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Jane E. Clougherty, MSc, ScD 

The overall objective of this dissertation was to examine the utility of incorporating source-

meteorological interaction information from two commonly employed atmospheric dispersion 

models into the land use regression technique for predicting ambient NO2 and PM2.5. Ultimately, 

we are interested in obtaining highly resolved spatiotemporal pollutant estimates to examine the 

attenuation of health effect estimate bias that may result from exposure model misspecification. 

A multi-pollutant sampling campaign was conducted across six successive weekly sampling 

sessions in the summer and winter seasons of 2011-2013 in Pittsburgh, PA.  As a preliminary 

investigation, predictions from a roadway dispersion model (Caline3) were included as an 

independent predictor in pre-constructed winter season LUR models for NO2.  Caline3 output 

improved out-of-sample model fitness and added an additional portion of unexplained variation 

(3-10% by leave-one-out cross-validated R2) in NO2 observations compared to the standard LUR 

models.  Correspondingly, the AERMOD dispersion model was implemented to predict PM2.5 

from local and regional stationary sources in a similar hybrid framework.  As per cross-validated 

R2 and RMSE, AERMOD predictions improved overall model fitness and explained an additional 

9-13% in out-of-sample variability in summer and winter PM2.5 models.  Both dispersion model 

output functioned similarly when incorporated into standard LUR models, effectively displacing 
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the respective GIS-based covariates, corroborating model interpretability, and capturing the 

greatest degree of improvements at nearby, high-density source locations.  To examine the 

potential for spatially-differential exposure measurement improvement in health effect estimation 

studies, we applied LUR and hybrid LUR/ dispersion model PM2.5 predictions to non-sampled 

locations and observed non-Berkson-type measurement error only when the modeling domain was 

restricted to a near-source (<1km) environment. By a simple stochastic simulation, we 

demonstrated that a well characterized dispersion-derived geographic covariate, defined by a 

robust variance about the monitoring locations, can theoretically result in less exposure 

measurement error and exposure misclassification. Therefore, highly refined spatiotemporal 

information can improve out-of-sample prediction accuracy; however, the statistical fidelity 

remains constrained by the degree of source contribution captured by monitoring locations.  These 

findings have important public health implications for understanding air pollutant exposure 

measurement error derived from typical LUR studies.  In the absence of a spatially dense 

monitoring network, we demonstrated that AERMOD can produce a spatiotemporally resolved 

prediction surface compared to typical GIS-based covariates across a large urban-to-suburban 

domain with pertinent pollutant sources and complex topography. 
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1.0  INTRODUCTION 

1.1 ATMOSPHERIC POLLUTION 

Earth’s atmosphere is believed to have been formed following the accretion of an 

interstellar cloud of gas and dust where less dense materials coalesced farther from the core. 

Earth’s current atmosphere is composed primarily of the gases N2 (78%), and O2 (21%), whose 

relative abundances have depended upon various physical forcings (e.g., uptake and release from 

crustal material) spanning approximately 4,567 million years.  The remaining constituents, 

therefore, represent less than 1% of the atmosphere. Water vapor is highly variable and can reach 

a concentration abundance of 3% in the lower atmosphere depending upon evaporation and 

precipitation rates.  Nonetheless, trace gases and aerosols play a vital role in regulating Earth’s 

complex biosphere and trace gas abundances have changed dramatically over the past two 

centuries  (Seinfeld and Pandis, 2012).   

Atmospheric pollution follows a series of events where, the generation of pollutants is 

released from a source into the atmosphere; pollutants are transported and transformed; and effects 

from air pollution are defined at a receptor point (e.g., humans, vegetation, materials, and 

ecosystems).  Airborne particles have increased dramatically since the Industrial Revolution, and 

have led to unforeseen consequences including the detrimental urban smog events in Donora, PA 

and London, UK, for example.  In addition to processes that directly emit PM into the air (primary 
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PM), PM can also be formed when certain gaseous pollutants including sulfur dioxide (SO2), 

various oxides of nitrogen (NOx), volatile organic chemicals (VOCs), and ammonia (NH3) 

condense into particulates (secondary PM) after release from a source.  The chemical fates of air 

pollutants are inextricably coupled with complex physical and chemical processes in the 

atmosphere, and depending on their functional lifetimes, pollutants can exhibit a tremendous 

degree of spatial and temporal variability.   

Airborne particles or particulate matter (PM) is a term used to describe the sum of tiny 

solid and liquid particles suspended in the atmosphere. PM is a chemically, physically and 

biologically diverse mixture of materials including dusts, organic chemicals, smoke, soot, metals, 

acids, and liquid droplets that originate from numerous natural and man-made sources.  Not 

surprisingly, PM produced by diesel combustion engines, coal-fired power plants, and volcanoes 

differs substantially in composition.  A large contributor of anthropogenic air pollution is traffic-

related air pollution (TRAP), which has become is a major concern in urban areas, where the 

majority the world’s population now lives (HEI, 2010; Heilig, 2012).  In addition to PM, TRAP 

also includes significant quantities of gaseous and aerosolized pollutants such as: nitrogen oxides 

(NOx), carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), and 

polycyclic aromatic hydrocarbons (PAHs). Thus, environmental and human health effects from 

atmospheric pollution are related to physical and chemical properties including airborne 

concentrations, PM particle size, and overall chemical and elemental compositions. 

2 



1.2 ADVERSE HUMAN HEALTH EFFECTS OF AIR POLLUTION 

The average human adult takes about 20,000 breaths per day consisting of 10-25 m3 of 

exchanged air (0.14-0.29 L/s) (Hinds, 2012).  Although mechanisms are not fully known, one-in-

eight global deaths is currently attributable to polluted air (World Health Organization, 2012). 

Exposures to high levels of air pollution over short periods of time, or lower levels over longer 

time periods, are both cause for concern and both short-term and long-term effects on health have 

been demonstrated (Brunekreef and Holgate, 2002).  No evidence has been obtained for a threshold 

below which adverse effects do not occur (Pope, 2000).    

Numerous human health studies and subsequent reviews have linked exposures to certain 

air pollution with increased hospitalization for cardiopulmonary (heart and lung) diseases, 

decreased lung function, respiratory symptoms, adverse reproductive effects and premature death.  

The references cited to document these effects are typical of a large body of accumulating scientific 

literature [for reviews see: (Anderson et al., 2012; Bell et al., 2013; Bernstein et al., 2004; 

Brunekreef and Holgate, 2002; Cohen et al., 2005; Dockery, 2009; Faustini et al., 2014; Hoek et 

al., 2013; Holland et al., 1979; Kampa and Castanas, 2008; KuÈnzli et al., 2000; Matus et al., 

2012; Pope III, 2000; Pope III and Dockery, 2006; Rückerl et al., 2011; Samet et al., 2000; 

Spengler and Sexton, 1983; Wang et al., 2014; World Health Organization, 2012)]. 

Air pollution effects are not restricted to the respiratory system since small particles can be 

absorbed into the circulatory system, as deduced from markers of systemic inflammation and 

oxidative stress throughout the body (Araujo, 2011; Huttunen et al., 2012).  It is likely such 

responses are linked with numerous health outcomes including asthma and chronic bronchitis; and 

triggering premature death from preexisting heart and lung disease.  Therefore, accurate human 
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exposure assessment to air pollution is fundamental to understanding the true global and local 

burden of air pollution-related disease.  

1.3 EXPOSURE ASSESSMENT METHODOLOGIES 

As it is not practical to measure personal exposures for all individuals in large cohort 

studies, exposure assessments that estimate proximal ambient air pollution, usually at the 

residential address, are commonly employed (Jerrett et al., 2005).  These predicted exposures are 

then included as explanatory variables in a regression model to evaluate a health effect parameter 

of interest.  However, the use of predicted air pollution levels as surrogates of true exposure, are 

inevitably affected by measurement error and uncertainty (Basagaña et al., 2013).  Therefore, it 

has been assumed that exposure predictions with less measurement error relative to the unknown 

true exposures will result in improved health effect estimates (Jerrett et al., 2005). The degree to 

which exposure prediction, and subsequent exposure measurement error engenders uncertainty 

and bias in health-effect estimates has invoked research interests (Alexeeff et al., 2014; Basagaña 

et al., 2013; Szpiro et al., 2011a; Szpiro et al., 2011b).  

  The most straightforward approach of exposure prediction employed has been location-

based methods, which rely on the degree of propinquity to an emission source to proxy for human 

exposure (Baccarelli et al., 2009; Brender et al., 2011; Hoek et al., 2002; Maheswaran and Elliott, 

2003; Van Roosbroeck et al., 2007).  Subsequent refinements and variations of methodologies 

have included statistical interpolation (Jerrett et al., 2001; Künzli et al., 2005; Sahu and Mardia, 

2005; Wong et al., 2004), land use regression (Brauer et al., 2003; Briggs et al., 1997; Clougherty 

et al., 2013b; Jerrett et al., 2005), air quality models (Ainslie et al., 2008; Bell, 2006; Gulliver and 
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Briggs, 2011; KuÈnzli et al., 2000), and hybrid applications combining these methods 

(Arunachalam et al., 2014; Bekhor and Broday, 2013; Isakov et al., 2009; Johnson et al., 2010; 

Kloog et al., 2014; Kloog et al., 2012; Mölter et al., 2010b; Su et al., 2008; Van den Hooven et al., 

2012).  Attempts to resolve spatio-temporal concentrations of ambient PM2.5 and NOX over larger 

areas (e.g., Northeastern U.S) have leveraged satellite-derived aerosol optical depth (AOD) 

measurements (Chang et al., 2013; Chudnovsky et al., 2013; Kim et al., 2013; Kloog et al., 2014; 

Kloog et al., 2012; Lee et al., 2011; Lin et al., 2013; Nordio et al., 2013).  Spatial resolution of 

satellite-based AOD measurements have improved substantially from 10 x 10 km2 grid (Levy et 

al., 2007) to 1 x 1 km2 (Chang et al., 2013; Chudnovsky et al., 2013) and recently to 200m x 200m 

localized daily predictions using a series of mixed effects models (Kloog et al., 2014).   

Due to improved methods using geographic information systems (GIS), land use regression 

(LUR) has emerged as a standard tool for intra-urban exposure assessment (Jerrett et al., 2005).  

LUR models employ relatively simple inputs and provide significantly higher spatial resolution 

than proximity-based or purely statistical interpolation methods (Jerrett et al., 2005).  The LUR 

process combines a relatively large number of systematically distributed air pollution measures 

with “land use” variables (e.g., population density) usually managed in GIS (Fig. 1).  Statistical 

relationships between air pollutant measurements and land use predictor variables are derived 

using ordinary least squares multiple linear regression (Hoek et al., 2008).  The resulting stochastic 

model is then applied to non-sampled areas by exploiting the observed pollutant variance explained 

by the statistically robust predictor (land use) variables.  Exposure predictions are then included 

as explanatory variables, usually in linear or logistic regression models for a health outcome of 

interest.  Therefore, the LUR method for epidemiological study relies upon the quantity and quality 

of pollutant measurements, fidelity of the GIS (e.g., variability represented by pertinent geographic 
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covariates) (Madsen et al., 2011), and the variability of geographic covariates in the subject 

population of the study cohort (Szpiro et al., 2011a).   

Figure 1. Components of a land use regression model with pollutant measures from monitoring locations as the 
dependent variable and land use characteristics within buffer areas as the independent predictor variables 

The Health Effect Institute provided a critical review of traffic-related air pollution 

exposure models noting a fundamental limitation of LUR - its inability to represent the true 

contribution (associated variance) of traffic-related emissions (HEI, 2010).  This phenomenon is 

exemplified when adjacent land-use and predictor variables in LUR are measured and summed as 

nearest distances from- or as densities within circular areas (Euclidean buffers) (Fig. 1). These 

isotropic areal units fail to capture small-scale spatiotemporal pollutant variability governed in part 
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by interactions between emissions sources and meteorological processes (eg., upwind vs. 

downwind advective motion) (Ainslie et al., 2008; Jerrett et al., 2005; Su et al., 2008; Wilton, 

2011). 

In an attempt to better represent near-roadway source-concentration variance, prior LURs 

have built-in some measures of temporal variability by including meteorological covariates (e.g., 

wind speed or mixing heights) (Arain et al., 2007; Clougherty et al., 2009; Jerrett et al., 2007; Su 

et al., 2008), or by weighting source-concentration relationships by predominant wind direction 

(Clougherty et al., 2008; Mavko et al., 2008; Van den Hooven et al., 2012).  Ainslie et al. (2008) 

and Su et al. (2008) attempted to capture atmospheric dispersion using a source-area concentration 

grid of distributed emissions under varying atmospheric conditions and three-dimensional wedge 

shaped buffers based on predominant wind fields.  Likewise, Wilton (2011) incorporated 

meteorologically-varying covariates as volume sources in a CALPUFF Lagrangian puff model 

(Scire et al., 1990).  Wilton et al. (2010) and Lindström et al. (2013) both attempted Caline3/LUR 

modeling efforts  with each reporting inconsistent model improvement, albeit more parsimonious 

and interpretable models. 

Ideally, estimation of ground-level concentration of air pollutants should include emissions 

characteristics, meteorologically-related dispersion, transformation and removal processes 

(Bekhor and Broday, 2013), along with a means of validation (Chang and Hanna, 2004).  

Mathematical models can be used simulate transport of pollutants deterministically, as a function 

of source characteristics (e.g., location, strength, size) and temporally-varying meteorological 

conditions (e.g., wind speed, direction, atmospheric stability) (Briant et al., 2013; Chang and 

Hanna, 2004).  Modeling, therefore provides a supplement to air quality monitoring by providing 

information that cannot be provided by other means (Barratt, 2013).  Of the many types of models 
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employed, Gaussian-type plume dispersion models are the most widely developed and utilized 

regulatory atmospheric dispersion models (Ristic et al., 2014).  Gaussian models assume a 

Gaussian distribution of the fluid plume in both the vertical and horizontal directions.  Therefore, 

under steady-state conditions, by assuming the downwind velocity vector coincides with the x axis, 

the width of the plume in the y and x axes can be determined by the respective standard deviations 

σx and σy given sufficient averaging times.  Dispersion models have been employed extensively in 

regulatory air quality management, and to a lesser degree in human exposure assessments (Jerrett 

et al., 2005; Johnson et al., 2010; Marshall et al., 2008; Mölter et al., 2010b; Nafstad et al., 2003; 

Nyberg et al., 2000; Van den Hooven et al., 2012).  Wide adoption of air quality models has been 

hindered by relatively intensive data input requirements, high costs, and programming demands; 

however, recent Microsoft graphical user interfaces (e.g., Lakes Environmental, BREEZE 

Software) have benefitted ease of use.   

In comparison with LUR approaches that can provide detailed spatial resolution, dispersion 

modeling offers high temporal variability with theoretically unlimited spatial resolution. 

Furthermore, it has also been demonstrated that LUR-derived exposure misclassification may 

depend more so on how much of the true spatial variability is explained by the geographic 

covariates in the exposure model, and not necessarily the accuracy of the predictions (Alexeeff et 

al., 2014; Szpiro et al., 2011a), especially when LUR models are constructed from a small number 

of measurement sites (Basagaña et al., 2013).  Ergo, standard LUR could be strengthened by 

incorporating source-meteorology interaction information, thus producing theoretically- or 

physically-based exposure estimates as opposed to predictions derived purely from empirical 

relationships (Jerrett et al., 2005; Su et al., 2008; Wilton et al., 2010).  Gaussian plume dispersion 

model output nested within LUR, therefore, offers a complementary framework – where spatio-
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temporal variability of pollutant source-concentration relationships are derived deterministically, 

thereby improving physical model interpretability and reliability of exposure estimates.   

1.4 DISSERTATION OBJECTIVES 

In acknowledging the emergence of land use regression modeling for exposure assessment 

in epidemiological studies, the overall objective of this dissertation is to examine the utility of 

incorporating source-meteorological interaction information from two commonly employed 

atmospheric dispersion models into the land use regression technique for both NO2 and PM2.5. 

