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TRAPPING AND TRANSPORT OF INDIRECT EXCITONS IN COUPLED

QUANTUM WELLS

Jeffrey K. Wuenschell, PhD

University of Pittsburgh, 2014

Spatially indirect excitons are optically generated composite bosons with a radiative lifetime

sufficient to reach thermal equilibrium. This work explores the physics of indirect excitons

in coupled quantum wells in the GaAs/AlGaAs system, specifically in the low-temperature,

high-density regime. Particular attention is paid to a technique whereby a spatially inhomo-

geneous strain field is used as a trapping potential. In the process of modeling the trapping

profile in wide quantum wells, dramatic effects due to intersubband coupling were observed

at high strain. Experimentally, this regime coincides with the abrupt appearance of a dark

population of indirect excitons at trap center, an effect originally suspected to be related

to Bose-Einstein condensation. Here, the role of band mixing due to the strain-induced

distortion of the crystal symmetry will be explored in detail in the context of this effect.

Experimental studies presented here and in the literature suggest that Bose-Einstein

condensation in indirect exciton systems may be difficult to detect with optical means (e.g.,

coherence measurements, momentum-space narrowing), possibly due to the strong dipole

interaction between indirect excitons. Due to similarities between this system and liquid

helium, it may be more fruitful to look for transport-related signatures of condensation,

such as superfluidity. Here, a method for performing transport measurements on optically

generated indirect excitons is also outlined and preliminary results are presented.

Keywords: semiconductor, quantum wells, excitons, BEC, stress, photoluminescence, trans-

port.
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1.0 INTRODUCTION

This dissertation deals with the study of spatially indirect excitons in gallium arsenide cou-

pled quantum wells. Excitons are a type of metastable quasi-particle that can be optically

generated in semiconductor systems, typically at low temperature. The primary focus here

will be the search for low temperature phase transitions in excitonic systems, particularly

Bose Einstein condensation (BEC). The experiments discussed later in this work revolve

around two main ideas - achieving a high density of cold, indirect excitons and finding

methods of probing this population for signatures of BEC.

Before delving into the experimental details, this chapter will first provide some context

by surveying the theoretical and experimental history of Bose-Einstein condensation over the

past century. Following that, the reader will be introduced to the physics of excitons in quan-

tum wells, providing the theoretical background and terminology necessary to understand

subsequent chapters.

1.1 BOSE-EINSTEIN CONDENSATION

Indistinguishability is one of the most fundamental ideas of many-body quantum mechanics.

Over the course of the last century, physicists have developed rules for calculating expectation

values and assigning probabilities to physical measurements in systems containing a large

number of particles. To use this machinery, particles are typically assigned labels of some

sort. Of course, in the eyes of Nature, each electron is exactly the same as every other, and

such labels exist solely in the imagiantion. If the end result of any calculation predicts a

physical outcome that is dependent on the labeling scheme used, something must be wrong.
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In short, indistinguishability requires that any measurable quantity be unchanged if the

arbitrary particle labels are switched around.

Another key concept of quantum mechanics is that the overall phase of a wave func-

tion is not physically significant. If a system is split into two coherent sub-systems, the

relative phase between them can be measured, but absolute phase should have no physical

significance. Applying this concept to the principle of indistinguishability, the spin statistics

theorem states that, in three dimensions, the many-particle wave function, Ψ, of N indistin-

guishable particles must either be symmetric or anti-symmetric under the exchange of any

two particles, i.e.

Ψ (~r1, ~r2, . . . ~ri . . . ~rj . . . ~rN−1, ~rN) = ±Ψ (~r1, ~r2, . . . ~rj . . . ~ri . . . ~rN−1, ~rN) (1.1)

The positive eigenvalue of the particle exchange operation corresponds to particles with

integer spin, or bosons. The negative eigenvalue corresponds to particles with half-integer

spin, or fermions. 1

The phenomenon of Bose-Einstein condensation was predicted by Einstein after he was

approached by Satyendra Nath Bose, who wrote an analysis of the statistics of distinguishable

particles in the context of the black-body problem [2]. The premise of Bose’s work is relatively

intuitive. If four distinguishable balls are to be distributed in two boxes, the state associated

with all four balls in the left box is unique, whereas there are six distinct ways they can be

split evenly between the two boxes. If, instead, four indistinguishable balls are distributed

between two boxes, there is still only one way of putting all the balls in the left box, but

there is also only one distinct way of splitting them evenly. Compared to the distinguishable

case, the bunched case is statistically much more favorable for indistinguishable particles. 2

Bose-Einstein statistics can be used to calculate a thermodynamic distribution function-

which predicts the mean occupation number of a state with a particular energy, ε, at a given

1In two-dimensional systems, it is possible to have a more general case, where the eigenvalue of the ex-
change operation is an arbitrary complex phase - eiφ. This type of particle is called an anyon and corresponds
to a rational, non-half-integer spin. Anyons play a role in the fractional quantum Hall effect, but will not be
relevant to any of the physics discussed in this dissertation.

2This picture is relevant for bosons. For fermions, each box can have at most one ball.
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chemical potential, µ and temperature, T,[3] -

f(ε) =
1

exp
[

(ε−µ)
kBT

]
− 1

. (1.2)

On a macroscopic scale, one would likely be more interested in the overall density as a

function of temperature and chemical potential. In general, the total particle number can be

calculated by simply multiplying the density of states, g(ε) (the number of states available

in an infinitesmal energy range dε around energy ε is given by g(ε)dε) by the Bose-Einstein

distribution function, and integrating over all energy,

N = N(ε = 0) +

∫ ∞
0

g(ε)dε

exp
[

(ε−µ)
kBT

]
− 1

(1.3)

where ε = 0 corresponds to the ground state of the system and the expected occupation of

a state at large energy (ε → ∞) is zero. The density of states is determined entirely by

the Hamiltonian and dimensionality of the system. For a free-particle in n-dimensions with

spin-degeneracy g0, the density of states per volume is given by,

g(ε)

V
=

g0

2nπn/2Γ
(
n
2

+ 1
)ε(n−2)/2

(
2m

h̄2

)n/2
n

2
. (1.4)

Evaluating the integral in 1.3 leads to an expression for the density,(
N

V

)
=

(
N

V

)
ε=0

+ g0

Lin/2
(
eµ/kBT

)
λnT

. (1.5)

The function Lin/2 is the polylogarithm function of order n/2. The density of the ground

state is simply, (
N

V

)
ε=0

=
g0

V

(
eµ/kBT

1− eµ/kBT

)
. (1.6)

and the usual definition of the thermal wavelength,

λT =
h√

2πmkBT
(1.7)

is used.

The chemical potential of a Bose system is required to be less than or equal to the

3



ground state energy. As the chemical potential approaches the ground state of the system,

the population increases. As µ→ 0, the density of the system increases as the argument of

the polylogarithm function goes to unity:

lim
µ→0

[(
N

V

)
−
(
N

V

)
ε=0

]
=

 g0

(
1
λT

)n
ζ(n/2), n > 2

∞, n ≤ 2.
(1.8)

Physically, this means that for free particles of dimensionality two or less, the density of

particles in excited states can increase without bound. For dimensionality greater than two,

the density of particles in excited states is capped at a particular value, determined by the

temperature. It is also easy to see that the expression for the density of the ground state

in (1.6) - typically zero in the macroscopic limit (V →∞) - can approach a finite, non-zero

value as the chemical potential approaches zero. But - as shown - this will only happen at

finite total density if the density of states leads to a convergent expression in (1.8).

Alternatively, at fixed density, particles will begin to condense into the ground state

below some critical temperature. This can easily be found from (1.8), by solving for the

temperature. For example,

Tcrit =

(
N/V

g0ζ(3/2)

)2/3
2πh̄2

mkB
(1.9)

is the critical temperature for the three dimensional case.

In Fermi systems, Pauli exclusion limits the number of particles that can be packed

in low lying energy states. With bosons, the opposite seems true. A limited number of

particles can be packed into the excited states of the system. Above a critical density, any

additional bosons will condense into the ground state. We see that for interacting particles,

the interparticle separation associated with this critical density is on the order of the thermal

wavelength. The typical intuitive picture is that the effects of Bose-Einstein statistics start

becoming important when the particle wave functions begin to overlap.

It is worth mentioning that when particle number is not conserved, the chemical potential

is fixed to the ground state energy. One canonical example of this is the black-body problem,

where a photon gas is held in equilibrium with a perfect absorber at a fixed temperature.

As the system approaches zero temperature, the population of photons simply goes to zero.

4



There are other interesting signatures of Bose statistics, even in systems without particle

number conservation; the presence of stimulated emission of photons in an optically active

system with significant population inversion is the working principle behind lasers.

The above argument for condensation into the ground state was roughly the conclusion

Einstein came to after reading Bose’s work; he published a paper predicting BEC in 1925

[4]. According to a review of the history of BEC by Griffin,

(N)othing much happened concerning BEC until 1938. Apparently a major reason was
because George Uhlenbeck criticized Einstein’s prediction of a ‘phase transition’ by arguing
it would not occur in a finite system...Second-order phase transitions were not understood
yet and Uhlenbeck’s criticism was generally accepted. [5].

