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Edaphic factors are a strong selective force in shaping both plant species distributions and the 

diversification of many lineages. Specifically, adaptation to novel soil environments can result in 

species-level changes in floral morphology, phenology, or chemistry, each of which may affect 

plant reproduction. However, whether floral chemical changes alter plant reproduction following 

colonization of novel soils is poorly described. In this work, I investigate the effects of soil 

chemistry on plant chemistry, plant-animal interactions, and pollen-pistil interactions using 

serpentine-adapted plant species to help determine the effects of the soil chemical environment 

on plant reproduction and reproductive isolation. I show that (1) plants accumulate soil metals 

into vegetative and reproductive organs, as well as into pollen and nectar, (2) floral metal 

accumulation deters generalist pollinators and filters natural pollinator communities, and (3) 

floral metal accumulation alters pollen grain germination. These findings have important 

implications for plant reproduction on metal-rich soils. For example, my research has identified 

two novel mechanisms through which serpentine soil chemistry may foster reproductive isolation 

between species or populations growing in disparate soil environments. First, floral metal 

accumulation may result in pollinator filtering. Specifically, closely related plant species 

occurring in sympatry that differ in floral metal accumulation may become reproductively 

isolated through reduced pollinator sharing. Second, floral metal accumulation may provide a 
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mechanism through which gene flow is reduced between serpentine and non-serpentine 

populations by altering pollen germination and pollen-pistil compatibility. I found that elevated 

metal concentrations in the pistils of maternal plants limits pollen tube growth towards ovules in 

non-adapted species. Furthermore, my results suggest that using metal hyperaccumulating plants 

in phytoremediation should be considered with caution. While I found that generalist pollinators 

exhibited decreased visitation to Ni-enriched flowers, they still visited these flowers, and 

therefore likely ingested a potentially toxic resource. If bioaccumulation of heavy metals occurs 

in plant-pollinator systems near metal-contaminated soils, pollinator populations may become 

threatened. This study highlights the influence of the soil environment on plant ecological 

interactions and plant evolution, and elucidates the role of the edaphic factor on plant 

reproduction.  
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1 

1.0  INTRODUCTION 

Understanding how abiotic factors influence species abundance, distribution and diversification 

are central questions in both ecology and evolution (Schluter 2009). For plants, edaphic factors 

are thought to be a strong selective force in shaping both species distributions and the 

diversification of many lineages (Rajakaruna 2004). Specifically, adaptation to novel soil 

environments can lead to species-level changes in floral morphology, phenology, or chemistry, 

each of which may affect plant reproduction and population growth or persistence (Brady et al. 

2005). While the reproductive consequences of altered floral morphology and phenology 

following colonization of novel soils have been studied (Brady et al. 2005; Bomblies 2010), 

whether floral chemical changes alter plant reproduction is less well understood. However, 

effects of soil chemistry on plant reproduction may be profound. For example, differences in 

floral chemistry between closely related species may lead to pollinator sorting (Adler 2000) and 

ultimately reproductive isolation. Differences in floral chemistry between species or populations 

may also limit hybridization as the pollen and ovules of species may vary in their tolerance to 

certain elements found in excess in soils and, consequently, in plant reproductive tissues (e.g., 

heavy metals; Searcy and Mulcahy 1985). Thus, soil chemistry can directly alter the evolutionary 

trajectory of species through modifying plant-pollinator or pollen-pistil interactions. 
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Heavy metals occur naturally in trace concentrations in soils, but some soil environments, 

including both natural and anthropogenically altered, contain elevated concentrations that are 

toxic to many organisms (Nagajyoti et al. 2010). For example, serpentine-derived soils represent 

a nutritionally stressful growing environment for most plants because of a low Ca:Mg ratio, 

deficiency of essential nutrients (e.g., N, P, K), and high levels of potentially phytotoxic heavy 

metals (e.g., Ni, Co, Cr; Brooks 1987; Brady et al. 2005; Kazakou et al. 2008). The elevated 

heavy metal concentrations, in particular, in serpentine soils are thought to drive levels of plant 

adaptation (Lazarus et al. 2011), as non-adapted species lack physiological mechanisms to avoid 

metal toxicity (Kazakou et al. 2008). While some plants require Ni in trace quantities as an active 

component of the enzyme urease (Welch 1981), it is generally considered toxic to plants and is 

implicated in causing abnormal vegetative growth, necrosis and chlorosis of leaves and 

inhibiting photosynthesis when present in excess in soils (reviewed in Yusuf et al. 2011). As a 

result, most serpentine-adapted plant species exclude metals (DeHart et al. 2014), but some are 

known to accumulate metals into above ground tissues at high concentrations (i.e., metal 

hyperaccumulators; van der Ent et al. 2013). Metal accumulation and hyperaccumulation has 

been hypothesized to serve several fitness-related functions in plants, including allelopathic 

effects and defense against herbivores (Boyd 2007). However, the direct reproductive 

consequences of metal accumulation, particularly floral metal accumulation, are unclear. 

There are two primary reasons for studying floral metal accumulation. First, 

phytoremediation is a green technology that uses metal hyperaccumulating plants to clean up 

metal-contaminated soils. Soil metal pollution not only negatively impacts plants, but also 

microorganisms (Acikel and Alp. 2010; Azarbad et al. 2013), fungi (Leyval et al. 1997), insects 

and other animals (Cohn et al. 1992; Timmerman et al. 1992; Hanson et al. 2004; 
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Warchalowska-Silwa et al. 2005; Sorvari et al. 2007; Van Ooik et al. 2007), including humans 

(e.g., metal ingestion can cause cancer, via formation of free radicals in cells; Tchounwou et al. 

2012). Thus, identifying cost-effective and environmentally friendly means to remediate polluted 

soils is a research priority (Chaney et al. 2010). However, considering metals are toxic to insects, 

and some pollinating insects, including honey bees, are in decline (Potts et al. 2010), it is 

important to assess the ecological risks of phytoremediation before implementing it on a large 

scale. Second, changes in floral chemistry following adaptation to novel soil environments may 

impact patterns of pollen transfer within natural plant populations, either by altering plant-

pollinator interactions or pollen-pistil interactions. Serpentine soils, which can be found on every 

continent (Brooks 1987), provide one of the most remarkable examples of plant adaptation to 

atypical soils (O’Dell and Rajakaruna 2011) and geographic regions containing serpentine often 

harbor numerous endemic species (Brooks 1987; Safford et al. 2005; Anacker 2011). Plant 

response to the heavy metal Ni found in serpentines is relatively well studied (Kazakou et al. 

2008), and provides an excellent model to test whether heavy metal accumulation adversely 

affects plant reproduction. Documenting the effects of floral chemistry on plant reproduction 

may help to explain plant species distribution, abundance and diversification on both natural 

(e.g., serpentine) and anthropogenically induced metal-rich soils. 

In this work, I investigate the effects of soil chemistry on plant morphology, chemistry, 

plant-animal interactions, and pollen-pistil interactions using serpentine-adapted plant species to 

help elucidate effects of the soil chemical environment on plant reproduction. First, I determine 

the effects of serpentine soil chemistry on plant morphology, chemistry, and plant-animal 

interactions for a serpentine-tolerant plant species (Mimulus guttatus; chapter I). Second, I 

determine the degree to which several plant species from the mustard family (Brassicaceae) that 
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vary in affinity to serpentine soil accumulate Ni into leaves, flowers, and pollinator rewards 

(chapters II, III). Next, I evaluate whether floral Ni accumulation alters plant-pollinator 

interactions in both natural and experimental settings, focusing on the Ni hyperaccumulating 

species Streptanthus polygaloides (chapters IV, V, VI). Finally, I determine the effects of floral 

metal accumulation on plant reproduction (i.e., pollen germination, fruit and seed production) for 

two species known to differ in magnitude of floral metal accumulation (chapter VII). 

Notably, results from this work show that (1) plants accumulate soil metals into both 

vegetative and reproductive organs, as well as into pollen and nectar, (2) floral metal 

accumulation deters generalist pollinators and filters natural pollinator communities associated 

with metal hyperaccumulating plants, and (3) floral metal accumulation alters pollen grain 

germination, particularly for species that are not endemic to metal-rich soils. These findings have 

important implications for plant reproduction on naturally metal-rich soils, including serpentines, 

as well as soils polluted by human activity. For example, my results suggest that using metal 

hyperaccumulating plants for the purpose of phytoremediation should be considered with 

caution. Despite the apparent benefits of phytoremediation, land managers have not fully 

considered how interactions with pollinators may be affected. While I found that generalist 

pollinators visited fewer flowers and spent less time foraging on flowers with Ni-enriched nectar 

and pollen, they still visited metal-rich flowers, and therefore likely ingested a potentially toxic 

resource. If bioaccumulation of heavy metals occurs in plant-pollinator systems near metal-

contaminated soils, pollinator populations may become threatened in these areas. Understanding 

the ultimate fate of soil metals is therefore critical not only for plants, but also for the animals 

that use them as resources. 
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For plants growing in naturally metal-rich soils, my research has identified two novel 

mechanisms through which soil chemistry may foster reproductive isolation between species or 

populations growing in disparate soil environments. First, I provide novel evidence that metal 

hyperaccumulating plants host unique species of pollinating insects, relative to closely related 

plants occurring in sympatry. Floral metal accumulation may result in pollinator filtering, thus 

closely related plant species occurring in sympatry that differ in floral metal accumulation may 

become reproductively isolated. Previous studies have found correlations between edaphic shifts 

and pollination system shifts for plant sister species with overlapping geographic ranges (Niet et 

al. 2006)- my work highlights one possible mechanism by which these shifts may occur, i.e., 

differences in floral chemistry following adaptation to novel soils leads to reduced pollinator 

sharing. Second, results from this study suggest that floral metal accumulation may provide a 

mechanism through which gene flow is reduced between serpentine and non-serpentine 

populations by altering pollen-pistil compatibility. Specifically, I found that non-endemic 

serpentine plants grown in high-Ni soils displayed decreased pollen germination, fruit and seed 

production relative to plants grown in low-Ni soils. This suggests that pollen arriving from a 

non-serpentine plant is unlikely to be successful in siring progeny, as the Ni concentrations in the 

pistils of maternal plants may limit pollen grain germination and/or pollen tube growth towards 

ovules. While soil heavy metals have been previously implicated in fostering reproductive 

isolation between populations on vs. off metal-rich soil indirectly via changes in floral phenology 

(Antonovics 2006), here I provide evidence for a more direct mechanism through which soil 

metals may impart reproductive isolation between populations. Similar to what has been 

observed for the metal Cu in Mimulus guttatus (Searcy and Mulcahy 1985; Searcy and Macnair 

1990), floral Ni accumulation may provide a selective barrier to gene exchange between 
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serpentine and non-serpentine populations, and thus provide a prezygotic isolating mechanism 

between populations that vary in floral metal concentrations and/or metal tolerance. Edaphic 

islands, such as serpentine soils, provide a model setting to determine the influence of the abiotic 

environment on plant ecological interactions and plant evolution, and continued study of the 

effects of soil chemistry on plant reproduction will help elucidate the role of the edaphic factor 

on plant adaptation and speciation. 
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2.0  EDAPHIC FACTORS AND PLANT-INSECT INTERACTIONS: DIRECT AND 

INDIRECT EFFECTS OF SERPENTINE SOIL ON FLORIVORES AND 

POLLINATORS 

2.1 INTRODUCTION 

Biotic interactions can be influenced by abiotic factors, thus identical communities found in 

disparate environments (i.e., with different resource availability) may differ in both the strength 

(Breitburg et al. 1997; Alonso 1999; Chalcraft and Andrews 1999) and direction (Pugnaire and 

Luque 2001) of interactions.  Abiotic conditions have been documented to alter biotic 

interactions across a broad range of organisms, including effects of temperature and moisture on 

insect (Park 1954) and bivalve competition (Connell 1961).  Plants, in particular, are heavily 

dependent upon their abiotic environment for inorganic nutrient acquisition, and as a 

consequence may be particularly susceptible to abiotic-mediated variation (Klanderud and 

Totland 2005) in morphology and plant tissue chemistry, which in turn may affect how they 

interact with animals.  Chemical and physical aspects of soils are extremely variable and this 

variation can alter both plant morphology and tissue chemistry (e.g., Cunningham et al. 1999; 

Murren et al. 2006; Burnett et al. 2008).  For plants that occur in a variety of soil types, it is 

unclear whether interactions with mutualists (e.g., pollinators) or antagonists (e.g., herbivores) 

are affected by soil context, and whether soil could modify these interactions via direct effects on 
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plant chemistry or indirect effects on morphology. However, such modification of biotic 

interactions could be instrumental in varying patterns of coevolution (i.e., the geographic mosaic 

of coevolution; Thomson 1999).   

The soil environment can influence plant reproductive morphology, which can in turn 

affect both plant-florivore and plant-pollinator interactions.  Macronutrients in the soil, such as 

N, P, K, Ca and Mg, have been shown to influence flower size and number (e.g., Nagy and 

Proctor 1997; Murren et al. 2006; Burnett et al. 2008).  In addition, toxic elements, such as heavy 

metals, often result in stunting of growth when present in high concentrations in the soil 

(Antonovics et al. 1971) and are also known to influence flower size (Hladun et al. 2011) and 

flower number (Saikkonen et al. 1998).  Soil-induced changes in floral morphology can have 

consequences for plant reproduction, as both pollinators (Mitchell et al. 2004; Ivey and Carr 

2005) and herbivores (Juenger et al. 2005; Ashman and Penet 2007) generally favor plants with 

large floral displays.  As a result, soil chemistry may mediate the quantity and quality of plant 

interactions with florivores and pollinators.  Many studies have documented the effects of 

environment on plant reproductive morphology, yet few (e.g., Galen 2000; Lau et al. 2008) have 

determined whether these morphological changes lead to altered plant-animal interactions across 

different environments. 

Soil chemistry also can have effects on plant tissue chemistry (Cunningham et al. 1999), 

although the consequences for plant-animal interactions are less well understood.  While plant-

herbivore interactions are often studied in the context of plant secondary compounds (reviewed 

in Mithöfer and Boland 2012), recent studies suggest that primary metabolites (e.g., N, P, K) 

may also greatly influence both herbivore preference (Alonso and Herrera 2003) and fitness 

(Beanland et al. 2003; Perkins et al. 2004).  In addition, soils that contain toxic elements can alter 
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plant-herbivore interactions.  For instance, Streptanthus polygaloides, a serpentine soil endemic, 

hyperaccumulates Ni (i.e., tissues >1,000 ppm Ni; Baker and Brooks 1989), which results in less 

leaf damage by herbivores (Boyd and Moar 1999) and pathogens (Boyd et al. 1994).  The effect 

of metal accumulation on plant-pollinator interactions, however, is unclear.  For example, 

interactions with pollinators may also be affected if metals are translocated to floral tissues and 

pollinator rewards (e.g., nectar and pollen).  A recent study of a non-metal (Se) 

hyperaccumulator has shown that flower constituents, including nectar, can accumulate non-

essential elements in high concentrations (Hladun et al. 2011), though metal accumulators from 

serpentines have not been similarly studied, and the implications of floral metal and metalloid 

accumulation on plant-pollinator interactions have only begun to be explored (Quinn et al. 2011).  

Moreover, serpentine soils may generally influence plant-animal interactions (i.e., for non-

hyperaccumulating plants) through changes in tissue chemistry, as concentrations of metals in 

plant tissues far below hyperaccumulator thresholds have been shown to be toxic to herbivores 

(Coleman et al. 2005).  In addition, while studies of folivory are important, an understanding of 

how flower chemistry alters florivory is needed, as many insects supplement their diets with 

nutrient-rich flower tissue (Held and Potter 2004).  In fact, some studies suggest that florivory 

can be just as common as leaf herbivory in natural populations (e.g., Zangerl and Rutledge 1996; 

Wolfe 2002), with potentially negative implications for plant reproductive success (Mothershead 

and Marquis 2000).  Florivores can affect male and female fitness both directly, through 

consumption of gamete-housing structures, and indirectly by altering floral traits important for 

biotic interactions (e.g., pollinator attraction; reviewed in McCall and Irwin 2006).  Therefore, 

understanding how the soil environment alters plant-florivore interactions may be vital towards 

explaining plant adaptation to unique soils.  
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Serpentine soil is distinct from adjacent soils by having low Ca:Mg ratios, mineral 

nutrient deficiencies (e.g., P, K) and relatively high concentrations of several metals (Co, Cr, Ni, 

Fe, Mg, and Zn; Brady et al. 2005; Safford et al. 2005; Table S1).  These soils provide an ideal 

model system to test whether the soil environment alters plant-florivore and plant-pollinator 

interactions as they are (i) globally distributed, (ii) host many species of tolerant plants and (iii) 

are chemically distinct from adjacent soil types (Brady et al. 2005; Harrison and Rajakaruna 

2011).  We address whether biotic interactions are soil-dependent by answering the following 

questions with respect to a serpentine tolerant species, Mimulus guttatus: (1) Does growth on 

serpentine soil alter traits that mediate plant-animal interactions, i.e., flower size, flower number, 

and inflorescence height?  (2) Does serpentine soil directly influence floral chemistry, 

specifically for minerals known to be enriched or deficient in serpentine and/or known to 

influence plant-animal interactions (macronutrients: Ca, Mg, P, K; micronutrients: Fe, Ni, Zn, B; 

or other beneficial nutrients: Al, Na; Marschner 1986)? (3) Is (a) pollinator visitation rate, (b) 

pollinator diversity, and/or (c) florivore damage lower for plants growing in serpentine vs. non-

serpentine soils?  

2.2 METHODS 

2.2.1 Study System 

Mimulus guttatus (Phrymaceae) is a widespread herbaceous plant native to western North 

America that inhabits creeks or seepage areas (Vickery 1978).  It can grow on serpentine and 
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non-serpentine soil (Vickery 1978), and thus is regarded as a serpentine tolerant species (Gardner 

and Macnair 2000).  It is self-compatible and predominantly pollinated by bees, including 

honeybees (Apis mellifera) and bumblebees (Bombus spp.), although it is also visited by beetles, 

flies and butterflies (Gardener and Macnair 2000; Meindl, Arceo-Gomez, and Ashman, 

unpublished data).  Its flowers are damaged by insect florivores including grasshoppers 

(Orthoptera) and beetles (e.g., Buprestidae and Melyridae; G. A. Meindl, pers. obs.).  

2.2.2 Study Sites 

This study was conducted in serpentine (‘S’) and non-serpentine (‘NS’) seeps at the Donald and 

Sylvia McLaughlin Natural Reserve in Napa and Lake counties of California. We studied M. 

guttatus in two serpentine (S1: 38°51' N 122°25’ W and S2: 38°51’ N 122°27' W) and two non-

serpentine seeps (NS1: 38°51' N 122°22’ W and NS2: 38°52' N 122°26’ W), separated by one to 

five km, in May-August of 2010 and 2011.  Soils at the two types of seeps are chemically 

distinct in most major macro- and micronutrients (Table 1; 

http://nrs.ucdavis.edu/McL/natural/geology/index.html).  Specifically, serpentine soil at the study 

sites was higher in Fe, Mg, Ni and Zn (56%, 326%, 422% and 69% respectively), lower in Al, 

Ca, K and P (27%, 44%, 39% and 49% respectively) than non-serpentine soil, but similar in B 

and Na (Table 1).  While bioavailable fractions of Ni in serpentine soils at McLaughlin are lower 

compared to other serpentine sites (e.g., Oze et al. 2008), concentrations of Ni are higher in 

serpentine soils relative to non-serpentine soils on the reserve (Wright et al. 2006; Table 1). 

Each seep supported several hundred M. guttatus along with Vicia villosa, Melilotus alba 

(Fabaceae), Torilis arvensis (Apiaceae), and Stachys ajugoides (Lamiaceae) at non-serpentine 

http://nrs.ucdavis.edu/McL/natural/geology/index.html
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seeps and Castilleja rubicundula (Scrophulariaceae), Triteleia peduncularis (Liliaceae), Lotus 

micranthus (Fabaceae), and Plagiobothrys stipitatus (Boraginaceae) at serpentine seeps.  

Zigadenus venenosus (Liliaceae) and Trifolium obtusiflorum (Fabaceae) were present at both 

seep types. 

2.2.3 Abiotic and Biotic Interactions in Natural Populations 

2.2.3.1 Floral display/flower chemistry  

We assessed whether plants on serpentine and non-serpentine soil differed in aspects of floral 

display. We established four to six 1x2 m plots at five m intervals along each of seven 

transects/seep over the course of two seasons.  At mid-bloom, we measured corolla width (widest 

distance across lower lip of corolla to the nearest 0.1 mm; Robertson et al. 1994) and 

inflorescence height (mm) with digital calipers, number of open flowers per inflorescence and 

the percent of open flowers with visible florivore damage  (i.e., corolla tissue missing) on three 

plants in a standard position in each plot.  Corolla width was always measured on the second 

most recently opened flower on an inflorescence.  Trait averages for corolla width, inflorescence 

height and the number of open flowers per inflorescence were calculated for each of 164 plots 

(42 at NS1 and S2; 40 at NS2 and S1). 

To determine whether flower tissue chemistry differed between serpentine and non-

serpentine plants, in 2010 we bulk-collected entire, freshly opened flowers during peak flowering 

from 10 plots/site.  These were rinsed with diH2O and dried at 60°C for 48 hours.  A 0.1 g 

sample (4-5 flowers) was microwave digested in 4 mL of trace metal grade HNO3 and brought to 

a final volume of 15 mL with MilliQ (Millipore, Bedford, MA, USA) H2O (Esslemont et al. 
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2000).  We analyzed element composition using inductively coupled plasma mass spectrometry 

(ICP-MS, Perkin/Elmer NEXION 300X), and present data on 10 elements known to differ 

between serpentine and non-serpentine soils and/or known to influence plant-animal interactions 

(macronutrients: Ca, Mg, P, K, micronutrients: Fe, Ni, Zn, B; other beneficial: Al, Na; e.g., 

Alonso and Herrera 2003; Beanland et al. 2003; Wang and Mopper 2008; Pilon-Smits et al. 

2009). 

We analyzed corolla width, inflorescence height, number of open flowers per 

inflorescence and floral tissue chemistry with mixed linear models (PROC MIXED; SAS 2010) 

with soil type (serpentine vs. non-serpentine) and year (2010, 2011) as factors.  Soil type and 

year (for display traits only) were fixed effects, while site identity (nested within soil type) was a 

random effect. To control for potential Type I errors due to multiple comparisons, we used 

Bonferroni corrections to adjust alpha levels. The data for elements B, Na, Al, Fe, and Zn were 

log transformed to improve normality. 

2.2.3.2 Pollinators 

To determine whether pollinator visitation rate differed between serpentine and non-serpentine 

M. guttatus, 10-10.5 hrs of observation/site was conducted across three (2010) to four (2011) 

days/site in June/July.  Observations were conducted for 15 min/plot between the hours of 10 

a.m. and 4 p.m. on sunny days.  For each week of observation, the order that serpentine and non-

serpentine sites were observed was reversed, and sites were visited alternately in the morning 

and afternoon on successive days of observation.  For each plot, we recorded the number of M. 

guttatus flowers and two ‘context’ characters: the number of heterospecific flowers and percent 

bare ground (a measure of plant density), for use as covariates as these might also influence 
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visitation (e.g., Bernhardt et al. 2008; Duffy and Stout 2011).  Visitors to M. guttatus flowers 

were recorded as small bees, medium bees, large bees (including honeybees and bumblebees) 

and beetles.  Unknown visitors were collected and later identified to species or family.  We 

calculated visitation rate as the number of visits/flower/hour, pooled across all visitors.  To 

distinguish flower visitors foraging for nectar and pollen rewards from florivores we refer to 

them as ‘pollinators’, but acknowledge that some of these flower-visiting insects may not be 

effective pollinators. 

The effect of soil type on visitation rate to M. guttatus was determined using mixed linear 

models (PROC MIXED; SAS 2010), with site soil type (serpentine vs. non-serpentine) and year 

(2010, 2011) as fixed factors, and site identity (nested within site soil type) as a random effect. 

Average M. guttatus floral display (i.e., corolla width, number of open flowers per inflorescence, 

and inflorescence height) per plot, time of day of observations, and context characters (i.e., the 

number of heterospecific flowers and percent bare ground) were included as covariates. 

Visitation rate was transformed (log (visitation rate + 1)) to meet the assumption of normality. 

Composition of the pollinator assembly, pooled across all observations/year, to M. guttatus 

growing on serpentine and non-serpentine was compared using two-way chi-square analysis 

(PROC FREQ; SAS 2010) with visitor type and soil type as factors.   

2.2.3.3 Florivores 

To assess whether M. guttatus on serpentine and non-serpentine soil differed in terms of 

florivore damage, we measured the percent of open flowers with corolla tissue missing on three 

plants/plot.  Average florivore damage/plot was analyzed using a generalized linear mixed model 

(PROC GLIMMIX; SAS 2010) with site soil type and year as factors and display traits (corolla 
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width, number of open flowers per inflorescence and inflorescence height) as covariates.  Site 

soil type and year were fixed effects, while site identity (nested within site soil type) was a 

random effect.   

2.2.4 Abiotic and Biotic Interactions for Experimental Plants 

2.2.4.1 Floral display/flower chemistry 

To isolate the specific effects of soil on reproductive morphology and/or chemistry, we 

conducted a common garden reciprocal soil transplant experiment using field-collected seedlings 

and soil.  Soil from the two serpentine seeps was mixed together in equal proportions to create a 

generic serpentine soil, and soil from the two non-serpentine sites was similarly treated to create 

the non-serpentine soil.  All soils were augmented with 15% vermiculite (Perlite Vermiculite 

Packaging Industries Inc., OH, USA) to increase water-holding capacity in 27 cm3 ‘rocket’ pots 

(Deepots, Stuewe and Sons, Inc.).  Fifty M. guttatus seedlings, in the two-cotyledon stage, were 

collected from each seep and assigned randomly to one of the soil treatments.  These were 

arranged in 25 blocks of eight plants (one each per site-treatment combination; total N=200) on 

an outside bench and bottom watered as needed.  Field-collected seedlings were used in these 

experiments so they would be phenologically synchronized with the natural populations.  We 

measured corolla width (mm) for the first three flowers produced by each plant, and 

inflorescence height (mm) and number of open flowers per plant two weeks after the first flower 

opened.  The first 15 freshly opened flowers per plant were bulk-collected for elemental analysis 

as above.   
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To determine whether soil type affected corolla width, number of open flowers per 

inflorescence, or inflorescence height, we used mixed linear models (PROC MIXED; SAS 2010) 

with experimental soil type, source population soil type, and their interaction as factors. 

Experimental soil type and source population soil type were treated as fixed effects, while source 

population (nested within source population soil type) and block were treated as random effects.  

We used separate mixed linear models (PROC MIXED; SAS 2010) for each element in floral 

tissue as above.  To control for potential Type I errors due to multiple comparisons, we used 

Bonferroni corrections to adjust alpha levels. The data for elements B, Al, Fe, Ni, and Zn were 

log transformed to improve normality. 

2.2.4.2 Pollinators 

To determine whether pollinator preference depends on soil type, we created arrays of 

inflorescences.  Inflorescences were collected from both serpentine and non-serpentine sites, 

corolla width and flower number recorded, and placed in 225 mL centrifuge tubes filled with 

water and topped with florist’s foam.  Each array consisted of two inflorescences from each site 

evenly spaced in a circle with a circumference of 52 cm.  On each day of observation, two arrays 

were placed within the four sites and observed for six fifteen-minute intervals (18 hrs of total; 

N=6 arrays per site; total N=24 arrays).  Following each observation interval, the position of the 

arrays was switched.  Visitation to each inflorescence was recorded as visits/flower/hour. 

The effect of site soil type on pollinator visitation rate to inflorescences of M. guttatus 

within arrays was determined using a mixed linear model (PROC MIXED; SAS 2010).  The 

model included site soil type and source population soil type as factors and corolla width and 

time of day as covariates.  Site soil type and source population soil type were treated as fixed 
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effects, while site identity (nested within site soil type) and source population (nested within 

source population soil type) were treated as random effects. Visitation rate to inflorescences was 

transformed (log (visitation rate + 1)) to meet the assumption of normality. 

2.2.4.3 Florivores 

We placed arrays of 16-20 potted plants, half grown in serpentine and half grown in non-

serpentine soil, within each site for 72 hrs. After exposure, florivore damage was estimated as 

percent of corolla removed on a 0-5 scale (where 0=no damage, 1 up to 20%, 2=20-40%, 3=40-

60%, 4=60-80% and 5=80-100%).  One array/site was set out for three consecutive weeks (208 

total plants). 

