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ON MARKOV AND HIDDEN MARKOV MODELS WITH APPLICATIONS

TO TRAJECTORIES

Jieyu Fan, PhD

University of Pittsburgh, 2014

Markov and hidden Markov models (HMMs) provide a special angle to characterize trajec-

tories using their state transition patterns. Distinct from Markov models, HMMs assume

that an unobserved sequence governs the observed sequence and the Markovian property is

imposed on the hidden chain rather than the observed one. In the first part of this dis-

sertation, we develop a model for HMMs with exponential family distribution and extend

it to incorporate covariates. We call it HMM-GLM, for which we propose a joint model

selection method. The proposed selection criterion is tailored for HMM-GLM aiming at a

more accurate approximation of the Kullback-Leibler divergence; we seek improvement of

the widely-used Akaike information criterion. The second and the third parts of this dis-

sertation are about clustering trajectories with HMMs and Markov mixture models. The

research interests for HMM clustering are to develop a less computationally expensive and

more interpretable algorithm for HMM sequence clustering problem, based on the emission

and transition features of the chains. We propose an efficient clustering method using Bhat-

tacharyya affinity to measure the pairwise similarity between sequences and apply a spectral

clustering algorithm to obtain the cluster assignment. The computational efficiency ben-

efits from the fact that our method avoids iterative computation for the affinity of a pair

of sequences. Meanwhile, both simulation and empirical studies show that the proposed

algorithm maintains good performance compared to other similar methods. In the third

part of the dissertation, we address a study of the course of children and adolescents with

bipolar disorder. Measuring and making sense of the fluctuations in different moods over
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time is challenging. We use a Markov mixture model with different transition matrices to

find homogeneous clusters and capture different longitudinal mood change patterns. We

also conduct a simulation study to investigate the performance of the model when there are

violations of model assumptions. The results show that this model is fairly robust in the

tested situations. We find that the clusters separate out those who tend to stay in a mood

state from those who fluctuate between mood states more frequently.

Keywords: hidden Markov model, Markov mixture model, clustering, model selection.
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1.0 INTRODUCTION

Benefiting from modern computational technology, people are able to collect and process

more data nowadays. As a result, sequential data is expected to appear more often, which

raises the need to develop methodologies to analyze them. The Markov and hidden Markov

models are two popular methods for modeling sequential observations. In the exploratory

stage, clustering sequences could identify similar sequences and reduce heterogeneity for

further study. In particular, clustering with hidden Markov models or Markov models provide

a way to group sequences based on the transition patterns.

Markov models are used to model stochastic processes which have the Markovian prop-

erty that the conditional probability distribution of future states of the process (conditional

on both past and present values) depends only upon the present state, not on the sequence

of events that preceded it. There are two additional properties often assumed for Markov

chains: time homogeneity and stationarity. The first says the state transition matrix of

the same order does not change over time, while the second says that the distribution of

the states becomes stable as time goes by. With these assumptions, a Markov chain is de-

termined by the transition matrix and the initial distribution. We will repeatedly see the

benefits of having these properties in our study below.

Different from Markov models, hidden Markov models (HMMs) assume there is an un-

derlying unobserved sequence which governs the observed sequence and that the Markovian

property is imposed on the hidden chain instead of the observed one. The most well-known

applications of HMMs are in speech recognition. It has since been introduced successfully

to other fields, such as bioinformatics. The conditional dependence of the observed sequence

and the Markovian properties of the hidden sequence are essential to factor the likelihood

function so that it is tractable. In addition, the ability of HMMs to handle both single and
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multiple sequences and unequally spaced observations of varying lengths also makes them

appealing in many applications. From both practical and theoretical considerations, it is

worth more effort and attention to study the model selection problem for HMMs since it is

widely used.

Now that we have the models at hand to describe a data sequence, it is of further inter-

est to know whether we can separate out those sequences which evolve in different patterns,

which leads to a clustering problem. After clustering, we gain more homogeneous subgroups

which we can study further. There is an extensive literature on clustering over the years. Be-

sides traditional clustering methods, such as the K-means algorithm and hierarchical cluster-

ing, spectral clustering has recently become more prominent, because it is easy to implement

and has shown good performance in practice. However, clustering sequences would be more

challenging due to the dependence within the sequential data. One of the challenges lies in

finding an appropriate distance measure between sequences. A semi-parametric method we

consider in this study is to begin with a sequential model to extract the features of the data

and then construct the distance matrix based on the features and apply existing clustering

algorithms.

The research aims of this thesis are model selection of HMMs and clustering sequences

with Markov models and HMMs. This thesis consists of three parts. In the first part, we

consider HMMs with exponential family distribution and extend it to incorporate covariates.

Because the way we include the covariates and estimate the coefficients are similar to gen-

eralized linear model (GLM), we call the combined model HMM-GLM. We are interested

in HMM-GLM and its model selection because even though there are many applications of

HMM in various research areas, the literature provides few systematic studies of HMM-GLM

and consider the criterion to choose the optimal number of hidden states and variables for

it. In this study, we propose a joint model selection method for HMM-GLM. The criterion is

considered from a more accurate approximation of the Kullback-Leibler divergence to estab-

lish a general criterion like Akaike information criterion (AIC) for HMMs. Our simulation

study shows that the proposed criterion is competitive when the number of observations in

the sequence is small to medium, which is generally more difficult compared to large sample

situations.
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The second part of the study is about clustering sequences with HMMs. Sequence clus-

tering is a special kind of clustering problem where the input do not consist of independent

observations. The dependent data structure violates model assumptions in many existing

clustering methods leading to challenges for researchers. The aim of our study is to develop a

less computationally expensive and easy-to-interpret algorithm for the HMM sequence clus-

tering problem, based on the emission and transition features of the chains. Our intuition

is that when the HMM sequences can be well represented by their emission probabilities

and transition matrices, these two main features can then be used to cluster the observed

sequences. We propose an efficient clustering method with HMMs using Bhattacharyya

affinity to measure the pairwise similarity between sequences, then apply a spectral clus-

tering algorithm to obtain the cluster assignment. The improvement in efficiency is that

we avoid iterative computation for the affinity of a pair of sequences. We show that the

iterative computation of the affinity measure can be approximated by a function of the emis-

sion distribution and transition matrix. The main progress is made in finding an efficient

way to obtain the affinity matrix. Though the methodology should be applicable to gen-

eral emission distributions, in this study we focus on the exponential family cases since their

Bhattacharyya affinity formulas are amenable to analysis because they are available in closed

form.

In the third part, we study an alternative clustering method, which is the Markov mixture

model (MxM), and apply it to a psychiatric study of the course of children and adolescents

with bipolar disorder. Bipolar disorder is characterized by recurrent mood episodes rang-

ing from depression to extreme happiness or irritability. Measuring and making sense of

the fluctuations in these moods over time is challenging. To find homogeneous clusters and

capture different longitudinal mood change patterns we use a Markov mixture model with

different transition matrices. We estimate the parameters of this model using EM algorithm.

Further, we conduct a simulation study to investigate the performance of the model when

there are violations of model assumptions. The result shows that this model is fairly robust

even when certain model assumptions fail. In the application, based on clinical considera-

tions we focus on four mood states: well (formally known as euthymia), mania/hypomania,

depression and mixed (a combination of symptoms of mania/hypomania and depression).
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Specifically, we are interested in the frequency and patterns of changes among them. We

find that the clusters separate out those who tend to stay in a mood state from those who

fluctuate between mood states more frequently. In fact, both clustering methods (HMMs

and MxMs) have the Markovian assumption, one on the hidden chains, the other on the

observed chains. Compared to traditional sequence clustering methods, the Markov models

provide a novel angle to characterize the sequences with transition patterns. The reason

we adopt MxMs in the bipolar study but not HMMs is data driven. When the number of

observed states is small and their interpretation is clear, adding a layer of additional hidden

states is not compelling.
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2.0 JOINT MODEL SELECTION FOR HIDDEN MARKOV MODELS

WITH EXPONENTIAL FAMILY OBSERVATIONS

2.1 OVERVIEW

Hidden Markov models (HMMs) are used to model dynamic systems in which the observed

sequences are governed by the underlying hidden Markov chains. The basic estimation

procedure for HMMs was established in the 1960s and 1970s. It consists of three algorithms:

the Baum-Welch, forward-backward, and Viterbi algorithms. The most well-known and

successful application of HMMs is in speech recognition. Rabiner gave a comprehensive

tutorial on HMM in speech recognition (Rabiner, 1989). Since then, HMMs have gradually

appeared more in other fields, such as bioinformatics (Soding, 2004; Krogh et al. 2001),

neuroscience (Camproux et al. 1996), and finance (Mamon and Elliott, 2010). Meanwhile,

researchers also studied the statistical properties (Bickel et al., 1996, 1998) and developed

more efficient algorithms for HMMs (Gales et al. 1992, Bilmes et al. 1998).

HMMs have a neat and intuitive model structure. The conditional dependence of the

observed sequence and the Markovian properties of the hidden sequence are essential to

factor the likelihood function. In addition, HMMs have the flexibility to model both single

and multiple sequences and handle unequally spaced observations of varying lengths.

Another advantage of HMMs is that they can incorporate time-varying explanatory vari-

ables. In general, there are two ways to impose the covariate effects in HMMs: one way

allows the covariates affect the emission probability, the other way assume the covariates

affect the transition matrices. For instance, in a faecal coliform counts study, Turner et al.

(1998) developed a model to superimpose the two-way design to HMMs in a generalized lin-

ear model (GLM) framework in which the hidden state affected the intercept of the log-link
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function. In another longitudinal health status study, Scott et al. (2005) applied HMMs to

learn about the health status switching patterns over time and its association with treat-

ments. They developed an inhomogeneous HMM by introducing the Dirichlet distribution

with parameters embedded in a Bayesian hierarchical model, in which different transition

probabilities may apply for each observation period. The model for the emission was the

multivariate t distribution to handle the heavy tail. Besides fixed effects, random effects can

also be taken into account. Altman (2007) proposed a Mixed HMM (MHMM) to incorpo-

rate covariates and random effects into HMM with an exponential family distribution for

the emission distribution. The random effects allowed for long-term dependence within each

sequence. The main difference between MHMM and HMMs is that MHMM assumes the

observations in a sequence are no longer independent given only the hidden state but not

the random effect.

