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Our research focuses on developing dual functional polymeric micelles for the targeted delivery 

of anticancer agents to tumors.  

We first developed a poly(ethylene) glycol (PEG)-derivatized anticancer agent-Embelin 

(EB) (PEG-EB2) as an effective nanomicellar carrier for the delivery of Paclitaxel (PTX) to 

tumors. Our data demonstrated that PEG-EB2 retained similar biological effect as EB. 

Surprisingly, it can self-assemble into micelles (~20 nm) in aqueous solution and was also 

efficient in delivering the Paclitaxel (PTX) to cancers with enhanced antitumor activity. Further, 

folate (FA), a tumor specific ligand, was anchored into PEG5K-EB2 micelles (FA-PEG5K-EB2) to 

realize the active tumor targeting. The intracellular uptake of Doxorubicin (DOX) was markedly 

improved when incorporated into FA-PEG5K-EB2 over the one without FA, resulting in the 

significant higher level in inhibiting tumor growth. 

Moreover, structure activity relationship (SAR) study was performed in PEG-derivatized 

Vitamin E (PEG-VE), in which our data has shown that PEG-VE with longer PEG length (5K) 

and double VE chains (PEG5K-VE2) garnered significant better PTX loading, stability and 

improved antitumor efficacy. Additionally, aiming to improve the DOX loading and stability, a 

drug-interactive motif-Fmoc was placed in the interfacial region of the PEG5K-VE2 (PEG5K-

Fmoc-VE2). The data suggested that introduction of Fmoc to PEG5K-VE2 brought about dramatic 

augmentation in DOX loading and formulation stability, which consequently led to an enhanced 

inhibition on tumor development. Another finding in my research is to formulate Camptothecin 
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(CPT), a highly lipophilic antineoplastic drug, in an innovative fashion. CPT was conjugated 

with VE at its hydroxyl group via carbonate ester bond (CPT-VE) or disulfide linkage (CPT-S-S-

VE), which can self-assemble into nanofiber upon stabilized by PEG5K-Fmoc-VE2. VE-

derivatized CPT prodrugs significantly buttressed the stability of CPT due to the additional steric 

hindrance to the lactone ring on CPT. Meanwhile, compared to CPT-VE, CPT-S-S-VE can more 

readily liberate CPT at tumors in a controlled manner (high GSH conc. in tumor), leading to the 

superior tumor growth suppression in vivo.  

To reiterate, our data demonstrated that PEG-derivatized anticancer agents can serve as 

effective nanocarriers for the targeted delivery of chemotherapeutics. Additionally, incorporation 

of Fmoc into the interfacial region of dual functional carriers led to significantly increased drug 

loading and formulation stability, resulting in improved antitumor activity. Furthermore, 

coupling of VE to anticancer drugs may represent a novel platform in ameliorating their 

compatibility with utilized carrier. 
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1.0  INTRODUCTION 

1.1 AN OVERVIEW OF CANCER 

Cancer, involving abnormal cell proliferation, is able to invade or spread to other parts of the 

body, resulting in a variety of disorders and eventually death (Portales, Thezenas et al. 2011). 

Cancer is a leading cause of death world-wide and is responsible for approximately 13% of all 

deaths, according to the World Health Organization (Shaha, Pandian et al. 2011).  In males, lung 

cancer, prostate cancer, colorectal cancer, and stomach cancer are the most common types of 

cancer, and in females, the most common types are breast cancer, lung cancer, cervical cancer 

and colorectal cancer (Kuper, Boffetta et al. 2002).  

             There are a range of different facts that give rise to cancer development. It has been 

reported that tobacco is responsible use for 22% of cancer deaths (Wang, Jiang et al. 2012). Also, 

10% of the cancer population is attributed to obesity, rising from inadequate amount of physical 

activity, unhealthy diet, as well as drinking alcohol (Luo, Morrison et al. 2007).  Besides, 

exposure to environmental pollutants, and ionizing radiation can also contribute significantly to 

cancer (Burns, Uddin et al. 2004). Almost 20% of cancers are caused by infections such 

as hepatitis B, hepatitis C, and human papillomavirus, in developing countries . Another 5-10% 

cases of cancers are closely related to genetic disorder inherited from the parents (Giovannucci, 

Liu et al. 2006). It takes time for the normal cells to progress to cells with observable mass to 

http://en.wikipedia.org/wiki/Cell_growth
http://en.wikipedia.org/wiki/Lung_cancer
http://en.wikipedia.org/wiki/Lung_cancer
http://en.wikipedia.org/wiki/Prostate_cancer
http://en.wikipedia.org/wiki/Colorectal_cancer
http://en.wikipedia.org/wiki/Stomach_cancer
http://en.wikipedia.org/wiki/Breast_cancer
http://en.wikipedia.org/wiki/Cervical_cancer
http://en.wikipedia.org/wiki/Hepatitis_B
http://en.wikipedia.org/wiki/Hepatitis_C
http://en.wikipedia.org/wiki/Human_papillomavirus
http://en.wikipedia.org/wiki/Developing_world
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eventual utter tumor (Hanahan and Weinberg 2000) (Hanahan and Weinberg 2011). Once the 

tumor is developed, it becomes insensitive to anti-growth signals and can escape from apoptosis 

(Hanahan and Weinberg 2000). Moreover, cancer will be endowed with endless replicative 

potential to grow in an uncontrolled manner. Further, in order to acquire sufficient nutrients and 

discharge the waste during the tumor development, a multitude of neovaculature will be  

generated (Hanahan and Weinberg 2000). Finally, cancer is capable of spreading and invading 

the other tissues of the body, a process known as metastasis (Hanahan and Weinberg 2000). The 

underlying mechanism of carcinogenesis is intricate. Studies from the past a few decades showed 

that development of cancer is mainly ascribed to the failure of regulating tissue growth, when the 

genes modulating cell growth and differentiation are mutated (Croce 2008). Meanwhile, it has 

been clarified that these genes alterations could be arisen from mutation of DNA sequence in 

both oncogenes and tumor suppressor genes, as well as epigenetic alterations (Baylin and Ohm 

2006). Recent investigations on epigenetic deficiencies in expression of DNA repair genes 

demonstrated the enhanced incidence of mutations, subsequently, part of which appear in tumor 

suppressor genes and oncogenes, resulting in the carcinogenesis (O'Hagan, Mohammad et al. 

2008).    

             A variety of approaches have been taken to fight against cancer, including, 

chemotherapy, radiaton therapy, surgery, as well as immunotherapy, among which 

chemotherapeutics has been increasingly paid attention to due to its high tumor cell-killing 

efficacy (Rekers, Troost et al. 2014) (Lang-Lazdunski 2014) (Baylin and Ohm 2006). However, 

administration of conventional anti-neoplastic drugs cannot only kill the cancer cells, but also 

poison the normal tissue, leading to the severe adverse effects because their non-specific 

targeting (Patil, Gada et al. 2013). Moreover, the effectiveness of anticancer agents oftentimes 
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was restrained by their poor water solubility (Shen, Song et al. 2014). Further, non-protected free 

chemotherapeutics injected in vivo can rapidly be eliminated from the blood stream by the 

reticuloendothelial system (RES), which results in insufficient antitumor efficacy (Yao, Zhang et 

al. 2013). To solve these issues, tumor targeted therapy via employing nanotechnology-based 

anticancer drug formulations has been emerging as an important therapeutic platform for the 

treatment of various cancers (Akhtar, Ahamed et al. 2014). In the last several decades, emphasis 

have been placed on the development of nanomedicine therapeutics by using liposome, 

dendrimer, polymeric micelle, as nanocarriers for the tumor targeted delivery of anticancer 

agents, among which polymeric drug delivery system  are of high interest (Mei, Zhang et al. 

2013) (Kakizawa and Kataoka 2002). A systemic discussion of polymeric micellar system as 

effective nanocarrier for the delivery of anti-neoplastic agents is presented in the following 

sections. 

1.2 TARGETED DELIVERY OF CHEMOTHERAPEUTICS BY POLYMERIC 

MICELLES FOR THE TREATMENT OF CANCER  

Typical polymeric micelles are comprised of hydrophobic tail and hydrophilic polymer shell, in 

which PEG is commonly utilized (Cheng and Cao 2009) (Zhang, Huang et al. 2014). In aqueous 

solution, they can self-assemble into nanosized particles (10-100 nm) with hydrophilic segment 

protruding outside, confining the hydrophobic regions in the micelle core, where poorly water 

soluble drugs can be incorporated. Owing to the protection from the PEG corona and the small 

size, extended blood circulation time, preferred tumor accumulation, as well as decreased side 

effects have been inevitably garnered in polymeric micellar formulations (Zhang, Huang et al. 
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2014). In this chapter, the discussion is focused on the current progress regarding the 

development of novel PEG-anticancer drugs as functional nanocarriers. Besides, the significance 

of using active targeting ligand in chemotherapy is also highlighted. Additionally, special 

emphasis is placed on the discovery of approaches to improve the carrier/drug interactions so as 

to achieve desirable nanoformulations with enhanced stability and drug loading. Furthermore, 

tocopherol-conjugated anticancer agents’ prodrugs as an effective method of formulating 

chemotherapeutics is summarized as well.  

1.2.1 INTRODUCTION 

The efficacy of the hydrophobic chemotherapeutics is often greatly limited by their poorly water 

solubility (Shen, Song et al. 2014). Concurrently, not only can the free anticancer agents get to 

the tumoral sites, but can also be taken up by normal tissues, resulting in toxicity, after the in 

vivo administration (Shen, Yin et al. 2013).  Hence, selectively delivering the therapeutic agents 

to tumors while without adversely affecting the innocent tissues is of crucial importance. In the 

past years, nanocarriers including, liposomes, dendrimers, as well as polymeric micelles have 

been researched widely for the targeted delivery of drugs to the pathological sites (tumor), 

among which polymeric micelles have been paid intensive attention due to its technical ease and 

the relatively smaller size, which allows them to passively target to tumors more readily (Mei, 

Zhang et al. 2013) (Kakizawa and Kataoka 2002), compared to its counterparts. 

             Polymeric micelles are generally composed by the amphiphilic block copolymers 

(Cheng and Cao 2009). In aqueous solution, above the critical micelle concentration (CMC), the 

amphiphilic block copolymers are able to spontaneously self-assemble into supramolecular 

core/shell nanoaggregates (Adak, Kumar et al. 2012). The hydrophobic inner core serves as a 
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reservoir for storing the hydrophobic bioactive compounds, which can either be physically 

loaded or conjugated covalently. Meanwhile, the hydrophilic corona contribute greatly to the 

overall colloidal stability of polymeric micelles, as they prevents the recognition by opsonin and 

blood proteins in vivo, leading to prolonged circulation period (Miller, Hill et al. 2012). 

Moreover, the small sizes of polymeric micelles (10-100 nm), along with the extended blood 

circulation times, renders the preferential accumulation at the solid tumor, based on the enhanced 

permeability and retention (EPR) effect featuring leaky vasculature and impaired lymphatic 

drainage (Matsumura and Maeda 1986). Further, the preferred accumulation of micelles in tumor 

is also likely to reduce systemic toxicity. Therefore, in recent decades, polymeric micelles have 

been under intensive investigation as drug carrier for the targeted delivery of anticancer agents. 

Conventionally, amphiphilic polymer micelles tend to aggregate into spheres, however, recently, 

micelles with varying shapes have also been reported including nanorods, nanotubules, as well as 

lamellae (Yu, Zhang et al. 1998, Shen, Zhang et al. 1999, Choucair and Eisenberg 2003). More 

importantly, it has been established that the in vivo pharmacokinetics is closely related to the 

spatial arrangement of the micelles (Geng, Dalhaimer et al. 2007). Geng et al. found that worm-

like filomicelles exhibited significantly prolonged blood circulation time, in comparison to its 

analogue with components (Geng, Dalhaimer et al. 2007). In addition to the hydrophobic 

interactions in forming the self-assembled micelles, there are also some other interactions that 

can trigger the formation of micelles. Polymeric micelles formed due to the complexion of 

intermolecular hydrogen bonding was also described in literature. Besides, it was reported that 

electrostatic interactions can also lead to the generation of polyion complex (PIC) micelles in an 

aqueous milieu, employing a pair of oppositely-charged block copolymers with poly(ethylene 

glycol) segments (Gaucher, Dufresne et al. 2005).  
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             Among the hydrophilic polymers in forming the polymeric micelles, Poly(ethylene 

glycol)(PEG) is the most widely used due to its non-toxicity, neutralized charge, highly water-

miscible property, low degree of immunogenicity and antigenicity, availability of the terminal 

primary hydroxyl groups for derivatization. Moreover, as a “golden standard” of hydrophilic 

coating for a myriad of drug carriers, a number of PEGylated products have already been 

approved by the FDA. In the polymeric micelles, PEG acts as the protecting hydrophilic corona, 

minimizing the non-specific binding to the blood proteins, thereby, contributing to the extended 

circulation times, which favorably alters the pharmacokinetics of the loaded drugs. Aside from 

PEG, the applications of other polymers such as, poly(N-(2-hydroxypropyl) methacrylamide) 

(pHPMA) (Lu, Kopeckova et al. 1998), poly(vinyl alcohol) (PVA) (Francisco, da Silva et al. 

2010), as well as polyethylenimine (PEI) (Vinogradov, Batrakova et al. 1999), as hydrohphilic 

shell-forming block of polymeric micelles, have also been reported in the literature. With respect 

to the core, a multitude of hydrophobic polymers have been investigated, such as poly (ε-

caprolactone) (Shuai, Ai et al. 2004), poly(propylene oxide) (PPO)(Ha, Kim et al. 1999), 

poly(lactic acid) (PLA), as well as poly(L-lysine) (PLL).  Traditionally, core-forming 

components of micelle are made of polymers, however, recently, lipids have been brought into 

attention for the application as hydrophobic core-forming material. It has been found that PEG 

conjugated phosphatidylethanolamine (PEG-PE) can self-assemble into micelles with 

significantly lower CMC compared to conventional surfactants (Lukyanov and Torchilin 2004, 

Musacchio, Laquintana et al. 2009). Moreover, PEG-PE micelles were able to effectively 

solubilize a variety of hydrophobic anticancer drugs and achieved enhanced antitumor activity 

(Wang, Mongayt et al. 2004). In addition to the aliphatic lipids, cholic acid (CA), an insoluble 

bile acid, was also employed to function as hydrophobic portion in micelles (Luo, Xiao et al. 
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2010, Xiao, Li et al. 2011, Xiao, Luo et al. 2011). The PEG-CA conjugates formed very small 

sized micelles (20-60 nm) with low CMC and high drug loading (Luo, Xiao et al. 2010). Besides, 

the PEG-CA micelles-delivered PTX or DOX presented significantly improved tumor growth 

inhibition effect in a number of murine tumor models (Xiao, Luo et al. 2011) (Luo, Xiao et al. 

2010).  

  In addition to targeted delivery, controlled drug release has also been given heavy 

attention so as to create optimal drug delivery systems. It is expected that the micelles shall be 

able to maintain their physical integrity during circulation in the blood or in normal tissues, but 

need to be dissociated and effectively release their payloads in pathological site such as in tumor, 

upon unique environmental stimuli. Disulfide bond, a glutathione (GSH)-responsive linkage, is 

stable under normal physiological condition with low glutathione (GSH) level (2-20 μM). 

However, the reducing environment with high GSH concentration (~10 mM) in tumor cells can 

readily lead to the breakage of the disulfide linker (Wu, Fang et al. 2004). Hence, the micelles 

containing disulfide bond sensitive linker have been widely studied and garnered compelling 

improvement in the controlled release of anticancer drugs in tumurol sites (Cui, Xue et al. 2013, 

Song, Ding et al. 2013). In addition to the reducing condition, tumors are also characterized with 

mildly acidic milieu. Therefore, pH-triggered drug release in acidic tumors have become another 

promising strategy to achieve triggered release of chemotherapeutics on target. Acid-cleavable 

linkers such as hydrazones, orthoestes, as well as acetals have been intensively investigated in 

polymeric micelles for the controlled release of the encapsulated anticancer agents (Bae, 

Fukushima et al. 2003, Toncheva, Schacht et al. 2003, Torchilin 2009).  

Thanks to the considerable efforts dedicated to the development of polymeric micelle 

drug delivery system, many micelles-delivered anticancer agents’ nanoformulations have 
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advanced into clinical trials. NK911, a DOX-loaded micellar formulation, has passed Phase I 

clinical trial with acceptable toxicity profile in patients and is currently under Phase II trials 

(Nakanishi, Fukushima et al. 2001). The carrier was composed of PEG-b-poly(α,β-aspartic acid) 

copolymer conjugated with DOX via amide bonds. After loading DOX, the strong π-π stacking 

effect between the physically entrapped DOX and the core-forming DOX can significantly 

augment the stability of the micelles. Likewise, PTX-loaded polymeric micelles (NK105) and 

SN-38-loaded polymeric micelles (NK012) have already been in the Phase III and Phase II trials, 

respectively (Matsumura and Kataoka 2009, Hamaguchi, Doi et al. 2010). Besides, micelles 

consisting of PEG-b-poly(D,L-lactide) copolymer encapsulating PTX in the inner core (Genexol-

PM) have already been on the market in Bulgaria, Hungary and South Korea, and are currently 

being evaluated in U.S. in Phase II trials (Nehate, Jain et al. 2014).  

Although significant advances have been obtained in developing novel polymeric micelle 

drug delivery systems during the past decade, the achievements are still far from meeting the 

needs of effectively treating diseases including cancer. Therefore, improvement is invariably 

needed. In the following sections, discussion will be focused on the progress regarding the 

rational design of the biologically functional carriers for the delivery of hydrophobic anticancer 

agents for synergistic chemotherapy. Additionally, approaches of active targeting to tumor are 

also summarized. Further, emphasis is placed on how to improve drug loading and the 

formulation stability via enhancing drug/carrier interactions. Finally, VE-derivatized anticancer 

agents’ prodrugs as a novel way to formulate highly lipophilic chemotherapeutics is also 

discussed.  
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1.2.2 PEG-DERIVATIZED ANTICANCER AGENTS AS FUNCTIONAL 

NANOMICELLES FOR THE DELIVERY OF ANTITUMOR DRUGS 

1.2.2.1 Foundations in developing drug-conjugated polymeric micelles 

For a long time, the materials forming the micelles in drug delivery were “inert” and were of no 

therapeutic activity. The large amount of carrier materials used in the drug formulation also 

posed safe concerns. Hence, development of bioactive carriers for the tumor targeting delivery of 

the chemotherapeutics is of high interest. Hydrophobic drugs can be conjugated to hydrophilic 

polymers (PEG) to yield amphiphiles, which can self-assemble into micelles based on the strong 

hydrophobic interactions between the hydrophobic drugs. The therapeutically active micelles 

have many advantages over the conventional non-functional carriers. First, drug-formulated in 

bioactive micelles warrant the delivery of multiple therapeutics to the same target 

simultaneously, which may give rise to the enhanced therapeutic outcome via modulating 

different signaling pathways. Additionally, the dual functional carrier can not only synergize 

with the payload, but also is likely to offset the systemic toxicity arising from the loaded 

antitumor drugs (Lu, Zhao et al. 2014). More importantly, functional carriers might be also 

capable of facilitating the loaded drugs to reverse the multidrug resistance (Lu, Zhao et al. 2014).  

           Nonetheless, to date, scarcely have hydrophobic anticancer drugs been entrapped and 

delivered by micelles consisting of the polymer-drug conjugates. To this end, the following 

discussion is focused on the progress of the delivery of chemotherapeutics by the functional 

polymeric micelles derived from the PEG-drug conjugates from our group and others.  
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1.2.2.2 PEG-DERIVATIZED EMBELIN AS A DUAL FUNCTIONAL NANOMICELLAR 

SYSTEM FOR PACLITAXEL DELIVERY TO TUMOR.  

Embelin (EB), a naturally occurring alkyl substituted hydroxyl benzoquinone compound and a 

major constituent of Embelia ribes BURM, has been demonstrated to show a range of different 

biological activities, such as antidiabetic, anti-inflammatory, and hepatoprotective activities 

(Chitra, Sukumar et al. 1994, Bhandari, Jain et al. 2007, Singh, Singh et al. 2009). Besides, EB 

also exhibits significant antitumor activity in various types of cancers including colon, prostate, 

pancreatic, and breast (Chitra, Sukumar et al. 1994, Sreepriya and Bali 2005, Dai, Qiao et al. 

2009). Based on computational structure, EB was originally discovered via computer screening 

in Wang et al.’s group (Nikolovska-Coleska, Xu et al. 2004), in which it was found to inhibit the 

X chromosome-linked inhibitor of apoptosis protein (XIAP). XIAP plays a negligible role in the 

growth of normal cells, however, the function of which has been overly relied on in promoting 

the tumor cells proliferation (Tamm, Kornblau et al. 2000), where it was overexpressed, 

expecially in apoptosis-resistant cancer cells (Berezovskaya, Schimmer et al. 2005). XIAP 

targeting has been deemed as a new approach in the development of anticancer agents to enhance 

the overall outcome of the chemotherapeutics and radiation therapy. EB is able to target the 

BIR3 domain of XIAP, which leads to the suppression on the activity of caspase 9 and caspase 3, 

eventually resulting in the apoptotic cell death (Nikolovska-Coleska, Xu et al. 2004). 

Additionally, EB is also capable of downregulating the expression of IAP1/2, TRAF1, cFLIP, 

survivin, Bcl-2, and Bcl-xL via the inhibition on NF-κB activation (Ahn, Sethi et al. 2007).  

              Owing to its long lipophilic chain and benzene ring, EB is invariably hydrophobic with 

poor water solubility. In an attempt to improve the solubility of EB, PEGylated approach was 

employed (Lu, Huang et al. 2013, Lu, Zhao et al. 2014). Interestingly, it was found that after 
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conjugating PEG to EB2 (PEG-EB2), the PEG-EB2 can self-assemble into spherical micelles with 

very small size (20 nm) in aqueous solution (Lu, Huang et al. 2013, Lu, Zhao et al. 2014). This 

result did not happen by chance, given the structural similarity of EB and PE. The PEG-

derivatized EB still retained considerable bioactivity of EB. Meanwhile, PEG3.5K-EB2 can be also 

used as a nanocarrier to effectively solubilize PTX, in which the potent synergism between PTX 

and EB in PTX-loaded PEG3.5K-EB2 has been demonstrated in a number of cancer cell lines (Lu, 

Huang et al. 2013, Lu, Zhao et al. 2014). Structure activity relationship studies demonstrated that 

the conjugate with two EB chain worked significantly better in PTX loading in comparison to the 

one with only one EB chain (Lu, Zhao et al. 2014). This could be attributed to the stronger 

hydrophobic interaction endowed by the close proximity of the two EB chains in contrast to the 

relatively loose spatial arrangement in single EB chain conjugate. Further, increasing the length 

of PEG from 3.5K to 5K in doubled EB chains conjugates (PEG5K-EB2) led to significant 

improvement with respect to PTX loading and formulation stability (Lu, Huang et al. 2013). The 

PEG5K-EB2 exhibited extremely low CMC (0.35 μM), which compares favorably to most of the 

reported micellar system (Lu, Huang et al. 2013). In addition, the minimal hemolytic effect from 

PEG-derivatized EB warranted that it can be a safe and reliable nanocarrier without triggering 

any systemic toxicity in delivering chemotherapeutics (Lu, Huang et al. 2013). Moreover, in the 

maximum tolerated dose study (MTD), we found that PTX-formulated in PEG5K-EB2 (>100 

mg/kg) gave almost 7-fold higher MTD than PTX in its clinical formulation-Taxol (15 mg/kg) 

(Lu, Huang et al. 2013). Furthermore, in vivo near infrared fluorescence imaging study 

performed in PC-3 xenograft tumor model demonstrated superior passive tumor targeting ability 

using PEG5K-EB2 as a nanomicellar carrier (Lu, Huang et al. 2013). Paramountly, delivery of 
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PTX employing PEG5K-EB2 contributed to drastically improved antitumor efficacy compared to 

Taxol in both breast and prostate tumor models (Lu, Huang et al. 2013).  

1.2.2.3 PEG-DERIVATIZED VITAMIN E AS A NANOMICELLAR FORMULATION 

FOR TUMOR TARGETED DELIVERY OF CHEMOTHERAPEUTICS.  

Vitamin E (VE), a nontoxic and biocompatible hydrophobic lipid, acts by hindering the 

production of reactive oxygen species (ROS) generated when fat undergoes oxidation (Zhu, 

Cromie et al. 2014). Also, recent studies showed that VE can also inhibit cancer cell growth 

(Cheng, Zielonka et al. 2013, Hodul, Dong et al. 2013). Based on the pharmacological 

advantages and the hydrophobic nature, VE has been extensively utilized in the development of 

functional drug delivery system (Danhier, Kouhe et al. 2014, Laouini, Andrieu et al. 2014, 

Zhang, Huang et al. 2014). D-a-tocopheryl polyethylene glycol succinate 1000 (TPGS), a FDA 

approved pharmaceutical adjuvant in drug formulation, is a water-soluble PEG1K-derivatized 

natural VE, produced through the esterification of VE-succinate with PEG1K (Ma, Zheng et al. 

2010). In the past decades, TPGS has been widely exploited in forming a great number of 

nanocarriers for the delivery of the therapeutic agents, such as being a penetration enhancer 

(Aggarwal, Goindi et al. 2012), emulsifier in Poly (lactic-co-glycolic acid) (PLGA) nanoparticles 

(Mu and Feng 2002), TPGS-based liposomes (Vijayakumar, Muthu et al. 2013), solubilizer and 

stabilizer (Yu, Bridgers et al. 1999), as well as copolymers (Zhang and Feng 2006).  Recently, it 

has also been found that TPGS can function as excipient for the reversing of multidrug resistance 

due to its inhibition of the activity of ATPase in P-gp mediated efflux pump, resulting in 

improved effectiveness and efficacy of anticancer drugs (Dintaman and Silverman 1999). Further, 

TPGS can also be combined with other polymers such as Pluronic P105 (Gao, Li et al. 2008) and 

http://en.wikipedia.org/wiki/Reactive_oxygen_species
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Pluronic P123 (Zhao, Shi et al. 2011), to produce micelles for the delivery of anticancer drugs, in 

which increased cell-killing activity was obtained.  

            Nonetheless, delivery of chemotherapeutic agents by nanocarriers composed solely of 

TPGS has been shown to be ineffective due to its high CMC (Mi, Liu et al. 2011). Therefore, a 

series of efforts have been placed on modifying TPGS so as to exploit its potential as the only 

component in forming the micelles for effective delivery of anticancer agents. Under this 

condition, no shared surfactants will be employed, which could result in decreased systemic 

toxicity caused by large amount of carriers used.   To this end, first, longer PEG (2K) chain was 

used to substitute the original PEG (1K) and coupled with one VE-succinate to yield TPGS2K (Mi, 

Liu et al. 2011). TPGS2K had much lower CMC (0.0219 mg/mL) compared the traditional 

micelles with TPGS involved (0.2 mg/mL), which provided the foundation to form stable 

micelles by sole TPGS2K. Indeed, TPGS2K can efficiently incorporate hydrophobic anticancer 

agent-docetaxel and exhibited potential synergistic effect (Mi, Liu et al. 2011). This modification 

has led to the successful formation of stable drug TPGS nanomicellar formulation without 

additional stabilization from other polymers or lipids. It has been established that in micelles, 

longer PEG chain can offer better steric hindrance protection, compared to the one with shorter 

PEG length, which can further reduce the non-specific internalization of micellar formulation by 

RES (Lu, Huang et al. 2013). Secondly, in addition to prolong the PEG length to improve the 

performance of TPGS in drug loading and stability, increasing the number of VE chains has also 

been investigated. Wang et al. found that TPGS2K with doubled VE chains (PLV2K) presented 

significantly improved formulation stability with CMC as low as 1.14 μg/mL, which is 

drastically lower than that for TPGS2K (21.9 μg/mL) and TPGS (200 μg/mL) (Wang, Sun et al. 

2012). In addition, PLV2K retained similar P-gp inhibitory effect as TPGS, which enabled it to 
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overcome the multidrug resistance when delivering chemotherapeutics to tumors (Wang, Sun et 

al. 2012). More importantly, PLV2K-delivered DOX exhibited improved antitumor activity 

compared to DOX-loaded TPGS (Wang, Sun et al. 2012). More recently, our group developed 

four PEG-derivatized VE conjugates with varying PEG length (PEG2K vs PEG5K) and the molar 

ratio of PEG/Vitamin E (1/1 vs 1/2) in the conjugates (PEG2K-VE, PEG2K-VE2, PEG5K-VE, and 

PEG5K-VE2) (Lu, Huang et al. 2013). Our data suggested that PEG5K-VE2 was most effective in 

formulating DOX with respect to drug loading capacity and formulation stability (Lu, Huang et 

al. 2013). Moreover, the four PEG-derivatized VE conjugates well maintained the suppression of 

P-gp function (Lu, Huang et al. 2013). Greatly, PTX-loaded PEG5K-VE2 nanomicelles gave rise 

to the highest level of delaying the tumor growth, compared to PTX formulated in PEG2K-VE or 

PEG2K-VE2, as well as Cremophor EL (Taxol) in a mouse model bearing 4T1.2 breast cancer 

(Lu, Huang et al. 2013).  

 

1.2.2.4 PEG-DERIVATIZED FARNESYLTHIOSALICYLATE CONJUGATES AS 

POLYMERIC MICELLES FOR THE DELIVERY OF PACLITAXEL.  

S-trans, trans-farnesylthiosalicylic acid (FTS), a nontoxic and synthetic small lipidic molecule, 

functions by antagonizing Ras proteins in cell membrane (Marom, Haklai et al. 1995, Haklai, 

Weisz et al. 1998). FTS is the first-in-class direct Ras antagonist developed to restrain the 

uncontrolled proliferation of cancer cells arising from oncogenically activated Ras or growth 

factor receptor-mediated Ras activation (Marom, Haklai et al. 1995, Haklai, Weisz et al. 1998).  

Significant reduction of Ras levels by the treatment of FTS has been demonstrated in a number 

of tumor models devoid of noticeable untoward effects (Gana-Weisz, Halaschek-Wiener et al. 

2002). Prevailingly, one major mechanism of inhibiting Ras by FTS is to dislodge Ras protein 
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from its anchorage domains, which led to the degradation of Ras, subsequently leading to its 

inability to cue in the cell membrane (Paz, Haklai et al. 2001, Rotblat, Ehrlich et al. 2008).  

            However, being hydrophobic and water insoluble, the bioavailability of FTS was 

markedly limited (Kraitzer, Kloog et al. 2011). To address its solubility issue, PEG (5K) was 

conjugated with two FTS molecules to generate PEG5K-FTS2, which can self-aggregate into 

nanoscaled micelles and also effectively formulate other hydrophobic anticancer drugs such as 

PTX (Zhang, Lu et al. 2013). This is explainable considering the similar lipophilic chain of FTS 

with EB and VE. Moreover, strong synergy was shown in PEG5K-FTS2-delivered PTX micelles 

tested in various tumor cell lines (Zhang, Lu et al. 2013). Further, significantly enhanced tumor 

growth inhibition was achieved using PTX-loaded PEG5K-FTS2 over Taxol in murine breast 

tumor model (Zhang, Lu et al. 2013). Although PEG5K-FTS2 exhibited great promise in serving 

as a nanomicelles carrier, its biological potential needs to be further unleashed. Therefore, we 

moved on to develop PEG-derivatized FTS with disulfide linkage (PEG5K-S-S-FTS2) so that FTS 

can be released maximally from conjugates, and present its anti-Ras activity to the fullest extent 

(Zhang, Liu et al. 2014).  Surprisingly, PEG5K-S-S-FTS2 formed micelles with 4-fold decrease in 

CMC compared to the one without disulfide bond (Zhang, Liu et al. 2014). Also, HPLC-MS 

study showed that FTS can be more readily liberated from PEG5K-S-S-FTS2 conjugate in tumor 

cells or tissues compared to PEG5K-FTS2 conjugate (Zhang, Liu et al. 2014). More importantly, 

delivery of PTX by PEG5K-S-S-FTS2 showed greater antitumor activity in comparison to that by 

PEG5K-FTS2 and Taxol (Zhang, Liu et al. 2014). In order to elucidate the structure activity 

relationship, four PEG-FTS conjugates that differed in the molecular weight of PEG (PEG2K vs 

PEG5K) and the molar ratio of PEG/FTS (1/2 vs 1/4) in the conjugates were developed (Zhang, 

Huang et al. 2014). Our data indicated that the PEG-FTS conjugates with four FTS molecules 
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were more effective over the conjugates with two molecules of FTS (Zhang, Huang et al. 2014). 

Besides, conjugates with PEG5K were clearly more effective than the ones with PEG2K in 

forming stable PTX-loaded micelles (Zhang, Huang et al. 2014). Finally, it has been implied that 

PEG5K-FTS4/PTX was the most efficacious PTX nanomicellar formulation referring to hindering 

the tumor growth in vivo, in contrast to the PTX formulated in PEG2K-FTS2, PEG2K-FTS4, 

PEG5K-FTS2 micelles (Zhang, Huang et al. 2014).  

1.2.3 TUMOR-SPECIFIC TARGETING BY LIGAND-EQUIPPED POLYMERIC 

NANOCARRIERS. 

Owing to the nature of herperpermeable vasculatures and compromised lymphatic drainage in 

tumors, nanocarriers-encapsulated drugs can be passively targeted to cancerous tissue based on 

EPR effect, after sufficient circulation time in the blood stream (Matsumura and Maeda 1986). 

Although the improved bioavailability of delivered anticancer drugs or diagnostic agents to 

tumors was achieved via the solubilization and protection from the nanocarriers, the 

internalization efficiency by tumor cells sometimes remains poor. In order to obtain adequate 

nutrients to support the overly proliferation, tumor cells overexpress a variety of receptors such 

as receptors of folate (Zhao, Li et al. 2008), transferrin (Elliott, Elliott et al. 1993), epidermal 

growth factor (EGF) (Zeng, Lee et al. 2006), α2-glycoprotein (Yin, Litvinov et al. 2006), as well 

as luteinizing hormone-releasing hormone (LHRH) (Dharap, Qiu et al. 2003). Specific 

interactions between the ligands with receptors displayed on tumor cells leads to the selective 

accumulation of drugs in the tumor tissue with high affinity. Besides, active targeting can also 

significantly reduce the unwanted side effects in normal tissue, as drugs accumulates primarily in 

the tumor sites. Furthermore, ligand-conjugated nanocarriers will be taken up through specific 



 17 

ligand/receptor-mediated endocytosis, which could potentially bypass the p-gp-modulated efflux 

pump, resulting in the reversal of multidrug resistance in tumors, especially, in drug resistant 

cancers.   

            It has been found that conjugation of α2-glycoprotein to Pluronics micelles–incoporated 

fluorescein isothiocyanate (FITC) exhibited preferential accumulation of FITC in brain glial 

tumor and reduced clearance of FITC by lung in comparison to that of pluronics micelles without 

α2-glycoprotein ligand (Yin, Litvinov et al. 2006). Zeng et al found that EGF-decorated PEG-b-

poly (δ-valerolactone) micelle can specifically target the EGF receptors overexpressed by the 

MDA-MB-468 breast cancer cells, which subsequently, led to the accumulation of micelle in the 

nucleus and perinuclear region in the tumor cells, suggesting the potential of EGF conjugation as 

an effective approach for the selective nuclear delivery of anticancer agents (Zeng, Lee et al. 

2006). Transferrin, an 80-kDa blood plasma glycoprotein with two specific high affinity Fe (III), 

binds to the endogenous iron in plasma so as to control the level of free iron in biological fluids. 

It has been reported that transferrin-bound PLGA nanoparticles containing PTX presented 

increased intracellular uptake and decreased exocytosis, resulting in enhanced tumor growth 

regression compared to free drug or the one without transferrin conjugation (Elliott, Elliott et al. 

1993). Folate, a type of vitamin, is one of the most widely used ligand in drug delivery for the 

active tumor targeting due to its non-toxicity, supplemental effect, as well as non-

immunogenicity (Zhao, Li et al. 2008). Being overexpressed on various tumor cells such as lung, 

colon, breast, ovarian, and brain, folate has a broad spectrum of targeting tumors (Zhao, Li et al. 

2008). Therefore, folate-targeted nanomedicine has been extensively investigated in drug 

delivery field. Liu et al. developed a block copolymer, poly (N-isopropylacrylamide-co-N, N-

dimethylacrylamide-co-2-aminoethyl methacrylate)-b-poly (10-undecenoic acid) (P (NIPAAm-
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co-DMAAm-co-AMA)-b-PUA), in which folic acid was coupled with AMA (Liu, Wiradharma 

et al. 2007).  The folate-targeted system led to much lower IC50 in 4T1 and KB cancer cells 

compared to the counterparts without folate (Liu, Wiradharma et al. 2007). Yoo et al. showed 

that conjugation of folate to PLGA-PEG polymeric micelles led to dramatic improvement in 

delivering DOX in nude mice bearing KB epidermal carcinoma with greater tumor growth 

inhibition, compared to the counterpart without folate (Yoo and Park 2004). Also, Lee et al. 

demonstrated that DOX-loaded pH-sensitive micelles decorated with folate (PHSM/f) showed 

significantly improved antitumor activity in comparison to free DOX or micelles without folate 

as targeting ligand in DOX resistant MCF-7 (MCF-7/DOXR) murine tumor model, suggesting 

the potential of PHSM/f in bypassing the P-gp efflux pump, leading to the reversal of drug 

resistance (Lee, Na et al. 2005). Also, the accumulation of DOX from PHSM/f in solid tumors 

was 20 times or 3 times higher than free DOX group or PHSM group, respectively, which 

implied that folate-decorated micelles can be more efficiently internalized via folate/folate 

receptor-mediated endocytosis (Lee, Na et al. 2005).  

Recently, our group further improved the PEG5K-EB2 dual function carrier by attaching a 

folate ligand onto the surface of the micelles (FA-PEG5K-EB2) (Lu, Zhao et al. 2014). Significant 

enhanced cytotoxicity was achieved in FA-PEG5K-EB2/DOX in cancer cells such as 4T1.2, 

MCF-7, as well as NCI/ADR-RES, a drug resistant cell line, compared to free DOX, Doxil 

(PEGylated DOX formulation), and the PEG5K-EB2/DOX (Lu, Zhao et al. 2014). More 

importantly, for the first time, we found that PEG5K-EB2 can significantly suppress the activity of 

P-gp by restraining the function of ATPase, which is of great importance in overcoming the P-

gp-mediated multidrug resistance (Lu, Zhao et al. 2014). Besides, improved DOX uptake was 

also observed in the folate targeted system (Lu, Zhao et al. 2014). Finally, all of the advantages 
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from FA-PEG5K-EB2/DOX gave rise to significantly enhanced antitumor efficacy in vivo (Lu, 

Zhao et al. 2014).  

1.2.4 IMPROVED PERFORMANCE OF MICELLES VIA INTRODUCTION OF 

DRUG-INTERACTIVE MOTIF. 

Although the solubility of hydrophobic anticancer agents have been improved 

significantly after loading into nanocarriers including polymeric micelles, the drug loading 

capacity and formulation stability remains a challenge in the field of drug delivery. The poorly 

water soluble chemotherapeutic agents can be incorporated into the hydrophobic core of 

polymeric micelles during the self-aggregation process that is mainly driven through the 

hydrophobic interactions among the hydrophobic components of the micelles. Under this 

circumstance, the drug loading and formulation stability is mainly determined by the interactions 

between the hydrophobic domains of polymeric micelles and drugs with hydrophobicity. While 

working well to some degree, the satisfactory drug loading and formulation stability are still hard 

to be achieved to meet the therapeutic intent due to the lack of sufficient drug/carrier 

compatibility. Therefore, there is an urgent need to create nanocarriers that can load more drugs 

with acceptable stability. To this purpose, a wealth of approaches have been studied. One of 

them is to utilize disulfide cross-linker to enhance the stability of drug-loaded micelles. Li et al. 

found that the disulfide cross-linked micelles made of PEG and cholic acid (DCMs) was able to 

significantly enhance the stability of micelles with superior PTX loading (35.5%), which 

inevitably led to better antitumor effect in vivo (Li, Xiao et al. 2011).  

        Moreover, it has been reported that introduction of drug-interactive moieties into the 

conventional micellar systems can further increase the drug loading capacity and formulation 
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stability via offering additional interactions between carrier/drug or carrier/carrier (Huh, Lee et al. 

