study. In order to perform the data linkage that would allow for exploring the 

relationship between agricultural pesticide exposure and HCC using California PURs and SEER-

Medicare, respectively, a method in good agreement with a gold standard was desired to scale up 

PURs reported at the PLSS section level to the Medicare ZIP Code level. Thus, based on the 

results of the second study, area weighting was used to perform this data linkage. 

A limitation of the second study is exposure misclassification associated with using 

ecologic metrics. When the spatial scale of the data is being altered, whether via scaling up (as 

used in this study) or scaling down (e.g., areal interpolation to disaggregate data), the variable of 

interest will inevitably be altered. For example, in the case of the second study, area-weighted 

ZIP Code pesticide exposure tended to underestimate gold standard pesticide exposure. In 

applying area weighting, pounds of applied pesticides are essentially being distributed across an 

entire ZIP Code, which in rural areas, can span over hundreds of square miles. Therefore, the 

pesticide exposure assigned at the ZIP Code level may over- or underestimate an individual’s 

true pesticide exposure experience. However, as pesticide exposure was estimated using the 

same methods for both cases and controls in the third study, any bias would be nondifferential, 

potentially attenuating the true association between pesticides and HCC. 
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Strengths of the third study include its novelty in using GIS to study pesticides and HCC. 

GIS and the spatial sciences are a burgeoning scientific discipline with many tools and concepts 

that are relevant and useful in the context of conducting epidemiologic studies. In the case of this 

third study, GIS allowed for a novel data linkage between two large population-based data 

sources in the U.S. - California PURs and SEER-Medicare - using PLSS sections (geographic 

level of reporting of the PUR database) and Medicare ZIP Codes for study subjects. Therefore, 

GIS allowed the third study to explore whether or not agricultural pesticide exposure is 

associated with HCC in California. Another methodological strength was not relying on self-

reported pesticide exposure and occupation. All four previous U.S. studies examining this topic 

have relied on self-reported occupation reported on death certificates, medical records, and from 

the individual or next-of-kin. Self-reported measures are subject to recall bias, where exposure 

may be over- or underestimated. The third study was able to use the PUR database, the world’s 

most comprehensive pesticide reporting system, to identify specific chemicals applied on crops 

reported by California farmers and commercial pest control operators. Recall bias is minimized 

by using standardized pesticide reports submitted to the California government with information 

on specific chemicals dating back to 1974 to reconstruct historical exposure. One of the 

interesting results from the third study was the demonstration of a potential exposure lag, which 

is relevant to studying chronic diseases such as cancers. It is hypothesized that exposure lags of 

20 years or more may exist between initial exposure to various HCC risk factors and clinical 

diagnosis of HCC. Therefore, demonstration of statistically significant results when examining 

exposure lags of 10, 15, and 20 years both bolstered scientific evidence regarding the clinical 

progression of this disease and demonstrated the great utility of using the historical PUR dataset 

to reconstruct past pesticide exposure in order to examine a potential exposure lag. 
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A limitation of the third study was the use of Medicare claims to extract potential 

confounders. A motivating factor for using the SEER-Medicare dataset to conduct this study was 

access to information regarding chronic hepatitis C virus (HCV) and hepatitis B virus (HBV), 

which are established risk factors for HCC. It was hypothesized that negative confounding 

potentially existed, where failure to adjust for viral hepatitis would underestimate the true effect 

of pesticide exposure on HCC. This is due to how HCV and HBV are hypothesized to be largely 

urban phenomena by virtue of their predominant routes of transmission via intravenous drug use 

and illicit sexual behavior, and agricultural pesticide use is a rural phenomenon. However, an 

inherit limitation of using administrative data for comorbidities is the lack of sensitivity for 

particular health conditions and also how our study was limited to examining claims data 

beginning at Medicare entitlement typically at the age of 65 years. Therefore, usage of Medicare 

claims may be associated with residual confounding as all individuals with viral hepatitis were 

not captured in the SEER-Medicare study population. 

The primary limitation of the third study was exposure misclassification due to using ZIP 

Codes to estimate pesticide exposure. ZIP Codes are often large features created for the purposes 

of mail delivery. Pesticide exposure estimated in urban areas was potentially in better agreement 

with what that particular urban individual experienced (urban ZIP Codes are typically small in 

size). However, rural ZIP Codes can be quite large in size (hundreds of square miles) and rural 

areas were of interest to the study as the independent variable of interest, pesticide exposure, 

predominantly occurs in these areas. Ultimately, given the SEER-Medicare data source, we 

cannot pinpoint where each study subject resided within a ZIP Code. Furthermore, usage of ZIP 

Codes likely under- or overestimated pesticide exposure compared to what would be estimated 

had we had access to finer scale geographic data that is used in practice to capture agricultural 
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pesticide exposure occurring via residential proximity to pesticide applications (geocoded 

residential locations). However, as previously mentioned in the context of the second study, as 

ZIP Codes were used in the same way to estimate pesticide exposure for each case and control, 

any bias would be nondifferential and attenuate study results. Furthermore, observing that the 

majority of cases and controls had one to two Medicare ZIP Codes ever and minimal rural-to-

urban or urban-to-rural ZIP Code changes over a person’s Medicare-captured lifetime lends 

confidence to the methods of the third study capturing, as best as possible, the pesticide exposure 

experience of these study subjects given their Medicare ZIP Code data. 

5.4 FUTURE RESEARCH AND CONCLUSIONS 

In order to expand the bounds of using GIS in epidemiology, spatial tools and concepts can be 

directly applied in epidemiologic studies to not only improve the methods used to estimate an 

environmental exposure of interest, for example, but to help link multiple data sources in order to 

address timely and salient public health issues. The studies comprising this dissertation 

demonstrate how incorporation of geospatial techniques can improve how we measure 

environmental determinants of health by addressing some concepts fundamental to epidemiology 

and studying chronic diseases - latency periods, specificity of measured chemicals, and ambient 

exposure. 

 The centerpiece of this dissertation is the SEER-Medicare epidemiologic case-control 

study examining the association between agricultural pesticides and HCC. This study now 

represents the 18th epidemiologic study conducted researching this topic and provided evidence 

of a statistically significant positive association between HCC and organochlorine pesticides, a 
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chemical class comprising pesticides previously associated with HCC in other literature, 

including DDT. This study is associated with many methodological advantages compared to the 

four previously conducted U.S.-based case-control studies (only one of which reported a 

statistically significant positive association), including information on potential confounders and 

non-reliance on self-report for pesticide exposure. Therefore, overall, this study makes a 

significant contribution to a modestly sized body of epidemiologic literature investigating 

pesticides and HCC and provides evidence that warrants future research to further clarify their 

association. Identifying and understanding risk factors for HCC, particularly in the U.S., is a 

significant public health issue as this disease is predicted to continue increasing in incidence and 

remains associated with a low five-year relative survival rate. 

The results of this dissertation provide many future research opportunities. Regarding the 

first study, additional ancillary information, e.g., elevation, along with an improved classification 

approach, e.g., Classification and Regression Tree (CART), would improve the Landsat image 

classification method. This would allow for an enhanced ability to better distinguish between 

crop types within PLSS sections and thus match to more PUR pesticide applications to improve 

pesticide exposure estimation for use in epidemiologic studies. Regarding the second study, a 

validity study could be conducted to determine the extent to which measures of association from 

an epidemiologic study are impacted when using a ZIP Code pesticide exposure metric vs. a 

more large scale metric (e.g., geocoded residences). Regarding the third study, a future study 

investigating the link between pesticides and HCC in the U.S. population where pesticide 

exposure is estimated using biological samples (e.g., serum), considered the gold standard 

method of addressing human pesticide exposure from all routes, and non-administrative data are 
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used to collect comorbidity information would be valuable in helping to elucidate their potential 

association. 

 In conclusion, these three studies demonstrate the integration of GIS in public health 

research, specifically in epidemiology and environmental exposure assessment. GIS, which 

allows for the application of methods to study spatial phenomena, allowed for the successful 

execution of a case-control study examining the role of (geographically reported) pesticides as a 

risk factor for HCC. Most notably, the third and primary study of this dissertation demonstrated 

the use of GIS to perform a novel data linkage between two population-based data sources, 

California PURs and SEER-Medicare data, to conduct an epidemiologic study using Medicare 

ZIP Codes. As the first epidemiologic study conducted in the U.S. population demonstrating a 

statistically significant positive association between pesticide exposure (not based on self-report) 

and HCC after adjusting for potential confounders, future research should explore using an 

improved pesticide exposure metric and a more sensitive and specific comorbidity data source to 

further characterize the role of pesticides as a risk factor for HCC - a disease that continues to 

impact numerous individuals in the U.S. and around the world. 
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APPENDIX A: LANDSAT IMAGES USED FOR NDVI SIGNATURES AND 

CLASSIFICATION 

Table 24. Landsat Images Classified for Inclusion in the 1990 NDVI Signatures Extent 

Month 

Path 41a Path 42a 
Row 35 Row 36 Row 35 Row 36 

Acquisition date 
(% cloud cover) 

Acquisition date 
(% cloud cover) 

Acquisition date 
(% cloud cover) 

Acquisition date 
(% cloud cover) 

January 1/22/1990 (10) 1/22/1990 (0) 1/29/1990 (0) 1/29/1990 (0) 
February 2/15/1990 (0) 2/15/1990 (0) 2/14/1990 (0) 2/14/1990 (0) 
March 3/27/1990 (10) Excludedb 3/18/1990 (0) 3/18/1990 (10) 
April 4/28/1990 (40) 4/28/1990 (20) 4/3/1990 (0) 4/3/1990 (40) 
May 5/30/1990 (10) 5/30/1990 (10) 5/5/1990 (0) 5/5/1990 (10) 
June Excludedb Excludedb 6/6/1990 (0) 6/6/1990 (10) 
July None available None available 7/8/1990 (0) 7/8/1990 (50) 
August 8/18/1990 (10) 8/18/1990 (10) 8/25/1990 (0) 8/25/1990 (0) 
September 9/3/1990 (0) 9/3/1990 (0) 9/10/1990 (0) 9/10/1990 (20) 
October 10/5/1990 (0) 10/5/1990 (0) 10/12/1990 (0) 10/28/1990 (0) 

 
a These Landsat images were processed for inclusion in the 1990 NDVI signatures extent used as training and  
classification data for the accuracy assessment and as training data for the classification of 1985 Landsat images. All 
images were captured using the Landsat 4 or 5 Thematic Mapper sensor. 

 b Images were excluded due to excessive cloud cover. 
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Table 25. Landsat Images Classified for Inclusion in the 1985 Imagery Extent 

Month 

Path 41a Path 42a 
Row 35 Row 36 Row 35 Row 36 

Acquisition date 
(% cloud cover) 

Acquisition date 
(% cloud cover) 

Acquisition date 
(% cloud cover) 

Acquisition date 
(% cloud cover) 

January Excludedb Excludedb 1/31/1985 (20) 1/31/1985 (0) 
February 2/25/1985 (10) 2/25/1985 (10) None available None available 
March Excludedb Excludedb 3/20/1985 (0) 3/20/1985 (0) 
April 4/14/1985 (10) 4/14/1985 (10) 4/5/1985 (0) 4/5/1985 (50) 
May 5/16/1985 (10) 5/16/1985 (10) 5/23/1985 (0) 5/23/1985 (20) 
June 6/1/1985 (10) 6/17/1985 (1) 6/8/1985 (0) 6/8/1985 (18) 
July 7/3/1985 (0) 7/3/1985 (0) 7/26/1985 (1) None available 
August None available 8/20/1985 (10) 8/11/1985 (0) 8/11/1985 (50) 
September 9/21/1985 (0) 9/21/1985 (0) 9/12/1985 (1) 9/12/1985 (0) 
October Excludedb Excludedb 10/14/1985 (0) 10/14/1985 (0) 

 
a These Landsat images were processed for inclusion in the 1985 imagery extent to estimate agricultural pesticide 
exposure In 1985. All images were captured using the Landsat 5 Thematic Mapper sensor. 

 b Images were excluded due to excessive cloud cover. 
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APPENDIX B: LANDSAT AND LAND USE SURVEY (LUS) THREE-TIER PESTICIDE 

APPLICATION MATCHING METHODOLOGY 

 

Figure 15. Combined Landsat and LUS Pesticide-to-Crop Matching Three-Tier Method Considering 

Temporary and Permanent Crops 
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APPENDIX C: SUPPLEMENTAL ANALYSIS: HEPATITIS TESTING IN THE SEER-

MEDICARE POPULATION 

C.1 INTRODUCTION 

 

It is expected that a high proportion of hepatocellular carcinoma (HCC) cases in our study tested 

for hepatitis. However, it was important to explore the proportion of controls that tested for 

hepatitis. Both chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection were 

assessed as confounders in our statistical analyses. Estimating the proportion of controls testing 

for these health conditions would give us an idea of potential undiagnosed hepatitis among 

controls. Furthermore, some controls might have been cases had they been tested for hepatitis 

and underwent further clinical inspection. We also wanted to assess the extent to which there 

might be a self-selection bias in our study, where selection into our study could depend on 

pesticide exposure. Individuals living near pesticide-exposed areas might be concerned about 

their health and ask their doctor to be tested for hepatitis, which would prompt further 

investigation and uncover HCC. 
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C.2 METHODS 

 

We examined Healthcare Common Procedure Coding System (HCPCS) codes, also known as 

Current Procedural Terminology (CPT)-4 codes, using Medicare claims of all cases and controls. 