This criticism mirrors similar discussions as to what constitutes a “true” BEC, particularly

in two-dimensions - where long-range order is technically forbidden - and in non-equilibrium

systems. Nonetheless, over the following decades there would be a number of experimental

observations that can be attributed to the surprising properties of bose systems.

1.1.1 Superfluidity and Superconductivity

The discovery of the superfluid He-II phase of liquid 4He is an early experimental appearance

of Bose-Einstein condensation, though unambiguous evidence of this would not be found for

many years. Observation of the sharp drop in viscocity and large thermal conductivity in

the late 1930’s[6, 7], led theorists Fritz London [8] and Laszlo Tisza [9] to predict that BEC

was involved.

It was shown by Landau that superfluidity will break down above a critical velocity when

the elementary excitations are phonon-like; i.e., when the energy dispersion relationship is

linear at low energy [10]. Landau’s argument was that excitations out of the system will

be spontaneously generated if doing so lowers the energy of the system. Applying this

condition to a liquid moving at some fixed velocity with respect to a stationary capillary

tube, excitations will be created if the speed of flow is above a critical value, determined

by the dispersion relationship. If the liquid cannot shed energy and momentum, it will

have no viscosity. Phonon-like elementary excitations are characteristic of a Bose system

near its ground state; thus, virtually all experimentally observed cases of superfluidity are

5



accompanied by condensation. For many years, superfluidity was the only concrete evidence

of condensation in 4He.

The most definitive evidence of Bose-Einstein condensation is a macroscopic occupation

of particles in the ground state of the system. However, due to the strongly interacting

nature of liquid helium, this measurement is not as straightforward as it would be for a

weakly interacting gas. Deep inelastic neutron scattering has been used to measure the

momentum-space distribution of liquid helium [11]; while a sharp peak at k = 0 was never

observed, careful measurements of temperature dependence of the scattering at k = 0 -

as recently as 2000 - were consistent with a projected condensate fraction of around 7%

at absolute zero[12]. Another, relatively recent experiment (1998) showed that quantum

evaporation of helium atoms induced by a collimated beam of photons produces a sharply

peaked angular distribution, suggesting a large fraction of atoms intially at zero in-plane

momentum (with respect to the surface) [13].

Superconductivity is essentially superfluidity in a charge-carrying system; but the con-

nection between most superconductors and BEC is not as direct. In 1911, Heike Kamerlingh-

Onnes observed a sharp drop in the resistance of extremely pure mercury below 4.2 K; the

final value of the resistance was below the measureable range of his instruments [14]. Exper-

iments in the 1930s revealed a discontinuity in the heat capacity of superconducting metals,

of varying magnitude dependening on the relative contribution of electrons and phonons

in a particular metal [15]. The ability of superconductors to expel an externally appliced

magnetic field was observed in 1933 by Meissner and Oschenfeld, the first concrete result

that suggested that a superconductor is not just a material with perfect conductivity [16].

The connection between superconductivity and BEC was not firmly established until the

late-1950’s. It was perhaps suspected by Fritz London, who published a phenomenological

model of superconductor electrodynamics with his brother, Heinz, in 1935 [17]. BCS theory

- the work of theorists Bardeen, Cooper and Schrieffer in 1957 - predicted that an electronic

pairing mechanism strong enough to overcome the screened Coulomb repulsion would cause

electrons to form correlated, integer-spin pairs. In metallic superconductors, this pairing

mechanism was found to be mediated by the electron-phonon interaction [18]. This process

is now typically referred to as “Cooper pairing”.
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The strong correlation between Cooper pairs in a BCS superconductor is sometimes

referred to as a pseudo-BEC [19], primarily because it occurs in a Fermi system. Of course,

virtually every experimental example of Bose-Einstein condensation occurs in systems of

composite bosons (bosons that are built out of fermions that are tightly bound together).

Cooper pairs are somewhat different, in the sense that the electrons do not form a tightly

bound pair in real-space. Instead, two electrons of opposite momentum and spin form

correlated pairs. In Fermi systems where both states are possible in different regimes, it

is possible to observe the transition from the typical BCS state to a condensate of tightly

bound composite bosons; this transition is called “BEC-BCS crossover” [20].

In the decades following BCS theory, the study of superconductivity moved forward

with a focus on finding higher critical temperature superconducting materials. Alloys based

on copper oxide have been particularly fruitful, instigated by studies of the Ba-La-Cu-O

system in 1986 (which suggested a TC of around 30 K) [21] and with the record set in

1993 by the Hg-Ba-Cu-O system at high pressure (with TC = 150 K) [22]. The exact

pairing mechanism for high temperature superconductors is still not certain, although there

is a general understanding that the system can be modeled as a doped Mott insulator [23]

Within this picture, one dominant theory for pairing involves anti-ferromagnetic exchange

effects [24].

1.1.2 Cold Atom Experiments

A dilute, spin-polarized hydrogen gas was proposed as candidate for BEC, first in 1959 by

C.E. Hecht [25] and again in 1976 by Stwalley and Nosanow [26], by virtue of the prediction

that it would remain gaseous down to absolute zero. Spin-polarized hydrogen became the

focus of BEC research throughout the 1980s. The pace of research was set by the invention of

new techniques for achieving extremely low temperatures in this system - magnetic trapping

and evaporative cooling made 100µK achievable by 1991 [27, 28]. Unlike 4He, atomic gases

provided an opportunity to study a weakly-interacting Bose gas. The weakly interacting

case is significantly easier to deal with theoretically and - it turns out - lends to simpler

experimental intepretation.
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In the early-90s, groups at MIT, JILA and Rice University began applying these methods,

in conjunction with new laser cooling techniques, to dilute alkali gases. Alkali systems lack

some of the advantages of spin-polarized hydrogen; specifically, they are heavier - which

corresponds to a lower BEC transition temperature - and were predicted to exhibit bound

states at low temperature. However, alkali gases have the advantage of being more responsive

to evaporative cooling. The scattering mechanisms responsible for the formation of bound

states also turned out to be strongly suppressed at low temperature[27, 29]. The first atomic

condensate is credited to the JILA group headed by Cornell and Wieman (working with

Rb-87) [30] , followed shortly by the MIT group under Wolfgang Ketterle (working with

Na-23) [31]. This work was recognized with the 2001 Nobel prize, which Wieman, Cornell

and Ketterle shared equally. The onset of BEC was observed from a drastic peak in the

momentum-distribution of the atoms, symptomatic of macroscopic occupation of the ground

state.

1.1.3 Bose Einstein Condensation of Excitons

Solid state systems constitute another major experimental front in the study of BEC. Exci-

tons - a type of quasiparticle typically occuring in solid state systems - will be the primary

focus of this work.

Recall that semiconductors are characterized by a valence band and a conduction band,

with an energy separation called the band gap. The Fermi energy is located mid-gap, mean-

ing that at absolute zero, all valence band states are occupied and all conduction band states

are empty. When a semiconductor absorbs a photon with energy greater than the band gap

energy, an electron is promoted from the valence band to the conduction band. The va-

cant state can be treated as a positively charged particle, calle a hole. Thinking about the

ground state of the semiconductor as the vacuum, this process can be pictured as a photon

spontaneously generating an electron-hole pair. If the electron and hole have sufficiently low

kinetic energy, they will bind together in a manner analogous to positronium. The close

proximity of the two means that they will quickly recombine; but, while this quasiparticle

exists, it is referred to as an exciton. Constructed out of two half-integer spin particles, an
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exciton has net integer spin and will act like a boson. In principle this is no different than

in atomic systems; atoms are also composite bosons composed of half-integer spin protons,

neutrons and electrons. At very high density, when the wave functions of the underlying

fermions start to overlap, the approximation of excitons as bosons begins to break down;

however, it has been rigorously shown that excitons can be treated as a Bose gas, with some

modifications due to fermionic effects [32].

Large, expensive and complicated experimental setups are a necessary requirement for

the study of cold atomic gases. This is primarily a result of the heroic effort needed to achieve

temperatures in the microkelvin and nanokelvin range. From the perspective of commercial

application, this is a huge barrier. Excitonic systems circumvent these issues in several

ways. Excitons are orders of magnitude less massive than atoms. This corresponds to a

drastically higher critical temperature. Even a critical temperature of above 2 K drastically

reduces the complexity of the experiment; but, practically speaking, any sort of large-scale

device application would need to work near room temperature, eliminating the need for

cryogenics altoghether. Semiconductor systems are also advantageous in the sense that

relatively complex structures can be cheaply fabricated on a semiconductor chip. In other

words, compared to similar experiments in cold atomic gases, semiconductor systems are

compact, versatile, and cheap.

While the study of Bose-Einstein condensation in semiconductor systems is interesting in-

and-of itself, it can also lead to a deeper understanding of the optical and electrical properties

of semiconductors under exotic conditions. It opens the possibility of observing other novel,

low temperature phase transitions. And, on a more basic level, it can teach us about the

physics of semiconductors at low temperatures, which can then potentially be extended to

build novel, room temperature devices.

