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POD REDUCED-ORDER MODELING FOR INVERSE MATERIAL

CHARACTERIZATION FROM TRANSIENT DYNAMIC TESTS

Chenxi Hou, M.S.

University of Pittsburgh, 2014

Inverse problem solution methods have been widely used for nondestructive material charac-

terization problems in a variety of fields, including structural engineering, material science,

aerospace engineering and medicine. A traditional inverse problem solution approach for ma-

terial characterization is to create a numerical representation of the system, such as a finite

element model, combined with nonlinear optimization techniques to minimize the difference

between the experimental response and the numerical representation. Unfortunately, due to

the high computational cost of analyzing the numerical representation of many systems, it

can often be impractical to solve a given inverse problem by this traditional method.

A strategy for using reduced-order modeling, in particular the proper orthogonal decom-

position (POD) model reduction approach in inverse material characterization problems is

presented in this work. POD is used to derive a low-dimensional basis from a finite set

of full-order numerical analyses of the system. The governing equations of the system are

projected onto the obtained POD basis to construct a reduced-order model (ROM). The

ROM is then used to replace the full-order modeling to reduce the high computational cost,

while still keeping the accuracy of the response close to that of the full-order model. After

that, the ROM is combined with a global optimization algorithm to identify an estimation

of the material properties in the system. A case study of a damaged aluminum plate, which

is subjected to a time-dependent harmonic sinusoidal excitation, is chosen to demonstrate

that the ROM strategy is capable of accurately identifying material parameters of a system

with minimal computational cost.
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1.0 INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Nondestructive evaluation(NDE), is a wide group of analysis techniques used in science and

industry to evaluate the properties of a material, component or system from some type of

nondestructive testing without causing damage[1]. After many years of development, NDE

methods have been applied on a variety of fields, including structural engineering, mechanical

engineering and medicine[1, 2, 3, 4, 5]. For material characterization problems, NDE can be

interpreted as an inverse problem. The inverse problem for material characterization is the

problem of defining the material behavior of a system through response observations provided

by some physical testing method(e.g., nondestructive testing)[6]. The theory of inverse

problem creates the theoretical foundation for NDE application on material characterization.

A large amount of work has been done for nondestructive inverse material characterization

problems and already applied in a variety of fields, regardless of the material is stiff structural

material or soft tissues[7, 8, 9, 10, 11, 12].

A traditional approach of inverse material characterization method is to create a numerical

representation of the material, like a finite element(FE) model, combined with nonlinear

optimization techniques to estimate the properties and minimize the difference between the

realistic experimental response and the numerical representation[12]. However, the compu-

tational cost of traditional (i.e. full-order) numerical representations is usually relatively

high. Combined with the computational requirement of the global optimization method,

this traditional inverse problem strategy can be impractical. Therefore, application of an-

other method to reduce the computational expense of traditional numerical representations

becomes necessary for the inverse material characterization problem.
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Proper orthogonal decomposition(POD), is a method to create a low-dimensional basis that

has the best approximation in an L2 average sense that can be used to create a numerical

representation of the system. This basis can be truncated as a low-dimensional basis which

still has a good accuracy to represent the high-dimensional experimental or numerical simu-

lation data. Then the low-dimensional basis can be used as the approximate representation

of the high-dimensional model and called reduced-order model (ROM) [13]. This technique

has been widely implemented in different fields from turbulent fluid flows, optimal control,

heat transfer, material characterization to many other fields [12, 13, 14, 15, 16]. After the

POD method is implemented, the numerical representation is approximately represented

by the POD ROM to reduce the high computational cost which makes the nondestructive

inverse material characterization strategy practical and applicable.

1.2 PROPER ORTHOGONAL DECOMPOSITION

POD is a powerful and elegant method for data analysis, which aims at finding a set of op-

timal low-dimensional data basis description to represent an ensemble of high-dimensional

experimental or simulation data[13]. POD was developed by different people for different

applications and was known by different names such as principal component analysis (PCA),

singular value decomposition (SVD) and Karhunen-Loéve decomposition (KLD). These tech-

niques were also widely used in applications of data analysis, image processing, signal analysis

and many engineering fields in resent years[17, 18, 19, 20, 21, 22].

To demonstrate the mathematical interpretation of POD, one can suppose to approximate

a vector valued function ~u(~x, t) over some domain of interest as a finite element sum in the

variables-separated form[23, 24]

~u(~x, t) =
m∑
i=1

αi(t)~φi(~x), (1.1)

where α(t) is the POD coefficients and ~φ(~x) is the POD basis. The ideal expectation of

this approximation is m tends to infinity where the approximation becomes exact, but the

best approximation usually cannot be guaranteed. The representation of this equation is
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not unique. The properties and values of the POD basis are always changing when different

methods are utilized to form this POD representation, such as the methods mentioned above.

All kinds of POD basis regardless of the properties and values are subjected to orthogonality

constraints which is stated as ∫
Ω

~φi(~x) · ~φj(~x)d~x = δij, (1.2)

where δij denotes the Kronecker delta symbol that is defined as

δij =

 0 for i 6= j

1 for i = j
(1.3)

For a sequence of certain given POD basis, there is a certain choice of the sequence of

coefficients. Since the POD basis has orthogonality constraints, the certain sequence of

coefficients for a certain sequence of POD basis can be obtained as

αi(t) =

∫
Ω

~u(~x, t) · ~φi(~x)d~x (1.4)

After the POD basis is obtained, using certain POD basis members to do the approximation

follows the rules that each selected POD basis members gives the best approximation in a

least square sense for Eqn.1.1, which means, for example, the first five selections of POD

basis members give the best five-term approximation and the first ten selections of POD basis

members give the best ten-term approximation of the function. Now the different methods

of computing the POD basis are explained in the following.
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1.2.1 Principal Component Analysis

PCA was developed as a statistical technique and first presented by Pearson(1901) and

Hotelling(1933)[25]. Its purpose is to identify the dependence structure with collection of

multivariate stochastic data. As a discrete version of POD[13], PCA has the same objective

with POD that reducing the dimensionality of the data while maintaining as much infor-

mation of the data as possible. To achieve this goal, PCA extracts the original variables in

the data and transforms them into new uncorrelated variables which are called the principle

components. The principle components are arrayed as descending order by the variations

content so that the first principle component contains the most variation in the data and the

second principle component contains the second most variation and so on. These principle

components are used to rebuild the data and the dimensionality of the data is reduced by

taking the first several principle components to approximately represent the whole data set,

which is similar with selecting the POD basis members which give the best approximation

by using current POD basis members. The derivation of PCA is explained in [25]. The basis

obtained by this method is corresponding to the eigenvectors obtained by the eigenvalue

problem of the covariance matrix Σ which is denoted as

Σ = E
{

(U − E(U))(U − E(U))T
}

(1.5)

where U is the discrete data set. The eigenvalue problem of Σ is described as

ΣV = λV (1.6)

The ith eigenvalue λi means the corresponding principle component contains λi variation of

the data. Finally, the approximation problem is described as

U =
m∑
i=1

αiφi (1.7)

which is the same as the continuous form of POD shown as Eqn.1.1. In this equation, m

is the dimension of the covariance matrix Σ, αi(i = 1, 2, ...m) are the ith principle compo-

nents, φi(i = 1, 2, ...m) are the eigenvectors of Σ corresponding to the descending-ordered

eigenvalues of Σ. The dimensionality is reduced by set m in Eqn.1.7 equal to k where k < m.
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1.2.2 Karhunen-Loéve Decomposition