HCPCS codes are a proprietary standardized numeric coding system maintained by the American 

Medical Association (AMA) used by healthcare professionals to bill for their services. We 

extracted the HCPCS codes in Table 26 from Medicare outpatient and carrier claims. The 

inpatient file only included major surgical procedure codes and was thus excluded from this 

analysis. HCPCS codes ending in ‘F’ are Category II codes, or used for performance 

measurement such as patient history. None of these Category II codes were found in the 

Medicare claims included in our analyses. Pesticide exposure is defined as ZIP Code pesticide 

application rates from all pesticide chemical classes included in the study (organophosphates, 

organochlorines, and carbamates) using available Medicare ZIP Codes from 1974 up until the 

year before selection for controls. The earliest available ZIP Code was carried back to 1974. 

Pesticide application rates were categorized using tertiles among controls. 

 

 

C.3 RESULTS 

 

As expected, a higher proportion of cases compared to controls tested for HBV and/or HCV 

before diagnosis. This is observed when examining the full study sample (Table 27) and the rural 

study sample (Table 28). High pesticide exposure was associated with not testing for hepatitis 

among all controls, while among rural controls, pesticide exposure was slightly higher among 
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those testing for hepatitis (Table 29). Table 30 shows the distribution of age, year of selection, 

sex, race, and California residence with respect to hepatitis testing among all controls and rural 

controls. Among all controls, whites are less likely to test for hepatitis, while Asians are more 

likely to test. These relationships are slightly diminished when examining rural controls. Among 

rural residents who did not test for hepatitis at least one year before diagnosis/selection, a higher 

proportion of cases were exposed to the high pesticide tertile compared to controls (Table 31). 

 

 

C.4 DISCUSSION 

 

As 1% of the elderly U.S. population is estimated to have chronic HCV infection (233) and <2% 

have chronic HBV infection (234), a relatively high proportion of controls were tested for 

hepatitis. This lends confidence to Medicare claims being able to capture the controls truly 

having hepatitis, and also to the unlikelihood of cases potentially misclassified as controls. 

However, it cannot be ruled out that while a high proportion of individuals were tested for 

hepatitis, those who truly have hepatitis were not well captured among this tested population. 

The high proportion of controls testing for hepatitis may reflect recommended HCV testing 

among high risk populations (e.g., intravenous drug users). The latest a case/control was born in 

our study was 1943, so there were no “Baby Boomers” included. 

The relationship between hepatitis testing and pesticide exposure might also explain the 

null effects in the primary analysis. Cases were more frequently tested for hepatitis compared to 

controls. Not testing for hepatitis was associated with higher pesticide exposure. This may reflect 

how those not testing for hepatitis reside in rural areas with less access to healthcare compared to 
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their urban counterparts. Their rural residence explains their higher pesticide exposure. As not 

testing for hepatitis was more common among controls, this selection bias may have manifested 

itself as an artificially inflated pesticide exposure among controls, biasing results towards the 

null hypothesis.   

Due to increased awareness and enhanced medical surveillance, preferential disease 

detection in pesticide-exposed individuals might create a non-causal, artificial association 

between pesticide exposure and HCC. Table 29 shows a two-fold greater prevalence of hepatitis 

testing (≥1 year before selection) among rural controls in high vs. low pesticide tertiles (32/565 

vs. 15/564). Therefore, among rural residents, a medical detection bias might have explained 

some or all of the association observed between pesticides and HCC in our study. However, after 

exploring the relationship between pesticides and HCC among rural residents who did not test 

for hepatitis, cases are still more likely than controls to have been exposed to the high vs. low 

pesticide tertile (91/565 vs. 88/564) (Table 31). 
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C.5 TABLES 

 

Table 26. Healthcare Common Procedure Coding System (HCPCS) Codes for Hepatitis C and B Virus 

Testing 

HCPCS code Description 
80074 Acute hepatitis panel This panel must include the following: Hepatitis A antibody 

(HAAb), IgM antibody (86709) Hepatitis B core antibody (HBcAb), IgM antibody 
(86705) Hepatitis B surface antigen (HBsAg) (87340) Hepatitis C antibody (86803) 

86704 Hepatitis B core antibody (HBcAb); total 
86705 Hepatitis B core antibody (HBcAb); IgM antibody 
86706 Hepatitis B surface antibody (HBsAb) 
86707 Hepatitis Be antibody (HBeAb) 
86803 Hepatitis C antibody 
86804 Hepatitis C antibody confirmatory test (e.g., immunoblot or RIBA) 
87340 Infectious agent antigen detection by enzyme immunoassay technique, qualitative or 

semiquantitative, multiple step method; hepatitis B surface antigen (HBsAg) 
87341 Infectious agent antigen detection by enzyme immunoassay technique, qualitative or 

semiquantitative, multiple step method; hepatitis B surface antigen (HBsAg) neutralization 
87350 Infectious agent antigen detection by enzyme immunoassay technique, qualitative or 

semiquantitative, multiple step method; hepatitis Be antigen (HBeAg) 
87515 HepB antigen 
87516 HepB antigen 
87517 HepB antigen 
87520 Hepatitis C antigen, direct probe technique 
87521 Hepatitis C antigen, amplified probe technique 
87522 Hepatitis C antigen, quantification 
87902 Infectious agent genotype analysis by nucleic acid (DNA or RNA); Hepatitis C virus 
87912 Infectious agent genotype analysis by nucleic acid (DNA or RNA); Hepatitis B virus 
3217F RNA testing for Hepatitis C viremia ordered at initial evaluationor previously performed 

(HEP-C), code deleted 1/1/2009 
3218F RNA testing for Hepatitis C documented as performed within 6 months prior to initiation 

of antiviral treatment for Hepatitis C (HEP-C) 
3219F Hepatitis C genotype testing documented as performed prior toinitiation of antiviral 

treatment for Hepatitis C (HEP-C), deleted on 1/1/2009 
3220F Hepatitis C quantitative RNA testing documented as performed at 12 weeks from initiation 

of antiviral treatment (HEP-C) 
3265F Ribonucleic acid (RNA) testing for Hepatitis C viremia ordered or results documented 

(HEP C) 
3266F Hepatitis C genotype testing documented as performed prior to initiation of antiviral 

treatment for Hepatitis C (HEP C) 
3513F Hepatitis B screening documented as performed (HIV) 
3514F Hepatitis C screening documented as performed (HIV) 
4150F Patient receiving antiviral treatment for Hepatitis C (HEP-C) 
4151F Patient not receiving antiviral treatment for Hepatitis C (HEP-C) 
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Table 27. Hepatitis B and C Testing Among Cases and Controls (Full Study Sample) 

 Cases (n=3,034) 
n (%) 

Controls (n=14,991) 
n (%) 

Hepatitis testing any time 
before diagnosis/selection 

  

Yes 1,275 (42.0) 1,947 (13.0) 
No 1,759 (58.0) 13,044 (87.0) 

Hepatitis testing ≥1 year 
before diagnosis/selection 

  

Yes 863 (28.4) 1,586 (10.6) 
No 2,171 (71.6) 13,405 (89.4) 

 

 

Table 28. Hepatitis B and C Testing Among Cases and Controls (Rural Study Sample) 

 Cases (n=306) 
n (%) 

Controls (n=1,758) 
n (%) 

Hepatitis testing any time 
before diagnosis/selection 

  

Yes 99 (32.4) 93 (5.3) 
No 207 (67.6) 1,665 (94.7) 

Hepatitis testing ≥1 year 
before diagnosis/selection 

  

Yes 53 (17.3) 71 (4.0) 
No 253 (82.7) 1,687 (96.0) 

 

 

Table 29. Pesticide Exposure and Hepatitis Testing: Full and Rural Controls 

 All controls: pesticide exposure, 
n (%)a 

 Rural controls: pesticide exposure,  
n (%)a 

 Low 
exposure 

Moderate 
exposure 

High 
exposure 

 Low 
exposure 

Moderate 
exposure 

High 
exposure 

 ≤0.001 lb/ac 0.001-0.02 
lb/ac ≥0.02 lb/ac  ≤0.48 

lb/ac 
0.48-0.92 

lb/ac ≥0.92 lb/ac 

Hepatitis testing 
any time before 
selection 

       

Yes 779 (40.0) 731 (37.5) 437 (22.4)  18 (19.4) 33 (35.5) 42 (45.2) 
No 4,170 (32.0) 4,213 (32.3) 4,661 (35.7)  561 (33.7) 549 (33.0) 555 (33.3) 

Hepatitis testing 
≥1 year before 
selection 

       

Yes 648 (40.9) 586 (37.0) 352 (22.2)  15 (21.1) 24 (33.8) 32 (45.1) 
No 4,301 (32.1) 4,358 (32.5) 4,746 (35.4)  564 (33.4) 558 (33.1) 565 (33.5) 

 
Abbreviations: ac, acre; lb, pound. 
a Pesticide exposure, calculated as ZIP Code pesticide application rates using organophosphates, organochlorines, 
and carbamates from 1974 until the year before selection, were categorized according to tertiles among controls. 
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Table 30. Characteristics of Controls Testing for Hepatitis 

 All controls  Rural controls 
 Hepatitis testing 

any time before 
selection 

Hepatitis testing 
≥1 year before 

selection 

 Hepatitis testing 
any time before 

selection 

Hepatitis testing 
≥1 year before 

selection 
 Yes  

n (%) 
No 

n (%) 
Yes  

n (%) 
No 

n (%) 
 Yes  

n (%) 
No 

n (%) 
Yes  

n (%) 
No 

n (%) 
Age at selection, 
mean (SD) 

75.7 
(5.8) 

75.0 
(6.3) 

75.9 
(5.7) 

75.0 
(6.3) 

 75.2 
(6.0) 

74.5 
(6.2) 

74.8 
(6.0) 

74.5 
(6.2) 

Year of selectiona          
2000-2002 263 

(13.5) 
3,444 
(26.4) 

172 
(10.8) 

3,535 
(26.4) 

 <11 446 
(26.8) 

<11 448 
(26.6) 

2003-2005 485 
(24.9) 

3,868 
(29.7) 

374 
(23.6) 

3,979 
(29.7) 

 19 
(20.4) 

509 
(30.6) 

13 
(18.3) 

515 
(30.5) 

2006-2009 1,199 
(61.6) 

5,732 
(43.9) 

1,040 
(65.6) 

5,891 
(44.0) 

 66 
(71.0) 