1.1.4 Survey of Excitonic BEC Research

Bose-Einstein condensation of excitons was first suggested in 1962 in two short theory papers

by Blatt, et. al. [33] and Moskalenko [34]. Several decades prior to the observation of atomic

BEC, the outlook for excitons was extremely favorable. Excitons have a much lower mass -
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on the order of the electron mass - compared to atoms, which implies a much higher critical

temperature (note the dependence of the thermal wavelength on mass in (1.7)).

There are a few requirements for the observation of BEC in excitonic systems. First,

the exciton lifetime need to be at least comparable to the thermalization time. In order for

excitons to condense to the ground state before being re-emitted as a photons, they must

undergo some process that allows them to give up energy and scatter down to the ground

state.

Secondly, if the average thermal energy of the system - kBT - is larger than the exciton

binding energy, excitons may easily ionize. In this case, electrons and holes will form a

plasma and will not act as paired bosons. This can also happen at high density, if the

Coulomb interaction between electrons and holes becomes sufficiently screened. In principle,

if the BEC critical temperature is higher than the exciton formation temperature, below

that temperature excitons may immediately condense as soon as they begin pairing. In the

search for room temperature BEC, a high binding energy would be necessary.

Thirdly, the crystal must be pure enough that the excitons are not trapped in localized

defect states at the transition temperature. Localization can make it difficult to observe any

effects related to condensation, which are typically characterized by long-range order.

The possibility of room temperature BEC is a huge selling point, so early studies focused

on excitons or excitonic molecules with large binding energy (ideally, greater than kBT ≈

25 meV, associated with room temperature) [35]. In 1972, Kuroda et al. observed the

appearance of sharp luminescence line under pulsed excitation in cadmium selenide at low

temperature (1.8 K), and interpreted it as a BEC of biexcitons [36]. A critique of this

work in 1974 argued that this was unlikely due to the role of crystal heating under pulsed

excitation for the claimed experimental parameters; the authors instead identified the sharp

luminescence line as an exciton complex bound to a neutral donor site [37].

Copper chloride (CuCl) likewise exhibits a strongly bound biexciton (BX) state; signa-

tures of bose effects in CuCl were observed in the 1980’s and 1990’s, including a thermal

distribution similar to a Bose-Einstein distribution near µ = 0 (measured from the BX

luminescence spectrum), stimulated scattering into the ground state [38], and stimulated

enhancement of an optical phase conjugation signal in four-wave mixing experiments [39].
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However, the biexciton state in CuCl is characterized by a short radiative lifetime (1-10 ns),

and effects indicative of Bose statistics are only observed with resonant excitation; this sug-

gests that it is only possible to observe a non-equillibrium condensate in this system [40]. In

a non-equillibrium condensate, the coherence of the ground state is seeded by the coherence

of the pump laser. In a system within the density and temperature regime necessary for

BEC, it should condense even when excitons are injected into the system incoherently 3.

A third major candidate system for BEC, studied extensively in the 1980’s and 1990’s,

is cuprous oxide (Cu2O). The excitonic ground state in Cu2O is bound at room temperature

and is forbidden by symmetry to undergo direct recombination, giving it a long radiative

lifetime - measured experimentally to be as large as 13 µs at low temperature (10 K) [41].

The primary obstacle to the observation of BEC in Cu2O systems is the prevalence of Auger

recombination at high density; Auger recombination drastically reduces the lifetime and

results in a significant source of heating [35]. In the last few years, there have been claims

of BEC in Cu2O at low density and - necessarily - low temperature (less than 1 K) [42, 43].

There has been remarkable progress in the study of BEC in semiconductor microcavity

systems in the last decade. A microcavity is an optical cavity formed between two Bragg

reflectors, grown with alternating semiconductor layers (for example, GaAs and AlAs). The

structure is designed so that quantum wells sit at the anti-nodes of the cavity mode; if the

quantum well exciton energy is near the resonant energy of the cavity, it is possible to produce

excitons strongly coupled to cavity photons. An exciton-polariton is a quasi-particle that is

a quantum superposition of an exciton and a cavity photon. The most attractive attribute

of this system is that the effective mass of the polariton is based on the exciton and photon

mass. Due to the extremely low effective in-plane mass of a cavity photon, the effective mass

may be on the order of 10−4 times the bare electron mass [44]. This implies a significantly

higher critical temperature, compared to a system of bare excitons.

While the lifetime of microcavity polaritons is typically short, it is possible to reach some

degree of thermalization by working with polaritons that have a stronger exciton fraction 4.

3Or, if they are injected with a coherent source, but undergo repeated scattering, which would result in
a loss of driven coherence.

4Polariton-polariton scattering is primarily mediated by scattering between the exciton component; scat-
tering between cavity photons is typically negligible.
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In 2007, several groups published strong evidence of condensation in microcavities, including

spatial coherence and momentum-space narrowing [44, 45, 46]. These results differ from the

earlier observation of non-equilibrium condensation, in the sense that coherence was observed

even with incoherent (non-resonant) pumping. In microcavity samples with long polariton

lifetime, Nelsen et. al recently observed coherent, dissipationless flow of polaritons above

a critical density; the coherent behavior was observed to persist up to 200 µm from the

incoherent pump source [47].

Coupled quantum well and electron-hole bilayer systems have also been extensively stud-

ied in the past two decades. Microcavity polaritons can be thought of as a weakly-interacting

Bose gas; as will be discussed later, spatially-indirect excitons exhibit a strong dipole-dipole

repulsion and can not be thought of as weakly interacting. Much like the search for sig-

natures of BEC in superfluid helium (another strongly interacting system), unambiguous

observation of an indirect exciton BEC has proven to be challenging. But the search may

also reveal interesting new physics that does not appear in weakly interacting systems. In-

direct excitons are the major focus of the work presented here, so the current state of the

field will be reviewed in a bit more detail in Chapter 3 - after the appropriate conceptual

background has been established.

1.2 BAND STRUCTURE OF GAAS

Gallium arsenide (GaAs) is a III-V compound semiconductor with a direct bandgap, meaning

that the lowest point of its conduction band and the highest point of its valence band are

at the same point in momentum-space. At sufficiently low temperature, electrons and holes

will inhabit states primarily near the bottom of the valence band and top of the conduction

band, respectively.

The key feature of direct bandgap semiconductors is that an electron in the valence band

can be optically excited to the conduction band without the assistance of phonons 5. A plot

5Or, conversely, an electron in the conduction band can drop back to the valence band by emitting a
photon.
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of the band diagram of bulk GaAs is shown in Figure 1, along with a sketch of the photon

dispersion relationship centered at the top of the valence band,

E(~k) =
h̄c|~k|
nGaAs

(1.10)

where nGaAs is the index of refraction of GaAs (approximately 3.7 in the near-infrared [48]).

In order for a valence band electron to be promoted to the conduction band by a photon,

energy and momentum must be conserved. This illustrates that absorption (and emission)

will occur almost entirely near band-center.

The direct gap of GaAs is approximately 1.43 eV at room temperature and 1.52 eV at

low temperature (below 10 K) [48], corresponding to photon wavelengths of 867 nm and 815

nm respectively. This puts the band edge absorption/emission in the near-infrared region.

A more detailed discussion on luminescence in GaAs is covered in Chapter 2.

The band structure of a crystal is built from the hybridization of the atomic orbitals that

make up the lattice. Energy bands are formed when a large number of discrete atomic levels

are coupled together, forming a continuum of states.

The spin structure of the electrons and holes in a semiconductor are determined by the

symmetry of the states that make up the valence and conduction bands. In GaAs, the valence

band is composed of a hybridization of the 4s24p1 valence states in gallium and the 4s24p3

valence states of arsenic; this results in a p-like valence band and an s-like conduction band[1].

Electrons in the conduction band have total angular momentum j = 1
2
, corresponding to a

state with spin-1
2

and zero orbital angular momentum. Meanwhile, the uppermost valence

band electrons correspond to states with orbital angular momentum ` = 1 and spin-1/2,

meaning they have total angular momentum of j = 3
2
.

To calculate the band structure, one must solve for the electron eigenstates and eigenval-

ues for the periodic potential defined by the crystal lattice of GaAs. While in principle this

is a difficult problem, it has also been one of the central tasks of solid state physics in the

past century, so there is a well-established methodology to deal with it. Some of the main

points will be outlined here, to give the reader some physical intuition of the system. For

more detail, refer to discussions of k · p theory and the Luttinger-Kohn model in Chuang [1]

or Winkler [49]. This overview closely follows the discussion and notation in Chuang’s work.
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Figure 1: A plot of the six highest valence bands and two lowest conduction bands of bulk

GaAs using the six-band Luttinger-Kohn model at low-temperature. Shown is a cross-section

of the dispersion relationship, E = E(kx, ky, kz) along the (100) (blue), (110) (green), and

(111) (red) directions. Note that the heavy hole (hh), light hole (hh), split-off (so) and

conduction bands (c) are all doubly degenerate. At k = 0, the hh and lh band splitting goes

to zero, leading to a four-fold degeneracy. The photon dispersion curve is shown to illustrate

that absorption (and emission) only occurs with small momentum transfer (in effect, near k

= 0)

.
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We start with Schrodinger’s equation for an electron in the crystal lattice, including

spin-orbital coupling,

ĤΨ(~r) =

[
p2

2m0

+ V (~r) +
h̄

4m2
0c

2
~σ · ~∇V (~r)× ~p

]
Ψ(~r) = EΨ(~r). (1.11)

In general, the form of the potential due to the crystal lattice, V (~r), can be very compli-

cated. This problem is made tractable by exploiting the periodicity of the lattice. Periodicity

requires that any physically measureable quantity in the crystal must have the same period-

icity. Therefore, the probability density of an electron must be the same in every unit cell.