2005, Kim, Kim et al. 2010, Han, Feng et al. 2011, Verma, Aswal et al. 2011). Hydrotropy refers 

to the improvement in water solubility arising from the introduction of suitable quantity of a 

second solute (Cloninger 2002). Most of hydrotropic molecules (hydrotrope) are composed of an 

aromatic ring which is substituted by moieties with anion or cation (Cloninger 2002). Owing to 

the small size of the amphiphilic hydrotropes, basically, it is impossible to promote the 

micellization. It is only exceeding the minimum hydrotropic concentration (MHC) that the 

hydrotropes can self-aggregate, during which the poor solubility of hydrophobic drugs can be 

increased via the complexation (Al-Jamal, Sakthivel et al. 2003). Notwithstanding the complete 

mechanism of how the hydrotropes solubilize the sparingly water soluble drug is not fully 

elucidated, the potential interactions such as π-π stacking, hydrophobic interaction, as well as 

hydrogen bonding have been proposed (Huh, Lee et al. 2005, Kim, Kim et al. 2010). The free 

hydrotropes worked well to some extent with respect to increasing the solubility of some 

hydrophobic therapeutics, but the effectiveness in solubilizing a wide spectrum of hydrophobic 

drugs remains inadequate. Another concern is the toxicity attributed by the cosolvents and 

surfactants used in the application of free hydrotropes as solubilizer for hydrophobic molecules 

(Huh, Lee et al. 2005). Further, in drug formulation, the freely dissolved hydrotropes can be 

readily absorbed systematically in the body, posing safety issue (Cheon Lee, Kim et al. 2003). 

Fortunately, being amenable to structure modifications, hydrotropes normally can be covalently 

linked polymers in which their solubilizing ability can be employed, while at the same time, 

minimizing concerns of systemic absorption (Huh, Lee et al. 2005). It is expected the addition of 

hydrotropes into the polymeric micelles can provide extra solubility power to better formulate 

poorly water soluble drugs. In Park’s research, N,N-diethylnicotinamide (DENA), a typical 
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hytrotrope, was conjugated to the hydrophobic block of a copolymer to yield PDENA-PEG, 

which was able to formulate PTX with significantly improved loading and enhanced formulation 

stability, compared to the other polymer micelles without hydrotropes incorporation (PPA-PEG 

and PLA-PEG) (Huh, Lee et al. 2005). Recently, park et al. developed a novel hydrotropic 

polymer micelle system in which hydrotropic N,N-dimethylbenzamide (DMBA) was covalently 

linked to the hydrophobic polymer (Kim, Kim et al. 2011). The DMBA-based system can be 

exploited as a versatile carrier to increase the water solubility for 1~3 order of magnitude and 

enhanced formulation stability for a variety of hydrophobic drugs with diverse molecular 

structures with polymeric hydrotropes at the 1% (w/v) in comparison to its counterparts without 

hydrotropes incorporation (Kim, Kim et al. 2011). This strategy can provide a unique means of 

formulating various poorly soluble drugs without adding large amount of organic solvents. 

Furthermore, Kataoka’s group has shown that conjugation of the poorly soluble drug (DOX, 

PTX, SN-38, and Epirubicin) into the hydrophobic core of a polymer micelles, can greatly 

facilitate the drug loading capacity and improve stability when formulating the same 

hydrophobic drugs (Cabral and Kataoka 2014). This could be due to the enhanced interactions 

between the physically entrapped drug and the hydrophobic core materials that were composed 

of the same drugs.  

         More recently, our group has found that introduction of a drug-interactive motif into the 

interfacial region of the lipid-core micelles or emulsion components can significantly strengthen 

the drug loading and formulation stability for a multitude of hydrophobic anticancer agents. 

Among a number of functional groups examined in PEGylated lipopepetides for formulating 

JP4-039, a synthetic antioxidant, fluorenylmethyloxycarbonyl (Fmoc), a commonly used amine 

protecting group in peptide chemistry, was found to be the most effective drug-interactive group 



 22 

in enhancing carrier/drug interactions (Gao, Huang et al. 2013). Fmoc group embraces a bulky 

and fused fluorenylmethyl ring that is able to offer strong π-π stacking effect and hydrophobic 

interactions with other molecules containing aromatic moieties, including itself (Gao, Huang et 

al. 2013). In addition, the carbamoyl bond that bridges the lysine to benzene ring is of hydrogen 

bonding power (Gao, Huang et al. 2013). It has been reported that Fmoc played a pivotal role in 

forming elongated nanoasseblies by promoting parallel interactions of short peptides or 

lipopeptides with the same group (Zhang, Gu et al. 2003, Jayawarna, Smith et al. 2007).  Our 

data exhibited that the drug-loaded emulsion containing Fmoc as drug-interactive motif resulted 

in marked improvement pertaining to formulation stability (Gao, Huang et al. 2013). 

Additionally, we developed another Fmoc-containing amphipilic polymers composed of PEG5K 

and two oleoyl molecules, which was able to readily form micelles with much lower CMC and 

enhanced PTX loading in contrast to the one without Fmoc (Zhang, Lu et al. 2014). Additionally, 

this system was also fairly effective in formulating another seven hydrophobic drug with diverse 

chemical structures, implying the versatility of this carrier as a drug carrier (Zhang, Lu et al. 

2014). In an attempt to improve the performance of our dual functional carriers developed 

previously, Fmoc was conjugated to the interfacial area of the PEG5K-VE2 (PEG5K-Fmoc-VE2 

(Lu, Zhao et al. 2014, Zhang, Huang et al. 2014). The PEG5K-Fmoc-VE2 conjugate also well 

reserved the intrinsic function of VE in inhibiting the activity of P-gp. Notably, PEG5K-Fmoc-

VE2 presented dramatically improved DOX (39.95%) or PTX (20.8%) loading with enhanced 

formulation stability, compared to PEG5K-VE2 in formulating DOX (2.9%) or PTX (5.4 %) (Lu, 

Zhao et al. 2014, Zhang, Huang et al. 2014). In addition, pharmacokinetic (PK) and 

biodistribution studies exhibited an augmented half-life in circulation and more effective tumor 

accumulation for DOX formulated in PEG5K-Fmoc-VE2 micelles (Lu, Zhao et al. 2014). More 
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importantly, DOX-loaded PEG5K-Fmoc-VE2 micelles showed a MTD (~30 mg DOX/kg) that 

was about 3 times as much as that in free DOX (Lu, Zhao et al. 2014). Finally, drastically 

enhanced antitumor efficacy was achieved in 4T1.2 breast, PC-3 prostate, as well as drug 

resistant-KB 8-5 tumor models (Lu, Zhao et al. 2014). The underlying mechanism of the greatly 

ameliorated compatibility between PEG5K-Fmoc-VE2 and drugs was demonstrated to be ascribed 

to the additional π- π stacking, hydrophobic interactions, as well as hydrogen bonding effects 

arisen from addition of Fmoc through FT-IR, fluorescence quenching, UV absorbance, and NMR 

studies (Lu, Zhao et al. 2014). Similar results were also obtained in Fmoc-containing PEG-

derivatized FTS (PEG5K-Fmoc-VE2) in comparison to its counterpart without Fmoc (Zhang, 

Huang et al. 2014). 

1.2.5 A-TOCOPHEROL-CONJUGATED ANTICANCER DRUGS: AN EFFECTIVE 

APPROACH OF FORMULATING CHEMOTHERAPEUTICS. 

The vitamin E (VE), nontoxic, nonimmunogenic, and biocompatible lipids, is composed 

of lipophilic tocopherols and tocotrienols, among which γ-tocopherol is the most widely used in 

the diet in North America (Brigelius-Flohe and Traber 1999). While, α-tocopherol exhibits the 

highest level of biological activity in VE (Bieri and Evarts 1974, Brigelius-Flohe and Traber 

1999). Therapeutic potential of VE has also been extensively evaluated for a number of disorders 

including cancer, heart diseases, as well as Alzheimer’s disorder (Lee, Tseng et al. 2013, Dysken, 

Sano et al. 2014, Li, Sen et al. 2014). In previous chapter, VE-derivatized polymeric micelles as 

effective nanocarriers for the delivery of anticancer agents have been elaborated. Herein, 

emphasis will be placed on derivatizing hydrophobic anticancer drugs with tocopherol as a 

promising novel platform to formulate sparingly water soluble chemotherapeutics. It was 



 24 

reported that VE was able to synergize with other chemotherapeutics when treating cancer (Mi, 

Liu et al. 2011). Further, VE was also capable of overcoming the multidrug resistance (MDR) 

through inhibiting the p-gp efflux pump (Tang, Fu et al. 2013). Besides, VE-derivatives can 

significantly improve the solubility of hydrophobic drugs (Duhem, Danhier et al. 2014). 

Therefore, conjugation of VE to another anticancer drugs not only increase the compatibility of 

the parent drug, but also greatly enhance its therapeutic efficacy.  

In Duhem et al’s study, DOX was covalently coupled to D-α-tocopherol succinate via an 

amide linkage to yield N-DOX-TOS, which can self-aggregate into highly ordered lamellar inner 

structure with particle size around 250 nm upon stabilization by D-α-tocopherol PEG 2000 

succinate (PEG-TOS) (Duhem, Danhier et al. 2014). Besides, great DOX loading and low in 

vitro drug release were both secured by using N-DOX-TOS system (Duhem, Danhier et al. 

2014). More importantly, the VE-derivatized DOX nanoformulations was able to offer 

significantly enhanced ability of delaying the tumor growth in vivo compared to free DOX 

(Duhem, Danhier et al. 2014). Recently, Liu et al. ped a series of novel nanomaterials consisting 

of hydrophobic prodrugs that can self-assemble into nanoparticles by themselves, which was 

distinct from conventional amphipilic or ionic interactions (Wang, Liu et al. 2014). VE was 

conjugated to a number of anticancer agents (PTX, DOX, fluorouracil, and gemcitabine) or 

diagnostics (sulforhodamine B) via disulfide linker (Wang, Liu et al. 2014). The VE-based 

prodrugs can readily self-aggregate into stable nanomedicine with unimodal size distribution in 

aqueous solution. These nanoassemblies improved drug loading capacity significantly and 

mitigated safety issues concerning the shared application of excipient which may cause side 

effects. Finally the PEGylated VE-based prodrugs containing disulfide bond showed both 

favorable PK, enhanced inhibition on tumor growth, as well as considerable imaging ability in 
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tumor (Wang, Liu et al. 2014). The underlying mechanism addressing this unique self-assembly 

system was found to be the insertion of disulfide bond between VE and drugs, as the 

counterparts without disulfide bond linker was discerned as marked crystal aggregates instead of 

individual nanoparticles (Wang, Liu et al. 2014). It has been observed that disulfide bonds tend 

to exhibit dihedral angles to approach 90ο, which contributed dramatically to balancing 

intermolecular forces, and presented the favorable spatial configuration, in which high density of 

negative charge on the nanoparticles’ surface was exposed, resulting in the disruption of 

crystallization (Wang, Liu et al. 2014).   

Our improved dual functional vectors worked well for most of chemotherapeutics, but 

cannot accommodate campothecin (CPT), a potent antitumor drug by suppressing the activity of 

topoisomerase I. In order to ameliorate the compatibility of CPT, CPT was modified via 

conjugating to VE at its hydroxyl group through either carbonate ester bond (CPT-VE) or 

disulfide linkage (CPT-S-S-VE) (Lu, Liu et al. submitted). Our data showed that both VE-

derivatized CPT prodrugs can effectively self-assemble into nanofibers with monodispersity 

upon stabilization of PEG5K-Fmoc-VE2 carrier (Lu, Liu et al. submitted). The CPT loading was 

improved remarkably in CPT-VE (6.6%) or CPT-S-S-VE (9.2%) prodrugs nanoparticles along 

with greater stability (CPT-VE system > 20 days, CPT-S-S-VE system > 30 days) over CPT 

formulated in PEG5K-Fmoc-VE2 (0.65%) (Stability≈8 days) (Lu, Liu et al. submitted). The 

improved CPT loading and stability in CPT prodrugs nanoassemblies, especially in CPT-S-S-VE 

system is highly likely due to the addition of VE molecule to CPT, in which the compatibility of 

CPT-VE or CPT-S-S-VE with carriers was significantly ameliorated. Meanwhile, the 

hydrophobic interactions between VE molecules from CPT prodrugs and carriers could act as the 

driving force to form nanoparticles during self-assembly process, leading to both increased CPT 
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loading and enhanced formulation stability. Besides, the additional hydrogen bonding could also 

be involved in the formation of the stable CPT prodrugs nanofibers based on our FT-IR study 

(Lu, Liu et al. submitted). Furthermore, the flexible CPT-S-S-VE could offer augmented degree 

of freedom of rotation, in contrast to relatively rigid CPT-VE, which could adjust the spatial 

arrangement of CPT-S-S-VE to the optimal position so as to be anchored into carriers in a more 

stabilized fashion, which was reflected by stronger hydrophobic interactions and π- π stacking in 

CPT-S-S-VE illustrated by the fluorescence quenching and UV absorbance study.  Moreover, 

CPT prodrugs, particularly in CPT-S-S-VE system, were able to retain good biological activity 

of the parental CPT in vitro (Lu, Liu et al. submitted). Confocal imaging study demonstrated 

CPT prodrugs nanofibers were taken up via endocytosis, which was of great importance in 

overcoming drug resistance in drug resistant tumors through bypassing the P-gp-mediated efflux 

pump (Lu, Liu et al. submitted). Finally, CPT-S-S-VE nanoassemblies achieved significantly 

more CPT accumulation in tumor and superior antitumor efficacy in mice bearing 4T1.2 breast 

tumor (Lu, Liu et al. submitted). The better performance in CPT-S-S-VE over CPT-VE 

nanofibers concerning tumor CPT accumulation and tumor regression was attributed to the 

significantly easier release of CPT from CPT-S-S-VE in tumor as where high level of GSH can 

break down the disulfide bond, liberating CPT. 
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2.0  PEG-DERIVATIZED EMBELIN AS A DUAL FUNCTIONAL CARRIER FOR 

THE DELIVERY OF PACLITAXEL 

2.1 BACKGROUND 

Low water-solubility, high protein-binding and relatively short half-life are major problems in 

the clinical applications of many potent anti-cancer drugs such as paclitaxel (PTX) (Paal, Muller 

et al. 2001, Xie, Guan et al. 2007). Currently a variety of drug delivery systems such as 

liposomes, dendrimers, microcapsules and polymeric micelles have been developed to address 

these problems and further to promote sustained, controlled and targeted delivery of poorly 

water-soluble anti-cancer drugs (Torchilin 2007). Of all these delivery systems, polymeric 

micelles have gained considerable attention as a versatile nanomedicine platform due to their 

technical ease, high biocompatibility, and high efficiency in drug delivery (Sutton, Nasongkla et 

al. 2007, Mi, Liu et al. 2011). Polymer micelles have been demonstrated to improve the aqueous 

solubility of chemotherapeutic agents and prolong their in vivo half-lives, owing to the steric 

hindrance provided by a hydrophilic shell (Sutton, Nasongkla et al. 2007, Mi, Liu et al. 2011). 

Moreover, compared with other delivery systems, micelles show advantages in passive tumor 

targeting through the leaky vasculature via the enhanced permeability and retention (EPR) effect 

due to their small size ranging from 10-100 nm (Matsumura and Maeda 1986). Favorable drug 

biodistribution and improved therapeutic index can be achieved by using the micelle delivery 
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system (Sutton, Nasongkla et al. 2007, Torchilin 2007). However, most of the polymeric systems 

use “inert” excipients that lack therapeutic activity. The presence of large amounts of carrier 

materials not only adds to the cost but also imposes additional safety issue (Croy and Kwon 

2006). 

One of the most sophisticated designs of drug delivery systems is that the components 

forming the carriers can also be of therapeutic effects. The carrier materials may be capable of 

counteracting the side effects caused by the loaded anticancer drugs (Dong and Feng 2005). 

Also, it is possible that the carrier may collaborate with the loaded drug to achieve synergistic 

effects to better treat the tumor (Mi, Liu et al. 2011). However, the strategy of using highly 

water-insoluble drugs themselves as the hydrophobic region of polymeric micelle is rarely 

reported. One example is the pegylated vitamin E, D-α-tocopheryl polyethylene glycol succinate 

(Vitamin E TPGS or TPGS) (Zhang and Feng 2006, Zhang, Lee et al. 2008, Prashant, Dipak et 

al. 2010). Vitamin E shows antitumor activity against a number of types of cancers through 

various mechanisms such as induction of apoptosis, inhibition of tumor cell proliferation and 

differentiation, suppression of nuclear factor-kappa B (NF-κB) activation, and so forth (Husain, 

Francois et al. 2011, Ji, Wang et al. 2011). The pegylated vitamin E is a highly water soluble 

amphiphilic molecule comprising lipophilic alkyl tail and hydrophilic polar head portion. In 

addition to its antitumor activity, it is effective in solubilizing various hydrophobic drugs such as 

PTX. Synergistic actions between the TPGS-based carrier and delivered anticancer agents have 

been reported (Mi, Liu et al. 2011). 

In this study, we report the development of PEG-derivatized embelin as another novel 

and dual-functional carrier for delivery of poorly water-soluble anticancer drugs. Embelin is a 

naturally occurring alkyl substituted hydroxyl benzoquinone compound and a major constituent 
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of Embelia ribes BURM. It has been shown to possess antidiabetic, anti-inflammatory, and 

hepatoprotective activities (Chitra, Sukumar et al. 1994, Bhandari, Jain et al. 2007, Singh, Singh 

et al. 2009). Embelin also shows antitumor activity in various types of cancers (Chitra, Sukumar 

et al. 1994, Sreepriya and Bali 2005, Dai, Qiao et al. 2009, Danquah, Li et al. 2009, Singh, Singh 

et al. 2009, Heo, Kim et al. 2011). One major mechanism involves the inhibition of the activity 

of X-linked inhibitor of apoptosis protein (XIAP) (Nikolovska-Coleska, Xu et al. 2004). XIAP is 

overexpressed in various types of cancers cells, particularly drug-resistant cancer cells and 

inhibition of XIAP has been explored as a new approach for the treatment of cancers (Tamm, 

Kornblau et al. 2000, Holcik, Gibson et al. 2001). XIAP plays a minimal role in normal cells and 

therefore embelin shows significantly less toxicity on normal cells. Embelin also downregulates 

the expression of survivin, XIAP, IAP1/2, TRAF1, cFLIP, Bcl-2, and Bcl-xL through the 

inhibition of NF-κB activation (Ahn, Sethi et al. 2007). Embelin is poorly water soluble and PEG 

modification was originally explored by us as an approach to increase its solubility. Interestingly, 

PEG-derivatized embelin forms micelles that are highly efficient in solubilizing other 

compounds such as PTX. Preparation of PEG-derivatized embelin can be readily achieved with 

commercially available embelin. In addition, we have developed an efficient synthesis strategy to 

prepare PEG-embelin conjugate. Our in vitro studies showed that PEG-embelin has similar 

activity as free embelin with IC50 in the low M range.  More importantly, PEG-embelin 

synergizes with PTX at much lower doses (~nM) in a number of cancer cell lines tested. 
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2.2 METHODS 

2.2.1 Materials  

Paclitaxel (98%) was purchased from AK Scientific. Inc. (CA, USA). 2,5-dihydroxy-3-undecyl-

1,4-benzoquinone (embelin 98%) was purchased from 3B Scientific Corporation (IL, USA). 

Dulbecco’s phosphate buffered saline (DPBS) was purchased from Lonza (MD, USA). 

Methoxy-PEG3,500-OH, dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT), trypsin-EDTA solution, Triton X-100, and Dulbecco’s Modified 

Eagle’s Medium (DMEM) were all purchased from Sigma-Aldrich (MO, USA). Fetal bovine 

serum (FBS) was purchased from Gibco Life Technologies (AG, Switzerland). Penicillin-

streptomycin solution was from Invitrogen (NY, USA). All solvents used in this study were 

HPLC grade.   

2.2.2 Cell culture 

DU145 and PC3 are two androgen-independent human prostate cancer cell lines. MDA-MB-231 

is a human breast adenocarcinoma cell line. 4T1 is a mouse metastatic breast cancer cell line. All 

cell lines were cultured in DMEM containing 10% FBS and 1% penicillin-streptomycin in a 

humidified environment at 37 ℃ with 5% CO2. 
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2.2.3 Synthesis of PEG3.5K-Embelin2 (PEG3.5K-EB2) 

 Figure 1 shows the synthesis sequence of PEG3.5K-EB2 conjugate. Synthesis of the 

intermediates and structural characterizations are detailed below. 

 

Figure 1 The synthetic route of PEG3.5K-EB2. Conditions: (a) water, Fremy’s salt, KH2PO4, 5 min; 

NaS2O4, 30 min; (b) water, Mel, NaOH, 1 h; (c) Boc-Aspartic acid, DCC, DMAP, CH2Cl2, 

overnight; (d) MeCN, DMF, POCl3; (e) THF, LiHMDS 2M in THF, decyltriphenylphosphonium 

bromide, 2 h; (f) 1) MeOH, H2, Pd/C; 2) MeCN, CAN; 3) dioxane, HCl, 2 h; (g) CH2Cl2, DCC, 

DMAP, 9; overnight; (h) succinic anhydride, DMAP, CH2Cl2, 2 days. 

 

Compound 2: Sesamol (1.52 g, 24 mmol) in 30 mL of methanol was added to a rapidly 

stirred solution of Fremy’s salt (7.96 g, 30 mmol) and 5.49 g (40 mmol) of KH2PO4 in 400 mL 
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water at 5 ℃. The color of the solution changed from light brown to bright yellow within 5 min. 

The mixture was stirred for another 30 min and then extracted with 4  40 mL of ethyl acetate. 

The ethyl acetate phase was treated with a solution of Na2S2O4 (9.0 g, 52 mmol) in water (30 

mL), and the yellow color changed to a colorless solution. The organic layer was acidified with 

HCl (1 N), extracted with ethyl acetate (3  30 mL), washed with water (20 mL), dried with 

anhydrous MgSO4, and concentrated to give 1.1 g (65%) of 2 as a light pink solid. 1H 

NMR((CD3)2CO): 7.49 (s, 2H), 6.45 (s, 2H), 5.79 (s, 2H).  

Compound 3: A solution of 2 (1.54 g, 10 mmol) in water (30 mL) was treated with 

NaOH (0.4 g, 10 mmol) while the flask was kept in an ice bath. The reaction mixture was stirred 

for 15 min after which MeI (1.41 g, 10 mmol) was added dropwise. The reaction mixture was 

then heated under reflex for 1 h, allowed to cool down to room temperature and the solvent was 

removed via a rotary evaporator. The crude product was purified by flash chromatography with 

silica gel (ethyl acetate: petroleum ether, 1: 5) and pure 3 was obtained as an amber oil with a 

yield of 99% (1.68 g). 1H NMR(CDCl3):  6.11 (m, 2H), 5.88 (s, 2H), 5.35 (s, 1H), 3.72 (s, 3H). 

Compound 4: To a solution of N-(tert-Butoxycarbonyl)-L-aspartic acid (Boc-Asp-OH) 

(2.33 g, 10 mmol) in CH2Cl2 (40 mL) was added dicyclohexylcarbodiimide (DCC) (6.2 g, 30 

mmol), 4-dimethyamineopyridine (DMAP) (0.61 g, 5 mmol), and compound 3 (3.36 g, 20 

mmol) at room temperature. The reaction mixture was stirred overnight at room temperature. 

After the reaction was completed, 100 mL Et2O was added to the mixture. The mixture was 

filtered to remove the insoluble DCU byproduct and the organic phase of the filtrate was 

concentrated under vacuum. The resulting residue was purified by silica gel flash 

chromatography (MeOH: CH2Cl2, 1:10) to give pure 4 as an oil in 62% yield (3.31 g). 1H NMR 
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(CDCl3):  6.11 (m, 4H), 5.88 (m, 4H), 5.40 (m, 1H), 4.65 (m, 1H), 3.74 (s, 3H), 3.72 (s, 3H), 

2.88 (m, 1H), 2.64 (m, 1H), 1.42 (s, 9H). ESI-MS m/z 534.2 ([M+H]+). 

Compound 5: To a solution of 4 (5.33 g, 10 mmol) in acetonitrile (MeCN, 10 mL) at 0-

5℃, dry dimethylformamide (DMF) (0.73 g, 10 mmol) and POCl3 (1.78 g, 11 mmol) were added 

with constant stirring over 0.5 h. The salt formed was filtered, washed with cold MeCN, 

dissolved in 20 mL of water, heated at 50 ℃ for 0.5 h, and then cooled. The mixture was 

extracted with 3  40 mL of CH2Cl2, the combined organic phase was washed with brine, dried 

over anhydrous Na2SO4, and concentrated in vacuum. The crude residue was purified by silica 

gel flash chromatography (MeOH: CH2Cl2, 1: 10) to give pure 5 as an oil in 80% yield (4.82 g). 

1H NMR (CDCl3):  10.21 (s, 1H), 10.18 (s, 1H), 6.65 (m, 2H), 5.92 (m, 4H), 5.37 (m, 1H), 4.51 

(m, 1H), 3.75 (s, 3H), 3.72 (s, 3H), 2.85 (m, 1H), 2.60 (m, 1H), 1.40 (s, 9H). ESI-MS m/z 590.5 

([M+H]+). 

Compound 6: A solution of sodium bis(trimethylsilyl)amide (12 mL, 2 M solution in 

THF) was added dropwise to a stirred solution of decanyltriphenylphosphonium bromide (9.67g, 

20 mmol) in 40 mL THF at room temperature. The resulting mixture was stirred for 30 min at 

room temperature and then cooled to -78℃. To this mixture was added compound 5 (6.03 g, 10 

mmol). The reaction mixture was stirred for 2 h at -78℃ and then warmed up to room 

temperature. The reaction mixture was quenched with saturated solution of NH4Cl, extracted 

with ethyl acetate. The combined organic layer was washed with brine, dried over anhydrous 

Na2SO4, and concentrated in vacuum. The crude residue was purified by silica gel flash 

chromatography (MeOH: CH2Cl2, 1: 10) to give pure 6 as an oil in 90% yield. 1H NMR (CDCl3): 

 6.48 (m, 2H), 6.39 (m, 2H), 6.02 (m, 2H), 5.86 (m, 4H), 5.35 (m, 1H), 4.53 (m, 1H), 3.75 (s, 
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3H), 3.72 (s, 3H), 2.83 (m, 1H), 2.61 (m, 1H), 2.15 (m, 4H), 1.40 (s, 9H), 1.29 (m, 28H), 0.91 

(m, 6H). ESI-MS m/z 838.4 ([M+H]+) 

Compound 7: The double bond in compound 6 (8.37 g, 10 mmol) was saturated by 

catalytic hydrogenolysis with Pd/C (10%, 500 mg) under H2 (1 atm) in a methanol solution (50 

mL) at room temperature for 2 h. The solution was filtered to remove Pd/C and concentrated 

under vacuum. The resulting product was then dissolved in the solution of 10 mL of water, 10 

mL MeCN, and 20 mmol CAN (ammonium ceric nitrate) (10.96 g). The mixture was cooled to 

0℃ and stirred for another 2 h. MeCN was then removed via evaporation under reduced 

pressure, 100 mL CH2Cl2 was added to the remaining aqueous solution. The organic phase was 

washed with brine and then concentrated under vacuum. 10 mL dioxane and 10 mL HCl were 

then added to the residue. The mixture was stirred at room temperature for 24 h. The reaction 

mixture was quenched with saturated solution of NaHCO3, extracted with ethyl acetate. The 

organic layer was washed with brine, dried over anhydrous Na2SO4, and concentrated under 

vacuum. The crude product was purified by silica gel flash chromatography (MeOH: CH2Cl2, 

1:10) to give pure 7 as an oil in 42% yield (2.89 g). 1H NMR(CDCl3):  8.16 (m, 2H), 6.75 (m, 

2H), 5.35 (m, 2H), 4.53 (m, 1H), 2.85 (m, 1H), 2.60 (m, 1H), 2.43 (m, 4H), 1.25 (m, 36H), 0.89 

(m, 6H). ESI-HRMS calcd for C38H55NO10Na ([M+Na]+) 708.4766, found 708.4747. 

Compound 8: A solution of MeO-PEG3.5k-CO2H (3.5 g, 1 mmol) in CH2Cl2 (5 mL) was 

treated with DCC (0.41 g, 2 mmol), DMAP (0.12 g, 1 mmol), and compound 7 (689 mg, 1 

mmol) at room temperature. The reaction mixture was stirred overnight. After the reaction was 

completed, 100 mL of Et2O was added and the mixture was filtered and concentrated under 

vacuum. The resulting residue was purified by silica gel flash chromatography (MeOH: CH2Cl2, 

1:10) to give pure 8 (PEG3.5K-EB2) as a wax solid in ~50% yield (2.1 g). 1H NMR (CDCl3):  
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8.14 (m, 2H), 6.72 (m, 2H), 5.57 (m, 1H), 4.98 (m, 1H), 3.35 (s, 3H), 2.60 (m, 10H), 1.25 (m, 

36H), 0.89 (m, 6H).  

2.2.4 Formation of micelles  

PTX-solubilized micelles were prepared by the following method. PTX (10 mM in chloroform) 

was added to PEG3.5K-EB2 (10 mM in chloroform) with various carrier/drug ratios. The organic 

solvent was first removed by nitrogen flow to form a thin film of drug/carrier mixture. The film 

was further dried under high vacuum for 2 h to remove any traces of remaining solvent. Drug-

loaded micelles were formed by suspending the film in DPBS. The drug-free micelles were 

similarly prepared as described above.  

2.2.5 Measurement of size and zeta potential 

Zetasizer (Zetasizer Nano ZS instrument, Malvern, Worcedtershire, UK) was used to measure 

the particle size and zeta potential of drug-free and drug-loaded micelles. Micelles were stored at 

4 ℃, and the samples were tested for changes in particle size and size distribution.  

2.2.6 Determination of PTX loading efficiency  

PTX-solubilized micelles were prepared at an input PTX concentration of 1.07, 2.14, and 3.21 

mg/mL respectively. Aliquots of samples were filtered through 0.45 m PVDF syringe filter. 

PTX in the filtered and non-filtered micelles was extracted using methanol and measured by high 

performance liquid chromatography (HPLC, Waters). A reverse phase column (C18) was 
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employed. The detection was performed by using UV detector at 227 nm, 70% methanol as a 

mobile phase, flow rate at 1.0 mL/min. Drug loading capacity (DLC) and drug loading efficiency 

(DLE) were calculated according to the following formula: 

DLC (%) = [weight of drug used/(weight of polymer + drug used)] ×100% 

DLE (%) = (weight of loaded drug/weight of input drug) ×100% 

2.2.7 Determination of the critical micelle concentration (CMC)  

The CMC of PEG3.5K-EB2 was determined by employing pyrene as a fluorescence probe (La, 

Okano et al. 1996). A drug-free micelle solution in DPBS (2.5 mg/mL) was prepared via solvent 

evaporation method. A series of 2-fold dilutions was then made with PEG3.5K-EB2 concentrations 

ranging from 7.63×10-5 to 2.5mg/mL. At the same time, aliquots of 50 L of 4.8×10-6 M pyrene 

in chloroform were added into 15 separate vials. The chloroform was first removed by nitrogen 

flow to form a thin film. The film was further dried under high vacuum for 2 h to remove any 

traces of remaining solvent. Then, the pre-prepared micelle solutions (400 L in DPBS) of 

varying PEG3.5K-EB2 concentrations were added to the pyrene film to obtain a final pyrene 

concentration of 6×10-7 M for each vial. The solutions were kept on a shaker at 37 ℃ for 24 h to 

reach equilibrium before fluorescence measurement. The fluorescence intensity of samples was 

measured at the excitation wavelength of 334 nm and emission wavelength of 390 nm by 

Synergy H1 Hybrid Multi-Mode Microplate Reader (Winooski, VT). The CMC is determined 

from the threshold concentration, where the sharp increase in pyrene fluorescence intensity is 

observed. 
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2.2.8 Transmission electron microscope (TEM)  

The morphology of micelles was observed on a Jeol 1011 transmission electron microscope 

(TEM). The aqueous micelle solution (1.0 mg/mL) was added onto copper grids coated with 

Formvar, and then stained with 1% uranyl acetate. The sample processing and imaging was 

performed at room temperature. 

2.2.9 Hemolysis assay  

Fresh blood samples were collected through cardiac puncture from rats.  Ten mL blood was 

added with EDTA-Na2 immediately to prevent coagulation. Red blood cells (RBCs) were 

separated from plasma by centrifugation at 1500 rpm for 10 min at 4 ℃. The RBCs were washed 

three times with 30 mL ice-cold DPBS. RBCs were then diluted to 2% w/v with ice-cold DPBS 

and utilized immediately for the hemolysis assay. One mL of diluted RBC suspension was 

treated with various concentrations (0.2 and 1.0 mg/mL) of PEG3.5k-EB2 and PEI, respectively, 

and then incubated at 37 ℃ in an incubator shaker for 4 h. The samples were centrifuged at 1500 

rpm for 10 min at 4 ℃, and 100 L of supernatant from each sample was transferred into a 96-

well plate. The release of hemoglobin was determined by the absorbance at 540 nm using a 

microplate reader. RBCs treated with Triton X-100 (2%) and DPBS were considered as the 

positive and negative controls, respectively. Hemoglobin release was calculated as (ODsample-

ODnegative control)/(ODpositive control-ODnegative control) × 100% 
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2.2.10 In vitro cell cytotoxicity  

DU145 (2000 cells/well), PC-3 (5000 cells/well), MDA-MB-231 (2000 cells/well), or 4T1 (1000 

cells/well) were seeded in 96-well plates followed by 24 h of incubation in DMEM with 10% 

FBS and 1% streptomycin-penicillin. Then various concentrations of PTX (dissolved in DMSO 

or formulated in PEG3.5K-EB2 micelles) were added in quadruplicate and cells were incubated for 

72 h. Twenty L of 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) in 

PBS (5mg/mL) was added and cells were further incubated for 4 h. The medium in the plates 

was removed and MTT formazan was solubilized by DMSO. The absorbance was measured by 

microplate reader with wavelength at 550 nm and reference wavelength at 630 nm. Untreated 

groups were used as controls. Cell viability was calculated as [(ODtreat-ODblank)/(ODcontrol-

ODblank) × 100%].  

2.3 RESULTS 

2.3.1 Synthesis of PEG3.5K-EB2 conjugates  

We have developed a strategy to synthesize PEG3.5K-EB2 conjugate in which two molecules of 

embelin were coupled to one molecule of PEG via a linker of aspartic acid. This is modified 

from the scheme reported by Wang’s group for the total synthesis of Embelin (Chen, 

Nikolovska-Coleska et al. 2006). This involves the synthesis of benzoquinone followed by 

coupling to carboxyl groups of aspartic acid. Undecyl side chains were then installed onto each 

of the two benzoquinone rings. Finally PEG was coupled to aspartic acid-EB2 through the 
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deprotected amino group. HPLC shows that the purity of the final product (PEG3.5K-EB2) is 94% 

(Figure 2).  

 

Figure 2 HPLC trace of PEG3.5K-EB2. 

1H NMR spectrum of PEG3.5K-EB2 shows signals at 3.63 ppm attributable to the methylene 

protons of PEG, the embelin proton signals at 8.14 and 6.72 ppm and the carbon chain singles at 

1.05-1.25 ppm. The aspartate signals were identified at 5.57, 4.98 and 2.60 ppm (Figure 3).  

 

Figure 3 1H-NMR spectra (400 MHz) of PEG3.5K-EB2 in CDCl3. 
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The molecular weight of the PEG3.5K-EB2 conjugate from MALDI-TOF MS (4197) is very 

similar to the theoretical value (4203) (Figure 4). These results suggest successful synthesis of 

PEG3.5K-EB2 conjugate. 

            

Figure 4 MALDI-TOF of PEG3.5K-EB2. 

2.3.2 Biophysical characterization of micelles  

Micelles were readily prepared from PEG3.5K-EB2 conjugate via solvent evaporation method. 

PEG3.5K-EB2 conjugate can be dissolved in water at concentration up to 750 mg/mL (data not 

shown). Dynamic light scattering (DLS) measurements showed that these micelles had 
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hydrodynamic sizes around 22 nm at the concentration of 20 mg/mL (Figure 5A), which shall 

ensure efficient passive targeting to the solid tumors.  

PTX, a potent hydrophobic anticancer agent, was readily loaded into PEG3.5K-EB2 

micelles. Figure 5C shows the DLS size measurement of PTX-loaded PEG3.5K-EB2 micelles at a 

drug concentration of 1 mg/mL. There were little changes in sizes when PTX was loaded into 

micelles at a carrier/drug ratio of 7.5/1 (m/m).    

Figure 5B&D show the TEM images of drug-free and PTX-loaded micelles after 

staining with 1% uranyl acetate. Spherical particles of uniform size were observed for both drug-

free and PTX-loaded micelles. The sizes of the micelles observed under TEM are consistent with 

those measured by DLS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 shows the sizes of PTX-loaded micelles at different carrier/drug molar ratios. 

PTX-loaded PEG3.5K-EB2 micelles had relatively large size (~143 nm) at a carrier/drug ratio of 

2.5: 1 (m/m) and the particles were stable for less than 1 day.  Increasing the input molar ratio of 

Figure 5 Particle size distribution of PEG3.5K-EB2 (A) and PTX-loaded PEG3.5K-EB2 (C); TEM 

images of self-assembled micelles of PEG3.5K-EB2 (B) and PTX-loaded PEG3.5K-EB2 (D). The 

spherical micelles with the diameter of around 20 nm were observed. The drug loading level was 1 

mg/mL (PTX) in PEG3.5K-EB2. 
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PEG3.5K-EB2/PTX led to gradual decrease in the size of PTX-loaded micelles. At the molar ratio 

of 7.5/1, the size of the PTX-loaded micelles was similar to that of drug-free micelles.  

Table 1 DLS analysis of the sizes of free and drug-loaded PEG3.5K-EB2 micelles 

               

2.3.3. Drug loading efficiency (DLE)  

DLE of PTX-loaded micelles were determined by HPLC and the results are shown in Table. 2.             

Table 2 Physicochemical characterization of PTX-loaded PEG3.5K-EB2 micelles. 

           

DLE was as high as 79.89% when PTX was formulated in PEG3.5K-EB2 micelles at a carrier/PTX 

input ratio of 2.5/1 (m/m) and PTX concentration of 1.07 mg/mL. Increasing the carrier/PTX 

input ratios led to further increase in DLE. PEG3.5K-EB2/PTX formed the most stable particles at 

a carrier/drug ratio of 7.5/1. At this ratio, PTX was quantitatively formulated in the PEG3.5K-EB2 

micelles when the PTX concentration was less than 2.14 mg/mL. Increasing the PTX 
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concentration to 3.21 mg/mL led to a slight decrease in DLE (81.3%). The surface charges of 

PTX-loaded PEG3.5K-EB2 micelles were close to neutral (+1.89 ~ -2.64) for all particles 

examined.   

2.3.4 CMC measurements  

Figure 6 shows the results of CMC measurements using pyrene as a fluorescence probe. Upon 

incorporation into the micelles, the fluorescence intensity of pyrene increases substantially at the 

concentration of micelles above the CMC (La, Okano et al. 1996). Based on the partition of the 

pyrene, the CMC of PEG3.5K-EB2 could be obtained by plotting the fluorescence intensity versus 

logarithm concentration of the polymer. The CMC of PEG3.5K-EB2 was determined from the 

crossover point at the low concentration range. The CMC of the PEG3.5K-EB2 conjugate is 4.9 

M, which is similar to most reported micellar delivery systems. 

                                  

Figure 6 CMC measurement of the PEG3.5K-EB2 micelles using pyrene as a hydrophobic 

fluorescence probe. 
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2.3.5 Hemolysis study  

One of the safety concerns for polymeric micelle systems is the hemolytic activity. To address 

this issue, the hemolytic activity of drug-free PEG3.5K-EB2 micelles was examined and compared 

to a strong detergent Triton X-100 and polyethylenimine (PEI), a cationic polymer known to 

have significant hemolytic effect (Reul, Nguyen et al. 2009). As shown in Figure 7, PEI induced 

hemolysis in a dose-dependent manner. In contrast, no observable hemolytic activities (< 5%) 

were found for PEG3.5K-EB2 micelles, suggesting the excellent safety of our new delivery 

system. 

                        

Figure 7 In vitro hemolysis assay of PEG3.5K-EB2 compared with PEI. 