KLD is another decomposition approach that was independently developed by Karhuen and

expanded by Loéve during 1940s[23, 25]. This theory is developed regarding optimal series

expansions of continuous stochastic processes. It can be regarded as the extension of PCA

to infinite-dimensional spaces such as the contiguous-time function space. To reduce the

dimensionality of the data while maintain a good accuracy of the low-dimensional data,

instead of measuring the maximum variance contained in the principle component, KLD

measures the minimum mean-square error produced by the approximation. The detail of

derivation of discrete KLD is shown in [25]. As the same with PCA, the discrete KLD also

solves the eigenvalue problem of the covariance matrix Σ shown in Eqn.1.5. Then the basis

is obtained by projecting the eigenvectors onto the data set

φi = ViU (1.8)

where Vi(i = 1, 2, ...,m) are the eigenvectors of Σ in the order of corresponding eigenvalues

of Σ in descending order. Then the coefficients are obtained by

αi = Uφi (1.9)

which is a discrete process of Eqn.1.4. If k(k < m) basis members are selected to approximate

the data, the mean-square error ε2(k) is computed as

ε2(k) =
m∑

i=k+1

λi (1.10)

where λi(i = k+1, k+2, ...,m) mean the ith eigenvalues of Σ in descending order. When the

mean-square error remains at a satisfied minimal value after different k for small to large is

tried, the low-dimensional approximation can be formed by the first k basis members, which

is shown as

U =
k∑
i=1

αiφi (1.11)
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1.2.3 Singular Value Decomposition

SVD was established and improved by serval people from 1870s to 1930s[25]. Unlike the other

two methods that compute the eigenvalues and eigenvectors to measure the variances and

least-square errors to form the low-dimensional approximation of the data, SVD computes

the singular values to do the approximation. One advantage of SVD is that it is able to be

used for a non-symmetric matrix while the other two can only deal with symmetric matrix.

A data set matrix U can be written in the SVD form as[23]

U = SΛDT (1.12)

where S is a m ×m orthogonal matrix, D is a n × n orthogonal matrix and Λ is a m × n

matrix with r(r = min(m,n)) nonnegative values σi(i = 1, 2, ..., r) on the diagonal and zeros

on the other positions. S is called the left singular vector matrix and D is called the right

singular vector matrix of matrix U . The values on the diagonal of σi is arranged as the

descending order, i.e. σ1 ≥ σ2 ≥ ... ≥ σr ≥ 0. Each of the σ is unique and called the

singular value of matrix U . If U is real, S and D are always orthogonal. However, SVD does

have strong relationship with the other two eigenvalue decomposition methods. If a UT is

multiplied on the left side of U in Eqn.1.12, D can be treated as the eigenvector of matrix

UTU and Λ2 becomes the eigenvalue of UTU .

UTU = DΛTSTSΛDT

=⇒ UTUD = DΛ2
(1.13)

Similarly, if a UT is multiplied on the right side of U in Eqn.1.12, S becomes the eigenvector

of matrix UUT and Λ2 becomes the eigenvalue of UUT .

UUT = SΛDTDΛTST

=⇒ UUTS = SΛ2
(1.14)

Therefore, each of the singular value is equal to the corresponding eigenvalue of U . Then

treat SΛ as Q, Eqn.1.5 can be written as

U = QDT =
m∑
i=1

qid
T
i (1.15)
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which is the same as Eqn.1.1. Then the low-dimensional approximation is done by replacing

S and D with their first k(k < m) columns with use of the first k singular values, which

means replace Λ with its first k rows and first k columns. These three methods are actually

equal to each other and the detail of demonstration is in [25, 26].

1.2.4 Proper Orthogonal Decomposition

For the POD approach, each solution field over the position domain at certain time instant

is called a snapshot. Next, the inner product (·, ·) and the L2−norm ‖ · ‖L2(Ω) for the Hilbert

space L2(Ω) [13] are defined as

(~f,~g) =

∫
Ω

~f · ~gdΩ ∀~f,~g ∈ L2(Ω) (1.16)

and

‖~y‖2
L2

= (~y, ~y) ∀~y ∈ L2(Ω) (1.17)

Then a finite dimensional subspace in the Hilbert space is defined as Vm = span{φi}mi=1 with

a mode basis {φi}mi=1. Remember that the approximation is represented as

~u(~x, t) =
m∑
i=1

αi(t)~φi(~x) (1.18)

For ~u(~x, t) at a exact instant k, ~uk(~x) is a snapshot, and is represented as

~uk(~x) =
m∑
i=1

αki~φi(~x) (1.19)

The best approximation of a snapshot u∗k can be defined as

‖~uk − ~u∗k‖2
L2

= inf‖~uk − ~ν‖2
L2

∀ν ∈ Vm (1.20)

For an orthogonal basis, the best approximation u∗k can be found by projecting that field on

to the basis, which can be written as[12]

~u∗k =
m∑
i=1

(~φi, ~uk)

‖~φi‖2

~φi (1.21)

7



When all the snapshots are considered, the best approximation among all the snapshots can

be found by solving an optimization problem which is shown as

min〈‖~uk − ~u∗k‖2
L2
〉 (1.22)

with respect to

‖~φi‖2
L2

= 1 (1.23)

where 〈·〉 is the average symbol. Substitute Eqn.1.21 and introduce a Lagrange multiplier λ

into Eqn.1.22. It gives

min
〈
‖~uk‖2

L2
− (~φi, ~uk)

2 + λ(‖~φi‖2
L2
− 1)

〉
(1.24)

Then the minimization problem can be converted to a maximization problem

max
[
〈(~φi, ~uk)2〉 − λ(‖~φi‖2

L2
− 1)

]
(1.25)

After some operations(details are explained in [27]), this maximization problem can be trans-

formed into an infinite dimensional eigenvalue problem which is shown as∫
Ω

〈~uk(~x) · ~uk(~ξ)〉~φi(~x)d~x = λ~φi(~ξ) (1.26)

There are several ways to solve this problem, such as the direct method and the method of

snapshot[15], both of which can reduce the computational effort under specific circumstance.

When the number of the grid points of the numerical representation is relatively small, the

direct method is quite efficient to solve this problem. When the number of snapshots is

small, the method of snapshot is more efficient, which is going to be discussed in detail later

in this paper.
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1.3 INVERSE PROBLEM FORMULATION AND SOLUTION STRATEGY

In structure dynamics, the forward problem usually calculates the response of the structure

such as displacement, strain and velocity with known properties, constraint and boundary

conditions. On the other hand, the inverse problem here consists of the computation of the

properties, geometry and boundary conditions from the response observed. For example, if

an acoustic wave is scattered by the obstacle or damage of a material, one can observe the

wave scattering far away from the obstacle or damage and obtain the properties, position

or severity of the obstacle or damage through analyzing the wave’s frequency, degree of

attenuation and other properties.

In order to obtain a solution of inverse problem, the problem is presented as an optimization

problem. This optimization problem seeks to identify the inverse problem solution parame-

ters that minimize some error function that quantifies the difference between the measured

response and the response predicted by the full-order model for a given set of parameter

estimates. The error function for this work is defined as[12]

J(~γ) =
1

Np

∥∥pexp(~x, t)− psim(~γ, ~x, t)
∥∥
L2(~x,t)

(1.27)

where ~γ means the vector of parameters to be determined. Np is the total numbers of discrete

points of the numerical representation. pexp is the experimental response with all parameters

of the defect and the time instance known. psim denotes the response of the numerical

representation with a set of trial parameters ~γ and a trial position ~x at a time instant t.

‖ · ‖L2(~x,t) means the discrete L2−norm at the measurement point and time. Therefore, J(~γ)

can be considered as the L2−error of the inverse problem approximation.