A family of wave functions that satisfy this condition is given by Bloch’s theorem,

Ψ(~r) = ei~k·~run~k(~r) (1.12)

where term un~k(~r) is a function that has the same periodicity as the crystal lattice. The

plane-wave prefactor allows the wave function to have a phase shift between unit cells, which

has no effect on the electron probability distribution |Ψ|2, but which does contribute to the

kinetic energy. By plugging this solution into Schrodinger’s equation, one can generate an

eigenvalue equation explicitly in terms of un~k:[
p2

2m0

+
h̄~k · ~p
m0

+ V (~r) +
h̄

4m2
0c

2
σ · ∇V (~r)× ~p

]
un~k(~r) =

[
εn~k −

h̄2k2

2m0

]
un~k(~r). (1.13)

Perturbation theory can then be used to consider solutions near some point of high symme-

try. For example, around ~k = 0, the conduction-band is s-like and valence-band is p-like,

so it is appropriate use the appropriate spherical harmonics as a basis (|S〉 and |X〉,|Y 〉,|Z〉,

respectively). In the Luttinger-Kohn model, the six highest valence bands are treated ex-

plicitly, while the effect of the conduction band and lower lying valence bands are taken

into account through experimentally determined model parameters. The basis-states of the

Luttinger-Kohn model are as follows:∣∣∣∣32 , 3

2

〉
=

1√
2
|(X + iY )〉 |↑〉 (1.14)
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∣∣∣∣32 , 1

2

〉
= − 1√

6
|(X + iY )〉 |↓〉+

√
2

3
|Z〉 |↑〉 (1.15)

∣∣∣∣32 ,−1

2

〉
=

1√
6
|(X − iY )〉 |↑〉+

√
2

3
|Z〉 |↓〉 (1.16)

∣∣∣∣32 ,−3

2

〉
=

1√
2
|(X − iY )〉 |↓〉 (1.17)

∣∣∣∣12 , 1

2

〉
=

1√
3
|(X + iY ) ↓〉+

1√
3
|Z ↑〉 (1.18)

∣∣∣∣12 ,−1

2

〉
=

1√
3
|(X − iY ) ↓〉 − 1√

3
|Z ↑〉 . (1.19)

Evaluating the matrix elements for the Hamiltonian (1.13) perturbatively in this basis up to

order k2 results in the Luttinger-Kohn Hamiltonian. For simplicity, the terms corresponding

to the the states in the splitoff band, (1.18) and (1.19), will be neglected. This leaves a 4×4

matrix,

Hv = −


P +Q −S R 0

−S∗ P −Q 0 R

R∗ 0 P −Q S

0 R∗ S∗ P +Q

 . (1.20)
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where each term depends on ~k, as follows:

P =
h̄2γ1

2m0

(
k2
x + k2

y + k2
z

)
, (1.21)

Q =
h̄2γ1

2m0

(
k2
x + k2

y − 2k2
z

)
, (1.22)

R =
h̄2

2m0

[
−
√

3γ2

(
k2
x − k2

y

)
+ i2
√

3γ3kxky

]
, (1.23)

S =
h̄2

2m0

2
√

3γ3 (kx − iky) kz. (1.24)

Using a 4×4 matrix that excludes the coupling to the split-off band is a typical approximation

at low k-values. The split-off band is associated with total angular momentum j = 1
2
,

resulting from anti-aligned orbital angular momentum ` = 1 and spin angular momentum

s = 1
2
. The spin-orbit coupling associated with the anti-alignment of the spin and orbital

angular momentum results in it having less energy than the aligned case, putting it 340 meV

below the band-edge in bulk [1]; at k-values accessible to holes at low temperature, it is

expected that coupling to the split-off band will be negligible.

The minus sign in front of the Luttinger-Kohn Hamiltonian indicates a decrease in energy

as k increases, as would be expected for the valence band. In the exciton picture, this text

will often treat holes as real particles with positive mass and positive charge, rather than

as explicitly treating them as unoccupied valence band states. Keep in mind that energy

changes that increase the energy of a hole actually decrease the valence band energy.

The four basis states treated here are associated with total angular momentum j = 3
2
;

resulting from aligned orbital angular momentum ` = 1 and spin angular momentum s = 1
2
.

The
∣∣3

2
,±3

2

〉
-states are called heavy-hole states, associated with the angular momentum

entirely aligned or anti-aligned with +z-direction (mj = ±3
2
). The

∣∣3
2
,±1

2

〉
-states are called

light-hole states, associated with an angular momentum projection along the z-axis of ±1
2

(mj = ±1
2
).

Applying the usual definition of the effective mass

meff =
h̄2

(∂2E/∂k2)k=0

(1.25)

to the Luttinger-Kohn Hamiltonian, shows that the valence band states have different masses
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Parameter Value

γ1 6.8

γ2 1.9

γ3 2.73

mhh,z/m0 0.333

mlh,z/m0 0.094

mhh,||/m0 0.115

mlh,||/m0 0.204

me/m0 0.067

Table 1: Parameters of Luttinger-Kohn Model for GaAs [1]

in the z-direction than in the x - and y-directions (determined by the parameters γ1, γ2 and

γ3; see Table 1). The heavy-hole band is associated with a heavier mass in the z -direction and

a lighter-mass in the plane perpendicular to z ; the case for the light-hole band is reversed.

These parameters are summarized in Table 1. Note that the bands are not entirely parabolic,

due to the coupling terms R and S. This will be discussed in greater detail in Section 1.3.

The conduction band is parabolic and exhibits the same effective mass in all propagation

directions (this can be seen in Figure 1, where the energy cross-section for the conduction

band is the same along the (100),(110) and (111) directions).

A few things are worth mentioning about the symmetry of gallium arsenide. In our

discussion of quantum wells, the z -direction will be defined as the growth direction. But

it is important to realize that this is completely arbitrary. At first glance, that seems

incorrect; the heavy- and light-hole states exhibit different effective masses in the in-plane

direction than in the z -direction. This seems to indicate there is something special about

the z -direction. In fact, only reason for this apparent asymmetry is because the basis states

used in this Hamiltonian are angular momentum eigenstates defined with respect to the

z -direction. If one were to define the x -direction as the growth direction and re-define the
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basis states consistently, the results should be identical. This is evident given that GaAs

has a zinc blende structure (which is structurally identical to diamond cubic, except for the

presence of two different types of atoms, and has cubic symmetry).

In the literature, the [100] and [001] crystallographic directions are used interchangeably

to define the growth direction of quantum wells in GaAs - it is worth keeping in mind that

these are, in fact, physically identical. Occasionally, wells are grown in the [111]-direction or

[110]-direction; these types of structures will have different physical properties.

Likewise, the in-plane - [110] and [110] directions are typically interchangeable. In Chap-

ter 2, it will be shown that under applied stress this symmetry is broken in our system by a

small piezoelectric effect.

1.3 QUANTUM WELLS

A quantum well is a two-dimensional potential well6 in the conduction band and/or the

valence band, created by growing alternating layers of different semiconductors on top of

one another. A Type-I quantum well is a structure where electrons and holes are trapped

in the same layer, a type-II quantum well is a structure where they are trapped in different

layers. A cartoon sketch of these geometries is shown in Figure 2. The structures studied in

later chapters will all be type-I quantum wells.

A common quantum well system is where a compound semiconductor is alloyed with

some other material to either raise or lower the bandgap. For example, aluminum arsenide

(AlAs) is an indirect bandgap material with a larger gap at the Γ-point than GaAs, 3.03 eV at

room temperature and 3.13 eV near absolute zero [1]. GaAs can be continuously alloyed with

aluminum to increase its bandgap energy. This system is typically referred to as AlxGa1−xAs,

where x is a number between 0 and 1 that refers to the alloy fraction of aluminum in the

material. As one might expect, at some alloy fraction the system transitions from direct-gap

to indirect-gap. The maximum conduction band discontinuity - and quantum well barrier

6Two-dimensional in the sense that motion of carriers is confined in one dimension; they are free to move
about in the plane of the quantum well.
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Figure 2: A sketch of the Type 1 and Type 2 quantum well energy band diagrams.

height - was measured by Maezawa, et. al., to occur around x = 0.45 [50].

The band structure of a quantum well system is determined by the band gap of the two

materials, but also the band offset - the amount of the band gap discontinuity seen at the

conduction band compared to the valence band. While band theory predicts that this should

be determined entirely by the band gap and electron affinity of the two materials, the actual

offset was somewhat contentious throughout the 1970’s and 1980’s; numerous electrical and

optical measurements in the late-80’s suggested a ratio ∆Ec:∆Ev of between 60:40 and 70:30

[48]. In the calculations presented in later Chapters, a ratio of 67:33 is used [1].