710 
(42.6) 

52 
(73.2) 

724 
(42.9) 

Sex          
Male 1,219 

(62.6) 
8,250 
(63.3) 

982 
(61.9) 

8,487 
(63.3) 

 53 
(57.0) 

1,115 
(67.0) 

43 
(60.6) 

1,125 
(66.7) 

Female 728 
(37.4) 

4,794 
(36.8) 

604 
(38.1) 

4,918 
(36.7) 

 40 
(43.0) 

550 
(33.0) 

28 
(39.4) 

562 
(33.3) 

Racea          
White 491 

(25.2) 
7248 
(55.6) 

401 
(25.3) 

7,338 
(54.7) 

 52 
(55.9) 

1,057 
(63.5) 

40 
(56.3) 

1,069 
(63.4) 

Black 86 
(4.4) 

657 
(5.0) 

64 
(4.0) 

679 
(5.1) 

 <11 54 
(3.2) 

<11 55 
(3.3) 

Other 168 
(8.6) 

1,098 
(8.4) 

141 
(8.9) 

1,125 
(8.4) 

 <11 115 
(6.9) 

<11 116 
(6.9) 

Asian 1,027 
(52.8) 

2,897 
(22.2) 

835 
(52.7) 

3,089 
(23.0) 

 <11 146 
(8.8) 

<11 148 
(8.8) 

Hispanic 174 
(8.9) 

1,078 
(8.3) 

144 
(9.1) 

1,108 
(8.3) 

 22 
(23.7) 

279 
(16.8) 

16 
(22.5) 

285 
(16.9) 

Native American <11 66 (0.5) <11) 66 (0.5)  <11 14 (0.8) <11 14 (0.8) 
California residencea          

1-5 years 416 
(21.4) 

3,729 
(28.6) 

288 
(18.2) 

3,857 
(28.8) 

 <11 433 
(26.0) 

<11 435 
(25.8) 

6-10 years 739 
(38.0) 

4,568 
(35.0) 

609 
(38.4) 

4,698 
(35.1) 

 34 
(36.6) 

555 
(33.3) 

29 
(40.9) 

560 
(33.2) 

≥11 years 792 
(40.7) 

4,747 
(36.4) 

689 
(43.4) 

4,850 
(36.2) 

 52 
(55.9) 

677 
(40.7) 

37 
(52.1) 

692 
(41.0) 

 

a In accordance with the SEER-Medicare data use agreement, cell sizes <11 have been suppressed. 
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Table 31. Pesticide Exposure and Hepatocellular Carcinoma Among Rural Residents Not Testing for 

Hepatitis 

 Cases (n=253)a 
n (%) 

Controls (n=1,687)a 
n (%) 

Pesticide exposureb   
Low: ≤0.48 lb/ac 88 (34.8) 564 (33.4) 

Moderate: 0.48-0.92 lb/ac 74 (29.3) 558 (33.1) 
High: ≥0.92 lb/ac 91 (36.0) 565 (33.5) 

 

 a Only considered rural residents who did not test for hepatitis at least one year before diagnosis/selection. 
 b Pesticide exposure, calculated as ZIP Code pesticide application rates using organophosphates,  
 organochlorines, and carbamates from 1974 until the year before selection, were categorized according to  
 tertiles among rural controls. 
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APPENDIX D: GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION (GWLR): 

ORGANOCHLORINE PESTICIDE EXPOSURE AND HEPATOCELLULAR 

CARCINOMA RISK AMONG RURAL CALIFORNIA RESIDENTS 

D.1 INTRODUCTION 

 

Geographically weighted regression (GWR) is an exploratory spatial method that allows some or 

all of the estimates from the independent variables in a regression model to vary across space 

(235). We specifically used geographically weighted logistic regression (GWLR) for a binary 

outcome to visualize the risk of hepatocellular carcinoma (HCC) conferred by organochlorine 

pesticide exposure across rural California. 

 

 

D.2 METHODS 

 

Rural residents from the SEER-Medicare case-control study in Section 4 were analyzed (n=306 

cases and n=1,768 controls). Organochlorine pesticide exposure was defined as an annual ZIP 

Code pesticide application rate (lb/ac) calculated using Medicare ZIP Codes. Pesticide Use 

Report (PUR) applied pounds were matched to PLSS sections and divided by section acreage to 

calculate rates. PLSS section rates were aggregated up to the ZIP Code level using area 
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weighting (Section 4). For each study subject, using available California ZIP Codes from 1991 

up until the year before diagnosis/selection and carrying back the earliest available ZIP Code to 

1974, ZIP Code rates were summed and divided by the number of years of California residence. 

Each case and control was assigned to the centroid of the ZIP Code that they resided in the 

majority of the time. Note that multiple cases and controls could have been assigned to the same 

centroid. These centroids associated with cases and controls are referred to as data or sample 

points, which were used to estimate each regression model.  

 Regression points (n=1,020) were created within the 220 rural ZIP Codes in which the 

cases and controls resided. At least five points ≥1,000 m apart within each rural ZIP Code were 

randomly generated. At each regression point, a logistic regression model was fit using the data 

points within a kernel centered on that regression point. The kernel is adaptive, varying in size so 

that the number of data points within each kernel (i.e., bandwidth) used to estimate each logistic 

regression model remained constant. The adaptive kernel is recommended for data points not 

distributed evenly across space. The GWR4 program selected the optimal bandwidth of 776. In 

other words, 776 cases and controls (some associated with the same ZIP Code centroid) falling 

within a kernel centered on each regression point were used to estimate a logistic regression 

model at each regression point. A Gaussian weighting scheme was selected, where data points 

farther in distance from a given regression point were weighted less when estimating that 

particular logistic regression model. The Gaussian weight decreases continuously and gradually 

as one moves away from the regression point. Variables in each logistic regression model 

examining the dependent variable of hepatocellular carcinoma (yes/no) included: categorical 

annual ZIP Code organochlorine pesticide exposure (exposed if ≥0.06 lb/ac [median among rural 

controls]), liver disease, diabetes, and the five matching factors (year, age, sex, race, and years of 
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California residence). All predictors were allowed to vary geographically. Adjusted odds ratio 

(ORs) for organochlorine pesticide exposure estimated at each regression point were subject to 

inverse distance-weighted (IDW) interpolation to create a smooth, continuous raster surface of 

adjusted ORs (12 nearest neighbors used to calculate OR at each unmeasured location; masked 

using rural ZIP Codes). All spatial analyses were conducted using ArcGIS and GWR4 (212, 

236). 

 

 

D.3 RESULTS 

 

Figure 16 shows interpolated adjusted odds ratios for hepatocellular carcinoma conferred by 

previous annual ZIP Code organochlorine pesticide exposure to ≥0.06 lb/ac. This maps provides 

visual evidence of HCC risk potentially varying across rural ZIP Codes in California. Some areas 

within Contra Costa, Imperial, Riverside, Sacramento, San Joaquin, Solano, and Yolo Counties 

were associated with null to borderline null effects (adjusted ORs close to 1). The highest 

adjusted ORs were observed in the agriculturally intensive Central Valley region, including 

Fresno and Kern Counties. Geographic variation in risk may be attributed to varying pesticide 

application practices, differences in predominant crop types, agricultural occupation, and/or 

sample size. 
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D.4 DISCUSSION 

 

GWLR is a useful exploratory spatial method allowing for the visualization of spatial data to 

describe spatial patterns of disease. We observed some visual evidence of varying HCC risk 

conferred by organochlorine pesticide exposure. However, an improved approach would be to 

use point data, for example, geocoded residential locations, which would provide a more 

accurate depiction of potentially geographically varying individual-level HCC risk. Usage of ZIP 

Code centroids is problematic as cases and controls may not reside at these particular locations, 

let alone be exposed according to the levels measured at the ZIP code level. Furthermore, GWLR 

allows for a preliminary visualization of the data. Sophisticated spatial methods, such as spatial 

generalized linear mixed modeling, should be used to explore this topic further. 
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D.5 FIGURES 

 

 

Figure 16. Geographically Weighted Logistic Regression (GWLR): Adjusted Odds Ratios for Hepatocellular 

Carcinoma Conferred by Organochlorine Pesticide Exposure Among Rural California Residents Using 

SEER-Medicare, 2000-2009 

186 



 

BIBLIOGRAPHY 

1. McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: 
present and future. Clinics in liver disease 2011;15(2):223-43, vii-x. 

2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA: a cancer journal for 
clinicians 2011;61(2):69-90. 

3. Carr BI. Hepatocellular Carcinoma: Diagnosis and Treatment. 2nd ed. Philadelphia, PA: 
Humana Press; 2010. 

4. Ferlay J SH, Bray F, Forman D, Mathers C and Parkin DM. GLOBOCAN 2008 v2.0, 
Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 Lyon, France: 
International Agency for Research on Cancer; 2010. Accessed March 14 2013. 

5. Chen JG, Egner PA, Ng D, et al. Reduced aflatoxin exposure presages decline in liver 
cancer mortality in an endemic region of China. Cancer prevention research 
2013;6(10):1038-45. 

6. El-Serag HB. Epidemiology of hepatocellular carcinoma in USA. Hepatology research : 
the official journal of the Japan Society of Hepatology 2007;37 Suppl 2:S88-94. 

7. National Cancer Institute. Cancer Trends Progress Report: 2011/2012 Update. 2012. 
(http://progressreport.cancer.gov/doc_detail.asp?pid=1&did=2009&chid=93&coid=920&
mid#changing). Accessed January 1, 2013. 

8. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, 
mortality, and survival trends in the United States from 1975 to 2005. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 
2009;27(9):1485-91. 

9. Bolstad P. GIS Fundamentals: A First Text on Geographic Information Systems. 3rd ed. 
White Bear Lake, MN: Eider Press; 2008. 

10. Tong S. Hepatitis B virus, a sex hormone-responsive virus. Gastroenterology 
2012;142(4):696-9. 

11. Centers for Disease Control and Prevention. Hepatocellular Carcinoma --- United States, 
2001--2006. 2010. (http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5917a3.htm). 
Accessed January 1, 2013. 

12. National Cancer Institute (NCI). SEER Stat Fact Sheets: Liver and Intrahepatic Bile Duct 
Cancer. (http://seer.cancer.gov/statfacts/html/livibd.html). Accessed October 1, 2014. 

13. Alter MJ. Prevention of spread of hepatitis C. Hepatology 2002;36(5 Suppl 1):S93-8. 
14. Alter MJ, Kruszon-Moran D, Nainan OV, et al. The prevalence of hepatitis C virus 

infection in the United States, 1988 through 1994. The New England journal of medicine 
1999;341(8):556-62. 

187 

http://progressreport.cancer.gov/doc_detail.asp?pid=1&did=2009&chid=93&coid=920&mid%23changing)
http://progressreport.cancer.gov/doc_detail.asp?pid=1&did=2009&chid=93&coid=920&mid%23changing)
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5917a3.htm)
http://seer.cancer.gov/statfacts/html/livibd.html)


 

15. Welzel TM, Graubard BI, Quraishi S, et al. Population-Attributable Fractions of Risk 
Factors for Hepatocellular Carcinoma in the United States. The American journal of 
gastroenterology 2013. 

16. Ng J, Wu J. Hepatitis B- and hepatitis C-related hepatocellular carcinomas in the United 
States: similarities and differences. Hepatitis monthly 2012;12(10 HCC):e7635. 

17. McGlynn KA, Quraishi, S., Welzel, T.A., Davila, J.A., El-Serag, H.B., Graubard, B.I. 
Attributable Risks for Hepatocellular Carcinoma in the United States. American 
Association for Cancer Research. Philadelphia, PA, 2010. 

18. Parkin DM. The global health burden of infection-associated cancers in the year 2002. 
International journal of cancer Journal international du cancer 2006;118(12):3030-44. 

19. Yu MC, Yuan JM. Environmental factors and risk for hepatocellular carcinoma. 
Gastroenterology 2004;127(5 Suppl 1):S72-8. 

