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This study investigates the development of flexibility and reversibility in a calculus environment 

that attends to linking multiple representations.  Reversibility was studied through Krutetskii’s 

framework of reversibility of two-way processes and reversibility of the mental process in 

reasoning.  The study was conducted over approximately four months in a high school calculus 

classroom in an urban school district in a mid-Atlantic state.  Instruction attended to linking 

multiple representations whenever possible.  Four types of data were collected: 1) a pre-test, 2) a 

post-test, 3) daily assessments, and 4) clinical interviews.  Twenty-one students completed a pre-

test and post-test that together assessed development of flexibility over the course of the study.  

They also completed daily assessments that were collected to provide evidence of the development 

of reversibility during the course of the study.   Six students participated in four clinical interviews 

each, spread throughout the study.  Inferential statistics were used to compare the results of the 

pre-test and post-test for significant differences and to determine significant differences in the 

presence of reversibility on the daily assessments over the course of the study.  The clinical 

interviews were analyzed for evidence of students’ thought processes while solving reversible 

questions.  Analysis revealed that over the course of the study, students demonstrated significant 

increases in both flexibility and reversibility.  Two-way reversibility seemed to develop with 
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relative ease for most students and often developed simultaneously with learning a forward 

process.  Developing reversibility of the mental process in reasoning was difficult and tended to 

develop simultaneously with learning in a forward direction for students with high levels of 

flexibility.  For students who did not develop reversibility simultaneously with forward learning, 

both two-way reversibility and reversibility of the mental process in reasoning were able to 

develop through multiple opportunities to solve reversible tasks of similar content.  Analysis of 

the clinical interviews indicated that students typically followed a 4-step thought process when 

using reversibility to solve problems.  Implications and limitations of the study and areas of further 

research were discussed. 
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1.0  INTRODUCTION 

What does it mean to understand the first-year of calculus?  While textbook authors have doubtless 

wrestled with this question for decades, Sofronas et al. (2011) recently conducted empirical 

research attempting to answer this very question.  Four over-arching end-goals of calculus 

presented: “(a) mastery of the fundamental concepts and-or skills of the first-year calculus, (b) 

construction of connections and relationships between and among concepts and skills, (c) the 

ability to use the ideas of the first-year calculus, and (d) a deep sense of the context and purpose 

of the calculus” (Sofronas et al., 2011, p. 134).  Without diminishing the other three end-goals, 

this study takes great interest in the second end-goal of calculus, constructing connections and 

relationships between calculus concepts and skills.  Constructing connections and relationships 

between concepts and skills is what Hiebert and Carpenter (1992) defined as building conceptual 

understanding.  Using Hiebert and Carpenter’s definition of understanding, this study examined 

the extent to which Advanced Placement (AP) Calculus students develop understanding of 

calculus concepts. 

This study agreed with the stance taken by the National Council of Teachers of 

Mathematics (NCTM) that building understanding is a constructive process (NCTM, 1991, 2000).  

Constructivism assumes that students construct their own knowledge of mathematics (Richards & 

von Glasersfeld, 1980; von Glasersfeld, 1981).   Within a constructivist framework, Hiebert and 

Carpenter (1992) conceptualized understanding as building or making connections between 
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existing knowledge structures.  Thus, understanding develops as networks of mental 

representations become larger and more connected, and as existing connections are strengthened 

(Hiebert & Carpenter, 1992).  These connections can exist between facts, skills, concepts and 

procedures (Gray & Tall, 1994; Hiebert & Carpenter, 1992; Hiebert & Lefevre, 1986). 

This framework for building mathematical understanding is entirely dependent on a 

student’s ability to construct mental connections between learned concepts and procedures or 

skills, where a mathematical concept can be described as “a complex web of ideas developed from 

mathematical definitions and mental constructs” (Cangelosi, Madrid, Cooper, Olson, & Hartter, 

2013, p. 70) and a procedure or skill is a “specific algorithm for implementing a process” (Gray & 

Tall, 1994, p. 117). Thus, a worthy goal of mathematics education research is to investigate the 

kinds of processes that help students to acquire mathematical concepts and procedures and to 

develop connections between them.   

The Russian psychologist V.A. Krutetskii (1976) identified three problem solving 

processes that may help students to construct connections between learned concepts and 

procedures (Confrey, 1981; Confrey & Lanier, 1980; Norman & Prichard, 1994) and that are 

particularly salient to constructing understanding of calculus concepts (Norman & Prichard, 1994).  

The Krutetskiian problem solving processes of generalizability, flexibility, and reversibility “can 

be seen as the basic processes in the acquisition of concepts in mathematics” (Confrey, 1981, p. 

10) and should be a focus of development in the mathematics classroom.  Acknowledging the 

importance of generalizability, this study took an interest in the development of flexibility and 

reversibility as problem solving processes and how students make use of reversibility to solve 

problems in a calculus environment. 
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In the subsequent sections, I briefly describe the Krutetskiian problem solving processes 

of generalizability, flexibility, and reversibility, and the potential that developing reversibility 

holds as a mechanism for developing the kinds of connections between learned concepts and 

procedures that are the hallmark of mathematical understanding (Hiebert & Carpenter, 1992).  I 

then discuss the use of multiple representations in studying functions and the potential for 

constructing mathematical understanding by linking multiple representations.  A possible 

overlapping between the concepts of generalizability, flexibility, reversibility, and multiple 

representations concludes the discussion.  A conceptual framework for the present study is 

presented and the motivation and research questions are then described.  The chapter concludes 

with a discussion of the possible significance of this study and an outline of the remaining chapters. 

1.1 KRUTETSKIIAN CONSTRUCTS 

Over the span of two decades, Krutetskii (1976) observed the problem-solving behaviors of 

students described as “capable”, “average”, and “incapable”.   One outcome of his research was 

the identification of three problem-solving processes that capable mathematics students 

demonstrate: 1) generalizability, 2) flexibility, and 3) reversibility.   

1.1.1 Generalizability 

Generalizability consists of two aspects: “(1) a person’s ability to see something general and 

known to him in what is particular and concrete … and (2) the ability to see something general 

and still unknown to him in what is isolated and particular (to deduce the general from particular 
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cases, to form a concept)” (Krutetskii, 1976, p. 287).  Generalizability as described by Krutetskii 

is similar to what Lesh, Post, and Behr (1987) later described as evidence of understanding. They 

note that a student’s ability to “recognize the idea within given representational systems” (p. 8) is 

a key evidence of understanding.  A student who exhibits generalizability would be able to 

recognize a particular mathematical concept or idea within an unfamiliar system.  Generalizability 

often surfaces in spaces where students generalize a rule from a specific example or from a series 

of examples (Norman & Prichard, 1994).  For example, calculus students will often derive the 

formula for the derivative of several polynomial functions before abstracting a general equation 

(the simple power rule): 

𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥) = 1 

𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥2) = 2𝑥𝑥 

𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥3) = 3𝑥𝑥2 

𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥4) = 4𝑥𝑥3 

following the pattern, students will typically propose that 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥𝑛𝑛) = 𝑛𝑛𝑥𝑥𝑛𝑛−1. 

1.1.2 Flexibility 

Flexibility is defined as “an ability to switch rapidly from one operation to another, from one train 

of thought to another” (Krutetskii, 1976, p. 222).  Teachey (2003) viewed Krutetskiian flexibility 

as “the ability to change from one perspective to another perspective (e.g., change from an 

algebraic perspective to a graphical perspective)” (p. 6).  Lesh et al. (1987) described an ability 
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similar to flexibility as part of understanding when they observe that “part of what we mean when 

we say that a student ‘understands’ an idea like ‘1/3’ is that … he or she can accurately translate 

the idea from one system to another” (p. 8).  An inability to demonstrate flexibility in thinking is 

often related to difficulties in working with multiple representations (Lesh et al., 1987) of functions 

(Norman & Prichard, 1994). 

Flexibility is a key construct within the Common Core State Standards for Mathematics 

(CCSS-M).  A review of the CCSS-M by grade level indicates that the use of different 

representations to make sense of problems and as a modeling technique should take place from 

kindergarten through twelfth grade and that the representations available to students ought to 

increase in complexity and number as students progress through the grade levels (NGA, 2010).  In 

this study, I will restrict my discussion to the representations and connections between 

representations that the CCSS-M recommends at the high school level, namely the algebraic, 

graphical, numerical, and verbal representations (collectively referred to as multiple 

representations) of functions (NGA, 2010). 

Flexibility with multiple representations of functions is a primary focus of this study 

because of their importance as a prerequisite for successfully completing Advanced Placement 

(AP) Calculus AB in high school (Collegeboard, 2010a) and because of the centrality of the 

function concept to understanding the functional properties of rate of change (often called the 

process of differentiation) and accumulation of area (often called the process of integration) 

(Sofronas et al., 2011). 
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1.1.3 Reversibility 

Reversibility is one kind of network connection where a learner develops an ability to move back 

and forth between an input and an output or between a process and an outcome.  “The reversibility 

of a mental process here means a reconstruction of its direction in the sense of switching from a 

direct to a reverse train of thought” (Krutetskii, 1976, p. 287).  Lesh et al. (1987) describe a similar 

process as evidence of what it means to understand a mathematical concept.  They identified two 

features of understanding a mathematical idea as 1) using a model about an original situation to 

make predictions and 2) translating predictions through a model back to the original situation.  

Krutetskii (1976) identified two processes that comprise reversibility: 1) the establishment of two-

way processes; and, 2) the reversibility of the mental process in reasoning. 

I suggest that we can conceptualize reversibility as a kind of network connection within 

the framework of conceptual learning and building understanding proposed by Hiebert and 

Carpenter (1992).  In this viewpoint, reversibility serves as a two-way bridge between nodes within 

the network of knowledge and possibly as a two-way bridge between two networks of knowledge.  

As a learner develops reversibility, he/she develops a stronger, closer knit network.  Thus, 

developing a reversible thought process, thinking about a mathematical process from beginning to 

end and end to beginning, may correlate with improved mathematical understanding.   

In his research, Krutetskii (1976) interviewed 62 classroom teachers in order to classify the 

teachers’ students as capable, average, and incapable.  Capable students are similar to what might 

be described as gifted students today (Teachey, 2003) and typically performed well in previous 

math classes.  Average students demonstrated some mathematical ability, but did not stand out to 

their teachers as exceeding or failing to meet expectations.  Incapable students were described as 

poor math students with low mathematical abilities.  For capable students, the network connections 
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(what Krutetskii called “bonds”) “and their systems established in a straightforward direction took 

on a reversible character immediately (‘on the spot’).  Establishing or forming direct associations 

meant a simultaneous (or almost so) formation or establishment of reverse associations” (p. 288).  

However, for the average mathematics pupil to develop reversibility, special exercises 

accompanied by instruction were necessary.  Incapable students were not able to develop 

reversible bonds even after receiving special exercises designed to help the students develop 

reversible bonds.  Special exercises were typically a reverse problem following a direct problem 

(Krutetskii, 1976).  A simple example of a Krutetskiian special exercise would be having a student 

solve 4 + 3 = ____ and then having the student solve 4 + ____ = 7. 

Gray and Tall (1994) suggested that reversing a process is a key step in building 

“proceptual encapsulation” (p. 135).  Proceptual encapsulation occurs when the reversing of a 

process is no longer seen as creating a new process at a different level of a mathematical hierarchy 

of relationships, but instead is seen as an equivalent process on the same level of the hierarchy.  

For example, consider addition and subtraction, two reversible processes.  The student who has 

proceptually encapsulated addition would not see subtraction as a new process to be learned but 

rather addition in reverse.  A student who lacks proceptual encapsulation would view subtraction 

as a new process, separate from addition (Gray & Tall, 1994). 

Norman and Prichard (1994) proposed using generalizability, flexibility, and reversibility 

as a framework for analyzing conceptual understanding of calculus students.  They suggested 

investigating each construct by designing problem-solving items that require generalizability, 

flexibility, and reversibility in order to solve.  Examples of Krutetskiian constructs in calculus 

include deriving the simple power rule from a series of examples (generalization), making 

connections between the algebraic, graphical, and numerical representations of functions in order 
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to solve problems involving limits, continuity, derivatives, and integrals (flexibility), and 

understanding the inverse relationship between differentiation and integration (reversibility) 

(Norman & Prichard, 1994).  The reversible connection between the derivative as the rate of 

change of a function and the integral as the total change (also called the accumulating change or 

accumulating area) has been identified as key sub-goal of constructing connections and 

relationships between calculus concepts and skills (Sofronas et al., 2011).  Figure 1 shows the 

reversible relationship between differentiation and integration. 

 

Figure 1.  The reversible relationship of differentiation and integration 

The Krutetskiian problem-solving processes of generalizability, flexibility, and 

reversibility are three kinds of mental processes that help to build the connections that support 

mathematical understanding.  Researchers have suggested that these processes be developed in the 

mathematics classroom in order to promote conceptual learning and understanding (Norman & 

Prichard, 1994; Rachlin, 1981; Teachey, 2003).  The potential that generalizability, flexibility, and 

reversibility hold for promoting mathematical understanding suggests a research agenda 
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investigating how students develop these processes and how they access the processes in problem 

solving. 

1.2 MULTIPLE REPRESENTATIONS 

The CCSS-M identifies “analyze functions using different representations” (NGA, 2010, p. 68) as 

a standard of learning for high school students within the Functions domain.  Moschkovich, 

Schoenfeld, and Arcavi (1993) and later Knuth (2000) described the “Cartesian Connection” as 

the need for students to make connections and understand relationships between functions 

presented algebraically, graphically, and as a tabular representation (the tabular representation is 

often referred to as the numerical representation).   

One instructional approach fully immersed in the use of multiple representations is what 

the Calculus Consortium at Harvard (CCH) named  “The Rule of Three” (Gleason & Hughes-

Hallett, 1992, p. 1).  The Rule of Three is a premise that all calculus instruction should attend to 

the graphical, numerical, and analytical representations of calculus concepts whenever appropriate.  

Beginning in 1995, the CCH produced a calculus textbook, Calculus: single variable in which the 

graphical, numerical, and analytical representations of calculus concepts are “emphasized 

throughout” (Gleason & Hughes-Hallett, 1992, p. 1).  Beginning with the second edition, the CCH 

included a fourth representation, the verbal representation, which is the use of verbal descriptions 

to explain mathematical actions and as the traditional “word problem”.  Thus, “The Rule of Three” 

became “The Rule of Four”, which has been extended beyond calculus to functions.   

The Rule of Three/Four is not limited in applicability to calculus.  At approximately the 

same time (late 1980’s and early 1990’s) as the CCH was coining the phrase “Rule of Three”, 
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other researchers were reaching similar conclusions regarding the study of functions in algebra 

classes.  Williams (1993) concluded that an emergent theme of mathematical practices necessary 

for understanding functions and graphs is “the importance of being able to move comfortably 

between and among the three different representations of function: algebraic, graphical, and 

tabular” (p. 329).  As part of the interpreting functions standard, the CCSS-M recognizes the rule 

of four, recommending that high school students be able to “compare properties of two functions 

each represented in a different way (algebraically, graphically, numerically in tables, or by verbal 

descriptions)” (NGA, 2010, p. 70).  The AP Calculus course description now states that an end 

goal of AP Calculus is that “students should be able to work with functions represented in a variety 

of ways: graphical, numerical, analytical, or verbal.  They should understand the connections 

among these representations” (Collegeboard, 2010b, p. 6).  This suggests that a key part of learning 

calculus includes developing flexibility with the multiple representations of functions, the end goal 

of the Rule of Four. 

The ability to move between multiple representations whenever appropriate is a defining 

feature of mathematical understanding (Tall, 1992).  Janvier (1987a) referred to the act of 

switching from one representation into another as translation.  Lesh et al. (1987) described three 

actions, all of which require proficiently translating between multiple representations, that are 

evidence of student understanding, saying that  

part of what we mean when we say that a student ‘understands’ … is that: (1) he or she can 

recognize the idea embedded in a variety of qualitatively different representational 

systems, (2) he or she can flexibly manipulate the idea within given representational 

systems, and (3) he or she can accurately translate the idea from one system to another.  

(Lesh et al., 1987, p. 36) 
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I use the phrase “linking multiple representations” synonymously with the phrase “translating 

between representations”.  The word linking helps to connote the image presented in figure 2 and 

is meant to indicate that the learner understands a relationship between the representations 

involved in the translation. 

  

Figure 2.  A model of the translations between the four representations of “The Rule of Four” 

The NCTM (2000) recommended that students be able to “select, apply, and translate 

among mathematical representations to solve problems” (p. 63).  CCSS-M lists the ability to 

analyze functions in multiple representations as a high school standard of learning.  There is 

evidence that shows that the use of multiple representations of mathematical objects is one way to 

build networks of mental constructions (Dick & Edwards, 2008).  As an evidence of student 

understanding and as an end goal of mathematics instruction, fluency with multiple representations 

is a highly desired outcome of mathematics education. 
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The Krutetskiian constructs of generalizability, flexibility, and reversibility are an integral 

part of an analysis of functions through multiple representations.  Generalizability typically 

presents through a symbolic notation, such as when conjecturing a formula from a list of examples, 

or proving a theorem by using induction.  Flexibility is the ability to move between the multiple 

representations as necessary.  A student who has flexibility can switch between thinking in a 

symbolic representation to a graphical representation without difficulty.  Reversibility, within a 

multiple representations context, is the ability to translate a symbolic representation into a 

graphical representation and the ability to translate the graphical representation back into a 

symbolic representation.  I define the term representational reversibility to refer to the ability to 

make reversible translations between representations.  Representational reversibility falls under 

Krutetskii’s second kind of reversibility process, reversibility of the mental process in reasoning.  

Thus, I suggest sub-diving “reversibility of the mental process in reasoning” into two distinct 

categories: 1) reversibility of the mental process in reasoning without reversible translations, and 

2) reversibility of the mental process in reasoning with reversible translations (representational 

reversibility).  Figure 3 shows the framework through which I view reversibility. 
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Figure 3.  The three kinds of reversibility studied in this investigation 

While closely related, there is a distinction between flexibility and reversibility within 

multiple representations: flexibility is the ability to switch between representations as necessary, 

reversibility is the ability to move back and forth between two specific representations.  Flexibility 

does not require a bidirectional translation, reversibility does.  Figure 2 shows an example of 

reversibility within multiple representations.  The bidirectional arrows represent reversible links 

between representations.  Figure 4 shows a visualization of flexibility within multiple 

representations.  Flexibility can be seen when considering a one-way translation from tables to 

Reversibility

Two-way 
Processes

Mental Process 
in Reasoning

With 
Representational 

Reversibility

Without 
Representational 

Reversibility

 13 



  

equations or from equations to table to graphs.  Reversibility is represented by the bi-directional 

arrows that exist between each set of two representations. 

 

Figure 4.  An example of flexibility within multiple representations 

The distinction described between flexibility and reversibility within multiple 

representations describes the distinction I draw between the two categories of reversibility of the 

mental process in reasoning.  The phrase “reversibility of the mental process in reasoning without 

reversible translations” does not preclude one-directional translation (i.e. flexibility), for example 

translating a table of values into a graph.  This distinction precludes reversing the translation (i.e. 

reversibility of representation).  Thus, direct and reverse set of problems that assesses reversibility 

of the mental process in reasoning without reversible translations may require the same directional 

translation in both the forward and reverse problems.  A direct and reverse set of problems that 

assesses representational reversibility must require a one-directional translation in the forward task 

and the reverse translation in the reverse task. 
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1.3 CONCEPTUAL FRAMEWORK 

Mathematical understanding consists of connections between mathematical concepts, processes, 

and procedures (Hiebert & Carpenter, 1992).  Thus, in order to develop mathematical 

understanding, learners need to build a network of connections between concepts, processes, and 

procedures (also called a network of knowledge).  In this section, I describe a current learning that 

describes how networks of knowledge are constructed.  I then overlay reversibility onto the 

learning theory to show its possible role in building networks of connections. 

A current theory about building a network of knowledge is the Action, Process, Object, 

Schema (APOS) framework (Asiala et al., 1996).  APOS proposes that 

An individual’s mathematical knowledge is her or his tendency to respond to perceived 

mathematical problem situations by reflecting on problems and their solutions in a social 

context and by constructing or reconstructing mathematical actions, processes and objects 

and organizing these in schemas to use in dealing with the situations.  (Asiala et al., 1996, 

p. 5) 

Within this framework, understanding a mathematical concept is first dependent on a student’s 

ability to access and adjust (if necessary) previously constructed mental or physical objects to 

create an action.  An action can be thought of as a procedure that transforms a mathematical object.  

When a student learns an action well enough that the student can reproduce the procedure without 

needing cues or a step-by-step recipe to follow, the student is said to have interiorized the action 

into a process.  A key evidence of interiorizing an action conception into a process conception is 

that the student can reverse the procedure from output to input (Asiala et al., 1996). 

 Students move from a process conception of a mathematical concept to an object 

conception through the process of encapsulation.  When a student encapsulates a process into an 
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object, the student can now perform actions on the object.  The object is transformable (Asiala et 

al., 1996).  The researchers note the importance of de-encapsulation – the act of deconstructing an 

object into its constituent processes.  Thus, reversibility is a key evidence of forming a process 

conception and reversibility is the process used to deconstruct an object into its constituent 

processes. 

The fourth level of the APOS framework is schema construction.  Schemas are organized 

structures of processes, objects, and other schemas (Asiala et al., 1996).  It is reasonable to think 

of a schema as a network of knowledge.  There is a noticeable similarity between schemas as 

defined by Asiala et al. (1996) and conceptual knowledge as defined by Hiebert and Carpenter 

(1992) and this similarity helps to explain how APOS theory can be viewed as a framework for 

the development of conceptual understanding.  Building a schema requires linking processes, 

objects, and existing schemas (Asiala et al., 1996), much like the building of conceptual knowledge 

consists of the constructing of links between networks of existing mental representations and new 

mental constructions (Hiebert & Carpenter, 1992). 

Schemas can themselves be treated as objects.  When a student is able to perform actions 

and processes on a schema, the student has thematized a schema.  An object created by thematizing 

a schema and then acted upon by an action or process can be de-thematized back to its original 

schema (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997).  The Krutetskiian construct of 

reversibility is necessary to de-thematize an object into its schema. 

Figure 5 shows the relationships within the APOS framework and where the Krutetskiian 

construct of reversibility fits within APOS. 
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Figure 5.  A diagram of the APOS framework and reversibility’s place within it 

 17 



  

Thus, reversibility is necessary to develop a process conception from an action conception, 

an object conception from a process conception, and is necessary to de-thematize a transformed 

object into its constituent schema(s).  Since reversibility is necessary for constructing schema 

within the APOS framework, and since schema construction is an example of building conceptual 

understanding, we can conclude that developing the reversibility process is necessary for 

developing conceptual understanding.  In order to help demonstrate the relationships within the 

APOS framework and reversibility’s place within it, I present a mathematical example put forth 

by Breidenbach, Dubinsky, Hawks, and Nichols (1992) as descriptive evidence of the differences 

between the action and process conceptions of functions.  I extend the example by describing 

possible features of an object conception of function and a function schema thematized into a new 

object. 

An action conception of a function would likely be limited to substituting numbers into 

symbolic equations and evaluating the resulting expression.  Students limited to an action 

conception of function can only solve one-step problems involving functions, such as evaluating 

the function at one input value.  Considering evaluating the function on an infinite domain would 

be out of reach for a student limited to an action conception.  The student limited to an action 

conception sees a function as a discrete input/output machine, not as describing a continuous 

relationship.  Also, an action conception would not permit the composition of functions except in 

such a case where the student could evaluate a composition such as 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) by substituting a 

value for 𝑥𝑥 into each equation one step at a time (Breidenbach et al., 1992). 

When an action conception of function has been interiorized into a process conception, the 

student can now evaluate functions across domains instead of at isolated points, can compose 

functions, and can reverse the effects of a function.  This means that rather than only producing an 
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output from a given input, the student could consider an output and identify a possible input.  In 

this sense, the concepts of a one-to-one function and an invertible function become accessible 

(Breidenbach et al., 1992).  Here, reversibility becomes a key evidence of interiorizing an action 

into a process.  Without reversibility, the idea of an inverse function or the ability to move from 

output back to input is inconceivable. 

When a student encapsulates a process conception of function into an object conception, 

the student can now perform actions on the function.  Thus, the function is no longer a machine 

that modifies inputs into outputs, but is itself an object to be transformed.  For example, a student 

with an object conception of a function would be able to perform an operation on the function, 

such as differentiation, and understand that the differentiation process inputs a function and outputs 

a new function.  Similarly, with an object conception, a student can perceive of a rational function 

as a polynomial function divided by another polynomial function.  Reversibility presents as de-

encapsulation – the process of deconstructing an object into its constituent processes.  One example 

of de-encapsulation of functions (and thus reversibility) would be deconstructing the composition 

𝐻𝐻(𝑥𝑥) = sin2(3𝑥𝑥) into three separate functions, 𝑓𝑓(𝑥𝑥) = sin 𝑥𝑥 ,𝑔𝑔(𝑥𝑥) = 𝑥𝑥2, and ℎ(𝑥𝑥) = 3𝑥𝑥.  Thus, 

𝐻𝐻(𝑥𝑥) = 𝑔𝑔(𝑓𝑓�ℎ(𝑥𝑥)�). 

The function schema itself could then be thematized into an object and transformed.  When 

thematizing a schema, the student is able to consider the effects of a transformation on the whole 

of the schema and consider what elements would be affected by the transformation and what 

elements would be left unaffected.  For example, a student who has thematized a schema of 

polynomial functions would be able to consider what would happen to a polynomial function if 

we restricted its domains and created a piecewise function consisting of three polynomials on 
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separate domains.  Recent research has shown that schema can be thematized, however, incidence 

of thematization is rare (Cooley, Trigueros, & Baker, 2007). 

1.4 MOTIVATION, PURPOSE AND RESEARCH QUESTION 

1.4.1 Motivation 

Since Krutetskii’s (1976) research, there has been little research examining how students develop 

reversibility.  Lamon (2007) observed that “researchers know very little about reversibility” and 

that reversibility could be the subject “for a valuable microanalysis research agenda” (p. 661).  

Recently, a research agenda began attempting to explicate the development of reversibility 

(Haciomeroglu, Aspinwall, & Presmeg, 2009; Ramful & Olive, 2008).  I hypothesized that a key 

learning activity in developing reversibility lies in Krutetskii’s construct of flexibility.  Although 

Krutetskii (1976) drew a clear distinction between reversibility and flexibility, he noted that there 

exists an overlap of flexibility of thinking and reversibility.  This overlap exists in the necessity 

for a student to make a “sharp turn” (Krutetskii, 1976, p. 287) in his/her mental construction from 

moving in the forward direction to the reverse direction.  According to Krutetskii (1976), this kind 

of sharp turn would necessarily fit his definition of flexible thinking – switching from one train of 

thought to another.  Building on Norman and Pritchard’s (1994) assertion that issues with 

flexibility often relate to a student’s inability to move flexibly between multiple representations of 

functions, I hypothesized that flexibility and reversibility may develop as a result of instruction 

that attends to linking multiple representations.  Haciomeroglu et al. (2009) found that students 

with a strong preference for graphs or a strong preference for algebraic expressions tend to develop 

 20 



  

one-sided thinking processes and do not show evidence of developing reversible conceptions, a 

conclusion predicted by Krutetskii’s (1976) research.  I suggest that considering mathematical 

concepts from visual, analytic, and numerical perspectives (i.e. learning mathematics from a Rule 

of Three perspective) will support the development of all three processes within reversibility. 

1.4.2 Purpose and research questions 

This study investigated reversibility and linking multiple representations in a calculus 

environment.  Specifically, this study attempted to answer the following research questions: 

1) To what extent do students develop flexibility with multiple representations 

when engaged in a course that attends to linking multiple representations? 

2) To what extent do students develop reversibility when engaged in a course 

that attends to linking multiple representations?  In particular: 

i. To what extent does reversibility of two-way reversible processes 

develop? 

ii. To what extent does reversibility of the mental process in reasoning 

without reversible translation develop? 

iii. To what extent does reversibility of the mental process in reasoning 

with reversible translations (representational reversibility) develop? 

3) What are the thought processes that students utilize when using reversibility 

to solve problems? 
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1.5 SIGNIFICANCE OF THE STUDY 

This study purports to inform mathematics education researchers and mathematics teachers about 

the development of flexibility and reversibility when students are engaged in a course that attends 

to linking multiple representations.  I expect that both flexibility and reversibility will develop as 

the students consistently engage in activities that require linking multiple representations.  This 

research study has the potential to identify instructional activities that help to develop flexibility 

and reversibility. 

This study may help to address some current calls for research investigating learning 

mathematics in a multiple representations framework.  Haciomeroglu, Aspinwall, and Presmeg 

(2010) called for research on “classroom instruction that identifies and then challenges students’ 

preferred modes of thinking” (p. 174).  Lesser and Tchoshanov (2005) asserted that “studying an 

effect that representations have on students’ understanding is critical for effectiveness of teaching 

mathematics” (p. 1).  The current study has the potential to offer insights into these research 

questions.  Cheng (1999) said that a long term goal of mathematics education research should be 

to show that translating between representations improves students’ conceptual learning.  This 

study may help the research agenda to move forward in accomplishing this goal. 

This study also has the potential to increase our understanding of reversibility, how it 

develops, and how students reason with reversibility.  Researchers have identified reversibility as 

a key problem solving process (Confrey, 1981; Confrey & Lanier, 1980; Norman & Prichard, 

1994), however we know little in the way of how students develop reversible conceptions, how 

students use reversibility to solve problems, or how students think about problems when using 

reversibility.  This research study may offer insights into how students think about reversible 

conceptions, how they translate those thoughts into problem solving processes, and help inform 
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the research community in how students develop reversibility, thus helping to answer the calls for 

a research agenda investigating the development of reversibility. 

Finally, since rate of change and accumulation of area are both properties of the same 

function, and given the importance of reversibility in making connections between the concept of 

rate of change and the concept of accumulating area, and thus understanding the first-year of 

calculus (Sofronas et al., 2011), this study may reveal new insights into what it is about the function 

concept that students learn when developing reversibility and possibly when developing flexibility.  

For example, can a student consider the effects that a vertical transformation on a function would 

have on the function’s rate of change or accumulation of area?  Does flexibility of representations 

aide in considering these effects?  Is reversibility of representational translations involved in this 

kind of thought process?  If so, how?  This study has potential to offer insight into these questions. 

1.6 LIMITATIONS OF THE STUDY 

There are several factors that limit the generalizability of this study: 1) the participants in the study, 

2) the content lens of the study, and 3) several of the assessment items only test a learning goal 

one time. 

The participants in this study consist of AP Calculus AB students.  Thus, this population 

consists of students who have been sufficiently successful in mathematics as to take a college level 

math course while in 10th, 11th, or 12th grade.  It is possible that the results of this study can only 

be extended to similar populations. However, if the results are limited in generalizability, the 

results would still strengthen calls for reversibility research with other populations. 

 23 



  

This study is completely situated within calculus.  It is possible that reversibility is context 

specific; as such, it could be the case that if students develop reversibility, it may be due to the 

nature of calculus as an ideal content lens for investigating the relationship between reversibility 

and linking multiple representations.  Results indicating that a relationship exists would suggest 

that future research that examines reversibility and linking multiple representations should use 

other mathematical content to assess if the results of this study are replicable in other mathematical 

contexts. 

Two of the assessment items, the flexibility pre-test and the differentiation competency 

test, each test 18 instances of flexibility and 6 instances of representational reversibility.  It is 

possible that a student may have some amount of flexibility and reversibility in another 

mathematical content domain and that the assessment items used here do not offer the student the 

opportunity to demonstrate flexibility and/or reversibility.  Given this limitation, there is a need 

for further research in reversibility and flexibility in other mathematical content domains. 

1.7 OUTLINE OF THE STUDY 

My primary purposes in Chapter 1 were to describe the theoretical assumptions that underlie this 

research study and to present reversibility and the linking of multiple representations as abilities 

that help students to construct mathematical understanding.  The literature reviewed should serve 

to accomplish two main goals: 1) to present the research started by Krutetskii as worthy of 

continuing and that the development of reversibility in particular, should be examined, and 2) to 

show that there is reason to believe that engaging in a mathematics course that attends to linking 

multiple representations has the potential to foster the development of flexibility and reversibility. 
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In Chapter 2, I provided a thorough review of research conducted on developing 

reversibility and present a review of the literature published on the use of multiple representations.  

I attempted to make the argument, informed by the existing bodies of literature on reversibility 

and multiple representations, that engaging in a mathematics course that attends to linking multiple 

representations has the potential to foster the development of flexibility and reversibility. 

Chapter 3 described the methodology by which I examined the extent to which flexibility 

and reversibility developed when students engaged in a mathematics course that attended to linking 

multiple representations.  I described the students that participated in the study, the mathematical 

content presented through multiple representations, the data sources, the procedures for collecting 

the data, and the methods of data analysis. 

Chapter 4 reported the results of the study and data analysis.  Chapter 5 discussed the 

findings of the study and implications for future research.
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2.0  LITERATURE REVIEW 

The literature review of this study consists of four sections: (1) a review of the literature on 

reversibility, (2) a review of the literature on multiple representations, (3) an argument for why 

linking multiple representations will help students to develop reversibility, and (4) a brief summary 

of the chapter.  This chapter positioned my study within the research on the development of 

reversibility and will presented evidence for why I suggest that instruction linking multiple 

representations will help students develop reversibility.  This chapter will also help to situate my 

data set within the relevant literature conducted within a calculus classroom. 

2.1 REVIEW OF REVERSIBILITY LITERATURE 

The concept of reversibility has recently received renewed attention within the mathematics 

education literature.  However, reversibility was originally proposed and studied by cognitive 

psychologists, most famously (the Russian psychologist) V.A. Krutetskii (1976) and Jean Piaget 

(Inhelder & Piaget, 1958; Sparks, Brown, & Bassler, 1970).  It is upon the foundation laid by 

Krutetskii and to a lesser extent Piaget (Inhelder & Piaget, 1958) that research on how reversibility 

develops stands.  In this section, I reviewed the body of research on reversibility and discussed the 

possible existence of an overlap between reversibility and flexibility.  I began by discussing 

definitions of the key terms and then discussed the major conclusions about reversibility and how 
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reversibility develops.  I concluded the section with a discussion of current calls for a research 

agenda investigating various elements of reversibility. 

2.1.1 Definition of reversibility 

Krutetskii (1976) defined reversibility as a mental process; “the reversibility of a mental process 

here means a reconstruction of its direction in the sense of switching from a direct to a reverse 

train of thought” (p. 287).  To distinguish between direct and reverse trains of thought, Krutetskii 

referred to a sequence of thoughts from A to E as a direct bond and sequence of thoughts from E 

to A as a reverse bond.  Krutetskii suggests that reversibility is composed of two different, yet 

interrelated processes: 1) the establishment of bidirectional bonds (two-way processes), such as a 

biconditional theorem, as opposed to only constructing a one-way bond such as in a conditional 

theorem; 2) the reversibility of the mental process in reasoning. 

 Krutetskii (1976) described the second process as “thinking in a reverse direction from the 

result of the product of the initial data” (p. 287).  One example of thinking in a reverse direction 

would be the construction of a converse to a theorem.  He specifically observed that a reverse train 

of thought need not follow the same thought processes as the original thought.  As an example, 

Krutetskii said that if a student learns a six-step process, call the steps A, B, C, D, E, F, then the 

student has learned the process from A to F.  Reversibility would then require learning the process 

from F to A.  However, reversing the process from F to A would not need to follow the steps F, E, 

D, C, B, A.  Reversibility only requires that the process begin at F and conclude at A.  Thus, 

Krutetskii proposed that reversibility can present in two separate ways.  Reversibility can exist as 

a direct and reverse association, 𝐴𝐴 ↔ 𝐷𝐷.  In other cases, the process cannot be reversed across the 

same path and leads only to a reversal of general thought, 𝐴𝐴 ⇌ 𝐷𝐷. 
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Krutetskii (1976) cautioned that often reversibility cannot be reduced to simple reverse 

associations.  For example, consider factoring the difference of squares, 𝑎𝑎2 − 𝑏𝑏2.  An algebra 

student who has learned how to factor the difference of squares answers 𝑎𝑎2 − 𝑏𝑏2 =

(𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏).  However, when a student is asked to multiply (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) a student is likely 

to follow the FOIL (First, Outer, Inner, Last) procedure and conclude that (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) = 𝑎𝑎2 −

𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑏𝑏 − 𝑏𝑏2 = 𝑎𝑎2 − 𝑏𝑏2.  This procedure produces a correct answer and is an example of 

reversibility.  However, it does not simply reverse the process of factoring the difference of 

squares.   

Consider a second example from calculus.  Differentiation and integration are completely 

reversible operations (Norman & Prichard, 1994), meaning that they are inverse operations.  

However, the relationship can only be reduced to simple reverse associations in trivial, procedural 

examples, such as 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑥𝑥2] = 2𝑥𝑥 and ∫2𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑥𝑥2 + 𝐶𝐶.  In this example, the simple power rule 

for differentiation, 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑥𝑥𝑛𝑛] = 𝑛𝑛 𝑥𝑥𝑛𝑛−1, and the simple power rule for integration, ∫𝑥𝑥𝑛𝑛𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑛𝑛+1

𝑛𝑛+1
+

𝐶𝐶, are simple reverse associations.  Reversibility should be used to generate and justify integration 

formulas from known derivatives; however, research indicates that calculus students tend not to 

use reversibility to develop connections between differentiation and integration (Norman & 

Prichard, 1994).   

A non-trivial, procedural example of differentiating a function that requires the product 

rule, such as 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑑𝑑𝑥𝑥2, serves as evidence of how reversible properties do not only consist of 

reversing the sequence of a known procedure.  In this case, 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑑𝑑(2 + 𝑥𝑥).  Integrating 𝑓𝑓′(𝑥𝑥) 

would by definition produce 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑑𝑑𝑥𝑥2 + 𝐶𝐶.  However, the mathematical procedures necessary 

to integrate 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥𝑒𝑒𝑑𝑑(2 + 𝑥𝑥) to prove that 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑑𝑑𝑥𝑥2 are far more complicated than the 

product rule for differentiation and require an integration schema that includes integration by parts. 
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A common conceptual example of the use of reversibility in calculus involves describing 

the characteristics of functions.  Many calculus students are adept at looking at a graph of a 

function and describing the characteristics of the function and the function’s derivative; however, 

constructing the graph of a function from a discrete list of characteristics of the function and the 

function’s derivative is extremely difficult for students (Baker, Cooley, & Trigueros, 2000; 

Norman & Prichard, 1994).  Thus, it may be the case that reversibility requires a complex network 

of mental constructions and connections. 

The two processes that comprise Krutetskiian reversibility have a commonality.  Krutetskii 

(1976) noted that both processes require a “sharp turn” (p. 287) in the student’s mental 

construction, from moving in the forward direction to the reverse direction.  This sharp turn is 

particularly difficult for students; but, Krutetskii concluded from an extensive review of literature 

that “numerous psychological studies in our country and elsewhere have shown that reverse bonds 

can be formed at the same time that direct ones are established” (p. 288). 

Krutetskii’s (1976) definition of reversibility has been adopted without modification by 

other researchers in subsequent decades and applied to various age levels and levels of 

mathematics.  Rachlin (1981), in his dissertation, studied reversibility as defined by Krutetskii in 

college algebra students.  Later, Rachlin extended the definition of reversibility saying, “rather 

than refer merely to working backward through the steps of an algorithm, reversibility in thinking 

refers to finding an alternative path for meeting the conditions of the problem” (p. 471).  Norman 

and Prichard (1994) identified Krutetskiian reversibility as a key process in the learning of 

calculus.  Steffe (1994) positioned Krutetskii’s (1976)definition of reversibility as a key process 

in children’s counting.  Fuson (1992) implicitly agreed with Krutetskii’s definition of reversibility 

by saying that “reversibility knowledge enables one to think about a situation in reverse” (p. 257). 
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Krutetskii (1976) concluded his definition of reversibility by noting its distinction from 

Piaget’s conception; “it is clear … that we are not attaching to the concept of reversibility the 

importance that Piaget does” (p. 287).  For Piaget, reversibility locates within inversion (also called 

negation) and equilibration (also called conservation) (Flavell, 1963; Inhelder & Piaget, 1958).  As 

a matter of inversion, reversibility presents as the ability to return a product to its starting point by 

canceling an operation that has already been performed.  In this instance, the outcome of the direct 

operation and its inverse, thus the outcome of reversible processes, is the identity operation 

(Inhelder & Piaget, 1958).  Rachlin (1981) described reversibility as an outcome of inversion as 

Piagetian “operational reversibility” (p. 17).   

Flavell (1963) reported that Piaget used the terms reversibility and equilibrium nearly 

interchangeably.  Piaget viewed reversibility as a necessary outcome of a complete understanding 

of reciprocal operations and the process of negation.  The Piagetian perspective identifies that 

students should become aware that an operation can be undone (reversed) through an appropriate 

action or sequence of actions.  When the forward and reverse actions are taken together, the student 

perceives equilibration (or reversibility).   

Sparks et al. (1970) further developed Piaget’s idea of reversibility.  They characterized 

reversibility as the realization that prior to an action changing an object, there exists an inverse 

operation that will restore the object to its prior state.  Even when actions taken result in objects 

that cannot be physically restored (such as in what takes place in a chemical reaction) to its original 

state, the reversible thought process is still present and is an entirely theoretical exercise.  Thus, 

Sparks et al. (1970) concluded that in the Piagetian conservation experiment, reversibility presents 

when the child can mentally restore the object to its original state and note the invariance.  This 

description by Sparks et al. (1970) seems to identify an overlap between the definitions given by 
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Krutetskii and Piaget.  The linking similarity lies in Krutetskii’s (1976) second process, “thinking 

in a reverse direction from the result of the product of the initial data” (p. 287).  In both descriptions 

of reversibility, a key process is the mental reconstruction of taking an output and returning it to 

its constituent input(s) through negation, reciprocal operations, etc. 

In this document, I attempted to continue in the footsteps of other reversibility researchers 

(Fuson, 1992; Norman & Prichard, 1994; Rachlin, 1981; Steffe, 1994) and build on Krutetskii’s 

(1976) definition of reversibility.  Krutetskii’s definition is particularly salient for my research as 

this dissertation examined reversibility through a calculus lens and Norman and Prichard (1994) 

have noted the usefulness of Krutetskiian reversibility as a framework for observing calculus 

learning. 

In this study, the development of reversibility will account for the development of two-way 

directional processes and for the development of a reversible thought process.  When it is necessary 

to draw a distinction between the two aspects of Krutetskiian reversibility, I refer specifically to 

the act of constructing two-way directional processes or to developing a reversible thought process.   

2.1.2 Definition of flexibility 

A process that some researchers (Gray & Tall, 1994; Kendal & Stacey, 2003; McGowen, 2006) 

believe to be closely related to reversibility is flexibility.  Krutetskii (1976) first identified 

flexibility as a key problem-solving process of capable mathematics students.  Krutetskii defined 

flexibility as “an ability to switch from one mental operation to another” (p. 88).  Kilpatrick (1978), 

who edited the English translation of Krutetskii’s (1976) research, observed that, within 

Krutetskii’s work, flexibility presents in two ways: 1) the degree to which a correct solution 
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method on a prior problem does not limit the student’s approach to a subsequent problem; and, 2) 

a student’s ease in switching between multiple successful solution methods to the same problem. 

Researchers have used Krutetskii’s (1976) definition of flexibility as a framework for 

studying various elements of how students learn (Hashimoto & Becker, 1999; Kendal & Stacey, 

2003; Norman & Prichard, 1994; Rachlin, 1981).  Gray and Tall (1994) offered a nuanced 

definition of flexibility, relating it to the mathematics learning of processes and concepts.  They 

defined flexibility as the ability to move freely between a symbolic notation’s representation as 

either a process or concept.  This definition suggests that flexible thinking situates in the cognitive 

shift from seeing a symbolic notation as a procedural directive to seeing the same symbolic 

notation as a mental object to be manipulated.  Gray and Tall noted specifically that flexible 

thinking is a necessity in mathematics due to an inherent ambiguity in mathematical notation.  

Many mathematical notations can represent both a procedure and an object.  For example, consider 

the calculus student who sees the symbolic notation 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑥𝑥2].  A procedural thought process sees 

this notation as a symbol for the simple power rule and thus the output 2𝑥𝑥.  Flexible thinking, as 

described by Gray and Tall (1994), requires that a student sees 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑥𝑥2] as a mental object upon 

which further transformations can be performed.  Gray and Tall defined the difference between 

students who can use flexible thinking to “produce new known facts from old, giving a built-in 

feedback loop that acts as an autonomous knowledge generator” (p. 132) and students who lack 

flexible thinking and only have procedures as the “proceptual divide” (p. 132).  They suggested 

that the proceptual divide “is one of the most significant factors in the difference between success 

and failure” (p. 132). 
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2.1.3 Relationship between reversibility and flexibility 

Krutetskii (1976) positioned reversibility and flexibility as separate problem-solving processes but 

then also concluded that they and other processes are “closely interrelated, influencing one another 

and forming in their aggregate a single integral system, … the mathematical cast of mind” (p. 351).  

A look at the types of questions Krutetskii used demonstrates the proposed differences between 

reversibility and flexibility.  He only used one kind of problem to assess reversibility – 

direct/reverse question pairs.  Krutetskii asked a question in a forward direction and then asked the 

same question in the reverse direction.  For example, a direct question would be “a saw in a sawmill 

saws off a 1 m piece of log every minute.  How many minutes will it take to saw 16 m of log” 

(Krutetskii, 1976, p. 144).  The reverse question is “in 3 minutes a log is sawed up into half-meter 

pieces, with each cutting taking 1 minute.  Find the length of the log” (Krutetskii, 1976, p. 144).  

To test flexibility, Krutetskii used three different kinds of problems: 1) problems with multiple 

solution methods, 2) problems with changing content, and 3) problems requiring the reconstruction 

of an operation.  Krutetskii argued that all three types of questions assess the same mental 

construction, the act of interrupting a “just-established solution pattern and replacing it with a new 

one” (Krutetskii, 1976, p. 277).  An example of a question Krutetskii used to assess flexibility is 

“in how many ways can 78 rubles be paid if the money is in 3-ruble and 5-ruble notes” (Krutetskii, 

1976, p. 136).  The student solved the problem and then was tasked with finding the maximum 

number of solution methods to the aforementioned problem.  These examples serve to demonstrate 

the difference between reversibility and flexibility as portrayed by Krutetskii.  Reversibility 

requires a turn in the direction of thought, a change from thinking in the direction of input to output 

to thinking output back to input.  Flexibility allows for the same direction of thought but requires 

a different kind of input to get to the same output. 
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 Teachey (2003) followed Krutetskii’s design dichotomy by testing students’ reversibility 

and flexibility using separate kinds of problems.  Teachey assessed gifted high school students’ 

conceptual and procedural knowledge of polynomial functions.  She noted that both reversibility 

and flexibility require connections as described by Hiebert and Lefevre (1986), but that each 

requires a different kind of connection.  Reversibility requires connecting knowledge in 

appropriate sequences while flexibility requires connecting “pieces of knowledge so that a student 

can move easily from one representation to another or can connect a new representation to an 

existing concept” (Teachey, 2003, p. 12).  She assessed reversibility by asking questions that 

required students to think in a reverse direction; she assessed flexibility by requiring students to 

make transitions between different functional representations.  Thus, Teachey’s research design 

distinguishes between reversibility and flexibility in the same way that Krutetskii did. 

Other researchers have suggested that a relationship exists between reversibility and 

flexibility.  Piaget contended that reversibility is essential to cognitive flexibility (Inhelder & 

Piaget, 1958).  Usiskin (1999) and McGowen (2006) both portrayed reversibility as a specific kind 

of flexibility.  Although not drawing this conclusion himself, it appears that Rachlin (1981) also 

viewed reversibility as a specific kind of flexibility, as he concluded that his “subjects’ patterns of 

reversibility were also reflected in their ability to switch from one approach to another” (p. 244). 

Gray and Tall (1994) present reversibility as a key element in flexible thinking.  The 

relationship exists within the process of “proceptual encapsulation” (p. 135).  Proceptual 

encapsulation requires a student to view a forward and reverse process as equivalent processes 

within a mathematical hierarchy of relationships.  For example, in calculus, differentiation and 

integration are two reversible processes.  The student who has proceptually encapsulated 

differentiation would not see integration as a new process to be learned but rather differentiation 
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in reverse.  A student who lacks proceptual encapsulation would view integration as a new process, 

separate from differentiation (Gray & Tall, 1994).  From this viewpoint, reversibility is necessary 

for proceptual encapsulation. 

Based on the research of Usiskin (1999), McGowen (2006), Gray and Tall (1994), and 

Rachlin (1981), it is reasonable to argue that reversibility is a kind of flexibility.  The possibility 

that reversibility is a specific instance of flexibility offers a mechanism that may improve 

reversibility.  If reversibility is a kind of flexibility, then it may be the case that activities designed 

to improve flexibility (i.e. linking multiple representations) would necessarily improve 

reversibility. 

2.1.4 Kinds of reversibility 

Since Krutetskii (1976) and Piaget (Flavell, 1963; Inhelder & Piaget, 1958) introduced the concept 

of reversibility, the research community has attempted to parse reversibility into multiple forms. 

As previously noted, Krutetskii (1976) proposed that reversibility presents in two separate 

processes: the establishment of bidirectional bonds (two-way processes) and the reversibility of 

the mental process in reasoning.  Piaget also characterized reversibility in two different forms: 

negation and reciprocity.  Negation, also referred to as inversion, situates in the study of classes 

and encompasses the concept that every forward operation has a reverse operation, typically called 

an inverse, which cancels the forward operation.  Typical mathematical examples of negation 

would be addition-subtraction and multiplication-division, where addition is negated by 

subtraction and multiplication is negated by division.  Reciprocity refers to structural relationships 

such as inequalities; if 𝑎𝑎 < 𝑏𝑏, then the reciprocal relationship is 𝑏𝑏 > 𝑎𝑎 (Flavell, 1963; Inhelder & 

Piaget, 1958).  A significant distinction between negation (inversion) and reciprocity is that in 
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negation the outcome of two reversible operations is the null set, whereas in reciprocity, the 

outcome of two reversible operations is an equivalence (Inhelder & Piaget, 1958). 

Pinard (1981) noted that Piaget also associated reversibility with physical actions that undo 

previous actions.  When reversibility refers to a physical action instead of a mental construction, 

it is referred to as revertibility (Pinard, 1981).  “The essential difference, if one really does want 

to make a difference between revertibility and reversibility, is that between an action carried out 

physically and the same action carried out mentally” (Pinard, 1981, p. 30).  The distinction Pinard 

(1981) draws lies in the fact that physical actions are “never reversible” (p. 30).  For example, a 

physical subtraction, (Pinard (1981) gives the examples of decapitation, suicide, and murder) 

cannot be reversed by an additive action.  However, even these extreme examples are all reversible 

as mental operations.  This example helps to illuminate Pinard’s (1981) description that physical 

actions are not reversible.  He means that physical actions do not imply an immediate, reversible 

action.  However, mental operations always simultaneously imply an inverse operation that 

reverses the mental action.  Another way to state the difference between revertibility and 

reversibility is that reversibility always leads to the conservation of the original state; revertibility 

does not. 

Schnall, Alter, Swanlund, and Schweitzer (1972) drew a distinction between what they 

term empirical analogues of reversibility (also referred to as empirical return) and logical 

reversibility.  Empirical analogues of reversibility refers to a child’s ability to solve a problem 

through some sensory-motor action, as can occur in experiments involving children and concrete 

objects.  For example, consider Piaget’s balance beam experiment.  A weight is placed on one end 

of the beam, thus unbalancing the beam.  The child is then expected to restore equilibrium, either 

by adding an equivalent weight to the other side of the beam (compensation) or by removing the 
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weight (negation).  It would be possible that a child could solve this problem without actually 

thinking about reversibility.  Schnall et al. (1972) would call this an empirical analogue of 

reversibility; they also note that an empirical analogue of reversibility can apply to thought, but 

would necessarily require a “bidirectional tension” (p. 1013).  In this description, an empirical 

analogue of reversibility of thought is congruent with Krutetskii’s (1976) first kind of reversibility, 

the construction of two-way bonds.  Logical reversibility refers to the reversing of a thought 

process within the system’s properties.  Thus, logical reversibility is synonymous with Krutetskii’s 

reversibility of the mental process in reasoning. 

2.1.5 Reversibility as a key understanding in APOS theory 

Researchers have identified reversibility as a key to understanding multiple mathematical 

principles and formulas (Flavell, 1963; Fuson, 1992; Kang, 2012; Krutetskii, 1976; Lamon, 1993; 

Norman & Prichard, 1994).  One particular framework in which reversibility is a key factor is the 

APOS framework of schema development.  APOS theory was developed in the early 1990’s by a 

group of researchers with the purpose of explaining how learning takes place in mathematics1 

(Asiala et al., 1996).  APOS theory is a model of cognition that suggests a possible pathway of 

mental constructions that a learner may use to construct understanding of a particular mathematical 

concept.  The pathway of mental constructions is referred to as a genetic decomposition.  The 

genetic decomposition is proposed by the researchers and then informed and adjusted as necessary 

by collected data. 

1 For a complete discussion of the design, purpose, and implementation of APOS Theory, the reader is 
directed to Asiala et al. (1996) 
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APOS theory proposes a four-stage, hierarchy of human tendencies to handle mathematical 

problems.  APOS theory assumes that learners construct mental actions, processes, objects, and 

schemas that allow a learner to reason through a mathematical problem (Dubinsky & McDonald, 

2002).  

Actions are transformations of an object that require an external stimulus of the learner; 

actions typically require step-by-step instructions for the learner to carry out successfully (Asiala 

et al., 1996; Dubinsky & McDonald, 2002).  An action conception of a transformation requires 

that a student receive a direct stimulus and a detailed procedure to successfully carry out the 

transformation.  For example, a student limited to an action conception of function can only see a 

function as a defined input-output machine.  The student cannot make use of any properties of a 

function other than evaluating specific points and possibly manipulating the algebraic formula of 

the function. 

When an action has been performed successfully enough times such that the learner can 

perform the action without the need of an external stimulus, the researchers say that the action has 

been interiorized into a process (Asiala et al., 1996).  A key feature of a learner having a process 

conception of a transformation is when the process can be completed mentally, without the need 

for writing out all of the steps.  For example, a student who has interiorized the concept of function 

from action conception to a process conception can now evaluate a function over intervals of input 

values instead of at specific points and can compose functions together to create new functions.  

Asiala et al. (1996) cite the example of evaluating 𝑓𝑓(𝑥𝑥) = sin 𝑥𝑥 as an example of interiorizing the 

function concept from action to process.  𝑓𝑓(𝑥𝑥) = sin 𝑥𝑥 does not indicate in any way how to 

evaluate 𝑓𝑓(𝑥𝑥) at specific 𝑥𝑥-values.  It is incumbent upon the student to imagine sin 𝑥𝑥 mapping 

onto the real number line, thus mapping 𝑥𝑥-values with the appropriate sin 𝑥𝑥 value. 
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 In order for a student to demonstrate a process conception of a transformation, the student 

must demonstrate reversibility of the transformation,  meaning that when a learner interiorizes an 

action into a process, s/he is also able to perform the transformation in reverse, thus desconstrucing 

the process (Asiala et al., 1996).  Here, reversibility becomes a key understanding in the APOS 

framework.    For example, “with a process conception of function, an individual can …reverse 

the process to obtain inverse functions” (Asiala et al., 1996, p. 11).  Extending the example of 

𝑓𝑓(𝑥𝑥) = sin 𝑥𝑥 from above, one evidence of a process conception of function would be the ability 

to solve problems such as “find an angle 𝜃𝜃 such that sin 𝜃𝜃 = √3
2

”.  In this case, the student would 

likely solve the problem using one of two methods: 1) s/he may use the inverse function 𝑓𝑓(𝑥𝑥) =

arcsin 𝑥𝑥 to solve 𝑓𝑓 �√3
2
� = arcsin √3

2
, or 2) s/he may use reversibility to answer the question “the 

sine of what angle would give me the answer √3
2

?”  The first method would serve as an example of 

the first kind of Krutetskiian reversibility – the establishment of a two-way process.  The learner 

would understand the inverse relationship between sin 𝑥𝑥 and arcsin 𝑥𝑥.  The second method is an 

example of the second kind of reversibility – the reversing of a mental process in reasoning.  Since 

the student does not use an inverse process to solve the problem, the student reasons from a known 

output (in this case, √3
2

) to find an input. 

A learner progresses from a process conception to an object conception when the process 

is no longer viewed as a group of isolated steps, but is now one coherent body that can then itself 

be transformed (Asiala et al., 1996).  Asiala et al. (1996) refer to the act of understanding that a 

process is one coherent object upon which transformations may be performed as encapsulating.  

Encapsulation has also been referred to as reification (Sfard, 1991).  The researchers make a special 
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note to emphasize that encapsulation is a particulary difficult process for students and that in 

general, we have very few life models in which we perform actions upon other processes.   

De-encapsulation is the ability to deconstruct a mathematical object into its constituent 

procresses.  “In many mathematical operations, it is necessary to de-encapsulate an object and 

work with the process from which it came” (Asiala et al., 1997, p. 400).  What Asiala et al. (1997) 

described as “de-encapsulation” is the Krutetskiian construct of reversibility.  Thus, I suggest that 

similar to being the key understanding in developing a process conception, reversibility is the key 

understanding in developing an object conception of mathematical processes as well.  Cuoco 

(1994) first proposed de-encapsulation of “functions-as-objects into the underlying processes” (p. 

123) as a cornerstone of mathematical mastery.  The definition of de-encapsulation given by Asiala 

et al. (1997) is nearly identical to Cuoco’s (1994) and both are restatements of Krutetskiian 

reversibility. 

Finally, a schema is an organized structure of objects, processes, and actions.  Schemas 

consist of all of the connections (Hiebert & Lefevre, 1986) between objects, processes, and actions.  

Schemas themselves become objects which can be composed with other objects (Asiala et al., 

1996).  Asiala et al. (1996) further describe a schema as encompassing all of a learner’s knowledge 

that is connected to a mathematical topic.  “As with encapsulated processes, an object is created 

when a schema is thematized to become another kind of object which can also be de-thematized to 

obtain the original contents of the schema” (Asiala et al., 1997, p. 400).  The process of de-

thematizing a schema into its supporting contents is a further example of reversibility embedded 

within the APOS framework. 
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The description of the constructs within the APOS framework reveal that Krutetskiian 

reversibility is a key understanding of moving from an action to a process conception and from a 

process to an object conception.  Reversibility is also the evidence of a thematized schema. 

It should be noted that not all mathematics researchers have adopted the APOS approach 

for knowledge building and schema construction.  Tall (2010) suggested that APOS is too limited 

a framework for capturing how people construct networks of mathematical knowledge.  

Specifically, Tall proposes that objects need not only proceed from encapsulation of actions; 

rather, an object should be created from other objects.  For example, Tall offers that in calculus, a 

derivative graph (a visible object) can be created by operating on the graph of a function (another 

visible object).  Tall intimated that for students to build understanding of the derivative as a 

function, it makes more sense to create a derivative function (an object) from an existing function 

(also an object) than to try to convince students to encapsulate the limiting process applied to the 

slope equation into an object called the derivative. 

Tall (2011) attempted to offer a unifying theory of how people construct knowledge in 

mathematics because “mathematical operations are not arbitrary, but have inevitable relationships 

that work in a particular context” (p. 2).  Tall (2011) referred to this theory as a theory of crystalline 

concepts.  A crystalline concept is “a concept that has an internal structure of constrained 

relationships that cause it to have necessary properties as a consequence of its context” (p. 3).  He 

suggested that a primary difference between crystalline concepts and objects as described by 

APOS is that objects must be encapsulated from an action or thematized from a schema, whereas 

crystalline concepts can be abstracted from any mathematical situation dependent on the 

contextual relationships of the structures. 
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Acknowledging that these kinds of competing theories for knowledge construction are of 

great interest to mathematics educators, the significant differences between the realization of 

crystalline concepts (Tall, 2011), encapsulation of actions into objects (Asiala et al., 1996), the 

process of reification (Sfard, 1992), and the process of proceptual development (Gray & Tall, 

1994) do not diminish the importance of developing reversibility.  The importance of reversibility 

can be seen within each competing theory.  As discussed above, reversibility presents at multiple 

levels within the APOS framework.  In the creation of objects from other objects or the recognition 

of an object as a crystalline concept (Tall, 2010, 2011), reversibility seems to be a highly desired 

learning outcome.  For instance, in the example Tall (2011) cites of creating a derivative graph 

from the graph of a function, it would seem that the ability to create a function graph from a 

derivative graph is a highly desired learning goal.  The contextual relationships and structures 

involved with creating a functional graph from a derivative graph could be construed as a 

crystalline concept.  Creating a derivative graph from a function graph and creating a function 

graph from a derivative graph is a clear instance of the reversibility process.  As previously noted, 

reversibility is a key understanding in learning to proceptually encapsulate processes (Gray & Tall, 

1994).  Thus, several current frameworks for knowledge construction value the reversibility 

process. 

2.1.6 How reversibility has been studied and conclusions about students’ reversibility 

Reversibility and its role in flexibility have long been considered a key requirement in a variety of 

mathematics problems (Inhelder & Piaget, 1958).  In this section, I describe the mathematical 

lenses used to study reversibility and reversibility as an element of flexibility.  I also review the 

significant conclusions reached by researchers after conducting research on students’ reversibility. 
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Many of the lenses researchers use to investigate reversibility seem unrelated.  Krutetskii 

(1976) noted that many mathematical tasks fall into completely different categories and kinds of 

problems (for example, reciprocal relationships, direct and reverse operations, and direct and 

converse theorems); however, “their internal psychological basis in each case is a reconstruction 

of the direction of the mental process, a change from a direct to a reverse train of thought, and the 

establishment of two-way (reversible) associations” (p. 143).  Furthermore, Krutetskii  and Piaget 

(Flavell, 1963; Inhelder & Piaget, 1958) both specifically observe that reversibility presents at all 

stages of development.  Thus, we should expect that a review of the kinds of questions used in 

reversibility studies show a wide variety of mathematical levels and content. 

Krutetskii (1976) studied reversibility with students in grades 2-10 in a variety of 

mathematical disciplines.  He used what he termed “paired problems” (p. 143) in arithmetic, 

algebra, and geometry to ascertain a student’s understanding of reversibility.  A paired problem 

consisted of a direct and a reverse problem.  Reverse problems were characterized by “problems 

in which the subject matter of the original problem is retained, with the original unknown 

becoming part of the terms, and one or several elements of the original terms becoming unknowns” 

(p. 143).  Krutetskii asserted that “reverse problems and questions present a certain difficulty for 

pupils, but that they have a great value for developing active, independent, and creative thinking, 

since they develop the ability to switch from direct to reverse operations” (p. 187).   

Students were given reverse problems immediately after solving a direct problem and 

independently of the direct problem.  The reverse problems given independently were administered 

in an altered form about one month before the experiment was conducted.  In the experiment, the 

reverse problem immediately followed the direct problem.  In geometry, Krutetskii (1976) 

supplemented the direct/reverse problems with direct/converse problems and theorem/converse 
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theorem problems.  Theorem/converse theorem problems required students to prove each theorem.  

In the table below, I provide one example of Krutetskii’s (1976) reversibility items from each 

mathematical content area2. 

Table 1.  Krutetskii’s (1976) reversibility items 

Content Area Direct Question Reverse Question 
Arithmetic Sixteen liters of water were poured 

into a tank, filling the tank to 2/5 of 
its volume.  What is the volume of 
the tank? 

Water was poured into a tank of 
80-liter capacity to 2/5 of its 
volume.  How many liters of water 
were poured into the tank?  (p. 
144) 

Algebra 
(contextual 
problems) 

How many days should a worker 
spend working to earn 𝑏𝑏 rubles if he 
gets 𝑐𝑐 rubles per day? 

How much does a worker earn in 𝑑𝑑 
days if he earns 𝑎𝑎 rubles in one 
day? 

Algebra (symbolic 
problems) 

(𝑎𝑎 − 𝑏𝑏)2 = 𝑎𝑎2 − 2𝑎𝑎𝑏𝑏 + 𝑏𝑏2 =  (p. 145) 

Geometry 
(direct/converse) 

How many degrees does 1
24

 of a 
straight angle contain? 

What part of a circle is an arc of 
22°30′?  (p. 145) 

Geometry 
(direct/reverse) 

Calculate the sum of the interior 
angles of a convex heptagon. 

The sum of the interior angles of a 
convex polygon is 1,800°.  How 
many angles does this polygon 
have?  (p. 145) 

Geometry 
(theorem/converse) 

If two oblique lines drawn to a 
straight line from a single point are 
equal, then their projections are also 
equal. 

If two oblique lines are drawn to a 
straight line from a single point 
have equal projections, then they 
are equal to each other.  (p. 146) 

 

Krutetskii (1976) found that students varied widely in their ability to solve reversibility 

problems, a conclusion supported by subsequent research (Rachlin, 1981).  Krutetskii concluded 

that the differences in students’ reversibility is due to each student’s innate mathematical ability 

and cites reversibility as a marker of the student’s mathematical ability.  Concluding from his own 

literature review that reverse bonds and direct bonds can be created at the same time, Krutetskii 

(1976) concluded that capable pupils solve reverse problems without any difficulties or need for 

2 For a full review of Krutetskii’s (1976) items that test reversibility, the reader is directed to pages 144-146. 
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instruction.  The capable students were able to identify reverse problems as such and in the cases 

where the reverse problem immediately followed the direct problem, the reverse problem was 

often solved more quickly and easily than when the reverse problem was given independent of the 

direct problem.  These results led Krutetskii to conclude that capable students were able to create 

direct associations and reverse associations simultaneously. 

Average students were also able to solve reverse problems without needing special 

exercises.  However, average students struggled with a reverse problem that immediately followed 

a direct problem.  Krutetskii (1976) determined that the direct problem influenced the students’ 

thoughts and processes on the reverse problem.  He found that when an average student solved a 

reverse problem immediately after solving the direct problem, s/he struggled to abandon the 

solution method of the direct problem.  The solution method used to solve the direct problem just 

prior to solving the reverse problem inhibited the use of a correct solution method on the reverse 

problem.  However, average students solved the same reverse problem independent of the direct 

problem with great ease.  After learning how to solve the reverse problems, the average students 

excelled at solving the reverse problems.  Thus, Krutetskii concluded that average students require 

instruction and special exercises to develop reverse bonds.  Furthermore, average students develop 

reverse bonds separately from direct bonds: “first a direct bond is formed and then, as a result of 

appropriate exercises, a reverse bond” (Krutetskii, 1976, p. 289).  Current learning theory suggests 

updating this conclusion.  Current learning theory now suggests that for average students to 

develop connections within a schema that allow the traversing from the result to the constituent 

inputs, they would need instruction and special exercises. 

The students who Krutetskii (1976) considered to be incapable students lacked any 

significant ability to determine that the second question in the direct/reverse pair was actually a 
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reverse problem.  The only situation in which incapable students could recognize the reverse 

problem as the reverse of the direct problem were in very elementary cases, “and they judged this 

by purely external signs (‘there this was asked, but now it is given’)” (Krutetskii, 1976, p. 289).  

Incapable students always solved reverse problems better when administered independently of the 

direct problem. 

Krutetskii (1976) also observed that incapable students can establish direct and reverse 

bonds with great difficulty but only after receiving repeated exercises in both directions.  The 

development of reverse bonds is a completely independent task, isolated from the development of 

direct bonds.  Although Krutetskii does not make this observation, his conclusions suggest that 

incapable students simply develop two separate direct bonds with no understanding of the 

reversible relationship and thus may not develop reversibility at all. 

In his dissertation research, Rachlin (1981) used clinical interviews with 4 participants to 

study the participants’ reversibility in a basic algebra course.  He interviewed 4 volunteers two 

times per week throughout the entire semester.  Each interview lasted 45 minutes.  Rachlin’s 

(1981) conclusions agreed with Krutetskii (1976).  Rachlin (1981) found that all four subjects 

showed unique patterns of reversibility with respect to the Piagetian constructs of negation and 

compensation.  One student demonstrated complete reversibility of algebraic operations; one 

student was proficient with negation but not compensation.  One student was proficient with 

compensation but very unsure of using negation and the fourth student could not use either 

negation or compensation.  It is also important to note that Rachlin (1981) considered the ability 

to use either negation or compensation at will to solve a problem as an example of flexibility in 

using reversibility.  He concluded that algebra students may show flexibility in how they apply the 

reversible actions of negation and compensation. 
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Subsequent researchers studying reversibility have largely built on the types of questions 

that Krutetskii (1976) asked.  Tzur (2004), for example, studied how teachers and two fourth-grade 

students work together to develop a reversible fraction conception through the reversible 

operations of partitioning and iteration.  The work Tzur (2004) described fits within Krutetskii’s 

(1976) direct/reverse model of reversibility questions.  Tzur (2004) began by asking students to 

solve a problem that required partitioning of a whole first and iteration of a unit part last and then 

had students solve a problem that began with iteration and ended with partitioning.  For example, 

using computer generated manipulatives, students were given a length that represented 5/8ths of 

a whole and were asked to construct a length representing 1 whole.  The students were later asked 

to partition a non-unit fraction, 𝑚𝑚
𝑛𝑛

, into equal and non-equal parts.  As an example, students were 

asked to identify different ways that 10 pieces of pizza could be reassembled in an oven.  Solutions 

included three sections of 3 pieces each and one section of 1 piece or two sections of five pieces 

each. 

Tzur (2004) concluded that students were able to develop a reversible fraction conception 

but that the development was entirely dependent on “the three principal activities of teaching: 

analyzing students’ current conceptions, deciphering the mathematical conceptions to be taught, 

and selecting/using tasks that intentionally foster transitions from the former to the latter” (p. 108).  

His conclusions suggest a way to interpret Krutetskii’s (1976) “special exercises”.  Tzur’s 

conclusions indicate that appropriate special exercises require the teacher to first diagnose the 

student’s current conception(s) of reversibility within the mathematical domain, determine the 

desired learning outcome(s) of the domain (in our discussion, the outcome is complete reversibility 

within the domain), and then intentionally design mathematical tasks to facilitate the development 

of the desired outcome. 
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Kang (2012) observed that reversibility of thought is required for advanced mathematical 

thinking and proposed a number of questions designed to promote it.  Each  question posed by 

Kang reflected Krutetskii’s (1976) direct/reverse model of reversibility questions. 

Ramful and Olive (2008) investigated reversibility in multiplicative tasks (proportional 

reasoning) by using Inhelder and Piaget’s (1958) balance beam problem.  Ranful and Olive tested 

reversibility using direct/reverse problems.  The direct problem required students to develop an 

inverse relationship between two inputs to create an output.  The second problem began with an 

output and one input and required students to find the missing input.  They concluded that a 

student’s ability to solve reversible problems within a mathematical domain depends on the quality 

of the student’s “reversibility template” (Ramful & Olive, 2008, p. 149).  The reversibility template 

is an instance of a “cognitive template” (Ramful & Olive, 2008, p. 149) which is a student’s 

operational structure in symbolic form that related to a particular theorem or set of theorems.  For 

example, the formula 𝑐𝑐2 = 𝑎𝑎2 + 𝑏𝑏2 could be construed as a student’s cognitive template for the 

Pythagorean Theorem.  Ramful and Olive suggested that students construct cognitive templates 

for reversible actions and processes and that a student’s ability to apply reversibility to solve 

problems is dependent upon the robustness and flexibility of the reversibility template.  One of the 

participants, Ron, developed a reversibility template based on the equation 𝑤𝑤1𝑑𝑑1 = 𝑤𝑤2𝑑𝑑2 and 

could apply this template in a wide variety of examples.  The researchers concluded that Ron had 

an advanced reversibility template and that his template had a high degree of flexibility. 

Davis and McGowen (2002) studied reversibility as an element of flexible thinking.  While 

they purported to study flexible thinking, the questions they chose follow Krutetskii’s (1976) 

direct/reverse model of reversibility questions.  The researchers reported using paired questions 
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such as “(a) what is 𝑓𝑓(5)?  … (b) for what value or values of 𝑥𝑥 is 𝑓𝑓(𝑥𝑥) = 0?  Essentially this is 

the difference between evaluating a function and solving for a value” (p. 2). 

In their study, Davis and McGowen (2002) studied developmental algebra students at a 

two-year college.  They tested the claim that presenting functions as machines that receive an input 

and produce an output helps students to gain a process conception of functions.  Their results 

indicated that teaching the function concept through a “function machine” approach did correlate 

with improvement in students’ algebraic reversibility.  The researchers hypothesized that 

reversibility with algebraic expressions is jointly and highly correlated with three processes: 1) the 

ability to visualize functions as machines, 2) using a graphing calculator as a concrete example of 

a function machine, and 3) the use of data to help students generate formulas through finite 

differences and ratios. 

 Norman and Prichard (1994) proposed using the Krutetskiian constructs of reversibility 

and flexibility to analyze conceptual understanding of calculus.  They designed tasks purposed to 

elicit student use of reversibility and flexibility while solving calculus tasks. 

Reversibility completely describes the inverse relationship between the two calculus 

processes of differentiation and integration (Norman & Prichard, 1994).  However, “the role of 

reversibility … in the understanding of the relationship between differentiation and integration … 

has not been adequately described” (Haciomeroglu et al., 2009, p. 81).  There is broad agreement 

among calculus researchers that students do not use reversibility to reason through the process of 

integration or use reversibility to help them understand the motivation behind the integration 

algorithms (Berry & Nyman, 2003; Haciomeroglu et al., 2009; Norman & Prichard, 1994).  

Since integration is typically introduced by asking students to find a function 𝐹𝐹 whose 

derivative is 𝑓𝑓, students often use reversibility to solve the first integration problems to which they 
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are exposed (Norman & Prichard, 1994).  However, shortly after being made aware of formulas 

that help to calculate integrals, students stop using reversibility.  Norman and Prichard (1994) 

asserted that the use of integration formulas (algorithms) is typically a one-way understanding.  

For example, many calculus students correctly evaluate ∫𝑥𝑥2 𝑑𝑑𝑥𝑥 = 𝑑𝑑3

3
+ 𝐶𝐶.  However, “the latter 

expression is never converted into, nor is it thought of in terms of the former.  Students who are 

unable to reverse their thinking about the relationship of these expressions are unlikely to 

recognize their essential equivalence” (Norman & Prichard, 1994).  The description given by 

Norman and Prichard is an example of how students often lack proceptual encapsulation (Gray & 

Tall, 1994).  Without reversibility, calculus students will likely not view differentiation and 

integration as equivalent processes.  Students exhibit similar weakness when working with the 

graphical representations of functions and derivatives. 

The use of reversibility in calculus is not limited to the inverse relationship between 

differentiation and integration.  Clark et al. (1997) used the APOS framework to analyze how 

students learn the chain rule, 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑓𝑓�𝑔𝑔(𝑥𝑥)�� = 𝑓𝑓′�𝑔𝑔(𝑥𝑥)� ∗ 𝑔𝑔′(𝑥𝑥).  Based on the genetic 

decomposition determined by Clark et al. (1997) and the previous analysis of reversibility in 

APOS, the research suggests that a well-functioning chain rule schema requires that students 

develop reversibility of a function schema, reversibility of a function composition schema, and 

reversibility of a differentiation schema. 

Flexibility presents in the calculus classroom through the processes of limit, derivative, 

and integral.  Since the function concept is central to each process, part of calculus learning 

depends on the understanding of the function concept, which is typically a precalculus concept. 

Students who enjoy significant flexibility with multiple representations of functions are better 
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prepared and have flexible tools available for problem solving in calculus (Norman & Prichard, 

1994). 

Flexibility is also required for processes that are uniquely calculus related.  Kendal and 

Stacey (2003) asserted that the end goals of a differential calculus class should require students to 

“know how to formulate, calculate, and interpret the three types of derivatives … ‘at a point’ or as 

a function … Students also need to know how to translate between the different representations of 

derivative and recognize equivalent derivatives” (p. 28).  The different representations of 

derivatives and translation between them will be discussed extensively in section 2.2. 

Norman and Prichard (1994) noted that calculus textbooks and calculus instructors pay 

very little attention to the development of reversibility and flexibility but that students with greater 

facility with reversibility and flexibility tend to succeed in calculus more than students who lack 

proficiency with reversibility and flexibility.  However, Norman and Pritchard also noted that as 

of the early 1990’s, there was considerable attention directed towards revising calculus curricula 

to include the Krutetskiian problem-solving processes and multiple representations of functions.  

The research of Selden, Selden, and Mason (1994) supported the call for using a calculus 

curriculum that embeds reversibility, flexibility, and multiple representations.  Selden et al. (1994) 

concluded that calculus itself cannot be reduced to just procedures and routine problems, thus a 

more effective instructional approach augments students’ abilities to solve non-routine problems.  

Thus, research suggests that one possible method of helping calculus students to develop problem-

solving skills is to promote reversibility, flexibility, and fluency with multiple representations in 

the calculus curriculum. 
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2.1.7 Development of reversibility and teacher actions that may support development 

Krutetskii (1976) and Rachlin (1981) largely made conclusions regarding students’ abilities to 

develop reversibility.  There has also been research that attempts to identify how reversibility 

develops.  In this section, I review this research and its implications for how reversibility develops 

and what teachers might do to help students develop reversibility. 

Krutetskii (1976) concluded that reversibility either develops innately with no special 

attention paid by the teacher, as in the case of capable students, or develops through special 

exercises.  These special exercises largely represent instruction in how to move from E back to A.  

Often the special exercises included a direct/reverse paired problem that the instructor and pupil 

talked through and worked together.  It is reasonable to question if this method of instruction is 

aiding the student in developing reversible connections or if the student is merely developing a 

new direct connection.  If the latter is the case, it would then be incumbent upon the student to 

eventually realize the reversible properties, presumably through repeated examples moving in both 

directions.  An example of a Krutetskiian special exercise given to an incapable student follows 

(Krutetskii, 1976, p. 290):  

Experimenter: “Solve the problem: 5 ∗ 5 =  [pupil gives the right answer].  Now 

do this one: What numbers must we multiply to get 25?  [Pupil gives the right answer.]  

Now watch: 5 ∗ 5 = 25, and 25 = 5 ∗ 5.  The second problem is the reverse of the first.  

Do the problem (2𝑥𝑥 + 𝑦𝑦)(2𝑥𝑥 − 𝑦𝑦) =  [pupil gives the right answer].  Correct.  But 

if (2𝑥𝑥 + 𝑦𝑦)(2𝑥𝑥 − 𝑦𝑦) = 4𝑥𝑥2 − 𝑦𝑦2, then can we say that 4𝑥𝑥2 − 𝑦𝑦2 = (2𝑥𝑥 + 𝑦𝑦)(2𝑥𝑥 − 𝑦𝑦)?  