The GaAs/AlAs system is an attractive choice for heterostructures composed of thin

layers, because AlAs and GaAs have very similar lattice constants - 5.653 Å and 5.660 Å

respectively, at room temperature [1]. This means that a layer of AlAs grown on top of a

layer of GaAs will suffer very little lattice mismatch. When lattice mismatch between two

materials is significant, it will either cause built-in strain near the interface between the two

materials (if the mismatch is small) or will cause a large amount of disorder. Disorder in

quantum wells can cause a number of issues, from trapping of carriers at defect sites at low

temperature to poor carrier mobility due to carrier-defect scattering.

In terms of solving for the wave function, a quantum well can be treated as a finite 1D

barrier in the growth direction7. It is also a typical approximation to de-couple the in-plane

7There is some additional complication due to the difference of the effective mass in the well and the
barriers. This issue is addressed in detail in Appendix A
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motion from the wave function in the confinement direction. A simple model wave function

for a carrier in a quantum well is

ψj,mj ,~k||,n
(
~r||, z

)
= gn(z)ei~k||·~r |j,mj〉 (1.26)

where the j and mj quantum numbers describe the basis state for the Luttinger-Kohn Hamil-

tonian, the vector ~k|| defines the motion in plane, and the new quantum number - n - corre-

sponds to the eigenstate of the 1D well in the confinement direction. This eigenstate, gn(z)

is called an envelope function. The energy is often approximated as,

E =
h̄2

2meff,z

(π
a
n
)2

+
h̄2

2meff,||
k2
|| (1.27)

where the first term is the confinement energy due to an infinite 1D well of width a. For the

infinite-barrier case, the quantum number n can be any integer greater than one, and this

set of basis functions defines a complete set.

For the finite-barrier case, there will be a few differences. First, there will be some

amount of penetration of the wave function into the barrier. In (1.27), the confinement

energy is based on the assumption that the wave function must go to zero at the well edges,

fixing kz at some multiple of π
a
. For a better approximation of the finite well problem, it

is necessary to define an effective well width, which is necessarily slightly larger than the

physical well width 8.

Secondly, confined states will exist only as long as the confinement energy is less than

the depth of the well. This means that for a finite-well, only a few confined states will

exist, followed by a continuum of unbound states at higher energy. For the experiments

discussed here, the average thermal energy will be significantly less than the gap between

the lowest and second-lowest (n = 1 and n = 2) confined states. Using the infinite-barrier

approximation, the gaps between the n = 1 and n = 2 electron, heavy-hole, and light-hole

subbands are 85 meV, 17 meV, and 61 meV, respectively. The actual values will be slightly

lower, but even 17 meV corresponds to a thermal activation energy of around 200 K; far

greater than would be observed in our working range, typically 20 K or less.

8Penetration into the barrier increases as the confinement energy increases, so the effective well width
will be larger for larger n.
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Note that due to the effective mass difference between the heavy-hole and light-hole states

in the z -direction, the confinement energy splits the two bands at ~k|| = 0. This will leave

the heavy-hole (with its larger mass in the confinement direction) as the lowest energy hole

state; corresponding to the highest valence band. This also splits the degeneracy at valence

band center; making it two-fold, rather than four-fold degenerate. In Figure 3, the band

diagram of the lowest electron band and the lowest few hole bands are shown. They are not

calculated in the infinite-well approximation discussed above, but using the full Luttinger-

Kohn model; there are some subtleties to this calculation that will be discussed in Chapter

2, that lead to a momentum-space indirect bandgap in the light-hole band.

1.4 EXCITONS

An exciton is a bound-state formed by an electron and a hole due to the Coulomb interaction.

The Hamiltonian that describes this system can be written as,

H = − h̄2

2me

∇2
e −

h̄2

2mh

∇2
h + Ve(~re) + Vh(~rh)−

e2

4πε

1

|~re − ~rh|2
. (1.28)

In bulk, this expression looks very similar to the hydrogen atom - with the exception that

the mass of the hole is comparable to that of the electron and cannot be neglected. Instead,

one can write the solution in terms of the reduced mass,

1

µ
=

1

me

+
1

mh

, (1.29)

which will depend on the effective masses of the electron and hole in GaAs (see Table 1.

Note that ε in (1.28) refers to the static dielectric constant in the medium. For GaAs, it is

approximately 13ε0 at room temperature (300 K) and 12.7ε0 near absolute zero [48]. The

eigenstates of this Hamiltonian will be the hydrogenic wave functions with a Bohr radius

given by [51],

aex =
4πh̄2ε

e2µ
(1.30)
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(a) (b)

Figure 3: Plot of the (a) electron and (b) hole energy bands of a 14 nm GaAs quantum well

with Al0.45Ga0.55As barriers, as a function of in-plane k. For the hole states, the lowest three

subbands are shown with a cross-section along the (100) (blue, solid line) and (110) (green,

dotted line) directions. Each subband is two-fold degenerate.
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and a ground state energy of,

Ebind = − e2

8h̄2ε2
. (1.31)

The binding energy of ground state excitons in bulk GaAs has been measured to be around

4 meV at low temperature (between 1 and 2 K) [52], which would correspond to a Bohr

radius of around 14 nm. Recall that the lowest hydrogenic wave function is of the form,

ψ(~r) ∝ e−r/aex . (1.32)

In quantum wells, one effect of confinement is the enhancement of the exciton binding energy.

An interpolation on measurements by Tarucha, et. al. show a binding energy of approxi-

mately 10 meV for 14 nm quantum wells in an GaAs/AlAs structure [53]. Measurements

of the splitting between the 1s and 2s exciton energy levels by Miller, et. al. lead to a

predicted binding energy of approximately 8 meV for the heavy-hole exciton and 9.5 meV

for the light-hole exciton for 14 nm quantum wells in a GaAs/Al0.37Ga0.63As structure [54].

In short, the general trend is that stronger confinement (either through higher barriers or

narrower wells), leads to a higher exciton binding energy.

The role of confinement, which forces the electron and hole into greater proximity and

lowers the binding energy, also shortens the lifetime. Measurements by Köhler, et. al., [55]

show a 700 ps exciton lifetime for 21 nm wells, a 300 ps lifetime for 10.7 nm wells, and a 200

ps lifetime for 5 nm wells (all in GaAs/Al0.3Ga0.7As).

In single quantum wells, an applied electric field in the growth direction will cause ex-

citons to polarize slightly within the well, lowering the overall energy slightly. Called the

quantum-confined Stark effect, it will be more pronounced in wider or shallower wells - be-

cause the carriers are able to polarize more effectively in the z-direction - and is roughly

quadratic with applied field. For 10 nm quantum wells with Al0.32Ga0.68As barriers, Miller

et. al. observed a roughly 20 meV shift of the hh- and lh-lines with an applied field of 100

kV/cm [56]. The separation of the electron and hole also results in a longer lifetime - an

early experiment by Polland et. al. reported a huge enhancement in 20 nm quantum wells

in an 100 kV/cm field - from just under 1 ns at zero field to approximately 100 ns - and a

much smaller enhancement in 10 nm quantum wells - from around 0.5 ns at zero field to 1
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ns at almost 180 kV/cm [57].

This lifetime enhancement can be drastically improved by using a system of two, closely

coupled quantum wells (CQW). At zero-field, the two lowest states of two, identical coupled

wells are roughly symmetric and anti-symmetric combinations of the single quantum well

ground state (shown in Figure 4); the symmetric state will be the ground state, the anti-

symmetric state will be higher by a value that depends on the energy height and spatial width

of the barrier (stronger coupling leads to a greater splitting). Under an applied electric field,

one well becomes energetically preferable for the electron and the other becomes preferable

for the hole. In Figure 4, it is shown that the electron and hole very quickly become localized

in their respective wells.

It was discussed in the previous section that the primary purpose of the coupled quantum

well structure is to enhance the lifetime. A detailed description radiative recombination will

be covered in Chapter 2, but the main ideas will be shown here. One might guess that, due

to the spatial separation of the electron and hole in the CQW structure, the excitonic wave

function will look much different.

There are several ways to solve for the excitonic wave function in quantum wells or

coupled quantum wells. A typical variational solution that can be applied to both cases is

[58, 59],

Ψ(x, y, ze − zh) = Nge(ze)gh(zh)exp

−
√
x2 + y2 + α (ze − zh)2

λ

 (1.33)

where ge and gh are the single particle electron and hole ground state wave functions due

to the quantum well confinement potential, x and y indicate the separation between the

electron and hole in-plane, and α and λ are variational parameters. Physically, λ represents

an effective Bohr radius and α is a unitless deformation parameter that takes into account

distortion of the wave function due to confinement in the z-direction.

The numerical calculations of Takahashi et. al [58]., using this variational approach, do

not specifically treat the geometry used in the experiments discussed in subsequent Chapters

(14 nm quantum wells with a 4 nm barrier). For 14 nm quantum wells with 5 nm barrier in a

GaAs/Al0.3Ga0.7As system, a binding energy of around 5.5 meV is predicted at zero electric
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(a) (b)

(c) (d)

Figure 4: The calculated envelope wave functions for electrons and holes in a 14 nm-4 nm-14

nm CQWs with Al0.45Ga0.55As barrier as a function of electric field in the growth direction.

