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Ada O. Youk, PhD  

ABSTRACT 

For longitudinal data analyses, existing statistical methods can be used when the independent and 

dependent variables are measured at the same frequency. In Part 1 of this dissertation, we 

propose a three-step estimation procedure using local polynomial smoothing for longitudinal 

data where the variables to be handled are repeatedly measured with different frequencies within 

the same time period. We first inserted pseudo data for the less frequently measured variable. 

Then, standard linear regressions were fitted at each time point to obtain raw estimates. Lastly, 

local polynomial smoothing with analytical weights was applied to smooth the raw estimates. 

The results showed using analytic weights instead of a kernel function during smoothing is 

critical when the raw estimates have extreme values, or the association between the dependent 

and independent variables is nonlinear. In Part 2 of this dissertation, we propose another 

semiparametric estimation procedure to solve the same problem. After imputing pseudo data for 

the less frequently measured variable, local polynomial smoothing with analytical weights was 

applied to smooth the pseudo data for one subject at a time. Then, a suitable parametric mixed-

effects model was applied. The results showed that using different types of analytic weights 

during smoothing produced similar results. Both proposed methods work better when the 

variances of the repeated measures are small and the within-subjects correlations are high. 

SEMIPARAMETRIC ESTIMATION PROCEDURES USING LOCAL 
POLYNOMIAL SMOOTHING FOR INCONSISTENTLY MEASURED 

LONGITUDINAL DATA 
 

Lei Ye, PhD 

University of Pittsburgh, 2014

 

 iv 



Statement of Public Health Relevance: The proposed methods are good tools for exploring 

inconsistently measured longitudinal data. They provide estimation without losing information 

that has been collected. It is important to biomedical studies especially when many researchers 

are using diary-based methods to improve the data collection process. For example, paper 

diaries, personal digital assistants (PDA) and smart phones have been used in the weight loss 

clinical trials to collect intensive longitudinal data that reflect subjects’ real life experiences and 

behaviors. The proposed methods can be used when the inconsistent measure problem is present 

in a longitudinal study. 
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1.0  INTRODUCTION 

Longitudinal data such as repeated measurements are collected frequently in clinical trials and 

other scientific areas. Many researchers use diary-based methods to collect data. These methods 

started with simple paper diaries, later electronic devices such as personal digital assistants 

(PDA) or smartphones began to be used to improve the data collection process. These techniques 

enable one to record detailed information that is difficult to recall or is subject to reporting bias. 

Therefore this type of longitudinal data is usually intensively measured and has complicated 

patterns. 

There are other types of longitudinal data that cannot be collected frequently because the 

processes are invasive or are time consuming, for example, lab tests or questionnaires. As a 

result, problems in existing statistical methodology arise when we examine the association 

between intensively measured longitudinal variables and those variable less intensively 

measured. 

The motivation for this work was based on the longitudinal data collected in the Self-

Monitoring And Recording using Technology (SMART) Trial, a single-center, 24-month clinical 

trial of overweight and obese adults seeking weight loss treatment(Burke et al., 2009). One of the 

study aims of the study was to compare weight loss between participants who were adherent to 

self-monitoring and participants who were not adherent to self-monitoring. The SMART Trial 

had 210 participants randomized to three treatment groups: Paper Diary, PDA, or PDA with 
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daily tailored feedback (PDA+FB). The traditional weight-loss intervention of group-based 

standard behavioral treatment (SBT) sessions was provided to each treatment group. SBT 

meetings were held weekly for the first 4 months, biweekly for 8 months and then monthly for 

12 months.  

The only difference among the three treatment groups was the tools used for self-

monitoring. Participants in the paper diary group were given standard paper diaries, and were 

asked to record all foods eaten and their calorie and fat content and to calculate subtotals using a 

nutritional reference book. Participants in the PDA group were given a PDA to self-monitor diet. 

The PDA+FB group had feedback software that provided a daily message based on participants’ 

entries. The PDAs had a database of foods and nutrient contents so the participant had to only 

search and select the food and enter the portion size. Subtotals were automatically calculated 

throughout the day. 

Participants turned in their paper diaries at each intervention session; those with the PDA 

had the data uploaded to a desktop computer during the group session. Adherence to self-

monitoring was defined as whether participants recorded at least 50% of their daily calorie goal 

in the diaries. If participants failed to turn in diaries, nonadherence for self-nomitoring was 

assumed. As a result there were 43 repeated measurements of adherence to self-monitoring for 

each participant. 

The primary outcome was the participants’ weight assessed at baseline and semi-

annually. At each assessment, the participants’ weight was measured by study staff using a 

digital scale and following an overnight fast. Therefore, there were five repeated measurements 

of weight for each participant. 
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Using parametric mixed-effects model to examine the effect of adherence to self-

monitoring on weight involves reducing the dimension of the adherence data (Burke et al., 

2012). However, the advantages of collecting detailed longitudinal data through the diaries are 

not fully exploited when using the aggregated data. Thus, the main objective of this dissertation 

is to propose statistical methods that can fully use both weight (five measurements) and 

adherence data (43 measurements) and to estimate the association between these two variables. 

Specific aims include: 

Aim 1: We propose a three-step estimation procedure using local polynomial smoothing 

with analytical weights to analyze inconsistently measured longitudinal data. 

Aim 2: We propose another semiparametric estimation procedure for consistently 

measured longitudinal data to model inconsistently measured longitudinal data. 

In Chapter 2, we give a critical review of the literature related to parametric mixed-

effects modeling, local polynomial smoothing techniques, semiparametric mixed-effects 

modeling for consistently measured longitudinal data. in Chapter 3, we present the completed 

work on Aim 1 and in Chapter 4,  we present the completed work on Aim 2. 
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2.0  LITERATURE REVIEW 

2.1 INTRODUCTION 

 

In longitudinal studies, when variables are repeatedly measured on each study participant at 

different frequencies during the same time period, the dimensions of the two variables are 

different. This unbalanced structure causes problems for modelling the relationship between 

these variables. We review here the literature for analyzing consistently measured longitudinal 

data as these are the methods we wish to extend. These include parametric mixed-effects models, 

local polynomial smoothing, semiparametric mixed-effects models and two-step estimation of 

functional linear models. 

2.2 PARAMETRIC MIXED-EFFECTS MODELS 

In the longitudinal studies, participants are measured repeatedly over time which allows 

researchers to study their experiences and behaviors directly. Because the cluster of observations 

for each subject are correlated, the within-subjects correlation must be taken into account to draw 

valid scientific inferences. Parametric mixed-effects models, including linear and nonlinear 

mixed-effects models, are powerful tools for modeling longitudinal data. Linear mixed-effects 
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models are used when the association between a longitudinal response variable and its covariates 

are linear with normally distributed errors, while nonlinear mixed-effects models are used when 

the relationship is not linear and may have errors do not follow a normal distribution. 

(Demidenko, 2004; Diggle, 1988). 

2.2.1 Notation 

Let 𝑡𝑡𝑖𝑖𝑖𝑖, 𝑗𝑗 =  1, 2, ···, 𝑇𝑇𝑖𝑖; 𝑖𝑖 = 1, 2,···, 𝑛𝑛, be the distinct time points for subject 𝑖𝑖 where data were 

collected. Let 𝑌𝑌𝑖𝑖𝑖𝑖 be the response variable and 𝐗𝐗𝑖𝑖𝑖𝑖 be the covariates for the 𝑖𝑖th subject at time 𝑡𝑡𝑖𝑖𝑖𝑖. 

The data have the form: 

�𝑡𝑡𝑖𝑖𝑖𝑖,  𝐗𝐗𝑖𝑖𝑖𝑖,  𝑦𝑦𝑖𝑖𝑖𝑖�, 𝑗𝑗 =  1, ···,𝑇𝑇𝑖𝑖; 𝑖𝑖 = 1, 2,···, 𝑛𝑛, 

where   𝐗𝐗𝑖𝑖𝑖𝑖= ( 𝑋𝑋𝑖𝑖𝑖𝑖1,  𝑋𝑋𝑖𝑖𝑖𝑖2,···,  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)𝑇𝑇 are the 𝑑𝑑 covariates measured at time 𝑡𝑡𝑖𝑖𝑖𝑖. The interest is to 

examine the association between the response and its covariates. 

2.2.2 Linear mixed-effects models 

Linear mixed-effects models were introduced to capture the change in the response variable and 

account for the within-subjects correlation (Harville, 1976, 1977; Laird & Ware, 1982). 

Assuming subjects are independent from each other, the linear mixed-effects model can be 

written as: 

𝒚𝒚𝑖𝑖 =  𝐗𝐗𝑖𝑖𝛽𝛽 + 𝒁𝒁𝑖𝑖𝑏𝑏𝑖𝑖 + 𝜖𝜖𝑖𝑖,                                                            (2.2.1) 

𝑏𝑏𝑖𝑖 ~ N (0, 𝑫𝑫),  𝜖𝜖𝑖𝑖 ~ N (0, 𝑹𝑹𝑖𝑖),  𝑖𝑖 = 1, 2, · · ·, n, 

where 𝒚𝒚𝑖𝑖 = [𝑦𝑦𝑖𝑖1,···, 𝑦𝑦𝑖𝑖𝑇𝑇𝑖𝑖]
𝑇𝑇,  𝐗𝐗𝑖𝑖 =  [𝒙𝒙𝑖𝑖1,···, 𝒙𝒙𝑖𝑖𝑇𝑇𝑖𝑖]

𝑇𝑇, 𝐙𝐙𝑖𝑖 =  [𝒛𝒛𝑖𝑖1,···, 𝒛𝒛𝑖𝑖𝑇𝑇𝑖𝑖]
𝑇𝑇 and 𝜖𝜖𝑖𝑖 = [𝜖𝜖𝑖𝑖1,···, 𝜖𝜖𝑖𝑖𝑇𝑇𝑖𝑖]

𝑇𝑇. The 
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𝑦𝑦𝑖𝑖𝑖𝑖 and 𝜖𝜖𝑖𝑖𝑖𝑖 are the response and the error of the 𝑖𝑖th subject’s 𝑗𝑗th measurement, respectively. The 

fixed effects parameter 𝛽𝛽 (𝑑𝑑 × 1) and random effects parameter 𝑏𝑏𝑖𝑖 (𝑞𝑞 × 1) need to be estimated, 

and  𝐗𝐗𝑖𝑖 and 𝒁𝒁𝑖𝑖 are the corresponding fixed effects and random effects covariates. In model 

(2.2.1), 𝑫𝑫 and 𝑹𝑹𝑖𝑖 are the variance components, and 𝑏𝑏𝑖𝑖 and 𝜖𝜖𝑖𝑖 are assumed to be independent with 

normal distributions. The correlation among the repeated measurements is introduced through 

the between-subject variation term  𝐙𝐙𝑖𝑖𝑫𝑫 𝐙𝐙𝑖𝑖𝑇𝑇 and the within-subject variation matrix 𝑹𝑹𝑖𝑖. 

2.2.3 Nonlinear mixed-effects models 

A nonlinear mixed-effects model is generalized from a linear mixed-effects model when a 

longitudinal response variable cannot be written as a linear function of its covariates. The model 

has the form (Davidian & Giltinan, 1995; Vonesh & Chinchilli, 1996): 

  𝒚𝒚𝑖𝑖 = 𝑓𝑓( 𝐗𝐗𝑖𝑖, 𝛽𝛽𝑖𝑖) + 𝜖𝜖𝑖𝑖,  𝜷𝜷𝑖𝑖 = 𝑑𝑑(𝑎𝑎𝑖𝑖, 𝜷𝜷, 𝒃𝒃𝑖𝑖),                                      (2.2.3) 

𝒃𝒃𝑖𝑖 ~ N (0, 𝑫𝑫),  𝜖𝜖𝑖𝑖 ~ N (0, 𝑹𝑹𝑖𝑖),  𝑖𝑖 = 1, 2, · · ·, n, 

where 𝑓𝑓( 𝐗𝐗𝑖𝑖, 𝜷𝜷𝑖𝑖) is a known function of design matrix  𝐗𝐗𝑖𝑖 and subject-specific parameters 𝜷𝜷𝑖𝑖, 

and 𝑑𝑑(𝒂𝒂𝑖𝑖, 𝜷𝜷, 𝒃𝒃𝑖𝑖) is a known function of the fixed effect vector 𝛽𝛽, the random effect vector 𝑏𝑏𝑖𝑖 and 

between-subjects covariate vector 𝒂𝒂𝑖𝑖. 

Parameters of the mixed-effects models can be estimated using Maximum Likelihood 

Estimation (MLE) or Restricted Maximum Likelihood Estimation (REML) (Dempster, Rubin, & 

Tsutakawa, 1981; Laird, Lange, & Stram, 1987; Vonesh & Chinchilli, 1996). The Akaike 

Information Criteria (AIC) and the Bayesian Information Criteria (BIC) can be used as 

information criterias of goodness of fit (Ngo & Brand, 2002; Pinheiro & Bates, 2000). However, 

the successful application of a parametric mixed-effects model to longitudinal data depends 
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heavily on the assumptions of the model. Sometimes these assumptions may not be met. In this 

case, the parametric models are extended to nonparametric models that do not have distribution 

assumptions. 

2.3 LOCAL POLYNOMIAL SMOOTHING 

Parametric mixed-effects models are useful tools for modeling the relationship between a 

response variable and its covariates in longitudinal studies. However, in some applications, 

parametric models can be too restrictive or limiting, because they assume that the outcome has a 

certain distribution and the underlying regression function is known. To overcome this difficulty, 

nonparametric and semiparametric models have been proposed for longitudinal data. There are 

many existing smoothing techniques including local polynomial smoothing, locally weighted 

scatter plot smoothing (LOWESS) and splines. The basic idea of these techniques is to let the 

data determine the most suitable function forms. All of these nonparametric methods can be 

incorporated into longitudinal data analysis. We focus here on local polynomial smoothing (Fan 

& Gijbels, 1992; Muller, 1987; Wand & Jones, 1995) and LOWESS (Cleveland, 1979). 

2.3.1 Notation 

Let (𝑡𝑡𝑖𝑖, 𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, 2, ···, 𝑛𝑛, be an independent and identically distributed observations from a 

population (𝑇𝑇, 𝑌𝑌), where 𝑡𝑡𝑖𝑖 are equally spaced time points in an interval of interest. Our interest 

is to estimate the conditional expectation of 𝑦𝑦𝑖𝑖 
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𝑓𝑓(𝑡𝑡) = E(𝑦𝑦𝑖𝑖 |𝑡𝑡𝑖𝑖 = 𝑡𝑡), 𝑖𝑖 = 1, 2, ···, 𝑛𝑛,            (2.3.1) 

and the derivatives 𝑓𝑓′(𝑡𝑡), 𝑓𝑓′′(𝑡𝑡),···, and 𝑓𝑓𝑝𝑝(𝑡𝑡) can also be estimated. 

2.3.2 General degree local polynomial smoothing 

The main idea of local polynomial smoothing is to locally approximate the 𝑓𝑓(𝑡𝑡) in (2.3.1) by a 

polynomial of certain degree. Suppose that the (𝑝𝑝 + 1)th derivative of 𝑓𝑓(𝑡𝑡) at the point 𝑡𝑡0 exists, 

for 𝑡𝑡 in a local neighborhood of 𝑡𝑡0, a Taylor series gives 

             𝑓𝑓(𝑡𝑡) ≈ 𝑓𝑓(𝑡𝑡0) + 𝑓𝑓′(𝑡𝑡0) (𝑡𝑡 − 𝑡𝑡0) + 𝑓𝑓
′′(𝑡𝑡0)
2!

(𝑡𝑡 − 𝑡𝑡0)2 + ··· + 𝑓𝑓
𝑝𝑝(𝑡𝑡0)
𝑝𝑝!

(𝑡𝑡 − 𝑡𝑡0)𝑝𝑝.               (2.3.2) 

The polynomial is fitted locally by a weighted least squares regression by minimizing 

                         ∑ [𝑦𝑦𝑖𝑖 − ∑ 𝛽𝛽𝑗𝑗 (𝑡𝑡𝑖𝑖 − 𝑡𝑡0)𝑗𝑗𝑝𝑝
𝑗𝑗=0 ]2𝑛𝑛

𝑖𝑖=1  𝐾𝐾ℎ(𝑡𝑡𝑖𝑖 − 𝑡𝑡0),                                    (2.3.3) 

where 𝐾𝐾ℎ ≥ 0 is a kernel function re-scaled by a constant ℎ (ℎ > 0) called the bandwidth that 

controls the size of the local neighborhood 𝐼𝐼ℎ (𝑡𝑡0) where the local smoothing is conduct. Let 

                 𝐼𝐼ℎ (𝑡𝑡0) =  [𝑡𝑡0 − ℎ, 𝑡𝑡0 + ℎ].                                                  (2.3.4) 

The kernel function, 𝐾𝐾ℎ, determines how much the observations in the local neighborhood 𝐼𝐼ℎ (𝑡𝑡0) 

contribute to the fit at 𝑡𝑡0. 

 Let 𝛽̂𝛽𝑗𝑗, 𝑗𝑗 =  0,···, 𝑝𝑝, be the solution to the weighted least squares problem (2.3.3), and 

𝑓𝑓ℎ
(𝑗𝑗)(𝑡𝑡0), be the estimate of the 𝑟𝑟th derivative 𝑓𝑓(𝑗𝑗)(𝑡𝑡0). Then  

𝑓𝑓ℎ
(𝑗𝑗)(𝑡𝑡0) =  𝑗𝑗! 𝜷𝜷�𝑗𝑗 , 𝑗𝑗 =  0,1,···, 𝑝𝑝.  

Therefore the 𝑝𝑝th degree local polynomial kernel smoothing estimate of 𝑓𝑓(𝑡𝑡0) is 𝛽̂𝛽0. We get a 

smoothed line after solving the weighted least squared problem (2.3.3) for all points in the 

domain of interest. 
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The design matrix of model (2.3.3) can be written as: 

𝑿𝑿 = �
1
⋮
1

  
(𝑡𝑡1 − 𝑡𝑡0)

⋮
(𝑡𝑡𝑛𝑛 − 𝑡𝑡0)

  
…
⋱
…

  
(𝑡𝑡1 − 𝑡𝑡0)𝑝𝑝

⋮
(𝑡𝑡𝑛𝑛 − 𝑡𝑡0)𝑝𝑝

� , 

let  

𝒀𝒀 = �
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�      𝜷𝜷�  = �

𝛽̂𝛽0
⋮
𝛽̂𝛽𝑝𝑝
� 

and 

                                   W = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [𝐾𝐾ℎ(𝑡𝑡1 − 𝑡𝑡0), ···, 𝐾𝐾ℎ(𝑡𝑡𝑛𝑛 − 𝑡𝑡0)]. 

Then the weighted least squares problem (2.2.3) can be expressed as 

                                              (𝒚𝒚 − 𝑿𝑿𝑿𝑿)𝑻𝑻𝑾𝑾(𝒚𝒚 − 𝑿𝑿𝑿𝑿)                                                 (2.3.5)    

where β = (𝛽𝛽0, 𝛽𝛽1 ,···, 𝛽𝛽𝑝𝑝)𝑇𝑇. The solution vector is  

                                               𝜷𝜷� =  (𝑿𝑿𝑻𝑻𝑾𝑾𝑾𝑾)−𝟏𝟏𝑿𝑿𝑻𝑻𝑾𝑾𝑾𝑾.                                              (2.3.6) 

2.3.3 Order of polynomial fit 

A local constant or linear fit is appropriate in a flat neighborhood, but higher order fits are 

preferable at peaks and valleys. The local constant smoother called Nadaraya-Watson estimator 

is a local polynomial smoother with 𝑝𝑝 =  0. It fits the data in the local neighborhoods with 

constants that minimize  

∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0)2𝑛𝑛
𝑖𝑖=1 𝐾𝐾ℎ(𝑡𝑡𝑖𝑖 − 𝑡𝑡0).   