[Pupil gives an affirmative answer.]  Well, to what is 9𝑥𝑥2 − 4𝑦𝑦2 equal?” 

Pupil: “I don’t know.  These are odd problems.  We haven’t done these.” 
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Experimenter: “No, you haven’t done them, but we are learning to do them.  Now you 

think: What is the product of the sum of two numbers by their difference equal to?  You 

know this.” 

Pupil: “The product of the sum of two numbers by their difference is equal to the square 

of the first minus the square of the second.” 

Experimenter: “Right.  Can it be said in reverse?  To what is the difference of squares 

equal?  What is 𝑎𝑎2 − 𝑏𝑏2 equal to?” 

Pupil: “𝑎𝑎2 − 𝑏𝑏2 = (𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 − 𝑏𝑏).” 

Experimenter: “And what is 9𝑥𝑥2 − 4𝑦𝑦2 equal to?” 

Pupil: “(9𝑥𝑥 + 4𝑦𝑦)(9𝑥𝑥 − 4𝑦𝑦) …” 

… Only after repeated explanations and exercises did the pupil learn to do problems of this 

type, and then only elementary ones.  

This example serves to show the role of the teacher within Krutetskii’s model.  The teacher chooses 

and/or designs appropriate exercises that help students to develop reversible connections.   

 Confrey (1981) rejected Krutetskii’s (1976) conclusion that reversibility (and flexibility 

and generalizability) develop spontaneously and suggested that it is a mathematical process to be 

developed.  Recently, researchers (Kang, 2012; Ramful & Olive, 2008; Tzur, 2004) have extended 

the role of the teacher to include not just selecting appropriate exercises, but also facilitating 

discussion that makes reversible connections explicit.  

Other researchers have agreed with Krutetskii’s (1976) special exercises approach to 

developing reversibility.  Although Inhelder and Piaget (1958) identified that children of the age 

of ten think of solving problems through reversible thought processes and do not need explicit 

instruction to form mentally reversible constructions, in Flavell’s (1963) major study of Piaget, 
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Flavell concluded that Piaget strongly supported specific instruction in the properties of 

reversibility.   

In the case of reversibility, for instance, this would imply that multiplication and division, 

as well as addition and subtraction, should be taught together in alternation.  Thus, one 

should follow a problem like (10 ∗ 5 =? ) with its inverse (50 ÷ 5 =? ).  Similarly, if one 

traces a causal series in the usual cause-to-effect direction, one should not fail to trace it in 

the inverse, effect-to-cause direction.  (Flavell, 1963, p. 368)  

The Piagetian examples cited by Flavell (1963) are similar in format and thought process to the 

special exercises described by Krutetskii (1976). 

 Rachlin (1998) suggested that classroom teachers develop “non-routine routine” (p. 471) 

tasks that challenge students to develop reversibility.  As an example, he offered the addition 

problem ⊡ + △=⊙ and required students to find a different unknown in three different examples.  

For instance, in the first example, values could be given for ⊡ and △ and the student must find the 

value for ⊙.  In the second example, values could be given for △ and ⊙ and the student would 

find the value for ⊡.  In the third example, values are given for ⊡ and ⊙ and the student must 

find the value for △.  Kang (2012) and Vilkomir and O'Donoghue (2009) have similarly proposed 

a variety of problems that teachers can use to help students develop reversibility.  These groups of 

problems follow the direct/reverse format originally proposed by Krutetskii (1976). 

As noted earlier, Piaget (Inhelder & Piaget, 1958) and Krutetskii (1976) both assert that 

reversibility presents at all stages of mathematical development.  Rachlin (1998) was more specific 

saying, “much of precollege mathematics refers to actions that can be reversed, including, but not 

limited to, the actions of graphing, making a table, solving an equation or problem, and simplifying 

an expression by performing indicated operations” (p. 471).  Research should commence 
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investigating the kinds of activities and exercises that will help students develop the kinds of 

reversible connections needed to relate graphs, tables, and algebraic representations of functions. 

There is recent agreement that beyond just offering special exercises designed to foster 

reversibility, the approach of the teacher is of great importance to developing reversibility (Kang, 

2012; Rider, 2007; Vilkomir & O'Donoghue, 2009).  Often, the teacher’s instructional methods do 

not encourage the development of reversibility as teachers typically only present solutions in one 

direction and assume that students will reverse the process without receiving instruction in the 

reverse direction (Kang, 2012).  Rider (2007) observed this phenomenon in her own classroom, 

noting that “I made the implicit assumption that when I gave students a graph, they would be able 

to reverse the process to find the slope and the 𝑦𝑦-intercept from that graph and write the equation 

in slope-intercept form” (p. 495).  She made similar assumptions regarding students’ abilities to 

analyze the features of a linear graph by looking at a table of values.  She noted that her students 

did not begin to develop reversibility until she began to introduce concepts from the result and 

work back to the beginning and from the beginning and work towards the result.  For example, she 

began to introduce a graphing topic by starting with the graphical representation and developing a 

table of values as well as starting with a table of values to create a graph. 

Rider’s (2007) recommendations, informed by work in her own classroom, suggest that 

one possible mechanism by which reversibility develops is through flexibility in representations.  

The description Rider gave is one of helping students to develop flexible ways of thinking about 

mathematical concepts (in this case, graphing).  Other researchers have also suggested that 

developing flexibility aids in developing reversibility (McGowen, 2006; Ramful & Olive, 2008).  

However, there is a need for empirical research beyond Rider’s (2007) anecdotal evidence to 

specifically investigate this claim.  
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2.1.8 Calls for studying reversibility 

Since Krutetskii’s (1976) work, with the exception of Rachlin’s (1981) dissertation research, there 

has been very little research investigating reversibility.  However, in the past ten years there has 

been a frequent call for a renewed research agenda in reversibility.  Vilkomir and O'Donoghue 

(2009) and Teachey (2003) both researched reversibility as a means of identifying mathematically 

gifted (what Krutetskii called “capable”) students.  Teachey noted that prior to her dissertation 

research, “no follow-up studies to apply Krutetskii’s findings to the gifted population have been 

attempted” (p. 15). 

Lamon (2007) specifically called for research on how reversibility develops, saying 

“researchers know very little about reversibility or about multiplicative operations and inverses 

and these could be subjects for a valuable microanalysis research agenda” (p. 661).  While 

Lamon’s observation was in relation to her work with rational numbers and proportional reasoning, 

other researchers have extended this call to wider mathematical arenas.  Ramful and Olive (2008) 

noted that while researchers have examined reversibility peripherally to other research agendas, 

reversibility has not been the focus of research and that there is a specific need for research on 

reversibility at the secondary school level.  Teachey (2003) cited the need for more research on 

how capable (gifted) students develop the Krutetskiian problem-solving processes (generalization, 

flexibility, and reversibility). 

Finally, some researchers have called for studying reversibility as a need for improving 

pre-service mathematics teacher education.  According to McGowen and Davis (2001), pre-service 

elementary teachers often lack reversibility and flexible thinking, which severely limits their 

ability to teach these problem-solving processes in a mathematics class.  Since problem solving 

may be considered the essence of mathematics (Rachlin, 1998), the need for pre-service 
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elementary teachers to develop reversibility and flexibility becomes paramount.  Usiskin (1999) 

observed that many mathematics teachers not only lack awareness of reversibility, flexibility, and 

generalization but indeed teach against these traits.  Thus, Usiskin’s (1999) research strengthens 

the call for helping pre-service teachers to develop reversibility, flexibility, and generalization and 

to develop methods of instruction that facilitate reversibility, flexibility, and generalization. 

2.2 REVIEW OF LITERATURE ON MULTIPLE REPRESENTATIONS 

Krutetskiian flexibility has been repeatedly linked to the use of multiple representations 

(McGowen, 2006; Norman & Prichard, 1994; Rider, 2004) and flexibility with representations is 

a key aspect of the definition of understanding given by Lesh et al. (1987).   

Part of what we mean when we say that a student ‘understands’ … is that: (1) he or she can 

recognize the idea embedded in a variety of qualitatively different representational 

systems, (2) he or she can flexibly manipulate the idea within given representational 

systems, and (3) he or she can accurately translate the idea from one system to another.  

(Lesh et al., 1987, p. 36)  

This definition of student understanding incorporates the Krutetskiian construct of flexibility and 

the need for students to understand mathematical content in multiple representations.  In this 

section, I review the body of research surrounding multiple representations.  I begin by discussing 

definitions of the key terms and concepts associated with multiple representations and then discuss 

the importance of multiple representations in mathematics education.  Research on how students 

build connections between representations is considered.  Finally, I conclude this section with a 
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discussion of research supported teacher actions that promote the linking of multiple 

representations to develop conceptual understanding. 

2.2.1 Definitions 

In this section, I define several of the key terms prevalent in the research on multiple 

representations.  Typically, when we refer to the term representation, we are referring to the three 

or four external representations of a mathematical concept, often named algebraic (also referred to 

as symbolic), graphical (also referred to as visual or geometric), numerical (also referred to as 

tabular), and verbal (Kendal & Stacey, 2003; Lesser & Tchoshanov, 2005).  A common example 

of multiple representations involves functions.  The algebraic representation uses functional 

notation and algebraic rules to specify a function.  The graphical representation is the visualization 

of a function on the Cartesian plane, commonly referred to as a graph.  The numerical 

representation is a function represented only by numerical values, typically a table of values 

(Kendal & Stacey, 2003).  The verbal representation of a function refers to describing functional 

relationships in words (Brenner et al., 1997). 

Each representation offers different information about a function and has a unique purpose 

in telling the story of the function (Greeno & Hall, 1997; Steketee & Scher, 2012).  The tabular 

representation presents the function as input/output machine and is often the most concrete 

representation for students.  The algebraic representation allows the student to make 

generalizations about the behavior of the function and is often the most useful for evaluating 

functional inputs.  The strength of the graphical representation is in its appeal to the visual sense, 

allowing students to see relationships between the independent and dependent variables (Steketee 
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& Scher, 2012).  The verbal representation has been lauded for its relationship to contextual 

situations and the physical embodiment of real world mathematics (Dick & Edwards, 2008). 

 Moschkovich et al. (1993) described the ability to make connections across the algebraic, 

numerical, and graphical representations the “Cartesian Connection” (p. 73).  Janvier (1987a) 

defined translation as the act of switching from one representation into another.   Knuth (2000) 

recommended that whenever possible, each mathematical concept should be presented in each 

representation and that learning to translate effectively between representations is a key to 

developing understanding of concepts.  Knuth also adopted the terms “Rule of Three” and “Rule 

of Four” that the CCH debuted in 1992. 

The desired learning outcome of emphasizing the Cartesian Connection and the Rule of 

Four is what Zbiek, Heid, Blume, and Dick (2007) define as representational fluency.  

Representational fluency goes beyond being aware of different representations and incorporates 

the “meaningful and fluent interaction” (p. 1196) with each of the representations as appropriate.  

Representational fluency requires an interaction between the student and the representation 

wherein the student draws inferences about the function from each representation and is able to 

generalize across multiple representations.  Zbiek et al. (2007) sum up their discussion of 

representational fluency noting that the key understanding in multiple representations is “not so 

much that the representations exist but that the student interacts in meaningful ways with those 

representations” (p. 1196).  Amit and Fried (2005) observed that teachers have a tendency to point 

students toward using, adapting, selecting, applying, and translating among the different 

representations.  When students are using, adapting, selecting, applying, and translating at will 

between the different representations, they are exhibiting representational fluency.  These actions 
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require that students learn the meaning of each representation and the value of each representation 

independent of the others. 

2.2.2 The importance of multiple representations 

After nearly twenty years of research supporting the use of multiple representations in mathematics 

education, the importance of multiple representations in mathematics education has become almost 

axiomatic (Amit & Fried, 2005; Lesser & Tchoshanov, 2005).  The NCTM (2000) recommended 

that students be able to “select, apply, and translate among mathematical representations to solve 

problems” (p. 63).  The Common Core State Standards lists the ability to analyze functions in 

multiple representations as a high school standard of learning.  The CCSS-M mathematical 

practice standard, CCSS.Math.Practice.MP4, Model with mathematics, states that students should 

be “able to identify important quantities in a practical situation and map their relationships using 

such tools as diagrams, two-way tables, graphs, flowcharts and formulas” (NGA, 2010, p. 7).  

Beyond the importance that the NCTM and CCSSM place on multiple representations, research 

reveals strong motivations for teaching mathematics in a multiple representations environment.  In 

this section, I briefly review some of the research that has led researchers to conclude that “the 

general case for multiple representations in mathematics education hardly needs defending 

anymore” (Amit & Fried, 2005).  I first consider a major learning deficiency identified by research 

as a result of either not using multiple representations or not using them well and then I review 

some of the purported benefits of using multiple representations. 

The inability to translate between representations hinders the development of conceptual 

understanding and can be linked to the complexity involved in changing representations (Duval, 

2006; Lesh et al., 1987).  There is considerable agreement that the majority of students have a 
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strong preference for using the algebraic representation; students often force the use of the 

algebraic representation when an algebraic representation is either impossible or impractical 

(Brenner et al., 1997; Dreyfus & Eisenberg, 1990; Hiebert & Carpenter, 1992; Knuth, 2000).  One 

cause linked to students’ failures to make connections and develop understanding of functions is 

the preference for the symbolic representation (Brenner et al., 1997; Knuth, 2000).  Researchers 

suggest that the reason students prefer the symbolic representation lies in an instructional 

preference for explicitly or implicitly promoting the symbolic representation at the expense of the 

other representations (Brenner et al., 1997; Elia, Panaoura, Eracleous, & Gagatsis, 2007; Hiebert 

& Carpenter, 1992; Knuth, 2000; Rider, 2004, 2007).  Explicitly promoting the symbolic 

representation lies within teachers’ common preference to introduce mathematical concepts first 

in an algebraic means (Brenner et al., 1997; Elia et al., 2007; Hiebert & Carpenter, 1992), then use 

the algebraic representation to generate a table of values, which is in turn used to create a graph.  

Finally, a verbal description, often given as a word problem is solved (or given as a homework 

problem) to show the students how the function has a real-life application.  One can surmise that 

teachers prefer the symbolic notation for its mathematical power through generalization; research 

indicates that students in calculus courses prefer the symbolic notation “because they [the algebraic 

expressions] have been very powerful for them [the students]  in the past” (Berry & Nyman, 2003, 

p. 495).  The fact that teachers rarely introduce concepts using graphs or verbal descriptions and 

almost never introduce a concept with the tabular representation results in students devaluing the 

graphical, verbal and numerical representations (Rider, 2004).  An implicit promotion of the 

symbolic representation is shown in Rider’s (2007) description of activities in her own classroom, 

where she found that students did not value the graphical and numerical representations despite a 

focused instructional approach that weighted each representation evenly.  Rider (2007) concluded 
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that her students began to value the graphical and numerical representations as equal to the 

symbolic when she began to assess each representation equally on exams.  Keller and Hirsch 

(1998) proposed that exposure to multiple representations may lessen the preference for the 

algebraic representation; however, Rider’s (2007) work corroborates others who have concluded 

that “multiple representations do not by themselves help students develop mathematical 

understanding” (Gagatsis, Christous, & Elia, 2004, p. 157).  These findings suggest that merely 

presenting concepts through multiple representations is insufficient to help students develop 

understanding. 

Significant benefits for learning mathematics through the use of multiple representations 

have been identified (Brenner et al., 1997; Hashimoto & Becker, 1999; Keller & Hirsch, 1998; 

Lesh et al., 1987; Rider, 2004, 2007; Steketee & Scher, 2012; Zbiek et al., 2007).  As noted earlier, 

one key benefit is the building of conceptual understanding as described by  Hiebert and Carpenter 

(1992) and Lesh et al. (1987).  Zbiek et al. (2007) suggested that teaching through multiple 

representations with the goal of representational fluency creates an ideal environment for the 

building of rich meaning. 

Another benefit of studying (functions) through multiple representations is the subsequent 

improvement in problem solving (Brenner et al., 1997; Rider, 2004, 2007; Zbiek et al., 2007).  

Problem solving tends to improve as a student’s repertoire of problem-solving techniques 

increases.  For example, as students are able to recognize the features of a function that are 

invariant across representational forms, students begin to realize that each representational form 

offers information that may be useful in solving problems (Rider, 2004, 2007).  The availability 

of multiple representations provides students with multiple avenues by which they can navigate 

novel problems.  Lesh et al. (1987) suggested that fluency in multiple representations allows 
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students to work around difficulties with one particular representation.  For example, a student 

who has difficulty translating from an algebraic to a graphical representation could consider 

translating from an algebraic to a numerical representation and then from a numerical 

representation to a graphical representation.  Zbiek et al. (2007) concluded that representational 

fluency with multiple representations allows students to work around unexpected results.  If a 

student cannot explain a result in one particular representation, then the student can generate an 

equivalent representation and attempt to explain the result through the lens of the new 

representation.  For example, suppose a student cannot explain why 𝑥𝑥 = 2 is not a part of the 

domain of the function 𝑦𝑦 = 1
𝑑𝑑−2

.  A student who can construct a graph of this function would then 

realize that a vertical asymptote exists at 𝑥𝑥 = 2.  This may allow the student to explain why 𝑥𝑥 = 2 

is not in the domain.  

Research has shown that studying functions through multiple representations widens 

students’ perceptions of what kind of answer is acceptable (Keller & Hirsch, 1998; Rider, 2004).  

When students come to understand that the four representations of a function are all equivalent, 

they begin to see that solutions are typically not limited to just a number or function.  Rider (2004) 

suggested that due to each representation requiring a different kind of input and producing a 

different kind of output, “when viewed together, the representations make input and outputs of 

functions more salient than any one representation alone” (p. 3).  These conclusions suggest that 

studying functions through multiple representations increases students’ flexibility with functional 

representations.   
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2.2.3 Links between multiple representations 

The key understanding in the use of multiple representations is the creation of links between the 

representations.  Kaput (1992) identified two reasons for linking representations of a concept: “(i) 

to expose different aspects of a complex idea, and (ii) to illuminate the meanings of actions in one 

notation by exhibiting their consequences in another notation” (p. 542).  How and in what manner 

these connections are made is an unsettled question.  There is agreement among some researchers 

that the links between representations develop with a directionality (Dick & Edwards, 2008; 

Janvier, 1987b; Kaput, 1992).  This directionality results in representational preference among 

students.  Janvier (1987a) contended that translation processes are better learned as pairs.  For 

example, students learn translation processes better if they learn to translate table to graph and 

graph to table simultaneously as opposed to learning each translation independently.  What Janvier 

describes parallels Krutetskiian reversibility.  Janvier (1987a) is suggesting that reversibility is a 

key in developing a strong network of connections between representations. 

Kaput (1992) suggested that a two-way translational link between representations may not 

be possible in all cases, noting that two linked representations do not necessarily have an equal 

degree of correspondence.  For example, it would always be possible to translate an algebraic 

representation into a unique numerical representation; however, the reverse is not possible.  As 

such, Kaput (1992) emphasized the development of unidirectional links, called “hot links” (p. 530).  

The defining feature of a hot link goes beyond just making a linkage between two representations; 

a hot link requires that when a transformation acts on an object in representation A, the effect of 

the transformation is automatically understood in representation B.  An example of this would be 

expecting a student to understand the graphical result of dividing polynomial 𝐴𝐴 by polynomial 𝐵𝐵.  

In their discussion of hot links, Zbiek et al. (2007) postulate that hot links can be bidirectional, but 
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that a bidirectional hot link would mean that any action taken in either representation would reflect 

the same consequence in both representations. 

Amit and Fried (2005) proposed a different approach to multiple representations altogether.  

They concluded that instruction linking multiple representations may be too difficult for students 

who are likely not fluent in one particular representation.  Rather than making the linking of 

multiple representations the instructional framework, they suggested the linking of multiple 

representations to be an end goal of a mathematical learning trajectory.  It may be the case that the 

Krutetskiian constructs of flexibility and reversibility may aid in this proposed approach of 

viewing links between representations as an instructional end goal instead of a framework for 

instruction.  However, I am not aware of any research that has tested this hypothesis nor am I 

aware of any ongoing research investigating Amit and Fried’s (2005) initial claim.  More research 

is necessary to substantiate or refute the effectiveness of delaying linkage between representations 

until after students have had considerable experience with each representation in isolation. 

2.2.4 How to teach multiple representations 

Researchers have proposed instructional techniques that may help students to generate the kinds 

of connections across representations associated with conceptual understanding (Greeno & Hall, 

1997; Hiebert & Carpenter, 1992; Keller & Hirsch, 1998).  Greeno and Hall (1997) recommended 

emphasizing interpretation of each representation rather than teaching each separate representation 

as an end goal.  Hiebert and Carpenter (1992) stressed the use of mathematical activities 

highlighting the similarities and differences of the representation in order to “stimulate the 

construction of useful connections at all levels of expertise” (p. 68).  As these connections increase 
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and grow stronger, the students are likely to begin to transition from viewing each representation 

as separate entities to seeing each representation as a different form of the same entity. 

Hiebert and Carpenter (1992) recommended that teachers make the connections between 

the representations explicit and should encourage students to reflect on the connections.  

Thompson’s (1994) research supported this recommendation.  He found that if the teacher fails to 

make the connections explicit for students, then the mathematics curriculum becomes in essence 

a traditional curriculum reducing each representation to another set of learned procedures. 

As noted earlier, students often have a preferred representation.  Keller and Hirsch (1998) 

asserted that this preference is an essential component for researchers to understand when 

investigating students’ connection-building between representations.  The researchers identified 

several factors that influence students’ representation preferences.  These factors include the 

students’ prior experiences with each representation, the perceived acceptance of the 

representation, the difficulty of the task, the context of the representation, and the language of the 

task.  For example, formal language in a task is associated with a student preference for an 

algebraic representation while a more intuitive, less formal wording engenders greater use of the 

graphical and numerical representations.  This research has possible ramifications for teachers.  

For instance, mathematics teachers may be able to harness the potential of students’ innate 

situational preferences for representations.  Keller and Hirsch suggested the likeliness that the 

strongest links between representations will include the preferred representation.  As such, 

“attempts to situate the development of mathematics in context and attempts to enable students to 

approach mathematics as a sense-making activity may do well to build from students’ preferences 

for representations” (p. 14). 
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In her dissertation research, Rider (2004) investigated the benefits of presenting each 

representation in equal amounts without introducing a bias towards any particular representation.  

She concluded that a curriculum fully immersed in multiple representations increases students’ 

flexibility.  One of the benefits of this approach is that it “allowed students the freedom to decide 

which representation is most effective in certain situations and with which representation they 

were most comfortable” (Rider, 2004, p. 132).  Unlike Keller and Hirsch (1998), Rider (2004) 

recommended requiring students to battle with each representation and develop a sufficient 

comfort level with each.  However, she also noted the benefits of being able to translate 

representations when necessary, saying “if students were not comfortable with a representation, 

then they needed to know how to translate into an alternate representation that they were 

comfortable with, thus making connections among the representations and showing a higher level 

of understanding” (Rider, 2004, p. 132). 

Rider (2004) also recommended strategic assessment writing as an instructional method 

supporting connection building between representations.  By designing assessments that ask 

mathematical concepts in any of the representations, the assessments require students to develop 

a proficiency with all representations and in the event that they cannot solve a problem in a 

preferred representation, the students have to be able to translate the concept into an appropriate 

representation. 

Rider (2004) cautioned teachers to be aware of the order in which representations are 

introduced.  She emphasizes the importance of starting each subsequent problem in a class using 

a different representation, especially when first introducing a mathematical concept.  She found 

that students inherently value the representation used to introduce a concept.  Research has termed 

the explicit or implicit promoting of one representation over another as teacher privileging (Kendal 
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& Stacey, 1999, 2001).  Research indicates a link between the representation(s) privileged by the 

teacher and the subsequent use of each representation by the students, suggesting that students are 

more likely to develop proficiency with a representation that a teacher privileges (Kendal & 

Stacey, 2001). 

Rider (2004) agreed with Hiebert and Carpenter (1992) and recommended that teachers 

should specifically emphasize the connections between representations.  Rider also cautioned that 

students typically do not develop reversibility between representations without receiving 

instruction in both directions.  For example, after Rider’s students received instruction translating 

from an algebraic equation to a graph, they were not able to translate from a graph back to an 

algebraic expression.  It may be the case that particularly advanced students can develop 

reversibility between representations without receiving “special exercises” as Krutestkii observed, 

however Rider did not address this possibility.  The average and incapable student will almost 

certainly need instruction and practice in translating in both directions between two 

representations. 

2.2.4.1 The rule of four 

One instructional approach that has gained significant traction in the past 20 years, especially in 

calculus, is instruction using the Rule of Three (or Four).  The Rule of Three is the “belief that … 

three aspects of calculus – graphical, numerical, and analytical – should all be emphasized 

throughout [the calculus course] … students will repeatedly by confronted with the graphical and 

numerical meaning of what they are doing” (Gleason & Hughes-Hallett, 1992, p. 1).  The purpose 

of the Rule of Three “is to produce a course where the three points of view are balanced and 

students see each major idea from several angles” (Hughes-Hallett et al., 1995, p. 121).  Hughes-

Hallett and Gleason, part of the Calculus Consortium at Harvard University (CCH), first proposed 
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the Rule of Three in the late 1980’s and published the first edition of a calculus textbook, Calculus, 

based on the Rule of Three in 1994-1995.  Subsequent editions of the textbook expanded the Rule 

of Three to the Rule of Four.  The Rule of Four incorporates a fourth representation, the verbal 

representation, which incorporates multiple facets: 1) the use of words to describe functions, such 

as “the function is increasing and concave up” or “a linear function”, 2) the use of words to describe 

what a student did to solve a problem, and 3) the traditional “word problem”, which are now 

considered “contextual problems” or “application problems” (Hughes-Hallett et al., 1998).  Wilson 

(1997) reported that by 1997 the “Harvard Calc” book (“Harvard Calc” is the colloquial term given 

to the CCH textbook) had been adopted by over 500 institutions and was the most popular of the 

calculus textbooks that emphasized the use of multiple representations.  By the fall of 1995, the 

Rule of Three based Calculus textbook had become the best-selling calculus textbook in the United 

States (Rublein, 1995). 

One example of how teachers can incorporate the Rule of Three in calculus is in finding 

extreme values.  Graphically, a graphing calculator can determine the maximum or minimum value 

of a function over an interval by using the TRACE feature of or using the maximum/minimum 

command.  In this case, the student would see that the maximum value refers to the greatest 𝑓𝑓(𝑥𝑥) 

value over an interval.  The numerical representation would allow for finding an extreme value by 

comparing the values of a function through the table menu of a graphing calculator.  The analytical 

representation would be used to find extremes through the traditional method of differentiating, 

setting the resultant function equal to zero, solving for 𝑥𝑥 and then conducting a first derivative test 

(Gleason & Hughes-Hallett, 1992). 
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2.2.4.2 Multiple representations within calculus 

Using the Rule of Three/Four to inform calculus instruction has become one of the defining 

features of the calculus reform movement.  “The emphasis on multiple representations of concepts 

is now the fundamental difference between traditional and reform calculus curricula” (Goerdt, 

2007, p. 5).  Thus, the use of multiple representations has gained significant traction with calculus 

reformers (Dick & Edwards, 2008; Haciomeroglu, 2007; Haciomeroglu et al., 2009; Rider, 2004).  

The use of the graphical, numerical, and verbal descriptions have increased dramatically in the 

calculus classroom and with them the opportunities for students to build stronger and more 

frequent network connections between representations.  As noted earlier, the AP Calculus course 

description identifies developing flexibility with the four representations of functions as a goal of 

AP Calculus (Collegeboard, 2010b).  However, within calculus, using multiple representations is 

not limited to only an understanding of functions.  Linking multiple representations is also 

necessary for a complete understanding of the derivative and integral (Sofronas et al., 2011).  Since 

this study focused on linking representations with functions and derivatives, I restricted my 

discussion of linking multiple representations in calculus to derivatives.  Ross (1996) suggested 

that students who demonstrate a conceptual understanding of the derivative will be able to perform 

differential calculus and interpret the results on functions presented through symbolic, numerical, 

graphical, and verbal representations.  Kendal and Stacey (2003) proposed a concept map of 

differentiation, linking the multiple representations of the derivative (see figure 6).  The 

researchers list the physical (synonymous with the verbal) representation within their concept map; 

however, their empirical research focuses on the numerical, symbolic, and graphical 

representations.  The concept map of differentiation shows how the derivative concept can be 

represented in multiple ways and how the multiple representations can be linked together. 
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Figure 6.  Kendal and Stacey’s concept map of representations of differentiation.  

Reprinted from “Tracing learning of three representations with the differentiation competency framework”, by M. 

Kendal & K. Stacey, 2003, Mathematics Education Research Journal, 15, p. 26.  Copyright 2003 by Mathematics 

Education Research Group of Australasia.  Reprinted with permission. 

The concept map, figure 6, proposes that reversible links exist between each representation.  Each 

representation is discussed below. 
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In 2011, Sofronas, et al., authored a first-of-its-kind empirical piece identifying the 

overarching end goals of the first-year of calculus at the college/university level.  Within these 

goals, the understandings needed to understand the derivative concept are identified.  In the article, 

the authors surveyed 24 experts in the field of calculus, all of whom were Ph.D. mathematicians 

who had received national and/or international recognition for work in the field of mathematics or 

in the field of teaching mathematics.  Sixteen of the experts were also textbook authors.  To 

determine what it means for a student to understand the first-year of calculus, the researchers 

surveyed the 24 experts through an 11-question questionnaire and then applied a statistical analysis 

to determine 4 overarching end goals and 19 sub-goals that students should understand by the end 

of their first year of calculus.  

One-hundred percent of the experts cited student understanding of the derivative as a 

central concept of first-year calculus.  Student mastery and demonstrated comprehension of the 

derivative is a linchpin to deep comprehension of the first-year of calculus (Sofronas et al., 2011).  

To identify sub-goals of understanding of the derivative, the researchers required that at least 25% 

of the experts identify the same topic as essential to understanding the derivative.  Sofronas et al. 

(2011) reported that three sub-goals of derivatives emerged: 1) understanding the derivative as rate 

of change was identified by 50% of those surveyed, 2) graphical understanding of the derivative 

was identified by 29% of those surveyed, and 3) facility with derivative computations was 

identified by 67% of those surveyed.  These sub-goals present a framework by which the literature 

on instruction and learning of the derivative can be analyzed.  These sub-goals are synonymous 

with the numerical, graphical, and symbolic representations as presented in Kendal and Stacey’s 

(2003) concept map (figure 6), respectively.  Each of these sub-goals is described in further depth 

below. 
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Before discussing in detail the components of understanding the derivative identified by 

Sofronas, et. al (2011), I should review the AP Calculus curriculum put forth by the College Board 

(2010a) and compare the treatments of the derivative as defined by Sofronas, et. al. and the AP 

program.  This comparison is necessary as the recommendations made by Sofronas et al. (2011) 

were made largely by collegiate mathematics professors and could be interpreted as targeted 

towards collegiate, undergraduate instruction. The AP Calculus program, however, is targeted 

entirely to high school students and high school calculus teachers.  Currently, at least half of all 

calculus instruction in the United States now takes place in the high school classroom (Bressoud, 

2009a, 2009b), thus to inform our definition of the derivative, we should also consider how the AP 

calculus program defines the derivative. 

The AP Calculus syllabus says that “students should understand the meaning of the 

derivative in terms of a rate of change and local linear approximation and should be able to use 

derivatives to solve a variety of problems” (Collegeboard, 2010a, p. 6).  Furthermore, the syllabus 

identifies four sub-goals of understanding the meaning of the derivative: 1) concept of the 

derivative, 2) derivative at a point, 3) derivative as a function, and 4) computation of derivatives.  

These four goals will now be mapped onto the framework presented by Sofronas et al. (2011) and 

the concept map of Kendal and Stacey (2003). 

Understanding the derivative as a rate of change – the numerical representation of a derivative 

Fifty-percent of the experts (twice the required threshold of 25%) surveyed identified the 

derivative as a rate of change as an important concept for students to master during the first-year 

of calculus.  To understand the derivative as rate of change, students must demonstrate knowledge 

of three separate but related elements (Sofronas et al., 2011).  First, students must understand the 

foundational concepts of function and limit as they relate to the central idea of the derivative as 
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the rate of change.  It should be noted that the experts surveyed by the researchers intimate that 

students should enter a calculus course with a thorough understanding of functions.  The research 

exploring calculus students’ understanding of functions strongly indicates that an instructor should 

not assume such an understanding (Gur & Barak, 2007; Habre & Abboud, 2006; Horvath, 2008; 

Tall, 1992; Thompson, 1994).  Secondly, students should be able to make a qualitative distinction 

between the instantaneous rate of change (i.e. the derivative) and the average rate of change (an 

estimate of the derivative).  Also, students need to be able to make these distinctions when the 

independent variable is a quantity other than just time.  Finally, students should be able to 

recognize that the derivative is not just change, but that it is change in a describable way (Sofronas 

et al., 2011).  

Within the AP syllabus, several sub-goals seem to agree with the descriptions given by 

Sofronas et al. (2011).  Under the sub-goal of “Concept of the derivative” the AP syllabus describes 

student understanding as recognizing the derivative as the instantaneous rate of change and as the 

limit of the difference quotient.  Falling under the category of “Derivative at a point,” students 

should understand the derivative as the instantaneous rate of change as the limit of the average rate 

of change (Collegeboard, 2010a). 

Figure 6, the concept map of differentiation, shows that Kendal and Stacey (2003) referred 

to the numerical representation of the derivative as finding a rate of change arbitrarily close to a 

value, typically by taking the limit of a difference quotient.  Within the numerical representation, 

students must understand the distinction between the average rate of change (the difference 

quotient without a limiting process) and the instantaneous rate of change (the difference quotient 

with a limiting process). 
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When I refer to understanding the derivative as the rate of change, I refer to students’ 

understanding of the derivative as the end-result of the limiting process applied to the difference 

quotient that represents the average rate of change.  It should be noted that the definition I use 

when referring to understanding the derivative as the rate of change is similar to the definition of 

students’ graphical understanding of the derivative as offered by Asiala et al. (1997).  The 

researchers describe students’ graphical understanding of the derivative as characterized by 

understanding the connections between the process of taking the limit of the slopes of a set of 

secant lines to produce the slope of a tangent line at a point and the process of taking the limit of 

the values of the average rate of change over successively smaller time intervals to produce the 

instantaneous rate of change.  In the following section, I offer an alternative definition of graphical 

understanding of the derivative.  For the purposes of this document, and to maintain fidelity with 

the viewpoints supported by Sofronas et al. (2011), the learning goals stated by the Collegeboard 

(2010a), and the concept map of Kendal and Stacey (2003), when referring to understanding the 

derivative as the rate of change, I will be referring to students’ understanding of the derivative as 

the end result of the limiting process applied to the difference quotient that represents the average 

rate of change – the numerical representation of the derivative.  

Graphical understanding of the derivative – the graphical representation of a derivative 

Twenty-nine percent of the experts surveyed by Sofronas et al. (2011) reported placing an 

emphasis on students’ ability to interpret the derivative graphically as a key to understanding the 

derivative concept. Graphical understanding of the derivative includes the concepts of slope and 

several common applications of derivatives such as identifying relative maxima and minima, 

identifying points of inflection, and finding intervals of concavity. 
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The AP syllabus identifies key concepts of graphical understanding of the derivative as 

including an understanding of the derivative as the slope of a curve at an identified point, as the 

slope of the line tangent to a curve at a given point, as relating the corresponding characteristics 

between the graph’s function and the function’s derivative, and the understanding of the 

relationship between the increasing and decreasing behavior of a function and the positive or 

negative values of the derivative of a function (Collegeboard, 2010a). 

Asiala et al. (1997) offered a particularly concise description of what is necessary to 

understand the graphical representation of the derivative. 

A key issue in a graphical understanding of the derivative [is] the relationship between the 

derivative of a function at a point and the slope of the line tangent to the graph of the 

function at that point.  This forms a foundation for understanding the derivative as a 

function which, among other things, gives for each point in the domain of the derivative 

the corresponding value of the slope. (Asiala et al., 1997, p. 414)   

This view is congruent with the views of other calculus researchers.  Dreyfus (1990) offered that 

students should be able to demonstrate that they know that differentiation produces a new function 

from an old one, and that this new function returns the value of the old function’s instantaneous 

rate of change at each input. 

Kendal and Stacey (2003) described the graphical representation of differentiation as 

“finding the gradient of the curve” (p. 24).  The gradient of a curve is typically referred to as the 

slope of the line tangent to a curve at a given point. 

When I refer to a student’s “graphical understanding of the derivative” I refer to a multi-

faceted definition.  In this document, a complete “graphical understanding of the derivative” 

incorporates three fundamental understandings:  
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1) a student’s ability to make inferences regarding the behavior of a function 

based on information provided by the derivative, such as intervals of 

increase and decrease as well as intervals of concavity,  

2) understanding that the act of differentiation of a function produces a new 

function and that this new function returns an output value that uniquely 

describes the slope of the line tangent to the original curve at the input value;  

3)  the ability to construct both the graph of a derivative given a function and to 

be able to graph a function, given a derivative. 

The third element of a complete graphical understanding of the derivative is an example of 

how reversibility presents within a particular representation.  In this case, the student must be able 

to construct the graph of 𝑓𝑓′ given the graph of 𝑓𝑓 and construct a possible graph of 𝑓𝑓 given the 

graph of 𝑓𝑓′. 

Facility with derivative computations – the symbolic representation of differentiation 

Sofronas et al. (2011) reported that two-thirds of the experts surveyed listed computation of 

derivatives of elementary functions as vital to understanding the derivative concept.  The experts 

placed the emphasis on student facility with the differentiation rules of elementary functions and 

the product rule, quotient rule, and chain rule. 

The AP syllabus identifies “Computation of derivatives” (Collegeboard, 2010a) as a list of 

procedures that support understanding of the derivative.  Specifically, AP calculus students are 

expected to be able to differentiate elementary functions, to be able to take the derivatives of sums, 

products, quotients, composite functions, and functions defined implicitly. 

It should be noted that the experts surveyed by Sofronas et al. (2011) and the AP Calculus 

syllabus appear to place different weights on the importance of student facility with computational 
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derivatives.  A high percentage (67%) of mathematics experts surveyed by Sofronas et al. (2011) 

listed the importance of students being able to take derivatives of elementary functions and sums, 

products, quotients, and compositions of elementary functions.  One expert wrote, “the basic rules 

of differentiation, you’ve got to have that cold, absolutely cold … If you can’t calculate … you’re 

going to get hung up there and not be able to see the conceptual picture that we are trying to paint.  

Those things fill in the details in the big picture” (Sofronas et al., 2011, p. 138).  Sixty-seven 

percent is a higher percentage of agreement among the experts surveyed than for either of the 

topics “derivative as a rate of change” (50%) or “graphical representation of the derivative” (29%).  

The AP syllabus, however, seems to place the least weight of all the derivative sub-goals on facility 

with derivative computations.  Kennedy (2003) noted that “the most significant thing about this 

topic is that it is listed last, consistent with the philosophy that the emphasis of the course is not 

on manipulation” (p. 19). 

Kendal and Stacey (2003) defined “symbolic representation” as referring to finding the 

derivative of a function given in symbolic form by using known differentiation formulas.  In 

Kendal and Stacey’s concept map of differentiation, figure 6, computation of derivatives falls in 

the symbolic representation.  

When I refer to computational fluency with derivatives, I refer to a student’s ability to find 

a function 𝑓𝑓′, that represents the derivative of a function 𝑓𝑓, where 𝑓𝑓  is an elementary function or 

a sum, product, quotient, or composition of elementary functions.  Much like what has been 

reported in algebra classes, calculus students exhibit a strong preference for the algebraic 

representation and have profound difficulties when an algebraic expression is not available (Asiala 

et al., 1997; Berry & Nyman, 2003; García, Llinares, & Sánchez-Matamoros, 2011; Knuth, 2000). 
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Using words to interpret differential relationships – the verbal representation of differentiation 

Although not mentioned in Kendal and Stacey’s (2003) differentiation competency framework nor 

discussed by Sofronas et al. (2011), the verbal representation of the derivative is also included in 

a discussion of multiple representations of the derivative concept by Ross (1996) and Goerdt 

(2007) and is an integral part of the CCH curriculum.  The verbal representation “refers to the use 

of English language to interpret mathematical concepts” (Goerdt, 2007, pp. 46-47).  Applying this 

definition to the derivative concept, the verbal representation refers to describing the relationship 

between a function and its derivative in words and interpreting the meaning of the derivative of a 

function within the context of the problem.  An example of the kind of question that requires a 

verbal representation of the derivative follows. 

Ex. 1:  Suppose 𝑇𝑇(𝑥𝑥) is the function that models the air temperature in degrees Fahrenheit 

in Rome, Italy during one day in the month of July.  Let 𝑥𝑥 represent the number of hours since 

midnight (i.e. 𝑥𝑥 = 0 means 12:00 am, 𝑥𝑥 = 1 means 1:00 am, 𝑥𝑥 = 2 means 2:00 am, etc.).  Interpret 

the result that 𝑇𝑇′(11) = 2.6 using correct units. 

Research indicates that calculus students’ conceptions of the derivative and integral 

improve as students’ facility with multiple representations, especially the graphical representation, 

improves (Berry & Nyman, 2003; García et al., 2011; Goerdt, 2007).  One reason for this is that 

curve sketching, such as sketching a function 𝑓𝑓 from a numerical representation of 𝑓𝑓′, requires 

students to make connections between the algebraic and graphical representations or between the 

numerical and algebraic representations.  Habre and Abboud (2006) taught a differential calculus 

course with a reformed curriculum focusing on the algebraic and graphical representations of 

functions and derivatives.  They found that most students developed a “very good understanding 
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of the idea of the derivative” (p. 67) and an appreciation of the information that each representation 

affords the reader. 

Kendal and Stacey (2003) authored a report of empirical research in which they evaluated 

a proposed framework called the Differentiation Competency Framework (DCF) that organizes 

concept knowledge about differentiation into 18 competencies spread across the algebraic 

(symbolic), numerical, and graphical representations of the derivative.  As noted earlier, the 

researchers place great value on the flexible use of multiple representations in differential calculus. 

In the DCF, graphical differentiation refers to finding the slope of the graph using 

differentiation or approximating the slope of a graph using local linearity or by finding the slope 

of an appropriate secant line.  Symbolic differentiation refers to finding the derivative of an 

algebraic expression, most likely by following well-known differentiation rules.  Numerical 

differentiation refers to the difference quotient and the instantaneous rate of change (Kendal & 

Stacey, 2003).   The DCF presupposes that reversible translations exist between the numerical, 

symbolic, and graphical representations. 

Kendal and Stacey (2003) used the DCF to create the eighteen item Differentiation 

Competency Test (DCT), which contains one validated question for each competency identified 

in the DCF.  The purpose of the DCT is to monitor students’ conceptual understanding of the 

derivative across the symbolic, numerical, and graphical representations.  It also measures the 

students’ ability to move flexibly across multiple representations and tracks representational 

preference.  The results of the DCT indicate that only the very best students could successfully 

translate between the three representations of derivatives and only half of the students 

demonstrated proficiency with two of the representations.  These results suggest that developing 

flexibility with the three representations of derivatives is difficult for students and serves as a 
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caution for calculus teachers that students do not easily develop flexibility in a calculus classroom.  

The researchers suggested that one possible instructional approach that may help calculus students 

is to focus on the symbolic and graphical representations first and incorporate the numerical 

representation after students are fluent with the symbolic and graphical representations.  This 

recommendation seems to have been reached by the relative performance of students on the DCT.  

The students were far weaker in solving problems involving the numerical representation than the 

graphical or symbolic.  One factor that may mitigate this recommendation in regards to the present 

study is that Kendal and Stacy only allotted 22 days for instruction.  The instructional course in 

this study will be approximately 48 days. 

In her dissertation research, Goerdt (2007) examined the differences in calculus students’ 

understanding of the derivative concept when learned in a traditional (emphasizing the symbolic 

notation) classroom versus a reform (emphasizing connections between and within symbolic, 

graphical, numerical, and verbal representations of functions and derivatives) classroom.  She 

found that “the mean understanding of derivative of the reform students is greater than that of the 

traditional students, when understanding is considered the ability to translate between and within 

representations of the concept” (Goerdt, 2007, p. 117).  Furthermore, Goerdt (2007) concluded 

“that reform calculus curricula promote a more flexible and transferable understanding of the 

concept of derivative” (p. 120).  This research suggests that calculus instruction linking multiple 

representations benefits students’ understanding of the derivative and students’ flexibility with 

multiple representations of the derivative. 
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2.3 WHY THE USE OF MULTIPLE REPRESENTATIONS HELPS STUDENTS TO 

DEVELOP REVERSIBILITY 

In the previous sections, I reviewed the research on reversibility and multiple representations.  In 

this section, I attempt to present an argument using the aforementioned research to support the 

hypothesis that there exists a relationship between linking multiple representations and developing 

reversibility.  It is important to note that I am not limiting reversibility to just moving forward and 

backward between representations, I am proposing that as students learn to move flexibly between 

representations, they will develop an ability to think reversibly in such a way that they develop 

reversible connections when learning new mathematical processes in the forward direction. 

The NCTM (1989) states that “students who are able to apply and translate among different 

representations of the same problem situation or of the same mathematical concept will have … a 

powerful, flexible set of tools for solving problems” (p. 146).  Lesh et al. (1987) noted that a 

characteristic of successful problem solvers is an instinctive ability to switch to the most 

convenient representation at any time in the solution process.  This ability necessarily requires a 

well-developed flexibility.  The NCTM implied that proficiency in translating between multiple 

representations (flexibility) helps to develop problem-solving processes.  Since reversibility is a 

problem-solving process (Krutetskii, 1976), it may be that proficiency in translating between 

multiple representations helps to develop reversibility. 

Greeno and Hall (1997) agreed with the stance taken by the NCTM (1989) that multiple 

representations are tools useful for constructing understanding and are adaptable for the 

mathematical task at hand.  Since I adopt the view that understanding requires the building of 

connections between mathematical concepts (Hiebert & Carpenter, 1992) and reversibility is a 
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kind of connection, linking multiple representations may be useful for constructing reversible 

connections.   

If students must consider each concept through multiple representations, specifically 

reversing thought processes across representations, then students may develop a reversible thought 

process that can be adapted to other mathematical processes.  Krutetskii’s (1976) research supports 

this claim.  Since, as Krutetskii (1976) stated, “reverse problems … have a great value for 

developing … the ability to switch from direct to reverse operations” (p. 187), then continually 

rehearsing how to translate back and forth (or direct and reverse) between multiple representations 

should help students to develop “the ability to switch from direct to reverse operations”. 

According to Knuth (2000), flexibility with multiple representations requires 

understanding how to move in both directions between two representations, in other words, 

reversibility is necessary for flexibility.  Rider’s (2004, 2007) research supported this assertion.  

Janvier (1987a) proposed that students will learn to translate between representations best if they 

learn the translations in symmetric pairs, such as learning to move from table to graph and graph 

to table at the same time.  What Janvier proposed is Krutetskiian reversibility between 

representations.  Janvier (1987b) created a table of translations to show the actions necessary to 

translate from one representation into another (for example, translating from a symbolic 

representation into a graphical representation).  Figure 7 is a reproduction of Janvier’s table.  As 

an example, consider how to translate from a table to a verbal description.  Janvier’s table shows 

that reading is the action required to translate from a table to a verbal description.  According to 

Janvier’s table, if a function is presented in a symbolic representation (formulae), then sketching 

is the necessary action to translate to a graphical representation. 
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Figure 7.  Janvier’s table of translation processes.   

Reprinted from Problems of Representations in the Teaching and Learning of Mathematics (p. 30), by C. Janvier, 

1987, Hillsdale, NJ: Lawrence Erlbaum Associates.  Copyright 1987 by Lawrence Erlbaum Associates.  Reprinted 

with permission. 

Dick and Edwards (2008) make a particularly salient observation of Janvier’s (1987b) table of 

translations between representations:  

Note that reversing the direction of a translation between functions representations is not 

simply a matter of ‘inverting’ the steps in an algorithm.  Each of the activities Janvier 

identifies in his table has its own unique set of cognitive skills and understandings 

associated with it.  (p. 263) 

This observation intimates that reversibility between representations requires far more than 

reversing the steps taken in the first translation.  Rather, reversibility between representations 

requires the development of understandings specific to each representation and then applying these 

understandings.  In this sense, reversibility can be viewed as a discipline to be developed.  In this 

discipline, the students learn to identify the processes that must be reversed in order to move from 

the end product back to the beginning and then learn how to carry out these processes.  From this 
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perspective, multiple representations provide a particularly fertile learning ground for practicing 

with reversibility.  Translating back and forth between multiple representations may train students 

to think reversibly, thus developing reversibility.  Furthermore, if translations between 

representations are best learned in reversible pairs (Janvier, 1987b) but are not simple reverse 

associations (Krutetskii, 1976), then developing flexibility between two representations requires 

Krutetskii’s second kind of reversibility, wherein a change in the direction of thought is required, 

but a simple reverse tracing of a direct procedure is insufficient.  For clarity, I refer to reversible 

translations between representations as representational reversibility.  

Flexibility holds promise for developing reversibility by appealing to different students’ 

representational preferences.  Krutetskii (1976) associated a student’s representational preference 

with his/her learning style.  For example, he considers students who prefer algebraic 

representations to be analytic learners; students who prefer graphical and/or geometric approaches 

to solving problems are called visual learners.  Krutetskii termed students who use both analytical 

and graphical problem-solving methods as harmonic learners.  He noted that both analytic and 

visual learners are limited by their learning preferences and benefit from an ability to switch 

between analytic and visual problem-solving approaches.  Krutetskii’s (1976) descriptions foretell 

the body of research now promoting the benefits of translating between multiple representations.  

Since analytical, visual, and harmonic thinkers’ problem-solving skills seem to benefit from 

exposure to multiple representations and that reversibility is a key process in problem solving, then 

it is reasonable to surmise that exposure to multiple representations may help to develop 

reversibility. 

Rider (2004) noted that within APOS theory, when a student develops a process conception 

of functions, she/he comes to see each representation as a unique form of the same entity 
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(flexibility).  As discussed earlier, reversibility is the key evidence of moving from action to 

process (interiorization) and reversibility is evidence of moving from a process conception to an 

object conception (encapsulation and de-encapsulation).  This suggests that if we can identify 

activities that aid students in moving from action to process or from process to object, we can 

likely find evidence of activities that help students to develop reversibility.  Since Rider observed 

the development of flexibility as a mechanism by which students gain a process conception of 

functions, we can again deduce that developing flexibility helps students to develop reversibility. 

“Examining and re-examining the consequences of a mathematical action when the object 

is represented in multiple ways potentially increases the possible conceptual connections 

exponentially” (Dick & Edwards, 2008, p. 258).  The researchers’ observation holds potential for 

why instruction in multiple representations may help to develop reversibility.  When students 

consider how a transformation acting on one representation effects a different representation and 

then continues to consider these possibilities from all combinations of representations, the students 

are in actuality being trained to consider the effects of an action in the forward and reverse 

directions.  In other words, the students are training their thought processes to develop reversible 

connections.  It may be the case that after receiving this training, the students are better equipped 

and more likely to develop reversible connections in other areas of mathematics. 

There are noticeably few research studies that have considered the effects of reversibility 

and multiple representations on calculus learning.  At this time, I am only aware of one such study.  

Haciomeroglu et al. (2009) investigated how students’ representational preferences interact with 

reversibility and flexibility in the sketching of antiderivative graphs.  The researchers noticed that 

each student’s representational preference greatly influenced her/his thought processes and 

“resulted in a one-sidedness in their understandings” (Haciomeroglu et al., 2009, p. 86). 

 86 



  

 The participants all demonstrated a noticeable lack of flexibility and none of the 

participants attempted to reverse any thought processes.  The researchers concluded that the 

representational interpretations, either visual or analytic, of the participants served as an example 

of a one-way relationship.  There was no evidence that any of the participants considered whether 

or not her/his antiderivative graph would produce the correct derivative graph (Haciomeroglu et 

al., 2009).  Haciomeroglu et al. (2009) suggested that teachers can help students to gain a “wider 

and more robust perspective” (p. 87) of mathematics by encouraging students to develop 

reversibility and flexibility. 

Representational fluency (Zbiek et al., 2007) suggests a possible mechanism by which  

learning to link multiple representations may help to develop reversibility.  Representational 

fluency refers to “meaningful and fluent interaction” (p. 1196) with representations when 

necessary.  Representational fluency incorporates translation between representations, drawing 

inferences from each representation of a mathematical concept, and “the ability to generalize 

across different representations” (p. 1192).  Students with representational fluency are able to use 

multiple representations interactively, by that Zbiek et al. (2007) mean that a student working in 

one representation can translate into a different representation when encountering a difficulty, 

work around the difficulty in the new translation, and then translate back to the original 

representation to finish solving the problem.  Zbiek et al. suggested that representational fluency 

has great potential as a research construct because “a central set of research questions occurs at the 

interface of representational fluency and other constructs” (p. 1197).  This research study exists in 

that space, the interface of representational fluency and reversibility. 

Linking multiple representations helps students to develop connections between 

representations and flexible thinking.  As connections increase in number and grow stronger, 
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conceptual understanding develops (Hiebert & Carpenter, 1992; Zbiek et al., 2007).  As conceptual 

understanding develops, reversibility may develop as well. 

2.4 SUMMARY 

Conceptual understanding consists of the building of rich network connections between 

mathematical concepts (Hiebert & Carpenter, 1992).  Krutetskii (1976) proposed two problem-

solving processes that serve as kinds of network connections – reversibility and flexibility.  As 

students develop reversibility, they develop stronger network connections and a deeper 

understanding of the mathematical processes in question.  As students develop flexibility, they 

create new links within their network of mathematical knowledge.  Translating functions between 

multiple representations helps students to develop flexibility.  Thus, as students develop 

reversibility and flexibility, conceptual understanding should increase.  I suggest that the flexible 

use of multiple representations will help students to develop reversibility.  The literature suggests 

that this may be the case because flexibility across multiple representations is linked to the 

development of reversibility.  I suggest that as students develop flexibility between 

representations, their ability to make reversible connections within other mathematical domains 

will increase as well. 
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3.0  METHODS 

This study investigated reversibility and linking multiple representations in a calculus 

environment.  In the two decades since Moschkovich et al. (1993) called for research investigating 

the benefits of the Cartesian Connection, there have been some studies involving the use of 

multiple representations and attempting to identify the educational benefits of developing 

representational flexibility (Amit & Fried, 2005; Lesser & Tchoshanov, 2005).  There have also 

been a limited number of studies that have examined whether or not students exhibit reversibility 

(Davis & McGowen, 2002; Haciomeroglu et al., 2009; Rachlin, 1981; Ramful & Olive, 2008; 

Tzur, 2004) since Krutetskii (1976) first identified reversibility as a problem solving process.  

What makes this study unique is its investigation of reversibility on a developmental trajectory, its 

investigation of reversibility as three separate but related entities (reversibility of two-way 

reversible processes, reversibility of the mental process in reasoning without reversible translation, 

and representational reversibility), and its investigation into the thought processes that students 

use when using reversibility to solve problems.  I am unaware of any existing research that has 

examined the thought processes that students use when using reversibility to solve problems. 

As an element of mathematical understanding, the reversibility process is likely content 

specific (Krutetskii, 1976; Rachlin, 1981; Ramful & Olive, 2008; Teachey, 2003).  This study used 

calculus as its content lens.  Calculus has served as a research lens for several research studies 

regarding multiple representations (Dick & Edwards, 2008; Haciomeroglu, 2007; Haciomeroglu 
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et al., 2009; Rider, 2004).  Despite agreement that calculus is a fertile research field for 

investigating reversibility (Berry & Nyman, 2003; Haciomeroglu et al., 2009; Norman & Prichard, 

1994), I am only aware of one empirical study (Haciomeroglu et al., 2009) of reversibility situated 

within a calculus classroom.  Calculus is a particularly appropriate content lens through which to 

investigate linking multiple representations and developing reversibility because a study of 

calculus requires translation between multiple representations of functions, between multiple 

representations of derivatives, and from representations of functions to representations of 

derivatives and vice versa; also, as Norman and Prichard (1994) have noted, the relationship 

between differentiation and integration is a reversible relationship, that is that they are inverse 

operations.  Specifically, differentiation and integration represent two properties of functions, the 

rate of change and the accumulation of area, that are reversible properties.  Thus, a foundational 

understanding of calculus, the relationship between differentiation and integration (Sofronas et al., 

2011), offers a lens through which one can investigate how reversibility develops. 

This study used a calculus course as a lens through which the relationship between linking 

multiple representations and developing flexibility and reversibility was investigated.  

Specifically, this study attempted to answer the following research questions: 

1) To what extent do students develop flexibility with multiple representations 

when engaged in a course that attends to linking multiple representations? 

2) To what extent do students develop reversibility when engaged in a course 

that attends to linking multiple representations?  In particular: 

i. To what extent does reversibility of two-way reversible processes 

develop? 
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ii. To what extent does reversibility of the mental process in reasoning 

without reversible translation develop? 

iii. To what extent does reversibility of the mental process in reasoning 

with reversible translations (representational reversibility) develop? 

3) What are the thought processes that students utilize when using reversibility 

to solve problems? 

To answer these questions, this study used two kinds of data, 1) class-level data, and 2) individual 

interview data.  The class level data was collected from all students enrolled in the course during 

the length of the study (n = 21).  The individual interview data was collected from six (6) students 

through think-aloud interviews. 

To document the development of flexibility with multiple representations (research 

question 1), this study collected and analyzed class-level data from two sources of evidence: 1) a 

class-wide flexibility pre-test and 2) a class-wide flexibility post-test.  The students’ ability to link 

representations was assessed and documented at the class level through a pre-test and post-test 

model.  A flexibility pre-test (FPT) measuring students’ flexibility with functions was administered 

after the pre-requisite chapter, in which functions are reviewed and at the start of the study.  The 

post-test is the Differentiation Competency Test (DCT), which was created and validated by 

Kendal and Stacey (2003).  The DCT was administered at the end of the study and was intended 

to quantify the extent to which students have developed an ability to demonstrate flexibility of 

multiple representations of derivatives. 

To document the development of reversibility (research question 2), this study used both 

class-level data and individual interview data.  I collected the class-level data through the use of 

exit slips and opening activities.  One exit slip and one opening activity were collected 
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approximately daily throughout the course of the study on instructional days (i.e. exit slips and 

opening activities were not administered on testing days).  Each set of one exit slip and one opening 

activity formed a Krutetskiian paired-problem set.  The exit slip measured the current day’s direct 

learning and the subsequent class period’s opening activity measured the previous day’s learning 

in a reverse direction.  One-third of the exit slip and opening activity pairs required the use of 

reversibility as a two-way process, one-third of the exit slip and opening activity pairs required the 

use of reversibility of the mental process in reasoning without reversible translation, and one-third 

of the exit slip and opening activity pairs required the use of representational reversibility. 

The individual interview data was collected through think-aloud interviews.  Think-aloud 

interviews refers to a specific kind of interview, in which the participant is instructed to verbalize 

her/his thoughts while attempting to solve the interview questions.  The interviewer interjects very 

little other than to encourage the participant to “describe what you are doing” in the event that the 

participant stops talking while solving the interview questions (Willis, DeMaio, & Harris-Kojetin, 

1999).  Six (6) students were selected to participate in four think-aloud interviews each.  The think-

aloud interviews used calculus problems designed to elicit evidence of reversible thinking.  The 

four interviews took place at different intervals during the study and were positioned to allow for 

the development of reversibility between interviews.  The think-aloud interviews were used to 

investigate the thought processes that students use when solving reversible problems (research 

question 3). 

In order to increase the potential power and generalizability of the conclusions drawn from 

the interview data, I chose a multiple-case study research design consisting of two cases of three 

different groups.  The three groups are differentiated by demonstrated achievement.  Based on the 

results of the flexibility pre-test, the entire class of students was divided into thirds.  Two students 
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from the highest scoring third, two students from the middle third, and two students from the lowest 

scoring third were selected to participate in the think-aloud interviews. 

Three groups were chosen to increase variability in the results of the interviews.  Two cases 

within each group were chosen for the perceived benefits of the opportunity for direct replication 

between cases and the expected increase in power that accompanies reaching analytic conclusions 

arising independently from multiple cases.  Two students were selected as representative of each 

group and participated in the interviews allowing for a multiple-case study within each group.  “A 

case study is an empirical inquiry that investigates a contemporary phenomenon in depth and 

within its real-life context, especially when the boundaries between phenomenon and context are 

not clearly evident” (Yin, 2009, p. 18).  In this study, the contemporary phenomenon is the 

development of reversibility and the context is learning calculus in a calculus classroom.  I selected 

a multiple-case study design because it is well-suited to offer insights into phenomena (in this 

instance, the development of reversibility) consistent across multiple cases (two students in each 

groups) and because multiple-case study allows for examination of a phenomenon in its naturally 

occurring context (learning calculus in a calculus classroom) (Stake, 1995; Yin, 2009).  A 

particular strength of case study research is that it allows for the collection and analysis of multiple 

sources of data with the intended outcome of a convergence of the data through triangulation 

(Stake, 1995; Yin, 2009).  In this study, the multiple sources of data in the case study consist of 

the data from the four separate interviews that elicit evidence of the use of reversibility in four 

separate content areas within calculus. 

The class level data and the individual interview data complement and augment one 

another.  The class level data offers a broad picture of development of reversible conceptions and 

flexibility.  The individual interview data served to confirm the patterns observed at the class level 
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and offer insights and further details into the students’ development of reversibility of two-way 

processes, reversibility of the mental process in reasoning without reversible translation, and 

representational reversibility.  The individual interview data also offered a window into the kinds 

of thought processes that students utilized when using reversibility to solve problems. 

3.1 PARTICIPANTS 

The participants in this study were twenty-one students enrolled in AP Calculus AB at an urban 

school district in the mid-Atlantic region of the United States.  The school district is economically 

diverse, with approximately 70% of students qualifying for the federal free and reduced lunch 

program.  The school district is also ethnically diverse with approximately 70% African-American 

students and 30% White students.  The students enrolled in the course ranged in grade level from 

10th grade to 12th grade.  Table 2 summarizes the demographic information of the 21 participants; 

the column “prior achievement” reports the students’ year average in the prior mathematics class, 

Trigonometry & Advanced Math. 

Table 2. 21 Participants’ Demographic Information 

           Gender            Race                 Grade 
Male Female Black White Other 10 11 12 

13 8 4 15 2 3 11 7 
        

I used data from all 21 students to attempt to answer research questions 1 and 2.  All 21 

students attempted the FPT and the DCT.  Also, all 21 students were expected to complete an exit 

slip and opening activity approximately 33 times during the study.  However, due to absence, on 

average 18-19 students completed an exit slip and opening activity on each day that one was 

administered. 
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A subset of the 21 students were selected for task-based, think-aloud interviews.  In an 

effort to increase the likelihood of gaining multiple perspectives, I used a maximum variation 

sampling (Patton, 2002) of relatively high-achieving, average-achieving, and low-achieving 

students to select students for case study.  This method of selection is consistent with how other 

researchers conduct case study research on reversibility (Krutetskii, 1976; Teachey, 2003).  The 

selection of relatively high-achieving, average-achieving, and low-achieving students should offer 

variation consistent with the variation observed in Krutetskii’s study. 

 This study recruited two students from each group of students, relatively high-achieving, 

average-achieving, and low-achieving to participate in the task-based, think-aloud interviews.  I 

used the students’ flexibility pre-test scores as the selection factor.  Flexibility was chosen as the 

selection factor because, as described earlier, the extant body of research suggests that flexibility 

may be related to the development of reversibility.  After administering and grading the FPT, I 

separated the scores into 3 groups based on score.  The high group had 8 scores.  The middle group 

had 7 scores and the low group had 6 scores.  Kelsay and Michael both scored the median score in 

the high group.  Fred and Jill both scored the median score in the middle group.  Kirsten scored 

the median score in the low group.  Marcus was in the low group, but did not score the median 

score.  He was the highest score in the low group.  He was selected because, of the students who 

were willing to participate in the interviews, his grade was closest to the median score of the low 

group.  Table 2 below displays the six interview participants and each participant’s relevant scores 

from the course. 
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Table 3. Interview participants’ testing data 

Name Group FPT % DCT % AP Score 
(out of 5) 

Practice AP 
Score – 

Unscaled (%) 

Practice 
AP Score – 
Scaled (%) 

Class Test 
Average – 

Unscaled (%) 

Class Test 
Average – 
Scaled (%) 

Kelsay High 65 89.5 5 66 90 78 94 
Michael High 65 84.2 5 55 87 71 92 

Fred Middle 40 60.5 3 39 82 51 86 
Jill Middle 40 71.1 3 51 86 52 87 

Kirsten Low 20 42.1 None 26 75 27 76 
Marcus Low 30 29.0 None 36 81 33 81 

 

It should be noted that although the practice AP score column and the class test average 

column seem to indicate that all 6 participants have low overall scores, this course uses only 

released AP Calculus items on all exams and thus uses the AP grade scale to score the exams.  

Using the most recently released data, Table 3 shows how the students’ grades are scaled to a 0 −

100% grading scale, where 𝑥𝑥 represents the student’s grade on a test. 

Table 4. Scaled scores based on AP grade scale 

% Score – Unscaled Corresponding AP 
Exam Grade 

% Score Scaled for 
use in class 

𝑥𝑥 ≥ 64% 5 𝑥𝑥 ≥ 90% 
47% ≤ 𝑥𝑥 < 64% 4 85% ≤ 𝑥𝑥 < 90% 
32% ≤ 𝑥𝑥 < 47% 3 80% ≤ 𝑥𝑥 < 85% 
21% ≤ 𝑥𝑥 < 32% 2 70% ≤ 𝑥𝑥 < 80% 

𝑥𝑥 < 21% 1 𝑥𝑥 < 70% 
 

Six students participated in four interviews each, for a total of 24 task-based, think-aloud 

interviews.  The number of participants and the number of interviews used in this study are 

consistent with other dissertation research on reversibility.  Teachey (2003) interviewed ten 

participants one time each.  Rider (2004) interviewed eight participants twice each, for a total of 

16 interviews.  Haciomeroglu (2007) interviewed three participants one time each, and Rachlin 

(1981) interviewed four participants on average 10 times each, resulting in approximately 40 

interviews. 
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3.2 INSTRUCTIONAL SETTING 

In order to investigate the existence of a relationship between linking multiple representations and 

developing reversibility, I (the researcher and calculus instructor) designed a 48-day instructional 

plan that emphasizes linking multiple representations of functions and linking multiple 

representations of derivatives in a differential calculus course. 

Differential calculus is a natural setting for viewing the development of reversibility as 

differentiability and integration are reversible operations (Norman & Prichard, 1994).  Thus, one 

would expect that if reversibility is present, students would develop some conceptions of 

integration while learning differentiation.  Differential calculus is also well suited for instruction 

that links multiple representations (Goerdt, 2007; Habre & Abboud, 2006; Heid, 1988; Kendal & 

Stacey, 2003). 

The course met five times per week, for 45-minutes per class.  The calculus course used a 

reform calculus textbook, Calculus: Early Transcendentals Single Variable, 9th ed. (Anton, 

Bivens, & Davis, 2009).  The authors noted that the rule of four, presenting concepts from the 

numerical, symbolic, verbal, and graphical perspectives, is incorporated “whenever appropriate” 

(Anton et al., 2009, p. viii).  The textbook is described as a reform textbook because “the emphasis 

on multiple representations of concepts is now the fundamental difference between traditional and 

reform calculus curricula” (Goerdt, 2007, p. 5).  

 The portion of the course covered during this study consisted of Chapter 2: The Derivative, 

Chapter 3: Topics in Differentiation, and Chapter 4: The Derivative in Graphing and Application.  

A course calendar and list of topics is included as an appendix (Appendix A).  During the 48-day 

study, 8 days consisted of administering tests, 4 days consisted of returning and discussing tests, 

and 36 days consisted of instruction of differential calculus.  Chapter 2: The Derivative lasted 15 
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class periods.  Chapter 3: Topics in Differentiation lasted 13 class periods.  Chapter 4: The 

Derivative in Graphing and Application lasted 20 class periods. 

During the 48-day focus of this study, 47 days (35 instructional days and 12 testing days) 

required translation between representations.  The only day during the study that did not require 

translation is a one-day study of a differentiation technique known as logarithmic differentiation. 

To ensure that linking representations was emphasized during the course of study, the instructor 

selected tasks from the textbook and/or supplemental materials such as AP preparation workbooks 

that required students to link multiple representations and to move flexibly between them.  As an 

example of how tasks were used to require students to attempt to link multiple representations and 

to move flexibly between them, I present three examples taken from section 2.6: The Chain Rule.  

In the following examples, students must translate from the verbal representation to the numerical 

representation (Ex. 1), from the symbolic and numerical representation to the numerical 

representation (Ex. 2), and from the graphical and symbolic representation to the numerical 

representation (Ex. 3). 

Ex. 1: Suppose your motorcyle is known to get 60 miles per gallon when you drive around 

town.  If gas currently costs $3 per gallon, how much does it cost per mile to drive to school? 

In example 1, students are trying to find the rate of change of money with respect to miles 

traveled, 𝑑𝑑$
𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

.  However, money is not presented as a function of miles traveled.  Money is a 

function of gallons of gas consumed, and gallons of gas consumed can be expressed as a function 

of miles driven.  Thus, the rate of change of money with respect to miles traveled can be found by 

using the chain rule to determine that the rate of change of money with respect to the number of 

miles traveled, 𝑑𝑑$
𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

, is equal to the rate of change of money with respect to gallons of gas 
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consumed, 𝑑𝑑$
𝑑𝑑(𝑔𝑔𝑔𝑔𝑚𝑚)

, multiplied by the rate of change of gallons of gas consumed with respect to the 

number of miles traveled, 𝑑𝑑(𝑔𝑔𝑔𝑔𝑚𝑚)
𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

.  Symbolically, 𝑑𝑑$
𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

= 𝑑𝑑$
𝑑𝑑(𝑔𝑔𝑔𝑔𝑚𝑚)

∗ 𝑑𝑑(𝑔𝑔𝑔𝑔𝑚𝑚)
𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚).  Numerically, 

𝑑𝑑$
𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

| 𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔=60, $

𝑔𝑔𝑔𝑔𝑔𝑔=3
= 1

60
∗ 3
1

= 1
20

$
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

.  In this example, some students may translate directly from 

the verbal expression to the numerical answer by comparing the units of the problem.  Other 

students may translate from the verbal to the symbolic and then to the numerical representation as 

I described. 

Ex. 2: Suppose that it is known that 𝑓𝑓(2) = 4,𝑓𝑓′(2) = −1, 𝑓𝑓(3) = 1, and 𝑓𝑓′(3) = −1.  

Also, it is known that 𝑔𝑔(2) = 3,𝑔𝑔′(2) = 8,𝑔𝑔(3) = 21, and 𝑔𝑔′(3) = 7.  Find 𝐹𝐹′(2), where 𝐹𝐹(𝑥𝑥) =

𝑓𝑓(𝑔𝑔(𝑥𝑥)). 

In example 2, students are expected to use the numerical values in the given table and the 

symbolic expression for 𝐹𝐹(𝑥𝑥) to evaluate 𝐹𝐹′(2).  The chain rule must be used to determine an 

expression for 𝐹𝐹′(𝑥𝑥), 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓′�𝑔𝑔(𝑥𝑥)� ∗ 𝑔𝑔′(𝑥𝑥).  Then, the numerical representation must be used 

to evaluate the expression 𝐹𝐹′(𝑥𝑥) when 𝑥𝑥 = 2, 𝐹𝐹′(2) = 𝑓𝑓′�𝑔𝑔(2)� ∗ 𝑔𝑔′(2) = 𝑓𝑓′(3) ∗ 8 = −1 ∗ 8 =

−8. 

Ex. 3: Use the graph of the function 𝑓𝑓 in the accompanying figure to evaluate 

𝑑𝑑
𝑑𝑑𝑑𝑑

[�𝑥𝑥 − 𝑓𝑓(𝑥𝑥)]|𝑑𝑑=1 

 99 



  

 

Figure 8.  Example 3 graph of 𝒇𝒇(𝒙𝒙) 

In this example, the students must interpret the derivative of a symbolic function and the 

derivative of a function presented graphically to evaluate the derivative of �𝑥𝑥 − 𝑓𝑓(𝑥𝑥) when 𝑥𝑥 =

1.  In this case,  𝑑𝑑
𝑑𝑑𝑑𝑑
��𝑥𝑥 − 𝑓𝑓(𝑥𝑥)�|𝑑𝑑=1 = 1

2�𝑑𝑑−𝑓𝑓(𝑑𝑑)
�1 − 𝑓𝑓′(𝑥𝑥)�|𝑑𝑑=1 = 1

2�1−𝑓𝑓(1)
�1 − 𝑓𝑓′(1)�.  At this 

point, the problem has been entirely algebraic; however, to move forward, the student must read 

𝑓𝑓(1) from the graph, 𝑓𝑓(1) = 5
2
, and find 𝑓𝑓′(1).  There are two possible ways that a student could 

find 𝑓𝑓′(1).  First, a student could make use of the fact that 𝑓𝑓′(1) equals the slope of the line tangent 

to the curve 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 1.  Since 𝑓𝑓(𝑥𝑥) is a piecewise linear function, 𝑓𝑓′(1) necessary equals the 

slope of the line segment passing through 𝑥𝑥 = 1.  Reading the slope off of the graph, 𝑓𝑓′(1) = −5
2
.  

Alternatively, a student with a strong preference for algebraic expressions may choose to write an 

algebraic definition for 𝑓𝑓(𝑥𝑥) = �
7
3
𝑥𝑥 + 5,−3 ≤ 𝑥𝑥 ≤ 0

−5
2
𝑥𝑥 + 5, 0 < 𝑥𝑥 ≤ 2

 and then find an algebraic definition for 
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𝑓𝑓′(𝑥𝑥) by differentiating the piecewise function, 𝑓𝑓′(𝑥𝑥) = �
7
3

,−3 < 𝑥𝑥 < 0

−5
2

, 0 < 𝑥𝑥 < 2
  and conclude that 

𝑓𝑓′(1) = −5
2
 .  Thus, a student would conclude that 𝑑𝑑

𝑑𝑑𝑑𝑑
��𝑥𝑥 − 𝑓𝑓(𝑥𝑥)�|𝑑𝑑=1 = 1

2�1−52

�1 + 5
2
�. 

 During the course of the study, the students were exposed to 183 mathematical problems 

embedded within the class notes during instruction and 470 homework problems.  Of the 183 in-

class problems, 121 (66%) problems required translation from the input representation to the 

output representation.  Of the 470 homework problems, 332 items (70.6%) required translation 

from the input representation to the output representation.  Table 5 summarizes the distribution of 

items by input and output representations.  Table 6 provides examples of items that require various 

translations.  In table 5, the input column reports if an item contains the representation within the 

question.  For example, a question that utilizes a functional description that includes a symbolic 

expression, graphical representation, and verbal description would be classified GSV and will be 

included in all three categories G, S, and V.  Similarly, an output that requires both a verbal 

description and a graphical representation would be classified VG and be counted in both the 

verbal and graphical output categories. 

Table 5. Distribution of the items used in the study, classified by functional representation 

Input # % of Total Output # % of Total 
G 150 23.0 G 62 9.5 
N 124 19.0 N 347 53.1 
S 395 60.5 S 171 26.2 
V 250 38.3 V 152 23.3 
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Table 6. Examples of problems that require translations between functional representations 

Representational 
Translation 

Example Problem 

S-S Let 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 2𝑥𝑥.  Find 𝑓𝑓′(𝑥𝑥). 

S-N Let 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 2𝑥𝑥.  Find 𝑓𝑓′(2). 

S-G Let 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 2𝑥𝑥.  Sketch a graph of 𝑓𝑓(𝑥𝑥) and 𝑓𝑓′(𝑥𝑥) on the same axes. 

S-V Let 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 2𝑥𝑥.  Explain the meaning of 𝑓𝑓′(2). 

N-N Suppose two functions 𝑓𝑓 and 𝑔𝑔 are known to have the following values: 
𝑓𝑓(1) = 3, 𝑓𝑓′(1) = 4, 𝑔𝑔(1) = 2,𝑔𝑔′(1) = −2.  Find ℎ′(𝑥𝑥) if ℎ(𝑥𝑥) =
𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥). 

N-S Suppose 𝑓𝑓(2) = 5 and 𝑓𝑓′(2) = 1.  Write the equation of the line tangent to 
𝑓𝑓 at 𝑥𝑥 = 2. 

N-G Sketch a curve that satisfies the following requirements: lim
𝑑𝑑→−∞

𝑓𝑓(𝑥𝑥) = 1,
lim
𝑑𝑑→∞

𝑓𝑓(𝑥𝑥) = 3,𝑓𝑓(0) = 1.𝑓𝑓′(0) = 𝑓𝑓′(2) = 𝑓𝑓′(4) = 0. 
N-V True or False: If lim

𝑑𝑑→2

𝑓𝑓(𝑑𝑑)−𝑓𝑓(2)
𝑑𝑑−2

= 5, then lim
ℎ→0

𝑓𝑓(2+ℎ)−𝑓𝑓(2)
ℎ

= 5.  Justify your 
response. 

G-G Given the graph of 𝑓𝑓 sketched below, sketch a possible graph of 𝑓𝑓′(𝑥𝑥) on the 
same axes. 
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Table 6 (continued) 

G-N Given the graph of 𝑓𝑓 sketched below, estimate 𝑓𝑓′(2),𝑓𝑓′(4), and 𝑓𝑓′(5.5).  
Show or explain how you determined each estimation. 

 
G-S Given the graph of 𝑓𝑓 sketched below, write an algebraic expression for 𝑓𝑓′(𝑥𝑥). 

 
 

G-V Write a brief narrative of a scenario described by the graph of 𝑓𝑓′(𝑥𝑥) below. 

 
 

V-V True or false: One particular kind of secant line is a tangent line to a curve.  
Justify your response. 
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Table 6 (continued) 

V-G Suppose a particle’s position function is known to be the Heaviside function.  
Sketch a graph of the particle’s velocity function. 

V-N Suppose a particle’s position function is known to be the Heaviside function.  
Evaluate the following: 𝑠𝑠(1),𝑣𝑣(1), and 𝑎𝑎(1). 

V-S Suppose a particle’s position function is known to be the Heaviside function.  
Write the equation of the particle’s velocity function. 

 

It should not be surprising that a high percentage of items involved the symbolic representation.  