Because of the fact that closed-form solutions are only possible to be found for simple ge-

ometries and boundary condition problems, finding analytical solutions for complex system

inverse problem needs some other methods for help. Therefore, combination of numeri-

cal representation of the complex system as mentioned above and nonlinear optimization

methods becomes necessary to solve the inverse problem under this circumstance. However,

solving the numerical representations alone is already a computationally process due to the

complicated geometries and boundary conditions, which largely compresses the space for
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computing nonlinear optimization method. In addition, these inverse problems are found

to have non-convex surfaces with multiple local solutions and the search of parameters can

vary in a large range of the material[12]. Therefore, an optimization algorithm which is able

to search a broad range of material parameters with the fewest numerical analysis is needed

here .

A lot of optimization algorism have been developed and applied into optimization problems

related to inverse problems, such as genetic algorithm (GA), random search method(RS) and

artificial neural network surrogate model methods[28, 29, 30, 31, 32, 33]. Generally, gradient

based methods and non-gradient based methods are the two main types of optimization

methods and both of them have inherent advantages and disadvantages. For the gradient

based method, it typically only needs relatively small number of steps to converge to a

solution, but is also very likely to converge into a local minimized solution if started far from

the global solution. On the other hand, the non-gradient based method requires no gradient

information and is more robust to converge to a global minimized solution, but at the same

time, needs more steps to converge to a global solution, which makes this method inefficient

and cost higher computational expense.

In order to obtain an accurate solution and make the search process efficient and consistent,

the search space of the unknown material properties needs to be relatively wide enough to

provide enough information. The methods such as GA and RS are used to calculate a global

minimum solution. However, almost all of the global search methods need a large amount

of numerical analysis to finish the whole optimization process which makes the optimiza-

tion process computationally expensive and time-consuming. Alternatively, surrogate-model

methods can be used instead to solve the optimization problem with very little computa-

tional expense[34, 35, 36]. But surrogate model methods also have the difficulty to converge

to a global minimum solution. A hybrid optimization algorithm, called the Surrogate-Model

Accelerated Random Search(SMARS), which combines both the advantages of global search

method and surrogate-model method, is used in this work to reduce the computation cost

while obtain a global minimum solution at the same time. The details of this algorithm will

be introduced later.
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2.0 FORWARD PROBLEM FORMULATION

2.1 TIME DEPENDENT TRANSIENT DYNAMIC SOLID MECHANICS

PROBLEM

The forward numerical representation considered in this work is a time dependent transient

dynamic problem in solid mechanics and is defined as a boundary value problem (BVP). This

solid mechanics system can be represented by a partial differential equation (PDE) which is

derived from the standard balance of linear momentum. The body force are not considered

here, so the governing equation is given by

ρ~̈u(~x, t)−∇ · σ(~x, t) = ~0 on Ω× I (2.1)

Where ρ is the mass density of the solid, ~x is the spatial position vector, σ(~x, t) is the solid

stress tensor, ü(~x, t) is the acceleration vector, t is the time instant, Ω is the solid domain and

I is the time domain. Based on Cauchy’s stress principle, the natural boundary condition is

given by

σ(~x, t) · ~n(~x) = ~T (~x, t) on ΓT × I (2.2)

and the essential boundary condition is given by

~u(~x, t) = ~g(~x, t) on ΓD × I (2.3)

where n(~x) is the outward vector normal to the solid surface, T (~x, t) is the prescribed bound-

ary traction vector, u(~x, t) is the solid displacement field, g(~x, t) is the prescribed boundary

displacement, ΓT is the portion of solid boundary where external traction is prescribed and

ΓD is the portion of solid boundary where displacement is prescribed.
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To solve this time dependent dynamic problem, the initial value of displacement and velocity

need to be specified additionally as

~u(~x, t0) = ~u0(~x) = ~0 on Ω (2.4)

and

~̇u(~x, t0) = ~v0(~x) = ~0 on Ω (2.5)

where t0 is the initial time instant, u0(~x) is the initial displacement vector and v0(~x) is the

initial velocity vector. The initial displacement and initial velocity are set to be zero at the

initial time step.

Assume the material considered here is a linear elastic body. Then the strains and stresses

can be assumed to be linear elastic, which can be written as

σ(~x, t) = CIV : ε(~x, t) (2.6)

where CIV is the fourth order elasticity tensor and ε(~x, t) is the strain tensor. In Voigt

notation, it can be written as

{σ} = [D]{ε} (2.7)

and [D] is called the elasticity matrix. To simplify the process, assume the solid considered

here is isotropic and the problem is a two dimensional problem so that this problem can be

treated as a 2-D plane stress problem. Then the elasticity matrix [D] becomes a three-by-

three matrix and there are only two independent constants. The Young’s modulus E and the

Poisson ratio ν are needed to determine the elasticity matrix [D] for isotropic linear elastic

solid. The elasticity matrix [D] can be written as

[D] =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 (2.8)

For further simplification, the Lamé’s Parameters are introduced here. In linearly elasticity,

the Lamé parameters consist of two parameters, λ, called the Lamé’s first parameter, and
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µ, called the Lamé’s second parameter, which is also referred as the shear modulus written

as G. These two parameters are defined as

λ =
Eν

1− ν2
(2.9)

and

µ =
E

2(1 + ν)
(2.10)

Therefore, the elasticity matrix [D] is simplified as

[D] =


2µ+ λ λ 0

λ 2µ+ λ 0

0 0 µ

 (2.11)

Then the Eqn.2.7 can be written as
σxx

σyy

σxy

 =


2µ+ λ λ 0

λ 2µ+ λ 0

0 0 µ



εxx

εyy

2εxy

 , (2.12)

or

σ(~x, t) = 2µε(~x, t) + λTr(ε(~x, t))I (2.13)

where Tr() is the trace operator and I is the identity tensor. Furthermore, to obtain the

relationship between strains and displacement, the small strain definition is introduced and

the relationship is represented as

ε(~x, t) =
1

2

[
∇~u(~x, t) + (∇~u(~x, t))T

]
(2.14)

Then substitute Eqn.2.14 into Eqn.2.13. It gives

σ(~x, t) = µ
[
∇~u(~x, t) + (∇~u(~x, t))T

]
+

1

2
λTr(

[
∇~u(~x, t) + (∇~u(~x, t))T

]
)I (2.15)
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2.2 FINITE ELEMENT FORMULATION

To solve the problem described in Eqn.2.1, the Galerkin weak-form finite element method is

implemented here. With the divergence theorem, essential boundary condition and natural

boundary condition applied, the weak form of the transient time dependent dynamic problem

of solid mechanic is expressed as∫
Ω

σ(~x, t) : ∇~ω(~x, t)dV +

∫
Ω

ρ~ω(~x, t) · ~̈u(~x, t)dV −
∫

ΓT

~ω(~x, t) · ~T (~x, t)dS = ~0 (2.16)

where ω(~x, t) is an arbitrary weight function which meets all the essential boundary con-

ditions homogeneously of the domain. To obtain the algebraic system of this equation,

the domain is meshed into finite elements and the displacement, acceleration and weight

functions are approximated within the element field as

~u(~x, t) = [N(~x)]{ue(t)} (2.17)