It has a slower convergence rate at the region boundary than on the interior of the region because 

fewer data points are in the defined local neighborhoods near the boundary (Cheng, Fan, & 

Marron, 1993). 
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The local linear smoother is a local polynomial smoother with 𝑝𝑝 =  1 (Fan & Gijbels, 

1992). It fits the data within local neighborhoods with constants that minimize  

∑ [𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − (𝑡𝑡𝑖𝑖 − 𝑡𝑡0)𝛽𝛽1]2𝑛𝑛
𝑖𝑖=1 𝐾𝐾ℎ(𝑡𝑡𝑖𝑖 − 𝑡𝑡0).   

This smoother does not have a boundary effect and convergence rate is the same at any point in 

the region (Cheng et al., 1993). 

Usually the choice of the local polynomial fitting degree 𝑝𝑝 is not as critical as the choice 

of the bandwidth, ℎ. However, an odd 𝑝𝑝 is better for curve estimation for the following reasons. 

Even order approximations have the same asymptotic variance as their consecutive odd order 

approximations, but the asymptotic variances are smaller for odd order approximations as 

compared to consecutive even order approximations (Ruppert & Wand, 1994). As the order of 

the approximation increases, the bias decreases, but the asymptotic variance and computational 

time increases (Fan, 1992; Hastie & Loader, 1993). Therefore, a low odd order approximation 

has been recommended (Wand & Jones, 1995). 

2.3.4 Kernel function 

The kernel function, K, in the local polynomial smoothing is usually a symmetric probability 

density function used to decide how much the observations contribute to the fit at 𝑡𝑡0 by assigning 

weights to each observation in the local neighborhood 𝐼𝐼ℎ (𝑡𝑡0). Widely used kernel functions 

include the uniform kernel, Gaussian Kernel, Epanechnikov kernel, Biweight kernel and 

Triweight kernel. These kernels are all members of the symmetric Beta family.  

When the uniform kernel is used, all of the observations within the local neighborhood 

contribute equally by assigning the same weight. When the Gaussian Kernel, Epanechnikov 

kernel, Biweight kernel or Triweight kernel functions are used, the contributions of the 

 10 



observations are determined by the distance, between 𝑡𝑡𝑖𝑖 and 𝑡𝑡0. The shorter the distance the 

bigger the contribution will be (higher weights). The choice of a kernel is usually not crucial, but 

the Epanechnikov kernel is known as the “ideal” kernel function for local polynomial smoothing 

(Fan, Gijbels, Hu, & Huang, 1996). 

2.3.5 Bandwidth selection 

The bandwidth, ℎ, specifies the size of the local neighborhood. A good choice of bandwidth 

produces small prediction error that is quantified by Mean Squared Error (MSE) of the local 

polynomial smoother (Fan et al., 1996). The MSE combines both variance and bias of the 

estimates 

𝑀𝑀𝑆𝑆𝑆𝑆 [(𝑓𝑓ℎ(𝑡𝑡0)] = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2[(𝑓𝑓ℎ(𝑡𝑡0)] + 𝑉𝑉𝑉𝑉𝑉𝑉 [(𝑓𝑓ℎ(𝑡𝑡0)] 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 [(𝑓𝑓ℎ(𝑡𝑡0)] = 𝐸𝐸[𝑓𝑓ℎ(𝑡𝑡0)] – 𝑓𝑓(𝑡𝑡0) 

𝑉𝑉𝑉𝑉𝑉𝑉 [(𝑓𝑓ℎ(𝑡𝑡0)] = 𝐸𝐸�𝑓𝑓ℎ(𝑡𝑡0) − E[𝑓𝑓ℎ(𝑡𝑡0)]�
2
. 

The bandwidth controls both the bias and the variance of the local polynomial smoother. When ℎ 

is small, few observations fall within the local neighborhood, so 𝑓𝑓ℎ(𝑡𝑡0) is well estimated with a 

small bias, but small numbers of observations produce a large variance. For a similar reason, 

when ℎ is large, many observations fall in the local neighborhood so that 𝑓𝑓ℎ(𝑡𝑡0) is estimated with 

a large bias but with a small variance. 

 Sometimes it is appropriate to choose the bandwidth subjectively by looking at several 

smoothed lines with different bandwidths. The bandwidth can also be selected automatically 

from the data by minimizing MSE of 𝑓𝑓ℎ(𝑡𝑡0). This bandwidth selector is typically based on cross-

validation ideas (Wand & Jones, 1995). 
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2.3.6 Locally Weighted Scatter plot Smoothing 

Local polynomial smoothing can be influenced by extreme observations in the response variable 

that produce an undesirable smoothed line. In this situation, a Locally Weighted Scatter plot 

Smoothing (LOWESS) is preferred, because it is robust against extreme observations 

(Cleveland, 1979; Cleveland & Devlin, 1988). During the fitting of LOWESS, residuals of a 

local polynomial smoother are evaluated, and robust weights are assigned to each residual with 

large residuals given small robust weights. Then the local polynomial smoothing is fitted again 

with new weights, which are the product of the kernel weights at the first fit and the robust 

weights assigned to each residual. Therefore, observations with large residuals during the first fit 

are down weighted in the second fit. This procedure is done iteratively until the results become 

stable. 

The local polynomials fitted in local neighborhoods are usually first or second order 

because higher order polynomials tend to over fit the data and are numerically unstable. The 

kernel function usually used in LOWESS is the tri-cube kernel: 

𝐾𝐾(𝑡𝑡)  =  70
81

 (1 − |𝑡𝑡|3)3 𝐼𝐼[|𝑡𝑡|≤1]. 

It assigns higher weight to the observations that are close to the point where the response is being 

smoothed. The weight is calculated by scaling the distance between each observation and the 

point of estimation (𝑑𝑑𝑖𝑖) to the maximum absolute distance (𝑑𝑑𝑞𝑞) in the local neighborhood 

𝑤𝑤𝑖𝑖 = �
[1 − (𝑑𝑑𝑖𝑖/𝑑𝑑𝑖𝑖)3]3 , 𝑑𝑑𝑖𝑖 < 𝑑𝑑𝑞𝑞

0, 𝑑𝑑𝑖𝑖 ≥ 𝑑𝑑𝑞𝑞
 

 The local neighborhoods are defined by a nearest neighbor bandwidth α (0 < 𝛼𝛼 ≤ 1). 

The data used in each local fit contain n×α observations that are closest to the point where the 

response is being smoothed. The larger the 𝛼𝛼, the smoother the fit but the greater the bias. 
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Reasonable values of the smoothing parameter α lie between 0.2 and 0.8 for most LOWESS 

applications (Cleveland, 1979). 

 Robust weights are calculated using the residuals. Let 𝑟𝑟𝑖𝑖, 𝑖𝑖 = 1, 2, ···, 𝑛𝑛, be the residual of 

the 𝑖𝑖th observation, and 𝑀𝑀 be the median of the absolute values of the residuals in the first local 

polynomial fit. Robust weights are given by the bisquare function as 

𝑟𝑟𝑟𝑟𝑖𝑖 = �[1 − (𝑟𝑟𝑖𝑖/6𝑀𝑀)2]2 , |𝑟𝑟𝑖𝑖| < 6𝑀𝑀
0, |𝑟𝑟𝑖𝑖| ≥ 6𝑀𝑀 

New weights, the product of kernel weights and robust weights, are used in the next iteration of 

local polynomial fit. This procedure is repeated N times. Cleveland (1979) recommends N=3. 

2.4 SEMIPARAMETRIC MIXED-EFFECTS MODELS 

Parametric models have restrictive assumptions, but they are efficient if models are correctly 

specified. In contrast, nonparametric models are robust against model assumptions, but the fitting 

procedure is complicated. Semiparametric models are a compromise that have features of both 

parametric and nonparametric models. 

2.4.1 Notation 

Let 𝑡𝑡𝑖𝑖𝑖𝑖, 𝑗𝑗 =  1, 2, ···, 𝑇𝑇𝑖𝑖; 𝑖𝑖 = 1, 2,···, 𝑛𝑛, be the distinct time points where data were collected for 

subject 𝑖𝑖. Let 𝑌𝑌𝑖𝑖𝑖𝑖 be the response variable and 𝐗𝐗𝑖𝑖𝑖𝑖 be the covariates for the 𝑖𝑖th subject at time 𝑡𝑡𝑖𝑖𝑖𝑖. 

The data have the form:  

�𝑡𝑡𝑖𝑖𝑖𝑖,  𝐗𝐗𝑖𝑖𝑖𝑖,  𝑦𝑦𝑖𝑖𝑖𝑖�, 𝑗𝑗 =  1, ···, 𝑇𝑇𝑖𝑖; 𝑖𝑖 = 1, 2,···, 𝑛𝑛, 
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where   𝐗𝐗𝑖𝑖𝑖𝑖= ( 𝑋𝑋𝑖𝑖𝑖𝑖1,  𝑋𝑋𝑖𝑖𝑖𝑖2,···,  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)𝑇𝑇 are the 𝑑𝑑 covariates measured at time 𝑡𝑡𝑖𝑖𝑖𝑖. Our interest is to 

examine the association between the response and covariates. 

2.4.2 Model specification 

There are parametric components and nonparametric components in the semiparametric mixed-

effects models. The parametric components are used to model factors that affect the response 

parametrically while the nonparametric components are used to model factors that affect the 

response nonparametrically (Ruppert, Wand, & Carroll, 2003; Zeger & Diggle, 1994; Zhang, 

Lin, Raz, & Sowers, 1998). The model has the form  

              𝑦𝑦𝑖𝑖𝑖𝑖 =  𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝜂𝜂�𝑡𝑡𝑖𝑖𝑖𝑖� + 𝒉𝒉𝑖𝑖𝑖𝑖𝑇𝑇 𝒂𝒂𝑖𝑖 + 𝒗𝒗𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� + 𝜖𝜖𝑖𝑖𝑖𝑖,                     (2.4.1) 

𝑗𝑗 =  1, 2, ···, 𝑇𝑇𝑖𝑖;  𝑖𝑖 = 1, 2,···, 𝑛𝑛, 

where 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 and 𝜂𝜂(𝑡𝑡𝑖𝑖𝑖𝑖) are the parametric and nonparametric fixed effects components 

respectively, and 𝒉𝒉𝑖𝑖𝑖𝑖𝑇𝑇 𝒂𝒂𝑖𝑖 and 𝒗𝒗𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖) are their corresponding random components that incorporate 

the within-subjects correlation. The response at time 𝑡𝑡𝑖𝑖𝑖𝑖 depends on time nonparametrically via a 

smoothing function 𝜂𝜂(𝑡𝑡), and parametrically on covariates  𝐗𝐗𝑖𝑖𝑖𝑖. Similarly the random effect at 

time 𝑡𝑡𝑖𝑖𝑖𝑖 depends on time nonparametrically via a smoothing function 𝒗𝒗𝑖𝑖(𝑡𝑡), and parametrically 

on covariates  𝐡𝐡𝑖𝑖𝑖𝑖. Vector 𝜶𝜶 contains coefficients that need to be estimated, and 𝜖𝜖𝑖𝑖𝑖𝑖 is the error 

term. It is assumed that 

𝒂𝒂𝑖𝑖~𝑁𝑁(0,𝑫𝑫𝑎𝑎),  𝑣𝑣𝑖𝑖(𝑡𝑡)~𝐺𝐺𝐺𝐺(µ, 𝛾𝛾),  𝐸𝐸 [𝒂𝒂𝑖𝑖𝒗𝒗𝑖𝑖(𝑡𝑡) ] = 𝛾𝛾𝑎𝑎(𝑡𝑡),  𝜖𝜖𝑖𝑖 = [𝜖𝜖𝑖𝑖1,···, 𝜖𝜖𝑖𝑖𝑇𝑇𝑖𝑖]
𝑇𝑇~𝑁𝑁(0, 𝑹𝑹𝑖𝑖),            

 where 𝐺𝐺𝐺𝐺(0, 𝛾𝛾) is a Gaussian process with mean function µ(𝑡𝑡) and covariance function 𝛾𝛾(𝑠𝑠, 𝑡𝑡). 

 When the nonparametric fixed effects and random effects components are dropped, the 

model (2.4.1) becomes the usual linear mixed-effects model 𝑦𝑦𝑖𝑖𝑖𝑖 =  𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝛼𝛼 + 𝒉𝒉𝑖𝑖𝑖𝑖𝑇𝑇 𝒂𝒂𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖. Other 
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models can also be obtained for specific research questions by dropping one or two components 

from the model (2.4.1). 

2.4.3 Local polynomial approximation 

Local polynomial smoothing can be used to estimate 𝜂𝜂�𝑡𝑡𝑖𝑖𝑖𝑖� and  𝑣𝑣𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� in model (2.4.1). 

Assuming the functions have a (𝑝𝑝 + 1)th derivative at each time point, by Taylor series, 𝜂𝜂�𝑡𝑡𝑖𝑖𝑖𝑖� 

and  𝑣𝑣𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� can be estimated by a 𝑝𝑝th degree polynomial within a neighborhood of 𝑡𝑡0: 

       𝜂𝜂�𝑡𝑡𝑖𝑖𝑖𝑖� ≈ 𝜂𝜂(𝑡𝑡0)+ 𝜂𝜂′(𝑡𝑡0) (𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡0) + 𝜂𝜂
′′(𝑡𝑡0)
2!

(𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡0)2 + ··· + 𝜂𝜂
(𝑝𝑝)(𝑡𝑡0)
𝑝𝑝!

(𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡0)𝑝𝑝 =  𝒌𝒌𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷,   

      𝑣𝑣𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� ≈ 𝑣𝑣𝑖𝑖(𝑡𝑡0)+ 𝑣𝑣𝑖𝑖′(𝑡𝑡0) (𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡0) + 𝑣𝑣𝑖𝑖
′′(𝑡𝑡0)
2!

(𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡0)2 + ··· + 𝑣𝑣𝑖𝑖
(𝑝𝑝)(𝑡𝑡0)
𝑝𝑝!

(𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡0)𝑝𝑝 =  𝒌𝒌𝑖𝑖𝑖𝑖𝑇𝑇 𝒃𝒃𝑖𝑖,   

where 𝒌𝒌𝑖𝑖𝑖𝑖 = [1, 𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡0,···, (𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡0)𝑝𝑝]𝑇𝑇, 𝑗𝑗 =  1, 2, ···, 𝑇𝑇𝑖𝑖; 𝑖𝑖 = 1, 2,···, 𝑛𝑛, and 

 𝜷𝜷 = [𝜂𝜂(𝑡𝑡0), 𝜂𝜂′(𝑡𝑡0),···, 𝜂𝜂
(𝑝𝑝)(𝑡𝑡0)
𝑝𝑝!

]𝑇𝑇, 

       𝒃𝒃𝑖𝑖 = [𝑣𝑣𝑖𝑖(𝑡𝑡0), 𝑣𝑣𝑖𝑖′(𝑡𝑡0),···, 𝑣𝑣𝑖𝑖
(𝑝𝑝)(𝑡𝑡0)
𝑝𝑝!

]𝑇𝑇. 

Within a local neighborhood of 𝑡𝑡0, the model (2.4.1) can be reasonably approximated by: 

          𝑦𝑦𝑖𝑖𝑖𝑖 =  𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝒌𝒌𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 + 𝒉𝒉𝑖𝑖𝑖𝑖𝑇𝑇 𝒂𝒂𝒊𝒊 + 𝒌𝒌𝑖𝑖𝑖𝑖𝑇𝑇 𝒃𝒃𝑖𝑖 + 𝝐𝝐𝑖𝑖𝑖𝑖,                              (2.4.2) 

𝑗𝑗 =  1, 2, ···, 𝑇𝑇𝑖𝑖;  𝑖𝑖 = 1, 2,···, 𝑛𝑛, 

and 𝒃𝒃𝑖𝑖~𝑁𝑁(0,𝑫𝑫𝑏𝑏). The fixed effect 𝜷𝜷 and the covariance matrix 𝑫𝑫𝑏𝑏 are functions of 𝑡𝑡0. 

A bandwidth ℎ needs to be carefully chosen for the semiparametric mixed-effects model. 

When the bandwidth is too big, 𝜂𝜂�𝑡𝑡𝑖𝑖𝑖𝑖� and 𝑣𝑣𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� can over smooth and lose important 

information. When the bandwidth is too small, 𝜂𝜂�𝑡𝑡𝑖𝑖𝑖𝑖� and 𝑣𝑣𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� can have large variances. There 

are criterias that can be used to select proper bandwidth for a semiparametric mixed-effects 
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model, for example, the “leave-one-subject-out” cross-validation and the “leave-one-point-out” 

cross-validation (Ruppert, Sheather, & Wand, 1995). 

Because model (2.4.1) has a nonparametric mixed-effects model [𝜂𝜂(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑣𝑣𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖)] part 

and a linear mixed-effects model (𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝒉𝒉𝑖𝑖𝑖𝑖𝑇𝑇 𝒂𝒂𝑖𝑖) part, backfitting strategies (Hastie & 

Tibshirani, 1990) can be employed to estimate the parameters by iteratively fitting a standard 

linear mixed-effects model and a nonparametric mixed-effects model. The process is: Given the 

current estimate of 𝑎𝑎 and 𝑎𝑎𝑖𝑖, fit model (2.4.1) and obtain the estimates of [𝜂𝜂(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑣𝑣𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖)], then 

given the current estimates of [𝜂𝜂(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑣𝑣𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖)], fit (2.4.1) using a standard linear mixed-effects 

model and obtain (𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝒉𝒉𝑖𝑖𝑖𝑖𝑇𝑇 𝒂𝒂𝑖𝑖). This fitting procedure is simple, but inferences about the 

model are not easy to draw. 

Semiparametric mixed-effects models are flexible as they can employ any existing 

smoothing techniques to estimate 𝜂𝜂�𝑡𝑡𝑖𝑖𝑖𝑖� and 𝑣𝑣𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖�. Local polynomial smoothing works better 

when the data have a small range of values, otherwise smoothing splines can be used (Wu & 

Zhang, 2006). 

2.5 TWO-STEP ESTIMATION OF FUNCTIONAL LINEAR MODELS 

Parametric, nonparametric and semiparametric mixed-effects models are popular methods for 

analyzing longitudinal data. The selection of an appropriate parametric mixed-effects model 

depends heavily on whether data meet the model assumptions. As a result, smoothing techniques, 

including splines and local polynomial smoothing, have been proposed to estimate coefficients 

nonparametrically, but these methods are computationally intensive especially when the number 
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of covariates is large. A two-step procedure has been proposed to overcome this computational 

disadvantage (Fan & Zhang, 2000). The method is suitable for longitudinal data where the 

response variable and associated covariates are collected at the same scheduled time points for 

all subjects. 

2.5.1 Notation 

Let 𝑡𝑡𝑖𝑖𝑖𝑖, 𝑗𝑗 =  1, 2, ···, 𝑇𝑇𝑖𝑖; 𝑖𝑖 = 1, 2,···, 𝑛𝑛, be the distinct time points where data were collected. Let 

𝑌𝑌𝑖𝑖𝑖𝑖 be the response variable and 𝐗𝐗𝑖𝑖𝑖𝑖 be the covariates for the 𝑖𝑖th subject at time 𝑡𝑡𝑖𝑖𝑖𝑖. The data have 

the form of  

�𝑡𝑡𝑖𝑖𝑖𝑖,  𝐗𝐗𝑖𝑖𝑖𝑖,  𝑦𝑦𝑖𝑖𝑖𝑖�, 𝑗𝑗 =  1, ···, 𝑇𝑇𝑖𝑖; 𝑖𝑖 = 1, 2,···, 𝑛𝑛, 

Where   𝐗𝐗𝑖𝑖𝑖𝑖= ( 𝑋𝑋𝑖𝑖𝑖𝑖1,  𝑋𝑋𝑖𝑖𝑖𝑖2,···,  𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖)𝑇𝑇 are the 𝑑𝑑 covariates measured at time 𝑡𝑡𝑖𝑖𝑖𝑖. The interest is to 

examine the association between the response variable and covariates as well as the change of 

the association over time. 