The proportion of plants placed within serpentine vs. non-serpentine sites that received 

damage from florivores was compared using a two-way chi-square analysis (PROC FREQ; SAS 

2010) with site soil type and florivore damage (present or absent) as factors. For those M. 

guttatus plants that received damage by florivores, florivore damage score was analyzed using a 

generalized linear mixed model (PROC GLIMMIX; SAS 2010).  The model included site soil 

type and source population soil type as factors and corolla width and inflorescence height as 

covariates.  Site soil type and source population soil type were treated as fixed effects, while site 

identity (nested within site soil type) and source population (nested within source population soil 

type) were treated as random effects.  
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2.3 RESULTS 

2.3.1 Abiotic and Biotic Interactions in Natural Populations 

2.3.1.1 Floral display/flower chemistry  

Serpentine soil influenced floral display in M. guttatus. Plants growing on serpentine soils 

produced 60% shorter inflorescences, 12% smaller corollas and 52% fewer open flowers per 

inflorescence (Table 1; Fig. 1) than those growing on non-serpentine.  Differences between years 

were also evident for mean corolla width (2010: 22.08 ± 0.2 mm; 2011: 20.92 ± 0.23 mm) and 

mean number of open flowers per inflorescence (2010: 4.28 ± 0.2; 2011: 3.87 ± 0.18; Table 2).  

Flowers of M. guttatus on serpentine soil differed in chemical content from those on non-

serpentine soil.  Floral tissue was more concentrated in Mg (29%), but less concentrated in Ca, P 

and K (39%, 43%, and 22% respectively) than those of non-serpentine plants (Fig. 2; Table 3).  

Flowers on serpentine plants were more concentrated in Zn (42%) and Na (97%), but less 

concentrated in Fe, Ni, Al and B (16%, 15%, 33%, and 42% respectively) than those produced 

by non-serpentine plants (Fig. 2; Table 3). 

2.3.1.2 Pollinators 

Visitation rates differed between serpentine and non-serpentine M. guttatus.  Plants growing on 

non-serpentine received three times more pollinator visits per flower per hour by all insects 

pooled relative to plants growing in serpentine populations (Fig. 3; Table 4), and this difference 

exists even after corolla width was accounted for (Table 4).  There was a difference in visit rate 

between years (2010 vs. 2011: 0.63 ± 0.08 vs. 0.73 ± 0.07; Table 4).  
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 Pollinator assemblage differed between serpentine and non-serpentine seeps in both 

2010 (χ2=51.47, df=3, P<0.0001) and 2011 (χ2=29.68, df=3, P<0.0001).  Across both years, 

large bees and beetles made up a larger percentage of all pollinators observed on M. guttatus at 

non-serpentine seeps than at serpentine seeps (large bees: 26% vs. 10%; beetles: 18% vs. 3%; 

Tables 5, 6).   

2.3.1.3 Florivores 

Flowers of serpentine plants received 60% less damage than non-serpentine plants, though this 

difference was only marginally statistically significant (F1,2=6.32; P=0.064; Fig. 3; Table 7).  

Similar to pollinator visitation, floral display also influenced florivore damage in natural 

populations, as flower number and inflorescence height explained a significant amount of the 

variation in damage amount (Table 7). 

2.3.2 Abiotic and Biotic Interactions for Experimental Plants 

2.3.2.1 Floral display/flower chemistry 

Similar to the natural populations, serpentine soil affected floral display traits of M. guttatus in 

the transplant experiment, and this was true regardless of their soil-type origin (experimental soil 

type x source population soil type interaction: all P > 0.1).  Plants grown in serpentine soil 

produced 12% shorter inflorescences and 22% smaller corollas relative to plants grown in non-

serpentine soil, but there was no difference in open flowers per inflorescence (Fig. 4; Table 8).    

In addition, flowers from M. guttatus growing in serpentine soil were found to be 

chemically distinct from those on non-serpentine soil, regardless of the soil type in which they 
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originated.  Floral tissues of plants on serpentine were more concentrated in Mg (34%), but less 

concentrated in Ca, P and K (39%, 24% and 18% respectively) compared to those grown on non-

serpentine soil (Fig. 2; Table 9).  For micronutrients and other beneficial elements, floral tissues 

of plants on serpentine were more concentrated in Zn (8%) and Na (24%), but less concentrated 

in Fe, Al, Ni and B (36%, 33%, 19% and 19% respectively) compared to those on non-serpentine 

soil (Fig. 2; Table 9).  In one case, there was a significant experimental soil type by source 

population soil type interaction, where plants from non-serpentine populations accumulated more 

Fe into flowers when grown on non-serpentine soil compared to all other plants (Table 9). 

2.3.2.2 Pollinators 

Regardless of where inflorescences were collected from, insects visited arrays placed at non-

serpentine sites three times more often than those placed at serpentine sites (Table 10).  Source 

population soil type did not influence pollinator visitation rates to flowers in arrays (Table 10).  

Pollinator visitation increased with flower size regardless of source population soil type (Table 

10). 

2.3.2.3 Florivores 

There was a strong effect of site soil type on the frequency of florivore damage: 19% of plants 

placed at serpentine sites received florivore damage, compared to 40% at non-serpentine sites 

(χ2=8.83, df=1, P<0.01).  Moreover, flowers of potted plants growing in serpentine soil received 

34% less damage compared to plants growing in non-serpentine soil, a marginally significant 

difference (F1,2=16.59; P=0.055; Fig. 5; Table 11).  Neither flower size nor inflorescence height, 

however, influenced the amount of damage by florivores (Table 11). 
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2.4 DISCUSSION 

Our study simultaneously shows that serpentine soil alters plant-insect interactions both directly, 

through plant tissue chemistry, and indirectly, through floral display, and thus it adds a new 

dimension to the growing body of work on the effect of serpentine on plant morphology and 

chemistry (Harrison and Rajakaruna 2011).  While plant-mycorrhizae interactions across 

serpentine and non-serpentine plant populations are beginning to receive attention (Schechter 

and Bruns 2008; Davoodian et al. 2012), plant-pollinator and plant-florivore interactions across 

populations of serpentine tolerant plant species have rarely been characterized (but see 

Westerbergh and Saura 1994; Lau et al. 2008).  Not only were florivore damage and pollinator 

visitation rates altered by soil habitat, but pollinator assemblage was also more diverse for M. 

guttatus in non-serpentine soils (Tables 5, 6) indicating that serpentine soil influences the 

quantity and perhaps the quality of plant-animal interactions. 

Mimulus guttatus on serpentine had reduced floral display (i.e., smaller flowers, fewer 

flowers per inflorescence and shorter inflorescences), and our common garden reciprocal soil 

transplant experiment confirmed the direct effect of serpentine soil on flower size and 

inflorescence height (Fig. 4) in response to nutrient limitation.  Interestingly, plants responded 

similarly to soil treatments in terms of morphology and tissue chemistry, regardless of the soil 

type they originated.  In addition to similar morphological and chemical responses, all 

experimental plants survived equally well on both soil types, regardless of whether they were 

collected from serpentine or non-serpentine populations (χ2=0.14, df=1, P=0.71).  This suggests 

a lack of adaptation to soil chemistry for these serpentine/non-serpentine populations of M. 

guttatus, which may be explained by high levels of gene flow between populations growing in 
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different soil environments (Sambatti and Rice 2006).  And if our survival data is indicative of 

total fitness then our findings are in contrast to others that have found evidence of local 

adaptation and ecotypic differentiation for other serpentine tolerant plant species (e.g., Collinsia 

sparsiflora; Wright et al. 2006).  However, other studies have documented the importance of 

phenotypic plasticity for serpentine tolerant M. guttatus (Murren et al. 2006), and it is clear from 

our data that soil-induced changes in plant morphology have consequences for plant-pollinator 

and plant-florivore interactions in this species.  While flower size varied across serpentine and 

non-serpentine populations, pollinator visitation was greater in plots with larger flowers within 

both serpentine and non-serpentine sites (Table 4), and pollinators responded in terms of 

increased visitation to larger flowers within experimental arrays (Table 10).  Additionally, the 

number of open flowers per inflorescence and inflorescence height altered plant-florivore 

interactions, as plants with more flowers and taller inflorescences experienced greater levels of 

florivore damage in natural populations (Table 7).  Therefore, indirect effects of soil 

environment on pollinator visitation and florivore damage may affect plant-animal dynamics in 

plant species expressing phenotypic plasticity across multiple environments.  Phenotypic 

plasticity due to environmental heterogeneity is likely an important, yet understudied, 

mechanism altering the evolution of plant-animal interactions (Fordyce 2006). 

Traditionally, studies of plant-herbivore interactions have focused on the role of 

plant secondary compounds in influencing levels of herbivore damage (reviewed in Mithöfer and 

Boland 2012).  However, primary metabolites may be equally important in affecting herbivore 

damage (e.g., Alonso and Herrera 2003).  Studies of herbivory of plants growing on serpentines 

have often focused on toxic elements in the soil, such as the heavy metal Ni in 

hyperaccumulating species  (Boyd et al. 1994; Martens and Boyd 1994; Boyd and Moar 1999).  
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Our work with M. guttatus, a serpentine tolerant species, did not reveal significant differences in 

Ni concentrations in floral tissues of plants growing in serpentine vs. non-serpentine soils (Fig. 

2) yet there were tendencies for higher florivore damage on non-serpentine grown plants in both 

natural and experimental settings (Figs. 3, 5).  Because plants growing in serpentine vs. non-

serpentine soils had distinct chemical profiles (Fig. 2), these findings suggest that other metals 

(e.g., Mg) or primary metabolites such as Ca, P and K may be just as likely to alter herbivore 

feeding as the toxic metal Ni present in serpentines.  While the effects of primary metabolites on 

the growth of insect herbivores is well studied, the influence of primary metabolites on herbivore 

choice is less understood (Joern et al. 2012).  Furthermore, previous work has suggested that 

herbivores may respond to ratios of elements, rather than single element concentrations, which 

may be the case in serpentine plants as the chemical profiles of serpentine vs. non-serpentine 

tissues differed in multiple elements.  For example, Beanland et al. (2003) manipulated the ratios 

of B, Zn and Fe present in diets fed to herbivores, and found that herbivore development could 

not be described as a linear response to any one element, but instead depended upon ratios of 

these elements.  As several elements varied in the floral tissues of M. guttatus in this study, it is 

reasonable to suspect that M. guttatus florivores are also responding to multiple element 

variation.  Our work shows that soil generalist, non-hyperaccumulating plants may display 

variation in the magnitude of plant-florivore interactions across multiple environments, and that 

this variation is largely explained by the direct effect of soil chemistry on floral tissue chemistry.   

We did not find evidence of a direct effect of flower chemistry on pollinator visitation, 

which may be due to one of several factors.  For example, our tissue analysis was based on 

whole flowers, therefore we do not know if the soil environment alters pollen or nectar chemistry 

for M. guttatus, or rather strictly perianth tissues.  Furthermore, M. guttatus is not known to 
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produce large volumes of nectar (Robertson et al. 1999), thus flower visiting insects may not 

have been exposed to chemically variable resources when visiting serpentine vs. non-serpentine 

M. guttatus, particularly if pollen chemistry is unaffected by soil environment.  It is also possible 

that pollinating insects are less affected by changes in tissue chemistry relative to herbivorous 

insects, as visitation by bees has been shown to be unaffected by high concentrations of trace 

elements in floral rewards (e.g., Se: Hladun et al. 2013).  Other studies, however, have shown 

that the presence of Ni in nectar can decrease visitation by bumblebees (Meindl and Ashman 

2013), suggesting soil chemistry may alter biotic interactions more so than previously thought. 

It is important to consider whether differences observed in plant-pollinator and plant-

florivore interactions across serpentine and non-serpentine habitats translate into differences in 

individual fitness of plants in natural populations.  Provided that plants are pollen-limited, which 

is common for many flowering plants (reviewed in Knight et al. 2005), pollinator visitation is 

generally considered a good proxy of fitness as higher visitation rates often translate into higher 

seed and fruit production (e.g., Ghazoul 2005).  However, in nutrient-limited environments, like 

serpentine, limited resource availability may preclude any added benefit of increased pollinator 

visitation towards individual fitness (Asikainen and Mutikainen 2005).  Additionally, while 

corolla damage by florivores can decrease pollinator visitation (e.g. Botto-Mahan et al. 2011), 

florivore damage to structures that house the gametes, such as anthers and pistils, may have 

greater consequences for plant fitness (McCall and Irwin 2006; Hargraves et al. 2009), especially 

if plant tolerance to herbivory is low (Strauss and Agrawal 1999).  To fully appreciate the 

evolutionary consequences of abiotic-mediated changes in plant-animal interactions, studies are 

needed that document differential fitness of soil-generalist plants across different environments 

and that tie this directly to altered plant-animal interactions. 



25 

Our study shows that soils have both direct and indirect effects on how plants interact 

with animal mutualists and antagonists.  We demonstrate that soils can affect these plant-animal 

interactions more generally than previously thought, i.e., in addition to affecting plant-insect 

interactions of metal hyperaccumulators, even those of non-accumulating soil generalist species 

are affected.  As such, plant species that occur in a variety of substrates may differ in both the 

quality (e.g., visits by effective pollinators) and quantity (e.g., number of pollinator visits) of 

plant-animal interactions across soil types.  Soil chemistry may therefore be an important 

geographic variant that contributes to altered interactions, leading to small scale spatial mosaics 

with the potential to influence evolutionary dynamics between plants and animals (Thompson 

1999). 
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Table 1. Chemical composition of serpentine and non-serpentine soils collected from field sites at the McLaughlin Reserve, Lower Lake, CA.  

Chemical analysis of soil samples completed via ICP-MS by ALS Minerals, Reno, NV, USA. 

 

 

 

Soil Type Al (%) Ca (%) Co (ppm) Cr (ppm) Fe (%) K (%) Mg (%) Ni (ppm) P (%) Zn (ppm)  
Non-

serpentine 2.33 0.75 34.95 165.5 3.57 0.22 3.25 319.5 0.0575 91.35 
 

Serpentine 1.69 0.42 100.45 670.5 5.565 0.135 13.875 1670 0.0295 154  
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Table 2. Results from mixed models ANOVA on the effects of serpentine vs. non-serpentine soil (site 

soil) and year (2010, 2011) on inflorescence height, corolla width and number of open flowers per 

inflorescence of M. guttatus plants in natural populations.  Significance of fixed effects at P≤0.05 is noted with 

daggers and at P≤0.01 with asterisks. 

 

 

 

  Display Trait 

  

Inflorescence 
height 

Corolla 
width 

Number of open 
flowers per 

inflorescence 

Source of variation df (Num., Den.) F F F 
Site soil type 1, 2 80.96† 175.59* 187.09* 

Year 1, 159 1.13 29.18* 4.90† 
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Table 3.  Results from mixed models ANOVA on the effects of serpentine vs. non-serpentine soil (Site soil type) on element concentration of M. 

guttatus flowers collected from natural populations. Bold F-values are those significant after Bonferroni correction. 

 

 

 

  
Element 

  
Macronutrients Micronutrients Other elements 

  
Ca Mg P K Fe Ni Zn B Na Al 

Source of variation df (Num., Den.) F F F F F F F F F F 
Site soil type 1, 2 131.08 3.08 70.02 7.74 5.34 0.64 2.89 1.18 15.67 6.3 
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Table 4.  Mixed model ANCOVA of pollinator visitation rate (visits/flower/hour) to M. guttatus 

plants growing at serpentine vs. non-serpentine sites (Site soil) in two years (2010, 2011).  Time of day of 

observation, the number of heterospecific flowers within plots, percent bare soil within plots, and plot-level 

means of corolla width, open flowers per inflorescence, and inflorescence height were included as covariates.  

Significance of fixed effects at P≤0.05 is noted with daggers and at P≤0.01 with asterisks 

 

 

 

Source of variation df (Num., Den.) F 
Site soil type 1, 2 17.35† 
Year 1, 154 8.29* 
Corolla width 1, 154 9.23* 
Open flowers per inflorescence 1, 154 0.32 
Inflorescence height 1, 154 0.06 
Time of day 1, 154 3.76 
Number of heterospecific flowers 1, 154 1.19 
% bare soil 1, 154 0.10 
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Table 5. Pollinators observed at non-serpentine and serpentine M. guttatus populations over the 

course of the two-year study period. In 2011, pollinators were further differentiated by species (bees) or 

family (beetles) within larger categories and the number of taxa observed are given in parentheses (e.g., 6 

different large bee species were observed in non-serpentine populations).  The following families were 

recorded within each category: large bee- Anthophoridae, Apidae, Megachildae; medium bee- 

Anthophoridae, Halictidae, Megachilidae; small bee- Anthophoridae, Halictidae, Megachilidae; beetle- 

Buprestidae, Chrysomlidae, Cleridae, Melyridae.   

 

 

 

  2010 2011 

Pollinator 
Group 

Number of 
Individuals 

Observed on 
Serpentine 

Number of 
Individuals 

Observed on 
Non-serpentine 

Number of 
Individuals 

(Taxa) Observed 
on Serpentine 

Number of 
Individuals (Taxa) 
Observed on Non-

serpentine 

Large bee 5 77 13 (3) 84 (5) 
Medium bee 36 53 59 (6) 185 (10) 

Small bee 29 34 35 (7) 66 (9) 
Beetle 1 39 5 (2) 71 (4) 

TOTAL 71 203 112 (18) 406 (27) 
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Table 6. Bee species collected on M. guttatus flowers from non-serpentine (24) and serpentine (16) 

populations in 2011. The symbol 'X' implies a given species was collected. 

 

 

 

Bee Species Collected at Non-
serpentine Collected at Serpentine 

Anthidium edwardsii  X 
Apis mellifera X X 

Ashmeadiella australis  X 
Ashmeadiella salviae X  
Bombus vosnesenskii X  

Calliopsis trifolii  X 
Ceratina nanula X  

Ceratina punctigena X  
Ceratina sequoiae X  
Ceratina tejonensis X X 

Ceratina timberlakei X X 
Chelostoma minutum X 

 Diadasia sp. 1 X 
 Dialictus sp. 1 X 
 Dialictus sp. 2 X X 

Dialictus sp. 3 X 
 Dialictus sp. 4 

 
X 

Evylaeus sp. 1 X X 
Halictus ligatus 

 
X 

Heriades sp. 1 X 
 Hoplitis hypocrita X 
 Hoplitis producta X X 

Hoplitis sambuci X X 
Lasioglossum sp. 1 

 
X 

Osmia sp. 1 X 
 Osmia sp. 2 X X 

Osmia sp. 3 X 
 Osmia sp. 4 X 
 Osmia sp. 5 X X 

Protosmia rubifloris X X 
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Table 7. Results from mixed model ANOVA of florivore damage (percentage of flowers with 

florivore damage per inflorescence) to M. guttatus plants from natural serpentine vs. non-serpentine 

populations (site soil) in two years (2010, 2011).  Plot-level means of corolla width, open flowers per 

inflorescence, and inflorescence height were included as covariates.  Significance of fixed effects at P≤0.05 is 

noted with daggers and at P≤0.01 with asterisks. 

Source of variation df (Num., Den.) F 
Site soil type 1, 2 6.32 
Year 1, 146 0.73 
Flower number 1, 146 5.46† 
Corolla width 1, 146 1.51 
Inflorescence height 1, 146 15.57* 
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Table 8. Results from the mixed models ANOVA on floral display traits (inflorescence height, corolla 

width, and number of open flowers per inflorescence) of M. guttatus plants in reciprocal transplant 

experiment.  Experimental and source population soils are serpentine and non-serpentine.  Asterisks (P≤0.01) 

indicate significant fixed effects. 

Display Trait 

Inflorescence 
height 

Corolla 
width 

Number of open 
flowers per 
inflorescence 

Source of variation df (Num., Den.) F F F 
Experimental soil type 1, 160 13.35* 207.97* 2.83 
Source population soil type 1, 2 0.03 0.48 0.89 
Experimental soil type*Source population soil type 1, 160 0.17 1.78 0.15 
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Table 9. Results from the mixed models ANOVA on element concentrations of M. guttatus plants in reciprocal transplant experiment.  

Experimental soil types and source population soil types are serpentine and non-serpentine.  Bold F-values are those significant after Bonferroni 

correction. 

 

 

 

  
Element 

  
Macronutrients Micronutrients Other elements 

  
Ca Mg P K Fe Ni Zn B Na Al 

Source of variation df (Num., Den.) F F F F F F F F F F 
Source population soil type 1, 2 2 0.05 0.38 0.65 0.06 0.3 0.96 0.04 0.72 0.01 
Experimental soil type 1, 134 63.38 63.88 31.28 15.66 8.09 0.06 1.7 3.52 5.22 5.45 
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Table 10. Results from mixed model ANCOVA of pollinator visitation rate (visits/flower/hour) to 

experimental arrays of M. guttatus inflorescences collected from serpentine vs. non-serpentine sites (source 

population soil) and presented to pollinators at serpentine or non-serpentine sites (site soil).  Corolla width of 

experimental plants was included as a covariate.  Significance of fixed effects at P≤0.05 is noted with daggers 

and at P≤0.01 with asterisks. 

Source of variation df (Num., Den.) F 
Time of day 1, 182 3.18 
Site soil type 1, 2 20.35† 
Source population soil type   1, 2 1.81 
Corolla width 1, 182 67.48* 
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Table 11. Results of the generalized mixed model of florivore damage score to M. guttatus plants 

collected from serpentine vs. non-serpentine sites (source population soil) and presented to florivores at 

serpentine or non-serpentine sites (site soil). Over the course of three weeks, one array (N=16-20 plants) was 

monitored weekly for florivore damage at each site.  Inflorescence height and corolla width were included in 

the model as covariates; plus sign indicates P≤0.06. 

 

 

 

Source of variation df (Num., Den.) F 
Site soil type 1, 2 3.14 
Source population soil type 1, 2 16.59+ 
Inflorescence height 1, 42 0.02 
Corolla width 1, 42 1.69 
Week 2, 42 0.43 
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Figure 1. Comparison of a) number of open flowers per inflorescence, b) corolla width, and c) 

inflorescence height of M. guttatus plants growing in natural non-serpentine and serpentine sites.  Bars are 

means (± SE; N=82 per soil type); daggers (P≤0.05) and asterisks (P≤0.01) indicate a significant soil type 

effect. 
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Figure 2. Differences in flower concentration of (a, b; %) macronutrients and (c, d; ppm) 

micronutrients and beneficial elements of M. guttatus plants growing in (a, c) natural populations and (b, d) 

experimental soils. Bars are means (± SE; N=82 per natural soil type; N=83-88 per experimental soil type); 

asterisks (P≤0.005) indicate a significant soil type (serpentine vs. non-serpentine) effect. 
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Figure 3. Pollinator visitation rates (visits/flower/hour) and florivore damage (% of flowers damaged 

per inflorescence) at non-serpentine and serpentine populations of M. guttatus in 2010 and 2011.  Bars are 

means (± SE; N=82 per soil type); daggers (P≤0.05) indicate a significant site soil type effect. 
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Figure 4. Effect of experimental serpentine soil on a) number of open flowers per inflorescence, b) 

corolla width, and c) inflorescence height of M. guttatus plants in reciprocal soil transplant experiment. Bars 

are means (± SE, N=83-88 per experimental soil type); asterisks (P≤0.01) indicate a significant experimental 

soil type (serpentine vs. non-serpentine) effect. 
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Figure 5. Effects of site soil type and source population on a) florivore damage score and b) 

pollinator visitation rates (visits/flower/hour) to potted M. guttatus in experimental arrays.  Bars are means (± 

SE, N=96-104 plants per site soil type); daggers (P≤0.05) indicate a significant site soil type effect. 
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3.0  NICKEL ACCUMULATION IN LEAVES, FLORAL ORGANS AND REWARDS 

VARIES BY SERPENTINE SOIL AFFINITY 

3.1 INTRODUCTION 

Edaphic factors, such as soil texture, depth and chemical composition, are a primary force in 

shaping the distributions of plant species (Silvertown, 2004; Toledo et al., 2012; Dubuis et al., 

2013).  While many plant species can be found growing in a variety of habitats, some species 

become entirely restricted to a particular soil type (i.e. edaphic endemics; Macnair and Gardner, 

1998; Rajakaruna, 2004).  Serpentine soils, which can be found on every continent (Brooks, 

1987), provide one of the most remarkable examples of plant adaptation to atypical soils (O’Dell 

and Rajakaruna, 2011) and geographic regions containing serpentine often harbor numerous 

endemic species (Brooks, 1987; Safford et al., 2005; Anacker 2011).  Serpentine-derived soils 

represent a nutritionally stressful growing environment for most plants because of a low Ca:Mg 

ratio, deficiency of essential nutrients (e.g. N, P, K), and high levels of potentially phytotoxic 

heavy metals (e.g. nickel [Ni], cobalt, chromium; Brooks, 1987; Brady et al., 2005; Kazakou et 

al., 2008).  While comparisons of plant tissue chemistry between endemic and non-endemic 

species can provide insight into the physiological features of edaphic endemics (Palacio et al., 

2007), it is unclear whether soil affinity (i.e. endemic vs. non-endemic) affects plant tissue 

chemistry for serpentine plant species.  For example, if endemic species are specifically adapted 
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to the abiotic stresses of serpentine soil, then they might be better able to acquire limiting 

resources and/or exclude phytotoxic elements from the soil than non-endemic species.  

Considering that species span a gradient of affinity to serpentine soils, with some only 

occasionally found on serpentines (i.e. ‘indifferent’, ≤45% occurrences on serpentines), some 

commonly found either on or off serpentines (i.e. ‘indicator’, ~55-64% occurrences on 

serpentines) whereas others are entirely restricted to serpentines (i.e. ‘endemic’, ≥95% 

occurrences on serpentines) (Safford et al., 2005), serpentine soils provide an ideal system to test 

whether soil affinity affects tissue chemistry.  

The elevated heavy metal concentrations, in particular, in serpentine soils are thought to 

drive levels of plant adaptation (Lazarus et al., 2011), as non-adapted species lack physiological 

mechanisms to avoid metal toxicity (e.g. via metal exclusion or sequestration with chelating 

agents; Kazakou et al., 2008).  However, of the few studies examining the differences in metal 

accumulation between endemic and non-endemic species, some have found decreased shoot 

metal accumulation in endemic species (Nagy and Proctor, 1997; Burrell et al., 2012) while 

others have found no such difference (Fiedler, 1985; Lee and Reeves, 1989).  Plant response to 

the heavy metal Ni found in serpentines is relatively well studied (Kazakou et al., 2008), and 

provides an excellent model to test whether endemic vs. non-endemic species vary in heavy 

metal accumulation.  While some plants require Ni in trace quantities as an active component of 

the enzyme urease (Welch, 1981), it is generally considered toxic to plants and is implicated in 

causing abnormal vegetative growth, necrosis and chlorosis of leaves, and inhibiting 

photosynthesis (reviewed in Yusuf et al., 2011).  Furthermore, Ni is known to negatively impact 

aspects of plant reproduction for non-hyperaccumulators, such as decreasing pollen germination 

(Tuna et al., 2002; Breygina et al., 2012) and seed production (Malan and Farrant, 1998) when 
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plants not adapted to elevated Ni conditions are grown in them.  However, whether Ni is 

accumulated into reproductive organs, such as anthers and pistils, has only been studied in one 

serpentine plant species that is a known Ni hyperaccumulator (i.e., accumulates >1,000 ppm Ni 

[Streptanthus polygaloides]; Meindl and Ashman, 2014; Sánchez-Mata et al., 2014).  While Ni 

hyperaccumulators are often specialized to serpentines (Reeves and Baker 2000), they represent 

an extreme minority, in both number of taxa and plant-soil interactions, of serpentine endemic 

plant species (Reeves, 2006; Anacker, 2011).  Beyond these rare, yet relatively well-studied, 

hyperaccumulators (Reeves, 2006; Gall and Rajakaruna, 2013), it is largely unknown whether 

the vast majority of serpentine species exhibit significant variation in Ni accumulation into 

aboveground organs.  Therefore, studies are needed that focus on metal uptake for non-

hyperaccumulating species to determine more general patterns of metal uptake or exclusion 

across serpentine plant species.  Furthermore, it is unknown whether most serpentine plants 

accumulate Ni into pollen grains, despite evidence that plants growing in soils contaminated by 

metals via human activities can accumulate them into pollen (Moroń et al., 2012).  Metals in 

pollen could reduce germination (citations above; Mohsenzadeh et al., 2011; Yousefi et al., 

2011a) or pollinator attraction (Meindl and Ashman, 2014), and Ni accumulation in nectar can 

affect pollinator foraging (Meindl and Ashman, 2013; Meindl and Ashman, 2014).  Thus, a first 

and necessary step towards understanding the reproductive consequences of growth on 

serpentine soil is documenting metal concentrations of reproductive organs and floral rewards of 

non-hyperaccumulating serpentine plants, as well as determining whether or not non-

hyperaccumulating endemic species are better able to avoid potentially deleterious effects of 

metals by excluding them from reproductive organs than non-endemics.  However, explicit 
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experimental comparisons of metal accumulation across a range of species that vary in 

serpentine affinity, as well as across a range of vegetative and reproductive organs, are lacking.   