20. El-Serag HB. Hepatocellular carcinoma. The New England journal of medicine 
2011;365(12):1118-27. 

21. Gomaa AI, Khan SA, Toledano MB, et al. Hepatocellular carcinoma: epidemiology, risk 
factors and pathogenesis. World journal of gastroenterology : WJG 2008;14(27):4300-8. 

22. Environmental Protection Agency. Pesticides. 2012. (http://www.epa.gov/pesticides/). 
Accessed January 1, 2013. 

23. Alavanja MC, Hoppin JA, Kamel F. Health effects of chronic pesticide exposure: cancer 
and neurotoxicity. Annual review of public health 2004;25:155-97. 

24. Rull RP, Ritz B. Historical pesticide exposure in California using pesticide use reports 
and land-use surveys: an assessment of misclassification error and bias. Environmental 
health perspectives 2003;111(13):1582-9. 

25. Franklin C, Worgan, John Occupational and Residential Exposure Assessment for 
Pesticides. Hoboken, NJ: Wiley; 2005. 

26. Centers for Disease Control and Prevention. Fourth National Report on Human Exposure 
to Environmental Chemicals. 2009. 
(http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf). Accessed January 1, 2013. 

27. Dich J, Zahm SH, Hanberg A, et al. Pesticides and cancer. Cancer causes & control : 
CCC 1997;8(3):420-43. 

28. Rossi L, Barbieri O, Sanguineti M, et al. Carcinogenicity study with technical-grade 
dichlorodiphenyltrichloroethane and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene in 
hamsters. Cancer research 1983;43(2):776-81. 

29. Turusov VS, Day NE, Tomatis L, et al. Tumors in CF-1 mice exposed for six consecutive 
generations to DDT. Journal of the National Cancer Institute 1973;51(3):983-97. 

30. Figa-Talamanca I, Mearelli I, Valente P. Mortality in a cohort of pesticide applicators in 
an urban setting. International journal of epidemiology 1993;22(4):674-6. 

31. Giordano F, Dell'Orco V, Giannandrea F, et al. Mortality in a cohort of pesticide 
applicators in an urban setting: sixty years of follow-up. International journal of 
immunopathology and pharmacology 2006;19(4 Suppl):61-5. 

32. Cocco P, Kazerouni N, Zahm SH. Cancer mortality and environmental exposure to DDE 
in the United States. Environmental health perspectives 2000;108(1):1-4. 

33. Brown DP. Mortality of workers employed at organochlorine pesticide manufacturing 
plants--an update. Scandinavian journal of work, environment & health 1992;18(3):155-
61. 

188 

http://www.epa.gov/pesticides/)
http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf)


 

34. el-Zayadi AR, Badran HM, Barakat EM, et al. Hepatocellular carcinoma in Egypt: a 
single center study over a decade. World journal of gastroenterology : WJG 
2005;11(33):5193-8. 

35. Shibata A, Fukuda K, Toshima H, et al. The role of cigarette smoking and drinking in the 
development of liver cancer: 28 years of observations on male cohort members in a 
farming and fishing area. Cancer detection and prevention 1990;14(6):617-23. 

36. Wang Y, Lewis-Michl EL, Hwang SA, et al. Cancer incidence among a cohort of female 
farm residents in New York State. Archives of environmental health 2002;57(6):561-7. 

37. Cocco P, Blair A, Congia P, et al. Long-term health effects of the occupational exposure 
to DDT. A preliminary report. Annals of the New York Academy of Sciences 
1997;837:246-56. 

38. Cocco P, Fadda D, Billai B, et al. Cancer mortality among men occupationally exposed to 
dichlorodiphenyltrichloroethane. Cancer research 2005;65(20):9588-94. 

39. Ferrand JF, Cenee S, Laurent-Puig P, et al. Hepatocellular carcinoma and occupation in 
men: a case-control study. Journal of occupational and environmental medicine / 
American College of Occupational and Environmental Medicine 2008;50(2):212-20. 

40. Reif J, Pearce N, Fraser J. Cancer risks in New Zealand farmers. International journal of 
epidemiology 1989;18(4):768-74. 

41. Kato I, Tominaga S, Ikari A. An epidemiological study on occupation and cancer risk. 
Japanese journal of clinical oncology 1990;20(2):121-7. 

42. Keller JE, Howe HL. Case-control studies of cancer in Illinois farmers using data from 
the Illinois State Cancer Registry and the U.S. Census of Agriculture. Eur J Cancer 
1994;30A(4):469-73. 

43. Andersen A, Barlow L, Engeland A, et al. Work-related cancer in the Nordic countries. 
Scandinavian journal of work, environment & health 1999;25 Suppl 2:1-116. 

44. Dossing M, Petersen KT, Vyberg M, et al. Liver cancer among employees in Denmark. 
American journal of industrial medicine 1997;32(3):248-54. 

45. Kristensen P, Andersen A, Irgens LM, et al. Incidence and risk factors of cancer among 
men and women in Norwegian agriculture. Scandinavian journal of work, environment & 
health 1996;22(1):14-26. 

46. Laakkonen A, Pukkala E. Cancer incidence among Finnish farmers, 1995-2005. 
Scandinavian journal of work, environment & health 2008;34(1):73-9. 

47. Olsen JH, Jensen OM. Occupation and risk of cancer in Denmark. An analysis of 93,810 
cancer cases, 1970-1979. Scandinavian journal of work, environment & health 1987;13 
Suppl 1:1-91. 

48. Pukkala E, Martinsen JI, Lynge E, et al. Occupation and cancer - follow-up of 15 million 
people in five Nordic countries. Acta Oncol 2009;48(5):646-790. 

49. Ronco G, Costa G, Lynge E. Cancer risk among Danish and Italian farmers. British 
journal of industrial medicine 1992;49(4):220-5. 

50. Wiklund K. Swedish agricultural workers. A group with a decreased risk of cancer. 
Cancer 1983;51(3):566-8. 

51. Wiklund K, Dich J. Cancer risks among female farmers in Sweden. Cancer causes & 
control : CCC 1994;5(5):449-57. 

52. Wiklund K, Dich J. Cancer risks among male farmers in Sweden. Eur J Cancer Prev 
1995;4(1):81-90. 

189 



 

53. Wiklund K, Dich J, Holm LE, et al. Risk of cancer in pesticide applicators in Swedish 
agriculture. British journal of industrial medicine 1989;46(11):809-14. 

54. Ezzat S, Abdel-Hamid M, Eissa SA, et al. Associations of pesticides, HCV, HBV, and 
hepatocellular carcinoma in Egypt. International journal of hygiene and environmental 
health 2005;208(5):329-39. 

55. McGlynn KA, Abnet CC, Zhang M, et al. Serum concentrations of 1,1,1-trichloro-2,2-
bis(p-chlorophenyl)ethane (DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene 
(DDE) and risk of primary liver cancer. Journal of the National Cancer Institute 
2006;98(14):1005-10. 

56. Persson EC, Graubard BI, Evans AA, et al. Dichlorodiphenyltrichloroethane and risk of 
hepatocellular carcinoma. International journal of cancer Journal international du 
cancer 2012;131(9):2078-84. 

57. Soliman AS, Hung CW, Tsodikov A, et al. Epidemiologic risk factors of hepatocellular 
carcinoma in a rural region of Egypt. Hepatology international 2010;4(4):681-90. 

58. Zhao B, Shen H, Liu F, et al. Exposure to organochlorine pesticides is an independent 
risk factor of hepatocellular carcinoma: A case-control study. Journal of exposure science 
& environmental epidemiology 2011;21(6):601-8. 

59. Austin H, Delzell E, Grufferman S, et al. Case-control study of hepatocellular carcinoma, 
occupation, and chemical exposures. Journal of occupational medicine : official 
publication of the Industrial Medical Association 1987;29(8):665-9. 

60. Badawi AF, Michael MS. Risk factors for hepatocellular carcinoma in Egypt: the role of 
hepatitis-B viral infection and schistosomiasis. Anticancer research 1999;19(5C):4565-9. 

61. Brownson RC, Reif JS, Chang JC, et al. Cancer risks among Missouri farmers. Cancer 
1989;64(11):2381-6. 

62. Cordier S, Le TB, Verger P, et al. Viral infections and chemical exposures as risk factors 
for hepatocellular carcinoma in Vietnam. International journal of cancer Journal 
international du cancer 1993;55(2):196-201. 

63. Hardell L, Bengtsson NO, Jonsson U, et al. Aetiological aspects on primary liver cancer 
with special regard to alcohol, organic solvents and acute intermittent porphyria--an 
epidemiological investigation. British journal of cancer 1984;50(3):389-97. 

64. Heinemann K, Willich SN, Heinemann LA, et al. Occupational exposure and liver cancer 
in women: results of the Multicentre International Liver Tumour Study (MILTS). Occup 
Med (Lond) 2000;50(6):422-9. 

65. Kauppinen T, Riala R, Seitsamo J, et al. Primary liver cancer and occupational exposure. 
Scandinavian journal of work, environment & health 1992;18(1):18-25. 

66. London WT, Evans AA, McGlynn K, et al. Viral, host and environmental risk factors for 
hepatocellular carcinoma: a prospective study in Haimen City, China. Intervirology 
1995;38(3-4):155-61. 

67. Porru S, Placidi D, Carta A, et al. Primary liver cancer and occupation in men: a case-
control study in a high-incidence area in Northern Italy. International journal of cancer 
Journal international du cancer 2001;94(6):878-83. 

68. Stemhagen A, Slade J, Altman R, et al. Occupational risk factors and liver cancer. A 
retrospective case-control study of primary liver cancer in New Jersey. American journal 
of epidemiology 1983;117(4):443-54. 

69. Suarez L, Weiss NS, Martin J. Primary liver cancer death and occupation in Texas. 
American journal of industrial medicine 1989;15(2):167-75. 

190 



 

70. Evans AA, Chen G, Ross EA, et al. Eight-year follow-up of the 90,000-person Haimen 
City cohort: I. Hepatocellular carcinoma mortality, risk factors, and gender differences. 
Cancer epidemiology, biomarkers & prevention : a publication of the American 
Association for Cancer Research, cosponsored by the American Society of Preventive 
Oncology 2002;11(4):369-76. 

71. Blair A, Zahm SH. Agricultural exposures and cancer. Environmental health perspectives 
1995;103 Suppl 8:205-8. 

72. Austin H, Delzell E, Grufferman S, et al. A case-control study of hepatocellular 
carcinoma and the hepatitis B virus, cigarette smoking, and alcohol consumption. Cancer 
research 1986;46(2):962-6. 

73. Cockburn M, Mills P, Zhang X, et al. Prostate cancer and ambient pesticide exposure in 
agriculturally intensive areas in California. American journal of epidemiology 
2011;173(11):1280-8. 

74. Environmental Protection Agency. Types of Pesticides. 2012. 
(http://www.epa.gov/opp00001/about/types.htm#chemical). Accessed January 1, 2013. 

75. Environmental Protection Agency. Pesticides Industry Sales and Usage: 2006 and 2007 
Market Estimates. 2011. 

76. Nasca PC, Pastides, H. Fundamentals of Cancer Epidemiology. Second ed. Sudbury, 
MA: Jones and Bartlett Publishers; 2008. 

77. Percy C, Stanek E, 3rd, Gloeckler L. Accuracy of cancer death certificates and its effect 
on cancer mortality statistics. American journal of public health 1981;71(3):242-50. 

78. Flanders WD. Inaccuracies of death certificate information. Epidemiology 1992;3(1):3-5. 
79. Szklo M, and F.J. Nieto. Epidemiology Beyond the Basics. Second ed.: Jones and Bartlett 

Publishers, LLC; 2007. 
80. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. Philadelphia: Wolters 

Kluwer Health/Lippincott Williams & Wilkins,, 2008:x, 758 p. ill., map 27 cm. 
81. Maxwell SK, Meliker JR, Goovaerts P. Use of land surface remotely sensed satellite and 

airborne data for environmental exposure assessment in cancer research. Journal of 
exposure science & environmental epidemiology 2010;20(2):176-85. 