2.5.2 Raw estimates 

At each given time 𝑡𝑡𝑗𝑗, let 𝑁𝑁𝑗𝑗 be the number of subjects who have both observations of 𝑌𝑌𝑖𝑖𝑖𝑖 and 

𝐗𝐗𝑖𝑖𝑖𝑖. Let 𝐗𝐗�𝑗𝑗 be the design matrix and 𝐘𝐘�𝑗𝑗 be the response vector. Then the standard linear model at 

time 𝑡𝑡𝑗𝑗 is  

                    𝐘𝐘�𝑗𝑗 = 𝐗𝐗�𝑗𝑗β(𝑡𝑡𝑗𝑗) + 𝑒̃𝑒𝑗𝑗,                                                 (2.5.1) 

where 𝑒̃𝑒𝑗𝑗 is the error term, and  

       𝐸𝐸(𝑒̃𝑒𝑗𝑗)  =  0, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑒̃𝑒𝑗𝑗)  =  𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡𝑗𝑗)𝐼𝐼𝑛𝑛𝑗𝑗, 
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 where 𝑛𝑛𝑗𝑗  is the number of elements in  𝑁𝑁𝑗𝑗. If 𝐗𝐗�𝑗𝑗 has full rank 𝑑𝑑, then the standard least squares 

estimator of β(𝑡𝑡𝑗𝑗) is b(𝑡𝑡𝑗𝑗) = (𝐗𝐗�𝑗𝑗
𝑇𝑇𝐗𝐗�𝑗𝑗)−1𝐗𝐗�𝑗𝑗

𝑇𝑇𝐘𝐘�𝑗𝑗, with 𝐸𝐸(𝑏𝑏(𝑡𝑡𝑗𝑗)) =  𝛽𝛽(𝑡𝑡𝑗𝑗) and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏(𝑡𝑡𝑗𝑗) = 

𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡𝑗𝑗)(𝐗𝐗�𝑗𝑗
𝑇𝑇𝐗𝐗�𝑗𝑗)−1. Let 𝑏𝑏𝑟𝑟(𝑡𝑡𝑗𝑗) be the 𝑟𝑟th component of b(𝑡𝑡𝑗𝑗) then 

             𝑐𝑐𝑐𝑐𝑐𝑐((𝑏𝑏𝑟𝑟), 𝑏𝑏𝑟𝑟(𝑡𝑡𝑘𝑘)|D) = 𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡𝑘𝑘)𝑒𝑒𝑟𝑟,𝑑𝑑
𝑇𝑇 (𝐗𝐗�𝑗𝑗

𝑇𝑇𝐗𝐗�𝑗𝑗)−1𝐗𝐗�𝑗𝑗
𝑇𝑇𝑀𝑀𝑗𝑗𝑗𝑗𝐗𝐗�𝑘𝑘(𝐗𝐗�𝑘𝑘

𝑇𝑇𝐗𝐗�𝑘𝑘)−1𝑒𝑒𝑟𝑟,𝑑𝑑,               (2.5.2) 

where D = {(𝐗𝐗𝑖𝑖𝑖𝑖, 𝑡𝑡𝑗𝑗), 𝑗𝑗 =  1, 2, ···,𝑇𝑇; 𝑖𝑖 = 1, 2,···, 𝑛𝑛 } and 𝑒𝑒𝑟𝑟,𝑑𝑑 is a 𝑑𝑑-dimension unit vector with 

one at its 𝑟𝑟th entry. 𝑀𝑀𝑗𝑗𝑗𝑗 is an identity matrix that if the αth entry of 𝐘𝐘�𝑗𝑗 and the βth entry of 𝐘𝐘�𝑘𝑘 come 

from the same subject, the (α,β)th entry of 𝑀𝑀𝑗𝑗𝑗𝑗 is one otherwise zero. 

 To estimate the covariance of 𝑏𝑏𝑟𝑟(𝑡𝑡𝑗𝑗), 𝑏𝑏𝑟𝑟(𝑡𝑡𝑘𝑘), 𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡𝑘𝑘) needs to be estimated. Let 𝑒̃𝑒𝚥𝚥�  = 

(𝐼𝐼𝑛𝑛𝑗𝑗 − 𝑝𝑝𝑗𝑗 ) 𝐘𝐘�𝑗𝑗 be the residuals from the linear regressions where 𝑝𝑝𝑗𝑗 =  𝐗𝐗�𝑗𝑗(𝐗𝐗�𝑗𝑗
𝑇𝑇𝐗𝐗�𝑗𝑗)−1𝐗𝐗�𝑗𝑗

𝑇𝑇. It 

follows that  

      𝐸𝐸(𝑡𝑡𝑡𝑡(𝑒̂̃𝑒𝑗𝑗𝑒̂̃𝑒𝑘𝑘𝑇𝑇)) = 𝑡𝑡𝑡𝑡{(𝐼𝐼𝑛𝑛𝑘𝑘 − 𝑝𝑝𝑘𝑘)𝑀𝑀𝑗𝑗𝑗𝑗𝑇𝑇(𝐼𝐼𝑛𝑛𝑗𝑗 − 𝑝𝑝𝑗𝑗)𝑇𝑇} 𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡𝑘𝑘).  

If 𝑡𝑡𝑡𝑡{(𝐼𝐼𝑛𝑛𝑘𝑘 − 𝑝𝑝𝑘𝑘)𝑀𝑀𝑗𝑗𝑗𝑗𝑇𝑇(𝐼𝐼𝑛𝑛𝑗𝑗 − 𝑝𝑝𝑗𝑗)𝑇𝑇} ≠ 0, then the estimator for 𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡𝑘𝑘) is  

                   𝑟̂𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡𝑘𝑘) =  𝑡𝑡𝑡𝑡{𝑒̂̃𝑒𝑗𝑗𝑒̂̃𝑒𝑘𝑘𝑇𝑇}/ 𝑡𝑡𝑡𝑡{(𝐼𝐼𝑛𝑛𝑘𝑘 − 𝑝𝑝𝑘𝑘)𝑀𝑀𝑗𝑗𝑗𝑗𝑇𝑇(𝐼𝐼𝑛𝑛𝑗𝑗 − 𝑝𝑝𝑗𝑗)𝑇𝑇}.                         (2.5.3) 

2.5.3 Refine the raw estimates 

The raw estimates obtained in (2.5.1) need to be refined, because these raw estimates are not 

smooth and information from the neighboring time points has not been considered. An easy way 

to refine the raw estimates is to smooth the coefficient 𝛽̂𝛽𝑟𝑟(𝑡𝑡) over time using one of existing 

smoothing techniques. Suppose (𝑝𝑝 +  1)th derivative of  𝛽̂𝛽𝑟𝑟(𝑡𝑡) exists at any given time point and 

the 𝑞𝑞th (0 ≤ 𝑞𝑞 < 𝑝𝑝 +  1) derivative can be estimated. Then a typical estimator is  

        𝛽𝛽𝑟𝑟
(𝑞𝑞)� (t) = ∑ 𝑤𝑤𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡)𝑏𝑏𝑟𝑟(𝑡𝑡𝑗𝑗)𝑇𝑇

𝑗𝑗=1  
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Smoothing techniques like splines or local polynomial smoothing can be used to construct the 

weights 𝑤𝑤𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡). Also 

𝐸𝐸 �𝛽𝛽𝑟𝑟
(𝑞𝑞)� (t)�D� = ∑ 𝑤𝑤𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡)𝛽𝛽𝑟𝑟(𝑡𝑡𝑗𝑗)𝑇𝑇

𝑗𝑗=1 , 

𝑉𝑉𝑉𝑉𝑉𝑉 �𝛽𝛽𝑟𝑟
(𝑞𝑞)� (t)�D� = ∑ ∑ 𝑤𝑤𝑟𝑟(𝑡𝑡𝑗𝑗, 𝑡𝑡)𝑤𝑤𝑟𝑟(𝑡𝑡𝑘𝑘, 𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏𝑟𝑟�𝑡𝑡𝑗𝑗�, 𝑏𝑏𝑟𝑟(𝑡𝑡𝑗𝑗)|𝐷𝐷)𝑇𝑇

𝑘𝑘=1
𝑇𝑇
𝑗𝑗=1 . 

by using (2.3.2) and (2.3.3), 𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏𝑟𝑟(𝑡𝑡𝑗𝑗), 𝑏𝑏𝑟𝑟(𝑡𝑡𝑗𝑗)|𝐷𝐷) can be estimated, and the ±2 standard error 

bands are be computed as 

𝛽𝛽𝑟𝑟
(𝑞𝑞)� (t) ± 2{𝑉𝑉𝑉𝑉𝑉𝑉� (𝛽𝛽𝑟𝑟

(𝑞𝑞)� (t) |D)}1/2 

Because the smoothing step only has one dimension, separate smoothing parameters can 

be used for different covariates. Visualization of the raw estimates can assist in picking 

appropriate smoothing parameters, and any existing smoothing parameter selector can also be 

employed. 

Parametric mixed-effects model, semiparametric mixed-effects model and two-step 

estimation are powerful tools for examining associations between a response variable and its 

covariates when they are measured at the same frequency. However, there are times when the 

response variable and the covariates are measured at different frequencies during the same time 

period. In this case the existing methods for longitudinal data need to be modified to better solve 

the problem. In the next two chapters we will extend the semiparametric mixed-effects models 

and two-step estimation techniques to analyze inconsistently measured longitudinal data. 
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3.0  A THREE-STEP ESTIMATION PROCEDURE USING LOCAL POLYNOMIAL 

SMOOTHING FOR INCONSISTENTLY MEASURED LOGITUDINAL DATA 

3.1 INTRODUCTION 

We propose a nonparametric model approach to address the problem of modeling inconsistently 

measured longitudinal data. This method is based on the two–step estimation of functional linear 

models for longitudinal data where both response variable and its covariates are measured at the 

same scheduled time points for all subjects. We will extend this method by using local 

polynomial smoothing with analytical weights and apply the proposed method to a longitudinal 

weight loss trial where data are inconsistently measured. A simulation study will be used to 

assess our new approach. 

3.2 PROPOSED METHOD 

Let there be 𝑛𝑛 subjects observed during time 0 to 𝑇𝑇. 𝑌𝑌𝑖𝑖𝑖𝑖 is the outcome measured for the 𝑖𝑖-th 

subject at time 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤  𝑗𝑗 ≤  𝑇𝑇). 𝑋𝑋𝑖𝑖𝑖𝑖 is the covariate for the ith subject at time 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤ 𝑘𝑘 ≤ 𝑇𝑇). 

Because the outcome is measured less frequently than the covariate, for each subject, when k=j 

both outcome and covariate are measured, and when there are no matching j for k only covariate 

is measured. The parametric or nonparametric mixed model cannot be applied to this type of data 
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directly because of the inconsistent measurement. We introduce a three-step estimation method 

to explore this type of data, which enables the use of all data with no loss of information by 

discarding or modifying the extra covariate measurements. 

3.2.1 Step one – insert pseudo data 

At time 𝑡𝑡𝑖𝑖𝑖𝑖 when only the covariate are measured, pseudo data points of the outcome will be 

inserted for every subject to create a new dataset. At times 𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤  𝑣𝑣 <  𝑢𝑢 ≤  𝑇𝑇) both 

the outcome and the covariate are measured, and between these two time points 𝑡𝑡𝑖𝑖𝑖𝑖 (𝑣𝑣 <  𝑘𝑘 <

 𝑢𝑢), only covariate are measured. We assume that the change of outcome from time 𝑡𝑡𝑖𝑖𝑖𝑖 to 𝑡𝑡𝑖𝑖𝑖𝑖 is 

linear. By solving for ai and bi in function below we will get the straight line from 𝑌𝑌𝑖𝑖𝑖𝑖 to 𝑌𝑌𝑖𝑖𝑖𝑖 for 

subject 𝑖𝑖. 

                                                     �𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖 +  𝑏𝑏𝑖𝑖
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖

                                         (3.2.1a) 

                                               𝑌𝑌𝑖𝑖𝑖𝑖  = 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖  + 𝑏𝑏𝑖𝑖                                            (3.2.1b) 

Then by substituting 𝑡𝑡𝑖𝑖𝑖𝑖 (𝑣𝑣 <  𝑘𝑘 <  𝑢𝑢) into the function above we get pseudo data 𝑌𝑌𝑖𝑖𝑖𝑖  that 

matches real measurements 𝑋𝑋𝑖𝑖𝑖𝑖  between times 𝑡𝑡𝑖𝑖𝑖𝑖 and  (𝑡𝑡𝑖𝑖𝑖𝑖0 ≤  𝑣𝑣 <  𝑢𝑢 ≤  𝑇𝑇) for subject 𝑖𝑖. This 

procedure is done repeatedly in the same way between all of the adjacent time points tij for each 

subject to get all of the pseudo data of Y at the time points when only the  covariate is recorded. 

After this step, a new dataset (𝑡𝑡𝑖𝑖𝑖𝑖,𝑌𝑌𝑖𝑖𝑖𝑖, 𝑋𝑋𝑖𝑖𝑖𝑖) is created. 

Missing data are common in longitudinal studies. If data are missing for subject 𝑖𝑖 at time 

𝑡𝑡𝑖𝑖𝑖𝑖 or 𝑡𝑡𝑖𝑖𝑖𝑖  (0 ≤  𝑣𝑣 <  𝑢𝑢 ≤  𝑇𝑇),  there is no way to insert data for Y between these two time 

points using functions (3.4.1a) and (3.4.1b). Missing data will be inserted as pseudo data for Y in 

this situation. 
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3.2.2 Step two – raw estimates 

For subjects at each time 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤  𝑘𝑘 ≤  𝑇𝑇), a standard linear model (3.2.2) is fitted to get the 

raw estimates and standard errors (𝑠𝑠𝑠𝑠𝑘𝑘) of β 

Y(𝑡𝑡𝑘𝑘) = (X(𝑡𝑡𝑘𝑘) β(𝑡𝑡𝑘𝑘) + e(𝑡𝑡𝑘𝑘),                                 (3.2.2) 

where e(𝑡𝑡𝑘𝑘) is the error term. Here, sample sizes of the local linear regressions will not be the 

same, due to missing data. 

3.2.3 Step three – smooth raw estimates 

Local polynomial smoothing will be used to smooth the raw estimates from step two. This step is 

a modification of local polynomial kernel smoothing. Rather than using kernel functions to 

assign weights during smoothing, only the analytical weights that indicate the importance of the 

raw estimates will be used.  

Let 𝑝𝑝 be the degree of the polynomial being fit. At time point 𝑡𝑡𝑘𝑘(0 ≤ 𝑘𝑘 ≤ 𝑇𝑇), the 

smoothed estimate βsmooth(k) are obtained by smoothing raw estimates in the local neighborhood  

𝐼𝐼ℎ (𝑡𝑡𝑘𝑘) =  [𝑡𝑡𝑘𝑘 − ℎ, 𝑡𝑡𝑘𝑘 + ℎ]. By using only analytical weight 𝑊𝑊, the smoothed estimate βsmooth(k) at 

𝑡𝑡𝑘𝑘 is the value of estimated 𝛽̂𝛽0, where 𝜷𝜷� = (𝛽̂𝛽0, ···,𝛽̂𝛽𝑝𝑝) minimizes 

∑ �𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘) − 𝛽𝛽0 − 𝛽𝛽1(𝑡𝑡𝑘𝑘 − 𝑡𝑡) − ··· − 𝛽𝛽𝑝𝑝(𝑡𝑡𝑘𝑘 − 𝑡𝑡)𝑝𝑝�
2
𝑊𝑊𝑁𝑁

𝑘𝑘=0 . 

Weighted least squares theory leads to the solution 

𝛽̂𝛽 = (𝑡̃𝑡𝑇𝑇 𝑊𝑊 𝑡̃𝑡 )−1 𝑡̃𝑡𝑇𝑇 𝑊𝑊 𝛽𝛽�𝑟𝑟𝑟𝑟𝑟𝑟 

where 𝜷𝜷�𝑟𝑟𝑟𝑟𝑟𝑟 is the vector of raw estimates from step two, and 
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𝒕𝒕� = �
 1
⋮
1

   t1 − 𝑡𝑡𝑘𝑘   
⋮

tn − 𝑡𝑡𝑘𝑘

…  
⋱
…

(t1 − 𝑡𝑡𝑘𝑘)p
⋮

 (tn − 𝑡𝑡𝑘𝑘)p 
� 

is an 𝑛𝑛 ×  (𝑝𝑝 + 1) design matrix. 𝑾𝑾 is an 𝑛𝑛 × 𝑛𝑛 diagonal matrix of analytical weights given by 

𝑾𝑾 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑤𝑤1 , … , 𝑤𝑤𝑛𝑛}. 

Because pseudo data were inserted in step one, the raw estimates 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 (𝑘𝑘) do not have the 

same accuracy. The most accurate raw estimates will the ones that were estimated by fitting local 

linear regressions at 𝑡𝑡𝑘𝑘 (𝑘𝑘 =  𝑗𝑗) where 𝑌𝑌𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑖𝑖𝑖𝑖 were both measured, so the highest analytical 

weights are given to those raw estimates during smoothing. The raw estimates from the local 

linear regressions that used pseudo data but are close to the time of the real measurement are also 

given higher analytical weights than the raw estimates that are far from the time of real 

measurement. The measure of the time distance between a raw estimate at time tk using pseudo 

data and the adjacent raw estimate using data of real measurement will be defined as 

𝐷𝐷𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚| + 1, |𝑡𝑡𝑘𝑘 − tnext real measure| + 1). 

For example, at times 𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤ v < u ≤ T) both outcome and covariate are measured and 

between these two time points 𝑡𝑡𝑖𝑖𝑖𝑖 (v < k < u), only the covariate is measured. 𝐷𝐷𝑣𝑣 and 𝐷𝐷𝑢𝑢 will 

equal 1 and 𝐷𝐷𝑘𝑘 will be calculated as  

𝐷𝐷𝑘𝑘= 𝑚𝑚𝑚𝑚𝑚𝑚 (|tk − tv| + 1, |𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑢𝑢| + 1). 

We define the analytical weights in four different ways using 𝐷𝐷𝑘𝑘 and the standard error to reflect 

the importance of the raw estimate. 

Type 1: 𝑤𝑤𝑘𝑘= 1
�𝐷𝐷𝑘𝑘

 

Type 2: 𝑤𝑤𝑘𝑘= 1
𝐷𝐷𝑘𝑘

 

Type 3: 𝑤𝑤𝑘𝑘= 1
�𝐷𝐷𝑘𝑘

 + 1
�𝑠𝑠𝑠𝑠𝑘𝑘
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Type 4: 𝑤𝑤𝑘𝑘= 1
𝐷𝐷𝑘𝑘

 + 1
𝑠𝑠𝑠𝑠𝑘𝑘

 

The performance of local polynomial smoothing also depends on the values chosen for 

bandwidth ℎ and order of polynomial 𝑝𝑝, but how to choose the best ℎ and 𝑝𝑝 for the proposed 

model is not the focus of this paper. We will use the value 𝑝𝑝=3 as recommended by Wand and 

Jones (1995) as this has been shown to be adequate. For data that are not equally spaced 

choosing certain bandwidth  will result in less data that fall into the window where the data are 

sparser. In this situation, we will use a proportion of the data to which we will fit a local 

polynomial smoother like LOWESS. Because useful values of the smoothing parameter typically 

lie in the range 0.25 to 0.5 for most LOWESS applications, we will use 0.3. 

3.3 APPLICATION TO LONGITUDINAL DATA 

The improving Self-monitoring in Weight Loss with Technology (SMART) trial was a 2-year 

clinical weight loss trial where the longitudinal data were inconsistently measured. Two hundred 

and ten participants were randomized to 3 self-monitoring groups: paper diary or personal digital 

assistant with or without feedback. All of the participants were asked to self-monitor food intake. 

Adherence to self-monitoring was a binary variable (yes/no) and was measured weekly for the 

first 4 months, biweekly for 8 months and then monthly for 12 months. The primary outcome 

was subject weight (kg), which was measured objectively using a digital scale at five clinical 

visits: baseline, 6th, 12th, 18th, and 24th months. Weights were assessed less frequently than 

adherence to self-monitoring during the two years, and one of the research interests was the 

association between the participants’ weight and adherence to self-monitoring. 
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The association between the participants’ weight and adherence to self-monitoring was 

assessed using a linear mixed-effects model. The response variable was modified by taking 

average values of subject weight between baseline and the 6th month, the 6th and 12th month, the 

12th and 18th month, and the 18th and 24th month for each subject. After the data modification 

every subject had both weight data and proportion of time adherent to self-monitoring data at 

baseline, 6th, 12th, 18th and 24th month, so the linear mixed-effects model or marginal mixed 

model can be easily applied to the modified data set (Burke et al., 2012). The drawback of this 

approach is that the detailed information on the changes of the adherence to self-monitoring 

among the five time points is lost. Also using the proportion of the time that subjects were 

adherent to self-monitoring during a 6-month period is too general and more difficult to 

understand than a binary (yes/no) adherence variable. 