To test these ideas, we grew seven species of plants from the Brassicaceae family that 

varied in serpentine soil affinity, but are not considered metal hyperaccumulators, in either 

control soils or soils supplemented with Ni to determine whether serpentine endemic and non-

endemic plants differ with respect to Ni uptake (i.e., accumulate lower or similar concentrations 

of Ni into leaves, reproductive organs and rewards compared to non-endemic species, 

respectively).  Using Ni as a model for plant response to serpentine heavy metals in general, we 

answered these questions: (1) Do serpentine endemic and non-endemic species differ in terms of 

Ni uptake into (i) leaves, (ii) pistils, (iii) anthers, and/or (iv) nectar? (2) Do serpentine endemics 

and non-endemics differ in the relative concentrations of Ni in vegetative vs. reproductive 

organs? (3) Is Ni incorporated into pollen grains in any of these species?   

3.2 METHODS 

3.2.1 Study system 

Plants in the Brassicaceae (mustard family) are well represented on California serpentine soils 

(Safford et al., 2005), including the seven species used here that differ in serpentine affinity from 

strictly endemic (i.e. ≥95% occurrence on serpentine) to indifferent to serpentine soils (i.e. ≤45% 

occurrence on serpentine soils): endemic: Streptanthus morrisonii, S. breweri var. breweri; 

indicator: S. glandulosus ssp. glandulosus, S. tortuosus; indifferent: Hirschfeldia incana, 
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Erysimum capitatum var. capitatum, Boechera breweri (Table 12).  To assign serpentine affinity 

scores to taxa, we follow the nomenclature used in Safford et al. (2005), however, in this work 

we follow the recent revised nomenclature for two taxa (i.e., S. tortuosus var. suffrutescens [now 

S. tortuosus] and Arabis breweri [now Boechera breweri]; Baldwin et al. 2012).  All are spring 

flowering, insect pollinated herbaceous annuals or perennials that occur in North America, with 

four taxa being restricted to California (Table 12).  Seeds from each taxon were bulk-collected 

from a single population per species in the summer of 2012.  

3.2.2 Experimental design 

Twenty plants per species (Total N = 140) were grown at the University of Pittsburgh in the fall 

of 2012.  Seeds were subjected to a 4°C cold and dark treatment for two weeks prior to planting. 

Two weeks after germination, seedlings were transplanted to 27 cm3 ‘rocket’ pots (Deepots, 

Stuewe and Sons, Inc., Tangent, OR, USA) filled with standard potting soil (Fafard #4, Sun Gro 

Horticulture, Agawam, MA, USA) and six Nutricote® NPK 13-13-13 time-release fertilizer 

pellets (Arysta LifeScience Corporation, New York, NY, USA).  One month after transplanting, 

all perennials (S. morrisonii, E. capitatum var. capitatum, S. tortuosus, B. breweri) received a 

4°C cold treatment for one month at 8D:16N.  Subsequently, these perennials and the annuals (S. 

breweri var. breweri, H. incana, S. glandulosus ssp. glandulosus), were grown under controlled 

conditions of 12D:12N, between 70-80° F, until flowering.   

One month after potting (annuals), or one week after cold treatment (perennials), soil 

treatment solutions were applied to each plant weekly: either (1) Ni-supplemented (40 mL of 400 

ppm Ni nitrate (Ni(NO3)2-6H2O) solution) or (2) control (40 mL of ammonium nitrate (NH4NO3) 
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solution to compensate for 190 ppm nitrogen applied to plants in the Ni-supplemented soil 

treatment).  This reflects a natural level of Ni, as serpentine soils contain bioavailable fractions 

of Ni ranging from 50 ppm to 500 ppm (e.g. Chardot et al., 2005; L’Huillier and Edighoffer, 

1996).  Soil treatments were conducted for 4-18 weeks, depending on time to flower.  All plants 

were watered as needed. 

3.2.3 Organ/reward collection and chemical analysis 

Three organs (leaves, pistils, anthers) and two floral rewards (pollen, nectar) were collected from 

individual plants.  A single fully developed leaf from the basal rosette was collected from each 

plant after four soil treatment applications.  Pistils, anthers, and nectar were collected from the 

first 5-15 flowers produced per plant.  To collect nectar from several flowers per plant we folded 

a circular piece of filter paper (Whatman® Grade 1, GE Healthcare Bio-Sciences, Pittsburgh, 

PA, USA) in half and touched it to the floral nectaries in a circular pattern.  Nectar volume was 

determined via Baker’s (1979) spot-staining method, as described in Kearns and Inouye (1993).  

The measured diameter (mm) of each nectar spot was compared to a standard table that relates 

spot diameter to nectar volume (uL).  This technique is valid for nectars with sugar 

concentrations ranging from 10-50% and nectar spot diameters ≤ 12 mm, which is true for many 

Brassicaceae (e.g. Masierowska, 2003; Nedić et al., 2013) including those in our study.  Pistils 

and anthers were dissected from freshly-opened whole flowers using forceps.  While leaves were 

collected from every plant (N = 10 per species-soil treatment), some plants (N = 5) never 

flowered and thus 7-10 plants were sampled per species-soil treatment for floral organs and 
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rewards.  In addition, pollen was collected from two plants per species-soil treatment from an 

independent set of mature anthers.   

Prior to chemical analysis, leaves and pistils were rinsed with diH2O and dried at 60°C 

for 48 hours.  Anther, pollen, and nectar samples were allowed to air dry for 48 hours in 

microcentrifuge tubes.  Samples were weighed to the nearest 0.0001 g on a AE200 Mettler® 

analytical balance (Mettler-Toledo, LLC, Columbus, OH, USA) and microwave digested in 2-4 

mL of trace metal grade HNO3 and brought to a final volume of 12-14 mL with MilliQ 

(Millipore, Bedford, MA, USA) H2O.  Concentration of Ni is reported as ppm in organs and 

pollen (i.e., mg kg-1) and nectar (i.e., uL L-1) and was determined via Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS, NEXION 300X, PerkinElmer, Waltham, MA, USA) at the 

University of Pittsburgh (for details see Meindl and Ashman, 2014).   

3.2.4 Statistical analysis 

All statistical analyses were conducted in SAS (version 9.3; SAS Institute Inc., Cary, NC, USA). 

To evaluate the effect of soil treatment, serpentine habitat affinity, and organ/reward type on 

plant Ni concentration, mixed-model ANCOVA was conducted (PROC MIXED).  The model 

included the fixed effects of soil treatment (Ni supplement, control), serpentine habitat affinity 

(endemic, indicator or indifferent), organ/reward type (leaves, pistils, anthers or nectar), and their 

interactions, and random factors of individual and species, where species was nested within 

serpentine habitat affinity (Table 1).  The number of Ni applications to the soil was included as a 

covariate (‘application number’).  Denominator degrees of freedom for F-tests were determined 

using the Kenward-Roger approximation, which is preferred for small sample sizes and 
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unbalanced data (Littell et al. 2002).  For Ni-treated plants only, we used pre-planned contrasts to 

determine whether endemic species 1) incorporated less Ni than indicator/indifferent species in 

organs/rewards, and 2) displayed lower concentrations of Ni in reproductive organs (anthers, 

pistils) relative to leaves than indicator/indifferent species using the CONTRAST option.  We 

used a student’s t-test (PROC TTEST) to determine if pollen Ni concentration was higher in Ni-

treated plants than controls.  For all analyses, Ni concentrations were natural-log transformed to 

improve normality of residuals.  Back transformed lsmeans (and 95% confidence intervals) of Ni 

concentrations are presented for clarity.   

3.3 RESULTS 

Soil Ni treatment was effective, as mean Ni concentrations in Ni-treated plants were 16 times 

higher than control plants across all organs and nectar (46.5 ppm vs. 3.00 ppm), but the effect of 

habitat affinity on Ni in plant tissue was dependent on both soil treatment and organ/reward type 

(Habitat Affinity x Soil Treatment x Organ/Reward Type: P<0.05; Table 13; Fig. 6).  Within the 

Ni soil treatment, endemic species had lower Ni concentrations in leaves and pistils compared to 

both indicator and indifferent species (leaves-- endemic: 39.0 ppm; indicator and indifferent: 

62.2 ppm; pistils-- endemic: 55.3 ppm; indicator and indifferent: 99.5 ppm; Table 13).  However, 

endemic species did not have significantly lower Ni concentrations compared to 

indicator/indifferent species in either anthers (endemic: 72.9 ppm; indicator/indifferent: 99.5 

ppm; Table 13) or nectar (endemic: 13.1 ppm; indicator/indifferent: 12.8 ppm; Table 13).  

Furthermore, within the Ni soil treatment, indifferent species had Ni concentrations in 
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anthers/pistils (126.5 ppm) that were twice as high as that in leaves (62.8 ppm; P<0.0001, Table 

13).  Conversely, we did not detect a difference between endemic and indicator species with 

respect to concentrations of Ni in reproductive relative to vegetative organs (anthers/pistils vs. 

leaves: endemic 59.7 vs. 39.0 ppm; indicator: 72.2 vs. 66.7 ppm; Table 13). 

Across all species, mean Ni concentrations in pollen were 10 times higher in Ni-treated 

plants than controls (50.9 ppm vs. 5.7 ppm; t = -5.33; df = 26; P < 0.0001).  Nickel concentration 

of pollen from Ni-treated plants was highest for indicator species (59.1 ppm), followed by 

endemic (44.7 ppm) and indifferent (38.9 ppm) species.   

3.4 DISCUSSION 

Serpentine endemic species incorporated Ni in lower concentrations in leaves and reproductive 

organs compared to indicator/indifferent species, suggesting that these species may be better 

adapted to the Ni-rich serpentine soil environment than the indicator/indifferent species studied. 

However, the magnitude of this difference depended on organ type, as endemics incorporated 

significantly less Ni into leaves and pistils, but not anthers, compared to indicator/indifferent 

species.  Furthermore, while Ni exclusion is one possible mechanism to limit toxicity, effective 

sequestration in leaves is another (Yusuf et al., 2011).  Species indifferent to serpentine had 

higher Ni concentrations in reproductive organs relative to leaves, whereas endemic and 

indicator species had similar Ni concentrations across all organs, again suggesting that plant 

species not regularly associated with serpentines do not possess mechanisms to limit uptake of 

Ni into reproductive organs.  
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In the present study, serpentine endemic Brassicaceae exhibited the greatest degree of Ni 

exclusion, particularly in the leaves and pistils.  Similarly, DeHart et al. (in review) found that 

while there was no difference in Ni concentrations between field-collected leaves, flowers or 

seeds of serpentine endemic and non-endemic species from the plant families Fabaceae, 

Phrymaceae, and Ranunculaceae (possibly due to low levels of phytoavailable Ni in soils at their 

study sites), endemic species had significantly lower concentrations of the heavy metal cobalt 

across all organs than non-endemics (DeHart et al., in review).  Furthermore, studies of edaphic 

endemics in other soil environments also suggest endemic plants may be specialized to their 

respective soil environment relative to non-endemics.  By comparing leaf tissue chemistry of 

plant species that were either endemic or non-endemic to gypsum soils, which are high in sulfate 

ions and low in several macronutrients, Palacio et al. (2007) concluded that many gypsum soil 

endemic plants were more efficient at extracting limiting nutrients (e.g. N, P) from gypsum soils 

relative to non-endemic species, though range size also played a role in the level of specialization 

observed.  Taken together, these findings suggest that many edaphic endemics may be 

physiologically better suited to their respective soil environments, e.g., by excluding heavy 

metals or acquiring limiting nutrients, than non-endemics.  Our results contribute to ideas that 

support the specialist model of edaphic endemism (Meyer, 1986; Palacio et al., 2007) rather than 

the refuge model, in which endemics are not specifically adapted a particular soil type (Gankin 

and Major, 1964), although studies of tissue chemistry would have to be coupled with measures 

of fitness to confirm this idea.  It is important to recognize, however, that we intentionally 

excluded from our study serpentine soil endemics that are known to hyperaccumulate Ni, such as 

S. polygaloides.  These species represent an exception to plant metal accumulation by serpentine 

soil endemics, rather than the rule (Reeves, 2006; Anacker, 2011), and thus predictions relating 
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to heavy metal accumulation would clearly differ when considering metal hyperaccumulating 

taxa.  However, because metal hyperaccumulation may impart chemical defenses to plants 

(Rascio and Navari-Izzo, 2011) and thus may impact plant fitness, documenting metal 

hyperaccumulation into reproductive organs and rewards in these species may provide valuable 

insight into the potential adaptive value of metal hyperaccumulation (Boyd and Martens, 1992) 

and warrants additional study.  In fact, recent experimental evidence suggests that two Ni 

hyperaccumulating taxa concentrate Ni in both vegetative and reproductive organs (S. 

polygaloides and Noccaea fendleri; Meindl et al., in review).  Furthermore, other chemical 

aspects of serpentine soils besides high Ni concentrations, such as low Ca:Mg ratios, may be 

equally important drivers of plant adaptation to the serpentine soil environment (Brady et al., 

2005; O’Dell and Rajakaruna, 2011; DeHart et al., in review).  Further comparisons of both 

macronutrient (e.g., Ca, Mg, N, K, P) and heavy metal (e.g., Ni, Co, Cr) concentrations between 

tissues of endemic and non-endemic species will provide a more comprehensive view of plant 

adaptation to serpentine soils. 

Interestingly, Ni accumulation was, on average, higher in reproductive organs compared 

to leaves across all species in this study, corroborating similar findings of increased metal 

accumulation in flowers relative to leaves (Severne, 1974; Gabbrielli et al., 1997).  However, our 

work suggests that plants restricted to soils with elevated metals generally have lower metal 

concentrations in floral organs relative to plants not restricted to such soils.  This pattern suggests 

a cost to floral metal accumulation, which could relate to decreased reproductive success via 

negative impacts on pollen and ovule viability, as well as seed and fruit production (Maestri et 

al., 2010).  Indeed, recent studies suggest that floral metal accumulation can decrease both pollen 

and ovule viability due to developmental abnormalities in anthers and ovaries (Yousefi et al., 
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2011a, b).  While we show that Ni is incorporated into pistils, anthers, pollen, and nectar, 

specifically, further work elucidating the effects of floral Ni accumulation on ovule and pollen 

viability and reproductive success in natural populations will provide necessary information 

towards understanding the adaptive value of both metal exclusion and metal accumulation.  For 

example, pollen germination for some plant species known to accumulate high concentrations of 

the metalloid selenium is actually improved by increasing concentrations of selenium in pistils 

(Prins et al., 2011).   However, the effects of floral metal accumulation on plant fitness for 

serpentine species are unknown, though experiments testing these effects are currently underway 

(Meindl and Ashman, unpubl. res.). 

Current data (DeHart et al., in review; this study) support the idea that serpentine 

endemics possess adaptations to elevated metal concentrations in serpentine soils (i.e., reduced 

uptake and translocation to leaves, reproductive organs and rewards) that non-endemics lack.  

These results suggest that non-endemic species may be at a fitness disadvantage compared to 

endemics when growing on serpentine soils.  For example, in a series of experiments with 

Mimulus guttatus (Phrymaceae), Searcy and Mulcahy (1985) and Searcy and Macnair (1990) 

suggested that copper in the pistils of plants could act as a selective filter since seed production 

was reduced when pollen donors were not adapted to copper-rich soils.  Floral metal 

accumulation may therefore produce a prezygotic isolating mechanism in non-endemic species 

compared to endemics by decreasing plant fitness when maternal and paternal plants are growing 

in different soil environments (i.e., serpentine and non-serpentine).  In this way, floral metal 

accumulation may act as a reproductive barrier that favors reproduction between plants growing 

in similar soil environments, selecting against species that have serpentine and non-serpentine 

populations in close proximity to each other.  Therefore, understanding metal accumulation into 
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flowers and floral rewards is vital not only for identifying potential reproductive costs associated 

with plant growth on metal-rich soils, such as serpentine, but also for explaining patterns of 

species distributions, reproductive isolation and plant endemism.   

Metal accumulation by plants can be influenced by many factors, including phylogeny 

(Broadley et al., 2001) and maternal effects (Macnair 2002).  Therefore, it must be 

acknowledged that many of the species used in this study, including all of the species in the 

endemic and indicator categories, belong to the same genus within the Brassicaceae, 

Streptanthus.  However, the main comparisons of this study involved endemics vs. both 

indifferent and indicator species, with the latter group including members of several genera 

spread across multiple Tribes (Boechera: Boechereae; Erysimum: Erysimeae; Hirschfeldia: 

Brassiceae; Streptanthus: Schizopetaleae; Al-Shehbaz, 2013).  Therefore, additional work 

comparing heavy metal accumulation across vegetative and reproductive organs of endemic and 

non-endemic plants from a variety of plant families (e.g., Asteraceae, Caryophyllaceae, 

Phrymaceae), and thus taking phylogenetic relationships into account regarding variation in 

metal accumulation, will contribute towards a more general understanding of edaphic endemism. 

Though not incorporated in the present study, the application of phylogenetically independent 

contrasts with paired endemic and non-endemic taxa (e.g., Cunningham et al., 1999) would be 

particularly informative when comparing Ni accumulation across levels of serpentine affinity. 

Furthermore, because seeds from each taxon were bulk-collected from a single population per 

species, intra-population level variation, if it exists (e.g., Macnair 2002), would be confounded 

with species.  Our conclusions, however, are robust across affinity groups as each group includes 

two or more species.  In addition, it is unlikely that maternal environmental effects influenced 

our findings as tissues were only collected from adult plants, and maternal affects generally 
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manifest in earlier life stages (i.e., seeds and seedlings) and decrease with plant age (Roach and 

Wulff 1987; Lopez et al. 2003; Donohue 2009).  However, phytoavailable Ni concentrations in 

serpentine soils are well known to vary, both within and across regions containing serpentine soil 

(Echevarria et al., 2006).  This variation can lead to ecotypic variation within species, with some 

populations being adapted to high phytoavailable Ni concentrations, while others are not (O’Dell 

and Rajakaruna 2011).  Thus, future studies incorporating multiple populations will allow for 

further resolution of genetic and maternal environment effects on plant Ni accumulation, and 

whether this varies by serpentine affinity. 

3.5 CONCLUSIONS 

Although the current study does not assess differences in plant fitness or competitive ability 

between endemic and non-endemic plants, our results highlight consistent differences in heavy 

metal uptake between endemic and non-endemic serpentine species.  While edaphic features of 

serpentine soils are known to influence plant fitness for non-endemic plants, both directly (e.g. 

Swope and Stein, 2012) and indirectly (e.g. Meindl et al., 2013), the specific effects of Ni 

accumulation on plant reproduction for non-hyperaccumulating serpentine species are not fully 

understood.  Nickel tolerance has been identified as a key feature of serpentine soil tolerance 

(Alexander et al., 2007; Brady et al., 2005; O’Dell and Rajakaruna, 2011) and is generally 

accomplished through root sequestration or exclusion, though not all serpentine plant species 

effectively exclude Ni from above-ground tissues (reviewed in Alexander et al., 2007; O’Dell 

and Rajakaruna, 2011).  Given the known toxicity of Ni for plant growth and reproduction (see 
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citations in Introduction), our study suggests that endemic and non-endemic plants may differ in 

reproductive potential (e.g. differences in seed production or pollinator visitation) when grown in 

serpentine soils due to differential Ni uptake and translocation.  While our findings suggest that 

endemic species possess the ability to limit Ni uptake into above-ground tissues, future work 

assessing the fitness consequences of growth on serpentine soils will provide valuable 

information towards understanding edaphic endemism.  However, studies like ours are necessary 

prerequisites for determining whether serpentine endemic and non-endemic species differ in 

reproductive or competitive capabilities (e.g. Imbert et al., 2011) due to differences in 

physiological response to soils.  
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Table 12. Species descriptions and seed collection locations for all plant species studied.  Plants were divided into three categories: serpentine 

endemic, serpentine indicator, or serpentine indifferent.  Serpentine affinity score is provided for all taxa, as defined by Safford et al. (2005)- species not 

discussed by Safford et al. (2005) are given a score of ‘<1’.  Life history (annual or perennial) and distribution ranges are provided for all species 

(CA=California; NA=North America; AE=Afroeurasia). 

 

 

 

Species Plant Category 
Habitat 
Affinity Score Life History Range 

Seed Collection 
Location 

S. breweri var. breweri Endemic 5.7 Annual CA 
N 38°51'52.4";  
W 122°24'16.4" 

S. morrisonii Endemic 6.1 Perennial CA 
N 38°48'45.3";  
W 122°22'54.9" 

S. glandulosus ssp. glandulosus Indicator 1.9 Annual CA 
N 38°51'43.9";  
W 122°23'57.3" 

S. tortuosus Indicator 1.7 Perennial Western NA 
N 39°59'18.4";  
W 121°17'19.8" 

Erysimum capitatum var. capitatum Indifferent <1 Perennial NA 
N 41°16'32.5";  
W 122°41'54.4" 

Hirschfeldia incana Indifferent <1 Annual NA, AE 
N 38°51'30.0";  
W 122°24'35.2" 

Boechera breweri Indifferent <1 Perennial CA 
N 39°57'12.3":  
W 121°19'4.5" 

 



  

 

58 

Table 13. Results from mixed model ANCOVA and pre-planned contrasts of Ni accumulation to 

leaves, pistils, anthers and nectar ('Organ/Reward Type') of seven mustard species that vary in their affinity 

to serpentine soil (‘Habitat Affinity’) when grown in either Ni-supplemented or control soils ('Soil 

Treatment').  The number of soil treatment applications ('Application Number') was included as a covariate.  

Random effects of individual plant (‘Individual’) and species (nested within habitat affinity; ‘Species (Habitat 

Affinity)’ were also included in the model.  Significance of fixed effects denoted as *P≤0.05, **P≤0.01 and 

***P≤0.0001. 

 

 

 

Source of Variation df (Num., Den.) F 
Habitat Affinity 2, 1.86 10.42 
Soil Treatment 1, 119 1204.29*** 
Organ/Reward Type 3, 225 8.88*** 
Application Number 1, 13.3 26.57** 
Habitat Affinity*Soil Treatment 2, 117 2.18 
Habitat Affinity*Organ/Reward Type 6, 382 5.16*** 
Soil Treatment*Organ/Reward Type 3, 383 163.22*** 
Habitat Affinity*Soil Treatment*Organ/Reward Type 6, 383 2.24* 

   
Random Effects  Z 
Individual  3.28** 
Species (Habitat Affinity)  0.19 

   
Pre-planned Contrasts   
Endemic vs. Non-endemic (Indifferent/Indicator) 
Leaves:  1, 31.5 5.85* 
Pistils:  1, 32.6 8.24** 
Anthers:  1, 32.5 3.78 
Nectar:  1, 32.5 0.02 
   
Vegetative (Leaves) vs. Reproductive (Anthers/Pistils)   
Endemic: 1, 349 3.15 
Indicator: 1, 321 0.01 
Indifferent: 1, 384 20.42*** 
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Figure 6. Nickel concentrations among serpentine indifferent (Hirschfeldia incana, Erysimum 

capitatum var. capitatum, Boechera breweri), indicator (Streptanthus tortuosus, S. glandulosus ssp. 

glandulosus) and endemic (S. morrisonii, S. breweri var. breweri) plant species when grown in control vs. 

nickel-supplemented soils by organ/reward type (vegetative organ [leaves], two reproductive organs [pistils, 

anthers] and one floral reward [nectar]).  Symbols represent back-transformed lsmeans (± 95% CI).  White 

symbols = indifferent species; gray symbols = indicator species; black symbols = endemic species. 
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4.0  VARIATION IN NICKEL ACCUMULATION IN LEAVES, REPRODUCTIVE 

ORGANS AND FLORAL REWARDS IN TWO HYPERACCUMULATING 

BRASSICACEAE SPECIES 

4.1 INTRODUCTION 

Metal hyperaccumulation refers to the excessive uptake and sequestration of soil metals by 

plants into above ground tissues and has been described in approximately 500 plant species 

(reviewed in van der Ent et al. 2013).  For example, while most plants have <5 mg kg-1 nickel 

(Ni) in aboveground tissues (Marschner 2012), Ni hyperaccumulators exhibit tissue Ni 

concentrations >1,000 mg kg-1 (Reeves and Baker 2000).  While several hypotheses have been 

proposed to explain the adaptive function of metal hyperaccumulation (e.g., elemental 

allelopathy, drought resistance and metal tolerance/disposal; reviewed in Boyd and Martens 

1992), the hypothesis with the most experimental support is the ‘elemental defense hypothesis’ 

(Rascio and Navari-Izzo 2011).  This hypothesis states that metal hyperaccumulation confers 

adaptive value to plants via protection from enemies, which has been shown in studies of both 

herbivores (Jhee et al. 2005) and pathogens (Boyd et al. 1994a).  However, these benefits have 

only been considered for vegetative organs, despite the fact that flowering plants generally invest 

more defensive compounds in reproductive organs (e.g., Brown et al. 2003).  With limited 

documentation of metal accumulation and hyperaccumulation into reproductive organs (Meindl 



  

 

61 

and Ashman 2014; Sánchez-Mata et al. 2014; Meindl et al. in review), it is unclear what fitness 

consequences may result from plants that exhibit the hyperaccumulation trait.   

 Floral metal hyperaccumulation is an important consideration, as metals 

hyperaccumulated in reproductive organs (including gametes) and rewards for pollinators 

(nectar, pollen) of plants may either have positive or negative effects on plant fitness.  For 

example, metals hyperaccumulated in anthers and pistils could provide an elemental defense 

against herbivores and pathogens, similar to defenses provided to vegetative tissues (Boyd et al. 

1994a,b; Jhee et al. 2005).  Though metal hyperaccumulators have rarely been similarly studied 

(but see Meindl and Ashman 2014; Sánchez-Mata et al. 2014), elemental defense has been 

suggested for plants that hyperaccumulate the metalloid selenium (Se) into floral organs and 

rewards (Quinn et al. 2011; Prins et al. 2011).  For example, Hladun et al. (2013) found that seed 

predation by birds was reduced for plants that accumulated high concentrations of Se.  

Conversely, metal hyperaccumulation may be limited to vegetative tissues so as to avoid 

interference with reproduction in gamete-producing organs.  Furthermore, it is unknown whether 

hyperaccumulating plants generally accumulate metals into pollen grains or ovules (but see 

Sánchez-Mata et al. 2014).  Pollen metal accumulation could influence plant fitness through 

reducing pollen germination (Mohsenzadeh et al. 2011; Yousefi et al. 2011a) or pollinator fitness 

(Moroń et al. 2012).  Similarly, metals accumulated into pistils can reduce both ovule and seed 

viability for non-hyperaccumulating taxa (Malan and Farrant 1998; Yousefi et al 2011b).  

Documenting metal concentrations of reproductive organs and floral rewards of metal 

hyperaccumulating plants is a prerequisite for a holistic understanding of possible adaptive 

functions of metal hyperaccumulation. 
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Metals present in nectar can reduce pollinator foraging (Meindl and Ashman 2013; 

Meindl and Ashman 2014).  Therefore, plant species that rely on pollinator visitation for sexual 

reproduction may limit floral metal accumulation, particularly in floral rewards (i.e., pollen and 

nectar), relative to species that rely less on biotic pollinators (e.g., those that are autonomously 

autogamous).  While defensive secondary compounds in nectar, such as phenolics and alkaloids, 

have been hypothesized to benefit plant fitness, e.g., via increased outcrossing and/or decreased 

microbial degradation of nectar (Adler 2000), some data suggest that the costs of defensive 

compounds in nectar (e.g., reductions in pollinator visitation) may outweigh the benefits (Adler 

and Irwin 2005).  Currently, however, there are no data available to compare floral metal 

accumulation across plant species that vary in their reliance on pollinators for reproduction. 

Roughly 75% of metal hyperaccumulating plants are associated with the metal Ni, and 

approximately 25% of hyperaccumulating species belong to the Brassicaceae plant family 

(Reeves 2006; Rascio and Navari-Izzo 2011).  In this study, we grew two species of Ni 

hyperaccumulating plants from the Brassicaceae family in either control soils or soils 

supplemented with Ni to determine whether Ni was concentrated into reproductive organs and 

floral rewards similarly to vegetative ones, and whether this varied between species as predicted 

by their reliance on pollinators for seed production.  
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4.2 MATERIALS AND METHODS 

4.2.1 Study system 

Two Ni hyperaccumulating species (Streptanthus polygaloides [yellow morph; Boyd et al. 