2.3.6 In vitro cytotoxicity  

Figure 8 shows the cytotoxicity of PEG3.5K-EB2 in comparison with free embelin (dissolved in 

DMSO) in 4 cancer cell lines tested including human breast cancer cells MDA-MB-231, murine 
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breast cancer cells 4T1, and two human prostate cancer cell lines PC3 and DU145. PEG3.5K-EB2 

was comparable to free embelin in antitumor activity in all 4 cancer cell lines with IC50 in the 

low M range.  

              

Figure 8 Cytotoxicity of free EB and PEG3.5K-EB2 against 4T1 mouse breast cancer cells (A) and 

two androgen-independent human prostate cancer cells PC-3 (B) and DU145 (C). 

 

 

Figure 9A compares the cytotoxicity of free PTX (in DMSO) to that of PEG3.5K-EB2-

formulated PTX (5/1, m/m) in MDA-MB-231 cells. Drug-free PEG3.5K-EB2 did not cause any 

cytotoxicity to MDA-MB-231 cells due to its relatively low concentrations used in this study. 

Free PTX exhibited cytotoxicity on MDA-MB-231 cells in a dose-dependent manner. However, 

formulation of PTX in PEG3.5K-EB2 micelles resulted in a significant increase in the cytotoxicity. 

Similar results were found with three other cancer cell lines (Figure 9B-D).  



 46 

         

Figure 9 Cell-killing effect of free PTX, free PEG3.5K-EB2, and PTX-loaded PEG3.5K-EB2 in MDA-

MB-231 human breast cancer cells (A), the 4T1 mouse breast cancer cells (B), human prostate 

cancer cells PC-3 (C) and DU145 (D). 

 

            Table 3 summarizes the IC50 of free PTX and PEG3.5K-EB2-formulated PTX in the four 

different cancer cell lines. Dependent on the cell lines, the IC50 was decreased by 1.5- to 8.7-fold 

when PTX was formulated in PEG3.5K-EB2 micelles. 

Table 3 IC50 of PTX and PTX-loaded PEG3.5K-EB2 in different cancer cell lines.  
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2.4 DISCUSSION 

We have developed a new delivery system that consists of an embelin-based hydrophobic 

domain and a PEG hydrophilic segment. The PEG3.5K-EB2 conjugate readily forms micelles in 

aqueous solutions. More importantly, hydrophobic drugs such as PTX can be loaded into 

PEG3.5K-EB2 micelles. 

Various polymeric micelle systems have been reported. Most micellar systems consist of 

a hydrophobic core that does not have any potential therapeutic effect (Li, Liu et al. 2011). In 

addition, the metabolites of the hydrophobic segments might contribute to some undesired 

effects, such as inflammation and systemic toxicity (Tang, Du et al. 2007, Li, Liu et al. 2011). 

The PEG3.5K-EB2 conjugate developed in this study represents a dual-functional delivery system 

that may overcome these limitations. Embelin is a natural product that demonstrates various 

biological effects including antitumor activity (Chitra, Sukumar et al. 1994). Embelin also shows 

excellent safety profiles in animals (Kumar, Dhamotharan et al. 2011). Thus, PEG-derivatized 

embelin may be an attractive delivery system to achieve synergistic activity with anticancer 

agents while minimizing the carrier-associated toxicity. PEG-embelin conjugates can be 

synthesized via direct coupling of embelin to PEG via an ester linkage. However, such synthesis 

is likely to yield a mixture of products with PEG randomly linked to the different hydroxyl 

groups in the benzene ring. We have developed a strategy to generate PEG3.5K-EB2 conjugate via 

total synthesis (Figure 1). This method was modified from a scheme reported by Wang’s group 

for total synthesis of Embelin (Chen, Nikolovska-Coleska et al. 2006). Our synthesis ensures 

generation of structurally well-defined conjugate in which PEG is attached to 1-OH group in the 

quinone ring. Most of the steps give good yields and the synthesis of PEG-embelin conjugate 
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involves similar number of steps and cost as that of embelin alone (Chen, Nikolovska-Coleska et 

al. 2006).  

PEG3.5K-EB2 conjugate forms small-sized micelles (20 ~ 30 nm) and loading of PTX did 

not significantly affect the size of the micelles. It was generally believed that particles in the size 

of 100 ~ 200 nm can effectively penetrate solid tumors via an EPR effect (Matsumura and 

Maeda 1986). A recent study from Lam’s group compared the passive targeting of nanoparticles 

of different sizes in a subcutaneous model of human ovarian cancer xenograft. It was shown that 

particles with a size of 154 nm were significantly taken up by liver and lungs with limited 

accumulation at tumor sites. In contrast, particles with respective size of 17 and 64 nm were 

much more effective in passive targeting to the solid tumor (Luo, Xiao et al. 2010). Cabral and 

colleagues compared the targeting efficiency of polymeric micelles of different sizes (30, 50, 70 

and 100 nm) in both highly and poorly permeable tumors. While all of the tested polymer 

micelles penetrated highly permeable tumors in mice, only the 30 nm micelles could penetrate 

poorly permeable pancreatic tumors to achieve an antitumor effect (Cabral, Matsumoto et al. 

2011). The small size of our new micelle system suggests its potential for effective tumor 

targeting in vivo, which is currently being evaluated in our laboratory. 

In vitro cytotoxicity with several cancer cell lines showed that PEG3.5K-EB2 is comparable 

to free embelin in antitumor activity with IC50 in the low M range. More importantly, PEG3.5K-

EB2 synergizes with PTX in antitumor activity at much lower concentrations (~nM) in all 4 

cancer cell lines tested. The PEG3.5K-EB2-mediated cytotoxicity is unlikely attributed to its 

surface activity as PEG3.5K-EB2 showed minimal hemolytic activity even at mM concentrations 

(Figure 7). Embelin is coupled to PEG via a cleavable ester linkage. It is likely that embelin is 

released from the conjugate following intracellular delivery and executes the antitumor effect by 
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itself or synergizes with PTX in antitumor activity. These data are consistent with the 

observation that free embelin synergizes with PTX at subeffective doses (Lu & Li, unpublished 

data).  More studies are needed to better understand the mechanism by which the PEG3.5K-EB2-

based delivery system synergizes with PTX in vitro.  

It should be noted that PEG3.5K-EB2 conjugate only represents a model micelle to 

demonstrate the utility of PEG-derivatized embelin as a dual functional delivery system for 

hydrophobic anticancer drugs.  Considering the flexibility of our synthesis scheme more studies 

on structure-activity relationship (SAR) can be designed to further improve this new delivery 

system. These include optimization of the molar ratio of PEG/embelin in the conjugates, the 

length and structure of the acyl chain in the embelin, and the molecular weight of PEG. Recently 

embelin derivatives with improved affinity towards XIAP have been developed (Chen, 

Nikolovska-Coleska et al. 2006). The utility of these new derivatives as drug carriers can also be 

examined and compared to native embelin. Finally, promising candidates identified from these 

studies need to be further evaluated in vivo. These studies are currently ongoing in our 

laboratory. 
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3.0. PEG-DERIVATIZED EMBELIN AS A NANOMICELLAR CARRIER FOR THE 

DELIVERY OF PACLITAXEL TO BREAST AND PROSTATE CANCERS 

3.1 BACKGROUND 

Paclitaxel (PTX) is one of the first-line chemotherapeutic agents that are effective for the 

treatment of a wide range of cancers, including lung, ovarian, breast, prostate, head and neck 

cancer, and advanced forms of Kaposi’s sarcoma. It works through interfering with normal 

breakdown of microtubules during cell division. The main challenge with PTX therapy is its 

poor solubility in aqueous solutions. Therefore, it is of tremendous incentive to develop effective 

delivery systems for PTX to enhance its accumulation at tumor site to maximize its therapeutic 

efficacy while minimizing the side effects. Taxol® and Abraxane® are two FDA approved PTX 

formulations. Taxol® is an alcohol/Cremophor formulation of PTX, which is irritating and can 

cause hyperactivity reactions. Abraxane® is PTX-loaded human albumin nanoparticles that have 

a size around 130 nm, which is within the range that can penetrate well-vascularized solid tumors 

via an enhanced permeability and retention (EPR) effect (Matsumura and Maeda 1986). It is now 

known that for less vascularized tumors, particles with smaller size (≤ 64 nm) were needed for 

effective penetration through neovasculatures to reach tumor cells (Luo, Xiao et al. 2010). There 

have been continuous efforts to develop various types of new formulations to improve targeted 

delivery of PTX to different types of tumors. Among all drug delivery systems being 
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investigated, polymeric micelles have gained considerable attention and are rapidly becoming a 

powerful nanomedicine platform for cancer therapeutics applications due to their simplicity, 

small sizes (10-100nm), ability to solubilize water insoluble anticancer drugs, and prolonged 

drug retention time (Sutton, Nasongkla et al. 2007, Torchilin 2007, Mi, Liu et al. 2011). 

However, most of the carrier materials in lipidic or polymeric drug delivery systems utilize 

“inert” excipients that lack therapeutic effect. The presence of large amount of carrier materials 

not only adds to the cost, but also imposes additional safety concerns (Croy and Kwon 2006). 

One interesting strategy in formulation design is that components of carriers have 

therapeutic effects and can be freed from the delivery systems following intracellular delivery to 

achieve synergistic or additive effect with co-delivered drugs. One example is pegylated vitamin 

E, D-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) (Zhang and Feng 

2006, Zhang, Lee et al. 2008, Prashant, Dipak et al. 2010). Vitamin E is linked to PEG via a 

biodegradable ester linkage and forms a hydrophobic core in this micellar system to solubilize 

other water-insoluble drugs. Vitamin E itself shows antitumor effect against different types of 

cancers through a variety of mechanisms (Husain, Francois et al. 2011, Ji, Wang et al. 2011). 

Synergistic antitumor activity has been demonstrated in a number of in vitro and in vivo studies 

for TPGS-based formulations of PTX and other anticancer agents (Liu, Huang et al. 2010, Mi, 

Liu et al. 2011). 

Our group has previously developed PEG-derivatized embelin as another dual-functional 

carrier for the delivery of poorly water-soluble anti-cancer drugs (Huang, Lu et al. 2012). This 

system was constructed by coupling two embelin molecules to polyethylene glycol PEG 3500 

(PEG3.5K) through an ester linkage (PEG3.5K-EB2). Embelin is a naturally occurring alkyl 

substituted hydroxyl benzoquinone compound and a major constituent of Embelia ribes BURM. 
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It exhibits various biological effects including antidiabetic, anti-inflammatory, and 

hepatoprotective activities (Chitra, Sukumar et al. 1994, Bhandari, Jain et al. 2007, Singh, Singh 

et al. 2009). Embelin also shows antitumor activity in various types of cancers via inhibiting the 

activity of X-linked inhibitor of apoptosis protein (XIAP) (Chitra, Sukumar et al. 1994, 

Nikolovska-Coleska, Xu et al. 2004, Sreepriya and Bali 2005, Dai, Qiao et al. 2009, Danquah, Li 

et al. 2009, Heo, Kim et al. 2011). XIAP is overexpressed in various types of cancers cells, 

particularly drug-resistant cancer cells and inhibition of XIAP has been employed as a new 

strategy for the treatment of cancers (Tamm, Kornblau et al. 2000, Holcik, Gibson et al. 2001). 

We demonstrated that PEG3.5K-EB2 formed small-sized micelles (20-30 nm) and solubilized 

various hydrophobic agents including PTX (Huang, Lu et al. 2012). Preliminary study showed 

that the antitumor activity of embelin was well retained following coupling to PEG3.5K. More 

importantly, PEG3.5K-EB2 synergized with PTX in antitumor activity in several cancer cell lines 

in vitro. In this study, we showed that a similar PEG derivative of embelin with a longer PEG, 

PEG5K-embelin2 formed stable micelles with PTX at lower carrier/PTX molar ratios. We further 

characterized the biophysical properties of the improved micellar system including size, loading 

capacity, and drug release kinetics. The in vitro cytotoxicity of PTX-loaded PEG5K-embelin2 was 

also studied in several cancer cell lines. Finally, the in vivo antitumor activity of PTX-loaded 

PEG5K-embelin2 was investigated in both breast cancer and prostate cancer models.  
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3.2 METHODS 

3.2.1 Materials 

Paclitaxel (98%) was purchased from AK Scientific Inc. (CA, USA). 2,5-dihydroxy-3-undecyl-

1,4-benzoquinone (embelin 98%) was purchased from 3B Scientific Corporation (IL, USA). 

Dulbecco’s phosphate buffered saline (DPBS) was purchased from Lonza (MD, USA). 

Methoxy-PEG5,000-OH, dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT), trypsin-EDTA solution, Triton X-100, and Dulbecco’s Modified 

Eagle’s Medium (DMEM) were all purchased from Sigma-Aldrich (MO, USA). Fetal bovine 

serum (FBS), penicillin-streptomycin solution, and DiD (1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindodicarbocyanine perchlorate, D-307) were from Invitrogen (NY, USA). All 

solvents used in this study were HPLC grade.   

3.2.3. Synthesis of PEG5K-EB2 

PEG5k-EB2 was similarly synthesized according to our reported method for PEG3.5k-EB2 (Huang, 

Lu et al. 2012). This involves the synthesis of benzoquinone followed by coupling to Boc-

aspartic acid. Undecyl side chains were then installed onto each of the two benzoquinone rings. 

Finally, PEG was coupled to aspartic acid-EB2 through the deprotected amino group. The final 

product was analyzed by 1NMR and MALDI-TOF. 
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3.2.4 Preparation and characterization of PTX- and DiD-loaded PEG5K-EB2 micelles 

PTX-solubilized micelles were prepared by the following method. PTX (10 mM in chloroform) 

was added to PEG5K-EB2 (10 mM in chloroform) with various carrier/drug ratios. The organic 

solvent was first removed by nitrogen flow to form a thin dry film of drug/carrier mixture. The 

film was further dried under high vacuum for 2 h to remove any traces of remaining solvent. 

Drug-loaded micelles were formed by suspending the film in DPBS. The drug-free micelles and 

DiD-loaded micelles were similarly prepared as described above. The mean diameter of PEG5K-

EB2 micelles with or without loaded drug was assessed by dynamic light scattering (DLS). The 

morphology and size distribution of drug-free or PTX-loaded PEG5K-EB2 micelles were observed 

using transmission electron microscopy (TEM) after negative staining. The CMC of PEG5K-EB2 

was determined by employing pyrene as a fluorescence probe as described before (Huang, Lu et 

al. 2012). The concentration of PTX loaded in PEG5K-EB2 micelles was evaluated by HPLC as 

described previously (Huang, Lu et al. 2012). The drug loading capacity (DLC) and drug loading 

efficiency (DLE) were calculated according to the following formula: 

DLC (%) = [weight of drug used/(weight of polymer + drug used)] ×100% 

DLE (%) = (weight of loaded drug/weight of input drug) ×100% 

3.2.5 In vitro drug release study 

An in vitro drug release study was carried out by dialysis using DPBS (PH = 7.4) containing 

0.5% (w/v) Tween 80 as the release medium. Taxol formulation was employed as a control. Two 

mL of PTX-loaded PEG5K-EB2 micelles or Taxol (1 mg PTX/mL) were sealed in dialysis tubes 

(MWCO = 12 KDa, Spectrum Laboratories) which were then immersed in 200 mL release 
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medium in a beaker covered with parafilm. The beakers were placed in an incubator shaker at 

100 rpm and 37°C. The concentration of PTX remaining in the dialysis tubes at various time 

points was measured by HPLC with the detector set at 227 nm. Values were reported as the 

means from triplicate samples.  

3.2.6 Cell culture 

DU145 and PC-3 are two androgen-independent human prostate cancer cell lines. 4T1.2 is a 

mouse metastatic breast cancer cell line. All cell lines were cultured in DMEM containing 10% 

FBS and 1% penicillin-streptomycin in a humidified environment at 37 ℃ with 5% CO2. 

3.2.7 Cellular uptake of Nile red-loaded PEG5K-EB2 micelles 

The cellular uptake study was conducted with Nile red as a hydrophobic fluorescence probe 

(Greenspan, Mayer et al. 1985). Nile red-loaded PEG5K-EB2 micelles (7.5:1, m/m, PEG5K-EB2: 

Nile red) were prepared via a solvent evaporation method as described above. PC-3 cells were 

seeded in 24-well plates at 2×104 cells per well in 1 mL complete DMEM and cultured for 24 h, 

followed by removal of culture medium and addition of Nile red-loaded PEG5K-EB2 micelles at 

the Nile red concentration of 1µg/mL. The cells were incubated at 37℃ with 5% CO2 for 2 h. 

Subsequently, the nuclei of cells were stained with Hoechst33342 for 5 min. Cells were then 

washed with DPBS three times and fixed with 4% paraformaldehyde for 30 min at room 

temperature. Finally, the slides were rinsed with DPBS three times and mounted with cover slips 

and observed under a fluorescence microscope (Eclipse TE300 Microscope). 



 56 

3.2.8 In vitro cytotoxicity study 

The cytotoxicity of PTX formulated in PEG5K-EB2 micelles was assessed with three cancer cell 

lines (DU145, PC-3, and 4T1.2) and compared to Taxol formulation. Briefly, DU145, PC-3 or 

4T1.2 cells were seeded in 96-well plates followed by 24 h of incubation in DMEM with 10% 

FBS and 1% streptomycin-penicillin. Various dilutions of PTX-loaded PEG5K-EB2 and Taxol (at 

the equivalent concentrations of PTX) were added to cells. Controls include PEG5K-EB2 and 

Cremophor/ethanol and they were added to cells at concentrations equivalent to those of carriers 

in the corresponding PTX formulation groups. Cells were incubated for 72 h and cell viability 

was assessed by MTT assay as described previously (Huang, Lu et al. 2012). 

3.2.9 Hemolytic effect of PEG5K-EB2 micelles 

Fresh blood samples were collected through cardiac puncture from rats. EDTA-Na2 was 

immediately added into 10 mL of blood to prevent coagulation. Red blood cells (RBCs) were 

separated from plasma by centrifugation at 1500 rpm for 10 min at 4℃. The RBCs were washed 

three times with 30 mL ice-cold DPBS. RBCs were then diluted to 2% w/v with ice-cold DPBS 

and utilized immediately for the hemolysis assay. One mL of diluted RBC suspension was 

treated with various concentrations (0.2 and 1.0 mg/mL) of PEG5k-EB2 and PEI, respectively, 

and then incubated at 37 ℃ in an incubator shaker for 4 h. The samples were centrifuged at 1500 

rpm for 10 min at 4 ℃, and 100 L of supernatant from each sample was transferred into a 96-

well plate. The release of hemoglobin was determined by the absorbance at 540 nm using a 

microplate reader. RBCs treated with Triton X-100 (2%) and DPBS were considered as the 
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positive and negative controls, respectively. Hemoglobin release was calculated as (ODsample-

ODnegative control)/(ODpositive control-ODnegative control) × 100% 

3.2.10 Animals 

Female BALB/c mice, 10-12 weeks were purchased from Charles River (Davis, CA). Male nude 

mice, 6-8 weeks ages, were purchased from Harlan (Livermore, CA). All animals were housed 

under pathogen-free conditions according to AAALAC guidelines. All animal-related 

experiments were performed in full compliance with institutional guidelines and approved by the 

Animal Use and Care Administrative Advisory Committee at the University of Pittsburgh. 

3.2.11 Maximum tolerated dose (MTD)  

Groups of 4 BALB/c mice were administered intravenously with Taxol (15, 20, 25 mg PTX/kg 

body weight), or PTX-loaded PEG5K-EB2 micelles (30, 50, 75, 100, 120 mg PTX/kg body 

weight), respectively. Changes in body weight and survival of mice were followed daily for two 

weeks. The MTD was defined as the dose that causes neither mouse death due to the toxicity nor 

greater than 15% of body weight loss or other remarkable changes in the general appearance 

within the entire period of the experiments.  

3.2.12 Biodistribution of PEG5K-EB2 micelles via NIRF optical imaging 

The in vivo biodistribution and tumor targeting efficiency of PEG5K-EB2 micelles were 

investigated by using a near infrared fluorescence dye, DiD. Two nude mice bearing bilateral s.c. 
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PC-3 xenografts were used in this study. Two-hundred µL of DiD-loaded PEG5K-EB2 micelles 

were i.v. injected into each mouse and the concentration of DiD in the formulation was 

0.4mg/mL. At indicated times, the two mice were scanned using a Carestream Molecular 

Imaging System, In-Vivo Multispectral FX PRO, with the excitation at 630 nm and the emission 

at 700 nm using a 30 second exposure time. Prior to and during each imaging, the mice were 

anesthetized by isoflurane inhalation. X-ray images were also taken for tumor location and 

overlaid with corresponding NIR images. After imaging, the mice were euthanized by CO2 

overdose. 

3.2.13 In vivo therapeutic study 

Two mouse tumor models were used to examine the therapeutic effect of PTX formulated in 

PEG5K-EB2 micelles: a syngeneic murine breast cancer model (4T1.2) and a human prostate 

cancer (PC-3) xenograft model.  

For the breast cancer model, 2 x 105 4T1.2 cells in 200 L PBS were inoculated s.c. at 

the right flank of female BALB/c mice. Treatments were initiated when tumors in the mice 

reached a tumor volume around 50 mm3 and this day was designated as day 1. On day 1, mice 

were randomly divided into six groups (n=5) and received i.v. administration of free PEG5K-EB2 

micelles, Taxol (10 mg PTX/kg), PTX-loaded PEG5K-EB2, and saline, respectively on days 1, 4, 

7, 10, and 13. PTX-loaded PEG5K-EB2 micelles were given at two different dosages, 10 mg/kg 

and 20 mg PTX/kg, respectively. Free PEG5K-EB2 micelles were given at the equivalent dosage 

of the carrier in the group of PTX-loaded PEG5K-EB2 micelles (20 mg PTX/kg). Tumor sizes 

were measured with digital caliper twice a week and calculated according to the following 

formula: (L×W2)/2, where L is the longest and W is the shortest in tumor diameters (mm). To 
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compare between groups, relative tumor volume (RTV) was calculated at each measurement 

time point (where RTV equals the tumor volume at a given time point divided by the tumor 

volume prior to first treatment). Mice were sacrificed when tumor reached 2000 mm3 or 

developed ulceration.  

To monitor the potential toxicity, the body weights of all mice from different groups were 

measured every three days. In addition, serum level of transaminases (AST, ALT) in the mice 

treated with PTX/PEG5K-EB2 (20 mg PTX/kg) and PBS groups was investigated at the 

completion of the study. 

For establishment of PC-3 xenograft tumor model, 2×106 PC-3 cells in 200 L PBS were 

inoculated s.c. at the right flank in male nude mice. Treatments were started when tumors in the 

mice reached a volume around 50 mm3 and different groups (n = 6) were similarly treated as 

described above on days 1, 3, 7, 10, 13, 24, and 28. Tumor size and body weight were monitored 

as described above. 

3.2.14 Statistical analysis 

In all statistical analysis, the significance level was set at a probability of P < 0.05. All results 

were reported as the mean ± standard error (SEM) unless otherwise indicated. Statistical analysis 

was performed by Student’s t-test for two groups, and one-way ANOVA for multiple groups, 

followed by Newman-Keuls test if P < 0.05.  



 60 

3.3 RESULTS AND DISCUSSION 

3.3.1 Preparation and characterization of PTX-loaded PEG5K-EB2 micelles 

We previously developed a PEG3.5K-EB2 conjugate and preliminary in vitro study suggested that 

it functioned as a dual delivery system and showed synergistic activity with co-delivered PTX 

against several cancer cell lines (Huang, Lu et al. 2012). In this report we developed a similar 

PEG-derivatized embelin conjugate with a PEG of higher MW (PEG5K) as parts of our efforts to 

improve the stability and loading capacity of this micellar system. The chemical structure of 

PEG5K-EB2 conjugate, in which two embelin molecules were linked to one molecule of PEG5K 

through a bridge of aspartic acid, is shown in Figure 10A.  

          

Figure 10 The chemical structure of PEG5K-EB2, (B) The size distribution of free PEG5K-EB2 

nanoparticles in PBS measured by dynamic light scanning (DLS), (C) Transmission electron 

microscopy of PEG5K-EB2 micelles, and (D) critical micelle concentration (CMC) using pyrene as a 

fluorescence probe.  
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            The PEG5K-EB2 conjugate was synthesized via stepwise solution-phase condensation 

reactions using MeO-PEG-OH, succinic anhydride, Boc-aspartic acid and embelin as building 

blocks. HPLC shows that the final product (PEG5K-EB2) is at least 95.57% pure (Figure 11).  

         

Figure 11 HPLC trace of PEG5K-EB2. 

1H NMR spectrum of PEG5K-EB2 shows signals at 3.63 ppm attributed to the methylene protons 

of PEG, the embelin proton signals at 8.14 and 6.72 ppm and the carbon chain signals at 1.05—

1.25 ppm. The aspartate signals were identified at 5.57, 4.98 and 2.60 ppm (Figure 12). 

 

Figure 12 1H-NMR spectra (400 MHz) of PEG5K-EB2 in CDCl3. 
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The molecular weight of the PEG5K-EB2 conjugate from MALDI-TOF MS (5701) is similar to 

the theoretical value (5703) (Figure 13), indicating the successful synthesis of PEG5K-EB2 

conjugate. 

 

Figure 13 MALDI-TOF of PEG5K-EB2. 

In aqueous solution, PEG5K-EB2 readily self-assembles to form micellar nanoparticles 

with the particle size of around 20 nm as determined by DLS analysis (Figure 10B). Figure 10C 

shows the TEM images of PEG5K-EB2 micelles after staining with 1% uranyl acetate. Spherical 

particles of uniform size were observed and the sizes of the micelles observed under TEM were 

consistent with those measured by DLS. 

Figure 10D shows the CMC of PEG5K-EB2 micelles using pyrene as a fluorescence 

probe. Upon incorporation into the micelles, the fluorescence intensity of pyrene increases 

substantially at the concentration of micelles above the CMC (La, Okano et al. 1996). Based on 

the partition of the pyrene, the CMC of PEG5K-EB2 was obtained by plotting the fluorescence 

intensity versus logarithm concentration of the polymer. The CMC of PEG5K-EB2 was 
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determined from the crossover point at the low concentration range. The CMC of the PEG5K-EB2 

conjugate is 0.35 M, which is much lower than most single chain micelle surfactants used in 

drug delivery systems (mM). The relatively low CMC may render the micelles stable even upon 

dilution in vivo, which is important for effective delivery to tumors. 

PEG5K-EB2 effectively solubilized PTX in aqueous solution. Table 4 compares PEG5K-

EB2 with PEG3.5K-EB2 with respect to the sizes of PTX-loaded micelles, the drug loading 

capacity (DLC), and the drug loading efficiency (DLE) under various drug/carrier molar ratios.  

Table 4 Biophysical characterization of free and drug-loaded PEG-Embelin micelles. 

                   

For PEG3.5K-EB2 micelles, a minimal 2.5/1 of carrier/PTX molar ratio was required to form 

stable PTX-loaded micelles. Under this ratio, the size of the drug-loaded micelles was around 

143 nm, which was significantly larger than the size of drug-free micelles. Increasing the 

carrier/PTX ratios resulted in a decrease in the sizes of PTX-formulated micelles. At a 

carrier/PTX ratio of 7.5/1, the size of PTX-loaded PEG3.5K-EB2 micelles was similar to that of 

drug-free micelles.  
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Compared to PEG3.5K-EB2, PEG5K-EB2 conjugate requires much lower carrier/PTX ratios 

to form stable and small-sized PTX-loaded micelles. PTX-loaded PEG5K-EB2 micelles still 

maintained the small size (25 nm) even at the carrier/PTX ratio of 0.75:1 and PTX concentration 

of 1 mg/mL. Further increase in carrier/drug ratios was associated with an increase in the drug 

loading efficiency and the PTX concentrations at which PTX-loaded PEG5K-EB2 micelles 

remained stable. The improved stability and loading capacity for PEG5K-EB2 micelles compared 

to PEG3.5K-EB2 micelles is likely due to longer PEG brushes capable of providing better steric 

hindrance and stabilizing effect for micelle nanoparticles. 

The size of drug carriers plays a key role in effective targeted delivery to tumors. It has 

been long known that particles in the size range of 100–200 nm can effectively penetrate solid 

tumors via an EPR effect (Matsumura and Maeda 1986). However, a recent study reported that 

particles with a size of 154 nm were significantly taken up by liver and lungs with limited 

accumulation at tumor sites (Luo, Xiao et al. 2010). In contrast, particles with respective size of 

17 and 64 nm were much more effective in passive targeting to the solid tumor in a subcutaneous 

model of human ovarian cancer xenograft (Luo, Xiao et al. 2010). The small size of PEG5K-EB2 

micelles (20 ~ 30 nm) may explain their effective in vivo targeting as discussed later.  

3.3.2 Release kinetics of PTX-loaded micelles 

A dialysis method was used to assess the kinetics of release of PTX from PEG5K-EB2 micelles 

with DPBS (pH = 7.4) containing 0.5% Tween 80 (w/v) as the release medium. Taxol, a 

clinically used PTX formulation was included as a control. As shown in Figure 14, PTX 
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formulated PEG5K-EB2 exhibited significantly better stability than Taxol formulation.         

 

Figure 14 Cumulative PTX release profile from PTX-loaded PEG5K-EB2 micelles and Taxol. 

 

For the first 10 h, there was only 33.42% of PTX released from the PEG5K-EB2 micellar 

formulation in comparison to the 62.32% release in Taxol formulation. PTX-loaded PEG5K-EB2 

micellar formulation displayed a much slower PTX release compared to Taxol formulation 

during the entire experimental period. The T1/2 of PTX release is 34.1 h for PEG5K-EB2 micelles, 

which is significantly longer than that for Taxol formulation (6.57 h). The relatively slower and 

sustained release in PTX-loaded PEG5K-EB2 micelle formulation may be ascribed to the strong 

interaction between the carriers and PTX. Embelin has a benzoquinone ring and a long alkyl 

chain. In addition to hydrophobic interaction with PTX, the - stacking and the hydrogen 

bonding also contribute to the overall carrier/PTX interaction. The close proximity of two 
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embelins in PEG5K-EB2 conjugate is likely to facilitate the interaction of the carrier with PTX. 

Indeed, PEG-embelin conjugates of 1:1 molar ratio were much weaker solubilizer for 

hydrophobic drugs including PTX (data not shown).  More studies on the structure-activity 

relationship (SAR) may lead to the development of an improved carrier for in vivo applications. 

3.3.3 Hemolysis assay    

A major concern for micelle systems is whether or not the surface activity of the surfactant 

molecules affects cell membrane integrity. Therefore, we examined the hemolytic activity of 

drug-free PEG5K-EB2 micelles and compared to polyethylenimine (PEI), a cationic polymer with 

potent cell surface activity (Reul, Nguyen et al. 2009). As shown in Figure 15, treatment of 

RBCs with PEI resulted in significant hemolysis in a dose-dependent manner.  

                          

Figure 15 In vitro hemolysis assay of PEG5K-EB2 compared with PEI. 

In contrast, no significant hemolysis was observed for blank PEG5K-EB2 micelles. The negligible 

hemolytic activity suggests that PEG5K-EB2 conjugate is a mild surfactant that is suitable for in 

vivo drug delivery. 
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3.3.4 Cellular uptake study 

The cellular uptake of Nile red-loaded PEG5K-EB2 micelles in prostate cancer cell line PC-3 was 

investigated by fluorescence microscopy. PC-3 cells were cultured with Nile red-loaded PEG5K-

EB2 micelles (equivalent concentration of Nile red at 1 µg/mL) at 37 ℃ for 2 h. The nucleus was 

then stained with Hochest 33342 for 5 mins prior to observation under a fluorescence 

microscope. As shown in Figure 16, fluorescence was observed both on the cell membrane and 

inside the cells with most of the signals located intracellularly. 

 

Figure 16 Fluorescence microscope images of PC-3 cells  that  incubated  with   Nile   red-loaded 

PEG5K-EB2 for 2 h. 

 

Both perinuclear punctuate and diffuse distribution was observed, suggesting that Nile red-

loaded PEG5K-EB2 was largely taken up by cells via endocytosis and partially released into 

cytoplasm. Escape of the delivered cargos from endosome into cytoplasm is important as this is 

where the drug target(s) is located. Although more studies are needed to understand the 
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intracellular trafficking and the underlying mechanism, our data did suggest that PEG5K-EB2 

micelles were capable of effectively mediating intracellular delivery of formulated drugs. 

3.3.5. In vitro cytotoxicity of PTX-loaded PEG5K-EB2 micelles 

In vitro cytotoxicity of PTX formulated in PEG5K-EB2 micelles was examined with three cancer 

cell lines (DU145, PC-3, and 4T1.2) and compared to Taxol formulation. PEG5K-EB2 alone 

showed minimal cytotoxic effect to human prostate cancer cells DU145 at the concentrations 

used to deliver PTX (Figure 17A). It is also apparent from Figure 17A that PTX formulated in 

PEG5K-EB2 micelles showed higher levels of cytotoxicity to DU145 cells compared to Taxol 

formulation, particularly at low PTX concentrations. Similar results were obtained in PC-3 

(Figure 17B) and 4T1.2 (Figure 17C) tumor cells.  

                

Figure 17 Cytotoxicity of Taxol, free PEG5K-EB2, and PTX-loaded PEG5K-EB2 nanoparticles in 

different tumor cell lines. 
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Most of the reported PTX micellar formulations showed lower or similar levels of cytotoxicity 

compared to Taxol (Li, Xiao et al. 2010, Luo, Xiao et al. 2010, Li, Xiao et al. 2011, Zhang, He et 

al. 2012). The improved in vitro cytotoxicity of PTX formulated in PEG5K-EB2 micelles may be 

due to the improved bioavailability of PTX inside the tumor cells. It remains to be tested whether 

there is also a synergistic effect between PEG5K-EB2 micelles and the co-delivered PTX. It has 

been reported that under the subeffective doses, embelin sensitized tumor cells to various types 

of therapies including chemotherapy and radiotherapy (Dai, Qiao et al. 2009, Danquah, Duke et 

al. 2012, Huang, Lu et al. 2012). Embelin is coupled to PEG via a cleavable ester linkage, 

embelin may be freed from the conjugate following intracellular delivery and synergizes with co-

delivered PTX in antitumor activity. It should be noted that PEG5K-EB2 itself is less active in 

antitumor activity than PEG3.5K-EB2 (Huang, Lu et al. 2012). This might be due to less effective 

release of embelin from PEG5K-EB2 due to a more pronounced steric hindrance imposed by 

PEG5K. More studies are needed to better understand the mechanism involved in the antitumor 

effect of PTX-loaded PEG5K-EB2 micelles.   

3.3.6. Maximum tolerated dose study 

The maximum tolerated dose for a single i.v. administration of PTX-loaded PEG5K-EB2 micelles 

was assessed in tumor-free mice and compared to Taxol. The mice were injected i.v. with 

different doses of PTX-loaded PEG5K-EB2 or Taxol followed by daily body weight measurement 

and observation of general signs of toxicity. As shown in Table 5, Taxol was well tolerated at 

the dose of 15 mg PTX/kg.  
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Table 5 Animal deaths and weight loss in the MTD study. 

 

However, increasing the PTX dosage to 20 mg/kg resulted in the death of 2 mice among the 4 

treated mice.  For the mice treated with PTX-loaded PEG5K-EB2 micelles, there were only 8.7% 

weight loss and no noticeable changes in normal activity at a PTX dosage as high as 100 mg/kg. 

At the dosage of 120 mg PTX/kg, two out of 4 treated mice died of toxicity. Based on these data 

it was estimated that the single i.v. MTD for Taxol was 15~20 mg PTX/kg while that for PTX-

loaded PEG5K-EB2 micelles was 100~120 mg PTX/kg. The MTD for PTX-loaded PEG5K-EB2 

micelles is higher than most of the reported PTX formulations (Danhier, Magotteaux et al. 2009, 

Xiao, Luo et al. 2009, Wang, Wang et al. 2011). The high MTD for PTX/PEG5K-EB2 is likely 

due to the slow release kinetics for PTX (Figure 14), low levels of nonselective uptake by major 

organs (see later), and the excellent safety profile of embelin. Embelin has antiinflammatory and 

hepatoprotective activity (Chitra, Sukumar et al. 1994, Singh, Singh et al. 2009). In addition, 

normal tissues are less sensitive to embelin compared to tumor cells due to the significantly 

lower levels of XIAP expression in normal tissues. The significantly improved safety of our 

delivery system over Taxol formulation will allow high dosage of PTX to be given to achieve 

maximal therapeutic effect.   
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3.3.7. Biodistribution of PEG5K-EB2 micelles via NIRF optical imaging 

Biodistribution and tumor targeting efficiency of PEG5K-EB2 micelles were evaluated in a mouse 

xenograft model of human prostate cancer (PC-3), using a hydrophobic near infrared 

fluorescence (NIRF) dye, DiD. Two hundred µL of micelles co-loaded with PTX and DiD was 

intravenously injected into two mice bearing bilateral PC-3 tumors, respectively. The two mice 

were then followed over time by the scanning with Carestream Molecular Imaging System. 

Figure 18 shows the imaging of the tumor-bearing mice at 2, 24, 48 h following i.v. injection of 

PTX/PEG5K-EB2 mixed micelles carrying DiD.  

 

Figure 18 In vivo NIRF imaging over time as indicated in prostate cancer PC-3-xenograft-bearing 

mice at 2, 24, 48 h following i.v. injection of PEG5K-EB2 micelles co-loaded with PTX and DiD. 

 

A noticeable signal in tumor was observed as early as 2 h post injection; the signal peaked 

around 24 h and remained clearly visible 48 h after injection. Interestingly, little fluorescence 

signal was observed in liver and spleen, the two major internal organs that are involved in the 

nonspecific clearance of nanoparticles by the reticuloendothelial system (RES). The effective 

targeting of PEG5K-EB2 micelles to the tumors and the minimal uptake by RES system are 

largely due to the very small-sized particles, excellent PEG shielding effect, and a likely 

excellent stability in the blood circulation. Our results were consistent with the studies with other 
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micellar systems of similar particle sizes (Xiao, Luo et al. 2009, Luo, Xiao et al. 2010, Zheng, 

Dai et al. 2012). 

3.3.8 In vivo therapeutic study  

The in vivo therapeutic activity of PTX formulated in PEG5K-EB2 micelles was investigated in 

two mouse tumor models: a syngeneic murine breast cancer model (4T1.2) and a human prostate 

cancer xenograft model (PC-3). 

4T1.2 is a highly metastatic breast cancer cell line and was chosen in this study to 

stringently assess the therapeutic efficacy of our new delivery system. As shown in Figure 19A, 

PEG5K-EB2 alone showed no effect in inhibiting the tumor growth. This is likely due to a low 

concentration of embelin in this group. Taxol formulation showed a modest effect in inhibiting 

the tumor growth at a dose of 10 mg PTX/kg.  In contrast, PTX formulated in PEG5K-EB2 

micelles showed a much more pronounced antitumor activity at the same dosage.  
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Figure 19 (A) Enhanced antitumor activity of PTX formulated in PEG5K-EB2 micelles in 4T1.2 

tumor bearing mice. (B) Changes of body weight in mice receiving different treatments (C): Serum 

level of transaminase in the mice treated with PTX/PEG5K-EB2 (20 mg PTX/kg) at the end of the 

study. 

 

Increasing the PTX dosage to 20 mg/kg resulted in a further improvement in the 

therapeutic effect. No significant changes in body weight were noticed in all treatment groups 

compared to PBS control group (Figure 19B). In addition, serum levels of transaminases in the 

mice treated with the high dose of PTX-loaded PEG5K-EB2 micelles were comparable to those in 

PBS control group (Figure 19C), suggesting that significant therapeutic effect can be achieved 

with minimal toxicity using our new delivery system. 

Following the demonstration of effective antitumor activity in the syngeneic murine 

breast cancer model, the in vivo therapeutic effect of PTX-loaded PEG5K-EB2 micelles was 

further investigated in a human prostate cancer xenograft model (PC-3). PC-3 tumor-bearing 
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mice were similarly treated as described in the study with the 4T1.2 tumor model and the data 

are shown in Figure 20A.  

 

Figure 20 (A) Enhanced antitumor activity of PTX formulated in PEG5K-EB2 micelles in PC-3 

tumor bearing nude mice. (B) Changes of body weight in mice. 