The relatively high number of items that involve the symbolic representation was largely due to 

the fact that Chapter 2: The Derivative and Chapter 3: Topics in Differentiation each contained 

sections dedicated almost entirely to learning to use differentiation rules and procedures applied 

to algebraic expressions.  Also, the graphical representation is used in relatively few outputs, 

however, this possible inequity is largely due to the fact that questions that require a graphical 

output are typically longer questions than those that require a symbolic or numerical output. 

 It is important to note that although the title Chapter 4: The Derivative in Graphing and 

Application may indicate that graphing is only included in chapter 4, this is not the case.  The 

chapter is titled Chapter 4: The Derivative in Graphing and Application because the chapter 

emphasizes how differential calculus can be used to analyze functions presented symbolically and 

numerically to create accurate graphs of the functions.  Also, the application part of the chapter 

focuses on the coupling of the symbolic and verbal, graphical and verbal, and numerical and verbal 

representations to describe real-world phenomena that can be analyzed with differential calculus.  

There are 293 mathematical tasks in chapter 4.  Of those 293 items, 268 items required translation 

from the input to the output representation.  Table 7 reports the distribution of items by 

representation in chapter 4.  In table 7, the input column reports if an item contains the 

representation within the question.  For example, a question that utilizes a functional description 
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that includes a symbolic expression, graphical representation, and verbal description would be 

classified GSV and will be included in all three categories G, S, and V.  Similarly, an output that 

requires both a verbal description and a graphical representation would be classified VG and be 

counted in both the verbal and graphical output categories. 

Table 7. Distribution of the items used in chapter 4, classified by functional representation 

Input # % of Total Output # % of Total 
G 102 34.8 G 39 13.3 
N 57 19.5 N 191 65.2 
S 117 39.9 S 11 3.8 
V 175 59.7 V 125 42.7 

 

Taken together, tables 5 and 7 indicate that while there is a relatively higher percentage of 

graphical representations in chapter 4 than overall (34.8% versus 23.0%), the graphical 

representation is present throughout chapters 2 and 3 as well.  There are 48 graphical input tasks 

in chapters 2 and 3, indicating that there are on average four graphical input tasks per section in 

chapters 2 and 3.  Table 7 also shows that the numeric, symbolic, and verbal representations are 

abundantly present throughout chapter 4 and are in no way neglected during Chapter 4: The 

Derivative in Graphing and Application. 

The course also attended to studying the derivative through the four representations: 

algebraic, numeric, graphical, and verbal as previously described.  Table 8 reports the number of 

items that require each output representation of the derivative. 

Table 8. Distribution of the items used in the study, classified by derivative representation 

Derivative 
Representation 

# % 

G 275 42.1 
N 88 13.5 
S 235 36.0 
V 157 24.0 
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There is a significant distinction between the categories of representations of function and the 

categories of representations of derivatives.  While the multiple representations of both functions 

and derivatives have the same names: symbolic, graphical, numerical, and verbal, the names apply 

differently to functions and derivatives.  For example, the solution to a problem that requires 

writing the equation of a line tangent to a curve 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 𝑐𝑐 is an example of the symbolic 

representation of a function; however, writing the equation of the tangent line is an example of the 

graphical representation of the derivative if the problem requires finding the slope of the tangent 

line at 𝑥𝑥 = 𝑐𝑐.  Table 9 presents examples of the kinds of questions that elicit responses in each 

derivative representation. 

Table 9. Examples of the multiple representations of the derivative 

Solution 
Representation 

Problem Rationale 

Graphical Find the equation of the line tangent to 
𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 2𝑥𝑥 at 𝑥𝑥 = 2. 

A correct solution requires finding 
the slope of a line tangent to a curve 
at 𝑥𝑥 = 𝑐𝑐. 

Numerical The position of a falling body 𝑡𝑡 seconds 
after being dropped from 100 ft. is given 
by 𝑠𝑠(𝑡𝑡) = −16𝑡𝑡2 + 100.  Find the rate 
of change of the position of the body at 
𝑡𝑡 = 2. 

A correct solution requires finding 
a rate of change of a function at 𝑥𝑥 =
𝑐𝑐. 

Symbolic Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 if 𝑦𝑦 = 3𝑥𝑥2 − 2𝑥𝑥. A correct solution requires finding 
a symbolic expression for the 
derivative of a function. 

Verbal Suppose that 𝑀𝑀(𝑥𝑥) is the function that 
describes the miles per gallon of gas that 
a truck gets when traveling at 𝑥𝑥 miles per 
hour.  Using correct units, explain the 
meaning of 𝑀𝑀′(50) = 1.3. 

The correct solution requires 
describing the contextual 
interpretation of the derivative of a 
function. 
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3.2.1 Description of a typical instructional period 

The course instructor primarily used a task-based lecture approach to instructing the class.  A 

sample lesson plan used by the instructor is included as an appendix (Appendix B).  A typical class 

began with a 5-10 minute opening activity, which was collected.  Students then volunteered to 

describe how they attempted to solve the opening activity.  Various solutions and solution methods 

were described by students.  If an acceptable solution had not been presented after 3-4 minutes, 

the instructor provided limited guidance to help students consider alternative solution methods.  

Discussion continued until a correct solution method is found.  Described below is a vignette that 

serves to show how the opening activity is discussed. 

3.2.1.1 Opening activity (5-10 minutes) 

The activity begins by students attempting to solve the following problem. 

Opening activity: The following velocity versus time graph consists of a horizontal line 

segment from 𝑡𝑡 = 0 𝑠𝑠 to 𝑡𝑡 = 10 𝑠𝑠.  Construct a position versus time graph on the same axes.  Show 

or explain how you determined the position graph. 

Are there any other possible answers?  Explain why or why not. 
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Figure 9.  Opening activity example 

The students worked on the opening activity for about four or five minutes.  During this 

time, the teacher took attendance and walked around the room observing the students’ attempted 

solution methods.  The teacher wrote down the names of two or three students to share their 

solutions.  After four or five minutes, the activities were collected.  Ben, Jennifer, and Sasha were 

selected to share their responses. 

Ben shared first.  He drew the following line segment on the Promethean Board. 

time (𝑠𝑠) 

𝑣𝑣(𝑡𝑡) 

Velocity (ft/s) 
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Figure 10. Ben’s opening activity 

Ben said, “I know that distance equals rate times time, so I just multiplied 1.5 by 10 and 

realized that the ending position would be at (10,15), so I drew a line from the starting point to 

the point (10,15).” 

The instructor asked, “are there any other possibilities for the position graph?” 

Ben answered, “the fact that you asked the question, makes me think that there is, but I 

don’t know how there would be one.” 

Jennifer shared next.  She drew the following graph on the Promethean Board: 
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Figure 11. Jennifer’s opening activity 

Jennifer said “I started by making a table of positions.  I first thought about when I drive a 

car, if I drive for one hour at 50 mph, then I have driven 50 miles, so if something is moving at 

1.5 feet per second, then every second its position increases by 1.5 feet.  If we call the starting 

position (0,0), then my table looked like this: 

Table 10. Jennifer’s table of values 

 

 

At this point, I could see that the pattern was linear.  So, when 𝑡𝑡 = 10, the position is 15.  So I 

drew a linear graph with a slope of 1.5 and a 𝑦𝑦-intercept of 0. 

 The instructor asked Jennifer, “Do you think that there are any other possible position 

graphs?” 

 Jennifer replied, “I don’t think so, the position has to be linear and run from 0 to 15.” 

 Sasha shared his response last.  He began by saying that “since we learned yesterday that 

velocity is the rate of change of position, I tried to think of what would have a rate of change of 

𝑡𝑡 0 1 2 3 4 

𝑠𝑠(𝑡𝑡) 0 1.5 3 4.5 5.0 
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1.5.  Then I realized that the answer would be a line with a slope of 1.5.  And, I would say that 

there would be infinitely many position functions because all of the parallel lines with a slope of 

1.5 would produce a velocity function of 𝑣𝑣(𝑡𝑡) = 1.5.  So, here is my graph.” 

 

Figure 12. Sasha’s opening activity 

The instructor concluded the discussion by making the following observation, “so we see three 

different approaches to reaching the same conclusion: Ben solved the problem by using a physics 

formula; Jennifer solved the problem by making a table of values and then noticing a pattern in 

the table, and Sasha solved the problem by creating an algebraic expression by thinking in reverse.  

Are there any questions?”   

 Finally, the instructor asked the class “so, do we think that there is one or more possible 

position functions?” 

 The class answered, “More because any line with a slope of 1.5 works.” 

 This vignette showed how many mathematical tasks were presented and discussed in the 

classroom.  The vignette also showed how representations were intentionally linked in the 

 111 



  

mathematical activities.  In this case, the function was originally presented in a G-V, graphical and 

verbal, representation.  Since the function was presented as a graph, it was coded as a graphical 

representation and because the descriptive functional word “velocity” is included in the description 

of the function and is integral to understanding the problem, the functional representation of the 

input is also coded as verbal.  The final output representation is a graph.  However, the students’ 

solution methods indicate that there are multiple translation methods to move from a graph of 

velocity to a graph of position.  Ben translated the graph of velocity into a verbal equation that he 

knew from his physics class.  He then used the equation to create numerical values for the position 

function and then translated these numerical values into a graphical representation.  Jennifer used 

personal experiences to translate the graphical representation of the velocity graph into a tabular 

representation of the position function.  From there, she translated the table into a graphical 

representation.  Sasha appears to translate straight from the graph of velocity to the graph of 

position by using reversibility.  

3.2.1.2 Discussion of homework (5-10 minutes) 

The following 5-10 minutes were spent discussing questions that students asked about the previous 

night’s homework.  The length of time spent discussing homework varied and was dependent on 

the number of questions that the students ask.  5-10 minutes was an average.  Occasionally, the 

remaining 35-40 minutes of class were spent discussing homework.  After each question in the 

homework, students were asked to explain how they answered the question and to defend why 

they believed that they were correct.  The following scenario demonstrates a typical discussion of 

a homework problem.  The problem discussed comes from section 1.5 and follows instruction on 

continuity. 
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HW Example: Find values of the constants 𝑎𝑎 and 𝑏𝑏, if possible, that will make the function 

𝑓𝑓 continuous everywhere. 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥2 + 1,                          𝑥𝑥 > 1
𝑎𝑎(𝑥𝑥 − 1) − 𝑏𝑏,−2 ≤ 𝑥𝑥 ≤ 1
𝑥𝑥2 − 𝑥𝑥 − 2,            𝑥𝑥 < −2

 

The instructor began by asking “what does it mean to be continuous everywhere?”  Several 

students responded.  The responses included “it means you can draw the graph without lifting your 

pencil … the graph has no holes or breaks in it … there are no asymptotes.”  The instructor 

responded, “all of those answers describe the graph of a continuous function, what does it mean 

from an algebraic perspective to be continuous everywhere?” 

Damian answered “that would mean that the domain of the function is (−∞,∞).” 

The instructor asked, “is that all that is necessary?” 

The students mumbled to one another and Morgan said “we have that theorem that says 

that polynomials and rational functions are continuous on their domains, so if the domain is 

(−∞,∞), then the function must be continuous everywhere.” 

The instructor replied “I agree that the domain would have to be (−∞,∞) in order to be 

continuous everywhere, but I am not convinced that a function whose domain is the entire real line 

is necessarily continuous.  Can anyone name a function whose domain is (−∞,∞) but is not 

everywhere continuous?” 

Robert said, “What about the greatest integer function?  Its domain is the entire real line, 

but it has jump discontinuities at every integer.” 

The instructor said to the class “Okay, so the greatest integer function is a counter-example 

to the claim that the domain (−∞,∞) is a sufficient requirement to be continuous everywhere.  So 

what else do we need?” 
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Jamie said “we need the limit to exist everywhere and the value of the function to equal 

the limit – I got that from looking at our definition of continuity at a point.” 

The instructor replied, “Alright, Jamie is correct.  Are we then going to check the limit and 

functional value of every point from negative infinity until positive infinity?” 

The class correctly decided that checking every point is impossible, at which point Morgan 

said, “but since we know that polynomials are continuous on their domains and since each part of 

the piecewise function is a polynomial, don’t we know that the function is continuous everywhere 

except where the piecewise function changes definitions?”  The class nodded in agreement. 

The instructor asked, “So how can we write that correctly?  Take a minute and write a 

mathematical sentence describing what Morgan just told us.”  After one minute, Jamele 

volunteered the following answer, “Since 𝑓𝑓(𝑥𝑥) consists of polynomials on (−∞,−2) ∪ (−2,1) ∪

(1,∞), 𝑓𝑓(𝑥𝑥) is continuous on (−∞,−2) ∪ (−2,1) ∪ (1,∞). " 

The class and instructor agreed that Jamele’s description was appropriate.  The instructor 

then posed the question, “Okay, so what about 𝑥𝑥 = −2 and 𝑥𝑥 = 1?”  Daniel answered saying, 

“well now we can just use the definition of continuity at a point to setup a system of two equations.”  

The instructor then directed the students to take a few minutes to attempt to use the definition of 

continuity at a point to setup and then solve a system of two equations for the variables 𝑎𝑎 and 𝑏𝑏.  

After four minutes, a student (Daryle) demonstrated the correct solution on the Promethean board 

and explained his work.  The instructor answered any lingering questions before moving on to the 

next phase of the class. 

3.2.1.3 Discussion of new material (20-30 minutes) and the exit slip (5-7 minutes)  

The next 20-30 minutes were spent in the new learning phase of the class.  During this time, the 

students and teacher filled in the guided notes together.  The students solved each example either 
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individually or in groups of 2 or 3.  The teacher strategically selected students to share their 

solutions and then various solution methods were discussed.  The discussion of the in-class 

examples followed the patterns described in the previous discussions of the opening activity and 

the homework problem.  After working individually or in small groups of their own choosing, the 

students proposed possible solution methods.  If there was broad agreement on a solution method, 

then the final answers were compared for agreement or disagreement.  If multiple solution methods 

were proposed, then the merits of each method were compared by the students with the instructor 

interjecting as appropriate.  After discussing the multiple solution methods, final answers were 

compared for agreement or disagreement. 

In 100% of the in-class examples, the students solved the problems to whatever extent they 

could before the instructor offered guidance.  In the event that a particular student could not begin 

a problem, the instructor offered limited prompts to encourage the student to try to solve the 

problem.  Often, the instructor prompted students by asking students to tell him “what the question 

is asking” or by asking students “does the problem look like anything we have done previously?”  

The final 5 minutes of class were spent distributing, administering, and collecting an exit slip 

activity.  During the administration of the exit slip, the instructor walked around the room ensuring 

that each student worked individually on the exit slip  

3.3 DATA SOURCES AND INSTRUMENTS 

To document the development of flexibility and reversibility during the instructional period, this 

study used two kinds of data: 1) class level data, and 2) individual data.  The class level data was 

collected through three data sources: 1) a flexibility pre-test, 2) exit slips and opening activities, 
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and 3) a flexibility post-test.  The individual data was collected through think-aloud interviews.  

Below, I give an overview of the data sources that were used in the study and how they address 

the research questions.  The collection of each type of data and the instruments used to collect the 

data are described individually in the sections that follow.  

3.3.1 Data sources 

The class level data was collected from all students enrolled in the course during the length of the 

study (𝑛𝑛 =  21).  Two kinds of class level data were collected: 1) pre-test and post-test data 

designed to elicit evidence of the development of flexibility, and 2) daily class activities consisting 

of exit slips and opening activities designed to elicit evidence of reversibility.  The flexibility pre-

test (FPT) is a teacher/researcher created exam that attempted to quantify the extent to which the 

AP Calculus AB students demonstrated flexibility with functions after reviewing pre-calculus 

content at the start of the course.  Additionally, the FPT offered a base-line data of the extent to 

which the students exhibit representational reversibility.  The post-test is the Differentiation 

Competency Test (DCT), which was created and validated by Kendal and Stacey (2003).  The 

DCT was administered at the end of the course and was intended to quantify the extent to which 

students have developed an ability to demonstrate flexibility of multiple representations of 

derivatives and to offer a data point indicating the extent to which the students exhibit 

representational reversibility at the end of the study.  The results of the FPT and the DCT were 

analyzed and used to address research question 1 and research sub-question 2.iii. 

The exit slip and opening activity data were collected 33 times during the study.  The 33 

exit slips and 33 opening activities form respective forward-reverse pairs (consistent with the 

terminology used by Krutetskii (1976), I will use the words “direct” and “forward” 
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interchangeably in reference to reversible assessment items), in which the exit slip assessed the 

new material learned during the class period in a forward direction and the opening activity, 

administered at the start of the next class, assessed the same material in a reverse direction.  

Fourteen of the exit slip and opening activity pairs required reversibility of a two-way process.  

Ten of the exit slip and opening activity pairs required reversibility of the mental process in 

reasoning without reversible translation.  Twenty-one of the exit slip and opening activity pairs 

required representational reversibility.  It should be noted that the total number of exit slip and 

opening activity pairs (33) does not equal the sum of the number of each pair in each of the three 

categories (14 + 10 + 21 = 45).  This is because many of the exit slip and opening activity pairs 

contained elements that assessed more than one type of reversibility.  Thus, the exit slip and 

opening activity pair is counted in two or three categories.  The data from the exit slip and opening 

activity pairs was used to gauge the development of reversibility throughout the course of study 

and thus inform research question 2. 

The individual data was collected through think-aloud interviews from six students, 

purposefully chosen to provide variability in demonstrated levels of flexibility.  The purpose of 

the interviews was to provide insight into the thought processes that students use to solve problems 

that require reversibility, that is, to address research question 3.  To increase the expected power 

and generalizability of the conclusions drawn from the interview data, I chose a multiple-case 

study design consisting of two cases of three different groups.  The three groups were differentiated 

by demonstrated levels of flexibility with functions.  Based on the results of the flexibility pre-test, 

the entire class of students was divided into thirds.  Two students from the highest scoring third, 

two students from the middle third, and two students from the lowest scoring third were selected 
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to participate in the think-aloud interviews.  Three groups were chosen to increase variability in 

the results of the interviews.   

Table 11 indicates the data sources that were used to answer each research question. 

Table 11. Data sources used to answer research questions 

 Flexibility pre-
test – whole 
class data 

DCT – whole class 
data 

Exit slips and 
opening 
activities – 
whole class 
data 

Question-
based 
think-aloud 
interviews 
– 2 cases of 
3 different 
groups 

To what extent do 
students develop 
flexibility with 
multiple 
representations when 
engaged in a course 
that attends to linking 
multiple 
representations? 

Yes Yes No No 

To what extent do 
students develop 
reversibility when 
engaged in a course 
that attends to linking 
multiple 
representations? 

Yes 
(representational 
reversibility 
only) 

Yes 
(representational 
reversibility only) 

Yes Yes 

What are the thought 
processes that 
students utilize when 
using reversibility to 
solve problems? 

No No Yes Yes 

 

3.3.2 Flexibility pre-test 

A flexibility pre-test was administered to all of the students at the conclusion of the pre-calculus 

chapter, which largely focused on reviewing many topics related to functions.  During the pre-
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calculus review, the following pre-calculus topics were discussed in class: 1) families of functions 

including linear, polynomial, rational, exponential, logarithmic, trigonometric, inverse 

trigonometric, and piecewise-defined functions, 2) properties of functions, 3) transformations of 

functions, 4) building new functions from old functions through algebraic operations and through 

composition, 4) the graphs of all of the families of functions, 5) the effects of transformations on 

the graphs of parent functions, 6) the language of functions including terms such as domain and 

range, roots, intercepts, etc., and 7) four different representations of functions, the verbal, 

numerical, symbolic, and graphical representations. 

3.3.2.1 Purpose and description 

To assess the students’ flexibility with functional representations, I designed a flexibility pre-test 

(FPT) that is included as an appendix (Appendix D).  The FPT is designed to assess the extent to 

which students can translate between the symbolic, graphical, and numerical representations of 

functions within two mathematical domains, composition of functions and inverses of functions.  

The pre-test does not include the verbal representation because the pre-test is also designed to fully 

align with the translations assessed by the DCT.  The DCT does not include the verbal 

representation so the FPT was designed without the use of the verbal representation as well. 

The flexibility pre-test has eighteen items (appendix D).  Each item is designed to test one 

of eighteen different competencies of flexibility with functions.  Each competency is represented 

by a three character code consisting of two upper-case letters and one lower case letter, such as 

CNg or ISs.  Appendix D contains a thorough discussion of the coding of the flexibility pre-test 

and each item on the flexibility pre-test is coded in Appendix D.  Here, I present a brief description 

of how to read and interpret the coding of the flexibility pre-test. 
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Each item in the pre-test assessed one competency of flexibility with functions.  The first 

nine competencies relate to flexibility with compositions of functions and the second nine 

competencies relate to flexibility with inverse functions.  The first character in the three character 

code indicates the content domain of the item: the letter C refers to a composition item and the 

letter I refers to an inverse item.  The second letter in the three character code indicates the input 

representation, N for numerical, G for graphical, and S for symbolic.  The third letter in the three 

character code indicates the output representation, n for numerical, g for graphical, and s for 

symbolic.  Thus, for the FPT, an item coded ISg would indicate that the item is an inverse item in 

which the representational input of the function is symbolic and the representational output is 

graphical.  An item coded CNn would be a composition item whose input representation is a 

numerical representation and whose output representation is a numerical representation.  Table 12 

reports the coding of the flexibility pre-test items. 

Table 12. Coding of the flexibility pre-test items 

Process Input Representation Competency 
Composition: 
without-translation 

Numerical CNn 
Graphical CGg 
Symbolic CSs 

Composition: 
with-translation between        
two representations 

Numerical CNg 
CNs 

Graphical CGn 
CGs 

Symbolic CSn 
CSg 

Inverse: 
without-translation 

Numerical INn 
Graphical IGg 
Symbolic ISs 

Inverse: 
with-translation between        
two representations 

Numerical INg 
INs 

Graphical IGn 
IGs 

Symbolic ISn 
ISg 
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The FPT provided base-line data of the students’ existing levels of flexibility before the 

instructional portion of the study began.  The results of the FPT were compared with the results of 

the flexibility post-test (the DCT) to quantify the extent that flexibility developed during the study.  

By designing the translations on the FPT to fully align with the translations on the DCT, I was able 

to compare the development of each kind of translation between numerical, graphical, and 

symbolic representations.  I was also able to compare the extent to which representational 

preference existed at the beginning of the study and the extent to which representational preference 

existed at the end of the study. 

The FPT also provided base-line data of the extent to which the students exhibited 

representational reversibility at the start of the study.  The pre-test offered insight into existing 

levels of representational reversibility by providing scores indicating what percent of the students 

could successfully translate from a given input representation to an output representation and then 

reverse the order of translation.  For example, the pre-test assessed the students’ proficiency with 

translating from symbolic to numerical and from numerical to symbolic.  If the class shows high 

levels of success in both directions, then we have evidence that the students may have 

representational reversibility between the symbolic and numerical representations. 

The two mathematical domains of composition of functions and inverses of functions were 

chosen because of the importance of both domains in calculus.  Understanding composition of 

functions is foundational to understanding and correctly using the chain rule for differentiation 

(Clark et al., 1997) and for understanding the chain rule’s reverse construction, integration by 

substitution.  Both the chain rule and integration by substitution are specifically noted as topics to 

be learned in AP Calculus (Collegeboard, 2010b) and Sofronas et al. (2011) identified the chain 

rule and techniques of integration (including substitution) as end-goals of understanding the first-
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year of calculus.  Inverses of functions are particularly important in calculus for their use in 

deriving and analyzing inverse trigonometric functions and for investigating the nature of the 

relationship between exponential and logarithmic functions. 

Each of the content domains contained nine questions, six questions required translations 

(between representation problems) and three questions did not require translations (within 

representation problems): symbolic to symbolic, symbolic to numerical, symbolic to graphical, 

graphical to graphical, graphical to symbolic, graphical to numerical, numerical to numerical, 

numerical to graphical, and numerical to symbolic.  Figure 13 represents how the representations 

and translations were assessed by the flexibility pre-test. 

 

 

Figure 13. Model of the 9 questions for each mathematical content on the flexibility pre-test 

To further explicate the design of the flexibility pre-test, I have included below, as figure 

14, the first question on the flexibility pre-test. 
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Figure 14. Question 1 on the flexibility pre-test 

Part (a) required the students to compose two algebraic expressions to create a new function 

in its symbolic form.  Thus, part (a) assessed composition of functions whose input representation 

is the symbolic representation and whose output representation is also the symbolic representation.  

Thus, this item did not require translation. 

 Part (b) required the students to evaluate a composition of two functions at a specific 𝑥𝑥-

value.  Here, the input is the symbolic representation and the output is the numerical representation.  

Translation from the symbolic to the numerical representation was required. 
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 Part (c) required students to sketch the graph of a composite function.  Thus, students must 

translate a symbolic representation into a graphical representation.  Questions 2 and 3 followed a 

similar pattern of assessing flexibility with compositions of functions.  Question 1 presented the 

functions symbolically, question 2 presented the functions numerically, and question 3 presented 

the functions graphically.  The format was repeated for the nine questions about inverses. 

3.3.2.2 Design and validation of the flexibility pre-test 

To design the items in the flexibility pre-test, I consulted multiple rule of four based calculus 

(Anton et al., 2009; Finney, Demana, Waits, & Kennedy, 2011; Hughes-Hallett et al., 1995, 1998; 

Hughes-Hallett et al., 2005) and pre-calculus (Demana, Waits, Foley, & Kennedy, 2004; Larson 

& Hostetler, 1997) textbooks to familiarize myself with the kinds of items that textbook authors 

use to present composition of functions and inverses of functions from a rule of four perspective.  

I then designed items intended to assess students’ flexibility with multiple representations of 

composite functions and inverses.  The item design phase was an iterative process of 1) designing 

the item, 2) solving the item, 3) evaluating the extent to which the item tested only one construct 

(either composition or inversion) and required only one kind of translation (for example, graphical 

to numerical), 4) modifying the item to address any deficiencies identified in step 3, and then 5) 

repeating the process. 

To assess the validity of the pre-test items, a second mathematics educator who has taught 

pre-calculus for four years and high-school mathematics for nine years reviewed the items for face 

and content validity.  His review of the items concluded that the items did in fact assess a student’s 

flexibility with multiple representations of composite functions and inverses of functions.   

To assess the internal reliability of the pre-test, I calculated Cronbach’s alpha.  Cronbach’s 

alpha is noted as the most common measure of the internal reliability of multiple items that assess 
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the same construct (Trochim, 2002).  George and Mallery (2003) recommend the following 

guidelines when interpreting Cronbach’s alpha: 

Table 13. Levels of Cronbach’s alpha 

Alpha level Interpretation of the assessment measure’s 
internal reliability (or consistency) 

1 ≥ 𝛼𝛼 ≥ 0.9 Excellent 
0.9 > 𝛼𝛼 ≥ 0.8 Good 
0.8 > 𝛼𝛼 ≥ 0.7 Acceptable 
0.7 > 𝛼𝛼 ≥ 0.6 Questionable 
0.6 > 𝛼𝛼 ≥ 0.5 Poor 

0.5 > 𝛼𝛼 Unacceptable 
 

 It is also recommended that when an assessment measure contains more than one 

construct, Cronbach’s alpha should be calculated for each construct separately (Tavakol & 

Dennick, 2011).  I calculated Cronbach’s alpha on the entire pre-test to assess the internal 

reliability of the pre-test as an assessment of flexibility.  Table 14 reports the alpha level of the 

flexibility pre-test.  The alpha level of 0.929 indicates excellent internal reliability of the pre-test 

as a measure of flexibility. 

Table 14. Flexibility – Cronbach’s alpha 

Cronbach's 
Alpha 

Number 
of Items 

.929 18 
 

Table 15 reports Cronbach’s alpha for flexibility of compositions of functions.  The alpha level 

of 0.847 indicates a good level of internal reliability of the pre-test as a measure of flexibility of 

compositions of functions. 

Table 15. Flexibility of compositions of functions – Cronbach’s alpha 

Cronbach's 
Alpha 

Number 
of Items 

.847 9 
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Table 16 reports Cronbach’s alpha for flexibility of inverses of functions.  The alpha level of 

0.892 indicates a good level of internal reliability of the pre-test as a measure of flexibility of 

inverses of functions. 

Table 16. Flexibility of inverses of functions – Cronbach’s alpha 

Cronbach's 
Alpha 

Number 
of Items 

.892 9 
 

As the minimum acceptable alpha level of 0.70 is necessary to retain an assessment instrument, I 

considered the flexibility pre-test to be a valid and reliable instrument by which to measure the 

extent of students’ flexibility with functions after one chapter of instruction in the classroom. 

3.3.2.3 Limitations of the instrument 

A significant limitation of the flexibility pre-test is that it only tested each translational competency 

within each content domain once.  It may be the case that a student may exhibit flexibility with 

multiple representations of functions in some other content domain such as symmetry, algebraic 

combinations of functions, transformations, etc.  The use of two content domains, composition of 

functions and inverses of functions, allows for some amount of replication evidence.  For example, 

a student who can translate from the symbolic to the graphical representation in both compositions 

of functions and inverses of functions may well be able to move flexibly from the symbolic to the 

graphical representation.  Similarly, a student who is not able to translate from the symbolic to the 

graphical representation in either domain may lack fluency in translating from a symbolic to 

graphical representation. 
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3.3.3 Differentiation competency test (DCT) 

The DCT is a measurement instrument created by Kendal and Stacey (2003) to gauge calculus 

students’ ability to formulate or interpret derivatives when the given input is in one representation 

and the output requires translation to a different representation.  Kendal and Stacey (2003) used 

the DCT to monitor students’ ability to translate representations of the derivative across the 

symbolic, numerical, and graphical representations.  It also measures the students’ ability to move 

flexibly across multiple representations and tracks representational preference. The required 

differentiation skills necessary to solve the problems are considered elementary as the purpose of 

the exam is to test understanding of the different representations of differentiation and the ability 

to move flexibly between them (Kendal & Stacey, 2003).  The DCT is attached as an appendix 

(Appendix C). 

3.3.3.1 Purpose and description 

The DCT was used in this study to help inform the first and second research questions.  The DCT 

provided evidence of the extent to which students developed flexibility in a class that attended to 

linking multiple representations.  The results of the FPT (pre-test) and DCT (post-test) provided 

evidence of the extent to which flexibility developed during the course of the study.  The DCT 

also provided evidence that informed the development of representational reversibility. 

The DCT has eighteen items (appendix C).  Each item is designed to test one of eighteen 

different differentiation competencies.  Each competency is represented by a three character code 

consisting of two upper-case letters and one lower case letter, such as INg or FSs.  Appendix C 

contains a thorough discussion of the coding of the DCT and each item on the DCT is coded in 
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Appendix C.  Here, I present a brief description of how to read and interpret the coding of the 

DCT. 

Each item in the DCT is coded with a three character code.  Each character aligns with one 

characteristic of the item.  The first characteristic (formulation or interpretation) refers to the 

cognitive process required by the item to reach the intended output from the given input.  

Formulation refers to recognizing the need for a particular differentiation procedure and correctly 

executing the procedure.  Interpretation “is the ability to reason about the input derivative supplied 

or to explain it in natural language, or to give it meaning including its equivalence to a derivative 

in a different representation.” (Kendal & Stacey, 2003, p. 28).  The second characteristic (an upper-

case letter) indicates the input representation and the third characteristic (a lower-case letter) 

indicates the output representation.  Thus, an item coded as ISg would be an interpretation item 

whose input (question stem) is given in a symbolic representation and whose output (expected 

answer) is in a graphical representation.  Table 17 presents the coding of the DCT items. 

Table 17. Coding of the DCT items 

Process Input Representation Competency 
Formulation: 
without-translation 

Numerical FNn 
Graphical FGg 
Symbolic FSs 

Formulation: 
with-translation between        
two representations 

Numerical FNg 
FNs 

Graphical FGn 
FGs 

Symbolic FSn 
FSg 

Interpretation: 
without-translation 

Numerical INn 
Graphical IGg 
Symbolic ISs 
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Table 17 (continued) 

Interpretation: 
with-translation between        
two representations 

Numerical INg 
INs 

Graphical IGn 
IGs 

Symbolic ISn 
ISg 

 

The DCT provided data at the class level and at the individual level.  At the class level, the 

DCT scores were compared with the FPT scores using a paired-samples 𝑡𝑡-test to quantify the extent 

to which the students’ flexibility with representations improved.  Also, because the DCT assessed 

reversible pairs of representational translations (such as graphical to numerical and numerical to 

graphical), the DCT provided quantifiable evidence of the extent to which the students developed 

representational reversibility of derivatives. 

At the individual level, the FPT and the DCT provided valuable information into whether 

students’ difficulties answering the interview questions were due to translational difficulties or due 

to reversibility of the differentiation process.  For example, a student who could not solve any of 

the reversibility questions in the task-based interviews, but scored highly on the FPT and the DCT 

was likely struggling with developing reversibility.  Alternatively, a student who struggled to solve 

any reversibility questions correctly in the task-based interviews and who performed poorly on the 

FPT and DCT likely had very little understanding of representational translation and likely did not 

understand the forward direction of differentiation, rendering the possibility of reversibility moot.  

Thus, the FPT and the DCT offered explanatory potential when interpreting the results of the think-

aloud interviews. 

I administered the DCT to all students at the end of the 48-day instructional unit.  It was 

expected that students exposed to an instructional curriculum emphasizing links between multiple 

representations of functions and derivatives would develop flexibility in moving between 
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representations (Goerdt, 2007; Haciomeroglu, 2007).  Researchers note that the amount of 

flexibility and conceptual understanding of differentiation developed is often less than the teacher 

and researchers desire (Goerdt, 2007; Habre & Abboud, 2006; Kendal & Stacey, 2003).  

Comparing the results of the FPT with the DCT offered insight into the extent that students 

developed flexibility of representations during the instructional unit.  The results of the DCT 

indicated if students developed an ability to translate between multiple representations of 

derivatives. 

 Kendal and Stacey (2003) designed the DCT for administration in Australian high schools.  

As such, some of the language used in the original DCT is inconsistent with the language common 

to typical calculus classes in the United States.  I made surface changes to the language of some 

of the DCT questions in order to equate the language used in the DCT to language used in calculus 

classes in the United States.  For example, I translated the word “gradient” to “slope of the line 

tangent to the curve at a point” and the phrase “gradient function” was translated to “derivative 

function”.  Also, the phrase “Bush Walk” is used in the DCT to refer to an Australian family taking 

a recreational walk.  The phrase “Bush Walk” was translated to “holiday walk”. 

3.3.3.2 Limitations of the instrument 

Kendal and Stacey (2003) note that conclusions drawn from using the DCT should be done so with 

caution due to the fact that the DCT only tests each translational competency one time.  However, 

the competencies were also tested on in-class assessments during the course of the semester and 

the researchers observe that the results on the class tests “confirmed the class achievements 

demonstrated on the DCT” (Kendal & Stacey, 2003). 
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3.3.4 Exit slips and opening activities 

Research suggests that reversibility may develop on a day-by-day, task-by-task continuum and not 

necessarily as a one-time development (Krutetskii, 1976; Rachlin, 1981).  For example, Krutetskii 

(1976) observed that the most capable mathematical students can develop reversibility 

immediately upon learning a concept; however, average and weak students need repeated 

examples and practice to develop reversible conceptions.  Krutetskii’s conclusion suggests that 

reversibility can develop along a continuum as students work with problems requiring reversibility.  

I used exit slips and opening activities to capture this type of development. 

3.3.4.1 Purpose and description 

I collected and analyzed exit slip and opening activity data in an effort to determine if reversibility 

was developing during the course of the study, that is, to address the second research question.  

Also, the exit slips and opening activities were purposefully designed to elicit evidence of the 

thought processes that students utilize when using reversibility to solve problems.  Thus, the exit 

slip and opening activity data also contributed to informing research question 3. 

Across the 48 days, I collected 33 exit slip and opening activity pairs.  The 33 pairs assessed 

45 specific instances of reversibility.  Fourteen exit slip and opening activity pairs were 

administered that required the use of two-way reversible processes to solve.  The data from these 

fourteen exit slips and opening activities informed research sub-question 2.1: does reversibility of 

two-way reversible processes develop?  Ten direct and reverse exit slip and opening activity pairs 

were administered that required the use of reversibility of a mental process in reasoning without 

reversible translation.  The data from this set of twelve exit slips and opening activities was used 

to address research sub-question 2.ii: does reversibility of the mental process in reasoning without 
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reversible translation develop?  Twenty-one direct and reverse exit slip and opening activity pairs 

were administered that require the use of reversibility of a mental process in reasoning with 

translation (representational reversibility).  The data from this set of twenty-one exit slips and 

opening activities was used to address research sub-question 2.iii: does reversibility of the mental 

process in reasoning with reversible translations (representational reversibility) develop? 

 Daily, except on test days, during the last five to seven minutes of class, the students 

attempted to solve problems on exit slips to measure direct learning of the content taught during 

the class.  The following day, the students solved a reverse problem of the content taught during 

the previous class session as an opening activity.  Upon collection of the opening activity, a correct 

solution was briefly discussed with the class. 

The exit slips and opening activities are numbered to align with the class section in which 

they were administered.  ES 2.1.1 indicates the exit slip administered after the first day of teaching 

section 2.1.  OA 2.1.2 indicates the opening activity administered at the start of the class after the 

second day of teaching section 2.1. 

The results of the exit slips and opening activities are numbered 1-45.  As previously 

mentioned, there were 33 administered exit slips and opening activities.  However, some exit slips 

and opening activities assessed multiple instances of reversibility within one exit slip and opening 

activity.  Table 18 below reports the exit slips and opening activities by section of instruction, the 

numbered results of each pair, and the type of reversibility assessed.  Exit slips are abbreviated 

ES; opening activities are abbreviated OA.  Thus the exit slip administered after section 2.1.1 is 

labeled ES 2.1.1.  When I refer to an exit slip and opening activity set, I call it a set of paired 

problems or abbreviate it ESOA. 
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Table 18. List of exit slips and opening activities 

Exit Slip and Opening 
Activity Number 

Results Number(s) Type of Reversibility:  
1 = 2-way, 
2 = Reasoning, 
3 = Representational 

2.1.1 1 2 
2.1.2 2 3 
2.1.2 3 3 
2.2.1 4 2 
2.2.2 5 2 
2.3.1 6 1 
2.3.2 7 1 
2.4.1 8 1 
2.5.1 9 3 
2.6.1 10 1 
2.6.1 11 2 
2.6.2 12 1 
2.6.3 13 3 
3.1.1 14 1 
3.2.1 15 3 
3.2.2 16 1 
3.3.1 17 1 
3.3.1 18 2 
3.3.2 19 1 
3.3.2 20 2 
3.4.1 21 3 
3.4.2 22 3 
3.5.1 23 2 
3.6.1 24 3 
4.1.1 25 3 
4.1.1 26 3 
4.1.2 27 3 
4.1.2 28 3 
4.2.1 29 3 
4.2.1 30 3 
4.2.1 31 3 
4.2.2 32 2 
4.3.1 33 3 
4.3.2 34 3 
4.3.2 35 3 
4.4.1 36 3 
4.4.1 37 3 
4.5.1 38 1 
4.5.2 39 1 
4.6.1 40 1 
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Table 18 (continued) 

4.6.2 41 1 
4.6.2 42 2 
4.7.1 43 1 
4.7.1 44 2 
4.8.1 45 3 

 

All of the exit slips and opening activities are included in Appendix E.  The following are 

two examples of direct and reverse paired problems that appeared as exit slips and opening 

activities.  The direct question was the exit slip and the reverse question was the subsequent day’s 

opening activity: 

Ex. 1: Direct exit slip (ES 2.1.1).  Administered at end of Day 1 – Section 2.1.  This paired 

problem set assesses reversibility of a mental process in reasoning. 

 

 

Figure 15. Exit slip 2.1.1 
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Ex. 1: Reverse opening activity (OA 2.1.1).  Administered at the start of Day 2 – section 

2.1. 

 

Figure 16. Opening activity 2.1.1 

These two problems formed a direct reverse pair similar to what Krutetskii (1976) called 

“paired problems”.  The exit slip question is a direct application of learning the graphical 

relationship between position and velocity.  Students should have learned in class that velocity is 

the rate of change of position; as such, to find velocity from a linear position graph, the students 

need to find the slope of the position graph and then understand that the slope is the velocity 

because the position graph is linear.  The students were asked to show or explain how they 

determined the velocity graph in order to gather more information attending to the students’ 
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thought processes while solving the problem.  During the administration of the exit slips and 

opening activities, I consistently encouraged the students to give a description of how they 

determined their answers. 

At the start of the next class, the students attempted to solve the opening activity question, 

which is a reverse of the previous day’s exit slip.  In the reverse question, the students were 

presented a constant velocity function and asked to construct the graph of the position function.  

Students who correctly answered the direct question should be able to reverse their thinking and 

consider that since the velocity graph represents the slope of the position, and since the velocity is 

constant, then the slope is constant, which means that the position function is linear.  Thus, the 

student would sketch a linear function with a slope of 3
2
.  An alternative solution method would be 

to translate the graph of 𝑣𝑣(𝑡𝑡) into an algebraic representation: 𝑣𝑣(𝑡𝑡) = 3
2

, 0 ≤ 𝑡𝑡 ≤ 10.  The student 

could then consider that 𝑣𝑣(𝑡𝑡) is the slope of 𝑠𝑠(𝑡𝑡), so 𝑠𝑠(𝑡𝑡) must be a line with slope 3
2
.  Thus, 𝑠𝑠(𝑡𝑡) =

3
2
𝑥𝑥 + 𝑏𝑏.  The student would then translate the algebraic expression back into a graphical 

expression.  The follow-up question, “are there any other possible answers” is designed to reveal 

if the students understand that 𝑏𝑏, in the algebraic expression, can be any value. 

This is an example of reversibility as a reversing of the mental process in reasoning.  

Depending on the solution method, this problem may or may not require representational 

reversibility.  There is no two-way process to be learned and reversed; thus, this cannot be an 

instance of reversibility of a two-way reversible process.  The student must problem solve around 

the fact that s/he does not know of an “anti-slope” formula.  Here, “anti-slope” refers to the reverse 

of finding the slope in the direct problem.  Since no process is available to the students, they will 

necessarily have to reverse a mental process while reasoning.  If the student solves the entire 
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problem graphically by imagining a function whose slope is constantly 3
2
, then this would be an 

example of reversing of the mental process in reasoning without representational reversibility.  On 

the other hand, if the student translates the graph of the velocity function into an algebraic 

expression, creates an algebraic expression for the position function, and then translates the 

algebraic expression of the position function back into a graphical expression, then solving this 

problem would be an example of using representational reversibility within reversing a mental 

process while reasoning. 

Ex. 2: Direct exit slip (ES 2.3.2).  Administered on Day 6 – Section 2.3. 

This paired problem set assessed students’ reversibility of a two-way reversible process. 

Direct problem: Given at the end of class on Day 6: Section 2.3. 

Find 𝑦𝑦′′(𝑥𝑥) if 𝑦𝑦 = 𝑎𝑎 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐.  Show or explain your work. 

This is a direct use of the simple-power rule for derivatives.  This example provides 

evidence of which students learned the key concept of the day’s lesson. 

Reverse opening activity (OA 2.3.2): Given at the start of the next class on Day 7: Section 

2.4. 

Suppose 𝑦𝑦′′(𝑥𝑥) = 3𝑥𝑥 − 4.  What could be 𝑦𝑦?  Show your work or explain how you know 

that you are correct. 

In order to answer this question correctly, the students had to apply the simple-power rule 

in reverse.  Instead of subtracting one from the exponent, they had to add one to the existing 

exponent.  Instead of multiplying the coefficient by the previous exponent, they had to divide the 

coefficient by the new exponent.  This direct reverse pair is an example of a pair that required 

reversibility of a two-way process. 

 137 



  

3.3.4.2 Design and validation of the exit slips and opening activities 

Krutetskii’s (1976) model for analyzing the presence of reversibility was to use paired problems 

that consisted of one question given in a forward direction and one question given in a reverse 

direction.  The exit slips and opening activities were designed to be consistent with the procedures 

that Krutetskii used to test for the existence of reversibility.  These activities were designed to help 

illumine when reversibility develops during the instructional unit. 

I designed each of the exit slips and opening activities by first reviewing the calculus 

content and objective of each lesson.  I took into account the examples used in class and the 

homework problems assigned when designing the exit slips and opening activities so that the exit 

slips would not be replicas of the examples used in class but could closely resemble the learning 

activities used in class.  I designed the exit slips to assess the learning of the day’s objective in a 

forward direction. 

I designed each reverse problem by examining the question and answer portion of the 

associated exit slip and then essentially switching their respective roles.  By this I mean that I used 

the solution of the exit slip to design a question prompt with different surface features but the same 

conceptual underpinnings and the question prompt of the exit slip became part of the solution to 

the opening activity.  As discussed above, the exit slip on Day 6 prompts students to begin with 𝑦𝑦 

and find 𝑦𝑦′′ while the opening activity on Day 7 prompts students to begin with 𝑦𝑦′′ and find 𝑦𝑦. 

After designing each direct reverse pair, I solved each paired problem to gauge the 

effectiveness of the pair.  Pairs of problems that did not evidence face validity of requiring a 

reversible conception of the exit slip to solve the opening activity were revised until acceptable.  

A second mathematics educator also reviewed each pair of items and made recommendations 

which were then incorporated into revising each pair of items. 
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3.3.4.3 Limitations of the exit slips and opening activities 

A possible confounding variable in the exit slips and opening activities is the time lapse between 

the direct question and the reverse question.  It is possible that a student who could correctly solve 

the direct problem at the end of class would also have been able to solve the reverse problem 

correctly at the end of class but not be able to solve the reverse problem at the start of the following 

day’s class, presumably because the student has forgotten some portion of the previous day’s 

learning.  While this hypothetical event is possible, it is doubtful that this event would greatly 

influence the interpretation of the data in this study.  In a worst-case scenario, all 21 students would 

have developed reversibility of the day’s content at the end of each class, correctly solved the 

direct question, and then forgot a sufficient amount of learning so as to not be able to solve the 

reverse problem at the start of the next day’s class.  This would result in the exit slips and opening 

activities indicating that reversibility does not exist, even though it actually does.  In this event, 

the students should still be able to solve reversible questions in the task-based interviews.  Thus, I 

would have interview evidence indicating that the student(s) have developed reversibility, which 

conflicts with the exit slip and opening activity data.  I would then consider the time lapse between 

the exit slip and opening activity as a possible factor explaining why reversibility was not present 

in the exit slips and opening activities but was present in the think-aloud interviews.  The results, 

discussed in chapter 4, indicate that this concern did not materialize and that students who 

developed reversibility were able to solve the reverse question. 

 A second limitation of the exit slip and opening activity data is that each pair only assesses 

reversibility of the day’s learning using one item, a limitation imposed by time constraints.  It is 

hoped that by assessing reversibility 33 times during the course of the study, the inherent variability 
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of results on a single item assessment of the presence or lack thereof of reversibility was mitigated 

over the course of the study. 

3.3.5 Think-aloud interviews 

Researchers have consistently used similar methods to investigate reversibility in multiple 

contexts.  Krutetskii (1976), Rachlin (1981), Rider (2004), and Teachey (2003) all incorporated a 

qualitative aspect into her/his research.  In each case, the qualitative data collection involved 

qualitative task-based interviews.  In this study, I continued in that tradition. 

Six participants each participated in four think-aloud interviews.  The purpose of the think-

aloud interview is “to gain insight into the child’s thinking and learning potential” (Ginsburg, 

1997, p. 70).  When conducting a think-aloud interview, the interviewer presents the problem and 

then essentially removes him/herself except to encourage the participant to describe what s/he is 

thinking while solving the problem (Willis et al., 1999).  Each interview was designed to last 20-

30 minutes, was video recorded, and consisted of at least two interview questions, one direct and 

one reverse, designed to elicit reversibility within a calculus concept.  The think-aloud interviews 

provided data that, when analyzed, indicated the kinds of thought processes that the students 

utilized when using reversibility to solve problems, thus addressing the third research question.  

The interviewing procedures are described below. 

3.3.5.1 Interviewing procedure 

The four think-aloud interviews took place after learning content that specifically lends itself well 

to assessing reversibility.  Table 19 reports the dates of all four interviews and the content covered 

during each interview. 
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  Table 19. Interview content and schedule 

Interview 
# 

Date range 
of interview 

Content assessed by interview 
questions 

Kind of reversibility 
required to solve the 
question(s) 

1 12/4/13 – 
12/11/13 

1) Differentiation using the 
simple power rule 

2) Reversibility of the simple 
power rule 

1) Two-way process 
2) Representational 

reversibility 

2 12/16/13 – 
12/20/13 

1) Differentiation using the 
chain rule 

2) Reversibility of the chain 
rule 

3) Finding numerical 
derivatives  from the graph 
of a function 

4) Sketching a function given a 
table of its derivative values 

1) Reversibility of the 
mental process in 
reasoning without 
reversible translation 

2) Representational 
reversibility 

3 2/19/14 – 
3/10/14  

1) Graphical interpretation of 
the derivative and curve 
sketching 

1) Reversibility of the 
mental process in 
reasoning without 
reversible translation 

2) Representational 
reversibility 

4 3/12/14 – 
3/19/14 

1) Reversibility of position and 
velocity presented in a 
numerical representation 
without translation 

2) Reversibility of position and 
velocity presented in a 
symbolic representation 
requiring translation to a 
numerical representation 

3) Reversibility of 𝑓𝑓 and 𝑓𝑓′ 
requiring translation from the 
graphical representation to a 
symbolic representation 

1) Reversibility of the 
mental process in 
reasoning without 
reversible translation 

2) Representational 
reversibility 

 

Interviewing protocol 

Each interview followed the think-aloud interviewing protocol described by Willis et al. (1999).  

The interviewer practiced a non-trivial sample problem with the participant at the start of the first 
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interview in order to allow the participant an opportunity to practice thinking-aloud.  After 

completion of the practice problem, the interviewer gave the participant the interview question(s) 

and then essentially removed himself from the equation except to encourage the participant to 

describe her/his thoughts while solving the problem(s).  I did not answer any questions pertaining 

to solving the problems during the interview.  After each interview, I discussed the interview 

questions with the students, at each student’s behest. 

Description of interview questions 

In this section, I describe the interview questions that will be used during the think-aloud 

interviews.  The interview items are all researcher created items designed to elicit reversible 

thought processes.  The items that were used in the third interview were previously used in a pilot 

study that I conducted in 2012 exploring AP Calculus BC students’ reversible conceptions of 

calculus graphing.  The results of the pilot study indicated that the paired questions in interview 3 

do effectively elicit reversible thought processes (in this instance, representational reversibility and 

reversibility of the mental process in reasoning without reversible translation) from calculus 

students.  The remaining items have been independently analyzed by other mathematics educators 

to verify the face validity of each item as an assessment of a calculus construct and each pair of 

direct reverse interview questions has been analyzed to verify the face validity that the pair of 

problems are indeed reversible pairs.  The recommendations and critiques of the mathematics 

educators who evaluated the interview questions were used to refine the interview questions.  A 

table of all of the interview questions is included in Appendix F. 

Interview #1 

The first interview took place after teaching section 2.3: Techniques of Differentiation, which took 

place on November 25, 2013.  The six interview participants were interviewed between December 
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4, 2013 and December 11, 2013.  The interview consisted of three questions.  The first problem is 

a direct problem designed to elicit evidence of an action conception of the simple power rule 

( 𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑥𝑥𝑛𝑛] = 𝑛𝑛𝑥𝑥𝑛𝑛−1).   

Interview 1, Question 1 (IQ 1.1): Let 𝑓𝑓(𝑥𝑥) = 6𝑥𝑥3.  What is 𝑓𝑓′(𝑥𝑥)?  Are there any other possibilities 

for 𝑓𝑓′(𝑥𝑥)? 

This question provided evidence of the participant’s existing understanding of the simple power 

rule for differentiation.  It was expected that most, if not all, students would be able to successfully 

complete this question.  The remaining questions required reversibility (and thus a process 

conception) of the simple power rule.  The second question has two parts (IQ 1.2.a and IQ 1.2.b) 

and is an algebraic reverse problem of the first question. 

Interview 1, Question 2 (IQ 1.2): Suppose a function has a known derivative of 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥5. 

a. What could be the function 𝑓𝑓(𝑥𝑥)? 

b. Can you think of any other possible functions for 𝑓𝑓(𝑥𝑥)? 

The participant who solves IQ 1.2.a correctly will most likely use reversibility of the simple power 

rule.  This would be an instance of reversibility of a two-way process as the simple power rule is 

a procedure that can be learned and then reversed by using the inverse operations in reverse order.  

The follow-up question (IQ 1.2.b) offered insight into the participant’s ability to consider the 

effects of differentiating a constant function in reverse, without having first differentiated a 

constant function. 

The third interview question is similar to question 2 with respect to reversibility.   

Interview 1, Question 3: The derivative of a polynomial function, 𝑓𝑓′(𝑥𝑥), is graphed below. 

a. Sketch a possible graph of a polynomial function 𝑓𝑓(𝑥𝑥) whose 

derivative, 𝑓𝑓′(𝑥𝑥), is shown. 
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Figure 17. IQ 1.3 graph 

b. Are there any other possibilities for 𝑓𝑓(𝑥𝑥)? 

The difference between questions IQ 1.2 and IQ 1.3 is representational.  While IQ 1.2 is entirely 

symbolic, IQ 1.3 will require translation between graphical and symbolic representations.  The 

student who correctly solves problem IQ 1.3.a will have most likely first translated the graphical 

representation into an algebraic expression and then used reversibility to find an expression for 

𝑓𝑓(𝑥𝑥).  The student could then translate the algebraic expression back into a graphical expression.  

This would also serve to demonstrate an instance of representational reversibility.  The follow-up 

question (IQ 1.3.b), similar to question IQ 1.2.b, offered insight into a student’s ability to consider 

the effects of differentiating a constant function in reverse, without having first differentiated a 

constant function.  

Interview #2 

The second interview took place after teaching section 2.6: The Chain Rule, which took place on 

December 5, 6, and 9, 2013.  The six interviews were conducted between December 16, 2013 and 

December 20, 2013.  The interview consisted of four questions, two sets of direct and reverse 

problems.  The first two problems dealt specifically with reversibility of the chain rule and only 

use the symbolic representation.  The students were required to solve the reverse problem first.  

Interview 2, Question 1: Suppose a function 𝑓𝑓(𝑥𝑥) has the known derivative 𝑓𝑓′(𝑥𝑥) shown below. 
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𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 sin (𝑥𝑥2) 

What could be the function 𝑓𝑓(𝑥𝑥)?  Are there any other possibilities for 𝑓𝑓(𝑥𝑥)? 

The students must reverse the thought processes necessary to carry out the chain rule.  Since the 

students had not learned integration by parts, the students were not able to use reversibility of a 

two-way process to solve this problem.  Also, it is difficult to imagine a solution method by which 

the students could use representations other than the symbolic to solve this problem.  Thus, this 

interview question required the use of reversibility of a mental process in reasoning without 

reversible translation to solve. 

The second problem is a direct use of the chain rule.   

Interview 2, Question 2: Let 𝑓𝑓(𝑥𝑥) = cos (𝑥𝑥2).  Find 𝑓𝑓′(𝑥𝑥). 

This question required students to demonstrate knowledge of the chain rule on a problem that is 

very common to calculus textbooks, but was not an example used in the present classwork or in 

homework. 

In this interview, the direct reverse paired problems were presented reverse and then direct.  

This order was chosen to eliminate any influence from the direct problem on solving the reverse 

problem.  Krutetskii (1976) interviewed students using direct reverse paired problems by 

presenting the pairs in multiple ways.  He asked the direct question first and immediately followed 

with the reverse question.  He also asked the reverse question first and then asked the direct 

question.  He used this interviewing approach to make inferences regarding the effects of solving 

a direct problem before solving a reverse problem.  Typically, the direct problem influenced the 

middle and weak students’ solutions to the reverse problem. 

 Interview questions 3 and 4 are a direct reverse pair that required students to coordinate 

reversibility between 𝑓𝑓(𝑥𝑥) and 𝑓𝑓′(𝑥𝑥) with translating between graphical and numerical 
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representations.  IQ 2.3 is a direct question eliciting understanding of the relationship between the 

graph of 𝑓𝑓 and the graphical representation of 𝑓𝑓′.  IQ 2.4 required students to interpret 𝑓𝑓′ values 

presented in a table to create a possible graph of 𝑓𝑓. 

Interview 2, Question 3: The graph of 𝑓𝑓(𝑥𝑥) below consists of two complete semi-circles that 

intersect at [4,1]. 

 

Figure 18. IQ 2.3: Graph and table of values 

Estimate or give an exact value, if one exists, of 𝑓𝑓′(𝑥𝑥) at the 𝑥𝑥-values indicated in the table. 

In this interview question, the students were expected to demonstrate understanding of the 

graphical representation of the derivative by estimating 𝑓𝑓′(𝑥𝑥) by estimating the slope of the line 

tangent to the curve at each 𝑥𝑥 −value.  The question also required translating from a graphical 

representation of a function, 𝑓𝑓(𝑥𝑥), to a numerical representation of a new function, 𝑓𝑓′(𝑥𝑥). 

Interview 2, Question 4: The table below gives selected values of 𝑓𝑓′(𝑥𝑥), the derivative of 𝑓𝑓(𝑥𝑥).   

a.  Sketch a possible curve for 𝑓𝑓(𝑥𝑥) on the axis below.  

𝑥𝑥 𝑓𝑓′(𝑥𝑥) 

2  

4  

5  

6  

7  

𝑓𝑓(𝑥𝑥) 
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Figure 19. IQ 2.4: Table of values and graph 

b.  Could you sketch another function that would satisfy the table of values? 

IQ 2.4 is the reverse problem to IQ 2.3 and required students to sketch a curve based on known 

derivative values presented through a numerical representation.  IQ 2.4 required translation from 

a numerical representation to a graphical representation and required reversibility of the graphical 

interpretation of the derivative. 

 Taken as a direct reverse pair, IQ 2.3 and IQ 2.4 required reversibility of the mental process 

in reasoning without reversible translation and representational reversibility.  Students who can 

solve IQ 2.3 will be able to read derivative values from a graph of a function.  IQ 2.4 required 

these students to sketch a graph given derivative values.  Focusing on the calculus element, given 

a graph of 𝑓𝑓, find 𝑓𝑓′(2),𝑓𝑓′(4), etc. and then given 𝑓𝑓′(2),𝑓𝑓′(4), etc. sketch a function 𝑓𝑓, this kind 

of reversibility is an example reversibility of the mental process in reasoning without reversible 

translation.  The representational reversibility presents in the ability to translate from a graph to a 

table and then from a table to a graph. 

Interview #3 

The third interview took place after teaching section 4.4 between February 19, 2014 and March 

10, 2014.  Sections 4.1-4.4 focus on the graphical interpretation of the derivative and curve 
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sketching.  The interview consisted of two reversible graphing questions.  The IQ 3.1 presents 

students with a graph of a function 𝑓𝑓 and the students must draw inferences regarding 𝑓𝑓′ and 𝑓𝑓′′, 

thus indicating student understanding of calculus graphing.  IQ 3.2 assessed the same kinds of 

calculus knowledge as IQ 3.1; however, IQ 3.2 required students to coordinate both a graphing 

schema and interval schema to create a graph (Baker et al., 2000).  In the fall of 2012, I ran a pilot 

study using IQ 3.1 and IQ 3.2.  The pilot study revealed that high school students who have 

completed a course in differential calculus maintained a strong understanding of how to analyze 

graphs from a calculus perspective; however, the students exhibited very little reversibility of their 

understanding of calculus graphing. 

IQ 3.1: Consider the graph of 𝑓𝑓(𝑥𝑥) on the interval [−4,4].  𝑓𝑓(𝑥𝑥) consists of two semi-circles and 

two line segments, as shown below. 

 

Figure 20. IQ 3.1: Graph  

a.  On what intervals, if any, is 𝑓𝑓′(𝑥𝑥) > 0 and 𝑓𝑓′′(𝑥𝑥) > 0? 

b.  On what intervals, if any, is 𝑓𝑓′(𝑥𝑥) < 0 and 𝑓𝑓′′(𝑥𝑥) > 0? 

c.  On what intervals, if any, is 𝑓𝑓′(𝑥𝑥) > 0 and 𝑓𝑓′′(𝑥𝑥) < 0? 

d.  On what intervals, if any, is 𝑓𝑓′(𝑥𝑥) < 0 and 𝑓𝑓′′(𝑥𝑥) < 0? 

e.  At what 𝑥𝑥 −value(s), if any, does 𝑓𝑓′(𝑥𝑥) = 0? 
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f.  At what 𝑥𝑥 −value(s), if any, does 𝑓𝑓′′(𝑥𝑥) = 0? 

g.  At what 𝑥𝑥 −value(s), if any, does 𝑓𝑓′(𝑥𝑥) not exist? 

h.  Justify your response to question (𝑔𝑔). 

i. At what 𝑥𝑥 −value(s), if any, does 𝑓𝑓′′(𝑥𝑥) not exist? 

j.  Justify your response to question (𝑖𝑖). 

IQ 3.1 required students to determine intervals given calculus properties and a graph of a function.  

IQ 3.2 required students to sketch the graph of a function given the calculus properties and the 

intervals. 

IQ 3.2: Sketch a possible graph of a function 𝑓𝑓 that satisfies the following conditions: 

𝑓𝑓 is continuous; 

𝑓𝑓(0) = 1,𝑓𝑓′(−3) = 𝑓𝑓′(2) = 0, and lim
𝑑𝑑→0

𝑓𝑓′(𝑥𝑥) = ∞; 

𝑓𝑓′(𝑥𝑥) > 0 when −5 < 𝑥𝑥 < −3 and when −3 < 𝑥𝑥 < 2; 

𝑓𝑓′(𝑥𝑥) < 0 when 𝑥𝑥 < −5 and when 𝑥𝑥 > 2; 

𝑓𝑓′′(𝑥𝑥) < 0 when 𝑥𝑥 < −5, when −5 < 𝑥𝑥 < −3, and when 0 < 𝑥𝑥 < 5; 

𝑓𝑓′′(𝑥𝑥) > 0 when −3 < 𝑥𝑥 < 0 and when 𝑥𝑥 > 5; 

lim
𝑑𝑑→−∞

𝑓𝑓(𝑥𝑥) = ∞ and lim
𝑑𝑑→∞

𝑓𝑓(𝑥𝑥) = −1. 

Taken as a direct reverse pair, IQ 3.1 and IQ 3.2 required two different kinds of reversibility.  

Representational reversibility is present in that the direct problem, IQ 3.1, required students to 

translate from a graphical representation to a numerical representation.  IQ 3.2, the reverse question 

required students to translate from a numerical representation to a graphical representation.  The 

calculus elements required reversibility of the mental process in reasoning without reversible 

translation as students had to determine 𝑓𝑓′ and 𝑓𝑓′′ values from 𝑓𝑓 in IQ 3.1, but then had to 

determine 𝑓𝑓 from a list of 𝑓𝑓′ and 𝑓𝑓′′ values in IQ 3.2. 
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Interview #4 

The fourth interview took place at the conclusion of chapter 4, between March 12, 2014 and March 

19, 2014.  Sections 4.5-4.8 focus on the relationship between position, velocity, and acceleration.  

After section 4.8, students should have been able to change position into velocity and velocity into 

acceleration by differentiation.  They had not discussed moving in the reverse direction. 

 The fourth interview consisted of three sets of reversible questions.  IQ 4.1 and IQ 4.2  are 

a direct reverse pair designed to assess understanding of the numerical representation of functions 

and differentiation and to investigate student understanding of reversibility between position and 

velocity.  

Interview 4, Question 1.a is shown below in figure 21:  

 

Figure 21. IQ 4.1.a  

Interview 4, question 2.a is shown below in figure 22. 
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Figure 22. IQ 4.2.a  

Taken as a direct reverse pair of problems, IQ 4.1.a and IQ 4.2.a required reversibility.  Depending 

on how a student solves the problem, the student’s answer may have indicated reversibility of a 

two-way process or the answer may have indicated reversibility of the mental process in reasoning 

without reversible translation.  Most students were expected to solve IQ 4.1.a by using the slope 

formula, 𝑣𝑣𝑔𝑔𝑎𝑎𝑚𝑚 = 𝑚𝑚(𝑡𝑡2)−𝑚𝑚(𝑡𝑡1)
𝑡𝑡2−𝑡𝑡1

.  To solve IQ 4.2.a, students may have used several solution methods.  

Students could conceivably use the 𝑣𝑣𝑔𝑔𝑎𝑎𝑚𝑚  formula above in reverse by substituting 8 𝑚𝑚
𝑚𝑚

 in for 𝑣𝑣𝑔𝑔𝑎𝑎𝑚𝑚 , 

0 𝑠𝑠 in for 𝑡𝑡1, 60 𝑠𝑠 in for 𝑡𝑡2, and 0 𝑚𝑚 in for 𝑠𝑠(𝑡𝑡1), and then solve for 𝑠𝑠(60).  This would be an 

example of reversibility of a two-way process.  Alternatively, a student could conceptualize 

distance as the product of velocity and time.  Following this line of reasoning, a student may 

determine an approximate distance traveled over each time interval and then sum up the distances.  

This solution process would be an example of reversibility of the mental process in reasoning 

without reversible translation. 
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IQ 4.1.b and IQ 4.2.b also investigated reversibility between position and velocity; 

however, these questions were presented in symbolic representations instead of numerical 

representations.  IQ 4.1.b is shown below in figure 23. 

 

Figure 23. IQ 4.1.b  

IQ 4.1.b required students to find an equation for 𝑠𝑠′(𝑡𝑡) and then evaluate 𝑠𝑠′(𝑡𝑡) at the indicated 

values of 𝑡𝑡. 

IQ 4.2.b: Suppose we know a velocity function, 𝑣𝑣(𝑡𝑡), for a vehicle in motion in meters per 

second. 

𝑣𝑣(𝑡𝑡) = 4𝑡𝑡3 − 3𝑡𝑡2 + 𝑡𝑡 

Assuming that the vehicle started at a position of zero meters, find the position of the vehicle at 

𝑡𝑡 = 3. 
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IQ 4.2.b required students to use the velocity function to find a position.  IQ 4.1.b and IQ 4.2.b are 

a direct reverse pair.  IQ 4.1.b required using differentiation, the simple power rule, to move from 

position to velocity and IQ 4.2.b required reversing the simple power rule to move from velocity 

to position.  This direct reverse pair required reversibility of a two-way process in regards to the 

simple power rule and reversibility of a mental process in reasoning by recognizing the reversible 

relationship between position and velocity. 

 IQ 4.3.a and IQ 4.3.b required translation from a graphical representation to an algebraic 

representation and are a direct reverse pair.  IQ 4.3.a required analysis of a graph of 𝑓𝑓(𝑥𝑥) to write 

an algebraic expression for 𝑓𝑓′(𝑥𝑥).  IQ 4.3.b required analysis of a graph of 𝑓𝑓′(𝑥𝑥) to write an 

algebraic expression for 𝑓𝑓(𝑥𝑥). 

IQ 4.3.a is shown below in figure 24:  

 

Figure 24. IQ 4.3.a  
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IQ 4.3.a was expected to be solved in one of two ways.  One solution method is to note that 𝑓𝑓(𝑥𝑥) 

consists of three line segments, thus, 𝑓𝑓′(𝑥𝑥) consists of three constant functions, each defined by 

the slope of the respective line segment.  Thus a student could find a piecewise-defined function 

for 𝑓𝑓′(𝑥𝑥) by using a graphical interpretation of the derivative and finding the slope of each line 

segment.  Alternatively, a student who prefers an algebraic representation of 𝑓𝑓(𝑥𝑥) over the 

graphical representation of 𝑓𝑓(𝑥𝑥) may translate the graphical representation into the piecewise-

defined function 𝑓𝑓(𝑥𝑥) = �
1,                0 ≤ 𝑥𝑥 ≤ 10
3
25
𝑥𝑥 − 1

5
, 10 < 𝑥𝑥 < 35

4,             35 ≤ 𝑥𝑥 ≤ 50
.  Then, the student may differentiate 𝑓𝑓(𝑥𝑥) 

using the simple power rule to determine that 𝑓𝑓′(𝑥𝑥) = �
0,         0 < 𝑥𝑥 < 10
3
25

,     10 < 𝑥𝑥 < 35
0,       35 < 𝑥𝑥 < 50

. 

IQ 4.3.b is shown below in figure 25. 

 

Figure 25. IQ 4.3.b  
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IQ 4.3.b, multiple solutions were available to the students.  The most likely solution method is to 

attempt to translate the graphical representation of 𝑓𝑓′(𝑥𝑥) into an algebraic expression, 𝑓𝑓′(𝑥𝑥) =

�
1,                0 ≤ 𝑥𝑥 ≤ 10
3
25
𝑥𝑥 − 1

5
, 10 < 𝑥𝑥 < 35

4,             35 ≤ 𝑥𝑥 ≤ 50
, and then use reversibility of a two-way process to determine an 

algebraic expression for 𝑓𝑓(𝑥𝑥).  Alternatively, students could use reversibility of the mental 

process in reasoning without reversible translation and try to think of a function that would have 

a constant slope on (0,10), a linear slope function on (10,35), and a constant slope on (35,50).  

Since both the forward and reverse problems required translation from a graphical representation 

to an algebraic representation, representational reversibility was not required to solve this 

problem. 

3.3.6 Timeline of data collection 

The following timeline (figure 26) is a visual representation of the key data collection dates within 

the study.  The date axis refers to days 1-48 in the course calendar.  Day 1 fell on November  11, 

2013.  Day 48, the administration of the DCT, fell on March 10, 2014.  All markers above the date 

axis referred to events that effect the entire class.  There are three categories of events above the 

date axis: 1) instructional date markers ( ), which indicate the expected dates that chapters will 

begin and end, 2) exit slips and opening activity collection markers ( ), which indicate the dates 

that exit slips and opening activities will be administered and collected, and lastly, 3) the DCT 

marker ( ), which indicates the date that the DCT will be administered.  The events that lie below 

the date axis are the days of the think-aloud interviews.  They are marked with a .  The flexibility 

pre-test was administered approximately three weeks before the first day of instruction. 
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Figure 26. Timeline of data collection and instructional markers 

3.4 DATA CODING AND MANAGEMENT 

In this section, I describe how the data collected from the four sources, the flexibility pre-test, the 

DCT, the exit slips and opening activities, and the think-aloud interviews, was coded and managed 

to prepare for analysis.  I describe the coding and management of the DCT before I describe the 

coding and management of the FPT because the pre-test was designed to align with the DCT and 

was coded and managed using a similar procedure. 

Instruction begins -
Section 2.1.

Completion of 
Section 2.3. First 
interviews begin.

Completion of 
Section 2.6. Second 

interviews begin.

Chapter 2 is 
completed.

Chapter 3 begins.

Completion of 
Section 4.4. Third 
interviews begin.

Completion of 
Section 4.8. Fourth 
interviews begin.

DCT administered in 
class.

Chapter 3 is 
completed.

Chapter 4 begins.

Exit slips and opening 
activities collected on 

days 1-12

Exit slips and opening 
activities collected on 

days 16-25

Exit slips and opening 
activities collected on 

days 29-36

Exit slips and opening 
activities collected on 

days 40-45

1 6 11 16 21 26 31 36 41 46
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3.4.1 Differentiation competency test (DCT) 

The DCT was scored for accuracy and coded according to the description given by Kendal and 

Stacey (2003).  Each item was worth one point, thus a perfect score on the DCT was 18/18.  There 

was no partial credit assigned, consistent with the grading rubric created and validated by Kendal 

and Stacey (2003).  The results of the DCT are reported in Appendix G. 

3.4.2 Flexibility pre-test (FPT) 

The FPT was scored for accuracy and coded in much the same way as the DCT.  Each item was 

worth one point, thus a perfect score on the FPT was 18/18.  There was no partial credit assigned, 

consistent with the grading rubric used on the DCT.  The results of the FPT are reported in 

Appendix H. 

3.4.3 Exit slips and opening activities 

At the conclusion of each instructional class, the students solved an exit slip problem that assesses 

the day’s learning in a forward direction.  At the start of the next class, the students solved an 

opening activity problem that assessed the previous day’s learning in a reverse direction.  There 

were a total of 33 exit slip and opening activity pairs that assessed 45 specific instances of 

reversibility.  Each daily item was designed to take approximately 5 minutes.  

 Each set of paired problems was analyzed twice on an individual level and at a class level.  

The first level of analysis attempted to determine the relative presence of reversibility at the class 

level at 33 separate data points.  Each set of paired problems had four possible outcomes: Correct-
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Correct, Correct-Incorrect, Incorrect-Correct, Incorrect-Incorrect.  These possible outcomes and 

their implications for the presence of reversibility are summarized in Table 20. 

Table 20. Possible outcomes and implications for reversibility 

Direct Reverse Implication 
Correct Correct Student demonstrates 

reversibility. 
Correct Incorrect Student developed learning in 

forward direction but does 
not exhibit reversible 
conception of mathematical 
concept 

Incorrect Correct Result offers no insight into 
reversibility.  Student may 
have developed a forward and 
reverse conception of content 
while working outside of 
classroom.  Result is 
unexpected. 

Incorrect Incorrect Student does not demonstrate 
understanding of concept.  
Result offers no insight into 
reversibility.  

 

The following table represents how the exit slip and opening activity data were coded and 

managed.  Analysis of the data will be discussed in the analysis section.  Table 21 represents how 

each set of paired problems will be coded at the individual level. 

Table 21. Individual student data on single set of exit slip and opening activity  

Student Identifier:  
Date:  
Description of Content: What kind of reversibility is required? 

1) Two-Way Process 
2) Mental reasoning without 

representational reversibility 
3) Mental reasoning with 

representational reversibility 
Direct Outcome Reverse Outcome 
Correct or Incorrect Correct or Incorrect 
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Each student’s individual exit slip and opening activity data was aggregated for the entire 

instructional period.  Table 22 is a sample table showing how the aggregated data was managed. 

Table 22. Record of individual student data on all exit slips and opening activities  

Student 
Id: 

  

Day Content Direct 
Outcome 

Reverse 
Outcome 

Does the 
student 
demonstrate 
reversibility? 

What kind of reversibility is 
present? 

1 Average 
rate of 
change 

Correct 
or 
Incorrect 

Correct 
or 
Incorrect 

Yes or No 1) Two-Way Process 
2) Mental reasoning 

without 
representational 
reversibility 

3) Mental reasoning 
with representational 
reversibility 

2 Average 
velocity 

Correct 
or 
Incorrect 

Correct 
or 
Incorrect 

Yes or No 1) Two-Way Process 
2) Mental reasoning 

without 
representational 
reversibility 

3) Mental reasoning 
with representational 
reversibility 

3 Limit 
definition 
of 
derivative 

Correct 
or 
Incorrect 

Correct 
or 
Incorrect 

Yes or No 1) Two-Way Process 
2) Mental reasoning 

without 
representational 
reversibility 

3) Mental reasoning 
with representational 
reversibility 

4 Limit 
definition 
of 
derivative 

Correct 
or 
Incorrect 

Correct 
or 
Incorrect 

Yes or No 1) Two-Way Process 
2) Mental reasoning 

without 
representational 
reversibility 

3) Mental reasoning 
with representational 
reversibility 

 

Table 23 represents how each set of paired problems were coded at the class level. 

 159 



  

Table 23. Class data on single set of exit slip and opening activity 

Date: Group: 

Description of Content: What kind of reversibility is present? 

Outcome on Paired Problems (Direct-Reverse) Number of Students 

Correct-Correct  

Correct-Incorrect  

Incorrect-Correct  

Incorrect-Correct  

 

The second level of data analysis on the exit slips and opening activities was used in tandem 

with the think-aloud interview data to help inform research question 3: what are the thought 

processes that students utilize when using reversibility to solve problems.  In an effort to attend to 

students’ thinking while solving the exit slips and opening activities, I noted the specific instances 

within the students’ work that address the following questions: 

1) What specific instances of reversibility exist within the exit slip and opening 

activity data? 

i. What specific instances of reversibility of a two-way reversible 

process are present? 

ii. What specific instances of reversibility as a reversing of the mental 

process in reasoning without reversible translation are present? 

iii. What specific instances of representational reversibility are present? 

2) What specific instances of flexibility exist within the exit slip and opening 

activity? 
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i. What specific instances of translations between representations of 

functions are present? 

ii. What specific instances of translations between representations of 

derivatives are present? 

3) What specific instances of translations between representations of functions 

and representations of derivatives are present? 

The answers to these questions were categorized at the class level to attempt to identify 

over-arching thematic elements of how the class thinks about solving reversible problems.  The 

interview participants’ solutions to the exit slips and opening activities were used to strengthen or 

question the conclusions drawn from analyzing the think-aloud interview data. 

Figure 27 shows an example of one student’s work on exit slip and opening activity pair 

2.3.1. 

                  

Figure 27. Sample student work on ESOA 2.3.1 

On exit slip 2.3.1, the student received a grade of “correct” because she correctly found 𝑓𝑓′(𝑥𝑥) by 

using the simple power rule for differentiation.  On opening activity 2.3.1, she correctly found 

𝑓𝑓(𝑥𝑥) by reversing the simple power rule for differentiation.  Thus, at the first level of analysis, the 

student’s work would be scored “Correct-Correct” indiciating the presence of reversibility.  At the 
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second level of analysis, the student’s description on the opening activity indicates a specific 

instance of when a student is thinking about using two-way reversibility when she says “I basically 

did opposite of what we learned yesterday”. 

3.4.4 Think-aloud interviews 

The think-aloud interviewing data consists of two parts: 1) the written responses to the interview 

questions and, 2) the interview transcripts.  In this section, I describe how the written work was 

coded and then how the interview transcript data was coded.  Analysis of the written responses 

and transcript data is discussed in the analysis section.   

3.4.4.1 Coding and management of written responses to the interview questions 

The participants’ written responses were coded along multiple dimensions.  The written responses 

were first coded for evidence of the existence of reversibility between differentiation and 

integration and then coded for evidence of the existence of representational reversibility.  Finally, 

each written response was coded for evidence of flexibility.  The written solutions were coded 

using the following tables.  Each table presented here is an excerpt from the full table.  Each full 

table is presented in Appendix H. 

I used the following tables to code and manage the written responses to interview questions 

for evidence of the existence of reversibility of between differentiation and integration.  Interview 

questions 1.1 (Interview 1, Question 1) & 1.2, 1.1 & 1.3, 2.1 & 2.2, 2.3 & 2.4, 4.1.a & 4.2.a, 4.1.b 

& 4.2.b, and 4.3.a & 4.3.b form direct (differentiation) and reverse (integration) pairs.  Table 24 

reports the results of the interview items that assess reversibility of differentiation and integration, 

arranged by participant.  The data reported in this table was used to answer whether any 
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reversibility that develops is limited to just two-way reversible processes, just reversibility of the 

mental process in reasoning without reversible translation, or if it extends to both aspects of 

reversibility. 