To apply the proposed method on the SMART data we inserted pseudo weight data for all 

subjects between baseline and 6th month, 6th and 12th month, 12th and 18th month, and 18th and 

24th month according to the self-monitoring data collection schedule. After this step, both weight 

and adherence to self-monitoring had 43 matching data records. Local linear regressions were 

fitted at each of the 43 time points. The dependent variable was weight in kilograms, which is 

continuous. The independent variable was adherence to self-monitoring, which is binary (yes 

group was treated as reference group). The coefficients for adherence to self-monitoring indicate 

the weight differences between subjects who were not adherent to self-monitoring and subjects 

who were adherent to self-monitoring. 

Local polynomial smoothing using analytical weights was applied to smooth the 43 raw 

estimates of intercepts and coefficients of adherence from the local linear regressions. The 

degree of the polynomial was chosen to be 3, and about one third of the raw data were used in 
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each local fit. Four types of analytical weights as defined earlier that reflected the importance of 

the raw estimators were used. Results from Local polynomial kernel smoothing using 

Epanechnikov kernel were compared with the results from the proposed method. Results are 

shown in Figures 1.a and 1.b.  

The standard errors of the coefficients from local linear regressions were also smoothed 

in the same way using analytical weight type 1 (𝑤𝑤𝑘𝑘= 1
�𝐷𝐷𝑘𝑘

).  In Figures 1.c and 1.d, at each time 

point, the smoothed intercept and adherence coefficient using analytical weight type 1 is shown 

with one departure of the smoothed standard error. 

In Figure 1, we can see that the intercept and adherence coefficients were not the same 

over time. For example the adherence effect started with negative values, but from Figure1.d we 

know that the adherence effect was not statistically significant at least for the first 10 weeks, 

because the one standard error band crossed value zero. 

After 10 weeks the weight difference between subjects who were not adherent to self-

monitoring and subjects who were adherent to self-monitoring kept increasing and peaked at the 

50th week. After 50 weeks the adherence was less strong until the 70th week and increased 

slightly afterwards. Because the standard errors were very large after 90 weeks the adherence 

effect may not be statistically significant (Figure 1.d). 

Comparing the smoothing results using the 4 different types of analytical weights, we can 

see that before the 50th week the 4 smoothed lines were so close that they are not 

distinguishable. After the 50th week, the lines were more distinct. The possible reason for the 

phenomenon is that the values of raw estimates at the 48th, 52nd and 76th week were more 

extreme compared to the data around them. Also the raw estimates at the 48th week are very 

close to the time when the real measurement happened and the raw estimates at the 76th and the 
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52nd weeks were from local linear regression using real measured data. As a result, these two 

raw estimates were given higher analytical weight and based on the scale of the weight, the fitted 

lines were different. Another possible reason is that the association between subjects’ weights 

and adherence to self-monitoring was linear before the 50th week, and became nonlinear 

afterwards. 

The results of local kernel polynomial smoothing that used the Epanechnikov kernel 

function are also shown in Figures 1.a and 1.b. The kernel smoothing line was the same as the 

other 4 smoothed lines before the 50th week. However, after the 50th week the kernel smoothing 

line had a “w” shape, which mirrors the data flow. For example, between the 58th and 70th 

weeks, the estimates of the kernel smoothing were not very different from the raw estimates. 

Because these raw estimates are far from the time of the real measurements at the 52nd and the 

76th week, the values should be adjusted up like the other 4 fitted lines. 

3.4 SIMULATION STUDY 

A simulation study was conducted to examine the performance and features of the proposed 

method. The model of our simulation study attempted to mimic the SMART data set and was 

designed as follows. We chose 𝑁𝑁 =200 subjects, and two true coefficient functions were set to 

the values based on the results of the SMART trial: 

𝛽𝛽0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 90.5-0.2𝑡𝑡𝑗𝑗 

𝛽𝛽1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = -1.1 + 0.4𝑡𝑡𝑗𝑗 – 0.003𝑡𝑡𝑗𝑗2  

The 𝑡𝑡𝑗𝑗 in weeks (1 ≤ 𝑡𝑡𝑗𝑗≤ 96, 1≤ j ≤ 43) was defined as the time when the measurement 

was taken, and the measurement was weekly for the first 4 months, biweekly for 8 weeks, then 
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monthly for 12 months. The intercept effect is a straight line over time, and the covariate effect is 

a curve over time both based on 43 time points. 

Let 𝑿𝑿0(𝑡𝑡) be a vector of 1’s (200 by 1), and 𝑿𝑿1(𝑡𝑡) be a binomial random variable with 

probability of success 𝑝𝑝 = 0.5. We sampled the errors from a multivariate normal distribution 

with mean 0 and a compound symmetric covariance structure (43 by 43). Different variance with 

high correlation (𝜌𝜌 = 0.7), medium correlation (𝜌𝜌 = 0.5) or low correlation (𝜌𝜌 = 0.3) of the 

compound symmetric covariance structure was used and results from them were compared. The 

simulated full data were the sum of the errors and the underlying true coefficients at each time 

point 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑿𝑿0𝛽𝛽0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑿𝑿1𝛽𝛽1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝜖𝜖𝑖𝑖𝑖𝑖,      𝑗𝑗 =  1,2,···, 𝑇𝑇;   𝑖𝑖 =  1,2,···, 𝑁𝑁 

Using the simulated full data, we fit local linear regressions at each time point to get 43 

estimated 𝛽𝛽1 ( 𝛽̂𝛽1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). 

Using the proposed method, 𝑌𝑌𝑖𝑖𝑖𝑖 is inserted between time points 𝑡𝑡𝑖𝑖𝑖𝑖 = 1 and 𝑡𝑡𝑖𝑖𝑖𝑖 = 24, 

 𝑡𝑡𝑖𝑖𝑖𝑖 = 24 and 𝑡𝑡𝑖𝑖𝑖𝑖 =48, t𝑡𝑡𝑖𝑖𝑖𝑖=ij= 48 and 𝑡𝑡𝑖𝑖𝑖𝑖 = 72, 𝑡𝑡𝑖𝑖𝑖𝑖 =72 and 𝑡𝑡𝑖𝑖𝑖𝑖 =96 using functions (3.2.1a) and 

(3.2.1b). Local linear regressions are fitted at each time point to get 43 raw estimates of 𝛽𝛽1 

(𝛽̂𝛽1𝑟𝑟𝑟𝑟𝑟𝑟). Local polynomial smoothing using analytical weights was applied to estimate smoothed 

𝛽𝛽1 (𝛽̂𝛽1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ). The degree of the polynomial was set to be 3, and about one third of the raw 

estimates were used in each local fit. For each different covariance structures of the error term 

and each different analytical weight the process was repeated with 5000 replications. 

The performance of the proposed method was measured by the Averaged Deviation (𝐴𝐴𝐴𝐴) 

defined as 

AD = � 1
5000

∑ ∑ (𝛽̂𝛽1𝑗𝑗𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛽𝛽1𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)243
𝑗𝑗=1

5000
𝑞𝑞=1 � - � 1

5000
∑ ∑ (𝛽̂𝛽1𝑗𝑗𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ − 𝛽𝛽1𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)243

𝑗𝑗=1
5000
𝑞𝑞=1 � 

The simulation results are shown in Table 1. Smaller absolute values of AD indicate a better fit. 
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When the variance of the error term at each time point was small and repeated measures were 

highly correlated to each other, the fit of the proposed model was better, and using each type of 

analytical weight did not make a big difference. However, when the variance was larger than 

352, the type of the proposed analytical weights had different performances. 

Because the covariance matrix of a real longitudinal data typically does not have 

compound symmetry structure, a more realistic covariance structure was also used in the 

simulation study. The subjects in the SMART study reported their weight at the same scheduled 

time as self-monitoring. These data were not as accurate as the weights measured at clinical visit 

and a lot more data were missing. We fit a linear mixed-effects model using self-report weights 

as the outcome and adherence to self-monitoring as the covariate to estimate an R matrix. The 

variance σ�𝑗𝑗𝑗𝑗2  in the estimated R matrix ranged from 430 to 570 and the 𝐴𝐴𝐴𝐴 of the simulation 

study using different analytical weights defined before are 𝐴𝐴𝐴𝐴1= 65.61, 𝐴𝐴𝐴𝐴2= 65.17, 𝐴𝐴𝐴𝐴3= 68.29 

and 𝐴𝐴𝐴𝐴4= 68.26. The performance was good and each type of analytical weight produced similar 

results. 

3.5 DISCUSSION 

We have demonstrated the utility of a three-step estimation via local polynomial smoothing for 

longitudinal data where the outcome was measured less frequently than its covariate. Our method 

also works when covariates were measured less frequently than outcome, because it involves 

smoothing coefficients of local linear regressions. For the same reason, any type of generalized 

linear regressions can be implemented at step two, and no matter how many covariates are 

modeled, the fitting process will be fast. The results of this process have straightforward 
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interpretations. Not only does the method show the association between the dependent and 

independent variables, it also displays the change of the association over time.  

Compared to applying classical mixed-effects models to inconsistently measured 

longitudinal data, the proposed method does not require modifying the data that are measured 

more frequently. As a result less information will be lost during the data analysis.  

The proposed method does have limitations. When the time distance and standard error of 

the raw estimates that are used for computing analytical weight do not have the same scale, 

further modification is necessary. If the variation of the errors of the local linear regression is big 

and the correlation between them is small, the proposed method is less accurate. During the local 

linear regression fitting, although one can use as many covariates as needed, when there are 

interactions among these covariates, the final results will be hard to understand. Because 

withdrawing prematurely is a common occurrence in a longitudinal study, each local linear 

model may not have the same power. Lastly, the proposed method cannot estimate a response 

curve for each subject. 

As data collecting techniques becomes more improved in the scientific studies, 

participants’ experiences can be recorded as they occur in daily life. These intensive longitudinal 

data can provide us detailed information to understand human behaviors. The proposed method 

in this paper will be a useful tool for exploring these type of data when they are correlated with 

other less intensively measured variables. 
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4.0  A SEMIPARAMETRIC ESTIMATION PROCEDURE USING LOCAL 

POLYNOMIAL SMOOTHING FOR INCONSISTENTLY MEASURED LONGITUDINAL 

DATA 

4.1 INTRODUCTION 

Parametric mixed-effects models are frequently used to analyze longitudinal data where 

information is collected repeatedly on the same subject over time. However when a response 

variable and its covariates are measured at different frequencies, parametric mixed-effects 

models cannot be applied directly. We propose a semiparametric estimation procedure to address 

the problem of modeling inconsistently measured longitudinal data. We will demonstrate the 

proposed method on the SMART Trial data. A simulation study will be conducted to assess the 

performance of our approach. 

4.2 PROPOSED METHOD 

Let there be 𝑁𝑁 subjects observed during time 0 to 𝑇𝑇. 𝑌𝑌𝑖𝑖𝑖𝑖 is the outcome measured for the 𝑖𝑖th 

subject at time 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤  𝑗𝑗 ≤  𝑇𝑇), and 𝑿𝑿𝑖𝑖𝑖𝑖 is its covariate vector measured for the ith subject at 

time 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤ 𝑘𝑘 ≤ 𝑇𝑇). We assume that the outcome is repeatedly measured less frequently than 

its covariates. However, when the covariates are repeatedly measured less frequently than the 
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outcome the proposed method is also applicable. For each subject, when 𝑘𝑘 = 𝑗𝑗  both the outcome 

and its covariates are measured, and when there are no matching 𝑗𝑗 for 𝑘𝑘 only covariates are 

measured. The parametric mixed-effects model cannot be applied to this inconsistently measured 

longitudinal data directly. We introduce a semiparametric estimation procedure to explore this 

type of data that can use all available data with no information loss instead of reducing the 

dimension of the more frequently measured covariate. 

4.2.1 Insert pseudo data 

When only the covariates are more intensively measured, pseudo data for the outcome are 

inserted for every subject. At any two adjacent times points,  𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤  𝑣𝑣 <  𝑢𝑢 ≤  𝑇𝑇), 

both outcome and covariate are measured and between these two time points 𝑡𝑡𝑖𝑖𝑖𝑖 (𝑣𝑣 <  𝑘𝑘 <  𝑢𝑢) 

only covariate are measured. We assume that the change of outcome from time 𝑡𝑡𝑖𝑖𝑖𝑖 to 𝑡𝑡𝑖𝑖𝑖𝑖 is linear. 

By solving for 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 in function (3.2.1a) we can get a straight line that connects 𝑌𝑌𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖 

for the ith subject. Then, by substituting 𝑡𝑡𝑖𝑖𝑖𝑖 (𝑣𝑣 <  𝑘𝑘 <  𝑢𝑢) repeatedly into the function (3.2.1b) 

above, we will get pseudo data 𝑌𝑌𝑖𝑖𝑖𝑖  (𝑣𝑣 <  𝑘𝑘 <  𝑢𝑢) that matches the real measurements 𝑿𝑿𝑖𝑖𝑖𝑖  

between times 𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤  𝑣𝑣 <  𝑢𝑢 ≤  𝑇𝑇) for the ith subject. This procedure is done 

repeatedly in the same way between any two adjacent time points of the outcome to insert 

pseudo data at the time points where only covariates are measured. After this step, a new dataset 

(𝑡𝑡𝑖𝑖𝑖𝑖,𝑌𝑌𝑖𝑖𝑖𝑖, 𝑋𝑋𝑖𝑖𝑖𝑖) is created. 

Missing data are common in longitudinal studies. If outcome data are missing for ith 

subject at time 𝑡𝑡𝑖𝑖𝑖𝑖 or 𝑡𝑡𝑖𝑖𝑖𝑖  (0 ≤  𝑣𝑣 <  𝑢𝑢 ≤  𝑇𝑇),  there is no way to insert data between these two 

adjacent time points using functions (3.2.1a) and (3.2.1b) for the outcome. Missing data are 

inserted as pseudo data for the outcome under this situation. 
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4.2.2 Smooth pseudo data and apply parametric mixed-effects model 

Local polynomial smoothing is used to smooth the pseudo data for one subject at a time. Rather 

than using a kernel function to assign weights, only analytical weights that indicate the accuracy 

of the data are used. Let 𝑝𝑝 be the degree of the polynomial being fit. For the ith subject at time 

𝑡𝑡𝑘𝑘 (0 ≤ 𝑘𝑘 ≤ 𝑇𝑇), the smoothed estimates Ysmooth(ik) are obtained by smoothing the data in the local 

neighborhood 𝐼𝐼ℎ (𝑡𝑡𝑘𝑘) =  [𝑡𝑡𝑘𝑘 − ℎ, 𝑡𝑡𝑘𝑘 + ℎ]. By using analytical weights, the smoothed estimate 

Ysmooth(ik) at time 𝑡𝑡𝑘𝑘 is the value of estimated 𝛽̂𝛽0, where 𝜷𝜷� = (𝛽̂𝛽0, ···,𝛽̂𝛽𝑝𝑝) minimizes 

∑ �𝑌𝑌𝑖𝑖𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1(𝑡𝑡𝑘𝑘 − 𝑡𝑡) − ··· − 𝛽𝛽𝑝𝑝(𝑡𝑡𝑘𝑘 − 𝑡𝑡)𝑝𝑝�
2
𝑊𝑊𝑘𝑘

𝑁𝑁
𝑘𝑘=0 . 

weighted least squares theory leads to the solution 

𝜷𝜷� = (𝒕𝒕𝑇𝑇 𝑾𝑾 𝒕𝒕 )−1𝒕𝒕𝑇𝑇𝑾𝑾 𝒀𝒀 , 

Where 𝒀𝒀 is a vector of 𝑌𝑌𝑖𝑖𝑖𝑖 that falls in the local neighborhood, and 

 𝒕𝒕 = �
 1
⋮
1

   t1 − 𝑡𝑡𝑘𝑘   
⋮

tn − 𝑡𝑡𝑘𝑘

…  
⋱
…

(t1 − 𝑡𝑡𝑘𝑘)p
⋮

 (tn − 𝑡𝑡𝑘𝑘)p 
� 

is an 𝑛𝑛 ×  (𝑝𝑝 + 1) design matrix. 𝑾𝑾 is an 𝑛𝑛 × 𝑛𝑛 diagonal matrix of analytical weights given by 

𝑾𝑾 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑤𝑤1 , … , 𝑤𝑤𝑛𝑛}. 

Because pseudo data were inserted, the value of  𝑌𝑌𝑖𝑖𝑖𝑖 do not all have the same accuracy. 

The most accurate 𝑌𝑌𝑖𝑖𝑖𝑖 are the ones at 𝑡𝑡𝑘𝑘  (0 ≤  𝑘𝑘 ≤  𝑇𝑇) where both the outcome and its 

covariates were scheduled to be measured, so the highest analytical weights are given to these 𝑌𝑌𝑖𝑖𝑖𝑖 

during smoothing. The pseudo data that are close to the nearest real measurements are given 

higher analytical weights than the pseudo data that are far from the nearest real measurements. 

The measure of the time distance between a pseudo data and the nearest real measurement is 

defined as 
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𝐷𝐷𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚| + 1, |𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚| + 1). 

For example, at any two adjacent time points 𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤ v < u ≤ T) both the outcome 

and its covariates are measured and between these two time points at 𝑡𝑡𝑖𝑖𝑖𝑖 (v < k < u) only 

covariates are measured. 𝐷𝐷𝑣𝑣 and 𝐷𝐷𝑢𝑢 will equal 1 and 𝐷𝐷𝑘𝑘 will be calculated as  

𝐷𝐷𝑘𝑘= 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑣𝑣| + 1, |𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑢𝑢| + 1). 

We define the analytical weights in two different ways using 𝐷𝐷𝑘𝑘 to reflect the accuracy of the 𝑌𝑌𝑖𝑖𝑖𝑖 

after imputation. 

Type 1: 𝑤𝑤𝑘𝑘= 1
�𝐷𝐷𝑘𝑘

 

Type 2: 𝑤𝑤𝑘𝑘= 1
𝐷𝐷𝑘𝑘

 

The performance of the local polynomial smoothing also depends on the values chosen 

for the bandwidth ℎ and the fitting order 𝑝𝑝. The focus of this paper is not how to choose the best 

ℎ and 𝑝𝑝 for the proposed model so we will use the value 𝑝𝑝 = 3 as recommended by Wand and 

Jones (1995) as this has been shown to be adequate for local polynomial smoothing. For the 

example data where the time points are not equally spaced, choosing a fixed bandwidth ℎ results 

in fewer data falling into the local neighborhood when the data are sparser. In this situation, we 

will use a certain proportion of the data in the nearest neighborhood to which local polynomial 

smoothing with analytical weights is applied, which is similar to LOWESS. Because useful 

values of the smoothing parameter 𝑎𝑎 typically lie in the range 0.25 to 0.5 for the most LOWESS 

applications, we will use 0.3. 

Drop-out is a common situation in longitudinal studies. As a result there may not be 

enough data to smooth even after imputation for some subjects. In this situation, the unsmoothed 

pseudo data are kept for the parametric mixed-effects modeling. After extending the less 

frequently measured variable by inserting and smoothing pseudo data, the variables in the dataset 

 34 



will have the same amount of measurement. Depending on the research question being asked, 

any appropriate parametric mixed-effects model can be easily applied.   

4.3 APPLICATION USING REAL LONGITUDINAL DATA 

We used the SMART Trail study data as described in 3.3 to apply our proposed method.  As done 

in 3.3, we first inserted pseudo data for subjects’ weights between baseline and 6th month, 6th and 

12th month, 12th and 18th month, 18th and 24th month according to the measure schedule of 

adherence to self-monitoring. After this step, every subject had both weight data and adherence 

to self-monitoring data at all 43 time points.  