The most frequently used emission probability in the applications of HMMs with explana-

tory variables are Gaussian and Poisson distributions. However, to the best of our knowledge,

no general form of parameter estimation procedure has been given for exponential family.

Thus, before looking into the model selection problem we first provide a systematic model

development for HMMs with exponential family distribution as the emission distribution.

We adapt the estimation procedures in GLM to the HMM framework. When it comes to

the model selection for HMMs, we consider both choosing the optimal number of predictors

and the optimal number of hidden states. The most straightforward method to compare

model performance is to compare the accuracy. For example, in speech recognition the main

interest is the estimation of the hidden states, which is what words are pronounced. In this

case, we can assess the model performance by the empirical success rate. The limitation

of this way is that it does not provide a sufficient insight of the potential problems in the

model.

Apart from accuracy, there are three types of method which could be used to evaluate

HMM model performance. The first type is to use model fitness criterions, such as Akaike

information criterion (AIC) and Bayesian information criterion (BIC). This is the most pop-

ular approach since it is easy to obtain. Aguirre-Hernandez and Farewell (2002) proposed a

Pearson-type goodness-of-fit test for Markov regression models. In their models, the linear
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combination of covariates affects only the logarithm of the transition rates, but not the emis-

sion probability. In addition, in their study the states are ordinal and the state transitions

are limited to adjacent states. Titman and Shaples (2008) generalized it to HMMs with an

absorbing state. However, as the number of explanatory variables increases, especially for

continuous variables, how to group the levels for each variable becomes more challenging

and could be misleading. Visser et al. (2002) discussed both model selection and goodness-

of-fit test for HMMs. They pointed out that when comparing HMMs with different numbers

of hidden states, a model with fewer states need not be nested in the model with more

states. Hence the likelihood ratio test is not suitable to compare the two for this purpose.

In comparison, AIC and BIC are easy to obtain and do not have this limitation. As for the

model assessment, they introduced a Pearson χ2 as the prediction error measure. Smith et

al. (2006) proposed an information criterion based on the Kullback-Leibler divergence and

showed that the new criterion had nice asymptotic properties. Their criterion consists of

two parts: one is a log-likelihood measure of the lack-of-fit, and the other is a penalty for the

redundant states and variables. This criterion attempts to balance fitness and parsimony.

The limitation is that it was deduced for Gaussian emission.

The second type is to use visualization tools, such as residual plots and QQ plots. Altman

(2004) provided a visualization method, namely, plots of the estimated distribution against

the empirical distribution to check the lack of fit of HMMs with large samples. The idea is

based on the fact that as the sequence becomes longer, the empirical distribution converges

to the true distribution under certain conditions. However, this conclusion is based on a

strong assumption that the observed sequence is strictly stationary, which rarely holds in

practice. Zucchini and Macdonald (2009) summarized several existing methods to evaluate

HMM fitting. In summary, they suggested the use of AIC and BIC to decide the number of

hidden states and then to use pseudo-residual plots as supplements to assess model adequacy.

The third type is to integrate the model selection into the algorithm, treating the num-

ber of hidden states as a unknown parameter to estimate with other model parameters.

Johansson et al. (2007) developed a Bayesian model selection method for choosing the best

number of hidden states for discrete HMMs. They approximated the posterior probability of

the hidden sequence with an estimated transition matrix and compared the different model
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hypotheses. Recently, Scott et al. (2012) adopted Chib’s method (1995, 2001) and BIC to

choose the number of hidden states. The former one estimates the posterior distribution

of the hidden sequence given the observed sequence from the MCMC output, which was

notoriously difficult to calculate. Zhu et al. (2012) proposed a simultaneous model selection

procedure for choosing the optimal number of covariates and hidden states in continuous

HMMs using the variational Bayesian (VB) algorithm. These integrative algorithm methods

usually consider model selection for HMMs from the Bayesian perspective. However, they

impose more complicated model structures on the data. As a result, more assumptions are

needed and the algorithms become more computationally intensive.

In this study, we aim to develop a joint model selection criterion to simultaneously indi-

cate the optimal number of hidden states and the optimal number of variables for HMMs.

We consider to include explanatory variables in the emission probability. Our method is

designed for HMMs with exponential family distribution, which is applicable for many ap-

plications. Our work is based on the HMM-GLM setting and we develop the model selection

index by approximating the Kullback-Leibler divergence. The simulation study shows that

the proposed criterion works better than AIC and BIC for small to medium sample sizes,

which are generally more challenging.

The organization of this chapter is as follows: In section 2.2, we specify the model

setting. In section 2.3, we provide the parameter estimation procedure, especially for how to

obtain estimations for coefficients of the explanatory variables. In section 2.4, we show the

development of the proposed model selection criterion based on the given model settings. In

section 2.5, we present the simulation study. We conclude with a discussion in section 2.6.

2.2 MODEL DEVELOPMENT

Suppose there is an unobserved first-order Markov chain {Xt}Tt=1 defined on a finite state

space (≤ K states) and a corresponding sequence of scalar observations {Yt}Tt=1. Assume that

the hidden Markov chain is homogeneous and stationary; thus the hidden Markov chain is

determined by the initial probability π = (π1, . . . , πK) with constraint
∑K

k=1 πk = 1 (πk ≥ 0)
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and K ×K transition matrix A = {aij}. (The stationarity assumption is not necessary; an

ergodic Markov chain is enough to proceed the estimation procedures in HMMs.)

Here we define

πk = P (X1 = k) (2.1)

aij = P (Xt+1 = j|Xt = i) (2.2)

P (X; π,A) = πx1

T−1∏
t=1

axt,xt+1 (2.3)

where X = (X1, . . . , XT ).

We consider an exponential family for the conditional distribution of the observations

(also called emission distribution) in this study. Let f(yt|xt) denote the conditional distribu-

tion of Y |X at time t, and ψ represent a collection of parameters in the emission distribution.

The density function of exponential family distribution is given below, following McCulloch

and Searle (2001).

f(yt|xt;ψ) = exp

[
(γxtyt − b(γxt))

τ 2
+ c(yt, τ

2)

]
(2.4)

To include time-varying explanatory variables Z (Zt ∈ RD, and z
′
t is row t of matrix

Z) in the HMM setting, the generalized linear model (GLM) setting can be adopted with a

link function g(µt) = z
′
tβxt . A special kind of link function is called canonical link function

as g(µt) = γxt = z
′
tβxt . Here, µt = E(Yt|Xt) and βxt is a constant coefficient vector given a

hidden state. This model setting allows the marginal effects of the explanatory variables to

change with the hidden state.

Let St = (St,1, . . . , St,K) be a K dimensional vector with St,k = 1 when Xt = k and 0

otherwise, and let B be a D×K coefficient matrix. We can then re-write the canonical link

function in matrix form

g(µt) = γxt = z
′

tBSt (2.5)

with all entries in B constant. We will also consider non-canonical link functions in case the

canonical ones cannot adequately fit the data.
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2.3 PARAMETER ESTIMATION

The estimation procedure for the above model can be implemented by combining the esti-

mation techniques of GLM and HMM (HMM-GLM hereafter). The framework of HMMs

parameter estimation remains the same as the classical work summarized by Rabiner (1989):

(i) observed sequence: How do we estimate the probability of the observed the sequence

{Yt}Tt=1 given the parameter θ = (π,A, ψ) = (π,A,B, τ 2) ?

(ii) hidden states: Given the parameters, how can we find the conditional distribution of

(Xt|Y1, . . . , Yt) (filtering); (Xt|Y1, . . . , YT ) for T > t (smoothing); (Xt|Y1, . . . , Ys) for s < t

(prediction)?

(iii) parameter estimation: How to estimate the parameters θ?

The GLM is relevant in the third part. Later we will see that (i) is related to the

likelihood function and construction of the Kullback-Leibler divergence, while (ii) serves the

main purpose of HMM, which is to extract information about the hidden sequence from

the observed data. These two questions are addressed by the forward-backward and the

Viterbi algorithms, which are well-established. The standard approach for question (iii)

was proposed by Baum and Welch in 1960s, which is essentially an EM algorithm treating

the hidden sequence as missing. Bickel, et al. (1998) showed that the maximum likelihood

estimate (MLE) for HMM has an asymptotic normal distribution provided the following

conditions hold: the Markov chain is stationary; the expectation of the second derivatives

of the conditional distribution (exponential family) density with respect to the parameters

exists. Also, with an appropriate starting point, the numerical estimates given by EM tends

to the MLE as the number of iterations of EM tends to infinity. We provide more details

in answering the last question since we are interested in the effects of the covariates under

different hidden states.

The dummy variable St of the hidden state Xt is useful here. The complete log-likelihood
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for the E-step is

logL(θ; y, x) =
T∑
t=1

log f(yt|xt) +
T−1∑
t=1

log(axt,xt+1) + log(πx1)

=
T∑
t=1

K∑
k=1

st,k log f(yt|st,k) +
T−1∑
t=1

K∑
k=1

K∑
j=1

st,kst+1,j log(akj) +
K∑
k=1

s1,kπk

=
T∑
t=1

S
′

t log(ft) +
T−1∑
t=1

S
′

t[log(A)]St+1 + S
′

1π, (2.6)

where ft = [f(yt|st,1), . . . , f(yt|st,K)]. The conditional expectation with respect to the hidden

state is

Q(θ, θold) = Eθold{logL(θ; y1, . . . , yT , x1, . . . , xT )|Y }

=
T∑
t=1

K∑
k=1

Eθold(St,k|Y ) log f(yt|St,k;B, τ 2)

+
T−1∑
t=1

K∑
k=1

K∑
j=1

Eθold(St,kSt+1,j|Y ) log(akj;A) +
K∑
k=1

Eθold(S1,k|Y )πk.