~̈u(~x, t) = [N(~x)]{üe(t)} (2.18)

and

~ω(~x, t) = [N(~x)]{ωe(t)} (2.19)

where {ue(t)} and {ωe(t)} are the nodal displacement vector and nodal weight function

vector, respectively, and [N(~x)] is the shape function matrix. Then the strain and the

gradient of weight function can be written as

ε(~x, t) = [B(~x)]{ue(t)} (2.20)

and

∇~ω(~x, t) = [B(~x)]{ωe(t)} (2.21)

where [B(~x)] is the matrix of spatial derivatives of the shape function matrix. After ap-

plication of these approximations and combined with the assumption that mass density is
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a constant, the algebraic system of the weak-form functions of the full-order model can be

written as∑
elements

{ωe(t)}T
[∫

Ωe

[B(~x)]T [D][B(~x)]dV {ue(t)}+ ρ

∫
Ωe

[N(~x)]T [N(~x)]dV {üe(t)}

−
∫

Γe
T

[N(~x)]T · ~T (~x, t)dS

]
= 0

(2.22)

This equation must be true for any arbitrary {ωe(t)}T and when treat∑
elements

∫
Ωe

[B(~x)]T [D][B(~x)]dV = [K] (2.23)

∑
elements

ρ

∫
Ωe

[N(~x)]T [N(~x)]dV = [M ] (2.24)

and ∑
elements

∫
Γe
T

[N(~x)]T · ~T (~x, t)dS = {F (t)} (2.25)

Eqn.2.22 can be written as

[M ]{ü(t)}+ [K]{u(t)} = {F (t)} (2.26)

In this algebraic system, [M ] is the global mass matrix. [K] is the global stiffness matrix

and {F (t)} is the external force vector.
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2.3 TIME INTEGRATION

To solve this dynamic problem, a time discretization scheme is added here, which means

the equation is evaluated at discrete time instants specified at certain time step. There are

two common types of time integration methods that are widely used nowadays, the implicit

dynamic analysis and the explicit dynamic analysis. Implicit dynamic analysis, for this

work, is the method that computes the material response at current time step based on the

material response at the current and previous time steps. In other words, the displacement

is directly solved by inverting the effective stiffness matrix, which is the summation of the

mass matrix and the stiffness matrix multiplied by some coefficients. Because of this process,

this method has the character of unconditional stability so that a bigger time increment can

be taken. However, the inversion of the stiffness matrix and the subsequent computation

also give the implicit method its biggest problem, high computational cost.

In contrast, instead of solving the displacement directly, the explicit dynamic analysis solves

the acceleration first and by using the explicit time integration subsequently, the displace-

ment is obtained indirectly. The advantage of solving acceleration instead of solving dis-

placement directly is that there is no need to invert any matrix because the mass matrix is

usually modified to a lumped matrix, namely, a diagonal matrix, which means the inversion

of mass matrix is trivial, or, namely, the system of equations becomes uncoupled, leading to

a higher computation efficiency. The problem of explicit method is that it is conditionally

stable, resulting in the requirement of a much smaller time step to make the computation

stable and accurate, which is time consuming and costly on the contrary. Since the informa-

tion measured by many common nondestructive testing methods occurs at relatively high

frequency, and thus requires small time steps anyway, the explicit method was used in the

present study.
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2.3.1 Explicit Time Integration

The explicit central difference integration is used here for the implementation of explicit time

integration. This rule is defined as

u̇(t+ ∆t
2

) = u̇(t−∆t
2

) + ∆tü(t) (2.27)

and

u(t+∆t) = u(t) + ∆tu̇(t+ ∆t
2

) (2.28)

where t is the current time instant and ∆t is the specific time increment. Then Eqn.2.26

can be written as

[M ]{üt}+ [K]{ut} = {F t} (2.29)

With the initial displacement prescribed by Eqn.2.4 at the initial time instant and the known

of the external force at every time step, the acceleration at the initial time instant can be

obtained from Eqn.2.29 as

{ü0} = [M ]−1({F 0} − [K]{u0}) (2.30)

At the initial time instant, the velocity at t − ∆t/2 is treated to be equal to the velocity

at time zero, which is known from Eqn.2.5. By substituting the initial velocity and the

acceleration at the initial time instant into Eqn.2.27, the velocity at the next time instant

can be obtained as

u̇(0+ ∆t
2

) = u̇0 + ∆tü0 (2.31)

Then with the velocity at the next time moment applied into Eqn.2.28, the displacement of

the next time moment is captured as

u(0+4t) = u0 + ∆tu̇(0+ ∆t
2

) (2.32)

Again substitute the displacement of the next time instant into Eqn.2.29 and the acceleration

of the next time instant is obtained. All the steps above form a circuit that solves the

acceleration, velocity and displacement at any time instant.

One thing that needs to be stated here is when solving acceleration by using Eqn.2.29, one

should remember to modify the mass matrix to a diagonal matrix. There are many methods
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can be used to modify a matrix into a diagonal matrix, such as Hinton-Rock-Zienkiewicz

method and row sum (or column sum) method. For simplification, in this work, row sum

method is applied. It is expressed as

M e
ii =

n∑
j=1

M e
ij (2.33)

where the first subscript means the row number of the element, the second subscript means

the column number of the element and n means the total column number of the matrix.

2.3.2 Time Increment

For the requirement of conditional stability of the explicit time integration, a critical time

increment for each time step was found which all the time steps must be less than to prevent

the unstable numerical results. This critical time increment is defined in [37] as

∆ti ≤ ∆tcritical =
2

ωi
(2.34)

where ωi is obtained from the eigenvalue problem defined as

[K]{x} = ω2[M ]{x} (2.35)

In this equation, [K] and [M ] are the global stiffness matrix and global mass matrix, re-

spectively. There is also a easier way to find the critical time step by selecting the largest

eigenvalue of the problem which satisfies the condition

ωmax ≤ max(ωe) (2.36)

where

[Ke]{xe} = (ωe)2[M e]{xe} (2.37)

where ωe means element eigenvalue, [Ke] means element stiffness matrix and [M e] means

the element mass matrix. Then Eqn.2.34 can be written as

∆t ≤ ∆tcritical =
2

ωmax
(2.38)
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Except this limitation, the upper limit of the time step is also restricted by the stability of

wave propagation-based nondestructive testing which is going to be used in the case study

later. This restriction is defined as[38]

∆t =
1

20fmax
(2.39)

where fmax is the highest frequency of the waves propagating through the structure. The

smaller value between Eqn.2.38 and Eqn.2.39 will be selected as the real critical time incre-

ment. Meanwhile, the mesh size of the model is restricted by the wavelength. For a good

spatial resolution of the wave propagation, the required length of finite element size is 20

nodes per wavelength, which can be written as[38]

Le =
λmin
20

(2.40)

where Le is the finite element size and λmin is the smallest wavelength of the waves prop-

agating through the structure. There are more details and examples about simulation of

guided wave propagating in solid medium in [38, 39, 40].

2.4 THE METHOD OF SNAPSHOT FOR POD-ROM

Since this work is about transient dynamic problem with explicit time integration method

utilized, the number of snapshots are much less than the number of total grid nodes of the

FE model. Therefore, the method of snapshot is selected for the derivation of POD basis.