Local polynomial smoothing using only analytical weights was repeatedly applied to 

smooth the cluster of data for each subject. The degree of the polynomial was 3, and about one 

third of the data were used in each local fit. Two types of analytical weights defined earlier in 

3.2, that reflected the importance of the data were used. When subjects did not come in for 

weight assessment, pseudo weight data could not be imputed using functions 3.2.1a and 3.2.1b. 

After imputation 173 subjects had 43 values for weight data and 19 subjects had 20 to 38 values 

for weight data. For these subjects, data were smoothed as described. There are 18 subjects who 

had fewer than 8 values of weight data after imputation. For these subjects, the data were too 

sparse to smooth and the pseudo data were kept without smoothing. 

After smoothing, the less frequently measured weight data were extended to have the 

same amount of measurements as adherence to self-monitoring data. A parametric mixed-effects 

model was used to estimate the effect of adherence to self-monitoring on weight. When type 1 

analytical weights 𝑤𝑤𝑘𝑘= 1
�𝐷𝐷𝑘𝑘

 were used during smoothing, the results showed that subjects who 
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were adherent to self-monitoring weighed 1.2050kg less than subjects who were not adherent 

(p<.001). When type 2 analytical weights 𝑤𝑤𝑘𝑘= 1
𝐷𝐷𝑘𝑘

 were used, the results showed that subjects 

who were adherent to self-monitoring weighed 1.2109kg less than subjects who were not 

adherent (p<.001). Using the different analytical weights produced similar results for SMART 

trial. 

4.4 SIMULATION STUDY 

In order to examine the performance and features of the proposed method a simulation study was 

conducted. The data that were simulated mimic the SMART Trial data and the simulation was 

designed as follows. We chose 𝑁𝑁 =200 subjects, and the two true coefficient functions were 

given as modelled after the SMART trial: 

𝜷𝜷0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  90.5 − 0.2𝑡𝑡𝑗𝑗 

𝜷𝜷1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  2.5 

Outcomes were measured weekly for the first 4 months, biweekly for 8 weeks, then monthly for 

12 months at time 𝑡𝑡𝑗𝑗 (1 ≤ 𝑡𝑡𝑗𝑗≤ 96, 1≤ j ≤ 43). The intercept was a straight decreasing line, and the 

coefficient of the covariate was a small positive number. 

Let 𝑿𝑿0(𝑡𝑡) be a vector of 1’s (200 by 1), and 𝑿𝑿1(𝑡𝑡) be a vector of binomial random 

variables with success rate of 0.5. We sampled the errors from a multivariate normal distribution 

with mean 0 and a compound symmetric covariance structure (43 by 43). Different variances 

with high correlation (𝜌𝜌 = 0.7), medium correlation (𝜌𝜌 = 0.5) or low correlation (𝜌𝜌 = 0.3) of 

the compound symmetric covariance structure were used and results from them were compared. 
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The simulated full data were the sum of the errors and the underlying true coefficients at each 

time point 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑋𝑋0𝜷𝜷0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝑋𝑋1𝜷𝜷1𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+ 𝜖𝜖𝑖𝑖𝑖𝑖,      𝑗𝑗 =  1,2,···, 𝑇𝑇;   𝑖𝑖 =  1,2,···, 𝑁𝑁 

Using the simulated full data, we fitted parametric mixed-effects model to estimate 𝛽𝛽1( 

𝛽̂𝛽1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). This is the coefficient estimated under the situation that the dependent and its 

covariates are measured the same number of times. 

Using the proposed method, 𝑦𝑦𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝was inserted between time points 𝑡𝑡𝑖𝑖𝑖𝑖 = 1 and 𝑡𝑡𝑖𝑖𝑖𝑖 = 

24,  𝑡𝑡𝑖𝑖𝑖𝑖 = 24 and 𝑡𝑡𝑖𝑖𝑖𝑖 =48, t𝑡𝑡𝑖𝑖𝑖𝑖= 48 and 𝑡𝑡𝑖𝑖𝑖𝑖 = 72, 𝑡𝑡𝑖𝑖𝑖𝑖 =72 and 𝑡𝑡𝑖𝑖𝑖𝑖 =96 using functions (1a) and 

(1b) to create a new dataset. Local polynomial smoothing using only analytical weights was 

applied repeatedly to smooth the cluster of data for each subject. The degree of the polynomial 

was set to be 3, and about one third of the raw estimates were used in each local fit. A parametric 

mixed-effects models was used on the smoothed data to estimate 𝛽𝛽1 ( 𝛽̂𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒). This is the 

coefficient estimate using the proposed method under the situation that the dependent variable is 

measured less frequently than its covariate. For each different covariance structure of the error 

term and each different analytical weight, the process was repeated with 500 replications. 

The performance of the proposed method was measured by the Averaged Deviation (𝐴𝐴𝐴𝐴) 

defined as 

AD = � 1
500

∑ (𝛽̂𝛽1𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛽𝛽1𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2500
𝑞𝑞=1 � - � 1

500
∑ (𝛽̂𝛽1𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝛽𝛽1𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2500
𝑞𝑞=1 � 

The simulation results are shown in Table 2. Smaller absolute values of 𝐴𝐴𝐴𝐴 indicate a better fit. 

When the variations of the repeated measures were small and the within-subject correlations 

were high, the performance of the proposed model was better. However, using different types of 

analytical weights during smoothing produced similar results.  
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In real longitudinal studies, the repeated measurements rarely have a compound 

symmetric covariance structure, so a more realistic covariance matrix was also used in the 

simulation study. The subjects in the SMART study self-reported their weight at the same 

scheduled time as adherence to self-monitoring. These data were not as accurate as the subjects’ 

weight measured at clinical visits and more data were missing. However, by fitting a mixed 

model using self-reported weights and adherence to self-monitoring an R matrix was estimated. 

The variance and covariance in the estimated R matrix ranged from 430 to 570. The 500 pairs of  

𝛽̂𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝛽̂𝛽1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are plotted in the Figures 2 and 3. In both figures the dots were gathered 

around a 45 degree line, which means the performance of the proposed method was good. 

Because the  𝛽̂𝛽1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 in each figure were estimated with different analytical weights and the 

two figures looked very similar, it appears that using different types of analytical weights will not 

make a big difference. 

4.5 DISCUSSION 

The application of the proposed semiparametric estimation procedure using local polynomial 

smoothing has been demonstrated on inconsistently measured longitudinal data where the 

outcome was measured less frequently than its covariates. However, this method also works 

when covariates are measured less frequently than the outcome or when some covariates are 

measured less frequently than the other covariates or the outcome, because this method extends 

the less frequently measured variables to have the same amount of measurements as the more 

frequently measured variables. The last step of the proposed method is applying parametric 

mixed-effects models, so missing data caused by random reasons can be easily handled. 
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The proposed method does not require reducing the dimension of the more frequently 

measured data, so less information is lost and the results are easier to understand. Because local 

polynomial smoothing has only two smoothing parameters and is conducted repeatedly on one 

dimensional data, the computing time is short even when the total number of subjects is big. 

Based on the research question, any suitable parametric mixed-effects model can be chosen after 

smoothing which makes the proposed method flexible. 

There are limitations of the proposed method. If the less frequently measured variable is a 

binary outcome or multinomial outcome, pseudo data imputation and local polynomial 

smoothing with analytical weights do not work. When the variation of the repeated measures are 

large and the within-subjects correlations are small, the proposed method is less precise. Because 

subjects withdrawing from the trial is a common situation in longitudinal studies, some subjects 

may not have enough data to be smoothed even after imputation. If the number of subjects who 

do not have enough data to be smoothed is large, the results will not be accurate.  

With the fast development of technology, data collection is becoming increasingly 

efficient. Participants’ experiences can be recorded in real time in great detail which provide us 

opportunities to better understand human experiences and behaviors. Finding the best way to 

utilize all of the collected information is important. The proposed method in this paper will be a 

useful tool for exploring intensive longitudinal data when they are to be correlated with other 

less intensively measured longitudinal variables. 
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5.0  DISCUSSION 

The applications of the two proposed methods have been demonstrated using SMART data 

where the outcome was measured less frequently than its covariate. Both methods involve 

imputing pseudo data for the less frequently measured variable and using local polynomial 

smoothing with analytical weights to adjust results. The difference is that in the first method the 

adjustment happens at the parameter level while in the second method the adjustment happens at 

data level. As a result there are similarities and differences between the two methods.  

Comparisons between the two methods are summarized in Table 3. Both methods are 

flexible because they can be used when the outcome or its covariates are measured less 

frequently. They are easy to apply and produce straightforward results. The form of the analytical 

weights does not make a big difference in either method. However, for some situations only one 

of the methods work. For example, if there are interactions between covariates that need to be 

estimated or individual profiles are of interest, the second method works better. If the effect of 

the covariates varies over time, the first method provides better estimation. There are situations 

when neither of the methods work. For example when the repeated measures have large variation 

and small correlation, both methods produce inaccurate results. When the less frequently 

measured variable is binary or binomial, the imputation cannot be done which makes the 

application impossible. 
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The Public Health significance of the proposed methods is that they are good tools for 

exploring inconsistently measured longitudinal data. They provide estimation without losing 

information that has been collected. This is important to biomedical studies because as the data 

collection methods become better, finding ways to use all of the data are necessary. Researchers 

can choose one of the proposed methods or both to solve problems when the inconsistent 

measure is present in a longitudinal study. 
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6.0  FUTURE DIRECTIONS 

In semiparametric mixed-effects models, the parametric components are used to model factors 

that affect the responses parametrically and the nonparametric components are used to model 

factors that affect the response nonparametrically. Both parametric components and 

nonparametric components can have fixed effects and random effects to incorporate the within 

subjects correlation. However, semiparametric mixed-effects models are only suitable when the 

response and covariates are repeatedly measured with the same frequencies. In future work, we 

will extend semiparametric modelling techniques to model inconsistently measured longitudinal 

data. 

6.1 MODEL FORMULATION 

Let there be 𝑁𝑁 subjects observed during time 0 to 𝑇𝑇. 𝑌𝑌𝑖𝑖𝑖𝑖 is the response variable for the 𝑖𝑖th subject 

at time 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤  𝑗𝑗 ≤  𝑇𝑇), and 𝑿𝑿𝑖𝑖𝑖𝑖 is the covariate vector for the ith subject at time 𝑡𝑡𝑖𝑖𝑖𝑖 (0 ≤ 𝑘𝑘 ≤

𝑇𝑇). Here the outcome is measured less frequently than the covariates. For each subject, when 𝑘𝑘 =

𝑗𝑗, both the outcome and its covariate are measured, and when there are no matching 𝑗𝑗 for 𝑘𝑘 only 

the covariate is measured. 

 42 



Pseudo data for the outcome will be inserted to create a new dataset assuming that the 

outcome changes linearly between the adjacent time points. This step is exactly the same as what 

was described in the proposed methods 1 and 2 in Chapters 3 and 4, respectively. After 

imputation, the outcome and its covariates in the new dataset (𝑡𝑡𝑖𝑖𝑖𝑖,𝑌𝑌𝑖𝑖𝑖𝑖, 𝑿𝑿𝑖𝑖𝑖𝑖) will have the same 

amount of measurement. The proposed semiparametric mixed-effects model will have the form 

           𝑦𝑦𝑖𝑖𝑖𝑖 =  𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝜂𝜂(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝒉𝒉𝑖𝑖𝑖𝑖𝑇𝑇 𝒂𝒂𝑖𝑖 + 𝒗𝒗𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝝐𝝐𝑖𝑖𝑖𝑖,                      

𝑘𝑘 =  1, 2, ···,T;  𝑖𝑖 = 1, 2,···, 𝑛𝑛, 

where 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 and 𝜂𝜂(𝑡𝑡𝑖𝑖𝑖𝑖) are the parametric and nonparametric fixed effects components, 

respectively, and 𝒉𝒉𝑖𝑖𝑖𝑖𝑇𝑇 𝒂𝒂𝑖𝑖 and 𝒗𝒗𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖) are their corresponding random components that incorporate 

the within-subjects correlation. Vector 𝜶𝜶 contains the coefficients of the covariates, and 𝜖𝜖𝑖𝑖𝑖𝑖 is the 

error at time 𝑡𝑡𝑖𝑖𝑖𝑖 that is not explained by the rest of the model. It is assumed that 

𝒂𝒂𝑖𝑖~𝑁𝑁(0,𝑫𝑫𝑎𝑎),  𝒗𝒗𝑖𝑖(𝑡𝑡)~𝐺𝐺𝐺𝐺(µ, 𝛾𝛾),  𝐸𝐸 [𝒂𝒂𝑖𝑖𝒗𝒗𝑖𝑖(𝑡𝑡) ] = 𝛾𝛾𝑎𝑎(𝑡𝑡),  𝝐𝝐𝑖𝑖 = [𝜖𝜖𝑖𝑖1,···, 𝜖𝜖𝑖𝑖𝑇𝑇𝑖𝑖]
𝑇𝑇~𝑁𝑁(0, 𝑅𝑅𝑖𝑖),            

Where 𝐺𝐺𝐺𝐺(µ, 𝛾𝛾) is a Gaussian process with mean function µ(𝑡𝑡) and covariance function 𝛾𝛾(𝑠𝑠, 𝑡𝑡). 

Local polynomial smoothing with analytical weights will be used in the nonparametric 

components (𝜂𝜂(𝑡𝑡𝑖𝑖𝑖𝑖) and 𝑣𝑣𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖)) of the model (4.2.2). Because pseudo data are inserted for the 

response, each data point does not have the same accuracy. The most accurate data will be the 

real measurements, so the highest analytical weights are given to those data. The pseudo data that 

are close to the real measurement are given higher analytical weights than the pseudo data that 

are far from the real measurement. The measure of the time distance between pseudo data at time 

tk and the adjacent real measurement will be  

𝐷𝐷𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚| + 1, |𝑡𝑡𝑘𝑘 − tnext real measure| + 1). 

We will use analytical weights type 1 and 2 defined in 3.2 to reflect the importance of the 

response variable data.   
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6.2 APPLICATION, CHALLENGES AND POSSIBLE SOLUTION 

We applied the proposed semiparametric mixed-effects model to the SMART data to estimate 

the effect of adherence to self-monitoring on subjects’ weight. First we imputed pseudo data for 

subject’s weight. After imputation each subject had 43 measurements of weight and adherence to 

self-monitoring. Because adherence to self-monitoring is a fixed effect the semiparametric 

mixed-effects model used for SMART data was in the form of  

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝜂𝜂(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝒗𝒗𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖) + 𝜖𝜖𝑖𝑖𝑖𝑖,      𝑘𝑘 =  1, 2, ···,T;  𝑖𝑖 = 1, 2,···, 𝑛𝑛, 

The covariate has no random effect while the smoothed part has both random and fixed effects to 

handle the within-subject correlation. 

There are challenges to using local polynomial smoothing with random effects. First the 

local polynomial smoothing works in local neighborhoods. In order to smooth with the random 

effect, the local neighborhoods have to be big enough so that the model can converge. When the 

Taylor series expansion used has higher order of degree 𝑝𝑝 there are more parameters to be 

estimated. As a result, bigger local neighborhoods are needed. Generally, large numbers of 

subjects require bigger local neighborhoods. The local neighborhood for the SMART data was 

defined as one third of the data that are close to the point to be smoothed. There were 210 

subjects in SMART study, so the order of the smoothing had to be 1 to make the model 

converge. Using order of 1 in the local polynomial smoothing is not ideal because it is a local 

linear smoother.  

The other challenge was that because the semiparametric mixed-effects model estimates 

both the mean function and the individual function during smoothing, the individual functions 

are pulled towards the mean function as showed in Figure 4. The graphs plotted weight data after 
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imputation and the smoothed line using the proposed model for 4 subjects from the SMART 

study. The individual smoothed line had a similar shape because the majority of the subjects tend 

to lose weight at the beginning and then regain. The individual curve is driven by the population 

curve rather than the analytical weights during smoothing which is not good for solving the 

problem of inconsistent measurements. 

If the longitudinal data for all subjects had similar shapes the proposed method may 

work. However for data like those from SMART, not all subjects have the same pattern of losing 

and gaining weight so the proposed method needs further modification to better solve the 

problem. Future work should include a method to group subjects, so subjects in the subgroup 

have a similar shape based on the data. In this way, the number of subjects decreases which is 

good for the model convergence. Also in this case the population curve will not be too different 

from the individual curve to create unreasonable individual functions. 
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APPENDIX A: TABLES AND FIGURES 

 

 

Figure 1. Superimposed smoothed coefficients using three-step estimation procedure 

 

In (a) and (b) black diamonds, raw coefficients using pseudo data. Blue oval, raw coefficients 

using real measurements. Dashed line, estimates using analytical weight type 1 ( 1
�𝐷𝐷𝑘𝑘

). Tight 

dotted line, estimates using analytical weight type 2 ( 1
𝐷𝐷𝑘𝑘

). Long dash dotted line, estimates using 
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analytical weight type 3 ( 1
�𝐷𝐷𝑘𝑘

+ 1
�𝑠𝑠𝑠𝑠𝑘𝑘

). Short dash dotted line, estimates using analytical weight 

type 4 ( 1
𝐷𝐷𝑘𝑘

+ 1
𝑠𝑠𝑠𝑠𝑘𝑘

). Solid line, estimates using Epanechnikov kernel function. In (c) and (d) solid 

line, estimates using analytical weight type 1. Dashed line, estimates plus or minus 1 smoothed 

standard errors using analytical weight type 1. 
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Figure 2. Simulation results using estimated variance-covariance matrix and analytical weight type 1 
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Figure 3. Simulation results using estimated variance-covariance matrix and analytical weight type 2 
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Figure 4. Data after imputation and smoothed line using analytical weights type 1 
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Table 1. Simulation results (Averaged Deviation) using analytical weight type 1, 2, 3 and 4 

Averaged Deviation 1* 
Averaged Deviation 2** 
Averaged Deviation 3*** 
Averaged Deviation 4**** 

𝝆𝝆 = 𝟎𝟎. 𝟑𝟑 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 𝝆𝝆 = 𝟎𝟎. 𝟕𝟕 
 

σ𝟐𝟐 = 𝟓𝟓𝟐𝟐 

0.18 
0.14 
-0.48 
-0.14 

 

-1.21 
-0.65 
-1.27 
-0.88 

-2.27 
-1.92 
-2.40 
-2.41 

 

σ𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟐𝟐 

11.13 
11.06 
11.57 
10.79 

 

7.08 
7.65 
7.67 
6.77 

3.42 
3.78 
2.70 
3.00 

 

σ𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟐𝟐 

30.93 
30.14 
32.91 
31.04 

 

22.31 
16.96 
20.09 
20.95 

10.63 
9.27 

10.91 
11.70 

 

σ𝟐𝟐 = 𝟐𝟐𝟐𝟐𝟐𝟐 

55.05 
52.68 
61.17 
59.00 

 

42.35 
38.39 
44.37 
42.74 

20.16 
23.90 
22.77 
25.13 

 

σ𝟐𝟐 = 𝟐𝟐𝟐𝟐𝟐𝟐 

91.87 
87.02 
91.44 
88.55 

 

63.29 
63.85 
61.67 
56.69 

38.57 
37.67 
36.47 
34.56 

 

σ𝟐𝟐 = 𝟑𝟑𝟑𝟑𝟐𝟐 

132.10 
137.04 
140.47 
145.45 

 

98.36 
84.93 
98.70 
93.47 

53.40 
46.68 
62.38 
52.99 

 

σ𝟐𝟐 = 𝟑𝟑𝟑𝟑𝟐𝟐 

191.54 
188.49 
173.83 
189.14 

 

123.05 
126.86 
123.67 
124.97 

67.91 
64.59 
77.23 
67.97 

 

σ𝟐𝟐 = 𝟒𝟒𝟒𝟒𝟐𝟐 

237.17 
231.87 
238.47 
241.36 

171.99 
150.87 
180.84 
158.41 

106.66 
109.00 
100.38 
91.90 

* Type 1: 1
�𝐷𝐷𝑘𝑘

   ** Type 2: 1
𝐷𝐷𝑘𝑘

  *** Type 3: 1
�𝐷𝐷𝑘𝑘

 + 1
�𝑠𝑠𝑠𝑠𝑘𝑘

   **** Type 4: 1
𝐷𝐷𝑘𝑘

 + 1
𝑠𝑠𝑠𝑠𝑘𝑘
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Table 2. Simulation results (Averaged Deviation) using analytical weight type 1 and 2 