82. Ritz B, Rull RP. Assessment of environmental exposures from agricultural pesticides in 
childhood leukaemia studies: challenges and opportunities. Radiation protection 
dosimetry 2008;132(2):148-55. 

83. Bolstad P. GIS Fundamentals: A First Text on Geographic Information Systems. Third 
ed. White Bear Lake, Minnesota: Eider Press; 2008. 

84. Auchincloss AH, Gebreab SY, Mair C, et al. A review of spatial methods in 
epidemiology, 2000-2010. Annual review of public health 2012;33:107-22. 

85. Blair A, Zahm, S.H., Cantor, K.P., Stewart, P.A. Estimating Exposure to Pesticides in 
Epidemiological Studies of Cancer. Biological Monitoring for Pesticide Exposure: 
Measurement, Estimation, and Risk Reduction: American Chemical Society, 1988:38-46. 

86. Ward MH, Nuckols JR, Weigel SJ, et al. Identifying populations potentially exposed to 
agricultural pesticides using remote sensing and a Geographic Information System. 
Environmental health perspectives 2000;108(1):5-12. 

87. EPA (Environmental Protection Agency). Pesticide issues in the works: pesticide 
volatilization. 2009. (http://www.epa.gov/pesticides/about/intheworks/volatilization.htm). 
Accessed 1 Aug 2013. 

191 

http://www.epa.gov/opp00001/about/types.htm%23chemical)
http://www.epa.gov/pesticides/about/intheworks/volatilization.htm)


 

88. Gunier RB, Ward MH, Airola M, et al. Determinants of agricultural pesticide 
concentrations in carpet dust. Environmental health perspectives 2011;119(7):970-6. 

89. Gunier RB, Harnly ME, Reynolds P, et al. Agricultural pesticide use in California: 
pesticide prioritization, use densities, and population distributions for a childhood cancer 
study. Environmental health perspectives 2001;109(10):1071-8. 

90. Franklin C, Worgan J. Occupational and Residential Exposure Assessment for Pesticides. 
Hoboken, NJ: Wiley; 2005. 

91. CDPR (California Department of Pesticide Regulation). Pesticide Use Reporting (PUR). 
2014. (http://www.cdpr.ca.gov/docs/pur/purmain.htm). Accessed 1 Aug 2013. 

92. Rull RP, Ritz B, Shaw GM. Validation of self-reported proximity to agricultural crops in 
a case-control study of neural tube defects. Journal of exposure science & environmental 
epidemiology 2006;16(2):147-55. 

93. Goldberg DW, Zhang X, Marusek JC, et al. Development of an automated pesticide 
exposure analyst for California’s central valley. Presented at Proc Urban Regional Info 
Syst Assoc GIS Public Health Conf, New Orleans2007. 

94. Nuckols JR, Gunier RB, Riggs P, et al. Linkage of the California Pesticide Use Reporting 
Database with spatial land use data for exposure assessment. Environmental health 
perspectives 2007;115(5):684-9. 

95. USGS (U.S. Geological Survey). Landsat: A Global Land-Imaging Mission. 2014. 
(http://landsat.usgs.gov/). Accessed 1 Feb 2014. 

96. Maxwell SK, Airola M, Nuckols JR. Using Landsat satellite data to support pesticide 
exposure assessment in California. International journal of health geographics 
2010;9:46. 

97. Maxwell SK. Downscaling Pesticide Use Data to the Crop Field Level in California 
Using Landsat Satellite Imagery: Paraquat Case Study. Remote Sensing 2011;3(9):1805-
16. 

98. Campbell JB, Wynne RH. Introduction to Remote Sensing. Fifth ed. New York, NY: The 
Guilford Press; 2011. 

99. Guerschman J, Paruelo J, Bella CD, et al. Land cover classification in the Argentine 
Pampas using multi-temporal Landsat TM data. International Journal of Remote Sensing 
2003;24(17):3381-402. 

100. De Wit A, Clevers J. Efficiency and accuracy of per-field classification for operational 
crop mapping. International journal of remote sensing 2004;25(20):4091-112. 

101. Lu D, Weng Q. A survey of image classification methods and techniques for improving 
classification performance. International journal of Remote sensing 2007;28(5):823-70. 

102. Turker M, Ozdarici A. Field-based crop classification using SPOT4, SPOT5, IKONOS 
and QuickBird imagery for agricultural areas: a comparison study. International Journal 
of Remote Sensing 2011;32(24):9735-68. 

103. USDA (U.S. Department of Agriculture). The Central Valley Region. 2003. 
(www.fs.fed.us/.../psw_gtr187_05.pdf). Accessed 1 January 2014. 

104. USDA (U.S. Department of Agriculture). State Fact Sheets: California. 2014. 
(http://www.ers.usda.gov/data-products/state-fact-sheets/state-
data.aspx?StateFIPS=06&StateName=California). Accessed 1 Jan 2014. 

105. U.S. Census Bureau. Census 2010 Summary File 1; using American FactFinder. 2010. 
(http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml). Accessed 1 Feb 2014. 

192 

http://www.cdpr.ca.gov/docs/pur/purmain.htm)
http://landsat.usgs.gov/)
http://www.fs.fed.us/.../psw_gtr187_05.pdf%E2%80%8E)
http://www.ers.usda.gov/data-products/state-fact-sheets/state-data.aspx?StateFIPS=06&StateName=California)
http://www.ers.usda.gov/data-products/state-fact-sheets/state-data.aspx?StateFIPS=06&StateName=California)
http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml)


 

106. U.S. Census Bureau. State & County QuickFacts: Kern County, California 2014. 
(http://quickfacts.census.gov/qfd/states/06/06029.html). Accessed 1 Jan 2014. 

107. CDPR (California Department of Pesticide Regulation). Pesticide Use Reporting. 2011. 
(http://www.cdpr.ca.gov/docs/pur/pur11rep/lbsby_co_11.pdf). Accessed 1 Aug 2013. 

108. USDA (U.S. Department of Agriculture). Census of Agriculture. 2014. 
(http://www.agcensus.usda.gov/index.php). Accessed 1 Jan 2014. 

109. County of Kern. Kern County Crop Reports. 2014. (http://www.kernag.com/caap/crop-
reports/crop-reports.asp). Accessed 1 Jan 2014. 

110. FAO (Food and Agriculture Organization of the United Nations). Glossary. 2013. 
(http://faostat.fao.org/site/375/default.aspx). Accessed 2014. 

111. County of Kern. Kern County, California Planting and Harvesting Dates. 2014. 
(http://www.kernag.com/dept/stats/crop-stats.asp). Accessed 1 Jan 2014. 

112. National Atlas. The Public Land Survey System (PLSS). 2014. 
(http://www.nationalatlas.gov/articles/boundaries/a_plss.html). Accessed 1 Apr 2013. 

113. CDWR (California Department of Water Resources). Land Use Survey Overview. 2014. 
(http://www.water.ca.gov/landwateruse/lusrvymain.cfm). Accessed 1 Aug 2013. 

114. Kern County Assessor. Use Codes. 2012. 
(http://recorder.co.kern.ca.us/assessor/FYI.php?page=usecodes). Accessed 1 Apr 2013. 

115. U.S. Census Bureau. TIGER Products. 2014. (http://www.census.gov/geo/maps-
data/data/tiger.html). Accessed 1 Jan 2014. 

116. CDPR (California Department of Pesticide Regulation). Appendix C: California’s 
Pesticide Use Report An Assessment of Spatial Data Quality. 2000. 
(http://www.cdpr.ca.gov/docs/pur/appendix_c_dataq_ldr.pdf). Accessed 1 Aug 2013. 

117. VoPham T. Integrating Landsat and California Pesticide Exposure Estimation at 
Aggregated Analysis Scales: Accuracy Assessment of Rurality. Los Angeles, CA: USC 
(University of Southern California); 2014. 

118. CDPR (California Department of Pesticide Regulation). DPR Pesticide Use Reporting: 
An Overview of California's Unique Full Reporting System. 2000. 
(http://www.cdpr.ca.gov/docs/pur/purovrvw/ovr52000.pdf). Accessed 1 Aug 2013. 

119. AgroPages. Crop Protection Database. 2014. (http://www.agropages.com/AgroData/). 
Accessed 1 Aug 2013. 

120. Greene SA, Pohanish RP. Sittig's handbook of pesticides and agricultural chemicals. 
Norwich, N.Y.: William Andrew Pub.; 2005. 

121. Rull RP, Gunier R, Von Behren J, et al. Residential proximity to agricultural pesticide 
applications and childhood acute lymphoblastic leukemia. Environmental research 
2009;109(7):891-9. 

122. Rull RP, Ritz B, Shaw GM. Neural tube defects and maternal residential proximity to 
agricultural pesticide applications. American journal of epidemiology 2006;163(8):743-
53. 

123. Wood A. Compendium of Pesticide Common Names. 2010. 
(http://www.alanwood.net/pesticides/class_pesticides.html ). Accessed 1 Aug 2013. 

124. Wells J. Pesticide Use Trends in California Agriculture. 2011. 
(http://www.foodandfarming.info/docs.asp?id=76). Accessed 1 Feb 2014. 

125. Clark Labs. IDRISI Selva. Worcester, Massachusetts, United States, 2014. 

193 

http://quickfacts.census.gov/qfd/states/06/06029.html)
http://www.cdpr.ca.gov/docs/pur/pur11rep/lbsby_co_11.pdf)
http://www.agcensus.usda.gov/index.php)
http://www.kernag.com/caap/crop-reports/crop-reports.asp)
http://www.kernag.com/caap/crop-reports/crop-reports.asp)
http://faostat.fao.org/site/375/default.aspx)
http://www.kernag.com/dept/stats/crop-stats.asp)
http://www.nationalatlas.gov/articles/boundaries/a_plss.html)
http://www.water.ca.gov/landwateruse/lusrvymain.cfm)
http://recorder.co.kern.ca.us/assessor/FYI.php?page=usecodes)
http://www.census.gov/geo/maps-data/data/tiger.html)
http://www.census.gov/geo/maps-data/data/tiger.html)
http://www.cdpr.ca.gov/docs/pur/appendix_c_dataq_ldr.pdf)
http://www.cdpr.ca.gov/docs/pur/purovrvw/ovr52000.pdf)
http://www.agropages.com/AgroData/)
http://www.alanwood.net/pesticides/class_pesticides.html
http://www.foodandfarming.info/docs.asp?id=76)


 

126. Chander G, Markham BL, Helder DL. Summary of current radiometric calibration 
coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of 
environment 2009;113(5):893-903. 

127. Chavez PS. Image-based atmospheric corrections-revisited and improved. 
Photogrammetric engineering and remote sensing 1996;62(9):1025-35. 

128. Song C, Woodcock CE, Seto KC, et al. Classification and change detection using Landsat 
TM data: when and how to correct atmospheric effects? Remote sensing of environment 
2001;75(2):230-44. 

129. YCEO (Yale Center for Earth Observation). Yale Guide to Landsat 8 Image Processing. 
2013. 
(http://www.yale.edu/ceo/Documentation/Landsat%208%20image%20processing.pdf ). 
Accessed 2013. 

130. Mather PM, Koch M. Chater 7: Filtering Techniques. Computer Processing of Remotely-
Sensed Images: An Introduction, 4th Edition. Oxford, UK: Wiley Blackwell, 2011. 

131. Vassiliou A, Boulianne M, Blais J. On the application of averaging median filters in 
remote sensing. Geoscience and Remote Sensing, IEEE Transactions on 1988;26(6):832-
8. 

132. USGS (U.S. Geological Survey). NDVI, the Foundation for Remote Sensing Phenology 
2011. (http://phenology.cr.usgs.gov/ndvi_foundation.php). Accessed 2013. 