Table 24. Reversibility of differentiation and integration, arranged by participant  

Participant Interview 
Question 
(Interview 
#, 
Question 
#) 

Direct 
Function → 
Derivative 

Reverse 
Derivative → 
Function 

Is 
reversibility 
of a two-
way process 
present? 

Is 
reversibility 
of the 
mental 
process in 
reasoning 
without 
reversible 
translation 
present? 

FRED Interview 
1, 
Questions 
1 and 2 

Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

Interview 
1, 
Questions 
1 and 3 

Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

Interview 
2, 
Questions 
1 and 2 

Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

 

Yes or No Yes or No 

Interview 
2, 
Questions 
3 and 4 

Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

Interview 
4, 
Questions 
1.a and 2.a 

Correct/Incorrect 
Distance → 
Velocity 

Correct/Incorrect 
Velocity → 
Distance 

Yes or No Yes or No 

Interview 
4, 
Questions 
1.b and 2.b 

Correct/Incorrect 
Position → 
Velocity 

Correct/Incorrect 
Velocity → 
Position 

Yes or No Yes or No 

Interview 
4, 
Questions 
3.a and 3.b 

Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 
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Table 25 reports the results of the interview items that assess reversibility of differentiation and 

integration, arranged by interview question.  The data reported in this table was used to answer 

whether any reversibility that develops is limited to just two-way reversible processes, just 

reversibility of the mental process in reasoning without reversible translation, or if it extends to 

both aspects of reversibility. 

Table 25. Reversibility of differentiation and integration, arranged by interview question  

Interview 
Question 
(Interview 
#, Question 
#) 

Participant Direct 
Function → 
Derivative 

Reverse 
Derivative → 
Function 

Is 
reversibility 
of a two-
way process 
present? 

Is 
reversibility 
of the 
mental 
process in 
reasoning 
without 
reversible 
translation 
present? 

Interview 
1, 
Questions 
1 and 2 
 

P. 1 Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

P. 2 Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

P. 3 Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

P. 4 Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

P. 5 Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

P. 6 Correct/Incorrect 
𝑓𝑓 → 𝑓𝑓′ 

Correct/Incorrect 
𝑓𝑓′ → 𝑓𝑓 

Yes or No Yes or No 

 

The participants’ responses were then coded for evidence of representational reversibility.  The 

written work was using the following two tables. 

Table 26 reports the results of the interview items that assess representational 

reversibility, arranged by participant.  The following interview questions require representational 
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reversibility: 1.3, 2.3 & 2.4, and 3.1 & 3.2.  The data reported in this table helped to inform 

whether or not students were developing representational reversibility. 

Table 26. Representational reversibility, arranged by participant 

Participant 
Name 

Interview 
Question 
(Interview #, 
Question #) 

Direct 
Translation 

Reverse 
Translation 

Is 
representational 
reversibility 
present? 

FRED Interview 1, 
Question 3 

In order to solve problem, the 
participant will likely translate 
function from graphical to symbolic 
representation, differentiate the 
symbolic representation, then 
translate the resultant symbolic 
representation into a graphical 
representation. Thus, the reversible 
translation is G→S and then S→G. 
Any participant effort towards 
translation will be noted for 
Interview 1, Question 3. 

Yes or No 

 Interview 2, 
Questions 3 and 
4 

Correct/Incorrect 
G→N 

Correct/Incorrect 
N→G 

Yes or No 

 Interview 3, 
Questions 1 and 
2 

Y/N 
Function Graph 
& Calculus 
Properties → 
Intervals 

Y/N 
Intervals and 
Calculus 
Properties → 
Function Graph 

Yes or No 

 

Table 27 reports the results of the interview items that assess representational reversibility, 

arranged by interview question.  The data reported in this table helped to inform whether or not 

students were developing representational reversibility. 
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Table 27. Representational reversibility, arranged by interview question 

Interview 
Question 
(Interview #, 
Question #) 

Participant Name Direct 
Translation 

Reverse 
Translation 

Is representational 
reversibility 
present? 

Interview 1, 
Question 3 

FRED In order to solve problem, 
participant will likely translate 
function from graphical to 
symbolic representation, 
differentiate the symbolic 
representation, then translate the 
resultant symbolic 
representation into a graphical 
representation. Thus, the 
reversible translation is G→S 
and then S→G. 
Any participant effort towards 
translation will be noted for 
Interview 1, Question 3. 

Yes or No 

JILL In order to solve problem, 
participant will likely translate 
function from graphical to 
symbolic representation, 
differentiate the symbolic 
representation, then translate the 
resultant symbolic 
representation into a graphical 
representation. Thus, the 
reversible translation is G→S 
and then S→G. 
Any participant effort towards 
translation will be noted for 
Interview 1, Question 3. 

Yes or No 

 

Due to the complex nature of interview questions 3.1 and 3.2, I developed a separate table 

to record analysis of the written work in conjunction with the interview transcript of interview 3.  

Table 28 reports the coding plan for interview 3. 
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Table 28. Analysis plan for interview 3 

3.1: Forward: 
𝐺𝐺 → 𝑁𝑁, 
𝑓𝑓 → 𝑓𝑓′, 
𝑓𝑓 → 𝑓𝑓′′ 

3.2: Reverse: 
𝑁𝑁 → 𝐺𝐺, 
𝑓𝑓′ → 𝑓𝑓,  
𝑓𝑓′′ → 𝑓𝑓 

Is reversibility 
of the mental 
process in  
reasoning 
present in 
graph? 

Are 
descriptions 
consistent 
with graph? 

Is 
representational 
reversibility 
evident? 

𝑓𝑓′(𝑥𝑥) > 0,𝑓𝑓′′(𝑥𝑥) > 0 (−3,0)    
𝑓𝑓′(𝑥𝑥) < 0,𝑓𝑓′′(𝑥𝑥) > 0 (5,∞)    
𝑓𝑓′(𝑥𝑥) > 0,𝑓𝑓′′(𝑥𝑥) < 0 (−5,−3)

∪ (0,2) 
   

𝑓𝑓′(𝑥𝑥) < 0,𝑓𝑓′′(𝑥𝑥) < 0 (−∞,−5)
∪ (2,5) 

   

𝑓𝑓′(𝑥𝑥) = 0 𝑥𝑥 = −3, 𝑥𝑥 = 2    
𝑓𝑓′′(𝑥𝑥) = 0 𝑥𝑥 = −3, 𝑥𝑥 = 5    
𝑓𝑓′(𝑥𝑥) 𝐷𝐷𝑁𝑁𝐷𝐷 𝑥𝑥 = −5, 𝑥𝑥 = 0     
 

Each line in the table was scored as 0, 1
2
, or 1 point.  A completely correct answer received one 

point, an answer that contained a partially correct answer received 1
2
 point, and an incorrect answer 

received zero points.  Thus, the interview participant’s response to IQ 3.1 was scored out of 7 

points and the interview participant’s response to IQ 3.2 was scored out of 7 points.  Below, in 

figure 28, I have included a sample of an interview participant’s work on IQ 3.1 and IQ 3.2 and 

shown how it was scored. 
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Figure 28. Kelsay’s solutions to interview questions 3.1 and 3.2 

Kelsay received a score of 6.5/7 on IQ 3.1.  All of her answers were completely correct except 

for a partially correct answer to part (f).  She wrote that 𝑓𝑓′′(𝑥𝑥) = 0 at 𝑥𝑥 = −3,0, (2,3) ∪ (3,4).  

Kelsay is correct that 𝑓𝑓′′(𝑥𝑥) = 0 on the intervals (2,3) ∪ (3,4) but is incorrect when she writes 

that 𝑓𝑓′′(𝑥𝑥) = 0 at 𝑥𝑥 = −3 and 𝑥𝑥 = 0.  In fact, 𝑓𝑓′′(−3) < 0 and 𝑓𝑓′′(0) > 0.  On IQ 3.2, Kelsay 

drew a perfect sketch, thus she earned a score of 7/7 because her graph is correct on each of the 

intervals and at each discrete 𝑥𝑥-value listed in table 28. 

Finally, the participants’ written responses were coded for evidence of flexibility.  

Evidence of translations between representations of functions, representations of derivatives, 

and/or representations of functions and representations of derivatives were recorded in Table 29, 

by participant. 
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Table 29. Evidence of flexibility, arranged by participant 

Participant Name Interview 
Question  

Translations Present 

FRED 1.1  
1.2  
1.3  
2.1  
2.2  
2.3  
2.4  
3.1  
3.2  
4.1.a  
4.1.b  
4.2.a  
4.2.b  
4.3.a  
4.3.b  

 

Table 30 reports evidence of flexibility, arranged by interview question. 

Table 30. Evidence of flexibility, arranged by interview question. 

Interview 
Question 

Participant Name Translations Present 

1.1 FRED  
JILL  
KELSAY  
KIRSTEN  
MARCUS  
MICHAEL  

1.2 FRED  
JILL  
KELSAY  
KIRSTEN  
MARCUS  
MICHAEL  

3.4.4.2 Coding and management of interview transcript data 

I transcribed the interviews and then analyzed the transcripts.  The transcripts were analyzed to 

help explicate students’ thought processes while solving the reversible questions.  Interview 
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transcripts were analyzed by searching the transcripts for terms that indicated consideration of 

reversibility.  I examined the text of the transcripts to answer the following questions: 

1) What specific instances of reversibility exist within the interview data? 

i. What specific instances of reversibility of a two-way reversible 

process are present? 

ii. What specific instances of reversibility as a reversing of the mental 

process in reasoning without reversible translation are present? 

iii. What specific instances of representational reversibility are present? 

2) What specific instances of flexibility exist within the interview data? 

i. What specific instances of translations between representations of 

functions are present? 

ii. What specific instances of translations between representations of 

derivatives are present? 

iii. What specific instances of translations between representations of 

functions and representations of derivatives are present?  

To answer these questions, I searched the transcripts for the phrases reported in the 

codebook in Appendix I.  A codebook systematically sorts the coded text into categories, types, 

and relationships of meaning (Guest, MacQueen, & Namey, 2012).  I developed a codebook that 

identifies key phrases indicating evidence of reversibility and/or flexibility.  I used the results from 

the pilot study, reversibility literature, and flexibility literature to develop the codebook. 

Creation of the codebook followed the guidelines prescribed by Guest et al. (2012).  The 

first step in creation of the codebook was to label the identified themes of two-way reversibility, 

reversibility of the mental process in reasoning, representational reversibility, and flexibility, and 
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then to define what they are and what they are not.  Words and/or actions that are coded as evidence 

of two-way reversibility consist of all of the words, phrases, or actions taken when solving an 

interview question that indicate the reversing of a process by working the steps backwards through 

inverse operations.  Words and/or actions that are coded as evidence of reversibility of the mental 

process in reasoning consist of words, phrases, and/or actions that indicate the student’s attempt at 

solving a problem by reversing a thought process without using the direct process in reverse.  

Words and/or actions that are coded as evidence of representational reversibility are all of the 

words, phrases, and/or actions that indicate that a student is proficiently translating back and forth 

between two different representations.  Words and/or actions coded to flexibility consist of all the 

words, phrases, and/or actions that indicate that a student is translating from one representation to 

another.  Note the distinction between representational reversibility and flexibility: flexibility only 

requires a unidirectional translation from one representation to another while representational 

reversibility requires a bidirectional translation between two representations.  

Each code definition includes the following: 1) a code label that distinguishes one code 

from another, 2) a short definition, 3) a full definition, 4) clear indicators of when to use the code, 

and 5) clear indicators of when not to use the code.  An iterative process of reading and coding the 

data, comparing the coded data, adjusting the codebook definitions as necessary and then repeating 

the process was continued until all of the interview data could be effectively coded. 

To aid in the creation and refinement of the codebook, the piloting of the interview 

questions, the reversibility literature, and the flexibility literature were used to design a preliminary 

codebook.  A second coder double coded 33% of the interview data.  I met with the second coder 

and discussed our coding.  We had 100% agreement on where reversibility presented in the 

transcripts. 
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The complete codebook is presented in Appendix I.  Below, I present examples of words, 

phrases, and actions that indicate two-way reversibility, reversibility of the mental process in 

reasoning, representational reversibility, and flexibility. 

Examples of phrases that indicate two-way reversibility 

In this study, two-way reversibility was most likely to present when trying to find a function 𝑓𝑓(𝑥𝑥) 

from a given function 𝑓𝑓′(𝑥𝑥).  Two-way reversibility was evident at any point where a participant 

noted that the function would be the reverse of the given derivative and then reversed a step-by-

step process to find the function 𝑓𝑓(𝑥𝑥). 

For example, in interview 1, question 1 (1.1), the participant is asked to find 𝑓𝑓′(𝑥𝑥) if 

𝑓𝑓(𝑥𝑥) = 6𝑥𝑥3.  It was expected that all participants would be able to use the simple power rule for 

differentiation to correctly solve the problem.  Specifically, 𝑓𝑓′(𝑥𝑥) = 6 ∗ 3𝑥𝑥2 = 18𝑥𝑥2. Question 

1.2 (interview 1, question 2) asks the participant to find a function 𝑓𝑓(𝑥𝑥) whose derivative is known 

to be 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥5.  It was expected that any participant who correctly solved the problem will use 

two-way reversibility to reverse the simple power rule.  Thus, an expected correct solution of 

𝑓𝑓(𝑥𝑥) = 1
6
𝑥𝑥6 likely included at least of the following phrases: 

• “Ok this is going in reverse, so instead of subtracting one from the 

exponent, I am going to add one to the exponent.” 

• “Ok, differentiating is multiplying so I need to divide something in order 

to end with a one as the coefficient if I differentiate my answer.” 

Both of these phrases indicated that the participant used two-way reversibility because s/he was 

trying to undo the simple power rule by using a sequence of inverse operations.  In the first phrase, 

the participant indicated that s/he understands that since differentiating reduces the power of the 
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polynomial by one, then reversing differentiation should increase the power of the polynomial by 

one.  Thus, we see the student using the inverse operation, in this case addition, to reverse the 

learned process of subtraction as a part of differentiation. 

Examples of phrases that indicate reversibility of the mental process in reasoning 

Reversibility of the mental process in reasoning is most often indicated by a student referring to 

doing something “backwards” or in “reverse” without using inverse operations to reverse a learned 

process. 

For example, in question 2.1, the students are asked to find 𝑓𝑓(𝑥𝑥) given that 𝑓𝑓′(𝑥𝑥) =

𝑥𝑥𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥2).  The students do not know a process for reversing the chain rule, thus any correct 

solution would require reversibility of the mental process in reasoning.  Thus, a correct solution 

would likely include a phrase similar to: 

• Since I’m given 𝑓𝑓′ … let me pick some 𝑓𝑓’s and see if when I 

differentiate them I can produce 𝑓𝑓′ 

This phrase indicates that the student is aware that s/he needs to reverse differentiation but does 

not have access to a process that is reversible through inverse operations. 

Reversibility of the mental process in reasoning can also present in graphing questions by 

making inferences about 𝑓𝑓′and 𝑓𝑓′′ based on the graph of 𝑓𝑓 and vice versa.  As such, a student 

using reversibility of the mental process in reasoning while solving a graphing question may say 

something like: 

• If 𝑓𝑓 is increasing, then 𝑓𝑓′ is positive, so if 𝑓𝑓′ is positive, then 𝑓𝑓 should 

be increasing 

• If 𝑓𝑓 is concave up, then 𝑓𝑓′′ is positive, so if 𝑓𝑓′′ is positive, then 𝑓𝑓 should 

be concave up 
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Both of these statements indicate that the student is using reversibility to consider the graphical 

effects of information provided by 𝑓𝑓,𝑓𝑓′, and/or 𝑓𝑓′′. 

Examples of phrases that indicate representational reversibility 

Representational reversibility is present any time that a student translates from one representation 

to another in the direct question and then reverses the direction of translation in the reverse 

problem.  Examples of phrases that indicate representational reversibility include: 

• Forward: “Is there a formula that describes this curve?” 

• Reverse: “I am going to sketch of a graph of this function.” 

The forward statement indicates that the student has been provided a graph and the 

student is considering how to translate the graph into an algebraic expression.  The reverse 

statement indicates that the student has been given an algebraic expression and recognizes the 

function as a known graph.  Thus, these two statements taken in concert indicate representational 

reversibility between the graphical and symbolic representations.  Further examples of phrases 

that indicate representational reversibility between other representations are included in 

Appendix I. 
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Figure 29, shown below, presents an example of student work on IQ 1.2.  

 

Figure 29. Sample student work on IQ 1.2 

On IQ 1.2, the student received a grade of “correct” because he correctly found 𝑓𝑓(𝑥𝑥) by 

reversing the simple power rule.  His transcript indicates reversible thought when he says “this is 

going backwards”.  Further, he indicates how he problem solves with reversibility by saying “I 

try and think uh ‘what would be”.  A more detailed analysis of IQ 1.2 and the interview 

transcript are included in section 4.3.1. 

To aid with interview data collection, management, and analysis, I used the computer 

software Nvivo10.  Nvivo10 is a data management tool, noted for improving the efficiency of 

analyzing data in qualitative studies.  All interview data was entered into NVivo10 and analyzed.  
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3.5 DATA ANALYSIS 

In this section, I describe how the data was analyzed in order to answer the research questions.  

Accordingly this section is organized by research question.  Each data source that was used to 

inform the appropriate research question will be discussed.  This study attempted to answer the 

following research questions: 

1) To what extent do students develop flexibility with multiple representations 

when engaged in a course that attends to linking multiple representations? 

2) To what extent do students develop reversibility when engaged in a course 

that attends to linking multiple representations?  In particular: 

i. To what extent does reversibility of two-way reversible processes 

develop? 

ii. To what extent does reversibility of the mental process in reasoning 

without reversible translation develop? 

iii. To what extent does reversibility of the mental process in reasoning 

with reversible translations (representational reversibility) develop? 

3) What are the thought processes that students utilize when using reversibility 

to solve problems? 

Table 31 indicates which data sources were analyzed to answer each research question. 
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Table 31. Data sources used to answer research questions 

 Flexibility 
pre-test – 
whole class 
data 

DCT – 
whole class 
data 

Exit slips and 
opening 
activities – 
whole class data 

Question-based 
think-aloud 
interview – 2 
cases of 3 
different groups 

To what extent do 
students develop 
flexibility with multiple 
representations when 
engaged in a course that 
attends to linking multiple 
representations? 

Yes Yes No No 

To what extent do 
students develop 
reversibility when 
engaged in a course that 
attends to linking multiple 
representations? 

No No Yes Yes 

What are the thought 
processes that students 
utilize when using 
reversibility to solve 
problems? 

No No Yes Yes 

 

3.5.1 Research question 1 

To what extent do students develop flexibility with multiple representations when engaged in a 

course that attends to linking multiple representations? 

I used two data sources to inform the extent to which students develop flexibility with 

multiple representations when engaged in a course that attends to linking multiple representations.  

The results of the flexibility pre-test and the results of the DCT (a post-test) were compared to 

determine the extent to which flexibility develops.  
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The results of the pre-test established base-line data for students’ flexibility with multiple 

representations of functions.  The DCT (post-test), administered at the end of the instructional unit, 

indicated the extent to which students had developed flexibility with multiple representations of 

derivatives.  I used a paired samples 𝑡𝑡-test to compare for a difference of mean scores on the pre-

test and post-test.  The paired samples 𝑡𝑡-test was chosen because the same participants are being 

tested twice on the same variable (flexibility) with a time lapse between tests.  An a priori power 

analysis was conducted.  Using the most conservative estimate of correlation, the minimum sample 

size necessary to reach the minimum acceptable power level of 0.80 (Huck, 2008) is 𝑛𝑛 = 19.  With 

𝑛𝑛 = 21, this research design was well-suited to identify a medium effect size.  Using less 

conservative estimates of correlation (as suggested by previous years’ correlation data between 

flexibility with functions and flexibility with derivatives), the power level increases to 0.9142. 

The FPT and DCT post-test were compared to determine if any representational preference 

existed at the beginning of the study and if representational preference changed during the course 

of the study.  To determine the extent to which students had a representational preference at the 

start of the study, I averaged the scores across competencies as shown in table 32, below. 

Table 32. Class achievement (%) on specific groups of competencies (N = 21) on the flexibility pre-test 

Grouped Competencies Class Achievement (%) N = 21 
All Competencies  
(18 items) 

 

Input Representation 
Symbolic (_S_)  
(6 items) 

 

Graphical (_G_)  
(6 items) 

 

Numerical (_N_) 
(6 items) 

 

Output Representation 
Symbolic (_S_) 
(6 items) 

 

Graphical (_G_) 
(6 items) 

 

Numerical (_N_) 
(6 items) 
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Table 32 (continued) 

Competencies without-translation (6 items)  
Competencies with-translation (12 items)  
Composition competencies (9 items)  
Inverse competencies (9 items)  

 

If one input (or output) representation was significantly higher or significantly lower than the other 

representations, we would be able to conclude that the students likely had a representational 

preference for or against that particular representation as an input representation (or output 

representation).   

To determine the extent to which representational preference existed at the end of the study, 

I analyzed the results of the DCT using a table similar to that which was used to analyze the results 

of the pre-test.  A table similar to Table 33 was used to report the relative percentages of correct 

answers within each representation. 

Table 33. Class achievement (%) on specific groups of competencies (N = 21) on the DCT 

Grouped Competencies Class Achievement (%) N = 21 
All Competencies  
(18 items) 

 

Input Representation 
Symbolic (_S_)  
(6 items) 

 

Graphical (_G_)  
(6 items) 

 

Numerical (_N_) 
(6 items) 

 

Output Representation 
Symbolic (_S_) 
(6 items) 

 

Graphical (_G_) 
(6 items) 

 

Numerical (_N_) 
(6 items) 

 

Competencies without-translation (6 items)  
Competencies with-translation (12 items)  
Formulation competencies (9 items)  
Interpretation competencies (9 items)  
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 Finally, because the FPT was designed to fully align with the DCT, I was able to run 

comparisons on a very fine-grained level, allowing me to compare relative improvement of 

flexibility within each translation.  I conducted a paired samples 𝑡𝑡-test comparing the percentages 

of each translation (for example, I conducted a paired samples 𝑡𝑡-test on the percentage of students 

who successfully translated from symbolic to graphical on the pre-test and the percentage of 

students who successfully translated from symbolic to graphical on the post-test).  If students 

developed flexibility when engaged in a course that attends to linking multiple representations, 

one would expect that the overall percentage of successful translation between representations will 

have improved and that likely most or perhaps all of the percentages of successful individual 

translations between representations will have improved over the course of the study. 

3.5.2 Research question 2 

To what extent do students develop reversibility when engaged in a course that attends to linking 

multiple representations?  In particular: 

i. To what extent does reversibility of two-way reversible processes 

develop? 

ii. To what extent does reversibility of the mental process in reasoning 

without reversible translation develop? 

iii. To what extent does reversibility of the mental process in reasoning 

with reversible translations (representational reversibility) develop? 

I triangulated four data sources to help inform the extent to which students developed 

reversibility in a course that attends to linking multiple representations: 1) the FPT data, 2) the 

DCT data, 3) the exit slips and opening activities data, and 4) the think-aloud interview data. 
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3.5.2.1 FPT and DCT data 

The results of the FPT and DCT were used to help inform the extent to which representational 

reversibility develops by comparing the relative amounts of representational reversibility present 

at the start of the study and at the end of the study.  After calculating a mean score for 

representational reversibility for the FPT and the DCT, I used a paired samples 𝑡𝑡-test to test for a 

significant improvement in representational reversibility from the pre-test (FPT) to the post-test 

(DCT). 

3.5.2.2 Exit slip and opening activity data 

The exit slips and opening activities were analyzed across the entire study and within each kind of 

reversibility.  To analyze the exit slips and opening activities for the presence of reversibility, I 

created a table that presented each student’s results on each exit slip and opening activity pair 

attempted chronologically, which allowed for the observation of general trends in the presence of 

reversibility throughout the study.   

In order for reversibility to be present, a student must first solve the direct exit slip 

correctly, and then correctly solve the opening activity at the start of the next class.  Thus, the 

evidence of the existence or lack thereof of reversibility on a daily basis as measured by the exit 

slips and opening activities is limited by two factors: successfully solving the direct question and 

attendance.  By definition, in order to demonstrate reversibility, a student must first correctly solve 

a problem assessing the day’s learning in a forward direction in order to be eligible to demonstrate 

reversibility on the reversible task.  Thus, for the purposes of analyzing the exit slips and opening 

activities, I define the term eligibility as follows: An exit slip and opening activity pair is defined 

to be eligible to show reversibility (and thus be included in analysis) if the direct exit slip was 

solved correctly and the opening activity was attempted.  An eligible opening activity that was 
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solved correctly received a score of 1.  Any eligible opening activity that was solved incorrectly 

received a score of 0.  Any direct exit slip and reverse opening activity pair that did not meet both 

of these requirements was deemed ineligible and subsequently removed from the data set. 

During the study, the class attempted a total of 33 sets of paired problems, which 

assessed 45 instances of reversibility.  The 45 instances of reversibility were each counted as 

separate paired problems.  Thus, the 45 paired problems were administered to 21 students 

totaling 945 paired problems.  On 245 (26%) of the direct exit slips, a student did not solve the 

forward problem correctly, and was thus ineligible to demonstrate reversibility.  The average 

number of correct and incorrect responses per student on the direct question is reported below in 

table 34 and grouped by flexibility group. 

Table 34. Average number of correct and incorrect responses per student on direct exit slip 

Flexibility 
Group 

Average # of Correct 
Responses 

Average # of Incorrect 
Responses 

High 28.375 8.125 
Middle 26.571 12 
Low 24 16.167 

 

It is important to note that this study examines the presence and development of 

reversibility and that this study acknowledges that mathematics educators are interested in 

wondering why there were 245 instances when a student could not solve a direct problem after 

receiving instruction in a particular calculus topic.  While that is no less important a question 

than investigating the development of reversibility and well worth exploring, this study limits 

itself to examining the development of reversibility. 

If a student was absent on either the day of the exit slip or the day of the opening activity, 

then s/he was not eligible to demonstrate reversibility on the reversible set of paired problems.  A 
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student was absent on either the forward or reverse day 194 (20.5%) times during the study and 

thus her/his results on that direct reverse pair were removed from the data set.  Table 35 reports 

the average number of times per student that a student’s exit slip and opening activity data had to 

be removed from the data set due to absence, either on the day of the direct task or the day of the 

reverse task.  

Table 35. Average number of paired problems that were deemed ineligible due to absence per student 

Flexibility Group Average # of paired problems per student removed 
from data set due to absence 

High 11 
Middle 8.57 

Low 7.67 
 

In sum, 439/945 = 46.6%  of the paired problems were not eligible to be analyzed for the 

existence of reversibility.  There were 506 paired problems that were analyzed for the existence 

of reversibility as exit slips and opening activities.  The number of paired problems eligible to 

show the presence or lack of reversibility are displayed by flexibility group in table 36. 

Table 36. Total number of eligible paired problems and average number of eligible paired problems per student 

Flexibility 
Group 

Total number of reversible 
paired problems eligible for 

analysis 

Average number of 
reversible paired 

problems eligible for 
analysis per student 

High 207 25.875 
Middle 172 24.571 

Low 127 21.167 
 

Thus, at the student level, there is little or no difference in the opportunity to demonstrate 

reversibility between the high and middle flexibility group and just slightly less opportunity to 

demonstrate reversibility for the students in the low group.  It is noteworthy that the low group had 
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the lowest incidence of absence.  The lower amount of paired problems eligible for analysis in the 

low group is almost entirely explained by the increased likelihood that a student in the low 

flexibility group would not be able to solve the direct problem. 

To quantify the relative amount of reversibility present on each exit slip and opening 

activity pair, I used a measure I termed the reversibility score.  The reversibility score is the ratio 

of eligible opening activities that were correctly solved to the number of eligible opening activities.  

For example, if 15 exit slips are solved correctly and all 15 of the students were present to attempt 

the opening activity, then there were 15 eligible opening activities.  If 6 of the opening activities 

were solved correctly, then the reversibility score is 6
15

= 40%. 

To statistically measure the possible improvement in reversibility throughout the study, I 

divided the course into a first half and second half.  The first half consists of exit slip and opening 

activity pairs 1-23 and the second half consists of exit slip and opening activity pairs 24-45.  Exit 

slip and opening activity pair 12 (ESOA 2.6.2) was removed from analysis because no results were 

eligible for analysis due to twenty students incorrectly solving the exit slip and one student absent 

on the day of the exit slip.  Thus, 22 exit slip and opening activity pairs are included in the first 

half of the study and 22 exit slip and opening activity pairs are included in the second half of the 

study. 

In order to statistically analyze the reversibility scores of the exit slips and opening 

activities with a paired samples 𝑡𝑡-test, I had to account for the missing data due to ineligibility.  I 

used multiple imputation, a process that estimates missing data, originally proposed by Rubin 

(1987).  Rubin recommended that when 50% of the data was missing, five imputations were 

sufficient for an accurate estimation (Schafer, 1999); however, Graham, Olchowski, and Gilreath 

(2007) recommended 40 imputations when 50% of the data is missing.  I used SPSS to run 50 
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multiple imputations.  I then ran a paired samples 𝑡𝑡-test on the pooled data of the 50 imputations 

to test for a significant improvement in reversibility from the first half to the second half of the 

study. 

I sorted the exit slips and opening activities into three groups, according to the kind of 

reversibility elicited by the opening activity.  There were 14 paired problems that assessed two-

way reversibility, 10 paired problems that assessed reversibility of the mental process in reasoning, 

and 21 paired problems that assessed representational reversibility.  The results of the group of 14 

two-way reversible process pairs were used to help answer question 2.i.  The results of the group 

of 10 reversibility of the mental process in reasoning without reversible translation pairs were used 

to offer insight into research question 2.ii.  The remaining set of 21 exit slips and opening activities 

were used to inform research question 2.iii by providing evidence of the class’s usage of 

representational reversibility to solve problems.  In each case I examined the table of results for 

general trends of development and then used a paired samples 𝑡𝑡-test to compare the class mean 

reversibility score during the first half of the study and the second half of the study.  As described 

earlier, all statistical analysis of the exit slips and opening activities was conducted on the data set 

after using multiple imputation to fill in the missing data.  The data set from the first half of the 

course consisted of the results of paired problems 1-23, with 12 removed.  The data set from the 

second half of the course consisted of the results of paired problems 24-45.  

3.5.2.3 Interview data  

The written responses to the question-based interviews were analyzed for evidence of reversibility 

using tables 24, 25, 26, and 27.  The written responses to the interview questions were parsed by 

content to identify if the reversibility present was limited to just two-way reversible processes, just 

reversibility of the mental process in reasoning without reversible translation, just representational 
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reversibility or if it extended to all three aspects of reversibility or a combination of two kinds of 

reversibility.    The data reported in tables 26 and 27 was used to help determine if the students 

demonstrate representational reversibility. 

I then used data triangulation with the results of the independent analyses of the DCT, exit 

slips and opening activities, and interview data to develop a holistic answer to the research 

question.  Data triangulation is the process of collecting multiple sources of data that corroborate 

the same phenomenon (Yin, 2009).  Data triangulation is noted as a “major strength of case study 

data collection” (Yin, 2009, p. 114) and greatly increases the construct validity of the conclusions 

of the study. 

 To determine if the students developed reversibility of two-way processes, I analyzed the 

results of the 14 exit slip and opening activity pairs that were designed to assess reversibility of a 

two-way process.  The results of the exit slips and opening activities were analyzed twice, first on 

a yes/no scale indicating if the result of the paired-problem set demonstrated reversibility and 

secondly for evidence of students’ thought processes while using reversibility.  The results of the 

yes/no analysis were aggregated as class data for evidence of reversibility.  In this instance, the 

exit slip opening activity data provided evidence of the presence and development of reversibility 

of two-way processes.  If reversibility of two-way processes developed throughout the course, we 

would expect to see an increase throughout the course of study of the percentage of students who 

demonstrate reversibility of two-way processes. 

 The think-aloud interview data was also used to draw conclusions regarding the 

development of reversibility of two-way processes.  I analyzed the written solutions and the 

transcript data from the pairs of interview questions that assessed reversibility of a two way 

process: 1.1 (interview 1, question 1) and 1.2, 4.1.a and 4.2.a, 4.1.b and 4.2.b, and 4.3.a and 4.3.b.  
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Each pair of questions was analyzed for evidence of reversible conceptions.  As described in 

section 3.4, the data reported in tables 24 and 25 provided evidence of the existence or non-

existence of reversibility as a two-way reversible process and reversibility of the mental process 

in reasoning. We would expect that if reversibility of two-way processes develops throughout the 

study, then the number of students using reversibility of two-way processes to solve the interview 

questions would increase from interview 1 through interview 4.  In this way, we would expect that 

the interview data would be a smaller scale (𝑛𝑛 = 6) representation of the continuum of 

development of reversibility of two-way processes observed through the exit slips and opening 

activities (𝑛𝑛 = 21). 

 To determine if reversibility of the mental process in reasoning without reversible 

translation developed, I consulted the exit slip opening activity data and the think-aloud interview 

data.  I first analyzed the existence of reversibility on the 10 exit slip opening activity pairs that 

were designed to elicit reversibility of the mental process in reasoning without reversible 

translation.  The results of the yes/no analysis were aggregated as class data for evidence of 

reversibility of the mental process in reasoning without reversible translation.  If reversibility of 

the mental process in reasoning without reversible translation developed throughout the course, 

we would expect to see an increase throughout the course of study of the percentage of students 

who demonstrate reversibility of the mental process in reasoning without reversible translation. 

 The think-aloud interview data was also be used to draw conclusions regarding the 

development of reversibility of the mental process in reasoning without reversible translation.  I 

analyzed the written solutions and the transcript data from the pairs of interview questions that 

assess reversibility of the mental process in reasoning without reversible translation: 2.1 (interview 

2, question 1) and 2.2, 2.3 and 2.4, 3.1 and 3.2, 4.1.a and 4.2.a, 4.1.b and 4.2.b, and 4.3.a and 4.3.b.  
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Each pair of questions was analyzed for evidence of using reversibility of the mental process in 

reasoning without reversible translation to solve the problems.  It is expected that the patterns of 

development of reversibility of the mental process in reasoning without reversible translation 

observed at the class level through the exit slips and opening activities will be similarly observed 

in the think-aloud interviews.  I expect that if reversibility of the mental process in reasoning 

without reversible translation does indeed develop during the course of instruction, then the data 

should indicate that the percentage of students using reversibility of the mental process in 

reasoning without reversible translation will increase throughout the course of study. 

 To attempt to answer research sub-question 2.iii: does reversibility of the mental process 

in reasoning with reversible translations (representational reversibility) develop, I used data from 

the flexibility pre-test, the differentiation competency test, exit slip and opening activity data, and 

the think-aloud interview data.  The FPT and the DCT provided additional data points that 

informed the extent to which representational reversibility develops in a course that attends to 

linking multiple representations.  The FPT and the DCT show evidence of representational 

reversibility when the class performs well on two reversible translations (such as graphical to 

symbolic and symbolic to graphical).  For example, if the class has a DCT group score of 88% on 

the FSg competency and 90% on the FGs competency, then we can likely suggest that the students 

have representational reversibility between the symbolic and graphical representations of 

derivatives.  When we compare the results of the representational reversibility items on the 

flexibility pre-test and the DCT, we expect to see higher scores on the DCT items than on the 

flexibility pre-test, if representational reversibility develops when students are engaged in a course 

that attends to linking multiple representations.   
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 The exit slip opening activity data and the think-aloud interview data was also used to draw 

conclusions regarding the extent to which representational reversibility develops during the course 

of study.  I first analyzed the existence of reversibility on the 21 exit slip opening activity pairs 

that are designed to elicit representational reversibility.  The results of the yes/no analysis was 

aggregated as class data for evidence of representational reversibility.  If representational 

reversibility developed throughout the course, we would expect to see an increase throughout the 

course of study of the percentage of students who demonstrate representational reversibility on the 

exit slips and opening activities. 

 The think-aloud interview data was used to draw conclusions regarding the development 

of representational reversibility.  I analyzed the written solutions and the transcript data from the 

pairs of interview questions that assessed representational reversibility: 1.3 (interview 1, question 

3), 2.3 and 2.4, and 3.1 and 3.2.  Each pair of questions was analyzed for evidence of using 

representational reversibility to solve the problems.   

It is expected that the patterns of development of representational reversibility observed at 

the class level through the exit slips and opening activities will be similarly observed in the think-

aloud interviews.  I expect that if representational reversibility did indeed develop during the 

course of instruction, then the data should indicate that the percentage of students using 

representational reversibility will increase throughout the course of study. 

Finally, I attempted to answer research question 2: to what extent do students develop 

reversibility when engaged in a course that attends to linking multiple representations, by 

triangulating the conclusions drawn when answering the three sub-questions above described.  

Table 37 reports possible outcomes to answering research sub-questions 2.i, 2.ii, and 2.iii. 
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Table 37. Possible combinations of outcomes answering research question 2 

 R.Q. 2.i R.Q. 2.ii R.Q. 2.iii R.Q. 2 
Did reversibility 
develop? 

Y Y Y Strong evidence that reversibility does 
develop when students are engaged in 
a course that attends to linking 
multiple representations 

 Y Y N Evidence suggests that reversibility 
likely developed 

 Y N Y Evidence suggests that reversibility 
likely developed 

 N Y Y Evidence suggests that reversibility 
likely developed 

 Y N N Evidence suggests that reversibility 
may have developed in a limited 
amount and in a limited domain 

 N Y N Evidence suggests that reversibility 
may have developed in a limited 
amount and in a limited domain 

 N N Y Evidence suggests that reversibility 
may have developed in a limited 
amount and in a limited domain 

 N N N Evidence suggests that reversibility 
may not develop when students are 
engaged in a course that attends to 
linking multiple representations 

     
 

3.5.3 Research question 3 

What are the thought processes that students utilize when using reversibility to solve problems?  

The exit slip and opening activity data and the think-aloud interview transcript data were used to 

answer research question 3. 

The exit slips and opening activities were specifically designed to elicit evidence of 

students’ thinking while solving the questions.  Each exit slip and opening activity contains a 

directive asking students to either explain how s/he solved the problem or to show work indicating 
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how the student solved the problem.  As described earlier, each exit slip and opening activity were 

analyzed twice.  They were analyzed once for accuracy and then a second time for evidence of 

students’ thought processes while using reversibility.  The exit slips were analyzed for evidence 

that students used reversibility of two-way processes, reversibility of the mental process in 

reasoning without reversible translation, and representational reversibility.  To find this evidence 

I looked for written evidence that a student was thinking reversibly, such as describing her/his 

work by saying, “I tried to think of a function that would have the given derivative” and for 

evidence of translations of representations. 

The think-aloud interviews were video recorded and then transcribed.  First, each interview 

was independently analyzed for thematic elements indicating consideration of reversible 

relationships.  Possible verbal cues that may indicate a reversible thought process were listed in 

section 3.4.4.  Each participant’s four interview story was analyzed in sequence for thematic 

evidence of how the participant thinks about solving problems that require reversibility.  Examples 

of possible themes that may present when analyzing the interview transcript data could include: 

• How students use representational translations to support reversible 

thinking 

• Do students consider changing representations to work around a 

stopping point, such as lacking a known procedure 

• Evidence of representational preference when translating 

• Evidence indicating different thought processes for different kinds of 

reversibility 

o For example, do participants follow similar thought processes when 

solving two-way reversible questions as they do when solving 
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reversible questions that require a reversing of the mental process in 

reasoning 

o Do reversible thought processes differ when translation is involved 

• What features of functions do participants perceive as constant versus 

mutable when translating representations 

o If the translation is reversible, do participants’ think about the 

translation differently than if the translation is a one-way translation 

Commonalities and dissimilarities between questions were noted and categorized for possible 

patterns at the individual level.  This included analyzing the text for evidence of how participants’ 

thoughts about reversibility and translating between representations changed from the first 

interview through the last interview. 

Same session interview analyses at the individual level were then compared for similarities 

and differences within groups (high flexibility, average flexibility, and low flexibility) to identify 

possible themes common across groups and more likely, significant differences across groups 

(Yin, 2009).  It was expected that this portion of the analysis would reveal differences in how 

students with high flexibility, average flexibility, and low flexibility conceive of reversibility.  I 

expected to find evidence of how participants think about reversibility to be unique at each group 

level, consistent with Krutetskii’s (1976) conclusion that capable, average, and incapable students 

develop reversibility differently. 

The DCT data was also used to help explain any difficulties that the interview participants 

had when trying to solve the interview questions.  If the participants could not solve problems that 

required representational reversibility, there were two possible causes: 1) the participants were not 

able to translate representations to solve the problems, or 2) the participants were able to translate 
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representations but were not able to apply calculus correctly.  In order to isolate why students were 

not able to solve problems that required representational reversibility, I consulted the interview 

participants’ DCT scores.  If the DCT results indicated that the participant had a strong 

understanding of multiple representations of derivatives, then it is likely that the calculus content 

was the source of the difficulty.  If the DCT results indicated that the participant had a low ability 

to translate between multiple representations of derivatives, then the lack of representational 

reversibility was likely responsible in part for the inability to solve questions that required 

representational reversibility. 

The interview transcripts also helped to explain possible causes for why the participants 

were not able to solve questions that required representational reversibility.  The transcripts were 

analyzed for verbal evidence of the participants having considered the need to translate 

representations.  If there was evidence that the participant considered translating the 

representation, then the transcript was further analyzed to determine how the participant thought 

about translating the representation.  I attempted to tease out from the interview data what it is 

about the representational reversibility that was difficult for the participant.  To do so, I looked for 

verbal cues indicating difficulty with a representation such as: 

• “I hate graphs” 

• “Do we have a formula” 

• “If there’s no formula, then it’s not a function” 

• “What does the table mean” 

If any verbal cues were found, I looked for patterns and/or dissimilarities across interview groups 

and within interview groups to attempt to identify stumbling blocks in regards to representational 

reversibility. 
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3.6 VALIDITY AND RELIABILITY 

As described earlier, the assessment items used in this study have either been previously validated 

by other researchers (the DCT by Kendal and Stacey (2003)) or have been reviewed by multiple 

mathematics educators to ensure face and construct validity.  The flexibility pre-test was analyzed 

for internal reliability and was found to have excellent internal reliability as a measure of flexibility 

with a Cronbach’s alpha level of 0.929.  

To protect the construct validity of the conclusion of the study, Yin (2009) recommended 

using multiple sources of evidence.  In this study, data triangulation looked for convergence among 

four independent data sources, the FPT, the DCT, exit slips and opening activities, and think-aloud 

interviews to reach conclusions. 

External validity requires “defining the domain to which a study’s findings can be 

generalized” (Yin, 2009, p. 40).  To address external validity in a multiple-case study, Yin 

recommended using replication logic.  This study addresses external validity by selecting two 

participants in each interviewing group.  By interviewing two students in each group, replication 

of findings allows for stronger claims and protects the external validity of the study.  The total 

number of participants in this study, six, is consistent with the number of participants used in 

reversibility research.  Teachey (2003) interviewed ten participants.  Rider (2004) interviewed 

eight participants.  Haciomeroglu (2007) interviewed three participants and Rachlin (1981) 

interviewed four participants. 

Reliability is “demonstrating that the operations of a study – such as the data collection 

procedures – can be repeated, with the same results” (Yin, 2009, p. 40).  To ensure reliability, Yin 

suggested using a case study protocol and developing a case study database.  The purpose of the 

case study protocol and database is to document every step of the data collection and analysis so 
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that another researcher could repeat the same investigation.  I maintained a log of all data collection 

and analysis.  A second rater double coded 10% (𝑛𝑛 = 67) of the instructional items for 

representation.  We had a 96% rate of agreement and the items on which we disagreed were 

discussed and resolved.  A second rater double coded 33.3% (𝑛𝑛 = 2) of the interview data.  We 

had 100% agreement on coding the interview data.  A second rater also double coded 28.6% (𝑛𝑛 =

198) of the exit slips and opening activities.  We had 100% agreement.  A minimum inter-rater 

reliability threshold of 85% will be required throughout the analysis phase of the study. 

3.7 SUMMARY 

This investigation used a multiple-case study method to investigate the development of 

reversibility in a calculus class that attends to linking multiple representations.  Four data sources 

were used to inform the conclusions of this study: 1) a flexibility pre-test, 2) a differentiation 

competency test, 3) 33 day-to-day activities consisting of exit slips and opening activities, and 4) 

think-aloud interviews.   

The flexibility pre-test was administered before the start of the instructional part of the 

study to establish students’ existing levels of flexibility with multiple representations and to 

provide initial evidence of students’ existing levels of representational reversibility.  The exit slips 

and opening activities were administered 33 times during the study and were analyzed for evidence 

of development of reversibility of two way processes, reversibility of the mental process in 

reasoning without reversible translation, and representational reversibility.  Four think-aloud 

interviews with 6 participants were conducted and the results of the interviews were analyzed for 

evidence of development of reversibility of two way processes, reversibility of the mental process 
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in reasoning without reversible translation, and representational reversibility.  The research portion 

of the study concluded by administering Kendal and Stacey’s (2003) differentiation competency 

test.  The DCT provided evidence of the extent to which flexibility and representational 

reversibility have developed since the students attempted the flexibility pre-test. 

The data management software program NVivo10 was used as a tool to manage and 

analyze the interview data.  The interview transcripts were searched for phrases that indicated 

reversible conceptions.  Themes common within groups and common across groups were used to 

attempt to build an explanation for the development of reversibility.  Themes extremely divergent 

across groups were also considered. 

Data triangulation from the flexibility pre-test, the DCT, exit slips and opening activities, 

and think-aloud interviews was used to address the following research questions: 

1) To what extent do students develop flexibility with multiple representations 

when engaged in a course that attends to linking multiple representations? 

2) To what extent do students develop reversibility when engaged in a course 

that attends to linking multiple representations?  In particular: 

i. To what extent does reversibility of two-way reversible processes 

develop? 

ii. To what extent does reversibility of the mental process in reasoning 

without reversible translation develop? 

iii. To what extent does reversibility of the mental process in reasoning 

with reversible translations (representational reversibility) develop? 

3) What are the thought processes that students utilize when using reversibility 

to solve problems? 
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4.0  RESULTS 

The purpose of this study is to investigate reversibility and linking multiple representations in a 

calculus environment.  Specifically, this study attempts to answer the following research questions: 

1) To what extent do students develop flexibility with multiple representations 

when engaged in a course that attends to linking multiple representations? 

2) To what extent do students develop reversibility when engaged in a course 

that attends to linking multiple representations?  In particular: 

i. To what extent does reversibility of two-way reversible processes 

develop? 

ii. To what extent does reversibility of the mental process in reasoning 

without reversible translation develop? 

iii. To what extent does reversibility of the mental process in reasoning 

with reversible translations (representational reversibility) develop? 

3) What are the thought processes that students utilize when using reversibility 

to solve problems? 

In chapter 4, I examine the results of the research study in relation to these questions.  I 

discuss each question in turn and use the results of the appropriate instruments to reach conclusions 

regarding each question.  I begin by discussing the first research question. 
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4.1 RESEARCH QUESTION 1 

To what extent do students develop flexibility with multiple representations when engaged in a 

course that attends to linking multiple representations?  Flexibility with multiple representations 

is “the ability to change from one perspective to another perspective (e.g., change from an algebraic 

perspective to a graphical perspective)” (Teachey, 2003, p. 6). 

I used two data sources to inform the extent to which students develop flexibility with 

multiple representations when engaged in a course that attends to linking multiple representations.  

The results of the flexibility pre-test (FPT) and the results of the Differentiation Competency Test 

(DCT) were compared to determine the extent to which flexibility develops.  Throughout the 

remainder of the document, I refer to the FPT as “pre-test” and the DCT as “post-test”. 

The results of the pre-test and the post-test, when taken together, suggest that flexibility 

with multiple representations has developed in a significant amount over the course of the study.  

In the subsequent sections, I examine the development of flexibility and representational 

preference. 

4.1.1 Development of flexibility 

In this section, I first examine the development of overall flexibility by reporting the class results 

on the pre-test and the post-test.  I then focus my analysis on the individual translations and report 

the results of the pre-test and post-test at a more fine-grained level.  The implications of the results 

in reference to the research question are discussed. 

It is important to restate an earlier caveat, that flexibility is likely content specific 

(Krutetskii, 1976; Rachlin, 1981; Teachey, 2003).  The pre-test assesses flexibility within the broad 
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domain of functions and within the specific domains of composition of functions and inverses with 

9 items testing each specific domain.  The post-test assesses flexibility within the broad domain of 

derivatives and within the specific domains of formulating derivatives and interpreting derivatives 

with 9 items testing each specific domain.   

I conducted a paired samples t-test to test for significant differences between the specific 

contents within the pre-test and the post-test.  On both assessments, the class was significantly 

better at one content than the other.  Table 38 reports the results of the paired samples t-test, where 

C represents composition, Inv represents inverse, F represents formulation, and Int represents 

interpretation. 

Table 38. Paired samples t-test of content area differences on pre-test and post-test 

Assessment Content Area Mean 
(9 items) 

Content Area Mean 
(9 Items) 

Paired Difference 
𝑡𝑡-value 

Paired Difference 
p-value 

Pre-test  𝐶𝐶 = 5.4762 𝐼𝐼𝑛𝑛𝑣𝑣 = 3.4286 4.580 < 0.001∗ 
Post-test 𝐹𝐹 = 4.5714 𝐼𝐼𝑛𝑛𝑡𝑡 = 5.5119 −3.185 0.005∗ 

 

Thus, at the start of the study, the students were significantly more likely to demonstrate 

flexibility when presented a question involving compositions of functions than inverses of 

functions.  At the end of the study, the students were significantly more likely to demonstrate 

flexibility when asked to interpret a derivative than when asked to formulate a derivative.  The 

influence of the content on the ability to gauge the development of flexibility serves as a warning 

against drawing strong conclusions at the item level.  It is not feasible to tease out the effects of 

flexibility versus content knowledge at the individual item level, thus making a conclusion about 

either flexibility or content knowledge invalid.   

Previous flexibility researchers (Krutetskii, 1976; Rachlin, 1981; Rider, 2004) have shown 

that interpreting the results of an assessment that assesses flexibility across a mathematical domain 

allows for the drawing of valid conclusions regarding the existence of flexibility.  Thus, while 
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flexibility and content knowledge cannot be teased apart at the item level, they can be reliably 

teased apart at the assessment level and translational level, provided that flexibility is assessed 

across more than one content.  Thus, at the test level (18 items) and at the translational level (2 

items of different content), the pre-test and post-test both serve as reliable measures of flexibility 

(as discussed in chapter 3) and allow for the drawing of valid conclusions regarding the 

development of flexibility. 

4.1.1.1 Development of flexibility – a broad view 

Table 39 reports the group mean and standard deviation of the pre-test, post-test, and the difference 

between them. 

Table 39. Group mean and standard deviation of the pre-test and post-test 

Assessment Mean N Standard Deviation 

Pre-test 8.9048 21 3.30764 

Post-test 10.0833 21 3.06628 

Post-test – pre-test 1.17857 21 3.00431 

 

A paired samples t-test was conducted to test for significance of the difference in class mean scores 

on the pre-test and post-test.  The paired samples t-test indicated that the class mean score 

improvement of 1.1785 is a significant improvement with 𝑡𝑡 = 1.798,𝑝𝑝 = 0.0435.  I found a 

strong positive correlation between pre-test score and post-test score with 𝑟𝑟 = 0.558.  This result 

suggests that a student’s pre-existing flexibility exhibited an influence on the amount of flexibility 

that a student showed at the end of the course and that 31% of the variability in a student’s post-

test score can be explained by the student’s pre-test score.  Furthermore, the strong correlation 
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provides supporting evidence that the two assessments assessed the same concept, in this case 

flexibility. 

 I also examined the development of flexibility within each flexibility group.  Table 40 

reports the group mean results on the pre-test and post-test for the high, middle, and low flexibility 

groups and reports the results of a paired-samples 𝑡𝑡-test for significance of the difference in group 

mean scores on the pre-test and post-test. 

Table 40. Mean flexibility score on pre-test and post-test reported by flexibility group 

Flexibility 
Group 

Pre-test Score  Post-test Score  Mean 
Difference 
(post-test – 
pre-test) 

𝑡𝑡-value, 𝑝𝑝-value 

High 12.44 12.5 0.06 𝑡𝑡 = 0.061,𝑝𝑝 = 0.477 
Middle 8.286 9.071 0.786 𝑡𝑡 = 0.693,𝑝𝑝 = 0.257 

Low 4.917 8.042 3.125 𝑡𝑡 = 2.915,𝑝𝑝 = 0.017∗ 
 

Only the students in the low flexibility group showed a significant improvement in flexibility over 

the course of the study. 

4.1.1.2 Development of flexibility at the translational level 

Flexibility at the translational level refers to a student’s ability to translate from a particular input 

representation to a different output representation.  For example, one possible translation is 

graphical-numerical, meaning that a student was given a graph of a function and produced a 

numerical solution.  I conducted a paired samples 𝑡𝑡-test comparing the mean score of each 

translation to test for significant differences in class performance on the pre-test and the post-test.  

Table 41 reports the class means for each translation on the pre-test and post-test.  The translations 

are presented in alphabetical order. 
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Table 41. Class achievement (%) on specific translations on the pre-test and post-test 

Translation 
(2 items each) 

Pre-test 
Score (%) 

Post-test 
Score (%) 

Difference 
(Post-test – 

Pre-test) 

t-value p-value 

Graphical-
Numerical 

55.95 35.72 −20.23 1.507 0.148 
Graphical-Symbolic 26.19 61.91 35.72 3.807 0.001∗ 
Numerical-
Graphical 73.81 38.10 −35.71 3.423 0.003∗ 
Numerical-
Symbolic 23.81 45.24 21.43 2.905 0.009∗ 
Symbolic-Graphical 28.57 76.19 47.62 5.423 < 0.001∗ 
Symbolic-
Numerical 59.53 78.57 19.04 2.609 0.017∗ 

 

The paired samples t-test revealed significant differences in class mean scores between 

pre-test score and post-test score in 5 out of 6 translations.  There was no significant difference in 

pre-test class mean score and post-test class mean score when translating from the graphical to 

the numerical representation.  There were significant improvements from the class mean score on 

the pre-test to the class mean score on the post-test on problems that required translating from 

graphical to symbolic, numerical to symbolic, symbolic to graphical, and symbolic to numerical.  

There was a significant decrease in the class mean score on the pre-test to the class mean score 

on the post-test on problems that required translation from numerical to graphical. 

The calculus class showed improvement on four out of six translations, indicating a trend 

towards the development of flexibility.  However, the two translations that did not show 

significant improvement, namely the graphical to numerical translation and the numerical to 

graphical translation, should be examined further to consider why the students’ results on these 

questions differ from the overall picture painted by the data. 

The calculus class’ mean score on the pre-test on items that required translation from the 

graphical representation to the numerical representation was 1.119/2 = 55.95%.  The class mean 
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score on the post-test on items that required translation from the graphical representation to the 

numerical representation was 0.7144/2 = 35.72%, which while lower was not significantly 

different (𝑝𝑝 = 0.148) than the class mean score on the pre-test on items that required translation 

from the graphical representation to the numerical representation.  In this instance, the decrease in 

class mean score may entirely be due to chance. 

The decline in class mean score on items assessing translation from the numerical 

representation to the graphical representation cannot be attributed to chance as there is only a 3 

out of 1,000 chance that the observed decline is a random occurrence.  The role of the content 

differences between functions and derivatives may explain the significant decline.  The pre-test 

assessed functions and the post-test assessed derivatives.  I provide examples of the different 

contents below. 

When translating functions from the numerical to the graphical representation, students 

typically use some form of plotting points (Janvier, 1987b).  Question 2.c from the pre-test requires 

the plotting of points to sketch a graph of a composition function given a table of values.  Question 

2.c is displayed below in figure 30. 
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Figure 30. Pre-test question 2.c  

In the most likely solution method, a student would fill-in the ℎ column by using composition of 

functions and then plot the points and draw a curve through the plotted points. 

Question 9 on the pre-test requires a similar translational skill set within the specific 

content domain of inversion.  Question 9 is displayed below in figure 31. 

 

Figure 31. Pre-test question 9 
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In question 9, the students have to first know that 𝑓𝑓−1(𝑥𝑥) requires switching the domain 

and range of 𝑓𝑓(𝑥𝑥) and then they should plot the points and sketch a curve through the points; 

alternatively, a student could first sketch 𝑓𝑓(𝑥𝑥) and then reflect the graph of 𝑓𝑓(𝑥𝑥) through the line 

𝑦𝑦 = 𝑥𝑥 and produce a correct graph of 𝑓𝑓−1(𝑥𝑥) as well.  Both solutions require the act of plotting 

points displayed in a table as the translational aspect of the problem.  As 31/42 = 73.81% of the 

answers given to these two problems were correct, the results of the pre-test suggest that the 

calculus class had a strong grasp of plotting points (translating a function from a numerical 

representation to a graphical representation) and had a strong understanding of composing or 

inverting functions defined numerically. 

The post-test assessed a student’s ability to translate between multiple representations of 

derivatives.  Translating a derivative from a numerical representation to a graphical representation 

requires a different set of skills and cognitive understandings than translating a function.  As 

described earlier, the numerical representation of the derivative refers to understanding the 

derivative as the rate of change, as the end result of the limiting process applied to the difference 

quotient that represents the average rate of change.  The graphical representation of the derivative 

incorporates the three understandings of 1) making inferences about functional behavior based on 

information provided by the derivative, 2) understanding that differentiation produces a new 

function whose functional values are determined by the slope of the line tangent to the curve 𝑓𝑓(𝑥𝑥) 

at each 𝑥𝑥-value, and 3) the ability to sketch both a function curve given a derivative curve and a 

derivative curve given a function curve.  Thus, when translating from the numerical representation 

of a derivative to the graphical representation of a derivative, a student may be given an average 

rate of change and asked to determine a functional behavior, or the slope of the line tangent to the 

curve at an appropriate 𝑥𝑥-value, or to make a sketch of an appropriate function. 
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Post-test question 11 requires students to use a list of functional values approaching 𝑥𝑥 = 3 

(the numerical representation of the derivative) to determine the slope of the line tangent to the 

curve (the graphical representation of the derivative).  Question 11 is displayed below in figure 32. 

 

Figure 32. Post-test question 11.  

Reprinted from “Tracing learning of three representations with the differentiation competency framework”, by M. 

Kendal & K. Stacey, 2003, Mathematics Education Research Journal, 15, p. 33.  Copyright 2003 by Mathematics 

Education Research Group of Australasia.  Reprinted with permission. 

While it is the case that any two of the given points can be used to find an estimate of the slope 

of the line tangent to the graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 3, the best estimate requires finding the slope 

of the secant line through the points (3.000,0.000) and (2.999,0.007), which results in the 

correct answer of 𝑓𝑓′(3) ≈ −7.  Finding the slope of the line through any of the other points 

would demonstrate knowledge of the translation from the numerical representation to the 

graphical representation but would not demonstrate an understanding of the limiting process of 

differentiation and thus not correctly answer the question by finding the best estimate.  As such, I 

reviewed each student’s work on post-test question 11 and found that 2/21 students answered 

correctly, 5/21 students translated correctly but used the incorrect points, and 14/21 did not 

make a credible attempt at solving the problem, indicating that fully two-thirds of the class did 

not have a conception of how to translate from the numerical representation of the derivative to 

the graphical representation of the derivative.  Thus, 7/21 students demonstrated translational 

proficiency from the numerical representation to the graphical representation of the derivative. 
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 Post-test question 17 also requires translating from the numerical representation of the 

derivative to the graphical representation of the derivative but has none of the ambiguities 

discussed regarding post-test question 11.  Question 17 is presented below in figure 33. 

 
 

Figure 33. Post-test question 17.   

Reprinted from “Tracing learning of three representations with the differentiation competency framework”, by M. 

Kendal & K. Stacey, 2003, Mathematics Education Research Journal, 15, p. 33.  Copyright 2003 by Mathematics 

Education Research Group of Australasia.  Reprinted with permission. 

Question 17 should be solved by interpreting the phrase “rate of change of 𝑦𝑦”  as the numerical 

representation of the derivative and making the connection that since the rate of change of 𝑦𝑦 is 

defined by the function 5𝑥𝑥 + 7 then the derivative function is also 5𝑥𝑥 + 7.  14 out of 21 student 

correctly answered this question.  When combining the results of the two questions while 

looking only at translation, the class total score was 19/42 = 45.24%, which still represented a 

significant decrease from the class performance on 𝑁𝑁𝑔𝑔 questions on the pre-test, 𝑡𝑡 = 2.351,𝑝𝑝 =

0.029. 

4.1.2 Representational preference 

Representational preference refers to a student’s preference for one mathematical representation 

over another, such as a student’s preference to analyze all functions in a symbolic form instead of 

the graphical and/or numerical representations.  The pre-test and post-test were compared to 

determine if any representational preference existed at the beginning of the study and if 

representational preference changed during the course of study.  To determine the extent to which 

students had a representational preference at the start of the study and at the end of the study, I 
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averaged the scores across competencies as shown in table 42, below, consistent with the approach 

taken by Kendal and Stacey (2003). 

Table 42. Class mean score on specific representations on the pre-test and post-test 

Representation Class Mean: Pre-test Class Mean:  Post-
test 

Difference 
(Post – Pre) 

𝑡𝑡-value 𝑝𝑝-value 

Input Representation     
Symbolic (_S_)  
(6 items) 

2.905 4.095 1.190 4.365 < 0.001∗ 

Graphical (_G_)  
(6 items) 

2.571 3.0833 0.512 1.432 0.168 

Numerical (_N_) 
(6 items) 

3.429 2.905 −0.524 −1.221 0.236 

Output Representation     
Symbolic (_S_) 
(6 items) 

2.143 3.143 1.000 3.981 0.001∗ 

Graphical (_G_) 
(6 items) 

2.976 3.417 0.440 1.375 0.184 

Numerical (_N_) 
(6 items) 

3.786 3.524 −0.262 0.610 0.584 

 

4.1.2.1 Input preference 

A paired samples t-test indicated that at the start of the study (on the pre-test) there were no 

significant differences between the class mean scores of the symbolic and the graphical input 

representations, the symbolic and the numerical representations, and the graphical and numerical 

representations.  However, the class mean score on the numerical input representation is 

significantly higher than the class mean score on the symbolic representation with 𝑡𝑡 = 2.257,𝑝𝑝 =

0.035, indicating that the class as a whole did not have an input preference between the symbolic 

or numerical function representations but did prefer the numerical representation to the graphical 

representation.   

A paired samples t-test was used to compare the class mean scores of each input 

representation on the post-test.  The paired samples t-tests indicated that on the post-test, the 

students had a considerable preference for the symbolic representation as an input.  The class mean 
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score on post-test items whose input representation was symbolic was significantly higher than 

both the class mean score on post-test items whose input representation was graphical, 𝑡𝑡 =

4.104,𝑝𝑝 = 0.001, and on post-test items whose input representation was numerical, 𝑡𝑡 =

6.367,𝑝𝑝 < 0.001.  There was no significant difference between class mean scores on post-test 

items whose input representations were numerical and graphical.   

It is noteworthy that at the start of the study, the students exhibited a preference for the 

numerical representation over the graphical representation but at the end of the study, the students 

showed no preference between the graphical representation and the numerical representation.  The 

students’ preference for items given in the symbolic representation changed from being equal to 

the students’ preference for either the numerical or graphical representation to being significantly 

greater than the students’ preference for either the numerical or the graphical representation. 

 One possible explanation for the distinct changes in representational input preference is the 

interplay between content specificity and curricular design.  The body of research suggests that 

flexibility is content specific (Krutetskii, 1976; Rachlin, 1981; Teachey, 2003) and it may be the 

case that these students preferred to be given a numerical representation when the problem required 

analysis of a function while they preferred to be given the symbolic representation when a problem 

required differentiation.  Thus, the representational preference may be due in part to the content of 

the problem and not entirely due to a preference regarding the representation.  The students’ input 

preference for the symbolic representation of the derivative may be explained by the relative 

dominance of the symbolic input representation during the study.  As noted earlier, 395 items 

during the course of the study used a symbolic representation for the input of a problem that 
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required differentiation.  This accounted for 60.5% of the total number of problems attempted.3  

It is reasonable to think that the students may have developed a certain comfort level with the 

symbolic representation when using derivatives before being fully exposed to solving derivative 

problems given in the numerical and graphical representations.  

4.1.2.2 Output preference 

As shown in table 42 above, the results of the pre-test indicate a strong representational output 

preference for the numerical representation.  The class mean score for the numerical output 

representation was significantly larger than both the graphical output representation (𝑡𝑡 =

2.615,𝑝𝑝 = 0.017) and the symbolic output representation (𝑡𝑡 = 5.101, 𝑝𝑝 < 0.001).    The class 

mean score for the graphical output representation was also significantly larger than the class mean 

score for the symbolic output representation (𝑡𝑡 = 2.764,𝑝𝑝 = 0.012).  These results indicate that 

at the beginning of the study, the calculus class had a clear order of representational output 

preference of numerical, then graphical, and then symbolic.  This contrasts the post-test data which 

showed no significant differences between mean class scores on post-test items that required 

translation into symbolic, graphical, or numerical output representations.   

The interplay between content specificity and curricular design may also explain the 

change in representational output preference.  It appears to be the case that when students are 

analyzing functions, producing a numeric value is preferable to sketching a graph which is 

preferable to developing an algebraic expression.  However, when solving a problem that uses 

differentiation, the students were equally likely to produce correct solutions in the symbolic, 

3 As explained earlier, the large number of symbolic input problems is due to the nature of learning the rules 
of differentiation in chapter 2 of the course curriculum. 
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graphical, and numerical representations of derivatives.  The students’ equality of representational 

output preference on problems involving differentiation is likely due in part to participating in a 

course that attends to linking multiple representations. 

Thus, at the start of the study, there is strong evidence to suggest that the class of calculus 

students had a representational preference for working in the numerical representation, both in 

input and output. The students did not indicate a significant preference between the symbolic and 

graphical input representations but clearly preferred to translate into the graphical representation 

over the symbolic representation.  At the conclusion of the study, the students’ input preference 

had changed from the numerical representation to the symbolic representation and the students had 

no representational output preference. 

Finally, it is also noteworthy that the students’ performance on problems involving the 

symbolic representation increased significantly over the course of the study, both as an input 

representation and as an output representation.  This suggests that over the course of the study, the 

students developed significant flexibility with the symbolic representation.  As discussed earlier, 

the prevalence of items involving the symbolic representation (60.5%) as an input during the study 

likely explains a significant part of the increase in scores on problems with a symbolic input.  The 

increase in scores on problems with the symbolic representation as an output occurred without a 

strong prevalence for the symbolic output representation (36%), indicating that flexibility with 

the symbolic representation may have improved while flexibility with the remaining 

representations remained the same. 
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4.1.3 Summary – the extent to which flexibility developed 

Overall flexibility significantly improved over the course of the study.  In particular, the students’ 

proficiency level with individual translations significantly improved in four out of the six possible 

translations, symbolic to graphical, symbolic to numerical, graphical to symbolic, and numerical 

to symbolic, indicating a general trend towards improvement.  There was a significant decrease in 

the numerical to graphical translation, indicating that the students had a more fully developed 

understanding of the numerical and graphical representations of functions and how to translate 

between them than they did the numerical and graphical representations of derivatives.  The 

students did not develop flexibility between the numerical and graphical representations of the 

derivative in an amount similar to the other translations, which may have been due in part to the 

curriculum’s relative lack of emphasis on the numerical representation of the derivative. 

4.2 RESEARCH QUESTION 2 

To what extent do students develop reversibility when engaged in a course that attends to linking 

multiple representations?  In particular: 

i. To what extent does reversibility of two-way reversible processes 

develop? 

ii. To what extent does reversibility of the mental process in reasoning 

without reversible translation develop? 

iii. To what extent does reversibility of the mental process in reasoning 

with reversible translations (representational reversibility) develop? 
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I triangulated four data sources to help inform the extent to which students develop 

reversibility in a course that attends to linking multiple representations: 1) the pre-test data, 2) the 

post-test data, 3) the exit slips and opening activities data, and 4) the think-aloud interview data.  

In this section, I first present the exit slip and opening activity data from the entire study.  I then 

attempt to answer each sub-question individually and then use the answers to all three sub-

questions to inform research question 2.  In each case, I attempt to answer the question and then 

provide the evidence that supports the answer. 

4.2.1 Results of exit slips and opening activities – overall reversibility 

Over the course of the study, 33 exit slip and opening activity pairs were collected that assessed 

45 separate instances of reversibility.  Figure 34, shown below, presents the results of all of the 

exit slip and opening activity pairs, administered chronologically throughout the study. 
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Figure 34. Results of the reversible pairs of exit slips and opening activities 

Figure 34 shows a trend towards an increase in demonstrated reversibility from the first half 

(paired problems 1-23) of the study to the second half of the study (paired problems 24-45).  The 

trend towards improvement can be seen in the increase in density of the green blocks and 

decrease in density of the red blocks over the course of the study.  Table 43, shown below, 

reports the results of the presence or lack of reversibility on the paired exit slips and opening 

activities during the first half of the study and the second half of the study. 

Table 43. Results of exit slips and opening activities 

Outcome First half: Paired problems 1-23 Second half: Paired 
problems 24-45 

Totals 

Reversibility 
Present 

125 192 317 

Reversibility Not 
Present 

124 65 189 

Ineligible: Absence 59 135 194 
Ineligible: Incorrect 

Direct Exit Slip 
175 70 245 

Totals 483 462 945 
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H5 Y N - - Y Y Y - Y N - - - Y N N Y N Y Y ^ - - N Y Y ^ ^ ^ ^ ^ Y Y Y Y Y Y N ^ ^ Y Y Y Y N
H6 Y Y Y N ^ Y Y Y Y Y Y - Y Y N Y Y Y Y Y N - N N ^ ^ ^ ^ ^ ^ ^ Y Y Y Y Y Y Y Y Y Y Y ^ ^ ^
H7 ^ N N - - ^ ^ - ^ - - - - ^ - N Y N N N - - N - ^ ^ Y N Y Y - ^ ^ Y Y Y N N - ^ Y Y Y Y -
H8 Y Y Y N Y N ^ ^ - N - - - ^ - Y Y N Y N ^ N - ^ ^ ^ ^ - ^ ^ ^ - - ^ ^ ^ ^ N ^ ^ ^ ^ ^ ^ N
M1 Y Y - N Y N Y - Y N Y - - N - Y Y N Y Y N N - N - Y ^ - ^ ^ ^ ^ - - - Y Y N Y Y Y Y Y Y Y
M2 Y N - - - ^ ^ - Y Y - - - N - Y N N Y Y - ^ - - Y Y Y Y ^ ^ ^ Y Y - - Y Y N Y Y Y Y - - Y
M3 Y Y Y N ^ Y ^ - Y Y N - ^ Y - Y Y - ^ ^ ^ - ^ ^ Y Y ^ ^ ^ ^ ^ N Y ^ ^ Y Y N Y ^ ^ ^ Y - Y
M4 - Y - - - N - - - N - - N N - - Y N Y Y N - - N Y Y Y Y Y Y Y Y Y Y Y Y Y - N Y Y Y N Y N
M5 Y N - - Y N ^ - Y Y - - - ^ - ^ N - ^ ^ ^ - ^ - Y Y ^ ^ ^ ^ ^ N N ^ ^ Y Y - Y Y Y Y - - N
M6 - N - - - N N - Y N N - - N - - Y N Y N ^ - N - ^ ^ - - Y Y N - - ^ ^ - - N N Y Y Y Y N -
M7 - N - N Y Y Y N ^ N N - - Y N Y Y N Y N ^ - Y ^ - Y Y Y Y Y Y N Y ^ ^ ^ ^ ^ ^ Y Y Y ^ ^ ^
L1 - - - - - N - - - - - - - N - - N N Y Y ^ ^ ^ - - Y Y - Y Y Y N - ^ ^ - N ^ N Y - Y - - N
L2 - ^ ^ - Y Y Y N - - - - - ^ N Y N N Y N ^ - N ^ ^ ^ ^ ^ ^ ^ ^ N N Y Y Y Y - N Y Y Y ^ ^ ^
L3 - - - N ^ N Y - N - N - N N N - N N Y Y - - - - ^ ^ N N Y Y - Y Y N N Y Y N ^ ^ Y Y - - Y
L4 - N - ^ - N - - N - - - - - - - N N Y N ^ - - - N Y - - N N N - Y - - Y - - - Y Y Y Y N -
L5 - N - - ^ N ^ ^ - - - - - Y - Y Y N Y Y - - Y ^ Y Y ^ ^ ^ ^ ^ N N - - Y N ^ ^ Y Y Y Y N ^
L6 Y N - - - N N - Y Y N - - N - - Y N N Y ^ - N - Y Y ^ - ^ ^ ^ - - Y Y N N ^ - Y N N Y N -

Key 
 - first student in high flexibility group - reversibility present   - ineligible due to incorrect  
 - first student in middle flexibility group - reversibility NOT present  answer on exit slip 
 - first student in low flexibility group  - ineligible due to absence 

H1 Y -

M1 N

L1 ^
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Table 43 shows that during the first half of the course 51.5% of the exit slip and opening activity 

pairs were eligible to show reversibility.  On these eligible pairs, reversibility was present 50.2% 

of the time.  Thus, during the first half of the study, the class reversibility score on the exit slips 

and opening activities was 50.2%.  During the second half of the course, 55.6% of the exit slip and 

opening activity pairs were eligible to show reversibility.  On these eligible pairs, the class 

reversibility score was 74.2%.  Multiple imputation was used to fill in the missing data due to 

ineligibility.  Table 44, shown below, reports the class mean reversibility score during the first and 

second halves of the study and the results of a paired samples 𝑡𝑡-test for a significant difference. 

Table 44. Class mean reversibility score on all exit slips and opening activities from the first half and second half of 

the study 

 First half: Paired 
problems 1-23 

Second half: Paired 
problems 24-45 

Paired difference 𝑡𝑡-
value 

Paired difference 𝑝𝑝-
value 

Reversibility Score 52.78% 66.59% 𝑡𝑡 = 3.548 𝑝𝑝 < 0.001 

 

The general trend towards development previously shown in figure 34 and the significant 

improvement in mean reversibility score at the class level suggest that reversibility as a problem 

solving process may have developed over the course of the study. 

4.2.2 Development of two-way reversibility 

To what extent does reversibility of two-way reversible processes develop?  The data collected in 

this research study suggests that reversibility of two-way reversible processes has developed over 

the course of the study.  To determine if the students developed reversibility of two-way processes, 

I analyzed the results of a sub-set of the exit slips and opening activities and a sub-set of the 
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interview questions.  I discuss the results of the exit slip and opening activity data and the interview 

data in turn. 

4.2.2.1 Results of exit slips and opening activities – two-way processes 

I analyzed the results of the 14 exit slip and opening activity pairs that were designed to assess the 

development of reversibility of a two-way process.  Five of the exit slips and opening activities 

were administered during chapter 2, four were administered during chapter 3, and five were 

administered during chapter 4.  In total, nine4 of the two-way reversibility paired problems were 

administered during the first half of the study and five of the two-way reversibility paired problems 

were administered during the second half of the study. 

 Figure 35, shown below, presents the results of all of the two-way reversibility exit slip 

and opening activity pairs, administered chronologically throughout the study. 

4 Nine two-way reversibility exit slips and opening activities were administered during the 1st half of the 
study, however, ESOA 2.6.2 (12) was removed from analysis due to no eligible opening activities. 

 216 

                                                 



  

 

 

Figure 35. Results of the two-way reversibility exit slips and opening activities 

Figure 35 shows a general trend towards increasing reversibility of two-way processes throughout 

the study.  The trend towards improvement can be seen in the increase in density of the green 

blocks and decrease in density of the red blocks over the course of the study.  Figure 36 displays 

Day 5 6 7 9 10 12 14 15 16 28 29 30 31 32
Exit Slip # 6 7 8 10 12 14 16 17 19 38 39 40 41 43
Section 2.3.1 2.3.2 2.4.1 2.6.1 2.6.2 3.1.1 3.2.2 3.3.1 3.3.2 4.5.1 4.5.2 4.6.1 4.6.2 4.7.1
H1 N Y - N - N Y N Y N Y Y Y Y
H2 ^ Y N N - N - Y Y - ^ Y Y Y
H3 Y ^ ^ ^ ^ Y Y N N ^ ^ Y Y Y
H4 - Y - N - - - Y N N Y Y Y Y
H5 Y Y - N - Y N Y Y N ^ ^ Y Y
H6 Y Y Y Y - Y Y Y Y Y Y Y Y ^
H7 ^ ^ - - - ^ N Y N N - ^ Y Y
H8 N ^ ^ N - ^ Y Y Y N ^ ^ ^ ^
M1 N Y - N - N Y Y Y N Y Y Y Y
M2 ^ ^ - Y - N Y N Y N Y Y Y -
M3 Y ^ - Y - Y Y Y ^ N Y ^ ^ Y
M4 N - - N - N - Y Y - N Y Y N
M5 N ^ - Y - ^ ^ N ^ - Y Y Y -
M6 N N - N - N - Y Y N N Y Y Y
M7 Y Y N N - Y Y Y Y ^ ^ Y Y ^
L1 N - - - - N - N Y ^ N Y - -
L2 Y Y N - - ^ Y N Y - N Y Y ^
L3 N Y - - - N - N Y N ^ ^ Y -
L4 N - - - - - - N Y - - Y Y Y
L5 N ^ ^ - - Y Y Y Y ^ ^ Y Y Y
L6 N N - Y - N - Y N ^ - Y N Y
R.S 35.3 81.8 25 35.7 N/A 40 83.3 61.9 78.9 9.09 63.6 100 94.4 92.3

Key 
 - first student in high flexibility 

group 
- reversibility present  - ineligible due to incorrect answer 

on exit slip 
 - first student in middle flexibility 

group 
- reversibility NOT present % - Ratio of  to (  + ) 

 - first student in low flexibility 
group 

 - ineligible due to absence R.S. – reversibility score 

H1 Y -

M1 N Y Y N

L1 ^
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the reversibility score of each exit slip and opening activity pair that assessed two-way reversibility 

as a scatter plot over time with a trend line imposed on the data.  The data entries are plotted using 

various sized shapes to represent the amount of eligible exit slips and opening activities that 

comprise each reversibility score.  The key, shown below the graph, describes the value of each 

shape. 