 

It is apparent that tumor growth was more effectively controlled by PTX/PEG5K-EB2 micelles in 

PC-3 model compared to 4T1.2 tumor model. By day 16 after the first treatment, the tumor 

growth was completely suppressed with a RTV of 0.84 in the group treated with a high dose (20 

mg PTX/kg) of PTX-loaded PEG5K-EB2 micelles. Tumor growth was also significantly slowed in 

the group treated with a low dose (10 mg PTX/kg), in which the tumors only reached a RTV of 

1.75. This compared very favorably to Taxol group, in which RTV reached 4.24. Although the 

tumors started to recover slightly after day 24 in the two groups treated with PTX/PEG5K-EB2 

mixed micelles, RTV was reduced back to 1.15 at day 39 in the high dose group following two 

additional treatments at days 24 and 28. In fact, two out of 6 mice in this group became tumor-

free after day 32 without further treatment. The growth of tumor in the low dose group also 

became static after two additional treatments. In contrast, tumors in Taxol group continued to 

grow at a steady and fast rate. No noticeable changes in weight were shown from direct 

measurement of tumor-bearing mice in all groups (Figure 20B). The superior anti-tumor 

efficacy along with the minimal toxicity of PTX/PEG5K-EB2 micelles could be ascribed to their 
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high efficiency in tumor-targeting and minimal nonspecific uptake by RES (Figure 18). The 

slow release kinetics of PTX/PEG5K-EB2 micelles may also contribute to the enhanced antitumor 

activity (Figure 14). More studies are needed to better understand the mechanism for the 

antitumor activity of PTX-loaded PEG5K-EB2 micelles. 
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4.0. TARGETED DELIVERY OF DOXORUBICIN BY FOLIC ACID-DECORATED 

DUAL FUNCTIONAL NANOCARRIER 

 

4.1 BACKGOUND 

Doxorubicin, an anthracycline antibiotic, is one of the most commonly used anticancer agents for 

the treatment of various types of cancers, including breast, ovarian, prostate, brain, cervix and 

lung cancers. It intercalates between base pairs of the DNA helix, thereby preventing DNA 

replication and ultimately inhibiting protein synthesis. Additionally, doxorubicin inhibits 

topoisomerase II, leading to an increased level of stabilized drug-enzyme-DNA cleavable 

complex during DNA replication and impaired DNA repair. However, the clinical application of 

DOX has been limited by serious adverse effects (Minotti, Menna et al. 2004, Takemura and 

Fujiwara 2007). Therefore, there is a need for development of strategies to selectively deliver 

DOX to tumors to improve the therapeutic effect and minimize the untoward toxicity.  

Recently, nanomedicine-based platforms have been actively pursued to improve the 

diagnosis and therapy for a wide range of diseases, including cancer. In order to reduce the 

adverse effects associated with many antineoplastic agents such as DOX and paclitaxel (PTX), a 

myriad of nanocarriers have been developed including liposomes, dendrimers, and polymeric 

micelles. These nano-drug carriers are selectively and passively targeted to tumors through the 

enhanced permeability and retention effect (EPR) (Matsumura and Maeda 1986). In addition, 

these formulations are capable of evading clearance by the reticuloendothelial system (RES) and 
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thereby circulating in the blood for a prolonged period of time (Woodle, Engbers et al. 1994, Li 

and Huang 2009). Doxil®, PEGylated liposomal DOX, is the first clinically used 

nanoformulation of DOX approved by the FDA for the treatment of leukemia, breast cancer, 

lung cancer, brain cancer and bone cancer. Although the DOX-related toxicity has been reduced 

to some degree, its anticancer efficacy has been shown to be only marginally improved (O'Brien, 

Wigler et al. 2004). Furthermore, Doxil has been shown to cause hand-foot syndrome and 

mucositis in recent clinical studies (Al-Batran, Meerpohl et al. 2006, Lorusso, Di Stefano et al. 

2007, von Gruenigen, Frasure et al. 2010). Hence, there is need to develop improved 

formulations for in vivo applications of DOX. 

During the past two decades, polymeric micelles have gained considerable attention as an 

attractive nanomedicine platform due to their technical ease, high biocompatibility, and high 

biodegradability (Sutton, Nasongkla et al. 2007, Huang, Lu et al. 2012, Gao, Huang et al. 2013, 

Lu, Huang et al. 2013, Zhang, Lu et al. 2013, Lu, Zhao et al. 2014). More importantly, the size of 

micelles (20-100 nm) is significantly smaller than liposomes (100~200 nm) which renders 

micelles more effective in passive targeting to solid tumors (Li, Xiao et al. 2010, Luo, Xiao et al. 

2010). In addition, a targeting ligand can be introduced into the micellar system to further 

improve the active targeting to tumors and minimize the nonspecific uptake by normal tissues 

(Cheng, Wei et al. 2008, Bedi, Gillespie et al. 2013, Song, Ding et al. 2013). Different targeting 

systems have been studied, among which the folate-targeting system has been extensively 

investigated due to its simplicity and effectiveness (Li, Piao et al. 2011, Yan, Chen et al. 2013, 

Lachelt, Wittmann et al. 2014, van Dongen, Silpe et al. 2014).  

We recently developed a dual functional drug delivery system that is based on PEG-

derivatized embelin (Huang, Lu et al. 2012, Lu, Huang et al. 2013). Embelin is a naturally 
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occurring alkyl substituted hydroxyl benzoquinone compound and a major constituent of 

Embelia ribes BURM. It has been shown that embelin exhibits antitumor activity in various 

types of cancers via several different mechanisms (Nikolovska-Coleska, Xu et al. 2004, 

Sreepriya and Bali 2005, Dai, Qiao et al. 2009, Danquah, Li et al. 2009, Heo, Kim et al. 2011). 

Embelin is poorly water soluble and also has limited oral bioavailability (Li, Danquah et al. 

2010). We showed that modification of embelin with PEG led to a significant increase in its 

water solubility. Interestingly, PEG-embelin self-assembles to form micelles that are capable of 

delivering other hydrophobic drugs. Delivery of paclitaxel via one such PEG-embelin conjugate, 

PEG5K-EB2, led to significantly improved antitumor activity in both breast and prostate cancer 

models (Lu, Huang et al. 2013). In this study, we examine the potential application of PEG5K-

EB2 in delivery of DOX. Our data showed that DOX could be effectively formulated in PEG5K-

EB2 micelles. Delivery of DOX via PEG5K-EB2 micelles led to improved antitumor activity over 

free DOX or Doxil in vitro and in vivo. In addition, we show for the 1st time that PEG5K-EB2 can 

significantly inhibit the activity of P-gp. Finally, the antitumor activity of DOX-loaded PEG5K-

EB2 micelles was further improved via incorporation of folate.  

4.2 METHODS 

4.2.1 Materials 

Doxorubicin hydrochloride (98%) (DOX.HCl) was purchased from AK Scientific Inc. (CA, 

USA). Doxil was purchased from Avanti® Polar Lipids (AL, USA). Boc amine PEG NHS ester 

(BocNH-PEG-NHS, MW 7500) was purchased from JenKem Technology USA, Inc. (Allen, 



 79 

TX). 2,5-dihydroxy-3-undecyl-1,4-benzoquinone (embelin, 98%) was purchased from 3B 

Scientific Corporation (IL, USA). Folic acid NHS ester, methoxy-PEG5,000-OH, dimethyl 

sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 

aspartic acid, trypsin-EDTA solution, Triton X-100, and Dulbecco’s Modified Eagle’s Medium 

(DMEM) were all purchased from Sigma-Aldrich (MO, USA). Fetal bovine serum (FBS) and 

penicillin-streptomycin solution were from Invitrogen (NY, USA). RPMI-1640 medium was 

purchased from Life Technologies (NY, USA). All solvents used in this study were HPLC grade.   

4.2.2 Synthesis of PEG5K-EB2  

PEG5K-EB2 was synthesized according to the methods described previously (Huang, Lu et al. 

2012, Lu, Huang et al. 2013). Briefly, benzoquinone was first synthesized followed by coupling 

to Boc-aspartic acid. Then, undecyl side chains were conjugated to each of the two benzoquinone 

rings to form aspartic acid-EB2. Finally, methoxy-PEG5K-OH was coupled to aspartic acid-EB2 

to generate PEG5K-EB2 via the deprotected amino group. The final product was analyzed by 

1NMR and MALDI-TOF. 

4.2.3 Synthesis of folic acid-PEG7.5K-DOA (dioleyl amido aspartic acid)  

Folate-PEG7.5K-DOA was constructed based on the method reported by Zhang et el. with slight 

modification (Zhang, Huang et al. 2012). Briefly, Boc-aspartic acid was linked to oleyl amine in 

the presence of DCC and DMAP in anhydrous CH2Cl2. After the reaction was completed, the 

mixture was filtered and evaporated under reduced pressure, and the residue was purified by 

flash column chromatography to obtain Boc-Di-oleyl amine (Boc-DOA). Then, trifluoroacetic 
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acid (TFA) was added to remove Boc group in Boc-DOA to expose the active NH2 followed by 

reaction with BocNH-PEG7.5K-NHS to form BocNH-PEG7.5K-DOA. After purification via 

precipitation with cold diethyl ether and ethanol, Boc group in BocNH-PEG7.5K-DOA was 

removed by TFA. Finally, NH2-PEG7.5K-DOA was reacted with folic acid (FA) NHS ester to 

yield FA-PEG7.5K-DOA.  

4.2.4 Preparation and physiochemical characterization of DOX-loaded PEG5K-EB2 and FA- 

PEG5K-EB2 micelles  

DOX.HCl was first neutralized by 3 molar equivalent of triethylamine in CHCl3/MeOH (1:1. v:v) 

to remove HCl from the parent compound. DOX-loaded PEG5K-EB2 was prepared as reported 

previously (Lu, Huang et al. 2013). Briefly, DOX (10 mM in CHCl3/MeOH) was added to 

PEG5K-EB2 (10 mM in chloroform) with different carrier/drug molar ratios. The organic solvent 

was first removed by nitrogen flow to form a thin dry film of drug/carrier mixture. The dry film 

was further dried under high vacuum for 2 h to remove any traces of remaining solvent. The film 

was then reconstituted in saline without further sonication. The FA-PEG5K-EB2 was composed of 

PEG5K-EB2/FA-PEG7.5K-DOA at molar ratios of 99.5:0.5 according to the literature (van 

Dongen, Silpe et al. 2014). The DOX-formulated FA-PEG5K-EB2 micelles were prepared 

similarly as mentioned above. The mean diameter, size distribution, and zeta potential of 

micelles with or without loaded drug were evaluated by dynamic light scattering (DLS). The 

morphology of DOX-free or loaded micelles was observed under TEM. The concentration of 

DOX in DOX-loaded micelles was examined by HPLC with the detector set at 233 nm. The drug 

loading capacity (DLC) and drug loading efficiency (DLE) were calculated according to the 

following formula: 
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DLC (%) = [weight of drug used/(weight of polymer + drug used)] ×100% 

DLE (%) = (weight of loaded drug/weight of input drug) ×100% 

4.2.5 Release kinetics of DOX formulated in micelles 

The in vitro release kinetics of DOX was carried out by dialysis method using DPBS (PH = 7.4) 

containing 0.5% (w/v) Tween 80 as the release medium. Free DOX was employed as a control. 

Two mL of DOX-loaded PEG5K-EB2 or FA-PEG5K-EB2 micelles (1 mg DOX/mL) were sealed 

in dialysis tubes (MWCO = 12 KDa, Spectrum Laboratories). The dialysis tubes were immersed 

in 500 mL release medium in a beaker covered with parafilm. The beakers were kept in an 

incubator shaker at 100 rpm and 37°C. At different time points, the concentration of DOX 

retained in the dialysis tubes was measured by HPLC with the detector set at 233 nm. Values 

were reported as the means from triplicate samples.  

4.2.6 Cell culture  

Mouse breast cancer cell line, 4T1.2, human breast cancer cell line, MCF-7, and drug-resistant 

cancer cell line, NCI/ADR-RES, were used in this study. All cell lines were cultured in RPMI-

1640 medium (NY.USA) containing 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin in a humidified incubator at 37 ℃ with 5% CO2. 
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4.2.7 Animals  

Female BALB/c mice, 8-10 weeks, were purchased from Charles River (Davis, CA). All animals 

were housed under pathogen-free conditions according to AAALAC (Association for 

Assessment and Accreditation of Laboratory Animal Care) guidelines. All animal-related 

experiments were performed in full compliance with institutional guidelines and approved by the 

Animal Use and Care Administrative Advisory Committee at the University of Pittsburgh. 

4.2.8 In vitro cytotoxicity assay 

The cytotoxicity of DOX formulated in micelles was assessed in different cancer cell lines 

(4T1.2, MCF-7, and NCI/ADR-RES) and compared to free DOX and Doxil. Briefly, cells were 

seeded in 96-well plates followed by 24 h incubation in RPMI-1640 medium with 10% FBS and 

1% streptomycin-penicillin. Different DOX formulations with varying concentrations (at the 

equivalent concentrations of DOX) were added to cells. Controls including PEG5K-EB2 and FA-

PEG5K-EB2 were added to cells at concentrations equivalent to those of carriers in the 

corresponding DOX formulation groups. In order to confirm the active targeting effect rendered 

by folate ligand attached to the PEG5K-EB2 micelles, free folate (100 µM), as a competitive 

inhibitor to folate receptor, was added along with the FA-PEG5K-EB2/DOX micelles (Paulos, 

Reddy et al. 2004). Cells were incubated for 72 h and cell viability was assessed by MTT assay 

as described previously (Huang, Lu et al. 2012, Lu, Huang et al. 2013).  
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4.2.9 Intracellular uptake study 

3×105 4T1.2 and NCI/ADR-RES cells were seeded into each well of 6-well plates and were 

allowed to grow overnight. Then the medium was replaced by fresh medium containing free 

DOX, Doxil, and DOX-loaded PEG5K-EB2 and FA-PEG5K-EB2 micelles, respectively at an 

equivalent DOX concentration of 6 µg/mL. Following incubation for 30 min at 37 ℃, the cells 

were washed three times with cold PBS and fixed with 4% paraformaldehyde for 30 min. 

Afterwards, the nuclei were stained by Hoechst33342 for 5 min. Subsequently, cells were 

washed three times with cold saline. Finally, the intracellular uptake of DOX in various 

formulations was observed under confocal laser scanning microscopy (CLSM, FluoView 1000, 

Olympus, Japan). 

Quantitative cellular uptake of various DOX formulations was evaluated by flow 

cytometry. Briefly, 4T1.2 and NCI/ADR-RES cells were seeded into the 6-well plates at a 

density of 3×105 cells/well.  After overnight attachment, cells were treated with free DOX, 

Doxil, DOX-loaded PEG5K-EB2 and FA-PEG5K-EB2, and DOX-formulated in FA-PEG5K-EB2 

micelles along with 100 µM free folic acid, respectively, at an equivalent DOX concentration of 

6 µg/mL. Cells without treatment were used as a control. Following incubation at 37 ℃ for 30 

min,  cells were washed with cold PBS three times, and resuspended in 500 µL PBS for the flow 

cytometry analysis with CyAn™ ADP Analyzer (Beckman Coulter, Inc.). Cell-associated DOX 

was excited with an argon laser (480 nm), and fluorescence was detected at 570 nm. 20,000 

events were collected for each sample.  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDwQFjAA&url=http%3A%2F%2Fwww.beckmancoulter.com%2Fwsrportal%2Fwsr%2Fresearch-and-discovery%2Fproducts-and-services%2Fflow-cytometry%2Fflow-cytometers%2Fcyan-adp-analyzer%2Findex.htm&ei=AfYsUv3zFYjc4APy8IC4Aw&usg=AFQjCNHC9lTlrmMhT9SBy40KDajenGdS5A&sig2=AoubVGGworB52HSiunNDzw
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4.2.10 P-gp ATPase assay 

The effect of PEG5K-EB2 conjugate on P-gp was studied via examining its effect  on a verapamil-

stimulated ATPase activity as reported previously (Lu, Huang et al. 2013). TPGS was included 

as a positive control and sodium orthovanadate (Na3VO4) was used as a selective inhibitor of P-

gp. Briefly, test samples containing verapamil (50µM) along with PEG5K-EB2 or TPGS (10 µM 

and 100 µM) or Na3VO4 were added to 96-well plates and incubated with P-gp membrane for 5 

min at 37 ℃.  Then, the reaction was initiated by the addition of MgATP followed by another 40 

minutes’ incubation at 37℃. The samples were then removed from 37℃ incubator and ATP 

detection reagent was added in order to develop the luminescence. Signals were measured 20 

minutes later on a microplate luminometer (Victor2 1420 multilabel counter). The changes of 

relative light unit (∆RLU) were calculated as follows: 

∆RLU = (luminescence of Na3VO4-treated group) – (luminescence of the samples treated 

by the mixture of verapamil and PEG5K-EB2 or TPGS conjugate).  

4.2.11 Maximum tolerated dose (MTD) 

Groups of 3 female BALB/c mice were treated intravenously with free DOX (5, 10, 15 mg 

DOX/kg body weight) or DOX-loaded PEG5K-EB2 micelles (5, 10, 15, 20, 30 mg DOX/kg body 

weight), respectively. Changes in body weight and survival of mice were followed daily for two 

weeks. The MTD was defined as the maximal dose that causes neither mouse mortality owing to 

the systemic toxicity, nor greater than 15% loss in body weight as well as other noticeable 

changes in the general movement and signs within the entire period of the experiments.  
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4.2.12 In vivo near infrared fluorescence (NIRF) optical imaging  

The in vivo tumor-targeting efficiency and biodistribution of PEG5K-EB2 micelles were studied 

by using a near infrared fluorescence dye, DiR. Two CL1 tumor-bearing nude mice were 

employed in this experiment. Briefly, 200 µL of DiR-loaded PEG5K-EB2 micelles (10 nmol DiR) 

was i.v. injected into one mouse and another mouse (as a control) was i.v. injected with 200 µl 

DiR in ethanol/water (1:4 v/v) solution. At different time points (4 h, 24 h, 48 h, 72 h and 96 h) 

post-injection, mice were scanned using a Carestream Molecular Imaging System (Carestream 

Health, Inc.) with excitation at 750 nm and emission at 780 nm using an exposure time of 60 s. 

After 96 h, mice were euthanized by CO2 overdose. Tumors and major organs of mice were 

excised and imaged with Carestream Molecular Imaging System. The tissue distribution of DiR 

in tumors and other organs were quantified by measuring the signal intensity at the region of 

interest. 

4.2.13 Pharmacokinetics and biodistribution of DOX in vivo 

Free DOX and DOX-loaded micelles were administered via the tail vein with a dosage of 5 mg 

DOX/kg in 200 µL saline (n = 3). At predetermined time points (3 min, 8 min, 15 min, 30 min, 

45 min, 1 h, 2 h, 4 h, 8 h and 12 h), blood samples were obtained from mice using a heparinized 

capillary tube. Plasma samples were isolated from the blood by centrifuging at 3000 rpm/min for 

10 min. DOX in plasma was extracted by extraction buffer (10% Triton X-100, deionized water, 

and isopropanol at volumetric ratio of 1:2:15). The concentration of DOX at different time points 

was measured by HPLC with the detector set at 233 nm (Waters Alliance 2695 Separations 

Module combined with Waters 2998 Photodiode Array Detector, Waters Symmetry C18 5 µm 

http://www.ncbi.nlm.nih.gov/pubmed/21847078
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4.6*250 mm column, mobile phase: 80% MeOH:20% H2O isocrate, flow rate: 0.6 mL/min). 

Pharmacokinetic parameters such as t1/2, area under the curve (AUC), volume of distribution (Vd) 

and clearance (CL) were calculated by fitting the blood DOX concentrations to a non-

compartment model using Phoenix WinNonlin.  

In biodistribution study, free DOX, DOX-loaded PEG5K-EB2 and DOX-loaded FA-

PEG5K-EB2 micelles were intravenously injected into 4T1.2 tumor bearing mice at the dose of 5 

mg DOX/kg, respectively (n=3). At 24 h post-injection, tumor tissues, major organs (liver, 

spleen, lung, heart, and kidney) and blood were harvested from the mice. Tissues were 

homogenized using Power Gen 500 homogenizer (Fisher Scientific) with 100 mg tissues mixed 

with 900 μL extraction buffer, and DOX was extracted overnight at −20 °C using the same 

method mentioned above. The samples were centrifuged at 3000 rpm/min for 10 min, and the 

supernatant was then dried and dissolved in 400 µL 75%MeOH. Afterwards, the sample 

solutions were subjected to further centrifugation at 14500 rpm/min for 5 min to remove 

undissolved materials prior to HPLC measurement mentioned above. The percent injected dose 

and the percent injected dose per gram (tissue) values were calculated using the following 

equations: 

% injected dose = (dose in blood or in tissue samples)/injected dose × 100% 

 

% injected dose/g tissue = % injected dose/weight of tissue (g) 

4.2.14 In vivo antitumor therapeutic study 

A syngeneic murine breast cancer model (4T1.2) was used to evaluate the therapeutic efficacy of 

different DOX formulations. Briefly, 2 x 105 4T1.2 cells in 200 µL saline were inoculated 

subcutaneously at the right flank of female BALB/c mice. When tumors in the mice reached a 
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volume of 50 -100 mm3, mice were randomly assigned to one of five groups (n = 5) and this day 

was designated as day 1. From day 1, mice were intravenously administered free DOX (5 

mg/kg), Doxil (5 mg/kg), DOX-loaded PEG5K-EB2 or DOX-loaded FA-PEG5K-EB2 once every 

three days on days 1, 4, and 7, respectively. Tumor sizes were measured with a digital caliper on 

days 1, 4, 7, 10, 13, 16, 20, 24 and calculated according to the following formula: (L×W2)/2, 

where L and W are length and width of each tumor. To better compare between groups, relative 

tumor volume (RTV) was calculated at each measurement time point, where RTV = the tumor 

volume at a given time point/the tumor volume prior to first treatment. The tumor growth 

inhibition rate (IR) was assessed and defined as: IR % = (1 – relative tumor volume in the treated 

group/relative tumor volume in the saline group) × 100%. Toxicity also was monitored by 

following the body weights of all mice throughout the entire experiment. Mice were sacrificed 

when tumor reached 2000 mm3 or developed ulceration. In addition, blood samples were 

collected from all mice at the completion of the study for the measurement of serum chemistry 

including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). 

4.2.15 Statistical analysis 

In all statistical analyses, the significance level was set at a probability of P < 0.05. All results 

were reported as the mean ± standard deviation (SD) unless otherwise indicated. Statistical 

analysis was performed by using the Student’s t-test for two groups, and one-way ANOVA for 

multiple groups, followed by Newman-Keuls test if P < 0.05.  
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4.3 RESULTS AND DISCUSSION 

4.3.1 Synthesis and characterization of FA-PEG7.5K-DOA and PEG5K-EB2 

PEG5K-EB2 was synthesized and characterized as previously reported (Huang, Lu et al. 2012, Lu, 

Huang et al. 2013). FA-PEG7.5K-DOA was also synthesized to mediate active targeted delivery of 

PEG5K-EB2 micelles to tumor cells that overexpress folate receptor (FR). A PEG of longer length 

(PEG7.5K) was used as a spacer between FA and the lipid anchor (DOA) to improve the 

accessibility of FA on the surface of FA-decorated PEG5K-EB2 micelles for interaction with FR-

overexpressing tumor cells. FA-PEG7.5K-DOA conjugate was synthesized via stepwise solution-

phase condensation reactions using BocNH-PEG7.5K-NHS, Boc-aspartic acid, oleyl amine and 

FA NHS as building blocks. The complete synthetic route is described in Figure 21.  

                                  

Figure 21 Synthetic route of FA-PEG7.5K-DOA. 
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FA-PEG7.5K-DOA was 95.03% pure as verified by HPLC (Figure 22). 

           

Figure 22 HPLC trace of FA-PEG7.5K-DOA. 

 

1H NMR spectrum of FA-PEG7.5K-DOA showed signals at 6.65 ppm, 7.65 ppm, and 8.65 ppm 

which are a typical spectrum of FA (Figure 23).  
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Figure 23 1H-NMR (400MHz) of FA-PEG7.5K-DOA INDMSO. 

MALDI-TOF further confirmed the identity of the compound (Figure 24). These data suggest 

successful synthesis of FA-PEG7.5K-DOA conjugate. 

                             

Figure 24 MALDI-TOF of FA-PEG7.5K-DOA. 
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4.3.2 Physicochemical characterization of DOX-free and DOX-loaded micelles 

In aqueous solution, both PEG5K-EB2 and FA-PEG5K-EB2 were able to readily self-assemble to 

form micelles with a particle diameter around 20 nm as measured by DLS analysis (Table 6).  

Table 6 Physicochemical characterization of blank and DOX-loaded micelles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25A shows the size distribution of PEG5K-EB2 micelles following incorporation of DOX 

(1 mg/mL). The size of DOX-loaded micelles was similar to that of drug-free micelles. In 

addition, spherical particles of uniform size were observed under TEM (Figure 25C). The sizes 

Figure 25 Size distribution of PEG5KEB2/DOX micelles (A) and FA-PEG5K-EB2/DOX micelles (C). 

Transmission electron microscopic (TEM) images of PEG5K-EB2/DOX micelles (B) and FA-PEG5K-

EB2/DOX micelles (D). DOX concentration was kept at 1 mg/mL. 
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of the particles under TEM were consistent with those determined by DLS (Figure 25A). It is 

also apparent that attachment of FA to the surface of the micelles had no impact on their size and 

morphology (Figure 25B & D).  

            Table 6 shows that a DOX loading efficiency (DLE) of 91.7 and 93.5% was achieved for 

PEG5K-EB2 and FA-PEG5K-EB2 micelles, respectively, at a carrier/drug molar ratio of 2/1. To 

confirm that DOX was indeed incorporated into the interior hydrophobic core of PEG5K-EB2 

micelles, we examined the 1H NMR spectrum of DOX/PEG5K-EB2 in DMSO and deuterium 

oxide (D2O), respectively. 

          

Figure 26 1H-NMR spectra of free DOX in D2O, PEG5K-EB2 in D2O or CDCl3 and DOX-formulated 

in PEG5K-EB2 micelles in D2O. Concentration of DOX was at 1 mg/mL. 

 

As shown in Figure 26, free DOX showed a 1H NMR spectrum in D2O that was consistent with 

previous reports (Wang, Wang et al. 2010). A similar spectrum was collected when DOX was 
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examined in DMSO. PEG5K-EB2 in DMSO exhibited a 1H NMR spectrum that was consistent 

with its structure (Figure 26). The signals for both DOX and PEG5K-EB2 were clearly visualized 

when DOX/PEG5K-EB2 was examined in DMSO (Figure 26). However, when the 1H NMR 

spectrum of PEG5K-EB2 was collected in D2O, the Embelin signals (0.5-3 ppm, 4-5 ppm) were 

nearly abolished (Figure 26). This is consistent with the notion that embelin molecules were 

tightly packed in the core of the micelles in aqueous solution and that embelin signals were 

shielded by PEG. A similar shielding of embelin signals was observed when DOX/PEG5K-EB2 

was examined in D2O. The typical peaks for DOX also were completely suppressed for 

DOX/PEG5K-EB2, suggesting that DOX was effectively incorporated into the interior core of 

DOX/PEG5K-EB2 micelles. A number of mechanisms are likely to be involved in the drug 

(DOX)/carrier (embelin) interactions including π-π stacking, hydrogen bonding, as well as 

hydrophobic/hydrophobic interactions.  

4.3.3 Release kinetics of DOX formulated in micelles 

The release profile of DOX formulated in PEG5K-EB2 and FA-PEG5K-EB2 micelles was 

evaluated using dialysis method in PBS (pH=7.4) to simulate physiologically relevant 

conditions. Free DOX was employed as a control.  
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Figure 27 (A) Release kinetics of DOX from free DOX and DOX-loaded micelles determined by 

dialysis against DPBS (PH = 7.4) containing 0.5% (w/v) Tween 80. (B) Particle size change of DOX-

loaded micelles, and Doxil® measured by DLS in aqueous solution over time at 37 °C. 

 

As depicted in Figure 27, DOX formulated in PEG5K-EB2 micelles exhibited sustained release 

kinetics in comparison to free DOX. During the first 9 h, the amount of DOX released in the free 

DOX group reached 95.35%, which was substantially higher than that in PEG5K-EB2 micelles 

(17.45%). Strikingly, no initial burst release of DOX was observed for DOX-loaded PEG5K-EB2 

micelles, indicating that an overall strong force was involved in the drug-carrier interaction. 

Additionally, DOX formulated in PEG5K-EB2 micelles displayed a much slower DOX release 

compared to free DOX during the entire experimental period. The T1/2 of DOX release was 55.87 

h for DOX/PEG5K-EB2 mixed micelles, which is significantly longer than that for free DOX 

(0.82 h). The significantly slower and controlled release in DOX-loaded PEG5K-EB2 micellar 

formulation may be attributed to the strong π-π stacking, hydrogen bonding, as well as 

hydrophobic interaction between the carrier and DOX as embelin has a benzoquinone ring and a 

long alkyl chain. Decoration of PEG5K-EB2 micelles with FA had negligible impact with respect 

to the DOX release kinetics (Figure 27). 
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4.3.4 In vitro cytotoxicity on cancer cells  

Figure 28 shows the anti-proliferative effect of various DOX formulations on 4T1.2 mouse 

breast cancer cells. Cells were treated with different DOX formulations and the cytotoxicity was 

measured by MTT assay 72 h later. All of the DOX formulations showed time- and 

concentration-dependent cell-killing effect on 4T1.2 cells.  

 

Figure 28 Cytotoxicity of DOX-loaded PEG5K-EB2 and FA-PEG5K-EB2 against a mouse breast 

cancer cell line-4T1.2 and human breast cancer cell line-MCF-7 in comparison to DOX and Doxil. 

 

As summarized in Table 7, The IC50 was 176.13, 248.98, 138.93, and 78.53 ng/mL for DOX, 

Doxil, PEG5K-EB2/DOX, and FA-PEG5K-EB2/DOX micelles, respectively.  

Table 7 IC50 of different formulations in 4T1.2 and MCF-7 cancer cells. 

 

DOX-loaded FA-PEG5K-EB2 is the most potent of all the DOX formulations with respect to cell 

growth inhibition. To determine whether this is due to folate-mediated active targeting, free 

folate (100 µM) was co-added to cells with the DOX-loaded FA-PEG5K-EB2 micelles. It has 

been reported that 100 µM free folate can block more than 99 % of the binding by folate receptor 
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(Paulos, Reddy et al. 2004). Indeed, the presence of excess free folate decreased the cytotoxicity 

of DOX-loaded FA-PEG5K-EB2 micelles to a level that was comparable to that for DOX-loaded 

PEG5K-EB2, suggesting that the greater in vitro cytotoxicity of DOX-loaded FA-PEG5K-EB2 

micelles was attributed to the specific ligand-receptor interaction. On the other hand, the 

relatively high IC50 of Doxil might be ascribed to the insufficient intracellular internalization as 

confirmed in the later uptake study. The inadequate release of DOX from Doxil inside cells may 

also play a role. Similar results were obtained in MCF-7 human breast cancer cell line (Figure 

28). 

After demonstrating effective inhibition of proliferation of 4T1.2 and MCF-7 cells, we 

further studied the cytotoxicity of PEG5K-EB2/DOX in a drug-resistant cell line, NCI/ADR-RES. 

Drug resistance is a major factor involved in the failure of many types of cancer chemotherapy 

(Hu and Zhang 2009). Various mechanisms have been identified that are involved in the 

different types and/or stages of cancers (Gottesman 2002, Yuan, Li et al. 2008). One primary 

mechanism involves the overexpression of P-glycoprotein (P-gp), which plays a vital role in the 

development of multiple drug resistance (MDR) (Loo, Bartlett et al. 2004, Chavanpatil, Khdair 

et al. 2007, Collnot, Baldes et al. 2007, Sharma, Zhang et al. 2008, Zhang, Liu et al. 2013). P-gp, 

a member of ATP-binding cassette transporter, is one of the major drug efflux transporters and 

increased expression of P-gp leads to decreased drug accumulation in multidrug-resistant cells, 

and the development of resistance to anticancer drugs (Desai, Sawada et al. 2013). NCI/ADR-

RES is one such MDR cell line and was extensively used for the investigation of multidrug 

resistance. As shown in Figure 29, the anti-proliferative effect of all of the DOX formulations 

was decreased significantly in this cell line. This is likely due to the increased P-gp activity and 
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therefore decreased DOX accumulation in NCI/ADR-RES cells, which was confirmed in later 

DOX cellular uptake studies.  

                                  

Figure 29 Cytotoxicity of free DOX, Doxil, DOX-loaded PEG5K-EB2 and DOX-loaded FA-PEG5K-

EB2 micelles in NCI/ADR-RES cells. 
 

In addition, unlike in 4T1.2 and MCF-7 cells, Doxil was more potent than free DOX in inhibiting 

the proliferation of NCI/ADR-RES cells. This is likely ascribed to the altered route of cellular 

uptake of Doxil, which decreases the availability of intracellularly delivered DOX to P-gp. These 

data are consistent with the previous work by Ogawara et al (Ogawara, Un et al. 2009). It is also 

apparent from Figure 29 that DOX-loaded PEG5K-EB2 micelles exhibited enhanced anti-

proliferative effect over DOX and Doxil in NCI/ADR-RES cells, with an improvement of 

efficacy by 3.67- and 2.02-folds, respectively (Table 8).  

Table 8 IC50 of varied DOX formulations in NCI/ADR-RES cancer cell 

 

In addition, coupling of folate to PEG5K-EB2/DOX micelles led to further improvement in the 

cytotoxicity towards NCI/ADR-RES cells (Figure 29). Again, addition of free folate was able to 
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reverse the improvement via inhibiting the specific binding of folate receptor to DOX-loaded 

FA-PEG5K-EB2 micelles.   

4.3.5 In vitro cellular uptake 

To investigate whether the enhanced cytotoxicity of our micellar systems was attributed to the 

improved intracellular DOX accumulation, the cellular uptake of DOX in different formulations 

was examined in 4T1.2 cells using confocal laser scanning microscopy (CLSM). Figure 30A 

shows the intracellular distribution of DOX at 30 min following treatment with different DOX 

formulations. DOX fluorescence signal was largely localized in the nucleus, suggesting that 

DOX was effectively translocated into the nucleus following delivery into the cytoplasm. It is 

also apparent that less fluorescence intensity was observed inside the cells treated with Doxil 

compared with all other formulations.  

To better investigate the uptake efficiency, the intracellular accumulation of DOX was 

further examined quantitatively by flow cytometry. Figure 31A shows the data generated from 

4T1.2 cells. In agreement with the confocal study, cells treated with Doxil showed the lowest 

mean fluorescence intensity. The level of cell-associated fluorescence intensity for PEG5K-

EB2/DOX mixed micelles was similar to that for free DOX. However, surface decoration of 

PEG5K-EB2/DOX mixed micelles by FA significantly enhanced the DOX intracellular 

accumulation over free DOX and Doxil. The improvement in uptake of DOX-loaded FA-PEG5K-

EB2 micelles was significantly abolished in the presence of excess free folate. These data, again, 

support the notion that the enhanced cellular uptake of DOX-loaded FA-PEG5K-EB2 micelles 

was specifically mediated by the folate receptor that is overexpressed on the tumor cells. 
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Figure 30 Confocal laser scanning microscopy (CLSM) images of 4T1.2 cells (A) and NCI/ADR-

RES cells (B) after incubation with different DOX formulations for 30 min. DOX concentration was 

6 µg/mL.   
 

 

Figure 31 Cellular uptake of DOX in 4T1.2 (A) and NCI/ADR-RES (B) treated by DOX, Doxil, 

PEG5K-EB2/DOX, FA-PEG5K-EB2/DOX as well as FA-PEG5K-EB2/DOX with 100 µM free folate for 

30 min. The numbers above each column are mean intensity values provided by the flow cytometry 

software, which represent the fluorescence intensity of the cells. Values are reported as the means ± 

SD for triplicate samples.     DOX concentration was 6 µg/mL. *p < 0.05, &p < 0.005, €p < 0.0001, 

compared to FA-PEG5K-EB2/DOX. αp < 0.0001, βp < 0.005 compared to PEG5K-EB2/DOX. 

 

We also examined the DOX uptake in NCI/ADR-RES cells treated with different DOX 

formulations (Figure 30B). Overall, the fluorescence signals were significantly weaker for all of 

the DOX formulations compared to the data generated from 4T1.2 cells (Figure 30A). In 

addition, most of the fluorescence signals were localized outside of the nucleus. This is 

consistent with the notion that P-gp activity is significantly increased in NCI/ADR-RES cells and 

significant amounts of “freely accessible” cytoplasmic DOX are effluxed out of the cells. It is 
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also apparent that NCI/ADR-RES cells treated with free DOX showed lowest level of 

fluorescence signals compared to cells treated with other formulations (Figure 30B).  

Figure 31B shows the data of flow cytometry generated from NCI/ADR-RES cells. The 

data were consistent with confocal imaging. Cells treated with FA-PEG5K-EB2/DOX micelles 

gave the highest level of fluorescence intensity. Again, unlike the data generated from the drug-

sensitive cells (Figure 31A), Doxil-treated-NCI/ADR-RES cells showed significantly higher 

levels of DOX fluorescence intensity compared to free DOX-treated-NCI/ADR-RES cells 

(Figure 31B). These data are consistent with the cytotoxicity data and suggest that DOX 

formulated in PEG5K-EB2 micelles could be effectively taken up by cells and exerted its 

cytotoxic activity against the tumor cells. More importantly, the data suggest that DOX/PEG5K-

EB2 could overcome the P-gp-mediated DOX efflux and resensitize NCI/ADR-RES cells to 

DOX cytotoxicity.  

4.3.6 Inhibitory effect of PEG5K-EB2 on P-gp ATPase 

Despite the interesting observation that PEG5K-EB2 micelles were capable of reversing the DOX 

resistance in NCI/ADR-RES cells, the underlying mechanism remains unclear. It is possible that 

DOX formulated in PEG5K-EB2 micelles is taken up by an endocytosis pathway that renders the 

intracellularly delivered DOX less accessible to P-gp. We hypothesize that PEG5K-EB2 also 

overcomes the DOX resistance via directly inhibiting the activity of P-gp ATPase. It is well 

known that the activity of P-gp is energy-dependent. Thus, the hydrolysis of ATP by ATPase is a 

prerequisite to confer sufficient energy for the proper functionality of P-gp (Klaassen and 

Aleksunes 2010). To confirm that PEG5K-EB2 is, indeed, a P-gp inhibitor, the effect of PEG5K-
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EB2 on P-gp activity was investigated via examining its inhibitory effect on verapamil-stimulated 

P-gp ATPase activity (Figure 32).  

                               

Figure 32 Inhibitory effect of PEG5K-EB2 and TPGS on verapamil-stimulated P-gp ATPase activity. 

TPGS was utilized as a positive control due to its known inhibitory effect on P-gp activity 

(Dintaman and Silverman 1999). As shown in Figure 32, ∆RLU represents the consumption of 

ATP in the system. Consistent with previous reports, TPGS was able to significantly reduce the 

∆RLU in a concentration dependent manner, suggesting the potent inhibition on verapamil-

stimulated P-gp ATPase activity, which can lead to the decreased activity of P-gp efflux pump. 

Interestingly, the ∆RLU in PEG5K-EB2 group also was significantly reduced, indicating the 

significant inhibitory effect of PEG5K-EB2 on P-gp ATPase activity. These data support our 

hypothesis that PEG5K-EB2 is able to reverse the P-gp-mediated multidrug resistance through 

blocking the function of P-gp. There are two possible mechanisms that are involved in the 

inhibition of P-gp ATPase by PEG5K-EB2. First, PEG5K-EB2 may bind to the ATPase-substrate 

complex to hinder the activity of ATPase so that ATP will not be hydrolyzed. Second, PEG5K-

EB2 may be a substrate of ATPase and directly compete with other substrates for the binding of 

ATPase. More studies are underway to unravel how PEG5K-EB2 inhibits P-gp activity. It should 

be noted that, other than DOX, there are many other potent chemotherapeutics that are the 
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substrates of P-gp, such as paclitaxel, camptothecin, and etoposide. Therefore, our system can 

potentially be extended to deliver these therapeutic agents to drug-resistant tumors. 