133. CDWR (California Department of Water Resources). Metadata for the 2009 Eastern 
Fresno County Land Use Survey Data. 2009. 
(http://www.water.ca.gov/landwateruse/docs/landusedata/shapes/09eFR.zip). Accessed 1 
Aug 2013. 

134. Richards JA. Remote Sensing Digital Image Analysis: An Introduction. 5th ed. New 
York: Springer; 2013. 

135. Esri. ArcGIS 10.2 Help. 2014. (http://resources.arcgis.com/en/help/). Accessed 1 Aug 
2013. 

136. Van Niel TG, McVicar TR. Determining temporal windows for crop discrimination with 
remote sensing: a case study in south-eastern Australia. Computers and Electronics in 
Agriculture 2004;45(1):91-108. 

137. Simoniello T, Carone M, Lanfredi M, et al. Landscape-scale characterization of 
vegetation phenology using AVHRR-NDVI and Landsat-TM data. Presented at Remote 
Sensing2004. 

138. Suzuki R, Nomaki T, Yasunari T. Spatial distribution and its seasonality of 
satellite‐derived vegetation index (NDVI) and climate in Siberia. International Journal of 
Climatology 2001;21(11):1321-35. 

139. U.S. Census Bureau. 2000 Census Urban and Rural Classification and Urban Area 
Criteria. 2000. (http://www.census.gov/geo/www/ua/ua_2k.html). Accessed 2013. 

140. Martinuzzi S, Gould WA, Ramos González OM. Creating Cloud-Free Landsat ETM+ 
Data Sets in Tropical Landscapes: Cloud and Cloud-Shadow Removal. 2007. 
(http://www.fs.fed.us/global/iitf/pubs/iitf-gtr32.pdf). Accessed 1 Aug 2013. 

141. Esri. ArcGIS 10.1. Redlands, California, United States, 2014. 
142. SAS. SAS. Cary, North Carolina, United States, 2014. 
143. Landis JR, Koch GG. The measurement of observer agreement for categorical data. 

biometrics 1977:159-74. 

194 

http://www.yale.edu/ceo/Documentation/Landsat%208%20image%20processing.pdf
http://phenology.cr.usgs.gov/ndvi_foundation.php)
http://www.water.ca.gov/landwateruse/docs/landusedata/shapes/09eFR.zip)
http://resources.arcgis.com/en/help/)
http://www.census.gov/geo/www/ua/ua_2k.html)
http://www.fs.fed.us/global/iitf/pubs/iitf-gtr32.pdf)


 

144. Szklo M, Nieto FJ. Epidemiology Beyond the Basics. Second ed.: Jones and Bartlett 
Publishers, LLC; 2007. 

145. Chen X, Li BL, Allen MF. Characterizing urbanization, and agricultural and conservation 
land‐use change in Riverside County, California, USA. Annals of the New York Academy 
of Sciences 2010;1195(s1):E164-E76. 

146. Maxwell S, Meliker J, Goovaerts P. Use of land surface remotely sensed satellite and 
airborne data for environmental exposure assessment in cancer research. Journal of 
exposure science & environmental epidemiology 2010;20(2):176-85. 

147. Godfrey L, Rosenheim J, Goodell P. Cotton aphid emerges as major pest in SJV cotton. 
California Agriculture 2000;54(6):26-9. 

148. PAN (Pesticide Action Network). PAN Pesticides Database - California Pesticide Use. 
2013. (http://www.pesticideinfo.org/Search_Use.jsp). Accessed 1 Aug 2013. 

149. Gliessman SR. Multiple cropping systems: A basis for developing an alternative 
agriculture. In: Assessment OoT, ed. Innovative Technologies for Lesser Developed 
Countries. Washington D.C.: U.S. Congress, 1985:69-86. 

150. Sullivan P. Intercropping Principles and Production Practices. Appropriate Technology 
Transfer for Rural Areas (ATTRA); 2003. (https://attra.ncat.org/publication.html). 
Accessed. 

151. Liebman M, Dyck E. Crop rotation and intercropping strategies for weed management. 
Ecological Applications 1993:92-122. 

152. USDA (U.S. Department of Agriculture ). Soil Tillage and Crop Rotation. 2013. 
(http://www.ers.usda.gov/topics/farm-practices-management/crop-livestock-
practices/soil-tillage-and-crop-rotation.aspx). Accessed 1 Jan 2014. 

153. UC IPM (University of California Statewide Integrated Pest Management Program). 
Alfalfa: Crop Rotation. 2006. (http://www.ipm.ucdavis.edu/PMG/r1900811.html). 
Accessed 1 Jan 2013. 

154. UC IPM (University of California Statewide Integrated Pest Management Program). 
Potato: Crop Rotation. 2008. (http://www.ipm.ucdavis.edu/PMG/r607900511.html). 
Accessed 1 Jan 2013. 

155. Yu Q, Gong P, Clinton N, et al. Object-based detailed vegetation classification with 
airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering 
and Remote Sensing 2006;72(7):799. 

156. Hill R. Image segmentation for humid tropical forest classification in Landsat TM data. 
International Journal of remote sensing 1999;20(5):1039-44. 

157. AMIRA. The almond tree and its fruit. 2007. 
(http://www.amira.ca/en/info_almond.htm#almondReferences). Accessed 1 Feb 2014. 

158. Conrad C, Fritsch S, Zeidler J, et al. Per-field irrigated crop classification in arid Central 
Asia using SPOT and ASTER data. Remote Sensing 2010;2(4):1035-56. 

159. NIH (National Institutes of Health). Sample Surveys. Office of Behavioral & Social 
Sciences Research; 2014. (http://www.esourceresearch.org/tabid/374/default.aspx). 
Accessed 1 Feb 2014. 

160. Forkel M, Carvalhais N, Verbesselt J, et al. Trend Change Detection in NDVI Time 
Series: Effects of Inter-Annual Variability and Methodology. Remote Sensing 
2013;5(5):2113-44. 

195 

http://www.pesticideinfo.org/Search_Use.jsp)
http://www.ers.usda.gov/topics/farm-practices-management/crop-livestock-practices/soil-tillage-and-crop-rotation.aspx)
http://www.ers.usda.gov/topics/farm-practices-management/crop-livestock-practices/soil-tillage-and-crop-rotation.aspx)
http://www.ipm.ucdavis.edu/PMG/r1900811.html)
http://www.ipm.ucdavis.edu/PMG/r607900511.html)
http://www.amira.ca/en/info_almond.htm%23almondReferences)
http://www.esourceresearch.org/tabid/374/default.aspx)


 

161. Maxwell SK, Sylvester KM. Identification of “ever-cropped” land (1984-2010) using 
Landsat annual maximum NDVI image composites: Southwestern Kansas case study. 
Remote sensing of environment 2012;121:186-95. 

162. Bin W, Muramatsu K, Fujiwara N. Automated detection and removal of clouds and their 
shadows from Landsat TM images. IEICE Transactions on information and systems 
1999;82(2):453-60. 

163. USDA FSA Aerial Photography Field Office (U.S. Department of Agriculture Farm 
Service Agency Aerial Photography Field Office). Kern County compressed county 
mosaic (CCM). Salt Lake City, Utah: National Agriculture Imagery Program (NAIP) via 
Cal-Atlas Geospatial Clearinghouse, 2012. 

164. Waller LA, Gotway CA. Applied spatial statistics for public health data. John Wiley & 
Sons; 2004. 

165. Montello DR. Scale in Geography. In: Smelser NJ, Baltes, P.B., ed. International 
Encyclopedia of the Social & Behavioral Sciences: Pergamon Press, 2001:13501-4. 

166. Nuckols JR, Ward MH, Jarup L. Using geographic information systems for exposure 
assessment in environmental epidemiology studies. Environmental health perspectives 
2004;112(9):1007-15. 

167. Ritz B, Costello S. Geographic model and biomarker-derived measures of pesticide 
exposure and Parkinson's disease. Ann N Y Acad Sci 2006;1076:378-87. 

168. Boscoe FP, Ward MH, Reynolds P. Current practices in spatial analysis of cancer data: 
data characteristics and data sources for geographic studies of cancer. International 
journal of health geographics 2004;3(1):28. 

169. Gotway CA, Young LJ. Combining incompatible spatial data. Journal of the American 
Statistical Association 2002;97(458):632-48. 

170. Bian L, Butler R. Comparing effects of aggregation methods on statistical and spatial 
properties of simulated spatial data. Photogrammetric Engineering and Remote Sensing 
1999;65:73-84. 

171. Clary T, Ritz B. Pancreatic cancer mortality and organochlorine pesticide exposure in 
California, 1989-1996. American journal of industrial medicine 2003;43(3):306-13. 

172. Economic Research Service (ERS). Agricultural Productivity in the U.S.: Overview. 
2014. (http://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx). 
Accessed 1 May 2014. 

173. State of California. Facts. 2012. (http://www.ca.gov/About/Facts.html). Accessed 30 May 
2014. 

174. U.S. Census Bureau. State & County QuickFacts: California. 2014. 
(http://quickfacts.census.gov/qfd/states/06000.html). Accessed 1 July 2014. 

175. U.S. Census Bureau. History: 2000 Census of Population and Housing (Volume 1). 
Washington D.C.: U.S. Government Printing Office; 2009. 
(http://www.census.gov/history/pdf/Census2000v1.pdf). Accessed 1 May 2014. 

176. U.S. Census Bureau. Census 2000 Summary File 1 Technical Documentation. 2001. 
(http://www.census.gov/prod/cen2000/doc/sf1.pdf). Accessed 1 January 2014. 

177. U.S. Census Bureau. What are census blocks? ; 2011. 
(http://blogs.census.gov/2011/07/20/what-are-census-blocks/). Accessed 2014. 

178. Grubesic TH, Matisziw TC. On the use of ZIP codes and ZIP code tabulation areas 
(ZCTAs) for the spatial analysis of epidemiological data. International journal of health 
geographics 2006;5:58. 

196 

http://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx)
http://www.ca.gov/About/Facts.html)
http://quickfacts.census.gov/qfd/states/06000.html)
http://www.census.gov/history/pdf/Census2000v1.pdf)
http://www.census.gov/prod/cen2000/doc/sf1.pdf)
http://blogs.census.gov/2011/07/20/what-are-census-blocks/)


 

179. U.S. Census Bureau. ZIP Code™ Tabulation Areas (ZCTAs™). 2014. 
(https://www.census.gov/geo/reference/zctas.html). Accessed 2014. 

180. U.S. Census Bureau. Census 2000 TIGER/Line Files Technical Documentation. 
Washington D.C.; 2000. (http://www.census.gov/geo/maps-
data/data/pdfs/tiger/tiger2k/tiger2k.pdf). Accessed 1 January 2014. 

181. Vogelmann JE, Howard SM, Yang L, et al. Completion of the 1990s National Land 
Cover Data Set for the conterminous United States from Landsat Thematic Mapper data 
and ancillary data sources. Photogrammetric Engineering and Remote Sensing 
2001;67(6). 

182. MRLC (Multi-Resolution Land Characteristics Consortium). National Land Cover 
Dataset 1992 (NLCD1992). 2014. (http://www.mrlc.gov/nlcd1992.php). Accessed 1 May 
2014. 

183. GreenInfo Network. California Protected Areas Data Portal. 2014. 
(http://www.calands.org/). Accessed 1 May 2014. 

184. Lim E, Pon A, Djoumbou Y, et al. T3DB: a comprehensively annotated database of 
common toxins and their targets. Nucleic acids research 2010;38(suppl 1):D781-D6. 

185. Bell EM, Hertz-Picciotto I, Beaumont JJ. A case-control study of pesticides and fetal 
death due to congenital anomalies. Epidemiology 2001;12(2):148-56. 

186. USGS (U.S. Geological Survey). Dasymetric Mapping: An Alternative Approach To 
Visually And Statistically Enhancing Population Density. 2014. 
(http://geography.wr.usgs.gov/science/dasymetric/index.htm). Accessed 1 May 2014. 