(2.7)

Since St,k takes on value {0, 1}, E(St,k|Y ) equals to P (St,k = 1|Y ) which is the smoothing

problem in (ii). E(St,k, St+1,j|Y ) is similar. Denote

ζoldt,kj = E(St,k, St+1,j|Y ; θold) and ξoldt,k = E(St,k|Y ; θold) =
K∑
j=1

ζoldkj . (2.8)

We proceed with the estimation assuming that we know ζt,kj and ξt,k, which are addressed

by the forward-backward algorithm in question (ii). Notice that maximizing Q(·) with

respect to (B, τ 2) does not involve the updated (A, π) but only the old (A, π), which is

convenient. That is to say no matter what emission distribution is assumed (not limited to

the exponential family), it will not affect the algorithms for the estimation of the transition

matrices and initial distribution of the hidden Markov chain. Thus the classic forward-

backward algorithm and Viterbi algorithm for HMMs are directly applicable.
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In the M-step, we need to choose θ to maximize Q(θold, θ). We rewrite the Q-step log-

likelihood function with (ζoldkj , ξ
old
k )

Q(θ, θold) =
T∑
t=1

K∑
k=1

ξoldt,k

[
(z
′
tβkyt − b(z

′
tβk))

τ 2
+ c(yt, τ

2)

]

+
T−1∑
t=1

K∑
k=1

K∑
j=1

ζoldt,kj log(akj;A) +
K∑
k=1

ξoldt,k πk. (2.9)

Here we only show how to estimate B. Note that

max
B

Q(θ, θold) = max
B

T∑
t=1

K∑
k=1

ξoldt,k
(z
′
tBStyt − b(z

′
tBSt))

τ 2
(2.10)

is very similar to GLM except for the “weighting” parameter ξt,k. Hence the procedure

for parameter estimation of the GLM can be used. By the chain rule and the relation

∂b(γt,k)

∂γt,k
= µt,k, we get the likelihood equations as

Z ′W old
k Y = Z ′W old

k µk (2.11)

where µt,k = g−1(z
′
tβk), µk = (µ1,k, . . . , µT,k), Z = (Z1, . . . , ZT )′ andWk = diag(ξold1,k , . . . , ξ

old
T,k).

Here Z is a T × D matrix. Furthermore, if stationarity holds, the equation reduces to

Z ′Y = Z ′µk, because ESt,k = ESt′,k for any t, t′ > 0. Iterative procedures like Newton-

Raphson or Fisher’s Scoring method can be applied directly for estimating β.

The details are similar for non-canonical links (McCulloch, et al., 2001). The likelihood

equations are

Z ′WkQkGkY = Z ′WkQkGkµk (2.12)

whereQk = diag(q1,k, . . . , qT,k), qt,k = [v(µt,k)g
2
µ(µt,k)]

−1, v(µt,k) = V ar(Yt)/τ
2 is the variance

function, Gk = diag(gµ(µ1,k), . . . , gµ(µT,k)) and gµ = ∂g/∂µ. The updating formula using

Fisher scoring is

β
(l+1)
k = β

(l)
k + (Z ′W

(l)
k Q

(l)
k Z)−1Z ′W

(l)
k Q

(l)
k G

(l)
k (Y − µ(l)

k ). (2.13)

where Wk, Qk, Gk and µk are evaluated at β
(l)
k .
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The nuisance parameter τ 2 is estimated via a moment estimator based on its relation to

the variance of Y (McCullagh and Nelder, p. 328),

τ̂ 2GLM =
1

N −D

N∑
n=1

(yn − µ̂n)2

v(µ̂n)
,

which can be modified thus to our case:

τ̂ 2 =
1

T −D

K∑
i=1

T∑
t=1

(yt − µ̂t,k)2

v(µ̂t,k)
ξ̂t,k. (2.14)

The reason we adopt the estimator from the independent case to our model GLM-HMM is

the conditional independence assumption of HMMs, which says given Xt, Yt is independent

of Y1, . . . , Yt−1, Yt+1, . . . , YT .

So far, we have discussed the parameter estimation for the emission probability fy|x.

Estimation of A and π is similar except for adding Lagrange multipliers for the constraint∑K
j=1 aij = 1,

∑K
k=1 πk = 1 and 0 ≤ aij, πk ≤ 1 in likelihood function. In particular,

analogous calculations give

anewk,j =

∑T−1
t=1 ζ

old
tkj∑T−1

t=1 ξ
old
tk

. (2.15)

If we assume a stationary Markov chain, the initial distribution π is determined by the

transition matrix and can be solved as the left eigenvector of A.

Finally, we summarize how to obtain (ζtkj, ξtk) by the forward-backward algorithm. De-

fine a forward variable αt,k as

αt,k = P (Y1, . . . , Yt, Xt = k) =

[
K∑
i=1

αt−1,iaik

]
f(Yt|Xt = k), (2.16)

and backward variable bt,k as

bt,k = P (Yt+1, . . . , YT |Xt = k) =
K∑
i=1

akif(Yt+1|Xt+1 = i)bt+1,i, (2.17)

so that

ζ
(l)
tkj =

α
(l)
tk a

(l)
kjf(yt+1|xt+1 = k)b

(l)
t+1,j∑K

k=1

∑K
j=1 α

(l)
tk a

(l)
kjf(yt+1|xt+1 = k)b

(l)
t+1,j

(2.18)

ξ
(l)
tk =

K∑
j=1

ζ
(l)
tkj (2.19)

for the lth iteration. For more details, see Rabiner et al. (1989).
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2.4 APPROXIMATING THE KULLBACK-LEIBLER DIVERGENCE

Suppose that the true underlying model is L0 and L1 is the proposed HMM. Followed what

Hurvich and Tsai (1989) did in their paper, we assume that the true model is an HMM. The

Kullback-Leibler divergence (DKL) measures the information gain (loss) between L0 and L1

by taking the expectation of the log-likelihood difference. AIC is also an approximation of

the Kullback-Leibler divergence.

The Kullback-Leibler divergence of L0 and L1 is defined as:

DKL(L0, L1) = EL0

[
log

L0(Y )

L1(Y )

]
(2.20)

It is nonnegative but need not be symmetric.

The Kullback-Leibler divergence is often used for model comparison. Unlike log-likelihood

ratio test, this model comparison does not assume that one model nested in another. And

for model comparison, only the log-likelihood of the proposed model matters, since the log-

likelihood of the true model will not change in DKL. Thus, let us define the core part in

DKL for a candidate model L1 as

Dc(L1) = −EY log
[
L1(Y |θ̂1)

]
.

where θ1 is a set of parameters in model L1.

Consider the case where the emission distributions are from exponential family. In the

approximation, we distinguish training data Y and evaluation data Y ∗ to avoid underesti-

mation of error because of using the same data. The parameter estimators are functions of

the training data Y . We approximate the expectation of Dc by first taking expectation with

respect to Y ∗, then to Y . Let L1 be the proposed HMM, then

Dc(L1(Y )) = −EYEY ∗ log
[
L1(θ̂(Y );Y ∗)

]
= −EYEY ∗,S∗ [log fY |S(Y ∗|S∗; ψ̂(Y )) (2.21)

+ log fS(S∗; Â(Y ))− log fS|Y (S∗|Y ∗; θ̂(Y ))]

14



We focus on the approximation of the first term fY |S, since it directly involves the

covariates. Let β̂ be the MLE of β. Based on the fact that under mild conditions β̂ converges

to β as the sample size increases, we approximate b(β̂k) on βk with Taylor expansion.

b(Z ′tβ̂k) ≈ b(Z ′tβk) + Z ′tµ(Z ′tβk)(β̂k − βk) + 1/2(β̂k − βk)′Ht(βk)(β̂k − βk) (2.22)

where Ht(βk) = Ztv(Z ′tβk)Z
′
t, ∂b(γ)/∂γ = µ(γ), ∂2b(γ)/∂γ2 = v(γ). So

Z ′tβ̂kY
∗
t − b(Z ′tβ̂k)

≈ Z ′tβ̂kY
∗
t − Z ′tβ̂kµ(Z ′tβk) + Z ′tβkµ(Z ′tβk)− b(Z ′tβk) + 1/2(β̂k − βk)′Ht(βk)(β̂k − βk)

If the model is specified correctly, that is, if the true model is Z ′tβk, then the first two terms

should be cancelled out as EY ∗t |S∗t,k=1(Y
∗
t ) = Z ′tβ̂kµ(Z ′tβk).

Lemma 1

If [var(β̂)]−1 exists and the conditions for asymptotic normality hold, which are

(i) link function g(u) is twice continuously differentiable and det(∂u/∂γ) 6= 0;

(ii) λminfn →∞, where fn is the Fisher information and λ is the smallest eigenvalue;

then for GLM with canonical link g(µt) = γxt = Z
′
tBSt,

EY ∗,S∗
[
log[f(Y ∗|S∗; ψ̂)]− c(Y ∗, τ̂ 2)

]
= EY ∗,S∗

T∑
t=1

K∑
k=1

S∗t,k

[
Z ′tβ̂kY

∗
t − b(Z

′
tβ̂k)

τ̂ 2

]

≈
T∑
t=1

K∑
k=1

P (S∗t,k = 1)

[
Z ′tβkµ(Z ′tβk)− b(Z

′
tβk)

τ̂ 2
+

1/2(β̂k − βk)′H(βk)(β̂k − βk)
τ̂ 2

]
(2.23)

Lemma 1 handles the expectation with respect to Y ∗, thus provides a convenient step

for the following approximation. The rest is to approximate the expectation on Y .

Lemma 2

Suppose τ 2 is known and the following conditions hold

(i) the hidden Markov chain is stationary and the transition matrix is ergodic;
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(ii) the expectation of the second derivatives of the conditional distribution (exponential fam-

ily) density with respect to the parameters exists;

(iii) there exists a δ > 0 such that P (ρ0(Y1) =∞|X1 = i) < 1 for all a, where

ρ0(y) = sup|θ−θ0|<δmax1≤i,j≤K
f(y|x = i)

f(y|x = j)
;

then

EYEY ∗,S∗ log f(Y ∗; β̂) ≈ log f(µ; β)−DK/2.

where D is the dimension of βk.