4.3.7 Maximum tolerated dose (MTD) study 

One of the potential advantages of drug delivery via nanocarriers is the reduced systemic toxicity 

of the formulated drugs, which allows for increased dosage to be administered to maximize the 

therapeutic effect. To evaluate whether our DOX-loaded PEG5K-EB2 micelles could similarly 

reduce the DOX-related systemic toxicity, the MTD following a single i.v. administration of 

PEG5K-EB2/DOX micelles was investigated in tumor-free mice and compared to free DOX 

(Table 9). The mice were treated with i.v. administration of different doses of DOX-loaded 

PEG5K-EB2 micelles or free DOX followed by observation of changes in body weight and other 

general signs of toxicity.  

Table 9 MTD of DOX and DOX-loaded PEG5K-EB2 micelles. 

 

As shown in Table 9, free DOX was well tolerated in mice at the dose of 10 mg DOX/kg. 

However, increasing the DOX dosage to 15 mg/kg caused the death of 2 out of 3 treated mice. 

Therefore the MTD for free DOX at a single injection was around 10 mg/kg, which was 

consistent with published work (Xiao, Luo et al. 2011). In DOX-loaded PEG5K-EB2 micelles-

treated mice, average weight loss was only 6.9% and there were no marked changes in the 
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general activity at a DOX dosage of 15 mg/kg. Increasing the dosage to 20 mg DOX/kg led to 

the death of one out of 3 treated mice. Based on these data it was estimated that the single i.v. 

MTD for DOX-loaded PEG5K-EB2 micelles was 15 mg DOX/kg, which was 1.5-folds of 

improvement over free DOX. The improved MTD of DOX-loaded PEG5K-EB2 is likely 

attributed to multiple mechanisms. First, DOX-loaded PEG5K-EB2 showed slow and sustained 

release kinetics (Figure 28). Second, the PEG shielding of DOX-loaded PEG5K-EB2 micelles 

shall minimize the nonspecific uptake by major organs such as liver, heart and lung. Finally, 

embelin has hepatoprotective and anti-inflammatory activity which may counteract the adverse 

effects associated with DOX (Chitra, Sukumar et al. 1994, Bhandari, Jain et al. 2007, Singh, 

Singh et al. 2009). More studies are needed to better understand the mechanism involved in the 

reduced toxicity of DOX-loaded PEG5K-EB2 micelles.  

4.3.8 Near infrared fluorescence imaging (NIRI) in vivo and ex vivo 

Previously, tumor-targeting effect of PEG5K-EB2 was examined in PC-3 xenograft tumor model, 

in which PEG5K-EB2 micelles co-loaded with PTX and DiD were able to preferentially 

accumulate in the tumors. In this study, tumor-targeting ability of PEG5K-EB2 micelles was 

further investigated in nude mice bearing subcutaneous CL1 tumors by using DiR as a near 

infrared fluorescence dye. DiR is a strong lipophilic tricarbocyanine probe and has longer 

excitation and emission wavelengths in the infrared range than DiD. In addition, it is able to 

prevent any light absorption by tissues, avoid autofluorescence and scattering commonly 

associated with the application of visible light dyes (Chen, Corbin et al. 2007). Therefore, DiR is 

a useful NIRF dye for in vivo optical imaging.  The mice injected with free DiR showed no 
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noticeable fluorescence signal in tumors and major organs throughout the 96 h period (Figure 

33A).  

                       

Figure 33 In vivo (A) and ex vivo (B) NIRF optical images of CL1 tumor-bearing SCID mice 

injected intravenously with free DiR dye and DiR-loaded PEG5K-EB2 micelles, respectively. Tumors 

and major organs were excised for ex vivo imaging at 96 h post-injection. 

 

This may be mainly due to the rapid elimination of free DiR by RES and kidney (Hou, Yao et al. 

2012). In a sharp contrast, incorporation of DiR into PEG5K-EB2 micelles led to significantly 

enhanced accumulation of DiR at tumors. At 4 h post injection, an intense fluorescence signal 

was discerned in tumor areas, which peaked at 24 h and remained at a substantial level at 96 h, 

suggesting that PEG5K-EB2/DiR micelles were able to penetrate leaky tumor vasculature and 

retained in tumors throughout the 96 h period. This pronounced tumor distribution of 

DiR/PEG5K-EB2 micelles could be attributed to the nano-sized particles by taking advantaging of 

EPR. Moreover, the strong interaction between DiR and embelin molecules may contribute to 

the excellent stability of the DiR/PEG5K-EB2 micelles prior to reaching the tumor tissues. More 

importantly, PEG corona in micelles further prevents the DiR from opsonization.  
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Following the final imaging at 96 h post-injection, mice were sacrificed and tumors and 

major organs were excised, imaged and quantified using a Carestream Molecular Imaging 

System. The intensity of the DiR signal varied in different organs. In free DiR-treated mouse, 

there was negligible signal of DiR observed in tumors. This is in contrast to the dramatically 

intense fluorescence signal in tumors for DiR-loaded PEG5K-EB2 micelles. Not surprisingly, 

moderate levels of fluorescence signal were observed in liver, spleen and lungs as these are 

major organs that are accountable for the nonspecific clearance of alien particles by the RES. 

Table 10 showed the ratios of DiR signal intensity of tumor to that of liver or spleen. 

Table 10 Ratios of DiR signal intensity of tumor to liver or spleen.   

 

The ratios of tumor/liver in left and right tumors in PEG5K-EB2/DiR micelles were 5.44 and 5.27 

folds higher than that for free DiR. Similar results were shown for tumor/spleen ratios. These 

data demonstrated that PEG5K-EB2 micelles are effective nanocarriers that are able to deliver 

anticancer therapeutics specifically to tumors. 

4.3.9 Pharmacokinetics and biodistribution 

In vivo pharmacokinetic profile of DOX was investigated after i.v. bolus in BALB/c mice with 

the DOX concentration set at 5 mg/kg. Figure 34A compared the DOX blood clearance curves 

among three DOX formulations. As shown in Figure 34A, the blood retention times of DOX in 

both DOX micellar formulations were significantly increased compared to free DOX.  
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Figure 34 DOX pharmacokinetics (A) and biodistribution profiles (B) after intravenous 

administration in various DOX formulations at the dose of 5 mg/kg. Values are reported as the 

means ± SD for triplicate samples *p-value < 0.05 compared to DOX, €p-value < 0.005, compared to 

DOX, #p-value < 0.05 compared to PEG5K-EB2/DOX. 

The pharmacokinetic parameters were obtained by fitting the blood DOX concentration versus 

time using a non-compartment model and summarized in Table 11.  

Table 11 Pharmacokinetic parameters of DOX in different formulations. 

 

Incorporation of DOX into PEG5K-EB2 or FA-PEG5K-EB2 micelles led to substantially greater 

t1/2, AUC, and Cmax compared to free DOX. The t1/2, AUC, and Cmax of PEG5K-EB2/FA-PEG5K-

EB2 were 1.76/2.47, 12.86/14.56, and 4.62/5.45-folds higher, respectively, than those of free 

DOX. However, Vd and CL for both micellar DOX formulations were significantly lower than 

those for free DOX. These data suggest that DOX formulated in PEG5K-EB2 or FA-PEG5K-EB2 

micelles was well confined within the blood circulation with significantly increased half-life.  

We next went to investigate whether our micellar formulations can improve the 

biodistribution of DOX. Free DOX, DOX-loaded PEG5K-EB2, and FA-PEG5K-EB2 micelles were 

i.v. administered to 4T1.2 tumor bearing mice at a DOX concentration of 5 mg/kg. Twenty-four 

h after injection, tumors, blood and major organs were collected for the measurement of DOX. 
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Compared to free DOX, there were significantly greater amounts of DOX accumulation at 

tumors for DOX-loaded PEG5K-EB2 micelles (Figure 34B). This likely was attributed to the 

extended circulation time of DOX-loaded PEG5K-EB2 micelles and the EPR effect. Coupling of 

FA to the micellar DOX was associated with further improvement in tumor accumulation of 

DOX. Both FA-targeted and non-targeted micellar DOX are expected to extravasate into tumors 

due to their small sizes and the extended half-life in the blood circulation. However, surface 

decoration with FA shall facilitate the retention of the extravasated micellar DOX at tumor 

tissues via the FA/folate receptor interaction. FA can further facilitate the subsequent step of 

intracellular delivery following extravasation. 

In addition to enhanced tumor accumulation, relatively high levels of DOX uptake were 

also noted in liver, spleen and lung, which could be ascribed to the non-specific elimination of 

nanoparticles by RES. Interestingly, DOX distribution into the heart was significantly reduced in 

both DOX micellar formulations compared with free DOX. This is significant considering that 

cardiotoxicity is a major side effect that limits the amount of DOX that can be administered. 

4.3.10 In vivo antitumor activity 

A highly metastatic breast cancer (4T1.2) model was selected in this study to assess the 

therapeutic efficacy of DOX-loaded micelles in comparison to free DOX and Doxil. An 

uncontrolled tumor growth was shown in the saline-treated group, which was consistent with the 

aggressive nature of the 4T1.2 tumor model. Mice treated with free DOX showed modest tumor 

growth inhibition compared to the saline group with an inhibition rate (IR) of 44.22% (Table 

12). The PEGylated liposomal formulation of DOX-Doxil exhibited improved antitumor activity 

over DOX (Figure 35A). 
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Figure 35 In vivo therapeutic study of different DOX formulations in 4T1.2 syngeneic mouse model. 

Solid arrows mean the i.v. administration A: relative tumor volume. * p-value (PEG5K-EB2/DOX vs 

Saline) < 0.0001. & p-value (PEG5K-EB2/DOX vs DOX.HCl) < 0.001. # p-value (PEG5K-EB2/DOX vs 

Doxil) < 0.01. € p-value (PEG5K-EB2/DOX vs FA- PEG5K-EB2/DOX) < 0.05. B: tumor images. C: 

mice body weight. D: tumor weight. 

 

The IR in the Doxil group was 66.97% which is an improvement of approximately 1.5-fold over 

free DOX. The enhanced antitumor activity of Doxil over free DOX is likely attributed to 

improved DOX accumulation at the tumor site due to the EPR effect (Matsumura and Maeda 

1986). Our data also showed that DOX-loaded PEG5K-EB2 micelles were even more effective 

than Doxil with an IR of 78.18% (Figure 35 & Table 12).  

Table 12 Tumor growth inhibition rate (IR) in different treatment groups.  
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Furthermore, addition of folic acid to the surface of the PEG5K-EB2/DOX micelles led to an 

additional improvement in antitumor activity with an IR of 85.45%. The further improvement of 

DOX-loaded PEG5K-EB2 micelles over Doxil is likely due to the very small size of PEG5K-EB2 

micelles (~20 nm). It has been generally known that particles of < 200 nm can effectively 

extravasate into solid tumors. However, recent studies have suggested that subnano-size (<100 

nm) is critical for the particles to minimize the nonspecific uptake by liver and lungs and 

effectively penetrate the solid tumors including poorly vascularized tumors (Li, Xiao et al. 2010, 

Luo, Xiao et al. 2010). In addition to facilitating effective tumor accumulation, the inhibitory 

effect of PEG5K-EB2 on P-gp function may play a role in the improved antitumor activity of 

DOX-loaded PEG5K-EB2 micelles. Finally, the potential synergistic action between the embelin-

based carrier and DOX may contribute to the overall antitumor activity. Figure 35B & 35C 

show the images and weights of the tumors collected at the completion of the experiment, which 

were in agreement with the tumor growth curves (Figure 35A). During the entire period of the in 

vivo study, there were no noticeable body weight changes in all treatment groups compared to 

the saline group (Figure 35D). Additionally, serum levels of transaminases (AST and ALT) in 

the mice from all groups were examined (Figure 36).  
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Figure 36 Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) level in different 

DOX formulations. *p-value < 0.05, compared to DOX, #p-value < 0.01, compared to DOX, &p-value 

< 0.05, comapared to Saline. 

 

The AST and ALT levels in the DOX-treated group were significantly higher than those in the 

saline-treated group, suggesting a DOX-related toxicity. No increases in serum levels of AST 

and ALT were found in the mice treated with Doxil or the DOX-loaded PEG5K-EB2 micelles. 

Our data suggest that incorporation of DOX into PEG5K-EB2 micellar formulation can lead to 

significantly improved antitumor activity with minimal toxicity. 
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5.0. DESIGN AND CHARACTERIZATION OF PEG-DERIVATIZED VITAMIN E AS A 

NANOMICELLAR FORMULATION FOR DELIVERY OF PACLITAXEL 

5.1 BACKGROUND 

The poor clinical efficacy and the associated severe side effects of conventional chemotherapy in 

cancer treatment have stimulated the development of novel and effective drug delivery systems. 

Recently, increasing efforts have been placed on the development of nanotechnology-based drug 

delivery platforms. Polymeric micelles, liposomes, dendrimers and nanoparticles of 

biodegradable polymers have been extensively studied as delivery systems to improve cancer 

treatment (Torchilin 2007). Among the many studied delivery systems, polymeric micelles have 

drawn considerable attention as a versatile nanotherapeutic platform, owing to ease of 

preparation, good biocompatibility, and relatively high efficiency in drug delivery (Sutton, 

Nasongkla et al. 2007, Mi, Liu et al. 2011). It is well known that polymeric micelles can improve 

the aqueous solubility of poorly water-soluble chemotherapeutic agents by packing them in the 

hydrophobic core of the micelles. Besides, the blood circulation times of drug-loaded micelles 

can be significantly prolonged due to the steric hindrance imposed by the presence of the long 

hydrophilic PEG shell (Sutton, Nasongkla et al. 2007, Mi, Liu et al. 2011). Furthermore, 

compared to other delivery systems, micelles are highly effective in passive tumor targeting 
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through the leaky vasculature via enhanced permeability and retention effect (EPR) because of 

their extremely small sizes ranging from 10 to 100 nm, resulting in favorable biodistribution and 

improved therapeutic index (Matsumura and Maeda 1986). Nevertheless, most polymeric 

micellar formulations employ “inert” excipients that not only lack therapeutic activity, but also 

potentially impose safety concern (Croy and Kwon 2006). 

  D-alpha-tocopheryl polyethylene glycol succinate 1000 (TPGS) is a hydrophilic 

derivative of natural Vitamin E, which is generated via coupling of polyethylene glycol (PEG) to 

Vitamin E succinate via an ester linkage (Sokol, Heubi et al. 1987). Over the last decade, TPGS 

has been intensively studied in various types of delivery systems: TPGS has been used as an 

effective emulsifier, solubilizer, additive, permeability enhancer as well as absorption enhancer 

(Dintaman and Silverman 1999, Yu, Bridgers et al. 1999). As an inhibitor of P-gp, TPGS has 

also been utilized as an excipient to overcome multidrug resistance (MDR) and improve the 

bioavailability of anticancer drugs.(Dintaman and Silverman 1999, Varma and Panchagnula 

2005, Constantinides, Han et al. 2006, Collnot, Baldes et al. 2007) Examples of TPGS 

application in nanomedicine platform include TPGS-emulsified PLGA nanoparticles, 

nanoparticles of TPGS-based copolymers, and TPGS-based micelles, liposomes, and prodrugs 

(Win and Feng 2006, Cao and Feng 2008, Anbharasi, Cao et al. 2010, Ma, Zheng et al. 2010, Mi, 

Liu et al. 2011, Muthu, Kulkarni et al. 2011, Mert, Lai et al. 2012, Wang, Sun et al. 2012). In 

addition, several new derivatives of improved performance have been reported including 

TPGS5K, TPGS2K, and PEG2K-Vitamin E2 conjugate (Mi, Liu et al. 2011, Mert, Lai et al. 2012, 

Wang, Sun et al. 2012). However, the optimal structure of PEG-Vitamin E conjugates as a 

micellar delivery system remains incompletely understood.  
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We have recently developed a PEG-derivatized embelin-based micellar system that is 

suitable for delivery of poorly water-soluble drugs such as PTX (Huang, Lu et al. 2012). 

Structurally, PEG-embelin conjugate is very similar to TPGS. Embelin has various biological 

activities including anti-inflammatory, anti-diabetic, and hepatoprotective effect.(Chitra, 

Sukumar et al. 1994, Bhandari, Jain et al. 2007, Singh, Singh et al. 2009) Embelin also has 

antitumor activity and synergizes with other anticancer agents through blocking the activity of 

X-linked inhibitor of apoptosis protein (XIAP) (Chitra, Sukumar et al. 1994, Sreepriya and Bali 

2005, Dai, Qiao et al. 2009, Danquah, Li et al. 2009, Heo, Kim et al. 2011, Huang, Lu et al. 

2012). Thus, similar to TPGS, PEG-embelin also functions as a dual functional system for 

delivery of anticancer agents but with different mechanism of action (Huang, Lu et al. 2012). 

Optimization of PEG-embelin system has shown that a conjugate with two embelin molecules 

coupled to PEG is significantly more effective than the conjugate with a 1: 1 molar ratio of PEG 

and Embelin (Lu, Huang et al. 2013). In addition, the embelin conjugates with PEG5K worked 

better than the PEG3.5K conjugates (Lu, Huang et al. 2013). This has prompted us to conduct 

similar study with TPGS micellar system. We have developed four PEG-Vitamin E conjugates 

that vary in the molecular weight of PEG (PEG2K vs PEG5K) and the molar ratio of PEG/Vitamin 

E (1/1 vs 1/2) in the conjugates. Our data show that PEG5K-conjugates have lower CMC values 

and are more effective in PTX loading with respect to both loading capacity and stability. The 

conjugates with two Vitamin E molecules also worked better than the conjugates with one 

molecule of Vitamin E, particularly for PEG2K-system. All of the four PEG-Vitamin E 

conjugates showed the P-gp inhibition activity with their efficiency being comparable to that of 

TPGS. More importantly, PTX-loaded PEG5K-VE2 resulted in significantly improved tumor 
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growth inhibitory effect in comparison to PTX formulated in PEG2K-VE or PEG2K-VE2, as well 

as Cremophor EL (Taxol) in a syngeneic mouse model of breast cancer (4T1.2). 

 

5.2 METHODS 

5.2.1 Materials 

Paclitaxel (98%) was purchased from AK Scientific Inc. (CA, USA). Dulbecco’s phosphate 

buffered saline (DPBS) was purchased from Lonza (MD, USA). Methoxy-PEG2,000-OH, 

Methoxy-PEG5,000-OH, dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT), Triton X-100, Dulbecco’s Modified Eagle’s Medium (DMEM) and 

succinate anhydride were all purchased from Sigma-Aldrich (MO, USA). Fetal bovine serum 

(FBS) and penicillin-streptomycin solution were from Invitrogen (NY, USA). D-alpha-

tocopheryl was purchased from Tokyo Chemical Industry (OR, USA). DCC was purchased from 

Alfa Aesar (MA, USA). DMAP was purchased from Calbiochem-Novabiochem Corporation 

(CA, USA). All solvents used in this study were HPLC grade. 

5.2.2 Synthesis of PEG2K-VE, PEG2K-VE2, PEG5K-VE and PEG5K-VE2 

PEG5K-VE2 was synthesized via solution phase condensation reactions from MeO-PEG-OH with 

a molecular weight of 5000 Da. (Boc)lysine(Boc)-OH (2 equ.) was coupled onto the terminal-

OH of PEG using DCC (2 equ.) and DMAP (0.1 equ.) as coupling reagents in DCM overnight. 
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Di-Boc lysyl-PEG5K ester was precipitated and washed three times with cold ethanol and ether, 

respectively. Then, Boc groups were removed via treatment with 50% trifluoroacetic acid in 

DCM, and the lysyl-PEG5K ester was precipitated and washed three times by cold ethanol and 

ether, respectively. White powder precipitate was dried under vacuum. Vitamin E succinate was 

coupled to the deprotected amino groups of lysine with the assistance of DCC (2 equ.) and 

DMAP (0.1 equ.), resulting in PEG5K-VE2. This compound was subsequently dialyzed against 

water and lyophilized to yield a white powder. PEG2K-VE2 was similarly synthesized as PEG5K-

VE2. PEG2K-VE (TPGS2K) and PEG5K-VE (TPGS5K) were synthesized following the literature 

(Mi, Liu et al. 2011).   

5.2.3 Preparation and characterization of free or PTX-loaded micelles 

PTX-solubilized micelles were prepared by the following method. PTX (10 mM in chloroform) 

was added to different PEG-Vitamin E conjugates (10 mM in chloroform), respectively, with 

various carrier/drug molar ratios. The organic solvent was first removed by steady nitrogen flow 

to form a thin dry film of drug/carrier mixture. The film was further dried under high vacuum for 

2 h to remove any traces of remaining solvent. Drug-loaded micelles were formed by suspending 

the film in DPBS. The drug-free micelles were similarly prepared as described above. The mean 

diameter of four different micelles with or without loaded drug was assessed by dynamic light 

scattering (DLS). The morphology and size distribution of PEG2K-VE, PEG2K-VE2, PEG5K-VE 

and PEG5K-VE2 micelles were observed, respectively, using transmission electron microscopy 

(TEM) after negative staining. The concentration of PTX in PTX-loaded micelles was evaluated 

by HPLC as described previously (Huang, Lu et al. 2012). The drug loading capacity (DLC) and 

drug loading efficiency (DLE) were calculated according to the following formula: 
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DLC (%) = [weight of drug used/(weight of polymer + drug used)] ×100% 

DLE (%) = (weight of loaded drug/weight of input drug) ×100% 

5.2.4 Stability study of micelles 

A series of PTX-loaded micelles with different carrier/PTX molar ratios were prepared as 

described above and the PTX concentration in all samples was kept at 1 mg/mL. The sizes of 

samples were measured at different time points following the sample preparation. To examine 

the effect of serum on the particle stability, the samples were mixed with serum (FBS) at a final 

serum concentration of 50%. Size changes were monitored by DLS and measurement was 

terminated when the change of size reached significant difference.  

5.2.5 Determination of the critical micelle concentration (CMC) 

The CMCs of four different micelles were determined by employing pyrene as a fluorescence 

probe (La, Okano et al. 1996). A drug-free micelle solution in DPBS (2.5 mg/mL) was prepared 

via solvent evaporation method. A series of 2-fold dilutions was then made for PEG2K-VE, 

PEG2K-VE2, PEG5K-VE and PEG5K-VE2 micelles, with concentrations ranging from 2×10-4 to 

0.5mg/mL. At the same time, aliquots of 50 L of 4.8×10-6 M pyrene in chloroform were added 

into separate vials. The chloroform was first removed by nitrogen flow to form a thin film. The 

film was further dried under high vacuum for 2 h to remove any traces of remaining solvent. 

Then, the pre-prepared micelle solutions (400 L in DPBS) of varying concentrations were 

added to the pyrene film to obtain a final pyrene concentration of 6×10-7 M in each vial. The 

solutions were kept on a shaker at 37 ℃ for 24 h to reach equilibrium before fluorescence 
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measurement. The fluorescence intensity of samples was measured at the excitation wavelength 

of 334 nm and emission wavelength of 390 nm by Synergy H1 Hybrid Multi-Mode Microplate 

Reader (Winooski, VT). The CMC is determined from the threshold concentration, where the 

sharp increase in pyrene fluorescence intensity is observed.  

5.2.6 In vitro drug release study 

An in vitro drug release study was carried out by dialysis using DPBS (PH = 7.4) containing 

0.5% (w/v) Tween 80 as the release medium. Two mL of PTX-loaded micelles (PEG2K-VE, 

PEG2K-VE2, PEG5K-VE or PEG5K-VE2) (1 mg PTX/mL) were sealed in dialysis tubes (MWCO = 

12 KDa, Spectrum Laboratories) which were then immersed in 200 mL release medium in a 

beaker covered with parafilm. The beakers were placed in an incubator shaker at 100 rpm and 

37°C. The concentration of PTX remaining in the dialysis tubes at various time points was 

measured by HPLC with the detector set at 227 nm. Values were reported as the means from 

triplicate samples. 

5.2.7 Cell culture 

DU145 and PC-3 are two androgen-independent human prostate cancer cell lines. 4T1.2 is a 

mouse metastatic breast cancer cell line. MCF-7 and MDA-MB-231 are human breast cancer cell 

lines. NCI/ADR-RES is Adriamycin (ADR)-resistant cell line. All cell lines were cultured in 

DMEM containing 10% FBS and 1% penicillin-streptomycin in a humidified environment at 37 

℃ with 5% CO2. 
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5.2.8 Hemolytic effect of micelles 

Fresh blood samples were collected through cardiac puncture from rats. Heparin was 

immediately added into 10 mL of blood to prevent coagulation. Red blood cells (RBCs) were 

separated from plasma by centrifugation at 1500 rpm for 10 min at 4 ℃. RBCs were washed 

three times with 30 mL ice-cold DPBS. RBCs were then diluted to 2% w/v with ice-cold DPBS 

and utilized immediately for the hemolysis assay. One mL of diluted RBC suspension was 

treated with various concentrations (0.0001, 0.001, 0.01, 0.1 and 1.0 mg/mL) of PEG2K-VE, 

PEG2K-VE2, PEG5K-VE or PEG5K-VE2 micelles, and PEI, respectively, and then incubated at 37 

℃ in an incubator shaker for 4 h. The samples were centrifuged at 1500 rpm for 10 min at 4 ℃, 

and 100 L of supernatant from each sample was transferred into a 96-well plate. The release of 

hemoglobin was determined by the absorbance at 540 nm using a microplate reader. RBCs 

treated with Triton X-100 (2%) and DPBS were considered as the positive and negative controls, 

respectively. Hemoglobin release was calculated as (ODsample-ODnegative control)/(ODpositive control-

ODnegative control) × 100% 

5.2.9 In vitro cytotoxicity study 

The cytotoxicity of PTX formulated in PEG2K-VE, PEG2K-VE2, PEG5K-VE or PEG5K-VE2 

micelles was assessed with two cancer cell lines (4T1.2 and NCI/ADR-RES) and compared to 

Taxol formulation. Briefly, 4T1.2 (1000 cells/well) or NCI/ADR-RES (3000 cells/well) cells 

were seeded in 96-well plates followed by 24 h of incubation in DMEM with 10% FBS and 1% 

streptomycin-penicillin. Various dilutions of PTX-loaded PEG2K-VE, PEG2K-VE2, PEG5K-VE or 

PEG5K-VE2 micelles, and Taxol (at the equal concentrations of PTX) were added to cells. Cells 
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were incubated for 72 h and cell viability was assessed by MTT assay as described previously 

(Huang, Lu et al. 2012). The cytotoxicity of PEG2K-VE, PEG2K-VE2, PEG5K-VE or PEG5K-VE2 

micelles alone was similarly tested in 4T1.2 (1000 cells/well), NCI/ADR-RES (3000 cells/well), 

MCF-7 (5000 cells/well), MDA-MB-231 (2000 cells/well) and PC-3 (5000 cells/well) cells as 

described above.  

5.2.10 P-gp ATPase assay 

The modulation of P-gp ATPase activity by PEG-derivatized Vitamin E conjugates was 

conducted by using P-gp-GloTM assay system (Promega, USA). This assay system provides the 

necessary reagents for performing luminescent P-gp ATPase assay. Compounds that interact 

with P-gp can be identified as stimulator or inhibitor of the ATPase activity. The P-gp-GloTM 

assay detects the effects of compounds on recombinant human P-gp in a cell membrane fraction. 

Essentially, the assay relies on an ATP-dependent light-generating reaction of firefly luciferase. 

The effect of PEG-derivatized Vitamin E conjugates on P-gp ATPase activity was evaluated on a 

verapamil-stimulated ATPase activity. In this assay, sodium orthovanadate (Na3VO4) was 

employed as a selective inhibitor of P-gp. First, test samples containing verapamil (50µM) and 

PEG-derivatized Vitamin E conjugates (final concentrations at 10 and 100 µM, respectively) or 

Na3VO4 were added to 96-well plates and incubated with P-gp membrane for 5 min at 37 ℃.  

Then, the reaction was initiated by the addition of MgATP followed by another 40 minutes’ 

incubation at 37℃.  Afterwards, the samples were removed from 37℃ incubator and then ATP 

detection reagent was added in order to develop the luminescence. Signals were measured 20 

minutes later on a plate reading luminometer (Victor2 1420 multilabel counter). The changes of 

relative light unit (∆RLU) were determined as follows: 
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∆RLU = (luminescence of Na3VO4-treated group) – (luminescence of the samples treated 

by the mixture of verapamil and PEG-derivatized Vitamin E conjugates).  

5.2.11 Animals 

Female BALB/c mice, 10-12 weeks were purchased from Charles River (Davis, CA). All 

animals were housed under pathogen-free conditions according to AAALAC guidelines. All 

animal-related experiments were performed in full compliance with institutional guidelines and 

approved by the Animal Use and Care Administrative Advisory Committee at the University of 

Pittsburgh. 

5.2.12 In vivo therapeutic study 

A syngeneic murine breast cancer model (4T1.2) was used to examine the therapeutic effect of 

PTX formulated in PEG2K-VE, PEG2K-VE2, PEG5K-VE or PEG5K-VE2 micelles, and Taxol. 2 x 

105 4T1.2 cells in 200 L PBS were inoculated s.c. at the right flank of female BALB/c mice. 

Treatments were initiated when tumors in the mice reached a tumor volume around 50 mm3 and 

this day was designated as day 1. On day 1, mice were randomly divided into six groups (n=5) 

and received i.v. administration of PTX formulated in PEG2K-VE, PEG2K-VE2, PEG5K-VE or 

PEG5K-VE2 micelles, as well as Taxol (10 mg PTX/kg), respectively on days 1, 3, 5, 9, and 12, 

while control mice received saline. Tumor sizes were measured with digital caliper on days 1, 3, 

5, 9, 12, 15 and 18, and calculated according to the following formula: (L×W2)/2, where L is the 

longest and W is the shortest in tumor diameters (mm). To compare between groups, relative 

tumor volume (RTV) was calculated at each measurement time point (where RTV equals the 
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tumor volume at a given time point divided by the tumor volume prior to first treatment). Mice 

were sacrificed when tumor reached 2000 mm3 or developed ulceration. To monitor the potential 

toxicity, the body weights of all mice from different groups were measured on days 1, 3, 5, 9, 12, 

15 and 18. 

5.2.13 Statistical analysis  

In all statistical analysis, the significance level was set at a probability of P < 0.05. All results 

were reported as the mean ± standard deviation (SD) unless otherwise indicated. Statistical 

analysis was performed by Student’s t-test for two groups, and one-way ANOVA for multiple 

groups. 

 

5.3 RESULTS 

5.3.1 Synthesis of PEG2K-VE, PEG2K-VE2, PEG5K-VE or PEG5K-VE2 conjugates 

Lysine-linked di-tocopherol polyethylene glycol 5000 succinate was synthesized via solution 

phase reaction with two Vitamin E succinates attached to mPEG-5000 through the linker of 

lysine. The synthetic scheme is presented in Figure 37.  
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Figure 37 The synthesis scheme of PEG5K-VE2. First, PEG5K reacted with di-Boc-protected lysine to 

obtain PEG5K-conjugated di-Boc lysine. Then TFA was employed to remove the Boc groups in 

order to get free amine. Finally, free amine reacted with Vitamin E succinate to attain PEG5K-VE2.   

Initially, (Boc)lysine(Boc)-OH was coupled onto the terminal –OH of PEG using DCC 

and DMAP as coupling reagents in DCM. Boc groups were removed by 50% trifluoroacetic acid 

in DCM. Vitamin E succinate was coupled to the amino groups of lysine, yielding PEG5K-VE2. 

The structure of PEG5K-VE2 was confirmed by 1H NMR in CDCl3 (Figure 38). 

                           

Figure 38 1H-NMR spectra (400MHz) of PEG5K-VE2. 

The intense peak at 3.66 ppm was assigned to the methane protons of the polyethylene glycol. 

The proton peaks below 3.0 ppm were ascribed to the section of Vitamin E succinate. MALDI-
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TOF suggested that two Vitamin E succinates were successfully attached to mPEG5000 with the 

linker of lysine. (Figure 39). The HPLC examination of PEG5K-VE2 was shown in Figure 40. 

                  

Figure 39 MALDI-TOF of PEG5K-VE2. 

               

Figure 40 HPLC trace of PEG5K-VE2. 

PEG2K-VE2 was synthesized following the same synthesis route of PEG5K-VE2. PEG2K-VE and 

PEG5K-VE were synthesized according to the literature (Mi, Liu et al. 2011).  
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5.3.2 Size & size distribution of micelles 

In aqueous solution, the four PEG-derivatized Vitamin E conjugates readily self-assemble to 

form micellar nanoparticles with the particle sizes of around 20 nm as determined by DLS 

analysis (Table 13).  

Table 13 Size of PEG-derivatized Vitamin E micelles. 

 

 Figure 41A shows a single peak for PEG5K-VE2 micelles in size distribution. Negative 

EM staining revealed spherical particles of uniform size (Figure 41B).  

 

Figure 41 (A) The size distribution of free PEG5K-VE2 nanoparticles in DPBS and (B) Transmission 

electron microscopic (TEM) images of PEG5K-VE2 micelles.   
 

The sizes of the micelles observed under TEM were quite consistent with those measured 

by DLS. Similar results were shown for the other three micelles (data not shown). 
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5.3.3 Critical micelle concentration (CMC) 

Figure 42 shows the CMC measurements of PEG2K-VE, PEG2K-VE2, PEG5K-VE, and PEG5K-

VE2 micelles using pyrene as a fluorescence probe. 

       

Figure 42 Critical micelle concentration (CMC) measurements of PEG2K-VE (A), PEG2K-VE2 (B), 

PEG5K-VE (C) and PEG5K-VE2 (D) by using pyrene as a hydrophobic fluorescence probe. 
 

Upon incorporation into the micelles, the fluorescence intensity of pyrene increases 

substantially at the concentration of micelles above the CMC (La, Okano et al. 1996). Based on 

the partition of the pyrene, the CMC of micelles was obtained by plotting the fluorescence 

intensity versus logarithm concentration of the polymer. The CMCs of PEG-derivatized micelles 

were determined from the crossover point at the low concentration range. The CMCs of the 
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PEG5K-VE and PEG5K-VE2 conjugates are 0.58 M and 0.30 µM, respectively, which are lower 

than those of PEG2K-VE (3.56 µM) and PEG2K-VE2 (1.15 µM).  

5.3.4 Drug loading efficiency (DLE) 

DLE is one of the important parameters in drug delivery systems. The PTX loading efficiency of 

PEG2K-VE, PEG2K-VE2, PEG5K-VE, and PEG5K-VE2 micelles with different carrier to drug 

molar ratios was determined by HPLC (Table 14). The sizes of micelles were also examined 

under corresponding conditions.  

Table 14 Physicochemical characterization of PTX-loaded micelles. 

 

PEG5K-VE and PEG5K-VE2 were comparable with respect to DLE at all carrier/drug 

ratios examined. Both effectively solubilized PTX in aqueous solution in a molar ratio as low as 

0.5:1 with particle size remaining around 20 nm. However, these drug-loaded particles were only 

stable for less than 1 h. At a carrier/drug ratio of 7.5/1, they formed stable mixed micelles with 

PTX that were stable for about one day in DPBS. Increasing the carrier/drug ratio to 10:1 led to 
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formation of particles that are stable over 65 h in DPBS. Essentially, all of the added PTX was 

incorporated into the micelles. In addition, the sizes of the particles remained the same following 

lyophilization and reconstitution with water (data not shown).  

  For PEG2K-VE and PEG2K-VE2 micelles, a minimal carrier/drug ratio of 2.5/1 (m/m) 

was required to solubilize the drug.  PEG2K-VE2 was more effective than PEG2K-VE in 

solubilizing PTX with higher DLE at all carrier/drug ratios examined. At a carrier/drug ratio of 

10/1, PTX-loaded PEG2K-VE2 micelles were significantly more stable than PTX formulated in 

PEG2K-VE micelles (55.5 vs 4.2 h).  In addition to evaluating the stability of PTX-loaded 

micelles in DPBS, their stability in 50% FBS over time was also examined. All of the 

formulations tested were less stable in serum than in DPBS. Addition of serum to PEG5K-

VE2/PTX (10/1, m/m) mixed micelles resulted in an increase of the particle size from 19.6 nm to 

31.7 nm, which stayed stable for 45 h. Again, PEG5K-VE2/PTX shows the best stability in serum 

among the 4 mixed micelles tested. Overall, the four conjugates were ranked in the order of 

PEG5K-VE2 > PEG5K-VE > PEG2K-VE2 > PEG2K-VE with respect to their efficiency in forming 

stable mixed micelles with PTX in both DPBS and 50% FBS. 

5.3.5 In vitro PTX release kinetics 

A dialysis method was used to evaluate the release kinetics of PTX from PEG2K-VE, PEG2K-

VE2, PEG5K-VE or PEG5K-VE2 micelles with DPBS (PH = 7.4) containing 0.5% w/v Tween 80 

as the release medium. As shown in Figure 43, PTX formulated in PEG5K-VE and PEG5K-VE2 

micelles exhibited significantly better stability than PTX-loaded PEG2K-VE and PEG2K-VE2 

micelles.   
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Figure 43 Cumulative PTX release profile from PTX-loaded micelles. 

For the first 7 h, there was no significant difference among the 4 micellar systems, during 

which a burst release due to the relatively high drug concentrations at the very beginning may 

account for this result. However, significant differences were observed among the 4 formulations 

during the remaining experimental period. The size of PEG significantly affects the release 

kinetics: the two conjugates with PEG5K showed significantly slower release kinetics compared 

to the two conjugates with PEG2K. In addition, the conjugates with two molecules of Vitamin E 

gave better stability than the PEG-VE conjugates of 1: 1 molar ratio, particularly for PEG2K 

conjugates. Overall, the four conjugates were ranked in the order of PEG5K-VE2 > PEG5K-VE > 

PEG2K-VE2 > PEG2K-VE with respect to their stability in the release study. 
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5.3.6 Hemolytic effect of micelles 

One concern for micellar systems is whether or not the surface activity of the surfactants affects 

cell membrane integrity. Therefore, free PEG2K-VE, PEG2K-VE2, PEG5K-VE and PEG5K-VE2 

micelles were examined for the hemolytic activity and compared to polyethylenimine (PEI), a 

cationic polymer with potent cell surface activity. As shown in Figure 44, treatment with PEI 

resulted in significant hemolysis in a dose-dependent manner.  

                       

Figure 44 In vitro hemolysis assay of PEG-derivatized vitamin E micelles compared with PEI. 

In contrast, only a very low level of hemolysis (~5%) was observed for all four blank micelles at 

the high doses (0.1 and 1 mg/mL) examined. The negligible hemolytic activity suggests that all 

of the 4 conjugates are mild surfactants that can be suitable for in vivo delivery of potent 

hydrophobic anticancer drugs. 
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5.3.7 In vitro cytotoxicity of free and PTX-loaded micelles 

The cytotoxicity of carriers alone was examined in 4T1.2, NCI/ADR-RES, MCF-7, MDA-MB-

231, and PC-3 cells, respectively. It was apparent that the single Vitamin E conjugates (PEG2K-

VE and PEG5K-VE) showed significantly higher levels of cytotoxicity than those of double 

Vitamin E conjugates (PEG2K-VE2 and PEG5K-VE2) in all five cancer cell lines tested (Figure 

45). 

                      

Figure 45 Cell viability after being treated with free PEG2K-VE, PEG2K-VE2, PEG5K-VE, or PEG5K-

VE2 micelles in the 4T1.2 mouse breast cancer cell line, drug-resistant cell line-NCI/ADR-RES, two 

human breast cancer cell lines MCF-7 and MDA-MB-231, and an androgen-independent human 

prostate cancer cell line PC-3 
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  In MDA-MB-231 cells, the IC50 for PEG2K-VE2 and PEG5K-VE2 is 6 and 4.8 times 

higher than their single Vitamin E counterparts (Table 15). Similar results were shown for the 

other four cancer cell lines (Table 15). It is also apparent that NCI/ADR-RES cells were more 

sensitive than the other four cancer cell lines to all of the conjugates (Figure 45 & Table 15). 

Again, the single Vitamin E conjugates showed more potent cytotoxicity than the double 

Vitamin E conjugates in this drug-resistant cell line (Figure 45 & Table 15).   

Table 15 IC50 of free PEG2K-VE, PEG2K-VE2, PEG5K-VE and PEG5K-VE2 micelles in tumor cells. 