Averaged Deviation 1* 
Averaged Deviation 2** 

𝝆𝝆 = 𝟎𝟎. 𝟑𝟑 𝝆𝝆 = 𝟎𝟎. 𝟓𝟓 𝝆𝝆 = 𝟎𝟎. 𝟕𝟕 
 

σ𝟐𝟐 = 𝟓𝟓𝟐𝟐 
0.09 
0.07 

0.07 
0.03 

0.04 
0.04 

 

σ𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟐𝟐 
0.35 
0.25 

0.20 
0.26 

0.14 
0.16 

 

σ𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟐𝟐 
0.80 
0.67 

0.55 
0.60 

0.28 
0.44 

 

σ𝟐𝟐 = 𝟐𝟐𝟐𝟐𝟐𝟐 
1.18 
0.84 

0.91 
0.51 

0.27 
0.12 

 

σ𝟐𝟐 = 𝟐𝟐𝟐𝟐𝟐𝟐 
1.84 
1.31 

1.71 
1.31 

0.66 
0.72 

 

σ𝟐𝟐 = 𝟑𝟑𝟑𝟑𝟐𝟐 
2.12 
2.44 

1.83 
1.13 

1.29 
0.83 

 

σ𝟐𝟐 = 𝟑𝟑𝟑𝟑𝟐𝟐 
3.11 
3.83 

2.87 
2.86 

1.60 
0.88 

 

σ𝟐𝟐 = 𝟒𝟒𝟒𝟒𝟐𝟐 
5.42 
4.58 

4.48 
4.55 

3.00 
2.06 

 
* Type 1: 1

�𝐷𝐷𝑘𝑘
   ** Type 2: 1

𝐷𝐷𝑘𝑘
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Table 3. Comparison between proposed method 1 and 2 

Features Method 1 Method 2 
Outcome is measured less frequently than covariates Yes Yes 
Outcome is measured more frequently than covariates Yes Yes 
Some covariate is measured less frequently than outcome and other 
covariates 

Yes Yes 

Repeated measures have large variances and small within-subjects 
correlations 

No No 

Interaction among covariates No Yes 
Less frequently measured variable has binomial, multinomial or Poisson 
distribution 

No No 

Estimate individual profile No Yes 
Estimate population function Yes Yes 
Estimate time varying coefficients Yes No 
Deal with missing at random data No Yes 
Different analytical weights produce similar results Yes Yes 
Results have straightforward interpretation Yes Yes 
Short computation time Yes Yes 
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APPENDIX B: CODE 

 

/*****Impute data *****/ 

data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 1\\example data 

before imputation.txt", header=T) 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

sampleY<-cbind(data[,2],data[,3],data[,4],data[,5],data[,6]) 

imputeY<-matrix(rep(1,210*43), 210, 43) 

for(i in 1:210){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 

b1<- sampleY[i,1]-a1*t[1] 

a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 

b2<- sampleY[i,2]-a2*t[20] 

a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 

b3<- sampleY[i,3]-a3*t[32] 

a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 

b4<- sampleY[i,4]-a4*t[38] 

y1<-a1*t[2:19]+b1 

y2<-a2*t[21:31]+b2 
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y3<-a3*t[33:37]+b3 

y4<-a4*t[39:42]+b4 

y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 

sampleY[i,5]) 

imputeY[i,]<-t(y) 

} 

/***** Smoothing for SMART example*****/ 

data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 1\\type2 impute raw 

betas.txt", header=T) 

X<- data$x 

Y<- data$y 

x<- data[1:13,]$x 

y<- data[1:13,]$y 

w<- data[1:13,]$w 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- data[1:7,]$x 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 
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beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- data[8:37,]$x 

for(i in 1: 30){ 

x<- data[(i+1):(i+13),]$x 

y<- data[(i+1):(i+13),]$y 

w<- data[(i+1):(i+13),]$w 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat2[i]<-beta[1] 

} 

x<- data[31:43,]$x 

y<- data[31:43,]$y 

w<- data[31:43,]$w 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 
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x0<- data[38:43,]$x 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

yhat 

/*****Simulation1*****/ 

VARIANCE<-c(rep(5**2,3), rep(10**2,3), rep(15**2,3), rep(20**2,3), rep(25**2,3), 

rep(30**2,3), rep(35**2,3), rep(40**2,3)) 

COVARIANCE<-

c(7.5,12.5,17.5,30,50,70,67.5,112.5,157.5,120,200,280,187.5,312.5,437.5,270,450,630,367.5,61

2.5,875.5,480,800,1120) 

DIFF1<-c(rep(-1,24)) 

for(k in 1:24){ 

smooth<- matrix(rep(1,43*5000), 43,5000) 

simulation<- matrix(rep(1,43*5000), 43,5000) 

for(j in 1: 5000){ 
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t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

B0<-90.5-0.2*t 

B1<- -1.1+0.4*t-0.003*t**2 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 
 
x<- rbinom(200,1, P) 
 
for(i in 1: 43){ 

X1[,i]<-x 
 
} 

v<-matrix(rep(COVARIANCE[k],43*43), 43, 43) 

for(i in 1:43){ 

v[i,i]<-VARIANCE[k] 
 
} 

E<-mvrnorm(200, rep(0,43), v) 
 
Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1[i]*X1[,i]+E[,i] 
 
Y[,i]<-y 
 

} 

sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 
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a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 
 
b1<- sampleY[i,1]-a1*t[1] 
 
a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 
 
b2<- sampleY[i,2]-a2*t[20] 
 
a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 
 
b3<- sampleY[i,3]-a3*t[32] 
 
a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 
 
b4<- sampleY[i,4]-a4*t[38] 
 
y1<-a1*t[2:19]+b1 
 
y2<-a2*t[21:31]+b2 
 
y3<-a3*t[33:37]+b3 
 
y4<-a4*t[39:42]+b4 
 
y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 
sampleY[i,5]) 
 
imputeY[i,]<-t(y) 
 
} 

rawbeta0<-rep(0,43) 

rawbeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 
 
X<-cbind(one, X1[,i]) 
 
beta<-solve(t(X)%*%X)%*%(t(X)%*%imputeY[,i]) 
 
rawbeta0[i]<-beta[1] 

rawbeta1[i]<-beta[2] 
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} 

distance<c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9,11,13,13,11,9,7,5,1,5,9,13,9,5,1,

5,9,9,5,1) 

W<-1/sqrt(distance) 

tempx<- t[1:13] 

tempy<- rawbeta1[1:13] 

w<- W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- tempx[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- t[8:37] 

for(i in 1: 30){ 

tempx<- t[(i+1):(i+13)] 
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tempy<- rawbeta1[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat2[i]<-beta[1] 

} 

tempx<- t[31:43] 

tempy<- rawbeta1[31:43] 

w<- W[31:43] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- t[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 
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beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

simubeta0<-rep(0,43) 

simubeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 
 
X<-cbind(one, X1[,i]) 
 
beta<-solve(t(X)%*%X)%*%(t(X)%*% Y[,i]) 
 
simubeta0[i]<-beta[1] 

simubeta1[i]<-beta[2] 

} 

smooth[,j]<-yhat 

simulation[,j]<-simubeta1 

} 

simuASE<- matrix(rep(1,43*5000), 43,5000) 

smoothASE<- matrix(rep(1,43*5000), 43,5000) 

for(i in 1:5000){ 

simuASEtemp<- (simulation[,i]-B1)**2 

smoothASEtemp<- (smooth[,i]-B1)**2 

simuASE[,i]<-simuASEtemp 

smoothASE[,i]<-smoothASEtemp 
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} 

simuASEone<- matrix(rep(0,43), 43,1) 

smoothASEone<- matrix(rep(0,43), 43,1) 

for(i in 1:5000){ 

simuASEone <- simuASEone +simuASE[,i] 

smoothASEone<- smoothASEone+ smoothASE[,i] 

} 

simuASEfinal<- (sum(simuASEone))/5000 

smoothASEfinal<- (sum(smoothASEone))/5000 

diff<-simuASEfinal- smoothASEfinal 

DIFF1[k]<-diff 

} 

VARIANCE<-c(rep(5**2,3), rep(10**2,3), rep(15**2,3), rep(20**2,3), rep(25**2,3), 

rep(30**2,3), rep(35**2,3), rep(40**2,3)) 

COVARIANCE<-

c(7.5,12.5,17.5,30,50,70,67.5,112.5,157.5,120,200,280,187.5,312.5,437.5,270,450,630,367.5,61

2.5,875.5,480,800,1120) 

DIFF2<-c(rep(-1,24)) 

for(k in 1:24){ 

smooth<- matrix(rep(1,43*5000), 43,5000) 

simulation<- matrix(rep(1,43*5000), 43,5000) 

for(j in 1: 5000){ 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 
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B0<-90.5-0.2*t 

B1<- -1.1+0.4*t-0.003*t**2 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 

x<- rbinom(200,1, P) 

for(i in 1: 43){ 

X1[,i]<-x 

} 

v<-matrix(rep(COVARIANCE[k],43*43), 43, 43) 

for(i in 1:43){ 

v[i,i]<-VARIANCE[k] 

} 

E<-mvrnorm(200, rep(0,43), v) 

Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1[i]*X1[,i]+E[,i] 

Y[,i]<-y 

} 

sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 
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b1<- sampleY[i,1]-a1*t[1] 

a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 

b2<- sampleY[i,2]-a2*t[20] 

a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 

b3<- sampleY[i,3]-a3*t[32] 

a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 

b4<- sampleY[i,4]-a4*t[38] 

y1<-a1*t[2:19]+b1 

y2<-a2*t[21:31]+b2 

y3<-a3*t[33:37]+b3 

y4<-a4*t[39:42]+b4 

y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 

sampleY[i,5]) 

imputeY[i,]<-t(y) 

} 

rawbeta0<-rep(0,43) 

rawbeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*%imputeY[,i]) 

rawbeta0[i]<-beta[1] 

rawbeta1[i]<-beta[2] 
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} 

distance<-c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9, 

11,13,13,11,9,7,5,1,5,9,13,9,5,1,5,9,9,5,1) 

W<-1/(distance) 

tempx<- t[1:13] 

tempy<- rawbeta1[1:13] 

w<- W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- tempx[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- t[8:37] 

for(i in 1: 30){ 

tempx<- t[(i+1):(i+13)] 
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tempy<- rawbeta1[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat2[i]<-beta[1] 

} 

tempx<- t[31:43] 

tempy<- rawbeta1[31:43] 

w<- W[31:43] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- t[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 
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beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

simubeta0<-rep(0,43) 

simubeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*% Y[,i]) 

simubeta0[i]<-beta[1] 

simubeta1[i]<-beta[2] 

} 

smooth[,j]<-yhat 

simulation[,j]<-simubeta1 

} 

simuASE<- matrix(rep(1,43*5000), 43,5000) 

smoothASE<- matrix(rep(1,43*5000), 43,5000) 

for(i in 1:5000){ 

simuASEtemp<- (simulation[,i]-B1)**2 

smoothASEtemp<- (smooth[,i]-B1)**2 

simuASE[,i]<-simuASEtemp 

smoothASE[,i]<-smoothASEtemp 
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} 

simuASEone<- matrix(rep(0,43), 43,1) 

smoothASEone<- matrix(rep(0,43), 43,1) 

for(i in 1:5000){ 

simuASEone <- simuASEone +simuASE[,i] 

smoothASEone<- smoothASEone+ smoothASE[,i] 

} 

simuASEfinal<- (sum(simuASEone))/5000 

smoothASEfinal<- (sum(smoothASEone))/5000 

diff<-simuASEfinal- smoothASEfinal 

DIFF2[k]<-diff 

} 

VARIANCE<-c(rep(5**2,3), rep(10**2,3), rep(15**2,3), rep(20**2,3), rep(25**2,3), 

rep(30**2,3), rep(35**2,3), rep(40**2,3)) 

COVARIANCE<c(7.5,12.5,17.5,30,50,70,67.5,112.5,157.5,120,200,280,187.5,312.5,437.5,270,

450,630,367.5,612.5,875.5,480,800,1120) 

DIFF3<-c(rep(-1,24)) 

for(k in 1:24){ 

smooth<- matrix(rep(1,43*5000), 43,5000) 

simulation<- matrix(rep(1,43*5000), 43,5000) 

for(j in 1: 5000){ 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

B0<-90.5-0.2*t 
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B1<- -1.1+0.4*t-0.003*t**2 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 

x<- rbinom(200,1, P) 

for(i in 1: 43){ 

X1[,i]<-x 

} 

v<-matrix(rep(COVARIANCE[k],43*43), 43, 43) 

for(i in 1:43){ 

v[i,i]<-VARIANCE[k] 

} 

E<-mvrnorm(200, rep(0,43), v) 

Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1[i]*X1[,i]+E[,i] 

Y[,i]<-y 

} 

sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 

b1<- sampleY[i,1]-a1*t[1] 
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a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 

b2<- sampleY[i,2]-a2*t[20] 

a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 

b3<- sampleY[i,3]-a3*t[32] 

a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 

b4<- sampleY[i,4]-a4*t[38] 

y1<-a1*t[2:19]+b1 

y2<-a2*t[21:31]+b2 

y3<-a3*t[33:37]+b3 

y4<-a4*t[39:42]+b4 

y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 

sampleY[i,5]) 

imputeY[i,]<-t(y) 

} 

rawbeta0<-rep(0,43) 

rawbeta1<-rep(0,43) 

rawbeta.se0<-rep(0,43) 

rawbeta.se1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*%imputeY[,i]) 

rawbeta0[i]<-beta[1] 
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rawbeta1[i]<-beta[2] 

Y.hat <-X %*% beta 

sigma.hat <- sqrt(sum((imputeY[i] - Y.hat)^2)/(200 - 2)) 

cov.beta <- sigma.hat^2 * solve(t(X) %*% X) 

beta.se<-sqrt(diag(cov.beta)) 

rawbeta.se0[i]<-beta.se[1] 

rawbeta.se1[i]<-beta.se[2] 

} 

distance<-c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9, 

11,13,13,11,9,7,5,1,5,9,13,9,5,1,5,9,9,5,1) 

W1<-1/sqrt(distance) 

W2<-t(1/sqrt(rawbeta.se1)) 

W<-W1+W2 

tempx<- t[1:13] 

tempy<- rawbeta1[1:13] 

w<- W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- tempx[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 
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x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- t[8:37] 

for(i in 1: 30){ 

tempx<- t[(i+1):(i+13)] 

tempy<- rawbeta1[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat2[i]<-beta[1] 

} 

tempx<- t[31:43] 

tempy<- rawbeta1[31:43] 

w<- W[31:43] 
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Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- t[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

simubeta0<-rep(0,43) 

simubeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*% Y[,i]) 

simubeta0[i]<-beta[1] 

simubeta1[i]<-beta[2] 

} 

smooth[,j]<-yhat 
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simulation[,j]<-simubeta1 

} 

simuASE<- matrix(rep(1,43*5000), 43,5000) 

smoothASE<- matrix(rep(1,43*5000), 43,5000) 

for(i in 1:5000){ 

simuASEtemp<- (simulation[,i]-B1)**2 

smoothASEtemp<- (smooth[,i]-B1)**2 

simuASE[,i]<-simuASEtemp 

smoothASE[,i]<-smoothASEtemp 

} 

simuASEone<- matrix(rep(0,43), 43,1) 

smoothASEone<- matrix(rep(0,43), 43,1) 

for(i in 1:5000){ 

simuASEone <- simuASEone +simuASE[,i] 

smoothASEone<- smoothASEone+ smoothASE[,i] 

} 

simuASEfinal<- (sum(simuASEone))/5000 

smoothASEfinal<- (sum(smoothASEone))/5000 

diff<-simuASEfinal- smoothASEfinal 

DIFF3[k]<-diff 

} 

VARIANCE<-c(rep(5**2,3), rep(10**2,3), rep(15**2,3), rep(20**2,3), rep(25**2,3), 

rep(30**2,3), rep(35**2,3), rep(40**2,3)) 
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COVARIANCE<-

c(7.5,12.5,17.5,30,50,70,67.5,112.5,157.5,120,200,280,187.5,312.5,437.5,270,450,630,367.5,61

2.5,875.5,480,800,1120) 

DIFF4<-c(rep(-1,24)) 

for(k in 1:24){ 

smooth<- matrix(rep(1,43*5000), 43,5000) 

simulation<- matrix(rep(1,43*5000), 43,5000) 

for(j in 1: 5000){ 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

B0<-90.5-0.2*t 

B1<- -1.1+0.4*t-0.003*t**2 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 

x<- rbinom(200,1, P) 

for(i in 1: 43){ 

X1[,i]<-x 

} 

v<-matrix(rep(COVARIANCE[k],43*43), 43, 43) 

for(i in 1:43){ 

v[i,i]<-VARIANCE[k] 

} 

E<-mvrnorm(200, rep(0,43), v) 
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Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1[i]*X1[,i]+E[,i] 

Y[,i]<-y 

} 

sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 

b1<- sampleY[i,1]-a1*t[1] 

a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 

b2<- sampleY[i,2]-a2*t[20] 

a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 

b3<- sampleY[i,3]-a3*t[32] 

a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 

b4<- sampleY[i,4]-a4*t[38] 

y1<-a1*t[2:19]+b1 

y2<-a2*t[21:31]+b2 

y3<-a3*t[33:37]+b3 

y4<-a4*t[39:42]+b4 

y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 

sampleY[i,5]) 

imputeY[i,]<-t(y) 
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} 

rawbeta0<-rep(0,43) 

rawbeta1<-rep(0,43) 

rawbeta.se0<-rep(0,43) 

rawbeta.se1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*%imputeY[,i]) 

rawbeta0[i]<-beta[1] 

rawbeta1[i]<-beta[2] 

Y.hat <-X %*% beta 

sigma.hat <- sqrt(sum((imputeY[i] - Y.hat)^2)/(200 - 2)) 

cov.beta <- sigma.hat^2 * solve(t(X) %*% X) 

beta.se<-sqrt(diag(cov.beta)) 

rawbeta.se0[i]<-beta.se[1] 

rawbeta.se1[i]<-beta.se[2] 

} 

distance<c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9,11,13,13,11,9,7,5,1,5,9,13,9,5,1,

5,9,9,5,1) 

W1<-1/(distance) 

W2<-t(1/(rawbeta.se1)) 

W<-W1+W2 
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tempx<- t[1:13] 

tempy<- rawbeta1[1:13] 

w<- W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- tempx[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- t[8:37] 

for(i in 1: 30){ 

tempx<- t[(i+1):(i+13)] 

tempy<- rawbeta1[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 
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x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat2[i]<-beta[1] 

} 

tempx<- t[31:43] 

tempy<- rawbeta1[31:43] 

w<- W[31:43] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- t[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 
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simubeta0<-rep(0,43) 

simubeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*% Y[,i]) 

simubeta0[i]<-beta[1] 

simubeta1[i]<-beta[2] 

} 

smooth[,j]<-yhat 

simulation[,j]<-simubeta1 

} 

simuASE<- matrix(rep(1,43*5000), 43,5000) 

smoothASE<- matrix(rep(1,43*5000), 43,5000) 

for(i in 1:5000){ 

simuASEtemp<- (simulation[,i]-B1)**2 

smoothASEtemp<- (smooth[,i]-B1)**2 

simuASE[,i]<-simuASEtemp 

smoothASE[,i]<-smoothASEtemp 

} 

simuASEone<- matrix(rep(0,43), 43,1) 

smoothASEone<- matrix(rep(0,43), 43,1) 

for(i in 1:5000){ 
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simuASEone <- simuASEone +simuASE[,i] 

smoothASEone<- smoothASEone+ smoothASE[,i] 