Proof. We start with GLM then extend to HMM-GLM. Some of the existing results

for GLM can be used, such as β̂ is asymptotic Normal with E(β̂) = β and V ar(β̂) =

τ 2(Z ′G−1Z)−1, where G = diag(gµ(Z ′1β), . . . , gµ(Z ′Tβ)) (McCulloch, 2001). In addition,

under canonical link vgµ = 1. Assume [V ar(β̂k)]
−1 exists, we have

T∑
t=1

Ht(βk) =
T∑
t=1

Ztv(Z ′tβk)Z
′
t = Z ′VkZ = Z ′G−1k Z ≈ τ 2[V ar(β̂k)]

−1

where Vk = diag(v(Z ′1βk), . . . , v(Z ′Tβk)). Thus,

T∑
t=1

(β̂k − βk)′Ht(βk)(β̂k − βk)
τ 2

' χ2
D.

Hence, for GLM

EY

[
T∑
t=1

1/2(β̂k − βk)′Ht(βk)(β̂k − βk)
τ 2

]
≈ D/2.

Similarly, in HMM-GLM setting, for any k ≤ K,

−E
[
∂2logL(θ;Y ∗, S∗)

∂βk∂β′k

]
= −

∂2
∑T

t=1 P (S∗t,k = 1)[Z ′tβkY
∗
t − b(Z ′tβk)]

∂βk∂β′k
|βk=β̂k

=
∂2
∑T

t=1 P (S∗t,k = 1)b(Z ′tβk)

∂βk∂β′k
|βk=β̂k
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and
∑T

t=1 P (S∗t,k = 1)Ht(βk) = Z ′G−1k WkZ, where Wk is the same as defined in the previous

section. Thus V ar(β̂k) ≈ τ 2(Z ′G−1k WkZ)−1. With the asymptotic normality of β̂k, the

following result holds

EY

[
T∑
t=1

P (S∗t,k = 1)
1/2(β̂k − βk)′Ht(βk)(β̂k − βk)

τ 2

]
≈ D/2. (2.24)

The conclusion in Lemma 2 indeed coincides with AIC, which again verifies that our

initiatives, which is to approximate Kullback-Leibler divergence, is the same and our work

is on the right track. To seek improvement, we think further for the situation when τ 2 is

unknown, which is usually the case. This approximation is more difficult as now we need to

work on

EY

[∑T
t=1 P (S∗t,k = 1)1/2(β̂k − βk)′Ht(βk)(β̂k − βk)

τ̂ 2

]
. (2.25)

We have shown in Lemma 2 that the numerator in equation (2.25) is asymptotically χ2

distribution. If the denominator is also a χ2 distribution and is independent of the numerator,

then the expectation of a F statistics may be the solution to this problem.

Recall that in GLM, the nuisance parameter is estimated by

τ̂ 2GLM =
1

N −D

N∑
n=1

(yn − µ̂n)2

v(µ̂n)

The sum of squares of standardized residuals
∑

(y − µ̂)2/v(µ̂) is a generalized Pearson χ2

statistics (McCullagh’s book 1983, chapter 2). Modify it to HMM-GLM as we mentioned in

the previous section, we have an estimator for τ 2k given hidden state k as

τ̂ 2k =
1

c1

K∑
k=1

T∑
t=1

(yt − µ̂t,k)2

v(µ̂t,k)
ξ̂t,k

where c1 = T −D. Our interest is to find the degree of freedom for it.

Consider in GLM

T∑
t=1

(Yt − µ̂t)2

v(µ̂t)
=

T∑
t=1

[Yt − µ(Z ′tβ)]2 − [µ(Z ′tβ)− µ(Z ′tβ̂)]2 + 2[Yt − µ̂t][µ(Z ′tβ)− µ(Z ′tβ̂)]

v(µ̂t)
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After taking expectation on Y , the first term in numerator becomes V ar(Yt) which

equals to τ 2vt. The expectation on the second term in the numerator is V ar(µ̂t). By the

asymptotic properties of β̂, Delta method and the property of canonical link vgµ = 1, µ(Z ′tβ̂)

is asymptotic Normal with mean µ(Z ′tβ) and variance v2t τ
2Z ′t(Z

′G−1Z)−1Zt . Thus,

T∑
t=1

E[µ(Z ′tβ)− µ(Z ′tβ̂)]2/vt

≈
T∑
t=1

tr[vtτ
2Z ′t(Z

′G−1Z)−1Zt]

=
T∑
t=1

tr[τ 2ZtvtZ
′
t(Z

′G−1Z)−1]

= τ 2tr[
T∑
t=1

ZtvtZ
′
t(Z

′G−1Z)−1] = Dτ 2

The third term in the numerator would vanish after taking expectation since E(µ̂t) = µt,

cT → 0 as T →∞. Hence,

EY

T∑
t=1

(Yt − µ̂t)2

v(µ̂t)
≈ τ 2(T −D). (2.26)

and χ2/τ 2 ' χ2
T−D.

Assumed independence between the denominator and numerator, based on the previous

results we have

EY

[∑T
t=1(β̂k − βk)′Ht(βk)(β̂k − βk)

τ̂ 2

]
(2.27)

≈ E[
Dc1
T −D

χ2
D/D

χ2
(T−D)/(T −D)

] ≈ Dc1
T −D − 2

. (2.28)

No matter c1 equals to T −D or T +D, as T � D, this result reduces to AIC. This supports

the independence assumption.

To generalize the above results to HMM-GLM setting, we need to construct an estimator

of τ 2 such that it tailors HMM-GLM and gives a better criterion.

Let

τ̂ 2 =
1

K

K∑
k=1

τ̂ 2k =
1

K

K∑
k=1

1

c1

T∑
t=1

(yt − µ̂k,t)2

vk,t
I(sk,t = 1) (2.29)
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Similarly, taking expectation on τ̂ 2 gives

E[τ̂ 2] =
1

K

1

c1

K∑
k=1

T∑
t=1

E

[
(yt − µ̂k,t)2

vk,t
|Sk,t

]
E(Sk,t)

≈ 1

c1K

K∑
k=1

T∑
t=1

[
E[

(yt − µk,t)2

vk,t
|Sk,t]E(Sk,t)− E[

(µk,t − µ̂k,t)2

vk,t
|Sk,t]E(Sk,t)

]

=
1

c1K

K∑
k=1

T∑
t=1

[
τ 2 − E[

(µ̂k,t − µk,t)2

vk,t
|Sk,t])

]
E(Sk,t)

≈ 1

c1K

K∑
k=1

T∑
t=1

[
τ 2 − vk,tτ 2Z ′t(Z ′G−1k WkZ)−1Zt

]
E(Sk,t)

=
τ 2

c1K
[T −KD] (2.30)

Since
∑K

k=1 P (Sk,t = 1) = 1, the first term goes to Tτ 2.

Thus, for HMM-GLM, under the same condition as stated in Lemma 2, c1Kτ̂
2/τ 2 ap-

proximates χ2 distribution,

c1KEY τ̂
2 ≈ τ 2(T −KD). (2.31)

and

EY

[
K∑
k=1

T∑
t=1

P (S∗k,t = 1)
1/2(β̂k − βk)′Ht(βk)(β̂k − βk)

τ̂ 2

]

≈ 1/2E[
K2Dc1
T −KD

χ2
KD/KD

χ2
(T−KD)/(T −KD)

]

≈ 1

2

K2Dc1
T −KD − 2

.

Hence, the proposed criterion for the HMM-GLM is

Chmm−glm = logL(θ̂;Y )− 1

2

K2Dc1
T −KD − 2

. (2.32)
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2.5 SIMULATION

In this section, we conduct a simulation study to compare the proposed model selection

criterion with AIC and BIC. We consider large, medium and small sample sizes. Here the

sample size refers to the number of observation time points in a sequence in our model

(T = 50, 100, 250). We generate data from two typical distributions in the exponential

family: Gaussian and Poisson. For each setting, we repeat the simulation 200 times. The

comparison is based on the number of times that the criteria choose the right number of

variables and the right number of hidden states. The simulation is implemented using R

package ‘RHmm’.

The simulation setting for the Gaussian case is a HMM with three hidden states and

state-specific coefficient vectors β1 = (1, 2, 3), β2 = (4, 3, 2), β3 = (−1,−2,−3) for two

predictors. The scaling parameter σ2 is set to 1 for all three hidden states. The transition

matrix is

A1 =


0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6


The simulation setting for the Poisson case is a HMM with two hidden states and state-

specific coefficient vectors β1 = (0.1,−0.8,−0.5,−0.4), β2 = (0.8, 0.5, 0.7, 0.3) for 3 predic-

tors. The transition matrix is

A2 =

 0.65 0.35

0.25 0.75


Tables 1, 2, and 3 show the rate of choosing the right K and D jointly and separately.

From the results, we see that the proposed criterion works better than AIC and BIC for

small and medium sample sizes. When there are sufficient number of observations, BIC

performers better than the other two.
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Table 1: Model selection criterion comparison (% of times correct in K and D)

T K D Distribution AIC BIC Chmm−glm

50 3 2 Gaussian 0.15 0.15 0.46

100 3 2 Gaussian 0.32 0.49 0.67

250 3 2 Gaussian 0.46 0.89 0.66

50 2 3 Poisson 0.62 0.42 0.58

100 2 3 Poisson 0.74 0.74 0.81

250 2 3 Poisson 0.79 0.98 0.89
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Table 2: Model selection criterion comparison (% of times correct in K)

T K D Distribution AIC BIC Chmm−glm

50 3 2 Gaussian 0.29 0.13 0.58

100 3 2 Gaussian 0.53 0.35 0.76

250 3 2 Gaussian 0.52 0.95 0.71

50 2 3 Poisson 0.97 1.00 0.99

100 2 3 Poisson 0.96 1.00 0.99

250 2 3 Poisson 0.93 1.00 0.98
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Table 3: Model selection criterion comparison (% of times correct in D)

T K D Distribution AIC BIC Chmm−glm

50 3 2 Gaussian 0.40 0.83 0.87

100 3 2 Gaussian 0.58 0.92 0.90

250 3 2 Gaussian 0.67 0.97 0.92

50 2 3 Poisson 0.62 0.42 0.55

100 2 3 Poisson 0.76 0.74 0.82

250 2 3 Poisson 0.85 0.98 0.91
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2.6 DISCUSSION

In this section, we first established a general form of estimation procedures for HMM-GLM,

focusing on how to obtain the coefficients of the covariates. Then we proposed a model se-

lection criterion by approximating the Kullback-Leibler divergence. Our major contribution

is to approximate the emission distribution. The derived criterion is a function of both K

and D, thus serves the purpose for joint selection. The conditions in the theoretic derivation

part are based on previous work on asymptotic normality of estimators. We made certain

assumptions without proof in the process to obtain the proposed criterion; therefore we con-

ducted a simulation study to check that they are reasonable. We compared our criterion

with AIC to make sure no large difference between the two because both of them are approx-

imating the Kullback-Leibler divergence. In the simulation, we find the proposed criterion

performs better in small and medium sample size cases, which is more difficult. For a better

approximation, it is necessary to consider approximating the non-GLM part of the likelihood

functions.
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3.0 CLUSTERING SEQUENCES WITH HIDDEN MARKOV MODELS

3.1 INTRODUCTION OF HIDDEN MARKOV CLUSTERING

Clustering is a data analysis technique to explore partitions of a collection of cases according

to certain criteria in order to find less heterogeneous groups. It is important and widely

used in modern statistical data analysis. Existing clustering methods can be summarized

into three types: partition clustering, hierarchical clustering, and mixture model clustering.