2009]), Noccaea fendleri subsp. glauca) from the Brassicaceae family were used in this study.  

Streptanthus polygaloides is an annual species endemic to serpentine soils (> 95% of populations 

occur on serpentine soil; Safford et al. 2005) in northern California (Baldwin et al. 2012; Reeves 

et al. 1983).  Hand pollinations show that S. polygaloides is partially self-compatible (Index of 

Self-Incompatibility (ISI) = 0.8, where ISI of 1 is considered self compatible, and ISI between 

0.2 and 1 is considered partially self compatible (Zapata and Arroyo 1978); Meindl and Ashman, 

unpublished).  It produces urceolate (i.e., urn-shaped) flowers that offer both pollen and nectar to 

pollinators.  Pollinator visitation is required for sexual reproduction in this species (Boyd et al. 

2009) and floral visitors are mainly bees, but also flies and beetles (Wall and Boyd 2002; Meindl 

and Ashman, unpublished).  Noccaea fendleri subsp. glauca is a perennial species that is 

tolerant, but not strictly endemic, to serpentine soils (85-94% of populations occur on serpentine 

soil; Safford et al. 2005), and occurs throughout western North America (Al-Shehbaz 2012).  

Noccaea fendleri subsp. glauca is self-compatible (Meindl and Ashman, unpublished) and 

produces cruciferous flowers, typical of the Brassicaceae, which do not produce nectar.  This 

species is highly autonomously autogamous in the greenhouse (Meindl, pers. obs.) and thus 

although bees and flies visit flowers in the wild pollinators are not required for seed set (Meindl 

and Ashman, unpublished).  Both species are herbaceous and flower in the spring.  Seeds from 



  

 

64 

each taxon were collected from the wild in the summer of 2012 (S. polygaloides: N 39°46'50.4", 

W 121°28'41.6"; N. fendleri subsp. glauca: N 41°16'42.4", W 122°41'48.7"). 

4.2.2 Experimental design 

In the fall of 2012, twenty seeds per species (Total N = 40) were treated for two weeks with 4°C 

cold and dark conditions.  Seedlings were transplanted to 27 cm3 ‘rocket’ pots (Deepots, Stuewe 

and Sons, Inc., Tangent, OR, USA) filled with standard potting soil (Fafard #4, Sun Gro 

Horticulture, Agawam, MA, USA) and six Nutricote® NPK 13-13-13 time-release fertilizer 

pellets (Arysta LifeScience Corporation, New York, NY, USA).  One month after transplanting, 

N. fendleri subsp. glauca received a 4°C cold treatment for one month at 8D:16N.  Subsequently, 

both N. fendleri subsp. glauca and S. polygaloides were grown under controlled conditions of 

12D:12N and between 21.1-26.7°C until flowering in the greenhouse at the University of 

Pittsburgh.   

One month after transplanting (S. polygaloides), or one week after cold treatment (N. 

fendleri subsp. glauca), plants were divided into two treatment groups (N = 10 plants / species / 

treatment) and soil treatment solutions were applied to each plant once per week: either (1) Ni-

supplemented (40 mL of 400 mg kg-1 Ni nitrate (Ni(NO3)2-6H2O) solution) or (2) control (40 mL 

of ammonium nitrate (NH4NO3) solution to control for 190 mg kg-1 nitrogen applied to plants in 

the Ni-supplemented treatment).  Bioavailable fractions of Ni in serpentine soils generally range 

from 50 to 500 mg kg-1 (e.g., Echevarria et al. 2006; L’Huillier and Edighoffer 1996), thus our 

soil treatment solutions reflect a natural level of bioavailable Ni (resulting Ni concentration of 
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soil, by volume, was 592 mg kg-1 at time of watering).  Soil treatments were conducted for each 

individual until flowering (4-14 weeks).   

4.2.3 Organ/reward collection and chemical analysis 

Three organs (leaves, pistils, anthers) and two floral rewards (pollen, nectar) were collected 

(nectar was not collected from N. fendleri subsp. glauca as it does not produce any).  One fully 

developed leaf was collected from each individual following four soil treatment applications. 

Pistils, anthers, and nectar were collected from the first 5-15 flowers produced per plant, while 

pollen was collected from at least 10 flowers from two individuals per species-soil treatment 

from an independent set of mature anthers.  For S. polygaloides, we collected nectar from all 

individuals by folding a circular piece of filter paper (Whatman® Grade 1, GE Healthcare Bio-

Sciences, Pittsburgh, PA, USA) in half and touching it to the floral nectaries of several flowers 

per individual.  We used Baker’s (1979) spot-staining method, as described in Kearns and Inouye 

(1993), to determine nectar volume (see Meindl and Ashman 2014 for details).  

Leaves and pistils were rinsed with diH2O and dried at 60°C for 48 hours prior to 

chemical analysis.  Anther, pollen, and nectar samples were allowed to air dry in microcentrifuge 

tubes for 48 hours.  All samples were weighed to the nearest 0.0001 g and then microwave 

digested in 2-4 mL of trace metal grade HNO3 and brought to a final volume of 12-14 mL with 

MilliQ (Millipore, Bedford, MA, USA) H2O.  Nickel concentrations are reported as mg kg-1 

(organs and pollen) or uL L-1 (nectar) and were determined using Inductively Coupled Plasma 

Mass Spectrometry (ICP-MS, NEXION 300X, PerkinElmer, Waltham, MA, USA) at the 

University of Pittsburgh.  A series of five samples, each with known Ni concentrations, were 
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used to construct standard calibration curves before running samples on the ICP-MS.  Duplicate 

samples and blanks that contained internal standards were analyzed at regular intervals as 

measures of quality control during sample processing.  All duplicate samples processed were 

within 10% of each other.   

4.2.4 Statistical analysis 

All statistical analyses were conducted in SAS (version 9.3; SAS Institute Inc., Cary, NC, USA). 

To evaluate the effect of Ni soil treatment, species, and organ type on plant Ni concentration, 

mixed-model ANCOVA was conducted (PROC MIXED). The model included the fixed effects 

of soil treatment, species, organ type (leaves, pistils, or anthers), and their interactions, and the 

random factor of individual.  The number of soil treatment applications was included as a 

covariate.  We used pre-planned contrasts to determine whether each hyperaccumulator species 

had similar Ni concentrations in reproductive organs (anthers, pistils) relative to leaves for plants 

in the Ni soil treatment only using the CONTRAST option (SAS 2011; Arceo-Gómez and 

Ashman 2014).  Additionally, ANCOVA was used to compare Ni accumulation in nectar 

between control and Ni-treated S. polygaloides, with soil treatment as a fixed effect, individual 

as a random factor, and the number of soil treatment applications as the covariate.  Denominator 

degrees of freedom for all F-tests were determined using the Kenward-Roger approximation 

(Littell et al. 2002).  We used a student’s t-test (PROC TTEST) to determine whether pollen Ni 

concentration was greater in Ni-treated plants than controls. Nickel concentrations were natural-

log transformed to improve normality of residuals.  Least squares means, which account for 

model covariates, (and 95% confidence intervals) were back-transformed for presentation. 
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4.3 RESULTS 

Mean Ni concentrations in Ni-treated plants were more than 180 times higher than controls (Soil 

Treatment: P < 0.0001; Table 14; Fig. 1), and the effect of soil treatment varied by organ type 

(Soil Treatment x Organ Type: P < 0.0001; Table 14).  In Ni-treated plants, Ni concentration was 

lowest in anthers (633 mg kg-1), followed by pistils (758 mg kg-1) and highest in leaves (1,200 

mg kg-1), whereas in control plants mean Ni concentrations ranged from 3-8 mg kg-1 across all 

organs (Fig. 1).  While N. fendleri subsp. glauca accumulated twice as much Ni across both 

treatments relative to S. polygaloides (Species: P < 0.0001; Table 14; Fig. 1), the magnitude of 

this species difference varied by organ type (Species x Organ Type: P < 0.0001; Table 14).  

Furthermore, while Ni accumulation in leaves of Ni-treated plants was only 29% higher in N. 

fendleri subsp. glauca relative to S. polygaloides, N. fendleri subsp. glauca accumulated four 

times more Ni into pistils and three times more Ni into anthers (Table 14; Fig. 1).  However, 

when averaged across all tissues Ni concentration was higher in Ni-treated plants than controls 

for both species (Species x Soil Treatment: P > 0.05; Table 14).  Nickel accumulation varied 

significantly across individuals (Individual: P < 0.05; Table 14) but not by application number 

(Application Number: P > 0.05; Table 14). 

When considering Ni-treated plants alone, however, organ-specific Ni accumulation 

varied between species (Species x Soil Treatment x Organ Type: P < 0.01; Table 14).  

Preplanned contrasts showed that within the Ni soil treatment, S. polygaloides had 64% lower Ni 

concentrations in both anthers and pistils relative to leaves (361 [95% CI: 247, 533] mg kg-1 vs. 

1,002 (95% CI: 652, 1572) mg kg-1; Table 14).  Conversely, N. fendleri subsp. glauca 
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accumulated equal concentrations of Ni in both anthers and pistils relative to leaves (1,312 [95% 

CI: 934, 1863] mg kg-1 vs. 1,394 [95% CI: 907, 2186] mg kg-1; Table 14). 

Nickel-treated S. polygaloides plants accumulated ten times more Ni into nectar relative 

to control plants (Ni-treated: 61 mg kg-1; control: 6 mg kg-1; F1,17 = 23.63, P < 0.0001), but Ni 

accumulation was lowest in nectar relative to all other organs/rewards in this species (Fig. 1).  

Neither individual (Z = 1.52, P > 0.05) nor application number (F1,17 = 23.63, P > 0.05) 

influenced Ni accumulation in nectar by S. polygaloides. 

Considering both species, mean Ni concentrations in pollen were 100 times higher in Ni-

treated than control plants (229 mg kg-1 vs. 2 mg kg-1; t = -2.97; df = 6; P = 0.025).  While low 

sample sizes prevented a rigorous statistical comparison between species, Ni concentration of 

pollen from Ni-treated plants was higher for N. fendleri subsp. glauca (350 [95% CI: 54, 2242] 

mg kg-1) than S. polygaloides (150 [95% CI: 23, 958] mg kg-1). 

4.4 DISCUSSION 

Our study joins other recent work documenting Ni concentrations in floral organs and rewards 

for species that hyperaccumulate Ni (Meindl and Ashman 2014; Sánchez-Mata et al. 2014).  

However, our work is novel by extending these findings to include two species that vary in 

mating system and reliance on biotic pollination.  Both Ni hyperaccumulating species studied 

here concentrated Ni into reproductive organs, though N. fendleri subsp. glauca had similar 

concentrations of Ni across all organs while S. polygaloides accumulated less Ni into anthers and 
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pistils relative to leaves.  Streptanthus polygaloides incorporated Ni into nectar, and both species 

incorporated Ni into pollen.   

While ours is among the first to experimentally determine Ni concentrations in 

reproductive organs of Ni-hyperaccumulators, several studies of selenium (Se) 

hyperaccumulators have found similar results (Prins et al. 2011; Quinn et al. 2011; Valdez 

Barillas et al. 2012).  For example, Quinn et al. (2011) discovered that the Se-hyperaccumulator 

Stanleya pinnata (Brassicaceae) hyperaccumulated Se in flowers to the same degree as leaves, 

and that the highest Se concentrations in flowers were found in anthers, pistils and young seeds, 

though high concentrations of Se were also detected in pollen and ovules.  Interestingly, studies 

have found no evidence for fitness costs of Se hyperaccumulation, as pollen germination and 

pollinator visitation are not reduced by Se hyperaccumulation (Quinn et al. 2011).  In fact, pollen 

germination has been observed to be higher for Se hyperaccumulating plants supplied with 

elevated levels of Se in soils (Prins et al. 2011).  For the heavy metal Ni, specifically, studies 

have shown that Ni can be hyperaccumulated into seeds and that seed Ni concentration is 

positively correlated with shoot Ni concentration (Brooks 1998; Psaras and Manetas 2001; 

Adamidis et al. 2014). While the fitness consequences of Ni hyperaccumulation in seeds have 

not been similarly studied, hyperaccumulation of another heavy metal (cadmium) in seeds is 

known to reduce seed viability in hyperaccumulating species, indicating a fitness cost to floral 

metal hyperaccumulation (Vogel-Mikuš et al. 2007).  Here we show that Ni is accumulated in 

high concentrations in floral organs of two Ni hyperaccumulating species, but it is unclear at this 

time what effects this may have on pollen, ovule or seed viability in these species.   

Concentrations of Ni in leaves relative to reproductive organs and rewards varied across 

the two species studied under controlled conditions (Fig. 1), and corroborate differences seen in 
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organs collected from field-grown plants. Specifically, anther Ni concentrations in field grown 

plants of N. fendleri subsp. glauca can average above 3,000 mg kg-1, whereas those of S. 

polygaloides average only ~ 2,000 mg kg-1 (Meindl and Ashman, unpublished).  Because both 

species are known to hyperaccumulate Ni into reproductive organs in natural populations, a lack 

of hyperaccumulation observed in some organs of S. polygaloides in this study may reflect a 

comparatively inconstant supply of Ni in the greenhouse environment relative to natural soil 

conditions.  However, regardless of whether the two species reached hyperaccumulation 

thresholds in our greenhouse experiment, observed differences between species in floral Ni 

accumulation suggests that some species may experience reproductive costs of floral metal 

accumulation, whereas others may not.  There are three possible explanations for the differences 

in Ni accumulation in reproductive organs observed between species.  First, previous work has 

shown that serpentine affinity, i.e., whether plants are endemic or not, can influence Ni 

accumulation into both leaves and flowers with endemic taxa generally accumulating lower 

levels of Ni into organs (DeHart et al. in review; Meindl et al. in review).  However, this is 

unlikely to account for the differences seen in this study, as these species are both very closely 

associated with serpentine.  Indeed, Safford et al. (2005) refer to N. fendleri subsp. glauca (a.k.a., 

Thlaspi montanum var. montanum) as a ‘broad endemic’ because it is most often associated with 

serpentine soils, despite not being entirely restricted there.  However, additional work that 

replicates endemic and non-endemic species of metal hyperaccumulators would be required to 

determine definitively whether serpentine affinity alters metal hyperaccumulation.  Second, 

because excessive accumulation of Ni into floral rewards may be detrimental to plant fitness 

(Meindl and Ashman 2013; Meindl and Ashman 2014) the lower relative concentration of Ni in 

nectar of S. polygaloides and the lower concentration of Ni in its pollen relative to N. fendleri 
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subsp. glauca may be explained by the fact that S. polygaloides is only partially self-compatible 

and relies on pollinating insects for seed and fruit production (Boyd et al. 2009). This contrasts 

with N. fendleri subsp. glauca, which is self-compatible and autonomously autogamous (Meindl 

and Ashman, unpublished), so the lower dependence on insect pollinators for reproduction may 

mean that if floral metal accumulation reduces pollinator visitation it will not have as great a 

fitness cost as it might for S. polygaloides.  Third, species may vary in their reliance on floral 

metal accumulation for elemental defense of reproductive organs.  However, the costs vs. 

benefits of floral metal hyperaccumulation require additional study to determine whether it 

serves an adaptive function, or simply reflects inadvertent uptake (e.g., Boyd and Martens 1992). 

Since the fitness consequences of floral Ni hyperaccumulation for these species are not 

yet known we cannot conclude whether it is adaptive or maladaptive.  This will require 

determining the effects of metal hyperaccumulation on plant fitness at each reproductive stage 

(i.e., flower production through seed germination).  For example, hyperaccumulation may have 

fitness advantages such as increased flowering (Ghasemi et al. 2014), pollen germination (Prins 

et al. 2011), or seed germination (e.g., the Ni hyperaccumulator Alyssum murale (Brassicaceae); 

M. McKenna, pers. comm.).  However, trade offs may exist at other stages of reproduction (e.g., 

reducing pollinator visitation) so all stages need to be considered.  Taken together, evidence is 

mounting that Ni and other metals are concentrated in reproductive organs and rewards at high 

levels, thus the next step for research in these systems is determining fitness consequences. Such 

work will provide a complete evaluation of the adaptive potential and ecological consequences 

of plant hyperaccumulation. 
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Table 14. Results from mixed-model ANCOVA and pre-planned contrasts of Ni concentrations in 

leaves, pistils and anthers ('Organ Type') of two Ni-hyperaccumulating species (Streptanthus polygaloides and 

Noccaea fendleri subsp. glauca; 'Species') when grown in either Ni-supplemented or control soils ('Soil 

Treatment').  The number of treatments applied to soils ('Application Number') was included as a covariate. 

Significance of fixed effects denoted as *P≤0.05, **P≤0.01 and ***P≤0.0001. 

Source of Variation df (Num., Den.) F 
Species 1, 43.5 24.85*** 
Soil Treatment 1, 35.4 1181.83*** 
Organ Type 2, 80.8 2.5 
Application Number 1, 99 1.01 
Species*Soil Treatment 1, 35.4 0.82 
Species*Organ Type 2, 78.2 29.03*** 
Soil Treatment*Organ Type 2, 71.3 24.68*** 
Species*Soil Treatment*Organ Type 2, 71.3 7.73** 

Random Effect Z 
Individual 2.27* 

Pre-planned Contrasts for Ni-treatment 
Leaves vs. Anthers/Pistils  
Streptanthus polygaloides:  1, 89.7 17.26*** 
Noccaea fendleri subsp. glauca:  1, 71.7 0.10 
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Figure 7. Differences in Ni concentration (mg kg-1) between two Ni-hyperaccumulating species 

(Streptanthus polygaloides and Noccaea fendleri subsp. glauca grown in control vs. Ni-supplemented soils 

across one vegetative organ (leaves), two reproductive organs (pistils, anthers) and one floral reward (nectar).  

Nectar was produced by S. polygaloides only. Symbols represent back-transformed lsmeans (± 95% CI).  

White symbols = leaves; light gray symbols = pistils; dark gray symbols = anthers; black symbols = nectar.   
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5.0  THE EFFECTS OF ALUMINUM AND NICKEL IN NECTAR ON THE 

FORAGING BEHAVIOR OF BUMBLEBEES 

5.1 INTRODUCTION 

Heavy metals occur in small amounts naturally in most soils, but anthropogenic activities (e.g., 

industry, agriculture) can lead to toxic levels (Nagajyoti et al. 2010).  Specifically, nickel (Ni) 

and aluminum (Al) are among the most common soil metal pollutants (e.g., Abollino et al. 2002) 

and they are considered toxic at high concentrations to both plants and animals (Sparling and 

Lowe 1996; Nagajyoti et al. 2010; Boyd 2010).  Plants that accumulate these metals into 

vegetative tissues may be well defended against herbivory (but see Boyd 2009), as metals can 

decrease the growth and survival of insects (e.g., Boyd and Martens 1994; Boyd 2010).  It is 

unclear, however, whether metals present in flowers alter how pollinators interact with plants 

growing in contaminated soils, and whether pollinators might be subjected to potentially toxic 

effects. 

As metals and metalloids can be transferred to pollen grains (Se: Quinn et al. 2011) and 

nectar (Se: Hladun et al. 2011; Ni: Meindl and Ashman, unpublished data), Ni and Al 

contamination may negatively impact plant reproduction, including pollen-pistil interactions 

(Searcy and Macnair 1985) and plant-pollinator interactions.  Ni and Al have been shown to 

decrease growth and survival of various insects (Boyd and Martens 1994; Sparling and Lowe 
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1996); therefore it is possible that bees collecting contaminated floral rewards will also 

experience toxic effects (e.g., Hladun et al. 2012).  Although many plants exclude metals, some 

tolerant plants are known to accumulate metals into above ground tissues at high concentrations 

(e.g., metal hyperaccumulators; van der Ent et al. 2013).  While an understanding of how soil 

pollutants affect plant-pollinator interactions is generally important, this issue is particularly 

relevant when assessing the potential impacts of phytoremediation with insect-pollinated 

hyperaccumulating plants, some of which are grown through flowering in the field (Chaney et al. 

2010). 

The potential for metals to be transferred from soils to higher trophic levels, and 

especially to affect pollinators, is largely unknown (but see Boyd 2009 for review of Ni transfer 

to insects).  For example, while bumblebees avoid and/or spend less time foraging on flowers 

with relatively low rewards (e.g., poor pollen quality; Robertson et al. 1999), we currently do not 

know whether bumblebees will avoid or forage indiscriminately on metal-tainted flowers (but 

see Quinn et al. 2011 and Hladun et al. 2013 for effects of Se on visitation).  Bumblebees, which 

are important pollinators both in agricultural and natural settings, are declining in many areas 

(Goulson 2009), thus understanding how soil pollution may alter foraging will be important for 

managing both plants and bumblebees in polluted landscapes.  As a first step, it is critical to 

understand how bumblebees respond to plants that contain metal-tainted floral rewards.  To 

address this gap in our understanding, here we answer the following questions: (1) Are flowers 

with metal-tainted nectar less likely to be visited by bumblebees compared to flowers with metal-

free nectar? (2) Do bumblebees spend less time foraging on flowers with metal-tainted nectar? 

(3) Do bumblebees that sample flowers with metal-tainted nectar subsequently discriminate 

against nearby flowers?  
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5.2 METHODS 

5.2.1 Study system 

Impatiens capensis Meerb. (Balsaminaceae) is an herbaceous annual species native to North 

America that blooms throughout the summer (May-September) in western Pennsylvania (Rhoads 

and Block 2007).  Its flowers are large and produce ~5 μL of 40% sucrose nectar per day (Rust 

1977).  Populations of I. capensis growing on metal contaminated soils have been shown to 

accumulate several metals, including Ni, into tissues at concentrations approaching those 

defining hyperaccumulators (e.g., ~800 ppm Ni; Curran 2005).   

5.2.2 Study Site 

This study was conducted at Carnegie Museum of Natural History’s Powdermill Nature Reserve 

in Westmoreland Co., PA, USA (40°10’N, 79°16’W) between August 24 and September 1, 

2012.  Impatiens capensis is a common understory flowering plant throughout the reserve, found 

along creeks, wet ditches and roadsides.   Impatiens capensis at the reserve had tissue 

concentrations of Al and Ni (mean (±SE): leaves 22.6 (±1.9) ppm Al, 3.8 (±0.2) ppm Ni; flowers 

36.0 (±5.0) ppm Al, 3.3 (±0.3) ppm Ni; N=5 per tissue; unpublished data) similar to other 

temperate herbaceous plants (e.g., McGee et al. 2007; Metali et al. 2012).  Mean total Al and Ni 

concentrations in soils near the study site were 5,624.6 ppm and 6.3 ppm, respectively (N=3; 

unpublished data), which are typical for the continental U.S., though Al concentration is lower 

than previously reported for the region (Shacklette and Boerngen 1984).  Plants were visited 
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primarily by one species of bumblebee (Bombus impatiens).  In addition to studying the effects 

of Ni in nectar, we also chose Al as some areas on the reserve are historically known to be 

contaminated with this metal (Mulvihill et al. 2008).  Both Ni (van der Ent et al. 2013) and Al 

(Metali et al. 2012) are hyperaccumulated by several plant species.   

5.2.3 Experimental Design 

To determine whether Ni and Al in nectar individually influence bumblebee behavior, we created 

arrays of field-collected flowers.  Flowers were collected in the morning, and placed in 225 mL 

centrifuge tubes filled with water and topped with florist’s foam.  Each individual flower was 

collected from a separate plant within a single population, and all flowers selected were of 

similar age, color and size.  Using a micropipette, the standing nectar was removed from each 

flower, and replaced with 5 μL of an artificial nectar solution.  One of three treatments was 

applied randomly to each flower: (1) 40% sucrose solution (control), (2) 40% sucrose solution 

with 100 ppm Ni, or (3) 40% sucrose solution with 100 ppm Al.  These metal concentrations 

were chosen as previous work indicates that one Ni hyperaccumulating species accumulates at 

least 100 ppm Ni into nectar when grown in high-Ni soils (Streptanthus polygaloides; Meindl 

and Ashman, unpublished data).  Both Ni and Al solutions were prepared using metal nitrates 

(Al(NO2)3 and Ni(NO2)3). 

Each array consisted of four flowers: two control and two metal-treated flowers (Figure 

8).  Ni and Al were tested against control in separate experiments. A pair of each type of flowers 

were placed approximately four cm from one another and 20 cm from the other pair.  When a 

bumblebee visited a flower in an array, the entire visitation sequence was recorded, as well as the 
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time spent foraging (in seconds) on each individual flower.  Following an observed visitation 

sequence, all flowers in the array were replaced with unvisited flowers, and the position of the 

control and metal-treated flowers in the array was switched to avoid spatial bias.  Only 

bumblebee nectaring bouts are considered here; if flowers were visited by non-bumblebee 

pollinators, or were visited by bumblebees foraging for pollen, flowers were not scored and 

replaced with unvisited flowers.  On most days of observation, arrays composed of both types 

(with Al or Ni) were observed, with metal type alternating between early and late in the day 

(total N=145 arrays).  Flower width was measured for each experimental flower for use as a 

covariate in analysis of bumblebee foraging time.    

All statistical tests were performed using SAS Version 9.3 (SAS 2010).  To determine 

whether the presence of metals in nectar affected the probability of a flower being visited, we 

used chi-square analysis (PROC FREQ) where the null hypothesis was that control and metal-

treated flowers were equally likely to be visited.  The effect of metal-treated nectar on time spent 

foraging by bumblebees was determined using ANCOVA (PROC GLM).  Independent variables 

included date, time of day and flower width (covariate).  Time spent foraging was log 

transformed to meet the assumption of normality.  Logistic regression (PROC GENMOD) was 

used to determine if a bumblebee’s subsequent decision was influenced by whether it first visited 

a metal-treated or a control flower.  Bumblebee decisions following the initial visit were 

categorized as: (1) moved to the flower immediately adjacent, i.e., same treatment, (2) moved to 

a flower in the alternate treatment, or (3) the bumblebee left the array without visiting other 

flowers within it.  The factors in the model included the bumblebee’s first choice (control or 

metal-treated flower), date and time of day.  In all models, Ni and Al arrays were analyzed 

separately. 
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5.3 RESULTS AND DISCUSSION 

Metal-tainted nectar altered bumblebee visitation, but the extent of the effect depended on both 

the response variable and the metal type.  The probability of a flower being visited did not 

depend on the presence of metals in nectar for either metal (Al: χ2=0.07, df=1, P=0.4; Ni: 

χ2=2.41, df=1, P=0.06).  However, the time a bee spent foraging was affected by Ni, but not Al, 

in the nectar.  Bumblebees spent 75% less time foraging on flowers containing Ni relative to 

controls (F1,175=102.96; P<0.0001), while there was no difference between foraging time on Al 

and control flowers (F1,137=1.07; P=0.15; Figure 9).  Flower width did not influence visitation 

rate for flowers in either Ni (F1,175=2.39; P=0.12) or Al (F1,137=3.86; P=0.06) arrays.  Nickel in 

nectar influenced the next foraging decision by a bumblebee (χ2=3.37, df=1, P=0.03), whereas 

Al in nectar had no such effect (χ2=0.00, df=1, P=0.48).  Specifically, bumblebees that visited 

control flowers first were more likely to visit the next closest flower (i.e., same treatment) in the 

array than those that first visited Ni-treated flowers (49% vs. 35%).  In addition, bumblebees that 

visited control flowers first were less likely to leave the array entirely without visiting any other 

flowers than bees that first visited Ni-treated flowers (16% vs. 33%; Figure 10). 

Our work shows that metals present in nectar can alter the way pollinators interact with 

plants.  Since flowers with control or metal-treated nectar were equally likely to be visited by 

bumblebees we conclude that bees do not detect metals in nectar from afar, and thus do not 

initially avoid flowers with metal-tainted nectar.  However, once bumblebees arrive at flowers 

and sample the nectar, they are able to discriminate against certain metals, in this case Ni.  

Nickel in vegetative tissues has been shown to deter herbivores (Strauss and Boyd 2011), and 

here we show that Ni in nectar can reduce visitation by bumblebees.  Aluminum, however, 
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produced no such effect, as bees foraged on Al-treated flowers for periods of time equal to that 

of bees foraging on controls.  It is unclear why bees were not deterred by the presence of Al in 

nectar, however studies of honeybee chemistry have shown Al concentrations in bees to be much 

higher than Ni concentrations (van der Steen and de Kraker 2012), suggesting bees may be more 

tolerant to Al-tainted resources.  Our findings suggest that metal pollution will have element-

specific effects on the behavior of local pollinators. 