Chapter 2 of the dissertation specifically aims to better capture near-roadway source-

concentration variability of NO2 across Pittsburgh, PA by incorporating model output from the 

Caline3QHCR line- (roadway) source dispersion model into winter-only LUR models.   

Chapter 3 examines the utility of incorporating industrial source-meteorological 

information from the AERMOD modeling system into an LUR predicting PM2.5 across Pittsburgh, 

PA.  In contrast to the Caline3 model, AERMOD can provide detailed resolution in the spatio-

temporal variability of air pollutants emitted from stationary sources in both simple and complex 

terrain scenarios.  

In Chapter 4, we examine the impact of measurement error on health effect estimates from 

LUR and hybrid AERMOD/ LUR models.  We constructed two annual PM2.5 prediction models 

by combining summer and winter measurements (presented in Chapter 3) with (1) local EPA AQS 

measures; and (2) local EPA AQS measures and annual long-term AERMOD predictions. 

Specifically, we examine AERMOD’s potential to impact measurement error and subsequent acute 

and chronic health-effect bias.  We used a simulated cohort of 5,000 residential addresses to 
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examine the potential magnitude of bias and variance inflation in measurement error between 

annualized LUR and LUR/ AERMOD modeling frameworks.   

The final portion of the dissertation summarizes the overall scientific contribution, and 

attempts to place the findings in the relative context of public health and risk assessment 

disciplines.  The final summary includes a short description of planned epidemiologic studies 

utilizing the hybrid modeling framework presented here, and also provides suggestions for future 

research in the field of exposure assessment.  
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2.0  HYBRID CALINE3/ LUR MODEL FOR PREDICTING NO2 

2.1 INTRODUCTION 

Land use regression (LUR) has emerged as a standard tool for intra-urban air pollution 

exposure assessment in recent years (Brauer et al., 2003; Briggs et al., 1997; Clougherty et al., 

2013b; Jerrett et al., 2005).  LUR, however, offers limited capability to incorporate source-

meteorology interaction information, thereby producing estimates based on empirical 

relationships, rather than a theoretical-physical basis (Jerrett et al., 2005; Su et al., 2008; Wilton et 

al., 2010).  Thus, there is now growing interest in incorporating principles of air dispersion 

modeling into LUR in the hopes of improving accuracy, interpretability and generalizability of 

such models (Gulliver and Briggs, 2011; Lindström et al., 2013; Mölter et al., 2010b; Wilton et 

al., 2010). 

LUR quantifies statistical relationships between measured pollution concentrations and 

emission source indicators to estimate concentrations at non-sampled locations (Hoek et al., 2008).  

Significant traffic-source indicators have included total length of roadway (Henderson et al., 

2007), distance from nearest roadway (Gilbert et al., 2005) and traffic count density (Ross et al., 

2006) within various radial buffer distances.  The statistical relationships derived from these 

metrics in LUR are based on observed values and statistical principles, and generally fail to account 

for short-term interactions between sources and atmospheric conditions (Wilton et al., 2010).  

Moreover, traffic-related pollution can lead to complex spatio-temporal patterns in air pollution, 

necessitating dedicated near-roadway sampling (Gulliver and Briggs, 2011; Mölter et al., 2010b), 

beyond the data obtained from fixed-site monitors (Jerrett et al., 2005), and refined spatial analysis.  
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Prior LURs have been attempted to incorporate some measure of temporal variance into 

source-concentration relationships by including meteorological covariates (e.g., mean wind speed 

or direction) (Arain et al., 2007; Clougherty et al., 2009; Jerrett et al., 2007; Su et al., 2008), or by 

weighting source-concentration relationships by predominant wind direction (Clougherty et al., 

2009; Mavko et al., 2008; Van den Hooven et al., 2012).  Ainslie et al. (2008) and Su et al. (2008) 

attempted to capture atmospheric dispersion using a source-area concentration grid of distributed 

emissions under varying atmospheric conditions.  Likewise, Wilton (2011) incorporated 

meteorologically-varying covariates as volume sources in a CALPUFF Lagrangian puff model 

(Scire et al., 1990).  To the best of our knowledge, only two other hybrid line-source 

dispersion/LUR modeling efforts have been attempted (Lindström et al., 2013; Wilton et al., 2010) 

with each reporting variable model improvement, albeit more parsimonious and interpretable 

models. 

Ideally, estimation of ground-level concentration of air pollutants should include emissions 

characteristics, meteorologically-related dispersion, transformation and removal processes 

(Bekhor and Broday, 2013), along with a means of validation (Chang and Hanna, 2004).  Of the 

many types of models employed, Gaussian-type plume dispersion models are the most widely 

developed and utilized regulatory atmospheric dispersion models (Ristic et al., 2014).  Gaussian 

dispersion models have been employed extensively in regulatory air quality management, and to 

a lesser degree in human exposure assessments (Jerrett et al., 2005; Johnson et al., 2010; Marshall 

et al., 2008; Mölter et al., 2010b; Nafstad et al., 2003; Nyberg et al., 2000; Van den Hooven et al., 

2012).  Gaussian dispersion models can be used simulate transport of pollutants deterministically, 

as a function of source characteristics (e.g., location, strength, size) and temporally-varying 

meteorological conditions (e.g., wind speed, direction, atmospheric stability) (Briant et al., 2013; 
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Chang and Hanna, 2004).  Therefore, standard LUR could be strengthened by incorporating 

source-meteorology interaction information from dispersion model output, thus producing 

theoretically- or physically-based exposure estimates as opposed to predictions derived purely 

from empirical relationships (Jerrett et al., 2005; Su et al., 2008; Wilton et al., 2010).   

In this chapter, we aimed to improve prediction of NO2 across Pittsburgh, PA, USA, by 

incorporating the Caline3QHCR line- (roadway) source dispersion model (Benson, 1992; Eckhoff 

and Braverman, 1995) output as an independent covariate into pre-constructed LUR models.  Our 

multi-pollutant spatial saturation study was designed to disentangle impacts of multiple pollution 

sources (e.g., legacy industry, vehicle traffic), and to assess potential modifiers of source-

concentration relationships (e.g., elevation) across an urban-to-suburban landscape (Shmool et al., 

2014).  We utilized two successive years of winter-season only NO2 measurements.  We evaluated 

improvements in model fit by adding Caline3 predictions as an additional term to three pre-

constructed LUR models and observed changes in regression coefficients and covariate 

significance.  Specifically, we tested (1) Caline’s effectiveness given diurnal traffic variability in 

a weekday-only (year 1) vs. full-week (year 2) LUR models; (2) whether Caline’s improvements 

in fitting accuracy differed across sampling intervals by including modeled predictions in a 

combined years LUR model (year 1 + year 2); and (3) Caline’s effect on LUR predictions as a 

function of traffic density and distance from roadway in an attempt to better explain near-source 

variability. 
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2.2 METHODS 

2.2.1 NO2 Measurements for Pittsburgh 

NO2 was sampled across two successive winter seasons from early January through late 

March of 2012 and 2013.  Year 1 comprised of six successive 5-day (Monday through Friday) 

sampling sessions and is hereafter referred to as the weekday model. Year 2 was comprised of six 

successive 7-day (Monday through Sunday) sampling sessions and is referred to hereafter as the 

full-week model. We employed a spatial saturation design to characterize intra-urban variability 

in multiple air pollutants (e.g., PM2.5, NO2, O3, SO2) across the greater Pittsburgh, PA metropolitan 

area, systematically allocating sampling sites across complex topography and emission source 

regimes, as detailed in Shmool et al. (2014).   

NO2 samples were collected using Ogawa passive badge samplers (Ogawa & Co. USA 

Inc., Pompano Beach, FL, USA) housed in weather-tight shelters and mounted three meters above 

street-level.  Ogawa badges were analyzed via water-based extraction and spectrophotometry 

(Thermo Scientific Evolution 60S UV-Visible Spectrophotometer). Co-located NO2

measurements were well correlated (r = 0.93) across eight (four per year) randomly-selected 

monitoring locations. Measurements were corrected for blank samples which ranged from 0.01 to 

0.05 ppb.  

2.2.2 Study Domain and Site Selection 

Our study domain encompassed a contiguous 500 km2 area containing the Pittsburgh 

metropolitan area and key local industrial sources, demarcated at census administrative boundaries 
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to enable merging with socioeconomic and health data in future epidemiological applications.  We 

used a geographic information system (GIS) to systematically allocate monitoring locations cross-

stratified across important local pollution sources (e.g., traffic, steel manufacturing) and potential 

topographic modifiers of source-concentration interactions (e.g., elevation) using ArcMap 10.0-

10.3 (ESRI, Redlands, CA, USA) and Geospatial Modeling Environment, V. 0.7.2 (Spatial 

Ecology, LLC).  

Specifically, we anticipated variance in the local pollutant regime to be characterized by: 

1) traffic density, 2) industrial density (weighted emissions: PM2.5 + NOX + SO2 + VOCs), and 3)

elevation at 30 m2 grid resolution.  We used stratified random sampling to select monitoring 

locations representing all possible combinations of high and low source intensities.  Site selection 

and GIS-based covariate calculations are detailed elsewhere (Shmool et al., 2014).  Notably, the 

traffic density metric used for site allocation was total daily vehicle counts from all primary 

roadways, and an estimated 500 vehicles/ day for secondary roadways, multiplied by road segment 

length (meters). Resultant traffic densities were extrapolated as a Gaussian decay function from 

roadway centerlines, producing a continuous kernel density surface. The dichotomization for high 

vs. low traffic density was chosen at the 70th percentile, given the left-skewed distribution and goal 

of over-sampling hypothesized high-pollution areas (Shmool et al., 2014).  

Integrated NO2 samples were collected across six successive sampling sessions with six 

randomly-selected sites per session, resulting in a total of 36 measurements per season. To 

minimize temporal confounding across sessions, sites were systematically allocated across 

sessions to balance emissions-indicator strata and spatial coverage. A randomly-selected subset of 

12 sites, representing all possible combinations (n=23) of emissions source strata, were retained in 
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both years (Fig. 2) for direct comparison.  Thus, two winter-only sampling campaigns covered 60 

unique locations with a total of 72 NO2 measurements. 

Figure 2. Study domain of Greater Pittsburgh Metropolitan Area and year 1 and 2 sampling locations 
and reference sites. Primary roadways modeled using Caline3 are shown in 1000 m radial buffers

2.2.3 Temporal Reference 

Two continuous reference sites were sampled each weekly session to adjust for temporal 

variability in pollutant measures and to limit spatiotemporal bias in comparing measures across 

sessions (Brauer et al., 2003; Henderson et al., 2007; Hoek et al., 2008).  A ‘regional background’ 

site was selected in a county park (Settler’s Cabin Park) upwind from the study area and away 
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from local sources, about 4.0 km west of the study domain (Fig. 2).  The site was categorized in 

the hypothesized lowest-concentration source strata (low industry, low traffic, high elevation). 

The second reference site (Braddock, PA – in the eastern part of our domain) was designated an 

‘urban reference’ site (high industry, high traffic, low elevation) (Fig. 2).  From year 1 sampling, 

we found that the temporal reference adjustment method influenced observed source-concentration 

relationships, and the mean of the background and urban reference sites was more appropriate for 

temporally adjusting NO2 given consistent near-zero concentrations at the background site 

(Shmool et al., 2014).   

2.2.4 Caline3 Line-Source Dispersion Model 

We implemented Caline3 (Caline3QHCR) line source dispersion model (Benson and 

Baishiki, 1980; Eckhoff and Braverman, 1995) using CalRoads View user interface (Lakes 

Environmental, Waterloo, Ontario, CA), to simulate primary vehicle emissions within 1000 m of 

sampling sites. Given the site-specific source characteristics and session-specific meteorological 

conditions, Caline3 uses a Gaussian, steady-state dispersion model to calculate transport of 

nonreactive aerosols, providing hourly concentration estimates at discrete receptors.  The discrete 

modeling receptors were defined as the 60 unique sampling locations.  We modeled a nonreactive 

gaseous pollutant environment by choosing CalRoads’ particulate matter designation with a 

settling velocity of 0.0 g/s to estimate total NOX (NO + NO2) similarly to Wilton et al. (2010). We 

assigned a fleet-wide-specific NOX emission factor obtained for all mobile source types and all 

road types (excluding off-network) for Allegheny County, PA using the U.S. EPA’s Motor Vehicle 

Emission Simulator (MOVES) 2010a (USEPA, 2010), and derived a weighted average of 1.325 

(g/vehicle-mile) of NOX for all roadway segments.  
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Primary roadways within a 1,000 m radial distance of each sampling site were included in 

the Caline3 model, totaling 8,274 modeled straight-line, one-way traffic roadway links 

(Pennsylvania Department of Transportation, 2013) (Fig. 2). The 1,000 m radial buffer was chosen 

to capture all roadway emissions given an estimated 80-90% decrease in roadway NO2 

concentrations within 115-570 m (Karner et al., 2010), as evidence for roadway effects beyond 

1000m is mixed (Jerrett et al., 2007; Su et al., 2009; Wilton et al., 2010).  Caline3 output was 

calculated utilizing hourly meteorological data corresponding to the precise sampling session, 

encompassing an integrated average derived from 120 modeled hours for the weekday model, an 

integrated average from 168 modeled hours for the full-week model. Typical graphical model 

output is shown in Fig. 3.  Surface characteristics (e.g., albedo, Bowen ratio) were estimated with 

AERSURFACE (Lakes Environmental, Waterloo, Ontario, CA) for an urban setting during winter 

conditions.   
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Figure 3. Typical Caline3 model output indicating estimated concentration contours from modeled roadway 
links within 1000m buffer area of receptor/sampling site (R_4)

2.2.5 Meteorological Data 

Hourly meteorological data (e.g., wind speed, wind direction, temperature, precipitation, 

ceiling height) were downloaded from the National Climate Data Center (NCDC) in TD-3505 

(ISHD – full archival) format, and used as both Caline3 inputs and as independent and interaction 

covariates in LUR model building.  Radiosonde upper air data was collected at the Pittsburgh 

National Weather Service station located in Moon Township, PA, approximately 20 miles upwind 
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of Pittsburgh and was obtained from the National Oceanic and Atmospheric Administration 

(NOAA).  Surface and profile files were formatted in AERMET View 7.3.0 (Lakes Environmental, 

Waterloo, Ontario).  Planetary boundary layer estimates were generated using both surface and 

profile data with AERMET View and were imputed into the RAMMET View 5.2.0 (Lakes 

Environmental, Waterloo, Ontario) mixing height estimator to produce hourly urban mixing height 

estimates and atmospheric stability categories.  

2.2.6 LUR Model Building 

LUR models were first constructed without Caline3 to test the marginal benefit of 

incorporating dispersion into a LUR modeling context, as a supplemental may be most applicable 

elsewhere. GIS-based covariates were calculated across a range of source indicator categories, 

each at monitoring location (Table 1).  The following model-building approach similar to 

Clougherty et al. (2013b) was implemented: 1) candidate indicators were grouped by source 

category (e.g., traffic indicators, meteorology, industrial emissions) and ranked according to the 

nonparametric bivariate correlations (Spearman correlations, p< 0.1) with temporally-adjusted 

NO2 concentrations by the formula:  

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒔𝒔𝒔𝒔 =  
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔

[𝑹𝑹𝑹𝑹𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎]𝒋𝒋
∗  [𝑹𝑹𝑹𝑹𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎]𝒌𝒌 

      (2.1) 

Where adjConcsj is the temporally-adjusted pollutant concentration at monitoring site s 

during sampling session j, Concsj is the pollutant concentration at monitoring site s during sampling 

session j, [Refmean]j is the mean of regional background and urban reference site concentration 

during sampling session j, [Refmean]k is the seasonal arithmetic average of the mean regional 
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background/urban reference session values (n=6).  2) Temporal variability was accounted for in 

LUR models using the session-specific regional background measurement ([Refmean]j from eq. 2.1) 

as the first independent term. 3)  Two terms from each source category were retained (if applicable) 

for linear regression given the strength of bivariate correlations with temporally-adjusted NO2 

(maximum p-values of 0.05) (Shmool et al., 2014).  4) Regression models were initially fit using 

forward stepwise selection and verified with backward stepwise selection to assess overall model 

improvement at each stage, using the coefficient of determination (R2), and removing non-

significant (p > 0.05) covariates in order of descending p-value. 5) Given the high potential for 

collinearity, covariates were removed if variance inflation factors (VIF) were greater than 2 and 

further sensitivity tests were performed including; 6) random forest decision trees and forward 

stepwise addition based on buffer size (largest to smallest and vice versa).   LUR Model building 

was performed in STATA/SE 13.0 (StataCorp. 2013).  