Recall from Eqn.1.26 and let

Dk =

∫
Ω

~uk(~x) · ~φi(~x)d~x (2.41)

Then the eigenvalue problem described in Eqn.1.26 can be written as

1

N

N∑
k=1

~uk(~ξ)Dk = λ~φi(~ξ) (2.42)
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where N is the number of total snapshots. By multiplying another term ~ul(~ξ) on both side

with integrating over the domain, Eqn.2.42 can be written as

1

N

N∑
k=1

∫
Ω

~ul(~ξ) · ~uk(~ξ)Dkd~ξ = λ

∫
Ω

~φi(~ξ) · ~ul(~ξ)d~ξ (2.43)

and

λ

∫
Ω

~φi(~ξ) · ~ul(~ξ)d~ξ = λDl (2.44)

As a consequence, Eqn.2.42 becomes

1

N

N∑
k=1

[∫
Ω

~ul(~ξ) · ~uk(~ξ)d~ξ
]
Dk = λDl (2.45)

Then let

Alk =

∫
Ω

~ul(~ξ) · ~uk(~ξ)d~ξ (2.46)

Finally this problem becomes another eigenvalue problem described as

1

N

N∑
k=1

AlkDk = λDl (2.47)

After this problem is solved, the ith POD basis member can be determined as

~φi(~x) =
1

λiN

N∑
k=1

~uk(~x)Di
k (2.48)

where Di
k is the kth component of the ith eigenvector of the eigenvalue problem defined by

Eqn.2.47 and λi is the corresponding eigenvalue. Under most circumstance, λi can be verified

to be the indicator of the approximation capability of the ith mode. To achieve the low-

dimensional approximation, the eigenvalues are arrayed in descending-order, and the first

M POD basis members whose corresponding eigenvalues have 99% of the sum of the total

eigenvalues are chosen to form the ROM. One note is that if the inner product of the POD

basis and its transposition is not orthogonal, it is probably due to the linear dependence of

the selected snapshots. This phenomenon always happens when the time step is very small

so that the wave does not propagate a long enough distance, especially for the explicit time

integration strategy, which requires much smaller time step to make computation stable.

One way to solve this problem is to select the snapshot based on the time instant with larger

time interval.
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2.5 GALERKIN PROJECTION

Recall that the inverse problem is solved by an optimization method defined as Eqn.1.27.

If a set of random parameters ~γ is given, the next step is to calculate the response of the

numerical representation psim by the ROM. Since the POD basis are already known, from the

basic idea of POD, as shown in Eqn.1.1, to complete the POD approximation, the coefficient

needs to be calculated. But with the response function ui(~x, t) being unknown, the coefficient

can not be calculated by Eqn.1.4. Therefore, another method named the Galerkin projection

is applied here to calculate the coefficient. This method is quite similar with the Galerkin

weak-form method which is used to solve the PDE of the forward problem. The main idea

of Galerkin projection is to project the residual of the governing equation defined by Eqn.2.1

onto each POD basis member in the ROM, which can be written as(
ρ~̈u(~x, t)−∇ · σ(~x, t), ~φj(~x)

)
= ~0 ∀j = 1, 2, ..., n (2.49)

where n is the number of truncated POD basis. After applying the divergence theorem and

natural boundary condition, the equation above becomes∫
Ω

σ(~x, t) : ∇ ~φj(~x, t)dV+

∫
Ω

ρ~φj(~x, t) · ~̈u(~x, t)dV

−
∫

ΓT

~φj(~x, t) · ~T (~x, t)dS = ~0 ∀j = 1, 2, ..., n
(2.50)

From Eqn.1.1, it is obvious that

~̈u(~x, t) =
∑

α̈i(t)~φi(~x) (2.51)

Then substitute Eqn.1.1, Eqn.2.15 and Eqn.2.51 into Eqn.2.50. It gives∑
αi(t)

∫
Ω

{
µ
[
∇~φi + (∇~φi)T

]
+

1

2
λTr(

[
∇~φi + (∇~φi)T

]
)I

}
: ∇~φj(~x, t)dV

+
∑

α̈i(t)ρ

∫
Ω

~φi(~x) · ~φj(~x)dV =

∫
ΓT

~φj(~x, t) · ~T (~x, t)dS ∀j, i = 1, 2, ..., n

(2.52)

Write Eqn.2.59 into matrix form and it becomes

ρ

∫
Ω

[φi][φj]dV {α̈i(t)}+

∫
Ω

[σ∗][∇φj]dV {αi(t)} =

∫
ΓT

[φj]{T}dS ∀j, i = 1, 2, ..., n (2.53)

21



where [σ∗] is represented as

[σ∗] = µ
(
[∇φi] + [∇φi]T

)
+

1

2
λTr

(
[∇φi] + [∇φi]T

)
[I] (2.54)

Then treat

ρ

∫
Ω

[φi][φj]dV = [A] (2.55)

∫
Ω

[σ∗][∇φj]dV = [B] (2.56)

∫
ΓT

[φj]{T}dS = [F ] (2.57)

Eqn.2.53 can be represented as

[A]{α̈i(t)}+ [B]{αi(t)} = [F ] (2.58)

After this coupled system of ordinary deferential equations is solved, the coefficient αi(t)

is obtained. To make sure that the number of the POD basis members selected meets the

requirement, or, in other words, the POD basis members can give a good approximation of

the original data set, one should always remember to check the error of the low-dimensional

approximation to the original data field obtained from the full-order model. The error is

calculated by the L2−norm which is defined as

Error =
‖~uFOMi − ~uROMi ‖L2

‖~uFOMi ‖L2

(2.59)

If the error is not satisfied, one can use more POD basis members to form the low-dimensional

approximation. If a lot of POD basis members are used while the error is still high, one

may consider to modify the original snapshots, such as narrow the time interval of each time

instant at which to capture more snapshots in time domain, or narrow the interval of selecting

each parameter to provide more information for the original snapshots. Another thing needs

to be noticed is that when the second method is used, more numerical analysis will be made

and the computational cost will be higher. However, when one numerical analysis is done

under one parameter set, there are plenty of time instants at which to capture more snapshots

while maintaining the linear independence of each snapshots. Therefore, the method that

narrowing the time interval is more recommended since it does not increase the burden of

full-order model computation.
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3.0 INVERSE PROBLEM STRATEGY AND OPTIMIZATION OF NDE

As mentioned above, the variability of structure materials and the nature of non-convex error

surfaces require optimization methods to be non-gradient based methods with the ability of

searching a large range of parameters and few number of numerical analysis invovled[41].

In view of this situation, the optimization algorithm called Surrogate-Model Accelerated

Random Search algorithm (SMARS) is used. It is a combination of random search method

and surrogate-model method which gives the SMARS method the merits of both methods

and removes the demerits of both side at the same time.

3.1 RANDOM SEARCH

The process of RS can be described as : firstly, randomly generate several parameter vectors

and compute the error between experimental solution and numerical representation solution

of each parameter vector. Secondly, select the parameter vector which gives the lowest error,

and then randomly generate new parameter vectors around that best solution. These two

steps are repeated until the error is below the designed error tolerance or the maximum

computation number is reached. The selection of the new parameter vectors is based on the

normal distribution with the current best set being the center.

To be a non-gradient based method, RS is a good method to obtain a global solution.

Additionally, it is also not sensitive to the searching space and the initial parameter sets.

However, as discussed before, RS has the disadvantage that too many numerical representa-

tion solutions are required for capturing a global solution. The high computational cost of

the numerical representation makes the implementation of RS alone nearly impossible. To
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solve this problem, the second optimization method, surrogate-model method is introduced

here.

3.2 SURROGATE-MODEL METHOD

Surrogate-model is the method that creates an approximate model for a system that captures

the relationship between inputs and outputs to estimate the performance of the system. The

general surrogate-model problem can be described as obtaining a global approximation func-

tion which adequately represents the original function by training a given set of parameters

and its corresponding solutions, which are obtained through the original function by in-

putting the given set of parameters. Various surrogate-model methods are developed during

the past ten years, such as Radial Basis Functions(RBF), Artificial Neural Networks(ANN),

Support Vector Mechies(SVM) and Polynomial Response Surface Model(PRSM).