The potential for soil metals to cascade through plants to affect pollinators is 

understudied, yet as humans continue to modify natural habitats understanding the transfer of 

soil contaminants to higher trophic levels will be vital for preserving ecosystem health and 

function.  Results from our study may be particularly relevant when considering the use of 

insect-pollinated plants for the purpose of phytoremediation.  Phytoremediation generally 

involves the use of metal hyperaccumulating plants to remove heavy metal soil contaminants 

from polluted soils (Chaney et al. 2010).  Despite the apparent benefits of phytoremediation, land 

managers have not fully considered how interactions with insect herbivores and pollinators may 

be affected, especially considering that some hyperaccumulating plants are bumblebee pollinated 

(Quinn et al. 2011).  While bumblebees did not spend as much time foraging on flowers with Ni-

tainted nectar, they still visited these flowers, and therefore likely ingested a potentially toxic 

resource.  Because metals can be transferred from hyperaccumulating plants to insect pollinators, 

phytoremediation with insect-pollinated flowering plants should be considered with caution (Wu 

et al. 2010).  

Bioaccumulation of heavy metals has been observed in several insect food webs (e.g., 

Peterson et al. 2003).  Predatory insects and arachnids have been documented to accumulate 

heavy metals from their insect prey near mining and smelting operations (Hunter et al. 1987; 
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Nummelin et al. 2007).  If bioaccumulation of heavy metals is occurring similarly in plant-

pollinator systems then it could threaten native pollinator populations, which are valuable both in 

terms of wild ecosystem services as well as in agricultural settings where reliance on honey bee 

colonies is threatened (Potts et al. 2010).  Recent studies highlight the negative effects Al and Ni 

can have on insect physiology- Al exposure can cause severe neurological damage in flies, 

causing defects in locomotion and learning ability (Wu et al. 2012), while Ni can lower insect 

immune response (Sun et al. 2011).  In addition, transfer of metals to bees may also impact 

human health, as toxic metals have been detected in honey samples collected near polluted 

environments (e.g., Citak et al. 2012).  Therefore, understanding the ultimate fate of soil metal 

contaminants is critical for the health of both plants and animals. 
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Figure 8. Example of experimental array.  Arrays consisted of four field-collected flowers placed in 

water-filled centrifuge tubes.  Two metal-treated flowers were placed 4 cm apart, and 20 cm apart from a 

pair of control flowers.  Following an observed visitation sequence, all flowers in an array were replaced with 

unvisited flowers, and the location of metal-treated and control flowers were switched. 
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Figure 9. Mean foraging time (± SE) by bumblebees to treatment flowers. Asterisks indicate 

significant differences between treatments (P<0.05). 
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Figure 10. The proportion of bumblebees that either visited the next closest flower (of the same 

treatment; white section), one of the two flowers in the other treatment in the array (grey section), or left the 

array entirely (black section).  Data presented for both (A) Ni arrays and (B) Al arrays.   
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6.0  NICKEL ACCUMULATION BY STREPTANTHUS POLYGALOIDES 

(BRASSICACEAE) REDUCES FLORAL VISITATION RATE 

6.1 INTRODUCTION 

Metal hyperaccumulation is a phenomenon described in over 500 plant species, representing 101 

families (Sarma 2011), and refers to the uptake and sequestration of soil metals, e.g., copper, 

nickel, and zinc, into above ground tissues (reviewed in van der Ent et al. 2013).  Concentrations 

that define hyperaccumulators vary by metal, although thresholds are generally at least one order 

of magnitude higher than average metal concentrations in plant tissues (e.g., Nickel [Ni] 

hyperaccumulators have at least 1,000 ppm Ni dry weight in tissues, while average Ni 

concentrations in plant tissues are <10 ppm; van der Ent et al. 2013).  Roughly three quarters of 

metal hyperaccumulating plants are accumulators of the metal Ni and occur on serpentine soils 

(Reeves 2006), which are derived from metal-rich ultramafic rocks (Alexander et al. 2007).  

Despite the documented abundance of natural populations of Ni hyperaccumulating plants, the 

adaptive value and ecological significance of Ni hyperaccumulation for plants is still uncertain 

(Boyd and Martens 1992; Boyd 2004).  

Several hypotheses regarding the adaptive value of metal hyperaccumulation have been 

proposed, including its role in interference (i.e., elemental allelopathy), drought resistance, and 

defense against antagonists (reviewed in Boyd and Martens 1992).  However, special attention 
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has been paid to plant-herbivore interactions. Specifically, Boyd and Martens (1992) posit that 

metal hyperaccumulation in vegetative tissues provides defense against insect herbivores and 

bacterial/fungal pathogens, as moderate to high concentrations of metals in tissues can be toxic 

to many organisms (Coleman et al. 2005).  Metals in vegetative tissues can act as feeding 

deterrents (Boyd and Jhee 2005), or, when ingested, can decrease growth and survival of insect 

herbivores (Boyd and Martens 1994).  Beyond impacts on herbivory, however, little is known 

about how metal hyperaccumulation in plant tissues may alter ecological interactions, 

particularly mutualistic interactions.  Of the limited studies in terrestrial systems, evidence 

suggests prolonged metal exposure has led to divergent microbial communities in the guts of 

soil-dwelling isopods (Lapanje et al. 2010) and decreased mycorrhizal abundance and diversity 

on plants growing in metal-polluted environments (Leyval et al. 1997; Vogel-Mikus et al. 2005).  

However, effects of metal accumulation in flowers on plant-pollinator interactions remain largely 

unstudied, despite the fact that toxic plant secondary chemicals, e.g., alkaloids, in nectar are well 

known to alter pollinator foraging (reviewed in Adler 2001).  

Metals are known to accumulate in flowers of metal hyperaccumulators (Baker and 

Brooks 1989), but floral rewards (i.e., nectar and pollen) have rarely been separately evaluated.  

Recent experiments have shown that Ni in artificial nectar solutions decreases visitation by 

bumblebees (Meindl and Ashman 2013).  In contrast, recent studies with selenium (Se) 

hyperaccumulator and non-hyperaccumulator taxa suggest that Se accumulation does not 

influence pollinator visitation (Hladun et al. 2013; Quinn et al. 2011).  Considering that Se is 

toxic to honeybees (Hladun et al. 2012), generalist naïve pollinators (i.e., those not adapted to 

Se-rich floral rewards) foraging on Se-rich flowers may suffer negative fitness consequences.  

Similar effects may be seen for metal hyperaccumulating plants, since some bees cannot detect 
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Ni in flowers prior to visitation (Meindl and Ashman 2013) although Ni is toxic to insect 

herbivores (Boyd and Jhee 2005).  Our study was designed to determine whether (1) Ni 

hyperaccumulating plants accumulate Ni into floral rewards (e.g., nectar and pollen) and (2) 

generalist floral visitors forage indiscriminately on Ni-rich flowers.  These determinations will 

inform pollination ecology of metal hyperaccumulating plants in natural populations, as well as 

provide insight into ecological consequences of using these plants to remediate metal 

contaminated soils (i.e., phytoremediation; Pilon-Smits 2005). 

While metals present in flowers may influence pollinator visitation directly (e.g., Meindl 

and Ashman 2013), there may also be indirect effects via modification of floral traits important 

for pollinator attraction, such as flower production and floral reward quantity.  For example, 

heavy metals such as copper and Ni can delay flowering (Brun et al. 2003) and decrease total 

production of flowers per plant (Saikkonen et al. 1998), which in turn can reduce pollinator 

visitation (Mitchell et al. 2004).  Furthermore, soil metals can decrease viable pollen 

production/flower (Slomka et al. 2012) and thereby lower the quantity and quality of rewards 

offered to pollinators, though effects of metals on nectar production and chemistry are unknown.  

Thus, soil metals may alter pollinator visitation to plants growing in metal-rich soils either 

directly by altering reward amount (i.e., reward quantity) or chemical composition (i.e., reward 

quality), or indirectly by altering floral display. 

Here, we provide an initial test of whether Ni accumulation by a serpentine- 

endemic Ni hyperaccumulator (Streptanthus polygaloides Gray [Brassicaceae]) alters floral 

display, floral reward quantity and quality, and visitation by naïve floral visitors.  Specifically, 

we address the following questions: (1) Does short-term exposure to Ni-supplemented soil alter 

floral display or quantity of nectar and pollen? (2) Is soil Ni absorbed and incorporated into floral 
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nectar and pollen?  (3) Does soil Ni alter the likelihood a plant is visited by flower-visiting 

insects or its overall visitation rate per flower? 

6.2 METHODS AND MATERIALS 

6.2.1 Study system   

Streptanthus polygaloides is an annual serpentine endemic (Baldwin et al. 2012; Reeves et al. 

1981) and a Ni hyperaccumulator (Reeves et al. 1981).  Its zygomorphic flowers attract bees, 

flies and beetles (e.g., Dianthidium spp., Ceratina spp., Apis mellifera (Hymenoptera), Syrphidae 

(Diptera), Bupresitidae (Coleoptera); Wall and Boyd 2002; unpublished data) that feed on pollen 

from exerted anthers (Preston 1991) and nectar produced at the base of stamens.  Individual 

flowers remain open for at least four days (unpublished data).  

6.2.2 Experimental design   

Seeds collected from a population (37°36ʹ48.71ʺN, 120°08ʹ22.08ʺW) in Mariposa County, CA, 

were germinated on a thin layer of perlite (~6 mm) in 27cm3 ‘rocket’ pots (Deepots, Stuewe and 

Sons, Inc.) filled with potting soil (Fafard® #4) in a greenhouse at the University of Pittsburgh.  

After twelve weeks of growth 48 plants were moved to a site in an open field at the Powdermill 

Nature Reserve in western PA (40°10’N, 79°16’W). This site provided abundant generalist 

pollinators (unpublished data).  At onset of flowering during June 2012, plants were divided into 

two soil treatments: + Ni and control (no Ni added to soil). Nickel was applied to Ni-treated 
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plants by top-watering once per day with 40 mL of solution containing 200 ppm Ni for 14 days 

prior to floral visitor observation experiments.  Because metal hyperaccumulating plants have a 

high affinity for metals and thus the ability to rapidly acquire them from soils (Li et al. 2003), we 

applied solution treatments during flowering to ensure that Ni was available to plants during 

flower production. While this may not simulate natural conditions, it allows us to focus on Ni 

accumulation rather than other ontogenetic changes that might occur over long periods of 

exposure.   Nickel treatment solutions were prepared using Ni nitrate (Ni(NO3)2), a Ni salt 

commonly used for studies of Ni hyperaccumulation (e.g., Kramer et al. 1997).  Treatment 

solution was slowly and carefully applied to the soil surface using a plastic syringe, such that 

solution did not excessively contact shoots.  Serpentine soils contain phytoavailable fractions of 

Ni that generally range from 50 ppm to 500 ppm (Chardot et al. 2005; L’Huillier and 

Edighoffer 1996), thus the Ni concentration used here to treat soils is conservative.  Nitrates 

do not directly affect pollinator visitation generally (Burkle and Irwin 2010), so it is assumed that 

any differences in visitation between treatments here are due to differences in Ni concentrations. 

Furthermore, the short duration of treatment application makes it unlikely that nitrates 

significantly altered floral visitation, as even long-term nitrogen supplementation experiments 

have failed to find strong effects of nitrogen addition on floral visitation (Burkle and Irwin 

2010).  Control plants were similarly top-watered with 40 mL of pure water for 14 days prior to 

floral visitor observation experiments.  When plants were not being observed (see below), they 

were kept under an awning to protect them from occasional rainfall. 
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6.2.3 Floral measurements  

Prior to pollinator observations, we measured flower size with digital calipers (the product of 

flower [i.e., perianth] length and width, in mm) for two randomly selected flowers per plant.  We 

also counted the number of open flowers per plant.  Open flowers and flower size were 

enumerated once at the beginning of each week of observation.  Following floral visitor 

observations, plants were moved indoors and we collected anthers and nectar.  For each 

individual plant, all six anthers were collected from ten mature but unopened buds (i.e., 60 

anthers collected per plant), air dried for 48 hours, and then weighed on a AE200 Mettler® 

analytical balance to the nearest 0.0001 g.  Nectar was allowed to accumulate within flowers for 

12 hours, and then it was collected on filter paper wicks (Whatman®, Grade 1) from four flowers 

per plant (generally 3-4 μL collected per plant).  Folding a circular piece of filter paper in half, 

and then touching the folded edge to the floral nectaries, we collected nectar consistently in a 

circular pattern.  Nectar volume was determined via Baker’s (1979) spot-staining method, as 

described in Kearns and Inouye (1993), by comparing the measured diameter (mm) of each 

circular nectar spot on filter paper to a table of nectar spot diameters corresponding to nectar 

volumes (μL).  This technique is valid for nectars with sugar concentrations ranging from 10-

50%, which is in the range of many Brassicaceae species (Masierowska 2003), and provided that 

nectar spot diameters are ≤12 mm, which was the case in our study. Average anther mass and 

nectar volume per flower were calculated as estimates of reward quantity.  Anther and nectar 

samples were pooled (separately) within individual plants for chemical analysis; thus each 

individual plant was treated as a separate replicate providing one nectar and one anther sample. 

We assume that anther mass and number of pollen grains per anther are positively correlated, as 
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has been shown for other species (Bhowmik and Datta 2013), and hereafter consider anther mass 

as a measure of pollen quantity. 

6.2.4 Floral reward analysis   

Anther and nectar samples from each plant were microwave digested in two mL of trace metal 

grade HNO3 and brought to a final volume of 12 mL with MilliQ H2O (Millipore, Bedford, MA, 

USA).  A five mL aliquot of diluted digest was further diluted with five mL of 2% HNO3 

solution and mixed with a small volume (80 μL) of known concentrations of three internal 

standards (Beryllium, Germanium, Thallium).  Concentration of Ni in anthers (mg kg-1) and 

nectar (μL L-1) were determined via Inductively Coupled Plasma Mass Spectrometry (ICP-MS, 

Perkin/Elmer NEXION 300X) at the University of Pittsburgh.  A series of five samples with 

known Ni concentrations were used to construct standard calibration curves prior to each run of 

samples on the ICP-MS.  Duplicate samples and blanks, each containing internal standards, were 

analyzed at regular intervals as a measure of quality control during sample processing on the 

ICP-MS, and were within 10% of each other.  Control filter paper wicks were also processed to 

verify the absence of Ni in the filter paper itself.  Previous work has shown that elevated Ni 

concentrations in anthers are positively correlated with elevated Ni concentrations in pollen 

grains for S. polygaloides (ρ=0.61; unpublished data), thus here we use anther Ni concentrations 

as a surrogate for pollen Ni concentrations and as a measure of pollen quality.  Nickel 

concentrations of pollen or nectar for each plant were used in analyses of reward quality. 
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6.2.5 Floral visitor observations   

We arranged plants on trays for floral visitor observations, placing four Ni-treated plants and 

four control plants at random locations along the perimeter of a circle with a diameter of 52 cm 

on each tray.  Two trays were placed side-by-side for observation outside at the study location.  

Observations were made for ten 10-minute intervals per day for 2-3 consecutive days, with the 

positions of the trays switched after each observation to avoid spatial bias.   Two new trays of 

plants were observed each week for three consecutive weeks (N=48 plants; 13.33 hours of 

observation).  Soil treatments were applied to each group of sixteen plants for the two weeks 

immediately prior to observation of those plants.  To determine whether Ni exposure in soil 

affects the likelihood of flower visitation, we calculated the probability that individual plants 

were visited (the number of observation intervals with at least one visit divided by the total 

number of observation intervals).  To determine whether exposure to Ni in soil alters visitation 

rate, we recorded the number of flowers visited per plant per observation interval, and calculated 

flower visitation rates as the total number of visits to each plant / number of flowers per plant / 

hour.  Visitation rates for each plant were averaged across all observation intervals of each week, 

and these average values were used in analysis of visitation rates (N=24 per soil treatment).  We 

recorded identity of flower visitors and kept records of visitation by bees and flies separately.  

6.2.6 Statistical analysis  

All statistical analyses were conducted using SAS version 9.3 (SAS 2012).  Flower size, display 

size, anther mass and nectar volume were analyzed using MANOVA (PROC GLM), with soil 
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treatment as a fixed effect. We used mixed-model ANOVA (PROC GLM) to determine whether 

plants grown in high-Ni soil accumulated more Ni into floral rewards than control plants, with 

soil treatment, reward type (i.e., nectar or pollen) and their interaction as fixed effects, and week 

as a random factor.  We also used mixed-model ANCOVAs (PROC GLM) to determine whether 

Ni-treatment altered the probability of visitation or visitation rate, with floral visitor type (bee or 

fly), treatment (Ni or control) and their interaction as fixed effects, and week as a random factor. 

Flower size and the number of open flowers per plant were included as covariates in the 

ANCOVAs on visitation to account for effects of morphological variation.  For all mixed-

models, F-values were calculated by dividing the mean square of each fixed effect by the mean 

square of the interaction between that fixed effect and the random factor (i.e., week).  Post-hoc 

Tukey tests were used to compare Ni concentrations in each tissue type (i.e., anther or pollen) 

across treatments and weeks, as well as to compare floral visitation for each floral visitor type 

(i.e., fly or bee) across treatments and weeks.  To improve normality of residuals, visitation rate 

was square-root transformed and Ni concentration was natural-log transformed prior to analysis.  

6.3 RESULTS 

6.3.1 Floral measurements  

MANOVA revealed no significant effect of Ni-treatment on any component of floral 

morphology or reward quantity (Wilks' λ=0.89; F4,43=1.3; P=0.28).  Plants produced similar: (1) 

numbers of open flowers (control: 18.71 [± 2.53]; Ni-treated: 18.25 [± 2.29]), (2) sized flowers 
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(control: 44.28 [± 5.01] mm; Ni-treated: 44.85 [± 5.93] mm), (3) nectar volume (control: 0.95 [± 

0.1] uL; Ni-treated: 0.90 [± 0.13] uL) and (4) anther mass (control: 2.2 [± 0.7] mg; Ni-treated: 

2.5 [± 1.1] mg). 

6.3.2 Floral reward analysis 

Plants grown in Ni-supplemented soil accumulated more Ni into floral rewards than control 

plants, with the difference in Ni concentration between Ni-treated plants and controls greater in 

pollen (400%) than nectar (100%) (Fig. 11; Table 15).  As a result Ni concentrations were 

approximately three times greater in pollen than in nectar (Fig. 11; Table 15).  While mean Ni 

concentrations were similar for Ni-treated plants in the first two weeks of the experiment, plants 

in the third week had significantly (27%) higher Ni concentrations overall (i.e., in pollen and 

nectar). 

6.3.3 Floral visitor observations  

Experimental plants were visited by two groups of floral visitors- small bees in the genus 

Lasioglossum (Halictidae) and flies in the Syrphidae family.  Overall, soil treatment did not 

affect the probability of visitation by either insect group (Fig. 12a).  However, the probability of 

visitation to plants varied nearly two fold among weeks (0.16-0.25), and a significant pollinator 

type by week interaction was found (Table 16), indicating a temporal component to variation. 

Specifically, the overall probability of visitation by bees was 90% lower in week one relative to 

weeks two and three, and the overall probability of visitation by flies was 50% higher in week 
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one relative to weeks two and three.  There was no effect of flower number or flower size on the 

probability of visitation (Table 16).  Per flower visitation rate to Ni-treated plants was ~50% 

lower than control plants (Fig. 12b; Table 17), and this effect was equivalent for bees and flies 

(Table 17).  There was no effect of week or floral display on visitation rate, though a significant 

pollinator type by week interaction was found, again indicating a temporal component to 

visitation (Table 17).  Specifically, visitation rate by bees was 60% lower in week one relative to 

weeks two and three.  

6.4 DISCUSSION 

Short-term exposure to elevated soil Ni did not alter floral display or reward quantity, but it did 

lead to elevated Ni concentrations in nectar and pollen of the Ni hyperaccumulator S. 

polygaloides.  Our results also suggest that naïve floral visitors are unable to discriminate 

between Ni-treated and control flowers prior to flower visitation but instead respond to 

differences in floral reward chemistry following arrival at plants by visiting fewer flowers 

containing Ni.   

The effects of soil metals on plant-animal interactions are most often considered in the 

context of metal hyperaccumulating plants, whose above-ground tissue metal concentrations are 

generally greater than 1,000 ppm dry weight (van der Ent et al. 2013).  In addition to this study, 

previous experiments have shown periodic Ni nitrate solution treatments result in Ni 

hyperaccumulation to leaves, but lower metal levels in pollen and nectar of S. polygaloides 

(unpublished data).  Here we build on these results to show that Ni concentrations in pollen and 
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nectar well below values established as hyperaccumulator thresholds alter plant-flower visitor 

interactions.  While we directly measured Ni concentrations in anthers, rather than pollen, 

previous work suggests that pollen Ni accumulation would still be >100 ppm in our experimental 

plants (unpublished data), a concentration in floral rewards already known to alter floral visitor 

foraging (Meindl and Ashman 2013).  Our findings corroborate recent evidence that metal 

accumulation, defined as tissue metal concentrations >20 or >100 ppm dry weight, depending on 

the metal (Reeves and Baker 2000), alter plant-insect interactions (reviewed in Mogren and 

Trumble 2010).  For example, metal concentrations below hyperaccumulator thresholds are 

known to alter feeding behavior of fruit flies, as copper and cadmium concentrations in artificial 

diets below 1,000 ppm have resulted in feeding deterrence (Bahadorani and Hilliker 2009).  In 

addition, arsenic accumulation has been shown to deter herbivory by grasshoppers at 

concentrations as low as 46 ppm in leaf tissue (Rathinasabapathi et al. 2007).  Furthermore, 

insects feeding on tissues with relatively low metal concentrations have displayed decreased 

survival, including diamondback moths (Coleman et al. 2005) and armyworms (Cheruiyot et al. 

2013) when fed diets containing <1,000 ppm cobalt, copper, Ni, and zinc, among others.  These 

studies suggest that metal concentrations below hyperaccumulator thresholds may alter many 

plant-insect interactions, while ours is among the first to indicate plant-flower visitor interactions 

are also affected by metal accumulation.   

Our study also found a temporal component to metal accumulation and floral visitation, 

as Ni accumulation was highest in the third week of the experiment, and floral visitation varied 

throughout.  However, because we did not observe significant interactions between soil treatment 

and week, or a three-way interaction between soil treatment, week and floral visitor type for 

either the probability of visitation or visitation rate, differences in visitation across weeks are not 
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likely related to differences in Ni accumulation over time.  While it is unclear why plants in the 

third week accumulated higher concentrations of Ni relative to plants in weeks one and two, this 

pattern may be explained by increased transpiration rates and subsequent Ni uptake, as mean 

temperatures in week 3 (81°F) were elevated relative to those of week one (75°F) and two 

(72°F).  Regardless of temporal variation in Ni accumulation, Ni treatment produced a similar 

effect on floral visitation across weeks, in which visitation rates were consistently reduced to 

plants treated with Ni.   

The observed decrease in floral visitation to Ni-treated plants in this study suggests floral 

visitors may be responding to differences in floral reward chemistry, i.e., Ni concentration. 

However, the mechanism by which insects perceive Ni-rich floral rewards is uncertain. 

Deterrence effects have been observed for insects feeding on Ni-rich vegetative tissue (Boyd et 

al. 2002) as well as other metals (reviewed in Vesk and Reichman 2009), but it is unclear 

whether deterrence occurs through taste perception or other mechanisms.  For example, some 

studies suggest that insect herbivores feeding on metal-rich leaf tissue are deterred via post-

ingestional mechanisms rather than initial taste perception (Behmer et al. 2005).  While 

honeybees possess fewer gustatory receptors relative to other insects, such as fruit flies (10 vs. 

68, respectively; de Brito Sanchez 2011), they can still detect a wide variety of compounds in 

nectar (de Brito Sanchez 2007), and determining pollinator abilities to detect metals will provide 

a broader understanding of the pollination ecology of metal accumulating plants.   

Metal accumulation into floral rewards has implications for the use of hyperaccumulating 

plants in phytoremediation.  Recently, researchers have brought to light the potential ecological 

and environmental consequences of phytoremediation, not all of which are positive (Gerhardt et 

al. 2009).  For example, several species of selenium (Se) hyperaccumulators have been proposed 
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for use in phytoremediation of Se-contaminated soils (Zhu et al. 2009).  However, considering 

recent findings of selenium toxicity to bees (Hladun et al. 2012), the use of insect pollinated 

flowering plants for phytoremediation may be detrimental to foraging pollinators.  Because metal 

accumulators may transfer toxic metals to higher trophic levels, such as pollinators, selecting the 

appropriate plant species for use in phytoremediation is vital.  For example, selecting wind-

pollinated plants, many of which show potential as phytoremediators (Chen et al. 2004), may 

limit risks to insect pollinators in metal-contaminated areas.   

Our results also suggest that metal hyperaccumulation in natural populations alters plant-

pollinator interactions.  In this study, generalist floral visitors exposed to Ni-accumulating plants 

were naïve to Ni-rich resources, as no plants in western PA are known to accumulate Ni in high 

concentrations.  However, recent surveys of insect communities associated with natural 

populations of S. polygaloides in CA suggest that this species hosts a distinct floral visitor 

community compared to closely related sympatric, non-accumulating plant species (unpublished 

data).  Taken together this suggests that floral metal accumulation may promote specialization by 

pollinators tolerant to metal-rich resources.  For example, one hypothesis proposed for the 

function of toxic alkaloids in nectar is to favor specialist pollinators (reviewed in Adler 2001), as 

not all generalist pollinators would be able to tolerate relatively high concentrations of secondary 

compounds present in floral resources.  Considering recent findings of floral visitor deterrence in 

response to Ni in nectar (Meindl and Ashman 2013; this study), Ni accumulation in natural 

populations may also have important consequences for patterns of pollen transfer and ecological 

specialization.  For example, plant secondary compounds in nectar have been shown to alter 

pollinator foraging and behavior (Gegear et al. 2007), and specifically impact patterns of pollen 

transfer (Irwin and Adler 2008).  Our study suggests that metals in floral rewards may result in 
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similar effects, and warrants further study of the pollination ecology of metal accumulating 

plants. 
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Table 15. Results from mixed-model ANOVA on Ni accumulation into pollen and nectar (Reward 

Type- RT) collected from Streptanthus polygaloides plants grown in either Ni-supplemented or control soils 

(Soil Treatment- ST).  Week was included as a random factor.  Bold values indicate a significant difference 

(P<0.05). 

Source of variation Num. df Den. df MS F P 
Week 2 84 0.64 5.05 0.0085 
ST 1 2 52.09 1440.31 <0.001 
RT 1 2 1.89 26.97 0.035 
ST x RT 1 2 9.53 77.23 0.013 
ST x Week 2 84 0.0036 0.28 0.75 
RT x Week 2 84 0.07 0.55 0.58 
ST x RT x Week 2 84 0.12 0.97 0.38 
Error 0.13 
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Table 16. Results from mixed model ANCOVA on the probability of visitation by bees and flies 

(Visitor Type- VT) to Streptanthus polygaloides plants grown in either Ni-supplemented or control soils (Soil 

Treatment- ST).  Week was included as a random factor.  Flower size and flower number were included as 

covariates.  Bold values indicate a significant difference (P<0.05). 

Source of variation Num. df Den. df MS F P 
Week 2 82 0.57 3.56 0.033 
ST 1 2 0.09 8.15 0.1 
VT 1 2 0.0043 0.01 0.92 
ST x VT 1 2 0.0036 0.21 0.69 
ST x Week 2 82 0.012 0.75 0.49 
VT x Week 2 82 0.43 27.07 <0.0001 
ST x VT x Week 2 82 0.017 1.07 0.35 
Flower Size 1 82 0.0069 0.44 0.51 
Flower Number 1 82 0.12 0.74 0.39 
Error 0.016 
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Table 17. Results from mixed model ANCOVA on visitation rate (visits/flower/hour) by bees and flies 

(Visitor Type- VT) to Streptanthus polygaloides plants grown in either Ni-supplemented or control soils (Soil 

Treatment- ST).  Week was included as a random factor.  Flower size and flower number were included as 

covariates.  Bold values indicate a significant difference (P<0.05). 