To evaluate the utility of Caline3 within a LUR framework, we first built standard yearly 

and combined years LUR models without Caline3 following the general form in Equation 2.2: 

𝑪𝑪𝑺𝑺 =  𝜷𝜷𝟎𝟎 +  𝜷𝜷𝟏𝟏𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒕𝒕  +  �(𝜷𝜷𝒊𝒊

𝒎𝒎

𝒊𝒊=𝟏𝟏

𝒙𝒙𝒊𝒊,𝒔𝒔) + 𝜺𝜺𝒔𝒔 

(2.2) 

where Cs is the measured concentration of NO2 at location s (µg/m3), β0 is the intercept (µg/m3), 

β1TEMPt is the mean concentration of regional background and urban reference for session j, βi is 

the regression coefficient of the ith spatial variable (Table 1) in appropriate units, xi,s is the value 

of the ith spatial variable at location s, m is the number of spatial covariate classes (Table 1) and Ɛs 

is the model prediction error at location s. 
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Weekday and full-week LUR models were built independently to allow for comparisons 

given varying weekend diurnal traffic patterns, and to better assess the contribution of Caline3 

which includes both spatial and temporal information.  Finally, LUR and subsequent LUR/ Caline3 

models were constructed utilizing all 72 NO2 measurements, hereafter referred to as the merged 

years model.  This merged model increased model power and tested Caline3’s effectiveness when 

combining temporally misaligned measurement data. Repeated measures were treated as random 

effects by including random intercepts for year sampled in a two-level mixed model with restricted 

maximum likelihood and an independent covariance structure.  

 
Table 1. GIS-based spatial covariates at various buffer distances for LUR modeling building 

Source category for 
LUR Modeling Covariates examined within (50, 100, 200, 300, 500, 750, 1000 m) 

Traffic density indicators 
Mean density traffic (primary roads) 
Mean density traffic (primary and secondary roads) 
Number of signaled intersections 

Road-specific measures 

Average daily traffic on nearest primary road a 
Distance to nearest major road a 
Distance to roadways stratified by standard deviations   
    greater than mean (e.g., urban, arterial, saturated) 
Summed length of primary roadways 
Summed length of primary and secondary roadways 

Truck, Bus, and Diesel 

Mean density of bus traffic 
Distance to nearest bus route a 
Outbound and inbound trip frequency per week summed by route 
Mean density of heavy truck traffic on nearest primary roadway 

Population Census population density  
Land Use / Built 
Environment 

Total area of industrial parcels 
Total area of industrial and commercial parcels 

Industrial emissions 

Distance to nearest industrial stationary source  
Summed density of total TRI pounds emitted per meter 
Summed density of total NEI pounds of PM2.5, SO2, NOx,  
     and VOCs emitted per meter 
Summed density of total PM2.5 emitted per meter 
Summed density of total SO2 emitted per meter 
Summed density of total NOx emitted per meter 
Summed density of total VOCs emitted per metes 

Transportation Facilities 
Distance to nearest active railroad a 
Summed line length of active railroads 
Distance to nearest bus depot a 
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Table 1. cont.  

Potential Modifying Factors 

Topography Average elevation 
Elevation at receptor  

Meteorology 
Temperature/Relative humidity a,b 
Frequency of inversions a 
Wind direction and wind speed a 

a area buffer not applicable 
b temperature and humidity were collected on-site 

2.2.7 Hybrid LUR/ Caline3 model framework 

 Modeled concentration predictions from Caline3 were incorporated as an independent 

covariate in LUR models for NO2.  Figure 4 provides a conceptualization of integrating 

meteorological and traffic volume information into LUR via Caline3, resulting in a hybrid LUR 

modeling framework. 

 

Figure 4. Conceptual framework for incorporating traffic-related emissions and meteorology information into 
Caline3 preceding addition to the land use regression model 
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To incorporate Caline3 information into LUR, session-specific Caline3 model predictions 

were added as an independent covariate to equation 2.2 and incorporated as shown in equation 2.3:  

𝑪𝑪𝒔𝒔 =  𝜷𝜷𝟎𝟎 +  𝜷𝜷𝟏𝟏𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒋𝒋  +  �(𝜷𝜷𝒊𝒊

𝒎𝒎

𝒊𝒊=𝟏𝟏

𝒙𝒙𝒊𝒊,𝒔𝒔) + 𝜶𝜶𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 ��𝒅𝒅𝒔𝒔,𝒕𝒕
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪

𝒉𝒉

𝒕𝒕=𝟏𝟏

�  + 𝜺𝜺𝒔𝒔 

(2.3) 

Where;  𝜶𝜶𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  = regression coefficient for the Caline3 covariate 

𝒅𝒅𝒔𝒔,𝒕𝒕
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪   = dispersion concentration (µg/m3) predictions from Caline3 Gaussian     

dispersion model for site s for hour t 

2.2.8   Model Performance Statistics 

 Model performance was evaluated by coefficient of determination (R2), given by the 

equation 3: 

𝑹𝑹𝟐𝟐 = 𝟏𝟏 −
∑ (𝒙𝒙𝒊𝒊 − 𝒙𝒙�𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ (𝒙𝒙𝒊𝒊 − 𝒙𝒙�𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

 

(2.4) 

Where; n is the number of data points, xi are the measured values, 𝑥𝑥�i are the predicted values, and 

𝑥̅𝑥i is the mean of the measured values.  Root-mean-square-error (RMSE) was also calculated as a 

measure of model performance, given by the formula: 

 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  √𝑴𝑴𝑴𝑴𝑴𝑴 = �∑ (𝒙𝒙�𝒊𝒊 − 𝒙𝒙𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏  
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(2.5) 

Where; xi are the measured values, 𝑥𝑥�i are the predicted values.  Instead of the RMSE for the merged 

model, the Akaike information criterion (AIC) was reported given the dependence on the 

maximum likelihood framework. Finally, standardized beta (β) coefficients were computed by 

transforming outcome and predictor variables to z-scores prior to regression.  Standardized 

coefficients are measured in standard deviations, as opposed to the respective variable units.  This 

allows for inter-comparison of predictors within each model by providing a relative impact when 

adding or removing terms.  

Cross-validation: All models were evaluated using the leave-one-out cross-validation 

method where predictions from a regression model were built from n-1 measurement sites.  The 

model estimated using n-1 sites is considered the training set, from which, the predicted value for 

the test site is obtained.  This process is repeated n times, until a prediction value is generated for 

each site using its respective training set.  Cross-validated R2 (𝑅𝑅𝐶𝐶𝐶𝐶2 ) and RMSE are computed by 

regressing the observed measures against the cross-validated predictions using the equations 

above.  In evaluating highly resolved spatio-temporal information from dispersion output, this 

cross-validation process allows for an assessment of out-of-sample performance, which we are 

ultimately interested in.   
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2.3 RESULTS 

2.3.1 Summary Statistics 

Higher NO2 concentrations, on average, were observed for weekday-only (year 1) samples 

and greater variability was observed in full-week (year 2) samples (Table 2).  Measurement 

variability can also be observed between and within sessions as indicated by box-plots in Fig. 5.  

The 12 repeated sites were well correlated between years (Pearson’s r=0.65, p=0.02).  On average, 

higher concentrations were observed at high traffic, high industry, and valley sites.  Of the three 

source indicators originally used for site selection, valley vs. non-valley produced the largest 

concentration differences, followed by traffic density, and industrial emissions. Moreover, all three 

source indicators were prominent in LUR models (Tables 4 and 5).  Caline3 predictions stratified 

by low- and high-traffic sites produced means of 1.69 µg/m3 (SD = 1.66, n = 37) and 4.48 µg/m3 

(SD = 3.6, n = 35), respectively.  The maximum range in predictions at a repeated site was 4.24 

µg/m3 signifying the potential impact of source/meteorological interaction information. 

   
Table 2. Summary statistics of non-adjusted winter NO2 measurements (PPB) 

 Weekday1 Full-week2 Regional  
Background3 

Urban  
Reference3 

n 36 36 12 12 
Min 8.9 6.4 3.9 11.5 
Max 29.8 26.9 10.4 24.1 
Mean 17.9 14.7 7.4 18.1 
Median 18.4 13.7 7.88 18.5 
SD 4.4 4.9 2.2 3.5 

 

We observed consistent and stable covariance between the regional background and the 

urban reference site measurements in all sampling sessions (Table 2, and Fig. 5).  Generally, the 
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urban reference site captured above-mean concentrations during most sessions, while the regional 

background site recorded the lowest concentration during all sessions producing a mean reference 

value near the 25th percentile of distributed measures (Fig. 5).   

 

Figure 5. Boxplots of NO2 measurements from distributed sites with urban reference and regional background 
continuous sites as plotted lines by session 

2.3.2 Summary of Model Performance 

 Pre-constructed LUR models without Caline3 produced final cross-validated  

𝑅𝑅𝐶𝐶𝐶𝐶2  values of 0.57, 0.76 and 0.73 (Snijders/Bosker R2) for weekday, full-week, and merged years, 

respectively (Table 3). The addition of the Caline3 term improved  

𝑅𝑅𝐶𝐶𝐶𝐶2  values to 0.67 and 0.79 for both yearly models each doing so with one fewer predictor.  The 

cross-validated R2 improved to 0.78 for the merged years model following the addition of the 

Caline3 term (Table 3).  Cross-validated RMSE values also demonstrated improvements following 

the addition of Caline3.   
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Table 3. Summary LUR and LUR + Caline3 model results.  R2, and RMSE leave-one-out cross-validated 

Model 
Weekday only - Year 1 Full-week - Year 2 Merged Years 

n 
terms 𝑅𝑅𝐶𝐶𝐶𝐶2  RMSE n 

terms 𝑅𝑅𝐶𝐶𝐶𝐶2    RMSE n 
terms 𝑅𝑅𝐶𝐶𝐶𝐶2   AIC 

LUR 4 0.57 2.51 4 0.76 2.48 5 0.73 379.72 
LUR + Caline3 3 0.67 2.31 3 0.79 2.21 5 0.78 362.15 

2.3.3 Weekday LUR + Caline3 

 The pre-constructed weekday (Year 1) LUR model included distance to nearest industrial 

source, mean traffic density within 50m radius, and average wind speed.  The temporal term 

explained approximately 22% of NO2 in-sample variability across sampling sessions.  The addition 

of the Caline3 term to the pre-constructed model effectively displaced the mean traffic density (50 

m) (p = 0.28) and average wind speed (p = 0.14) terms, while improving overall model fit as per 

cross-validated R2 and RMSE (Table 3).  Following the addition of Caline3, changes in 

standardized β coefficients show a decrease in relative strength for all three spatial predictors, with 

the most significant decrease occurring for the mean traffic density term (Table 4).  

 
Table 4. Weekday LUR (n = 36) with addition of Caline3 covariate 

Covariates Predicting 
Weekday NO2 

LUR LUR + Caline3 
NO2 

β (p-value) 
Seq. 
R2 

NO2 
β (p-value) 

Seq. 
R2 

Change 
in std. β 

 Intercept 11.31  3.66  -- 
Mean temporal NO2 0.99* 0.22 1.08* 0.41 +0.006 
Distance to nearest industrial    
     stationary source -6.0x10-4 ** 0.49 -5.5x10-4**  0.59 -0.03  

Mean traffic density (50m) 0.03** 0.66 NA (0.31) Ŧ -- -0.26 
Average wind speed -1.68* 0.71 NA (0.14) Ŧ -- -0.08 

Caline3 -- -- 0.84** 0.75 -- 
Ŧ Covariate removed due to p > 0.05 
*significant: p <0.05; **significant p <.0001 
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2.3.4 Full-week LUR + Caline3 

The pre-constructed full-week (7-day) LUR model differed substantially in comparison to 

the weekday model.  The temporal term explained approximately 50% of in-sample variability of 

NO2 compared to only 22% in the weekday model.  Spatial predictors included mean elevation 

within 300m, number of traffic-signaled intersections within 750m and total area of industrial and 

commercial land use parcels within 1,000m (Table 5).  Elevation was tested with various 

interaction terms, but was not significant.  Similarly to the weekday model, the signaled 

intersections (750m) (p = 0.11), and total industrial and commercial parcels (1000 m) (p = 0.27) 

terms were displaced by the addition of the Caline3 term in the full-week model.  Standardized 

beta coefficients decreased for the two displaced terms and increased for the temporal and 

elevation terms.  Therefore, after accounting for temporal variability, the 7-day LUR model with 

only mean elevation within 300m and Caline3 output explained 83% of in in-sample variability in 

NO2, with a LOOCV R2 of 0.79.  Thus, Caline3 provided slightly greater model improvement for 

the weekday-only model compared to the full-week model.   

Table 5. Year 2 (full-week) LUR (n=36) with addition of Caline3 output 

Covariates Predicting Full-
week NO2 

LUR LUR + Caline3 
NO2 

β (p-value) 
Seq. 
R2 

NO2 
β (p-value) 

Seq. 
R2 

Change 
in std. β 

 Intercept 6.38 8.83 -- 
Mean temporal NO2 1.12** 0.50 1.24** 0.50 +0.03 
Mean elevation (300m) -0.03* 0.69 -0.04* 0.69 +0.04 
Signaled intersections (750m) 0.18 * 0.78 NA (0.11) Ŧ -- -0.12 
Total area of industrial and   

commercial parcels (1000m) 2.57x10-7 * 0.82 NA (0.29) Ŧ -- -0.11 

Caline3 -- -- 0.53** 0.83 -- 
Ŧ Covariate removed due to p > 0.05 
*significant: p <0.05; **significant p <.0001
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2.3.5 Merged Years LUR + Caline3 

The merged years (weekday + full-week) model included all winter-season NO2 measures 

and followed identical model building methods to preceding models.  Repeated measured were 

accounted for by a random intercept in a mixed effects modeling structure utilizing restricted 

maximum likelihood (p < 0.0001).  All covariates significant in the weekday-only model were 

retained in the merged model with the addition of the mean elevation (300 m) term (Table 6). 

Following the addition of the Caline3 term, the mean traffic density (50 m) term was displaced. In 

contrast to the weekday-only model, the mean wind speed term remained significant (p = 0.017) 

following the addition of Caline3.  Variance inflation factors were 1.56 and 1.02 for the mean wind 

speed and Caline3 terms, respectively.  The merged model had an intra-class correlation 

coefficient of 0.41 due to repeated site variation.  AIC and cross-validated values are shown in 

Table 3, and indicated an improved model fit for the model containing Caline3.  Similarly to yearly 

models, Caline3 was effective in improving overall prediction accuracy for a model that combined 

measurements of varying averaging times.  