Sequence clustering is a special kind of clustering problem where the individual cases are

sequences of observations that are temporally correlated. This dependence structure raises

more challenge such that many existing clustering methods become unsuitable, because they

cannot take into account the correlations between observations at different time points.

Yet motivated by an increasing number of applications, sequence clustering has attracted

considerable interest in recent years. It is especially important in fields like bioinformatics

and the study of the Internet users behavior analysis. In bioinformatics, sequence clustering

algorithms are used to group biological sequences, such as protein and DNA. In studies of the

Internet, people use sequence clustering methods on the click-path data to explore different

patterns that users navigate or browse a website (Cadez, 2003).

HMMs have the advantage of modeling state changes in sequential data, thus sequence

clustering with HMMs is of interest. It was first studied by Smyth (1997), who used the

log-likelihood to measure the discrepancy between two sequences and then applied hierar-

chical clustering on the resulting distance matrix. Later, others considered various metrics

to compute the distance or similarity between HMM sequences. Panuccio et al. (2002) de-

veloped a model-based method and Bicego et al. (2003) proposed a similarity-based method.

Yet these methods do not scale well for large data problems. The main reason is that con-
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structing the distance matrix based on the pairwise likelihood of HMMs is computational

expensive. Another way to consider sequence clustering with HMMs is using a parametric

method. Coviello et al. (2012) proposed a variational hierarchical EM algorithm for cluster-

ing HMMs, using the parameters to characterize the cluster centers. This method assigns

points to cluster centers by Kullback-Leibler divergence.

The aim of our study is to develop an algorithm that is less computationally expensive

and easier to interpret for the HMM sequence clustering problem. In HMMs, the observed

sequences are governed by the emission probabilities and transition matrices. In other words,

when the sequences can be well represented by their emission probabilities and transition ma-

trices, these two features can be used to identify the observed sequence types. For sequences

with hundreds or more time points, the emission and transition features can be viewed as

a lower-dimension representation of the original data. Garcia et al. (2011) proposed a se-

quence clustering method with HMM setting based on the transition matrix induced in a

common HMM. This method differs from previous methods in that it avoids computing the

likelihood distance matrix. However, clustering HMM sequences only relies on the transi-

tion matrices while ignoring the possible discrepancy in the emission distribution, may then

weaken the ability to distinguish sequences. A better way we considered is based on both the

emission and transition features of the HMM sequences. However, to implement the idea,

one challenge lies in finding a suitable scalar to measure the discrepancy on the emission and

transition features. Another challenge is combining the discrepancy of emission probability

and discrepancy of transition patterns into a synthetic distance measure. In our proposed

method, we use the Bhattacharyya affinity for both transition and emission distribution. The

Bhattacharyya distance is often used to measure the similarity of two discrete or continuous

probability distributions, and is a special case of probability product kernels. Given any two

discrete distributions p and q, the Bhattacharyya affinity is defined as

B(p, q) =
∑
x

√
p(x)q(x); (3.1)

it is related to Hellinger distance: B(p, q) = 1−H2(p, q). Thracker et al. (1997) explains that

the Bhattacharyya affinity is preferred over chi-square statistics in large distance matrices
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because the chi-square statistics are poor at handling empty cells but the Bhattacharyya

affinity doesn’t have this problem.

Jebara et.al. (2007) have laid down the foundations for the use of the Bhattacharyya

affinity to measure the similarity between two HMM sequences. They developed a semi-

parametric method which combines HMM settings with spectral clustering. In addition,

their method takes into account the hidden state matching-comparison problem by including

affinity measures of all permutations of the states. Our work is based on this method to

seek improvement with a more efficient algorithm. We show that the iterative computation

of the affinity measure can be approximated by a function of the emission distribution and

transition matrix. Our main contribution is in finding an efficient way to obtain the affinity

matrix. After obtaining the affinity matrix, we apply spectral clustering method to output

the final clustering results.

Spectral clustering is a very popular clustering algorithm in modern data mining. Besides

the successes in both empirical studies and synthetic data, it has the appealing advantage

that is easy to implement. Applied it to HMM sequences, no more assumptions or further

complicated model structures are imposed, other than the HMM setting. In addition, it

generally has better performance compared to some traditional clustering algorithms, such

as K-means. The name “spectral” comes from the fact that the method uses eigenvectors of

the affinity matrix. Instead of directly applying the K-means algorithm to the affinity matrix,

spectral clustering applies K-means to the derived eigenvector matrix of the affinity matrix.

The intuition is somewhat similar to principal component analysis (PCA), which maps the

original data matrix to a lower dimensional space spanned by the largest eigenvectors of the

data matrix itself. K-means is then used after mapping the affinity matrix.

Both simulations and real data comparison show that our method is competitive and

it improves efficiency. Although the methodology should be applicable to general emission

distributions, in this study we focus on the exponential family cases since their Bhattacharyya

affinity formulas are in closed form.

The rest of this section is organized as follows. In section 3.2, we describe how we devel-

oped the algorithm. In section 3.3, we conduct a simulation study to test the performance

of our proposed method. In section 3.4, there is a real data comparison of our proposed
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method and Jebara’s method (2007). We denote their method as PPK hereafter. In section

3.5, we conclude with a discussion of the proposed method.

3.2 METHOD DEVELOPMENT

For most of this section, we continue to use the same notation as in the previous chapter. Let

A be the transition matrix, π be the initial distribution, θ be the emission parameters, and K

be the number of hidden states. Denote observed chain by Y and hidden chain by X. Again,

we assume the hidden Markov chain is homogeneous. We begin with the forward-backward

algorithm, which is used to compute the likelihood of the observed sequence. Denote the

likelihood function for an observed sequence Yn by L(θ, A, π;Yn). Let αt be the ’forward’

vector and ft be a diagonal matrix,

αt(k) = P (Y1, . . . , Yt, Xt = k) (3.2)

ft = diag[f(yt|xt = 1), . . . , f(yt|xt = K)]. (3.3)

For any sequence with Tn number of observations, the forward-backward algorithm computes

the observed likelihood:

α1 = πf1 (3.4)

αt+1 = αtAft+1

L(θ;Y1, . . . , YTn) =
K∑
k=1

αTn(k) =
K∑
k=1

π[
T−1∏
t=1

ftA]fT .

.

Note that for any t, adjusted with the normalized constant tr(ft), ftA becomes a proba-

bility square matrix. The Bhattacharyya affinity for two sets of parameters (A(1), θ(1)) and

(A(2), θ(2)) is ∫ K∑
i=1

K∑
j=1

√
fi(yt)(1)a

(1)
ij fi(yt)

(2)a
(2)
ij dyt (3.5)

=
K∑
i=1

K∑
j=1

Bfi

√
a
(1)
ij a

(2)
ij

= Bf ◦BA

28



where Bfi is the Bhattacharyya affinity of the emission distributions at state i, and Bf =

(Bf1 , . . . , BfK ); BAi
is the Bhattacharyya affinity of row i in the transition matrices, and

BA = (BA1 , . . . , BAK
); Bf ◦ BA is the inner product of the two vectors. Since we integrate

out yt, that term is constant for different time points. This gives us the great advantage

that we may avoid iterative computation to obtain the affinity for all time points. With this

formula, we are getting close to seeing how to represent the likelihood with the transition

and emission distributions.

Next, instead of looking at the Bhattacharyya affinity for the likelihood L(θ, A, π;Y1, . . . , YT ),

it is easier to see the importance of the emission and transition features if we look at the

Bhattacharyya affinity for αT . Without loss of generosity, we assume that the number of

observation time points of the two sequences are the same, then the Bhatacharyya affinity

for α
(1)
T and α

(2)
T is

∫
L(θ(1);Y1, . . . , YT , XT )L(θ(2);Y1, . . . , YT , XT )dy ∝ [Bf ◦BA]T−1. (3.6)

Note that αT is the last step in the forward-backward algorithm to obtain the likelihood; it

is proportional to the likelihood of the observed sequence. It is a function of the transition

matrix and emission distribution. Hence, we can use the value of [Bf ◦ BA]T−1 to measure

the pairwise affinity of HMM sequences. Denote it as Bhmm hereafter. With a little extra

effort, we take into account the state permutation problem, by considering both the sum of

the permuted affinity measures and the maximum of the permuted affinity measures.

We now illustrate our method using the the multivariate normal distribution. Suppose

that there are two HMM sequences with parameters (µ(1),Σ(1), A(1)) and (µ(2),Σ(2), A(2)),

respectively. Assume that there are two hidden states. For each state i

Bfi =
|2Ui|1/2√

|Σ(1)
i |1/2|Σ

(2)
i |1/2

exp[−1

4
(µ

(1)
i − µ

(2)
i )′M−1

i (µ
(1)
i − µ

(2)
i )] (3.7)

where

Mi = Σ
(1)
i + Σ

(2)
i and U−1i = [Σ

(1)
i ]−1 + [Σ

(2)
i ]−1.
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Then

Bhmm =

[
Bf1

(√
a
(1)
11 a

(2)
11 +

√
a
(1)
12 a

(2)
12

)
+Bf2

(√
a
(1)
21 a

(2)
21 +

√
a
(1)
22 a

(2)
22

)]T−1
. (3.8)

So far, we have developed a non-iterative way to obtain the affinity matrix. The remain-

ing task is to apply spectral clustering methods to obtain the final clustering assignments.