} 

simuASEfinal<- (sum(simuASEone))/5000 

smoothASEfinal<- (sum(smoothASEone))/5000 

diff<-simuASEfinal- smoothASEfinal 

DIFF4[k]<-diff 

} 

estimatedV<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\estimated variance 

matrix.txt", header=F) 

smooth<- matrix(rep(1,43*5000), 43,5000) 

simulation<- matrix(rep(1,43*5000), 43,5000) 

for(j in 1: 5000){ 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

B0<-90.5-0.2*t 

B1<- -1.1+0.4*t-0.003*t**2 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 
 
x<- rbinom(200,1, P) 
 
for(i in 1: 43){ 

X1[,i]<-x 
 
} 
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E<-mvrnorm(200, rep(0,43), estimatedV) 
 
Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1[i]*X1[,i]+E[,i] 
 
Y[,i]<-y 
 

} 

sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 
 
b1<- sampleY[i,1]-a1*t[1] 
 
a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 
 
b2<- sampleY[i,2]-a2*t[20] 
 
a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 
 
b3<- sampleY[i,3]-a3*t[32] 
 
a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 
 
b4<- sampleY[i,4]-a4*t[38] 
 
y1<-a1*t[2:19]+b1 
 
y2<-a2*t[21:31]+b2 
 
y3<-a3*t[33:37]+b3 
 
y4<-a4*t[39:42]+b4 
 
y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 
sampleY[i,5]) 
 
imputeY[i,]<-t(y) 
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} 

rawbeta0<-rep(0,43) 

rawbeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 
 
X<-cbind(one, X1[,i]) 
 
beta<-solve(t(X)%*%X)%*%(t(X)%*%imputeY[,i]) 
 
rawbeta0[i]<-beta[1] 

rawbeta1[i]<-beta[2] 

} 

distance<c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9,11,13,13,11,9,7,5,1,5,9,13,9,5,1,

5,9,9,5,1) 

W<-1/sqrt(distance) 

tempx<- t[1:13] 

tempy<- rawbeta1[1:13] 

w<- W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- tempx[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 
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x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- t[8:37] 

for(i in 1: 30){ 

tempx<- t[(i+1):(i+13)] 

tempy<- rawbeta1[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat2[i]<-beta[1] 

} 

tempx<- t[31:43] 

tempy<- rawbeta1[31:43] 

w<- W[31:43] 
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Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- t[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

simubeta0<-rep(0,43) 

simubeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 
 
X<-cbind(one, X1[,i]) 
 
beta<-solve(t(X)%*%X)%*%(t(X)%*% Y[,i]) 
 
simubeta0[i]<-beta[1] 

simubeta1[i]<-beta[2] 

} 

smooth[,j]<-yhat 
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simulation[,j]<-simubeta1 

} 

simuASE<- matrix(rep(1,43*5000), 43,5000) 

smoothASE<- matrix(rep(1,43*5000), 43,5000) 

for(i in 1:5000){ 

simuASEtemp<- (simulation[,i]-B1)**2 

smoothASEtemp<- (smooth[,i]-B1)**2 

simuASE[,i]<-simuASEtemp 

smoothASE[,i]<-smoothASEtemp 

} 

simuASEone<- matrix(rep(0,43), 43,1) 

smoothASEone<- matrix(rep(0,43), 43,1) 

for(i in 1:5000){ 

simuASEone <- simuASEone +simuASE[,i] 

smoothASEone<- smoothASEone+ smoothASE[,i] 

} 

simuASEfinal<- (sum(simuASEone))/5000 

smoothASEfinal<- (sum(smoothASEone))/5000 

diff1<-simuASEfinal- smoothASEfinal 

estimatedV<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\estimated variance 

matrix.txt", header=F) 

smooth<- matrix(rep(1,43*5000), 43,5000) 

simulation<- matrix(rep(1,43*5000), 43,5000) 

 86 



for(j in 1: 5000){ 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

B0<-90.5-0.2*t 

B1<- -1.1+0.4*t-0.003*t**2 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 

x<- rbinom(200,1, P) 

for(i in 1: 43){ 

X1[,i]<-x 

} 

E<-mvrnorm(200, rep(0,43), estimatedV) 

Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1[i]*X1[,i]+E[,i] 

Y[,i]<-y 

} 

sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 

b1<- sampleY[i,1]-a1*t[1] 

a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 
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b2<- sampleY[i,2]-a2*t[20] 

a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 

b3<- sampleY[i,3]-a3*t[32] 

a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 

b4<- sampleY[i,4]-a4*t[38] 

y1<-a1*t[2:19]+b1 

y2<-a2*t[21:31]+b2 

y3<-a3*t[33:37]+b3 

y4<-a4*t[39:42]+b4 

y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 

sampleY[i,5]) 

imputeY[i,]<-t(y) 

} 

rawbeta0<-rep(0,43) 

rawbeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*%imputeY[,i]) 

rawbeta0[i]<-beta[1] 

rawbeta1[i]<-beta[2] 

} 
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distance<c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9,11,13,13,11,9,7,5,1,5,9,13,9,5,1,

5,9,9,5,1) 

W<-1/(distance) 

tempx<- t[1:13] 

tempy<- rawbeta1[1:13] 

w<- W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- tempx[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- t[8:37] 

for(i in 1: 30){ 

tempx<- t[(i+1):(i+13)] 

tempy<- rawbeta1[(i+1):(i+13)] 
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w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat2[i]<-beta[1] 

} 

tempx<- t[31:43] 

tempy<- rawbeta1[31:43] 

w<- W[31:43] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- t[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 
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yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

simubeta0<-rep(0,43) 

simubeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*% Y[,i]) 

simubeta0[i]<-beta[1] 

simubeta1[i]<-beta[2] 

} 

smooth[,j]<-yhat 

simulation[,j]<-simubeta1 

} 

simuASE<- matrix(rep(1,43*5000), 43,5000) 

smoothASE<- matrix(rep(1,43*5000), 43,5000) 

for(i in 1:5000){ 

simuASEtemp<- (simulation[,i]-B1)**2 

smoothASEtemp<- (smooth[,i]-B1)**2 

simuASE[,i]<-simuASEtemp 

smoothASE[,i]<-smoothASEtemp 

} 
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simuASEone<- matrix(rep(0,43), 43,1) 

smoothASEone<- matrix(rep(0,43), 43,1) 

for(i in 1:5000){ 

simuASEone <- simuASEone +simuASE[,i] 

smoothASEone<- smoothASEone+ smoothASE[,i] 

} 

simuASEfinal<- (sum(simuASEone))/5000 

smoothASEfinal<- (sum(smoothASEone))/5000 

diff2<-simuASEfinal- smoothASEfinal 

estimatedV<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\estimated variance 

matrix.txt", header=F) 

smooth<- matrix(rep(1,43*5000), 43,5000) 

simulation<- matrix(rep(1,43*5000), 43,5000) 

for(j in 1: 5000){ 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

B0<-90.5-0.2*t 

B1<- -1.1+0.4*t-0.003*t**2 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 

x<- rbinom(200,1, P) 

for(i in 1: 43){ 

X1[,i]<-x 
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} 

E<-mvrnorm(200, rep(0,43), estimatedV) 

Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1[i]*X1[,i]+E[,i] 

Y[,i]<-y 

} 

sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 

b1<- sampleY[i,1]-a1*t[1] 

a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 

b2<- sampleY[i,2]-a2*t[20] 

a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 

b3<- sampleY[i,3]-a3*t[32] 

a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 

b4<- sampleY[i,4]-a4*t[38] 

y1<-a1*t[2:19]+b1 

y2<-a2*t[21:31]+b2 

y3<-a3*t[33:37]+b3 

y4<-a4*t[39:42]+b4 

 93 



y<cbind(sampleY[i,1],t(y1),sampleY[i,2],t(y2),sampleY[i,3],t(y3),sampleY[i,4],t(y4),sampleY[i,

5]) 

imputeY[i,]<-t(y) 

} 

rawbeta0<-rep(0,43) 

rawbeta1<-rep(0,43) 

rawbeta.se0<-rep(0,43) 

rawbeta.se1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*%imputeY[,i]) 

rawbeta0[i]<-beta[1] 

rawbeta1[i]<-beta[2] 

Y.hat <-X %*% beta 

sigma.hat <- sqrt(sum((imputeY[i] - Y.hat)^2)/(200 - 2)) 

cov.beta <- sigma.hat^2 * solve(t(X) %*% X) 

beta.se<-sqrt(diag(cov.beta)) 

rawbeta.se0[i]<-beta.se[1] 

rawbeta.se1[i]<-beta.se[2] 

} 

distance<c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9,11,13,13,11,9,7,5,1,5,9,13,9,5,1,

5,9,9,5,1) 
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W1<-1/sqrt(distance) 

W2<-t(1/sqrt(rawbeta.se1)) 

W<-W1+W2 

tempx<- t[1:13] 

tempy<- rawbeta1[1:13] 

w<- W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- tempx[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- t[8:37] 

for(i in 1: 30){ 

tempx<- t[(i+1):(i+13)] 

tempy<- rawbeta1[(i+1):(i+13)] 
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w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat2[i]<-beta[1] 

} 

tempx<- t[31:43] 

tempy<- rawbeta1[31:43] 

w<- W[31:43] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- t[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 
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yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

simubeta0<-rep(0,43) 

simubeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*% Y[,i]) 

simubeta0[i]<-beta[1] 

simubeta1[i]<-beta[2] 

} 

smooth[,j]<-yhat 

simulation[,j]<-simubeta1 

} 

simuASE<- matrix(rep(1,43*5000), 43,5000) 

smoothASE<- matrix(rep(1,43*5000), 43,5000) 

for(i in 1:5000){ 

simuASEtemp<- (simulation[,i]-B1)**2 

smoothASEtemp<- (smooth[,i]-B1)**2 

simuASE[,i]<-simuASEtemp 

smoothASE[,i]<-smoothASEtemp 

} 
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simuASEone<- matrix(rep(0,43), 43,1) 

smoothASEone<- matrix(rep(0,43), 43,1) 

for(i in 1:5000){ 

simuASEone <- simuASEone +simuASE[,i] 

smoothASEone<- smoothASEone+ smoothASE[,i] 

} 

simuASEfinal<- (sum(simuASEone))/5000 

smoothASEfinal<- (sum(smoothASEone))/5000 

diff3<-simuASEfinal- smoothASEfinal 

estimatedV<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\estimated variance 

matrix.txt", header=F) 

smooth<- matrix(rep(1,43*5000), 43,5000) 

simulation<- matrix(rep(1,43*5000), 43,5000) 

for(j in 1: 5000){ 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

B0<-90.5-0.2*t 

B1<- -1.1+0.4*t-0.003*t**2 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 

x<- rbinom(200,1, P) 

for(i in 1: 43){ 

X1[,i]<-x 
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} 

E<-mvrnorm(200, rep(0,43), estimatedV) 

Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1[i]*X1[,i]+E[,i] 

Y[,i]<-y 

} 

sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 

b1<- sampleY[i,1]-a1*t[1] 

a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 

b2<- sampleY[i,2]-a2*t[20] 

a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 

b3<- sampleY[i,3]-a3*t[32] 

a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 

b4<- sampleY[i,4]-a4*t[38] 

y1<-a1*t[2:19]+b1 

y2<-a2*t[21:31]+b2 

y3<-a3*t[33:37]+b3 

y4<-a4*t[39:42]+b4 
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y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 

sampleY[i,5]) 

imputeY[i,]<-t(y) 

} 

rawbeta0<-rep(0,43) 

rawbeta1<-rep(0,43) 

rawbeta.se0<-rep(0,43) 

rawbeta.se1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*%imputeY[,i]) 

rawbeta0[i]<-beta[1] 

rawbeta1[i]<-beta[2] 

Y.hat <-X %*% beta 

sigma.hat <- sqrt(sum((imputeY[i] - Y.hat)^2)/(200 - 2)) 

cov.beta <- sigma.hat^2 * solve(t(X) %*% X) 

beta.se<-sqrt(diag(cov.beta)) 

rawbeta.se0[i]<-beta.se[1] 

rawbeta.se1[i]<-beta.se[2] 

} 

distance<c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9,11,13,13,11,9,7,5,1,5,9,13,9,5,1,

5,9,9,5,1) 
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W1<-1/(distance) 

W2<-t(1/(rawbeta.se1)) 

W<-W1+W2 

tempx<- t[1:13] 

tempy<- rawbeta1[1:13] 

w<- W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- tempx[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- t[8:37] 

for(i in 1: 30){ 

tempx<- t[(i+1):(i+13)] 

tempy<- rawbeta1[(i+1):(i+13)] 
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w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 

yhat2[i]<-beta[1] 

} 

tempx<- t[31:43] 

tempy<- rawbeta1[31:43] 

w<- W[31:43] 

Wmatrix<-diag(w) 

one<-rep(1,length(tempx)) 

x0<- t[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(tempx-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%tempy) 
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yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

simubeta0<-rep(0,43) 

simubeta1<-rep(0,43) 

for(i in 1:43){ 

one<-rep(1,200) 

X<-cbind(one, X1[,i]) 

beta<-solve(t(X)%*%X)%*%(t(X)%*% Y[,i]) 

simubeta0[i]<-beta[1] 

simubeta1[i]<-beta[2] 

} 

smooth[,j]<-yhat 

simulation[,j]<-simubeta1 

} 

simuASE<- matrix(rep(1,43*5000), 43,5000) 

smoothASE<- matrix(rep(1,43*5000), 43,5000) 

for(i in 1:5000){ 

simuASEtemp<- (simulation[,i]-B1)**2 

smoothASEtemp<- (smooth[,i]-B1)**2 

simuASE[,i]<-simuASEtemp 

smoothASE[,i]<-smoothASEtemp 

} 
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simuASEone<- matrix(rep(0,43), 43,1) 

smoothASEone<- matrix(rep(0,43), 43,1) 

for(i in 1:5000){ 

simuASEone <- simuASEone +simuASE[,i] 

smoothASEone<- smoothASEone+ smoothASE[,i] 

} 

simuASEfinal<- (sum(simuASEone))/5000 

smoothASEfinal<- (sum(smoothASEone))/5000 

diff4<-simuASEfinal- smoothASEfinal 

/*****Smooth individual data*****/ 

weight_data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 3\\for smooth  
with no missing.txt", header=T) 

time_data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 3\\analytical 
weight and time line.txt", header=T) 

smoothed<- matrix(rep(0,43*173), 173,43) 

for(j in 1:173){ 

Y<-as.vector(t( weight_data[j,2:44])) 

X<- time_data$week 

W<- time_data$weight2 

x<-X[1:13] 

y<- Y[1:13] 

w<-W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- X[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

 104 



x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- X[8:37] 

for(i in 1: 30){ 

x<- X[(i+1):(i+13)] 

y<- Y[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat2[i]<-beta[1] 

} 

x<- X[31:43] 

y<- Y[31:43] 

w<- W[31:43] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- X[38:43] 
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yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

yhat 

smoothed[j,]<-yhat 

} 

write.csv(smoothed, "smoothed 1to43.csv") 

weight_data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 3\\for smooth  
with  missing1to20.txt", header=T) 

time_data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 3\\analytical 
weight and time line.txt", header=T) 

time_data<-time_data[1:20,] 

smoothed<- matrix(rep(0,20*13), 13,20) 

for(j in 1:13){ 

Y<-as.vector(t( weight_data[j,2:21])) 

X<- time_data$week 

W<- time_data$weight1 

x<-X[1:9] 

y<- Y[1:9] 

w<-W[1:9] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 
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x0<- X[1:5] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,11) 

x0<- X[6:16] 

for(i in 1: 11){ 

x<- X[(i+1):(i+9)] 

y<- Y[(i+1):(i+9)] 

w<- W[(i+1):(i+9)] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat2[i]<-beta[1] 

} 

x<- X[12:20] 

y<- Y[12:20] 

w<- W[12:20] 
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Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- X[17:20] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

yhat 

smoothed[j,]<-yhat 

} 

write.csv(smoothed, "smoothed 1to20.csv") 

weight_data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 3\\for smooth  
with missing1to32.txt", header=T) 

time_data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 3\\analytical 
weight and time line.txt", header=T) 

time_data<-time_data[1:32,] 

smoothed<- matrix(rep(0,32*4), 4,32) 

for(j in 1:4){ 

Y<-as.vector(t( weight_data[j,2:33])) 

X<- time_data$week 

W<- time_data$weight1 

x<-X[1:13] 

y<- Y[1:13] 
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w<-W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- X[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,19) 

x0<- X[8:26] 

for(i in 1: 19){ 

x<- X[(i+1):(i+13)] 

y<- Y[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat2[i]<-beta[1] 

} 
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x<- X[27:32] 

y<- Y[27:32] 

w<- W[27:32] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- X[27:32] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

yhat 

smoothed[j,]<-yhat 

} 

write.csv(smoothed, "smoothed 1to32.csv") 

weight_data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 3\\for smooth  
with missing1to38.txt", header=T) 

time_data<-read.table("C:\\Users\\Lei\\Desktop\\Lei Ye dissertation\\data\\paper 3\\analytical 
weight and time line.txt", header=T) 

time_data<-time_data[1:38,] 

smoothed<- matrix(rep(0,38*2), 2,38) 

for(j in 1:2){ 

Y<-as.vector(t( weight_data[j,2:39])) 

X<- time_data$week 
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W<- time_data$weight1 

x<-X[1:13] 

y<- Y[1:13] 

w<-W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- X[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,25) 

x0<- X[8:32] 

for(i in 1: 25){ 

x<- X[(i+1):(i+13)] 

y<- Y[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 
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beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat2[i]<-beta[1] 

} 

x<- X[33:38] 

y<- Y[33:38] 

w<- W[33:38] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- X[27:32] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

yhat 

smoothed[j,]<-yhat 

} 

write.csv(smoothed, "smoothed 1to38.csv") 

/*****Simulation2*****/ 

VARIANCE<-c(rep(5**2,3), rep(10**2,3), rep(15**2,3), rep(20**2,3), rep(25**2,3), 
rep(30**2,3), rep(35**2,3), rep(40**2,3)) 
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COVARIANCE<-
c(7.5,12.5,17.5,30,50,70,67.5,112.5,157.5,120,200,280,187.5,312.5,437.5,270,450,630,367.5,61
2.5,875.5,480,800,1120) 

fitbeta<-rep(1,500) 

simubeta<-rep(1,500) 

for(k in 1: 500){ 

t<-c(seq(2,16),seq(18,48,2),seq(52,96,4)) 

B0<-90.5-0.2*t 

B1<- 2.5 

X0<-matrix(rep(1,200*43), 200, 43) 

X1<-matrix(rep(2,200*43), 200, 43) 

P<-0.5 
 
x<- rbinom(200,1, P) 
 
for(i in 1: 43){ 

X1[,i]<-x 
 
} 

v<-matrix(rep(COVARIANCE[20],43*43), 43, 43) 

for(i in 1:43){ 

v[i,i]<-VARIANCE[20] 
 
} 

E<-mvrnorm(200, rep(0,43), v) 
 
Y<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:43){ 

y<-B0[i]*X0[,i]+B1*X1[,i]+E[,i] 
 
Y[,i]<-y 
 
} 

SimuY<-Y 
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sampleY<-cbind(Y[,1],Y[,20],Y[,32],Y[,38],Y[,43]) 

imputeY<-matrix(rep(1,200*43), 200, 43) 

for(i in 1:200){ 

a1<-(sampleY[i,1]- sampleY[i,2])/(t[1]-t[20]) 
 
b1<- sampleY[i,1]-a1*t[1] 
 
a2<-(sampleY[i,2]- sampleY[i,3])/(t[20]-t[32]) 
 
b2<- sampleY[i,2]-a2*t[20] 
 
a3<-(sampleY[i,3]- sampleY[i,4])/(t[32]-t[38]) 
 
b3<- sampleY[i,3]-a3*t[32] 
 
a4<-(sampleY[i,4]- sampleY[i,5])/(t[38]-t[43]) 
 
b4<- sampleY[i,4]-a4*t[38] 
 
y1<-a1*t[2:19]+b1 
 
y2<-a2*t[21:31]+b2 
 
y3<-a3*t[33:37]+b3 
 
y4<-a4*t[39:42]+b4 
 
y<-cbind(sampleY[i,1],t(y1), sampleY[i,2],t(y2), sampleY[i,3],t(y3), sampleY[i,4],t(y4), 
sampleY[i,5]) 
 
imputeY[i,]<-t(y) 
 