Table 6. Merged years LUR (n=72) with addition of Caline3 

Covariates Predicting 
Merged Years NO2 

LUR LUR + Caline3 
NO2

β (p-value) 
Seq. 
R2 

NO2 
β (p-value) 

Seq. 
R2 

Change 
in std. β 

Intercept 15.43 15.31 -- 
Mean reference NO2 1.01** 0.41 1.04** 0.41 + 0.01 
Distance to nearest industrial 
     stationary source -4.1 x10-4 ** 0.59 -3.5x10-4** 0.59 - 0.03 

Mean traffic density (50m) 0.03** 0.72 NA (.15) Ŧ -- - 0.20 
Elevation (300m) -0.02* 0.74 -0.02 ** 0.64 + 0.01 
Mean wind speed -1.42* 0.77 -1.39 * 0.66 - 0.007 
Caline3 -- -- 0.58 ** 0.81 -- 

Ŧ Covariate removed due to p > 0.05 
*significant: p <0.05; **significant p <.0001
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To examine Caline’s effectiveness in capturing spatial variability in model fit in relation to 

near-source gradients, residuals from pre-constructed LUR and LUR/ Caline3 models were 

examined as a function of distance to the nearest roadway.  Fig. 6 displays the absolute value 

residual differences from the LUR/Caline3 residual minus the pre-constructed LUR residual, 

matched by site.  Residual value differences in Fig. 4 are dichotomized by high and low traffic 

sites defined by the 70th percentile of traffic density, originally defined in site selection.  In Fig. 

6, smaller residuals derived from the LUR/ Caline3 model compared to the LUR model result in 

greater magnitude differences, and therefore, larger absolute values.  Whereas, residuals from each 

model that were more similar in magnitude, resulted in smaller differences, and therefore, 

produced smaller absolute values.  Thus, the largest differences in modeled residuals occurred at 

the high traffic sites (> 70th %) and at locations most proximal to primary roadways (Fig. 6), and 

produced a negligible effect on low traffic sites beyond 300m.  Therefore, the marginal 

improvements observed in model fits, may be decomposed to near-source/high traffic locations.  
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Figure 6. Absolute value residual differences of combined years LUR vs. LUR/Caline3 model predictions with linear 
fit and 95% CI as a function of distance to nearest roadway and distinction of traffic density 

2.4 DISCUSSION 

Here, we presented a method to incorporate output from a spatio-temporal line source 

dispersion model into LURs predicting NO2 across two successive winter seasons, across a large 

urban-to-suburban area.  As expected, Caline3 provided greater model improvement for the 

weekday-only model as per cross-validated RMSE and R2.  Moreover, Caline3 displaced the GIS-

based traffic-related term in each model, corroborating the interpretability of each.  Perhaps more 

importantly, we found greater improvements in predictions at higher-concentration locations near 

roadways, which may have important bearing towards accurately characterizing exposures in near-

source locations for epidemiological studies. 

Comparability of results to other hybrid models: Wilton et al. (2010) observed similar 

improvements in model fit with a Caline3/LUR hybrid model for summer-only NO2 and NOX, 
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utilizing data from a 2-week snapshot sampling campaign designed to capturing near-road 

gradients outside of metropolitan areas. Our efforts differed by: (1) measurement sites were 

allocated systematically across a metropolitan area - not specifically to capture near-road gradients, 

and (2) we modeled all primary roadways within 1000m of each sampling site in Caline3.  

Corroboratory Wilton et al. (2010), we observed the greatest degree of model improvement when 

model output from high-traffic density roadways (i.e., > 100,000 vehicles per day) was included 

and was proximate to receptor locations (25 – 300m).  Lindström et al. (2013) extended the hybrid 

work presented by (Wilton et al., 2010), but did not observe a similar degree of model 

improvement within their spatio-temporal modeling framework.   

Temporal adjustment in LURs for NO2: Because our measures were collected over a series 

of six sampling weeks each season, LUR models required adjustment for temporal variance using 

reference site data.  Further, accurately characterizing temporal variance for reactive pollutants, 

such as NO2, remains an important challenge.  Given consistent near-zero concentrations at our 

regional background site, we needed to average this with an urban reference site to provide a useful 

temporal signal.  More variability was explained by the reference term in the full-week model (R2 

= 0.49) than in the weekday-only model (R2 = 0.20), which may be explained by substantial 

differences in weekday and weekend traffic, both incorporated in full-week samples, with some 

variation across weeks in the relative proportion of each (i.e., federal holidays).  

Spatial vs. temporal variability in Caline3: Because Caline3 incorporates both spatial and 

temporal (meteorological) information, it is challenging to assess the relative contribution of each 

in the hybrid model, and retaining a reference site term from LUR in hybrid models may diminish 

some of the potential explanatory power of the Caline3 predictions.  Lindström et al. (2013) noted 

that the LUR portion of a hybrid model may serve to over-emphasize the temporal (vs. spatial) 
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contribution from Caline3.  This may be a particular concern in our dataset, as our study design 

maximized our ability to capture spatial variance by cross-stratifying on confounded sources and 

modifiers (i.e., vehicular traffic, industry, and elevation).  Indeed, indicators from each of these 

three source categories were significant in final LUR models.  Finally, the Caline3 term also 

displaced one industrial term in the full-week model [industrial and commercial area], 

hypothesized, in part, to capture industrial vehicular truck traffic.  This result may highlight the 

utility of source dispersion models to improve upon the physical interpretability of empirical 

LURs.  Nonetheless, novel spatio-temporal modeling frameworks applied by Lindström et al. 

(2013) and Keller et al. (2014) may help to further disentangle interpretation of spatio-temporal 

explanatory variables, though application here was beyond the scope of this work.   

Caline3 and meteorological data:  Caline3 incorporates hourly meteorological data 

directly into source dispersion estimates, as is not the case for other source terms in LUR, and thus 

the hybrid likely more accurately captures roadway emissions relative to other sources.  Further, 

the displacement of mean wind speed in the weekday-only model may point to this improved 

temporal information introduced via the Caline3 term, although these two terms were not collinear 

(VIF = 1.13).  Mean wind speed was retained in the combined years model, however, again not 

collinear with the Caline3 term.  This could be the result of the implicit temporal variability 

provided by this predictor given the temporal misalignment in combining two separate seasons, 

albeit controlling for season.  

Limitations: Numerous limitations of the Caline3/ LUR framework were addressed in 

Wilton et al. (2010).  The CalRoads’ particulate matter (PM) pollutant designation option more 

appropriately estimated total NOX (NO + NO2).  Ideally, to best capture the influence from 

combustion sources such as motorized traffic, NO should also be measured along with NO2.  
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However, high correlations between NO2 and NOX have been reported in prior near-road studies 

(Karner et al., 2010; Su et al., 2009; Wang et al., 2011).  All meteorological data (except 

temperature and humidity) were obtained from the National Weather Station at the Pittsburgh 

International Airport, approximately 20 miles west of our modeling domain.   

Strengths and Implications: Incorporating Caline3 output into LUR displaced GIS-based 

traffic covariates in two separate models, and improved overall cross-validated model performance 

while corroborating model interpretability.  The greatest degree of model improvement was 

observed with weekday-only measures, at high traffic density sites, and at locations closest to 

primary roadways (<300m), indicating the utility of our hybrid approach towards better capturing 

pertinent source intensity exposures for epidemiological applications.   Finally, because Caline3 

accounts for hourly meteorological variability and source-meteorology interactions, the hybrid 

approach may substantially improve interpretability of source terms, and ultimately may prove 

more reliable for model extrapolation.    

2.5 SUMMARY 

The model framework described in chapter 2 helped to explain an additional portion of 

variation in NO2 observations than a standard LUR model, especially proximal to roadways.  

Differential variability explanation near sources was a hypothesized result in incorporating source/ 

meteorological interaction information in LUR via atmospheric dispersion principles.  Moreover, 

given the sharp concentration decay gradients of NO2 as a function of distance from roadways, a 

spatiotemporally-varying explanatory variable from deterministic dispersion information can 

benefit intra-urban pollutant variability studies over short temporal scales (e.g., quarterly, 
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seasonally, daily).  Ambient PM2.5, however, tends to vary more so at a regional scale as opposed 

to the local-type scale of NOX, though fine PM has been associated with a much larger wealth of 

adverse human health outcomes, usually derived through population-level epidemiological 

studies.  The number of oxides of nitrogen LUR models greatly outnumbers PM2.5 models 

considering low-cost passive NOX samplers vs. more intensive monitoring efforts required for 

PM2.5.  In Chapter 3, we apply the same hybrid modeling framework; however, the pollutant of 

interest is PM2.5, and the sources of interest are industrial stationary sources as opposed to traffic-

related sources.  We modeled all PM2.5 sources across the Greater Pittsburgh, PA Region with the 

AERMOD Gaussian plume modeling system and similarly examined the utility of AERMOD 

predictions with LUR for estimating PM2.5.  In contrast to the Caline3 model, AERMOD 

incorporates planetary boundary layer turbulence and scaling algorithms for predicting dispersion 

from stationary sources in both simple and complex terrain environments.  
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3.0  HYBRID AERMOD/ LUR MODEL FOR PREDICTING PM2.5 

Land use regression (LUR) is a standard method used to explain the spatial distribution of 

ambient air pollution for use in epidemiological studies (Brauer et al., 2003; Briggs et al., 1997; 

Clougherty et al., 2013b; Jerrett et al., 2005).  LUR for exposure assessment, however, can be 

constrained by the spatial variability expressed by the pertinent geographic predictors in relation 

to the locations of the monitoring sites, and the true underlying pollutant variability (Alexeeff et 

al., 2014; Basagaña et al., 2013). Therefore, there is growing interest in incorporating spatio-

temporally varying geographic covariates in LUR, such as Gaussian dispersion output, in the hopes 

of better simulating pollutant variability while improving accuracy, interpretability, and 

transferability of such models.  

Empirically-based LUR models employ relatively simple inputs and provide significantly 

higher spatial resolution than proximity-based, or purely statistical interpolation methods (Jerrett 

et al., 2005).  The LUR process combines a relatively large number of systematically distributed 

air pollution measures with “land use” variables usually managed in GIS.  Variables used to 

explain intra-urban PM2.5 variability have included surrogates for automobile traffic emissions, 

population density, household density, industrial and commercial land use, land cover and open 

space, elevation and primary PM2.5 emissions density (Hoek et al., 2008).  Geographic variables 

are generally measured as nearest distances from sources or as densities within circular areas.  

These Euclidean metrics and isotropic areal units fail to capture small-scale spatiotemporal 

pollutant variability, governed, in part, by interactions between emissions and meteorological 

processes (e.g., upwind vs. downwind advection) (Jerrett et al., 2005; Su et al., 2008; Wilton, 

2011).  
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Prior LURs have been attempted to incorporate some measure of temporal variance into 

source-concentration relationships by including meteorological covariates (e.g., mean wind speed 

or direction) (Arain et al., 2007; Clougherty et al., 2009; Jerrett et al., 2007; Su et al., 2008), or by 

weighting source-concentration relationships by predominant wind direction (Clougherty et al., 

2009; Mavko et al., 2008; Van den Hooven et al., 2012).  Vienneau et al. (2009) originally 

presented a GIS-based method using distance weighted emissions and monitoring data that was 

improved by Gulliver and Briggs (2011) through the incorporation of meteorological dispersion 

principles enabling daily and annual PM10 predictions at 1km2 resolution.  Ainslie et al. (2008) and 

Su et al. (2008) attempted to capture atmospheric dispersion using a source-area grid of distributed 

emissions under varying atmospheric conditions. Likewise, Wilton (2011) incorporated 

meteorologically-varying covariates as volume sources derived from the CALPUFF Lagrangian 

puff model.  To our knowledge, only two hybrid line-(traffic) source dispersion/LUR modeling 

efforts have been attempted with each reporting variable model improvement, albeit more 

parsimonious and interpretable models (Lindström et al., 2013; Wilton et al., 2010).   

To further refine small-scale (e.g., intra-urban) spatial concentration gradients, techniques 

to combine spatially-scalable models to better capture near-source variability have been employed 

(e.g., localized traffic demand modeling for emissions factor estimation) (Cook et al., 2008; Isakov 

et al., 2007; Kinnee et al., 2004). Isakov et al. (2009) combined a regional background model 

(CMAQ) capable of photochemical reactions with more localized predictions from AERMOD to 

produce hourly air pollutant predictions at block-group resolution.  Other hybrid approaches have 

utilized dispersion output as the dependent variable to develop LUR models with refined spatial 

(Isakov et al., 2009; Johnson et al., 2010) and spatio-temporal (Johnson et al., 2010; Mölter et al., 

2010a) estimates for NO2 and PM10. Recently, Dionisio et al. (2013) demonstrated refined spatial 
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and temporal estimates of multiple pollutants using AERMOD predictions to disentangle regional 

background and localized spatio-temporal variability.  In a complementary study, Sarnat et al. 

(2013) observed stronger heath effect estimate associations with the spatially-refined exposure 

metrics compared to a central site exposure scenario.  

Atmospheric dispersion models have been employed extensively in regulatory air quality 

management but only more recently for exposure assessments (Jerrett et al., 2005; Johnson et al., 

2010; Marshall et al., 2008; Mölter et al., 2010b; Van den Hooven et al., 2012).  Dispersion models 

simulate transport of pollutants, as a function of source characteristics and temporally-varying 

meteorological conditions (Briant et al., 2013; Chang and Hanna, 2004).  In comparison with LUR 

approaches that can provide detailed spatial resolution, dispersion modeling offers high temporal 

variability with theoretically unlimited spatial resolution. Furthermore, it has also been 

demonstrated that LUR-derived exposure misclassification may depend more so on how much of 

the true spatial variability is explained by the geographic covariates in the exposure model, and 

not necessarily the accuracy of the predictions (Alexeeff et al., 2014; Szpiro et al., 2011a), 

especially when LUR models are constructed from a small number of measurement sites 

(Basagaña et al., 2013).  Therefore, standard LUR could be improved by incorporating 

deterministic source-meteorology interaction information, especially in highly industrialized 

areas. Thus, producing theoretically-physically based estimates, as opposed to purely empirically-

derived estimates that rely upon the quantity and quality of measurement data (Jerrett et al., 2005; 

Su et al., 2008; Wilton et al., 2010).   

In this chapter, we incorporate modeled PM2.5 predictions with AERMOD into an LUR 

model for predicting PM2.5 in a region of relatively intense industrial-source activity.  The study 

domain covers an urban-to-suburban landscape with varying terrain and many legacy industrial 
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sources situated within river valleys.  Our multi-pollutant spatial saturation study was designed to 

disentangle impacts of multiple pollution sources (e.g., industry, vehicle traffic), and to assess 

potential modifiers of source-concentration relationships (e.g., elevation) (Shmool et al., 2014).  

We examined PM2.5 measures collected during successive summer and winter sampling 

campaigns.  We evaluated the utility of AERMOD with LUR by adding session-specific 

AERMOD predictions as an independent covariate to seasonal LUR models and observed changes 

in modeling diagnostics and accuracy of predictions using cross-validated methods.  Additionally, 

to decompose AERMOD at near-source settings, we focused on area of intense industrial activity 

within a valley to examine differential prediction accuracy derived from LUR models containing 

a GIS-based industrial covariate vs. AERMOD predictions at a 100m x 100m grid resolution.   

3.1 METHODS 

3.1.1 PM2.5 Measurements 

PM2.5 sampling took place from June 5th to July 26th 2012, and was repeated in the winter 

from January 8th through March 10th 2013.  A total of six successive weekly (7-day) sessions of 6-

7 distributed sites per session comprised a sampling season. Samplers operated for an integrated 

24-hour, 7-day sample of 15 minutes per hour equating to 42 total hours of sampling per session. 

Further detail is available in Shmool et al. (2014).   

Sampling instruments included stainless-steel Harvard Impactors (Air Diagnostics and 

Engineering Inc.) with 37mm Teflon filters and a data logger (HOBO - Onset Computer 

Corporation), which were contained in waterproof Pelican cases.  Sampling units were custom-
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designed to capture integrated street-level (~3m height above ground) measurements of PM2.5 

(Clougherty et al., 2013a).  Instruments were programmed to sample during the first 15 minutes 

of each hour using a chrontroller interface (ChronTrol Corporation).  A tetraCal volumetric air 

flow calibrator (BGI Instruments) was used to calibrate intake flow to approximately 4.0 LPM. 

Concurrently, an on board HOBO data logger recorded temperature and relative humidity at fifteen 

minute intervals.  Prior to field deployment, 37mm Teflon filters (Pall Life Sciences) were 

equilibrated for 48 hours and then pre-weighed using an ultramicrobalance (Mettler Toledo Model 

XP2U) using a temperature (20°C) and relative humidity (35%) controlled glove box (PlasLabs 

Model 890 THC).  Filters were post-weighed under identical conditions and concentrations were 

derived from time-integrated mass calculations.   