The steps of our proposed HMM sequences clustering method are summarized below.

(1) Fit an HMM to each sequence and obtain the transition matrix and emission parameter

estimates. For N sequences, there are a list of N transition matrices and N sets of emission

parameters.

(2) For each pair of sequences, compute Bhmm using the corresponding transition matrices

and emission parameters. The affinity matrix consists of N(N−1)
2

pairs of Bhmm. Denote the

affinity matrix as Bhmm.

(3) Apply spectral clustering on the obtained affinity matrix. Let LB = D
−1/2
B BhmmD

−1/2
B ,

where DB is the diagonal matrix with non-zero element on row i as the row sum of Bhmm.

Suppose we want to have l clusters; then we put l eigenvectors corresponding to the l largest

eigenvalues of LB into the matrix VB = [v1, . . . , vl]. Next, normalize VB so that each row has

unit length. Finally, apply K-means algorithms to this spectral matrix VB.

3.3 SIMULATION

In the first simulation, we repeat the setting in Smyth’s (1997) paper. The model is an

HMM with two hidden states and a univariate observed variable. The emission distributions

are N(0, 1) and N(3, 1) for the two states respectively. There are two clusters which have

different transition matrices A1 andA2. Each simulated dataset contains 20 sequences from

each cluster. The length of all sequences are set to be T = 200 as in Smyth’s paper. For

further comparisons, we try to decrease the number of time points to test our method’s

performance. Each simulation setting is repeated 200 times.
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A1 =

 0.6 0.4

0.4 0.6

 A2 =

 0.4 0.6

0.6 0.4


In 200 runs, the average correctness of our proposed method is 99.65% with standard

deviation (sd) 0.01. When T = 150, the average correctness is 98.75% sd 0.01. For T = 100,

the average correctness maintains 99.50% with sd less than 0.01. When T = 50, the average

correctness is 82.78% sd 0.02.

In addition, we find that when T is large enough (e.g. T ≥ 150 in this simulation), using

log(T − 1) as the power term in Bhmm performs nearly as well as using T . This can further

reduce the computational time. For smaller T (e.g. T = 100), using log(T − 1) degrades the

accuracy and is not comparable to Bhmm with power term T .

In the second simulation, we try another situation in which the two clusters differ at the

emission distribution only. Let one cluster have emission distribution as N(0, 1) and N(3, 1)

for the two hidden states; another cluster have N(1, 0.5) and N(2, 1). The transition matrix

is the same (A1) for both clusters.

The result shows that the average correctness of our proposed method is 99.15% sd 0.02

when T = 200. When T = 150, the average correctness is 98.75% sd 0.01; When T = 100,

the average corrrectness is 95.9% sd 0.08; when T = 50, 91.09% sd 0.12.

3.4 EMPIRICAL STUDY: AUSTRALIAN SIGN LANGUAGE

In addition to our simulation study, we compare our proposed method to PPK (Jebara 2007)

with a real data set. The Australian dataset consists of several sign-language gestures (see

https://archive.ics.uci.edu/ml/datasets/). Each gesture has 27 instances with an average of

60 ‘time points’. There are 22 variables recorded for each instance. This dataset has been

used in both Jebara’s (2007) and Garcia’s (2011) study. In our study, we take the first two

principal components of the 22 variables and fit them with two-state HMM. Fig.1and Fig 2

show the sequences of 5 pairs of gestures that we use to compare the clustering performance.
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Table 4: Clustering algorithms comparison on Australian sign language data (correct per-

centage)

Method hot-cold spend-cost eat-drink happy-sad yes-no

Bhmm 100 98 87 83 67

PPK 100 80 93 87 59

The results show that our method is more efficient since we save the iteration cost, while

maintaining similar performance (accuracy) as PPK.

3.5 DISCUSSION

In this study, we developed an efficient sequence clustering method with HMMs using rep-

resentatives of the emission and transition distributions of the HMM sequences. Both the

simulation study and an empirical study show that the proposed method is competitive with

earlier more computationally intensive methods. However, we acknowledge that to theoret-

ically verify the conditions when our method is suitable, a more detailed study is needed.

Also, it would be worth more effort to compare other affinity measures. There are a large

number of applications of mobility measures discussed in the social science literature, where

the states are taken to be social classes or occupational groups, and in economic studies for

credit migration. When constructing a mobility index for transition matrices, some desir-

able properties are mentioned, such as normalization, monotonicity, immobility and perfect

mobility, but Shorrocks (1978) pointed out that it would be impossible to satisfy simultane-

ously all these properties — for example, normalization, monotonicity and perfect mobility

are incompatible. In fact, the χ2 test statistic was used by Hilton (1971) as an alternative

approach to define distance between transition matrices. However, it is not suitable for
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Figure 1: Australian sign language data sample 1
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Figure 2: Australian sign language data sample 2
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comparing emission probabilities and thus cannot serve our purpose.

Another consideration for people to decide whether sequence clustering with HMMs is

a suitable method to test the model assumptions, specifically the Markovian property and

its order. Sahalia et al. (2010) proposed a nonparametric test method for the Markov prop-

erty, based on the Chapman-Kolmogorov equation. Chen, et al. (2012) pointed out that

the Chapman-Kolmogorov equation was only a necessary condition for the Markov property.

They provided a conditional characteristic function-characterization for the Markov property

and use it to construct a test for the Markov property, applying a nonparametric regression

method to estimate the conditional characteristic function. The challenge that arises in the

HMM is that we cannot directly apply these procedures because of two reasons. First, the

above procedures are designed for the observed stochastic process. But according to the

model structure of the HMM, we cannot infer that the hidden stochastic process possesses

the Markov property from the corresponding observed Markov process. So we cannot use the

above procedures to test the Markov property of the observed sequence. Second, we cannot

apply these procedures to the estimated hidden state sequence either, because the hidden

state sequence is obtained using the Markov assumption. We suggest the use of the existing

goodness-of-fit test and model diagnosis methods for checking the Markov assumption. For

example, the pseudo-residual model checking procedures provides a way to check the Markov

property. If a histogram or quantile-quantile (qq) plot of the uniform pseudo-residuals sup-

ports the conclusion that they are U(0,1), that would suggest that the Markov assumption

in the model is valid.

For future work, we are interested in trying another approach to implement the clustering

based on the transition pattern and emission distribution features of the sequences and

comparing the two approaches. The alternative mean consider constructing the similarity

matrix using random samples to compute the Hellinger distance. We also expect it would

own strength in efficiency.
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4.0 CLUSTERING TRAJECTORIES WITH FIRST-ORDER MARKOV

MIXTURE MODELS

4.1 INTRODUCTION OF MARKOV MIXTURE MODELS AND BIPOLAR

DISORDER STUDY

Bipolar disorder (BD) is a mental illness characterized by recurrent mood episodes ranging

from periods of depression or irritability to periods of extreme happiness. Depressive episodes

usually include feelings of sadness, lack of enjoyment, low energy, and problems with sleep

and appetite. Conversely, manic or hypomanic episodes are periods of extreme happiness

that are usually accompanied by high levels of energy, a decreased need for sleep, racing

thoughts, and grandiosity. Measuring and making sense of these mood fluctuations over

time is of particular interest, but few statistical models have been developed for this to

date. Previous studies established a uniform scoring system to quantify the various mood

states based on a simulation study (Rao et al., 2006), and applied logistic regression to

examine relations between rapid mood changes and other factors such as early age of onset

and anxiety (Nwulia et al., 2008). However, these studies did not model mood fluctuations

as a stochastic process and the occurrence of a mood switch was based on the individual

answering yes to the single question “Have you ever switched back and forth quickly between

feeling high and feeling normal or depressed ?”

The purpose of this section is to develop a stochastic model for the mood transitions of

BD patients and see whether there exist subgroups of mood fluctuation patterns. Based on

clinical relevance, we have focused on four mood states: well (formally known as euthymia),

mania/hypomania, depression and mixed (a combination of symptoms of mania/hypomania

and depression). Specifically, we are interested in the frequency and patterns of changes
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among them. Thus, models of interest are those that can cluster sequences according to the

state transition patterns.

For existing clustering methods, such as partitional clustering (e.g. K-means), hierarchi-

cal clustering, and spectral clustering, the main challenge in applying them to longitudinal

data lies in how to define a distance measure between observed sequences, especially when

the observed sequences have different lengths. Model-based clustering methods are often

used to analyze longitudinal data. However, most existing methods, such as latent growth

models and clustering for functional data (James and Sugar, 2003) that were developed

for continuous outcomes are not suitable for discrete state sequences. Although a mixture

of generalized linear mixed models could handle discrete outcomes, they cannot model the

patterns of mood fluctuations needed to analyze the longitudinal course of individuals with

BD (Molenberghs et al., 2005; Komarek et al., 2013). In contrast, Hidden Markov mod-

els (HMMs) provide an approach for such data. Researchers have proposed various ways

for clustering sequences with HMMs, such as building a likelihood distance matrix of the

observed sequences with hierarchical clustering (Smyth, 1998) and using probability kernel

product for an affinity measure with spectral clustering (Jebara, 2007). Recently, mixture

latent Markov models have been applied to cluster the within-day mood change patterns

of healthy subjects, focusing on pleasant-unpleasant states (Crayen et al., 2012). However,

in our study the number of observed states is small, and their interpretation is clear, so

modeling hidden states is not compelling.

In this study we introduce the Markov mixture model with different transition matrices

to find homogeneous clusters. The continuous-time Markov models defined on a finite dis-

crete state space have the advantage of capturing state switching patterns over time using

transition matrices, which can be viewed as an instance of data reduction: from hundreds or

more observation time points to a small matrix. In addition, this model is flexible enough

to handle sequences with various lengths since they are encoded by the transition matrices.