 

Key 
# of Eligible Exit Slips and Opening 

Activities 
Symbol 

0-5  
6-10  
11-15 

 
16-21 

 
 

Figure 36. Scatter plot of the reversibility score on the exit slip and opening activity pairs assessing two-way 

reversibility 
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The positive slope of the trend line indicates that there was a general increase in the amount of 

reversibility of two-way processes over the course of the study and this is corroborated by a 

strong positive correlation between the class instructional period and the percent of students who 

demonstrated reversibility with 𝑟𝑟 = 0.418. 

To further gauge the extent to which reversibility of two-way reversible processes develops 

when students are engaged in a course that attends to linking multiple representations, I compared 

the class mean reversibility scores during the first and second half of the course.  Table 45, shown 

below, reports the class mean two-way reversibility score during the first and second halves of the 

study and the results of a paired samples 𝑡𝑡-test for a significant difference.  The first half consisted 

of paired problems 6, 7, 8, 10, 14, 16, 17, and 19.  The second half consisted of paired problems 

38, 39, 40, 41, and 43. 

Table 45. Class mean reversibility score on two-way exit slips and opening activities from the first half and second 

half of the study 

 First half: Second half: Paired difference 𝑡𝑡-
value 

Paired difference 𝑝𝑝-
value 

Reversibility Score 53.17% 70.34% 𝑡𝑡 = 2.854 𝑝𝑝 = 0.003 

 

The general trend towards development previously shown in figures 25 and 26 and the significant 

improvement in mean two-way reversibility score at the class level suggest that two-way 

reversibility as a problem solving process may have developed over the course of the study. 

I further analyzed the two-way reversibility exit slips and opening activities by content 

area.  Ten of the thirteen paired problems assessed a differentiability process in the forward 

direction and the anti-differentiation process in reverse.  When those ten paired problems are 

analyzed together, a clear pattern of development appears.  Figure 37, shown below, presents the 
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results of the two-way reversibility exit slip and opening activity pairs that assessed differentiation 

and anti-differentiation, administered chronologically throughout the study. 

 

Figure 37. Results of the two-way reversibility exit slips and opening activities that assessed differentiation and 

anti-differentiation 

Figure 37 shows a general trend towards increasing reversibility of two-way processes throughout 

the study.  The trend towards improvement can be seen in the increase in density of the green 

blocks and decrease in density of the red blocks over the course of the study.  Figure 38 displays 

the reversibility score of each exit slip and opening activity pair that assessed differentiation in the 

forward direction and anti-differentiation in the reverse direction as a scatter plot over time with a 

trend line imposed on the data. 

Day 5 6 9 12 14 15 16 30 31 32
Exit Slip # 6 7 10 14 16 17 19 40 41 43
Section 2.3.Y 2.3.2 2.6.Y 3.Y.Y 3.2.2 3.3.Y 3.3.2 4.6.Y 4.6.2 4.7.Y
HY N Y N N Y N Y Y Y Y
H2 ^ Y N N - Y Y Y Y Y
H3 Y ^ ^ Y Y N N Y Y Y
H4 - Y N - - Y N Y Y Y
H5 Y Y N Y N Y Y ^ Y Y
H6 Y Y Y Y Y Y Y Y Y ^
H7 ^ ^ - ^ N Y N ^ Y Y
H8 N ^ N ^ Y Y Y ^ ^ ^
MY N Y N N Y Y Y Y Y Y
M2 ^ ^ Y N Y N Y Y Y -
M3 Y ^ Y Y Y Y ^ ^ ^ Y
M4 N - N N - Y Y Y Y N
M5 N ^ Y ^ ^ N ^ Y Y -
M6 N N N N - Y Y Y Y Y
M7 Y Y N Y Y Y Y Y Y ^
LY N - - N - N Y Y - -
L2 Y Y - ^ Y N Y Y Y ^
L3 N Y - N - N Y ^ Y -
L4 N - - - - N Y Y Y Y
L5 N ^ - Y Y Y Y Y Y Y
L6 N N Y N - Y N Y N Y
R.S. 35.29 81.82 35.71 40 83.33 61.9 78.95 100 94.44 92.31
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Key 
# of Eligible Exit Slips and Opening Activities Symbol 

0-5  
6-10  
11-15 

 
16-21 

 
 

Figure 38. Scatter plot of the reversibility score on the exit slip and opening activity pairs assessing two-way 

reversibility of differentiation and anti-differentiation 

There is a very strong correlation between the instructional class period and the percent of 

students who demonstrate reversibility between differentiation and anti-differentiation, with 𝑟𝑟 =

0.738.  Table 46, shown below, reports the class mean reversibility score on paired problems that 

assessed reversibility of differentiation and anti-differentiation during the first and second halves 

of the study and the results of a paired samples 𝑡𝑡-test for a significant difference.  The first half 

consisted of paired problems 6, 7, 10, 14, 16, 17, 19.  The second half consisted of paired problems 

40, 41, and 43. 
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Table 46. Class mean reversibility score on anti-differentiation exit slips and opening activities from the first half 

and second half of the study 

 First half: Second half: Paired difference 𝑡𝑡-
value 

Paired difference 𝑝𝑝-
value 

Reversibility Score 55.9% 88.0% 𝑡𝑡 = 4.723 𝑝𝑝 < 0.001 

 

The general trend towards development previously shown in figure 37, the strong positive 

correlation between date of instruction and reversibility score as seen in figure 38, and the 

significant improvement in mean reversibility score at the class level suggest that reversibility of 

the differentiation and anti-differentiation processes may have developed over the course of the 

study. 

4.2.2.2 Results of interviews – two-way processes 

I analyzed the written solutions and the transcript data from the pairs of interview questions that 

assess reversibility of a two way process: 1.1 (interview 1, question 1) and 1.2, 1.1 and 1.3, 2.1 

and 2.2, 4.1.b and 4.2.b, and 4.3.a and 4.3.b.  Each pair of questions was analyzed for evidence of 

two-way reversible conceptions.  Table 47 reports the existence or absence of two-way 

reversibility on the interview questions.  “Yes” indicates that the participant correctly solved both 

the forward and reverse questions; “No” indicates that the participant correctly solved the forward 

question but could not solve the reverse question.  “N/A” indicates that the participant could not 

solve the forward question, thus rendering the question about the existence of reversibility moot. 
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Table 47. Is two-way reversibility present in the interview questions? 

Flexibility 
Group 

Participant 1.1 & 1.2 1.1 & 1.3 2.1 & 2.2 4.1.b & 4.2.b 4.3.a & 4.3.b 

High Kelsay Yes Yes Yes Yes Yes 
Michael Yes Yes Yes Yes Yes 

Middle Fred Yes Yes Yes Yes Yes 
Jill Yes Yes Yes Yes Yes 

Low Kirsten No No N/A No N/A 
Marcus No No Yes Yes N/A 

 

The interview questions 1.2, 1.3, 4.2.b, and 4.3.b all require reversibility of the simple 

power rule in various instantiations.  Interview questions 2.1 and 2.2 are a set of paired problems 

that require reversibility of the chain rule.  Embedded within the chain rule in these questions is 

two-way reversibility of the derivative of 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥.  Thus, all of the two-way reversibility 

interview items assessed reversibility of differentiation and anti-differentiation. 

The interview questions 1.2, 1.3, 4.2.b, and 4.3.b are conceptually similar to the opening 

activities administered on days 5, 6, 30, 31, and 32.  The interview participants’ reversibility scores 

on these opening activities are presented in table 48 below (Y means that the student used 

reversibility to correctly solve the question, N means that the student did not use reversibility to 

correctly solve the question, A means that the student was absent and did not attempt the question). 

Table 48. Results of two-way reversibility of the simple power rule in opening activities 

Participant 2.3.1 – Day 5 2.3.2 – Day 6 4.6.1 – Day 30 4.6.2 – Day 31 4.7.1 – Day 32 
Kelsay Y Y Y Y A 
Michael Y A Y Y Y 
Fred N Y Y Y Y 
Jill Y A A A Y 
Kirsten N N Y N Y 
Marcus N A Y Y Y 

 

Across the three flexibility groups, we see two stories.  The students in the high and middle 

groups were able to correctly use two-way reversibility throughout all of the interviews.  Similarly, 
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the students in the high and middle group were largely able to use reversibility to find 𝑓𝑓(𝑥𝑥) from 

a given 𝑓𝑓′(𝑥𝑥) from the beginning of the study as shown by the exit slip and opening activity data.  

The first time that the interview participants were exposed to reversibility of the simple power rule 

was in exit slip and opening activity 2.3.1, which were administered on 11/25/2013 and 

11/26/2013, respectively.  The 2.3.1 opening activity and interview question 1.2 are conceptually 

identical, and are shown in table 49 below. 

Table 49. Interview question 1.2 and opening activity 2.3.1 

Interview 1, Question 2 2.3.1 Opening Activity 
Suppose a function has a known derivative of 
𝑓𝑓′(𝑥𝑥) = 𝑥𝑥5. 
What could be the function 𝑓𝑓(𝑥𝑥)? 
Can you think of any other possible functions 
for 𝑓𝑓(𝑥𝑥)? 

Suppose 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 − 6.   
Find a function 𝑓𝑓(𝑥𝑥).   
Show or explain how you determined 𝑓𝑓(𝑥𝑥). 

 

Kelsay, Michael, and Jill all correctly solved the opening activity 2.3.1 using reversibility 

of the simple power rule, indicating that they had developed reversibility “on-the-spot” (Krutetskii, 

1976).  Fred did not recognize that he needed to use reversibility to find 𝑓𝑓(𝑥𝑥) from 𝑓𝑓′(𝑥𝑥).  

However, one day later, on opening activity 2.3.2, Fred was able to use reversibility to correctly 

find 𝑓𝑓(𝑥𝑥) given 𝑓𝑓′′(𝑥𝑥).  Thus, beginning with opening activity 2.3.2, administered on day 6 on the 

study, all of the students in the high and middle groups were able to correctly use two-way 

reversibility to solve anti-differentiation problems throughout the remainder of the course.  Thus, 

based on the evidence provided by the interview questions and the exit slips and opening activities, 

the students in the high and middle group largely developed two-way reversibility of the simple 

power rule immediately, or nearly immediately in the case of Fred, and were able to use 

reversibility to find 𝑓𝑓(𝑥𝑥) from a given 𝑓𝑓′(𝑥𝑥) by reversing the simple power rule throughout the 

course of the study. 
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The two students in the low group, Kirsten and Marcus, struggled to develop two-way 

reversibility.  Neither student developed two-way reversibility on the spot, as evidenced by their 

results on the 2.3.1 and 2.3.2 opening activities.  Furthermore, neither student was able to use two-

way reversibility of the simple power rule to solve the interview questions 1.2 and 1.3. 

On interview question 1.2, Kirsten indicated that she was aware that reversibility was 

necessary, saying “okay so this is going backwards” and attempted to reverse the simple power 

rule to determine that 𝑓𝑓(𝑥𝑥) would necessarily require an 𝑥𝑥6 term, saying, “I know it’s 𝑥𝑥6 because 

… it has to be minus 1”, referring to the fact that the degree of 𝑓𝑓′(𝑥𝑥) should be one less than the 

degree of 𝑓𝑓(𝑥𝑥).  However, Kirsten could not resolve how to determine the correct coefficient.  

Kirsten was aware that the exponent of 𝑓𝑓(𝑥𝑥) would move out to the front of the expression, 

however she could not determine how to make the exponent of 6 change into the existing 

coefficient of 1.  This confusion led Kirsten to change her exponent from the correct answer of 6 

to 1/6 and said “the exponent out front ... you would bring the 1 out front and then subtract 6 

minus 1 and you would get the 5”.  In one sense, Kirsten seems to recognize that 1/6 is necessary 

to the problem, however she does not indicate any knowledge that she needs to reverse the simple 

power rule in the exponent and then in the coefficient.  As such, she does not reverse the process 

of the simple power rule.  She was able to recognize that she needed to use reversibility but could 

not reverse the process. 

Marcus had a similar experience to Kirsten on interview question 1.2.  Marcus immediately 

noticed the need for reversibility saying “so the derivative is 𝑥𝑥5 that means that you have to work 

backwards so that means that’ll [referring to the exponent] have to be [a six].”  However, shortly 

after writing the correct exponent of six, Marcus erased the exponent because he tried to 

differentiate 𝑥𝑥6 and realized that the coefficient of 𝑓𝑓′(𝑥𝑥) would be a six.  Marcus had no way to 
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reconcile this issue.  He described this conflict saying “normally for the exponent you do the 

exponent minus 1 for the derivative so if you are going backwards you would add one which would 

be 6, but there’s a one in front of the 𝑥𝑥 … that won’t work.”  Marcus explored two other possible 

pathways to determine the coefficient.  He first considered if using negative exponents would help 

him to find the coefficient but quickly dismissed the possibility after determining that 1/𝑥𝑥−5 was 

an equivalent way of writing 𝑥𝑥5.  Secondly, he considered using a constant in front of the 𝑥𝑥6 term 

but chose not to pursue this approach saying “well the derivative of a constant would be just zero, 

but there’s no zero out front.”  In this case, Marcus has confused the derivative of a constant term, 

which is zero, and the derivative of a constant times a function, in which case the constant would 

carry through the derivative operation.  Thus, Marcus, like Kirsten, was aware that he needed to 

use reversibility and was able to determine the correct exponent of 𝑓𝑓(𝑥𝑥) but could not resolve how 

to create the correct coefficient. 

At the end of the study, there is conflicting evidence indicating whether or not Kirsten 

developed two-way reversibility.  In the last interview, after the study had concluded, Kirsten was 

still not able to determine the appropriate coefficient when reversing the simple power rule.  

interview question 4.2.b says: 

Suppose we know a velocity function, 𝑣𝑣(𝑡𝑡), for a vehicle in motion in meters per second. 

𝑣𝑣(𝑡𝑡) = 4𝑡𝑡3 − 3𝑡𝑡2 + 𝑡𝑡 

Find the position of the vehicle at 𝑡𝑡 = 3. 

Kirsten’s work is shown below in figure 39. 

 226 



  

 

Figure 39. Kirsten’s solution to interview question 4.2.b 

Kirsten correctly found each exponent noting that “for this part you would have to take the 

backwards derivative”.  However, her work indicates that she only had a limited understanding of 

two-way reversibility.  She did not correctly determine the coefficients in front of the 𝑡𝑡3 and 𝑡𝑡2 

terms, but was able to correctly find the anti-derivative of 𝑡𝑡, which had a coefficient of 1. 

Kirsten’s inconsistency with correctly using two-way reversibility in interview 4 was also 

present in her opening activities at the end of the course.  On day 30, Kirsten attempted opening 

activity 4.6.1, shown below in figure 40. 

 

Figure 40. Kirsten’s solution to opening activity 4.6.1 
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Kirsten used reversibility to correctly find three of the terms, but incorrectly concluded that the 

anti-derivative of 𝑡𝑡2 was 𝑡𝑡
3

2
.  On the following day, day 31, Kirsten attempted opening activity 

4.6.2, which required a repeated use of reversibility of the simple power rule.  Her work is shown 

below in figure 41. 

 

Figure 41. Kirsten’s solution to opening activity 4.6.2 

Here, Kirsten again showed proficiency with two-way reversibility of the simple power rule by 

correctly finding a possible 𝑣𝑣(𝑡𝑡) from the given 𝑎𝑎(𝑡𝑡).  However, she makes no effort to find 𝑠𝑠(𝑡𝑡) 

from her function for 𝑣𝑣(𝑡𝑡).  Since she had shown that she understood the conceptual relationship 

between 𝑠𝑠(𝑡𝑡), the position function, and 𝑣𝑣(𝑡𝑡), the velocity function, in opening activity 4.6.1, it 

appears that Kirsten was not able to use reversibility to find 𝑠𝑠(𝑡𝑡) from 𝑣𝑣(𝑡𝑡) by reversing the simple 

power rule. 

Finally, on opening activity 4.7.1, Kirsten correctly used reversibility of the simple power 

rule to find 𝑓𝑓(𝑥𝑥) from a given 𝑓𝑓′(𝑥𝑥) as shown below in figure 42. 
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Figure 42. Kirsten’s solution to opening activity 4.7.1 

Thus, Kirsten’s work indicates that her ability to use reversibility of a two-way process improved 

over the course of the study; however, due to her inconsistency in correctly applying two-way 

reversibility, it appears that she has an under-developed sense of two-way reversibility. 

Marcus demonstrated a much more consistent developmental trajectory.  As discussed 

earlier, during his first interview, Marcus was not able to reverse the simple power rule to find 

𝑓𝑓(𝑥𝑥) from a given 𝑓𝑓′(𝑥𝑥).  Marcus’s first attempt at two-way reversibility of the simple power rule 

was on the 2.3.1 opening activity.  His work is shown below in figure 43. 
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Figure 43. Marcus’s solution to opening activity 2.3.1 

Marcus’s work indicates that at the beginning of the course, he had no conception of how 

to reverse the simple power rule.  He did not consider that the exponent(s) of the 𝑓𝑓′(𝑥𝑥) expression 

would need to increase by one, which is the reverse of differentiation causing the degree of the 

polynomial to decrease by one.  When this evidence is considered in concert with Marcus’s work 

on interview question 1.2, where he showed that he was now considering increasing the exponent 

by one, we see a slight improvement in two-way reversibility of the simple power rule from 

11/26/2013 to 12/4/2013. 
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At the end of the study, Marcus had developed a strong conception of two-way reversibility 

of the simple power rule as he correctly reversed the simple power rule on opening activities 4.6.1, 

4.6.2, and 4.7.1.  In his final interview, Marcus showed that while he was confident in using 

reversibility to find a polynomial 𝑓𝑓(𝑥𝑥) from a polynomial 𝑓𝑓′(𝑥𝑥), his reversible conception did not 

generalize to all possible terms of a polynomial.  His work on interview question 4.2.b is shown 

below in figure 44. 

 

Figure 44. Marcus’s solution to interview question 4.2.b 

Marcus correctly determined the first two terms in 𝑠𝑠(𝑡𝑡); however, he was unable to determine a 

term whose derivative would be 𝑡𝑡.  Marcus tried to think backwards by asking himself what he 

would differentiate to produce 𝑡𝑡, saying: 
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I'm still imagining a one in front so that one would go there but how the heck do you just 

get a 𝑡𝑡 …so if you [had] 2𝑡𝑡, the derivative would just be 2, if you had 𝑡𝑡2, the derivative 

would just be 2𝑡𝑡, so if you had a 𝑡𝑡, the derivative would be...?  If there was a 1𝑡𝑡 then the 1 

would go there.  It couldn’t be like 𝑡𝑡 ... 𝑡𝑡 to the no ... I don't know I'm just going to leave it 

as 𝑡𝑡 but that's not right but I don't know what to do. 

Marcus’s solution suggests that he does have a working conception of two-way reversibility of the 

simple power rule at the end of the course; however, his conception does not generalize to all 

polynomials and thus is not fully developed.  In this case, Marcus’s results are similar to what 

Krutetskii (1976) found with students that he categorized as middle ability.  He found that students 

who did not develop reversibility on the spot, could develop reversibility by working through 

similar examples and special exercises.  As Marcus’s reversibility with the simple power rule has 

improved markedly over the course of the study, he seems to have developed two-way reversibility 

as he worked with similar examples in the opening activities and interview questions. 

The results of the interview questions that assessed two-way reversibility indicate that for 

students in the high and medium flexibility groups, reversibility of a two-way process likely 

developed simultaneously with learning the process in the forward direction.  This conclusion is 

supported by the result that all of the students in the high and middle flexibility groups were able 

to reverse the simple power rule to find 𝑓𝑓(𝑥𝑥) from a given 𝑓𝑓′(𝑥𝑥) immediately after learning how 

to differentiate 𝑓𝑓(𝑥𝑥) to find 𝑓𝑓′(𝑥𝑥) by using the simple power rule. 

Students in the low flexibility group did not develop two-way reversibility on the spot, but 

showed some development throughout the course.  Neither of the students in the low group were 

able to apply two-way reversibility consistently across all items at the end of the study.  However, 
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both students in the low group showed improvement from the beginning of the study until the end, 

indicating that two-way reversibility had developed in a limited amount. 

4.2.3 Development of reversibility of the mental process in reasoning without reversible 

translation 

To what extent does reversibility of the mental process in reasoning without reversible translation 

develop?  The data collected in this research study suggests that reversibility of the mental process 

in reasoning without reversible translation has developed in a limited and uneven amount over the 

course of the study.  It is important to restate here that the phrase “reasoning without translation” 

does not preclude flexibility.  It is expected that one directional translations would be utilized by 

students in both parts of the paired problems.  “Reasoning without translation” indicates that the 

paired problems will not require representational reversibility.  To determine if the students 

developed reversibility of the mental process in reasoning without reversible translation, I analyzed 

the results of a sub-set of the exit slips and opening activities and a sub-set of the interview 

questions.  I discuss the results of the exit slip and opening activity data and the interview data in 

turn. 

4.2.3.1 Results of exit slips and opening activities – mental process in reasoning without 

reversible translation 

I analyzed the results of the 10 exit slip and opening activity pairs that were designed to assess the 

development of reversibility of the mental process in reasoning without reversible translation.  

Four of the exit slips and opening activities were administered during chapter 2, three were 

administered during chapter 3, and three were administered during chapter 4.  Thus, the 10 exit 
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slip and opening activity pairs were distributed approximately equally throughout the study.  

Figure 45, shown below, presents the results of all of the reversibility of the mental process in 

reasoning exit slip and opening activity pairs, administered chronologically throughout the study. 

 

 

Figure 45. Results of the exit slip and opening activity pairs assessing reversibility of the mental process in 

reasoning 

Day 1 3 4 9 15 16 19 24 31 32
Exit Slip 1 4 5 11 18 20 23 32 42 44

Section 2.3.1 2.2.1 2.2.2 2.6.1 3.3.1 3.3.2 3.5.1 4.2.2 4.6.2 4.7.1
H1 Y N Y - N Y - Y Y Y
H2 ^ - Y - N Y - Y Y N
H3 Y Y Y ^ N N Y ^ Y -
H4 - N - - N N N N Y N
H5 Y - Y - N Y - Y Y Y
H6 Y N ^ Y Y Y N Y Y ^
H7 ^ - - - N N N ^ Y Y
H8 Y N Y - N N - - ^ ^
M1 Y N Y Y N Y - ^ Y Y
M2 Y - - - N Y - Y Y -
M3 Y N ^ N - ^ ^ N ^ -
M4 - - - - N Y - Y Y Y
M5 Y - Y - - ^ ^ N Y -
M6 - - - N N N N - Y N
M7 - N Y N N N Y N Y ^
L1 - - - - N Y ^ N Y -
L2 - - Y - N N N N Y ^
L3 - N ^ N N Y - Y Y -
L4 - ^ - - N N - - Y N
L5 - - ^ - N Y Y N Y N
L6 Y - - N N Y N - N N
R.S. 100.0 11.1 100.0 33.3 5.6 55.6 37.5 50.0 100.0 50.0

Key 
 - first student in high flexibility 

group 
- reversibility present  - ineligible due to incorrect answer 

on exit slip 
 - first student in middle flexibility 

group 
- reversibility NOT present % - Ratio of  to (  + ) 

 - first student in low flexibility 
group 

 - ineligible due to absence R.S. – reversibility score 

H1 Y -

M1 N Y Y N

L1 ^
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Figure 45 shows an uneven presence of reversibility of the mental process in reasoning 

throughout the study as there is no clear trend towards an increasing density of green blocks and 

decreasing density of red blocks.  Figure 36 displays the reversibility score of each exit slip and 

opening activity pair that assessed two-way reversibility as a scatter plot over time with a trend 

line imposed on the data. 

 

Key 
# of Eligible Exit Slips and Opening 

Activities 
Symbol 

0-5  
6-10  
11-15 

 
16-21 

 
 

Figure 46. Scatter plot of the reversibility score on the exit slip and opening activity pairs assessing reversibility of 

the mental process in reasoning 
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The slightly negative slope (𝑚𝑚 = −0.08) of the trend line coupled with the weak correlation 

between the class instructional period and the percent of students who demonstrated reversibility 

of 𝑟𝑟 = −0.03 indicates that there was no observable development of reversibility of the mental 

process in reasoning without reversible translation over the course of the study at the whole class 

level.   

To further gauge the extent to which reversibility of the mental process in reasoning 

develops when students are engaged in a course that attends to linking multiple representations, I 

compared the class mean reversibility scores during the first and second half of the course.  Table 

50, shown below, reports the class mean reversibility of the mental process in reasoning score 

during the first and second halves of the study and the results of a paired samples 𝑡𝑡-test for a 

significant difference.  The first half consisted of paired problems 1, 4, 5, 11, 18, 20, and 23.  The 

second half consisted of paired problems 32, 42, and 44. 

Table 50. Class mean reversibility score on reversibility of the mental process in reasoning exit slips and opening 

activities from the first half and second half of the study 

 First half: Second half: Paired difference 𝑡𝑡-
value 

Paired difference 𝑝𝑝-
value 

Reversibility Score 64.33% 62.10% 𝑡𝑡 = 0.244 𝑝𝑝 = 0.808 

 

The paired samples 𝑡𝑡-test indicates that there was no improvement in reversibility of the mental 

process in reasoning over the course of the study.  When the results in figures 45 and 46 and in 

table 50 are considered together, the data suggests that reversibility of the mental process in 

reasoning did not improve over the course of the study. 

As with flexibility, the content in which reversibility was situated may help to explain in 

part the results of the exit slips and opening activities.  To further investigate this possibility, I 

considered the results of the exit slips and opening activities that assessed reversibility of the 
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mental process in reasoning that dealt with the same or very similar content.  The exit slips and 

opening activities that assessed the chain rule (3 sets of paired problems), local linearization (2 

sets of paired problems), and graphical tasks (3 sets of paired problems) are discussed below. 

Chain rule tasks 

The three opening activities addressing reversibility of the chain rule were administered on 

12/9/2013, 1/14/2014, and 1/15/2014.  Table 51 shows the progression of reversibility on opening 

activities that assess reversibility of the chain rule. 

Table 51. Reversibility of the mental process in reasoning without reversible translation exit slips and opening 

activities assessing the chain rule 

Section Exit Slip (𝑛𝑛 = # of correct 
answers) 

Opening Activity (𝑛𝑛 = # of 
correct answers) 

Reversibility 
Score 

2.6.1 Suppose 𝑓𝑓(𝑥𝑥) = 5 sin 𝑥𝑥 and 
𝑔𝑔(𝑥𝑥) = sin 5𝑥𝑥.  Which of the 
following is true? 
 
I. 𝑓𝑓′(𝜋𝜋) < 𝑔𝑔′(𝜋𝜋)  
II. 𝑓𝑓′(𝜋𝜋) = 𝑔𝑔′(𝜋𝜋)  
III. 𝑓𝑓′(𝜋𝜋) > 𝑔𝑔′(𝜋𝜋)  
IV. Cannot be determined. 
 
Show your work or explain how 
you determined your answer. 
𝑛𝑛 = 7  

If a function has a known 
derivative of ℎ′(𝑥𝑥) =
5 cos 𝑥𝑥 − 3 sin 3𝑥𝑥, what 
could be ℎ(𝑥𝑥)?  Show or 
explain how you determined 
ℎ(𝑥𝑥). 
 
 
 
 
 
𝑛𝑛 = 2  

28.6 

3.3.1 Find the derivative of the 
function. 

𝑓𝑓(𝑥𝑥) = 3𝑒𝑒4𝑑𝑑 
Show your work or explain how 
you determined 𝑓𝑓′(𝑥𝑥).  Can you 
think of any other possible 
functions for 𝑓𝑓′(𝑥𝑥)? 
𝑛𝑛 = 19  

Suppose a function’s 
derivative, 𝑓𝑓′(𝑥𝑥), is known 
and shown below.  Find a 
function 𝑓𝑓(𝑥𝑥) whose 
derivative is 𝑓𝑓′(𝑥𝑥). 

𝑓𝑓′(𝑥𝑥) = 𝑒𝑒−5𝑑𝑑 
 
𝑛𝑛 = 1  

5.3 
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Table 51 (continued) 

3.3.2 Find the derivative of the 
function. 

𝑓𝑓(𝑥𝑥) = sin−1(𝑒𝑒𝑑𝑑) 
Show your work or explain how 
you determined 𝑓𝑓′(𝑥𝑥).  Can you 
think of any other possible 
functions for 𝑓𝑓′(𝑥𝑥)? 
𝑛𝑛 = 19  

Suppose a function’s 
derivative, 𝑓𝑓′(𝑥𝑥), is known 
and shown below.  Find a 
function 𝑓𝑓(𝑥𝑥) whose 
derivative is 𝑓𝑓′(𝑥𝑥). 

𝑓𝑓′(𝑥𝑥) =
1

�1 − (3𝑥𝑥)2
 

𝑛𝑛 = 11  

57.9 

 

Although it appears that the students’ ability to use the chain rule improved from exit slip 2.6.1 to 

exit slip 3.3.1, there was no improvement in reversibility of the chain rule.  However, there was a 

large increase in reversibility from opening activity 3.3.1 to opening activity 3.3.2, indicating that 

reversibility of the chain rule improved with repeated opportunities to use reversibility. 

Two students were able to use reversibility immediately after learning the chain rule in 

section 2.6.1.  Both of these students were interview participants.  One student who developed 

reversibility on-the-spot was Kelsay, a member of the high flexibility group.  The other student 

was Fred, a member of the middle flexibility group.  On opening activity 3.3.1, the only student in 

the class who demonstrated reversibility was Kelsay.  Of the seven students in the high flexibility 

group, only one student developed reversibility on the spot.  This result suggests that there may be 

a high degree of difficulty in developing reversibility of the mental process in reasoning without 

reversible translation. 

Local linearization tasks 

Exit slips and opening activities 2.2.1 and 3.5.1 assessed local linearization.  Both sets of activities 

are presented below in table 52. 
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Table 52. Reversibility of the mental process in reasoning without reversible translation exit slips and opening 

activities assessing local linearization 

Section Exit Slip (𝑛𝑛 = # of correct 
answers) 

Opening Activity (𝑛𝑛 = # of 
correct answers) 

Reversibility % 

2.2.1 Write the equation of the line 
tangent to the curve 𝑦𝑦 = 𝑥𝑥2 − 𝑥𝑥 
at 𝑥𝑥 = 3.  Make sure to show 
your work. 
 
 
𝑛𝑛 = 9  

The line tangent to a curve 
𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 2 has the 
equation 𝑦𝑦 = 4 + 8(𝑥𝑥 − 2).  
Find a possible equation for 
𝑓𝑓(𝑥𝑥).  Show or explain how 
you determined 𝑓𝑓(𝑥𝑥). 
𝑛𝑛 = 1  

11.1 

3.5.1 What is the linearization of 
𝑓𝑓(𝑥𝑥) = 𝑒𝑒2𝑑𝑑 at 𝑥𝑥 = 1? 
 
𝑛𝑛 = 9  

What function has a 
linearization at 𝑥𝑥 = 𝑒𝑒2 of 𝑦𝑦 =
2 + 1

𝑚𝑚2
(𝑥𝑥 − 2)? 

𝑛𝑛 = 3  

33.3 

 

On the 2.2.1 opening activity, the only student to exhibit reversibility was Michael, a 

member of the high flexibility group.  On opening activity 3.5.1, administered approximately two 

months later, Michael again used reversibility to solve the problem.  Of the other two students, one 

was from the middle flexibility group, and one was from the low flexibility group.  Thus, the results 

of the paired problems on local linearization suggest that developing reversibility of the mental 

process in reasoning without reversible translation may be difficult for students. 

Graphical tasks 

The sets of paired problems from sections 2.1.1, 2.2.2, and 4.2.2 all assess the graphical 

relationship between 𝑓𝑓(𝑥𝑥) and 𝑓𝑓′(𝑥𝑥).  Each exit slip assessed the direction 𝑓𝑓 → 𝑓𝑓′ and the 

opening activity assessed 𝑓𝑓′ → 𝑓𝑓.  While the reversibility percentage appears to have taken a 

precipitous decline from 100% and 100% to 50%, the reason for the observed decline is not so 

much a decline in the number of students who correctly solved the reverse problem, which was 

10-9-7, respectively, but an increase in the number of students who correctly solved the direct 
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problem.  On the 2.1.1 and 2.2.2 exit slips, 10 and 9 students, respectively, solved the direct 

question correctly.  On the 4.2.2 exit slip, 14 students solved the problem correctly.  What these 

results suggest is that understanding of the graphical relationship from 𝑓𝑓 to 𝑓𝑓′ seemed to increase 

throughout the study, however, reversibility did not.  More specifically, the distribution of 

students who demonstrated reversibility on the three questions remained essentially constant.  

Table 53 below reports the number of students (𝑛𝑛) and the percent of eligible students in the 

high, middle, and low groups who demonstrated reversibility on the paired problems from 2.1.1, 

2.2.2, and 4.2.2. 

Table 53. Number of students in each flexibility group who demonstrated reversibility 

Section Number High Group Middle Group Low Group 
2.1.1 𝑛𝑛 = 5, 100% 𝑛𝑛 = 4, 100% 𝑛𝑛 = 1, 100% 
2.2.2 𝑛𝑛 = 5, 100% 𝑛𝑛 = 3, 100% 𝑛𝑛 = 1,100% 
4.2.2 𝑛𝑛 = 4, 80% 𝑛𝑛 = 2, 40% 𝑛𝑛 = 1, 25% 

 

What is most striking about the results of the paired problems that assessed reversibility of the 

graphical relationship between 𝑓𝑓 and 𝑓𝑓′ is that on the first two problems, which only dealt with 

constant and linear functions, every student who learned the relationship from 𝑓𝑓 to 𝑓𝑓′ was able to 

reverse the relationship from 𝑓𝑓′ to 𝑓𝑓 on the spot.  However, when the degree of the function 

exceeded one on paired problem set 4.2.2, the percent of students demonstrating reversibility 

decreased in all flexibility groups.  These results suggest that even though reversibility may exist 

within a particular content area, as the difficulty of the content increases, reversibility does not 

necessarily generalize from the less complicated instantiation to the more complicated 

instantiation of the same concept. 

The results of the exit slip and opening activity pairs of problems assessing reversibility 

of the mental process in reasoning without reversible translation suggest that development of 
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reversibility of mental processes is likely a difficult task for students and is likely related to the 

particular content in which the reversibility manifests. 

4.2.3.2 Results of interviews – mental process in reasoning without reversible translation 

I analyzed the written solutions and the transcript data from the pairs of interview questions that 

assess reversibility of the mental process in reasoning without reversible translation: 2.1 (interview 

2, question 1) & 2.2, 2.3 & 2.4, 4.1.a & 4.2.a, 4.1.b & 4.2.b, and 4.3.a & 4.3.b.  Each pair of 

questions was analyzed for evidence of reversibility of the mental process in reasoning without 

reversible translation.  Table 54 reports the existence or absence of reversibility of the mental 

process in reasoning without reversible translation on the interview questions.  “Yes” indicates 

that the participant correctly solved both the forward and reverse questions; “No” indicates that 

the participant correctly solved the forward question but could not solve the reverse question.  

“N/A” indicates that the participant could not solve the forward question, thus rendering the 

question about the existence of reversibility moot. 

Table 54. Is reversibility of the mental process in reasoning without reversible translation present in the interview 

questions?  

Flexibility 
Group 

Participant 2.1 & 2.2 2.3 & 2.4 4.1.a & 4.2.a 4.1.b & 4.2.b 4.3.a & 4.3.b 

High Kelsay Yes Yes Yes Yes Yes 
 Michael Yes Yes No Yes Yes 
Middle Fred Yes Yes Yes Yes Yes 
 Jill No Yes Yes Yes Yes 
Low Kirsten N/A Yes N/A Yes N/A 
 Marcus No No No Yes N/A 

 

Consistent with the results that flexibility and reversibility of two-way processes are likely 

content specific, I grouped the interview questions by related content for the purposes of discussion 

of the results.  Paired problems 2.1 & 2.2 assessed reversibility of the chain rule.  Paired problems 
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2.3 & 2.4, 3.1 & 3.2, and 4.3.a & 4.3.b assessed reversibility of graphical analysis.  Paired problems 

4.1.a & 4.2.a and 4.1.b & 4.2.b assess reversibility of position and velocity.  I discuss each content 

area within reversibility of the mental process in reasoning without reversible translation in the 

following sections.  In each section, I consider the results of the interview questions by student 

and flexibility group.  I begin by discussing the results of the chain rule questions in interview 2. 

Chain rule interview questions 

Interview questions 2.1 and 2.2 are a set of paired problems that require reversibility of the chain 

rule and are conceptually similar to the paired exit slips and opening activities from sections 2.6.1, 

3.3.1, and 3.3.2.  It should be noted that the interview questions were presented reverse problem 

first and then direct problem, unlike the exit slips and opening activities.   

The results of the interview participants on all four chain rule questions in relation to the 

presence or absence of reversibility of the mental process in reasoning without reversible 

translation are reported in table 55.  Y means that the student used reversibility to correctly solve 

the question.  N means that the student did not use reversibility to correctly solve the question.  A 

means that the student was absent and did not attempt the question.  N/A means that the student 

could not solve the direct problem, rendering the question of reversibility moot.  The results of 

high, middle, and low flexibility groups are discussed in detail below. 
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Table 55. Reversibility of the mental process in reasoning without reversible translation with the chain rule 

questions 

Flexibility 
Group 

Participant 2.6.1 – 
12/13/14 

Interview 
Questions 

2.1 & 2.2 – 
12/17/13 

3.3.1 – 1/14/14 3.3.2 – 1/16/14 

High Kelsay Y Y Y Y 
 Michael A Y N N 
Middle Fred Y Y N Y 
 Jill N N N/A A 
Low Kirsten N N/A N Y 
 Marcus N/A N N Y 

 

High flexibility group – Kelsay and Michael 

Kelsay, a member of the high group, developed reversibility of the mental process in reasoning 

without reversible translation with the chain rule immediately upon learning the chain rule and she 

maintained that reversibility throughout the study.  In her 2nd interview, Kelsay made clear that 

she recognized the need for reversibility of the chain rule, saying, “so since 𝑓𝑓′(𝑥𝑥)  = 𝑥𝑥 ∗ sin(𝑥𝑥2), 

reversing the logic of this problem uh so this could possibly be −1
2

cos(𝑥𝑥2)  =  𝑓𝑓(𝑥𝑥) because … 

taking the derivative … will equal 𝑥𝑥 sin(𝑥𝑥2)”.  Also, it is worth noting that Kelsay was able to 

reverse the chain rule through mental mathematics and then checked her answer through 

differentiation.  Her work on the three exit slip and opening activity pairs was completely 

consistent with her approach to the interview question. 

Michael, the second member of the high group, has a story that is not well captured by 

table 55 above.  On exit slip and opening activity pair 2.6.1, Michael was absent on the day of the 

direct learning and thus did not attempt the exit slip.  Therefore, his reversibility score was “A”.  

However, Michael attended on the day of the 2.6.1 opening activity.  His solution is shown below 

in figure 47. 
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Figure 47. Michael’s solution to opening activity 2.6.1 

Michael and I had a brief discussion about his solution when he turned in his opening 

activity.  That discussion follows: 

Michael: I don’t know how I did this. 

Teacher: Did you just puzzle that out? 

Michael: Yeah 

There are two possibilities that may explain how Michael could have solved the reverse problem 

without having been present to learn the direct application of the chain rule.  One possibility is that 

Michael contacted another student in the class and inquired about what he had missed.  Throughout 

the school year he proved to be a conscientious student who frequently made sure to copy any 

missed class notes from another student.  A second possibility is that Michael used two-way 

reversibility to identify that since 𝑓𝑓′(𝑥𝑥) contained a negative sin 3𝑥𝑥 term, then it would be 

reasonable to conclude that 𝑓𝑓(𝑥𝑥) would have to contain a positive cos 3𝑥𝑥 term.  In either event, 

what is significant is that even though his exit slip and opening activity cannot be scored as 

evidence of reversibility because there is no way to know if Michael had a functional conception 
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of the chain rule at the time of solving the opening activity, Michael was able to find 𝑓𝑓(𝑥𝑥) from a 

given 𝑓𝑓′(𝑥𝑥) that required reversing the chain rule. 

Michael’s solutions to the interview questions indicate that within the week between 

opening activity 2.6.1 and interview 2, he had developed a fully reversible conception of the chain 

rule.  His solution to interview question 2.1 follows in figure 48. 

 

Figure 48. Michael’s solution to interview question 2.1 

When solving this problem, Michael explicitly used reversibility of the mental process in 

reasoning without reversible translation, saying: 

so 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 sin(𝑥𝑥2) so to find 𝑓𝑓(𝑥𝑥) you'd kind of have to undo that, go backwards ... so 

I need to find something so the opposite of sine the derivative cosine is negative sine so 

it'd have to be negative cosine to be regular sine, so  negative cosine of something ... um 

... hmm ... I'm just going to kind of plug and chug and see if this works right now ok so if 

I had just this [referring to 𝑓𝑓(𝑥𝑥)  =  −1/2 cos(𝑥𝑥2)], I would take there's the box 
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[Michael draws a box around 𝑥𝑥2] the derivative of the box is 2𝑥𝑥 times −1
2

sin(𝑥𝑥2) so 2 

times −1/2 would be … yeah it would so it would be 𝑥𝑥 sin(𝑥𝑥2) …  I just kind of have to 

guess and check … I usually get a pretty good idea and then I check it to make sure. 

This is an example of reversibility of the mental process in reasoning without reversible 

translation as Michael does not have a step-by-step procedure to reverse, rather he looked at the 

end of the procedure (in this case the chain rule) and proposed a possible starting point, informed 

by his knowledge of differential calculus and then evaluated the correctness of his answer 

through known procedures. 

Michael’s remaining paired problems involving the chain rule provide evidence that on its 

surface runs counter to the evidence provided in interview 2.  However, two explanations are 

readily available to explain why Michael was not able to demonstrate reversibility on paired 

problems 3.3.1 and 3.3.2. 

Michael correctly solved both direct problems.  Michael’s solution to opening activity 3.3.1 

is shown below in figure 49. 

 

Figure 49. Michael’s solution to opening activity 3.3.1 

This solution is marked as incorrect because the correct solution is 𝑓𝑓(𝑥𝑥) = −1
5
𝑒𝑒−5𝑑𝑑.  However, it 

is entirely possible that Michael misread the question.  If 𝑓𝑓′(𝑥𝑥) = 𝑒𝑒−4𝑑𝑑, his answer is correct and 
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would be consistent with his solution to interview question 2.1.  However, it is also possible that 

Michael incorrectly applied the simple power rule and reversed differentiation by adding one to 

the exponent and then dividing by the new exponent.  This possibility does not seem as likely 

because the coefficient is −1
4
, not − 1

4𝑑𝑑
.  Thus, it may be the case that Michael evidenced full 

reversibility of the chain rule in this problem or it is possible that Michael did not recognize the 

problem as involving the chain rule. 

On opening activity 3.3.2, Michael was asked to find a function 𝑓𝑓(𝑥𝑥) whose derivative is 

known to be 𝑓𝑓′(𝑥𝑥) = 1
�1−(3𝑑𝑑)2

.  Michael noted that 𝑓𝑓′(3𝑥𝑥) = sin−1(3𝑥𝑥) = 1
�1−(3𝑑𝑑)2

.  Michael left 

𝑓𝑓(𝑥𝑥) = blank.  This attempt at a solution suggests that Michael was aware that the derivative of 

𝑓𝑓(𝑥𝑥) = sin−1 𝑥𝑥 was involved but Michael did not recognize that the chain rule was involved in 

the problem.  Taken together with the interview question and the other paired problems, it may be 

the case that Michael does have reversibility of the chain rule, provided that he is aware that the 

chain rule is involved.  Thus, Michael’s reversibility of the mental process in reasoning without 

reversible translation about the chain rule is limited by his flexibility to notice the result of the 

chain rule in its various instantiations. 

Thus, when Kelsay and Michael’s results are considered together, we see some variation 

within the high group.  Kelsay developed reversibility on the spot and maintained complete 

reversibility of the chain rule throughout the study.  Michael evidenced reversibility of the chain 

rule in his interview.  However, there is insufficient evidence to conclude that the reversibility 

present in the interview generalized to other instantiations of the chain rule, including to the 

derivatives of the families of functions 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑑𝑑 and 𝑓𝑓(𝑥𝑥) = sin−1 𝑥𝑥. 
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Middle flexibility group – Fred and Jill 

The middle flexibility group, consisting of Fred and Jill as interview participants, exhibited 

inconsistency with reversibility of the mental process in reasoning without reversible translation 

about the chain rule.  Fred and Jill’s results on the reversibility of the chain rule interview questions 

are reported in table 56 below.   

Table 56. Reversibility of the mental process in reasoning without reversible translation with the chain rule 

questions – middle flexibility group 

Participant 2.6.1 – 12/13/14 Interview Questions 
2.1 & 2.2 – 
12/17/13 

3.3.1 – 1/14/14 3.3.2 – 1/16/14 

Fred Y Y N Y 
Jill N N N/A A 

 

Fred’s work indicates that he largely developed reversibility of the chain rule on the spot.  His 

solutions to opening activities 2.6.1 and 3.3.2 were perfect solutions and his 2nd interview also 

supports the claim that he has a well-developed reversible conception of the chain rule.  Fred’s 

solution to interview question 2.1 is presented below in figure 50. 
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Figure 50. Fred’s solution to interview question 2.1 

Fred began the problem by noting that “I know that the derivative of cosine equals negative 

sin 𝑥𝑥, so since it's been given that the derivative … has a sine in it, then there should be a cosine 

in the … function.”  Then Fred tested if the problem required reversibility of the product rule by 

placing an 𝑥𝑥 in front of the cos(𝑥𝑥2) and differentiating the result.  He rejected this approach saying 

“I just tried to put it [the 𝑥𝑥] in front to see if maybe the product rule gave the derivative but it 

didn't”.  Having eliminated the product rule, Fred then conjectured that this problem may be the 

reverse of the chain rule and tested the conjecture, saying: 

“so I'm guessing it could be a chain rule.  I'm going to try to see if that's what it is … I think 

𝑓𝑓(𝑥𝑥) is [1/2 cos(𝑥𝑥2)] because if you use chain rule, the outside is 1
2
 cosine and once you 

… apply the chain rule you have −1
2

sin(𝑥𝑥2) (−2𝑥𝑥) … the twos cancel out so you would 

be left with a positive 𝑥𝑥 sin(𝑥𝑥2) ... so the normal function should be 1
2

cos(𝑥𝑥2).” 
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Fred’s work showed a complete reversible understanding of the chain rule, although I should 

acknowledge that he incorrectly inserted a negative sign with the (2𝑥𝑥) term in his differentiation, 

thus explaining why his final answer lacks the necessary negative sign.  Fred’s approach to the 

problem of first recognizing that reversibility was necessary and then proposing a solution method 

(first by reversing the product rule and then by reversing the chain rule) and then testing the 

outcome of the method shows an understanding of reversibility of the mental process in reasoning 

without reversible translation.  Fred could not reverse the chain rule step-by-step, so instead, he 

considered what starting point would be necessary to get him to the desired outcome and continued 

making informed adjustments until he reached the correct outcome. 

Fred’s incorrect solution to opening activity 3.3.1 should not be counted as evidence 

against his reversible conception of the derivative.  His work, shown below in figure 51, suggests 

that Fred misread the question, thinking that he was trying to find the derivative instead of the 

function. 

 

Figure 51. Fred’s solution to opening activity 3.3.1 

Fred differentiated the given derivative and then labeled the result as 𝑓𝑓(𝑥𝑥).  When this result is 

considered in the context of Fred’s other work, especially his perfect solution on the same question 

with different surface characteristics in opening activity 3.3.2, the most reasonable conclusion is 

that Fred misunderstood the question. 
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 Unlike Fred, Jill did not develop reversibility of the chain rule on the spot.  Her initial 

response to opening activity 2.6.1, shown below in figure 52, indicates that Jill did not consider 

the effects of the chain rule when trying to find 𝑓𝑓(𝑥𝑥). 

 

Figure 52. Jill’s solution to opening activity 2.6.1 

The coefficient of 3 in front of the cosine term indicates that Jill did not use the chain rule to 

evaluate the quality of her answer and likely did not consider that the coefficient of 3 in ℎ′(𝑥𝑥) was 

the result of the chain rule and not a pre-existing coefficient.  It is possible that Jill did not recognize 

that the chain rule was involved in this problem. 

 In interview 2, Jill was able to recognize that reversibility of the chain rule was necessary 

to solve question 2; however, she evidenced no ability to reverse the chain rule.  Her solution is 

shown below in figure 53.   
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Figure 53. Jill’s solution to interview question 2.1 

Jill began the problem by immediately considering that the chain rule is involved saying 

“so okay, that could be chain ... how could I make that chain?”  However she was not able to 

propose a function that would differentiate to the given 𝑓𝑓′(𝑥𝑥).  Specifically, Jill proposed the 𝑓𝑓(𝑥𝑥) 

shown above and then differentiated it to produce the expression on the right side of her solution.  

She knew this was incorrect saying “why is this stumping me so much … this should not be 

happening ... ok and that doesn't fit but this is the best that I've got.”  Jill’s solution indicates that 

although she initially thought that the chain rule may be involved, she made no effort to consider 

the effects of the chain rule or how to reverse those effects.  Furthermore, her solution indicates 

that she applied two-way reversibility to each factor in the derivative.  Thus, the 𝑥𝑥 led to the 1
2
𝑥𝑥2 

in Jill’s answer and the sin(𝑥𝑥2) in the derivative led to the − cos(𝑥𝑥2) in Jill’s function.  This result 

suggests that at the time of the 2nd interview, Jill had not developed any reversibility of the mental 

process in reasoning without reversible translation in relation to the chain rule. 

Jill’s score of “N/A” on the 3.3.1 paired problems are due to her incorrect use of the chain 

rule on the 3.3.1 exit slip; however, in this case, Jill’s work on the exit slip and opening activity 

provide further evidence of her lack of reversibility of the mental process in reasoning without 
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reversible translation of the chain rule.  Jill’s solutions to the 3.3.1 exit slip and opening activity 

are presented below in figures 54 and 55, respectively. 

 

Figure 54. Jill’s solution to exit slip 3.3.1 

Jill’s work on exit slip 3.3.1 shows that Jill is aware of the derivative of the family of exponential 

functions; however, she is unable to correctly apply the chain rule. 

 

Figure 55. Jill’s solution to opening activity 3.3.1 

On opening activity 3.3.1, we see that Jill seems to be aware of how to reverse the derivative of 

the exponential function, but does not account for reversing the derivative of the function within 
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the exponent (i.e. reversing the chain rule).  Thus, Jill does not provide evidence that she has a 

reversible conception of the chain rule. 

 After completing opening activity 3.3.1, the class received instruction regarding 

differentiation of the inverse trigonometric family of functions, including examples that required 

use of the chain rule.  Upon completion of the instruction, the students attempted the 3.3.2 exit 

slip.  Jill left class early that day, at the conclusion of receiving the notes.  Thus, she did not attempt 

the exit slip even though she had been present for the day’s learning.  She did, however, attempt 

the 3.3.2 opening activity at the start of the subsequent class period.  Her work is shown below in 

figure 56. 

 

 Figure 56. Jill’s solution to opening activity 3.3.2 

Here, Jill shows that she has now developed a reversible conception of the chain rule.  First, she 

recognized the form of the derivative of inverse sine and then by writing 𝑥𝑥 = 3𝑥𝑥, Jill shows that 

she recognizes that a function is composed inside of the inverse sine function.  By writing 1
3
 in 

front of the expression, Jill shows that she understands that division is necessary to reverse the 

multiplicative factor created by using the chain rule. 
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 Jill’s work on the problems assessing reversibility of the mental process in reasoning 

without reversible translation in relation to the chain rule suggest that she did not develop 

reversibility on the spot and that development of reversibility of the chain rule took many examples 

which were spread over classroom activities, exit slips and opening activities, homework, tests, 

and an interview. 

 When Jill and Fred’s work are viewed together, we see that for students in the middle 

flexibility group, there can be significant variability and inconsistency in the development of 

reversibility of the mental process in reasoning without reversible translation.  Middle flexibility 

students can develop reversibility on the spot; they can also require a large amount of exercises 

and problem solving activities in order to develop reversibility of a particular mental process in 

reasoning without reversible translation. 

Low flexibility group – Kirsten and Marcus 

Kirsten and Marcus both struggled with developing a reversible conception of the chain rule.  

Neither student developed reversibility on the spot.  However, there is some evidence to suggest 

that both Kirsten and Marcus developed some reversibility of the mental process in reasoning 

without reversible translation in relation to the chain rule over the course of the study.  Kirsten and 

Marcus’s results on the reversibility of the chain rule interview questions are reported in table 57 

below.  

Table 57. Reversibility of the mental process in reasoning without reversible translation with the chain rule tasks – 

low flexibility group 

Participant 2.6.1 – 12/13/14 Interview Questions 
2.1 & 2.2 – 
12/17/13 

3.3.1 – 1/14/14 3.3.2 – 1/16/14 

Kirsten N N/A N Y 
Marcus N/A N N Y 
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Both Kirsten and Marcus failed to demonstrate reversibility of the mental process in 

reasoning without reversible translation on the chain rule interview questions until the final 

question, at which point both students correctly used reversibility to solve opening activity 3.3.2.  

A review of each student’s work, item by item, reveals a developmental trajectory for students in 

the low flexibility group. 

Kirsten’s four solutions to the reversible chain rule problems are shown below in table 58. 

Table 58. Reversibility of the mental process in reasoning without reversible translation with the chain rule tasks – 

Kirsten’s solutions 

Question Kirsten’s Solution 

2.6.1 

 

2.1 

 

3.3.1 
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Table 58 (continued) 

3.3.2 

 

 

In opening activity 2.6.1, we see that Kirsten is not aware that the chain rule is involved.  It is 

unclear why Kirsten wrote 𝑥𝑥3 as the angle name for the cosine term.  She is aware that reversibility 

is necessary and there is evidence that she uses two-way reversibility as she correctly reverses the 

trigonometric functions, but she exhibits no evidence of considering how to reverse the chain rule 

aspect of the derivative. 

 In interview question 2.1, Kirsten mixed using reversibility to find 𝑓𝑓(𝑥𝑥) and using the chain 

rule to find 𝑓𝑓′(𝑥𝑥).  The results indicate that Kirsten struggled to determine which direction, forward 

or reverse, was called for by the problem.  Kirsten began by correctly noting that “since the … 

derivative has the sine in it, you know the function has cosine in it”, which is an example of two-

way reversibility.  However, she used the sine function in her solution instead of cosine.  This may 

have just been a typographical error.  Kirsten then says “it would be 2𝑥𝑥 out here … this should be 

sine and then 𝑥𝑥2.”  Kirsten seems to indicate that she is now taking the derivative of 𝑥𝑥2 and saying 

that the result of the chain rule should be included in the function.  This result suggests that she no 

longer considers that she is trying to reverse differentiation and instead is just differentiating.  

Kirsten does not account for the effects of differentiating the angle name, 𝑥𝑥2. Her solution suggests 
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that she does not realize that the 𝑥𝑥 in 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 sin(𝑥𝑥2) results from the chain rule instead of being 

part of the function.  Furthermore, Kirsten makes no effort to differentiate her solution to test if it 

is correct. 

 In opening activity 3.3.1, Kirsten’s work indicates that she may be aware of reversibility 

of the derivative of the exponential family of functions; however, there is no evidence of 

reversibility of the chain rule.  The 3.3.1 exit slip clearly indicates that Kirsten is able to use the 

chain rule to take the derivative of a function of the form 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑔𝑔(𝑑𝑑); however, there is no 

evidence to suggest that Kirsten considers the need to reverse the chain rule. 

 In opening activity 3.3.2, Kirsten shows that she has realized that since the chain rule 

produces a multiplicative factor, then reversing the chain rule will necessarily require division.  It 

is noted that she wrote sin(3𝑥𝑥) instead of sin−1(3𝑥𝑥), this may have been a typographical error or 

she may have written the incorrect antiderivative.  In either event, neither of those incorrect 

solution methods are evidence against reversibility of the mental process in reasoning without 

reversible translation.  If Kirsten was not aware that 𝑓𝑓(𝑥𝑥) required an inverse sine term, then that 

would be evidence against two-way reversibility. 

 Marcus’s four solutions to the reversible chain rule problems are shown below in table 59. 
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Table 59. Reversibility of the mental process in reasoning without reversible translation with the chain rule tasks – 

Marcus’s solutions 

Question Marcus’s Solution 

2.6.1 

 

2.1 

 

3.3.1 
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Table 59 (continued) 

3.3.2 

 

 

On opening activity 2.6.1, Marcus shows that he expects the chain rule to be involved by 

writing the chain rule at the top of his paper.  However, this is more likely due to the fact that the 

chain rule was the point of emphasis of the previous class rather than evidence of Marcus 

recognizing the chain rule within the problem.  Marcus’s solution to opening activity 2.6.1 shows 

no evidence of considering that the chain rule was used to create ℎ′(𝑥𝑥) and thus there was no 

evidence that Marcus realized that the chain rule needed to be reversed. 

On interview question 2.1, Marcus was able to identify that reversibility was necessary and 

that two-way reversibility was insufficient.  He could not determine that the chain rule was 

involved.  When describing how he was trying to solve the problem Marcus confused using the 

product rule, quotient rule, and chain rule, saying, “oh wait … pretty sure this is the product rule.  

Now I'm getting messed up between chapters ... well if this is the quotient rule, the quotient rule 

is 𝑓𝑓 of the box times the box”.5   

5 “The box” refers to the inside function of a composite function. 
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Once Marcus began considering the derivative as a result of the chain rule, he then confused 

how to reverse the chain rule, saying “if the derivative of the box is 𝑥𝑥2 that means the box would 

have to be something to the 3rd”.  Marcus wrote 𝑥𝑥3 and then erased that answer and changed it to 

𝑥𝑥2.  Marcus continued to try to determine how taking the derivative effected the angle name, never 

realizing differentiation does not change the angle name.  However, on the direct chain rule 

question, interview question 2.2, Marcus had no problem using the chain rule to differentiate 

𝑓𝑓(𝑥𝑥) = cos(𝑥𝑥2), which indicated that he knew that the chain rule did not change the angle name.  

Thus, reversing the chain rule caused significant confusion for Marcus. 

Although his answer is incorrect, on opening activity 3.3.1, Marcus shows that he is now 

considering that the chain rule influences the solution to the problem.  However, he does not 

reverse the chain rule correctly.  By including the (−5) in his solution, Marcus shows that he is 

aware that the derivative of −5𝑥𝑥 should be involved.  However, he does not show that he 

considered reversing the multiplicative result of the chain rule.  Thus, at this point, Marcus has not 

shown that he has considered how to reverse the chain rule in any of the reversible chain rule 

problems. 

On opening activity 3.3.2, Marcus’s work suggests that he has now developed some 

reversible conception of the chain rule.  Here, Marcus works the two parts of the chain rule 

separately.  He notes that since 3𝑥𝑥 is in the position of the angle name, there will be a 3 in the 

derivative.  He then notes that since there is no three in the given derivative, there must be a 1
3
 in 

the function. 

When Kirsten’s work and Marcus’s work on reversible chain rule problems are considered 

together, we see evidence of how difficult it can be for some students to develop reversibility of 

the mental process in reasoning without reversible translation.  The students’ initial exposure to 
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the chain rule was on December 6, 2013 and the last opening activity assessing the chain rule was 

administered on January 15, 2014.  In each of the 17 class meetings from the initial lesson on the 

chain rule until section 3.3.2, the chain rule was used to find derivatives of functions.  It was not 

until the last day that the students in the low group began to think about the chain rule in a 

reversible mind set and it is reasonable to question whether or not Kirsten and Marcus would have 

correctly answered opening activity 3.3.2 if they had not tried opening activity 3.3.1.  These results 

suggest that for low flexibility students, reversibility of the mental process in reasoning without 

reversible translation is not a natural or intuitive thought process, but instead may only develop as 

a result of the instructor requiring the students to engage with reversible problems in both 

directions. 

Graphical analysis questions 

Paired interview questions 2.3 & 2.4 and 4.3.a & 4.3.b examine reversible aspects of calculus 

graphing.  Questions 2.3 & 2.4 assess reversibility of the graphical representation of the derivative 

at a point.  Questions 4.3.a & 4.3.b assess reversibility of a graphical representation of the 

derivative on a continuous, finite domain. 

Each pair of questions was analyzed for evidence of reversibility of the mental process in 

reasoning without reversible translation.  Table 60 reports the existence or absence of reversibility 

of the mental process in reasoning without reversible translation on the interview questions.  “Yes” 

indicates that the participant correctly solved both the forward and reverse questions; “No” 

indicates that the participant correctly solved the forward question but could not solve the reverse 

question.  “N/A” indicates that the participant could not solve the forward question, thus rendering 

the question about the existence of reversibility moot. 
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Table 60. Is reversibility of the mental process in reasoning without reversible translation present in the interview 

questions?  

Flexibility Group Participant 2.3 & 2.4 4.3.a & 4.3.b 

High Kelsay Yes Yes 
 Michael Yes No 
Middle Fred Yes Yes 
 Jill No Yes 
Low Kirsten Yes N/A 
 Marcus No N/A 

 

The results of each flexibility group are discussed in detail below. 

High flexibility group – Kelsay and Michael 

Kelsay’s solutions to questions 2.3 and 2.4 are presented below in figure 57. 

 

Figure 57. Kelsay’s solutions to interview questions 2.3 and 2.4 

Kelsay showed a complete reversibility of the mental process in reasoning without 

reversible translation about calculus graphing as she correctly solved all 4 questions.  On the first 
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set of paired problems, she showed her reversible understanding of the relationship between the 

graph of a function and the graphical representation of the derivative at a point. 

On the forward question 2.3, Kelsay immediately invoked the graphical definition of the 

derivative as the slope of the line tangent to the curve at a specific 𝑥𝑥-value, saying, “if 𝑓𝑓′ existed 

on this graph it would be of course equal to the slope” and then correctly found each 𝑓𝑓′ value 

except for 𝑓𝑓′(7) which she said was 2
3
 instead of −2

3
.  Kelsay’s mistake here was due to her 

correctly noting that 𝑓𝑓′(7) would have the same magnitude as 𝑓𝑓′(5) but not paying attention to the 

direction of the slope.  On the reverse question 2.4, Kelsay noted that she could “sketch a million 

different functions” so long as the slope of the line tangent to the function is equal to the value in 

the table.   

Kelsay’s solutions show her reversible understanding of the graphical representation of the 

derivative at a point.  In the forward question, 2.3, Kelsay estimated each derivative value by 

sketching a tangent line and then finding the slope of the tangent line.  On the reverse question, 

2.4, Kelsay began by sketching line segments with the provided slopes at the appropriate 𝑥𝑥-value 

and then sketched a curve that was tangent to each line segment. 

On questions 4.3.a and 4.3.b, Kelsay demonstrated reversibility of 𝑓𝑓 and 𝑓𝑓′ when provided 

a graph.  On the forward question, 4.3.a, Kelsay was given the graph of 𝑓𝑓 and asked to find an 

algebraic expression for 𝑓𝑓′.  On the reverse question, 4.3.b, Kelsay was provided an identical graph 

that was now labeled 𝑓𝑓′ and was asked to find an algebraic expression for 𝑓𝑓.  Kelsay’s solutions 

to both questions are shown below in figure 58. 
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Figure 58. Kelsay’s solutions to interview questions 2.3 and 2.4 

Kelsay solved both problems by first translating the graphical representation into a 

piecewise algebraic expression.  In the forward question, she took the derivative of the algebraic 

expression using simple differentiation rules.  On the reverse question, Kelsay noted that she had 

two solution methods available.  First, she said “I could just look at this [area under the curve] … 

and just make an equation out of that because these are definite lines, not curves.”  She then decided  

to write the algebraic expression for 𝑓𝑓′(𝑥𝑥) and then use two-way reversibility to find 𝑓𝑓(𝑥𝑥).  Kelsay 

chose to reverse the method she had used on the previous question.  She first used the slope and 

𝑦𝑦-intercept of each line segment to produce a piecewise algebraic expression to represent 𝑓𝑓′.  She 

then used two-way reversibility to find an acceptable equation for 𝑓𝑓(𝑥𝑥).  It should be noted that 

Kelsay’s awareness of how to find the equation of 𝑓𝑓(𝑥𝑥) by using the graphical interpretation of 

the reverse of the graphical derivative provides sufficient evidence to conclude that she has 
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reversibility of the mental process in reasoning without reversible translation about graphing 

questions. 

On questions 2.3 and 2.4, Michael was able to correctly solve the forward question, 2.3.  

He estimated the derivative at a point by sketching a tangent line and calculating the slope of the 

tangent line.  On the reverse question, 2.4, Michael used the given derivative values to sketch line 

segments at the appropriate 𝑥𝑥-values and then sketched a continuous curve tangent to each of the 

line segments.  Thus, as shown below in figure 59, Michael’s solutions to questions 2.3 and 2.4 

are nearly the same as Kelsay’s. 

 

Figure 59. Michael’s solutions to interview questions 2.3 and 2.4 

Thus, Michael shows complete reversibility of the relationship between the graph of a function 

and the slope of the line tangent to the curve at a point.  Even though he had only learned to read 

the derivative of a function from its graph by finding the slope of the tangent line, he was also able 

to use the slope of the tangent line to sketch the curve. 
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 On the paired questions 4.3.a and 4.3.b Michael demonstrated a partial reversible 

understanding of the graphical representation of a derivative on an interval.  Michael’s solutions 

are shown below in figure 60 and then discussed. 

 

Figure 60. Michael’s solutions to interview questions 4.3.a and 4.3.b 

On forward question 4.3.a, Michael took a different approach to solving the question than Kelsay.  

Michael first graphed the derivative by noting that 𝑓𝑓(𝑥𝑥) is a linear piecewise function with three 

parts, thus the derivative consists of three horizontal line segments.  Michael determined the height 

of each horizontal line segment in the derivative graph by finding the slope of each line segment 

in the function graph.  He then translated the graph of 𝑓𝑓′(𝑥𝑥) into an algebraic expression to produce 

the correct answer. 

 On the reverse question, 4.3.b, Michael ran into difficulty finding an equation of a function 

whose derivative is a diagonal line.  He again chose to try to sketch the desired graph first.  He 

sketched the first part of the piecewise function correctly nothing that “so the slope on 0 to 10 is 

1” and then correctly applied his line of thinking to the third line segment noting that the function 

would have to have 4𝑥𝑥 in it because the height of 𝑓𝑓′(𝑥𝑥) on [35,50] is 4.  However, Michael 
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struggled to determine a function whose derivative would be the diagonal line shown in the 

question.  Michael’s thoughts on finding the algebraic expression for 𝑓𝑓(𝑥𝑥) on [10,35] are well 

captured by the following excerpt from his interview. 

From 10 to 35 the slope it's not a definite slope, it would be a curve of some sort because 

it's increasing … this one is a little bit harder … you gotta assume it's going to be something 

squared … because if you take the derivative of that, it's a straight line … I guess I will just 

say 𝑥𝑥2 on 10 to 35. 

By observing that a second degree polynomial would be necessary because the derivative of a 2nd 

degree polynomial is a linear function, Michael has evidenced use of reversibility between the 

graphical representations of 𝑓𝑓 and 𝑓𝑓′.  However, he does not account for two additional pieces of 

information that are both necessary to determine an equation for 𝑓𝑓(𝑥𝑥) and are provided by the 

graph of 𝑓𝑓′(𝑥𝑥).  First, Michael does not consider that the derivative of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 would be 

𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥 and the graph shown on [10,35] is not the graph of 2𝑥𝑥.  The line segment has neither 

the slope of 2 nor a 𝑦𝑦-intercept of 0.  Michael is correct that 𝑓𝑓(𝑥𝑥) should have a degree of 2, but 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 is insufficient.  Secondly, Michael does not consider that a constant should be added to 

the function.  This is noteworthy as Michael had noted on opening activities (2.3.1, 3.1.1, 4.6.1, 

4.6.2) and interview questions, such as question 4.2.b, that reversing differentiation is an indefinite 

process and produces infinitely many solutions absent a known 𝑓𝑓(𝑥𝑥) value.  Since 𝑓𝑓′(𝑥𝑥) exists for 

all 𝑥𝑥-values in [0,50], 𝑓𝑓(𝑥𝑥) would have to be continuous, which will require a constant to be added 

to 𝑥𝑥2 on [10,35] in order for Michael’s 𝑓𝑓(𝑥𝑥) to be continuous at 𝑥𝑥 = 10.  Similarly, although 

Michael correctly determined that the third segment of the piecewise function contained a 4𝑥𝑥, he 

did not find the missing constant that would make his solution correct.  The lack of consideration 

of a constant suggests that Michael’s use of reversibility of the mental process in reasoning without 
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reversible translation with graphical questions exists to the extent that he realizes that the graph of 

the derivative will be one degree less than the graph of the function.  If a graphical analysis requires 

further specificity beyond identifying the degree of the function given its derivative, Michael is 

unlikely to be able to use reversibility to solve the problem. 

 Kelsay’s and Michael’s interview questions assessing the reversible nature of the graphical 

representation of the derivative suggest that for students in the high group, reversibility of the 

graphical representation of the derivative, understanding that the derivative at a point is the slope 

of the line tangent to the curve at the given point, may develop on the spot.  Both students’ correct, 

well-described solutions to questions 2.3 and 2.4 indicate that both Kelsay and Michael fully 

understood how to determine a derivative at a point when given a graph of 𝑓𝑓(𝑥𝑥) and how to use 

the derivative at a point to sketch a possible graph of 𝑓𝑓(𝑥𝑥).  Reversibility of an understanding of 

the graphical representation of the derivative on an interval may be more difficult for students to 

develop than a reversible understanding of the graphical representation of the derivative at a point.  

Kelsay was able to correctly solve questions 4.3.a and 4.3.b, although she avoided determining an 

equation for 𝑓𝑓(𝑥𝑥) directly from the graph of 𝑓𝑓′(𝑥𝑥).  Rather, she first translated the graph of 𝑓𝑓′(𝑥𝑥) 

into an algebraic form and then used two-way reversibility to find an algebraic expression for 𝑓𝑓(𝑥𝑥).  

Michael attempted to find an algebraic expression for 𝑓𝑓(𝑥𝑥) directly from the graph of 𝑓𝑓′(𝑥𝑥).  He 

was able to correctly identify the degree of each piece of the function.  However, he could not 

produce an accurate answer for 2 out of the 3 parts of the piecewise function.  It may have been 

the case that Michael would have been more successful solving the problem if he had pursued the 

same approach that Kelsay took. 
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Middle flexibility group – Fred and Jill 

Fred and Jill showed similar degrees of reversibility of the mental process in reasoning without 

reversible translation situated in graphing questions during their interviews.  Each correctly solved 

questions 2.3 and 2.4, using reversibility of the mental process on both of the reverse questions.  

Each student was also able to correctly solve the direct question 4.3.a.  However, neither Fred nor 

Jill could completely solve question 4.3.b correctly.  Each student partially solved the question 

correctly, indicating a present but not fully developed reversible conception of calculus graphing.  

I discuss each student’s work in turn below.   

Fred’s solutions to interview questions 2.3 and 2.4 are shown in figure 61 and discussed 

below. 

 

Figure 61. Fred’s solutions to interview questions 2.3 and 2.4 

On question 2.3, Fred began by trying to translate the graphical representation into an algebraic 

expression, saying, “If I remember a whole circle would be like 92 + 𝑥𝑥2 so I'm just trying to see 

what the semi-circle one was” but quickly determined this approach to be a dead-end saying “I 
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have no idea what the equation is and I feel like if I did know it, it would probably help, but since 

I don't, I'm trying to figure it out some other way”.  Fred was correct in thinking that an algebraic 

expression would make the problem simple; however, he was not able to create an algebraic 

expression for a semi-circle.  Fred then said “since I have no idea what the equation is I'm going 

to try using the tangent line [Fred draws a line tangent to the curve] to figure out the derivative.”  

Fred then sketched in tangent lines at each of the appropriate 𝑥𝑥-values and found the slope of each 

tangent line.  Thus, Fred showed a strong understanding of the graphical representation of the 

derivative in the forward direction. 

 On question 2.4, Fred did not use the given derivative values to sketch tangent lines and 

then sketch a curve suggested by the tangent lines.  Instead, Fred began by noting that “I looked at 

… the derivative of 𝑓𝑓, the slope so I knew that if at 3 … the derivative was 0, it would have to 

somehow flatten out.”  Fred used this connection to sketch out a piece of the curve that was 

horizontal at 𝑥𝑥 = 3.  Fred then used the signs of the derivative values to make inferences about the 

behavior of 𝑓𝑓, saying “the negative ones would mean that the 𝑓𝑓(𝑥𝑥) would be coming down and 

the (0, 1) and the (1, 2) would mean [the curve is] going up at around those points.”  Fred then 

sketched a possible solution that is nearly correct.  It should be noted that at 𝑥𝑥 = 2, Fred’s graph 

appears to have a turning point when the turning point should be somewhere between 𝑥𝑥 = 1 and 

𝑥𝑥 = 2.   

Fred’s interview provides an example of an alternate method for how a student can reverse 

a learned process without traversing the learned steps in reverse.  Kelsay and Michael solved the 

forward problem by starting with a given curve, sketching tangent lines, and then finding the slope 

of each line to fill in the table of derivative values.  To solve the reverse problem, each student 

started with a table of derivative values, sketched tangent lines whose slopes were the derivative 
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values, and then sketched a curve described by the tangent lines.  Fred used the same approach for 

the direct problem; however, his approach to the reverse problem was completely different.  On 

the reverse question, Fred started with the derivative (𝑓𝑓′) values, interpreted the 𝑓𝑓′ value in relation 

to the behavior of 𝑓𝑓 and then sketched the graph of 𝑓𝑓 without the use of tangent lines.  When 

comparing Kelsay’s and Michael’s solution to Fred’s solution, we see one of the aspects of 

reversibility of mental processes in reasoning that differs from two-way reversibility.  Two-way 

reversibility only has one possible solution method – the exact reverse of the forward solution 

method; whereas, reversibility of the mental process in reasoning without reversible translation 

often has multiple pathways by which a process can be reversed. 

Fred’s solutions to questions 4.3.a and 4.3.b are shown below in figure 62. 

 

Figure 62. Fred’s solutions to interview questions 4.3.a and 4.3.b 

Fred solved the direct question 4.3.a by translating the graph of 𝑓𝑓 to an algebraic expression 

of 𝑓𝑓′ without needing to explicitly translate the graph of 𝑓𝑓 into an algebraic expression, although 

his description of the question indicates that Fred mentally translated from a graphical 

representation of 𝑓𝑓 into an algebraic expression of 𝑓𝑓.  Fred first noted that he thought that the 
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solution would be a piecewise function and that he needed to find the slope of each tangent line.  

He described the horizontal line segments on [0,10] and [35,50] as “constants” and then said “the 

derivative of a constant is zero” and thus concluded that 𝑓𝑓′(𝑥𝑥) = 0 on [0,10] and [35,50].   

Fred’s solution to 𝑓𝑓′(𝑥𝑥)on [10,35] was incorrect.  He first found the slope of the line 

correctly to be 3
25

 using the slope formula.  However, Fred seemed to lose sight of the fact that he 

was looking for 𝑓𝑓′(𝑥𝑥), not 𝑓𝑓(𝑥𝑥) as he attempted to estimate the 𝑦𝑦-intercept of the line segment to 

be −0.3, as shown by Fred’s extending of the diagonal line until it intercepted the 𝑦𝑦-axis.  Thus, 

he determined 𝑓𝑓′(𝑥𝑥) to be 3
25
𝑥𝑥 − 0.3 on [10,35].   

On the reverse question, 4.3.b, Fred immediately noted, “this is basically the same exact 

graph. Now, the only difference here is that this is labeled now as the derivative, and it wants me 

to find an algebraic expression for just 𝑓𝑓(𝑥𝑥).”  Thus, Fred immediately noted that this question 

was the reverse of question 4.3.a.  He began by writing the solution as a piecewise function and 

showed reversibility of his graphical understanding of the derivative on an interval saying that 

“since these two are constants, … [𝑓𝑓(𝑥𝑥)] would … be that number followed by 𝑥𝑥.  So instead of 

it just being 1, it would be 𝑥𝑥.  If … you reversed the derivative, … it would be 𝑥𝑥 from 0 < 𝑥𝑥 < 10 

… 4𝑥𝑥, 35 <  𝑥𝑥 <  50.”  Fred then noted that he would need to reverse the simple power rule to 

find the function 𝑓𝑓(𝑥𝑥) on [35,50].  Fred posited that the function would have to have 𝑥𝑥2 in it 

because the line has the equation 3
25
𝑥𝑥.  An incorrect use of two-way reversibility allowed Fred to 

conclude that on [10,35], 𝑓𝑓(𝑥𝑥) = 6
25
𝑥𝑥2.  Fred multiplied the numerator by 2 instead of multiplying 

the denominator by 2.  Much like Michael, Fred did not account for the constants that would be 

necessary to correctly determine 𝑓𝑓(𝑥𝑥) from the graph of 𝑓𝑓′(𝑥𝑥). 

 273 



  

Fred’s solutions to questions 4.3.a and 4.3.b reveal a present but limited degree of 

reversibility.  He was able to demonstrate reversibility of the graphical representation of the 

derivative by first using the slope of the linear function to find 𝑓𝑓′(𝑥𝑥) on the direct question, 4.3.a 

and then he used the 𝑦𝑦-value of the 𝑓𝑓′(𝑥𝑥) graph to determine the slope of the linear segments of 

the 𝑓𝑓(𝑥𝑥) graph on the reverse question 4.3.b.  However, on the portion of the reverse question that 

was more complicated than the relationship between a constant and linear function, specifically, 

moving from a linear function to a quadratic function, Fred did not take into account the possible 

existence of a linear term or of a constant term. 

Jill needed less that 90 seconds to solve question 2.3 and she did so without showing any 

work.  When I asked Jill how she decided that 𝑓𝑓′(2) = 0, Jill replied, “it looks like a horizontal 

tangent right there”.  Jill later said that 𝑓𝑓′(6) = 0 because at “6 again that should be 0 because it 

looks like another horizontal tangent.  Thus, Jill’s description of how she solved question 2.3 make 

clear that she used the tangent line to the curve at a point to determine 𝑓𝑓′(𝑥𝑥) at the given 𝑥𝑥-values. 

Jill also correctly solved question 2.4.  Her solution is shown in figure 63 and discussed 

below. 
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Figure 63. Jill’s solution to interview question 2.4 

Jill used the same approach used by Kelsay and Michael; she first sketched tangent lines at the 

given 𝑥𝑥-values with a slope of 𝑓𝑓′(𝑥𝑥).  She then sketched a curve that was tangent to each line at 

the given 𝑥𝑥-value.  Thus, Jill reversed her approach to question 2.3 in order to correctly solve 

question 2.4. 