3.1.2 Study Domain and Site Selection 

Our study domain encompassed a contiguous 500 km2 area containing the Pittsburgh 

metropolitan area and key local industrial sources, demarcated at census administrative boundaries 

to enable merging with socioeconomic and health data in future epidemiological applications (Fig. 

7).  We used a GIS to systematically allocate monitoring locations cross-stratified across important 

local pollution sources (e.g., traffic, steel manufacturing) and potential topographic modifiers of 

source-concentration interactions (e.g., elevation) using ArcMap 10.0-10.3 (ESRI, Redlands, CA, 

USA) and Geospatial Modeling Environment, V. 0.7.2 (Spatial Ecology, LLC).  
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Figure 7. Study domain of Greater Pittsburgh Metropolitan Area with monitoring locations, 
temporal background reference site location and stratified sampling classifications   

Specifically, we anticipated variance in the local pollutant regime to be characterized by: 

(1) traffic density, (2) industrial density (weighted emissions: PM2.5 + NOX + SO2 + VOCs), and 

(3) elevation at 30 m2 grid resolution.  We used stratified random sampling to select monitoring 

locations representing all possible combinations of high and low source intensities.  Site selection 

and GIS-based covariate calculations are detailed elsewhere (Shmool et al., 2014).   Notably, the 

industry density metric used for site allocation originated from a simple inverse distance weighted 

(IDW) interpolation of multiple pollutants PM2.5 (filterable and condensable), nitrogen oxides 

(NOX), sulfur dioxide (SO2), and volatile organic compounds (VOCs) – from reporting facilities 
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in Allegheny County, PA.  We then used inverse-distance interpolation to calculate an emission 

weighted proximity to industry indicator for each 100 m2 grid cell centroid, drawing emissions 

information from facilities within an 80 km radial buffer threshold. The dichotomization for high 

vs. low industrial source density was chosen at the 70th percentile, given the left-skewed 

distribution and goal of over-sampling hypothesized high-pollution areas (Shmool et al., 2014). 

To minimize temporal confounding across sessions, sites were systematically allocated across 

sessions to balance emissions-indicator strata and spatial coverage.  Integrated PM2.5 samples were 

collected across six successive sampling sessions with six randomly-selected sites per session, 

resulting in a total of 36 measurements per season. Thus, two seasonal sampling campaigns 

covered 36 unique sites, resulting in 72 total PM2.5 measurements. 

3.1.3 Temporal Reference 

A continuous reference site was monitored each weekly session to adjust for temporal 

variability in pollutant measures and to limit spatio-temporal bias in comparing measures across 

sessions (Brauer et al., 2003; Henderson et al., 2007; Hoek et al., 2008).  A ‘regional background’ 

site was selected in a county park (Settler’s Cabin Park) upwind from the study area and away 

from local sources, about 4.0 km west of the study domain (Fig. 7).  The site was categorized in 

the hypothesized lowest-concentration source strata (low industry, low traffic, high elevation).  

From pilot sampling, we found that the temporal reference adjustment method influenced observed 

source-concentration relationships, and the regional background site alone was appropriate for 

temporally adjusting PM2.5 (Shmool et al., 2014).   
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3.1.4 AERMOD – Gaussian Plume Air Dispersion Model 

AERMOD is a steady-state Gaussian plume atmospheric dispersion model that was co-

developed by the American Meteorological Society and EPA (Cimorelli et al., 2005).  Model 

development began in 1991 and was designed to capture near-source concentration gradients 

(<50km) by incorporating planetary boundary layer concepts.  As of December, 9, 2006, 

AERMOD was fully promulgated within the Guideline on Air Quality Models for regulatory 

application of air quality models for assessing criteria pollutants under the clean air act 

(U.S.E.P.A., 2005).  Treatment of simple and complex terrain is incorporated following the 

concept of dividing streamline (Snyder et al., 1985) from surface and elevated point, area and 

volume sources.  

3.1.4.1 AERMET – Meteorological Preprocessing 

Three separate meteorological datasets were utilized as inputs for AERMET preprocessing 

and were obtained from the National Oceanic and Atmospheric Administration’s (NOAA) 

National Climate Data Center (NCDC): (1) sequential hourly integrated surface data (ISHD) 

format1; (2) automated surface observation systems (ASOS) 1-minute format2; and (3) upper air 

radiosonde data managed by Earth System Research Laboratory (ESRL)3.  Surface data selected 

was utilized from two National Weather Stations located at local airports within the Greater 

Pittsburgh Area.   Both stations recorded ASOS 1-minute wind data via Ice Free Wind sonic 

1 ftp://ftp.ncdc.noaa.gov/pub/data/noaa/ 

2 ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/ 

3 http://www.esrl.noaa.gov/raobs/ 

44 



anemometers and was preprocessed with AERMINUTE allowing for wind speeds truncation and 

nonrandomized wind directions.  Surface and upper air meteorological data were combined with 

land cover data (USGS NLCD92 – 30m2) in AERSURFACE to obtain surface parameters for 

albedo, Bowen ratio and surface roughness length.  Maximum sectors were selected and surface 

characteristics were derived for the respective summer and winter modeled runs. 

3.1.4.2 PM2.5 Source Categories 

AERMOD requires a detailed emissions inventory profile to model the pollutant or 

chemical of concern.  Information on stack parameters for point sources included ground level 

elevation, height above ground level, stack exit velocity, stack exit temperature, stack diameter, 

and PM2.5 emissions in g/s.  Where applicable, coordinates of the specific stack release points 

within a facility’s grounds were included.  Area and volume sources included all of the above 

parameters in addition to physical dimensions of the emissions surface (e.g., fugitive emissions 

from an open conveyer).   A partial source input file for major sources of PM2.5 primary emissions 

was obtained from the Allegheny County Health Department (ACHD) Air Quality/ Pollution 

Control Program Division.   Minor source stack parameters for additional sources within 100km 

of the sampling domain were obtained through subsequent ACHD permit applications which 

included AERMOD input data from Class I and Class II modeling analyses.  Emissions rates were 

obtained from 2011-2012 ACHD emissions inventories and were converted to g/s, resulting in a 

total of 207 individual point, volume, and areas sources as shown in Fig. 8. 
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Figure 8. AERMOD modeled stationary PM2.5 emissions sources (2011-2012) symbolized by emission rate 
surrounding sampling domain within Pittsburgh, PA 

3.1.4.3 AERMOD Predictions as Geographic Covariate Predictor 

To produce an independent covariate in seasonal LUR models, model receptor locations 

were defined at the monitoring locations (Fig. 7).  To account for complex terrain (e.g., river 

valleys) effects, a 1km2 uniform Cartesian receptor grid was included in addition to discrete 

receptors in all model runs.  To coincide with sampling sessions timeframes (7-day week), we 

produced mean AERMOD predictions utilizing the meteorological data corresponding to the 

respective weekly sampling session.  To examine the spatio-temporal sensitivity of AERMOD 

predictions within LUR, we also modeled seasonal (corresponding to total sampling time across 

six sessions), and annual averaging times at each sampling receptor.  
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3.1.5 LUR Model Building 

Separate summer and winter LUR models were pre-constructed without AERMOD to test 

the marginal benefit of incorporating dispersion into an LUR modeling context, as a supplemental 

addition may be most applicable elsewhere.  The following model-building approach, similar to 

Clougherty et al. (2013b) was used: 1) candidate indicators were grouped by source category (e.g., 

traffic indicators, meteorology, industrial emissions) and ranked according to the nonparametric 

bivariate correlations (Spearman correlations, p < 0.1) with temporally-adjusted NO2 

concentrations (Shmool et al., 2014).  Sampled pollutant concentrations were temporally adjusted 

by: 

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒔𝒔𝒔𝒔 =  
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔

�𝑹𝑹𝑹𝑹𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓�𝒋𝒋
∗  �𝑹𝑹𝑹𝑹𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓�𝒌𝒌 

(eq. 3.1) 

Where, adjConcsj is the temporally-adjusted pollutant concentration at monitoring site s during 

sampling session j, Concsj is the pollutant concentration at monitoring site s during sampling 

session j, [Refregional]j is the regional background reference site concentration during sampling 

session j, [Refregional]k is the seasonal arithmetic average of the regional background site 

concentration (n=6).  2) Temporal variability was accounted for in LUR models using the session-

specific regional background measurement ([Refregional]j from eq. 2.1) as the first independent term. 

3) Two terms from each source category were retained (if applicable) for linear regression given

the strength of univariate correlations with temporally-adjusted PM2.5 (maximum p-values of 0.05) 

(Shmool et al., 2014).  4) Regression models were initially fit using forward stepwise selection 

and verified with automated backward stepwise selection to assess overall model improvement at 
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each stage, using the coefficient of determination (R2), and removing non-significant (p > 0.05) 

covariates in order of descending p-value. 5) Given the high potential for collinearity, covariates 

were removed if variance inflation factors (VIF) were greater than 2 and further sensitivity tests 

were performed including; 6) random forest decision trees and forward stepwise addition based on 

buffer size (largest to smallest and vice versa).   LUR Model building was performed in STATA/SE 

13.0 (StataCorp. LP, College Station, TX, 2013).  

LUR seasonal models followed the general form: 

𝑪𝑪𝒔𝒔 =  𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒋𝒋  +  �(𝜷𝜷𝒊𝒊

𝒎𝒎

𝒊𝒊=𝟏𝟏

𝒙𝒙𝒊𝒊,𝒔𝒔) + 𝜺𝜺𝒔𝒔 

      (eq. 3.2) 

Where, Cs is the measured concentration of PM2.5 at location s (µg/m3), β0 is the intercept (µg/m3), 

β1TEMPt is regional background concentration from session j, βi is the regression coefficient of 

the ith spatial variable in appropriate units, xi,s is the value of the  ith spatial variable at location s, 

m is the number of spatial covariate classes and Ɛs is the model prediction error at location s.  

Spatial autocorrelation across the residuals of the distributed sites was determined using 

Moran’s I, and spatial correlations were evaluated using generalized additive models (GAMs).  

Sensitivity to covariate selection was assessed using different temporal adjustment methods 

including LUR models constructed from temporally adjusted PM2.5 concentrations to assess 

associated spatial variability explained by significant covariates.  
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3.1.6 HYBRID LUR/ AERMOD MODEL FRAMEWORK 

Modeled concentration predictions from AERMOD were incorporated as an independent 

covariate in LUR models for PM2.5.  Figure 9 provides a conceptualization of integrating 

meteorological data, PM2.5 source emissions, and terrain information into LUR via AERMOD, 

resulting in a hybrid modeling framework.  

Figure 9. Conceptual framework for incorporating stationary PM emissions, meteorology and terrain 
information into AERMOD preceding addition to the land use regression model 

To incorporate AERMOD information into LUR, session-specific AERMOD model 

predictions were added as an independent covariate to equation 3.1 and incorporated as shown in 

equation 3.2:  

𝑪𝑪𝒔𝒔 =  𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒋𝒋  +  �(𝜷𝜷𝒊𝒊

𝒎𝒎

𝒊𝒊=𝟏𝟏

𝒙𝒙𝒊𝒊,𝒔𝒔) + 𝜶𝜶𝑨𝑨𝑨𝑨𝑨𝑨 ��𝒅𝒅𝒔𝒔,𝒕𝒕
𝑨𝑨𝑨𝑨𝑨𝑨

𝒉𝒉

𝒕𝒕=𝟏𝟏

�  + 𝜺𝜺𝒔𝒔 

   (3.2) 
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Where,  

𝜶𝜶𝑨𝑨𝑨𝑨𝑨𝑨 =  regression coefficient for the AERMOD covariate

𝒅𝒅𝒔𝒔,𝒕𝒕
𝑨𝑨𝑨𝑨𝑨𝑨 = dispersion concentration (µg/m3) modeled from AERMOD for site s for hour t

Since Cs is measured in only select locations, the LUR model, based on the resolved subset of 

potential predictors is used to predict 𝐶̂𝐶𝑠𝑠, the predicted concentration at non-sampled locations 

within the modeling domain.  

3.1.7 Model Performance Statistics 

Models were evaluated using the coefficient of determination (R2), given by the equation 

3.4: 

𝑹𝑹𝟐𝟐 = 𝟏𝟏 −
∑ (𝒙𝒙𝒊𝒊 − 𝒙𝒙�𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ (𝒙𝒙𝒊𝒊 − 𝒙𝒙�𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

 

(3.4) 

Where, n is the number of data points, xi are the measured values, 𝑥𝑥�i are the predicted values, and 

𝑥̅𝑥i is the mean of the measured values.  Root-mean-square-error (RMSE) was also calculated as a 

measure of model performance, given by the formula: 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =  √𝑴𝑴𝑴𝑴𝑴𝑴 = �∑ (𝒙𝒙�𝒊𝒊 − 𝒙𝒙𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏

(3.5) 

Where, xi are the measured values, 𝑥𝑥�i are the predicted values.  Finally, standardized beta (β) 

coefficients were computed by transforming outcome and predictor variables to z-scores prior to 
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regression.  Standardized coefficients are measured in standard deviations, as opposed to the 

respective variable units.  This allows for inter-comparison of predictors within each model by 

providing a relative impact when adding or removing terms.  

Cross-validation: All models were evaluated using the leave-one-out cross-validation 

method where predictions from a regression model were built from n-1 measurement sites.  The 

model estimated using n-1 sites is considered the training set, from which, the predicted value for 

the test site is obtained.  This process is repeated n times, until a prediction value is generated for 

each site using its respective training set.  Cross-validated R2 (𝑅𝑅𝐶𝐶𝐶𝐶2 ) and RMSE are computed by 

regressing the observed measures against the cross-validated predictions using the equations 

above.  In evaluating highly resolved spatio-temporal information from dispersion output, this 

cross-validation process allows for an assessment of out-of-sample performance, which we are 

ultimately interested in.   

3.2 RESULTS 

3.2.1 Summary Statistics 

Higher PM2.5 concentrations, on average, were observed during the summer (mean = 13.83, 

SD = 2.80) season compared to winter (mean = 11.18, SD = 3.04).  Measurement variability was 

observed between and within sessions across both seasons as shown by box-plots in Fig. 10 that 

displays six measurements per session, repeated by season (i.e., session 1 measurements = session 

7; session 2 = session 8, etc.).   The regional background site consistently recorded the lowest 

measurements with the exception of one session in each season.  Therefore, the session 
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concentrations captured from the regional background site were utilized to control for temporal 

variability in all LUR models (see eq. 1).  