To the best of our knowledge, there are few applications of Markov models for clustering

in mental health studies. They are mainly used to learn the association between the Markov

chains and certain explanatory variables (Sung et al. 2007; Visser et al. 2002). Integrating

Markov models and mixture models for clustering problems was first used to find navigation
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patterns on web sites (Cadez et al., 2003). In our current study we provide a more detailed

model development. In addition, we conduct simulation studies to investigate the model

performance both when model assumptions hold and when there are certain violations of

them. The simulation results show that the model is fairly stable for both cases.

The rest of this section is organized as follows. In section 4.2, we describe the Markov

mixture model, putting some technical details in an Appendix. In section 4.3, we present a

simulation study to investigate the model performance. In section 4.4 we give an application

to the motivating bipolar disorder study. We conclude with a discussion in section 4.5.

4.2 MODEL DEVELOPMENT

Consider a Markov chain Y on a finite discrete state space M = (1, 2, · · · ,M). Let Yn,t be

the observation for subject n at time t, and let Yn = (Yn,1, . . . ,Yn,Tn) be the Markov chain

for subject n. Let K be the number of clusters in the model and C denote the cluster label.

Assuming time-homogeneity, the Markov chains in cluster k are governed by the M -by-M

transition matrix Ak = {ak,ij} and initial probability πk = (πk,1, . . . , πk,M). The first-order

Markov mixture model for the sequence Yn is:

P (Yn; θ) =
K∑
k=1

P (Cn = k)P (Yn|Cn = k; θk) (4.1)

=
K∑
k=1

wk

[
πk,yn,1

Tn∏
t=2

P (Yn,t|Yn,t−1;Ak)

]
,

where θk = (πk, Ak) is the set of parameters for cluster k, and wk = P (Cn = k) is the weight

of component k in the mixture model, subject to
∑K

k=1wk = 1. Since, P (Yn,Cn = k) =

P(Yn|Cn = k)P(Cn = k), we can write

P (Yn, Cn) =
K∏
k=1

[P (Yn|Cn = k)P(Cn = k)]I(Cn=k) , (4.2)
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so that the joint likelihood based on (Y,C) for all sequences with Lagrange multipliers

(λ, αk, βk,j) to incorporate the constraints on w, π, and the transition matrices Ak is

logL(Y,C) (4.3)

=
K∑
k=1

N∑
n=1

[
log (wk) +

M∑
i=1

I(Yn,1 = i) log (πk,i) +
M∑
i=1

M∑
j=1

bn,ij log (ak,ij)

]
I(Cn = k)

+ λ
K∑
k=1

(wk − 1) +
K∑
k=1

αk

M∑
i=1

(πk,i − 1) +
K∑
k=1

M∑
i=1

βk,i

M∑
j=1

(ak,ij − 1)

We assign the observed sequence Yn to the cluster that has the largest posterior proba-

bility P (Cn|Yn; η), where η = (θ1, . . . , θK , w1, . . . , wK) and

P (Cn = k|Yn; η) =
wkP(Yn|Cn = k; θk)∑K

k=1wkP(Yn|Cn = k; θk).
(4.4)

We use the EM algorithm for parameter estimation. Let L(η|C1, . . . , Cn,Y1, . . . ,Yn) be

the joint likelihood of the unknown cluster assignments and observed sequences. Because all

the observed sequences are independent of each other, the joint likelihood is the product of

the individual ones. The E-step is

Q(η, ηold) = EC|Y [logL(η|C1, . . . ,Cn,Y1, . . . ,Yn)|Y1, . . . ,Yn]ηold (4.5)

=
K∑
k=1

N∑
n=1

log[wkP (Yn|Cn = k; θk)]P(Cn = k|Yn; ηold)

=
K∑
k=1

N∑
n=1

[
log(wk) +

M∑
i=1

I(Yn,1 = i) log(πk,i) +
M∑
i=1

M∑
j=1

bn,ij log(ak,ij)

]
P old
nk ,

where bn,ij is the number of transitions from state i to state j for subject n and P old
nk =

P (Cn = k|Yn; ηold) is the posterior probability of cluster assignment given by (43).

The parameters to be optimized in the M-step are (πk, Ak, wk). They are subject to the

constrains
∑K

k=1wk = 1,
∑M

i=1 πk,i = 1 and
∑M

j=1 ak,ij = 1. In the Appendix we show that

the updated formulas for each iteration are

wnewk =

∑N
n=1 P

old
nk∑K

k=1

∑N
n=1 P

old
nk

, (4.6)

πnewk,i =

∑N
n=1 P

old
nk I(yn,1 = i)∑M

i=1

∑N
n=1 P

old
nk I(yn,1 = i)

, (4.7)

anewk,ij =

∑N
n=1 P

old
nk bn,ij∑M

j=1

∑N
n=1 P

old
nk bn,ij

, (4.8)
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where I(B) is the indicator of the set B. Notice that at each step the parameter estimates

wnew, πnew, and anewk,ij satisfy the constraint that they are probability vectors.

4.3 SIMULATION

Previous work (Cadez et al., 2003) did not study the properties of Markov mixture models,

either theoretically or by simulation. In this section, we use simulation for both situations

when model assumptions hold and when there are violations of the time homogeneity or

Markovian assumption.

Motivated by the bipolar study and preliminary results, we consider six clusters on a

four-state space. Three of them are homogeneous, one called a “stayer” cluster (TMs), one

called a “mover” cluster (TMm), and one called a “sub-chain” cluster (TMsub) in which the

Markov chains only take values in a subset of the state space. In the first simulation, we mix

sequences from these three clusters. The other three clusters violate the model assumptions

in terms of homogeneity and Markovian property. Two of them are non-homogeneous, one

is a “slow-change non-homogeneity” cluster (TMsc) in which the transition matrix changes

from stayer to mover type as time goes by; the other is a “quick-change non-homogeneity”

cluster (TMqc) with a change happening in a single step from TMm to TMs in the middle

of the observation period. Finally we consider a “noisy” cluster (TMn) which consists of

independent sequences without Markov dependence between consecutive observations. An

example from each cluster is given in Figure 3. The transition matrices of the simulated

clusters are given below.

40



TMs =


0.9 0.05 0.01 0.04

0.1 0.85 0.02 0.03

0.02 0.01 0.95 0.02

0.02 0.03 0.1 0.85

 TMm =


0.6 0.1 0.1 0.2

0.1 0.6 0.2 0.1

0.2 0.1 0.4 0.3

0.2 0.3 0.1 0.4



TMsub =


0.8 0.1 0.1 0.0

0.1 0.8 0.1 0.0

0.1 0.1 0.8 0.0

0.0 0.0 0.0 0.0

 TMn =


0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25



TMsc =


0.9 cos2( tπ

u
) 0.9 sin2( tπ

u
) 0.05 0.05

0.1 0.9 cos2( tπ
u

) 0.3 sin2( tπ
u

) 0.6 sin2( tπ
u

)

0.3 sin2( tπ
u

) 0.1 0.9 cos2( tπ
u

) 0.6 sin2( tπ
u

)

0.5 sin2( tπ
u

) 0.4 sin2( tπ
u

) 0.1 0.9 cos2( tπ
u

)



For the first order Markov mixture model, we randomly choose 12 sets of initial values

for the EM algorithm and iterate until a convergence criterion (Bohnig et al., 1994) is met or

at most 500 iterations for each set of initial values. The one with the largest log-likelihood

value is chosen as the final output.

In each simulation we generate N sequences from the transition matrices above. Each

sequence has T observations. We compare the results of different sample sizes (N = 50, 100

for each cluster) and observation time points (T = 50, 100, 200). In the TMsc model u is a

tuning parameter that determines the speed with which TMsc changes; the three cases we

study are u = 550 when T = 200, u = 300 when T = 100, and u = 150 when T = 50.

The accuracy of this procedure given in Table 5 is assessed for choosing the right number

of clusters to see how well the Markov mixture model can cluster the observed sequences

correctly. We first consider mixing three homogeneous clusters (TMm, TMs, TMsub). Results

of the model performance are shown in the upper panel in Table 1. Next, we try to mix

homogeneous and non-homogeneous clusters for a three-cluster case and a five-cluster case.

For each simulation we use 500 replications.
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The simulation results show that when choosing the right number of clusters, with suf-

ficient observations (T = 100, 200) this model is able to separate out the clusters with an

accuracy above 90.0%, not only in the ideal situation (> 96.0%) but also when mixing several

non-homogeneous Markov clusters and a noisy cluster. Its performance appears to depend

more on the number of observation time points rather than the number of sequences in a

cluster. When there are clusters that do not fit the model assumptions, the accuracy of this

clustering method seems to be more affected by an insufficient number of observations.
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4.4 APPLICATION TO BIPOLAR YOUTH STUDY

The Course and Outcome of Bipolar Youth (COBY) study is a multicenter study being con-

ducted at the University of Pittsburgh, Brown University and the University of California Los

Angeles .Its aim is to characterize and prospectively follow youth with BD. In this study, 412

children and adolescents were followed between 6 months to 10 years and interviewed every

6 months were included. The average number of follow-up weeks is 340.8± 115.4. All youth

were interviewed at intake using the Kiddie Schedule of Affective Disorders and Schizophre-

nia Present-Lifetime version (KSADS-PL) (Kaufman, et al. 2005) and over follow-up with

the Longitudinal Interval Assessment Evaluation (LIFE) (Keller, et al. 1987). Week-by-week

longitudinal change in psychiatric symptoms was assessed using the LIFE and quantified us-

ing the Psychiatric Status Rating (PSR) scale (Keller, et al. 1987). The PSR uses numeric

values linked to the Diagnostic and Statistical Manual for Mental Disorders (DSM-IV) crite-

ria (American Psychiatric Association 2000). It has 6-point subscales for mania, hypomania,

and depression. Based on clinical relevance, it is summarized into a 12-point mood rating

score and a 4-point mood rating score (Table 6) for the analysis of the longitudinal pattern

of youth BD. Examples of the observed sequences are given in Figure 4 and Figure 5. We

use a heat map to show the observed sequences in Figure 6. Each row is an observed se-

quence, and different colors represent different mood states. (red – euthymic mood state;

green – mania/hypomania mood state; yellow – depression mood state; blue – mixed mood

state; white – missing). Our primary research interest is to learn about the mood transition

patterns of children and adolescents with BD and cluster these subjects according to their

patterns of mood changes. These findings could be instrumental for the understanding of

the longitudinal course and treatment of BD and further research development.
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Figure 3: A simulation example in each cluster
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Table 5: Simulation study for Markov mixture model when model assumptions fail