 

  Figure 46A shows the in vitro cytotoxicity of PTX formulated in PEG2K-VE, PEG2K-

VE2, PEG5K-VE and PEG5K-VE2 micelles in comparison with Taxol in 4T1.2 cancer cells. All of 

the four PTX mixed micelles were less active than Taxol in antitumor activity. Interestingly, 

different from the study of carriers alone in which single Vitamin E conjugates were more active, 

PTX-loaded PEG5K-VE2 micelles were more potent than PTX formulated in the other three 

micelle formulations. Similar to the study of carriers alone, NCI/ADR-RES tumor cells are also 

more sensitive than 4T1.2 cancer cells to PTX formulated in either PEG-Vitamin E micelles or 

Cremophor/ethanol (Taxol) (Figure 46B).   
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Figure 46 The cytotoxicity of PTX-loaded PEG2K-VE, PEG2K-VE2, PEG5K-VE, or PEG5K-VE2 

micelles, compared to clinical PTX formulation-Taxol, against the 4T1.2 mouse breast cancer cell 

line (A) and drug-resistant NCI/ADR-RES cell line (B). 
 

  Again, PTX-loaded PEG5K-VE2 micelles showed the highest level of in vitro 

cytotoxicity followed by PTX-loaded PEG5K-VE micelles. PTX-PEG2K-VE and PTX-PEG2K-

VE2 are comparable in antitumor activity. However, all of the four PTX micellar formulations 

were more active than Taxol in NCI/ADR-RES tumor cells, which is quite different from the 

data in 4T1.2 cells. The IC50 of Taxol and several PTX-loaded micelles in the two cancer cell 

lines were summarized in Table 16. 

Table 16 IC50 of PTX-loaded micelles in 4T1.2 and NCI/ADR-RES cancer cell lines. 

 

5.3.8 Inhibition of P-gp ATPase 

Figure 47 shows that P-gp ATPase activity was significantly inhibited by TPGS in a 

concentration-dependent manner.  
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Figure 47 Inhibitory effect of TPGS, PEG2K-VE, PEG2K-VE2, PEG5K-VE or PEG5K-VE2 on 

verapamil-stimulated P-gp ATPase activity. TPGS, PEG2K-VE, PEG2K-VE2, PEG5K-VE or PEG5K-

VE2 was administered in an amount of 10 or 100 µM along with 50 µM verapamil. Na3VO4 was 

utilized as a selective inhibitor of P-gp in this assay. * indicates p < 0.05 and ** indicates p < 0.001 

compared with TPGS group with equivalent concentration. 
 

Albeit all of the four conjugates were statistically less active than TPGS at 10µM and/or 100µM 

treatment, they still exhibited significant P-gp inhibitory effect in a Verapamil-induced ATPase 

assay. What we have found here is quite consistent with the report in the literature (Collnot, 

Baldes et al. 2007). 

5.3.9 In vivo therapeutic study 

The in vivo therapeutic activity of PTX formulated in PEG2K-VE, PEG2K-VE2, and PEG5K-VE2 

micelles was evaluated in a syngeneic murine breast cancer model (4T1.2), and compared to 

Taxol. 4T1.2 is a highly metastatic breast cancer cell line and was selected to rigorously assess 

the in vivo therapeutic efficacy of different PTX formulations.  
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Figure 48 (A) Enhanced antitumor activity of PTX formulated in PEG5K-VE2 micelles. BABL/c 

mice were inoculated s.c. with 4T1.2 cells (2 x 105 cells/mouse). Five days later, mice received 

various treatments on days 1, 3, 5, 9, and 12, and tumor growth was monitored and plotted as 

relative tumor volume. P < 0.02 (PEG5K-VE2/PTX vs. Taxol, PEG2K-VE/PTX or PEG2K-VE2/PTX), 

N = 5. (B) Changes of body weight in mice receiving different treatments. (C) Images of tumors 

removed from the tumor-bearing mice at the completion of the study. 

 

As shown in Figure 48A, Taxol formulation showed moderate effect in inhibiting the tumor 

growth at a dose of 10 mg PTX/kg. Compared to Taxol treatment group, PTX formulated in 

PEG2K-VE or PEG2K-VE2 exhibited similar tumor growth inhibitory effect. In contrast, PTX 

formulated in PEG5K-VE2 micelles showed a significantly more pronounced antitumor activity at 

the same dosage. No significant changes in body weight were noticed in all treatment groups 

compared to PBS control group (Figure 48B), suggesting that significant therapeutic effect can 

be achieved with minimal toxicity.  

 

5.4 DISCUSSION 

We have systematically compared the biophysical property and in vitro and in vivo efficiency of 

PTX delivery of four PEG-Vitamin E conjugates that differ in the size of PEG motif (PEG2K vs 

PEG5K) and the molar ratio of PEG/Vitamin E (1/1 vs 1/2) in the conjugates. Our data showed 
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that PEG5K-conjugates were significantly more effective than PEG2K-conjugates in forming 

stable mixed micelles with PTX and in mediating delivery of PTX to tumor cells, particularly in 

vivo. In addition, conjugates with two Vitamin E molecules work better than the conjugates with 

one molecule of Vitamin E. 

  It is likely that various mechanisms are involved in the carrier/drug interaction for the 

Vitamin E-based micellar system. Vitamin E has a benzene ring and a long alkyl chain. In 

addition to hydrophobic interaction with PTX, the hydrogen bonding and the - stacking may 

also contribute to the overall carrier/PTX interaction. The close proximity of two Vitamin E 

molecules in PEG-VE2 conjugates is likely to facilitate the formation of a binding pocket that 

enhances the interaction between the carriers and PTX. This is supported by data from our recent 

work that inclusion of a drug-interactive motif at the interfacial region of surfactants 

significantly improves the carrier-drug interaction, leading to improvement in both drug-loading 

capacity and formulation stability (Gao, Huang et al. 2013). Recently, Wang and colleagues 

reported a similar work in which they showed that PEG2K-Vitamin E2 conjugate was more 

effective than PEG2K-Vitamin E in mediating delivery of doxorubicin to tumors (Wang, Sun et 

al. 2012). In an independent study with two similar delivery systems based on PEG-embelin and 

PEG-farnesylthiosalicylic acid (FTS) conjugates, we also showed that conjugates with two 

embelin or FTS molecules were more effective than conjugates with one embelin or FTS 

molecule regardless whether PEG3.5K or PEG5K was used (Huang, Lu et al. 2012, Lu, Huang et 

al. 2013, Zhang, Lu et al. 2013). 

  As a hydrophilic motif of amphiphilic molecules, the size of PEG also critically affects 

the performance of the micelles. PEG provides steric hindrance, which is critical for ensuring 

long circulation property of the micelles. PEG decoration has also been shown to facilitate the 
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penetration of nanoparticles through the mucus layer (Lai, Wang et al. 2009, Mert, Lai et al. 

2012). In this regard, PEGs of higher MW are expected to be more effective than those of lower 

MW. However, the size of PEG also affects the CMC which in turn significantly affects the 

performance of the micelles, particularly in vivo.  Different micellar systems appear to be 

differentially affected by the size of PEG (Luo, Xiao et al. 2010, Mi, Liu et al. 2011, Huang, Lu 

et al. 2012, Lu, Huang et al. 2013). In a systematic study on the SAR of PEG-cholic acid cluster-

based micellar system, PEG2K was shown to be the optimal hydrophilic motif (Luo, Xiao et al. 

2010). Our data clearly showed that PEG5K-conjugates (with either one or two Vitamin E 

molecules) were more active than PEG2K-conjugates in forming stable mixed micelles with PTX. 

PEG5K-conjugates formed stable complexes with PTX at lower carrier/PTX molar ratios 

compared to PEG2K-conjugates. In addition, PTX formulated in PEG5K-micelles displayed much 

slower release kinetics. We have similarly demonstrated the advantages of PEG5K over PEG3.5K 

in PEG-embelin and PEG-FTS micellar systems (Huang, Lu et al. 2012, Lu, Huang et al. 2013, 

Zhang, Lu et al. 2013). In the study by Hanes and colleagues, PLGA particles coated with 

TPGS5K were more effective than the particles decorated with TPGS1K in penetrating human 

cervicovaginal mucus (Mert, Lai et al. 2012). 

  The four different PEG-Vitamin E conjugates showed varied levels of activity by 

themselves in four cancer cell lines. Overall, the single Vitamin E conjugates were more potent 

than the conjugates with two Vitamin E molecules in all cell lines tested. The more potent 

activity of single Vitamin E conjugates is unlikely due to the more active surface activity of the 

single chain conjugates as all of the four conjugates showed minimal hemolytic activity at much 

higher concentrations tested. It is possible that active Vitamin E is more readily released from the 

single Vitamin E conjugates than the ones with two Vitamin E molecules due to less steric 
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hindrance to intracellular esterases. More studies are needed in the future to examine if the single 

Vitamin E conjugates indeed yield greater amounts of active free Vitamin E intracellularly. 

  Different from the cytotoxicity profiles of the conjugates alone, PTX formulated in 

PEG5K-VE2 micelles showed higher levels of cytotoxicity than PTX formulated in other three 

micellar systems in both 4T1.2 and NCI/ADR-RES tumor cell lines. This might be attributed to a 

more efficient intracellular delivery of PTX via PEG5K-VE2 micelles as PEG5K-VE2 formed the 

most stable mixed micelles with PTX among the four micellar systems tested. Despite the 

difference in the levels of cytotoxicity among the four types of micellar PTX, all of them were 

less active than Taxol formulation in 4T1.2 tumor cells. Interestingly we saw a reversal of the 

pattern in NCI/ADR-RES tumor cells: all of the four micellar PTX were more active than Taxol 

in this drug resistant cell line. The improved in vitro cytotoxicity of the PTX micellar 

formulations in this drug resistant cell line can be ascribed to the well-known inhibitory effect of 

P-gp efflux pump by Vitamin E derivatives and thus an improved bioavailability of PTX inside 

the tumor cells (Dintaman and Silverman 1999, Varma and Panchagnula 2005, Constantinides, 

Han et al. 2006, Collnot, Baldes et al. 2007). This hypothesis was supported by the P-gp ATPase 

activity assay in this work (Figure 47). Our results were consistent with previous studies with 

various types of delivery system that involve the use of TPGS (Dintaman and Silverman 1999, 

Varma and Panchagnula 2005, Constantinides, Han et al. 2006, Collnot, Baldes et al. 2007). 

  In vivo therapy study clearly showed a significantly higher level of antitumor activity 

for PTX formulated in PEG5K-VE2 micelles compared to either Taxol or other two micellar 

formulations. This is likely due to the significantly improved loading capacity and stability for 

PEG5K-VE2 micelles, which shall lead to more effective delivery of PTX to tumor tissue in vivo. 

No significant difference was noticed between PEG2K-Vitamin E2 and PEG2K-Vitamin E in 
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antitumor activity despite the demonstrated advantages of PEG2K-Vitamin E2 over PEG2K-

Vitamin E in biophysical property. This might be due to the aggressive nature of 4T1.2 tumor 

model, which requires significant improvement of the formulation to achieve a significant gain in 

the therapeutic benefit.  
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6.0. AN IMPROVED D-A-TOCOPHEROL-BASED NANOCARRIER FOR TARGETED 

DELIVERY OF DOXORUBICIN WITH REVERSAL OF MULTIDRUG RESISTANCE 

6.1 BACKGROUND 

Doxorubicin (DOX), one of the most potent anticancer agents, has been widely used for the 

treatment of ovarian, breast, prostate, cervix, brain, and lung cancers. It functions by 

intercalating between base pairs of the DNA helix, resulting in the suppression of DNA synthesis 

(Momparler, Karon et al. 1976, Fornari, Randolph et al. 1994, Tacar, Sriamornsak et al. 

2013).   In addition, doxorubicin stabilizes the topoisomerase II-DNA complex after it has 

broken the DNA chain for replication, which prevents the DNA double helix from being resealed 

and thereby arrests the process of replication (Pommier, Leo et al. 2010, Tacar, Sriamornsak et 

al. 2013). However, its clinical application has been compromised by its limited efficacy in vivo 

and systemic side effects (Minotti, Menna et al. 2004, Takemura and Fujiwara 2007). Hence, 

there is a need to develop an effective drug carrier to specifically deliver DOX to tumors.    

In the last two decades, D-α-tocopheryl polyethylene glycol succinate (TPGS) has gained 

increasing attention as an ideal biomaterial in developing various drug delivery systems such as 

micelles, liposomes, and other nanoparticles (Win and Feng 2006, Cao and Feng 2008, 

Anbharasi, Cao et al. 2010, Ma, Zheng et al. 2010, Mi, Liu et al. 2011, Muthu, Kulkarni et al. 

2011, Wang, Sun et al. 2012). TPGS is able to function as a solubilizer, emulsifier, additive, 
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permeability enhancer as well as absorption enhancer (Dintaman and Silverman 1999, Yu, 

Bridgers et al. 1999). Additionally, TPGS is capable of overcoming multidrug resistance 

mediated by P-gp efflux pump (Dintaman and Silverman 1999, Varma and Panchagnula 2005, 

Constantinides, Han et al. 2006, Collnot, Baldes et al. 2007). As a stand-alone micellar 

formulation, the performance of TPGSs is affected by the molecular weight of PEG and the 

molar ratio of Vitamin E/PEG in the conjugates (Lu, Huang et al. 2013). Previously, our lab 

developed PEG5K-VE2 nanomicelles comprising one molecule of polyethylene glycol 5000 and 

two molecules of Vitamin E succinate, which demonstrated improved performance in 

formulating and delivering paclitaxel (PTX) over other TPGS micellar formulations (TPGS5K, 

TPGS2K and PEG2K-Vitamin E2) (Lu, Huang et al. 2013). Nonetheless, this improved system still 

has limited drug loading capacity. This is likely due to the fact that loading of drugs into these 

micellar formulations is largely driven by hydrophobic interaction. Such mechanism of 

carrier/drug interaction, while working well for highly hydrophobic drugs, may show limited 

effectiveness for many moderately hydrophobic drugs. This limitation is also shared by many 

other existing micellar systems (Lu, Huang et al. 2013, Lu, Huang et al. 2013, Zhang, Lu et al. 

2013, Chen, Zhang et al. 2014). 

Recently, Park’s group has demonstrated that inclusion of a hydrotropic molecule into the 

hydrophobic part of a block copolymer was able to improve the accommodation of drugs that are 

not entirely hydrophobic or lipophilic (Kim, Kim et al. 2010, Kim, Kim et al. 2011). This was 

mainly due to the additional mechanism of carrier/drug interaction rendered by the hydrotropic 

molecules introduced. Hydrotropes, small amphiphilic molecules, are capable of solubilizing 

hydrophobic compounds in aqueous solutions through hydrogen bonding. Incorporation of the 
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hydrotropic molecule into polymeric micelles led to improvement in both drug loading capacity 

and the colloidal stability of drug-formulated micelles.  

We have recently shown that incorporation of a drug-interactive domain at the interfacial 

region of PEGylated lipopeptides resulted in a significant improvement in loading of 

hydrophobic drugs (Gao, Huang et al. 2013, Zhang, Lu et al. 2014). Among a number of 

functional motifs examined, fluorenylmethyloxycarbonyl (Fmoc), a commonly used amine 

protecting group in peptide chemistry, was found to be the most effective drug-interactive group 

in facilitating carrier/drug interaction (Gao, Huang et al. 2013). A PEGylated lipopeptide with a 

built-in Fmoc at the interfacial region was effective in formulating various types of therapeutic 

agents of diverse structures (Zhang, Lu et al. 2014). Delivery of PTX via this formulation led to 

significant inhibition of tumor growth in a murine breast cancer model (4T1.2) (Zhang, Lu et al. 

2014). 

This study is focused on the development of a new TPGS-based nanomicellar system 

with a built-in drug interactive motif, PEG5K-Fmoc-VE2. We hypothesized that incorporation of 

Fmoc at the interfacial region of PEG5K-VE2 shall greatly improve its performance in 

formulating and delivering hydrophobic anticancer agents. DOX was used as a model 

hydrophobic drug. Systematic comparison between PEG5K-VE2 and PEG5K-Fmoc-VE2 micelles 

was conducted with respect to the drug loading capacity and efficiency, stability, intracellular 

uptake, maximum tolerated dose, as well as in vitro and in vivo antitumor efficacy. Our data 

showed that PEG5K-Fmoc-VE2 was more effective than PEG5K-VE2 in forming stable mixed 

micelles with DOX. More importantly, DOX-loaded PEG5K-Fmoc-VE2 micelles exhibited 

significantly improved antitumor activity in vivo.  
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6.2 METHODS 

6.2.1 Materials  

Doxorubicin hydrochloride (98%) (DOX.HCl) was purchased from AK Scientific Inc. (CA, 

USA). Doxil was purchased from Avanti® Polar Lipids (AL, USA). Methoxy-PEG5,000-OH, 

succinate anhydride, Boc-lys-(Boc)-OH, Fmoc-lys-(Boc)-OH, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT), aspartic acid, trypsin-EDTA solution, Triton X-100, and 

Dulbecco’s Modified Eagle’s Medium (DMEM) were all purchased from Sigma-Aldrich (MO, 

USA). D-alpha-tocopherol was purchased from Tokyo Chemical Industry (OR, USA). N,N’-

dicyclohexylcarbodiimide (DCC) was purchased from Alfa Aesar (MA, USA). 4-

Dimethylaminopyridine (DMAP) was purchased from Calbiochem-Novabiochem Corporation 

(CA, USA). Fetal bovine serum (FBS) and penicillin-streptomycin solution were from Invitrogen 

(NY, USA). All solvents used in this study were HPLC grade.   

6.2.2 Synthesis of PEG5K-Fmoc-VE2 and PEG5K-VE2 

PEG5K-VE2 was synthesized as reported previously (Lu, Huang et al. 2013). PEG5K-Fmoc-VE2 

was synthesized as follows: First, Fmoc-lys(Boc)-OH (4 eq.) was coupled to the terminal -OH of 

MeO-PEG5K-OH with the assistance of DCC (4 eq.) and DMAP (0.2 eq.) in DCM overnight. 

The resulting PEG5K-Fmoc-lys-(Boc) was washed and precipitated thrice by cold ethanol and 

ether, respectively. Boc group was then removed with 50% trifluoroacetic (TFA) acid in DCM 

for 2 h, and the resulting (PEG5K-Fmoc-lys-NH2) was precipitated by cold ethanol and ether 

thrice, respectively. Boc-lys(Boc)-OH (2 eq.) was then conjugated to the terminal -NH2 of 
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PEG5K-Fmoc-lys via DCC (2 eq.) and DMAP (0.1 eq.) as coupling reagents in DCM overnight. 

The PEG5K-Fmoc-di-Boc obtained was precipitated and washed thrice with cold ethanol and 

ether, respectively. Boc groups in PEG5K-Fmoc-di-Boc were removed by 50% TFA in DCM for 

2 h, and the resulting (PEG5K-Fmoc-di-NH2) was purified via precipitation in cold ethanol and 

ether, respectively. Finally, Vitamin E succinate (4 eq.) was coupled onto the deprotected amino 

groups of PEG5K-Fmoc-di-NH2 with DCC (4 eq.) and DMAP (0.2 eq.) as coupling reagents in 

DCM overnight to produce PEG5K-Fmoc-VE2. The resulting PEG5K-Fmoc-VE2 was further 

purified via precipitation in cold ethanol and ether, respectively. The purified PEG5K-Fmoc-VE2 

was dried under vacuum prior to use. The identity and purity of PEG5K-Fmoc-VE2 were 

confirmed by 1NMR, MALDI-TOF and HPLC. 

6.2.3 Preparation and characterization of DOX-loaded micelles 

DOX.HCl was first neutralized by 3 molar eq. triethylamine in CHCl3/MeOH (1:1. v:v) to 

eliminate HCl. PEG5K-Fmoc-VE2/DOX mixed micelles were prepared as described before (Lu, 

Huang et al. 2013). Briefly, PEG5K-Fmoc-VE2 (10 mM in CHCl3) was mixed with DOX (10 mM 

in CHCl3/MeOH) under different carrier/drug molar ratios. The mixture was first dried by 

nitrogen flow to form a thin dry film. The dry film was further dried under vacuum for 4 h to 

remove any traces of remaining solvent. The film was then reconstituted in saline without 

sonication. The micellar formulations were filtered through a 0.22 µm filter prior to 

characterization. The DOX-loaded PEG5K-VE2 micelles were similarly prepared as mentioned 

above. The mean diameter and size distribution of micelles with or without loaded drug were 

evaluated by dynamic light scattering (DLS). The morphology of DOX-free or DOX-loaded 

micelles was evaluated under TEM. The concentration of DOX in micelles was assessed by 
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HPLC-Fluorescence detection (Excitation: 490 nm; Emission: 590 nm). The drug loading 

capacity (DLC) and drug loading efficiency (DLE) were calculated according to the following 

formula:  

DLC (%) = [weight of drug loaded/(weight of polymer in the nanomicelles without free DOX + 

weight of drug loaded)] 

DLE (%) = (weight of loaded drug/weight of input drug) ×100% 

6.2.4 DOX release kinetics 

The cumulative release kinetics of DOX in vitro was conducted by dialysis technique using 

DPBS (PH = 7.4) containing 0.5% (w/v) Tween 80 as the release medium. Free DOX was 

utilized as a control. Two mL of DOX-loaded PEG5K-VE2 or PEG5K-Fmoc-VE2 micelles (1 mg 

DOX/mL) were sealed in dialysis tubes (MWCO = 12 KDa, Spectrum Laboratories). The 

dialysis tubes were immersed in 500 mL release medium in a beaker capped with parafilm. The 

beakers were kept in an incubator shaker at 100 rpm and 37°C. At predetermined time points, 

aliquots of samples were collected, diluted, and filtered through a 0.22 µm filter prior to analysis 

by HPLC with the detector set at 490 nm. Values were reported as the means from triplicate 

samples.    

6.2.5 Fluorescence quenching studies 

PEG5K-VE2/DOX and PEG5K-Fmoc-VE2/DOX were prepared at varying carrier to drug molar 

ratio as mentioned above. To examine fluorescence quenching of the carriers, the molar 

concentrations of carriers were kept constant for comparison. In another set of experiment, DOX 
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concentration was kept constant to examine the fluorescence quenching of DOX. The samples 

were placed into a 96-well plate, and the fluorescence intensity of carriers was recorded on a 

Synergy H1 Hybrid reader (BioTek), using an excitation wavelength of 270 nm and emission 

wavelength from 300-500 nm. The fluorescence intensity of DOX was examined using an 

excitation wavelength of 480 nm and emission wavelength from 510-650 nm.  

6.2.6 UV absorbance spectroscopy of DOX 

The absorption spectra were collected using Varian Cary 50 Bio UV-Visible Spectrophotometer 

over a wavelength ranging from 300 to 800 nm. PEG5K-VE2/DOX and PEG5K-Fmoc-VE2/DOX 

were prepared at a molar ratio of 2.5/1. All samples in distilled water were loaded into a quartz 

cell and measured against distilled water as the reference. 

6.2.7 Fourier transform infrared spectroscopy (FT-IR) 

FT-IR of DOX, DOX-loaded PEG5K-VE2, and DOX-loaded PEG5K-Fmoc-VE2 was evaluated 

using a VERTEX 70/70v FT-IR spectrometer (Bruker) to determine the hydrogen bonding of 

carrier/carrier and carrier/drug in the frequency of 4997-500 cm-1 (KBr pellet).   

6.2.8 Hemolytic effect of PEG5K-Fmoc-VE2 

The hemolytic activity of PEG5K-Fmoc-VE2 was examined using rat red blood cells (RBCs) 

following our published method (Lu, Huang et al. 2013).  
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6.2.9 Cell culture 

Mouse breast cancer cell line, 4T1.2, human prostate cancer cell line, PC-3, and adriamycin 

(ADR)-resistant cell line, NCI/ADR-RES, were used in this work. All cell lines were cultured in 

DMEM containing 10% FBS and 1% penicillin-streptomycin in a humidified environment at 37 

℃ with 5% CO2.  

6.2.10 Animals 

Male and female and nude mice of 6-8 weeks of age were purchased from Harlan (Livermore, 

CA). Female BALB/c mice of 10-12 weeks of age were purchased from Charles River (Davis, 

CA). All animals were housed under pathogen-free conditions according to AAALAC 

(Association for Assessment and Accreditation of Laboratory Animal Care) guidelines. All 

animal-related experiments were performed in full compliance with institutional guidelines and 

approved by the Animal Use and Care Administrative Advisory Committee at the University of 

Pittsburgh. 

6.2.11 In vitro cytotoxicity 

The cytotoxicity of DOX formulated in PEG5K-VE2 or PEG5K-Fmoc-VE2 was evaluated in 

4T1.2, PC-3, and NCI/ADR-RES cell lines, in comparison to free DOX and Doxil. Briefly, cells 

were seeded in 96-well plates followed by overnight attachment. Then cells were treated by 

different DOX formulations of varied concentrations. Free PEG5K-VE2 or PEG5K-Fmoc-VE2, at 

concentrations equivalent to those of carriers in the corresponding DOX formulation groups, was 



 147 

also added into cells. Cells were incubated for 72 h and cell viability was determined by MTT 

assay (Huang, Lu et al. 2012). 

6.2.12 Intracellular uptake 

3×105 NCI/ADR-RES cells/well were seeded into 6-well plates and incubated overnight prior to 

any treatment. Then cells were treated with free DOX, Doxil, and DOX-loaded PEG5K-VE2 and 

PEG5K-Fmoc-VE2, respectively at a DOX concentration of 6 µg/mL. Cells were then incubated 

for 1 h or 3 h at 37 ℃. After that, cells were washed three times with cold PBS and fixed with 

4% paraformaldehyde for 30 min. The nuclei were then stained by Hoechst33342 for 5 min. 

Subsequently, cells were washed thrice with cold PBS. The intracellular uptake of DOX in 

various formulations was observed under confocal laser scanning microscopy (CLSM, FluoView 

1000, Olympus, Japan). 

Quantitative cellular uptake of various DOX formulations was evaluated by flow 

cytometry. Briefly, NCI/ADR-RES cells were prepared as described above. Following treatment 

with various DOX formulations at 37 ℃ for 1 h or 3 h,  cells were washed with cold PBS thrice, 

and resuspended in 500 µL PBS prior to the flow cytometry analysis with 

CyAn™ ADP Analyzer (Beckman Coulter, Inc.). Cell-associated DOX was excited with an 

argon laser (480 nm), and fluorescence was detected at 570 nm. Twenty-thousand events were 

collected for each sample.  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDwQFjAA&url=http%3A%2F%2Fwww.beckmancoulter.com%2Fwsrportal%2Fwsr%2Fresearch-and-discovery%2Fproducts-and-services%2Fflow-cytometry%2Fflow-cytometers%2Fcyan-adp-analyzer%2Findex.htm&ei=AfYsUv3zFYjc4APy8IC4Aw&usg=AFQjCNHC9lTlrmMhT9SBy40KDajenGdS5A&sig2=AoubVGGworB52HSiunNDzw
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6.2.13 P-gp ATPase assay 

The effect of PEG5K-Fmoc-VE2 conjugate on P-gp was investigated through examining its 

impact on a verapamil-stimulated ATPase activity as reported previously (Lu, Huang et al. 

2013).  

6.2.14 Near infrared fluorescence (NIRF) imaging 

The tumor-targeting efficiency and biodistribution of PEG5K-Fmoc-VE2 in vivo was examined 

using a near infrared fluorescence dye, DiD. Nude mice bearing PC-3 xenograft were employed 

in this study. Two hundred µL of DiD-loaded PEG5K-Fmoc-VE2 (DiD concentration in the 

formulation was 0.4 mg/mL) was i.v. injected into each mouse. At different time points (0.5 h, 6 

h, 24 h, 48 h, 72 h and 96 h) post-injection, mice were imaged under Carestream Molecular 

Imaging System (Carestream Health, Inc.) with the excitation at 630 nm and the emission at 700 

nm using an exposure time of 60 s. After 96 h, mice were euthanized and tumors and major 

organs were excised and imaged with Carestream Molecular Imaging System. The tissue 

distribution of DiD in tumors and other organs was quantified by measuring the signal intensity 

at the region of interest.   

6.2.15 Pharmacokinetics and biodistribution 

PEG5K-VE2/DOX, PEG5K-Fmoc-VE2/DOX, and free DOX were administered i.v. at a dose of 5 

mg DOX/kg in 200 µL saline (n = 3). At predetermined time points (3 min, 8 min, 15 min, 30 

min, 45 min, 1 h, 2 h, 4 h, 8 h and 12 h), blood was obtained from mice using a heparinized 

http://www.ncbi.nlm.nih.gov/pubmed/21847078
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capillary tube. Plasma samples were isolated from the blood by centrifuging at 3000 rpm for 10 

min. DOX in plasma was extracted via an extraction buffer (10% Triton X-100, deionized water, 

and isopropanol at a volumetric ratio of 1:2:15). The concentration of DOX at various time 

points was measured by HPLC with the detector set at 490 nm (Waters Alliance 2695 

Separations Module combined with Waters 2998 Photodiode Array Detector, Waters Symmetry 

C18 5 µm 4.6*250 mm column, mobile phase: 80% MeOH:20% H2O isocrate, flow rate: 0.6 

mL/min). Pharmacokinetic parameters such as t1/2, volume of distribution (Vd), area under the 

curve (AUC), and clearance (CL) were calculated by fitting the blood DOX concentrations to a 

non-compartment model using Phoenix WinNonlin.  

For biodistribution study, free DOX and DOX-loaded micelles were i.v. injected into 

4T1.2 tumor-bearing mice at a dose of 5 mg DOX/kg, respectively (n = 3). At 24 h post-

injection, major organs (liver, spleen, lung, heart, and kidney), tumors, and blood were collected 

from the mice. Tissues were then homogenized utilizing a Power Gen 500 homogenizer (Fisher 

Scientific), in which 100 mg tissues were mixed with 900 μL extraction buffer, and DOX was 

extracted overnight at -20 °C. The samples were centrifuged at 3,000 rpm for 10 min, and the 

supernatant was then dried and dissolved in 400 µL 75% MeOH. Subsequently, the samples 

were further centrifuged at 14,500 rpm for 5 min to remove undissolved materials prior to HPLC 

measurement as mentioned above. The % injected dose and the % injected dose per gram (tissue) 

were calculated using the following equations: 

% injected dose = (dose in blood or in tissue samples)/injected dose × 100% 

% injected dose/g tissue = % injected dose/weight of tissue (g) 
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6.2.16 Maximum tolerated dose (MTD) 

Groups of 3 female BALB/c mice were treated intravenously with free DOX (5, 10, and 15 mg 

DOX/kg), DOX-loaded PEG5K-VE2 (5, 10, 15, 20, and 30 mg DOX/kg) or DOX-loaded PEG5K-

Fmoc-VE2 (10, 15, 20, 25, 30, and 35 mg DOX/kg), respectively. Changes in body weight and 

general signs, and survival of mice were followed daily for two weeks. The MTD was 

determined as the maximal dose that causes neither mouse mortality nor greater than 15% loss in 

body weight and other significant changes in the general movement and signs within the entire 

period of the experiment.  

6.2.17 In vivo antitumor efficacy 

Both drug-sensitive (4T1.2 and PC-3) and drug-resistant (KB 8-5) tumor models were used to 

evaluate the therapeutic effect of DOX formulated in PEG5K-VE2 and PEG5K-Fmoc-VE2 

micelles. 4T1.2 is an aggressive syngeneic murine breast cancer model and PC-3 and KB 8-5 are 

human prostate and cervical cancer xenograft model, respectively.   

In the breast cancer model, 1 x 105 4T1.2 cells in 200 L PBS were inoculated s.c. at the 

right flank of female BALB/c mice. Various treatments were started when tumors reached a 

tumor volume around 50 mm3 and this day was named as day 1. On day 1, mice were randomly 

divided into six groups (n = 5) and received i.v. administration of free DOX (10 mg DOX/kg), 

Doxil (10 mg DOX/kg), DOX-loaded PEG5K-VE2 (10 mg DOX/kg), DOX-loaded PEG5K-Fmoc-

VE2 (10 mg DOX/kg), DOX-loaded PEG5K-Fmoc-VE2 (20 mg DOX/kg) and saline, respectively 

on days 1, 4, and 7. Tumor sizes were monitored with a digital caliper on days 1, 4, 7, 10, 12,15, 

18, 21, and 25 and calculated based on the formula: (L×W2)/2, where L and W are length and 
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width of each tumor. To compare between groups, relative tumor volume (RTV) was calculated 

at each measurement time point (where RTV equals the tumor volume at a given time point 

divided by the tumor volume prior to first treatment). Mice were sacrificed if tumors reached 

2000 mm3 or developed ulceration. Tumor growth inhibition rate (IR) was also calculated and 

defined as following: 

IR (%) = (1 – relative tumor volume in the treated group/relative tumor volume in the saline 

group) × 100%.  

Furthermore, to monitor the systemic toxicity, the body weights of mice were measured 

at the time of tumor size measurement.  

In PC-3 xenograft tumor model, 2×106 PC-3 cells in 200 L PBS were inoculated s.c. at 

the right flank in male nude mice. Treatments were initiated when tumors in the mice reached a 

volume around 50 mm3 and different groups (n = 6) were similarly treated as mentioned above 

on days 1, 4, and 7. Tumor size and body weight were monitored as described above.  

In KB 8-5 xenograft tumor model, 5×106 cells were inoculated s.c at the right flank of 

female nude mice. When the tumor volume reached approximately 50 mm3, 6 groups of mice (n 

= 5) were treated with saline, DOX (5 mg/kg), DOX (7.5 mg/kg), PEG5K-VE2/DOX (5 mg/kg), 

PEG5K-Fmoc-VE2/DOX (5 mg/kg), and PEG5K-Fmoc-VE2/DOX (7.5 mg/kg), respectively, on 

days 1, 4, and 7. Tumor size and body weight were monitored very three days.  

6.2.18 Statistical analysis 

In all statistical analyses, the significance level was set at a probability of P < 0.05. All results 

were reported as the mean ± standard deviation (SD) unless otherwise indicated. Statistical 
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analysis was performed by using the Student’s t-test for two groups, and one-way ANOVA for 

multiple groups, followed by Newman-Keuls test if P < 0.05.  

6.3 RESULTS AND DISCUSSION 

6.3.1 Coupling of Fmoc motif to PEG5K-VE2 at the interfacial region 

In an effort to improve the TPGS-based micellar formulation, we have previously synthesized 

and characterized four PEG- Vitamin E conjugates that vary in the molecular weight of PEG (2 

vs 5K) and the molar ratio of PEG/Vitamin E (1/1 vs 1/2) (Lu, Huang et al. 2013). Our results 

showed that the conjugate with one molecule of PEG5K and two molecules of Vitamin E (PEG5K-

VE2) was most effective in formulating and delivering PTX to tumor cells in vitro and in vivo. In 

this study, Fmoc was incorporated into PEG5K-VE2 at the interfacial region to further improve 

the performance of this carrier. Our recent study has shown that Fmoc is a highly effective drug-

interactive motif and that incorporation of this motif into lipid-core micelles greatly facilitates 

the carrier/drug interaction. The synthesis route of PEG5K-Fmoc-VE2 was presented in Figure 

49. 
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Figure 49 Synthetic route of PEG5K-Fmoc-VE2 conjugate. 

Briefly, MeO-PEG5K-OH was first reacted with Fmoc-lys-(Boc)-OH to yield PEG5K-Fmoc-lys-

(Boc) followed by the removal of Boc to expose the terminal NH2. PEG5K-Fmoc-lys-NH2 was 

then coupled to Boc-lys-(Boc) to generate PEG5K-Fmoc-di-Boc followed by the removal of Boc 

groups. Finally, Vitamin E succinate was conjugated to PEG5K-Fmoc-di-NH2 to produce PEG5K-

Fmoc-VE2. The chemical identity of the final product was verified by 1NMR (Figure 50) and 

MALDI-TOF (Figure 51). HPLC showed that the purity of the conjugate was 97.8% (Figure 

52). 
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Figure 50 1H-NMR spectrum (400 MHz) of PEG5K-Fmoc-VE2 in DMSO. 

 

 

Figure 51 MALDI-TOF of PEG5K-Fmoc-VE2.  
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Figure 52 HPLC trace of PEG5K-Fmoc-VE2. 

6.3.2 Physicochemical characterizations of DOX-free and DOX-loaded PEG5K-Fmoc-VE2  

In aqueous solution, PEG5K-Fmoc-VE2 readily self-assembled into elongated worm-like 

nanoassemblies with a particle size around 55 nm as determined by DLS analysis (Figure 53, 

Table 17).  
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Figure 53 Size distribution and TEM of PEG5K-Fmoc-VE2 (A), and PEG5K-Fmoc-VE2/DOX (0.1:1 

m/m) (B). 
                 
Table 17 Biophysical characterization of DOX-loaded PEG5K-VE2 or PEG5K-Fmoc-VE2.  
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This is in contrast to PEG5K-VE2 without Fmoc motif that formed typical spherical particles 

(Figure 54).  

 

Figure 54 Size distribution and TEM of PEG5K-VE2 (A), and PEG5K-VE2/DOX (2.5:1 m/m) (B). 

A similar result was found in a recent study with an Fmoc-containing PEG-lipopeptide (Zhang, 

Lu et al. 2014). The formation of the filamentous structure is likely attributed to the Fmoc-

mediated strong interaction among the carrier molecules since Fmoc-containing peptides are 

known to self-assemble into nanofibers or nanotubues (Zhang, Gu et al. 2003, Jayawarna, Smith 

et al. 2007). However, in the case of Fmoc-containing PEG-lipopeptide, both lipid and Fmoc 

contributed to the formation of filamentous structure as the counterpart without lipid formed 

spherical structure (Zhang, Lu et al. 2014). It is likely that both the benzene ring and the alkane 

chain of Vitamin E are involved in the formation of filamentous structure.  
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Interestingly, following the incorporation of DOX into PEG5K-Fmoc-VE2, the 

morphology of the nanoparticles started to change drastically from filamentous (Figure 53) to 

spherical structure (Figure 53). This is likely due to the fact that the carrier/drug interaction 

impacted the interaction among the carrier molecules themselves following the incorporation of 

DOX, leading to the structural rearrangement. Both PEG5K-VE2 and DOX-loaded PEG5K-VE2 

micelles were found to be spherical with a diameter around 20 nm (Figure 54).  

Table 17 compares the DOX loading capacity (DLC) and efficiency (DLE) of PEG5K-

VE2 and PEG5K-Fmoc-VE2. For PEG5K-VE2, a minimal carrier/drug molar ratio of 2.5/1 was 

needed to form stable mixed micelles with DOX. In contrast, only a carrier/drug ratio of 0.1/1 

was needed for PEG5K-Fmoc-VE2 to form stable mixed micelles with DOX. At this ratio, the 

DLC for PEG5K-Fmoc-VE2 was 39.9% which is about 13-fold higher than that (2.9%) for 

PEG5K-VE2. Increasing the carrier/drug ratio was associated with a further increase in both DLE 

and the colloidal stability of the DOX-loaded micelles.  

To confirm whether DOX was indeed incorporated into the PEG5K-Fmoc-VE2 

nanoassemblies, 1H-NMR studies were conducted for a number of samples including free DOX 

in D2O, PEG5K-Fmoc-VE2 in D2O or DMSO, and DOX formulated in PEG5K-Fmoc-VE2 in D2O. 

The concentration of DOX was kept at 1 mg/mL.  As shown in Figure 55, free DOX showed a 

1H NMR spectrum in D2O that was consistent with data from literature (Wang, Wang et al. 

2010).  
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Figure 55 1H-NMR spectra of free DOX in D2O, PEG5K-Fmoc-VE2 in D2O or DMSO and DOX 

formulated in PEG5K-Fmoc-VE2 in D2O or DMSO. Concentration of DOX was 1 mg/mL. 

 

A 1H-NMR spectrum was discerned for PEG5K-Fmoc-VE2 in DMSO that matched to its structure 

(Figure 55). However, when the 1H NMR spectrum of PEG5K-Fmoc-VE2 was collected in D2O, 

the VE signals (0.5-3 ppm) and Fmoc signals (7-8.5 ppm) were substantially suppressed (Figure 

55). This could be ascribed to the self-assembling process of PEG5K-Fmoc-VE2, as VE and Fmoc 

are hydrophobic and aggregated inward, while the highly hydrophilic PEG is oriented outward 

into the water phase, resulting in the shielding of the signals of VE and Fmoc by PEG. Similarly, 

a shielding of VE and Fmoc signals was observed when PEG5K-Fmoc-VE2/DOX was examined 

in D2O (Figure 55). In addition, the typical spectrum of DOX was barely visible, indicating that 

DOX was effectively encapsulated into the interior core of PEG5K-Fmoc-VE2 micelles.  
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6.3.3 DOX release kinetics in vitro 

To further understand the stability of DOX-loaded nanomicelles, the in vitro release kinetics of 

DOX was evaluated with dialysis method using DPBS (PH = 7.4) containing 0.5% (w/v) Tween 

80 as the release medium.  Free DOX was employed as a control. As shown in Figure 56, 

PEG5K-VE2/DOX micelles exhibited significantly slower release kinetics over free DOX.  