Figure 10. Summer and winter boxplots of PM2.5 measurements from distributed sites with linear plot of 
regional background continuous measures  

3.2.2 Summary of Model Performance 

LUR models without AERMOD produced final cross-validated R2 values of 0.73, 0.62 for 

summer, winter models respectively (Table 7).  The summer model explained more variability 

overall than the winter model with one less covariate. The addition of AERMOD output improved 

cross-validated R2 values to 0.82 and 0.75 for each season model, respectively. Cross validated 

RMSE values also improved across seasons following the addition of AERMOD.   
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Table 7. Summary LUR and LUR + AERMOD model results with cross-validated R2 and RMSE values 

Model 

Summer Winter 

n 
terms 𝑅𝑅𝐶𝐶𝐶𝐶2  RMSE n 

terms 𝑅𝑅𝐶𝐶𝐶𝐶2  RMSE 

LUR 3 0.73 1.15 4 0.62 1.24 
LUR + AERMOD 3 0.82 1.09 4 0.75 1.08 

3.2.3 Summer LUR + AERMOD for PM2.5 

LUR modeling results from summer 2012 PM2.5 samples are summarized in Table 7.  In 

addition to the temporal term (Temporal Background PM2.5), the pre-constructed summer LUR 

model included a kernel density covariate for PM2.5 emissions within 50m area (Density of PM2.5 

Emissions) and a modifying binary wind direction term (Blowing from NW/W) that produced an 

overall in-sample R2 of 0.82.  The addition of the AERMOD covariate effectively displaced the 

PM2.5 emissions term (p = 0.69); however, only a slight in-sample improvement in R2 was 

observed.  Standardized beta coefficients decreased for both spatial and temporal terms following 

the addition of AERMOD.   
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Table 8. Summer season standard LUR (n=37) with AERMOD predictions added as an independent covariate 
with sequential R2 and change in standardized beta values 

Covariates Predicting 
Summer 

(June – Aug) PM2.5 

LUR LUR + AERMOD 
PM2.5 

β (p-value) 
Seq. 
R2 

PM2.5 
β (p-value) 

Seq. 
R2 

Δ in 
std. β 

 Intercept 1.14 3.31 
Temporal background PM2.5 1.17 ** 0.62  1.02 *  0.62  -0.06 
Density PM2.5 emissions (50m) 1.90 ** 0.74  NA (0.69) Ŧ  -- -0.15 
Wind direction (binary)  --  -- -- -- -- 

Blowing from NW/W  -1.49 * -- -1.96 ** -- -0.05 
Blowing from SW/W  --  0.82  -- 0.70  -- 

AERMOD -- -- 0.77 ** 0.83  NA 
Ŧ Covariate removed due to p > 0.05 
*significant: p <0.05; **significant p <.0001

3.2.4 Winter LUR + AERMOD 

Table 8 summarizes LUR modeling results from winter 2013 PM2.5 samples.  In 

comparison to the summer LUR model, slightly less in-sample variability was explained by the 

temporal term in the winter pre-constructed model (R2 = 0.54 vs. 0.62 for summer).  The winter 

model similarly included the PM2.5 emissions density term in addition to the number of traffic 

signaled-intersections and industrial parcel area both within 750m2 buffer areas.  The standard 

LUR model produced an in-sample R2 value of 0.80 and RMSE of 1.42, respectively.  Similarly, 

the addition of the AERMOD term displaced the static PM2.5 density covariate (p = 0.75) in the 

winter model and resulted in moderate in-sample statistical improvement (R2 = 0.85).  Likewise, 

standardized beta coefficients decreased for all terms following the addition of AERMOD.   
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Table 9. Winter-season standard LUR (n=37) with AERMOD predictions added as an independent covariate 
with sequential R2 and change in standardized beta values  

Covariates Predicting 
Winter  

(Jan-March) PM2.5 

LUR LUR + AERMOD 

PM2.5 
β (p-value) 

Seq. 
R2 

PM2.5 
β (p-value) 

Seq.
R2 

Δ in 
std. β 

 Intercept -1.47 -1.32 
Temporal background PM2.5 1.27 * 0.54 1.20 * 0.54 -0.02 
Traffic signals (750m)  0.13 **  0.63  0.13 ** 0.63  -0.004 
Industrial parcel area (750m)  -5.8x10-6 *  0.77  5.0x10-6 * 0.77 -0.04 
Density of PM2.5 emissions  1.36 * 0.80  NA (0.75) Ŧ  --  -0.19 
AERMOD -- -- 0.79 * 0.85 -- 

Ŧ Covariate removed due to p > 0.05 
*significant: p <0.05; **significant p <.0001

3.2.5 PM2.5 Emissions Density vs. AERMOD at Near-source Gradients 

To decompose AERMOD information within LUR, we focused our modeling efforts on an 

area of relatively intense industrial activity to specifically examine source-proximal differential 

concentration predictions derived from an isotropic industrial covariate (kernel density of PM2.5 

emissions within 50m2 radial distance) vs. AERMOD predictions at 100m x 100m grid resolution.  

Fig. 11 displays the spatial pattern of the mean PM2.5 emissions density within 50m covariate (the 

smallest buffer distance tested) in the immediate area surrounding the United States Steel Clairton 

Coke Works Facility in Clairton, PA containing 129 point, area, and volume sources obtained from 

EPA’s NEI, 2011.  The ‘sampling site’ depicted in Fig. 11, was one of the 36 randomly selected 

distributed monitoring locations.  The simple density surface in Fig. 11 was created using inverse 

distance weighted (IDW) interpolation of PM2.5 emissions sources from the EPA’s NEI 2011, 

followed by ‘extract values to points’ and ‘spatial join’ manipulations to obtain estimated mean 

tons emitted within varying radial distances surrounding respective sampling locations.  The 

spatial pattern depicted in Fig. 11 highlights one of the intrinsic limitations of isotropic geographic 
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predictors within LUR; where, low spatial variability is expressed and distributions fail to 

represent predominant upwind vs. downwind pollutant tendencies as indicated by the wind rose in 

Fig. 13.  The frequency histogram in Fig. 12 further exhibits the limited spatial variance expressed 

across the distribution; however, this term was significant in both seasonal models following 

covariate selection processes.  

Figure 11. IDW Mean PM2.5 emissions density (tons) at 100m x 100m grid resolution near the United States 
Steel Clairton Coke Works Facility in Clairton, PA (outlined in black).  Surface derived from interpolated the 
EPA’s 2011 National Emissions Inventory of PM2.5 stationary sources as shown in red (NEI 2011)   
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Figure 12. Frequency histogram with descriptive statistics of PM2.5 emissions density in tons from spatial extent 
depicted in Fig. 11 

 

The wind rose in Fig. 13 integrates the corresponding 1,488 modeled/sampling hours from 

the winter sampling season (Jan. 8th – March 10th, 2013), resulting in a predominant wind vector 

blowing from the west/south-west (255°).   In contrast to the mean PM2.5 emissions density surface 

displayed in Fig. 11, AERMOD predictions observed at the same spatial extent around the Clairton 

Coke Works, exhibited a more highly variable spatial pattern (mean = 2.54, var = 2.37) that 

includes source/ meteorological interaction information such as wind speed and direction.  The 

129 unique sources were aggregated to 27 unique sources with stack-specific geographic location 

within the facility.  

Incorporation of dispersion principles resulted in a distinct delineation of upwind vs. 

downwind concentration gradients in proximity to the emissions sources.  Furthermore, AERMOD 

predictions follow an exponential distance-decay pattern, which is more akin to observed air 

n = 2,538 
Mean = 0.76 
SD = 0.24 
Var = 0.06 
Skew = 3.22 
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pollutant behavior (Whitlow et al., 2011).  Additionally, the effect of varying terrain on pollutant 

behavior is captured by AERMOD and can be observed in Fig. 15, where the plume deposition 

centerline (dark brown) traverses diagonally and parallel to the opposing river valley hillside. 

Figure 13. Wind rose displaying average speed (m/s) and direction (deg.) with resultant vector across all 
winter season PM2.5 sampling/AERMOD modeled hours (1,488) from the IFW ASOS 1-minute (hourly 
averaged) data obtained from the NWS station at the Pittsburgh International Airport (40.5° N, 80.217° W) 
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Figure 14. Choropleth map of winter (Jan 8th – March 10th, 2013) mean PM2.5 AERMOD modeled concentration 
estimates at 100m x 100m grid resolution near the United States Steel Clairton Coke Works Facility in Clairton, 
PA (outlined in black). Red circles represent modeled PM2.5 sources weighted by emissions factor 
(classification not shown)  

Fig. 16 displays full model PM2.5 predictions from the winter-season LUR-only model 

subtracted from the LUR/ AERMOD PM2.5 model predictions at the non-sampled locations near 

the Clairton, PA area.  The blue-shaded grid cells indicate areas where LUR overpredicted 

concentrations compared to the LUR/AERMOD hybrid model.  Likewise, brown-shaded grid cells 

indicated areas where LUR alone underpredicted concentrations compared to LUR/ AERMOD 

predictions.  Within this subset 5 x 5 km2 area, the overall mean concentration difference did not 

differ substantially (+0.40 µg/m3, SD = 1.17 µg/m3).  The maximum concentration difference 

between model predictions at the same 100m2 grid cell was +6.98 µg/m3, and was directly 
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downwind from the facility. A minimum concentration difference between model predictions at 

the same 100m2 grid cell was of -2.88 µg/m3 and was observed directly upwind from the facility.   

 

Figure 15. Frequency histogram with descriptive statistics of winter-season AERMOD PM2.5 predictions in 
µg/m3 from spatial extent depicted in Fig. 14 
 

A complementary bar graph displaying the identical classifications to the choropleth map 

of Fig. 16 is included in Fig. 17; where, modeled concentration differences are plotted against the 

distance from the centroid of the industrial facility for each 100m x 100m grid cell.  The maximum 

range in model prediction difference was 9.86 µg/m3, and was observed in area of less than 200m 

from the centroid of the facility. The areas of LUR overprediction (blue palette) exhibited a step-

wise distance-decay pattern <400m from the facility and exhibited a near zero distance-decay ratio 

beyond 400m from the facility until a separate source was reached at over 2,400m.  In contrast, 

the areas underpredicted by LUR (brown palette), exhibited a highly variable distribution with the 

most underpredicted areas (dark brown) closer to the facility and the less underpredicted areas 

(light brown) farther from the facility.  

 

n = 2,538 
Mean = 2.54 
SD = 1.54 
Var = 2.37 
Skew = 1.59 
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Figure 16. Concentration difference (Hybrid – LUR) in final winter-season model predictions for PM2.5 at the 
100m x 100m grid resolution in the area surrounding the United States Steel Clairton Coke Works Facility 
in Clairton, PA (outlined in black)   
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Figure 17.  Concentration differences (Hybrid minus LUR) from Fig. 16 plotted as a function of distance from 
the centroid of the Clairton Coke Works facility.  Color ramp classification values adhere to classification 
values presented in Fig. 16 

3.3 DISCUSSION 

We demonstrated the utility of adding stationary source dispersion output to LUR for 

predicting PM2.5 across summer and winter seasons.  To the best of our knowledge, this was the 

first attempt to explicitly add AERMOD predictions into a preexisting LUR as an independent 

predictor for estimating intra-urban PM2.5.  Overall, our LUR models built from 37 distributed 

measures performed reasonably well as per cross-validated R2 values in comparison to similar 

efforts performed elsewhere.  Summer and winter models differed by the degree of temporal 

variability observed and subsequently differed in explanatory variable structure.  Our attempt to 

allocate monitoring locations to maximize variability by our three a priori source/modifying strata, 

may have influenced covariate selection and overall model prediction accuracies.  
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Temporal Adjustment: Because our measures were collected over a series of six sampling 

weeks each season, LUR models require adjustment for temporal variance using reference site 

data.  Following the addition of AERMOD, slightly better statistical improvements were observed 

in the winter model compared to the summer model.  This could partially be explained by the 

difference of variance explained by the temporal terms between the seasonal models.  Given the 

regionally-varying nature of PM, the effect of long-range transport is indicated by the co-variance 

of distributed site measurements (box-plots) with regional background measurements (line-plot) 

in Fig. 10.  The up-front adjustment for temporal variance in LUR could potentially handicap the 

intrinsic utility of AERMOD, effectively limiting the temporal variability resolved from 

meteorological information. This is may be evident by the slight decreases in standardized beta 

coefficients of the temporal terms following the addition of AERMOD to LUR.  

Physical Model Interpretability vs. Statistical Fidelity: Minimal prediction accuracy 

improvement following the addition of a deterministic dispersion term to LUR has been reported 

(Lindström et al., 2013).  The authors acknowledge the challenge in disentangling spatial and 

temporal contributions to a spatio-temporal model framework.  Methods to decompose these facets 

within air quality modeling have been demonstrated, though application here is beyond the scope 

of this effort (Keller et al., 2014; Lindström et al., 2013). Marginal statistical improvement in terms 

of variance explained, could be attributable to the relatively large averaging area represented in by 

our modeling domain.  For instance, areas that exhibit divergent urban-to-suburban gradients with 

diverse source regimes may necessitate less specific and more generalizeable pollutant surrogates 

(e.g., population density). Yet, specific source/meteorological interaction information can improve 

physical interpretability of concentration predictions especially in particular near-source gradients 

as was presented here and by others (Cook et al., 2008; Isakov et al., 2009; Wilton et al., 2010). 

 63 



Therefore, an evaluation of statistical fidelity and physical model interpretability should be 

considered, especially in areas of distinct source regimes.   

Transferability of LUR models is also desirable; however, attempts to transfer LUR models 

across space (e.g., intercity) and time commonly resulted in a loss in explanatory power and 

increased uncertainty (Allen et al., 2011; Poplawski et al., 2008; Vienneau et al., 2010).  Success 

of LUR transferability may depend more so on between-city consistency of input data rather than 

geographical differences (Poplawski et al., 2008), therefore, universal air quality models could 

satisfy data input misalignment across study areas.  Because AERMOD accounts for hourly 

meteorological variability and source-meteorology interactions, the hybrid approach may 

substantially improve interpretability of source terms, and ultimately may prove more reliable for 

model portability, though this was not explicitly tested.    

Limitations: Though we observed moderate improvement in model predictions by adding 

AERMOD predictions, the applicability to other areas remains uncertain.  Our sampling domain 

contained numerous steel- and coke-related industrial sources that emit particles at near ground-

levels (e.g < 100m).  We also acknowledge that evaluating a spatio-temporal explanatory variable 

with temporally misaligned measures is challenging.  Furthermore, 37 distributed monitoring 

locations across our sampling domain may not be sufficient to resolve properly specified empirical 

models (Basagaña et al., 2013; Basagaña et al., 2012).  From our analyses, it was beyond the scope 

to evaluate the relative contribution from smaller point sources for short-term pollutant predictions.  

Though, model predictions appeared to be overly sensitive to stack height, and low exit velocity 

(e.g., fugitives) input parameters.  

Wide adoption of air quality models has been hindered by relatively intensive data input 

requirements, high costs, and programming demands; however, recent Microsoft graphical user 
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interfaces (e.g., Lakes Environmental, BREEZE Software) have benefitted ease of use.  A major 

limitation in resolving reasonable predictions from deterministic models is the degree of accuracy 

of input data.  Therefore, we greatly benefited from the expert collaboration with the Allegheny 

County Health Department’s (ACHD) Air Quality/Pollution Control Program personnel.   An 

emissions input data file for AERMOD was assembled by ACHD staff, and corroborated following 

updates.  These data exist, in part, through the regulatory standing of the ACHD, and as a result of 

the USEPA’s air quality designations for the PM2.5 National Ambient Air Quality Standard 

(NAAQS) standard for the Pittsburgh-Beaver Valley and the Liberty-Clairton areas.  As part of 

section 189(a)(2)(B) of the Clean Air Act, state and local governing bodies are required to submit 

State Implementation Plans (SIP) to demonstrate plans for attainment that usually entail detailed 

modeling efforts.  Furthermore, new source permits in air quality designated areas, such as 

Pittsburgh and many other urban areas, must demonstrate emissions scenarios to be amenable with 

SIP NAAQS attainment goals, from which, verified AERMOD source input information can be 

obtained.  Nonetheless, prediction measurement error due to modeling error can introduce 

additional uncertainty in the final exposure surfaces and therefore requires thoughtful 

consideration.  

AERMOD and meteorological data: Meteorological data is also a source of potential error, 

and we found that meteorological data obtained from the National Weather Service station near 

the Pittsburgh International Airport provided more accurate predictions than data obtained from 

the weather station at the Allegheny County Airport, even though the former station was located 

approximately 20 miles west of our sampling domain, compared to the latter station located within 

our sampling domain.  We also tested model runs with and without ASOS 1-minute data collected 

from ice-free anemometers from each meteorological station to examine the impact of missing 
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hourly wind data.  Formatted hourly wind speeds produced from non ASOS 1-minute data resulted 

in approximately 17% missing values annually, compared to <1% missing values for wind speeds 

derived from ASOS 1-minute sonic anemometers.  This is partly due to the sensitivity to calm 

wind speeds (<1.76 m/s) programmed into AERMOD, and the subsequent randomization of wind 

speeds and wind speed truncation algorithms.  These adjustments were in place to overcome the 

uncertainties of low wind speeds obtained from hemispherical cup anemometers, and have since 

been reconciled with the adoption of sonic anemometers and AERMOD’s capability to integrate 

ASOS 1-minute wind data via AERMINUTE.  