187. Eicher CL, Brewer CA. Dasymetric mapping and areal interpolation: implementation and 
evaluation. Cartography and Geographic Information Science 2001;28(2):125-38. 

188. Kang C, Qaqish B, Monaco J, et al. Kappa statistic for clustered dichotomous responses 
from physicians and patients. Statistics in medicine 2013;32(21):3700-19. 

189. Rural Health Research Center. RUCA Data. 2006. 
(http://depts.washington.edu/uwruca/ruca-download.php). Accessed 1 May 2014. 

190. NPR (National Public Radio). California's Central Valley. 2002. 
(http://www.npr.org/programs/atc/features/2002/nov/central_valley/). Accessed 1 January 
2014. 

191. McGee S. Simplifying likelihood ratios. Journal of general internal medicine 
2002;17(8):647-50. 

192. Sleeter R. Dasymetric mapping techniques for the San Francisco Bay region, California. 
Presented at Urban and regional information systems association annual conference 
proceedings2004. 

193. Matisziw TC, Grubesic TH, Wei H. Downscaling spatial structure for the analysis of 
epidemiological data. Computers, Environment and Urban Systems 2008;32(1):81-93. 

194. Jacquez GM. Current practices in the spatial analysis of cancer: flies in the ointment. 
International journal of health geographics 2004;3(1):22. 

195. Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and 
health outcomes: a critical review. Journal of epidemiology and community health 
2001;55(2):111-22. 

196. Deeks JJ, Altman DG. Diagnostic tests 4: likelihood ratios. Bmj 2004;329(7458):168-9. 
197. O'Sullivan DO, Unwin DJ. Geographic Information Analysis. 2nd ed.: John Wiley & 

Sons; 2010. 

197 

http://www.census.gov/geo/reference/zctas.html)
http://www.census.gov/geo/maps-data/data/pdfs/tiger/tiger2k/tiger2k.pdf)
http://www.census.gov/geo/maps-data/data/pdfs/tiger/tiger2k/tiger2k.pdf)
http://www.mrlc.gov/nlcd1992.php)
http://www.calands.org/)
http://geography.wr.usgs.gov/science/dasymetric/index.htm)
http://depts.washington.edu/uwruca/ruca-download.php)
http://www.npr.org/programs/atc/features/2002/nov/central_valley/)


 

198. County of Santa Clara. Guideline for Policies Governing the Exchange of an Existing 
Williamson Act Contract for an Open Space Easement. 2011. 
(http://www.sccgov.org/sites/planning/PlansPrograms/Williamson/Documents/Guideline-
for-Exchange-for-OSE-Approved-10-18-11.pdf). Accessed 1 May 2014. 

199. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and 
Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International 
Agency for Research on Cancer; 2013. (http://globocan.iarc.fr). Accessed October 1, 
2014. 

200. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA: a cancer journal for 
clinicians 2011;61(2):69-90. 

201. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) 
SEER*Stat Database: Incidence - SEER 18 Regs Research Data + Hurricane Katrina 
Impacted Louisiana Cases, Nov 2013 Sub (2000-2011) <Katrina/Rita Population 
Adjustment> - Linked To County Attributes - Total U.S., 1969-2012 Counties, National 
Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, 
released April 2014 (updated 5/7/2014), based on the November 2013 submission. 

202. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) 
SEER*Stat Database: Incidence - SEER 18 Regs Research Data + Hurricane Katrina 
Impacted Louisiana Cases, Nov 2013 Sub (1973-2011 varying) - Linked To County 
Attributes - Total U.S., 1969-2012 Counties, National Cancer Institute, DCCPS, 
Surveillance Research Program, Surveillance Systems Branch, released April 2014 
(updated 5/7/2014), based on the November 2013 submission. 

203. National Cancer Institute (NCI). PDQ® Adult Primary Liver Cancer Treatment. 
Bethesda, MD: National Cancer Institute. 
(http://www.cancer.gov/cancertopics/pdq/treatment/adult-primary-
liver/HealthProfessional). Accessed October 1 2014. 

204. Environmental Protection Agency (EPA). Pesticides. (http://www.epa.gov/pesticides/). 
Accessed October 28, 2014. 

205. U.S. Department of Agriculture. Agricultural Productivity in the U.S. 
(http://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx). 
Accessed October 1, 2014. 

206. Engels EA, Pfeiffer RM, Ricker W, et al. Use of surveillance, epidemiology, and end 
results-medicare data to conduct case-control studies of cancer among the US elderly. 
American journal of epidemiology 2011;174(7):860-70. 

207. National Cancer Institute (NCI). SEER-Medicare Linked Database. 
(http://appliedresearch.cancer.gov/seermedicare/). Accessed October 28, 2014. 

208. The Kaiser Family Foundation’s State Health Facts. Data Source: Medicare Enrollment 
Reports MSCPF. Medicare Prescription Drug Plans: Stand Alone PDP Enrollment. 2007. 
Accessed October 28, 2014. 

209. National Cancer Institute (NCI). Surveillance, Epidemiology, and End Results Program. 
(http://seer.cancer.gov/). Accessed October 1, 2014. 

210. Fritz A, Percy C, Shanmugaratnam K, et al. International Classification of Diseases for 
Oncology: ICD-O. 3rd ed. Geneva, Switzerland: World Health Organization; 2000. 

211. Davila JA, Morgan RO, Shaib Y, et al. Diabetes increases the risk of hepatocellular 
carcinoma in the United States: a population based case control study. Gut 
2005;54(4):533-9. 

198 

http://www.sccgov.org/sites/planning/PlansPrograms/Williamson/Documents/Guideline-for-Exchange-for-OSE-Approved-10-18-11.pdf)
http://www.sccgov.org/sites/planning/PlansPrograms/Williamson/Documents/Guideline-for-Exchange-for-OSE-Approved-10-18-11.pdf)
http://globocan.iarc.fr)/
http://www.seer.cancer.gov/
http://www.seer.cancer.gov/
http://www.cancer.gov/cancertopics/pdq/treatment/adult-primary-liver/HealthProfessional)
http://www.cancer.gov/cancertopics/pdq/treatment/adult-primary-liver/HealthProfessional)
http://www.epa.gov/pesticides/)
http://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us.aspx)
http://appliedresearch.cancer.gov/seermedicare/)
http://seer.cancer.gov/)


 

212. Esri. ArcGIS for Desktop: Release 10.1. Redlands, CA: Esri, 2012. 
213. California Department of Pesticide Regulation (CDPR). Pesticide Use Reporting (PUR). 

(http://www.cdpr.ca.gov/docs/pur/purmain.htm). Accessed October 1, 2014. 
214. Reynolds P, Hurley SE, Goldberg DE, et al. Residential proximity to agricultural 

pesticide use and incidence of breast cancer in the California Teachers Study cohort. 
Environmental research 2004;96(2):206-18. 

215. Census 2000 TIGER/Line® Files [machine-readable data files]/prepared by the U.S. 
Census Bureau-Washington DC. 2000. 

216. Welzel TM, Graubard BI, Zeuzem S, et al. Metabolic syndrome increases the risk of 
primary liver cancer in the United States: a study in the SEER-Medicare database. 
Hepatology 2011;54(2):463-71. 

217. Centers for Medicare & Medicaid Services (CMS). Medicare Savings Programs. 
(http://www.medicare.gov/your-medicare-costs/help-paying-costs/medicare-savings-
program/medicare-savings-programs.html). Accessed October 1, 2014. 

218. Census 2000 Summary File 3—[California]/prepared by U.S. Census Bureau. 2002. 
219. University of Washington Rural Health Research Center. RUCA ZIP Version 2.0 Codes. 

2006. http://depts.washington.edu/uwruca/index.php. Accessed October 1, 2014. 
220. Warren J, Smalley KB. Rural Public Health: Best Practices and Preventive Models. 

Springer Publishing Company; 2014. 
221. Environmental Protection Agency (EPA). Pesticides Industry Sales and Usage: 2006 and 

2007 Market Estimates. 2011. 
222. Wells J. Pesticide Use Trends in California Agriculture. Environmental Solutions Group, 

2011. 
223. Environmental Protection Agency (EPA). Recognition and Management of Pesticide 

Poisonings. 2013. 
224. Environmental Protection Agency (EPA). Pesticides: Reregistration, Agreement to 

Terminate All Uses of Aldicarb. 
(http://www.epa.gov/oppsrrd1/REDs/factsheets/aldicarb_fs.html). Accessed October 1, 
2014. 

225. Centers for Disease Control and Prevention (CDC). Fourth National Report on Human 
Exposure to Environmental Chemicals. 2009. 

226. Longnecker MP, Rogan WJ, Lucier G. The human health effects of DDT 
(dichlorodiphenyltrichloroethane) and PCBS (polychlorinated biphenyls) and an 
overview of organochlorines in public health. Annual review of public health 
1997;18:211-44. 

227. Franklin Claire, Worgan John. Occupational and Residential Exposure Assessment for 
Pesticides. Hoboken, NJ: Wiley; 2005. 

228. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. Philadelphia, PA: Lippincott 
Williams & Wilkins, 2008. 

229. Warren JL, Klabunde CN, Schrag D, et al. Overview of the SEER-Medicare data: 
content, research applications, and generalizability to the United States elderly 
population. Medical care 2002;40(8):IV-3-IV-18. 

230. Social Security Administration. Disability Evaluation Under Social Security. 2014. 
(http://www.ssa.gov/disability/professionals/bluebook/). Accessed November 30, 2014. 

231. Gilden RC, Huffling K, Sattler B. Pesticides and health risks. Journal of obstetric, 
gynecologic, and neonatal nursing : JOGNN / NAACOG 2010;39(1):103-10. 

199 

http://www.cdpr.ca.gov/docs/pur/purmain.htm)
http://www.medicare.gov/your-medicare-costs/help-paying-costs/medicare-savings-program/medicare-savings-programs.html)
http://www.medicare.gov/your-medicare-costs/help-paying-costs/medicare-savings-program/medicare-savings-programs.html)
http://depts.washington.edu/uwruca/index.php
http://www.epa.gov/oppsrrd1/REDs/factsheets/aldicarb_fs.html)
http://www.ssa.gov/disability/professionals/bluebook/)


 

232. Ma X, Buffler PA, Gunier RB, et al. Critical windows of exposure to household 
pesticides and risk of childhood leukemia. Environmental health perspectives 
2002;110(9):955-60. 

233. Marcus EL, Tur-Kaspa R. Chronic hepatitis C virus infection in older adults. Clinical 
infectious diseases : an official publication of the Infectious Diseases Society of America 
2005;41(11):1606-12. 

234. Ott JJ, Stevens GA, Groeger J, et al. Global epidemiology of hepatitis B virus infection: 
new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 
2012;30(12):2212-9. 

235. Fotheringham AS, Brunsdon C, Charlton M. Geographically Weighted Regression: The 
Analysis of Spatially Varying Relationships. West Sussex, England: John Wiley & Sons, 
LTD; 2002. 