Shown are the wave functions for (a) the heavy-hole and (b) electron eigenstates localized to

lower energy well, and the (c) heavy-hole and (d) electron eigenstates localized to the upper

energy well.
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field. At 1 mV/nm electric field, a similar structure with 10 nm quantum wells and a 4 nm

barrier is predicted to have a binding energy of around 3.3 meV. With a similar calculation,

Takahashi et al., predict the spatial extent of a heavy-hole exciton in this system to have

an in-plane spatial extent of around 30 nm and an expected electron-hole separation in the

growth direction of around 14 nm (close to the well-center to well-center distance).

Another approach is to choose a basis set of single-particle wave functions for the electron

and hole and use the product of these states to model the two-particle wave function. After

finding the matrix elements of the Hamiltonian (1.28) in the chosen basis, one can diagonalize

the Hamiltonian to find the lowest eigenvalue. This method will only be accurate if the

projection of the true ground-state wave function onto the chosen basis is almost unity (in

other words, if the ground state wave function can be accurately expanded into the chosen

finite basis).

A calculation pertaining to indirect excitons in 14 nm coupled quantum wells with a

4 nm barrier in a GaAs/Al0.45Ga0.55As structure, was performed by Marzena Szymanska

using this method with a large number of basis functions (for a similar calculation in a t-

shaped quantum wire, 8000 basis functions were used) [60, 61]. A plot of the results of this

calculation are shown in Figure 5 and Figure 6.

The relative oscillator strength cited in Figure 6 is proportional to the overlap integral

between the electron and hole wave function and inversely proportional to the lifetime of

the exciton. The exciton decay rate will be discussed in more detail in Chapter 2, but for

now, it is enough to note that the exciton lifetime increases exponentially with applied field

- at least in the range of interest. In this structure, radiative lifetimes greater than 10 µs

has been observed; this is orders of magnitude greater than the single quantum well lifetime,

which is typically less than 1 ns.

1.5 OUTLINE

Hopefully, this introduction has provided the reader with the basic tools necessary to under-

stand the material discussed in the following chapters. In Chapter 2, the modeling of the
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Figure 5: A plot of the binding energy and the Stark shift associated with the heavy-hole

and light-hole excitons in a 14 nm coupled quantum well structure in GaAs/Al0.45Ga0.55As

with a 4 nm barrier. Calculation performed by M. Szymanska, as described in the text, to

model the structure in Sinclair, et. al. [62].

Figure 6: A plot of the oscillator strength associated with the heavy-hole and light-hole

excitons in the structure described in Figure 5. Calculation also performed by M. Szymanska

[62].

28



indirect exciton under an applied, uniaxial stress will be discussed in detail. The Pikus-Bir

Hamiltonian will be applied to help model the energetic and luminescence properties of a

coupled quantum well structure under strain and some features of the trapping potential

in the low-stress regime. In Chapter 3, the machinery developed in Chapter 2, in conjunc-

tion with a density-dependent blue shift due to IX-IX interactions, will be used to treat

the high stress, high density regime of our experiments. In particular, an effect where the

luminescence at trap center darkens sharply will be discussed and an explanation will be

proposed.

Chapter 4 departs from the photo-luminscence studies of the previous chapters, and

focuses instead on a method for studying the transport of carriers in coupled quantum wells.

The field of strongly correlated electron-hole and electron-electron bilayers will be reviewed.

Then, the design and fabrication of a structure designed to measure the transport properties

of optically injected indirect excitons will be discussed in detail, along with preliminary

results.
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2.0 MODELING EXCITON LUMINESENCE IN STRAIN TRAPS

This chapter covers the single-particle potential for a strain-based trapping setup for excitons

in coupled quantum wells. While the primary interest of this work is the search for phase

transitions in such systems - which are, of course, many-particle effects - it will be apparent in

Chapter 3 that a strong understanding of the low-density physics is extremely important in

separating phase transitions from phenomena that come about due to the symmetry breaking

from the strain.

A cartoon depiction of a typical coupled quantum well structure designed for photolu-

minescence studies is shown in Figure 7a. The active part of the structure contains two

GaAs quantum wells that are either 12 nm or 14 nm thick, separated by a 4 nm barrier of

Al0.45Ga0.55As, and embedded betweeen thick layers of Al0.45Ga0.55As on either side. It can

be seen from Figure 4 in Chapter 1 that there is typically some penetration of the carrier

wave functions into the central barrier, but the outer barriers are designed to be thick enough

relative to the penetration depth that they can be approximated as infinitely thick.

The quantum well structure is capped on top and bottom by a superlattice - an alternat-

ing structure of GaAs and Al0.45Ga0.55As layers, typically 6 nm and 8 nm thick respectively.

The superlattice traps hot carriers injected into the system via the applied voltage bias and

reduces the number of free carriers that reach the quantum wells. A high current passing

through the wells tends to introduce a source of heating and can result in current filaments

through the barrier, which can cause permanent damage to the structure. The superlattice

is also designed to be transparent to light near the direct- and indirect-exciton luminescence

wavelength.

The entire structure is grown on a heavily n-doped GaAs wafer and capped with a thin

layer of heavily p-doped GaAs. Due to band-bending, this induces a built-in voltage across
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(a) Sample diagram

(b) Sample band structure

Figure 7: The (a) physical structure and (b) energy band diagram of a typical coupled

quantum-well sample. In (a) the GaAs quantum wells - in red - are between Al0.45Ga0.55As

barriers - in blue. In (b), the spatial energy band diagram is shown for the flatband case

(solid lines) and biased case (dotted lines).
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the active region of the sample approximately equal to the band gap 1. Due to the higher

conductivity of the doped layers, doping also maked it easier to electrically bias the sample.

In practice, to achieve good electrical contact to the doped substrate and capping layer,

it is necessary to use indium foil - either pressed into mechanical contact with the sample

or by thermally annealing it to the top and bottom. The insulating region of the sample is

typically around 700 nm thick; meaning that the electric field induced by the built-in voltage

is expected to be around 2 mV/nm, in the absence of any screening charge.

Pholuminescence spectroscopy is one technique commonly used to study the energy spec-

trum of the spatially direct and indirect excitons. A rough outline of the setup for this type

of measurement is shown in Figure 8a. A laser diode designed to operate near the direct

exciton resonant wavelength is used to optically pump the sample, which is mounted in

either an immersion or continuous flow cryostat with optical access. Direct excitations -

where electron-hole pairs are generated in the same well - are typically far more optically

active than indirect excitions. These electron-hole pairs, once generated, cool down quickly

to either form direct excitons or tunnel through the barrier to form the lower energy indirect

excitons. Measurements of the electron and hole tunneling times suggested that both are

less than a nanosecond (Oberli et. al reports a tunneling time of 10-75 ns for electrons in a

similar structure [63], depending on bias voltage, and Leo et. al reports hole tunneling times

around 800 ps at low electric field [64]). A typical direct exciton lifetime is expected to be

on the order of ns, while the indirect exciton lifetime is observed to be on the order tens of

µs at high bias [65].

The luminescence from the sample is imaged onto a spectrometer slit roughly 1 m away.

When the spectrometer slit is open, the zero-order diffraction from the sample image can

be directly projected onto an intensified charge-coupled device (ICCD) camera; providing a

2D, spatially resolved image of the luminescence. When the spectrometer slit is closed, a

1D spatial cross-section of the luminescence can be projected onto the spectrometer grating,

which can then be used to create a spectrally resolved image of the luminscence. The

1The built-in voltage is close to the band gap because a high concentration of p-type dopants moves the
Fermi level from mid-gap to near the valence band; a high concentration of n-type dopants moves the Fermi
level near the conduction band. Therefore, from the top of the structure to the bottom of the structure, the
change in the Fermi level is approximately equal to the band gap.
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(a) Photoluminescence Measurement Setup

(b) Typical PL Spectrum when stress is applied at
position 0 µm

Figure 8: A diagram of a typical time-gated photoluminescence measurement experimental

setup and a spectrally resolved image of the stress trap. In CW experiments, laser diode can

be ungated, or can be replaced with a He-Ne laser.
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photoluminescence spectrum of a typical stressed coupled quantum well structure (p-i-n

doping, 14 nm quantum wells separated by a 4 nm barrier) excited by a defocused He-Ne

laser is shown in Figure 8b. The highest visible spectral line is associated with the direct

exciton. Directly below that is a biexciton line. A biexciton is a molecule formed by two

spatially-direct excitons; in regimes where the biexciton is stable, it will appear slightly under

the direct exciton line, separated by a small biexciton binding energy. The lowest energy

state in this spectrum is that associated with spatially-indirect excitons. Note that there is

no stable indirect-biexciton; indirect excitons act as aligned dipoles and will typically have

a repulsive interaction, thus one would not expect them to form bound pairs.

To summarize, there are a few things one can verify just from looking at the luminescence.

First, both the direct and indirect luminescence is typically visible; this confirms that the

indirect exciton formation rate is not drastically more or less than the direct exciton lifetime.