Source of variation Num. df Den. df MS F P 
Week 2 82 0.068 2.65 0.077 
ST 1 2 0.43 138.14 0.0072 
VT 1 2 0.17 0.24 0.67 
ST x VT 1 2 0.0028 0.54 0.53 
ST x Week 2 82 0.0031 0.12 0.89 
VT x Week 2 82 0.7 27.32 <0.0001 
ST x VT x Week 2 82 0.0051 0.2 0.82 
Flower Size 1 82 0.014 0.56 0.46 
Flower Number 1 82 0.0019 0.08 0.78 
Error 0.026 
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Figure 11. Nickel concentrations (ppm) in pollen and nectar samples collected from Streptanthus 

polygaloides plants (N=24 samples per reward type per treatment). Black symbols represent plants grown in 

control soil, while white symbols represent plants grown in Ni-supplemented soil.  Within a floral reward 

type, asterisks indicate a significant difference between treatments (P<0.001). 
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Figure 12. (a) Proportion of observation intervals in which visitation to Streptanthus polygaloides was 

observed and (b) mean visitation rates by floral visitor type (fly, bee) to S. polygaloides plants in experimental 

arrays (N=48 plants observed over 80 10-minute observation intervals).  Black symbols represent plants 

grown in control soil, while white symbols represent plants grown in Ni-supplemented soil.  Within a floral 

visitor type, bars with asterisks are significantly different between treatments (P<0.05). 
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7.0  EFFECTS OF FLORAL METAL ACCUMULATION ON FLOWER VISITOR 

COMMUNITIES: INTRODUCING THE ‘ELEMENTAL FILTER HYPOTHESIS’ 

7.1 INTRODUCTION 

Understanding how abiotic factors can spur reproductive isolation and speciation between 

closely related species is a central question in both ecology and evolution (Schluter 2009). For 

plants, edaphic factors are thought to play a large role in the diversification of many lineages 

(Rajakaruna 2004). For example, there are several mechanisms by which disparate soil 

environments can result in reproductive isolation between closely related taxa. Adaptation to 

novel soil environments can lead to species-level changes in floral morphology or phenology that 

can lead to reproductive isolation between sister species (Bomblies 2010). However, growth in 

novel soils can also lead to chemical changes in floral tissues and pollinator rewards (e.g., nectar 

and pollen; Meindl et al. 2013; Meindl et al. 2014a,b), which could alter pollinator visitation 

(Johnson et al. 2006; Meindl and Ashman 2013, 2014) and contribute to reproductive isolation 

between closely related plant species. 

For instance, in addition to sugars, pollinator rewards often contain several minor 

constituents. Plants that grow on heavy metal-rich soil can accumulate metals (e.g., cadmium 

(Cd), nickel (Ni), and zinc (Zn), reviewed in Krämer 2010; van der Ent et al. 2013) into 

pollinator rewards (Meindl et al. 2014a,b), which can deter pollinators (Meindl and Ashman 
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2013, 2014). Likewise, floral nectars can contain microbes and secondary defensive compounds, 

both of which have been shown to either positively (Herrera et al. 2013; Wright et al. 2013) or 

negatively (Vannette et al. 2013; Adler and Irwin 2005) affect pollinator visitation. While the 

presence of non-nutritive compounds (e.g., secondary compounds or heavy metals) in nectar and 

pollen may be merely a side effect of their production in other tissues where they provide 

benefit, i.e., defense against herbivores or microbial pathogens (reviewed in Adler 2000), there 

are also possible adaptive explanations. For instance, the ‘pollinator fidelity hypothesis’ states 

that secondary compounds in nectar increase the number of quality visits from pollinators that 

are tolerant of ‘toxic’ nectar (i.e., able to consume without negative fitness effects; Boyd 2009), 

and reduce visits by less efficient, less tolerant generalist floral visitors (reviewed in Adler 2000). 

However, the idea that heavy metals may have similar effects when incorporated into floral 

rewards has not previously been considered. Given the deterrent effects of floral metals on 

generalist or naive pollinators, e.g., bumble bees and syrphid flies in some systems (Meindl and 

Ashman 2013, 2014), changes in floral chemistry following colonization of novel soils may act 

as an ‘elemental filter’ of floral visitors and contribute to reproductive isolation via indirect 

effects on plant-pollinator interactions.   

Thus, we formulate a related hypothesis for the effect of plant metal hyperaccumulation 

on insect pollinators: the ‘elemental filter hypothesis’. Here, metal-rich nectar and pollen rewards 

act as an ‘elemental filter’ that limits floral visitors to those that are unresponsive or tolerant of 

ingesting the metals. This hypothesis would apply to the wide range of metal hyperaccumulating 

plants for which leaf tissues are defended against insect herbivory via both metal toxicity (Boyd 

and Martens 1994) and deterrence (Kazemi-Dinan et al. 2014). In contrast, the effects of metal-

rich pollen and nectar on pollinators have received far less attention (Strauss and Boyd 2011). 
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Yet metal-tainted rewards are likely to affect several aspects of plant-pollinator interactions 

(Meindl and Ashman 2013, 2014).  

Specifically, heavy metals in floral rewards may act as an elemental filter on pollinators 

in three ways. First, metal-rich rewards could deter promiscuous or generalist pollinators because 

they sample flowers widely but are discriminating as they can taste or smell the metals and are 

repelled by them, and consequently avoid visiting metal-tainted flowers (Meindl and Ashman 

2013, 2014). This would lead to reduced visitation rates by generalists (and/or overall) to a metal 

accumulating species. Second, taxa-specific selective deterrent effects of floral metals (Boyd and 

Martens 1999; Jhee et al. 2005) could translate into fewer taxa (including the generalists) visiting 

flowers of hyperaccumulators relative to non-accumulator species, and thus lower species 

richness in the flower visitor community. Third, if some insect species are tolerant, unresponsive, 

or even requiring of the metals in floral rewards (Boyd 2009), then there may be unique insect 

taxa visiting the hyperaccumulator. If community composition and/or the species richness of 

flower visitors differ between a hyperaccumulator and a related non-accumulator, then early 

stages of reproductive isolation between related plant species growing in different soil 

environments may be achieved (Rieseberg and Willis 2007). 

As a first step towards determining whether metal hyperaccumulation acts as an 

elemental filter of pollinating insects, in this study we examine the pollination systems of two 

sympatric congeneric plant species that differ in terms of floral metal accumulation.  

Streptanthus polygaloides and S. tortuosus (Brassicaceae) are closely related taxa with 

overlapping geographic ranges (Mayer and Soltis 1994; Baldwin et al. 2012; Cacho and Strauss 

2014). However, S. polygaloides is a Ni-hyperaccumulator that occurs exclusively on serpentine 

soils, typically high in Ni, while S. tortuosus primarily occurs on non-serpentine soils (Reeves et 
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al. 1981; Baldwin et al. 2012). Furthermore, the species have similar flowering times, floral 

morphologies (Baldwin et al. 2012) and are insect pollinated (Preston 1994; Wall and Boyd 

2002). First we confirm similarities in floral display and morphology, but differences in 

pollinator reward Ni concentrations between species, and answer the following questions by 

surveying the two species in their natural populations: (1) Does the Ni hyperaccumulator S. 

polygaloides receive fewer floral visits relative to the non-accumulator S. tortuosus? (2) Does 

the composition of the pollinator pool differ between S. polygaloides and S. tortuosus? 

Specifically, does S. polygaloides host fewer floral visitor taxa, and/or is it visited by unique, 

unshared floral visitor taxa relative to S. tortuosus? Second, as an explicit test of our elemental 

filter hypothesis, we experimentally manipulate Ni in potted S. polygaloides plants to answer: 

(3) Is floral Ni directly responsible for altering flower visitation? (4) Is the response to high Ni 

floral resources more pronounced for the ambient pollinator communities residing at S. tortuosus 

than S. polygaloides sites? 

7.2 METHODS 

7.2.1 Study species 

Streptanthus polygaloides and S. tortuosus are spring flowering herbaceous plants that are at 

least partially self-compatible (Meindl et al. 2014b; Wall and Boyd 2002; Preston 1994). Both 

species produce zygomorphic, urceolate (i.e., urn-shaped) flowers that offer both pollen and 

nectar to pollinators (Preston 1994; Meindl and Ashman 2014). Pollinator visitation is required 
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for sexual reproduction in S. polygaloides (Boyd et al. 2009), and is known to increase both fruit 

and seed production in S. tortuosus (Preston 1994). Floral visitors to both species are mainly 

bees, but also wasps, flies, beetles, and butterflies (Wall and Boyd 2002; Preston 1994). 

Streptanthus tortuosus is a perennial species that occurs throughout California and Oregon, while 

S. polygaloides is an annual species restricted to the Sierra Nevada of northern California 

(Baldwin et al. 2012). 

7.2.2 Study sites  

We studied S. polygaloides in three serpentine sites and S. tortuosus at three non-serpentine sites 

during May-June in 2012 and 2013. All study sites (POLY1, POLY2, POLY3, TORT1, TORT2, 

TORT3) were located in mixed-forest openings in the foothills of the Sierra Nevada in northern 

California, and were separated by five to 28 km (Fig. 13). Mean soil Ni concentrations at the 

serpentine sites (total Ni = 2340 ± 115 mg kg-1; phytoavailable Ni = 69 ± 22 mg kg-1) were 

elevated relative to the non-serpentine sites (total Ni = 54 ± 2 mg kg-1; phytoavailable Ni = 0.15 

± 0.03 mg kg-1; GAM and TLA, unpublished data). 

7.2.3 Characterizing pollination systems of study species 

7.2.3.1 Floral morphology and chemistry 

In 2012, for each species we measured three floral traits known to be important for pollinator 

visitation: flower depth, flower width, and the number of flowers per inflorescence (Hegland and 

Totland 2005; Stang et al. 2006). We recorded the number of flowers per inflorescence on 
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individual plants at 3 m intervals along randomly placed transects at each site of each species (10 

plants per site, 60 plants total). We then collected two flowers per plant (whose trait values were 

later averaged), and stored them in 70% ethanol until measuring traits at the end of the field 

season. Because of the urn-shaped calyx, the depth of the calyx and the width of the opening into 

the flower (i.e., the throat) determine the accessibility of nectar at the base of the flowers. 

Therefore, we measured calyx length and the width of the flower throat (mm) for flowers of each 

species using digital calipers.   

We used mixed-model ANOVA (PROC MIXED; SAS 2012) to compare the number of 

flowers per inflorescence, flower depth, and flower width between species. Plant species was 

treated as a fixed effect, while site (nested within species) was treated as a random effect.  

To verify the Ni concentrations in pollinator rewards in 2012 we collected anthers and 

nectar from freshly opened flowers during peak flowering. Anther and nectar samples (10 plants 

per site, 60 plants total) were collected from plants described above. For each plant sampled, we 

collected 60 anthers from unopened buds, which were air dried for 48 hours and then weighed to 

the nearest 0.0001 g on a AE200 Mettler® analytical balance (Mettler-Toledo, LLC, Columbus, 

OH, USA). We collected nectar using filter paper wicks (Whatman® Grade 1, GE Healthcare 

Bio-Sciences, Pittsburgh, PA, USA) from four flowers per plant. We determined concentrations 

of Ni in anthers (mg kg-1) and nectar (μL L-1) via ICP-MS at the University of Pittsburgh, 

following Meindl and Ashman (2014).  

We used mixed-model ANOVA (PROC MIXED; SAS 2012) to compare Ni 

accumulation into floral rewards between species. Plant species, reward type (i.e., anthers or 

nectar) and their interactions were included in the model as fixed effects, while site and 
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individual plant (both nested within species) were treated as random effects. We natural log 

transformed Ni concentration data in anthers and nectar to improve normality of residuals.   

7.2.3.2 Floral visitation rate 

To determine whether floral visitation rate differed between S. polygaloides and S. tortuosus, we 

conducted floral observations across three days per site per species in May-June 2012. We 

observed floral visitors during five-minute intervals at 12 sampling points between the hours of 

10 a.m. and 4 p.m. on sunny days (36 observation intervals [9 hours] per site, 216 observation 

intervals [36 hours] total across all sites). At each sampling point, we established a 1 m2 plot and 

recorded the number of flowers/plot. For each observation interval, we calculated visitation rate 

as the number of visits/flower/hour.  

We used mixed model ANOVA (PROC MIXED; SAS 2012) to determine whether floral 

visitation rate was lower to S. polygaloides relative to S. tortuosus. We treated plant species as a 

fixed factor, and site (nested within species) as a random factor. We included flower number (per 

plot) and time of day of observations as covariates, to account for effects of morphological 

variation and temporal changes in pollinator abundance, respectively. Denominator degrees of 

freedom for analysis of visitation rate, as well as for all subsequent mixed models presented in 

this study, were determined using the Kenward-Roger approximation, which is preferred for 

mixed model analysis with relatively small sample sizes (Bell et al. 2014). We natural log 

transformed visitation rate data prior to analysis.  



  

 

112 

7.2.3.3 Ambient and flower visitor community richness and composition 

To determine whether the species richness and community composition of floral visitors 

associated with each plant species differed and whether this was due to differences in floral 

visitor availability, or in visitation preferences of insects, we estimated floral visitor richness and 

composition via two survey methods in 2012. First, we surveyed ambient floral visitor richness 

and composition (hereafter, ‘ambient’ richness and composition) of each community using 

colored bowl traps (e.g., Saunders and Luck 2013). At each site, we placed nine colored plastic 

bowls (three each of white, blue and yellow) along a linear transect in groups of three, with each 

group separated by 10 m and bowls within groups separated by one m. We left bowls at each site 

for a total of two weeks during peak flowering, and we collected insects from bowls three times 

per week. Additionally, we determined flower visitor richness and composition by collecting 

floral visitors directly from flowers of each plant species (hereafter, ‘flower visitor’ richness and 

composition). We collected a minimum of 100 floral visitors from each species/site over the 

course of at least three days/site. All insects collected (from both ambient and flower visitor 

surveys) were later identified to species or morphospecies at the end of the field season. 

Vouchers of collected insects have been deposited at the Carnegie Mellon Natural History 

Museum for future reference. 

To estimate and compare species richness of ambient and flower visitor communities, we 

constructed species accumulation curves using the program EstimateS (Version 9; Gotelli and 

Colwell 2008; Colwell 2013). We calculated the expected asymptotic richness of both ambient 

and flower visitor communities for each species combining across sites (Chao1; Colwell 2013), 

and assessed differences in estimated richness between species based on overlap of associated 

Chao1 95% confidence intervals (Colwell 2013). In addition, we used hierarchical, 
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agglomerative cluster analysis using abundance-based Bray-Curtis dissimilarity indices 

calculated across sites using the ‘vegdist’ function in ‘vegan’ (R Development Core Team 2012). 

We used the ‘pvclust’ function to obtain statistical support for each cluster via bootstrapping (N 

= 1000 replications; approximately unbiased probability values ≥ 95% indicate clusters of 

similar species composition; Suzuki and Shimodaira 2006). These results determine whether the 

ambient and flower visitor communities associated with each species are similar or distinct. If 

species-specific flower visitor communities are determined by ambient community composition, 

then we expect similar clustering of insect communities by plant species (i.e., ambient and 

flower visitor) and we also expect many shared flower visitor taxa between the two plant species. 

Conversely, if flower visitor communities are influenced by floral metal accumulation rather 

than ambient pollinator pool, we expect flower visitor communities to be dissimilar between 

plant species, i.e., contain few shared taxa, whereas the ambient community composition for 

each species will be similar. 

7.2.4 Experimental test of the elemental filter hypothesis 

7.2.4.1 Generation and treatment of experimental plants 

Seeds of S. polygaloides collected from population POLY1 were germinated on a thin layer of 

perlite (~6 mm) in 27 in3 pots (Deepots, Stuewe and Sons, Inc., Tangent, OR, USA) filled with 

potting soil (Fafard #4, Sun Gro Horticulture, Agawam, MA, USA) in a greenhouse at the 

University of Pittsburgh in 2013. After four weeks of growth, 80 plants were allocated to one of 

two Ni treatments: Ni-treated or control. Nickel was applied to Ni-treated plants by top-watering 

with 40 mL of Ni nitrate (Ni(NO3)2) solution containing 400 mg kg-1 Ni (as in Meindl et al. 
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2014b). Control plants were top-watered with 40 mL of ammonium nitrate (NH4NO3) solution to 

compensate for additional nitrogen (190 mg kg-1) in the Ni treatment. We treated plants once per 

week for eight weeks and then transported them to the field sites in northern CA. Once at the 

field sites, we treated plants every day for two weeks prior to use in the experiment.  

7.2.4.2 Floral chemistry 

For each plant used in the experiment we collected 60 anthers from unopened buds and nectar 

from four flowers per plant and determined concentrations of Ni in anthers (mg kg1) and nectar 

(μL L-1) as above. We natural log transformed Ni concentrations in anthers and nectar to improve 

normality of residuals. 

To verify that Ni-treated plants accumulated more Ni into floral rewards than control 

plants, we conducted an ANOVA (PROC GLM; SAS 2012) with soil treatment (Ni-treatment or 

control), reward type (anthers or nectar) and their interaction as fixed effects.  

7.2.4.3 Floral visitors 

To determine whether floral metals are directly responsible for altering flower visitation, and 

whether the response to high Ni floral resources is more pronounced for pollinator pools residing 

at S. tortuosus than S. polygaloides sites, in May of 2013 we observed mixed arrays of Ni-treated 

and control S. polygaloides plants. We observed experimental arrays for five days at each of two 

S. polygaloides and two S. tortuosus sites. We made observations at one S. polygaloides and one 

S. tortuosus site each day, and the order (morning vs. afternoon) was reversed on consecutive 

days. On each day at a given site, we observed two groups of four plants, with each group being 

composed of two Ni-treated and two controls arranged in a circle with a 52 cm diameter. We 
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observed plants for twelve five-minute intervals, and switched positions of the two groups after 

each interval to remove any spatial bias. We did not reuse plants following observations. We 

recorded visits by major functional groups (bees, beetles, and flies) separately and calculated 

visitation rate (v/flower/hr) by functional group for each plant, averaging across all observation 

intervals of each day at each site. These average values were used in analysis of visitation rates 

(N = 20 per soil treatment x site type; N = 80 total). Prior to floral visitor observations, we 

measured inflorescence height and counted the number of open flowers per plant at the start of 

the day for use as covariates in statistical analyses. We natural log transformed visitation rate 

data to improve normality of residuals. 

We used a mixed model ANOVA (PROC MIXED; SAS 2012) to determine whether Ni-

treatment altered floral visitation rate, with soil treatment (Ni-treated or control), floral visitor 

type (bee, beetle or fly) and site type (S. polygaloides vs. S. tortuosus), as well as their 

interactions, as fixed effects, and site (nested within site type) as a random effect. To explore 

significant interactions we used the SLICE option, which partitions interactions of factors so that 

each factor (main effect or, in the case of a significant three-way interaction, the two-way 

interaction term) can be tested at different levels of the other factor (Schabenberger and Pierce 

2002; SAS Institute 2011). To control for variation due to floral display and temporal variation in 

pollinator abundance we included inflorescence height, flower number and time of observation 

as covariates.  

Least squares means and standard errors are reported throughout. 
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7.3 RESULTS 

7.3.1 Characterizing pollination systems of study species 

7.3.1.1 Floral morphology and chemistry 

The Streptanthus species did not differ in either floral display size (Species: F1,4 = 1.1, P > 0.05; 

S. tortuosus vs. S. polygaloides: 23.3 ± 4 vs.17.3 ± 4 flowers per inflorescence) or flower width 

(Species: F1,4 = 0.06, P > 0.05; S. tortuosus vs. S. polygaloides: 2.25 ± 0.08 vs. 2.23 ± 0.08 mm). 

However, S. tortuosus flowers were 35% deeper than S. polygaloides flowers (Species: F1,4 = 

328.85, P < 0.0001; S. tortuosus vs. S. polygaloides: 7.71 ± 0.08 vs. 5.69 ± 0.08 mm). 

In natural populations, S. polygaloides accumulated higher concentrations of Ni 

compared to S. tortuosus (Species: F1,4 = 1,686.27, P < 0.0001), though both species 

accumulated higher concentrations of Ni into anthers relative to nectar (Reward Type: F1,58 = 

887.34, P < 0.0001). However, the magnitude of the difference between species varied by reward 

type (Species x Reward Type: F1,58 = 12.96, P < 0.001). Specifically, S. polygaloides 

hyperaccumulated Ni (i.e., >1,000 mg kg-1) into anthers and accumulated Ni (i.e., >100 mg kg-1) 

into nectar. Average S. polygaloides Ni concentration in anthers across the three study sites was 

2,203 ± 140 mg kg-1, while average Ni concentration in nectar was 139 ± 24 mg kg-1. 

Streptanthus tortuosus had dramatically lower Ni concentrations in both anthers (28 ± 4 mg kg-1) 

and nectar (3 ± 0.5 mg kg-1). 
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7.3.1.2 Floral visitation rate 

In natural populations, floral visitation rates were 21% lower in S. polygaloides than S. tortuosus, 

though this difference was not statistically significant (Species: F1,4 = 5.97, P = 0.07; S. tortuosus 

vs. S. polygaloides: 1.4 ± 0.2 vs.1.1 ± 0.2 v/flower/hr). Time of observation (F1,208 = 6.63, P = 

0.01), but not flower number (F1,208 = 0.17, P > 0.05), significantly influenced visitation rates. 

7.3.1.3 Ambient and flower visitor community richness 

Rarefaction analysis indicated that the ambient insect communities were similar in species 

richness (49 for S. polygaloides sites compared to 46 for S. tortuosus sites; Fig. 14A,B; Table 

18), as the 95% confidence intervals for the Choa1 estimates overlap substantially (S. 

polygaloides vs. S. tortuosus: 37.05-76.33 vs. 40.46-87.24; Fig. 14A,B). Similarly, rarefaction 

analysis of flower visitor communities indicated that the two Streptanthus species host similar 

numbers of floral visitor species (46 for S. polygaloides compared to 36 for S. tortuosus; Fig. 

14C,D; Table 18), as the 95% confidence intervals for the Choa1 estimates overlap substantially 

(S. polygaloides vs. S. tortuosus: 33.5-94.24 vs. 30.25-40.9; Fig. 14C,D). 

7.3.1.4 Ambient and flower visitor community composition 

Ambient insect communities associated with S. polygaloides were not more similar to each other 

than they were to ambient insect communities associated with S. tortuosus, and no clusters 

received bootstrap support above 95% (Fig. 15A). Thirty-six potential floral visitor taxa were 

collected from ambient communities at S. tortuosus sites, while 32 potential floral visitor taxa 

were collected from ambient communities at S. polygaloides sites (Table 18). The most 

frequently collected taxa belonged to the insect orders Coleoptera, Diptera, and Hymenoptera 
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(Table 18; Fig. 15A). Fifteen taxa were collected from ambient communities at both S. tortuosus 

and S. polygaloides sites (Table 18). Nine of these shared taxa were bees, including honey bees 

(Apis mellifera), bumble bees (Bombus vosnesenskii), and a number of short-tongued bee species 

(Dialictus and Halictus spp.), while the remaining shared taxa were beetles, flies and ants (Table 

18).   

Nonetheless, the flower visitor communities associated with each plant species were 

distinct. Streptanthus tortuosus and S. polygaloides each hosted 31 flower visitor taxa (Table 18), 

ten of which were collected from both plant species (Table 18). The majority of these flower 

visitors were bees, as 24 bee taxa visited the flowers of S. tortuosus and 26 bee taxa visited S. 

polygaloides (Table 18). Bees from the family Apidae were most commonly collected on the 

flowers of S. tortuosus, including honey bees (Apis mellifera), several species of bumble bees 

(Bombus melanopygus, B. vandykei, and B. vosnesenskii), and carpenter bees (Xylocopa 

californica and X. tabaniformis; Table 18). While other members of the Apidae were observed to 

visit the flowers of S. polygaloides (e.g., Anthophora sp. and Melissodes sp.), honey bees, 

bumble bees, and carpenter bees were conspicuously absent (Table 18). The most commonly 

collected bee taxa from the flower visitor communities of S. polygaloides were members of the 

Megachilidae, including four species in the genus Ashmeadiella and the species Dianthidium 

dubium (Table 18), all of whom were absent from the flower visitor communities of S. tortuosus. 

Overall, only seven bee taxa were observed to visit flowers of both species (Table 18).  

Cluster analysis showed that flower visitor communities associated with S. polygaloides 

are more similar to each other than they are to flower visitor communities associated with S. 

tortuosus, a topology receiving strong bootstrap support (≥ 99%; Fig. 15B). Bray-Curtis 

dissimilarity values ranged from 0.19-0.26 for S. polygaloides flower visitor community 
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comparisons across S. polygaloides sites, while values ranged from 0.19-0.54 for S. tortuosus 

flower visitor community comparisons across S. tortuosus sites (Fig. 15B). Comparison between 

the two clusters formed by S. polygaloides and S. tortuosus flower visitor communities produced 

a Bray-Curtis dissimilarity value close to 1, indicating limited floral visitor sharing across 

species (Fig. 15B). 

7.3.2 Experimental test of the elemental filter hypothesis 

7.3.2.1 Floral chemistry 

Nickel-treated plants accumulated 177 times more Ni into floral rewards than control plants 

(520.15 ± 17.6 vs. 2.87 ± 17.7 mg kg-1, respectively; Treatment: F1,151 = 3,403.3, P < 0.0001). 

Across both treatments, Ni concentration of anthers was more than four times greater than nectar 

(428.57 ± 17.6 vs. 94.44 ± 17.7 mg kg-1, respectively; Reward Type: F1,151 = 154.8, P < 0.0001). 

Nickel concentration was 259 times greater in anthers (853.86 ± 23.6 vs. 3.28 ± 23.6 mg kg-1) 

and 72 times greater in nectar (186.44 ± 23.6 vs. 2.45 ± 23.9 mg kg-1) of Ni-treated plants than 

controls (Treatment x Reward Type: F1,151 = 54.3, P < 0.0001).  

7.3.2.2 Floral visitation rate 

Flower visitor response to Ni-treated S. polygaloides was functional group- and site type-specific 

(Treatment x Site Type x Floral Visitor Type: P = 0.002; Table 19; Fig. 16). Specifically, 

visitation rate by bees was decreased by 60% in Ni-treated plants relative to controls at S. 

tortuosus sites (F1,177 = 5.06, P < 0.05), but not at all at S. polygaloides sites (F1,176 = 0.08, P > 

0.05; Table 19; Fig. 16). Visitation by all other insect groups (flies and beetles) was unaffected 
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by Ni-treatment at either site type. Inflorescence height, flower number, and time of observation 

did not affect visitation rates (Table 19). 

7.4 DISCUSSION 

In situ S. polygaloides hyperaccumulated Ni into anthers and accumulated Ni into nectar, in stark 

contrast to S. tortuosus, the non-accumulator. In natural populations, S. polygaloides received 

lower visitation rates per flower, and attracted a different composition of floral visitors than S. 

tortuosus, from a similar ambient pool. Furthermore, experimental Ni-treatment of S. 

polygaloides reduced floral visitation by bees, but only from the S. tortuosus ambient pollinator 

pool. Together, these results indicate that not only does floral Ni accumulation lead to reduced 

bee visitation rates, but also that metal hyperaccumulation acts as a filter to the pollinator 

community leading to differences in flower visitor community composition between 

hyperaccumulating and non-accumulating taxa. Below, we first discuss our results in the context 

of the three elemental filter predictions. We then conclude by considering how floral display and 

morphology can influence pollinator filtering and how metal accumulation may filter other plant 

mutualists. 

7.4.1 Predictions of the elemental filter hypothesis 

First, we predicted that metal-rich floral rewards would deter generalist pollinators (Meindl and 

Ashman 2013, 2014) and that this would translate to lower floral visitation rates for metal 
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hyperaccumulating taxa. While we did observe lower floral visitation rates in natural populations 

to the Ni hyperaccumulating taxon, S. polygaloides, relative to the non-accumulator, S. tortuosus, 

this difference was not significant. However, we did observe decreased visitation rates by bees to 

Ni-treated S. polygaloides plants at S. tortuosus sites in our manipulative experiment (Fig. 16). 