 On paired questions 4.3.a and 4.3.b, Jill’s work followed the same pattern shown by 

Michael and Fred.  Jill correctly solved question 4.3.a by translating the graphical representation 

of 𝑓𝑓(𝑥𝑥) directly to the algebraic representation of 𝑓𝑓′(𝑥𝑥).  She did so by noting that 𝑓𝑓′(𝑥𝑥) = 0 on 

[0,10] and [35,50].  On [10,35], Jill said that “𝑓𝑓′(𝑥𝑥) is average velocity [which] is the same as 

instantaneous for this part” and thus Jill determined that the slope of 𝑓𝑓(𝑥𝑥) was 3
25

 on [10,35] by 
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using the difference quotient.  Jill’s solutions to questions 4.3.a and 4.3.b are shown below in figure 

64. 

 

Figure 64. Jill’s solutions to interview questions 4.3.a and 4.3.b 

 On the reverse question, 4.3.b, Jill attempted to translate directly from the graphical 

representation of 𝑓𝑓′(𝑥𝑥) to the algebraic representation of 𝑓𝑓(𝑥𝑥).  She correctly noted that the 

horizontal line segment 𝑓𝑓′(𝑥𝑥) = 1, 0 ≤ 𝑥𝑥 ≤ 10 would become 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 𝐶𝐶, 0 ≤ 𝑥𝑥 ≤ 10 and 

that 𝑓𝑓′(𝑥𝑥) = 4, 35 ≤ 𝑥𝑥 ≤ 50 would become 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥 + 𝐶𝐶, 35 ≤ 𝑥𝑥 ≤ 50.  Jill then decided that 

since 𝑓𝑓′(𝑥𝑥) = 3
25
𝑥𝑥 on 10 ≤ 𝑥𝑥 ≤ 35, 𝑓𝑓(𝑥𝑥) should be 𝑓𝑓(𝑥𝑥) = 3

25
𝑥𝑥2 + 𝐶𝐶 on 10 ≤ 𝑥𝑥 ≤ 35.  This 

incorrect solution indicates that Jill was aware that the degree of 𝑓𝑓(𝑥𝑥) should increase, but she did 

not use two-way reversibility correctly to determine the coefficient in front of the 𝑥𝑥2 term nor did 

she account for the fact that a linear term should exist as well.  She made no effort to determine 𝐶𝐶 

and may not have realized that 𝐶𝐶 was determined by her choice for 𝐶𝐶 on the domain 0 ≤ 𝑥𝑥 ≤ 10. 
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 Fred and Jill exhibited nearly identical amounts of reversibility on the paired graphing 

questions.  Both students showed complete reversibility of the graphical representation of the 

derivative at a point; however, both students were only able to exhibit limited reversibility of the 

mental process in reasoning without reversible translation when using the graphical representation 

of the derivative on a continuous, finite domain.  In the case of Fred and Jill, reversibility of the 

mental process in reasoning without reversible translation was limited to the case of a constant 

function and was not extended to a linear function.  There is no evidence to suggest that either 

Fred or Jill could have used reversibility to find 𝑓𝑓(𝑥𝑥) from a graph of 𝑓𝑓′(𝑥𝑥) if 𝑓𝑓′(𝑥𝑥) consisted of 

any function more complicated than a constant function. 

Low flexibility group – Kirsten and Marcus 

Both Kirsten and Marcus had considerable difficulty with all or significant portions of the 

reversible graphing questions.  Kirsten was able to successfully solve questions 2.3 and 2.4 but 

could not solve either question 4.3.a or 4.3.b.  Marcus was not able to solve any of the four 

questions. 

Kirsten’s solutions to questions 2.3 and 2.4 are shown below in figure 65. 
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Figure 65. Kirsten’s solutions to interview questions 2.3 and 2.4 

She quickly solved question 2.3 saying “the derivative is just the slope” and then proceeding to 

estimate the slope of the line tangent to the curve at each given 𝑥𝑥-value.  As can be seen in Kirsten’s 

solution to question 2.3, her construction of the tangent line is poor at 𝑥𝑥 = 4 and 𝑥𝑥 = 5; however, 

her understanding of the graphical representation of the derivative appears to be sound. 

 Kirsten solved the reverse question 2.4 by using the same approach that we saw from 

Kelsay, Michael, and Jill.  Kirsten first noted that the derivative tells her the slope, so she sketched 

in tangent lines with the given slopes at the appropriate 𝑥𝑥-values and then sketched a continuous 

curve that fit within the tangent lines.  Thus, Kirsten showed reversibility of the mental process in 

reasoning without reversible translation with the graphical representation of the derivative. 

During the 4th interview, Kirsten was not able to solve either the direct or reverse questions, 

4.3.a and 4.3.b, respectively.  Kirsten’s answers to questions 4.3.a and 4.3.b are shown below in 

figure 66. 
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Figure 66. Kirsten’s solutions to interview questions 4.3.a and 4.3.b 

On the direct question 4.3.a, Kirsten correctly noted that 𝑓𝑓′(𝑥𝑥) would be defined by the slope of 

𝑓𝑓(𝑥𝑥); however, Kirsten did not find the slope of each line segment.  Instead, she constructed a 

secant line connecting the points at 𝑥𝑥 = 10 and at 𝑥𝑥 = 50 and found the slope of the secant line.  

She then used the slope of the secant line to write a linear equation for 𝑓𝑓′(𝑥𝑥).  Her final answer of 

𝑦𝑦 = 3
40
𝑥𝑥 + 𝐶𝐶 is evidence against Kirsten’s observation that “𝑓𝑓′(𝑥𝑥) would just be the slope”.  Her 

final answer suggests that Kirsten thinks that the derivative of a linear function is itself a linear 

function. 

 On the reverse question 4.3.b, Kirsten showed no evidence of understanding the 

relationship between the graph of 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓(𝑥𝑥).  Kirsten began by saying “well whatever 𝑓𝑓 is, 

it would be positive because this [𝑓𝑓′(𝑥𝑥)] is above the zero”.  This is inaccurate as 𝑓𝑓′(𝑥𝑥) does not 

influence the sign of 𝑓𝑓(𝑥𝑥).  Kirsten completes the problem by using the same slope, 3
40

, as she did 

in the forward problem.  When I asked her what the 3
40

 represented, Kirsten replied “the slope of 

this line right here”.  Kirsten was referring to the secant line that she constructed on question 4.3.a.  

This suggests that Kirsten did not recognize that the problems were a reverse pair. 
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Marcus showed no understanding of the graphical representation of the derivative.  His 

attempt at the forward question 2.3 is shown below in figure 67. 

 

Figure 67. Marcus’s solution to interview question 2.3 

Marcus made no attempt to use the graph of 𝑓𝑓(𝑥𝑥) to determine the values of 𝑓𝑓′(𝑥𝑥).  Consistently 

throughout the course, Marcus expressed discomfort with using graphs.  He did not consider using 

the line tangent to the graph in order find the derivative; rather, he felt strongly that he would need 

the algebraic expression in order to solve the problem.  Since he could not determine the equation 

of the curve, Marcus could not solve the problem. 
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 On the reverse question 2.4, Marcus noted that the question was “the opposite” but had no 

means of using the 𝑓𝑓′(𝑥𝑥) values to sketch 𝑓𝑓(𝑥𝑥).  Marcus attempted to graph 𝑓𝑓′(𝑥𝑥) but made no 

connections between the sketched graph of 𝑓𝑓′(𝑥𝑥) and a possible graph of 𝑓𝑓(𝑥𝑥).  Marcus then tried 

to create an algebraic expression for 𝑓𝑓′(𝑥𝑥) and seemed to try to use the chain rule but was 

unsuccessful.  His work is shown in figure 68 below. 

 

Figure 68. Marcus’s solution to interview question 2.4 

At the time of the 2nd interview, Marcus showed no understanding of the graphical representation 

of the derivative.  During the 4th interview, Marcus was to solve the forward question 4.3.a, but 

could not make sense of what the reverse question 4.3.b required.  His solutions to questions 4.3.a 

and 4.3.b are shown below in figure 69. 
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Figure 69. Marcus’s solutions to interview questions 4.3.a and 4.3.b 

 On question 4.3.a, Marcus began by stating his disdain for graphs saying, “I just really hate 

graphs” but then noted that 𝑓𝑓(𝑥𝑥) was “constant, increasing, constant” and observed that “the 

derivative is the tangent line, which would just be zero (on [0,10])”.  While Marcus’s description 

of the derivative as “the tangent line” is incorrect, his conclusion suggests that he was thinking 

about the derivative as the slope of the tangent line, which is an improvement from the 2nd 

interview.  He correctly found each of the slopes, although he divided 3
25

 incorrectly in his 

calculator.  He was not confident that just finding the slope of each line segment was sufficient as 

the entirety of 𝑓𝑓′(𝑥𝑥) and it was not clear that Marcus was aware that the answer should be written 

as a piecewise function.   

Marcus was not able to make any attempt at the reverse question 4.3.b, saying that “I don't 

know [what] information I would need to find to write an expression.  I don't even understand what 

that means to do.” 
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 Marcus’s results on questions 2.3 & 2.4 and 4.3.a & 4.3.b support the observation that 

reversibility does not develop on the spot for students in the low group.  Marcus was not able to 

solve the direct question assessing the graphical representation of the derivative at a point during 

the 2nd interview but had developed enough understanding of the graphical representation of the 

derivative to be able to solve the direct question in the 4th interview.  However, Marcus had 

developed no reversibility, which is consistent with his other interview and exit slip/opening 

activity data.  Marcus needed multiple opportunities to engage with reversibility in a particular 

content area for reversibility to develop. 

 For the students in the low flexibility group, there was very limited evidence of reversibility 

of the mental process in reasoning without reversible translation.  Kirsten showed reversibility of 

the mental process in reasoning without reversible translation about the graphical representation 

of the derivative at a point.  She could not solve the direct question assessing understanding of the 

graphical representation of the derivative over a continuous, finite domain.  Thus, there was no 

possibility that Kirsten could have reversibility about the graphical representation of the derivative 

over a continuous, finite domain.  Marcus was not able to solve the direct question assessing 

reversibility of the mental process in reasoning without reversible translation about the graphical 

representation of the derivative at a point, thus he could not demonstrate reversibility of the 

concept.  He was able to solve the direct question assessing understanding of the graphical 

representation of the derivative over a continuous, finite domain but could not start the reverse 

question. 

Position and velocity questions 

All of the interview participants demonstrated reversibility of the mental process in reasoning 

without reversible translation on questions 4.1.b and 4.2.b.  As discussed earlier, these questions 
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assessed reversibility of position and velocity.  In section 4.2.1, I discussed the elements of the 

problem that required two-way reversibility.  The element of this set of paired problems that 

requires reversibility of the mental process in reasoning without reversible translation is the 

reversibility of the relationship between position and velocity.  The results here agree with the 

results of the 4.6.2 exit slip and opening activity pair.  Specifically, the interview participants’ 

understanding of the reversible relationship between position and velocity is well-developed and 

supports the observation that the class as a whole has a well-developed sense of the reversible 

relationship between positon and velocity. 

Paired interview problems 4.1.a and 4.2.a also assessed reversibility of position and 

velocity; however, the results are not as conclusive as the result for questions 4.1.b and 4.2.b.  

Whereas for questions 4.1.b and 4.2.b in which all 6 participants demonstrated reversibility of the 

mental process in reasoning without reversible translation between position and velocity, only 3 

participants demonstrated the same reversibility on questions 4.1.b and 4.2.b.  Conceptually, both 

sets of paired questions assessed reversibility of position and velocity.  The difference between the 

nature of the questions is representational.  Questions 4.1.b and 4.2.b were only symbolic.  The 

problem provided a symbolic expression and required an output that used a symbolic 

representation.  Questions 4.1.a and 4.2.a used numerical representations.  For the students, it was 

much more difficult to consider the reversible nature of position and velocity when the function 

was presented in a numerical representation.  Table 61 records the six interview participants’ 

results on interview questions 4.1.a and 4.2.a.  “C” means correct, “I” means incorrect, “Y” means 

that reversibility is present, “N” means that reversibility is not present, and “N/A” means that the 

results of the forward and reverse questions do not allow me to draw a conclusion regarding the 

presence of reversibility. 
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Table 61. Results of questions 4.1.a and 4.2.a 

Flexibility 
Group 

Participant 4.1.a (forward) 4.2.a (reverse) Is reversibility present? 

High Kelsay C C Y 
 Michael C I N 
Middle Fred C C Y 
 Jill I C N/A 
Low Kirsten I I N/A 
 Marcus I I N/A 
 

It was anticipated that students who correctly solved question 4.1.a would use the 

difference quotient, often written as 𝑣𝑣𝑔𝑔𝑎𝑎𝑚𝑚 = 𝑚𝑚(𝑡𝑡2)−𝑚𝑚(𝑡𝑡1)
𝑡𝑡2−𝑡𝑡1

.  Then on question 4.2.a, since the students 

are given velocities and times, they would need to use reversibility to find a distance.  Typically, 

in a calculus class, one way to estimate distance traveled is to use a Riemann sum consisting of 

the product of a velocity and a time interval.  That approach would be the reverse of the average 

velocity difference quotient.   

Despite emphasis throughout the course on symbolic, graphical, and numerical 

representations of the average rate of change, only three of the students (both students in the high 

group and one student in the middle group) could correctly solve the direct question.  Of those 

three students, only two students could correctly solve the reverse problem.  Since the students’ 

work on questions 4.1.b and 4.2.b clearly indicate that the students understand that position and 

velocity are reversible relationships through the calculus operations of differentiation and anti-

differentiation, the relative lack of success on questions 4.1.a and 4.2.a suggest that the students 

are much less adept, or possibly not aware at all, about how to reverse the process of estimating 

position and velocity. 
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High flexibility group – Kelsay and Michael 

As she did throughout the study, Kelsay correctly solved both questions.  On the forward question, 

she immediately recognized that the question was calling for use of the average rate of change 

formula saying, “so this is just average velocity between these points and these points and these 

points and finally these points.  Okay, that's easy enough.”  She took a less straight-forward 

approach to the reverse problem.  She first used a kinematics formula to correctly solve the 

problem.  I then asked if she could have done the problem any other way and she identified that 

she could construct a graph of the given velocity points and then use the points to estimate the area 

under a possible velocity curve.  When I asked why she would calculate the area under the curve, 

Kelsay replied, “because, taking a derivative of a position in physics would give you meters/second 

… and the [area] would take off a per second or multiply by seconds.”  If Kelsay had limited her 

answer to using a physics formula, then we would not have evidence of reversibility of the mental 

process in reasoning without reversible translation because she would have used a direct physics 

equation to solve the problem.  However, with Kelsay’s explanation of using a dimensional 

analysis as a reason for calculating the area under a curve, we see clear evidence of a reversible 

conception of moving between position and velocity that is not dependent on a learned two-way 

process. 

 Michael, also of the high flexibility group, had no difficulties with 4.1.a saying, “so it says 

estimate so I'm just going to use the average velocity …𝑑𝑑(𝑡𝑡2)−𝑑𝑑(𝑡𝑡1)
𝑡𝑡2−𝑡𝑡1

. That's the general formula I 

would use to find the average velocity at each of these points.”  Michael found question 4.2.a to 

be quite challenging.  He attempted to find the average velocity of the graph, but then concluded 

that finding the average velocity was not relevant to the problem.  He then observed that his 

struggle with this problem is “I can't remember what distance is, is the problem.  I can't remember 
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I feel like it's the absolute value of position.  I don't remember ... I can't figure it out.”  This 

statement suggests that Michael’s difficulty may have been due to the vocabulary of the problem.  

However, he did not show any ability to move from velocity back to position or distance.  It is 

more likely that his difficulty was the numerical representation and lack of a velocity equation. 

Middle flexibility group – Fred and Jill 

Fred’s solution to question 4.2.a is shown in figure 70. 

 

Figure 70. Fred’s solution to interview question 4.2.a 

He showed complete reversibility of the mental process in reasoning without reversible translation 

when estimating position and velocity.  Fred immediately solved the direct question, 4.1.a, by 

using the average velocity formula.  The reverse question caused Fred to hesitate as he spent nearly 

four minutes trying to make sense of the question.  He then decided to translate the numerical table 

into a graphical representation, saying, “I'm just going to plot it real quick, to get an idea of what's 

happening.”  He then considered multiplying the width of the time interval by 1) the velocity at 
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the end of the interval, resulting in a sum of 360 m, and 2) by the difference of the starting and 

ending velocity of each interval, resulting in a sum of 270 m.  Fred chose to pick the answer 360 

m.  He expressed no particular reason for why he picked 360 m over 270 m.  In effect, Fred chose 

to use the right hand Riemann estimation to find the distance traveled instead of using the equation 

𝑑𝑑 = ∆𝑣𝑣 ∗ 𝑡𝑡. 

 Jill’s solution to question 4.1.a is shown below in figure 71. 

 

Figure 71. Jill’s solution to interview question 4.1.a 

She originally took the correct approach to the forward question, 4.1.a, by using the equation 𝑣𝑣 =

∆𝑑𝑑
𝑡𝑡

, however, the word “average” caused her difficulty.  She decided to divide each of her results 

by 2 to account for finding the average, resulting in incorrect answers.  In this case, Jill’s incorrect 
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answers are due to a limitation in vocabulary.  From a conceptual perspective, Jill was fully aware 

of how to estimate a velocity from a table of observed positions.   

 Jill’s solution to the reverse problem, question 4.2.a, is shown below in figure 72.  

 

 Figure 72. Jill’s solution to interview question 4.2.a 

Jill took the same approach as Kelsay and used a physics formula.  She began by writing the 

formula ∆𝑥𝑥 = 𝑎𝑎𝑓𝑓−𝑎𝑎𝑖𝑖
2

𝑡𝑡 and then making the appropriate substitutions.  At this point, it is difficult to 

conclude that Jill used reversibility to solve this problem.  Rather, she attempted to use a forward 

learning of a physics equation to solve the problem.  Thus, we do not have evidence of reversibility 

of the mental process in reasoning without reversible translation.  It should be noted that Jill’s 

equation is incorrect.  The correct kinematics equation is ∆𝑥𝑥 = 𝑎𝑎𝑓𝑓+𝑎𝑎𝑖𝑖
2

𝑡𝑡.  However, in this particular 

instance, Jill’s use of subtraction instead of addition did not matter because her initial velocity was 

zero mps. 

 289 



  

Low flexibility group – Kirsten and Marcus 

Neither Kirsten nor Marcus were able to solve the direct question, 4.1.a.  Kirsten’s solution to 

question 4.1.a is shown below in figure 73. 

 

Figure 73. Kirsten’s solution to interview question 4.1.a 

She immediately expressed a desire for an algebraic expression saying, “well, it would help if I 

had an equation to plug back into … to find the velocity”.  Kirsten correctly found the change in 

distance over each time interval.  However, she struggled with using the change in distance to find 

an average velocity.  She then remembered that 𝑑𝑑 = 𝑎𝑎
𝑡𝑡
.  However, she could not make sense of 

what to use for time.  She eventually settled on using the 𝑡𝑡-value listed in the average velocity 

chart and thus divided the change in distance by a specific time value instead of the change in time.  
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As such, she never accounted for the width of the time interval.  She was able to recognize that the 

change in position was relevant to finding the average velocity.   

Kirsten’s solution to the reverse interview question 4.2.a is shown below in figure 74. 

 

Figure 74. Kirsten’s solution to interview question 4.2.a 

She showed some reversibility by writing the equation 𝑣𝑣 = 𝑑𝑑
𝑡𝑡
 and saying “I'm going to plug back 

into that equation.”   

In effect, Kirsten used a right hand Riemann sum with only one rectangle, although she did 

not realize that at the time.  She did not consider how velocity changing at each measured time 

effected distance traveled.  Kirsten’s use of reversibility was limited in this instance as she 

accounted for the change in distance on the direct problem but did not account for the change in 

velocity on the reverse problem.  A fully developed conception of reversibility of the mental 

process in reasoning without reversible translation would have considered that if the change in a 

quantity effected the result in the direct question, then a change in a quantity would likely effect 

the reverse question.  There is no evidence that Kirsten considered such a thought process. 
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 Marcus was not able to make any sense of the direct question 4.1.a.  His work is shown 

below in figure 75. 

 

Figure 75. Marcus’s solution to interview question 4.1.a 

Marcus considered that the change in distance traveled over each time period may be relevant to 

finding the average velocity and thus calculated each difference.  However, he then said, “I don't 

know if that helped at all” and subsequently ignored the differences.  He then pursued the equation 

𝑣𝑣 = 𝑡𝑡
𝑑𝑑
, which is incorrect.  After calculating several quotients (for example, 0.2

8
= 0.025), Marcus 

determined that those answers did not make sense within the context of the problem and left the 

problem unanswered. 
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 On the reverse question, 4.2.a, Marcus began by sketching a graph of the given velocities 

as a sense-making activity, saying, “… not really sure so I feel like I should ... do a graph even 

though I hate graphs”.  Marcus’s solution on question 4.2.a is shown below in figure 76. 

 

Figure 76. Marcus’s solution to interview question 4.2.a 

After completing the graph, Marcus was not able to use the graph to answer the question, saying 

“I don't really think that helped me at all”.  He then proceeded to a dimensional analysis saying, 

“well if that's meters per second and I want it to be in meters, then I am getting rid of the seconds, 

so that's like multiplying time and your velocity, so maybe I just multiply them.”  Marcus then 

added the four products to reach a total distance traveled of 1,140 𝑚𝑚.  Marcus did not account for 

the fact that the vehicle did not travel at 10 𝑚𝑚/𝑠𝑠 for the entire 60 𝑠𝑠.  He did not account for the 

different time intervals.   

 There is no indication that Marcus used reversibility in solving the reverse question.  He 

used a dimensional analysis on the reverse question but had not used a dimensional analysis on the 
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forward question.  Furthermore, his approach to solving the forward question seems to have in no 

way influenced his approach to solving the reverse question. 

4.2.4 Development of representational reversibility 

To what extent does reversibility of the mental process in reasoning with reversible translations 

(representational reversibility) develop?  The data collected in this research study suggests that 

representational reversibility has developed in a significant amount over the course of the study.  

To determine if the students developed representational reversibility, I compared the results of the 

pre-test and the post-test for evidence of improvement in representational reversibility.  I also 

analyzed the results of a sub-set of the exit slips and opening activities and a sub-set of the 

interview questions.  I discuss the results of the data collected below. 

4.2.4.1 Pre-test and Post-test data – representational reversibility 

The pre-test and the post-test provided data points that informed the extent to which 

representational reversibility develops in a course that attends to linking multiple representations.  

The pre-test and the post-test showed evidence of representational reversibility when the class 

performed well on two reversible translations (such as graphical to symbolic and symbolic to 

graphical).  Table 62 reports the class mean score on representational reversibility across all three 

representations and by translation pair on the pre-test and the post-test.  A paired samples 𝑡𝑡-test 

was conducted to test for a significant difference between the pre-test mean score and post-test 

mean score.  Table 62 also reports the results of the paired samples 𝑡𝑡-test. 
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Table 62. Mean scores of representational reversibility on pre-test and post-test 

Representations Pre-test Score 
(%) 

Post-test Score 
(%) 

Mean Difference 
(post-test – pre-
test) 

𝑡𝑡-value, 𝑝𝑝-value 

Total 44.6 56.0 11.31∗ 𝑡𝑡 = 2.657,𝑝𝑝 = 0.015 
𝑁𝑁 ↔ 𝐺𝐺 64.88 36.9 −27.98∗ 𝑡𝑡 = −2.950,𝑝𝑝 = 0.008 
𝑁𝑁 ↔ 𝑆𝑆 41.67 61.9 20.24∗ 𝑡𝑡 = 3.600,𝑝𝑝 = 0.002 
𝑆𝑆 ↔ 𝐺𝐺 27.38 69.1 41.67∗ 𝑡𝑡 = 6.948,𝑝𝑝 < 0.001 

 

Overall representational reversibility significantly improved from the pre-test to the post-test.  At 

the individual translation level, there was significant improvement between the numerical and 

symbolic representations and between the symbolic and graphical representations over the course 

of the study.  There was a significant decrease in the amount of representational reversibility 

between the numerical and graphical representations.  As discussed in section 4.1.1.2, the post-test 

mean scores on questions that involved translation from numerical to graphical and graphical to 

numerical were much lower than the other possible translations.  The significant decrease in 

representational reversibility between the numerical and graphical representations is likely due to 

the difficulty of the content on the post-test.  For a full discussion of this content, the reader is 

referred to the earlier discussion in section 4.1.1.2.  Thus, the pre-test and post-test data reveal that 

representational reversibility significantly improved for two out of three possible representational 

combinations. 

 I further examined the extent to which representational reversibility improved from the pre-

test to the post-test.  Table 63 reports the pre-test and post-test representational reversibility mean 

scores of each flexibility group. 
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 Table 63. Mean scores of representational reversibility on pre-test and post-test 

Flexibility 
Group 

Pre-test Score 
(%) 

Post-test Score 
(%) 

Mean 
Difference 

(post-test – pre-
test) 

𝑡𝑡-value, 𝑝𝑝-value 

High 65.1 74.0 8.85 𝑡𝑡 = 1.295,𝑝𝑝 = 0.119 
Middle 41.7 47.6 5.95 𝑡𝑡 = 0.813,𝑝𝑝 = 0.224 

Low 20.8 41.7 20.83∗ 𝑡𝑡 = 3.600,𝑝𝑝 = 0.025 
 

The students in the low flexibility group showed a significant improvement in representational 

reversibility over the course of the study. 

4.2.4.2 Results of exit slips and opening activities – representational reversibility 

I analyzed the results of the 21 exit slip and opening activity pairs that were designed to assess the 

development of representational reversibility.  Four of the exit slips and opening activities were 

administered during chapter 2, four were administered during chapter 3, and thirteen were 

administered during chapter 4.  Due to the nature of the content of the course, representational 

reversibility was more prevalent during chapter 4 than during the rest of the study.  Figure 77, 

shown below, presents the results of all of the representational reversibility exit slip and opening 

activity pairs, administered chronologically throughout the study. 
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Figure 77. Scatter plot of the reversibility score on the exit slip and opening activity pairs assessing representational 

reversibility 

Figure 77 shows a general trend towards increasing representational reversibility throughout the 

study.  The trend towards improvement can be seen in the increase in density of the green blocks 

and decrease in density of the red blocks over the course of the study.  Figure 78 displays the 

reversibility score of each exit slip and opening activity pair that assessed representational 

reversibility as a scatter plot over time with a trend line imposed on the data. 

Day 2 2 8 11 13 17 18 20 21 21 22 22 23 23 23 25 26 26 27 27 33
Exit Slip 2 3 9 13 15 21 22 24 25 26 27 28 29 30 31 33 34 35 36 37 45
Section 2.1.2 2.1.2 2.5.1 2.6.3 3.2.1 3.4.1 3.4.2 3.6.1 4.1.1 4.1.1 4.1.2 4.1.2 4.2.1 4.2.1 4.2.1 4.3.1 4.3.2 4.3.2 4.4.1 4.4.1 4.8.1
H1 Y Y Y - Y ^ N N ^ ^ Y Y Y Y Y - Y Y Y Y N
H2 - - ^ N N ^ - ^ ^ ^ ^ ^ Y Y - Y Y Y Y N N
H3 ^ ^ ^ - N ^ - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Y
H4 Y N Y - - N N N N N Y Y Y Y Y - - - Y Y N
H5 N - Y - N ^ - N Y Y ^ ^ ^ ^ ^ Y Y Y Y Y N
H6 Y Y Y Y N N - N ^ ^ ^ ^ ^ ^ ^ Y Y Y Y Y ^
H7 N N ^ - - - - - ^ ^ Y N Y Y - ^ Y Y Y N -
H8 Y Y - - - ^ N ^ ^ ^ ^ - ^ ^ ^ - ^ ^ ^ ^ N
M1 Y - Y - ^ N N N - Y ^ - ^ ^ ^ - - - Y Y Y
M2 N - Y - - - ^ - Y Y Y Y ^ ^ ^ Y - - Y Y Y
M3 Y Y Y ^ - ^ - ^ Y Y ^ ^ ^ ^ ^ Y ^ ^ Y Y Y
M4 Y - - N - N - N Y Y Y Y Y Y Y Y Y Y Y Y N
M5 N - Y - - ^ - - Y Y ^ ^ ^ ^ ^ N ^ ^ Y Y N
M6 N - Y - - ^ - - ^ ^ - - Y Y N - ^ ^ - - -
M7 N - ^ - N ^ - ^ - Y Y Y Y Y Y Y ^ ^ ^ ^ ^
L1 - - - - - ^ ^ - - Y Y - Y Y Y - ^ ^ - N N
L2 ^ ^ - - N ^ - ^ ^ ^ ^ ^ ^ ^ ^ N Y Y Y Y ^
L3 - - N N N - - - ^ ^ N N Y Y - Y N N Y Y Y
L4 N - N - - ^ - - N Y - - N N N Y - - Y - -
L5 N - - - - - - ^ Y Y ^ ^ ^ ^ ^ N - - Y N ^
L6 N - Y - - ^ - - Y Y ^ - ^ ^ ^ - Y Y N N -
R.S. 46.7 66.7 81.8 25 12.5 0 0 0 75 90.9 87.5 71.4 90 90 71.4 75 87.5 87.5 100 73.3 38.5

Key 
 - first student in high flexibility 

group 
- reversibility present  - ineligible due to incorrect answer 

on exit slip 
 - first student in middle flexibility 

group 
- reversibility NOT present % - Ratio of  to (  + ) 

 - first student in low flexibility 
group 

 - ineligible due to absence R.S. – reversibility score 

H1 Y -

M1 N Y Y N

L1 ^
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Key 
# of Eligible Exit Slips and Opening 

Activities 
Symbol 

0-5  
6-10  
11-15 

 
16-21 

 
 

Figure 78. Scatter plot of the reversibility score on the exit slip and opening activity pairs assessing representational 

reversibility 

The positive slope (𝑚𝑚 = 1.17) of the trend line coupled with a weak, positive correlation 

(𝑟𝑟 = 0.281) between the class instructional period and the percent of students who demonstrated 

representational reversibility indicates that there was a slight observable development of 

representational reversibility over the course of the study at the whole class level. 
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To further gauge the extent to which representational reversibility develops when students 

are engaged in a course that attends to linking multiple representations, I compared the class mean 

reversibility scores during the first and second half of the course.  Table 64, shown below, reports 

the class mean representational reversibility score during the first and second halves of the study 

and the results of a paired samples 𝑡𝑡-test for a significant difference.  The first half consisted of 

paired problems 2, 3, 9, 13, 15, 21, and 22.  The second half consisted of paired problems 24, 25, 

26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, and 45. 

Table 64. Class mean reversibility score on representational reversibility exit slips and opening activities from the 

first half and second half of the study 

 First half Second half Paired difference 𝑡𝑡-
value 

Paired difference 𝑝𝑝-
value 

Reversibility Score 33.24% 61.46% 𝑡𝑡 = 4.891 𝑝𝑝 < 0.001 

 

The general trend towards development previously shown in figures 77 and 78 and the significant 

improvement in mean representational reversibility score at the class level suggest that 

representational reversibility as a problem solving process may have developed over the course of 

the study. 

I further analyzed the representational reversibility exit slips and opening activities by 

content area.  Three of the twenty-one paired problems assessed average rate of change and 

instantaneous rate of change.  Two of the paired problems assessed related rates.  Twelve of the 

paired problems assessed graphical analysis.  Three of the paired problems assessed differentiation 

and one set of paired problems assessed L’Hospital’s rule.  Table 65 reports the reversibility score 

displayed on the paired problems that assessed a similar content two or three times. 
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Table 65. Reversibility score on representational reversibility exit slips and opening activities that assessed the same 

content two or three times 

Section(s) Content, 
# eligible opening activities,  
reversibility score on 1st set 
of paired problems, 
assessed representations 

Content, 
# eligible opening activities,  
reversibility score on 2nd set 
of paired problems, 
assessed representations 

Content, 
# eligible opening activities,  
reversibility score on 3rd  set 
of paired problems, 
assessed representations 

2.1.2, 
4.8.1 

Average Rate of Change 
𝑛𝑛 = 16,  
Reversibility Score: 44%, 
Representations: 𝑁𝑁 ↔ 𝐺𝐺 

Instantaneous Rate of 
Change 
𝑛𝑛 = 6, 
Reversibility Score: 66.7% 
Representations: 𝑁𝑁 ↔ 𝐺𝐺 

Mean-Value Theorem 
𝑛𝑛 = 13, 
Reversibility Score: 38% 
Representations: 𝑁𝑁 ↔ 𝐺𝐺 

3.4.1, 
3.4.2 
 

Related Rates 
𝑛𝑛 = 4, 
Reversibility Score: 0%  
Representations: 𝑆𝑆 ↔ 𝑉𝑉 

Related Rates 
𝑛𝑛 = 4,  
Reversibility Score: 0% 
Representations: 𝑆𝑆 ↔ 𝑉𝑉 

N/A 

2.5.1, 
2.6.3, 
3.2.1 

Differentiation 
𝑛𝑛 = 12,  
Reversibility Score: 83.3% 
Representations: 𝑆𝑆 ↔ 𝐺𝐺 

Differentiation 
𝑛𝑛 = 4,  
Reversibility Score: 25% 
Representations: 𝑆𝑆 ↔ 𝐺𝐺 

Differentiation 
𝑛𝑛 = 8, 
Reversibility Score: 12.5% 
Representations: 𝑆𝑆 ↔ 𝐺𝐺 

 

What is most significant about table 65 above is that representational reversibility did not 

improve in any of the three content areas as the content was repeated, which is a marked 

difference from the development of two-way reversibility and reversibility of the mental process 

in reasoning without reversible translation.  In both two-way reversibility and reversibility of the 

mental process in reasoning, reversibility increased with repeated content. 

The paired related rates problems from sections 3.4.1 and 3.4.2 seemed to cause great 

difficulty for all of the students.  These problems required representational reversibility between 

the symbolic and verbal representations.  Very few students were able to solve the direct problem 

either day.  On the first day, four students correctly solved the direct exit slip.  Two of the four 

students who were able to solve the direct problem were from the high group and two of the four 

students were from the middle group.  None of these students were able to solve the reverse task.  

On the second day, four students correctly solved the direct exit slip, three of which were from 

 300 



  

the high group and one student was from the middle group.  Again, none of these students were 

able to solve the reverse task.  This is likely evidence of the difficulty that students may have 

when forced to use the verbal representation. 

Table 66 reports the number of eligible opening activities and the reversibility score on 

the twelve graphical analysis paired problems that assessed representational reversibility. 

Table 66. Reversibility score on exit slips and opening activities that assessed representational reversibility through 

graphical analysis 

Class 
Period 

21 21 22 22 23 23 23 25 26 26 27 27 

Eligible 8 11 8 7 10 10 7 12 8 8 15 15 
R.S. 78 92 88 71 90 90 71 75 89 89 94 67 

 

All of the graphical analysis paired problems that assessed representational reversibility required 

translation between the graphical and numerical representations of functions.  As can be seen in 

table 66, the class was consistently strong on graphical analysis paired problems that required 

representational reversibility.  What is particularly noteworthy is that all of the paired problems 

presented in table 66 assessed representational reversibility between the numerical and graphical 

representations of functions.  The overall class average score on graphical analysis paired problems 

assessing representational reversibility between the graphical and numerical representations was 

83.1%, indicating a consistently high degree of representational reversibility between the 

graphical and numerical representations of functions. 

4.2.4.3 Results of interviews – representational reversibility 

The think-aloud interview data was used to draw conclusions regarding the development of 

representational reversibility.  I analyzed the written solutions and the transcript data from the pairs 

of interview questions that assessed representational reversibility: 1.3 (interview 1, question 3), 
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2.3 & 2.4, and 3.1 & 3.2.  Each pair of questions was analyzed for evidence of using 

representational reversibility to solve the problems.  Table 67 reports the existence or absence of 

representational reversibility on the interview questions.  “Yes” indicates that representational 

reversibility was present; “No” indicates that the participant did not use representational 

reversibility. 

Table 67. Is representational reversibility present in the interview questions? 

Flexibility 
Group 

Participant 1.3 2.3 & 2.4 3.1 & 3.2 

High Kelsay Yes Yes Yes 
 Michael Yes Yes Yes 
Middle Fred Yes Yes Yes 
 Jill Yes Yes Yes 
Low Kirsten Yes Yes No 
 Marcus No No No 

 

The group of interview participants, as a whole, demonstrated a high degree of representational 

reversibility.  All of the students in the high and middle flexibility groups successfully solved all 

of the questions that required representational reversibility.  In the low flexibility group, Kirsten 

was able to solve the simpler questions 1.3 and 2.3 & 2.4 but was not able to demonstrate 

representational reversibility on 3.1 & 3.2.  Marcus could not demonstrate representational 

reversibility on any of the interview questions. 

 Table 68 reports the specific translations used on questions 1.3, 2.3, and 2.4.  𝑆𝑆 refers to 

the symbolic representation, 𝑁𝑁 means numerical representation, and 𝐺𝐺 means graphical 

representation.  𝑓𝑓 means function and 𝑓𝑓′ means derivative.  Thus, the classification 𝑆𝑆𝑓𝑓 represents 

the algebraic expression of the function; 𝑆𝑆𝑓𝑓′ indicates the algebraic expression of the derivative.  

𝐺𝐺𝑓𝑓 represents the graph of the function; 𝐺𝐺𝑓𝑓′ represents the graph of the derivative.  𝑁𝑁𝑓𝑓 indicates a 

table or list of functional values;  𝑁𝑁𝑓𝑓′ represents a table or list of derivative values. 
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Table 68. Translations used on questions 1.3, 2.3, and 2.4 

Flexibility 
Group 

Participant 1.3 2.3 2.4 

High Kelsay 𝐺𝐺𝑓𝑓′ → 𝑆𝑆𝑓𝑓′ → 𝑆𝑆𝑓𝑓 → 𝑁𝑁𝑓𝑓 → 𝐺𝐺𝑓𝑓 𝐺𝐺𝑓𝑓 → 𝐺𝐺𝑓𝑓′ → 𝑁𝑁𝑓𝑓′ 𝑁𝑁𝑓𝑓′ → 𝐺𝐺𝑓𝑓 
 Michael 𝐺𝐺𝑓𝑓′ → 𝑆𝑆𝑓𝑓′ → 𝑆𝑆𝑓𝑓 → 𝑁𝑁𝑓𝑓 → 𝐺𝐺𝑓𝑓 𝐺𝐺𝑓𝑓 → 𝐺𝐺𝑓𝑓′ → 𝑁𝑁𝑓𝑓′ 𝑁𝑁𝑓𝑓′ → 𝐺𝐺𝑓𝑓′ → 𝐺𝐺𝑓𝑓 
Middle Fred 𝐺𝐺𝑓𝑓′ → 𝑁𝑁𝑓𝑓′ → 𝑆𝑆𝑓𝑓′ → 𝑆𝑆𝑓𝑓 → 𝑁𝑁𝑓𝑓 → 𝐺𝐺𝑓𝑓 𝐺𝐺𝑓𝑓 → 𝐺𝐺𝑓𝑓′ → 𝑁𝑁𝑓𝑓′ 𝑁𝑁𝑓𝑓′ → 𝐺𝐺𝑓𝑓′ → 𝐺𝐺𝑓𝑓 
 Jill 𝐺𝐺𝑓𝑓′ → 𝑆𝑆𝑓𝑓′ → 𝑆𝑆𝑓𝑓 → 𝑁𝑁𝑓𝑓 → 𝐺𝐺𝑓𝑓 𝐺𝐺𝑓𝑓 → 𝑁𝑁𝑓𝑓′ 𝑁𝑁𝑓𝑓′ → 𝐺𝐺𝑓𝑓 
Low Kirsten 𝐺𝐺𝑓𝑓′ → 𝑆𝑆𝑓𝑓′ → 𝑆𝑆𝑓𝑓 → 𝐺𝐺𝑓𝑓 𝐺𝐺𝑓𝑓 → 𝐺𝐺𝑓𝑓′ → 𝑁𝑁𝑓𝑓′ 𝑁𝑁𝑓𝑓′ → 𝐺𝐺𝑓𝑓 
 Marcus 𝐺𝐺𝑓𝑓′ → 𝑆𝑆𝑓𝑓′ 𝐺𝐺𝑓𝑓 → 𝑁𝑁𝑓𝑓 𝑁𝑁𝑓𝑓′ → 𝐺𝐺𝑓𝑓′ 

 

The participants’ results on question 1.3 indicate that for all of the participants except Marcus, 

representational reversibility between the graphical and symbolic representations was present 

during the first interview.  Marcus was not able to find 𝑆𝑆𝑓𝑓 from 𝑆𝑆𝑓𝑓′, thus he stopped before trying 

to convert a symbolic equation back into a graphical representation.  Kelsay and Kirsten both 

translated from the symbolic representation directly to the graphical representation while Michael, 

Fred, and Jill all translated the symbolic representation through the numerical representation (by 

plotting points) to the graphical representation. 

 Paired problems 3.1 and 3.2 were scored on a 7 point rubric, shown below in table 69.  

Scoring of question 3.2 required marking each interval for correct behavior (increase/decrease and 

concavity) or marking specific 𝑥𝑥-values as extrema or inflection points. 

Table 69. Scoring rubric on questions 3.1 and 3.2 

3.1: Forward: 
𝐺𝐺 → 𝑁𝑁, 
𝑓𝑓 → 𝑓𝑓′, 
𝑓𝑓 → 𝑓𝑓′′  

3.2: Reverse:  
𝑁𝑁 → 𝐺𝐺, 
𝑓𝑓′ → 𝑓𝑓, 
𝑓𝑓′′ → 𝑓𝑓  

1 pt. 𝑓𝑓′(𝑥𝑥) > 0, 𝑓𝑓′′(𝑥𝑥) > 0 1 pt. (−3,0) 
1 pt. 𝑓𝑓′(𝑥𝑥) < 0, 𝑓𝑓′′(𝑥𝑥) > 0 1 pt. (5,∞) 
1 pt. 𝑓𝑓′(𝑥𝑥) > 0, 𝑓𝑓′′(𝑥𝑥) < 0 1 pt. (−5,−3) ∪ (0,2) 
1 pt. 𝑓𝑓′(𝑥𝑥) < 0, 𝑓𝑓′′(𝑥𝑥) < 0 1 pt. (−∞,−5) ∪ (2,5) 
1 pt. 𝑓𝑓′(𝑥𝑥) = 0 1 pt. 𝑥𝑥 = −3, 𝑥𝑥 = 2 
1 pt. 𝑓𝑓′′(𝑥𝑥) = 0 1 pt. 𝑥𝑥 = −3, 𝑥𝑥 = 5 
1 pt. 𝑓𝑓′(𝑥𝑥) 𝐷𝐷𝑁𝑁𝐷𝐷 1 pt. 𝑥𝑥 = −5, 𝑥𝑥 = 0 
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The entire question was marked as correct if the participant scored 5 or higher total points on the 

question.  Thus, a student who demonstrated representational reversibility scored 5/7 or higher on 

both questions 3.1 & 3.2.  Table 70 below reports each interview participant’s scores on questions 

3.1 and 3.2. 

Table 70. Results of questions 3.1 and 3.2 

Flexibility 
Group 

Participant 3.1 Score (out 
of 7) 

3.2 Score (out 
of 7) 

Representational 
Reversibility 

High Kelsay 6.5 7 Yes 
 Michael 7 7 Yes 
Middle Fred 5 5.5 Yes 
 Jill 5.667 6.5 Yes 
Low Kirsten 4.333 2 No 
 Marcus 1.667 1 No 

 

The results of the six participants on interview questions 3.1 and 3.2 are discussed below by 

flexibility group. 

High flexibility group – Kelsay and Michael 

Both Kelsay and Michael showed representational reversibility on questions 3.1 and 3.2.    Kelsay’s 

solutions to questions 3.1 and 3.2 are shown below in figure 79. 

 

Figure 79. Kelsay’s solutions to interview questions 3.1 and 3.2 
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Kelsay received a grade of 6.5/7 because she offers a partially correct answer to part (f), saying 

that 𝑓𝑓′′(𝑥𝑥) = 0 at 𝑥𝑥 = −3,0, (2,3) ∪ (3,4).  Kelsay is correct that 𝑓𝑓′′(𝑥𝑥) = 0 on the intervals 

(2,3) ∪ (3,4) but is incorrect when she writes that 𝑓𝑓′′(𝑥𝑥) = 0 at 𝑥𝑥 = −3 and 𝑥𝑥 = 0.  In fact, 

𝑓𝑓′′(−3) < 0 and 𝑓𝑓′′(0) > 0.  Kelsay answered each section by determining the behavior of the 

function as described by the question prompt and then finding the interval of the curve with said 

behavior.  For example, on part (a), Kelsay described the following thought process: “Because 

𝑓𝑓′(𝑥𝑥) is greater than zero is whenever 𝑓𝑓 is increasing and because 𝑓𝑓′′ is greater than [zero], [𝑓𝑓(𝑥𝑥)] 

would be concave up so here [Kelsay points to the correct interval (0,2)]”.  Kelsay repeated this 

process of interpret whether 𝑓𝑓 is increasing or decreasing by reading the sign of 𝑓𝑓′ and then 

interpret if 𝑓𝑓 is concave up or down by reading the sign of 𝑓𝑓′′ and then choosing the interval 

containing both behaviors throughout question 3.1.  Thus, Kelsay had no difficulties with 

translating functional behaviors from the graphical representation to the numerical representation. 

 On question 3.2, Kelsay drew a perfect sketch of a curve 𝑓𝑓(𝑥𝑥) that met each of the criteria 

presented in the numerical representation.  She demonstrated a high ability to translate a numerical 

representation of a function into a graphical representation of the function.  Thus, Kelsay showed 

complete representational reversibility between the graphical and numerical representations.  It is 

noteworthy that Kelsay translated the functional information presented in a list of discrete 

characteristics and values directly to a graph.  She was able to interpret and mentally organize the 

information presented in the list of functional characteristics and intervals and translate that 

information into a graphical representation of the function without writing down any organizing 

information such as using a table or regrouping the data to align the overlapping intervals. 
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 Michael also demonstrated complete representational reversibility between the graphical 

and numerical representations on questions 3.1 and 3.2.  His solutions to the questions are shown 

below in figure 80. 

 

Figure 80. Michael’s solutions to interview questions 3.1 and 3.2 

 On question 3.1, Michael solved each portion of the question by first interpreting the 

information about 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) in relation to the behavior of 𝑓𝑓(𝑥𝑥) and then finding the interval 

of the graph of 𝑓𝑓(𝑥𝑥) with the required behavior.  For question d), Michael’s response is indicative 

of how he solved each part of the question:  “And then on what intervals, if any, is 𝑓𝑓′(𝑥𝑥)  <  0 and 

𝑓𝑓′′(𝑥𝑥)  < 0?  That's when it is decreasing, concave down which would be (−3,−2).”  Using this 

approach, Michael correctly solved each of the parts of the question, demonstrating a high ability 

to translate from the graphical representation to the numerical representation. 

 On question 2, Michael used several different approaches before settling on a method that 

produced a correct graph.  First, Michael tried to sketch every detail individually.  He correctly 

plotted the point (0,1) given that 𝑓𝑓(0) = 1 and then he concluded that since “𝑓𝑓′(−3) is equal to 

𝑓𝑓′(2) which is equal to 0 … I know there are turning points at … −3, and 2”.  Here, Michael ran 
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into his first issue.  He assumed that since 𝑓𝑓′(𝑥𝑥) = 0 at 𝑥𝑥 = −3 and 𝑥𝑥 = 2, 𝑓𝑓(𝑥𝑥) must have a 

turning point, which is incorrect.  He then tried to sketch a section based only on the information 

provided by 𝑓𝑓′(𝑥𝑥), saying “𝑓𝑓′(𝑥𝑥) is greater than 0 … between −5 and −3 so the slope is positive.  

It is increasing on −5 to −3 and we know that there is a turning point at −3.”  When Michael tried 

to sketch the section between 𝑥𝑥 = −5 and 𝑥𝑥 = −3 he realized that 𝑓𝑓′(𝑥𝑥) did not provide enough 

information and then said, “I just want to make sure I do it correctly, concave up or concave down 

so I'm going to skip around a little bit and look at 𝑓𝑓′′.”  At this point, Michael began labeling his 

interpretations of the behavior of 𝑓𝑓 as informed by 𝑓𝑓′ and 𝑓𝑓′′, saying “I should have just started 

labeling these from the beginning … I'm going to go back and do that real quick. 𝑓𝑓′(𝑥𝑥) is greater 

than 0 ... it's increasing here and here, decreasing here and here. It's concave up on these because 

𝑓𝑓′′(𝑥𝑥) is positive on these intervals.”  At this point, Michael was able to work through the rest of 

the graph and, once he had considered all of the information presented in the question, was able to 

sketch a correct graph.  Michael correctly translated from the numerical representation to the 

graphical representation on question 3.2 and thus demonstrated complete representational 

reversibility between the numerical and graphical representations. 

Middle flexibility group – Fred and Jill 

Neither Fred nor Jill solved either question 3.1 or 3.2 completely correctly; however, each student 

answered at least 5 out of 7 parts correct, thus allowing me to conclude that representational 

reversibility on questions 3.1 and 3.2 was present for both Fred and Jill.    Fred’s solutions to 

questions 3.1 and 3.2 are shown below in figure 81. 
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Figure 81. Fred’s solutions to interview questions 3.1 and 3.2 

On question 3.1, Fred began the question by first using + and – signs to mark on the graph the 

intervals on which 𝑓𝑓(𝑥𝑥) was concave up (+) and concave down (−).  Fred had no difficulties with 

the intervals comprising [−4,2].  However, Fred was not sure how to handle the concavity of the 

linear portions of the graph.  He marked both linear segments with a (−) to indicate that he thought 

that the linear segment was concave down.  Fred had no difficulties with parts (a) and (b) which 

required interpreting where 𝑓𝑓(𝑥𝑥) was increasing or decreasing and concave up.  Due to his 

confusion about whether or not a linear function has concavity, Fred answered parts (c) and (d) 

incorrectly.  He included the intervals (2,3) and (3,4) because he thought that a linear function 

was concave down.  Thus, on parts (c) and (d), Fred’s answers were marked as half correct to 

account for identifying the correct interval and for identifying the incorrect interval. 

 Fred struggled with part (f).  Part (f) asks the student to identify where 𝑓𝑓′′(𝑥𝑥) = 0.  Fred 

answered at 𝑥𝑥 = −2 and 𝑥𝑥 = 2.  Both of these answers are incorrect because 𝑓𝑓′′(𝑥𝑥) does not exist 

at 𝑥𝑥 = −2 and at 𝑥𝑥 = 2.  However, when specifically asked later if there were any 𝑥𝑥-values for 

which 𝑓𝑓′′(𝑥𝑥) does not exist, Fred said that 𝑓𝑓′′(𝑥𝑥) would not exist at 𝑥𝑥 = −2,2,3 because 𝑓𝑓′(𝑥𝑥) 
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does not exist at those values.  Thus, Fred’s answer to part (f) contradicts his answer to where 

𝑓𝑓′′(𝑥𝑥) may not exist.  Fred did not seem to be aware of this conflict. 

 Accounting for Fred’s mistakes on parts (c), (d), and (f), Fred’s score on question 3.1 was 

5/7, indicating that he had a reasonable grasp of calculus graphing questions and was able to 

successfully translate his interpretations from the graphical representation to the numerical 

representation. 

 On question 3.2, Fred scored 5.5/7, indicating that he had a reasonably well-developed 

understanding of calculus graphing and translating from the numerical to the graphical 

representation.  He began the question in much the same way Michael did, by first plotting the 

point (0,1) and noting that there should be a maximum or minimum point at 𝑥𝑥 = −3 and 𝑥𝑥 = 2 

because 𝑓𝑓′(𝑥𝑥) = 0; again, this is a misconception.  Fred’s first sense-making activity was to 

construct a first-derivative number line.  Fred plotted the intervals on the number line and wrote 

in (+) or (−) in each interval except for the interval (0,2).  It is not clear how Fred thought that 

he would handle that interval.  Fred then constructed a number line for 𝑓𝑓′′(𝑥𝑥) and labeled it as 

positive or negative to indicate whether 𝑓𝑓(𝑥𝑥) would be concave up or concave down.  After 

completing his number lines, Fred read through the remaining characteristics and decided “to make 

a little table to put the information that I've ciphered so far and … find 𝑓𝑓(𝑥𝑥) out of it”.  Fred 

constructed a table consisting of the intervals described by the problem along with the sign of 𝑓𝑓′ 

and the sign of 𝑓𝑓′′.  Fred then interpreted these signs together to determine the behavior of 𝑓𝑓(𝑥𝑥). 

 Having completed a chart of the behaviors of 𝑓𝑓(𝑥𝑥), Fred constructed his graph.  What is 

noteworthy here is that all of the intervals described in Fred’s table are correct.  However, he 

incorrectly graphed 𝑓𝑓(𝑥𝑥) on (−5,−3).  Fred correctly identified that 𝑓𝑓(𝑥𝑥) should increase, 

concave down.  However, he drew a graph that decreases concave down.  Furthermore, he correctly 
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identified that 𝑓𝑓′(𝑥𝑥) changes from negative to positive at 𝑥𝑥 = 5, resulting in a local minimum at 

𝑥𝑥 = 5.  However, his graph does not contain a local minimum at 𝑥𝑥 = 5.  Fred was aware that he 

was struggling with how to graph 𝑓𝑓 on the interval (−5,−3) saying “I'm trying to graph it but the 

concavity … it's like changing so I'm trying to figure how to how to graph it without it seeming to 

change.”  Fred did not realize that although the function was continuous it was not everywhere 

differentiable.  Fred skipped over the interval (−5,−3) and correctly sketched the remainder of 

the graph.  When he revisited the interval (−5,−3), he said that “I believe that −3 is a point that 

looks to be a minimum.  There wasn't an inflection point around there.”  This observation, which 

agrees with the graph that Fred drew, directly conflicts with both of Fred’s number lines.  On his 

𝑓𝑓′(𝑥𝑥) number line, Fred wrote that 𝑓𝑓′(𝑥𝑥) is positive on both sides of 𝑥𝑥 = −3.  Since 𝑓𝑓(𝑥𝑥) can only 

have a minimum if 𝑓𝑓′(𝑥𝑥) changes from negative to positive, Fred’s number line indicates that 𝑓𝑓(𝑥𝑥) 

does not have a maximum or minimum at 𝑥𝑥 = −3.  Secondly, 𝑓𝑓(𝑥𝑥) has an inflection point at 𝑥𝑥 =

−3 if 𝑓𝑓′′(𝑥𝑥) changes sign at 𝑥𝑥 = −3.  Since Fred’s 𝑓𝑓′′(𝑥𝑥) number line indicates that 𝑓𝑓′′(𝑥𝑥) changes 

from negative to positive at 𝑥𝑥 = −3, Fred should be aware that 𝑓𝑓(𝑥𝑥) has an inflection point at 𝑥𝑥 =

−3.  His statement that “there wasn’t an inflection point around there” suggests that he originally 

thought that 𝑓𝑓(𝑥𝑥) would have an inflection point at 𝑥𝑥 = −3 but he could not reconcile the existence 

of an inflection point with the curve that he drew. 

 It is noteworthy that in two separate numerical representations, the number lines and the 

interpretative chart, Fred indicated that he understood that an inflection point existed at 𝑥𝑥 = −3.  

However, when he translated his understanding of the function represented numerically to a 

graphical representation, his apparent discomfort with drawing a curve with a kink overruled what 

he knew to be true in the numerical representation.  Thus, Fred was able to successfully translate 

most of the functional information from the numerical representation to the graphical 
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representation; however, he did not correctly translate all aspects of the information that he had 

correctly interpreted from the list of characteristics and intervals. 

 Jill showed an amount of representational reversibility on questions 3.1 and 3.2 similar to 

the amount shown by Fred.  She scored a 5.667/7 on question 3.1 and a 6.5/7 on question 3.2.  

Jill’s solutions to questions 3.1 and 3.2 are shown below in figure 82. 

 

Figure 82. Jill’s solutions to interview questions 3.1 and 3.2 

Jill answered all of question 3.1 quite quickly (two minutes and seven seconds).  She had no 

difficulties identifying the intervals on which 𝑓𝑓(𝑥𝑥) exhibited the behavior indicated by 𝑓𝑓′(𝑥𝑥) and 

𝑓𝑓′′(𝑥𝑥) in parts a-d.  She also had no difficulty determining where 𝑓𝑓′(𝑥𝑥) = 0 by looking at the 

graph.  Jill made a subtle mistake when answering part f), where does 𝑓𝑓′′(𝑥𝑥) = 0?  Jill selected 

𝑥𝑥 = −2.  This selection is incorrect as 𝑓𝑓′′(𝑥𝑥) does not exist at 𝑥𝑥 = −2.  However, it should be 

noted that 𝑥𝑥 = −2 is an inflection point and it is likely the case that Jill identified the change in 

concavity as the place where 𝑓𝑓′′(𝑥𝑥) = 0.  Jill made another mistake with 𝑥𝑥 = −2 on part (g) when 
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she failed to identify 𝑥𝑥 = −2 as an 𝑥𝑥-value for which 𝑓𝑓′(𝑥𝑥) does not exist.  Either Jill was not 

aware that 𝑓𝑓(𝑥𝑥) is vertical at 𝑥𝑥 = −2 or she was not aware that 𝑓𝑓′(𝑥𝑥) does not exist when the line 

tangent to the curve is vertical. 

 On question 3.2, Jill correctly sketched each of the intervals pertaining to when 𝑓𝑓(𝑥𝑥) was 

increasing concave up, decreasing concave up, increasing concave down, and decreasing concave 

down.  She also correctly sketched a graph 𝑓𝑓(𝑥𝑥) whose derivative 𝑓𝑓′(𝑥𝑥) was equal to zero at 𝑥𝑥 =

−3 and 𝑥𝑥 = 2 and whose second derivative 𝑓𝑓′′(𝑥𝑥) was equal to zero at 𝑥𝑥 = −3 and 𝑥𝑥 = 5.  The 

only error in Jill’s graph is at 𝑥𝑥 = 0, where according to Jill’s graph, 𝑓𝑓′(0) clearly exists and is not 

vertical, as it should be.  Also, it should be noted that Jill’s sketch makes it appear that 𝑓𝑓(𝑥𝑥) is 

decreasing concave up on (−3,0) instead of increasing concave up.  However, Jill’s transcript 

suggests that she meant for the graph to increase on (−3,0), saying that the curve was “still 

increasing” from 𝑥𝑥 = −3 to 𝑥𝑥 = 2.  When she drew the segment of the curve from 𝑥𝑥 = −3 to 𝑥𝑥 =

0, she said, “ehh, that’s close enough … this is realism”.  She did note that she had placed the point 

at 𝑥𝑥 = −3 too high on the graph, presumably because it was higher than 𝑓𝑓(0) = 1. 

 Jill solved question 3.2 in a method similar to the approach that Kelsay used.  Jill worked 

on each interval individually and did so without re-organizing the information provided in the 

question prompt.  Jill interpreted the behavior of 𝑓𝑓 on each interval by coordinating the information 

provided by 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) on the various intervals mentally, unlike Fred and Michael who both 

wrote down organizational aids. 

 Jill exhibited a nearly complete understanding of representational reversibility between the 

numerical and graphical representations.  She successfully identified intervals containing calculus 

properties by looking at the graph of 𝑓𝑓 and then correctly sketched 𝑓𝑓(𝑥𝑥) by interpreting intervals 
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of calculus properties.  Her mistakes on both problems were limited to a misconception about when 

𝑓𝑓′(𝑥𝑥) exists and were not related to a translational issue. 

Low flexibility group – Kirsten and Marcus 

Both Kirsten and Marcus had significant difficulties with interview questions 3.1 and 3.2.  Both 

students scored worse on question 3.2 than they did on 3.1, with Kirsten decreasing from 4.333/7 

to 2/7 and Marcus decreasing from 1.667/7 to 1/7. 

Kirsten’s solutions to questions 3.1 and 3.2 are shown below in figure 83. 

 

Figure 83. Kirsten’s solutions to interview questions 3.1 and 3.2 

On question 3.1, Kirsten successfully identified the intervals of functional behavior described by 

𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) in parts a-d.  However, she was not able to identify where 𝑓𝑓′(𝑥𝑥) = 0 or where 

𝑓𝑓′′(𝑥𝑥) = 0 and was only able to identify one 𝑥𝑥-value at which 𝑓𝑓′(𝑥𝑥) does not exist.  For each 

portion of the question that Kirsten correctly interpreted the calculus characteristic of the problem, 

she correctly translated her solution from the graphical representation to the numerical 

representation, indicating a well-developed flexibility to translate from the graphical 

representation to the numerical representation. 
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 On question 3.2, Kirsten had significant difficulties translating the numerical 

representation of calculus properties into a graphical representation.  Kirsten was able to use the 

information provided by 𝑓𝑓′(𝑥𝑥) to correctly determine where 𝑓𝑓(𝑥𝑥) was increasing or decreasing.  

She also correctly determined the concavity of 𝑓𝑓(𝑥𝑥) from the information provided by 𝑓𝑓′′(𝑥𝑥).  

Kirsten had significant difficulties with translating the information she had gleaned about 𝑓𝑓(𝑥𝑥) 

from the numerical representation into a graphical representation.  She correctly sketched the curve 

on the intervals (−5,−3), (−3,0), and (0,2).  However, she incorrectly sketched the curve on the 

intervals (−∞,−5), (2,5), and (5,∞).  Consistent with her work on question 3.1, Kirsten did not 

sketch a curve with 𝑓𝑓′(𝑥𝑥) = 0 or 𝑓𝑓′′(𝑥𝑥) = 0 at the appropriate 𝑥𝑥-values.  Finally, neither her graph 

nor interview transcript indicated any consideration of the fact that 𝑓𝑓′(0) does not exist. 

 Kirsten’s inability to account for where 𝑓𝑓′(𝑥𝑥) = 0, 𝑓𝑓′′(𝑥𝑥) = 0, or where 𝑓𝑓′(𝑥𝑥) does not 

exist in question 3.2 is not evidence of a lack of representational reversibility as she was not able 

to correctly solve the equivalent parts of question 3.1.  However, her inability to correctly sketch 

three of the segments on which she had correctly described the behavior indicates that Kirsten had 

difficulty translating from the numerical representation to the graphical representation.  Coupled 

with her work on question 3.1, I can conclude that Kirsten had very limited representational 

reversibility between the numerical and graphical representations.  She was much stronger at 

translating from the graphical to the numerical representation than from the numerical to the 

graphical representation. 

 Marcus had significant difficulties with both questions, 3.1 and 3.2.  On question 3.1, he 

scored 1.667/7.  On question 3.2, he scored 1/7.  His solutions to the questions are shown below 

in figure 84. 
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Figure 84. Marcus’s solutions to interview questions 3.1 and 3.2 

Marcus began the question by creating the organizational chart shown at the right side of 

his solution.  He correctly identified that 𝑓𝑓′(𝑥𝑥) informs increasing and decreasing behavior and 

that 𝑓𝑓′′ informs the concavity of the curve on the respective interval.  However, Marcus’s table 

shows that he is unaware of how to interpret increasing and decreasing behavior.  Marcus was able 

to draw the correct calculus conclusion: For example, if Marcus identified an interval as 

“increasing and concave down”, then he correctly concluded that 𝑓𝑓′(𝑥𝑥) > 0 and that 𝑓𝑓′′(𝑥𝑥) < 0.  

Marcus’s difficulty was in determining if 𝑓𝑓(𝑥𝑥) was increasing or decreasing by looking at the 

graph of 𝑓𝑓(𝑥𝑥).  There are two possibilities for explaining Marcus’s difficulties with increasing and 

decreasing behavior.  One possibility is that he believes that increasing behavior means that the 

function lies above the 𝑥𝑥-axis and that decreasing behavior occurs when the function lies below 

the 𝑥𝑥-axis.  Alternatively, Marcus may have confused himself regarding whether he was looking 

at the graph of 𝑓𝑓 or 𝑓𝑓′.  If Marcus thought that he was looking at the graph of 𝑓𝑓′, then his answer 
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would be accurate as anywhere that 𝑓𝑓′(𝑥𝑥) > 0, 𝑓𝑓(𝑥𝑥) is increasing.  His inability to correctly 

determine increasing and decreasing behavior resulted in incorrect responses to parts a-d.  Since 

Marcus understood the calculus portion of the question, relating behavior to the sign of 𝑓𝑓′(𝑥𝑥) and 

𝑓𝑓′′(𝑥𝑥), this is evidence that his difficulty was in analyzing the graphical representation.  This 

difficulty necessarily limited his ability to translate from the graphical representation to the 

numerical representation. 

The only parts of question 3.1 that Marcus answered correctly were parts (e) and (f).  In 

part (e), Marcus noted that “𝑓𝑓′ is slope … Here is where … the slope is zero. [Marcus draws in 

horizontal line segments tangent to the graph at 𝑥𝑥 =  −3 and 𝑥𝑥 =  0]  So I'm going to say −3 and 

0.”  Here Marcus showed that he has some ability to translate from the graphical to the numerical 

representation.  In part (f), he correctly identified that 𝑓𝑓′(𝑥𝑥) does not exist at 𝑥𝑥 = −2 and 𝑥𝑥 = 2 

but did not identify 𝑥𝑥 = 3.  However, his reasoning for why 𝑓𝑓′(𝑥𝑥) does not exist at 𝑥𝑥 = −2 and 

𝑥𝑥 = 2 suggests that he did not know what causes 𝑓𝑓′(𝑥𝑥) to not exist.  Marcus said “I have absolutely 

no idea so I'm just going to guess these points: 𝑥𝑥 =  −2, 2” and then said that the reason that 

𝑓𝑓′(−2) and 𝑓𝑓′(2) do not exist is because 𝑓𝑓(𝑥𝑥) changed from positive to negative or vice versa, 

which in fact, do not in any way determine the existence of 𝑓𝑓′(𝑥𝑥). 

Marcus’s answers to question 3.1 indicate that his understanding of calculus graphing is 

limited to superficial memorization: If 𝑓𝑓 is increasing, then 𝑓𝑓′ is positive.  When 𝑓𝑓 is decreasing, 

then 𝑓𝑓′ is negative.  If 𝑓𝑓 is concave up, then 𝑓𝑓′′ is positive.  If 𝑓𝑓 is concave down, then 𝑓𝑓′′ is 

negative.  Marcus was not able to correctly identify where 𝑓𝑓 was increasing or decreasing by 

looking at the graph of 𝑓𝑓, indicating Marcus’s difficulties with the graphical representation.  

Marcus’s limited ability to analyze the graphical representation necessarily inhibited any ability 

he may have had to translate from the graphical representation to the numerical representation. 
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On question 3.2, Marcus had significant difficulties with nearly all parts of the question.  

He began the question by setting up a chart to organize the information.  He correctly interpreted 

the effects of 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) on the behavior of 𝑓𝑓(𝑥𝑥).  However, Marcus was not able to 

coordinate the various intervals described in the question prompt.  He showed very little ability to 

coordinate the interval portion of the numerical representation.  For Marcus, the fact that the 

intervals describing  𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) did not form a partition but instead overlapped was an 

unresolvable point of confusion.  The only interval on which Marcus sketched a correct curve was 

(−5,−3), which was an interval on which both 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) were explicitly described: 

𝑓𝑓′(𝑥𝑥) > 0 on −5 < 𝑥𝑥 < −3 and 𝑓𝑓′′(𝑥𝑥) < 0 when −5 < 𝑥𝑥 < −3.   It is interesting to note that on 

the interval 𝑥𝑥 < −5, both 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) are explicitly described as well with both being 

negative.  Marcus correctly labeled this in his table and correctly interpreted the behavior of 𝑓𝑓(𝑥𝑥) 

to be decreasing and concave down.  However, Marcus sketched a curve that was increasing and 

concave down on (−∞,−5).  Marcus also attempted to sketch the curve on (−3,0).  According to 

his table, the curve should have been increasing and concave up.  He drew a curve that was 

decreasing and concave up.  These errors are consistent with Marcus’s difficulty in determining 

increasing and decreasing behavior in question 3.1 and are evidence of a difficulty in translating 

from the numerical to the graphical representation.  Also, he noted that 𝑓𝑓(0) = 1, but his graph 

reflects that 𝑓𝑓(0) = 0.  Marcus found translating from the numerical representation to the 

graphical representation to be a difficult question. 

When viewed through a translational lens, Marcus’s work on questions 3.1 and 3.2 shows 

significant difficulties with translating from the graphical representation to the numerical 

representation and from the numerical representation to the graphical representation.  Given his 

 317 



  

inability to translate in either direction, Marcus’s representational reversibility between the 

numerical and graphical representations is nearly non-existent. 

Taken together, Kirsten’s and Marcus’s work on questions 3.1 and 3.2 suggest that for low 

flexibility students, representational reversibility is particularly difficult.  Although based on the 

evidence present, I cannot conclude that it is the reversible nature that was difficult.  For both 

students, there were significant difficulties with one-way flexibility.  It is clear that if one 

directional flexibility is not present, than bi-directional flexibility (i.e. representational 

reversibility) will not be present either. 

4.2.5 Summary – the extent to which reversibility developed 

The results of the exit slips and opening activities suggest that two-way reversibility developed 

significantly at the class level over the course of the study.  The interview data indicates that the 

high flexibility group and the middle flexibility group were largely able to learn a process in the 

forward direction and then, without any instruction, reverse the process immediately, thus 

developing two-way reversibility on the spot.  For students in the low flexibility group, two-way 

reversibility may not have developed on the spot.  However, for students who did not develop 

reversibility of a particular procedure on the spot, repeated use of a direct process, such as 

differentiation of the simple power rule, over the course of the study may have led to the 

development of reversibility as nearly the entire class was able to reverse differentiation of the 

simple power rule at the end of the course. 

Developing reversibility of the mental process in reasoning without reversible translation 

was considerably more difficult than developing two-way reversibility for the students observed 

in this study.  Reversibility of the mental process in reasoning without reversible translation was 
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unlikely to develop on the spot and when it did, it was limited to a few students in either the high 

or middle flexibility groups.  Students in the high flexibility group were often able to use 

reversibility of the mental process in reasoning without reversible translation to solve a reverse 

problem immediately after learning the forward direction of a process.  Students in the middle 

flexibility group were occasionally able to use reversibility of the mental process in reasoning 

without reversible translation to solve a reverse problem immediately after learning the forward 

direction of a process.  Students in the low flexibility group were not able to use reversibility of 

the mental process in reasoning without reversible translation to solve a reverse problem 

immediately after learning the forward direction of a process.  After multiple opportunities to 

engage with the same learning, students in the low flexibility group were unlikely to use 

reversibility of the mental process in reasoning without reversible translation to solve a reverse 

task.  The presence and development of reversibility of the mental process in reasoning without 

reversible translation was content specific, influenced by the functional representation in which 

the reversible task was presented, and improved as the students were given multiple opportunities 

to engage with reversible tasks assessing the same content. 

Representational reversibility developed in a significant amount over the course of the 

study.  The extent to which a student successfully used representational reversibility was likely 

influenced by the amount of flexibility that the student demonstrated at the start of the study.  To 

that end, the students in the high flexibility group were consistently able to use representational 

reversibility whenever necessary.  The middle flexibility group was also able to reliably use 

representational reversibility but not to the same extent as the high flexibility group.  The low 

flexibility group consistently struggled to use representational reversibility to solve problems.  As 

a distinct difference from the development of two-way reversibility and reversibility of the mental 
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process in reasoning without reversible translation, the amount of representational reversibility 

demonstrated by the class did not improve over repeated opportunities to engage with the same 

content.  The results of this study indicated that a student who demonstrated representational 

reversibility on the first day of learning a new content was also able to use representational 

reversibility when the content was revisited later in the course.  Students who were not able to use 

representational reversibility on the first day of learning a new content were not able to use 

representational reversibility on later tasks involving the same content.   

Finally, in order to answer research question 2: to what extent do students develop 

reversibility when engaged in a course that attends to linking multiple representations, I 

triangulated the conclusions drawn when answering the three sub-questions.  In section 3.5.2, I 

proposed an evaluative table that would answer research question 2 based on the results of sub-

questions 2.i, 2.ii, and 2.iii.  For ease of access, that table is reprinted below as Table 71. 

Table 71. Possible combinations of outcomes answering research question 2 

 R.Q. 
2.i 

R.Q. 
2.ii 

R.Q. 
2.iii 

R.Q. 2 

Did reversibility 
develop? 

Y Y Y Strong evidence that reversibility does develop when 
students are engaged in a course that attends to 
linking multiple representations 

 Y Y N Evidence suggests that reversibility likely developed 
 Y N Y Evidence suggests that reversibility likely developed 
 N Y Y Evidence suggests that reversibility likely developed 
 Y N N Evidence suggests that reversibility may have 

developed in a limited amount and in a limited 
domain 

 N Y N Evidence suggests that reversibility may have 
developed in a limited amount and in a limited 
domain 

 N N Y Evidence suggests that reversibility may have 
developed in a limited amount and in a limited 
domain 

 N N N Evidence suggests that reversibility may not develop 
when students are engaged in a course that attends to 
linking multiple representations 
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Since the results of the study indicate that two-way reversibility developed to a large degree, 

representational reversibility developed to a lesser degree, and reversibility of the mental process 

in reasoning without reversible translation may not have developed, I conclude that there is 

evidence to suggest that reversibility overall may have developed when students were engaged in 

a course that attends to linking multiple representations. 

4.3 RESEARCH QUESTION 3 

What are the thought processes that students utilize when using reversibility to solve problems? 

The exit slip and opening activity data and the think-aloud interview transcript data were 

used to answer research question 3. 

I analyzed the data collected in the study in two stages in order to inform research question 

3.  First, I analyzed class-wide data and individual interview data to look for recurrent themes 

indicating how students may think about reversibility.  Secondly, I analyzed the interview 

transcripts for any possible evidence of a change in how a student thinks about reversible problems 

throughout the study.  The results of the analysis suggest a pattern of thought processes present 

when students solve problems using two-way reversibility and reversibility of the mental process 

in reasoning without reversible translation.  This pattern was consistent across flexibility groups.  

The data collected in this study also indicates that student do not use reversible thought processes 

when using representational reversibility.  Finally, there was no evidence of a change in thought 

processes when using reversibility to solve problems during the course of the study.  Each of these 

findings is discussed in turn. 
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4.3.1 Thought processes used when solving problems that require reversibility of a two-

way process 

Analysis of the exit slips and opening activities and interview questions that assessed reversibility 

of two-way processes indicates that when students use reversibility of two-way processes to solve 

problems, the students consistently used the following thought pattern: 1) recognize that the 

question requires reversibility of a known procedure, 2) reverse the steps of the known procedure 

by asking her/himself “what do I need to do to get back to …” to find a possible solution, 3) check 

the validity of the solution by using the known forward process, and 4) adjust the solution if 

necessary 

Table 72 below reports the steps that each interview participant demonstrated on the 

interview questions that assessed two-way reversibility. 

Table 72. Presence of 4-step thought process when using two-way reversibility 

Participant 1.2 1.3 4.2.b 4.3.b 

Kelsay 1) 2) 3) 1) 2) 1) 2)  1) 2) 3) 4) 

Michael 1) 2) 3) 4) 1) 2) 3) 4) 1) 2) 1) 2) 3) 4)a 

Fred 1) 2) 3) 1) 2) 1) 2) 3) 1) 2) 3) 

Jill 1) 2) 1) 2)  1) 2) 3) 4) 1) 2) 3) 

Kirsten 1) 2) 3) 4) 1) 2) 3) 4) 1) 2) None 

Marcus 1) 2) 3) 4) 1) 1) 2) 3) 4) None 

 

Michael’s 4.3.b block is marked 1) 2) 3) 4)a to note that he solved the problem correctly by using 

reversibility; however, he did not use two-way reversibility.  He used reversibility of the mental 
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process in reasoning without reversible translation to solve the question.  On question 4.3.b, 

Michael followed the 4-step thought process that I describe in the next section. 

 On question 1.2, Kelsay and Fred did not need to adjust their answers; thus, they only 

exhibited steps 1-3.  Jill did not check her answer.  Michael, Kirsten, and Marcus used all four 

steps to solve the problem.  On question 1.3, Marcus only exhibited step 1.  Jill, Fred, and Kelsay 

did not check their solutions.  Michael and Kirsten showed all four steps of the proposed thought 

process.  On question 4.2.b, Kelsay, Michael, and Kirsten did not feel the need to check their 

solutions; thus, they only showed steps 1 and 2.  Fred checked his answer and determined that no 

adjustments were necessary, demonstrating steps 1-3.  Jill and Marcus used all four steps of the 

two-way reversibility thought process.  On question 4.3.b, Kirsten and Marcus did not demonstrate 

any thought processes that related to reversibility.  Fred and Jill both used steps 1-3 and did not 

adjust their answers.  Kelsay and Michael demonstrated all four steps. 

Below, I present four interview vignettes of similar content.  The vignettes serve to show 

how the 4-step process described above captures the thought processes of students when using 

two-way reversibility to solve a problem.  Two vignettes are from the first interview and two 

vignettes are from the last interview.  The two vignettes from interview 1 are from Michael and 

Marcus.  Michael was in the high flexibility group and Marcus was in the low flexibility group.  

Interview 1, question 2 asks students to find a function 𝑓𝑓(𝑥𝑥) whose derivative is known to be 

𝑓𝑓′(𝑥𝑥) = 𝑥𝑥5.  Presented in table 73 below is Michael’s interview transcript exemplifying the 4-step 

thought pattern of two-way reversibility. 
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Table 73. Michael’s transcript from interview 1, question 2. 

Michael’s transcript Step of two-way reversibility thought pattern 
The function has a derivative of 𝑓𝑓′(𝑥𝑥)  =  𝑥𝑥5 
so this is going backwards.  

Step 1: Michael recognizes that he has to work 
backwards. 

So I just usually start testing things.  It's kind 
of a guess and check for me.  I try and think uh 
'what would be'... so something would have to 
make what's right here 1 [Michael points at the 
coefficient in front of 𝑥𝑥5].   So there would be 
nothing there and then so it would be 1

5
𝑥𝑥6 oh 

no, yes, no 1
6
𝑥𝑥6  

Step 2: Michael tries to reverse the simple 
power rule by asking “what would be here”.  
He indicates that he is reversing the simple 
power rule step-by-step by noting that the 
exponent increases by one and the coefficient 
must be divided by the new exponent. 

because if you brought down this exponent 6 
and multiplied it by 1/6 that would be 1 and 
then you subtract 1 from this exponent and that 
would be 5 and that would be 𝑥𝑥5.  