236. Nakaya T, Charlton M, Lewis P, et al. GWR4. Kyoto, Japan, 2014. 
 

200 


	TITLE PAGE
	COMMITTEE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Case-Control Studies Examining Pesticide Exposure and Hepatocellular Carcinoma
	Table 2. Cohort Studies Examining Pesticide Exposure and Hepatocellular Carcinoma
	Table 3. Accuracy Assessment of Classified Landsat Imagery vs. LUS in 1990
	Table 4. Accuracy Assessment of Landsat Imagery vs. LUS in 1990 Using Number of Segments: CDWR Broad Land Use Groups
	Table 5. Classification of Residential Parcels According to 1990 Pesticide Exposure Quartiles: Landsat vs. LUS Methods
	Table 6. Pesticide Application Tier Matching In 1985: LUS vs. Landsat Methods
	Table 7. Pesticide Application Rates in 1985: LUS vs. Landsat Methods
	Table 8. Annual Gold Standard and ZIP Code Pesticide Application Rates (lb/ac)
	Table 9. Weighted Kappa and Agreement: ZIP Code Weighting Methods vs. Gold Standard
	Table 10. Likelihood Ratios: ZIP Code Weighting Methods vs. Gold Standard
	Table 11. Included vs. Excluded Hepatocellular Carcinoma Cases From SEER-Medicare in California, 2000-2009
	Table 12. SEER-Medicare Hepatocellular Carcinoma Cases From Source Population, Included Cases, and From SEER (65 Years and Older) in California, 2000-2009
	Table 13. Population Characteristics of Hepatocellular Carcinoma Cases and Frequency-Matched Controls From SEER-Medicare in California, 2000-2009
	Table 14. Pesticide Exposure and Hepatocellular Carcinoma Using Pesticide Use Reports and SEER-Medicare in California, 2000-2009
	Table 15. Factors Associated with Pesticide Exposure Among Controls Using SEER-Medicare in California, 2000-2009
	Table 16. Random-Intercept Logistic Regression Examining Clustering Within ZIP Codes Using SEER-Medicare Cases and Controls in California, 2000-2009
	Table 17. Adjusted Odds Ratios for Hepatocellular Carcinoma: Pesticide Exposure in California Using SEER-Medicare, 2000-2009
	Table 18. Rural Residents: Population Characteristics of Hepatocellular Carcinoma Cases and Frequency-Matched Controls From SEER-Medicare in California, 2000-2009
	Table 19. Rural Residents: Pesticide Exposure and Hepatocellular Carcinoma Using Pesticide Use Reports and SEER-Medicare in California, 2000-2009
	Table 20. Rural Residents: Factors Associated with Organochlorine Pesticide Exposure Among Controls Using SEER-Medicare in California, 2000-2009
	Table 21. Rural Residents: Adjusted Odds Ratios for Hepatocellular Carcinoma, Organochlorine Pesticide Exposure Using SEER-Medicare, 2000-2009
	Table 22. Rural Residents With No Known Risk Factors: Odds Ratios for Hepatocellular Carcinoma, Organochlorine Pesticide Exposure Using SEER-Medicare, 2000-2009
	Table 23. Rural Residents Entitled to Medicare Due to Age: Adjusted Odds Ratios for Hepatocellular Carcinoma, Organochlorine Pesticide Exposure Using SEER-Medicare, 2000-2009
	Table 24. Landsat Images Classified for Inclusion in the 1990 NDVI Signatures Extent
	Table 25. Landsat Images Classified for Inclusion in the 1985 Imagery Extent
	Table 26. Healthcare Common Procedure Coding System (HCPCS) Codes for Hepatitis C and B Virus Testing
	Table 27. Hepatitis B and C Testing Among Cases and Controls (Full Study Sample)
	Table 28. Hepatitis B and C Testing Among Cases and Controls (Rural Study Sample)
	Table 29. Pesticide Exposure and Hepatitis Testing: Full and Rural Controls
	Table 30. Characteristics of Controls Testing for Hepatitis
	Table 31. Pesticide Exposure and Hepatocellular Carcinoma Among Rural Residents Not Testing for Hepatitis

	LIST OF FIGURES
	Figure 1. Literature Review Search
	Figure 2. Kern County, CA Study Area: National Agriculture Imagery Program (NAIP) Compressed County Mosaic (CCM) of Kern County From August 2012 (Left); Kern County Within California’s Central Valley Agricultural Region (Right)
	Figure 3. GIS Workflow for Accuracy Assessment and 1985 Pesticide Exposure Estimation
	Figure 4. Landsat Paths 41 and 42 and Rows 35 And 36 Intersecting Kern County, CA
	Figure 5. Geographic Extent of NDVI Training Data and Classification Data: NDVI Signatures for Land Use Classes Derived From Images Within the 1990 NDVI Signatures Extent (Pink Region) Used for Accuracy Assessment in 1990 and as Training Data for Maximum Likelihood Classification of 1985 Images Within the 1985 Imagery Extent (Red Region)
	Figure 6. Phenological Groups Comprised of Land Uses Sharing Similar Annual NDVI Patterns Derived From Cluster Analysis: Land Uses Exhibiting (a) Gradual Summer NDVI Peak, (b) Stable NDVI Pattern, (c) Moderate Vegetative Density Peak, and (d) Low NDVI Pattern
	Figure 7. Segments Overlaying an August 1985 NDVI Image
	Figure 8. LUS vs. Landsat Pesticide Exposure Estimation in 1985: One Organophosphate Alfalfa Application (27.96 lb) in Section 15M29S25E15 With Tier 2 LUS Match (LUS Pesticide Application Rate 0.82 lb/ac; Left) and Tier 1 Landsat Match (Rate 1.15 lb/ac; Right)
	Figure 9. Bland-Altman Plots of LUS vs. Landsat Rates in 1985: Mean vs. Difference Between LUS and Landsat Pesticide Application Rates for Sampled Residential Parcels Stratified by Rural (Left) and Urban (Right) Location
	Figure 10. Discrepant Pesticide Application Rates According to LUS and Landsat Methods and Rural/Urban Status: Rural Parcel With 3.24 lb/ac LUS Rate and 50.73 lb/ac Landsat Rate due to Fewer Landsat Orange Fields in Parcel’s Section (Top Row); Urban Parcel With 21.03 lb/ac LUS Rate and 2.38 lb/ac Landsat Rate Due To More Landsat Almond Fields in Parcel’s Section (Bottom Row)
	Figure 11. Annual PLSS Section Pesticide Application Rates (lb/ac) From 1995 to 2005 in California
	Figure 12. Annual Pesticide Application Rates (lb/ac) Calculated Using the (a) Gold Standard, (b) Area Weighting, (c) Population Weighting, and (d) Road Weighting; (e) ZCTA Boundaries Shown for Reference
	Figure 13. Dot Plots of Gold Standard Pesticide Application Rates (lb/ac) Categorized According to ZIP Code None, Low, Low-Moderate, Moderate, and High Categories: (a) Area Weight, (b) Population Weight, and (c) Road Weight
	Figure 14. Eligibility Criteria Applied to First Cancer Hepatocellular Carcinoma Cases in California Diagnosed From 2000 to 2009 Using SEER-Medicare
	Figure 15. Combined Landsat and LUS Pesticide-to-Crop Matching Three-Tier Method Considering Temporary and Permanent Crops
	Figure 16. Geographically Weighted Logistic Regression (GWLR): Adjusted Odds Ratios for Hepatocellular Carcinoma Conferred by Organochlorine Pesticide Exposure Among Rural California Residents Using SEER-Medicare, 2000-2009

	PREFACE
	1.0  LITERATURE REVIEW: PESTICIDES AND HEPATOCELLULAR CARCINOMA
	1.1 ABSTRACT
	1.2 INTRODUCTION: EPIDEMIOLOGY OF HEPATOCELLULAR CARCINOMA
	1.2.1 Linking Pesticides to Hepatocellular Carcinoma

	1.3 METHODS
	1.4 RESULTS
	1.4.1 Summary
	1.4.2 Quantitative Pesticide Exposure Methods
	1.4.2.1 China

	1.4.3 Qualitative Pesticide Exposure Methods
	1.4.3.1 China
	1.4.3.2 Egypt
	1.4.3.3 Vietnam
	1.4.3.4 Europe
	1.4.3.5 Sweden
	1.4.3.6 Finland
	1.4.3.7 Italy
	1.4.3.8 United States


	1.5 DISCUSSION
	1.6 CONCLUSIONS

	2.0  A LANDSAT REMOTE SENSING METHOD TO ESTIMATE AGRICULTURAL PESTICIDE EXPOSURE IN CALIFORNIA
	2.1 ABSTRACT
	2.2 INTRODUCTION
	2.3 METHODS
	2.3.1 Study Area
	2.3.2 Data Sources
	2.3.3 Pesticide Data Processing
	2.3.4 Accuracy Assessment in 1990
	2.3.4.1 NDVI Signatures From 1990
	2.3.4.2 Classification of 1990 Landsat Images
	2.3.4.3 Error Matrices
	2.3.4.4 Pesticide Exposure Estimation in 1990

	2.3.5 Comparing Pesticide Exposure Estimation in 1985 Using 1985 Landsat Images vs. 1990 LUS
	2.3.5.1 Classification of 1985 Landsat Images
	2.3.5.2 Pesticide Exposure Estimation in 1985

	2.3.6 Statistical Analysis

	2.4 RESULTS
	2.4.1 Accuracy Assessment in 1990: Error Matrices
	2.4.2 Accuracy Assessment in 1990: Pesticide Exposure Estimation
	2.4.3 Land Use Classification and Pesticide Exposure Estimation in 1985

	2.5 DISCUSSION
	2.5.1 Accuracy Assessment in 1990
	2.5.2 Pesticide Exposure Estimation in 1985
	2.5.3 Combined LUS and Landsat Pesticide Three-Tier Matching Methodology
	2.5.4 Strengths
	2.5.5 Limitations

	2.6 CONCLUSIONS
	2.7 TABLES
	2.8 FIGURES

	3.0  ZIP CODE-LEVEL GIS PESTICIDE EXPOSURE METRICS: ACCURACY OF AREA, POPULATION, AND NETWORK-ATTRIBUTED WEIGHTING METHODS
	3.1 ABSTRACT
	3.2 INTRODUCTION
	3.3 METHODS
	3.3.1 Study Area and Data Sources
	3.3.1.1 Pesticide Data
	3.3.1.2 U.S. Census Bureau Data
	3.3.1.3 Dasymetric Data

	3.3.2 Pesticide Data Processing and Application Matching
	3.3.3 Gold Standard Pesticide Exposure Metric: Dasymetric Mapping
	3.3.4 ZIP Code Pesticide Exposure Metrics: Area, Population, and Network-Attributed/Road Weighting
	3.3.5 Statistical Analysis

	3.4 RESULTS
	3.4.1 Gold Standard Pesticide Application Rates
	3.4.2 ZIP Code Pesticide Application Rates
	3.4.3 Accuracy Assessment of ZIP Code Rates vs. Gold Standard Rates

	3.5 DISCUSSION
	3.5.1 Accuracy Assessment
	3.5.2 Strengths
	3.5.3 Limitations

	3.6 CONCLUSIONS
	3.7 TABLES
	3.8 FIGURES

	4.0  USING GIS TO LINK SEER-MEDICARE AND CALIFORNIA PESTICIDE DATA: A POPULATION-BASED CASE-CONTROL STUDY OF PESTICIDE EXPOSURE AND HEPATOCELLULAR CARCINOMA RISK
	4.1 ABSTRACT
	4.2 INTRODUCTION
	4.3 METHODS
	4.3.1 Study Population
	4.3.2 Case and Control Ascertainment
	4.3.3 Pesticide Exposure
	4.3.4 Covariates
	4.3.5 Statistical Analysis

	4.4 RESULTS
	4.5 DISCUSSION
	4.5.1 Strengths
	4.5.2 Limitations

	4.6 CONCLUSIONS
	4.7 TABLES
	4.8 FIGURES

	5.0  GENERAL DISCUSSION
	5.1 SUMMARY OF FINDINGS
	5.2 PUBLIC HEALTH SIGNIFICANCE
	5.3 STRENGTHS AND LIMITATIONS
	5.4 FUTURE RESEARCH AND CONCLUSIONS

	APPENDIX A : LANDSAT IMAGES USED FOR NDVI SIGNATURES AND CLASSIFICATION
	APPENDIX B : LANDSAT AND LAND USE SURVEY (LUS) THREE-TIER PESTICIDE APPLICATION MATCHING METHODOLOGY
	APPENDIX C : SUPPLEMENTAL ANALYSIS: HEPATITIS TESTING IN THE SEER-MEDICARE POPULATION
	APPENDIX D : GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION (GWLR): ORGANOCHLORINE PESTICIDE EXPOSURE AND HEPATOCELLULAR CARCINOMA RISK AMONG RURAL CALIFORNIA RESIDENTS
	BIBLIOGRAPHY