As previous research has found Ni in floral rewards reduces visitation by generalist pollinators 

(e.g., Lasioglossum spp. and syrphid flies: Meindl and Ashman 2014; Bombus impatiens: Meindl 

and Ashman 2013), taken together these data suggest that floral metal accumulation reduces 

visitation rates by deterring some generalist pollinator taxa. Our second prediction was that taxa-

specific selective deterrent effects of floral metals would translate into fewer taxa visiting 

flowers of hyperaccumulators relative to non-accumulators. However, we did not observe lower 

flower visitor richness on the hyperaccumulating species compared to the non-accumulating 

species. In fact, flower visitor richness was predicted to be slightly higher for the Ni-

hyperaccumulating species S. polygaloides compared to S. tortuosus (Fig. 14C,D). It is important 

to note that while we recorded floral visitation to each plant species, we did not directly 

determine whether visitors were effective pollinators. Infrequent floral visitors collected from S. 

polygaloides flowers could represent promiscuous, generalist floral visitors within the 

community that do not regularly pollinate the flowers of this species. For example, 15 of the 

flower visitor taxa collected at S. polygaloides sites were rarely observed at flowers and were 

represented by no more than one individual collected per site. Thus, the possibility remains that 

the number of consistent, effective pollinators may differ between hyperaccumulating and non-

accumulating species. However, given that each species hosted approximately the same number 

of flower visitor taxa in natural populations, here we conclude that floral metal accumulation 

does not reduce flower visitor richness for Streptanthus species. 
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Our third prediction was that S. polygaloides would be visited by unique, unshared floral 

visitor taxa relative to S. tortuosus. Overall, approximately 80% of observed flower visitor taxa 

were unshared between species. For bees, specifically, seven taxa were observed to visit both 

plant species, while S. polygaloides hosted 19 unique taxa and S. tortuosus hosted 17 unique 

taxa. Several species of generalist pollinators, including Apis mellifera, Bombus spp., and 

Xylocopa spp., were extremely abundant on S. tortuosus flowers, yet completely absent from 

those of S. polygaloides (Table 18). Notably, Apis mellifera and Bombus spp. were collected 

from the ambient community at S. polygaloides sites (Table 18), indicating that the insect species 

were present, but avoided the flowers of the hyperaccumulator. Furthermore, most of the unique 

bee taxa observed on S. polygaloides occur in genera with known floral specialists (e.g., 

Dianthidium, Ashmeadiella: Wilson et al. 2010; Perdita, Melissodes, Anthidium, Hoplitis, 

Anthophora: Griswald et al. 1997), whereas all of the bee taxa collected solely from S. tortuosus 

occur in genera generally known to form broad floral associations (Apis, Bombus, Ceratina, 

Dialictus, Halictus, Osmia, Xylocopa). In addition to differences in flower visitor community 

composition, the observed reduction in bee visitation rates to Ni-treated S. polygaloides plants 

only at S. tortuosus sites suggest that some bee species found in S. polygaloides sites are 

unresponsive or tolerant to Ni-rich floral resources, and hence show no preference between Ni-

treated and control plants. Thus, we provide novel evidence that metal hyperaccumulating plants 

host unique species of pollinating insects, relative to closely related plants occurring in sympatry. 

Because floral metal accumulation may result in pollinator filtering, closely related plant species 

occurring in sympatry that differ in floral metal accumulation may become reproductively 

isolated. Previous studies have found correlations between edaphic shifts and pollination system 

shifts for plant sister species with overlapping geographic ranges (van der Niet et al. 2006)- our 
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study highlights one possible mechanism by which these shifts may occur, i.e., the elemental 

filter. 

Surveys of insect taxa associated with metal hyperaccumulating plants are rare, but a 

small number of studies suggest that insect herbivores may become specialized and 

monophagous on metal hyperaccumulating plants. Wall and Boyd (2002) and Boyd et al. (2006) 

collected insect herbivores from Ni hyperaccumulating plants and analyzed them for tissue Ni 

concentrations. These authors found that some insect herbivores contained extraordinarily high 

Ni concentrations, suggesting these insects possess tolerance mechanisms that allow them to feed 

on high-Ni plant tissues (reviewed in Boyd 2009). Furthermore, bees collected from the flowers 

of metal hyperaccumulating plants contain 3-8 times more Ni in their bodies compared to bees 

collected from non-hyperaccumulating plant species, suggesting trophic transfer of metals from 

plants to pollinators (Wall and Boyd 2002; Boyd et al. 2006). Nickel accumulation in pollinators 

suggests that they, in addition to herbivores, may become tolerant or even specialized to metal-

rich floral resources. Further studies that examine fitness costs to pollinators when fed metal-rich 

resources, however, would be required to determine if any of these taxa are tolerant to heavy 

metals (Boyd 2009).  

While differences in the composition of flower visitor communities were observed 

between species, it is also possible that insect species may become locally tolerant to metal-rich 

floral rewards at the population level, rather than strict specialists at the species level. Though we 

did not collect any Apis or Bombus spp. from S. polygaloides flowers in this study, Wall and 

Boyd (2002) collected both Apis mellifera and Bombus vandykei from the flowers of S. 

polygaloides from populations in southern California. Furthermore, Preston (1994) collected 

some species of bees from S. tortuosus that, in this study, were only observed on S. polygaloides 
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(i.e., Anthophora urbana and Dianthidium dubium). It is therefore possible that insect species, 

much like ecotypic differentiation observed in plants growing in metal-rich soils (Turner et al. 

2010), may become locally adapted, or tolerant, to metal-rich resources. Indeed, herbivorous 

moths occurring in metal-contaminated areas have shown evidence for local adaptation to heavy 

metals, as individuals from polluted sites grew larger when fed metal-tainted resources compared 

to individuals from unpolluted sites (van Ooik and Ratala 2010). Whether pollinator species may 

also become locally tolerant to heavy metal-rich floral rewards is as yet undetermined. 

Additionally, metal-rich floral rewards may be deterrent to generalist pollinators like Apis and 

Bombus spp. only when there are more rewarding coflowering plant species present in the 

community. For instance, Gegear et al. (2007) found that nectar alkaloids generally deterred 

visitation by bumble bees, but only when alternative floral resources of better quality (i.e., higher 

nectar sugar concentration and/or or lower alkaloid concentration) were provided. Therefore, in 

addition to population- or species-level tolerance to heavy metal-rich resources, coflowering 

community context may also influence the deterrent effects of heavy metals in floral rewards on 

generalist pollinators. 

7.4.2 Considering floral display and morphology 

We need to acknowledge, however, that floral traits, such as overall floral display, flower depth, 

and flower width, can be important in terms of filtering floral visitors (Hegland and Totland 

2005) by constraining taxa from utilizing floral resources. For example, Herrera (1996) found 

that plant species with shorter flower tubes were visited by more floral visitor species than plants 

with longer flower tubes. Likewise, Stang et al. (2006) found that flower visitor richness 
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decreased with both increasing nectar holder depth and decreasing nectar holder width. In this 

study, S. polygaloides and S. tortuosus had similar floral displays (flowers per inflorescence) and 

flower width, but differed in flower depth. The deeper flowers of S. tortuosus could, in part, 

explain differences in in situ flower visitor community composition observed in this study. For 

example, while the difference was not significant, we did observe higher flower visitor richness 

to the species with shallower flowers (S. polygaloides), which would be predicted if this trait 

were filtering flower visitor communities across species (Herrera 1996; Stang et al. 2006). 

However, taxa of both longue-tongued (Anthidium mormonum and Osmia spp. [Megachilidae]) 

and short-tongued (Dialictus sp. [Halictidae]) bees were observed to visit the flowers of both 

species, suggesting that their floral morphologies were not limiting visitation to different subsets 

of the ambient pollinator pools. While flower visitor community composition can be affected by 

floral morphology, our data suggest that floral metal accumulation, which markedly differed 

between species and was shown to reduce bee visitation rates to experimental S. polygaloides 

plants, likely plays a larger role. 

7.4.3 Extending the elemental filter to other plant mutualisms 

In addition to plant-herbivore interactions, metal hyperaccumulation influences plant-mutualist 

interactions, including plant-mycorrhizae (reviewed in Alford et al. 2010) and plant-pollinator 

(Meindl and Ashman 2013; Meindl and Ashman 2014; this study) interactions. Furthermore, the 

tree species Sebertia acuminate produces fleshy fruits with pulp that contains 6,900 mg kg-1 Ni 

(Boyd et al. 2006), suggesting that seed dispersal agents may also be affected by floral metals. 

However, these mutualistic interactions remain understudied, thus it is unclear what the overall 
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fitness costs and/or benefits of metal hyperaccumulation are, and whether the elemental filter 

may apply to other plant mutualists. For example, one hypothesis explaining the presence of 

secondary metabolites in ripe fruits is that these toxic chemicals promote seed dispersal by 

tolerant mutualists and limit seed predation by intolerant antagonists (‘directed toxicity 

hypothesis’; reviewed in Cipollini and Levey 1997). Similar adaptive hypotheses should be 

assessed for metal hyperaccumulators that produce fleshy fruits, such as Sebertia acuminate. 

Determining any possible adaptive value (e.g., elemental defense or mutualist filtering) of metal 

hyperaccumulation requires an understanding of both the benefits and detriments of this trait, and 

thus further study of plant mutualists as well as antagonists. 
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Table 18.  Insect order, family, species and functional group for insects collected from natural 

populations of Streptanthus polygaloides and S. tortuosus in northern CA from both flower visitor and 

ambient communities in May-June 2012. ‘Both’ means that the insect taxon was collected at both S. 

polygaloides (‘POLY’) and S. tortuosus (‘TORT’) populations, while ‘None’ means that it was collected at 

neither. 

 

 

 

Order Family Species 
Functional 
Group 

Flower 
Visitor Ambient 

Coleoptera Melyridae Coleoptera sp. 1 Beetle Both Both 
Coleoptera Melyridae Coleoptera sp. 2 Beetle POLY POLY 
Diptera Callophoridae Diptera sp. 4 Fly None Both 
Diptera Sarcophagidae Diptera sp. 3 Fly None POLY 
Diptera Syrphidae Diptera sp. 1 Fly TORT Both 
Diptera Syrphidae Diptera sp. 2 Fly Both POLY 
Diptera Tachidinae Diptera sp. 5 Fly None TORT 
Diptera Tachidinae Diptera sp. 6 Fly None POLY 
Hemiptera Miridae Prepops sp. Other Both POLY 
Hymenoptera Andrenidae Andrena knuthiana Bee None TORT 
Hymenoptera Andrenidae Perdita sp. Bee POLY None 
Hymenoptera Andrenidae Perdita blatchleyi Bee None TORT 
Hymenoptera Apidae Anthophora urbana Bee POLY None 
Hymenoptera Apidae Apis mellifera Bee TORT Both 
Hymenoptera Apidae Bombus melanopygus Bee TORT None 
Hymenoptera Apidae Bombus vandykei Bee TORT None 
Hymenoptera Apidae Bombus vosnesenskii Bee TORT Both 
Hymenoptera Apidae Ceratina arizonensis Bee Both POLY 
Hymenoptera Apidae Ceratina nanula Bee Both None 
Hymenoptera Apidae Ceratina sequoiae Bee TORT None 
Hymenoptera Apidae Ceratina tejonensis Bee TORT None 
Hymenoptera Apidae Diadasia bituberculata Bee None POLY 
Hymenoptera Apidae Melissodes sp. Bee POLY None 
Hymenoptera Apidae Xylocopa californica Bee TORT None 
Hymenoptera Apidae Xylocopa tabaniformis Bee TORT TORT 
Hymenoptera Apidae Eucera sp. 1 Bee None POLY 
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Hymenoptera Apidae Eucera sp. 2 Bee None TORT 
Hymenoptera Chrysididae Chrysididae sp. Bee None TORT 
Hymenoptera Crabronidae Miscophus sp. Bee None TORT 
Hymenoptera Crabronidae Solierella sp. Bee None POLY 
Hymenoptera Formicidae Formicidae sp. 1 Other TORT Both 
Hymenoptera Formicidae Formicidae sp. 2 Other None Both 
Hymenoptera Formicidae Formicidae sp. 3 Other None Both 
Hymenoptera Halictidae Dialictus sp. 1 Bee Both None 
Hymenoptera Halictidae Dialictus sp. 2 Bee TORT None 
Hymenoptera Halictidae Dialictus sp. 3 Bee POLY None 
Hymenoptera Halictidae Dialictus sp. 4 Bee POLY Both 
Hymenoptera Halictidae Dialictus sp. 5 Bee POLY None 
Hymenoptera Halictidae Dialictus sp. 6 Bee POLY None 
Hymenoptera Halictidae Dialictus sp. 7 Bee POLY None 
Hymenoptera Halictidae Dialictus sp. 8 Bee POLY Both 
Hymenoptera Halictidae Dialictus sp. 9 Bee None POLY 
Hymenoptera Halictidae Dialictus sp. 10 Bee None Both 
Hymenoptera Halictidae Dialictus sp. 11 Bee None Both 
Hymenoptera Halictidae Dialictus sp. 12 Bee None POLY 
Hymenoptera Halictidae Halictus tripartitus Bee TORT Both 
Hymenoptera Halictidae Halictus farinosus Bee None Both 
Hymenoptera Halictidae Lasioglossum trizonatum Bee POLY None 
Hymenoptera Halictidae Lasioglossum sp. 1 Bee None POLY 
Hymenoptera Halictidae Lasioglossum sp. 2 Bee None POLY 
Hymenoptera Halictidae Micralictoides ruficaudus Bee None POLY 
Hymenoptera Megachilidae Anthidium mormonum Bee Both TORT 
Hymenoptera Megachilidae Anthidium utahense Bee POLY None 
Hymenoptera Megachilidae Anthidium illustre Bee None POLY 
Hymenoptera Megachilidae Anthidiellum notatum Bee POLY none 
Hymenoptera Megachilidae Ashmeadiella californica ssp. sierra Bee POLY None 
Hymenoptera Megachilidae Ashmeadiella foveata Bee POLY POLY 
Hymenoptera Megachilidae Ashmeadiella timberlakei Bee POLY None 
Hymenoptera Megachilidae Ashmeadiella sp. Bee POLY None 
Hymenoptera Megachilidae Chelostoma minutum Bee POLY None 
Hymenoptera Megachilidae Dianthidium dubium Bee POLY None 
Hymenoptera Megachilidae Hoplitis producta Bee POLY None 
Hymenoptera Megachilidae Osmia sp. 1 Bee TORT None 
Hymenoptera Megachilidae Osmia sp. 2 Bee Both None 
Hymenoptera Megachilidae Osmia sp. 3 Bee TORT TORT 
Hymenoptera Megachilidae Osmia sp. 4 Bee Both TORT 
Hymenoptera Megachilidae Osmia sp. 5 Bee TORT TORT 
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Hymenoptera Megachilidae Osmia sp. 6 Bee TORT None 
Hymenoptera Megachilidae Osmia sp. 7 Bee TORT None 
Hymenoptera Megachilidae Osmia sp. 8 Bee TORT Both 
Hymenoptera Megachilidae Osmia sp. 9 Bee TORT TORT 
Hymenoptera Megachilidae Osmia sp. 10 Bee None TORT 
Hymenoptera Megachilidae Osmia sp. 11 Bee None TORT 
Hymenoptera Megachilidae Osmia sp. 12 Bee None TORT 
Hymenoptera Megachilidae Protosmia rubifloris Bee Both None 
Hymenoptera Vespidae Pseudomasaris vespoides Bee None POLY 
Hymenoptera Vespidae Odynerus sp. Bee None POLY 
Lepidoptera Hesperiidae Lepidoptera sp. 1 Butterfly TORT TORT 
Lepidoptera Hesperiidae Lepidoptera sp. 2 Butterfly TORT TORT 
Lepidoptera Hesperiidae Lepidoptera sp. 3 Butterfly None TORT 
Lepidoptera Hesperiidae Lepidoptera sp. 4 Butterfly None TORT 
Lepidoptera Lycaenidae Lepidoptera sp. 5 Butterfly None TORT 
Lepidoptera Lycaenidae Lepidoptera sp. 6 Butterfly None TORT 
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Table 19. Results from generalized linear mixed model on visitation rate (visits/flower/hour) by bees, 

beetles and flies (Pollinator Type) to arrays of Streptanthus polygaloides plants grown in either Ni-treated or 

control soils (Treatment) and observed in either S. polygaloides (‘POLY’) or S. tortuosus (‘TORT’) sites (Site 

Type). Inflorescence height, flower number and the time of observation were included as covariates.   

 

 

 

(A) Source of variation df (Num., Den.) F P 
Treatment 1,116 1.6 0.21 
Site Type 1,115 3.55 0.062 
Pollinator Type 2,304 5.78 0.0035 
Treatment*Site Type 1,116 0.03 0.87 
Treatment*Pollinator Type 2,304 0.41 0.66 
Treatment*Site Type*Pollinator Type 4,304 4.24 0.0023 
Inflorescence Height 1,71 2.22 0.14 
Flower Number 1,71 0.23 0.63 
Time of Observation 1,71 3.67 0.06 

      (B) Slices for Treatment by  
Site Type*Pollinator Type 

   
Site Type   Pollinator Type 

   TORT 
 

Bee 1,177 5.06 0.026 
TORT 

 
Beetle 1,375 0 0.99 

TORT 
 

Fly 1,375 0.07 0.79 
POLY 

 
Bee 1,176 0.07 0.8 

POLY 
 

Beetle 1,375 0 0.98 
POLY 

 
Fly 1,375 1.11 0.29 
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Figure 13. Map of six study sites located in northern California. Serpentine sites containing 

Streptanthus polygaloides (POLY1, POLY2, POLY3) are marked with black circles, while non-serpentine 

sites containing S. tortuosus (TORT1, TORT2, TORT3) are marked with grey circles. The northern 

California city of Chico (marked with a black star) is included as a reference point. 
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Figure 14. Rarefaction curves for estimated ambient community richness (A,B) and flower visitor 

richness (C,D) to Streptanthus tortuosus (A,C) and S. polygaloides (B,D). Horizontal lines represent Choa1 

richness estimates (solid lines) with associated 95% confidence intervals (dashed lines).   
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Figure 15. Results of cluster analysis comparing insect floral visitor similarity between Streptanthus 

tortuosus (TORT1-3) and S. polygaloides (POLY1-3) populations based on (A) ambient community 

composition and (B) flower visitor community composition. Values at dendrogram nodes indicate results 

from bootstrapping (values ≥ 95% are statistically supported clusters). Pie charts indicate the relative 

proportion of floral visitor types for each site collection, and taxa are represented by different colors: beetles 

(red), butterflies (orange), flies (yellow), ‘other’ visitors (e.g., ants; green), and bees (blue). 
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Figure 16. Mean (±SE) floral visitation rates (visits/flower/hour) by bees, beetles, and flies to control 

(white bars) or Ni-treated (black bars) Streptanthus polygaloides plants in arrays presented at S. tortuosus 

(left bars, unshaded) and S. polygaloides sites (right bars, shaded). Asterisks indicate differences (P < 0.05) 

between treatments.      
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8.0  DIFFERENTIAL EFFECTS OF SOIL CHEMISTRY ON POLLEN 

GERMINATION, FRUIT AND SEED PRODUCTION FOR TWO PLANT SPECIES 

THAT DIFFER IN SERPENTINE AFFINITY AND FLORAL METAL 

ACCUMULATION 

8.1 INTRODUCTION 

The abiotic environment is known to affect the abundance, distribution and diversification of 

species (Schluter 2009), and edaphic factors are an especially strong selective force for plants 

(Rajakaruna 2004; Anacker and Strauss 2014). Serpentine soils, which are a nutritionally 

stressful growing environment for most plants due to deficiencies of essential nutrients (e.g., 

calcium [Ca]) and high concentrations of heavy metals (e.g., nickel [Ni]; Brooks 1987; Brady et 

al. 2005; Kazakou et al. 2008), have long been considered model habitats to study plant 

reproductive isolation and speciation (Kay et al. 2011). Serpentine soils can indirectly contribute 

to pre- (or post-) zygotic reproductive barriers that ultimately isolate serpentine populations 

from non-serpentine progenitors (Kay et al. 2011). For example, adaptation to serpentine soil can 

lead to habitat isolation, temporal isolation (i.e., non-overlapping flowering times), and 

pollinator isolation (Macnair and Gardner 1998; Gardner and Macnair 2000; Hughes et al. 2001; 

Wright et al. 2006; Sambatti and Rice 2007; Wright and Stanton 2007). Though less studied, soil 

chemistry may also lead to selection at the level of gametes favoring assortative mating. In a 
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series of experiments with Mimulus guttatus (Phrymaceae), Searcy and Mulcahy (1985) and 

Searcy and Macnair (1990) showed that copper (Cu) in the pistils of plants could act as a 

selective filter since seed production was reduced when pollen donors were not tolerant to soils 

with elevated Cu levels. Floral heavy metal accumulation may therefore produce a prezygotic 

isolating mechanism by decreasing fitness when maternal and paternal plants grow in soil 

environments with different metal concentrations (e.g., serpentine and non-serpentine), and thus 

act as a reproductive barrier that promotes reproduction between plants growing in similar soil 

environments. However, heavy metals are not the only elements found in serpentine soils that 

may alter plant mating patterns. Calcium, an alkaline earth metal, is required for pollen 

germination and tube growth (Brewbaker and Kwack 1963). Specifically, Ca influences the 

direction of pollen tube growth, as pollen tubes grow chemotropically along an increasing Ca 

gradient from the top to the bottom of the pistil (Mascarenhas and Machlis 1962, 1964; Rosen 

1968; Chichiriccò 2002). Variation in soil Ca can influence the likelihood of hybridization 

between species, as pollen that develops in low-Ca environments has higher fertilization 

success on stigmas that develop in high-Ca environments for some plant species (e.g., Phlox 

cuspidata and P. drummondii; Ruane and Donohue 2007). Therefore, understanding the effects 

of soil chemistry on floral chemistry is vital not only for identifying potential reproductive costs 

associated with plant growth on chemically unique soils, such as serpentine, but also for 

explaining patterns of species distributions, reproductive isolation and plant endemism. 

Geographic regions containing serpentine soil often support many endemic species, 

indicating it is a potent force in speciation (Brooks 1987; Safford et al. 2005; Anacker 2011). 

However, plant species span a gradient of affinity to serpentine soils, with some commonly 

found either on or off (i.e., non-endemic) whereas others are entirely restricted to serpentine soil 
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(i.e., endemic; Safford et al. 2005). High Ni and low Ca concentrations, in particular, are thought 

to be key in generating adaptation to serpentine soil (Lazarus et al. 2011; Kazakou et al. 2008), 

and serpentine affinity is known to affect both Ni and Ca accumulation into plant tissues (Nagy 

and Proctor 1997; Burrell et al. 2012; DeHart et al. 2014; Meindl et al. 2014a). This differential 

acquisition of Ni and Ca between endemic and non-endemic species may lead to differences in 

plant fitness, as Ni is generally considered toxic to plants (e.g., Ni reduces pollen germination 

[Breygina et al. 2012] and seed production [Malan and Farrant 1998] in non-adapted species) 

and Ca is required for a variety of metabolic functions, including pollen germination (Marschner 

2012). This may be particularly true for Ni, as differences in Ni accumulation between endemic 

and non-endemic species are most pronounced for reproductive organs (i.e., anthers and pistils), 

where serpentine endemics limit uptake of metals more than non-endemics (Meindl et al. 2014a). 

Endemics can be more efficient at extracting Ca from serpentine soils than non-endemics 

(DeHart et al. 2014), suggesting that non-endemics may require higher soil Ca concentrations to 

achieve sufficient internal concentrations. Because of the toxic effects of Ni, and the beneficial 

effects of Ca, differential acquisition of these elements when growing in serpentine soil may 

result in differential fitness between taxa due to effects on pollen germination, and subsequent 

fruit and seed production. 

A relatively small number of serpentine taxa are known to accumulate extremely high 

concentrations of heavy metals (i.e., hyperaccumulation), most of which are endemic to 

serpentine soils (Pollard et al. 2014). Metal hyperaccumulation refers to the uptake and 

sequestration of soil metals by plants into above ground tissues in concentrations that are orders 

of magnitude higher than typical plants (reviewed in van der Ent et al. 2013). For example, 

hyperaccumulators of the heavy metal Ni exhibit shoot Ni concentrations >1,000 mg kg-1, while 
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most plants contain <5 mg kg-1 (van der Ent et al. 2013). Several hypotheses regarding the 

adaptive value of metal hyperaccumulation have been suggested, including its role in elemental 

allelopathy, drought resistance, and defense against herbivores and pathogens (reviewed in Boyd 

and Martens 1992). However, direct effects on plant reproduction have rarely been characterized, 

thus it is difficult to assess the adaptive value of metal hyperaccumulation. A preliminary study 

of the Ni hyperaccumulator Alyssum inflatum (Brassicaceae) found that plants are more likely to 

flower, and produce larger floral displays, when grown in Ni-supplemented soils (Ghasemi et al. 

2014). These data suggest that metal hyperaccumulators do not incur fitness costs due to growth 

in metal-rich soils, and may actually directly benefit from metal hyperaccumulation. However, 

additional studies are required that assess the direct fitness costs (or benefits) of metal 

hyperaccumulation in order to determine its adaptive value and relation to plant endemism on 

metal-rich soils. 

In this study, we employ a fully factorial experiment to test for the effects of Ni and Ca 

on pollen germination, fruit production, and seed production for two closely related species that 

vary in their affinity to serpentine soil (Streptanthus polygaloides [serpentine endemic and a Ni 

hyperaccumulator]; S. tortuosus [non-endemic, non-accumulator]. Specifically, we asked the 

following question: Do soil Ni and Ca concentrations affect plant reproduction (i.e., pollen 

germination, fruit production, and seed production), and does this differ between species? We 

predict that plant reproduction will be maximized when soil treatments most closely reflect the 

chemical composition of the native soil. Specifically, we predict that (1) soil Ni will negatively 

impact plant reproduction only for S. tortuosus, (2) soil Ca will positively impact plant 

reproduction only for S. tortuosus, and (3) plant reproduction will be highest for S. polygaloides 
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when grown in high Ni, low Ca soil, and that plant reproduction will be highest for S. tortuosus 

when grown in low Ni, high Ca soil. 

8.2 METHODS 

8.2.1 Study species 

Streptanthus polygaloides and S. tortuosus are closely related taxa (Mayer and Solstis 1994; 

Cacho and Strauss 2014) in the mustard family (Brassicaceae). Streptanthus tortuosus is 

common and can be found throughout California and Oregon, while S. polygaloides is restricted 

to the Sierra Nevada of northern California, where the ranges of the two species overlap 

(Baldwin et al. 2012).  Streptanthus polygaloides is a Ni hyperaccumulating, annual endemic to 

serpentine soil (Baldwin et al. 2012; Reeves et al. 1981). Streptanthus tortuosus is a non-Ni 

hyperaccumulating perennial that can occur either on or off of serpentine soil, though it is more 

frequently found on non-serpentine soil (Baldwin et al. 2012). Both species are spring-flowering 

herbs that are at least partially self-compatible (Meindl et al. 2014b; Wall and Boyd 2002; 

Preston 1994).  

8.2.2 Experimental design 

We collected seeds from a single natural population per species in northern California (S. 

polygaloides: 39°49' N 121°34’ W; S. tortuosus [a non-serpentine population]: 39°51' N 121°24’ 

W) in the summer of 2012. In the fall of 2013, we treated seeds for two weeks with 4°C cold and
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dark conditions. Following germination, we transplanted seedlings to 27 in3 pots (Deepots, 

Stuewe and Sons, Inc., Tangent, OR, USA) filled with standard potting soil (Fafard #4, Sun Gro 

Horticulture, Agawam, MA, USA) and supplied with six Nutricote® NPK 13-13-13 time-release 

fertilizer pellets (Arysta LifeScience Corporation, New York, NY, USA). One month after 

transplanting, we subjected S. tortuosus plants to a 4°C cold treatment for one month at 8D:16N. 

Subsequently, we grew both S. tortuosus and S. polygaloides under controlled conditions of 

12D:12N and between 21.1-26.7°C until flowering in the greenhouse at the University of 

Pittsburgh.   

One month after transplanting (S. polygaloides), or one week after cold treatment (S. 

tortuosus), we divided plants into four treatment groups (N = 20 plants / species / treatment; total 

N = 160 plants): (1) high Ni and high Ca, (2) high Ni and low Ca, (3) low Ni and high Ca, or (4) 

low Ni and low Ca.  We introduced soil treatments by top watering plants with 40 mL of 

treatment solution once per week for the duration of the experiment (eight weeks). High Ni 

solutions contained 500 mg kg-1 Ni, while low Ni solutions contained 5 mg kg-1 Ni. High Ca 

solutions contained 2,200 mg kg-1 Ca, while low Ca solutions contained 220 mg kg-1 Ca. Both Ni 

and Ca solutions were prepared using metal nitrates (Ni[NO3]2-6H2O or Ca[NO3]2-4H20). We 

added ammonium nitrate (NH4NO3) to treatment solutions (2)-(4) to control for additional 

nitrogen applied to plants in the high Ni high Ca treatment. Our soil treatment solutions reflect 

realistic levels of bioavailable Ni and Ca because bioavailable fractions of Ni in serpentine soils 

generally range from 50 to 500 mg kg-1, while those in non-serpentine soils generally range 

between 0.05 to 5 mg kg-1 (L’Huillier and Edighoffer 1996; Chardot et al. 2005; Broadley et al. 