If the direct exciton lifetime were much shorter than the indirect exciton formation rate, all

photoexcited carriers would decay as direct excitons and no indirect states would form. If

the direct exciton lifetime were much longer, all carriers would decay as indirect excitons

and the DX line would be invisible. However, the fact that the DX and IX lines are typically

on the same order of magnitude of intensity suggests that the population of indirect excitons

is much greater than direct excitons; otherwise the IX line would be much dimmer, due to

the much lower IX radiative rate. In steady state, this may be somewhat of a self-limiting

process; the presence of indirect excitons tends to cancel out the local applied electric field,

blue shifting the energy, and potentially slowing the tunneling rate.

The light-hole indirect exciton, which should lie between the heavy-hole direct exciton

and the heavy-hole indirect exciton luminescence, is typically invisible at low stress. It

will be shown later in this Chapter that the hh-lh splitting decreases with applied stress;

when the two lines are near-resonance, the light-hole line is typically visible. At low stress,

one explanation is that there is not a metastable population of light-hole indirect excitons;

otherwise some luminescence from them would be visible. Another explanation, suggested

by Figure 3, is that the light-hole valence band is slightly momentum-space indirect at low

stress, which would suppress the recombination rate.
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2.1 TRAPPING

It was shown in Section 1.1 using a non-interacting model that condensation will not occur

for free particles in two dimensions. For the case of particles in a harmonic trap, the result

will be different. In two dimensions, the density of states of a harmonic trap with spring

constants ωx and ωy is

g(ε) = g0
ε

h̄2ωxωy
. (2.1)

Doing a similar calculation as was done for the untrapped case, one can show that the critical

temperature for condensation in a trap is not zero; instead it is given by 2,

Tcrit =

√
(h̄ωx) (h̄ωy)

k2
B

N

ζ(2)g0

, (2.2)

which depends on the total number of particles in the trap, N, rather than the density. This

arises from the fact that this system is finite; it is not necessary to take the limit where the

number of particles goes to infinity, which is clearly unphysical for a finite system.

The non-existance of BEC in the untrapped case is related to a more general result,

called the Hohenberg-Mermin-Wagner theorem (HMW), which shows that true long-range

order cannot exist in infinite two-dimensional systems. In this case, the order parameter

of the condensation phase transition is the ground state wave function, normalized to be

proportional to the square-root of the population of the ground state. Fortunately, there are

a number of caveats to this proof that are very significant for the search of BEC-like effects

in 2D.

First, the absence of a true BEC does not necessarily forbid the presence of superfluidity.

The general idea behind the HMW theorem is that thermal fluctuations exist at tempera-

tures above absolute zero which kill the long-range order parameter; in a BEC system, these

fluctuations take the form of vortices in the superfluid component, which are spontaneously

generated, and which quench the superflow. However, in the early 1970’s, theorists V.L.

2A more rigorous discussion of trapped condensates, including interactions, was performed by Baym and
Pethick for cold atoms [66] and for exciton-polaritons (discussed in Section 1.1.4) by Berman, Lozovik, and
Snoke [67].
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Berezinskii [68], J.M. Kosterlitz, and D.J. Thouless [69] showed that something similar to

long-range order can exist in many two-dimensional systems (of which, a neutral superfluid is

one)3. Below some critical temperature, free vortices are energetically unfavorable; instead,

vortices appear only in vortex-anti-vortex pairs. It was shown in both papers that this phase

results in a non-zero superfluid density. The BKT transition has been experimentally ob-

served in atomic systems - in these studies, some degree of coherence is observed above and

below the critical temperature, while superfluidity seems to occur only below the critical

temperature [70], and free vortices are thermally activated only above the critical temper-

ature [71], as expected. There has been some evidence of power-law decay of coherence in

polariton systems; although the exponent found in those measurements does not match what

is predicted by the BKT model [72].

Secondly, in a finite system “macroscopic occupation of the ground state” can be a some-

what fuzzy concept. In a truly infinite system, which is assumed in the simple model above,

the system possesses an infinite number of particles distributed amongst a true continuum

of states. In this case, macroscopic occupation is a straightforward concept - normally each

state would possess an infinitesmally small density of particles; any single state with a finite

density associated with it can be described as macroscopically occupied. In a real, finite

system - where the ground state will always have some finite population - one is typically

looking for a sharp increase in the ground state population associated with a critical density

or temperature.

In finite systems it is more pragmatic to think about long-range order in terms of coher-

ence length. The HMW theorem proves only that infinite coherence length is impossible in a

two-dimensional system. In practice, a finite but macroscopically large population can still

exhibit a coherence length that is larger than the size of the system. By most definitions

this scenario would be interpreted as the apperance of a condensate.

To summarize, there is some reason to believe that BEC is easier to observe in a trapped

system, but it may be possible to observe some degree of spatial coherence or superfluidity

without it. The more important role of a trapping potential is that it is necessary for

3In this type of system, the coherence does not fall off expontentially, as in the disordered case. Instead,
it falls off more slowly, as a power law.
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achieving a large, steady-state density of indirect excitons. It will be shown in Chapter 3

that indirect excitons in this system are strongly repulsive, so an untrapped population will

tend to diffuse very quickly.

There are a number of trapping methods available in systems of spatially indirect exci-

tons. Recall that the energy of an indirect exciton scales linearly with applied electric field

in the growth direction,

∆Eexciton = −edFz (2.3)

where the dipole length, d, is 20 nm for the representative structure modeled in Figure

54. In a spatially inhomogeneous electric field, indirect excitons will tend to be drawn to

high electric field areas. This method of electrostatic trapping is one of the more common

techniques used in the study of indirect excitons [73, 74, 75]. The IX radiative lifetime is

exponentially dependent on the electric field, which can complicate the system. In principle,

having the longest lifetime at trap center seems beneficial, as it may provide some evaporative

cooling. On the other hand, a typical implementation of this type of trap involves sharp traps

defined by pattern contacts on the sample surface. A sharp gradient in the transverse field,

by Gauss’s law, typically also induces a large in-plane field, which can result in ionization. In

a study by Rapaport et. al, it was shown that the predicted effective lifetime drops rapidly

with trap depth - going from a 3 meV deep trap lowers the lifetime around two orders of

magnitude [75]. This drastically reduces the maximum possible density in the trap, due to

a strong density dependent blue shift.

The method studied in this chapter and the next involves using a spatially inhomogeneous

strain field to shift the band gap. This approach was used in studies of excitons and electron-

hole liquids in bulk semiconductors [76, 77] and was first used in the coupled quantum well

system by Negoita et. al [78]. This approach allows the applied electric field to be an entirely

independent parameter, which can be used to tune the lifteime and the steady-state density

of the indirect population.

There are a few complications implicit in strain-based trapping techniques, which will be

4For a typical coupled quantum well structure, this will be about equal to the well center-to-center
distance.
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discussed in more detail later in this chapter. Shear strain locally changes the symmetry of

the crystal in the trap, leading to mixing between different spin states, which significantly

complicates the single-particle picture. It will be shown that strain traps with depths of

10 to 20 meV are possible. The limiting factor for trap depth will typically be when the

crystal is pushed outside of the elastic limit; i.e., when defects begin to form or the sample

fractures. While strain-based techniques are more difficult to implement as compact devices,

it provides some flexibility in tuning the subband structure of the system, allowing one to

explore different aspects of the system.

2.2 ELASTIC THEORY - STRESS AND STRAIN

The goal of this section will be to set up the machinery necessary to calculate the energy of

a given stressor geometry in a GaAs sample. A stress applied to the sample will result in

some deformation, or strain, of the local crystal structure, which must first be calculated.

The effect of this strain on the band structure will then be calculated using the Pikus-Bir

model.

The equilibrium strain for a given geomtry is obtained by solving Newton’s second law,

written for an infinitesmal volume element in a continuous medium [79],

Fi +
∂σxi
∂x

+
∂σyi
∂y

+
∂σzi
∂z

= ρ
∂2ui
∂t2

, i = x, y, z. (2.4)

The vector ~F indicates the bulk force on a particular volume element, which will be zero in our

system. The variable σij is the stress tensor, indicating the stress components on a particular

volume element (a sketch of the action of the stress tensor on an infinitesmal cube volume

element is shown in Figure 9). The partial derviatives of the local stress are significant,

because the deformation of a particular infinitesmal volume element will be determined by

the gradient of the force across its faces. The displacement of the volume element from

the equilibrium position is given by ~u; for the static solution, the partial derivative of the

displacement with respect to time will be equal to zero.
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Figure 9: A sketch of the stress tensor components acting on an infinitesimal volume element.

Strain, εij, is expressed in terms of the symmetrized derivatives of the displacement

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.5)

and relationship between the strain and stress is given by the generalized Hooke’s Law,

σij = Cijklεkl (2.6)

where the stiffness tensor, Cijkl, is a 3×3×3×3, fourth-order tensor. Due to symmetry, only

six combinations from each coordinate pair (ij or kl) are distinct - xx, yy, zz, yz, xz, xy - so

it is typically represented as a 6×6 matrix (where the aforementioned coordinate pairs are

labeled as 1,2,3,...etc.). In particular, for GaAs the stiffness tensor is given by [48],

C =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


. (2.7)
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The values used for our simulations are based on the room temperature values and tem-

perature derivatives given in Adachi’s text [48]; therein, it is shown that the slope of the

stiffness with respect to temperature is approximately constant down to T = 0. Specifically,

the values used here are C11 = 12.11 × 104 N/mm2, C12 = 5.48 × 104 N/mm2, and C44

= 6.04 × 104 N/mm2. The difference between the stiffness of AlAs and GaAs is small; for

Al0.45Ga0.55As, the difference from GaAs for each component is less than 3% [48]. Therefore,

it is reasonable to approximate the entire structure as bulk GaAs for the purposes of the

strain calculation. The boundary conditions will be determined by the stressor structure

geometry, a rough diagram of which is shown in Figure 10.