Step 3: Michael checks his solution by using 
the simple power rule for differentiation 

So then, that's the actual answer [Michael 
circles 𝑓𝑓(𝑥𝑥) = 1

6
𝑥𝑥6] 

Step 4: Michael determines that he does not 
need to adjust his solution 

 

Presented below in table 74 is Marcus’s interview transcript from interview 1, question 2 as an 

example of a student’s thought process when using two-way reversibility to solve a problem. 

Table 74. Marcus’s transcript from interview 1, question 2. 

Marcus’s transcript Step of two-way reversibility thought pattern 
So the derivative is 𝑥𝑥5 that means that you 
have to work backwards 

Step 1: Marcus recognizes that he has to work 
backwards. 

Well if you are working backwards normally 
for the exponent you do the exponent minus 
one for the derivative, so if you are going 
backwards you would add one which would be 
six. 

Step 2: Marcus tries to reverse the simple 
power rule.  Here, we see a difference between 
the low and high flexibility groups.  Marcus 
was able to find the correct exponent but could 
not account for the coefficient. 

hmm ... that won't work because then that 
would be 6𝑥𝑥 for the derivative [Marcus erases 
the exponent of 6] 

Step 3: Marcus attempts to check his answer of 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥6.  He notes that his answer would 
result in a 6 as a coefficient of 𝑥𝑥.   
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Table 74 (continued) 

well if it was 1
𝑑𝑑−5

 that's the same I think that's 
the same thing as that [referring to 𝑥𝑥5] so 
[Marcus erases 𝑥𝑥5] ...oh but then the derivative 
ahhh ... [Marcus erases all of his work] ... umm 
well the derivative of a constant would just be 
zero, but there's no zero out front so ... I'm not 
sure 

Step 4: Marcus attempted to adjust his solution 
because the derivative of 𝑥𝑥6 was not equal to 
𝑥𝑥5.  Marcus was not able find a viable solution. 

 

The interview vignettes from the fourth interview are taken from question 2.b.  Interview 4, 

question 2.b presents students with a velocity function of a vehicle in motion of 𝑣𝑣(𝑡𝑡) = 4𝑡𝑡3 −

3𝑡𝑡2 + 𝑡𝑡 and asks students to find the position of the vehicle at 𝑡𝑡 = 3.  Two-way reversibility of the 

simple power rule is necessary to find the position function.  Below, I present Fred’s and Marcus’s 

interview transcripts as examples of how students’ thought processes when using two-way 

reversibility follow the proposed 4-step process.  Fred is in the middle flexibility group and Marcus 

is in the low flexibility group.  Table 75 below presents Fred’s interview transcript from interview 

4, question 2.b. 

Table 75. Fred’s transcript from interview 4, question 2.b. 

Fred’s transcript Step of two-way reversibility thought pattern 
Now I could … take this [𝑣𝑣(𝑡𝑡)] since … 
velocity is the derivative of 𝑠𝑠.  So I could go 
backwards to find 𝑠𝑠. 

Step 1: Fred recognizes that he has to work 
backwards. 

Ok, so … this [𝑠𝑠(𝑡𝑡)] should be … power to the 
4th, power to the 3rd, power to the 2nd ...so for 
the over here where it's 𝑡𝑡, as the 𝑠𝑠 function 
would be 𝑡𝑡

2

2
 cause when you would derive the 

2 would come out front and it would cancel 
with the denominator. 

Step 2: Fred increases the exponent of each 
term by one and then shows that he 
understands that he needs to divide by the new 
exponent as well.  Here, he reverses the steps 
of the simple power rule. 
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Table 75 (continued) 

The −3𝑡𝑡2 would be 9𝑡𝑡
3

3
 and you would derive 

... it would be 3, yeah when you would derive 
it would be 9𝑡𝑡

2

3
 and the 9 and the 3 would 

reduce to  be just 3.  Lastly, the 4𝑡𝑡3 would be 
4𝑡𝑡4

4
 when you would derive it would be 16𝑡𝑡

3

4
.  

The 16 and 4 would reduce to 4𝑡𝑡3. 

Step 3: Fred uses the simple power rule to 
differentiate each term of the position function 
in order to check his answer.   

 

Fred did not demonstrate step 4 in this interview because his answer checked correctly and thus 

there was no need to adjust his solution.  Marcus’s transcript from interview 4, question 2.b is 

presented below in table 76.  To aid in understanding the transcript, I have included the relevant 

portion of Marcus’s solution to interview 4, question 2.b as figure 85. 

 

Figure 85. Marcus’s solution to interview question 4.2.b 
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Table 76. Marcus’s transcript from interview question 4.2.b. 

Marcus’s transcript Step of two-way reversibility thought pattern 
Suppose you know the velocity function 𝑣𝑣(𝑡𝑡) 
for a vehicle in motion in meters/second.  
Position, ahh, so this is going backwards 

Step 1: Marcus recognizes that he has to work 
backwards. 

Um 3 that means that that [the exponent of the 
first term] has to be 4 [inaudible calculations 
of the cubic term in 𝑠𝑠(𝑡𝑡)].  I guess it would be 
1𝑡𝑡 so it's just no no, just having the 𝑡𝑡 that 
means 1𝑡𝑡 means that 1 would go there  so it's 
just hmm I know there's a constant at the end 
so 𝑓𝑓′ would be 0.  Oh what is that one [Marcus 
references the linear term in 𝑣𝑣(𝑡𝑡)]?  It's 2t then 
the 2 would go there, when it's just 𝑡𝑡, then it's 
... hmmm ... I'm blanking ... this is just 𝑡𝑡, I'm 
still imagining a 1 in front so that 1 would go 
there but how the heck do you just get a 𝑡𝑡? 

Step 2: Marcus correctly reverses the simple 
power rule to find the first two terms of 𝑠𝑠(𝑡𝑡).  
However, he had significant difficulties with 
finding a term whose derivative would be 𝑡𝑡. 

So if you [had] 2𝑡𝑡, the derivative would just 
be 2, if you had 𝑡𝑡2, the derivative would just 
be 2𝑡𝑡, so if you had a 𝑡𝑡, the derivative would 
be...? 

Step 3: Marcus uses differentiation to check 
multiple possibilities for the third term in 𝑠𝑠(𝑡𝑡) 
and consistently determines that his answer is 
incorrect.   

My mind is totally blanking ...  It couldn’t be 
like 𝑡𝑡 ... 𝑡𝑡 to the no ... I don't know I'm just 
going to leave it as 𝑡𝑡 but that's not right but I 
don't know what to do. 

Step 4: Marcus attempts to adjust his answer 
but is unable to find a term whose derivative is 
1𝑡𝑡. 

 

These four vignettes demonstrate the 4-step thought process that I propose that students 

use when using two-way reversibility to solve problems.  As shown above, the 4-step process was 

present during the first interview, administered in early December, near the beginning of the study, 

and during the 4th interview which was administered in March, after the instructional period of the 

study had concluded.  Furthermore, the process was present in the interview transcripts from 

students in the high, middle, and low flexibility groups.  These results suggest that the students’ 

thought processes when using reversibility were largely consistent across flexibility groups and 

did not change over the course of the study. 
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The 4-step process shown above can also be seen in the students’ responses to the exit slips 

and opening activities.  Although, the exit slips and opening activities did not produce the rich 

descriptions of the interviews, evidence of the reversible thought process seen in the interview 

transcripts is present in the exit slips and opening activities.  Opening activity 2.3.1 serves as an 

exemplar for how the students who used reversibility to solve the opening activity thought about 

using reversibility.  Opening activity 2.3.1 asks students to find a function 𝑓𝑓(𝑥𝑥) whose derivative 

𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 − 6.  Students were asked to explain or show how they determined 𝑓𝑓(𝑥𝑥).  Table 77, 

shown below, presents the solutions of the six students who demonstrated reversibility along with 

their explanations.  The students’ explanations are reproduced verbatim.  The steps of the 4-step 

two-way reversibility thought processes present in each explanation are noted in the last column. 

Table 77. Evidence of reversible thoughts from opening activity 2.3.1. 

Flexibility 
group 

Solution Student’s explanation Steps 
present 

Low 

 

I did the simple power root 
backwards by looking a 𝑓𝑓′(𝑥𝑥) and 
determining what powers were to 
make 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 − 6. 

1) 
2) 

High 

 

The derivative (if I did it correctly) 
of 1

2
𝑥𝑥2 is 𝑥𝑥 and the derivative of −6𝑥𝑥 

is negative 6. 

3) 

Middle 

 

I found the reverse of the 
differentiated function, using the 
BPT [basic power theorem]. 

1) 
2) 

High 

 

I worked backwards. 1) 
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Table 77 (continued) 

High 

 

I used the power rule, the constant 
multiple rule, & the sum & 
difference rules to logically discern 
how this derivative was found & 
differentiated & reversing the rules, 
how to find its’ equation 

1) 
2) 

Middle 

 

I basically did opposite of what we 
learned yesterday.  I figured & 
worked the simple power rule 
backward and plugged numbers in to 
see how I could get 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 − 6 
and 𝑓𝑓(𝑥𝑥) = 1

2
𝑥𝑥2 − 6𝑥𝑥 worked. 

1) 
2) 
3) 
 
 

 

In five of the six explanations, the students reference working backwards/reverse/opposite, which 

is clear evidence of Step 1 in the two-way reversible thought process.  Step 2, reversing the steps 

of the known procedure, in this case, the simple power rule, was referenced in four of the six 

opening activities.  This should not be counted as evidence against students’ consideration of step 

2.  Rather, it is likely an expected result of a less rich description of how a student solved a problem 

than what a clinical interview provides.  Two students explicitly demonstrated step 3 by checking 

the solution by using the known procedure, the simple power rule.  In this case, no students 

demonstrated step 4, which is to be expected as the opening activities only provide a window into 

the final product and not the development of the solution from beginning to end.  If a student had 

checked her/his solution and then subsequently changed the answer, the opening activity would 

likely not reflect the change. 
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4.3.2 Thought processes used when solving problems that require reversibility of the 

mental process in reasoning without reversible translation 

Analysis of the exit slips and opening activities and interview questions that assessed reversibility 

of the mental process in reasoning without reversible translation indicates that when students use 

reversibility of the mental process in reasoning without reversible translation to solve problems, 

the students consistently used the following thought pattern: 1) recognize that the question requires 

the use of reversibility, 2) propose a possible solution that is informed by knowledge of the forward 

process, 3) check the validity of the solution by using the known forward process, and 4) adjust 

the solution if necessary.   

Table 78 below reports the steps that each interview participant demonstrated on the 

interview questions that assessed reversibility of the mental process in reasoning without reversible 

translation. 

Table 78. Presence of 4-step thought process when using reversibility of the mental process in reasoning without 

reversible translation 

Participant 2.1 2.4 3.2 4.2.a 

Kelsay 1) 2) 3) 1) 2) 3) 1) 2) 3) 4) None 

Michael 1) 2) 3) 4) 1) 2) 1) 2) 3) 4) None 

Fred 1) 2) 3) 4) 1) 2) 3) 4) 1) 2) 3) 4) None 

Jill 1) 2) 3) 4) 1) 2)  1) 2) 3) 4) None 

Kirsten 1) 2) 3) 4) 1) 2) 3) 4) None None 

Marcus 1) 2) 3) 4) 1) None None 
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On questions 2.1, 2.4, and 3.2, there were 18 opportunities to demonstrate the complete 4-

step process.  Eleven times, all four steps were present in the interview participants’ responses.  

On question 4.2.a, which was designed to elicit reversible conceptions of position and velocity, 

none of the students used the 4-step thought process to attempt to solve the problem.  In this 

particular instance, only 3 students (Kelsay, Fred, and Jill) were able to make a credible attempt at 

solving the problem and Kelsay and Jill both treated the problem as a forward application of 

physics knowledge.  Fred solved the problem mathematically but he did so without providing any 

evidence that he conceived of the problem as a reverse of question 4.1.a.  Fred’s solution was 

discussed in section 4.2.2.2. 

Unlike two-way reversibility, which is entirely limited to procedural understanding, 

reversibility of the mental process in reasoning without reversible translation can be used to solve 

procedural and conceptual problems.  Below, I present four interview vignettes, the first two 

vignettes present students’ thought processes while using reversibility of the mental process in 

reasoning without reversible translation to solve a procedural task and the second two vignettes 

exemplify students’ thought processes while using reversibility of the mental process in reasoning 

without reversible translation while solving a conceptual task.  

The first set of vignettes come from the 2nd interview, question 1.  The question asks the 

interview participants to find a function 𝑓𝑓(𝑥𝑥) whose derivative 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 sin(𝑥𝑥2).  In this case, 

the students are attempting to reverse the chain rule differentiation procedure.  Both vignettes serve 

to exemplify the 4-step thinking process that students use when solving problems that require 

reversibility of the mental process in reasoning without reversible translation.  Presented in table 

79 below is Kelsay’s interview transcript and a corresponding discussion of the related step. 
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Table 79. Kelsay’s transcript from interview 2, question 1. 

Kelsay’s transcript Step of reversibility of the mental process in 
reasoning without reversible translation 
thought pattern 

Um so since 𝑓𝑓′(𝑥𝑥)  = 𝑥𝑥 sin 𝑥𝑥2 reversing the 
logic of this problem 

 

Step 1: Kelsay notes that she needs to use 
reversibility 

this could possibly be −1
2

cos 𝑥𝑥2  =  𝑓𝑓(𝑥𝑥)  Step 2: Kelsay proposes a possible solution. 

[using the] chain rule, the derivative of the 
first is 2𝑥𝑥 times the derivative of the function 
which would be − sin 𝑥𝑥2 … and then of 
course the constant −1

2
 carries through and 

then it would [be] −2
2

 𝑥𝑥(− sin 𝑥𝑥2) … 
canceling out … creating 1, these negatives 
cancel out so leaving the derivative being 
𝑥𝑥 sin 𝑥𝑥2  

 

Step 3: Kelsay checks her solution by 
differentiating her proposed 𝑓𝑓(𝑥𝑥) using the 
chain rule.   

so 𝑓𝑓(𝑥𝑥) could be −1
2

cos 𝑥𝑥2 Step 4: Kelsay does not need to adjust her 
answer because differentiation showed her 
answer to be correct. 

 

Presented in table 80 below is Michael’s interview transcript exemplifying the 4-step 

thought pattern of reversibility of the mental process in reasoning without reversible translation. 

Table 80. Michael’s transcript from interview 2, question 1. 

Michael’s transcript Step of reversibility of the mental process in 
reasoning without reversible translation 
thought pattern 

so to find 𝑓𝑓(𝑥𝑥) you'd kind of have to undo 
that, go backwards 

Step 1: Michael recognizes that he has to work 
backwards. 

So I need to find something … so it'd have to 
be negative cosine to be regular sine, so 
negative cosine of something ... um ... hmm ... 
I'm just going to kind of plug and chug and see 
if this works right now ok so if I had just this 
[referring to 𝑓𝑓(𝑥𝑥)  =  −1

2
cos 𝑥𝑥2]. 

Step 2: Michael proposes a solution, 𝑓𝑓(𝑥𝑥) =
−1

2
cos 𝑥𝑥2  
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Table 80 (continued) 

I would take there's the box.  [Michael draws a 
box around 𝑥𝑥2.] The derivative of the box is 2𝑥𝑥 
times −1

2
cos 𝑥𝑥2 err, sin 𝑥𝑥2 so 2 times −1

2
  

would be so that wouldn't work ... hmmm or 
wait, would it because it's negative sine? Yeah 
it would so it would be 𝑥𝑥 sin 𝑥𝑥2 so yep.   

Step 3: Michael uses the chain rule to check his 
answer 

I just kind of have to guess and check … I 
usually get a pretty good idea and then I check 
it to make sure … so the function 𝑓𝑓(𝑥𝑥) would 
be −1

2
cos 𝑥𝑥2. 

Step 4: Michael determines that he does not 
need to adjust his solution 

 

In the following two vignettes, I show how the same 4-step thought process was present in 

the students’ transcripts on a question that required reversibility of the mental process in reasoning 

without reversible translation to solve a conceptual question.  These vignettes come from interview 

2, question 4, which is the reverse of interview 2, question 3.  Interview 2, question 3, assessed the 

students’ forward knowledge of the graphical representation of the derivative by asking the 

students to find the value of the derivative at a point when given the graph of a function.  Interview 

2, question 4 asks students to sketch a possible graph of 𝑓𝑓(𝑥𝑥) given selected 𝑓𝑓′(𝑥𝑥) values, thus 

reversing the interpretation of the graphical representation of the derivative.  Fred’s and Kelsay’s 

interview transcripts are presented below.  They were chosen because both answered interview 2, 

questions 3 and 4 correctly, thus demonstrating reversibility.  Fred is in the middle flexibility 

group; Kelsay is in the high flexibility group.  I attempt to show how the thoughts displayed in the 

transcripts are consistent with the proposed 4-step thought process.  I first present Fred’s interview 

transcript followed by Kelsay’s.  In each case, I include the student’s written response for ease of 

reference.   
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Figure 86. Fred’s written response to interview question 2.4 

Figure 86, above, shows Fred’s written solution to interview question 2.4.  Fred’s transcript is 

presented below in table 81. 

 

 

 

 

 

 334 



  

Table 81. Fred’s transcript from interview question 2.4. 

Fred’s transcript Step of reversibility of the mental process in 
reasoning without reversible translation 
thought pattern 

this … problem's given me a table that has 𝑥𝑥-
values and the derivative of 𝑓𝑓 at the specific 
value so it's asking what the function … 
would be. 

Step 1: Fred notes that he is starting with 𝑓𝑓′(𝑥𝑥) 
and needs to find 𝑓𝑓(𝑥𝑥) 

So I'm just gonna plot the points that the 
derivative of 𝑓𝑓(𝑥𝑥) would have.  I'm just putting 
down what the equations of the derivative lines 
would be and probably use the secant idea for 
what 𝑓𝑓(𝑥𝑥) would be 

Step 2: Fred proposes that 𝑓𝑓(𝑥𝑥) can be 
sketched by constructing secant lines. 

[LONG PAUSE] …I looked at … the 
derivative of 𝑓𝑓, the slope.  So I knew that if at 
[𝑥𝑥 equals] three, … the derivative was zero, it 
[𝑓𝑓(𝑥𝑥)] would have to somehow flatten out and 
the negative ones would mean that … 
𝑓𝑓(𝑥𝑥) would be coming down and the (0, 1) 
and the (1, 2) would mean it's going up at 
around those points.  So this is what I believe 
the 𝑓𝑓(𝑥𝑥) would look like. 

Steps 3 and 4: After approximately six minutes 
of attempting to relate the line segments 
connecting the points plotted from the 
derivative table, Fred rejected this approach 
and instead sketched portions of 𝑓𝑓(𝑥𝑥) whose 
behavior matched that described by the 
derivative value.  Fred then connected the 
portions of his sketch to make 𝑓𝑓(𝑥𝑥) 
continuous. 

 

Kelsay’s written solution to interview 2, question 4 is included below in figure 87.  Kelsay’s 

interview transcript immediately follows in table 82. 
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Figure 87. Kelsay’s written response to interview question 2.4 

Table 82. Kelsay’s transcript from interview question 2.4. 

Kelsay’s transcript Step of reversibility of the mental process in 
reasoning without reversible translation 
thought pattern 

so for this one … this [referring to the table of 
𝑓𝑓′(𝑥𝑥) values] has to be the slope of the curve 
at these points 

Step 1: Kelsay observes that she has to draw a 
curve whose slopes at the given 𝑥𝑥-values 
match the 𝑓𝑓′(𝑥𝑥) values in the table.  Thus, she 
indicates that she is aware that she has to create 
𝑓𝑓(𝑥𝑥) from information about 𝑓𝑓′(𝑥𝑥).  

so at [𝑥𝑥 equals] zero, it [the slope of the tangent 
line] has to be one and then at two it has to be 
negative one … So let's see uh wiggly line 
[Kelsay draws a line that oscillates from 𝑥𝑥 =
−1 to 𝑥𝑥 = −0.3 and then a line segment with 
a slope of about 1] … At [𝑥𝑥 equals] one, it has 
to be two, so that should work [She draws a 
line segment with a slope of about two], [𝑥𝑥 
equals] two it has to be negative one … at [𝑥𝑥 
equals] three, it has to be zero, that should 
work.  Uh [𝑥𝑥 equals] four it has to be negative 
one. 

Step 2: Kelsay proposes a sketch of 𝑓𝑓(𝑥𝑥) that 
has local behavior defined by 𝑓𝑓′(𝑥𝑥) values for 
𝑥𝑥 = 0,1,2,3,4. 
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Table 82 (continued) 

That should work because it meets … the 
requirements for the tangent lines [Kelsay 
draws in the tangent lines at the appropriate x-
values] 

Step 3: Kelsay checks her answer by sketching 
tangent lines at 𝑥𝑥 = 0,1,2,3,4.  Kelsay did not 
see any need to adjust her answer; thus, she did 
not need to attempt step 4. 

 

The 4-step thought process that students may use to solve problems that require 

reversibility of the mental process in reasoning without reversible translation can be observed in 

the students’ responses to the exit slips and opening activities.  As described earlier, the exit slips 

and opening activities did not produce the rich descriptions of the interviews.  Opening activity 

2.1.1 provided an example of how students were thinking about reversibility of the mental process 

in reasoning without reversible translation on a conceptual task at the start of the study.  The day 

before opening activity 2.1.1 was administered, the class discussed velocity as the slope of the line 

tangent to the position graph.  All instruction began with the position curve (in algebraic and 

graphical representations) and asked students to find velocities.  Thus, opening activity 2.1.1 tests 

reversibility of the mental process in reasoning without reversible translation by presenting 

students with a graph of velocity and asking student to sketch a graph of position.  Table 83, shown 

below, presents the solutions of six students who demonstrated reversibility and offered an 

explanation that provided insight into their thought processes.  The students’ explanations are 

reproduced verbatim.  The steps of the 4-step two-way reversibility thought processes present in 

each explanation are noted in the last column. 
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Table 83. Evidence of reversible thoughts from opening activity 2.1.1. 

Flexibility 
group 

Solution Student’s explanation Steps 
present 

High 

 

The velocity graph is based on 
the slope of the position graph, 
so the slope of the position 
graph is based on the velocity 
graph.  𝑦𝑦 = 2𝑥𝑥 would be the 
position graph? 

1) 
2) 

Middle 

 

If the velocity is flat the position 
graph is constant and the 1.5 𝑓𝑓𝑡𝑡

𝑚𝑚
 

is equal to the slope of the 
velocity graph. 

1) 
2) 

High 

 

The velocity is constant, 
therefore the slope of the 
position versus time graph is 
constant (3

2
). 

1) 
2) 

High 

 

The 𝑣𝑣(𝑡𝑡) graph is constant at 1 1
2
, 

so the corresponding 𝑝𝑝(𝑡𝑡) graph 
would have a slope of 1 1

2
. 

1) 
2) 
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Table 83 (continued) 

Middle 

 

Velocity is constant so the position 
will change at a constant rate of 1.5 
ft. per second. 

1) 
2) 

High 

 

The velocity was 1.5, so therefore 
the slope of the position graph was 
1.5. 
 
 
 
 
 
 
 
 

1) 
2) 

 

In this example, we see how step 1: recognition of the need for reversibility does not always present 

as a clear statement of “thinking backwards” or “working in reverse”.  In this case, the reference 

to the relationship of velocity and position is evidence that the students are aware that they are 

working backwards.  Step 2, proposing a solution that is informed by knowledge of the forward 

process, is shown by noting that the velocity should represent the slope of the position graph.  

Therefore, the position graph should have a constant slope of 1.5.  As described earlier in section 

4.3.1, steps 3) and 4) are not readily observable in the opening activities as they only provide a 

window into the final answer and that any checking and adjusting of a solution would likely not 

be captured by an opening activity. 

 Consistent with the results of the two-way reversibility analysis, the thought processes that 

students used to solve questions requiring reversibility of the mental process in reasoning without 
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reversible translation were the same at the start of the study and at the end of the study.  Thus, this 

study did not provide evidence to suggest that students’ thought processes regarding the use of 

reversibility of the mental process in reasoning without reversible translation changed over the 

course of the study. 

4.3.3 Thought processes used when solving problems that require representational 

reversibility 

Over the course of the study, I collected and analyzed 15 exit slips and opening activities that 

assessed representational reversibility.  I also analyzed three sets of interview questions (1.3, 2.3 

& 2.4, and 3.1, and 3.2) that assessed representational reversibility.  In total, I analyzed 225 

representational reversibility tasks for evidence of thought processes used when solving problems 

that require representational reversibility.  There was not a single reference to the use of 

reversibility when translating back and forth between two representations.  In each case where an 

interview participant demonstrated representational reversibility, there was no evidence to suggest 

that the students thought of the second translation as a reversing of the first translation.  Rather, it 

appears that the students thought of each translation as an individual forward translation. 

As an example of the interview participants’ thought processes when solving problems that 

require representational reversibility, I provide excerpts from each participants’ solution to 

interview 1, question 3.  The question presents students with the graph of 𝑓𝑓′(𝑥𝑥) and asks students 

to sketch the graph of a function 𝑓𝑓(𝑥𝑥). 

Kelsay solved the problem by translating the graphical representation of 𝑓𝑓′(𝑥𝑥) into an 

algebraic expression, saying “the … graph … 𝑥𝑥2 so therefore 𝑓𝑓(𝑥𝑥) would have to be 1
3
𝑥𝑥3”.  Then 
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she translated the algebraic expression of 𝑓𝑓(𝑥𝑥) into a numerical expression by “plotting points” 

and then drawing a cubic curve through the plotted points.  Kelsay did not indicate any reversible 

thought processes in her translations.  She completed a one-way translation from graphical to 

algebraic by recognizing the derivative as 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥2.  To translate 𝑓𝑓(𝑥𝑥) from algebraic back to 

graphical, Kelsay does not say anything to indicate that she is reversing her approach to translating 

from graphical to algebraic.  Indeed, she took an entirely different approach by translating through 

the numerical representation. 

Michael solved the problem by translating 𝑓𝑓′(𝑥𝑥) from a graphical expression to a 

numerical expression to an algebraic expression.  This can be seen in Michael’s description: “So 

𝑓𝑓′(𝑥𝑥)  =  𝑥𝑥2 … By looking at the graph you can see 12 is 1, 22 is 4, … etc.” After determining 

that 𝑓𝑓(𝑥𝑥) = 𝑑𝑑3

3
, Michael translated the algebraic expression into a numerical expression and then 

into a graph.  He described this process saying, “so then I can't exactly remember the 𝑥𝑥3 graph 

right now so I'm going to make a quick chart [Michael makes an 𝑥𝑥 − 𝑦𝑦 chart]  … ok now I 

remember how it goes”.  Michael followed the same translational pathway in the forward and 

reverse directions, graphical to numerical to symbolic and then symbolic to numerical to graphical.  

However, he did not indicate any sort of reversible thoughts.  He treated each translational pathway 

as a distinct forward pathway. 

Fred solved the problem using the same approach as Michael.  Fred first translated the 

graphical representation of 𝑓𝑓′(𝑥𝑥) into a numerical representation by identifying the points on the 

curve, saying, “I'm just going to figure out the points that are given, and try to figure out what a 

possible 𝑓𝑓(𝑥𝑥) could be based on this”.  Then he translated the points into the algebraic expression 

𝑓𝑓′(𝑥𝑥) = 𝑥𝑥2.  After correctly determining that 𝑓𝑓(𝑥𝑥) = 𝑑𝑑3

3
, Fred plotted points and then connected 

the points to create the graph of 𝑓𝑓(𝑥𝑥).  Thus, he translated 𝑓𝑓(𝑥𝑥) from an algebraic representation 
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to a numerical representation and finally to a graphical representation.  Consistent with the other 

students, Fred never mentioned any words or phrases that indicated that he considered translation 

as a reversible act. 

Jill solved the problem by translating 𝑓𝑓′(𝑥𝑥) from the graphical representation directly to 

the algebraic representation saying, “the derivative, that's your basic 𝑓𝑓(𝑥𝑥)  =  𝑥𝑥2”.  After correctly 

determining 𝑓𝑓(𝑥𝑥), Jill tried to translate 𝑓𝑓(𝑥𝑥) from the algebraic to the graphical representation but 

could not account for the effect of dividing 𝑥𝑥3 by 3.  Thus, she plotted points first and then sketched 

the curve.  Jill did not make any reversible references while solving the question. 

Kirsten, while not able to correctly solve the question, provided insight into her thoughts 

about translation.  She began by observing, “well this is obviously … the 𝑥𝑥2 graph so the derivative 

is 𝑓𝑓′(𝑥𝑥)  =  𝑥𝑥2”.  Thus, she began by translating the derivative from a graphical to an algebraic 

representation.  She incorrectly determined that 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
1
3 and then demonstrated an inability to 

translate from the algebraic to the graphical representation by saying “the slope of 1/3 you would 

start here [she points at the origin on the graph] go up 1 go over 3 go up 1 over 3.  That's a really 

bad line [she erases line and redraws it]”.  Kirsten thought that the graph of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
1
3 was a linear 

function.  She did not indicate that she considered translation to be a reversible action. 

Marcus began by noting that the graph of 𝑓𝑓′(𝑥𝑥) “is a graph of 𝑥𝑥2”, indicating that he could 

translate from the graphical representation to the algebraic representation.  However, Marcus made 

no further progress on the problem and thus lacked the opportunity to demonstrate representational 

reversibility. 

The students’ discussion of the representational aspects of paired problems 2.3 & 2.4 and 

3.1 & 3.2 was commensurate with the discussions presented here regarding question 1.3.  At no 

point in the study did the students say anything or show any work suggesting that they thought 
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about two-way translations as an instance of reversibility.  In each case, when a two-way 

translation was present, each translation was treated as an isolated problem, unrelated to the paired 

translation. 

4.3.4 Summary – the thought processes that students utilize when using reversibility to 

solve problems 

When students use two-way reversibility to solve a problem, they tend toward thinking about the 

problem in a 4-step pattern: 1) recognize that the question requires reversibility of a known 

procedure, 2) reverse the steps of the known procedure by asking her/himself “what do I need to 

do to get back to …” to find a possible solution, 3) check the validity of the solution by using the 

known forward process, and 4) adjust the solution if necessary.  When students use reversibility 

of the mental process in reasoning without reversible translation, they use a similar but distinctly 

different 4-step pattern: 1) recognize that the question requires the use of reversibility, 2) propose 

a possible solution that is informed by knowledge of the forward process, 3) check the validity of 

the solution by using the known forward process, and 4) adjust the solution if necessary. 

Students may not view representational reversibility as a reversible act.  Rather, students 

seem to view two-way translation as two independent translations, both in the forward direction. 
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5.0  DISCUSSION 

The purpose of this study was to investigate the development of the problem solving processes of 

flexibility and reversibility in a high school calculus class.  Specifically, I examined the extent that 

flexibility and reversibility developed while students were engaged in linking multiple 

representations.  Twenty-one high school calculus students from an urban school district in a mid-

Atlantic state participated in the study. 

Flexibility with representations in calculus significantly improved over the course of the 

study.  In particular, the students’ demonstrated flexibility with individual translations significantly 

improved in four out of the six possible translations, symbolic to graphical, symbolic to numerical, 

graphical to symbolic, and numerical to symbolic, indicating a general trend towards improvement.  

Students developed reversibility of two-way processes in calculus at different rates 

depending on their flexibility level, consistent with Krutetskii’s (1976) findings.  Students in the 

high and medium flexibility groups seemed to develop reversibility of two-way processes in 

calculus simultaneously with learning the process in the forward direction and were able to 

consistently demonstrate reversibility of a two-way process in calculus throughout the course.  

Students in the low group were able to learn two-way calculus processes in the forward direction 

but did not develop reversibility simultaneously.  However, through repeated interaction with 

solving problems that required two-way reversibility of the same calculus process over time, low 
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flexibility students were able to develop two-way reversibility.  Reversibility of a two-way 

calculus process, seemed to increase during the study and then maintain at a high level. 

For most students, developing reversibility of the mental process in reasoning without 

reversible translation was difficult and typically did not happen simultaneously with learning the 

direct calculus pathway.  For some high flexibility students, reversibility of the mental process in 

reasoning without reversible translation developed on the spot.  If it did not, high flexibility 

students were likely to develop it quickly when given multiple opportunities to engage with 

reversible tasks in calculus, regardless of the calculus content area.  For students in the middle 

flexibility group, if reversibility of the mental process in reasoning without reversible translation 

did not develop on the spot, the students required multiple opportunities to engage with reversible 

calculus tasks of the same or similar calculus content.  If the content was presented using different 

representations, middle flexibility students tended to view the content as new and were not able to 

apply any reversibility demonstrated with the same content presented in a different representation.  

For students in the low flexibility group, reversibility of the mental process in reasoning without 

reversible translation did not develop on the spot and it may not have developed at all in a 

generalized capacity.  Given multiple opportunities to engage with reversible calculus tasks, a low 

flexibility student may have developed reversibility of the mental process in reasoning without 

reversible translation.  This reversibility likely could only be used to solve identical or nearly 

identical calculus problems. 

Representational reversibility significantly improved between the numerical and symbolic 

representations and between the symbolic and graphical representations.  Representational 

reversibility did not seem to improve over repeated learning opportunities with the same calculus 

content.  Students who were able to use representational reversibility to solve a calculus problem 
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after initial exposure to learning a new calculus concept were able to use representational 

reversibility to solve calculus problems with the same calculus content at a later date.  Students 

who were not able to use representational reversibility to solve a calculus problem after initial 

exposure to learning a new calculus concept were not able to use representational reversibility to 

solve calculus problems with the same calculus content at a later date. 

The results of this study suggest that representational reversibility developed over the 

course of the study.  This result should be expected as representational reversibility is a specific 

example of linking multiple representations and the course attended to linking multiple 

representations.  The students who had greater flexibility with multiple representations at the start 

of the study, the high and middle flexibility groups, were able to consistently solve problems that 

required representational reversibility and had little difficulty translating one representation into 

another and vice versa.  Despite the fact that the students engaged in opportunities to link multiple 

representations on a nearly daily basis, use of representational reversibility proved very difficult 

for low flexibility students. 

5.1 INTERPRETATION OF FINDINGS 

The results of the study suggest that reversibility may develop as students have multiple 

opportunities to engage with problems within a particular content area that require reversibility to 

solve.  For example, students’ reversibility with the simple power rule and the chain rule increased 

throughout the course as students had multiple opportunities to reverse differentiation.  This result 

serves to answer in part multiple researchers’ calls for empirical research into how reversibility 

develops (Lamon, 2007; Ramful & Olive, 2008; Teachey, 2003) with specific attention paid to the 
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call for research investigating the development of reversibility at the secondary level (Ramful & 

Olive).  The results of this study show that reversibility may develop innately and immediately for 

some students; however, students who do not develop reversibility on the spot can develop 

reversibility of a procedure or concept through multiple opportunities to engage with reversible 

tasks of similar content.  Furthermore, as shown by the results of the exit slips and opening 

activities assessing reversibility of the simple power rule and the chain rule, the opportunities to 

engage with reversible tasks need not be consecutive or necessarily near to one another 

chronologically. 

 This study proposes a model by which students think about using reversibility when solving 

problems.  The distinct 4-step processes proposed here by which students think about using two-

way reversibility and reversibility of the mental process in reasoning without reversible translation 

offer insights into what triggers a student to use reversibility and how students problem solve 

around the lack of an established cognitive pathway to solve a problem from output to input. 

 Underlying each of the thought processes for using reversibility is the ability to recognize 

a learned procedure or process present within an end result.  The students had to first recognize 

that the problem presented an outcome of some forward action with which they had previous 

experience and an existing knowledge structure.  This suggests that a pre-requisite for using 

reversibility is a reasonably well-developed conception of the forward process.  One way to 

interpret this result is to conclude that reversibility of a process or procedure is a visible evidence 

of a well-functioning schema.  Thus, reversibility requires learning beyond rote memorization of 

an algorithm, procedure, or process and requires recognition of the unseen procedures and 

processes that when enacted upon an input produced the present output. 
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5.1.1 Reversibility as an instance of transfer 

The observed increase in reversibility through multiple opportunities to engage with reversibility 

of a particular process or concept may be an instance of transfer.  Engle (2006)  defined transfer 

as “the appropriate application of something that has been learned in one situation to a different 

but related situation” (p. 452).  Thus, using reversibility to find a constituent input from a given 

output, when only the forward solution process has been learned would qualify as an instance of 

transfer.   

During the study, the students used reversibility to reverse the simple power rule five 

different times, in various settings and contexts.  In each case, the superficial characteristics were 

changed.  The class improved significantly from their first experience with reversing the simple 

power rule to the fifth opportunity.  This was evidence that the students had generalized 

reversibility of the simple power rule.  The observed development of reversibility over repeated 

engagements with reversibility of the simple power rule can likely be explained by Wagner’s 

(2006) theory that transfer does not happen in bulk, where all learning in a given context transfers, 

but rather piece by piece, through experiences with multiple problem solving opportunities 

requiring use of the same concept situated in various instantiations.  In the present study, reversing 

the simple power rule was first presented as reversibility of differentiation and then as reversibility 

of multiple differentiations.  Later in the course, reversibility of the simple power rule was situated 

within reversibility of rectilinear motion and finally within reversibility of Newton’s Method.  As 

the interviews helped to show, at the end of the study, students of all flexibility levels were able to 

recognize reversibility of the simple power rule within different contexts. 

How the teacher positions the instruction on a day-by-day basis as part of an overall, 

connected body of knowledge in which the students are actively constructing knowledge has been 
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identified as an integral piece in creating an environment in which transfer is able to occur (Engle, 

2006).  Within this study, the instructor/researcher endeavored to present differential calculus as a 

property of functions, namely the rate of change of a function at an 𝑥𝑥-value or on a finite or infinite 

domain within an environment that emphasizes linking multiple representations.  With this view 

of instruction, students daily engaged with the derivative by comparing and contrasting three 

different representations of the instantaneous rate of change and three different representations of 

the average rate of change. These engagements included but were not limited to developing 

algebraic means for finding the instantaneous rate of change and comparing the result with the 

algebraic representation of the average rate of change, interpreting the slope of a graph of a 

function at an 𝑥𝑥-value as the instantaneous rate of change, contrasted with interpreting the slope 

of a secant line as the average rate of change, using the intersection of the graphical and algebraic 

representations of the derivative to analyze functional behavior and to solve physical application 

problems (i.e. related rates and optimization), and using graphical arguments to develop algebraic 

techniques of differentiation.  As this list shows, the students had the opportunity to engage in a 

calculus class that research suggests was likely to foster transfer. 

The reversibility that developed was not limited to just procedural knowledge such as the 

simple power rule and chain rule but also extended to conceptual knowledge that included curve 

sketching, functional analysis, and graphical analysis.  Engle (2006) proposed that when learning 

takes place in an environment that links multiple topics during the same instructional time period, 

transfer is likely to happen.  When reversibility is viewed as an instance of transfer, we see a 

possible explanatory factor describing why reversibility across multiple content domains within 

differential calculus has developed.  By participating in a calculus course that attended to linking 
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multiple representations at every opportunity, the students were positioned in a learning 

environment that was likely conducive to producing transfer, and thus reversibility. 

5.1.2 Reversibility within the APOS framework 

In section 1.3, I proposed a model of the APOS framework that includes reversibility.  I proposed 

that reversibility served as the evidence of interiorization, the transition from an action conception 

to a process conception, and is the mechanism of de-encapsulation, digesting an object conception 

into constituent processes. 

The results of this study suggest that reversibility of two-way processes and reversibility 

of the mental process in reasoning without translation developed over the course of the study.  This 

result has particular implications when viewed through an APOS lens.  Since actions are described 

as procedures that transform mathematical objects, reversibility of an action would require 

reversibility of a procedure.  Reversing of a procedure can require either two-way reversibility or 

reversibility of a mental process in reasoning without reversible translation, depending on the 

nature of the procedure and the student’s mathematical background knowledge.  Since the 

successful interiorization of an action into a process is evidenced by the ability to reverse an action 

from end to beginning (Asiala et al., 1996), the development of two-way reversibility would likely 

improve interiorization. 

The results of the study further suggest that interiorization may develop through multiple 

opportunities to engage with reversing actions situated in various contexts.  Since the results of the 

study suggest that both two-way reversibility and reversibility of the mental process in reasoning 

without reversible translation can develop on the spot, applied to the APOS framework, it is 

reasonable to conclude that for some students, interiorization of an action into a process happens 
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on the spot.  For those students who do not interiorize on the spot, the results of this study suggest 

that interiorization may happen through multiple opportunities to engage with reversing the action 

in a variety of instantiations. 

5.1.3 Reversibility as distinct from flexibility 

Since Krutetskii (1976) first proposed flexibility and reversibility as separate problem solving 

processes related under the broad umbrella of “the mathematical cast of mind” (p. 351), researchers 

(Gray & Tall, 1994; McGowen, 2006; Rachlin, 1981; Usiskin, 1999) have positioned reversibility 

as a specific instance of flexibility.  However, I am unaware of any research that has been 

previously conducted to indicate how reversibility fits within the cognitive processes underlying 

flexibility.  This research study has made strides towards informing whether or not a dichotomy 

exists between reversibility and flexibility or if reversibility is contained within flexibility.  The 

results of this study suggest that when students are engaged in a course that attends to developing 

flexibility (by linking multiple representations), reversibility develops.  This result supports 

Rachlin’s (1981) finding that his participants’ patterns of reversibility were observable in their use 

of flexibility.  However, this should not be counted as evidence that reversibility is a kind of 

flexibility.  In fact, the results of this study suggest that although development of reversibility and 

flexibility may be related, reversibility may not be a kind of flexibility. 

 The results of investigating the kinds of thought processes used by students when solving 

reversible tasks produced evidence indicating similar trains of thought when solving problems that 

require two-way reversibility and reversibility of the mental process in reasoning without 

translation.  In both cases, a reversible thought process began with a clear recognition of the need 

to work backwards.  That observation was noticeably absent from all tasks that required 
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representational reversibility.  As discussed earlier, representational reversibility is two-way 

flexibility.  Thus, the interview questions that assessed representational reversibility provided 

insight into the thought processes that students used when solving tasks that required flexibility.  

Since there was no evidence that any of the interview participants used thought processes that 

indicated a consideration of a reversible relationship, I suggest that the students were using 

flexibility to complete two separate one-way translations.  This result suggests that reversibility 

and flexibility may be two distinct cognitive processes that do not overlap.  Furthermore, if 

students are not using a reversible thought process to solve a problem that requires representational 

reversibility, then the proposed framework dividing reversibility of the mental process in reasoning 

into reversibility of the mental process in reasoning without reversible translation and 

representational reversibility is an unnecessary and perhaps incorrect dichotomy.  The results of 

the interviews in this study suggest that representational reversibility may be an example of 

flexibility and not reversibility.  To account for this result, I would modify the proposed framework 

originally presented as figure 3 in section 1.2, shown below as figure 88: 

 

Figure 88. The three kinds of reversibility that will be studied in this investigation 

Reversibility

Two-way 
Processes

Mental Process in 
Reasoning

With 
Representational 

Reversibility

Without 
Representational 

Reversibility
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and replace the reversibility framework with the original Krutetskiian framework shown below in 

figure 89. 

 

 Figure 89. Visualization of the two component process within Krutetskiian reversibility 

 The possibility that reversibility and flexibility are distinct cognitive processes does not 

necessarily conflict with research suggesting that educational activities designed to improve 

flexibility will aid in the development of reversibility.  Within Krutetskii’s (1976) proposed 

mathematical cast of mind, reversibility and flexibility are positioned as distinct, but related 

problem solving processes, both of which fall under a single cognitive system.  The results of the 

present study suggest that flexibility and reversibility may develop in tandem when students are 

engaged in a mathematics course that attends to linking multiple representations but are distinct 

cognitive processes. 

 It should again be noted that flexibility and reversibility are likely domain specific, and 

that the presence or lack thereof of an overlap between flexibility and reversibility when solving 

calculus problems may or may not be present when solving an algebra problem, or a geometry 

problem, or a trigonometry problem, etc.  Furthermore, the conclusion that flexibility and 

reversibility are distinct cognitive processes is not supported by empirical data collected in this 

study.  It is supported by the absence of data that supports the alternative hypothesis, in this case 

that reversibility is an instance of flexibility. 

Reversibility

Two-way 
Processes

Mental Process 
in Reasoning
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5.2 LIMITATIONS 

There are several limitations to this study.  First, the sample of students participating in this 

research study consisted of high school advanced placement calculus students.  Advanced 

placement calculus students typically represent the strongest mathematics students in a high school 

and are likely not representative of the entire student body.  It may be the case that the findings in 

this study do not generalize to the entire student population. 

As previously noted, flexibility is content specific and reversibility is a problem solving 

process well suited for use in a calculus class.  As such, calculus may have been an ideal content 

for investigating the development of flexibility and reversibility.  It is possible that the significant 

development of flexibility and the significant development of reversibility may not happen to the 

same extent in a different mathematical content.  Also, to the extent that students may not exhibit 

flexibility and/or reversibility in a calculus setting, they may exhibit flexibility and/or reversibility 

in a different mathematical setting.  Thus, this research study does not suggest that flexibility and 

reversibility are processes that once developed in one content area will generalize to all other 

mathematical content areas. 

The design of the exit slips and opening activities as well as the interview questions may 

have biased the students towards developing reversibility.  The class attempted 33 exit slips and 

opening activities; each exit slip presented a task in the forward direction and each opening activity 

presented the same concept in the reverse direction.  It is possible that the students noticed the 

pattern, which may have influenced their approach to the opening activities.  In the event that this 

were true, the students would then view using reversibility to solve a problem as a classroom norm 

and would have an inherent bent toward using reversibility to solve opening activities as opposed 

to problem solving by first noticing that the problem prompt contains an end result of a learned 
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process.  This limitation could extend to the interviews.  Since the interviews were designed to 

elicit reversible conceptions through the use of reversible pairs of questions, it is possible that more 

reversibility would be present in interview four than interview one by virtue of students’ noticing 

that half of the questions in the interview are reverses of the other half of the questions.  Varying 

the order of the questions in the interviews may have helped to mitigate this limitation. 

Finally, there is the possibility of an inherent bias toward the development of reversibility 

and flexibility because the researcher was also the course instructor.  The instructor/researcher 

took great strides towards not biasing instruction toward reversibility.  Flexibility was the focus of 

all instruction related to the research questions in this study.  However, it is reasonable to think 

that over the course of five months, the instructor’s natural interest in using reversibility to solve 

problems would present during class discussions and other learning activities. 

5.3 FUTURE RESEARCH 

The results of this study have several implications for future research: 1) the study of development 

of reversibility and flexibility should commence in other mathematical content areas with other 

sample populations, 2) research should investigate the existence of a link between teaching that 

attends to linking multiple representations and the development of flexibility and/or reversibility, 

3) reversibility as an integral part of the APOS framework should be explored, and 4) reversibility 

as an instance of transfer should be investigated.  Each implication is discussed. 

Since reversibility and flexibility are likely content specific, research should commence 

that investigates the presence and development of reversibility and flexibility in a variety of 

mathematical content domains including, but not limited to algebra 1, algebra 2, geometry, and 
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trigonometry.  If research similar to that conducted in this study were conducted in the disciplines 

listed, we would have a comprehensive body of knowledge informing the development of the 

problem solving processes of flexibility and reversibility in secondary mathematics.  One could 

envision a microgenetic study within trigonometry due to the invertible properties of the families 

of functions studied in a trigonometry class.  A researcher could follow the exit slip and opening 

activity design of this study to measure the development of reversibility over the course of an entire 

school year.  A possible adjustment to the design could include administering the forward and 

reverse questions at the end of each class period, thus removing the overnight time lapse and issues 

with absence that were present in this study.   

Students’ thought processes when using reversibility within other mathematical content 

domains should be investigated and compared to the thought processes observed in this study.  The 

4-step process proposed here should be subject to review by other reversibility researchers in an 

effort to find either confirmation or a need for revision.  The 4-step process could be used as a 

framework to evaluate the thought processes that students are using to solve problems likely to 

elicit reversible conceptions. 

Researchers should investigate the existence of a link between teaching that attends to 

linking multiple representations and the development of flexibility and/or reversibility.  Flexibility 

developed throughout the course and the students became equally proficient with translating into 

the numerical, graphical, and algebraic representations.  This finding suggests that one 

instructional decision that may help students move beyond preference for the symbolic 

representation, which restricts understanding and fluency with the numerical and graphical 

representations (Brenner et al., 1997; Dreyfus & Eisenberg, 1990; Hiebert & Carpenter, 1992; 

Knuth, 2000), is to attend to linking multiple representations at every opportunity.  Research 
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should commence that explores the instructional decisions and learning opportunities that facilitate 

the development of flexibility and reversibility.  For example, a detailed, descriptive study of a 

few students could allow for determining learning activities or events that foster the development 

of flexibility and/or reversibility.  Researchers could also consider a comparative, experimental 

design to evaluate the effects of teaching with a curriculum that attends to linking multiple 

representations on flexibility and reversibility.  As this study was an observational study and not a 

comparative experiment, causal links could not be explored.  However, calculus researchers at the 

university level could offer two sections of differential calculus in which one section attended to 

linking multiple representations and the other section adopted a traditional, algebraic approach to 

instructing calculus.  Then, by using the flexibility pre-test and the differentiation competency test, 

flexibility could be measured as a dependent variable.  By using the interview questions and exit 

slips and opening activities, reversibility could be reliably measured in both sections as well. 

Research should commence that examines reversibility within a fine-grained APOS 

framework.  As previously discussed, reversibility situates within the APOS framework in at least 

three positions.  The data set collected in this study could be parsed and analyzed entirely through 

an APOS lens.  For example, Clark et al. (1997) proposed a chain rule schema wherein they 

proposed a genetic decomposition for understanding the chain rule.  They did not address 

reversibility within their analysis of the chain rule (it is mentioned that recognizing a composite 

function requires reversing composition).  Interview questions 2.1 & 2.2, as well as exit slips and 

opening activities 2.6.1, 3.3.1, and 3.3.2 could all be used as a data set to examine with the 

proposed chain rule schema.  This research could confirm reversibility’s place as the evidence of 

interiorization; it may also challenge the authors’ contention that actions, processes, and objects 

were insufficient to describe how students construct knowledge of the chain rule.  Clark et al. 
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(1997) also analyzed chain rule schema development through the Piagetian triad.  By using the 

data set collected in this dissertation, one could attempt to determine where reversibility situates 

within the Piagetian triad, if at all. 

Finally, research should investigate the educative benefits of reversible tasks on forward 

learning.  This study did not attempt to evaluate whether or not solving reversible tasks nearly 

every day results in improvement in the students’ forward learning.  It is possible that by thinking 

reversibly, a student’s knowledge of the forward direction improves.  This research showed that 

over the course of the study, students’ scores on exit slips of similar content improved; however, 

it is impossible to conclude that improvement is a result of, or even related to, solving reversible 

tasks.  Research should investigate this matter. 
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APPENDIX A: COURSE CALENDAR  

Key: N represents numerical, G represents graphical, V represents verbal, S represents symbolic, 

F represent function, D represents differentiation. 

Table 84. Course Calendar 

Day Section 
Number 

Topics Covered Representations linked in 
Class 

Representations linked in 
Homework 

1-2 2.1 Tangent lines 
and rates of 
change; 
velocity, 
average velocity 

Input Output # of 
Examples 

S S 2 
S N 6 

VS N 2 
VG N 2 

 

Input Output # of 
Examples 

G G 1 
G N 5 
N V 1 
S G 1 
S N 3 
V V 3 

VG G 1 
VG N 7 
VG V 4 
VS N 2 
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Table 84 (continued) 

3-4 2.2 Derivatives of 
functions 

Input Output # of 
Examples 

S S 7 
S N 2 
S VG 1 
S VN 1 

VS S 1 
 

Input Output # of 
Examples 

G G 12 
G N 1 
N N 1 
N S 1 
N VN 1 
S G 2 
S S 4 
V V 3 

VN N 1 
VS N 2 
VS S 2 

 

5-6 2.3 Techniques of 
differentiation, 
simple power 
rule 

Input Output # of 
Examples 

S S 17 
S N 1 

GS N 1 
 

Input Output # of 
Examples 

S N 2 
S S 8 

VS N 1 
VS S 1 

 

7 2.4 Product & 
quotient rule 

Input Output # of 
Examples 

S S 4 
S G 1 

 

Input Output # of 
Examples 

NS N 4 
S S 7 

 

8 2.5 Derivatives of 
trigonometric 
functions 

Input Output # of 
Examples 

S S 2 
S N 1 
V N 1 

VS VS 1 
 

Input Output # of 
Examples 

S S 6 
 

9-11 2.6 Chain rule  
Input Output # of 

Examples 
S S 5 
V N 1 

NS N 1 
GS N 1 

 

Input Output # of 
Examples 

N S 1 
NGS N 1 
NS N 3 
S N 5 
S S 16 
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Table 84 (continued) 

12 Chapter 
2 Review 

Chapter 2 – 
Graded 
Homework 
Assignment 

Input Output # of Examples 
G N 3 

GS N 1 
N G 1 

NS N 8 
S N 5 
S S 18 
S V 2 
V V 1 

VS N 4 
 

13 Chapter 
2 
Multiple 
Choice 
Test 

Rules of 
differentiation, 
limits, 
continuity, 
position & 
velocity 

 

14 Chapter 
2 Free-
response 
Test 

Rules of 
differentiation, 
limits, 
continuity, 
position & 
velocity 

 

15 Return 
Tests 

Rules of 
differentiation, 
limits, 
continuity, 
position & 
velocity 

 

16 3.1 Implicit 
differentiation 

Input Output # of 
Examples 

S S 6 
S N 2 
S G 1 

 

Input Output # of 
Examples 

S N 2 
S S 2 

VS VS 1 
 

17 3.2 Derivatives of 
logarithmic 
functions and 
inverse 
functions 

Input Output # of 
Examples 

S S 3 
S N 1 
S V 1 

 

Input Output # of 
Examples 

S S 7 
VS N 1 

 

18 3.2 Logarithmic 
differentiation 

Input Output # of 
Examples 

S S 1 
 

Input Output # of 
Examples 

S N 1 
S S 2 
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Table 84 (continued) 

19 3.3 Derivatives of 
inverse 
trigonometric 
functions 

Input Output # of 
Examples 

S S 9 
N S 1 
S N 2 
N N 2 

 

Input Output # of 
Examples 

S N 3 
S S 9 

VS N 1 
 

20-
21 

3.4 Related rates Input Output # of 
Examples 

VNS N 1 
VN N 2 
VN S 1 

VGN N 2 
VGN V 1 

 

Input Output # of 
Examples 

VGN V 1 
VN N 9 

 

22 3.5 Local linear 
approximation 
and differentials 

Input Output # of 
Examples 

S S 3 
S N 2 
S G 1 

NS V 1 
NS N 1 
VN N 2 

 

Input Output # of 
Examples 

S G 1 
S N 2 
S S 1 
V V 2 

VN N 2 
 

23-
24 

3.6 L’Hospital’s 
rule 

Input Output # of 
Examples 

S N 13 
 

Input Output # of 
Examples 

S N 5 
VS VN 1 

 

25 Chapter 
3 Review 

Chapter 3 – 
Graded 
Homework 
Assignment 

Input Output # of Examples 
GNS N 1 
GNS V 1 

N N 1 
S N 5 
S S 11 

SN N 1 
VGN N 2 
VN N 2 

VNS N 1 
VS N 3 
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Table 84 (continued) 

26 Chapter 
3 
Multiple 
Choice 
Test 

Implicit 
differentiation, 
local 
linearization, 
derivatives of 
transcendental 
functions, 
related rates 

 

27 Chapter 
3 Free-
response 
Test 

Implicit 
differentiation, 
local 
linearization, 
derivatives of 
transcendental 
functions, 
related rates 

 

28 Return 
Tests 

Implicit 
differentiation, 
local 
linearization, 
derivatives of 
transcendental 
functions, 
related rates 

 

29-
30 

4.1 Functional 
analysis: 
Increasing, 
decreasing, and 
concavity 

Input Output # of 
Examples 

S N 3 
S VN 7 
G N 1 

VS VN 3 
 

Input Output # of 
Examples 

G VN 18 
N V 1 
S VN 4 

VN G 3 
VN N 2 
VN VN 11 

 

31-
32 

4.2 Relative 
extrema, 
graphing 
polynomials, 1st 
and 2nd 
derivative tests 

Input Output # of 
Examples 

S N 2 
S G 1 
G N 5 
S VN 3 

 

Input Output # of 
Examples 

G G 2 
G VN 4 
S N 3 
S VN 3 
V G 3 
V V 2 

VN G 5 
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Table 84 (continued) 

33-
34 

4.3 Analyzing 
rational 
functions 

Input Output # of 
Examples 

S G 5 
S VN 1 

 

Input Output # of 
Examples 

S G 5 
V V 4 

VGN VN 4 
 

35 4.4 Absolute 
max/min 

Input Output # of 
Examples 

S N 4 
S VN 1 

 

Input Output # of 
Examples 

S N 3 
S V 1 
V V 4 

 

36 Review 
of 4.1-
4.4 

4.1-4.4: Graded 
Homework 
Assignment 

Input Output # of Examples 
G G 3 
G N 6 
G V 4 

GS N 1 
S N 4 
S S 1 
S V 5 
V G 1 
V N 1 

VG N 1 
VG S 1 
VG V 2 
VG VN 7 
VN G 1 
VN N 2 
VN V 1 
VN VN 1 

VNS N 1 
VNS S 2 
VNS V  

 

37 4.1-4.4 
Multiple-
Choice 
Test 

Analyzing 
functions 

 

38 4.1-4.4 
Free-
Response 
Test 

Analyzing 
functions 
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Table 84 (continued) 

39 Return 
Tests 

Analyzing 
functions 

 

40 4.5 Optimization Input Output # of 
Examples 

S N 1 
V N 2 

VG N 3 
VS N 1 

 

Input Output # of 
Examples 

V N 4 
VS N 2 

 

41-
42 

4.6 Rectilinear 
motion 

Input Output # of 
Examples 

GS V 1 
VS G 2 
VS S 2 
VG G 1 

 

Input Output # of 
Examples 

V V 3 
VG G 6 
VG N 9 
VG V 4 
VN V 6 
VS N 12 
VS S 1 

 

43 4.7 Newton’s 
method 

Input Output # of 
Examples 

S N 2 
 

Input Output # of 
Examples 

S N 2 
V V 4 

 

44 4.8 Mean-value 
theorem 

Input Output # of 
Examples 

S N 2 
VN N 1 

 

Input Output # of 
Examples 

G N 2 
S N 3 
V V 1 

VN N 4 
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Table 84 (continued) 

45 4.5-4.8 
Review 

Ch. 4 Thought 
questions and 
graded 
homework 

Input Output # of 
Examples 

V V 1 
V VN 1 

VN V 1 
VN VG 1 
VN VS 1 

VNS V 1 
 

Input Output # of 
Examples 

G V 1 
S N 3 
V N 1 

VG N 12 
VG S 1 

VGN N 3 
VN N 1 
VN V 1 
VN VN 1 
VS N 11 
VS S 2 
VS V 2 
VS VN 2 

 

46 4.5-4.8 
Multiple-
Choice 
Test 

Optimization, 
rectilinear 
motion, 
Newton’s 
method, mean-
value theorem 

 

47 4.5-4.8 
Free-
Response 
Test 

Optimization, 
rectilinear 
motion, 
Newton’s 
method, mean-
value theorem 

 

48 Return 
Tests 

Optimization, 
rectilinear 
motion, 
Newton’s 
method, mean-
value theorem 
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APPENDIX B: SAMPLE LESSON PLAN – SECTION 2.1 

Mathematical Goals/Objectives: The goal of this lesson is to show the significant relation of 

three seemingly unrelated ideas: 1) tangent lines to curves, 2) the velocity of an object moving 

along a line, and 3) the rate at which one variable changes relative to another. 

Specific processes that students will develop: 1) limiting process of the slopes of a secant line 

as the secant line approaches a tangent line at 𝑥𝑥 = 𝑐𝑐. 

Specific connections to develop: 1) finding the slope of the line tangent to a curve at 𝑥𝑥 = 𝑐𝑐, 2) 

finding the instantaneous velocity of an object in motion, and 3) finding the rate at which one 

variable changes relative to another are all instantiations of the same general process – the 

limiting process of the slope formula representing the average rate of change. 

Method: Students and teacher will fill in guided notes – see below.  Students will solve 

approximately 6 tasks (in the guided notes the tasks are called examples) on day 1 and 3 tasks on 

day 2.  The tasks are designed to engage students in the limiting process of the average rate of 

change formula and then to make connections between the three separate representations 

described above.  In each case, students work independently or in small groups (2-3) to attempt 

to solve each task.  The teacher monitors the work by walking around the room and engaging 

with students.  The teacher challenges students’ thoughts, encourages students who are 
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struggling, probes students who have completed the task, and makes suggestions as necessary.  

The teacher intentionally selects students to share solution methods, often multiple methods are 

shared.  The process repeats for each task. 

Homework: Homework problems have been intentionally selected to require students to solve 

tasks using the limiting process of the average rate of change to solve problems involving 

position and velocity, the slope of the line tangent to a curve at 𝑥𝑥 = 𝑐𝑐, and finding the rate at 

which one variable changes relative to another.  Day 1 homework problems are discussed at the 

beginning of Day 2.  Day 2 homework problems are discussed at the beginning of the next day’s 

class. 

Guided Notes:  The following notes are what the students and teacher will work through during 

section 2.1.  All of the filled-in blanks are empty on the students’ copies of the notes. 

Chapter 2: The Derivative 

One of the crowning achievements of calculus is its ability to capture 

__capture__________________ motion mathematically, allowing that motion to be analyzed 

__instant______________ by ___instant______________. 

2.1: Tangent Lines and Rates of Change – Day 1 

In Section 1.1, we defined the slope of the secant line between a point 𝑃𝑃(𝑐𝑐, 𝑓𝑓(𝑐𝑐)) on 𝑓𝑓(𝑥𝑥) and a 

distinct point 𝑄𝑄(𝑥𝑥,𝑓𝑓(𝑥𝑥)) on 𝑓𝑓(𝑥𝑥) as 𝑚𝑚𝑃𝑃𝑃𝑃 =__𝑓𝑓(𝑑𝑑)−𝑓𝑓(𝑐𝑐)
𝑑𝑑−𝑐𝑐

_____________.  If we move 𝑄𝑄 closer 

and closer to 𝑃𝑃, we are in essence taking the limit as 𝑥𝑥 → _𝑐𝑐___.  When 𝑄𝑄 → 𝑃𝑃, the secant line 

𝑃𝑃𝑄𝑄 approaches its limiting position, the tangent line at 𝑃𝑃. 

Thus, we define the slope of the line tangent to 𝑓𝑓(𝑥𝑥) at 𝑃𝑃,  

𝑚𝑚tan = lim
𝑑𝑑→𝑐𝑐

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑐𝑐)
𝑥𝑥 − 𝑐𝑐
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and we define the tangent line to the curve 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) at the point (𝑐𝑐, 𝑓𝑓(𝑐𝑐)) to be the line with the 

equation 𝐿𝐿 = 𝑓𝑓(𝑐𝑐) + 𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛(𝑥𝑥 − 𝑐𝑐). 

We refer to this line as the tangent line to 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 𝑐𝑐. 

 

Ex. 1: Find the equation of the line tangent to the parabola 𝑦𝑦 = 𝑥𝑥2 at the point (1,1). 

𝑦𝑦 = 𝑓𝑓(1) + 𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛(𝑥𝑥 − 1)  𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛 = lim
𝑑𝑑→𝑐𝑐

𝑓𝑓(𝑑𝑑)−𝑓𝑓(𝑐𝑐)
𝑑𝑑−𝑐𝑐

= lim
𝑑𝑑→1

𝑑𝑑2−1
𝑑𝑑−1

= lim
𝑑𝑑→1

(𝑥𝑥 + 1) = 2 

𝑦𝑦 = 1 + 2(𝑥𝑥 − 1)  

 

 

 

 

 

 

 

The alternative form of the slope formula 

𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛 = lim
𝑑𝑑→𝑐𝑐

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑐𝑐)
𝑥𝑥 − 𝑐𝑐

 

There is a commonly used alternative form of this formula. 

Let ℎ = 𝑥𝑥 − 𝑐𝑐.  Now, substitute for all of the 𝑥𝑥’s in the formula: 𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛 = lim
ℎ→0

𝑓𝑓(𝑑𝑑+ℎ)−𝑓𝑓(𝑑𝑑)
ℎ

. 

Ex. 2: Compute the slope in example 1 again, this time using the alternative formula that we just 
derived. 

𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛 = lim
ℎ→0

𝑓𝑓(𝑑𝑑+ℎ)−𝑓𝑓(𝑑𝑑)
ℎ

  

lim
ℎ→0

𝑓𝑓(1+ℎ)−𝑓𝑓(1)
ℎ

= lim
ℎ→0

(1+ℎ)2−1
ℎ

= 

Begin: allow students approximately 4 minutes to solve problem. 
1) Walk around classroom.  If student has started problem in appropriate manner, then say “looks good” or nod and keep 

walking.  If student has not started, ask student “what are you looking for” – Student should reply “the tangent line”.  
Teacher responds: “And what do you need to know in order to find the equation of a tangent line?  If student lists 1) a 
point and 2) a slope, then encourage student to find the slope.  If student does not know, ask student to draw a curve and 
a tangent line to the curve.  Prompt student to explain what features define a tangent line.  The student will likely now 
identify a point and a slope.  Encourage student to find point and slope. 

2) Identify students with partially correct and completely correct solution methods. 
3) After 4 or 5 minutes, depending on progress of class, have a student with a partially correct solution present her/his 

solution on the promethean board. Require student to EXPLAIN all decisions and why s/he believes her/his work is 
correct.  Then, have a student with fully correct solution present her/his solution and EXPLAIN all of her/his decisions 
and why s/he believes that her/his work is correct.  Have presenting student answer any questions from other students 
regarding example. 

4) Linking Question 1: After correct solution is presented and discussed, assign extra question: “NOW, SKETCH A 
GRAPH OF 𝐹𝐹(𝑋𝑋) AND THE LINE TANGENT TO 𝐹𝐹(𝑋𝑋) AT 𝑋𝑋 = 1.” 

a. Have a student sketch the correct drawing on the Promethean Board.  Ask students to explain the 
relationship between the algebraic representation and graphical representation of 𝑓𝑓(𝑥𝑥) and the tangent line. 

5) Linking Question 2:  Ask “what does a tangent line do for us?  Why would we want one?”  After taking a few answers, 
have students construct a table of values near 𝑥𝑥 = 1.  Ask question again.  Give limited hints until large group 
discussion arrives at conclusion that the tangent line approximates the value of the curve at 𝑥𝑥 −values near the 
𝑥𝑥 −coordinate of the given point. 
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 = lim
ℎ→0

1+2ℎ+ℎ2−1
ℎ

 

 = 𝑙𝑙𝑖𝑖𝑚𝑚
ℎ→0

ℎ(2+ℎ)
ℎ

= 2.  

 

 

 

 

 

Ex. 3: Find an equation for the tangent line to the curve 𝑦𝑦 = 2
𝑑𝑑
 at the point (2,1) on this curve. 

 

 

 

 

 

 

 

Ex. 4: Find the slopes of the tangent lines to  

the curve 𝑦𝑦 = √𝑥𝑥 at 𝑐𝑐 = 1, 𝑐𝑐 = 4, and 𝑐𝑐 = 9. 

 

 

 

 

1) Allow approximately 4 minutes. 
2) Walk around and look at students’ work.  Pay particular attention to how students handle 𝑓𝑓(𝑥𝑥 +

ℎ).  Students frequently have problems correctly evaluating/expanding compositions of functions. 
3) Check to see if students are trying to evaluate limit before simplifying/canceling. 
4) Check to see if anyone writes 0

0
 as final answer or attempts to draw conclusion from 0

0
.  Redirect 

any student who does. 
5) Select student who has correct solution and have student present solution to class.  Make sure that 

students EXPLAINS/DESCRIBES his/her work and why s/he made the decisions that s/he made. 
6) Follow-up question to class: what does this answer tell us? 

a. Have students discuss with each other and then in whole class discussion. 
b. Students will inevitably say “it means the slope is two.” 

i. Follow-up by asking “well, what does that mean?” 
c. Student will likely say that “the tangent line has a slope of two” 

i. Follow-up by asking, “well, what does that have to do with the original 
function?” 

d. Class may become silent at this point. 
e. Continue asking and re-wording as appropriate, for example “What does the fact that 

the line tangent to the curve at 𝑥𝑥 = 1 has a slope of 2 tell me about the curve?” 
f. Keep prompting until a student answers “it means that the 𝑦𝑦-value of the curve is 

increasing at a rate of 2 units for every 1-unit increase in 𝑥𝑥. 
i. Some possible prompts: 

1. “What does slope mean?” 
2. “What is rise over run?” 
3. What is “change in y over change in 𝑥𝑥?” 

 

1) Allow 5-7 minutes, students will likely struggle with correctly simplifying a complex fraction. 
2) Walk around room and point out errors, specifically algebraic errors. 
3) Select one student who uses the limit of the slope formula to find 𝑚𝑚 and select one student who 

uses the limit of the difference quotient to find 𝑚𝑚.  Have both students present solutions and 
describe their work. 

4) Linking question: have students construct a graph of the function and the line tangent to the curve. 

𝑦𝑦 = 𝑓𝑓(2) + 𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛(𝑥𝑥 − 2) 
𝑦𝑦 = 1 + 𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛(𝑥𝑥 − 2) 

𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛 = lim
𝑑𝑑→2

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(2)
𝑥𝑥 − 2

 

= lim
𝑑𝑑→2

2
𝑥𝑥 − 1
𝑥𝑥 − 2

= lim
𝑑𝑑→2

2
𝑥𝑥 −

𝑥𝑥
𝑥𝑥

𝑥𝑥 − 2
 

= lim
𝑑𝑑→2

2 − 𝑥𝑥
𝑥𝑥(𝑥𝑥 − 2) = lim

𝑑𝑑→2

−1
𝑥𝑥

 

= −
1
2

. 
 

𝑦𝑦 = 1 −
1
2

(𝑥𝑥 − 2) 

𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛 = lim
𝑑𝑑→𝑐𝑐

𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑐𝑐)
𝑥𝑥 − 𝑐𝑐

= lim
𝑑𝑑→𝑐𝑐

√𝑥𝑥 − √𝑐𝑐
𝑥𝑥 − 𝑐𝑐

 

= lim
𝑥𝑥→𝑐𝑐

√𝑥𝑥−√𝑐𝑐
(√𝑥𝑥−√𝑐𝑐)(√𝑥𝑥+√𝑐𝑐) = lim

𝑥𝑥→𝑐𝑐
1

√𝑥𝑥+√𝑐𝑐 = 1
2√𝑐𝑐.  

𝒙𝒙 𝒚𝒚 𝒎𝒎𝒕𝒕𝒕𝒕𝒕𝒕 
𝟏𝟏 𝟏𝟏 𝟏𝟏

𝟐𝟐
 

𝟒𝟒 𝟐𝟐 𝟏𝟏
𝟒𝟒

 

𝟗𝟗 𝟑𝟑 𝟏𝟏
𝟔𝟔

 

 

1) Allow 4-5 minutes 
2) Let students solve problem without finding slope generating formula 
3) Walk around room, if any student solves problem by finding a slope 

generating formula, then have that student present answer. 
a. If not, then have three different students present answers for each 

𝑥𝑥-value 
b. Then, I will construct the table of values and find the slope 

generating formula. 
c. After finding the equation 𝑚𝑚𝑡𝑡𝑔𝑔𝑛𝑛 = 1

2√𝑐𝑐
 ask students what this 

algebraic expression represents.  Continue prompting until a 
student or students identify that we have found a function that 
will return the slope of the line tangent to the curve at 𝑥𝑥 = 𝑐𝑐. 

4) Students will ask “if you had used the other formula, would you have come 
up with the same equation?” 

a. Have whole class find the slope generating function using the 
difference quotient. 

b. Have students discuss and identify if both approaches to finding 
the slope function have the same answer. 
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Velocity 

What is the difference between speed and velocity? 

Speed = |velocity| 

How do we measure velocity in rectlinear motion? 

Meters/sec, ft/sec, mph, etc.  

 

In this class, we will assume that motion only occurs along a straight line.  That line is often 

referred to as the 𝑠𝑠-axis.  Thus, we typically refer to the position function as 𝑠𝑠 = 𝑓𝑓(𝑡𝑡), 𝑓𝑓(𝑡𝑡) 

returns the position of the object in motion at time 𝑡𝑡. 

The Average Velocity 

The average velocity of a particle in motion is defined as 

𝑣𝑣𝑔𝑔𝑎𝑎𝑚𝑚 =__change in position
change in time

_____________=____𝑚𝑚(𝑡𝑡2)−𝑚𝑚(𝑡𝑡1)
𝑡𝑡2−𝑡𝑡1

_____________. 

Does this formula look familiar? It looks like slope. 

 

How else could we write this formula? 𝑚𝑚(𝑡𝑡2)−𝑚𝑚(𝑡𝑡1)
𝑡𝑡2−𝑡𝑡1

= ∆𝑚𝑚
∆𝑡𝑡

. 

 

Ex. 5: Suppose that 𝑠𝑠 = 𝑓𝑓(𝑡𝑡) = 1 + 5𝑡𝑡 − 2𝑡𝑡2 is the position function of a particle, where 𝑠𝑠 is in 

meters and 𝑡𝑡 is in seconds.  Find the average velocities of the particle over the time intervals (a) 

[0,2] and (b) [2,3]. 

1) Prompt until students reach conclusion 
2) Students will likely suggest that “speed is a scalar and velocity is a vector” 

a. Reply by asking, “what does that mean mathematically?” 

1) Allow large group discussion … students will 
soon identify that velocity is measured in units of 
length divided by units of time. 

Have students discuss how to 
calculus average velocity.  
Usually through life 
experience (driving, etc.) or 
from a physics class, students 
give the average velocity 
formula pretty quickly. 
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a)  b) 

 

 

 

 

 

Average velocity describes a particle’s motion over an interval of time, but we are interested in a 

particle’s ___instantaneous_____________________ velocity, which describes the particle’s 

behavior at an instant in time.  We cannot use the average velocity formula because the length of 

the time interval is __zero___________.  How could we work around this problem?  

 

 

Ex. 6: Now find the instantaneous velocity at 𝑡𝑡 = 2 𝑠𝑠 for the particle whose position is described 

by  

𝑠𝑠 = 𝑓𝑓(𝑡𝑡) = 1 + 5𝑡𝑡 − 2𝑡𝑡2. 

 

 

 

 

2.1: Tangent Lines and Rates of Change HW – Day 1 

𝑣𝑣𝑔𝑔𝑎𝑎𝑚𝑚 =
𝑠𝑠(2) − 𝑠𝑠(0)

2 − 0
 

=
3 − 0
2 − 0

=
3
2

 
Have students work through problem, about 2 
minutes. 
Have students check answers with one another. 
Have a volunteer present her/his answer. 
Show how this problem is scored <1> pt for 
difference quotient, <1> pt for final answer. 

𝑣𝑣𝑔𝑔𝑎𝑎𝑚𝑚 =
𝑠𝑠(3) − 𝑠𝑠(2)

3 − 2
 

=
−2 − 3
3 − 2

=
−5
1

 

Have students work through problem, about 2 
minutes. 
Have students check answers with one another. 
Have a volunteer present her/his answer. 

Allow students to volunteer answers.  If prompting is needed, ask how we work around dividing by zero in a calculus class. 

𝑣𝑣𝑚𝑚𝑛𝑛𝑚𝑚𝑡𝑡 = lim
𝑡𝑡→2

𝑠𝑠(𝑡𝑡) − 𝑠𝑠(2)
𝑡𝑡 − 2

= lim
𝑡𝑡→2

1 + 5𝑡𝑡 − 2𝑡𝑡2 − 3
𝑡𝑡 − 2

 

= lim
𝑡𝑡→2

5𝑡𝑡 − 2𝑡𝑡2 − 2
𝑡𝑡 − 2

= lim
𝑡𝑡→2

(1− 2𝑡𝑡)(𝑡𝑡 − 2)
𝑡𝑡 − 2

 

= lim
𝑡𝑡→2

(1− 2𝑡𝑡) = −3. 

1) Allow 4-5 minutes.  Most issues that arise, if any, will be related to  
factoring the polynomial written out of traditional order. 

2) Allow students to compare answers.  At this point, nearly everyone  
will be getting the procedure correct. 

3) KEY CONCEPT:  Emphasize the difference between average velocity  
and instantaneous velocity.  Have students verbalize the mathematical  
differences between average velocity and instantaneous velocity. 

Limit homework time to no more than 
10 minutes.  Discuss #1, #4, #5, and if 
time permits #6. 
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Figure 90. 2.1 HW Day 1 - #1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) At 𝑡𝑡 = 10, the function is approximately linear and the slope appears to be 40
10

= 4 𝑚𝑚
𝑚𝑚

. 
a. Ask student to describe how s/he answered this problem. 

b) Randomly call on student to present answer, in the likely event that the student replies “I didn’t know how to do this 
one”, give the entire class three minutes to think about the question and produce a graph.  Then “randomly” call on exact 
same student to present answer. 

c) After first student draws graph on Promethean board, allow two volunteers to draw graphs.  Every person who draws a 
graph must explain how s/he determined her/his graph. 

d) If no appropriate graph has been constructed, ask if anyone else has a different graph, if so, allow student to present, if 
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2)  

Figure 91. 2.1 HW Day 1 - #2 

 

3)  

  

Figure 92. 2.1 HW Day 1 - #3 
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4)   

 

 

 

Figure 93. 2.1 HW Day 1 - #4 

5) Suppose a particle’s velocity is constant.  What must be true 

of the particle’s position graph?  

 

6) Suppose 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2. 

a) Find the average rate of change of 𝑓𝑓(𝑥𝑥) on [0,1]. 

 

 

b) What is the instantaneous rate of change of 𝑓𝑓(𝑥𝑥)  

at 𝑥𝑥 = 0? 

𝑟𝑟𝑚𝑚𝑛𝑛𝑚𝑚𝑡𝑡 = lim
𝑑𝑑→0

2(𝑑𝑑)2−2(0)2

𝑑𝑑−0
= lim

𝑑𝑑→0

2𝑑𝑑2

𝑑𝑑
= lim

𝑑𝑑→0
 2𝑥𝑥 = 0. 

 

c) Find the instantaneous rate of change of 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 𝑐𝑐. 