Based on best use practices as determined by the EPA for AERMOD, multiple years of 

meteorological data are recommended to obtain more robust modeled estimates (U.S.E.P.A., 

2005).  However, since our sampling sessions spanned a 7-day week, we modeled 7-day, seasonal, 

and annual averaging times to test the sensitivity to meteorological data in producing a significant 

covariate across the monitoring locations.  Not surprisingly, slightly more variability was 

expressed in the 7-day averaging time period compared to the seasonal and annual model runs.  

Notably, the impact of longer averaging times was most noticeable at the monitoring locations 

proximal to larger industrial sources, where longer averaging times tended to reduce predicted 

concentrations.  A combination covariate was also tested, where monitoring locations near major 

emissions sources (n = 3) were modeled annually and low industry sites were modeled according 

to the 7-day averaging time.  While winter LUR models were less sensitive to variations of 

modeled PM2.5 from AERMOD, the 7-day or session-specific averaging times most improved 

model fits across both seasons, potentially indicating the contribution of apropos source/ 

meteorology interaction.   
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Strengths and Implications: AERMOD moderately improved overall model fits as per 

cross-validated performance statistics, and effectively displaced the GIS-based PM2.5 emissions 

density term in each season, corroborating the interpretability of each.  The efficacy of AERMOD 

as a covariate for LUR ultimately resides in its ability to represent a high degree of spatio-temporal 

variability that spans the relevant exposure environments that may not be captured by the 

monitoring locations (e.g., sparse regulatory monitors).  Therefore, it is preferable to design 

exposure assessments that maximize variability in apropos geographic covariates across both 

monitoring sites and subjects within a cohort (Szpiro et al., 2011a).  

We demonstrated that AERMOD can produce a physically-realistic prediction surface 

compared to typical GIS-based covariates, especially in an area of high pollutant-source intensity.  

Notably, the PM2.5 density variable was almost five times less variable (σ2 = 0.25) across all 37 

distributed monitoring locations, compared to variances of 1.18 and 1.45 for summer and winter 

AERMOD terms, respectively, which may result in more appropriate exposure measurements.  

This may have an important bearing in better understanding exposure measurement error 

approximated from invariable geographic covariates in LUR for epidemiological studies.   

3.4 SUMMARY 

Incorporating AERMOD into LUR models improved model predictions as per cross-

validated coefficient of determination and RMSE, and explained an additional 9-13% in out-of-

sample variability in PM2.5.  Following the addition of AERMOD output, the industrial geographic 

term in both summer and winter models was no longer significant.  AERMOD provides a 

beneficial tool for exploring the spatio-temporal nature of the pollutant measurements for model 

67 



building, especially in areas of high industrial-source intensity and complex terrain.  Furthermore, 

if model improvement is confirmed, AERMOD predictions could be modeled directly at the 

subjects’ residential addresses, and tailored to the averaging times of interest in an epidemiology 

setting.   

In Chapter 4, we utilize AERMOD predictions to supplement an annual PM2.5 prediction 

model by combining summer and winter measurements with annual AERMOD estimates for 

epidemiological application.  We then simulate a theoretical cohort of 5,000 within our modeling 

domain to examine the potential magnitude of bias and variance inflation in health-effect estimates 

between LUR and LUR/AERMOD using a Monte Carlo simulation framework.   Explicitly, we 

examine the potential for health estimate bias that may result from spatial model misspecification, 

and ultimately how much of the true spatial variability is explained by the model. 
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4.0  EVALUATING MEASUREMENT ERROR IN HEALTH EFFECT 

ESTIMATION USING HYBRID AERMOD/ LAND USE REGRESSION 

With the advent of more sophisticated exposure prediction models, assessing measurement 

error is worthwhile given the increasing evidence for small-scale (e.g., intra-urban) pollutant 

variability, implying that the most meaningful exposure gradients may occur at very small (e.g., 

<50m) spatial gradients (Brauer et al., 2003; Clougherty et al., 2013b; Clougherty et al., 2008; 

Cook et al., 2008; Hoek et al., 2002; Jerrett et al., 2005; Kheirbek et al., 2012; Marshall et al., 

2008).  As it is not practical to measure personal exposures for all individuals in large cohort 

studies, exposure assessments that estimate proximal ambient air pollution, usually at the 

residential address, are commonly employed (Jerrett et al., 2005).  These predicted exposures are 

then included as explanatory variables in a regression model to evaluate a health effect parameter 

of interest.  However, the use of predicted air pollution levels as surrogates of true exposure, are 

inevitably affected by measurement error and uncertainty (Basagaña et al., 2013).   

To sufficiently capture temporal variation annual average concentrations it is necessary to 

sample during the majority of a year at a large number of sites (Hoek et al., 2002).  Most LUR 

studies are developed over a limited sampling period with varying numbers of measures, and are 

extrapolated to specific time periods of interest.  Thus, it has been assumed that exposure 

predictions with less measurement error relative to the unknown true exposures will result in 

improved health effect estimates (Jerrett et al., 2005).  LUR for exposure assessment, however, 

can be constrained by the spatial variability expressed by the pertinent geographic predictors in 

relation to the locations of the monitoring sites, and the true underlying pollutant variability 

(Alexeeff et al., 2014; Basagaña et al., 2013). The degree to which exposure prediction, and 

69 



subsequent exposure measurement error engenders uncertainty and bias in health-effect estimates 

has invoked research interests (Alexeeff et al., 2014; Basagaña et al., 2013; Dionisio et al., 2013; 

Szpiro et al., 2011a; Szpiro et al., 2011b) especially for imminent multipollutant modeling 

frameworks (Dionisio et al., 2014) .  

LUR and dispersion models are thought to perform similarly given optimum conditions 

(Dijkema et al., 2011).  Though, high spatial correlations between models suggest reliability of 

overall long-term effect estimation derivation, small-scale refined information can lead to spatially 

differential estimates in effect estimates.  Thus, for population-dense urban areas, small differences 

in measurement error and subsequent risk estimates can have important results, especially in 

spatially stratified analyses (Sarnat et al., 2013).  Moreover, spatial refinement in exposure 

estimates may allow for more accurate source-concentration interpretability and in identifying 

subsequent associations among population subgroups for environmental justice intervention.   

In this chapter, we explore the impact of measurement error on health effect estimates using 

LUR and hybrid AERMOD/ LUR models.  We constructed two annual PM2.5 prediction models 

by combining summer and winter measurements (presented in Chapter 3) with (1) local EPA AQS 

measures; and (2) local EPA AQS measures and annual long-term AERMOD predictions.  

Specifically, we examine AERMOD’s potential to impact measurement error and subsequent acute 

and chronic health-effect bias.  We used a simulated cohort of 5,000 residential addresses to 

examine the potential magnitude of measurement error between annualized LUR and AERMOD/ 

LUR modeling frameworks.  We also apply a generic Monte Carlo simulation utilizing statistical 

properties from a GIS-based predictor and the AERMOD predictions to demonstrate the impact of 

distributional variance on heath effect estimation and bias.  
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4.1 METHODS 

PM2.5 measures, study design, site selection, and LUR model building methods were 

presented in detail in Chapter 3.  Here, we construct and evaluate an annual PM2.5 prediction model 

utilizing multi-season distributed measures and temporal trends from routine regulatory monitors 

for epidemiology application. To further supplement temporally misaligned measurement data, we 

included a long-term average of AERMOD dispersion output predictions and examined model 

improvement.  We examine model prediction efficacy by applying exposure estimates to a 

theoretical cohort of 5,000 individuals.  Finally, we explicitly compare the PM2.5 emissions density 

covariate to AERMOD predictions in a Monte Carlo simulation to demonstrate the effect of 

explanatory covariate variability on health effect estimation.   

4.1.1 Merged Season LUR Model 

To produce a spatially-refined model for temporal extrapolation (e.g., daily, annual), a 

merged seasonal model was constructed by combining summer and winter PM2.5 measures, 

resulting in 74 total dependent observed values, repeated over two seasons.  To control for repeated 

measures across seasons, a random intercept with an independent unstructured covariance was 

applied (p = 0.003) in a mixed model framework with restricted maximum likelihood estimation. 

A merged season LUR was first constructed utilizing the study-deployed regional background 

measures to corroborate spatial covariate structure before applying temporal adjustment schemes 

(e.g., daily PM measures from routine regulatory monitors) necessary for temporally extending 

spatial LUR estimates.  Explanatory variable selection procedures were followed as presented 

previously in Section 3.1.5.   
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4.1.2 Temporal Model Extrapolation  

 To temporally extend the spatial variability explained by the LUR models to various time 

scales (e.g., daily, annual), we examined regionally-located daily PM2.5 measures from EPA’s 

regulatory Air Quality System (AQS).  The temporal stability of PM2.5 measures across a greater 

six-county region of southwestern PA was examined through time series application of routine 

regulatory monitors from 2000-present.  Three criteria were followed to extrapolate a temporal 

trend from nearby regulatory monitoring data: (1) agreement with regional background measures 

(two summer; two winter season) obtained during dedicated sampling campaigns, to allow for 

model validation; (2) data quality (e.g., sampling method, co-located monitors, non-systematic 

missing); (3) representativeness of a greater regional trend of Southwestern PA from 2000-present; 

and, (4) interpretability.  

 In following these criteria, a single 24-hr AQS (Thermo Scientific TEOM single point 

monitor) monitor demonstrated the most robust and representative temporal trend (Fig. 18).  The 

selected AQS site (hereafter called central AQS) is located centrally located, and functions as 

designated NCore station consisting of multiple co-located PM2.5 measures (e.g., FRM filter-based, 

FEM continuous Met One BAM) which greatly reduced the uncertainty in supplementing missing 

values. Though, data quality from this monitor is robust, with only 176 missing days over 11 years 

(2003-2013).  In respect to our modeling domain, the monitor is located outside of the urban core, 

in a mixed commercial/residential area.   

 Daily measures from the selected AQS sites were matched and averaged to our dedicated 

weekly sampling sessions.  These values were then substituted into the pre-existing seasonal and 

merged season LUR models to examine the changes in explanatory variables, similarly to when 

we added Caline3 and AERMOD.  Though the selected monitor may capture a different nearby 
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source regime in comparison to the regional background site, all prior explanatory variables were 

retained (p < 0.05) when the central AQS measured were used as temporal controlling term. 

Therefore, we did not reconstruct the LUR models with the AQS adjustment, as we assumed the 

geographic covariates chosen best represented the spatial variability in intraurban PM.  

Figure 18. Sampling domain with designated regional background and EPA AQS central sites 

4.1.3 Hybrid LUR/AERMOD PM2.5 Prediction 

To further supplement temporally misaligned measurement data, we included a long-term 

average of AERMOD dispersion output predictions and examined model difference.  In contrast 

to the previous hybrid model framework described in Chapter 3, AERMOD predictions were 
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approximated using a full year (2012) of hourly meteorological data as opposed to sampling 

session-specific averaging times.  AERMOD predictions, therefore, capture long-term source/ 

meteorological interaction information across the entire modeled year. Similar to prior methods 

presented, the dispersion output was included as an independent covariate in the combined season 

model and model fits were assessed.  Likewise, to produce an independent covariate in the merged 

seasonal LUR model, AERMOD receptor locations were defined at the monitoring locations (Fig. 

7).  To account for complex terrain (e.g., river valleys) effects, a 1km2 uniform Cartesian receptor 

grid was included in addition to discrete receptors in all model runs.  The resulting modeled 

predictions were added separately to the merged LUR model according to the formula:  

𝑪𝑪𝒔𝒔 =  𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒋𝒋  +  �(𝜷𝜷𝒊𝒊

𝒎𝒎
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   (4.1) 

Where, 

𝜶𝜶𝑨𝑨𝑨𝑨𝑨𝑨 =  regression coefficient for the AERMOD covariate

𝒅𝒅𝒔𝒔,𝒕𝒕
𝑨𝑨𝑨𝑨𝑨𝑨 = dispersion concentration (µg/m3) modeled from AERMOD for site s for hour t

Following the model building/validation procedures, the explanatory variables derived in equation 

3 were used to solve for concentrations predictions at non-sampled locations at the 100 x 100m 

grid resolution for the entire modeling domain.   
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4.1.4 Randomized Cohort Simulation 

To examine whether AERMOD predictions attenuate exposure measurement error, a 

randomized theoretical cohort of 5,000 point locations was generated.  To maximize spatial 

coverage and limit clustering, neighboring point locations were set at 100m distance intervals. 

Predictions from both annualized models were made at the 5,000 point locations and were 

compared spatially and temporally (e.g., daily).         

4.1.5 Health Effect Estimation for Epidemiological Application 

Health effect estimation can be derived from association-type studies, where statistical 

relationships are resolved typically by linear or logistic probabilistic models.  Considering an 

association-type linear health effect model with the general form: 

𝒀𝒀 =  𝜷𝜷𝟎𝟎 + 𝜷𝜷𝒙𝒙 𝑿𝑿 +  𝜺𝜺 

 (4.2) 

Where, Y is the observed health outcome, X is the true pollutant exposure, and βx is the effect 

estimate of interest.  Since X is not measured at all residential locations of the N study participants, 

but at n < N locations, the LUR model is constructed from n measures and a subset of r potential 

predictors are used to predict exposure 𝑧̂𝑧 at the N residential locations.  Thus, it is common practice 

to obtain the predicted health effect estimate 𝛽̂𝛽𝑧𝑧 from a regression of Y on 𝑧̂𝑧, also referred to as the 

naïve plug-in estimator.  Therefore, there is interest in understanding the effect on 𝛽̂𝛽𝑧𝑧 from factors 

of 𝑧̂𝑧 estimation using LUR models (e.g., measurement error, model specification, variable 

selection, sample size).  
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4.1.6 Monte Carlo Simulation 

We adapted the stochastic model simulation framework developed by Szpiro et al. (2011a) 

to examine the health effect estimate difference between two study-generated geographic 

covariates.  The statistical theory within the model simulation is described in detail elsewhere 

(Gryparis et al., 2009; Szpiro et al., 2011a; Szpiro et al., 2011b).  Briefly, the stochastic simulation 

performed by Szpiro et al. (2011a) assumed a well-characterized spatial model, from which 

exposure surfaces were generated using 100 theoretical pollutant measures and three geographic 

covariates for 10,000 subjects.  The covariates were assumed to be independent of each other at 

all locations and between subjects. The first two covariates were distributed as N(0,1), but the third 

as N(0, 𝜎𝜎2), where 𝜎𝜎2 represents the degree of variability at the monitoring locations.  𝛽̂𝛽𝑧𝑧 was then 

obtained by regressing a randomized distribution of a hypothetical linear health outcome with β0 

=1, βx = 2, 𝜎𝜎𝜀𝜀 = 25 characteristics against the resolved exposure predictions for each cohort 

individual.  This process was repeated 80,000 times to obtain information on the health effect 

estimate given various degrees of variability explained by the third geographic covariate in each 

linear LUR model.    

Our simulation was designed to compare the variability explained between the two 

geographic covariates of interest obtained from our LUR model building process utilizing the 37 

monitoring locations.  These included: (1) PM2.5 emissions density within 50m that varied about 

the 37 monitoring locations with a mean 0.52 and standard deviation of 0.54, and; (2) 2012 annual 

PM2.5 AERMOD predictions that varied about the 37 monitoring predictions with a mean of 1.49 

and variance of 1.45.  To test the impact on health effect estimates using these two study-specific 

covariates, we utilized the standard deviations of each covariate to define the random distributions 

to produce exposure estimates for each of the theoretical 5,000 cohort members in separate 
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simulations. We restricted the number of monitor values to 40 and number of cohort subjects to 

5,000, and repeated the process 50,000 times.  We compared the mean and standard deviations of 

 𝛽𝛽�𝑧𝑧, and mean R2 and RMSE between the two simulations.   