The advantage of surrogate-model method is it doesn’t need many numerical representation

solutions to obtain the approximation functions while maintaining an adequate approxima-

tion of the original model. However, on the other hand, there can be a huge deviation of the

result of surrogate-model if the offered inputs and outputs are not descriptive. A validation

of the data used to generate surrogate-model is necessary to make sure the data is compre-

hensive. Moreover, Surrogate-model can only estimate the solution within the domain of the

input and output data, so that it is very likely for surrogate-model to converge to a local

solution. Therefore, it is a good combination of surrogate-model with RS to overcome the

disadvantages of both with each other’s strong points.

3.3 SMARS ALGORITHM

SMARS algorithm uses both RS and surrogate-model method to obtain a global solution

efficiently for inverse problem, while maintain a low requirement of numerical analysis. The

flows of SMARS algorithm is given as follows[41]:
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Step1. Set the tolerance for optimization error tol and the maximum iteration number num.

Step2. Set the random search domain for random selection of each parameter vector D(~a,~b).

a and b are the upper bounds and lower bounds of the prescribed parameters in each pa-

rameter vector, respectively.

Step3. Randomly generate several parameter vectors P = {~α1, ~α2, ~α3, ......, ~αk}.

Step4. Compute the solutions of numerical representation and the errors between numerical

representation solutions and the experimental solution A = {J(~α1), J(~α2), J(~α3), ......, J(~αk)}

by Eqn.1.27.

Step5. Find the lowest error and its corresponding parameter vector as J(~α∗) = min(A).

Step6. Check whether J(~α∗) is lower than the error tolerance tol. If it is , trial solution

psim(~α∗) is the final solution for the inverse problem and the whole process stops. If it is

not, check whether the maximum iteration is reached. If it is, trial solution psim(~α∗) is the

final solution for the inverse problem and the whole process stops. If it is not, go to the next

step.

Step7. Update the random search domain D(~a,~b) for surrogate-model to generate several

subsets of the current parameter vectors.

Stpe8. Train those subsets and their corresponding solutions by surrogate-model within the

new domain to obtain the approximation function psm.

Step9. Find the parameter vector ~αsm∗ which gives the lowest error between the surrogate-

model solution and experimental solution, which is defined as

Jsm(~αsm∗) = min{Jsm(~αsm1), Jsm(~αsm2), Jsm(~αsm3)......Jsm(~αsmk)} (3.1)

where

Jsm(~αsm) =
Np∑
i=1

‖pexpi (~αsm)− psm(~αsm)i‖L2
(3.2)

Step10. Check whether Jsm(~αsm∗) is lower than the error tolerance tol. If it is , trial

solution psm(~αsm∗) is the final solution for the inverse problem and the whole process stops.

If it is not, set ~αsm∗ as ~αk+1 and add it into the original error collection P . Then the error

collection becomes Q = {~α1, ~α2, ~α3, ..., ~αk, ~αk+1}.
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Step11.Select n parameter vectors from error collection Q and make up a new parameter

vector set. R = {~α1, ~α2, ~α3, ..., ~αn}. Then select two parameter vectors β1 and β2 that belong

to this vector set R

Step12. Generate m new parameter vectors by the side of β1 and β2 and 2m new parameter

vectors are obtained as O = {~α1, ~α2, ~α3, ..., ~αm, ~αm+1..., ~α2m}.

Step13. Compute the error of each parameter vector in O by Eqn.1.27 and obtain B =

{J(~α1), J(~α2), J(~α3), ..., J(~αm), J(~αm+1), ..., J(~α2m)}. Then add this solution set to the origi-

nal solution set Q which creates a new trial solution set W = {J(~α1), J(~α2), J(~α3), ..., J(~αj)},

where j = k + 1 + 2m

Step14. Find a new J(~α∗) = min(W ) and go back to Step6.

The flow chart of SMARS algorithm can be found in Figure.3.1. It is obvious that in order to

solve inverse problems, SMARS algorithm makes a circuit to find the best solution. For this

work, the surrogate-model is implemented by the ANN algorithm. In Step7, the updating of

random search domain D(~a,~b) is on account of the unknown of representability of the training

data from RS and the bias distribution of the numerical representation solutions, which can

affect the generalization capabilities of ANN. This new domain after being updated can be

named the search window of surrogate-model, which can be selected as scalar multiples of

~α∗ in Step6.

By updating the search domain, the ANN will receive more concentrated training data

since the results of RS are generated mostly around current best solutions. In Step9,

the minimization problem is done by GA. This method needs many solutions from the

numerical representation which makes it costly. Fortunately, the ANN algorithm is relatively

inexpensive to compute so that the implementation of GA here is feasible.

Finally, In Step11, for this work, two new parameter vectors, β1 and β2, are generated.

The rule to choose β1 and β2 is defined as follows: β1 is equal to the parameter vector

corresponding to the best solution in R. β2 is equal to the parameter vector corresponding

to the farthest solution to the best solution, while still within the top 20% of the solution

ranking. The purpose of this rule is to maintain the diversity of RS input parameter vectors

and to keep the representability of RS output data at the same time.
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Figure 3.1: Flowchart of the SMARS Algorithm.
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4.0 CASE STUDY

The NDE approach was implemented here by wave propagation-based nondestructive test-

ing. The example was a square aluminum thin plate with excited force in the middle of the

plate. Since the thickness of the plate was far less than the other two sides, this plate can

be simulated as a 2-D models based on plane stress assumption. Four sensors were mount-

ed uniformly on the plate to receive the signal of the propagating wave in the plate. The

damage on the plate was represented by the reduction of Young’s Modulus of the material.

The X coordinate and Y coordinate of the damage center are considered as the unknown

parameters for the damage on the plate. Therefore, these two parameters were selected

uniformly over the whole plate and the snapshots were collected with all the combinations

of these tow parameters being calculated. The reason why to create the snapshots by uni-

formly selecting damage parameters is that it is manifested that uniformly selecting damage

parameters have a much better capability of inverse identification than randomly selecting

damage parameters[42]. Then the ROM was obtained with the POD basis being calculated

by the POD strategy, method of snapshots. Finally the SMARS algorism was applied to

solve the inverse optimal characterization problem with different trial X and Y coordinates

of damage location being applied.

4.1 THIN ALUMINUM PLATE

The size of the square thin aluminum plate considered here was 1m × 1m × 0.02m. The

bottom boundary of the plate was assumed to be fixed with the free deformation along

other three boundaries. The pitch-catch methods using a piezoelectric transducer(PZT) as
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Figure 4.1: Schematics of excitation amplitude simulated by sinusoidal force with a frequency

of 1000Hz.

actuator mounted on the middle surface of the plate to create the excitation on the plate

with a set of PZTs as sensor to receive the transient signal were modeled here. The PZT

actuator was simulated as 12 equal harmonic forces on a square in the middle surface of the

plate, with 3 forces in each direction normal to each side of the plate. The size of square

with force applied on was 4 mm to remove the possible time shift of the wave signal[40].

The frequency of the force is 1kHz and the normalized amplitude of the force is showed in

Figrue.4.1. The location of the actuator was XA = 0.48m, YA = 0.52m with respect to the

bottom right corner. The four sensors were distributed uniformly with the fixed horizontal

orientation to measure the horizontal and vertical displacements at four sensor positions.

the X and Y coordinates of each sensors were Xs1 = 0.25m, Ys1 = 0.25m, Xs2 = 0.25m,

Ys2 = 0.75m, Xs3 = 0.75m,Ys3 = 0.25m, Xs4 = 0.75m, Ys4 = 0.75m. Figure.4.2 illustrate

the actuator location which is the blue square with arrows showing the force directions and

four sensor locations which are the four red crosses. And the sensors were simulated by
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Figure 4.2: Schematics of actuator location and sensor locations.

measuring the displacement of the sensor locations. The attenuation of the ultrasonic wave

was not considered in the present work.