2012). Likewise, bioavailable fractions of Ca in non-serpentine soils generally range from 2,000-

4,000 mg kg-1, while those in serpentine soils generally range from 100-600 mg kg-1 (Whittaker 
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1954; DeHart et al. 2014). Of the 160 experimental plants, we randomly assigned half to be 

pollen donors, and the other half to be pollen recipients.  

To determine the effect of soil treatment on plant chemistry, each week we collected 

pollen and pistil samples from 40 flowers pooled across all donor plants for each treatment and 

species separately. Previous work has determined anther Ni concentrations are positively 

correlated with pollen Ni concentrations for S. polygaloides (ρ=0.61; unpublished data), thus 

here we use anther Ni concentrations as a surrogate for pollen Ni concentrations.  We determined 

Ni and Ca using Inductively Coupled Plasma Mass Spectrometry (ICP-MS, NEXION 300X, 

PerkinElmer, Waltham, MA, USA) at the University of Pittsburgh following Meindl and 

Ashman (2014), and concentrations are reported as mg kg-1.   

To determine the effects of donor and recipient soil treatments on pollen germination and 

fruit and seed production we performed hand-pollinations. For each species separately, we bulk-

collected pollen from donor plants of each treatment once per week. We collected whole anthers, 

placed them in open microcentrifuge tubes, and allowed them to dehisce overnight. The 

following day, we performed pollinations on each of the recipient plants. Once per week, we 

pollinated four-eight flowers per recipient plant (N = 4-16 flowers pollinated per plant, N = 596 

total flowers pollinated). Each flower received pollen from one of the four donor treatments in 

random order. For half of these flowers, we collected styles 24 hours after performing 

pollinations and fixed the styles in 70% ethanol. We then softened and stained styles with analine 

blue (Dafni 1992; Arceo-Gómez and Ashman 2011) and observed them with the aid of an 

epifluorescence microscope (Axioskop, Carl Zeiss Microscopy, LLC, Thornwood, NY, USA). 

For each style, we recorded the total numbers of pollen, germinated pollen, and pollen tubes that 

reached the ovary. We then calculated the percentage of pollen applied that germinated (number 
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of germinated pollen grains / total number of pollen grains) and the percentage of germinated 

pollen to reach the ovary (number of pollen tubes that reached ovary / number of germinated 

pollen grains). We recorded whether the remaining pollinated flowers matured fruits, and for 

those that did we determined the number of fertile seeds. For plants that had multiple flowers 

pollinated per donor treatment, we calculated average values of all responses. 

We conducted statistical analyses in SAS (version 9.3; SAS Institute Inc., Cary, NC, 

USA). To evaluate the effect of soil donor and recipient Ni and Ca treatments on the percentage 

of pollen applied that germinated, the percentage of germinated pollen to reach the ovary, and 

seeds produced per fruit, we used mixed-model ANCOVA (PROC MIXED). To evaluate the 

effect of soil donor and recipient treatments on the likelihood of pollinated flowers to mature 

fruits, we used log-linear analysis (PROC GLIMMIX) and specified a binary distribution (SAS 

Institute 2011). We included the total number of pollen grains applied to stigmas as a covariate 

in pollen germination models. We also used mixed model ANOVA (PROC MIXED) to compare 

Ni and Ca concentrations in pistils and pollen across species and soil treatments, with species, 

soil Ni treatment, soil Ca treatment, and organ type and their interactions as fixed effects, and 

sampling week as a random effect. Denominator degrees of freedom for F-tests were determined 

using the Kenward-Roger approximation, which is preferred for small sample sizes and 

unbalanced data (Bell et al. 2012). We included individual plant ID (nested within species) as a 

random effect in all models. 

We included terms in final statistical models that addressed specific a priori hypotheses. 

First, we hypothesized that soil Ni and Ca treatments will affect both paternal and maternal 

reproductive function, as Ni is known interfere with pollen germination and seed production, and 

Ca concentration in pistils is known to positively influence pollen germination (thus we included 
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the main effects of recipient and donor treatments: Recipient Ni, Recipient Ca, Donor Ni, Donor 

Ca). Second, since we hypothesized that plant species will differ in their response to soil Ni and 

Ca, as one species (S. polygaloides) is endemic to Ni-rich, Ca-poor soils (i.e., serpentine soil), 

while the other species (S. tortuosus) is not (thus we included species by recipient and donor 

treatment interactions: Species, Species*Recipient Ni, Species*Recipient Ca, Species*Donor Ni, 

Species*Donor Ca). Specifically, we expect S. tortuosus to respond negatively to Ni treatment in 

all aspects of reproduction, as it generally grows in soils with low Ni concentrations, and S. 

polygaloides to respond neutrally or positively, as it grows in Ni-rich serpentine soil and 

hyperaccumulates this element. Similarly, we expect S. tortuosus to respond positively to Ca 

treatment, whereas we expect no response from S. polygaloides, as this species typically grows 

in soils with little available Ca. Furthermore, we hypothesize that soil Ni and soil Ca treatments 

may interact, and that reproductive success for each species will be maximized when soil 

treatment levels most closely reflect the chemical composition of their native soils (thus we 

included the interactions between the two donor and recipient treatments, as well as the three 

way interactions between these effects and species: Recipient Ni*Recipient Ca, Donor Ni*Donor 

Ca, Species*Recipient Ni*Recipient Ca, Species*Donor Ni*Donor Ca). For example, we predict 

that S. polygaloides will have highest fitness (i.e., high rates of pollen germination, fruit and seed 

production) when plants are grown in soils with high Ni and low Ca (mimicking serpentine soil), 

and the opposite will be true for S. tortuosus, i.e., this species will have highest fitness when 

grown in soils with low Ni and high Ca (mimicking non-serpentine soil). We did not include 4- 

or 5-way interactions in the final models, but, as determined by AIC values, our reduced models 

based on a priori hypotheses produced a better fit for the data compared to full models (percent 

pollen germination model: full model AIC = -32.6, reduced model AIC = -68.2; percent of 
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germinated pollen to reach ovary model: full model AIC = 3, reduced model AIC = -13.3; seed 

set model: full model AIC = 36.4, reduced model AIC = 21.5). Furthermore, we explored various 

stepwise variable selection methods (i.e., forward, backward, stepwise, lasso, and lar methods) to 

determine which effects should be retained in final models, and all effects chosen by these 

stepwise variable selection methods represented those already retained due to the above stated 

hypotheses.  

Least squares means and standard errors are reported throughout. 

8.3 RESULTS 

8.3.1 Pistil and pollen chemistry 

Nickel treatment significantly increased Ni concentrations across pollen and pistils in both 

species, but the magnitude of the treatment effect varied by both species and tissue (Ni 

Treatment x Species x Tissue Type: F1,36 = 29.1, P < 0.0001). Specifically, Ni concentrations in 

pistils were nearly 17 times higher for plants in the high Ni treatment relative to the low Ni 

treatment for S. polygaloides (1,381.9 ± 59.8 vs. 82.2 ± 59.8, respectively), while Ni 

concentrations in pistils were approximately seven times higher for plants in the high Ni 

treatment relative to the low Ni treatment for S. tortuosus (188.8 ± 84.6 vs. 27.9 ± 84.6, 

respectively). Furthermore, Ni concentrations in pollen were nearly nine times higher for plants 

in the high Ni treatment relative to the low Ni treatment for S. polygaloides (155.5 ± 53.5 vs. 

18.0 ± 53.5, respectively), while Ni concentrations in pollen were approximately 13 times higher 
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for plants in the high Ni treatment relative to the low Ni treatment for S. tortuosus (106.5 ± 84.6 

vs. 8.3 ± 84.6, respectively). Despite Ca concentrations being slightly elevated overall for plants 

in the high Ca treatment relative to the low Ca treatment (6,711.6 ± 439.5 vs. 6.319.3 ± 439.5, 

respectively), these differences were not statistically significant, and none of the interactions 

involving treatment and species were significant either (All P > 0.05). 

8.3.2 Pollen germination 

While neither pollen recipient nor donor Ca treatments affected the pollen germination for either 

species, both recipient and donor Ni treatment significantly affected pollen germination, though 

the effects varied by species (Table 20A; Fig. 17A). Recipient Ni treatment did not strongly 

influence the percentage of pollen to germinate for S. tortuosus (high Ni: 0.67 ± 0.04, low Ni: 0.7 

± 0.04), but pollen germination was slightly elevated for plants in the high Ni treatment relative 

to the low Ni treatment for S. polygaloides (0.72 ± 0.04 vs. 0.59 ± 0.04, respectively; Species x 

Recipient Ni Treatment: F1,59.3 = 4.19, P < 0.05; Table 20A; Fig. 17A). Conversely, while donor 

Ni treatment did not strongly influence the percentage of pollen to germinate for S. polygaloides 

(high Ni: 0.67 ± 0.03, low Ni: 0.65 ± 0.03), pollen germination was reduced for S. tortuosus 

plants pollinated with pollen from plants in the high Ni-treatment pollen (high Ni: 0.65 ± 0.03, 

low Ni: 0.72 ± 0.03; Species x Donor Ni Treatment: F1,194 = 3.33, P < 0.05; Table 20A). The 

total number of pollen grains applied and plant ID also significantly influenced pollen 

germination (Table 20A). 

Neither pollen recipient nor pollen donor Ca treatments affected the percentage of 

germinated pollen to reach the ovary for either species (Table 20B). However, recipient Ni 
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treatment significantly affected pollen germination, though the effect varied by species (Table 

20B; Fig. 17B). Specifically, recipient Ni treatment reduced the percentage of germinated pollen 

to reach the ovary for S. tortuosus (high Ni: 0.44 ± 0.04, low Ni: 0.67 ± 0.04), but the percentage 

of germinated pollen to reach the ovary was elevated for plants in the high Ni treatment relative 

to the low Ni treatment for S. polygaloides (0.76 ± 0.04 vs. 0.62 ± 0.05, respectively; Species x 

Recipient Ni Treatment: F1,56.9 = 17.66, P < 0.01; Table 20B; Fig. 17B). The total number of 

pollen grains applied and plant ID also significantly influenced pollen germination (Table 20B). 

8.3.3 Fruit production 

Neither pollen recipient nor donor Ca treatments affected the likelihood of pollinated flowers to 

mature fruits (Table 1C). However, the likelihood of pollinated flowers to mature a fruit was 

strongly influenced by recipient Ni treatment, though the effect varied by species (Table 20C; 

Fig. 18). For S. polygaloides, 74% of flowers of recipient plants in the high Ni treatment 

produced fruit, while 45% of flowers produced fruit for recipient plants in the low Ni treatment. 

For S. tortuosus, 26% of flowers of recipient plants in the high Ni treatment produced fruit, while 

81% of flowers produced fruit for recipient plants in the low Ni treatment (Species x Recipient 

Ni Treatment: F1,58.8 = 24.69, P < 0.01; Table 20C; Fig. 18). 

8.3.4 Seed production 

Calcium treatments did not affect seed production for either species (Table 20D). Recipient Ni 

treatment significantly affected seed production, though the effect varied by species (Table 20D; 
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Fig. 19). While recipient Ni treatment reduced seed production for S. tortuosus (high Ni: 3.5 ± 

1.9, low Ni: 11.0 ± 1.4), seed production was elevated for plants in the high Ni treatment relative 

to recipient plants in the low Ni treatment for S. polygaloides (high Ni: 10.5 ± 1.3, low Ni: 7.1 ± 

2.3; Species x Recipient Ni Treatment: F1,47.8 = 9.4, P < 0.01; Table 20D; Fig. 19). Plant ID also 

significantly influenced pollen germination (Table 20D). 

8.4 DISCUSSION 

Serpentine soils are an abiotically stressful growing environment for plants, in large part due to 

low available Ca and elevated Ni concentrations (Brady et al. 2005; Kazakou et al. 2008). While 

both elements in isolation are known to alter pollen germination and fruit and seed production 

(Ruane and Donohue 2007; Breygina et al. 2012), ours is the first study to simultaneously test for 

effects of both elements on pollen germination, fruit production, and seed production for species 

that are known to vary in serpentine affinity and floral metal accumulation. While Ca may 

generally be important for pollen grain germination and tube growth, our study suggests that the 

elevated Ni concentrations in serpentine soil are more likely to affect plant reproduction for non-

endemic species and thus limit their ability to reproduce on these harsh soils. In addition, our 

study suggests that soil metals may increase the reproductive potential of metal 

hyperaccumulating plants, adding new insights to the potential adaptive value of this trait. 

While Ca is known to be an important nutrient for plant reproduction (Brewbaker and 

Kwack 1962), in this study we did not observe an effect of soil Ca treatment on pollen 

germination, fruit production, or seed production. Because adequate Ca concentration in plant 
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tissues ranges between 1,000 and 50,000 mg kg-1 (White 2003), and tissue Ca concentrations 

were above 6,000 mg kg-1 across all treatments in this study, Ca may not have been limiting for 

plants in any of the treatments. Furthermore, Ca and Ni may compete for uptake by plant roots, 

as studies have documented both negative and positive correlations between the accumulations 

of these two elements by plants (Robinson et al. 1999; Chaney et al. 2008). Though Ni treatment 

did not significantly influence tissue Ca concentrations (Ni Treatment: F1,31.6 = 2, P = 0.16), Ca 

concentrations were elevated in plants that received the high Ni treatment relative to plants that 

received the low Ni treatment (6,902 ± 439.5 vs. 6,128.87 ± 439.5 mg kg-1, respectively). 

Similarly, though Ca treatment did not significantly influence tissue Ni concentrations (Ca 

Treatment: F1,36 = 2.32, P = 0.14), Ni concentrations were elevated in plants that received the 

high Ca treatment relative to plants that received the low Ca treatment (285 ± 36 vs. 207 ± 36 mg 

kg-1, respectively). Therefore, any potential beneficial effects of increased tissue Ca 

concentrations could have been negated by increased Ni concentrations. As previous studies 

have shown soil Ca to possibly be important in preventing reproductive isolation between 

species growing in adjacent soil environments that differ in Ca concentrations (Ruane and 

Donahue 2007), further studies are needed that document the effects of Ca on plant reproductive 

success for serpentine tolerant species. 

Our results suggest that floral metal accumulation may contribute to reproductive 

isolation between serpentine and non-serpentine plant populations. While several speciation 

models have been proposed based on geographic proximity of diverging populations, the 

allopatric model of speciation is the most widely accepted (Felsenstein 1981; Coyne and Orr 

2004). However, serpentine soils provide a model to test whether parapatric speciation may 

occur, as they are often distributed as islands embedded within a non-serpentine matrix (Harrison 
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and Inouye 2002; Kay et al. 2011) and many plant species are able to grow both on and off of 

serpentine (i.e., serpentine tolerant; Harrison and Inouye 2002; Safford et al. 2005). For 

serpentine and non-serpentine populations to become reproductively isolated, barriers must exist 

to prevent gene flow- results from this study suggest that floral metal accumulation may provide 

a mechanism through which gene flow is reduced between serpentine and non-serpentine 

populations. Specifically, we found that S. tortuosus plants grown in high-Ni soils displayed 

decreased pollen germination relative to plants grown in low-Ni soils. This suggests that pollen 

arriving from a non-serpentine plant is unlikely to be successful in siring progeny, as the Ni 

concentrations in the pistils of maternal plants may limit pollen grain germination and/or pollen 

tube growth towards ovules. While soil heavy metals have been previously implicated in 

fostering reproductive isolation between populations on vs. off metal-rich soil indirectly via 

changes in floral phenology (Antonovics 2006), our study provides evidence for a more direct 

mechanism through which soil metals may impart reproductive isolation between populations. 

Similar to what has been observed for the metal Cu in Mimulus guttatus (Searcy and Mulcahy 

1985; Searcy and Macnair 1990), floral Ni accumulation may provide a selective barrier to gene 

exchange between serpentine and non-serpentine populations, and thus provide a prezygotic 

isolating mechanism between populations that vary in floral metal concentrations and/or metal 

tolerance.  

Our results provide further evidence that the elevated heavy metal concentrations of 

serpentine soils present a significant barrier to plant colonization for non-adapted plant species 

(Brady et al. 2005; Kazakou et al. 2008). While some plants require small concentrations of Ni 

as an active component of the enzyme urease (Welch 1981), Ni in excess is known to negatively 

impact plant reproduction, such as decreasing pollen germination (Tuna et al. 2002; Breygina et 
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al. 2012) and seed production (Malan and Farrant 1998) for plants not adapted to soils with 

elevated Ni. Here, we found that both paternal and maternal components of plant reproduction 

were inhibited for S. tortuosus, a non-endemic serpentine species, when grown in Ni-rich soils. 

Specifically, pollen from S. tortuosus plants grown in Ni-treated soils displayed decreased 

germination rates relative to pollen from plants grown in low-Ni soils. Furthermore, S. tortuosus 

plants grown in Ni-treated soils were less likely to produce fruits, and the fruits that were 

produced contained fewer seeds, relative to plants grown in low-Ni soils. Therefore, non-

serpentine plants that are not adapted or tolerant to the high heavy metal concentrations of 

serpentine are unlikely to successfully reproduce on serpentine soils, as Ni accumulation into 

reproductive organs limits overall plant fitness. Limiting floral metal accumulation is likely a key 

adaptation to plant growth on serpentine soils for endemic plant species that are not known to 

hyperaccumulate heavy metals (DeHart et al. 2014; Meindl et al. 2014a). 

Results from this study suggest that metal hyperaccumulators may directly benefit from 

metal hyperaccumulation in terms of increased fitness. There are several hypotheses regarding 

the adaptive value of metal hyperaccumulation, including defense against herbivores and 

pathogens, and elemental allelopathy against other plant species (reviewed in Boyd and Martens 

1992). However, recent research has suggested that hyperaccumulating species may achieve 

higher fitness when grown in metal-rich soils, suggesting a more direct benefit of increasing 

metal concentrations in aboveground tissues. For example, Alyssum inflatum (Brassicaceae), a Ni 

hyperaccumulator native to serpentine soils in Anatolia, was more likely to flower, and produced 

more inflorescences and more flowers, when grown in Ni-supplemented soils compared to Ni-

free control soils (Ghasemi et al. 2014). In another Ni hyperaccumulating species, Alyssum 

murale (Brassicaceae), germination rates for seeds produced by maternal plants grown in high-
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Ni soils were twice as high compared to seeds derived from parents grown on low-Ni soils (M. 

McKenna, pers. comm). Similarly, reproductive benefits have been documented for the selenium 

(Se) hyperaccumulator Stanleya pinnata (Brassicaceae), as pollen germination was observed to 

be higher when germinated on artificial media that contained Se, relative to media that did not 

(Prins et al. 2011). In this study, we found that the Ni hyperaccumulator S. polygaloides 

exhibited higher rates of pollen germination, was more likely to produce fruit, and produced 

more seeds per fruit when maternal plants were grown in high-Ni soils relative to low-Ni soils. 

The mechanism that produced these patterns is unknown, but may relate to the beneficial effects 

of Ni on plant N metabolism (Polacco et al. 2013). Regardless of the mechanism, however, our 

study provides additional evidence of the beneficial effects of metal hyperaccumulation on plant 

reproduction for metal hyperaccumulating species (Ghasemi et al. 2014). Patterns such as those 

demonstrated in this study may help to explain why the vast majority of metal 

hyperaccumulating plants are entirely restricted, i.e., endemic, to soils with elevated metal 

concentrations (Pollard et al. 2014). Specifically, our study suggests that metal 

hyperaccumulators achieve higher fitness when grown in metal-rich soils, suggesting that they 

are specifically adapted to these environments (i.e., the specialist model of edaphic endemism; 

Meyer 1980; Palacio et al. 2007). A growing number of studies are finding that 

hyperaccumulating plants concentrate hyperaccumulated elements into reproductive tissues 

(Quinn et al. 2011; Meindl et al. 2014b), which may directly increase their fitness and help 

explain their patterns of distribution, often exclusively on metal-rich soils. 

Soil chemistry may greatly influence plant reproduction in chemically unusual soils, such 

as serpentine. Soil chemistry may affect plant reproduction indirectly by altering pollinator 

visitation (Meindl and Ashman 2014), flowering phenology (Gardner and Macnair 2000; 
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Antonovics 2006), or flower morphology (Gardner and Macnair 2000; Meindl et al. 2013), but 

there may also be direct effects that result from altered floral tissue chemistry (Searcy and 

Mulcahy 1985; Searcy and Macnair 1990; this study). Further study of effects of soil chemistry 

on floral chemistry, and subsequent effects on gamete function and compatibility, will help 

elucidate the role of unique soils in fostering local adaptation, speciation and endemism in plants. 
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Table 20. Results from mixed models on (A) the percentage of pollen that germinated, (B) the percentage of germinated pollen that reached the 

ovary, (C) the likelihood of pollinated flowers to produce fruit, and (D) the number of seeds produced per fruit for S. polygaloides and S. tortuosus 

(Species) plants that were grown in one of four recipient soil treatments (RecipientNi, RecipientCa) and whose flowers were pollinated with pollen that 

came from plants grown in one of four donor soil treatments (DonorNi, DonorCa).  The total number of pollen grains applied (Total Grains) was 

included as a covariate in models (A) and (B).   

(A) Percentage of 
Pollen that 
Germinated 

(B) Percentage of 
Germinated Pollen 
that Reached Ovary 

(C)              
Likelihood to 
Produce Fruit 

(D)   
…………………..  
Seeds per Fruit              

Fixed Effects df  F df F df F df F 
Total Grains 1, 258 14.81** 1, 257 24.49** NA NA NA NA 
Species 1, 68.2 0.66 1, 65 9.56** 1, 58.7 0.33 1, 47.8 0.72 
RecipientNi 1, 61.2 1.84 1, 58.6 0.94 1, 58.8 1.33 1, 47.8 1.34 
RecipientCa 1, 58.9 0.33 1, 56.6 0.71 1, 58.7 3.16 1, 47.8 0.02 
DonorNi 1, 195 1.58 1, 192 0.21 1, 438 0.39 1, 137 0.04 
DonorCa 1, 195 3.71 1, 193 0.06 1, 438 0.3 1, 136 0.06 
Species*RecipientNi 1, 59.3 4.19* 1, 56.9 17.66** 1, 58.8 24.69** 1, 47.8 9.4** 
Species*RecipientCa 1, 58.8 0.11 1, 56.5 0.54 1, 58.7 1.64 1, 47.8 0.46 
Species*DonorNi 1, 194 5.33* 1, 192 3.05 1, 438 0.44 1, 137 0.14 
Species*DonorCa 1, 196 1.44 1, 193 0.36 1, 438 1.95 1, 136 0.02 
RecipientNi*RecipientCa 1, 59.1 0.05 1, 56.8 0.08 1, 58.7 0.47 1, 47.8 0.99 
DonorNi*DonorCa 1, 194 0.94 1, 191 0.76 1, 438 0.01 1, 136 3.35 
Species*RecipientNi*RecipientCa 1, 58.8 0.01 1, 56.5 0.01 1, 58.7 2.09 1, 47.8 0.06 
Species*DonorNi*DonorCa 1, 195 0.48 1, 192 1.67 1, 438 0.29 1, 136 1.36 
Random Effect Z Z Z Z 
Plant ID (Species) 3.79** 3.94** NA 3.85** 

*P<0.05; **P<0.01
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Figure 17. The percentage of pollen that germinated (A) and the percentage of germinated pollen 

that reached the ovary (B) for Streptanthus polygaloides and S. tortuosus plants that were either grown in Ni-

treated soils (black bars) or soils that were not Ni-treated (white bars). Bars represent lsmeans and associated 

standard errors. Asterisks indicate significant (i.e., adjusted P-value < 0.05) pairwise Tukey tests. 
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Figure 18. The percentages of pollinated flowers that matured fruits for Streptanthus polygaloides 

and S. tortuosus plants that were either grown in Ni-treated soils or soils that were not Ni-treated. White 

portions of bars represent flowers that matured a fruit, whereas black sections of bars represent flowers that 

did not mature a fruit. 
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Figure 19.  The number of seeds produced per fruit for Streptanthus polygaloides and S. tortuosus 

plants that were either grown in Ni-treated soils (black bars) or soils that were not Ni-treated (white bars). 

Bars represent lsmeans and associated standard errors. Asterisks indicate significant (i.e., adjusted P-value < 

0.05) pairwise Tukey tests. 
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	Figure 7. Differences in Ni concentration (mg kg-1) between two Ni-hyperaccumulating species (Streptanthus polygaloides and Noccaea fendleri subsp. glauca grown in control vs. Ni-supplemented soils across one vegetative organ (leaves), two reproductive organs (pistils, anthers) and one floral reward (nectar).  Nectar was produced by S. polygaloides only. Symbols represent back-transformed lsmeans (± 95% CI).  White symbols = leaves; light gray symbols = pistils; dark gray symbols = anthers; black symbols = nectar.  
	Figure 8. Example of experimental array.  Arrays consisted of four field-collected flowers placed in water-filled centrifuge tubes.  Two metal-treated flowers were placed 4 cm apart, and 20 cm apart from a pair of control flowers.  Following an observed visitation sequence, all flowers in an array were replaced with unvisited flowers, and the location of metal-treated and control flowers were switched.
	Figure 9. Mean foraging time (± SE) by bumblebees to treatment flowers. Asterisks indicate significant differences between treatments (P<0.05).
	Figure 10. The proportion of bumblebees that either visited the next closest flower (of the same treatment; white section), one of the two flowers in the other treatment in the array (grey section), or left the array entirely (black section).  Data presented for both (A) Ni arrays and (B) Al arrays.  
	Figure 11. Nickel concentrations (ppm) in pollen and nectar samples collected from Streptanthus polygaloides plants (N=24 samples per reward type per treatment). Black symbols represent plants grown in control soil, while white symbols represent plants grown in Ni-supplemented soil.  Within a floral reward type, asterisks indicate a significant difference between treatments (P<0.001).
	Figure 12. (a) Proportion of observation intervals in which visitation to Streptanthus polygaloides was observed and (b) mean visitation rates by floral visitor type (fly, bee) to S. polygaloides plants in experimental arrays (N=48 plants observed over 80 10-minute observation intervals).  Black symbols represent plants grown in control soil, while white symbols represent plants grown in Ni-supplemented soil.  Within a floral visitor type, bars with asterisks are significantly different between treatments (P<0.05).
	Figure 13. Map of six study sites located in northern California. Serpentine sites containing Streptanthus polygaloides (POLY1, POLY2, POLY3) are marked with black circles, while non-serpentine sites containing S. tortuosus (TORT1, TORT2, TORT3) are marked with grey circles. The northern California city of Chico (marked with a black star) is included as a reference point.
	Figure 14. Rarefaction curves for estimated ambient community richness (A,B) and flower visitor richness (C,D) to Streptanthus tortuosus (A,C) and S. polygaloides (B,D). Horizontal lines represent Choa1 richness estimates (solid lines) with associated 95% confidence intervals (dashed lines).  
	Figure 15. Results of cluster analysis comparing insect floral visitor similarity between Streptanthus tortuosus (TORT1-3) and S. polygaloides (POLY1-3) populations based on (A) ambient community composition and (B) flower visitor community composition. Values at dendrogram nodes indicate results from bootstrapping (values ≥ 95% are statistically supported clusters). Pie charts indicate the relative proportion of floral visitor types for each site collection, and taxa are represented by different colors: beetles (red), butterflies (orange), flies (yellow), ‘other’ visitors (e.g., ants; green), and bees (blue).
	Figure 16. Mean (±SE) floral visitation rates (visits/flower/hour) by bees, beetles, and flies to control (white bars) or Ni-treated (black bars) Streptanthus polygaloides plants in arrays presented at S. tortuosus (left bars, unshaded) and S. polygaloides sites (right bars, shaded). Asterisks indicate differences (P < 0.05) between treatments.     
	Figure 17. The percentage of pollen that germinated (A) and the percentage of germinated pollen that reached the ovary (B) for Streptanthus polygaloides and S. tortuosus plants that were either grown in Ni-treated soils (black bars) or soils that were not Ni-treated (white bars). Bars represent lsmeans and associated standard errors. Asterisks indicate significant (i.e., adjusted P-value < 0.05) pairwise Tukey tests.
	Figure 18. The percentages of pollinated flowers that matured fruits for Streptanthus polygaloides and S. tortuosus plants that were either grown in Ni-treated soils or soils that were not Ni-treated. White portions of bars represent flowers that matured a fruit, whereas black sections of bars represent flowers that did not mature a fruit.
	Figure 19.  The number of seeds produced per fruit for Streptanthus polygaloides and S. tortuosus plants that were either grown in Ni-treated soils (black bars) or soils that were not Ni-treated (white bars). Bars represent lsmeans and associated standard errors. Asterisks indicate significant (i.e., adjusted P-value < 0.05) pairwise Tukey tests.
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