N T True clusters average accuracy (sd)

100 200 TMs, TMm, TMsub 100.0% (< .001)

100 100 TMs, TMm, TMsub 99.8% (0.008)

100 50 TMs, TMm, TMsub 98.1% (0.011)

50 200 TMs, TMm, TMsub 99.9% (0.001)

50 100 TMs, TMm, TMsub 99.6% (0.007)

50 50 TMs, TMm, TMsub 96.6% (0.031)

100 200 TMs, TMm, TMsc 99.9% (0.001)

100 100 TMs, TMm, TMsc 99.5% (0.003)

100 50 TMs, TMm, TMsc 96.5% (0.010)

100 200 TMs, TMm, TMqc 99.7% (0.003)

100 100 TMs, TMm, TMqc 96.9% (0.013)

100 50 TMs, TMm, TMqc 87.1% (0.029)

100 200 TMs, TMm, TMsc, TMn , TMqc 97.3% (0.047)

100 100 TMs, TMm, TMsc, TMn , TMqc 93.7% (0.049)

100 50 TMs, TMm, TMsc, TMn , TMqc 80.2% (0.067)

50 200 TMs, TMm, TMsc 99.9% (0.001)

50 100 TMs, TMm, TMsc 99.4% (0.005)

50 50 TMs, TMm, TMsc 95.8% (0.017)

50 200 TMs, TMm, TMqc 99.6% (0.005)

50 100 TMs, TMm, TMqc 96.9% (0.016)

50 50 TMs, TMm, TMqc 86.0% (0.042)

50 200 TMs, TMm, TMsc, TMn , TMqc 96.2% (0.063)

50 100 TMs, TMm, TMsc, TMn , TMqc 92.1% (0.069)

50 50 TMs, TMm, TMsc, TMn , TMqc 78.5% (0.065)
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Previous work (Lopez, 2008) using the first two years of this dataset with a mixture

Markov model to cluster the sequences found subgroups of mood-change patterns. Then

HMMs were applied to incorporate covariates, such as age and gender, to identify factors

that had effects on the mood transition. Recent work of Birmaher and his colleagues (2014)

applied latent growth curve models to the COBY data and found four well-separated clusters.

Accordingly, we believe that the mood change patterns among BD youth are heterogeneous.

It is interesting and important to investigate these results from different perspectives in order

to have a better understanding of how they differ.

In our study we analyze up to 10 years longitudinal data, and we are cautious at the

clustering stage. Thus, before clustering we pay special attention to the model selection

methods for choosing the optimal number of clusters and number of variables. Then we

consider both semi-parametric (i.e. HMMs clustering algorithm) and parametric (i.e. MxM)

methods for clustering the mood trajectories of the BD youth. Our goal is to find the well-

separated and interpretable clusters, which would lay down a better foundation for including

explanatory variables within clusters.

We apply the first order Markov mixture model to study the transition pattern among

these four mood states and use AIC and BIC to choose the number of clusters. Both measures

decrease as the number of clusters increases. The BIC shows the biggest jump between two

and three clusters, then decreases more gradually for larger numbers of clusters, thus we chose

the three-cluster solution. The largest cluster contains 248 subjects. The mood states of

subjects in this cluster are fairly stable. The estimated probabilities of remaining in current

mood state in the next observed time point are all above 0.9. The next largest cluster has

119 subjects. The probabilities of remaining in the current mood states reduce to 0.75 for

those unhealthy mood states (i.e. depressed, maniac, mixed). The smallest cluster has 45

subjects. Mood fluctuations are much more common in this cluster than the first two. These

three clusters are presented in Table 7 and Figure 7. Apparently, the smallest cluster on

the right appears more serrated, while the largest cluster on the left shows more blocked

coloring.

In fact, from the visualization of the largest cluster we notice there are in the main

two different colors: red and blue. To further reduce heterogeneity, we carry out a hybrid
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Table 6: Mood rating scale in bipolar youth study

Depression Mania Hypomania 12-point Score 4-point Score

5− 6 1 1− 2 1 : MDD* - Pure 3 : Pure Depression

3− 4 1 1− 2 2 : Subdepression only 3 : Pure Depression

1− 2 1 1− 2 3 : Euthymic (well) 1 : Euthymic (well)

1− 2 1 3− 4 4 : Submania only 2 : Pure mania/hypomania

3− 4 1 3− 4 5 : Submania / Subdepression 4 : Mixed

5− 6 1 3− 4 6 : Submania / MDD 4 : Mixed

1− 2 1 5− 6 7 : Hypomania - Pure 2 : Pure mania/hypomania

3− 4 1 5− 6 8 : Hypomania / Subdepression 4 : Mixed

5− 6 1 5− 6 9 : Hypomania /MDD 4 : Mixed

1− 2 5− 6 1− 2 10 : Mania - Pure 2 : Pure mania/hypomania

3− 4 5− 6 1− 2 11 : Mania / Subdepression 4 : Mixed

5− 6 5− 6 1− 2 12 : Mixed state 4 : Mixed

* MDD is short for Major Depressive Disorder.
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Figure 4: Example sequences (12-point rating score)

Figure 5: Example sequences (4-point rating score)
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clustering scheme to further split the largest cluster according to the percentage of time a

subject stays on certain mood state, using the K-means algorithm. As a result, we find two

subgroups within the largest cluster. One has 125 subjects who are most time in euthymic

mood. The average percentage of time in euthymic mood state is 75.9%. The other has 123

subjects who are “mostly mood symptomatic”: 38.0% of time in mixed mood state, 27.3%

of time in depressed mood and 16.1% of time in manic/hypomanic mood state, on average.

The two subgroups are displayed in Figure 8.

We conclude that BD children and adolescents are not a homogeneous group. More than

half of them remain in a relatively stable mood for a long time. Only around 10% of BD

youth have mood switches at a high frequency. Since the transition patterns appear to be

different among clusters, follow-up studies, such as including covariates to explain differences

in transition matrices, should be conducted within clusters.
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4.5 DISCUSSION

To better understand the recurrent mood fluctuations usually observed in bipolar disorder,

in this chapter we introduced the Markov mixture model to cluster discrete sequences. Un-

like traditional longitudinal models focusing on trends over time, this method provides a

novel angle to analyze longitudinal data in a mental health study, which is to characterize

the discrete sequences based on their state transition patterns. The model demonstrates a

satisfactory and stable performance in the simulation study, even when some of the model

assumptions do not hold. In the BD application, we find that the mood transition patterns

among children and adolescents with BD are heterogeneous; in fact, there are three well

separated more homogeneous clusters based on mood transition patterns. To enhance ho-

mogeneity, we adopt a hybrid clustering scheme, using a K-means algorithm to further split

the largest cluster according to the percentage of time in each mood state. As a result, we

separate out those children and adolescents who are in euthymic mood state most of the

time from those are more often mood symptomatic, within the largest stayer cluster.

However, there are several challenges in the application of first-order Markov mixture

models to BD clustering problem. First, the cluster assignments may change when we start

with different initial values in the EM algorithm. When the number of clusters increases

to four or more, the algorithm gets trapped in local maxima, which is common in mixture

model clustering algorithms. Thus, we regard this instability as a useful complement to the

AIC or BIC criteria for choosing the number of clusters. Second, some observed sequences

show departures from time homogeneity of a Markov chain by a chi-square test (Anderson,

et al. 1957; Bianca, et al. 1988). In the simulation, we observe that a Markov mixture model

can separate the time-inhomogeneous Markov chains, even though it does not detect the

change in the transition matrices. We intend to study this phenomenon next by including

explanatory variables which may help relate the mood state changes over time and by those

factors. Third, the estimated transition matrices may not always represent the transition

patterns well. For instance, when the cluster consists of time-inhomogeneous Markov chains,

the transition matrix would change over time and cannot be reflected in one estimated

transition matrix. Consider the smallest cluster (the most frequently mood-change cluster)
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Figure 6: Weekly mood rating of 412 children and adolescents with bipolar disorder.
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Figure 7: Markov mixture model separates three clusters in bipolar youth study

Figure 8: Splitting the largest cluster in bipolar youth study
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Table 7: The estimated transition matrix in bipolar youth study

Cluster 1 (n = 248) Cluster 2 (n = 119) Cluster 3 (n = 45)
0.97 0.01 0.02 0.00

0.04 0.93 0.01 0.02

0.05 0.00 0.93 0.02

0.01 0.01 0.02 0.96




0.87 0.07 0.05 0.01

0.21 0.71 0.03 0.05

0.10 0.03 0.76 0.11

0.03 0.05 0.16 0.77




0.68 0.17 0.10 0.05

0.36 0.35 0.15 0.14

0.20 0.15 0.53 0.13

0.13 0.18 0.18 0.51



in the BD study for another example. We find that even though all the sequences in this

cluster switch mood frequently, the change “preferences” vary: some change from mixed

to euthymic mood states more often while others change from depressed to mixed mood

states more often. Hence, we should be more cautious to label the clusters simply based

on the estimated model parameters. Visualization tools, such as a heat map, are useful to

get a better sense of the characteristics of clusters beyond estimated transition matrices.

Further inference and investigation are needed for more compelling conclusion. Last but

not least, existing methods for testing Markov assumption [19] are based on a stationarity

assumption, which need not hold in the BD study. In this paper, we focus on the first-

order switch patterns, since it has a clear clinical sense. However, we do not rule out the

possibility that there may be higher-order connections. In sum, clustering usually is an

exploratory stage in a study. In the next step, an interesting question for psychiatrists and

researchers is what explains the mood change patterns in each cluster.
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