As stated before, the damage was represented by a semi-localized reduction of Young’s

Modulus which was defined as a radial basis function(RBF)[43]

E(~x) = Eh

[
1−D · exp

(
−‖~x− ~ε‖

2

c

)]
(4.1)

where Eh is the healthy Young’s Modulus of the plate, D is the Young’s Modulus percent

reduction of the RBF, ~ε is the location of the center of the RBF, which contains the X and

Y coordinates, c is the breadth of the RBF and ‖ · ‖ represents the standard L2-norm. The

Young’s Modulus percent reduction and the breadth of the RBF were set to be fixed as 0.55

and 0.016, respectively. The location of the RBF was set to be the unknown parameters and

was bounded within ~ε ∈ [0, 1]× [0, 1].

Full-order model can be built and solved as demonstrated in Chapter 2. The unknown

parameter ~ε, or X and Y coordinates of the damage center were selected 5 evenly spaced
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Table 4.1: First 10 largest eigenvalues of all 250 eigenvalues in descending-order.

λ1 λ2 λ3 λ4 λ5

1.119× 10−7 7.386× 10−9 3.695× 10−10 2.429× 10−10 1.753× 10−10

λ6 λ7 λ8 λ9 λ10

4.546× 10−11 2.072× 10−11 1.760× 10−11 1.373× 10−11 1.219× 10−11

value through the domain (X = 0.0, 0.25, 0.50, 0.75, 1.00m and Y = 0.0, 0.25, 0.50, 0.75,

1.00m). Every combination of these two values are chosen to be simulated. Therefore, the

full-order model was computed 25 times to collect the snapshots. The time step of the full-

order model is 1µs, which satisfied the stability requirement. The total simulation time steps

were 2000 and the total simulation time for the full-order model was 0.002s, among which

the measurements were taken at every ten time instants(200,400,800,...2000µs). Combined

with the 25 parameters combinations, there were totally 250 snapshots that were collected

to form the ROM. Then the eigenvalues of the matrix A defined as Eqn.2.46 were calculated

and truncated by the third, fifth and tenth eigenvalues of all 250 eigenvalues arrayed in

descending-order. Tabal.4.1 shows the first 10 largest eigenvalues of all the 250 eigenvalues,

among which the first two eigenvalues already had 99% of the sum of all the eigenvalues.

Then the first 10 POD basis members were obtained by the methods as shown in Eqn.2.48.

To verify that the POD basis and the number of the POD basis members is enough to

form a satisfactory approximation, the POD snapshot projection error were checked. To

check the POD snapshot projection error, each of the POD basis member was projected

onto all the first 10 snapshots denoted as Eqn.1.4 and the coefficients of each snapshots were

obtained. Then, as shown in Eqn.1.1, the displacement field snapshots under certain time

instants and material parameter set which were the same as the ones used to obtain the

first 10 snapshots were gained. Then the L2−error of each snapshots and its corresponding

reconstructed displacement field was calculated and shown as the Table.4.2. The reason

why the tenth reconstruction error was higher than the other 9 errors was this snapshot was

31



Table 4.2: The POD snapshot projection error of the first 10 snapshots with (a) 3 POD

basis members, (b) 5 POD basis members and (c) 10 POD basis members.

(a)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Ave.

L2 − Error(%) 9.016 8.306 7.436 4.634 4.764 6.164 5.231 5.425 2.604 20.296 7.388

(b)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Ave.

L2 − Error(%) 3.090 4.000 7.130 2.801 4.596 3.145 2.794 4.277 2.350 19.324 5.351

(c)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Ave.

L2 − Error(%) 2.341 2.526 4.632 1.954 3.067 2.019 2.093 3.216 1.743 12.296 3.589

taken at the the 2000th time instant, which was at the end of the excitation cycle, leading

to the displacement values of the plate at this time instant being small compared to the

displacement values at other 9 time instants. The comparison of the displacements at the

tenth snapshot and other snapshot can be found in Figure.4.3. Due to the small displacement

of the plate at the tenth snapshot, the reconstruction error of the tenth snapshot was less

important than the other 9 errors, of which all were relatively low. Therefore, the number of

the POD basis members that were used to form the ROM was proper for self-reconstruction.

Figure.4.4 shows the magnitude plots of the first three POD basis members.

As mentioned in Section.2.5, the coefficients were then calculated to form the approximation

of the displacements at the four sensor locations and 50 time instants uniformly selected over

the 2000 µs simulation time. Another verification was implemented to make sure that the

coefficients obtained were valid and the number of POD basis members that used was eligible

to generate a satisfying low-dimensional approximation of any randomly generated responses.

All of the three different circumstances, of which 3, 5 and 10 POD basis members were
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(a)

(b)

Figure 4.3: Comparison of nodal (a) X displacement (b) Y displacement of the third snapshot

and the tenth snapshot for POD snapshot projection test.
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(a) (b) (c)

Figure 4.4: Schematics of (a) the first mode (b) the second mode (c) the third mode corre-

sponding to the first three largest eigenvalues in descending order.

selected, were tested by two tests with randomly generated responses at two damage locations

X = 0.29m, Y = 0.87m and X = 0.46m, Y = 0.64m. The comparisons of displacement field

was plotted as shown in Figure.4.5, the L2−error was shown in Table.4.3 and the comparisons

of the nodal displacement values at two time instants for the second random test was shown

in Figure.4.6. As illustrated in Figure.4.5, the displacement field reconstructed from ROM

matched the full-order model displacement field response very well. However, from Table.4.3,

it is seen that the L2−errors of each random test at four time instants are relatively high

and in some cases, the L2−errors of using 10 POD basis members are higher than the

L2−errors of using 5 POD basis members. This phenomenon is probably due to the relatively

inaccurate reconstruction of the low nodal displacement amplitude part of the whole plate,

which is illustrated in Figure.4.6. From this picture it is seen that high amplitude part of

the reconstruction, which is much more important, matches the full-order model results very

well, while the low amplitude part, which is much less important, does not match each other

nicely. Therefore, the POD basis and coefficients could be concluded as eligible.

After the validations, four sets of damage parameter vectors were randomly generated with

the damage locations at X1 = 0.600, Y1 = 0.900, X2 = 0.127, Y2 = 0.913, X3 = 0.278,

Y3 = 0.547, X4 = 0.632 and Y4 = 0.097. Then the SMARS algorithm was applied to solve

the inverse characterization problem by using the ROM consist of 3, 5 and 10 POD basis

members, respectively. The random search boundaries of the damage location were within
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(a)

(b)

Figure 4.5: Comparison of the full-order model displacement field and the low-dimensional

approximation with 3, 5 and 10 POD basis members used at time instant 800 µs and damage

location (a) x=0.29m y=0.87m (b) x=0.46m y=0.64m for POD projection test with randomly

generated responses.
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Table 4.3: The errors of POD projection test with randomly generated responses at four

time instants by the ROM of 3 POD basis members, 5 POD basis members and 10 POD

basis members of (a) test 1 (X = 0.29m, Y = 0.87m) and (b) test 2 (X = 0.46m, Y = 0.64m).