} 

distance<-c(1,2,3,4,5,6,7,8,9,10,15,14,13,12,11,9,7,5,3,1,3,5,7,9, 

11,13,13,11,9,7,5,1,5,9,13,9,5,1,5,9,9,5,1) 

W<-1/sqrt(distance) 

smoothedY<- matrix(rep(0,43*200), 200,43) 

for(j in 1:200){ 

tempY<-imputeY[j,] 

tempX<- t 
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x<-tempX[1:13] 

y<- tempY[1:13] 

w<-W[1:13] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- tempX[1:7] 

yhat1<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat1[i]<-beta[1] 

} 

yhat2<-rep(0,30) 

x0<- tempX[8:37] 

for(i in 1: 30){ 

x<- tempX[(i+1):(i+13)] 

y<- tempY[(i+1):(i+13)] 

w<- W[(i+1):(i+13)] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 
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yhat2[i]<-beta[1] 

} 

x<- tempX[31:43] 

y<- tempY[31:43] 

w<- W[31:43] 

Wmatrix<-diag(w) 

one<-rep(1,length(x)) 

x0<- tempX[38:43] 

yhat3<-rep(0,length(x0)) 

for(i in 1: length(x0)){ 

x1<-(x-x0[i]) 

x2<-x1**2 

x3<-x1**3 

Xmatrix<-cbind(one, x1, x2, x3) 

beta<-solve(t(Xmatrix)%*%Wmatrix%*%Xmatrix)%*%(t(Xmatrix)%*%Wmatrix%*%y) 

yhat3[i]<-beta[1] 

} 

yhat<-c(yhat1, yhat2, yhat3) 

yhat 

smoothedY[j,]<-yhat 

} 

subj<-rep(1:200,each=43) 

week<-rep(t,200) 

Tweight<- rep(0,43*200) 

for(n in 0:199){ 

for(m in 1:43){ 

Tweight[m+43*n]<-SimuY[n+1,m] 

}} 
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weight<- rep(0,43*200) 

for(n in 0:199){ 

for(m in 1:43){ 

weight[m+43*n]<-smoothedY[n+1,m] 

}} 

adhere<- rep(0,43*200) 

for(n in 0:199){ 

for(m in 1:43){ 

adhere[m+43*n]<-X1[n+1,m] 

}} 

true<-data.frame(subj,week,Tweight,adhere) 

new<-data.frame(subj,week,weight,adhere) 

Tfit<-lme (Tweight ~ week+adhere, random = ~ 1|subj, data =true) 

fit<-lme (weight ~ week+adhere, random = ~ 1|subj, data =new) 

Tbeta<-coef(Tfit) 

Tbeta<-Tbeta$adhere 

beta<-coef(fit) 

beta<-beta$adhere 

fitbeta[k]<-beta[1] 

simubeta[k]<-Tbeta[1] 

} 

write.csv(fitbeta, file = "S.csv") 

write.csv(simubeta, file = "T.csv") 

/*****Future direction*****/ 
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Proc import datafile = "C:\Users\Lei\Desktop\Lei Ye issertation\data\paper 2\imputed y with 

missing.sav" out= work.temp; 

run; 
%include "C:\Users\Lei\Desktop\Lei Ye dissertation\code\paper 2\wide to long.txt"; 
 
%tolong(temp,long,ID,TIME,1,43,sm wt); 
 
data long; 
set long; 
 
if time=1 then week=2; if time=1 then distance=1; 
if time=2 then week=3; if time=2 then distance=2; 
if time=3 then week=4; if time=3 then distance=3; 
if time=4 then week=5; if time=4 then distance=4; 
if time=5 then week=6; if time=5 then distance=5; 
 
if time=6 then week=7; if time=6 then distance=6; 
if time=7 then week=8; if time=7 then distance=7; 
if time=8 then week=9; if time=8 then distance=8; 
if time=9 then week=10; if time=9 then distance=9; 
if time=10 then week=11; if time=10 then distance=10; 
 
if time=11 then week=12; if time=11 then distance=15; 
if time=12 then week=13; if time=12 then distance=14; 
if time=13 then week=14; if time=13 then distance=13; 
if time=14 then week=15; if time=14 then distance=12; 
if time=15 then week=16; if time=15 then distance=11; 
 
if time=16 then week=18; if time=16 then distance=9; 
if time=17 then week=20; if time=17 then distance=7; 
if time=18 then week=22; if time=18 then distance=5; 
if time=19 then week=24; if time=19 then distance=3; 
if time=20 then week=26; if time=20 then distance=1; 
 
if time=21 then week=28; if time=21 then distance=3; 
if time=22 then week=30; if time=22 then distance=5; 
if time=23 then week=32; if time=23 then distance=7; 
if time=24 then week=34; if time=24 then distance=9; 
if time=25 then week=36; if time=25 then distance=11; 
 
if time=26 then week=38; if time=26 then distance=13; 
if time=27 then week=40; if time=27 then distance=13; 
if time=28 then week=42; if time=28 then distance=11; 
if time=29 then week=44; if time=29 then distance=9; 
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if time=30 then week=46; if time=30 then distance=7; 
 
if time=31 then week=48; if time=31 then distance=5; 
if time=32 then week=52; if time=32 then distance=1; 
if time=33 then week=56; if time=33 then distance=5; 
if time=34 then week=60; if time=34 then distance=9; 
if time=35 then week=64; if time=35 then distance=13; 
 
if time=36 then week=68; if time=36 then distance=9; 
if time=37 then week=72; if time=37 then distance=5; 
if time=38 then week=76; if time=38 then distance=1; 
if time=39 then week=80; if time=39 then distance=5; 
if time=40 then week=84; if time=40 then distance=9; 
 
if time=41 then week=88; if time=41 then distance=9; 
if time=42 then week=92; if time=42 then distance=5; 
if time=43 then week=96; if time=43 then distance=1; 
run; 
 
data long; 
set long; 
 
analyze_w1=1/(sqrt(distance)); 
analyze_w2=1/distance; 
 
run; 
 
/************ 1  ***********/ 
data sample; 
set long; 
if time>13 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-2)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-2); 
sample_x2=(sqrt(analyze_w1))*(week-2)*(week-2); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
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run;  
 
proc sort data=sf1;  
by effect;  
run;     
proc sort data=sr1;  
by effect;  
run; 
 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt1; 
set final; 
wt1=sscoeff; 
keep ID wt1; 
run; 
/************ 2***********/ 
data sample; 
set long; 
if time>13 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-3)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-3); 
sample_x2=(sqrt(analyze_w1))*(week-3)*(week-3); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
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by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt2; 
set final; 
wt2=sscoeff; 
keep ID wt2; 
run; 
/************ 3 ***********/ 
data sample; 
set long; 
if time>13 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-4)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-4); 
sample_x2=(sqrt(analyze_w1))*(week-4)*(week-4); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run;      
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       

 121 



proc sort data=final;  
by effect;  
run; 
data wt3; 
set final; 
wt3=sscoeff; 
keep ID wt3; 
run; 
/************ 4***********/ 
data sample; 
set long; 
if time>13 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-5)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-5); 
sample_x2=(sqrt(analyze_w1))*(week-5)*(week-5); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run;     
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt4; 
set final; 
wt4=sscoeff; 
keep ID wt4; 
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run; 
/************ 5 ***********/ 
data sample; 
set long; 
if time>13 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-6)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-6); 
sample_x2=(sqrt(analyze_w1))*(week-6)*(week-6); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt5; 
set final; 
wt5=sscoeff; 
keep ID wt5; 
run; 
/************ 6 ***********/ 
data sample; 
set long; 
if time>13 then delete; 
run; 
data sample; 
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set sample; 
sample_y=(sqrt(analyze_w1))*(week-7)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-7); 
sample_x2=(sqrt(analyze_w1))*(week-7)*(week-7); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt6; 
set final; 
wt6=sscoeff; 
keep ID wt6; 
run; 
/************ 7 ***********/ 
data sample; 
set long; 
if time>13 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-8)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-8); 
sample_x2=(sqrt(analyze_w1))*(week-8)*(week-8); 
run; 
proc mixed data=sample ; 
class ID; 
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model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run; 
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt7; 
set final; 
wt7=sscoeff; 
keep ID wt7; 
run; 
/************ 8 ***********/ 
data sample; 
set long; 
if time<2 then delete; 
if time>14 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-9)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-9); 
sample_x2=(sqrt(analyze_w1))*(week-9)*(week-9); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
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run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt8; 
set final; 
wt8=sscoeff; 
keep ID wt8; 
run; 
/************ 9***********/ 
data sample; 
set long; 
if time<3 then delete; 
if time>15 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-10)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-10); 
sample_x2=(sqrt(analyze_w1))*(week-10)*(week-10); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
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run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt9; 
set final; 
wt9=sscoeff; 
keep ID wt9; 
run; 
/************ 10***********/ 
data sample; 
set long; 
if time<4 then delete; 
if time>16 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-11)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-11); 
sample_x2=(sqrt(analyze_w1))*(week-11)*(week-11); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
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proc sort data=final;  
by effect;  
run; 
data wt10; 
set final; 
wt10=sscoeff; 
keep ID wt10; 
run; 
/************ 11***********/ 
data sample; 
set long; 
if time<5 then delete; 
if time>17 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-12)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-12); 
sample_x2=(sqrt(analyze_w1))*(week-12)*(week-12); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt11; 
set final; 
wt11=sscoeff; 
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keep ID wt11; 
run; 
/************ 12***********/ 
data sample; 
set long; 
if time<6 then delete; 
if time>18 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-13)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-13); 
sample_x2=(sqrt(analyze_w1))*(week-13)*(week-13); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt12; 
set final; 
wt12=sscoeff; 
keep ID wt12; 
run; 
/************ 13***********/ 
data sample; 
set long; 
if time<7 then delete; 
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if time>19 then delete; 
run; 
data sample; 
set sample 
sample_y=(sqrt(analyze_w1))*(week-14)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-14); 
sample_x2=(sqrt(analyze_w1))*(week-14)*(week-14); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt13; 
set final; 
wt13=sscoeff; 
keep ID wt13; 
run; 
 
/************ 14***********/ 
data sample; 
set long; 
if time<8 then delete; 
if time>20 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-15)*wt; 
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sample_x1=(sqrt(analyze_w1))*(week-15); 
sample_x2=(sqrt(analyze_w1))*(week-15)*(week-15); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt14; 
set final; 
wt14=sscoeff; 
keep ID wt14; 
run; 
/************ 15***********/ 
data sample; 
set long; 
if time<9 then delete; 
if time>21 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-16)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-16); 
sample_x2=(sqrt(analyze_w1))*(week-16)*(week-16); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
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random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run; 
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt15; 
set final; 
wt15=sscoeff; 
keep ID wt15; 
run; 
/************ 16***********/ 
data sample; 
set long; 
if time<10 then delete; 
if time>22 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-18)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-18); 
sample_x2=(sqrt(analyze_w1))*(week-18)*(week-18); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
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proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt16; 
set final; 
wt16=sscoeff; 
keep ID wt16; 
run; 
/************ 17***********/ 
data sample; 
set long; 
if time<11 then delete; 
if time>23 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-20)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-20); 
sample_x2=(sqrt(analyze_w1))*(week-20)*(week-20); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
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data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt17; 
set final; 
wt17=sscoeff; 
keep ID wt17; 
run; 
/************ 18***********/ 
data sample; 
set long; 
if time<12 then delete; 
if time>24 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-22)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-22); 
sample_x2=(sqrt(analyze_w1))*(week-22)*(week-22); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
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by effect;  
run; 
data wt18; 
set final; 
wt18=sscoeff; 
keep ID wt18; 
run; 
/************ 19***********/ 
data sample; 
set long; 
if time<13 then delete; 
if time>25 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-24)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-24); 
sample_x2=(sqrt(analyze_w1))*(week-24)*(week-24); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt19; 
set final; 
wt19=sscoeff; 
keep ID wt19; 
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run; 
/************ 20***********/ 
data sample; 
set long; 
if time<14 then delete; 
if time>26 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-26)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-26); 
sample_x2=(sqrt(analyze_w1))*(week-26)*(week-26); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt20; 
set final; 
wt20=sscoeff; 
keep ID wt20; 
run; 
/************ 21***********/ 
data sample; 
set long; 
if time<15 then delete; 
if time>27 then delete; 
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run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-28)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-28); 
sample_x2=(sqrt(analyze_w1))*(week-28)*(week-28); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt21; 
set final; 
wt21=sscoeff; 
keep ID wt21; 
run; 
/************ 22***********/ 
data sample; 
set long; 
if time<16 then delete; 
if time>28 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-30)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-30); 
sample_x2=(sqrt(analyze_w1))*(week-30)*(week-30); 
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run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt22; 
set final; 
wt22=sscoeff; 
keep ID wt22; 
run; 
/************ 23***********/ 
data sample; 
set long; 
if time<17 then delete; 
if time>29 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-32)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-32); 
sample_x2=(sqrt(analyze_w1))*(week-32)*(week-32); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
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                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt23; 
set final; 
wt23=sscoeff; 
keep ID wt23; 
run; 
/************ 24***********/ 
data sample; 
set long; 
if time<18 then delete; 
if time>30 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-34)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-34); 
sample_x2=(sqrt(analyze_w1))*(week-34)*(week-34); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
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run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt24; 
set final; 
wt24=sscoeff; 
keep ID wt24; 
run; 
/************ 25***********/ 
data sample; 
set long; 
if time<19 then delete; 
if time>31 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-36)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-36); 
sample_x2=(sqrt(analyze_w1))*(week-36)*(week-36); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
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by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt25; 
set final; 
wt25=sscoeff; 
keep ID wt25; 
run; 
/************ 26***********/ 
data sample; 
set long; 
if time<20 then delete; 
if time>32 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-38)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-38); 
sample_x2=(sqrt(analyze_w1))*(week-38)*(week-38); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
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data wt26; 
set final; 
wt26=sscoeff; 
keep ID wt26; 
run; 
/************ 27***********/ 
data sample; 
set long; 
if time<21 then delete; 
if time>33 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-40)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-40); 
sample_x2=(sqrt(analyze_w1))*(week-40)*(week-40); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt27; 
set final; 
wt27=sscoeff; 
keep ID wt27; 
run; 
/************ 28***********/ 
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data sample; 
set long; 
if time<22 then delete; 
if time>34 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-42)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-42); 
sample_x2=(sqrt(analyze_w1))*(week-42)*(week-42); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt28; 
set final; 
wt28=sscoeff; 
keep ID wt28; 
run; 
/************ 29***********/ 
data sample; 
set long; 
if time<23 then delete; 
if time>35 then delete; 
run; 
data sample; 
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set sample; 
sample_y=(sqrt(analyze_w1))*(week-44)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-44); 
sample_x2=(sqrt(analyze_w1))*(week-44)*(week-44); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt29; 
set final; 
wt29=sscoeff; 
keep ID wt29; 
run; 
/************ 30***********/ 
data sample; 
set long; 
if time<24 then delete; 
if time>36 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-46)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-46); 
sample_x2=(sqrt(analyze_w1))*(week-46)*(week-46); 
run; 
proc mixed data=sample ; 
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class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt30; 
set final; 
wt30=sscoeff; 
keep ID wt30; 
run; 
/************ 31***********/ 
data sample; 
set long; 
if time<25 then delete; 
if time>37 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-48)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-48); 
sample_x2=(sqrt(analyze_w1))*(week-48)*(week-48); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
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                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt31; 
set final; 
wt31=sscoeff; 
keep ID wt31; 
run; 
/************ 32***********/ 
data sample; 
set long; 
if time<26 then delete; 
if time>38 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-52)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-52); 
sample_x2=(sqrt(analyze_w1))*(week-52)*(week-52); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
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by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt32; 
set final; 
wt32=sscoeff; 
keep ID wt32; 
run; 
/************ 33***********/ 
data sample; 
set long; 
if time<27 then delete; 
if time>39 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-56)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-56); 
sample_x2=(sqrt(analyze_w1))*(week-56)*(week-56); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
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run;       
proc sort data=final;  
by effect;  
run; 
data wt33; 
set final; 
wt33=sscoeff; 
keep ID wt33; 
run; 
/************ 34***********/ 
data sample; 
set long; 
if time<28 then delete; 
if time>40 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-60)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-60); 
sample_x2=(sqrt(analyze_w1))*(week-60)*(week-60); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt34; 
set final; 
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wt34=sscoeff; 
keep ID wt34; 
run; 
 
/************ 35***********/ 
data sample; 
set long; 
if time<29 then delete; 
if time>41 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-64)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-64); 
sample_x2=(sqrt(analyze_w1))*(week-64)*(week-64); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt35; 
set final; 
wt35=sscoeff; 
keep ID wt35; 
run; 
 
/************ 36***********/ 

 149 



data sample; 
set long; 
if time<30 then delete; 
if time>42 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-68)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-68); 
sample_x2=(sqrt(analyze_w1))*(week-68)*(week-68); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt36; 
set final; 
wt36=sscoeff; 
keep ID wt36; 
run; 
/************ 37***********/ 
data sample; 
set long; 
if time<31 then delete; 
if time>43 then delete; 
run; 
data sample; 

 150 



set sample; 
sample_y=(sqrt(analyze_w1))*(week-72)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-72); 
sample_x2=(sqrt(analyze_w1))*(week-72)*(week-72); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run;    
data wt37; 
set final; 
wt37=sscoeff; 
keep ID wt37; 
run; 
/************ 38***********/ 
data sample; 
set long; 
if time<31 then delete; 
if time>43 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-76)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-76); 
sample_x2=(sqrt(analyze_w1))*(week-76)*(week-76); 
run; 
proc mixed data=sample ; 
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class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt38; 
set final; 
wt38=sscoeff; 
keep ID wt38; 
run; 
/************ 39***********/ 
data sample; 
set long; 
if time<31 then delete; 
if time>43 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-80)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-80); 
sample_x2=(sqrt(analyze_w1))*(week-80)*(week-80); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
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                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt39; 
set final; 
wt39=sscoeff; 
keep ID wt39; 
run; 
/************ 40***********/ 
data sample; 
set long; 
if time<31 then delete; 
if time>43 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-84)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-84); 
sample_x2=(sqrt(analyze_w1))*(week-84)*(week-84); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
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by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt40; 
set final; 
wt40=sscoeff; 
keep ID wt40; 
run; 
/************ 41***********/ 
data sample; 
set long; 
if time<31 then delete; 
if time>43 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-88)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-88); 
sample_x2=(sqrt(analyze_w1))*(week-88)*(week-88); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
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run;       
proc sort data=final;  
by effect;  
run; 
data wt41; 
set final; 
wt41=sscoeff; 
keep ID wt41; 
run; 
/************ 42***********/ 
data sample; 
set long; 
if time<31 then delete; 
if time>43 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-92)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-92); 
sample_x2=(sqrt(analyze_w1))*(week-92)*(week-92); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt42; 
set final; 
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wt42=sscoeff; 
keep ID wt42; 
run; 
/************ 43***********/ 
data sample; 
set long; 
if time<31 then delete; 
if time>43 then delete; 
run; 
data sample; 
set sample; 
sample_y=(sqrt(analyze_w1))*(week-93)*wt; 
sample_x1=(sqrt(analyze_w1))*(week-93); 
sample_x2=(sqrt(analyze_w1))*(week-93)*(week-93); 
run; 
proc mixed data=sample ; 
class ID; 
model sample_y= sample_x1 sample_x2/ddfm=kr s; 
random sample_x1/type=un subject=ID  s; 
ods output solutionf=sf1(keep=id effect estimate   
                                 rename=(estimate=overall)); 
ods output solutionr=sr1(keep=id effect variety estimate 
                                 rename=(estimate=ssdev)); 
run;  
proc sort data=sf1;  
by effect;  
run; 
proc sort data=sr1;  
by effect;  
run; 
data final; 
merge sf1 sr1; 
by effect; 
sscoeff = overall + ssdev; 
run;       
proc sort data=final;  
by effect;  
run; 
data wt43; 
set final; 
wt43=sscoeff; 
keep ID wt43; 
run; 
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