                                

Figure 56 DOX cumulative release kinetics from free DOX, DOX-loaded PEG5K-VE2 and DOX-

loaded PEG5K-Fmoc-VE2 micelles. 

 

During the first 9 h, 92.14% of DOX was released in the free DOX group, which was 

substantially higher than that in PEG5K-VE2 micelles (36.57%). Notably, after introducing Fmoc 

group into PEG5K-VE2, the release rate of DOX was further reduced. In addition, there was 

essentially no initial burst release for DOX-loaded PEG5K-Fmoc-VE2 nanoassemblies. 

Furthermore, DOX formulated in PEG5K-Fmoc-VE2 exhibited significantly slower DOX release 

over PEG5K-VE2/DOX during the entire period. The amount of released DOX after 74 h was 

only 36.45% for PEG5K-Fmoc-VE2/DOX mixed micelles, which is significantly less than that for 

free DOX (96.35%) and PEG5K-VE2/DOX (58.44%). The significantly slower and controlled 
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release of DOX in DOX-loaded PEG5K-Fmoc-VE2 formulation may be attributed to the strong 

interactions between the carrier and DOX as well as among the carrier molecules themselves.                

6.3.4 Mechanism of interacrions between carrier and payload 

The significantly improved DLC of PEG5K-Fmoc-VE2 over PEG5K-VE2 suggests a role of 

Fmoc/DOX interaction in the formation of PEG5K-Fmoc-VE2/DOX mixed micelles. To test this 

hypothesis, we examined the Fmoc/DOX interaction via fluorescence quenching assay. As 

shown in Figure 57, there is a distinct fluorescence peak at 310 nm, which is consistent with the 

fluorescence spectrum of Fmoc (Mao, Zhang et al. 2006). Incorporation of DOX into PEG5K-

Fmoc-VE2 led to a significant quenching of the fluorescence in a dose-dependent manner. 

Figure 57B shows the DOX fluorescence intensity at 595 nm before and after incorporation into 

PEG5K-Fmoc-VE2. Likewise, PEG5K-Fmoc-VE2 caused the quenching of DOX fluorescence in a 

dose-dependent manner. The quenching of either Fmoc or DOX fluorescence is likely due to the 

energy transfer triggered by the intermolecular π-π stacking interaction between the Fmoc motif 

and the aromatic rings of DOX.  

 

Figure 57 A: fluorescence intensity of the carriers. B: Fluorescence change of DOX. C: UV-

absorbance of DOX. 
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We also noticed a fluorescence emission at 300 nm from PEG5K-VE2 (Figure 57A). This 

is likely attributed to the benzene ring in Vitamin E as no fluorescence emission was detected at 

this wavelength from a similar conjugate of PEG with two molecules of oleic acid (data not 

shown). Similarly, PEG5K-VE2 and DOX caused the quenching of the other’s fluorescence in a 

dose-dependent manner (Figure 57A& B), suggesting that the benzene ring in Vitamin E is also 

involved in the carrier/DOX π-π stacking interaction, albeit to a lesser extent. 

Figure 57C shows the UV-absorbance of free DOX and DOX formulated in PEG5K-VE2 

or PEG5K-Fmoc-VE2 micelles. A clear red shift of DOX UV-absorbance was detected in both 

micellar formulations, particularly in PEG5K-Fmoc-VE2/DOX mixed micelles, further supporting 

the notion that π-π stacking contributed to the carrier/DOX interactions. 

In addition to hydrophobic interaction and π-π stacking, hydrogen bonding is likely to be 

involved in the carrier (PEG5K-VE2 or PEG5K-Fmoc-VE2)/DOX interaction. The carbamate 

group in Fmoc, the amide bond in lysine, as well as the ester linkage in between Vitamin E and 

lysine could interact with the hydroxyl groups in DOX through hydrogen bonding. To test this 

hypothesis, FT-IR was employed to compare the hydrogen bonding in DOX-loaded micelles and 

that in carrier alone. As shown in Figure 58B, after subtracting the IR of PEG5K-Fmoc-VE2 from 

that of PEG5K-Fmoc-VE2/DOX, two peaks at 1637.1 cm-1 and 1754.3 cm-1 were detected. The 

reduction of absorbance at 1754.3 cm-1 and a simultaneous increase of absorbance at 1637.1 cm-1 

suggest that incorporation of DOX led to disruption of the hydrogen bonding among carrier 

molecules themselves and, at the same time, the formation of new hydrogen bonding between 

carrier and DOX molecules. Similar results were found for PEG5K-VE2 micellar system (Figure 

58D).  
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Figure 58 A: FT-IR of DOX, PEG5K-Fmoc-VE2, and PEG5K-Fmoc-VE2/DOX. B: Difference of FT-

IR between PEG5K-Fmoc-VE2 and PEG5K-Fmoc-VE2/DOX. C: FT-IR of DOX, PEG5K-VE2, and 

PEG5K-VE2/DOX. D: Difference of FT-IR between PEG5K-VE2 and PEG5K-VE2/DOX. 

6.3.5 Evaluation of the hemolytic activity of PEG5K-Fmoc-VE2 

As an intravenous formulation, the potential hemolytic activity of PEG5K-Fmoc-VE2 micellar 

formulation needs to be addressed. Figure 59 shows the result of a hemolysis assay.  
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Figure 59 In vitro hemolysis assay of PEG5K-Fmoc-VE2 in comparison to PEI. 

PEI, a cationic polymer with potent cell surface activity, was included as a positive control. 

Treatment with PEI led to significant hemolysis in a dose-dependent manner. At a concentration 

of 1 mg/mL, almost all of the red blood cells were lysed by PEI. In contrast, only negligible level 

of hemolysis was observed for PEG5K-Fmoc-VE2 even at the concentration of 1 mg/mL. The 

very low level of hemolytic effect of PEG5K-Fmoc-VE2 indicates that PEG5K-Fmoc-VE2 is a 

mild surfactant that can be safely administered intravenously. 

 

6.3.6 In vitro cytotoxicity 
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Figure 60 The cytotoxicity of PEG5K-VE2/DOX and PEG5K-Fmoc-VE2/DOX against mouse breast 

cancer cell line, 4T1.2, compared to DOX and Doxil. 

 

Figure 60 shows the cytotoxic effect of different DOX formulations on murine breast cancer 

cells, 4T1.2. Cells were challenged by DOX, Doxil, PEG5K-VE2/DOX and PEG5K-Fmoc-

VE2/DOX at various concentrations of DOX, and the cytotoxicity was determined by MTT assay 

72 h later. A time- and concentration-dependent cell-killing effect was shown for all DOX 

formulations in 4T1.2 cells. The IC50 was 186.70, 253.83, 89.21, and 77.57 ng/mL for DOX, 

Doxil, PEG5K-VE2/DOX, and PEG5K-Fmoc-VE2/DOX, respectively. The higher levels of 

cytotoxicity for the two micellar DOX formulations were likely due to an increased cellular 

uptake of DOX and effective release following intracellular delivery (Figure 60). Doxil was 

slightly less active than free DOX, which is likely due to the ineffective release of DOX from the 

liposomes following intracellular delivery (Zhao, Alakhova et al. 2013).  

6.3.7 Reversal of multidrug resistance 
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Drug resistance is one of the major factors involved in the failure of chemotherapy (Hu and 

Zhang 2009). Various mechanisms have been identified that are involved in the different types 

and/or stages of cancers (Gottesman 2002, Yuan, Li et al. 2008). One major mechanism involves 

the overexpression of P-glycoprotein (P-gp), which plays an important role in developing 

multiple drug resistance (MDR) (Tijerina, Fowers et al. 2000). P-gp, a member of ATP-binding 

cassette transporter, is one of the major drug efflux transporters and increased expression of P-gp 

leads to decreased drug accumulation in multidrug-resistant cells, and the development of 

resistance to anticancer drugs (Desai, Sawada et al. 2013). NCI/ADR-RES is a drug-resistant cell 

line that involves the overexpression of P-gp (Xu, Kang et al. 2004). Thus, following the 

evaluation of cytotoxicity of the different DOX formulations in 4T1.2 cells, their cytotoxicity 

was further examined in NCI/ADR-RES cells. As shown in Figure 61, the overall anti-

proliferative effects of all DOX formulations were significantly reduced in NCI/ADR-RES cells 

compared to drug-sensitive cell line, 4T1.2 cells. 

                                    

Figure 61 The anti-proliferative effect of PEG5K-VE2/DOX and PEG5K-Fmoc-VE2/DOX in a drug 

resistant cell line, NCI/ADR-RES, in comparison to DOX and Doxil. 
 

This is somewhat expected considering the drug resistant nature of NCI/ADR-RES cells. It is 

also apparent that PEG5K-Fmoc-VE2/DOX exhibited a higher level of cytotoxicity than the 
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remaining DOX formulations in NCI/ADR-RES cells (Figure 61). More importantly, PEG5K-

Fmoc-VE2/DOX was 5.6-times as effective as free DOX in NCI/ADR-RES cells, which 

represents a more dramatic improvement of cytotoxicity over free DOX compared to that (2.4-

times) in 4T1.2 cells. It is also worth noting that Doxil was more active than free DOX in 

NCI/ADR-RES cells, which is in contrast to what was shown in 4T1.2 cells. These data 

suggested that both PEG5K-Fmoc-VE2 and Doxil formulations were capable of partially reversing 

the drug resistance in NCI/ADR-RES cells. 

To examine whether the improved cytotoxicity of DOX-loaded PEG5K-Fmoc-VE2 was 

due to the enhanced intracellular delivery of DOX, DOX uptake was evaluated in NCI/ADR-

RES cells following treatment of different DOX formulations. Figure 62A shows the 

fluorescence images of cells 1 h following the different treatments.  

               

Figure 62 Confocal laser scanning microscopy (CLSM) images of NCI/ADR-RES cells incubated 

with free DOX, Doxil, PEG5K-VE2/DOX and PEG5K-Fmoc-VE2/DOX for 1 h (A) and 3 h (B); 

Quantitative analysis of uptake of different DOX formulations in NCI/ADR-RES cells after 1 h (C) 

and 3 h (D) treatment using flow cytometry. Arrows indicated the area that was co-localized by 

DOX. 
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Least amounts of fluorescence signals were observed in the cells treated with free DOX, which 

could be attributed to the free accessibility of DOX by P-gp efflux transporter that is 

overexpressed in NCI/ADR-RES cells. Cells treated with Doxil showed increased fluorescence 

signals compared to free DOX group. This was consistent with the report that liposomal DOX 

was able to bypass the drug transport in MDR cells (Ogawara, Un et al. 2009). It is also apparent 

that cells treated with PEG5K-Fmoc-VE2/DOX showed the strongest fluorescence signals. 

Similar results were shown in cells treated with different DOX formulation for 3 h (Figure 62B). 

The DOX uptake efficiency was further quantified by flow cytometry (Figure 62C & D). The 

data were consistent with what was found in confocal imaging. Cells treated with PEG5K-Fmoc-

VE2/DOX provided the highest level of cell-associated fluorescence signals. Endocytosis is 

likely to be involved in the cellular uptake of micellar DOX as punctuated distribution was 

visualized for both micellar formulations. More studies will be conducted in the future to further 

elucidate the mechanism of cellular uptake of PEG5K-Fmoc-VE2/DOX.  

The more effective DOX accumulation in cells treated with PEG5K-Fmoc-VE2/DOX is 

likely attributed to the stable mixed micelles as a result of strong carrier/DOX interaction as 

discussed earlier. This will minimize the release of DOX from the micelles before they are taken 

up by the tumor cells. On the other hand, PEG5K-Fmoc-VE2 may facilitate the intracellular 

accumulation of DOX via inhibiting the function of P-gp. TPGS1K is a well-known inhibitor of 

P-gp via directly inhibiting the activity of P-gp ATPase. We hypothesized that PEG5K-Fmoc-VE2 

shall possess a similar biological activity considering the structural similarity between TPGS and 

PEG5K-Fmoc-VE2. To test this hypothesis, the effect of PEG5K-Fmoc-VE2 on P-gp activity was 

evaluated via examining its impact on verapamil-stimulated P-gp ATPase activity (Figure 63). 
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Figure 63 Inhibitory effect of TPGS and PEG5K-Fmoc-VE2 on verapamil-stimulated P-gp ATPase 

activity. 
 

TPGS1k was utilized as a positive control. ∆RLU represents the consumption of ATP in the 

system. As expected, TPGS1k treatment led to a decrease of ∆RLU in a dose-dependent fashion. 

Importantly, PEG5K-Fmoc-VE2 showed a level of inhibition on P-gp ATPase activity that was 

comparable to that of TPGS1K. The mechanism for the inhibition of P-gp ATPase by PEG5K-

Fmoc-VE2 is not clearly understood at present. PEG5K-Fmoc-VE2 may be a substrate for ATPase 

and compete directly with other substrates for the binding to ATPase. In addition, PEG5K-Fmoc-

VE2 may bind to the ATPase-substrate complex, limiting the effectiveness of ATPase to 

hydrolyze ATP. More studies are underway to fully unveil the details on how PEG5K-Fmoc-VE2 

inhibits P-gp ATPase activity.  It should be noted that, in addition to DOX, there are many other 

potent chemotherapeutics that are the substrates of P-gp, such as camptothecin and paclitaxel. 

Therefore, PEG5K-Fmoc-VE2 may hold a promise to improve the effectiveness of these 

therapeutic agents as well. 
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6.3.8 Near infrared fluorescence imaging 

The ability of PEG5K-Fmoc-VE2 for targeting tumors was investigated in nude mice bearing PC-

3 xenograft, using a hydrophobic near infrared fluorescence (NIRF) dye, DiD. Two hundred µL 

of PEG5K-Fmoc-VE2 nanoparticles containing DiD was intravenously injected into a mouse 

bearing bilateral PC-3 tumors. Fluorescence signals were observed in tumor areas as early as 6 h 

post-injection, which peaked around 24 h and retained at a significant level for 96 h (Figure 

64A).  

      

Figure 64 In vivo (A) and ex vivo (B) NIRF optical images of PC-3 tumor-bearing nude mice 

administered intravenously with DiD-loaded PEG5K-Fmoc-VE2 nanoparticles. Tumors and major 

organs were excised for ex vivo imaging at 96 h post-injection and the quantitated DiD fluorescence 

intensity from different organs were presented (C).  
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Following the last imaging at 96 h post-injection, mice were sacrificed and tumors and major 

organs were excised, imaged and quantified using a Carestream Molecular Imaging System 

(Figure 64B). Intense fluorescence signals were observed in tumors for DiD-loaded PEG5K-

Fmoc-VE2. Moderate levels of fluorescence signals were also discerned in liver and lungs, which 

was due to the nonspecific clearance of foreign particles via the RES. Figure 64C showed the 

quantified fluorescence intensity for different organs, which was consistent with the observation 

in Figure 64B. The effective tumor accumulation of PEG5K-Fmoc-VE2/DiD could be ascribed to 

its excellent stability endowed by the strong carrier/DiD and carrier/carrier interactions. PEG on 

the surface of the carrier can also provide shielding effect against opsonins. Furthermore, the 

very small sizes of PEG5K-Fmoc-VE2/DiD nanoparticles shall facilitate the extravasation and 

deep penetration into the tumor tissues (Li, Xiao et al. 2010, Luo, Xiao et al. 2010).  

6.3.9 In vivo DOX pharmacokinetics and biodistribution 

The DOX blood kinetics as a function of time following i.v. bolus administration of DOX, DOX-

loaded PEG5K-VE2 and DOX-loaded PEG5K-Fmoc-VE2 was illustrated in Figure 65A. It is 

apparent that the DOX-loaded PEG5K-Fmoc-VE2 showed the highest level of DOX retention in 

circulation in comparison to free DOX and DOX-loaded PEG5K-VE2. Meanwhile, the 

pharmacokinetic parameters, obtained by fitting the data to a non-compartment model, were 

outlined in Table 18. Incorporation of DOX into PEG5K-VE2 micelles resulted in a significantly 

greater t1/2, AUC, and Cmax over free DOX. However, these parameters were further improved in 

DOX-loaded PEG5K-Fmoc-VE2 nanomicelles.   
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Figure 65 DOX pharmacokinetics (A) and biodistribution profiles (B) in 4T1.2-tumor bearing mice 

receiving intravenous administration of different DOX formulations at the dose of 5mg/kg. *p < 

0.05, compared to DOX and PEG5K-VE2/DOX; €p < 0.005, compared to DOX; #p < 0.01, compared 

to PEG5K-VE2/DOX; &p < 0.01, compared to DOX. 

Table 18 Pharmacokinetics of DOX in different formulations. 

 

 

The t1/2, AUC, and Cmax of DOX in PEG5K-Fmoc-VE2/DOX were 3.62, 18.22, and 6.59-

folds higher, respectively, than those of free DOX. In contrast, Vd and CL for PEG5K-Fmoc-

VE2/DOX were significantly lower than those for free DOX and PEG5K-VE2/DOX. Taken 

together, these data demonstrated that DOX formulated in PEG5K-Fmoc-VE2 micelles was able 

to circulate for a significantly longer period of time in blood.  

Next we went on to investigate whether our PEG5K-Fmoc-VE2/DOX formulation can 

improve the DOX biodistribution profile in tumor-bearing mice. Different DOX formulations 

were i.v. administered to 4T1.2 tumor-bearing mice at a DOX dosage of 5 mg/kg. Twenty-four h 

following the injection, blood, tumors, and major organs were collected for the quantification of 

DOX. Compared to free DOX, there were significantly greater amounts of DOX accumulated in 

tumors for both types of DOX nanomicelles (Figure 65B), which was attributed to the EPR 

effect of micellar formulations. We also noticed that DOX formulated in PEG5K-Fmoc-VE2 
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micelles was more effective in tumor accumulation compared to the counterpart without Fmoc 

motif (Figure 65B). This is likely attributed to a better stability of PEG5K-Fmoc-VE2/DOX 

mixed micelles in the blood due to the enhanced carrier/drug interaction as discussed before. In 

addition, the presence of Fmoc may help improve the carrier stability via imposing steric 

hindrance against the degrading enzymes in the blood. Indeed, PEG5K-Fmoc-VE2 is less sensitive 

to esterase-mediated cleavage than the counterpart without an Fmoc motif (Figure 66) in an in 

vitro study.  

 

Figure 66 Stability test of PEG5K-VE2 and PEG5K-Fmoc-VE2 in the presence of esterase. 

The improved stability of PEG5K-Fmoc-VE2/DOX mixed micelles may contribute 

significantly to a longer t1/2 in the blood (Table 18) and thus increased chance for passive 

accumulation at tumor tissues via EPR effect.  

Relatively high levels of DOX uptake were also observed in liver and lung, which was 

due to the nonspecific uptake of particles by these tissues. Importantly, heart distribution of DOX 

was significantly reduced in PEG5K-Fmoc-VE2/DOX compared with free DOX and PEG5K-

VE2/DOX. This is significant considering that cardiotoxicity is a major adverse effect associated 

with the application of DOX in clinic. This will allow higher dose of DOX to be used to 

maximize the therapeutic effect. 
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6.3.10 Maximum tolerated dose (MTD) 

To examine whether the significantly improved stability of PEG5K-Fmoc-VE2/DOX will lead to 

reduced systemic toxicity in vivo, MTD of various DOX formulations was assessed in tumor-free 

mice (Table 19).  

Table 19 MTD of DOX and DOX-loaded nanomicellar formulations. 

                             

Mice were treated with i.v. bolus injection of different doses of free DOX, PEG5K-VE2/DOX and 

PEG5K-Fmoc-VE2/DOX followed by observation of changes in body weight and other general 

signs of toxicity. As shown in Table 19, no significant toxicity was noticed for free DOX group 

at a dosage of 10 mg DOX/kg. Increasing the dosage to 15 mg/kg led to the death of 2 out of 3 

treated mice. Therefore, the MTD for free DOX at a single injection was around 10 mg/kg, 

which was consistent with the literature (Xiao, Luo et al. 2011). PEG5K-VE2/DOX was well 

tolerated at a dosage of 20 mg/kg: no significant changes were observed in the general 

appearance or activity other than 6.2% weight loss. Increasing the DOX dose to 30 mg/kg 

resulted in the death of all 3 treated mice, suggesting that the single i.v. MTD for DOX-loaded 

PEG5K-VE2 micelles was around 20 mg DOX/kg, which was a 2-fold increase over free DOX. 

PEG5K-Fmoc-VE2/DOX showed a lowest level of toxicity with a MTD around 30 mg/kg, which 

was 3-fold and 1.5-fold increase over free DOX and PEG5K-VE2/DOX, respectively. The 

improved MTD of DOX-loaded PEG5K-Fmoc-VE2 is likely attributed to a slower and sustained 
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DOX release kinetics (Figure 56) due to the enhanced stability, which will liberate its payload 

gradually instead of a bursting release; as such, the toxicity will be better tolerated. In addition, it 

has been shown that Vitamin E and Fmoc both have anti-inflammatory activities which may also 

contribute to the reduced toxicity of PEG5K-Fmoc-VE2/DOX (Yen, Hwang et al. 2009, Buse and 

El-Aneed 2010, Shirpoor, Norouzi et al. 2013). More studies are still needed to fully elucidate 

the underlying mechanisms for the reduced toxicity of PEG5K-Fmoc-VE2/DOX. 

6.3.11 In vivo anti-tumor efficacy 

Both drug-sensitive (4T1.2 and PC-3) and drug-resistant (KB 8-5) tumor models were employed 

to evaluate the in vivo anti-tumor activity of DOX-loaded PEG5K-Fmoc-VE2. 4T1.2 is an 

aggressive syngeneic murine breast cancer model. As depicted in Figure 67A, a rapid and 

unrestrained growth of tumors was observed in mice treated with saline and mice had to be 

sacrificed early due to the development of severe ulceration.  

Figure 67 In vivo antitumor activity of different DOX formulations in 4T1.2 syngeneic mouse 

model. Solid arrows indicate the i.v. administration. A: relative tumor volume. B: body weight. *p < 

0.0005, compared to Doxil. &p < 0.001, compared to PEG5K-VE2/DOX; #p < 0.05, compared to 

PEG5K-Fmoc-VE2/DOX (10 mg/kg); €p < 0.05, compared to PEG5K-VE2/DOX; β p < 0.005, compared 

to Doxil. 
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After three consecutive injections, all of the mice treated with free DOX died from systemic 

toxicity on day 7. PEGylated liposomal DOX (Doxil) was well tolerated and showed a moderate 

level of activity in delaying the tumor growth, which is consistent with previous reports 

(Schiffelers, Koning et al. 2003, Ishida, Shiraga et al. 2009, Ogawara, Un et al. 2009, Chen, 

Wang et al. 2010, Maeng, Lee et al. 2010). It is also apparent that incorporation of Fmoc motif 

into PEG5K-VE2/DOX led to a significant improvement in antitumor activity. The IRs were 

82.63, 67.73, and 62.24% for PEG5K-Fmoc-VE2/DOX, PEG5K-VE2/DOX, and Doxil, 

respectively (Table 20). In addition, increasing DOX dosage to 20 mg/kg resulted in further 

enhancement in the antitumor activity of DOX-loaded PEG5K-Fmoc-VE2 micelles. No obvious 

toxicity was noticed at both dosages (Figure 67B). 

Table 20 Tumor growth inhibition rate (IR) in 4T1.2 tumor bearing mice. 

 

The improved performance of the two micellar formulations (PEG5K-VE2 and PEG5K-

Fmoc-VE2) over Doxil in inhibiting the tumor growth may be attributed to their more effective 

accumulation at tumors based on their relatively small size (~20 nm and ~60 nm for PEG5K-

VE2/DOX and PEG5K-Fmoc-VE2/DOX, respectively). It has been generally regarded that a drug 

carrier needs to have a size range of ~200 nm in order to capitalize on the EPR effect. However, 

recent studies have shown that sub-100 nm is required for particles to effectively penetrate the 

tumor tissues, particularly poorly vascularized tumors (Li, Xiao et al. 2010, Luo, Xiao et al. 



 177 

2010). The size advantage of the two micellar DOX formulations over Doxil (~100 nm) may 

contribute to their enhanced antitumor activity. In addition, the carriers may contribute to the 

overall antitumor activity via delaying or reversing the drug resistance through inhibiting the 

activity of P-gp. The further improved performance of PEG5K-Fmoc-VE2 over PEG5K-VE2 is 

likely due to the more effective drug/carrier interaction as well as the interaction among the 

carrier molecules themselves, leading to improved formulation stability and more effective DOX 

delivery to tumors (Figure 65).  

After demonstrating effective inhibition of tumor growth in the syngeneic murine breast 

cancer model, the therapeutic effect of DOX-loaded PEG5K-Fmoc-VE2 micelles was further 

examined in nude mice bearing human prostate cancer xenograft (PC-3) (Figure 68). In this 

study, a lower DOX dosage (5 mg/kg) was used to avoid the death of animals in free DOX 

group, which allowed the comparison of all treatment groups over a relatively long period of 

time. Similarly, PEG5K-Fmoc-VE2/DOX gave the highest level of tumor growth inhibition 

among all DOX formulations examined. Doubling the DOX dosage to 10 mg/kg led to a further 

improvement of the antitumor efficacy (Figure 68A).  

 
Figure 68 In vivo antitumor activity of various DOX formulations in PC-3 tumor-bearing mice. 

Solid arrows indicate the i.v. administration. A: relative tumor volume. B: body weight. *p < 0.001, 

compared to PEG5K-VE2/DOX or Doxil on day 31; &p < 0.01, compared to PEG5K-Fmoc-VE2/DOX 

(5 mg/kg) on day 31; #p < 0.01, compared to PEG5K-VE2/DOX or Doxil on day 31; €p < 0.001, 

compared to PEG5K-Fmoc-VE2/DOX (5 mg/kg) on day 40; αp < 0.05, compared to day 1.   
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Table 21 Tumor growth inhibition rate (IR) in PC-3 tumor bearing mice. 

                                   
 

Table 21 shows the IR of different DOX formulations on day 19. Mice in both saline and free 

DOX groups showed significant loss of body weight after day 19 (Figure 68B), which was likely 

attributed to the cachexia that is caused by the overgrowth of tumor. No significant changes were 

noticed in other treatment groups in either body weight (Figure 68B) or the general appearance.  

 Figure 69 shows the in vivo antitumor activity of DOX-loaded PEG5K-Fmoc-VE2 

micelles in a drug-resistant tumor model, KB 8-5.  

                   

Figure 69 In vivo antitumor activity of varying DOX formulations in a drug-resistant xenograft 

tumor model, KB 8-5. Solid arrows indicate the i.v. injection. A: relative tumor volume. *p < 0.002, 

compared to PEG5K-Fmoc-VE2/DOX (5 mg/kg); &p < 0.01, compared to PEG5K-VE2/DOX (5 

mg/kg); #p < 0.05, compared to DOX (7.5 mg/kg); €p < 0.05, compared to DOX (5 mg/kg) or saline. 

B: body weight, αp < 0.0005, compared to day 1; βp < 0.005, compared to day 1; £p < 0.05, compared 

to day 1. C: tumor images. D: tumor weight, *p < 0.005, compared to PEG5K-Fmoc-VE2/DOX (5 

mg/kg); &p < 0.01, compared to PEG5K-VE2/DOX (5 mg/kg); #p < 0.001, compared to DOX (7.5 

mg/kg); €p < 0.05, compared to DOX (5 mg/kg). 
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At a dosage of 5 mg/kg, free DOX barely showed any effect in inhibiting the tumor growth. 

Increasing the dose to 7.5 mg/kg only led to a slight improvement in antitumor activity. These 

are in consistence with the drug-resistant nature of this tumor model (Ma, Liu et al. 2014). In 

contrast, incorporation of DOX into PEG5K-VE2 led to a significant improvement in antitumor 

activity: PEG5K-VE2/DOX at 5 mg/kg was even more effective than free DOX at 7.5 mg/kg. In 

agreement with studies in other tumor models (Figure 67 & 68), PEG5K-Fmoc-VE2/DOX was 

even more effective than PEG5K-VE2/DOX in inhibiting the tumor growth at a same dosage (5 

mg/kg). Increasing the dose to 7.5 mg/kg led to almost complete inhibition of tumor growth with 

an IR of 89.21% (Figure 69 & Table 22).  

Table 22 Tumor growth inhibition rate (IR) in KB 8-5 tumor bearing mice. 

 

Both micellar formulations were well tolerated. In contrast, significant weight loss was observed 

in free DOX-treated mice at both dosages (Figure 69B). Data from Figure 69 strongly suggest 

that our improved formulation is capable of reversing the drug-resistance, at least partially, 

although more studies are needed to better understand the underlying mechanism.  
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7.0 THE SELF-ASSEMBLING CAMPTOTHECIN-TOCOPHEROL PRODRUG: AN 

EFFECTIVE APPROACH OF FORMULATING CAMPTOTHECIN 

7.1 BACKGROUND 

Owing to the sparingly water solubility, many chemotherapeutics have encountered difficulties 

in efficient dose delivery and untoward side effects. Camptothecin (CPT), a potent anticancer 

agent targeting a wide spectrum of cancers, is such an example (Hatefi and Amsden 2002, Mu, 

Elbayoumi et al. 2005). It functions by inhibiting the activity of topoisomerase I during DNA 

replication in the S-phase of the cell cycle, leading to cell death eventually (Hsiang and Liu 

1988). In physiological condition, the terminal ring of CPT can be readily converted from active 

lactone form (pH<5) into carboxylate form (pH>8) (Fassberg and Stella 1992, Mu, Elbayoumi et 

al. 2005). In order to be active, CPT has to maintain its lactone form in vivo. However, the active 

form of CPT is highly lipophilic and hard to be formulated in conventional surfactants such as 

Tween 80 or other lipid (Mu, Elbayoumi et al. 2005, Natesan, Sugumaran et al. 2014). Hence, 

attempts to formulate CPT and efficiently deliver CPT to the pathological sites have attracted 

numerous efforts across the drug delivery field. 

In the past a few decades, nanomedicine has rapidly become the powerful therapeutic 

platform in combatting against a variety of diseases including cancer (Shoshani, Darszon et al. 
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1994, Liaw, Aoyagi et al. 1999, Bawarski, Chidlowsky et al. 2008). Different nanotechnology-

based approaches were utilized to help dissolve and stabilize CPT, such as encapsulation of CPT 

in polymeric micelles or liposomal CPT formulation (Daoud, Fetouh et al. 1995, Barreiro-

Iglesias, Bromberg et al. 2004). However, most of them were neither with adequate stability nor 

sufficient drug loading to reach the optimal therapeutic dose. Recently, polymer-drug conjugates 

have been heavily paid attention and achieved considerable improvement regarding the 

formulation stability and in vivo efficacy of the coupled therapeutic agents due to the prolonged 

circulation time and enhanced tumor accumulation (Cabral and Kataoka 2014). Caiolfa et al 

found that poly(HPMA)-CPT conjugates with proteinase sensitive linker showed dramatically 

improved antitumor activity in HT29 human colon carcinoma xenografts (Caiolfa, Zamai et al. 

2000). McRae Page et al reported that Poly(MPC-DHLA)-CPT conjugates with disulfide linkage 

had promise in killing MCF-7 and COLO-205 (McRae Page, Martorella et al. 2013). However, 

the steric hindrance imposed in polymer-CPT conjugates is postulated to be a huge burden to 

fully liberate the parental CPT. Therefore, it is necessary to develop CPT-derivatized prodrugs 

with less steric hindrance and more accessibility for redox agents or enzymes targeting to the 

linker. 

Vitamin E (VE), a nontoxic, nonimmunogenic, and biocompatible lipid, acts by hindering 

the production of reactive oxygen species (ROS) generated when fat undergoes oxidation 

(Brigelius-Flohe and Traber 1999). Also, synergistic effects were achieved in a number of VE-

based nanocarrier-delivered chemotherapeutics (Mi, Liu et al. 2011, Wang, Sun et al. 2012, Lu, 

Huang et al. 2013). Further, it has been found that VE was capable of overcoming the multidrug 

resistance (MDR) through inhibiting the p-gp efflux pump (Tang, Fu et al. 2013).  
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The focus of this report is to develop a CPT prodrug that can be effectively and readily 

loaded into nanocarriers with improved solubility, enhanced in vivo stability and diminished 

unwanted adverse effects of the parental CPT. It was claimed that the introduction of additional 

steric hindrance onto the hydroxyl moiety on CPT was able to greatly decrease the hydrolysis of 

lactone ring to the carboxylate form, resulting in the strengthened stability of parental CPT 

(Zhao, Lee et al. 2000, Li, Lv et al. 2009). To this end, in the present study, CPT was covalently 

linked to α-tocopherol (VE) through disulfide bond (CPT-S-S-VE) at the hydroxyl group. 

Disulfide linkage has been intensely employed as a reduction-sensitive spacer to facilitate the 

release of the conjugated anticancer drugs in a variety of polymer-drug conjugates (van der 

Vlies, Hasegawa et al. 2012, Kostkova, Etrych et al. 2013, McRae Page, Martorella et al. 2013). 

Glutathione (GSH), a reducing agent with high concentration in cells especially in tumor cells 

(~10 mM), was able to selectively break the disulfide bond to liberate the bundled active agents 

(Wu, Fang et al. 2004). In order to better evaluate the efficiency of CPT-S-S-VE in releasing 

CPT, VE-based CPT prodrug with carbonate ester bond (CPT-VE) was synthesized 

simultaneously. It is expected that the CPT-VE and CPT-S-S-VE will have significantly less 

lactone hydrolysis in vivo compared to free CPT. Not long ago, PEG-derivatized VE (PEG5K-

VE2) and PEG5K-VE2 conjugates containing drug-interactive motif-Fmoc (PEG5K-Fmoc-VE2) 

were developed by our group and found to be quite efficient in delivering the Paclitaxel or 

Doxorubicin to tumors with improved antitumor efficacy. Given the VE chain in CPT produgs, 

PEG5K-VE2 and PEG5K-Fmoc-VE2 were used as solubilizer and stabilizer for the CPT-VE or 

CPT-S-S-VE during their self-assembling process. Surprisingly, the PEG5K-Fmoc-VE2/CPT-VE 

and PEG5K-Fmoc-VE2/CPT-S-S-VE both self-aggregated to nanofibers observed under cryoEM. 

The interactions between the carrier and prodrugs were investigated by NMR, fluorescence, UV-
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absorbance, and FT-IR studies. Besides, the CPT release from prodrugs was determined both in 

vitro and in tumor-bearing mice. The mechanism of uptake of the prodrugs nanofibers were also 

investigated. Furthermore, the antitumor activity of CPT prodrugs’ nanoassemblies were 

evaluated both in vitro and in vivo. 

7.2 METHODS 

7.2.1 Materials 

D-α-Tocopherol succinate, Triphosgene, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide (MTT), trypsin-EDTA solution, Triton X-100, and Dulbecco’s Modified Eagle’s 

Medium (DMEM) were all purchased from Sigma-Aldrich (MO, USA). D-alpha-tocopherol was 

purchased from Tokyo Chemical Industry (OR, USA). Camptothecin, Bis (2-hydroxyethyl) 

disulfide, and N,N’-dicyclohexylcarbodiimide (DCC) was purchased from Alfa Aesar (MA, 

USA). 4-Dimethylaminopyridine (DMAP) was purchased from Calbiochem-Novabiochem 

Corporation (CA, USA). Fetal bovine serum (FBS) and penicillin-streptomycin solution were 

from Invitrogen (NY, USA). LysoTracker was purchased from Life Technologies (Carlsbad, 

CA). All solvents used in this study were HPLC grade.   

7.2.2 Synthesis of Camptothecin-Vitamin E conjugate with carbonate ester bond (CPT-VE)  

First, CPT (1 eq. molar) and DMAP (2 eq. molar) were dissolved in 20 mL DCM with stirring, 

then triphosgene (0.35 eq. molar) was added dropwise into the yellowish solution. The reaction 
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was allowed for 20 min at room temperature. Afterwards, Vitamin E (2 eq. molar) was added 

into the solution and reacted overnight. The resultant CPT-VE was purified via column. Mobile 

phase: MeOH/DCM (2:98). Yield = 68%. 1H-NMR (CDCl3-d6, ppm) (Figure 70).  

 

Figure 70 1H-NMR spectrum (400 MHz) of CPT-VE in CDCl3. 

13C-NMR (CDCl3-d6, ppm) 167.12, 157.30, 152.90, 152.26, 149.69, 148.99, 146.57, 145.77, 

140.96, 131.11, 130.63, 129.80, 128.43, 128.21, 128.02, 120.20, 95.65, 78.23, 75.09, 67.06, 

50.00, 39.36, 37.42, 37.37, 37.27, 32.75, 32.67, 31.74, 31.02, 27.96, 24.80, 24.78, 24.41, 22.73, 

22.64, 21.00, 20.48, 19.75, 19.69, 19.63, 19.61, 12.72, 11.87, 11.71, 7.72. ESI-MS: C50H64N2O7 

(M+1+) 805.4714, found at 805.4721. 

7.2.3 Synthesis of Camptothecin-Vitamin E conjugate with disulfide bond (CPT-S-S-VE) 

First, Vitamin E succinate (1 eq. molar) reacted with Bis (2-hydroxyethyl) disulfide (2 eq. molar) 

with the assistance of DCC (2 eq. molar) and DMAP (0.2 eq. molar) overnight. The resultant 
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VE-S-S-OH was purified through column. Mobile phase: ethyl acetate/ petroleum ether (2:3). 

Yield = 75%. 1H-NMR (CDCl3-d6, ppm) (Figure 71).  

 

Figure 71 1H-NMR spectrum (400 MHz) of VE-S-S-OH in CDCl3. 

13C-NMR (CDCl3-d6, ppm) 172.12, 171.07, 149.46, 140.46, 126.65, 124.92, 123.03, 117.42, 

75.07, 62.73, 60.36, 41.51, 39.40, 37.47, 37.44, 37.31, 36.95, 32.80, 32.71, 31.16, 29.05, 28.76, 

28.00, 24.83, 24.46, 22.78, 22.69, 21.04, 20.62, 19.81, 19.71, 12.98, 12.12, 11.85. ESI-MS: 

C37H62O6S2 (M+Na+) 689.3885, found at 689.3882.  

Second, CPT (1 eq. molar) and DMAP (2 eq. molar) were dissolved in 20 mL DCM with 

stirring, then triphosgene (0.35 eq. molar) was added dropwise into the yellowish solution. The 

reaction was allowed for 20 min at room temperature. Then, VE-S-S-OH (2 eq. molar) was 

added into the solution in second step for overnight. The final product (CPT-S-S-VE) was 
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purified via column. Mobile phase: ethyl acetate/petroleum ether (7:4). Yield = 58%. 1H-NMR 

(CDCl3-d6, ppm) (Figure 72).  

 

Figure 72 1H-NMR spectrum (400 MHz) of CPT-S-S-VE in CDCl3. 

13C-NMR (CDCl3-d6, ppm) 171.90, 170.86, 167.25, 157.30, 153.45, 152.31, 149.43, 148.91, 

146.52, 145.61, 140.43, 131.17, 130.73, 129.70, 128.49, 128.19, 128.09, 126.66, 124.92, 123.01, 

120.27, 117.38, 95.96, 78.05, 77.35, 77.03, 76.71, 75.05, 70.57, 69.27, 67.08, 66.53, 62.50, 

50.01, 39.37, 37.45, 37.43, 37.29, 37.12, 36.56, 32.80, 32.71, 31.90, 29.00, 28.75, 27.98, 24.80, 

24.45, 22.72, 22.63, 21.02, 20.58, 19.76, 19.66. ESI-MS: C58H76N2O11S2 (M+H+) 1041.4891, 

found at 1041.4887.  
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7.2.4 Biophysical characterization of CPT, CPT-VE, and CPT-S-S-VE nanoparticles  

CPT-VE or CPT-S-S-VE dissolved in DCM was mixed with predetermined amount of PEG5K-

Fmoc-VE2 (PEG5K-VE2). The solution was blown out by nitrogen flow and further vacuumed for 

four hours. The resultant formulations were filtered through a 0.22 µm filter prior to 

characterization. PEG5K-VE2/CPT and PEG5K-Fmoc-VE2/CPT were prepared through dialysis 

method. First, both CPT and PEG5K-Fmoc-VE2 (PEG5K-VE2) were dissolved in DMSO and 

mixed well. Then the DMSO solution was transferred into a dialysis bag (MWCO 12,000) and 

dialyzed against 200 mL deionized water for 4 days with stirring at room temperature, during 

which the water was replaced with fresh one every day. The diameter and size distribution of the 

nanoformulations were evaluated by dynamic light scattering (DLS). The morphology was 

determined by cryoEM. The concentrations of CPT, CPT-VE, and CPT-S-S-VE in nanoparticles 

were measured by UPLC-QTOFMS Analysis. The drug loading capacity (DLC) and drug 

loading efficiency (DLE) were calculated according to the literature.   