(a)

Time instant(µs) 400 800 1200 1600

3 POD basis members 0.127 0.074 0.086 0.082

5 POD basis members 0.112 0.075 0.078 0.101

10 POD basis members 0.127 0.078 0.066 0.109

(b)

Time instant(µs) 400 800 1200 1600

3 POD basis members 0.176 0.153 0.179 0.282

5 POD basis members 0.166 0.139 0.160 0.265

10 POD basis members 0.204 0.137 0.148 0.268
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(a)

(b)

Figure 4.6: Comparison of nodal X displacement values and Y displacement values of the

first POD projection test with randomly generated responses at (a) the 400th time instant

and (b) the 800th time instant
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~εi ∈ [0, 1]× [0, 1]m. The stopping criteria for the SMARS algorithm was set to a maximum

of 400 finite element analyses for all 12 models. The results of these 12 cases are shown in

Table.4.4, Table.4.5 and Table.4.6.

As seen in the comparisons, in spite of the relatively high error showed in second validation

test of the POD basis, this NDT inverse characterization strategy that used 5 and 10 POD

basis members for the POD ROM gave a good estimation of the damage locations for all four

tests and only the results of test2 and test4 when using 3 POD basis members for the POD

ROM had an accurate estimation. The results of using 5 POD basis members for the POD

ROM had a conspicuous improvement compared to the results of using 3 POD basis members

for POD ROM for two random test1 and test3, while maintained the accuracy of the other

two tests. The results of using 10 POD basis members have a small improvement compared to

the results of using 5 POD basis members for test1 and test3, while maintained the accuracy

of the other two tests as well. Therefore the relatively high error of the second validation

test didn’t affect the capability of ROM for inverse characterization. Although when using

10 POD basis members for the ROM gave the best result of the damage location, using 5

POD basis members for the ROM already provided a satisfying estimation of the damage

location. Therefore, using 5 POD basis members to form the low-dimensional approximation

of the random displacement field snapshot is enough. It is not necessary to use more than 5

POD basis members to pursue a better result yet increasing the computational cost at the

same time.

The computation time of the full-order model and the POD ROM by using 3, 5 and 10

POD basis members are shown in Table.4.7. As seen of the comparisons, it saved 53.8%

of computation time 25.7% of computation time when using 3 POD basis members ROM

and 5 POD basis members ROM compared to the full-order model, respectively. However,

When the 10 POD basis members ROM was used, the computation time was dramatically

increased because of a more complicated system of ordinary differential equations.
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Table 4.4: Four random tests included three trial solutions of each with unknown damage

region(εx, εy) and the corresponding values estimated by the inverse characterization process

with 3 POD basis members used for the POD ROM, and the resulting relative L2−error

and L∞−error of the estimated Young’s Modulus distribution with their average values for

example-aluminum thin plate

Test εx1 εy1 L2−error Ave. L∞−error Ave.

1 Target 0.600 0.900 - - - -

Trial1 0.415 0.901 0.095 - 0.169 -

Trial2 0.477 0.914 0.072 0.087 0.124 0.153

Trial3 0.421 0.904 0.094 - 0.165 -

2 Target 0.127 0.913 - - - -

Trial1 0.118 0.904 0.007 - 0.013 -

Trial2 0.134 0.918 0.005 0.006 0.009 0.010

Trial3 0.124 0.906 0.004 - 0.007 -

3 Target 0.278 0.547 - - - -

Trial1 0.299 0.391 0.085 - 0.112 -

Trial2 0.163 0.308 0.111 0.090 0.173 0.133

Trial3 0.238 0.421 0.075 - 0.113 -

4 Target 0.632 0.097 - - - -

Trial1 0.620 0.095 0.008 - 0.013 -

Trial2 0.625 0.094 0.005 0.009 0.009 0.015

Trial3 0.653 0.097 0.014 - 0.023 -
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Table 4.5: Four random tests included three trial solutions of each with unknown damage

region(εx, εy) and the corresponding values estimated by the inverse characterization process

with 5 POD basis members used for the POD ROM, and the resulting relative L2−error

and L∞−error of the estimated Young’s Modulus distribution with their average values for

example-aluminum thin plate

Test εx1 εy1 L2−error Ave. L∞−error Ave.

1 Target 0.600 0.900 - - - -

Trial1 0.568 0.904 0.021 - 0.035 -

Trial2 0.599 0.908 0.005 0.011 0.007 0.019

Trial3 0.590 0.907 0.007 - 0.014 -

2 Target 0.127 0.913 - - - -

Trial1 0.137 0.920 0.007 - 0.012 -

Trial2 0.118 0.910 0.006 0.007 0.009 0.011

Trial3 0.116 0.908 0.007 - 0.012 -

3 Target 0.278 0.547 - - - -

Trial1 0.255 0.536 0.017 - 0.029 -

Trial2 0.265 0.501 0.030 0.018 0.046 0.029

Trial3 0.288 0.553 0.008 - 0.013 -

4 Target 0.632 0.097 - - - -

Trial1 0.652 0.098 0.013 - 0.022 -

Trial2 0.627 0.101 0.004 0.008 0.007 0.014

Trial3 0.620 0.093 0.008 - 0.014 -
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Table 4.6: Four random tests included three trial solutions of each with unknown damage

region(εx, εy) and the corresponding values estimated by the inverse characterization process

with 10 POD basis members used for the POD ROM, and the resulting relative L2−error

and L∞−error of the estimated Young’s Modulus distribution with their average values for

example-aluminum thin plate

Test εx1 εy1 L2−error Ave. L∞−error Ave.

1 Target 0.600 0.900 - - - -

Trial1 0.584 0.904 0.011 - 0.018 -

Trial2 0.603 0.892 0.005 0.007 0.009 0.013

Trial3 0.592 0.906 0.006 - 0.012 -

2 Target 0.127 0.913 - - - -

Trial1 0.138 0.888 0.016 - 0.026 -

Trial2 0.132 0.925 0.007 0.008 0.012 0.013

Trial3 0.126 0.913 0.001 - 0.001 -

3 Target 0.278 0.547 - - - -

Trial1 0.280 0.543 0.003 - 0.005 -

Trial2 0.287 0.524 0.016 0.008 0.025 0.014

Trial3 0.285 0.554 0.006 - 0.011 -

4 Target 0.632 0.097 - - - -

Trial1 0.650 0.099 0.012 - 0.020 -

Trial2 0.633 0.104 0.004 0.008 0.006 0.014

Trial3 0.618 0.096 0.009 - 0.015 -
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Table 4.7: Average one-time computation time of full-order model, ROM of 3 POD basis

members, ROM of 5 POD basis members and ROM of 10 POD basis members of 400 times

computations for example-aluminum thin plate

full-order model 3 members ROM 5 members ROM 10 members ROM

Time(s) 12.239 5.659 9.093 22.946
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5.0 CONCLUSION AND FUTURE DIRECTIONS

A strategy for using reduced-order modeling, in particular the proper orthogonal decom-

position (POD) model reduction approach in inverse material characterization problems

is presented in this work. The approach contained an implementation of POD basis for

low-dimensional Galerkin finite element modeling of solid mechanics. A case study of an

aluminum plate was presented and this POD ROM strategy for inverse material character-

ization was proved to be capable of identifying material parameters of a system accurately

and efficiently with minimal cost.

This strategy showed potential for decreasing the computation cost of finite element model-

ing while maintaining a good accuracy of material characterization for basic solid material

structure based on transient dynamic testing. However, more complicated structures need to

be tested in order to show a more significant decreasing of computational cost. In addition,

more damage parameters such as depth and reduction of the Young’s modulus, as shown in

Eqn.4.1, need to be considered and the wave also can be stimulated as a high frequent tone

burst wave to make the the simulation closer to realistic experiment.
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