4.2 RESULTS 

4.2.1 EPA Air Quality System Measures 

Weekly average measures from both the regional background site and the central AQS site 

are included in Table 9 and Fig. 19.  On average, the central AQS site recorded higher 

concentrations within both seasons compared to the regional background site previously utilized 

for temporal LUR adjustment; however, a larger degree of difference in concentrations were 

observed in the winter season.  The central site was efficient in capturing the temporal trend across 

sampling sessions as evident by the covariance structure shown in Fig. 19.   

Table 10. Summary statistics comparing PM2.5 temporal adjustment measures in µg/m3 

Summer 
Background 

Summer 
Central AQS

Winter  
Background 

Winter 
Central AQS

n 6 6 6 6 
Min 9.0 11.8 6.8 9.0 
Max 15.7 17.3 11.5 15.1 
Mean 11.9 12.9 8.4 11.4 
Median 11.9 12.1 8.1 10.4 
SD 2.2 2.2 1.8 2.5 
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Figure 19. Summer and winter boxplots of PM2.5 measurements from distributed sites with linear plot of 
regional background and central site measures (EPA AQS) 

4.2.2 Merged Season LUR PM2.5 Predictions 

All prior explanatory variables were retained (p < 0.05) following the replacement of the 

regional background term with the central AQS term.  The merged season LUR model with the 

central AQS term was identical in covariate structure to the winter-only model presented in the 

Chapter 3, and produced a final R2 value of 0.76 (Snijders/Bosker Level 1) and AIC of 319 with 

the AQS adjustment.  Final LUR PM2.5 predictions for 2012 are shown in Fig. 20 in deciles with 

two addition classification breaks added at 12.0 and 15.0 to coincide with current and former 

national ambient air quality standards for the annual arithmetic mean of PM2.5.  
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Table 11.  Merged-season standard LUR (n=72) with sequential R2 and AIC 

Covariates Predicting 
Summer + Winter  

PM2.5 

LUR 

PM2.5 
β 

(p-value) 

Seq. 
R2 AIC 

 Intercept -1.25 
Central AQS PM2.5 1.03 ** 0.71 307 
Industrial parcel area (750m)  3.3x10-6 * 0.74  322 
Traffic signals (750m)  0.07 * 0.76 321 
Density of PM2.5 Emissions (50m) 0.81 * 0.77 319 

*significant: p <0.05; **significant p <.0001
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Figure 20. Annual 2012 LUR PM2.5 predictions across the study domain 
 

4.2.3 Merged Season Hybrid AERMOD/LUR 

 The hybrid LUR/ AERMOD model is shown in Table 11. Similarly to the seasonal models 

presented in Chapter 3, the addition of AERMOD output replaced the density of PM2.5 emissions 

term and slightly increased the overall R2 value to 0.77 and improved the AIC to 287.  Notably, 

the AERMOD output utilized here was derived from an annual AERMOD PM2.5 prediction model.  
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Final LUR/ AERMOD PM2.5 predictions for 2012 are shown in Fig. 20 in deciles with two addition 

classification breaks added at 12.0 and 15.0 to coincide with current and former national ambient 

air quality standards for the annual arithmetric mean of PM2.5. 

Table 12. Merged-season hybrid AERMOD/LUR (n=72) with sequential R2 and AIC 

Covariates Predicting 
Summer + Winter  

PM2.5 

Hybrid AERMOD/LUR 

PM2.5 
β (p-value) 

Seq. 
R2 AIC 

 Intercept -0.93 
Central AQS PM2.5 0.98 ** 0.71 307 
AERMOD 2012 0.50 * 0.75 307 
Traffic signals (750m) 0.08 * 0.76 294 
Industrial parcel area (750m)  3.0x10-6 * 0.78  316 

*significant: p <0.05; **significant p <.0001
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Figure 21. Annual 2012 LUR/ AERMOD PM2.5 predictions across the study domain 
 

4.2.4 Long-term Spatial Variability  

 After producing final prediction models across our modeling domain for the Greater 

Pittsburgh Area, we predicted exposures using each model at a randomized hypothetical cohort of 

5,000 point locations. The prediction differences (hybrid – LUR) are depicted in Fig. 23 and 

descriptive statistics are shown in Table 13. In Fig 23, blue-to-green color gradients indicate 

 82 



locations where LUR predictions were higher compared to LUR/ AERMOD predictions. 

Conversely, yellow-to-red color gradients indicate areas where LUR underpredicted 

concentrations compared to LUR/ AERMOD exposure predictions.   

Table 13. Summary statistics of model difference in µg/m3 corresponding to coordinate-level predictions 
displayed in Fig. 23 

  Exposure Model n Min 25th 
percentile Mean 75th 

percentile Max Var

LUR 5,000 11.42 12.15 12.68 12.95 19.19 0.53 

LUR/AERMOD 2012 5,000 11.26 11.72 12.27 12.54 19.13 0.77 

Figure 22.  Predicted concentration difference (Hybrid minus LUR) defined at the residential level coordinates 
(latitude-longitude) from 2012 mean estimates 
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4.2.5 Daily Temporal Variability 

 LUR can produce robust predictions of long-term, fine-scale spatial variation in pollutant 

concentrations.  Dispersion modeling, however, is capable of estimating fine-scale spatial 

resolution in addition to short-term averaging times.  Fig. 23 exhibits differences by box-plots in 

daily exposure predictions for a 7-day week snapshot in January, 2013 at the 5,000 locations 

displayed in Fig. 22.  Both models used the daily central AQS daily concentration to calibrate the 

daily exposure predictions.  The differences in distributions between days (height of box-plots), 

indicates the differential prediction ability in AERMOD predictions, and indicates the impact of 

source-meteorological interaction information at small time scales.  A maximum daily prediction 

difference of 16.47 was observed at a single location during the week snapshot.  Generally, the 

two models estimated mean concentrations well across a relatively large, non-clustered cohort.    

 

Figure 23. Difference in hybrid LUR/ AERMOD predictions and LUR predictions at the daily time scale 
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4.2.6 Model Simulation 

Table 14 displays the results of the Monte Carlo simulation comparing two models that 

each contained distribution parameters from either the PM2.5 density covariate, or the AERMOD 

covariate. The results of the simulations demonstrate the mathematical function of the geographic 

covariate variance and its resulting effect on a generic health effect estimate  𝛽̂𝛽𝑥𝑥.  Thus, a 

geographic covariate with a larger variance about the monitoring locations resulted in improved 

health effect estimate efficiency, though this relationship was not resolved by the model prediction 

accuracy as per mean coefficient of determination denoted by 𝑅𝑅�2.   

Table 14. Results from Monte Carlo simulations 

 Geographic Covariate 𝑹𝑹�2 SD 
𝜶𝜶�𝟑𝟑 

Mean
𝜷𝜷�𝒙𝒙

SD 
𝜷𝜷�𝒙𝒙

PM2.5 Emissions Density (50m) 0.73 0.75 1.89 0.16 

AERMOD 2012 0.74 0.28 1.99 0.11 

4.3 DISCUSSION 

In this chapter, we developed and evaluated an annual LUR model for PM2.5, supplemented 

with yearly AERMOD PM2.5 predictions and routine monitoring in Pittsburgh, PA in an attempt 

to enhance the spatial resolution of ambient air pollution data for long-term exposure estimation.  

We also demonstrated the utility of AERMOD with LUR for producing daily concentration 

estimates for acute exposure settings, and evaluated the model differences.  These evaluations add 
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to the limited number of studies that have compared spatial exposure techniques using real-world 

pollution measurements. Overall, the mean difference between models equated to a slight 

overestimation in LUR predictions compared to the hybrid model, though both models appear to 

estimate the underlying mean similarly.  Though we only applied our model to a one weekly 

snapshot of daily predictions, these results indicate potential non-systematic differential 

predictions when including short-term AERMOD model output.  However, we were unable to 

validate the daily estimates; nonetheless the daily estimates leverage AERMOD’s temporal 

estimation flexibility and demonstrate a means to include meteorological processes for sources of 

interest.   

We demonstrated that AERMOD can produce a highly variable prediction surface 

compared to typical GIS-based covariates across a large urban-to-suburban domain with relatively 

intense industrial sources. Notably, the PM2.5 density variable was almost five times less variable 

(σ2 = 0.25) across all 37 distributed monitoring locations, compared to variances of 1.18 and 1.45 

for summer and winter AERMOD terms, respectively.  In applying a quantitative comparison of 

exposure measurement error to a generic health outcome model, we were under the assumption 

that refining spatio-temporal resolution of exposure predictions would result in less exposure 

measurement error and less bias in estimating the health effect estimate.  If exposure measurement 

error is non-differential with respect to a health outcome, a mis-specified exposure model 

containing error would result in bias towards the null hypothesis.  Under this assumption, a 

properly specified exposure model with attenuated measurement error should result in less bias 

towards the null.   Our simple Monte Carlo simulation demonstrated that the range in covariate 

values can theoretically impact exposure measurement error, and result in less bias towards the 

null, while improving efficiency.  Moreover, prediction model accuracy assessed by the in-sample 
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R2 value, may not provide adequate model evaluation conclusions.  We acknowledge these results 

are based on an indirect means of examining exposure measurement error, and caveat our 

conclusions on health effect estimation as cursory.   

Relatively few studies have explicitly compared LUR and dispersion models under 

epidemiological settings (Chang et al., 2012; de Hoogh et al., 2014; Sarnat et al., 2013; Sellier et 

al., 2014; Wu et al., 2011). Generally, higher correlations have been shown for traffic-related 

pollutants (e.g., NOx, CO, PM2.5 - EC) than for more regionally-varying pollutants (e.g., O3, PM2.5 

- SO4) (Sarnat et al., 2013; Sellier et al., 2014).  Our attempt to model PM2.5 was attempted given 

the presence of legacy industrial sources that exist in river valleys and emit pollutants near ground-

level producing source-meteorological interaction events of interest.  

Recently, Dionisio et al. (2013) produced refined spatial and temporal estimates of multiple 

pollutants using AERMOD predictions to disentangle regional background and localized spatio-

temporal variability.  In a complementary study, Sarnat et al. (2013) reported stronger heath effect 

estimate associations with the spatially-refined exposure metrics compared to less refined exposure 

techniques.  Several simulation studies have been attempted to quantify exposure measurement 

error and related bias in the resulting risk assessment (Gryparis et al., 2009; Kim et al., 2009; 

Lopiano et al., 2010; Madsen et al., 2008; Szpiro et al., 2011b).  These simulations have typically 

demonstrated that well specified spatial models and subsequent smoothing procedures produce 

very little bias in health effect estimates as measurement error in these contexts has a Berkson-like 

component as opposed to classical error.   

Berkson error behaves similarly to the random ε in the disease model, where variance of 

the estimated coefficients in the health model increases, but is not biased (Szpiro et al., 2011b).  

Nonetheless, bi-directional health effect-bias was observed by Alexeeff et al. (2014) in 
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comparisons of kriging and LUR models across various study design simulations. Basagaña et al. 

(2013) reported LUR associated measurement error and health-effect bias resulting from 

underpowered models (e.g., many predictor variables with few measurement sites: n=20,40,80).  

Therefore, potential for health estimate bias may result from spatial model misspecification, and 

ultimately how much of the true spatial variability is explained by the model which is ultimately 

unknown.   

88 



5.0  OVERALL SUMMARY 

The objective of this dissertation was to examine the utility of incorporating source-

meteorological interaction information from two commonly employed atmospheric dispersion 

models into the land use regression technique for both NO2 and PM2.5.  Ultimately, we were 

interested in obtaining highly resolved spatio-temporal pollutant estimates using the popular LUR 

modeling framework, while providing a method to attenuate health effect estimate bias that may 

result from spatial model misspecification.  We caveat our conclusions in respect to the diverse 

source regime within our study domain setting that is further confounded by complex topography 

and complex atmospheric processes.  We also acknowledge that our temporally misaligned 

sampling design was not particular conducive for effective validation of our spatiotemporal 

deterministic modeling output.  Our conclusions therefore are highly contingent upon internal 

cross validation measures and elementary mathematical deductions.   While our simple hybrid 

methodology provided improved model predictions across our study domain, it is important to 

note that different exposure metrics apply to different aspects of air quality.   

To investigate the efficacy of a hybrid land use regression/ atmospheric dispersion 

modeling framework, we began by examining output from a roadway dispersion output to predict 

NO2 given the small-scale variability of NOx. Our hybrid framework can more aptly be described 

as an LUR model supplemented by source-meteorological interaction information via Gaussian 

dispersion output from sources of interest. We simply added dispersion output as an independent 

covariate to pre-constructed LUR models.  We attempted a validation of dispersion output from 

the Caline3 model that is shown in Appendix A, and observed robust correlations between 

measured and predictions, albeit appropriate background concentration derivation was not trivial.  
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The model framework described in chapter 2 helped to explain an additional portion of out-of-

sample variation (3-10% LOOVC R2) in NO2 observations compared to the standard LUR model, 

Correspondingly, in Chapter 3, the AERMOD dispersion model was implemented to predict PM2.5 

from local and regional stationary sources in a similar hybrid framework.  As per cross-validated 

R2 and RMSE, AERMOD predictions and explained an additional 9-13% in out-of-sample 

variability in PM2.5.  Both dispersion models behaved similarly when added to the standard LUR 

models, effectively displacing GIS-based covariates, corroborating model interpretability and 

providing the greatest degree of model fitness for nearby, high-density source categories.   

In the absence of a spatially dense monitoring network, we demonstrated that AERMOD 

can produce a highly variable prediction surface compared to typical GIS-based covariates across 

a large urban-to-suburban domain with relatively intense industrial sources. Our simple Monte 

Carlo simulation demonstrates that the range in covariate values can impact exposure measurement 

error in epidemiological studies, and prediction model accuracy assessed by the in-sample R2 

value, may not provide adequate model evaluation conclusions.  We acknowledge these results are 

based on an indirect means of examining exposure measurement error, and caveat our conclusions 

on health effect estimation as preliminary.  We intend to further investigate the assumption that 

spatiotemporally refined exposure predictions result in attenuated health effect bias by association-

type epidemiological study.   
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APPENDIX: OBSERVED NO2 VS. PREDICTED CALINE3 + BACKGROUND 

Across distributed sites, Caline3 predictions stratified by low- and high-traffic sites 

produced means of 1.73 µg/m3 (SD = 1.68, n = 74) and 4.63 µg/m3 (SD = 3.54, n = 70), 

respectively. Figs. 24-26 display winter season scatter-plots of log-transformed measured NO2 vs. 

modeled Caline3 added to: (a) regional background; (b) urban reference; and (c) mean of regional 

background & urban reference.  Caline3 + regional background under-predicted measured NO2 by 

5.78 ppb, on average.  From the geometric mean (mg) values, Caline3 + regional background 

under-predicted measured NO2 across both seasons.  Conversely, Caline3 + urban reference over-

predicted measured NO2.  Caline3 + mean reference produced the lowest geometric means, 

standard deviations and fractional bias values.  Therefore, Caline3 + mean reference produced the 

least biased estimates of NO2 across winter seasons, compared to either continuous site alone (Fig 

26).  A mean of both temporal measures was subsequently chosen to temporally control for 

misaligned measures in all LUR models predicting NO2. 

91 



Figure 24. log-transformed scatter plot of measured NO2 vs. Caline3 + regional background site 
measurements as background concentration with performance statistics 

Figure 25. log-transformed scatter plot of measured NO2 vs. Caline3 + urban reference site measurements 
as background concentration with performance statistics 

FB = 0.18 
mg = 0.83 
sg = 1.16 
r = 0.55 
NMSE = 0.05 
 

FB = -0.09 
mg = 1.09 
sg = 1.07 
r = 0.60 
NMSE = 0.02 
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Figure 26. log-transformed scatter plot of measured NO2 vs. Caline3 + mean of regional background & 
urban reference site measurements as background concentration with performance statistics 

FB = 0.003 
mg =0.99 
sg = 1.03 
r = 0.62 
NMSE = 0.008 
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