7.2.5 Fluorescence quenching 

PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE were prepared as the method 

described above. The samples were put into a 96-well plate, and the fluorescence intensity of 

PEG5K-Fmoc-VE2 was recorded on a Synergy H1 Hybrid reader (BioTek), employing an 

excitation wavelength of 270 nm and emission wavelength from 300-500 nm. The fluorescence 

intensity of prodrugs was examined using an excitation wavelength of 370 nm and emission 

wavelength from 400-700 nm.  
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7.2.6 UV absorbance spectroscopy 

The absorption spectra of CPT (DMSO), CPT-VE (DMSO), CPT-S-S-VE (DMSO), 

PEG5K-Fmoc-VE2/CPT-VE (water) and PEG5K-Fmoc-VE2/CPT-S-S-VE (water) were 

collected using Varian Cary 50 Bio UV-Visible Spectrophotometer over a wavelength ranging 

from 310 to 420 nm. All samples were loaded into a quartz cell and measured against distilled 

water or DMSO as the reference.  

7.2.7 Fourier transform infrared spectroscopy (FT-IR) 

FT-IR of CPT-VE, CPT-S-S-VE, PEG5K-Fmoc-VE2/CPT-VE, PEG5K-Fmoc-VE2/CPT-S-S-

VE and PEG5K-Fmoc-VE2 was determined using a VERTEX 70/70v FT-IR spectrometer 

(Bruker) to determine the potential hydrogen bonding of carrier/drug in the frequency of 4997-

500 cm-1 (KBr pellet).   

7.2.8 Cell culture 

4T1.2, mouse breast cancer cell line, was used in this work and cultured in DMEM containing 

10% FBS and 1% penicillin-streptomycin in a humidified environment at 37 ℃ with 5% CO2.  

7.2.9 Animals 

Female BALB/c mice of 10-12 weeks of age were purchased from Charles River (Davis, CA). 

Animals were housed under pathogen-free conditions according to AAALAC (Association for 
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Assessment and Accreditation of Laboratory Animal Care) guidelines. All animal-related 

experiments were performed in full compliance with institutional guidelines and approved by the 

Animal Use and Care Administrative Advisory Committee at the University of Pittsburgh. 

7.2.10 In vitro cytotoxicity 

The anti-proliferation of CPT-VE, CPT-S-S-VE, PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-

VE2/CPT-S-S-VE with or without 10 mM GSH was evaluated in 4T1.2 in comparison to free 

CPT. Briefly, 2000 cells/well were seeded into 96-well plates following overnight attachment. 

Next day, cells were challenged by CPT-VE, CPT-S-S-VE, PEG5K-Fmoc-VE2/CPT-VE and 

PEG5K-Fmoc-VE2/CPT-S-S-VE with or without 10 mM GSH and CPT of various concentrations 

(equivalent CPT concentration). Free PEG5K-Fmoc-VE2, at concentrations equivalent to the 

amount of carriers in formulating CPT-VE and CPT-S-S-VE, was also added into cells. Cells 

were incubated for 72 h and cell viability was examined by MTT assay (Huang, Lu et al. 2012, 

Lu, Huang et al. 2013, Lu, Huang et al. 2013, Lu, Zhao et al. 2014). 

7.2.11 CPT release inside cells 

1×106 4T1.2 cells were grown into 6-well plates and allowed overnight attachment. Afterwards, 

cells were treated by CPT-VE and CPT-S-S-VE (100 ng/mL in terms of CPT) for 24 h. Then, the 

cells were washed with ice-cold PBS three times and extracted in MeOH. The extraction was 

dried under gentle stream of clean dry air, then redissolved in a mixture of MeOH:H2O (1:1, 

v/v). The lysates were vortexed and then centrifuged at 14,000 rpm for 10 min at 4°C. Finally, 

supernatants were transferred to another set of 1.5 mL microtubes and stored at -80°C for MS 
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analysis. UPLC-QTOFMS Analysis: Chromatographic separation of CPT was performed on an 

Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 µm; Waters, Milford, MA). The flow rate of 

the mobile phase was 0.5 ml/min using a gradient ranging from 2% to 98% acetonitrile/water 

containing 0.1% formic acid in 6 minutes. The column temperature was maintained at 50°C. 

Waters SYNAPT G2S TOF-MS (Waters, Milford, MA) was operated in positive mode with 

electrospray ionization. The source and desolvation temperatures were set at 150°C and 500°C, 

respectively. Nitrogen was applied as the cone gas (50 L/h) and desolvation gas (800 L/h). Data 

were processed using QuanLynx (v 4.1, Waters). Extracted ion chromatograms (EICs) were 

extracted using a 20 mDa window centered on the expected m/z 349.11 for CPT. 

7.2.12 Uptake study 

2,000 4T1.2 cells/well were seeded into 96-well plates and incubated overnight prior to 

treatment. Then cells were treated with PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-

S-S-VE for 2 h at 4 or 37 ℃, followed by 24 h incubation at a CPT concentration of 6 µg/mL.  

Mechanistic investigation of the uptake pathway was further performed by using confocal 

laser scanning microscopy (CLSM, FluoView 1000, Olympus, Japan). Briefly, 3×105 4T1.2 

cells/well were seeded into 6-well plates and incubated overnight. Then cells were challenged 

with PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE for 30 min at 37 ℃ at a 

CPT concentration of 6 µg/mL. After that, cells were washed three times with cold PBS and 

fixed with 4% paraformaldehyde for 30 min. Then, the lysotracker was applied to cells for 5 min. 

Subsequently, cells were washed thrice with cold PBS prior to the observation under CLSM.  
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7.2.13 Biodistribution 

PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE (carrier/drug: 0.75:1) were 

intravenously injected into 4T1.2 tumor bearing mice at the dose of 5 mg CPT/kg, respectively 

(n=3). At 24 h post-injection, tumors, liver, spleen, lung, heart, kidneys and blood were 

harvested from the mice. Tissues were homogenized using Power Gen 500 homogenizer (Fisher 

Scientific) with 100 mg tissues mixed with 900 μL methanol, and the CPT was extracted 

overnight at -20 °C. The samples were then centrifuged at 14,000 rpm for 10 min at 4°C and the 

supernatant was measured by UPLC-QTOFMS as described above.  

7.2.14 In vivo antitumor therapeutic study 

Antitumor efficacy of PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE was 

investigated in 4T1.2 tumor bearing mice. 2 x 105 4T1.2 cells in 200 µL saline were inoculated 

subcutaneously at the right flank of female BALB/c mice. Mice were randomly distributed to 

five groups (n = 5), when tumors in the mice arrived at a volume of 50-100 mm3, and this day 

was designated as day 1. From day 1, mice were i.v. administered, saline, free CPT (5 mg/kg) 

(i.p. injection because of its low solubility) (Zhen Gu et al), PEG5K-Fmoc-VE2/CPT-VE (5 mg 

CPT/kg), PEG5K-Fmoc-VE2/CPT-S-S-VE (5 mg CPT/kg), and PEG5K-Fmoc-VE2/CPT-S-S-VE 

(10 mg CPT/kg) on days 1, 4, and 7, respectively. Tumor sizes were measured with a digital 

caliper on days 1, 4, 7, 9, 12, 15, 18, 21 and calculated according to the following formula: 

(L×W2)/2, where L and W are length and width of each tumor. Meanwhile, the tumor growth 

inhibition rate (IR) was assessed and defined as: IR % = (1 – tumor volume in the treated group/ 

tumor volume in the saline group) × 100%. Mice body weight was also monitored as an 
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indication of toxicity. Tumors from all groups were weighted and imaged at the termination of 

the study. In the meantime, the tumors were also subject to the H&E staining.  

7.2.15 Statistical analysis 

In all statistical analyses, the significance level was set at a probability of P < 0.05. All results 

were reported as the mean ± standard deviation (SD) unless otherwise indicated. Statistical 

analysis was performed by using the Student’s t-test for two groups, and one-way ANOVA for 

multiple groups, followed by Newman-Keuls test if P < 0.05.  

7.3 RESUTLS 

7.3.1 Synthesis of VE-derivatized CPT prodrugs 

CPT, a highly lipophilic anticancer agent, was hard to be physically entrapped in polymeric 

delivery systems. In an attempt to ameliorate the compatibility of CPT, one VE molecule was 

coupled to CPT at its hydroxyl group through either carbonate ester bond (CPT-VE) or disulfide 

linkage (CPT-S-S-VE). Complete synthetic route was illustrated in Figure 73 (CPT-VE) and 

Figure 74 (CPT-S-S-VE).  
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Figure 73 Synthetic route of CPT-VE. 
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Figure 74 Synthetic route of CPT-S-S-VE. 

For the synthesis of CPT-VE, first CPT was reacted with triphosgene for 20 min with the 

assistance of DMAP to generate CPT-COCl, which was further conjugated by VE overnight to 

yield CPT-VE. In the synthesis of CPT-S-S-VE, initially, tocopherol-succinate was coupled with 

Bis (2-hydroxyethyl) disulfide to obtain VE-S-S-OH. Meanwhile, CPT-COCl was acquired by 

reacting CPT with triphosgene. Then, VE-S-S-OH and CPT-COCl were conjugated together to 

yield CPT-S-S-VE. 
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7.3.2 Biophysical characterization of CPT, CPT-VE, and CPT-S-S-VE nanoassemblies 

After the synthesis of CPT-VE and CPT-S-S-VE, we found that both of them can be readily 

dissolved in DCM (>100 mg/mL in terms of CPT). However, less than 2 mg of free CPT can be 

dissolved in 1 mL DCM (data not shown). In aqueous solution, PEG5K-Fmoc-VE2/CPT-VE and 

PEG5K-Fmoc-VE2/CPT-S-S-VE were able to readily self-assemble into nanofibers. Surprisingly, 

the nanofibers in PEG5K-Fmoc-VE2/CPT-S-S-VE was entangled together. In a sharp contrast, 

spherical nanomicelles were identified in PEG5K-VE2/CPT-VE, PEG5K-VE2/CPT-S-S-VE, 

PEG5K-VE2/CPT, and PEG5K-Fmoc-VE2/CPT (Figure 75).  

 

Figure 75 CryoEM imaging of PEG5K-VE2/CPT, PEG5K-Fmoc-VE2/CPT, PEG5K-VE2/CPT-VE, 

PEG5K-VE2/CPT-S-S-VE, PEG5K-Fmoc-VE2/CPT-VE, and PEG5K-Fmoc-VE2/CPT-S-S-VE. 
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As shown in Table 23, DLCs of CPT were only 0.30% and 0.65% in PEG5K-VE2 and PEG5K-

Fmoc-VE2 nanomicelles, respectively.  

Table 23 Biophysical characterization of CPT, CPT-VE, and CPT-S-S-VE nanoformulations 

 

Nonetheless, the DLCs of CPT were improved drastically in PEG5K-VE2/CPT-VE (4.7%) and 

PEG5K-VE2/CPT-S-S-VE (6.2%), or in PEG5K-Fmoc-VE2/CPT-VE (6.6%) and PEG5K-Fmoc-

VE2/CPT-S-S-VE (9.2%). In addition, the stability of CPT nanoformulations was also enhanced 

significantly when CPT prodrugs instead of free CPT were formulated in carriers, in which 

PEG5K-Fmoc-VE2 offered markedly better formulation stability compared to that of PEG5K-VE2. 

Size distributions of CPT, CPT-VE, and CPT-S-S-VE nanoassemblies exhibited homogenously 

distributed nanoparticles (Figure 76), which was consistent with the cryoEM results (Figure 75). 
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Figure 76 Size distribution of PEG5K-VE2/CPT, PEG5K-Fmoc-VE2/CPT, PEG5K-VE2/CPT-VE, 

PEG5K-VE2/CPT-S-S-VE, PEG5K-Fmoc-VE2/CPT-VE, and PEG5K-Fmoc-VE2/CPT-S-S-VE. 

7.3.3 Confirmation of CPT prodrugs loading by NMR investigation  

To confirm whether CPT-VE or CPT-S-S-VE was indeed encapsulated into the PEG5K-Fmoc-

VE2. A series of 1NMR studies were conducted, including CPT-VE in CDCl3, CPT-S-S-VE in 

CDCl3,  

PEG5K-Fmoc-VE2 in CDCl3 or D2O, PEG5K-Fmoc-VE2/CPT-VE in CDCl3 or D2O, and 

PEG5K-Fmoc-VE2/CPT-S-S-VE in CDCl3 or D2O. CPT-VE and PEG5K-Fmoc-VE2 exhibited 

their authentic peaks in CDCl3 in Figure 77A, respectively. Mixed PEG5K-Fmoc-VE2/CPT-VE in 

CDCl3 also clearly showed the typical peaks for PEG5K-Fmoc-VE2 and CPT-VE, respectively 

(Figure 77A).  
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Figure 77 A: NMR spectra of CPT-VE in CDCl3, PEG5K-Fmoc-VE2 in CDCl3, PEG5K-Fmoc-

VE2/CPT-VE in CDCl3, and PEG5K-Fmoc-VE2/CPT-S-S-VE in D2O; B: NMR spectra of CPT-S-S-

VE in CDCl3, PEG5K-Fmoc-VE2 in CDCl3, PEG5K-Fmoc-VE2/CPT-S-S-VE in CDCl3, and PEG5K-

Fmoc-VE2/CPT-S-S-VE in D2O. 
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However, when PEG5K-Fmoc-VE2/CPT-VE was measured in D2O, the peaks for PEG5K-Fmoc-

VE2 and CPT-VE were completely gone, except the PEG and solvent peaks. Similar data was 

obtained in CPT-S-S-VE system (Figure 77B). All of the NMR samples were subject to 

overnight scanning in order to rule out the possibility that the disappearances of the peaks were 

due to the lack of scanning.   

7.3.4 Fluorescence study 

In order to better understand the driving force of forming the CPT or CPT prodrugs 

nanoparticles, fluorescence quenching assay was performed. In Figure 78A, CPT, CPT-VE, and 

CPT-S-S-VE, showed similar fluorescence patterns when excited at 370 nm. 

                        

Figure 78 A: fluorescence quenching study of CPT-VE or CPT-S-S-VE nanoformulations. B: 

quantitation of the fluorescence decrease in CPT-VE or CPT-S-S-VE nanoassemblies compared to 

the free CPT-VE or CPT-S-S-VE. C:  Fmoc Fluorescence. D: reduction of Fmoc fluorescence 

intensity after incorporating CPT-VE or CPT-S-S-VE into PEG5K-Fmoc-VE2. 
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Two carriers, PEG5K-VE2 and PEG5K-Fmoc-VE2, did not have any fluorescence signals under 

the same condition. However, the fluorescence intensity of CPT-VE, and CPT-S-S-VE, was 

decreased dramatically when loaded into carriers. As illustrated in Figure 78B, there was 

significantly more fluorescence reduction when CPT-VE or CPT-S-S-VE, was incorporated into 

PEG5K-Fmoc-VE2 in comparison to PEG5K-VE2.  

Meanwhile, Fmoc fluorescence was also investigated. In Figure 78C, typical Fmoc signal was 

observed in PEG5K-Fmoc-VE2, the intensity of which was diminished remarkably when CPT 

prodrugs were loaded inside, particularly for CPT-S-S-VE. Our data suggested that the strong 

carrier/payload interactions were achieved including hydrophobic interaction and π-π stacking 

effect.  

7.3.5 UV absorbance evaluation 

Figure 79 shows the UV-absorbance of free CPT, CPT-VE, and CPT-S-S-VE, and CPT-VE or 

CPT-S-S-VE formulated in PEG5K-Fmoc-VE2. A significant decrease of UV-absorbance was 

discerned in both CPT prodrugs formulated in PEG5K-Fmoc-VE2, especially for CPT-S-S-VE 

system. Further, a clear red shift of UV-absorbance was detected in both CPT-VE and CPT-S-S-

VE nanoassemblies, suggesting that the π-π stacking contributed significantly to the overall 

carrier/drug interactions  
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Figure 79 UV-absorbance of CPT-VE, CPT-S-S-VE, PEG5K-Fmoc-VE2/CPT-VE, and PEG5K-Fmoc-

VE2/CPT-S-S-VE. 
 

7.3.6 FT-IR measurement 

Fourier transform infrared spectroscopy (FT-IR) is a good measure for the hydrogen bonding. 

Therefore, PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE, were further subject 

to FT-IR determination. As depicted in Figure 80A, after subtracting the IR of PEG5K-Fmoc-

VE2 from that of PEG5K-Fmoc-VE2/CPT-VE, two new peaks at 1463.11 cm-1 and 1472.51 cm-1 

were identified.  
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Figure 80 A: FT-IR of PEG5K-Fmoc-VE2, and PEG5K-Fmoc-VE2/CPT-VE. B: Difference of FT-IR 

between PEG5K-Fmoc-VE2 and PEG5K-Fmoc-VE2/CPT-VE. C: FT-IR of PEG5K-Fmoc-VE2, and 

PEG5K-Fmoc-VE2/CPT-S-S-VE. D: Difference of FT-IR between PEG5K-Fmoc-VE2, and PEG5K-

Fmoc-VE2/CPT-S-S-VE. 

 

The decrease of absorbance at 1472.51 cm-1 and a concurrent increase of absorbance at 1463.11 

cm-1 demonstrated that incorporation of CPT-VE resulted in the disruption of the hydrogen 

bonding among carrier molecules and the formation of new hydrogen bonding between carrier 
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and CPT-VE molecules simultaneously (Lu, Zhao et al, 2014). Similar findings were garnered in 

PEG5K-Fmoc-VE2/CPT-S-S-VE system (Figure 80B).  

7.3.7 In vitro cell-killing activity 

In an attempt to see whether VE-derivatized CPTs still retain the biological function of its 

parental CPT, cytotoxicity of free CPT, CPT-VE, CPT-S-S-VE, PEG5K-Fmoc-VE2/CPT-VE and 

PEG5K-Fmoc-VE2/CPT-S-S-VE was assessed in 4T1.2 cells (Figure 81).  

                                 

Figure 81 The cell-killing effect of CPT-VE, CPT-S-S-VE, PEG5K-Fmoc-VE2/CPT-VE, and PEG5K-

Fmoc-VE2/CPT-S-S-VE with or without GSH (10 mM), comparing to free CPT in 4T1.2 cancer cell. 

 

Aiming to examine disulfide bond-responsive release of CPT, GSH, a disulfide bond reducer, 

was added. Both CPT-VE and CPT-S-S-VE presented a dose-dependent antiproliferative effect 

at the higher concentration range, with CPT-S-S-VE more effective. Addition of GSH led to a 

dramatically enhanced cell-killing effect in CPT-S-S-VE system, while not much difference was 

observed in CPT-VE, indicating the merit of CPT-S-S-VE over CPT-VE in releasing CPT.  
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7.3.8 CPT intracellular release 

To confirm that the enhanced cytotoxicity in CPT-S-S-VE was indeed ascribed to the more CPT 

release, CPT concentration inside cells was measured after treating cells at 100 ng/mL in terms 

of CPT for 24 h. Apparently, from the data shown in Figure 82, CPT-S-S-VE excelled CPT-VE 

in releasing CPT, as which provided almost 2-fold more CPT release than did CPT-VE.  

                                       

Figure 82 Intracellular release of CPT in 4T1.2 cells treated by CPT-VE and CPT-S-S-VE (100 

ng/mL in terms of CPT) for 24 h. 

7.3.9 Uptake of CPT-VE and CPT-S-S-VE nanoassemblies 

Herein, mechanism of intracellular uptake of CPT-VE and CPT-S-S-VE formulated PEG5K-

Fmoc-VE2 nanofibers was investigated. First, temperature dependence of uptake was evaluated 

by comparing the cytotoxicity of PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-

VE after incubation at 4 and 37 °C, respectively (Figure 83).  
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Figure 83 The cell viability in 4T1.2 cells after being treated with PEG5K-Fmoc-VE2/CPT-VE and 

PEG5K-Fmoc-VE2/CPT-S-S-VE for 2 h at 4 or 37 ℃, followed by 24 h incubation at a CPT 

concentration of 6 µg/mL. 

 

The cell viability was significantly improved in cells incubated at 4 °C in both CPT prodrugs 

formulations, implying a much lower intracellular uptake and the involvement of active 

transportation under this circumstance. This finding is in concert with the literature, in which 

pinocytic/endocytic uptake was deactivated at 4 °C. Further, confocal laser scanning microscope 

was conducted (Figure 84). As shown in Figure 84, the fluorescence from CPT prodrugs 

nanofibers were well colocolized with that from LysoTracter, indicating that endocytotic 

pathway was employed during the uptake. Moreover, significantly enhanced fluorescence signal 

was detected in PEG5K-Fmoc-VE2/CPT-S-S-VE compared to that in PEG5K-Fmoc-VE2/CPT-VE. 

This was consistent with the studies performed in Figure 81-83, in which more release of CPT 

from CPT-S-S-VE was correlated.  
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Figure 84 Confocal laser scanning microscopy (CLSM) images of 4T1.2 cells incubated with free 

PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE for 30 min at 37 ℃ at a CPT 

concentration of 6 µg/mL. 

7.3.10 In vivo biodistribution 

Efforts were also made to figure out the in vivo tissue distribution of CPT in both PEG5K-Fmoc-

VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE in tumor-bearing mice. Twenty-four h post 
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the injection of PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE, at the 5 mg 

CPT/kg, blood, tumor, heart, liver, lung, spleen, and kidneys were collected for the measurement 

of CPT. Compared to PEG5K-Fmoc-VE2/CPT-VE, significantly greater amount of CPT was 

accumulated in tumor from PEG5K-Fmoc-VE2/CPT-S-S-VE nanofibers (Figure 85). 

                

Figure 85 Tissue biodistribution of PEG5K-Fmoc-VE2/CPT-VE and PEG5K-Fmoc-VE2/CPT-S-S-VE 

(5mg CPT/kg) in 4T1.2-tumor bearing mice.  *p < 0.001, compared to PEG5K-Fmoc-VE2/CPT-VE. 

7.3.11 Antitumor activity. 

In vivo antitumor effect of CPT prodrugs nanoassemblies was examined in 4T1.2 breast tumor 

bearing mice (Figure 86). As expected, mice quickly developed tumors in an uncontrolled 

manner after being injected by saline (Figure 86A). In free CPT treated group, the tumor growth 

was moderately suppressed. Greatly improved antitumor activity was achieved in PEG5K-Fmoc-

VE2/CPT-VE-challenged group over that of free CPT. Strikingly, when mice was injected by 

PEG5K-Fmoc-VE2/CPT-S-S-VE, a drastically enhanced tumor growth inhibition was observed 
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with an IR at 81.90%. Furthermore, doubling the dose to 10 mg CPT/kg led to almost complete 

remission in mice bearing tumors (IR=93.48%) (Table 24). All of the treatments were well 

tolerated by mice evidenced by no significant weight changes of mice during the experimental 

period (Figure 86B).Tumors across the groups were also imaged and weighted after terminating 

the study (Figure 86C & D).  

         

Figure 86 Antitumor efficacy of varying CPT or CPT prodrugs nanoformulations in 4T1.2 breast 

tumor model. Solid arrows indicate the i.v. injection. A: tumor volume. *p < 0.01, compared to 

PEG5K-Fmoc-VE2/CPT-S-S-VE (5 mg/kg); αp < 0.001, compared to PEG5K-Fmoc-VE2/CPT-VE (5 

mg/kg) and CPT (5 mg/kg); βp < 0.001, compared to saline; B: mouse body weight, C: tumor 

images. D: tumor weight. 

Table 24 Tumor growth inhibition rate (IR) in 4T1.2 tumor bearing mice. 
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Further, tumors were also subject to H&E staining. As depicted in Figure 87, tumors from the 

mice treated with PEG5K-Fmoc-VE2/CPT-S-S-VE exhibited a significantly greater wealth of 

apoptotic cells, particularly in 10 mg/kg group, in comparison to the tumors from saline, free 

CPT, and PEG5K-Fmoc-VE2/CPT-VE-treated groups, which is aligned with the observation in 

the study of suppressing tumor growth (Figure 86). 

 

Figure 87 H&E staining of tumor tissues. 
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7.4 DISCUSSION 

The emphasis of the current work was placed on improving the compatibility of CPT with the 

nanocarriers developed recently in our laboratory and the stability of CPT (Lu, Huang et al. 

2013) (Lu, Zhao et al. 2014). To this end, CPT prodrugs were constructed through conjugating 

CPT to VE at its hydroxyl group via either disulfide bond (CPT-S-S-VE) or carbonate ester 

linkage (CPT-VE).  

CPT is not stable in blood stream, as where the basic medium can convert its active 

lactone ring form to inactive carboxylate form, leading to the reduced biological activity of CPT 

(Fassberg and Stella 1992, Mu, Elbayoumi et al. 2005). It has been well established that 

introduction of steric hindrance to the hydroxyl group of the CPT will greatly enhance the 

stability of the lactone ring (Zhao, Lee et al. 2000, Li, Lv et al. 2009).  Also, CPT prodrugs that 

are formulated in nanoparticles can not only be prevented from being converted to carboxylate 

form due to the isolation from the mildly basic environment, but also be protected from 

opsonization (Yen, Cabral et al. 2014). Moreover, the neutralized nanoparticles (Table 23) could 

reduce the possibility of being bound by blood proteins and transverse the cell membrane more 

efficiently (Ukawa, Akita et al. 2014). Therefore, formulating CPT-VE or CPT-S-S-VE in 

nanoparticles will inevitably strengthen the integrity of active CPT.  

For the synthesis of CPT-VE, first, direct conjugation of CPT to VE-succinate was 

undertaken. It was anticipated that the carboxylate group in VE-succinate can be coupled with 

the hydroxyl moiety in CPT readily with the catalysis of DCC and DMAP. However, several 

attempts were in vain, which may be due to the inadequate accessibility at the hydroxyl group in 

CPT and the insufficient conjugation between –OH and –COOH. Afterwards, triphosgene was 

applied to further activate the –OH of CPT to –COCl, which is much easier to react with other 
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nucleophiles, including –OH (ref), and also led to increased accessibility of the reacting moiety. 

Therefore, VE (-OH) was linked to CPT-COCl to successfully yield CPT-VE with carbonate 

ester bond. For the synthesis of CPT-S-S-VE, in order to minimize the generation of VE-S-S-VE 

in the first step, 1 eq. molar of VE-succinate was conjugated to 2 eq. molar of HOCH2CH2-S-S-

CH2CH2OH, under which products were mostly comprised of VE-S-S-OH. Then, VE-S-S-OH 

was coupled to CPT-COCl (as mentioned above) to yield CPT-S-S-VE with disulfide bond. 

Reduction-sensitive prodrugs have been intensively studied and posed great potential in 

effectively releasing the active parental drugs (Xiao, Qi et al. 2011, van der Vlies, Hasegawa et 

al. 2012, Xing, Mao et al. 2012).  

It was noted that CPT-VE and CPT-S-S-VE can both self-assemble into nanofibers upon 

stabilization by PEG5K-Fmoc-VE2 in aqueous solution. Previously, we found that PEG5K-Fmoc-

VE2 can self-assemble into nanotubular or worm-like micelles, in which Fmoc motif played a 

crucial role in forming the unique elongated micelles (Lu, Zhao et al. 2014). Herein, in order to 

elucidate the contribution of Fmoc in the formation of nanofibers in PEG5K-Fmoc-VE2/CPT-VE 

and PEG5K-Fmoc-VE2/CPT-S-S-VE, PEG5K-VE2/CPT-VE and PEG5K-VE2/CPT-S-S-VE were 

prepared and scoped under cryoEM, interestingly, both of which were found to be spherical 

micelles, suggesting the indispensable role of Fmoc in producing nanofibers. Furthermore, 

efforts have also been taken to investigate the function of VE in nanofiber development. Again, 

nanospheres were identified in both PEG5K-VE2/CPT and PEG5K-Fmoc-VE2/CPT formulations, 

which implied that introduction of VE to CPT contribute considerably to the formation of the 

nanofibers as well. Notably, the inter-connected nanofibers formed in PEG5K-Fmoc-VE2/CPT-S-

S-VE system were different from that in PEG5K-Fmoc-VE2/CPT-VE, which could be arisen from 

the crosslinking nature of the disulfide group (Herlambang, Kumagai et al. 2011).  
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In Table 23, the CPT DLCs were dramatically improved in CPT prodrugs 

nanoassemblies, especially in PEG5K-Fmoc-VE2/CPT-S-S-VE system, compared to CPT 

nanoformulations. This is highly likely due to the addition of VE molecule to CPT so that the 

compatibility of CPT-VE or CPT-S-S-VE to carriers (PEG5K-Fmoc-VE2 and PEG5K-VE2) was 

significantly ameliorated, in which the hydrophobic interaction between VE molecules from 

payloads and carriers could act as the driving force to form nanoparticles during self-assembly 

process of the carriers, leading to both increased DLC and enhanced stability. Besides, the 

additional hydrogen bonding (Figure 80) could also contribute greatly to the formation of the 

stable nanofibers in PEG5K-Fmoc-VE2/CPT-S-S-VE and PEG5K-Fmoc-VE2/CPT-VE. 

Futhermore, the flexible CPT-S-S-VE could offer the increased degree of freedom of rotation, in 

contrast to relatively rigid CPT-VE, which could adjust the spatial arrangement of CPT-S-S-VE 

to the optimal position so as to be anchored into carriers in a more stabilized fashion. This was 

reflected in Figure 78 & 79, in which significantly more fluorescence quenching and decrease of 

UV absorbance were yielded in CPT-S-S-VE formulations over that in CPT-VE system. 

Furthermore, the higher levels of CPT loading in PEG5K-Fmoc-VE2 over PEG5K-VE2 could be 

attributed to the introduction of the Fmoc, which as a drug-interactive motif can provide 

additional drug/carrier π-π stacking interaction to further enhance the drug loading and 

formulation stability as unveiled in the fluorescence study in Figure 78 (Gao, Huang et al. 2013, 

Zhang, Lu et al. 2014) (Lu, Zhao et al. 2014).  

In vivo biodistribution assay demonstrated that both PEG5K-Fmoc-VE2/CPT-S-S-VE and 

PEG5K-Fmoc-VE2/CPT-VE can accumulate at tumor areas and release CPT. As discussed above, 

the significantly enhanced drug/carrier interactions equipped PEG5K-Fmoc-VE2/CPT-S-S-VE 

and PEG5K-Fmoc-VE2/CPT-VE nanoassemblies with superior stability in vivo, leading to the 
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prolonged blood circulation. It has also been established that the elongated nanoparticles tend to 

circulate longer period of time compared to the spherical counterparts (Geng, Dalhaimer et al. 

2007). Both of these will result in the increased chance of nanofibers to get to tumurol sites. 

However, significantly improved CPT accumulation was noticed in PEG5K-Fmoc-VE2/CPT-S-S-

VE over PEG5K-Fmoc-VE2/CPT-VE. This could be attributed to the following facts. First, Luo et 

al reported that size of nanoparticles smaller than 64 nm was prerequisite in order to effectively 

and deeply penetrate solid tumor tissue, especially in refractory tumor (Luo, Xiao et al. 2010). 

Therefore, smaller sized PEG5K-Fmoc-VE2/CPT-S-S-VE (49.7 nm) is more efficient in 

penetrating the tumor tissue compared to the relatively larger sized PEG5K-Fmoc-VE2/CPT-VE 

(87.4 nm).  Moreover, the disulfide bond linked VE-derivatized CPT is more likely to readily 

release CPT, considering the relatively high GSH concentration in tumor cells (Wu, Fang et al. 

2004). The enhanced tumor distribution of CPT in PEG5K-Fmoc-VE2/CPT-S-S-VE can 

contribute significantly to the dramatically higher level of delaying the tumor growth, compared 

to saline, free CPT, and PEG5K-Fmoc-VE2/CPT-VE (Figure 86). Furthermore, the 

internalization of PEG5K-Fmoc-VE2/CPT-S-S-VE was modulated via endocytosis, which allows 

them to escape the P-gp-mediated efflux pump (Lu, Huang et al. 2013), leading to the enhanced 

intracellular accumulation of active CPT, consequently, resulting in the superior antitumor 

efficacy.     

Hence, VE-derivatized CPT can serve as a proof-of-concept model to solve the issues 

facing the drug delivery field when highly hydrophobic drugs are hard to be formulated directly. 

However, modification to the parent drug oftentimes can lead to the reduction or absence of the 

biological activity of the parental drug, thereby, effective liberation of the parental drug via 
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trigger-responsive release should be taken into account, such as, pH, redox, protonation-

stimulated release.  
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8.0 SUMMARY AND PERSPECTIVES 

Chemotherapeutics have played a pivotal role in the battle of combatting against notorious 

cancer. Administration of anticancer agents to patients can greatly hinder the growth of tumor, 

but the therapeutic index remains unsatisfactory and oftentimes leads to the severe side effects 

due to the poor bioavailability and lack of tumor specific targetability. To address this issue, 

during the last couple of decades, nanotechnology-based medicine has emerged and attracted 

considerable attention, among which polymeric micellar drug formulations have been 

investigated extensively because of the technical ease, the ability to solubilize poorly water 

soluble drugs as well as the superior tumor targeting capability due to the extremely small size 

(10-100 nm) based on EPR effect (Matsumura and Maeda 1986, Torchilin 2007). 

            In my graduate work, I worked on several cohesive strategies to develop dual functional 

nanomicellar carriers for the targeted delivery of chemotherapeutics to cancer aiming to resolve 

the challenges facing in the drug delivery. First, dual functional carrier derived from the PEG-

conjugated Embelin (PEG-EB) was developed. Being a long aliphatic hydrophobic molecule, 

Embelin has antitumor activity through suppressing the activity of XIAP (X-chromosome-linked 

apoptosis protein) (Nikolovska-Coleska, Xu et al. 2004). However, its utility is greatly restrained 

by its poor solubility and limited oral bioavailability (Singh, Guru et al. 2014). Coupling of PEG 

to EB can significantly increase its solubility, and surprisingly the PEG-EB conjugates can self-
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assemble into nanomicelles which can effectively solubilize and formulate other hydrophobic 

antineoplastic agents (Huang, Lu et al. 2012, Lu, Huang et al. 2013). Distinct from most of 

existing drug delivery system, our carrier itself has antitumor activity and can further synergize 

with co-delivered therapeutics. After systemic investigations, we found that PTX-loaded PEG-

derivatized Embelin micellar formulation exerted significantly enhanced antitumor efficacy and 

less systemic toxicity compared to Taxol. Moreover, the system was further improved by 

attaching a tumor-specific ligand-folate onto the surface of the PEG5K-EB2 micelles (FA-PEG5K-

EB2), which led to a dramatically augmented tumor cell growth inhibition in both drug sensitive 

and resistant cancers when delivering DOX (Lu, Zhao et al. 2014). 

             Besides, efforts were also made on the systemic study of SAR on a PEG-Vitamin E 

(PEG-VE)-based dual functional carrier. Our data suggested that the molecular weight of PEG 

and the molar ratio of PEG/VE significantly impacted the overall performance of the conjugates. 

A conjugate of PEG (5K) with two VE molecules (PEG5K-VE2) was the most efficient 

formulation in delivering PTX (Lu, Huang et al. 2013). Additionally, the conjugates well 

retained the intrinsic function of VE in inhibiting the activity of P-gp. Finally, the PEG5K-

VE2/PTX nanomicelles exhibited the highest level of delaying tumor development compared to 

PEG2K-VE/PTX, PEG2K-VE2/PTX, and Taxol (Lu, Huang et al. 2013).  

            As an independent approach to improve the performance of the current micellar 

formulations including our dual functional carriers, it was demonstrated that incorporation of a 

drug-interactive motif (Fmoc) into the interfacial region of PEG5K-VE2 (PEG5K-Fmoc-VE2) led 

to a significant improvement in both drug loading and formulation stability (Lu, Zhao et al. 

2014). The nanoformulations with interfacial Fmoc motif showed markedly elevated 
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antineoplastic efficacy than the counterpart without Fmoc in several animal models including 

drug resistant tumor model (Lu, Zhao et al. 2014). 

           Our improved vectors worked well for most of the hydrophobic chemotherapeutics, but 

cannot effectively accommodate camptothecin (CPT), a potent anticancer agent. Herein, I have 

shown that this problem can be resolved via derivatizing CPT with VE via either carbonate ester 

bond (CPT-VE) or disulfide linkage (CPT-S-S-VE) (Lu, Liu et al. submitted). Our results 

indicated that the antitumor activity was remarkably impacted by the type of carrier (with or 

without interfacial Fmoc) and the chemical linkage between CPT and VE. When CPT-VE or 

CPT-S-S-VE was formulated in PEG5K-Fmoc-VE2, the CPT loading and formulation stability 

were predominantly higher than in PEG5K-VE2. Furthermore, reduction-sensitive linked CPT-S-

S-VE showed the significantly enhanced anticancer therapeutic index in comparison to CPT-VE 

when formulated in PEG5K-Fmoc-VE2 micelles, or free CPT (Lu, Liu et al. submitted).  

             The two biggest concerns facing the polymeric micellar drug delivery system are the 

insufficient stability in vivo upon dilution and the limited drug loading. Several novel approaches 

have been developed to enhance the formulation stability and drug loading by improving the 

drug/carrier interactions, such as the hydrotrope or Fmoc-containing polymers, incorporation of 

the same anticancer agent into the hydrophobic portion in polymeric micelles (Huh, Lee et al. 

2005, Kim, Kim et al. 2010, Kim, Kim et al. 2011, Gao, Huang et al. 2013, Cabral and Kataoka 

2014, Zhang, Lu et al. 2014). There is still a long way to go so as to eradicate cancer, albeit 

advancement in drug delivery has been achieved. In addition, dual functional carrier based on 

PEG-derivatized bioactive molecules could represent a novel platform in chemotherapy. In such 

a system, synergistic effect will be easily obtained between the carrier and loaded drug to 

maximize the antitumor efficacy, meanwhile, the side effects arisen from the loaded anticancer 
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agents could also be potentially offset by the contribution from the biofunctional carrier.  

Furthermore, in addition to the passive targeting to tumor, active targeting by attaching ligand 

into micelles should also be employed in order to further improve the efficiency of intercellular 

uptake, and minimize the off-target untoward effects.  

Besides, conjugation of a second molecule such as a lipid (VE), to originally hard-to-be 

formulated hydrophobic drugs may be deemed as a promising approach to effectively solubilize 

drugs, in which VE-derivatized CPT can serve as a proof-of-concept model that holds great 

potential in drug delivery field. The underlying mechanism of this phenomenon could be 

attributed to the spatial rearrangement of the loaded drug so that they can better fit to the 

hydrophobic pocket in the micelles, leading to the enhanced carrier/drug interactions. 

Conventional polymeric micelle has a hydrophobic core where the hydrophobic anticancer 

agents (PTX, CPT) can be solubilized. Whereas, for the hydrophilic drugs such as platinum 

drugs, gemcitabine, and Fluorouracil, micellar system is of no use. Although hydrophilic drugs 

are soluble in vivo, the non-specific absorption by epithelium cells may impose severe safety 

concern. Therefore, nanoformulations for them are indispensably needed. Conjugation of a lipid, 

such as VE, may address this issue. First, after derivatizing hydrophilic drugs with a lipid, the 

hydrophobicity will be increased significantly, which could allow originally hydrophilic drugs to 

be formulated inside the hydrophobic core of the micelles. The antineoplastic activity of those 

hydrophilic agents could be markedly enhanced via the tumor targeted delivery by polymeric 

micelle with significantly decreased possibility of poisoning the normal tissues. However, 

modification to the parent drug oftentimes can lead to the reduction or absence of the biological 

activity of the parental drug, thereby, effective liberation of the parental drug via stimuli-
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responsive release should be taken into consideration, such as, pH, redox, protonation-triggered 

release.  
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