𝑟𝑟𝑚𝑚𝑛𝑛𝑚𝑚𝑡𝑡 = lim
𝑑𝑑→𝑐𝑐

2(𝑑𝑑)2−2(𝑐𝑐)2

𝑑𝑑−𝑐𝑐
= lim

𝑑𝑑→0

2(𝑑𝑑2−𝑐𝑐2)
𝑑𝑑−𝑐𝑐

= lim
𝑑𝑑→𝑐𝑐

2(𝑑𝑑−𝑐𝑐)(𝑑𝑑+𝑐𝑐)
𝑑𝑑−𝑐𝑐

= lim
𝑑𝑑→𝑐𝑐

2(𝑥𝑥 + 𝑐𝑐) = 4𝑐𝑐  

d) Sketch the graph of 𝑓𝑓(𝑥𝑥), the line described in part a), and the line defined by part b). 

2.1: Tangent Lines and Rates of Change  – Day 2 

Slopes and Rates of Change 

Velocity can be viewed as a ___rate of change____________________________________ - it 

is the rate of change of __position________________________ with respect to 

____time______________.  Rates of change occur in all aspects of life: 

1) Ask class how one can read the 
instantaneous velocity from a position 
graph? Prompt for “slope of the tangent 
line” 

2) Have students close eyes and vote on 
each graph individually to indicate if I.V. 
is increasing. 

a. Call on student after each vote 
to defend his/her vote 

1) Have all students write a sentence or two that 
answers the question and explains why the 
answer is correct. 

2) Then, have all of the students construct a graph 
of a constant velocity function and the 
appropriate position curve. 

3) Have students answer the question “are any 
other position curves possible?” 

𝑟𝑟𝑔𝑔𝑎𝑎𝑚𝑚 =
2(1)2 − 2(0)2

1 − 0
= 2 

1) Have students compare answers to parts a) and b).  It 
is likely that the students who did the homework will 
have both parts correct. 

2) Have a student volunteer present answer to part c.  
Volunteer should describe all work to the class while 
at the Promethean board. 

3) Have all students answer part d).  Re-emphasize the 
relationship of the average rate of change and the 
instantaneous rate of change.  Use discussion of secant 
lines and tangent lines to introduce new learning. 
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For example: 

A bridge engineer needs to know the rate at which the concrete and steel expand during the 

summer and contract during the winter. 

A financial analyst is interested in the rate of change of the national deficit. 

An epidemiologist might study the rate at which an infectious disease spreads among humans. 

What do we mean when we say “rate of change of 𝑦𝑦 with respect to 𝑥𝑥”?  

In the case of a linear function, 𝑦𝑦 = ____𝒎𝒎𝒙𝒙 + 𝒃𝒃________________, __𝒎𝒎___ represents the rate of 

change of 𝑦𝑦 with respect to 𝑥𝑥.  This means that 𝑦𝑦 changes ___𝒎𝒎______ units for each 1-unit 

increase in 𝑥𝑥. 

Ex. 7:   Find the rate of change of 𝑦𝑦 with respect to 𝑥𝑥 if: 

a) 𝑦𝑦 = 3 + 2𝑥𝑥    b) 𝑦𝑦 = 14 − 5𝑥𝑥 

 

 

 

 

Def: No matter what context we are using: 

If 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), then we define the average rate of change of 𝒚𝒚 with respect to x over the interval 

[𝑎𝑎, 𝑏𝑏] to be 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑔𝑔)
𝑏𝑏−𝑔𝑔

. 

The instantaneous rate of change of 𝒚𝒚 with respect to 𝒙𝒙 at 𝑥𝑥 = 𝑐𝑐 to be lim
𝑑𝑑→𝑐𝑐

𝑓𝑓(𝑑𝑑)−𝑓𝑓(𝑐𝑐)
𝑑𝑑−𝑐𝑐

. 

Geometrically, the average rate of change of 𝑓𝑓(𝑥𝑥) on [𝑎𝑎, 𝑏𝑏] is the slope of the 

_secant__________ line through the points 𝑃𝑃(𝑎𝑎, 𝑓𝑓(𝑎𝑎)) and 𝑄𝑄(𝑏𝑏,𝑓𝑓(𝑏𝑏)). 

The instantaneous rate of change of 𝑓𝑓(𝑥𝑥) at point 𝑃𝑃(𝑎𝑎, 𝑓𝑓(𝑎𝑎)) is the slope of the 

___tangent__________________ line at point 𝑃𝑃. 

Moderate discussion until a student answers 
“it is the amount of change in 𝑦𝑦 per unit 
change in 𝑥𝑥" 

Students will immediately answer 2 and −5.  The question, “is 
that it” will inevitably follow. 
 
Mention that slope is a rate of change. 
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Ex. 8: Let 𝑦𝑦 = 𝑥𝑥2 + 2. 

a) Find the average rate of change of 𝑦𝑦 with respect to 𝑥𝑥 over the interval [3,5]. 

 

 

b) Find the instantaneous rate of change of 𝑦𝑦 with respect to 𝑥𝑥 at 𝑥𝑥 = 4. 

 

 

 

 

 

 

Rates of Change in Applications 

In applied problems, ___average______________ and __instantaneous_________________ 

rates of change must be accompanied by appropriate ___units__________________.  In general, 

the __units_____________ for a rate of change of 𝑦𝑦 with respect to 𝑥𝑥 are obtained by 

____dividing_____________________ the units of 𝑦𝑦 by the units of 𝑥𝑥. 

Here are some common examples: 

1) If we wanted to measure the instantaneous rate of change of the temperature at midnight, what 

would our units be?   

2) If we wanted to measure the average rate of change of our velocity (𝑚𝑚
𝑚𝑚

) over a 20𝑠𝑠 interval, 

what would the units of measurements be? 

  

2.1: Tangent Lines and Rates of Change HW  – Day 2  

𝑟𝑟𝑔𝑔𝑎𝑎𝑚𝑚 =
𝑦𝑦(5) − 𝑦𝑦(3)

5 − 3
=

27 − 11
2

= 8 

𝑟𝑟𝑚𝑚𝑛𝑛𝑚𝑚𝑡𝑡 = lim
𝑑𝑑→4

𝑦𝑦(𝑥𝑥) − 𝑦𝑦(4)
𝑥𝑥 − 4

= lim
𝑑𝑑→4

𝑥𝑥2 + 2 − 18
𝑥𝑥 − 4

= lim
𝑑𝑑→4

𝑥𝑥2 − 16
𝑥𝑥 − 4

 

= lim
𝑑𝑑→4

(𝑥𝑥 + 4)(𝑥𝑥 − 4)
𝑥𝑥 − 4

= lim
𝑑𝑑→4

(𝑥𝑥 + 4) = 8 

1) Have students complete parts a) and b) and then compare the answers. 
2) Have students write one or two sentences that interpret the results of parts a) and b) in the context of the problem. 

a. Call on two students at random to read their interpretations.  If neither answer is correct, ask the class “does 
anyone have anything different?”  Prompt until someone answers that a) describes the slope of the secant 
line to the curve drawn from 𝑥𝑥 = 3 to 𝑥𝑥 = 5 and that b) describes the slope of the line tangent to the curve 
at 𝑥𝑥 = 4. 

3) Have students sketch a graph of the function, average rate of change, and instantaneous rate of change on the same axes 
4) Let a volunteer present his/her drawing on the Promethean board and describe the drawing. 

1) Accept volunteer answers from the class, any answer that represents a measure of 
temperature divided by a measure of time is acceptable. 

𝑚𝑚/𝑚𝑚
𝑚𝑚

  
Students will solve this quickly.  Give everyone 30 seconds and then compare answers. 
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True or False: 

1) If lim
𝑑𝑑→2

𝑓𝑓(𝑑𝑑)−𝑓𝑓(2)
𝑑𝑑−2

= 7, then lim
ℎ→0

𝑓𝑓(2+ℎ)−𝑓𝑓(2)
ℎ

= 7. 

2) Tangent lines are specific kinds of secant lines.  

3) Velocity is the change in position. 

4) 

Figure 94. 2.1 HW Day 2 - #4 

 

 

 

 

 

 

 

5)  

 

Figure 95. 2.1 HW Day 2 - #5 

 

Address all 3 T/F questions at the start of class. 
1) Take class vote with eyes closed. 
2) Call on one student who voted true 

and one student who voted false per 
questions and have each student tell 
the class why s/he voted true or 
false. 

3) On question 3, call on students until 
someone recognizes that velocity 
represents a change in the objects 
velocity divided by the change in 
time. 

Display answers to #4.  Answer 
questions if students have any. 
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6) A cyclist rides a bicycle down a straight highway.  Her position in feet over a 20 second 

interval is given by 𝑠𝑠(𝑡𝑡) = 2𝑡𝑡2. 

a) Find the average velocity of the cyclist during the 20 second interval. 

b) Find the instantaneous velocity of the cyclist at 𝑡𝑡 = 12 𝑠𝑠. 

 

 

  

If time permits, have the class discuss parts a), b), and c) and then have two or three 
representatives of the class come to the Promethean board and present the class’s answers. 
 

1) Have ALL students attempt part d) in class.   
2) Walk around the room and identify three different graphs that have been drawn, 

preferably the 3 most common. 
3) The teacher then draws all 3 on the Promethean board in 3 different colors. 
4) Have the class make an anonymous vote on which graph is correct. 
5) Call on students to defend their answers. 
6) Allow students to resolve disagreements and identify the correct curve. 

As #6 is only superficially 
different from Example 8, most 
students will have no difficulty 
with #6. 

1) Present answers to #6. 
2) Answer any questions 

that student may have. 
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APPENDIX C: DIFFERENTIATION COMPETENCY TEST 

Table 85. Differentiation Competency Test 

Characteristic Symbol Meaning 
1 – The cognitive process 
needed to achieve the output 
derivative indicates whether 
the goal of the question 
requires a derivative to be 
formulated or interpreted. 

F Formulation is the ability to recognize that a 
particular 
differentiation procedure is required using the data 
supplied and to know 
how to calculate it 

1 – The cognitive process 
needed to achieve the output 
derivative indicates whether 
the goal of the question 
requires a derivative to be 
formulated or interpreted. 

I Interpretation is the ability to reason about the input 
derivative supplied or to explain it in natural 
language, or to give it meaning 
including its equivalence to a derivative in a 
different representation. 

2 – The representation of the 
input derivative is 
determined by 
the data and is classified 
(using upper case letters) as 
numerical (N), graphical (G), 
or symbolic (S).  

N Numerical, if the data is a numerical derivative 
(instantaneous or average rate of change) or enables 
a difference quotient to be calculated (and possibly 
its limit) using ordered pair data or a table of values 
(by hand or with CAS) 

2 – The representation of the 
input derivative is 
determined by 
the data and is classified 
(using upper case letters) as 
numerical (N), graphical (G), 
or symbolic (S).  

G Graphical, if the data is a graphical derivative, slope 
of the line tangent to the curve, or enables the slope 
of the line tangent to the curve "at a point" to be 
determined. 
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Table 85 (continued) 

2 – The representation of the input 
derivative is determined by 
the data and is classified (using upper 
case letters) as numerical (N), 
graphical (G), or symbolic (S).  

S Symbolic, if the data is a symbolic derivative 
(algebraic function) or enables a symbolic 
derivative to be determined using the rules for 
symbolic differentiation. 

3 – The representation of the output derivative is 
dependent on the goal of the question expressed in 
natural language and is classified (using lower case 
letters) as numerical (n), graphical (g), or symbolic (s). 

n Numerical, if the question 
requires finding or explaining a 
"rate of change". 

3 – The representation of the output derivative is 
dependent on the goal of the question expressed in 
natural language and is classified (using 
lower case letters) as numerical (n), graphical (g), or 
symbolic (s). 

g Graphical, if the question 
requires finding or explaining a 
"slope of the line tangent to the 
curve or tangent". 

3 – The representation of the output derivative is 
dependent on the goal of the question expressed in 
natural language and is classified (using 
lower case letters) as numerical (n), graphical (g), or 
symbolic (s). 

s Symbolic, if the question 
requires finding or explaining a 
"derivative". 

 

Example: A question classified as IGs would be an interpretation (I) question whose input 
differentiation representation is graphical (G) and whose output representation is symbolic (s). 

The DCT 

Question 
# 

Question Classification 

1 Find the derivative of 𝑦𝑦 = 𝑥𝑥5 + 4𝑥𝑥2 − 𝑥𝑥 + 10. FSs 
2 Use a graph of 𝑦𝑦 = 𝑥𝑥2 + 𝑥𝑥 − 10 to find the slope of the 

line tangent to the curve at 𝑥𝑥 = 3. 
FGg 

 

 

 

 

 

 

 

 381 



   

Table 85 (continued) 

3 One day during the school holidays, a family went on a 
holiday walk.  The graph below shows their distance from 
the start of the walk (in kilometers) as a function of the 
number of hours walked. 
 

 
(a) What was the family’s average rate of walking between 
9am and 12 noon? 

FNn 

4 If 𝑦𝑦 is a function of 𝑥𝑥, explain in words the meaning of the 
equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 5 when 𝑥𝑥 = 10. 

ISs 

5 A graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) is sketched below.  A series of points 
𝐴𝐴 to 𝑗𝑗 are marked along the curve.  Consider the statements 
below and decide if they are true or false. 

 
(a) The slope of the line tangent to the curve at 𝐹𝐹 is greater 
than at 𝐵𝐵. 
(b) The slope of the line tangent to the curve at 𝐴𝐴 is greater 
than at 𝐻𝐻. 
(c) The slope of the line tangent to the curve at 𝐼𝐼 is less 
than at 𝐹𝐹. 
(d) The slopes of the lines tangent to the curve at 𝑂𝑂 and 𝐽𝐽 
are approximately equal. 

IGg 

6 At 1:00 pm, the rate of change of the temperature in your 
house was +3 degrees Celsius (℃) per hour.  Immediately 
after 1:00 pm, is the temperature most likely to: decrease, 
stay the same, or increase.  Give a reason for your answer. 

INn 
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Table 85 (continued) 

7 The height of a plant can be determined by the formula 
𝐻𝐻(𝑡𝑡) = 7𝑡𝑡3 − 3𝑡𝑡2 where 𝐻𝐻 is the height of the tree in 
meters, and 𝑡𝑡 is the number of years since the tree was first 
planted. 
 
Find the rate of increase of the plant’s height 2 years after 
it was planted (i.e., 𝑡𝑡 = 2). 

FSn 

8 A curve has the equation 𝑔𝑔(𝑥𝑥) = 5𝑥𝑥3 − 6𝑥𝑥2 + 3𝑥𝑥 − 6.  
Find the slope of the line tangent to the curve at the point 
𝑃𝑃, where 𝑥𝑥 = −1. 

FSg 

9 Continuation of Question 3 above ‘The Holiday Walk” 
3(b).  What was the family’s speed (rate of walking) at 
11:00 am? 

FGn 

10 The graph of the function ℎ(𝑥𝑥) is sketched below.  The 
tangent at point 𝑃𝑃, on the curve 𝑦𝑦 = ℎ(𝑥𝑥) has also been 
drawn.  Find the value of the derivative of ℎ(𝑥𝑥) at 𝑃𝑃. 

 

FGs 

11 The CAS calculator was used to find values of the function 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥) near 𝑥𝑥 = 3. 

(3.000, 0.000); (3.103,−0.701); (3.051,−0.353); 
(3.011,−0.079); (2.990,0.071); (2.999,0.007) 

Find the best estimate of the slope of the line tangent to the 
graph of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 3. 

FNg 

12 The values of a function close to 𝑥𝑥 = 5 are shown in the 
table below. 

 
Find the best estimate of the derivative 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 5. 

FNs 
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Table 85 (continued) 

13 Circle the letter corresponding to your answer. 
The derivative of the function 𝑔𝑔(𝑡𝑡) is given by the rule 
𝑔𝑔′(𝑡𝑡) = 𝑡𝑡3 − 5𝑡𝑡. 
To find the rate of change of 𝑔𝑔(𝑡𝑡) at 𝑡𝑡 = 4, you should: 
A. Differentiate 𝑔𝑔′(𝑡𝑡) and then substitute 𝑡𝑡 = 4. 
B. Substitute 𝑡𝑡 = 4 into 𝑔𝑔′(𝑡𝑡). 
C. Find where 𝑔𝑔′(𝑡𝑡) = 0. 
D. Find the value of 𝑔𝑔′(0). 
E. None of the above. 

ISn 

14 The derivative function of 𝑓𝑓(𝑥𝑥) is given by  
𝑓𝑓′(𝑥𝑥) = 𝑥𝑥3 − 5𝑥𝑥 + 3.  What is the slope of the line 
tangent to the curve 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) when 𝑥𝑥 = 1? 

ISg 

15 𝑃𝑃(2,7) is a point on the curve 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), and at 𝑃𝑃, the 
slope of the line tangent to the curve is 3. 
𝑄𝑄(2.001,7.351) is a second point on the curve 𝑃𝑃. 
What is the instantaneous rate of change of 𝑦𝑦 with respect 
to 𝑥𝑥 at the point 𝑃𝑃, when 𝑥𝑥 = 2? 
(Note: an exact answer is required.) 

IGn 

16 Circle the letter corresponding to your answer. 
The derivative function of 𝑓𝑓(𝑥𝑥) is sketched below. 

 
From the list of derivative function rules listed below, 
select the rule that best represents the derivative of 𝑓𝑓(𝑥𝑥). 
A. 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥3 + 𝑥𝑥2 + 2 
B. 𝑓𝑓′(𝑥𝑥) = −𝑥𝑥3 + 𝑥𝑥2 + 2 
C. 𝑓𝑓′(𝑥𝑥) = −3𝑥𝑥2 − 2𝑥𝑥 + 2 
D. 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 + 2𝑥𝑥 + 2 
E. 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥 + 2 
 

IGs 

17 A curve has the function rule 𝑦𝑦 = 𝑓𝑓(𝑥𝑥).  If the rate of 
change of 𝑦𝑦 with respect to 𝑥𝑥 is given by the function rule 
5𝑥𝑥 + 7, what is the derivative function of the curve? 

INg 
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Table 85 (continued) 

18 An eagle follows a flight path where its height depends on 
the time since it flew out of its nest.  The rule for finding 
the height of the bird (H in meters) above its nest is a 
function 𝐻𝐻(𝑡𝑡) of 𝑡𝑡, the flight time (in seconds). 
Find seconds after take-off, the 4kg eagle was observed to 
be 100m above its nest and climbing at the rate of 3 
meters/second. 
What is the value of 𝐻𝐻′(5)? 

INs 
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APPENDIX D: FLEXIBILITY PRE-TEST 

Table 86. Flexibility Pre-test 

Characteristic Symbol Meaning 
1 – The content domain of the 
function indicates if the problem 
requires composing functions 
together or if the problem requires 
analyzing the inverse of a function. 

C Composition is a non-algebraic means of 
combining multiple functions.  The 
composition of 𝑓𝑓 with 𝑔𝑔 is the function 
(𝑓𝑓 ∘ 𝑔𝑔)(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥)). 

1 – The content domain of the 
function indicates if the problem 
requires composing functions 
together or if the problem requires 
analyzing the inverse of a function. 

I Inverse functions are functions that 
exchange the domain (input) and range 
(output) of a function.  Algebraically, the 
function 𝑓𝑓−1(𝑥𝑥) is the inverse of 𝑓𝑓(𝑥𝑥) if 
and only if 𝑓𝑓�𝑓𝑓−1(𝑥𝑥)� = 𝑓𝑓−1�𝑓𝑓(𝑥𝑥)� = 𝑥𝑥. 

2 – The representation of the input 
function is determined by 
the data and is classified (using upper 
case letters) as numerical (N), 
graphical (G), or symbolic (S).  

N Numerical, if the function is presented as a 
table of values or a list of discrete values. 

2 – The representation of the input 
function is determined by 
the data and is classified (using upper 
case letters) as numerical (N), 
graphical (G), or symbolic (S). 

G Graphical, if the function is presented as a 
graph. 

2 – The representation of the input 
function is determined by 
the data and is classified (using upper 
case letters) as numerical (N), 
graphical (G), or symbolic (S). 

S Symbolic, if the function is presented as an 
algebraic expression. 
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Table 86 (continued) 

3 – The representation of the output function is dependent 
on the goal of the question expressed in natural language 
and is classified (using lower case letters) as numerical 
(n), graphical (g), or symbolic (s). 

n Numerical, if the question 
requires finding discrete 
values or filling in a table of 
values. 

3 – The representation of the output function is dependent 
on the goal of the question expressed in natural language 
and is classified (using 
lower case letters) as numerical (n), graphical (g), or 
symbolic (s). 

g Graphical, if the question 
requires constructing a graph 
of a function. 

3 – The representation of the output derivative is 
dependent on the goal of the question expressed in natural 
language and is classified (using 
lower case letters) as numerical (n), graphical (g), or 
symbolic (s). 

s Symbolic, if the question 
requires finding or creating an 
algebraic expression of a 
function. 

 

Example: A question classified as IGs would be an inverse (I) question whose input functional 
representation is graphical (G) and whose output functional representation is symbolic (s). 

The flexibility pre-test 

Question 
# 

Question Classification 

1 Let 𝑓𝑓(𝑥𝑥) = |𝑥𝑥| and 𝑔𝑔(𝑥𝑥) = √𝑥𝑥3 + 1  
1.a Find the algebraic expression for 𝑓𝑓(𝑔𝑔(𝑥𝑥)). CSs 
1.b Evaluate 𝑔𝑔�𝑓𝑓(−1)�. CSn 
1.c Sketch the graph of 𝑓𝑓(𝑔𝑔(𝑥𝑥)) on the axis below. 

 

CSg 
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Table 86 (continued) 

2 The table below reports selected values of two functions, 𝑓𝑓 and 𝑔𝑔.  
Let  ℎ(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥)).  The domain for all functions is all real 
numbers. 
 

𝑥𝑥 𝑓𝑓 𝑔𝑔 ℎ 

−3 9 −2  

−2 4 −1  

−1 1 0  

0 0 1  

1 1 2  

2 4 3  

3 9 4  

 

2.a Fill in the column of values for ℎ(𝑥𝑥).  Explain how you 
determined ℎ(3). 

CNn 

2.b Give an algebraic expression for ℎ(𝑥𝑥). CNs 
2.c Make a possible graph of ℎ(𝑥𝑥).  Label the tick marks on the 

𝑦𝑦 −axis to indicate the scale that you use. 
 

 
 
 

CNg 
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Table 86 (continued) 

3 Graphed below are the piecewise-defined functions, 𝑓𝑓(𝑥𝑥) and 
𝑔𝑔(𝑥𝑥) on [0,3]. 

 

 

 

 

3.a On the axis below, sketch the graph of ℎ(𝑥𝑥) = 𝑔𝑔(𝑓𝑓(𝑥𝑥)) on [0,3]. 

 

 

CGg 

3.b Fill in the following table of values for 𝑖𝑖(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥)). 

𝑥𝑥 𝑖𝑖(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥)) 

0  

1  

2  

3  
 

CGn 

 

 389 



   

Table 86 (continued) 

3.c Give the algebraic expression for 𝑖𝑖(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥)). CGs 

4 Let 𝑓𝑓(𝑥𝑥) = 3√𝑥𝑥 + 2, 𝑥𝑥 ≥ 0.  Find an expression for 𝑓𝑓−1(𝑥𝑥). ISs 
5 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + sin 𝑥𝑥 is an invertible function.  Evaluate 𝑓𝑓−1(2𝜋𝜋). ISn 
6 Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3.  Sketch a graph of 𝑓𝑓−1(𝑥𝑥). ISg 
7 Find a function 𝑓𝑓(𝑥𝑥) such that:  

𝑥𝑥 −2 −1 0 1 2 

𝑓𝑓−1(𝑥𝑥) 1 3
2�  2 5

2�  3 

 

INs 

8 Let 𝑔𝑔(𝑥𝑥) be an invertible function such that: 

𝑥𝑥 0 1 2 3 

𝑔𝑔(𝑥𝑥) −2 4 0 3 

Find 𝑔𝑔−1(4). 

Inn 

9 If 𝑓𝑓(𝑥𝑥) is invertible on the entire real line and  

𝑥𝑥 0 1 2 3 4 

𝑓𝑓(𝑥𝑥) 1 2 4 8 16 

Sketch a possible graph of 𝑓𝑓−1(𝑥𝑥). 

INg 

10 The graph of 𝑓𝑓(𝑥𝑥) is shown below. 

 

Give an algebraic expression for 𝑓𝑓−1(𝑥𝑥). 

IGs 
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Table 86 (continued) 

11 Use the graph of 𝑓𝑓(𝑥𝑥) below to fill in the table of values. 

 

𝑥𝑥 0 3 5 7 8 

𝑓𝑓−1(𝑥𝑥)      
 

IGn 

12 The graph of 𝑔𝑔(𝑥𝑥) is shown below.  On the same set of axes, 
sketch the graph of 𝑔𝑔−1(𝑥𝑥). 

 

IGg 
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APPENDIX E: EXIT SLIPS AND OPENING ACTIVITIES 

Table 87. Exit slips and opening activities 

 

 

 

 

 

2.1.1 - Exit Slip 

Name: ______________________________________  Date:__________________   

 

The following position versus time graph consists of a linear position function, 𝑠𝑠 = 𝑓𝑓(𝑡𝑡), 

construct a velocity versus time graph on the same set of axes.  Show or explain how you 

determined the velocity graph. 

Are there any other possible answers?  Explain why or why not. 

  

 
time (𝑠𝑠) 

position (ft) 𝑠𝑠 = 𝑓𝑓(𝑡𝑡) 
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Table 87 (continued) 

 

 

 

 

 

 

2.1.1 - Opening Activity 

Name: ______________________________________  Date:__________________   

 

The following velocity versus time graph consists of a horizontal line segment from 𝑡𝑡 =

0 𝑠𝑠 to 𝑡𝑡 = 10 𝑠𝑠.  Construct a position versus time graph on the same axes.  Show or explain how 

you determined the position graph. 

Are there any other possible answers?  Explain why or why not. 

 

 

 

time (𝑠𝑠) 

𝑣𝑣(𝑡𝑡) 

Velocity (ft/s) 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

 

2.1.2 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

 

The following graph shows the function𝑓𝑓(𝑥𝑥) on the interval [0,5]. 

 

Which is greater, the average rate of change of 𝑓𝑓(𝑥𝑥) on [0,5] or the instantaneous rate of 

change at 𝑥𝑥 = 3?  Show or explain how you determined your answer. 
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Table 87 (continued) 

 

 

 

 

 

2.1.2 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

 

Construct the graph of a function on the interval [0,10] whose average rate of change on 

[0,10] is 2 and whose instantaneous rate of change at 𝑥𝑥 = 5 is approximately −2.  Label the 

𝑦𝑦 −axis as appropriate.  Explain why you drew the graph that you drew. 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

 

Write the equation of the line tangent to the curve 𝑦𝑦 = 𝑥𝑥2 − 𝑥𝑥 at 𝑥𝑥 = 3.  Make sure to show 

your work. 

2.2.1 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

 

The line tangent to a curve 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 = 2 has the equation 𝑦𝑦 = 4 + 8(𝑥𝑥 − 2).  Find a 

possible equation for 𝑓𝑓(𝑥𝑥).  Show or explain how you determined 𝑓𝑓(𝑥𝑥). 
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Table 87 (continued) 

 

 

 

2.2.2 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

Sketch the derivative of the following function on the same axes.  Describe how you 

determined the derivative. 
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Table 87 (continued) 

 

 

2.2.2 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

 

Sketch a continuous function 𝑓𝑓(𝑥𝑥) whose derivative 𝑓𝑓′(𝑥𝑥) is shown below on the same 

axes.  Explain how you determined the continuous function 𝑓𝑓(𝑥𝑥). 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

2.3.1 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

 

Find 𝑓𝑓′(𝑥𝑥).  Explain how you found 𝑓𝑓′(𝑥𝑥). 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥5 + 𝑎𝑎𝑥𝑥2 − 𝑥𝑥−2 

2.3.1 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

 

Suppose 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 − 6.  Find a function 𝑓𝑓(𝑥𝑥).  Show or explain how you determined 

𝑓𝑓(𝑥𝑥). 

2.3.2 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

 

Find 𝑦𝑦′′(𝑥𝑥) if 𝑦𝑦 = 𝑎𝑎 𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐.  Show or explain your work. 

 399 



   

Table 87 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.2 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

 

Suppose 𝑦𝑦′′ (𝑥𝑥) = 3𝑥𝑥 − 4.  What could be 𝑦𝑦?  Show your work or explain how you know 

that you are correct. 

2.3.2 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

 

Suppose 𝑦𝑦′′ (𝑥𝑥) = 3𝑥𝑥 − 4.  What could be 𝑦𝑦?  Show your work or explain how you know 

that you are correct. 
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Table 87 (continued) 

 

 

 

 

2.4.1 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

 

The graph below shows functions 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥). 

 

Let ℎ(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) ∗ 𝑔𝑔(𝑥𝑥).  Find ℎ′(7) if it exists.  Show or explain your work. 

𝑔𝑔(𝑥𝑥) 

𝑓𝑓(𝑥𝑥) 
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Table 87 (continued) 

 

 

 

 

 

2.4.1 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

The graph below shows the functions 𝑓𝑓(𝑥𝑥) and ℎ(𝑥𝑥), where ℎ(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) ∗ 𝑔𝑔(𝑥𝑥). 

 

Find 𝑔𝑔′(1) if it exists.  Show or explain your work. 

𝑓𝑓(𝑥𝑥) 

ℎ(𝑥𝑥) 
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Table 87 (continued) 

 

 

2.5.1 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

 

The graph of 𝑓𝑓(𝑥𝑥) is shown below.  Give an algebraic expression for 𝑓𝑓′(𝑥𝑥).  Show or 

explain how you determined 𝑓𝑓′(𝑥𝑥). 
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Table 87 (continued) 

 

 

 

2.5.1 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

Suppose 𝑓𝑓(𝑥𝑥) = −2 cos 𝑥𝑥.  Sketch a possible graph of 𝑓𝑓′(𝑥𝑥).  Show or explain how you 

determined 𝑓𝑓′(𝑥𝑥). 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.1 - Exit Slip 

Name: ______________________________________   

 

Suppose 𝑓𝑓(𝑥𝑥) = 5 sin 𝑥𝑥 and 𝑔𝑔(𝑥𝑥) = sin 5𝑥𝑥.  Which of the following is true? 

I. 𝑓𝑓′(𝜋𝜋) < 𝑔𝑔′(𝜋𝜋) II. 𝑓𝑓′(𝜋𝜋) = 𝑔𝑔′(𝜋𝜋)  

III. 𝑓𝑓′(𝜋𝜋) > 𝑔𝑔′(𝜋𝜋) IV. Cannot be determined. 

Show your work or explain how you determined your answer. 

2.6.1 – Opening Activity 

Name: ______________________________________    

If a function has a known derivative of ℎ′(𝑥𝑥) = 5 cos 𝑥𝑥 − 3 sin 3𝑥𝑥, what could be ℎ(𝑥𝑥)?  

Show or explain how you determined ℎ(𝑥𝑥). 
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Table 87 (continued) 

 

 

 

 

2.6.2 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

 

Given the graphs of 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) below, fill in the table of values for ℎ′(𝑥𝑥).   

Let ℎ(𝑥𝑥) = 𝑓𝑓�𝑔𝑔(𝑥𝑥)�.   Show or explain how you determined each value. 

 

𝑥𝑥 ℎ′(𝑥𝑥) 

1  

4  

8  

 

𝑓𝑓(𝑥𝑥) 

𝑔𝑔(𝑥𝑥) 
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Table 87 (continued) 

 

 

 

 

 

 

 

2.6.2 – Opening Activity 

Name: ______________________________________     

The graph of 𝑔𝑔(𝑥𝑥) is graphed below.  Let ℎ(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥)).  Fill in the table of values for 

𝑓𝑓′(𝑥𝑥).  Show or explain how you determined each value.  

 

𝑥𝑥 ℎ′(𝑥𝑥) 𝑓𝑓′(𝑥𝑥) 

0 1  

2 1  

4 1  
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Table 87 (continued) 

 

 

 

 

 

 

2.6.3 - Exit Slip 

Name: ______________________________________ 

 Date:__________________   

The graph of 𝑓𝑓(𝑥𝑥) is shown below.  𝑓𝑓(𝑥𝑥) is a piecewise function consisting of three linear 

segments. 

 

 

Let ℎ(𝑥𝑥) = [𝑓𝑓(𝑥𝑥)]2.  Find ℎ′(3), if it exists.  Show or explain your work. 
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Table 87 (continued) 

 

 

 

 

 

2.6.3 – Opening Activity 

Name: ______________________________________ 

 Date:__________________   

Let 𝑓𝑓(𝑥𝑥) = �
  3,            − 2 ≤ 𝑥𝑥 < 0
  −𝑥𝑥 + 5,      0 ≤ 𝑥𝑥 ≤ 2
  1,                 2 < 𝑥𝑥 ≤ 4

 

Let 𝑔𝑔(𝑥𝑥) = 𝑓𝑓(𝑥𝑥2).  Sketch the graph of 𝑔𝑔′(𝑥𝑥) on [−2, 2].  Label the 𝑦𝑦 − axis as you feel 

appropriate.  Show or explain how you determined your solution. 

Exit Slip – 3.1 

Name: ______________________________________ 

 Date:__________________   

 

Find 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

 if 𝑦𝑦2 + 𝑦𝑦 = 𝑥𝑥.  Show your work. 

Opening activity – 3.1 

Name: ______________________________________ 

 Date:__________________   

 

Find a relation involving 𝑥𝑥 and 𝑦𝑦 such that 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=
𝑥𝑥 − 2
𝑦𝑦

 

Be sure to show your work or explain how you found your solution. 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exit Slip – 3.2.1 

Name: ______________________________________ 

 Date:__________________   

 

Sketch the graph of the derivative of the function 𝑦𝑦 = ln(𝑥𝑥 − 2). 
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Table 87 (continued) 

 

 

 

 

 

Opening Activity – 3.2.1 

Name: ______________________________________ 

 Date:__________________   

 

Find the derivative of the function graphed below.  Show your work or explain how you 

determined your answer. 
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Table 87 (continued) 

 

 

 

 

Exit Slip – 3.2.2 

Name: ______________________________________ 

 Date:__________________   

 

Find the derivative of 𝑓𝑓(𝑥𝑥) = ln(𝑥𝑥−2
𝑥𝑥+3

).  Show your work or explain how you solved the 

problem. 

Opening Activity – 3.2.2 

Name: ______________________________________ 

 Date:__________________   

 

Suppose the derivative of a function is known to be 𝑓𝑓′(𝑥𝑥) = 1
𝑥𝑥
− 1

𝑥𝑥−2
.  Find a possible 

function for 𝑓𝑓(𝑥𝑥). Can you find a second function that could also be 𝑓𝑓(𝑥𝑥)?  Show or explain 

your work. 

Exit Slip – 3.3.1 

Name: ______________________________________ 

 Date:__________________   

 

Find the derivative of the function. 

𝑓𝑓(𝑥𝑥) = 3𝑒𝑒4𝑥𝑥  

Show your work or explain how you determined 𝑓𝑓′(𝑥𝑥).  Can you think of any other possible 

functions for 𝑓𝑓′(𝑥𝑥)? 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

 

Opening activity – 3.3.1 

Name: ______________________________________ 

 Date:__________________   

 

Suppose a function’s derivative, 𝑓𝑓′(𝑥𝑥), is known and shown below.  Find a function 𝑓𝑓(𝑥𝑥) 

whose derivative is 𝑓𝑓′(𝑥𝑥). 

𝑓𝑓′(𝑥𝑥) = 𝑒𝑒−5𝑥𝑥  

Exit Slip – 3.3.2 

Name: ______________________________________ 

 Date:__________________   

 

Find the derivative of the function. 

𝑓𝑓(𝑥𝑥) = sin−1(𝑒𝑒𝑥𝑥) 

Show your work or explain how you determined 𝑓𝑓′(𝑥𝑥).  Can you think of any other possible 

functions for 𝑓𝑓′(𝑥𝑥)? 
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Table 87 (continued) 

 

 

 

 

Opening activity – 3.3.2 

Name: ______________________________________ 

 Date:__________________   

 

Suppose a function’s derivative, 𝑓𝑓′(𝑥𝑥), is known and shown below.  Find a function 𝑓𝑓(𝑥𝑥) 

whose derivative is 𝑓𝑓′(𝑥𝑥). 

𝑓𝑓′(𝑥𝑥) =
1

�1 − (3𝑥𝑥)2
 

Exit Slip – 3.4.1 

Name: ______________________________________ 

 Date:__________________   

 

What is the algebraic relationship between the rate of change of the area of a circle and the 

rate of change the circle’s respective radius. 

Opening Activity – 3.4.1 

Name: ______________________________________ 

 Date:__________________   

 

Suppose that it is known that the temperature in degrees Fahrenheit is related to the 

temperature in degrees Celsius by the function: 

℉ =
9
5
℃ + 32 

Interpret, using correct units, the meaning of the relation: 𝑑𝑑(℉)
𝑑𝑑𝑡𝑡

= 9
5
𝑑𝑑(℃)
𝑑𝑑𝑡𝑡

. 
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Table 87 (continued) 

 

 

 

 

Exit Slip – 3.4.2 

Name: ______________________________________ 

 Date:__________________   

 

Suppose an isosceles right triangle is expanding at such a rate that the lengths of the legs 

of the triangle are always equal.  Find an expression for the rate of change of the area of 

the triangle in terms of the length of the hypotenuse and the rate of change of the length of 

one of the legs of the triangle. 

Opening Activity – 3.4.2 

Name: ______________________________________ 

 Date:__________________   

 

The wind chill is the temperature, in degrees Fahrenheit (℉), a human feels based on air 

temperature, in degrees Fahrenheit, and the wind velocity 𝑣𝑣, in miles per hour (mph).  

Suppose that the wind chill at wind velocity 𝑣𝑣 is given by: 

𝑊𝑊(𝑣𝑣) = 55 − 22𝑣𝑣0.1 

Interpret, using correct units, the meaning of the relation: 𝑊𝑊′(𝑣𝑣) = −2.2𝑣𝑣−0.9  

when 𝑣𝑣 = 1. 

Exit Slip – 3.5.1 

Name: ______________________________________ 

 Date:__________________   

 

What is the linearization of 𝑓𝑓(𝑥𝑥) = 𝑒𝑒2𝑥𝑥  at 𝑥𝑥 = 1? 
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Table 87 (continued) 

 

 

 

 

 

 

 

Opening Activity – 3.5.1 

Name: ______________________________________ 

 Date:__________________   

 

What function has a linearization at 𝑥𝑥 = 𝑒𝑒2 of 𝑦𝑦 = 2 + 1
𝑒𝑒2 (𝑥𝑥 − 𝑒𝑒2)? 

Exit Slip – 3.6.1 

Name: ______________________________________ 

 Date:__________________   

 

Evaluate the following limit: 

lim
𝑥𝑥→4

𝑥𝑥2 − 4
4 sin(𝑥𝑥 − 4)

 

Opening Activity – 3.6.1 

Name: ______________________________________ 

 Date:__________________   

 

Find two differentiable functions 𝑓𝑓 and 𝑔𝑔 with lim
𝑥𝑥→5

𝑓𝑓(𝑥𝑥) = lim
𝑥𝑥→5

𝑔𝑔(𝑥𝑥) = 0 that satisfies 

lim
𝑥𝑥→5

𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)

= 12. 
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Table 87 (continued) 

 

 

 

Exit Slip – 4.1.1 

Name: ______________________________________ 

 Date:__________________   

 

The table below reports the sign (+,−) of 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) on selected intervals.  Describe 

the behavior of 𝑓𝑓(𝑥𝑥) in regards to where 𝑓𝑓(𝑥𝑥) is increasing/decreasing and the concavity 

of 𝑓𝑓(𝑥𝑥). 

Interval Sign of 𝑓𝑓′(𝑥𝑥) Sign of 𝑓𝑓′′(𝑥𝑥) Behavior of 𝑓𝑓(𝑥𝑥) 

𝑥𝑥 < 1 + −  

1 < 𝑥𝑥 < 2 − +  

2 < 𝑥𝑥 < 3 − −  

3 < 𝑥𝑥 < 4 + +  
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Table 87 (continued) 

 

 

 

 

 

 

 

Exit Slip – 4.1.2 

Name: ______________________________________  Date:____________    

 

Use the graph of 𝑓𝑓(𝑥𝑥) to fill in the table below at the selected points.   

 

 

Point Sign of 𝑓𝑓′(𝑥𝑥) Sign of 𝑓𝑓′′(𝑥𝑥) 

𝐴𝐴   

𝐵𝐵   

𝐶𝐶   

𝐷𝐷   

𝐷𝐷   

𝐹𝐹   
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Table 87 (continued) 

 

 

 

Opening Activity – 4.1.2 

Name: ______________________________________ 

 Date:__________________   

 

Sketch a differentiable function on [0,8] that satisfies the table of 𝑓𝑓′ and 𝑓𝑓′′ values. 

 

 

 

 

 

 

Interval Sign of 𝑓𝑓′(𝑥𝑥) Sign of 𝑓𝑓′′(𝑥𝑥) 

(0,2) − + 

(2,4) + + 

(4,6) + − 

(6,8) − − 
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Table 87 (continued) 

 

 

 

 

 

 

 

Exit Slip – 4.2.1 

Name: ______________________________________ 

 Date:__________________   

 

Given the graph of 𝑓𝑓, shown below, identify the critical numbers and classify each as a 

relative maximum, minimum, or neither. 
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Table 87 (continued) 

 

 

 

 

 

Opening Activity – 4.2.1 

Name: ______________________________________ 

 Date:__________________   

 

Sketch a graph of a continuous function on the interval 0 ≤ 𝑥𝑥 ≤ 5 

with the following properties: 

1) 𝑓𝑓 has a relative maximum at 𝑥𝑥 = 2. 

2) 𝑓𝑓 has a relative minimum at 𝑥𝑥 = 4. 

3) 𝑓𝑓 has a critical number at 𝑥𝑥 = 3 that is neither a relative maximum 

nor relative minimum. 
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Table 87 (continued) 

 

 

 

 

 

 

 

Exit Slip – 4.2.2 

Name: ______________________________________ 

 Date:__________________   

 

Given the graph of 𝑓𝑓, shown below, sketch a possible graph of 𝑓𝑓′ on the same axis. 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

Opening Activity – 4.2.2 

Name: ______________________________________ 

 Date:__________________   

 

Given the graph of 𝑓𝑓′, shown below, sketch a possible graph of 𝑓𝑓 on the same axis. 
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Table 87 (continued) 

 

 

 

Exit Slip – 4.3.1 

Name: ______________________________________ 

 Date:__________________   

 

𝑓𝑓(𝑥𝑥) is a continuous function on [0,4] with the following characteristics: 

𝑓𝑓(0) = 0  

𝑓𝑓′(𝑥𝑥) > 0 on [0,1) ∪ (2,3) 

𝑓𝑓′(𝑥𝑥) < 0 on (1,2) ∪ (3,4] 

𝑓𝑓′′ (𝑥𝑥) < 0 on [0,3) 

𝑓𝑓′′ (𝑥𝑥) > 0 on (3,4] 

 

a) At what 𝑥𝑥-values, if any, does 𝑓𝑓′(𝑥𝑥) not exist? 

 

 

 

b) At what 𝑥𝑥-values, if any, does 𝑓𝑓′′(𝑥𝑥) not exist? 

 

 

 

Sketch a possible graph of 𝑓𝑓(𝑥𝑥) on the axes below. 
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Table 87 (continued) 

 

 

 

Opening Activity – 4.3.1 

Name: ______________________________________ 

 Date:__________________   

 

The graph of 𝑓𝑓(𝑥𝑥) is shown below.  𝑓𝑓(𝑥𝑥) is a continuous function on[−5,5] and consists 

of two semi-circles, one line segment and one quarter-circle. 

 

a) On what interval(s), if any, is 𝑓𝑓′(𝑥𝑥) > 0 and 𝑓𝑓′′ (𝑥𝑥) > 0? 

b) On what interval(s), if any, is 𝑓𝑓′(𝑥𝑥) > 0 and 𝑓𝑓′′ (𝑥𝑥) < 0? 

c) On what interval(s), if any, is 𝑓𝑓′(𝑥𝑥) < 0 and 𝑓𝑓′′ (𝑥𝑥) > 0? 

d) On what interval(s), if any, is 𝑓𝑓′(𝑥𝑥) < 0 and 𝑓𝑓′′ (𝑥𝑥) < 0? 

e) At what 𝑥𝑥-value(s), if any, does 𝑓𝑓′(𝑥𝑥) not exist? 

f) At what 𝑥𝑥-value(s), if any, does 𝑓𝑓′′(𝑥𝑥) not exist? 
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Table 87 (continued) 

 

 

 

 

Exit Slip – 4.3.2 

Name: ______________________________________ 

 Date:__________________   

 

The graph of 𝑓𝑓′(𝑥𝑥), the derivative of 𝑓𝑓(𝑥𝑥) is shown below on [0,5]. 

 
 

1) At what 𝑥𝑥-value(s), if any, does 𝑓𝑓(𝑥𝑥) have a relative max or min?  Be sure to justify your 

response. 

2) At what 𝑥𝑥-value(s), if any, does 𝑓𝑓(𝑥𝑥) have an inflection point?  Be sure to justify your 

response. 

 426 



   

Table 87 (continued) 

 

 

 

 

 

Opening Activity – 4.3.2 

Name: ______________________________________ 

 Date:__________________   

 

Sketch a possible graph of 𝑓𝑓′(𝑥𝑥), the derivative of 𝑓𝑓(𝑥𝑥), on [0,5] on the axes below that 

meets the following requirements:  

𝑓𝑓(𝑥𝑥) has a relative minimum at 𝑥𝑥 = 2 

𝑓𝑓(𝑥𝑥) has a relative maximum at 𝑥𝑥 = 4 

𝑓𝑓(𝑥𝑥) has an inflection point at 𝑥𝑥 = 3 

Explain how you know that your graph of 𝑓𝑓′(𝑥𝑥) meets these requirements. 
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Table 87 (continued) 

 

 

Exit Slip – 4.4.1 

Name: ______________________________________ 

 Date:__________________   

 

A function 𝑓𝑓 is continuous on its domain [−2,4], 𝑓𝑓(−2) = 3,𝑓𝑓(4) = −1, and 𝑓𝑓′  and 𝑓𝑓′′ 

have the following properties: 
𝑥𝑥 −2 < 𝑥𝑥 < 0 𝑥𝑥 = 0 0 < 𝑥𝑥 < 3 𝑥𝑥 = 3 3 < 𝑥𝑥 < 4 

𝑓𝑓′ + 𝐷𝐷𝑁𝑁𝐷𝐷 − 0 − 

𝑓𝑓′′ + 𝐷𝐷𝑁𝑁𝐷𝐷 + 0 − 

 

1) At what 𝑥𝑥-value(s), if any, does 𝑓𝑓 have absolute extrema.  Justify your answer. 

 

2) Sketch a possible graph of 𝑓𝑓(𝑥𝑥) on the axes below. 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

Opening Activity – 4.4.1 

Name: ______________________________________ 

 Date:__________________   

 

The graph of 𝑓𝑓(𝑥𝑥) is shown below.  𝑓𝑓(𝑥𝑥) is a continuous function on[−2,7] and consists 

of one line segment, one quarter-circle, and one semi-circle. 

 
a) At what 𝑥𝑥-value(s), if any, does 𝑓𝑓 have absolute extrema? 

b) Fill in the table below with the symbols: +, −, 0, 𝐷𝐷𝑁𝑁𝐷𝐷 as appropriate. 

𝑥𝑥 −2 < 𝑥𝑥 < 1 𝑥𝑥 = 1 1 < 𝑥𝑥 < 3 𝑥𝑥 = 3 3 < 𝑥𝑥 < 5 𝑥𝑥 = 5 5 < 𝑥𝑥 < 7 

𝑓𝑓′        

𝑓𝑓′′         
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Table 87 (continued) 

 

 

 

 

Exit Slip – 4.5.1 

Name: ______________________________________ 

 Date:__________________   

 

You have 200 feet of chain link fence available to fence off a rectangular garden.  One side 

of the garden touches the side of a house and does not require fencing.  What is the area of 

the largest garden that can be enclosed? 

Opening Activity – 4.5.1 

Name: ______________________________________ 

 Date:__________________   

 

A 216 𝑓𝑓𝑡𝑡2 dog pen is going to be enclosed by a fence and divided into 2 equal areas by 

another fence parallel to one of the sides.  What is the smallest amount of fence necessary 

to complete the job? 

Exit Slip – 4.5.2 

Name: ______________________________________ 

 Date:__________________   

 

Suppose that Jolly Green Giant has hired you to design a tin can in the shape of a right 

circular cylinder that holds exactly 300 𝑐𝑐𝑚𝑚3of brine.  What is the minimum amount of tin 

needed to produce the can? (You may use a calculator for computational purposes.) 

(NOTE: 𝑉𝑉𝑐𝑐𝑦𝑦𝑙𝑙𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑟𝑟 = 𝜋𝜋𝑟𝑟2ℎ, 𝑆𝑆𝐴𝐴𝑐𝑐𝑦𝑦𝑙𝑙𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑟𝑟 = 2𝜋𝜋𝑟𝑟2 + 2𝜋𝜋𝑟𝑟ℎ) 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

 

 

Opening Activity – 4.5.2 

Name: ______________________________________ 

 Date:__________________   

Suppose we are designing a tin can for Jolly Green Giant in the shape of a right circular 

cylinder.  If we have at most 100 𝑐𝑐𝑚𝑚2 of tin to use, what is the maximum volume of the 

can?  (You may use a calculator for computational purposes.) 

 (NOTE: 𝑉𝑉𝑐𝑐𝑦𝑦𝑙𝑙𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑟𝑟 = 𝜋𝜋𝑟𝑟2ℎ, 𝑆𝑆𝐴𝐴𝑐𝑐𝑦𝑦𝑙𝑙𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑟𝑟 = 2𝜋𝜋𝑟𝑟2 + 2𝜋𝜋𝑟𝑟ℎ) 

Exit Slip – 4.6.1 

Name: ______________________________________ 

 Date:__________________   

 

Let 𝑠𝑠(𝑡𝑡) be the position function of a particle where 𝑡𝑡 is in seconds and 𝑠𝑠 is measured in 

feet.   

a. Find the velocity function, 𝑣𝑣(𝑡𝑡) of the particle if 

𝑠𝑠(𝑡𝑡) = 2𝑡𝑡3 − 10𝑡𝑡2 + 5𝑡𝑡 + 6 

b. Are there any other possibilities for 𝑣𝑣(𝑡𝑡)? 
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Table 87 (continued) 

 

 

 

 

 

 

 

 

Opening Activity – 4.6.1 

Name: ______________________________________ 

 Date:__________________   

 

Let 𝑣𝑣(𝑡𝑡) be the velocity function of a particle where 𝑡𝑡 is in seconds and 𝑠𝑠 is measured in 

feet.   

a. Find a position function, 𝑠𝑠(𝑡𝑡) of the particle if 

𝑣𝑣(𝑡𝑡) = 𝑡𝑡3 − 𝑡𝑡2 + 5𝑡𝑡 + 6 

b. Are there any other possibilities for 𝑠𝑠(𝑡𝑡)? 

Exit Slip – 4.6.2 

Name: ______________________________________ 

 Date:__________________   

 

Let 𝑠𝑠(𝑡𝑡) be the position function of a particle where 𝑡𝑡 is in seconds and 𝑠𝑠 is measured in 

feet.   

a. Find an acceleration function, 𝑎𝑎(𝑡𝑡) of the particle if 

𝑠𝑠(𝑡𝑡) = 4𝑡𝑡3 − 6𝑡𝑡2 + 7𝑡𝑡 − 10 

b. Are there any other possibilities for 𝑎𝑎(𝑡𝑡)? 
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Table 87 (continued) 

 

 

 

 

Opening Activity – 4.6.2 

Name: ______________________________________ 

 Date:__________________   

 

Let 𝑎𝑎(𝑡𝑡) be the acceleration function of a particle where 𝑡𝑡 is in seconds and 𝑠𝑠 is measured 

in feet.   

a. Find a position function, 𝑠𝑠(𝑡𝑡) of the particle if 

𝑎𝑎(𝑡𝑡) = 𝑡𝑡2 + 3𝑡𝑡 − 6 

b. Are there any other possibilities for 𝑠𝑠(𝑡𝑡)? 

Exit Slip – 4.7.1 

Name: ______________________________________ 

 Date:__________________   

 

If Newton’s method is used to estimate a zero of 𝑓𝑓(𝑥𝑥) = −𝑥𝑥3 + 𝑥𝑥 − 2, what is the third 

estimate if the first estimate is 𝑥𝑥1 = 1? 

Opening Activity – 4.7.1 

Name: ______________________________________ 

 Date:__________________   

 

Suppose 𝑓𝑓(𝑥𝑥) is a function and it is known that: 

i.  𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥 − 4 

ii. Newton’s Method produces an estimate of 𝑥𝑥2 = 2 if the first estimate is 

𝑥𝑥1 = 1. 

Find 𝑓𝑓(𝑥𝑥). 

 433 



   

Table 87 (continued) 
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Table 87 (continued) 

 

 

 

Opening Activity – 4.8.1 

Name: ______________________________________ Date:__________________   

On the graph below, sketch a function 𝑓𝑓(𝑥𝑥) on [0,4] that satisfies the Mean-Value Theorem 

at 𝑥𝑥 = 1, 𝑥𝑥 = 2, and at 𝑥𝑥 = 3, if line segment 𝐴𝐴𝐵𝐵 is known to be the secant line of 𝑓𝑓(𝑥𝑥) on 

[0,4]. 
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APPENDIX F: INTERVIEW QUESTIONS 

Table 88. Interview Questions 

Interview #1 

IQ 1.1. Let 𝑓𝑓(𝑥𝑥) = 6𝑥𝑥3.  What is 𝑓𝑓′(𝑥𝑥)? 

IQ 1.2. Suppose a function has a known derivative of 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥5. 

a. What could be the function 𝑓𝑓(𝑥𝑥)? 

 

b. Can you think of any other possible functions for 𝑓𝑓(𝑥𝑥)? 

IQ 1.3. The derivative of a polynomial function, 𝑓𝑓′(𝑥𝑥), is graphed below. 

a. Sketch a possible graph of a polynomial function 𝑓𝑓(𝑥𝑥) whose derivative, 𝑓𝑓′(𝑥𝑥), is shown. 

 

b. Are there any other possibilities for 𝑓𝑓(𝑥𝑥)? 
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Table 88 (continued) 

Interview #2 

IQ 2.1. Suppose a function 𝑓𝑓(𝑥𝑥) has the known derivative 𝑓𝑓′(𝑥𝑥) shown below. 

𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 sin (𝑥𝑥2) 

 

a. What could be the function 𝑓𝑓(𝑥𝑥)? 

IQ 2.2. Let 𝑓𝑓(𝑥𝑥) = cos (𝑥𝑥2).  Find 𝑓𝑓′(𝑥𝑥). 

IQ 2.3. The graph of 𝑓𝑓(𝑥𝑥) below consists of two complete semi-circles that intersect at [4,1]. 

 

a. Estimate or give an exact value, if one exists, of 𝑓𝑓′(𝑥𝑥) at the 𝑥𝑥-values indicated in the table. 

𝑥𝑥 𝑓𝑓′(𝑥𝑥) 
2  
4  
5  
6  
7  

 

 

 

 

 

𝑓𝑓(𝑥𝑥) 
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Table 88 (continued) 

IQ 2.4. The table below gives selected values of 𝑓𝑓′(𝑥𝑥), the derivative of 𝑓𝑓(𝑥𝑥).   

a. If 𝑓𝑓(𝑥𝑥) is known to be continuous, sketch a possible curve for 𝑓𝑓(𝑥𝑥) on the axis below.  

    

             

b. Could you sketch another function that would satisfy the table of values? 

𝑥𝑥 𝑓𝑓′(𝑥𝑥) 

0 1 

1 2 

2 −1 

3 0 

4 −1 
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Table 88 (continued) 

Interview #3 

IQ 3.1. Consider the graph of 𝑓𝑓(𝑥𝑥) on the interval [−4,4].  𝑓𝑓(𝑥𝑥) consists of two semi-circles 

and two line segments, as shown below. 

 

a. On what intervals, if any, is 𝑓𝑓′(𝑥𝑥) > 0 and 𝑓𝑓′′(𝑥𝑥) > 0? 

b. On what intervals, if any, is 𝑓𝑓′(𝑥𝑥) < 0 and 𝑓𝑓′′(𝑥𝑥) > 0? 

c. On what intervals, if any, is 𝑓𝑓′(𝑥𝑥) > 0 and 𝑓𝑓′′(𝑥𝑥) < 0? 

d. On what intervals, if any, is 𝑓𝑓′(𝑥𝑥) < 0 and 𝑓𝑓′′(𝑥𝑥) < 0? 

e. At what 𝑥𝑥 −value(s), if any, does 𝑓𝑓′(𝑥𝑥) = 0? 

f. At what 𝑥𝑥 −value(s), if any, does 𝑓𝑓′′(𝑥𝑥) = 0? 

g. At what 𝑥𝑥 −value(s), if any, does 𝑓𝑓′(𝑥𝑥) not exist? 

h. Justify your response to question (𝑔𝑔). 

i. At what 𝑥𝑥 −value(s), if any, does 𝑓𝑓′′(𝑥𝑥) not exist? 

j. Justify your response to question (𝑖𝑖). 
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Table 88 (continued) 

IQ 3.2. Sketch a possible graph of a function 𝑓𝑓 that satisfies the following conditions: 

𝑓𝑓 is continuous; 

𝑓𝑓(0) = 1,𝑓𝑓′(−3) = 𝑓𝑓′(2) = 0, and lim
𝑑𝑑→0

𝑓𝑓′(𝑥𝑥) = ∞; 

𝑓𝑓′(𝑥𝑥) > 0 when −5 < 𝑥𝑥 < −3 and when −3 < 𝑥𝑥 < 2; 

𝑓𝑓′(𝑥𝑥) < 0 when 𝑥𝑥 < −5 and when 𝑥𝑥 > 2; 

𝑓𝑓′′(𝑥𝑥) < 0 when 𝑥𝑥 < −5, when −5 < 𝑥𝑥 < −3, and when 0 < 𝑥𝑥 < 5; 

𝑓𝑓′′(𝑥𝑥) > 0 when −3 < 𝑥𝑥 < 0 and when 𝑥𝑥 > 5; 

lim
𝑑𝑑→−∞

𝑓𝑓(𝑥𝑥) = ∞ and lim
𝑑𝑑→∞

𝑓𝑓(𝑥𝑥) = −1. 

Interview #4 

1.a 
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Table 88 (continued) 

1.b 
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Table 88 (continued) 

4.2.a 

 

4.2.b. Suppose we know a velocity function, 𝑣𝑣(𝑡𝑡), for a vehicle in motion in meters per 
second. 

𝑣𝑣(𝑡𝑡) = 4𝑡𝑡3 − 3𝑡𝑡2 + 𝑡𝑡 

Find the position of the vehicle at 𝑡𝑡 = 3. 
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Table 88 (continued) 

IQ 4.3.  

a. The function 𝑓𝑓(𝑥𝑥) is graphed below on [0,50], write an algebraic expression for 𝑓𝑓′(𝑥𝑥) on 

[0,50]. 

 

b. The function 𝑓𝑓′(𝑥𝑥) is graphed below on [0,50], write an algebraic expression for 𝑓𝑓(𝑥𝑥) on 

[0,50]. 
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APPENDIX G: RESULTS OF THE DIFFERENTIATION COMPETENCY TEST 

Table 89. Class achievement (%) on individual competencies on the DCT in each differentiation process and input 

representation by class 

Process Input Representation Competency Class Score 
(%)  
N = 21 

Formulation 
without-translation Numerical FNn 57.14 

Graphical FGg 28.57 
Symbolic FSs 100 

with-translation between two 
representations 

Numerical FNg 9.52 
FNs 14.29 

Graphical FGn 38.10 
FGs 52.38 

Symbolic FSn 71.43 
FSg 85.71 

Interpretation 
without-translation Numerical INn 66.67 

Graphical IGg 84.52 
Symbolic ISs 0 

with-translation between two 
representations 

Numerical INg 66.67 
INs 76.19 

Graphical IGn 33.33 
IGs 71.43 

Symbolic ISn 85.71 
ISg 66.67 

 

Table 90. Class achievement (%) on specific groups of competencies (N = 21) on the DCT 

Grouped Competencies Class Achievement (%) N = 21 
All Competencies  
(18 items) 

56.02 

Input Representation 
Symbolic (_S_)  
(6 items) 

77.38 

Graphical (_G_)  
(6 items) 

48.81 
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Table 90 (continued) 

Numerical (_N_) 
(6 items) 

41.67 

Output Representation 
Symbolic (_S_) 
(6 items) 

53.57 

Graphical (_G_) 
(6 items) 

57.14 

Numerical (_N_) 
(6 items) 

57.14 

Competencies without-translation (6 items) 56.15 
Competencies with-translation (12 items) 49.21 
Formulation competencies (9 items) 50.79 
Interpretation competencies (9 items) 61.24 
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APPENDIX H: RESULTS OF THE FLEXIBILITY PRE-TEST 

Table 91. Class achievement (%) on individual competencies of the flexibility pre-test 

Process Input Representation Competency Class Score 
(%)  
N = 21 

Composition 
without-translation Numerical CNn 90.48 

Graphical CGg 40.48 
Symbolic CSs 95.24 

with-translation between two 
representations 

Numerical CNg 80.95 
CNs 42.86 

Graphical CGn 69.05 
CGs 14.29 

Symbolic CSn 100 
CSg 14.29 

Inverse 
without-translation Numerical INn 57.14 

Graphical IGg 52.38 
Symbolic ISs 19.05 

with-translation between two 
representations 

Numerical INg 66.67 
INs 4.76 

Graphical IGn 42.86 
IGs 38.10 

Symbolic ISn 19.05 
ISg 42.86 

 

Table 92. Class achievement (%) on specific groups of competencies (N = 21) on the flexibility pre-test 

Grouped Competencies Class Achievement (%) N = 21 
All Competencies  
(18 items) 

49.47 

Input Representation 
Symbolic (_S_)  
(6 items) 

44.05 

Graphical (_G_)  
(6 items) 

41.07 

Numerical (_N_) 
(6 items) 

48.81 
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Table 92 (continued) 

Output Representation 
Symbolic (_S_) 
(6 items) 

25.0 

Graphical (_G_) 
(6 items) 

51.19 

Numerical (_N_) 
(6 items) 

57.74 

Competencies without-translation (6 items) 59.13 
Competencies with-translation (12 items) 44.64 
Composition competencies (9 items) 60.85 
Inverse competencies (9 items) 38.10 
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APPENDIX I: CODEBOOK FOR INTERVIEW TRANSCRIPTS 

Evidence of two-way reversibility consists of all of the words, phrases, or actions taken when 

solving an interview question that indicate the reversing of a process by working the steps 

backwards through inverse operations. 

Table 93. Verbal indicators of two-way reversibility  

Phrase Rationale Interview Questions 
(Interview #, Interview 
question) where phrase may 
appear. The word “and” 
indicates that the questions 
form a direct-reverse pair. 

“if going from 𝑓𝑓 to 𝑓𝑓′ 
required … then to move 
backward, I should …” 
 
“Since I found 𝑓𝑓′ from 𝑓𝑓 by 
… then I should be able to 
find 𝑓𝑓 from 𝑓𝑓′ by doing the 
opposite” 

When a question requires 
antidifferentiation, the students 
will likely describe the process of 
finding a function from its 
derivative as “backwards 
differentiation” or “by doing the 
opposite” 

1.1 and 1.2, 
1.1 and 1.3, 
2.1 and 2.2, 
2.3 and 2.4, 
4.1.a and 4.2.a, 
4.1.b and 4.2.b, 
4.3.a and 4.3.b 

“to find the derivative I 
subtracted one from the 
exponent, so to find the 
function, I should add one 
to the exponent” 
 
 

When a student uses reversibility 
to find the function 𝑓𝑓 when given 
the derivative 𝑓𝑓′ and 𝑓𝑓′ consists 
of a polynomial, then a correct 
reversing of the process would 
involve adding one to the 
existing exponent because 
differentiation requires 
subtracting one from the existing 
exponent. 

1.1 and 1.2, 
1.1 and 1.3, 
4.1.b and 4.2.b, 
4.3.a and 4.3.b 
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Table 93 (continued) 

“to find the derivative I 
multiplied by the exponent, 
so to find the function, I 
should divide by the 
exponent” 

When a student uses reversibility 
to find the function 𝑓𝑓 when given 
the derivative 𝑓𝑓′ and 𝑓𝑓′ consists 
of a polynomial, then a correct 
reversing of the process would 
involve dividing term by the 
resultant exponent. 

1.1 and 1.2, 
1.1 and 1.3, 
4.1.b and 4.2.b, 
4.3.a and 4.3.b 

Any phrase involving the 
word “reverse” or 
“direction” 
 

Krutetskii (1976) said that 
reversibility requires a “sharp 
turn” (p. 287) in the student’s 
thought process.  The words 
“reverse” or “direction” would 
seem to be indicators of making a 
sharp turn in the thought process. 

1.1 and 1.2, 
1.1 and 1.3, 
2.1 and 2.2, 
2.3 and 2.4, 
4.1.a and 4.2.a, 
4.1.b and 4.2.b, 
4.3.a and 4.3.b 

 

Evidence of reversibility of the mental process in reasoning consists of all of the words, phrases, 

and/or actions that indicate the student’s attempt at solving a problem by reversing a thought 

process without using the direct process in reverse. 

Table 94. Verbal indicators of reversibility of the mental process in reasoning without reversible translation 

Phrase Rationale Interview Questions 
(Interview #, Interview 
question) where phrase may 
appear. The word “and” 
indicates that the questions 
form a direct-reverse pair. 

“Since I’m given 𝑓𝑓′ … let 
me pick some 𝑓𝑓’s and see if 
when I differentiate them I 
can produce 𝑓𝑓′” 
 

When a question requires 
antidifferentiation, but the 
student does not have access to a 
reversible process (i.e. when 
trying to antidifferentiate the 
result of the product rule without 
any knowledge of integration by 
parts) 

2.1 and 2.2 
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Table 94 (continued) 

Any phrase involving the 
word “reverse” or 
“direction” 
 

Krutetskii (1976) said that 
reversibility requires a “sharp 
turn” (p. 287) in the student’s 
thought process.  The words 
“reverse” or “direction” would 
seem to be indicators of making a 
sharp turn in the thought process. 

2.1 and 2.2, 
2.3 and 2.4, 
4.1.a and 4.2.a, 
4.1.b and 4.2.b, 
4.3.a and 4.3.b 

“I found 𝑓𝑓′ in the previous 
problem by estimating 
slopes … so, I should be 
able to sketch 𝑓𝑓 by using 
the given 𝑓𝑓′ values as my 
slopes” 
 

The nature of this statement 
indicates that the student has 
determined that the two 
successive problems are a direct-
reverse pair and thus the reverse 
problem can be solved be 
reversing what s/he did in the 
previous problem. 

2.3 and 2.4 

“When I was given 
distance, to estimate 
velocity I did … so to get 
distance from a velocity 
chart, I would need to …” 

This statement indicates that the 
students is aware of the 
reversible relationship between 
distance and velocity. 

4.1.a and 4.2.a 
 

“Since velocity is the 
derivative of position, to get 
back to position from 
velocity, I need to do the 
reverse of the derivative” 
 

This statement indicates that the 
students is aware of the 
reversible relationship between 
position and velocity. 

4.1.b and 4.2.b 

“What would cause a 
derivative that is a 
horizontal line” 
 
“What kind of function 
would have a linear 
derivative” 

Both of these statements indicate 
that the student is considering 
using the graph of the derivative 
to inform the graph of the 
function. 

4.3.a and 4.3.b 

“What would the graph of 𝑓𝑓 
look like at 𝑥𝑥 = 2 if 
𝑓𝑓′(2) = 0” 

Here, the student is visualizing 
the effect(s) of the derivative on 
the original function, which is the 
reverse of determining the value 
of the derivative by looking at 
the graph of the function. 

2.3 and 2.4 

“If 𝑓𝑓 is increasing, then 𝑓𝑓′ is 
positive, so if 𝑓𝑓′ is positive, 
then 𝑓𝑓 should be 
increasing” 
 

This statement indicates that the 
student is reversing the 
information that 𝑓𝑓 tells us about 
𝑓𝑓′ in order to make inferences 
about 𝑓𝑓 from 𝑓𝑓′. 

3.1 and 3.2 
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Table 94 (continued) 

“If 𝑓𝑓 is concave up, then 𝑓𝑓′′ 
is positive, so if 𝑓𝑓′′ is 
positive, then 𝑓𝑓 should be 
concave up” 

This statement indicates that the 
student is reversing the 
information that 𝑓𝑓 tells us about 
𝑓𝑓′′ in order to make inferences 
about 𝑓𝑓 from 𝑓𝑓′′. 

3.1 and 3.2 

 

Evidence of representational reversibility consists of all of the words, phrases, and/or actions that 

indicate that a student is proficiently translating back and forth between two different 

representations. 

Table 95. Verbal indicators of representational reversibility 

Phrase Rationale Interview Questions 
(Interview #, Interview 
question) where phrase may 
appear. The word “and” 
indicates that the questions 
form a direct-reverse pair. 

Forward: “I need to know 
an algebraic expression …” 
 
Reverse: “I’m going to 
make a table …” or “I’m 
going to sketch a graph” 

The forward statement indicates 
that the student has been 
provided a list of functional 
values or a graph or both and the 
student is considering how to 
translate the given 
representation(s) into an 
algebraic expression. 
 
The reverse statement indicates 
that the student has been 
provided an algebraic expression 
and is thinking about how to 
translate the algebraic expression 
into a graphical or numerical 
representation of a function. 

1.3 
2.3 and 2.4 
3.1 and 3.2 
4.1.a and 4.2.a 
4.3.a and 4.3.b 
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Table 95 (continued) 

Forward: “Is there a formula 
that describes this curve?” 
 
Reverse: “I am going to 
sketch of a graph of this 
function.” 

The forward statement indicates 
that the student has been 
provided a graph and the student 
is considering how to translate 
the graph into an algebraic 
expression. 
 
The reverse statement indicates 
that the student has been given an 
algebraic expression and 
recognizes the function as a 
known graph. 

1.3 
2.3 
3.1 and 3.2 
4.3.a and 4.3.b 

Forward: “I can use the 
table to plot some points 
…” 
 
Reverse: “I can fill in the 
table by reading the values 
off of the graph” 

The forward statement indicates 
that the student has been 
provided a list of functional 
values and the student is 
considering how to translate the 
functional values into a graph. 
 
The reverse statement suggests 
that the student has been given a 
graph and is going to use the 
graph to determine the numerical 
representation of the function. 

2.3 and 2.4 
4.1.a and 4.2.a 

Forward: “The value of the 
numerical derivative tells 
me the slope of the line 
tangent to the graph, so 
maybe I can sketch a graph 
that would have those 
slopes” 
 
Reverse: “To get the 
derivative at 𝑥𝑥-values, I 
need to look at the slope of 
the tangent line” 

Here, the student is considering 
how to translate from a 
numerical representation of the 
derivative to a graphical 
representation of the function. 
 
 
This statement is the reverse of 
the forward statement indicating 
that the student is considering 
how to use the graph of the 
function to evaluate the 
derivative at specific 𝑥𝑥-values.  
Thus, the student is translating 
from graphical to numerical. 

2.4 
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Table 95 (continued) 

Forward: “I’m going to start 
by making a chart of the 
values …” 
 
Reverse: “Okay, I can use 
the table of values to …” 

The forward statement indicates 
the student has been provided 
either a symbolic representation 
of the function or a graphical 
representation of the function and 
is going to translate it into a 
numerical representation. 
 
The reverse statement indicates 
that the student has been given a 
numerical representation and is 
attempting to translate the 
numerical representation into 
either a symbolic or graphical 
representation. 

1.3 
2.3 and 2.4 
3.1 and 3.2 
4.1.a and 4.2.a 
4.1.b and 4.2.b 

 

Table 96. Verbal indicators of flexibility: function to function or derivative to derivative 

Phrase Translation indicated by phrase Interview Questions 
(Interview #, Interview 
question) where phrase may 
appear.  

“I’m going to start by 
plugging in some values for 
𝑥𝑥” 
 
“I need to substitute the 
given values in for 𝑡𝑡.” 

Symbolic → Numerical 2.3 
4.1.a 
4.1.b 
4.2.a 
4.2.b 
4.3.a 
4.3.b 

“Ok, I’m going to sketch 
out the graph of 𝑓𝑓(𝑥𝑥)” 

Symbolic → Graphical 1.3 
2.3 
4.3.a 
4.3.b 

“Looking at the pattern (or 
relationship) between the 𝑥𝑥 
and 𝑦𝑦 values the function 
should be …” 

Numerical → Symbolic 1.3 
4.1.a 
4.2.a 
4.3.a 
4.3.b 
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Table 96 (continued) 

“I’m going to plot these 
points and then see if I 
recognize a curve that 
passes through them” 

Numerical → Graphical 2.4 
3.2 
4.1.a 
4.2.a 

“Reading the coordinates 
off of the graph …” 

Graphical → Numerical 1.3 
2.3 
3.1 
4.3.a 
4.3.b 

“That graph looks like the 
graph of …” 

Graphical → Symbolic 1.3 
2.3 
3.1 
4.3.a 
4.3.b 

 

Table 97. Verbal indicators of flexibility: function to derivative or derivative to function  

Phrase Translation indicated by phrase Interview Questions 
(Interview #, Interview 
question) where phrase may 
appear.  

“To find the instantaneous 
rate of change of 𝑓𝑓(𝑥𝑥), I 
need to find the derivative” 
 
“To find the average rate of 
change of 𝑓𝑓(𝑥𝑥), I need to 
use the slope formula”  
 
“To find the velocity 
function from the position 
function I need to take the 
derivative” 

Symbolic Function → Numerical 
Derivative 

4.1.b 

“I need to find the slope of 
the line tangent to 𝑓𝑓(𝑥𝑥) at 
𝑥𝑥 = 𝑐𝑐” 
 
“So that’s 𝑓𝑓(𝑥𝑥), to find 
where 𝑓𝑓(𝑥𝑥) is concave up, I 
need to find where 𝑓𝑓′′(𝑥𝑥) >
0” 

Symbolic Function → Graphical 
Derivative 

2.3.a 
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Table 97 (continued) 

“Ok, so I’m just using the 
power rule here …” 

Symbolic Function → Symbolic 
Derivative 

1.1 
2.2 
4.3.a 

“Looking at the pattern (or 
relationship) between the 𝑥𝑥 
and 𝑦𝑦 values the function 
should be 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and 
now I am going to take the 
derivative of 𝑓𝑓(𝑥𝑥) to find 
𝑓𝑓′(𝑥𝑥).” 

Numerical Function → Symbolic 
Derivative 

Unlikely to be found in 
interviews 

“Given this list of values I 
need to estimate the slope of 
the line tangent to the graph 
at 𝑥𝑥 = 𝑐𝑐” 

Numerical Function → Graphical 
Derivative 

Unlikely to be found in 
interviews 

“Given this of values I need 
to find the average rate of 
change at 𝑥𝑥 = 𝑐𝑐” 
 
“The position of the particle 
is given at several times, I 
need to estimate the velocity 
over this interval” 

Numerical Function → 
Numerical Derivative 

4.1.a 

“I have the graph of 𝑓𝑓, I 
need to find the slope of the 
line tangent to 𝑓𝑓(𝑥𝑥) at 𝑥𝑥 =
𝑐𝑐” 

Graphical Function → Numerical 
Derivative 

2.3 
3.1 
4.3.a 

“So I have a graph of 𝑓𝑓(𝑥𝑥) 
and I want to find the 
formula for 𝑓𝑓′(𝑥𝑥)” 

Graphical Function → Symbolic 
Derivative 

2.3 
3.1 
4.3.a 

“I’ve been given the graph 
of 𝑓𝑓(𝑥𝑥) and need to sketch 
the graph of 𝑓𝑓′(𝑥𝑥)” 
 
“I need to find where the 
slope of the tangent line to 
the graph is zero” 

Graphical Function → Graphical 
Derivative 

2.3 
3.1 
4.3.a 

“Given 𝑓𝑓′(𝑥𝑥) I need to fill 
in the table of 𝑓𝑓(𝑥𝑥) values” 

Symbolic Derivative → 
Numerical Function 

4.2.b 

“Given 𝑓𝑓′(𝑥𝑥) I need to 
sketch a graph of 𝑓𝑓(𝑥𝑥)” 

Symbolic Derivative → 
Graphical Function 

1.3 
4.3.b 

“Given 𝑓𝑓′(𝑥𝑥), I need to find 
an expression for 𝑓𝑓(𝑥𝑥)” 

Symbolic Derivative → Symbolic 
Function 

1.2 
1.3 
2.1 
4.3.b 
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Table 97 (continued) 

“Given the rate of change of 
𝑓𝑓(𝑥𝑥), I need to find an 
algebraic expression for 
𝑓𝑓(𝑥𝑥)” 

Numerical Derivative → 
Symbolic Function 

4.2.b 

“I know the rate of change 
of 𝑓𝑓(𝑥𝑥), so I need to sketch 
a possible graph of 𝑓𝑓(𝑥𝑥)” 
 
“I know 𝑓𝑓′(𝑥𝑥) is at the 
listed 𝑥𝑥 −values … what 
would be a graph of 𝑓𝑓(𝑥𝑥) 
look like” 

Numerical Derivative → 
Graphical Function 

2.4 
3.2 
 

“I know the rate of change 
of 𝑓𝑓(𝑥𝑥), so to evaluate 𝑓𝑓(𝑥𝑥) 
at 𝑥𝑥 = 𝑐𝑐, I need to ...” 

Numerical Derivative → 
Numerical Function 

4.2.b 

“The graph of 𝑓𝑓′(𝑥𝑥) tells me 
about the increase/decrease 
and concavity of 𝑓𝑓(𝑥𝑥), so in 
order to evaluate 𝑓𝑓(𝑥𝑥) at the 
given 𝑥𝑥 −values …” 

Graphical Derivative → 
Numerical Function 

1.3 
 

“I have the graph of 𝑓𝑓′(𝑥𝑥) 
and I want to find an 
expression for 𝑓𝑓(𝑥𝑥)” 

Graphical Derivative → 
Symbolic Function 

1.3 
4.3.b 

“The graph of 𝑓𝑓′(𝑥𝑥) tells me 
about the increase/decrease 
and concavity of 𝑓𝑓(𝑥𝑥), so I 
can use that to sketch a 
possible graph of 𝑓𝑓(𝑥𝑥) by 
…” 

Graphical Derivative → 
Graphical Function 

1.3 
2.4 
4.3.b 
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