There are a number of approaches to finding the static solution to (2.4). One method

is to start with an intial guess at the strain field based on the trap shape and evolve it in

time with an additional, small damping term, until the system reaches equilbrium. Another

method is to use a variational approach to solve for the configuration that minimizes the

potential energy of the system, subject to the given boundary conditions.

Ultimately, ANSYS, a commercial finite-element software, was used. The details of

the ANSYS calculation are described in detail in Appendix C. Similar calculations were

initially performed by Balili and Reid to model the same stressor geometry in the microcavity

polariton system [80].

There are four boundary conditions that need to be taken into consideration in this

solution: the edges, the top plate, the bottom plate, and the pin. It was found through

trial-and-error that the boundary conditions at the edges of the sample are not critical in

determining the shape of the trap, given that they are far enough away from trap center that

the profile created by the pin has more or less relaxed to its equilibrium value. Likewise, the

top plate boundary conditions are not very significant, as it does not put significant pressure

on the sample (compared to that produced by the pin or the edges of the hole). Typically,

the role of the top plate is simply to hold the sample in place.

There are a few ways that the bottom plate can be modeled. The most realistic approach

is to fix the position of the bottom face of the sample in the z -direction; in other words,

requiring that the displacement of volume elements in contact with the plate be equal to

zero. This would allow for sliding in the x - and y-directions. Numerically, it is simpler to
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Figure 10: Rough schematic of the stressor geometry. The sample (shown as transparent

here) is situated over a circular hole in a flat aluminum plate, typically of radius around

1 mm. A stainless steel pin is pushed by micrometer-driven springs (not shown) into the

sample, ideally near the center of the hole. A top plate is typically used to hold the sample

in place.

fix the bottom surface entirely (requiring that the pin is effectively stuck to the bottom of

the plate). Experimenting with these two conditions revealed that there was no signficant

difference in the trap shape between them, thus the entirely fixed bottom surface condition

was used.

The pin contact surface is strongly dependent on its shape and surface roughness, so

accurately modeling the pin geometry is not straightforward. The radius of the pin tip is

roughly in the range of 25 µm to 50 µm. An analytic approach is to model the pin tip as a

half-sphere in contact with a semi-infinite half-plane, which is a simple problem in Hertzian

contact theory. In that approach, the contact radius of a stainless steel pin on the surface is

given by [81],

a =

[
3

4
F

(
1− ν2

GaAs

EGaAs

+
1− ν2

Steel

ESteel

)
R

]1/3

(2.8)

where ~F is the applied force, R is the radius of the pin tip, and E and ν are the elastic

modulus and Poisson ratio, respectively, of the two materials. Using the material parameters

41



for GaAs [82] and stainless steel [83], a 25 µm, spherical pin tip would have a 7 µm contact

radius at 1 N of applied force.

A number of approaches were made to modeling the contact surface of the pin. It is

expected that the strain will be sharply discontinuous on the top surface of the sample

directly underneath the pin. However, we are primarily interested in the strain in the plane

of the quantum wells, which are typically a few hundred nanometers from the bottom of the

sample. Far from the contact point the sharp spatial features associated with the pin are

mostly washed out of the strain profile. It was observed that all pin models produce small

discontinuities in the strain profile underneath the edges of the pin and are noticeable even

near the bottom surface, something that is not observed in the experimental data. This

can be eliminated either by locally smoothing the simulation results or taking a linear cross-

section which avoids this region; in any case, the trap profile otherwise fits the experimental

trap shape very well, as will be discussed in Section 2.3.1. One possible explanation for this

is that the stress gradients at the edges of the pin on the top surface are extremely sharp;

meaning that the sample is outside the elastic regime very close to the pin tip and that

non-linear effects would need to be considered to model it correctly.

Ultimately, the most critical factors in determining the trap profile are the sample thick-

ness, the hole radius, and the applied force. Using a typical geometry, the resulting strain

profiles produced by ANSYS for a nominal 1 N force are shown in Figure 11. Excluding

effects due to deformation of the pin and the plate, the strain profile will be linear with ap-

plied force. Therefore, any stress within the elastic limit can be modeled by simply scaling

these results.

2.3 PIKUS-BIR HAMILTONIAN

Next, the dependence of the conduction and valence band energy on strain needs to be

considered. This can be derived in a manner similar to the discussion of k · p theory in

Chapter 1; the similarity comes from the idea that an applied strain changes the symmetry

of the problem in a fashion analogous to non-zero k. The effect of strain on the conduction
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(a) εxx (b) εyy

(c) εzz (d) εxy

(e) εxz (f) εyz

Figure 11: The spatial strain profiles near the bottom surface of the sample, output by

ANSYS for the stressor geometry shown in Figure 10, with a 25 µm radius pin, sitting on a

1 mm radius hole in an incompressible metal plate. Each profile is a 2D cross-section taken

500 nm from the bottom of a 100 µm thick sample. A nominal force of 1 N was applied

uniformly to the area under the pin.
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band to lowest order is simple, given that the s-like states of the electron are not split or

mixed:

∆Econd = −ac (εxx + εyy + εzz) . (2.9)

In GaAs, the conduction band deformation potential, ac, is shown in Table 2. The effect of

strain on the valence band is more complicated and is modeled by the Pikus-Bir Hamiltonian.

The Pikus-Bir Hamiltonian can be written simply in the same basis as the Luttinger-Kohn

Hamiltonian (see Equation (1.24)), with modified parameters [1]:

Ps = −av (εxx + εyy + εzz) , (2.10)

Qs = − b
2

(εxx + εyy − 2εzz) , (2.11)

Rs =

√
3b

2
(εxx − εyy)− idεxy, (2.12)

Ss = −d (εxz − iεyz) . (2.13)

The overall Hamiltonian can be found by summing the Pikus-Bir Hamiltonian and the

Luttinger-Kohn Hamiltonian. Several approximations can be made to simplify the over-

all Hamiltonian. First, in the LK term, one can assume that kz is a fixed value due to

quantum well confinement and that kx = ky = 0. For the sake of calculating the ground

state energy as a function of position, only the band-center energy is necessary. This is a

reasonable approximation at low temperature, because the average kinetic energy due to in-

place motion will be small compared to the confinement energy. The in-plane k -dependence

of the energy will be explored in Chapter 3.

Due to the close proximity of our quantum wells to the bottom of the structure, one

can also assume that the εxz and εyz components of the strain are approximately zero. This

is verified by the numerical simulation; as shown in Figure 11, these components are non-

zero near the edge of the hole, but are negligible near trap center, where the population of

excitons largely resides.

The standard Hamiltonian can be transformed into a block-diagonal form, as demon-

strated in Chuang [1], and can then be separated into two, de-coupled 2×2 matrices. Taking

44



Parameter Value in GaAs (eV) Value in AlAs (eV)

ac -7.17 -5.64

av 1.16 2.47

b -1.7 -1.5

d -4.55 -3.4

Table 2: Deformation Potentials [1] in GaAs and AlAs

the previous two assumptions into account, this reduced Hamiltonian is

H =

Ps +Qs − ∆
2

|Rs|

|Rs| Ps −Qs + ∆
2

 (2.14)

where Ps, Qs and Rs are the strain terms given in (2.13). The ∆ term is the hh-lh confinement

splitting, at zero in-plane momentum,

∆ = 4
h̄2k2

z

2m0

γ2 (2.15)

where γ2 is as given in Table 1. This Hamiltonian acts on the following basis functions:

|hh〉 =
1√
2
e

i
(
θR
2

+π
4

) ∣∣∣∣32 , 3

2

〉
− 1√

2
e
−i

(
θR
2

+π
4

) ∣∣∣∣32 ,−3

2

〉
(2.16)

|lh〉 = − 1√
2
e

i
(
θR
2
−π

4

) ∣∣∣∣32 , 1

2

〉
+

1√
2
e
−i

(
θR
2
−π

4

) ∣∣∣∣32 ,−1

2

〉
. (2.17)

Recall that the Rs term is complex and depends on the component of the shear strain that

breaks the x -y symmetry of the crystal:

Rs = |Rs|eiθR =
3

2
b(εxx − εyy)− idεxy (2.18)
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The eigenvalues of this matrix can be found analytically, as follows:

ε± = Ps ±

√(
Qs −

∆

2

)2

+ |Rs|2 (2.19)

In the next section, this model will be applied to an experimentally determined trapping

profile.

2.3.1 Trap Potential Fit

To calibrate the trapping potential, it makes more sense to look at the DX luminescence than

the IX. Direct excitons will typically be less sensitive to electric field and do not experience

a significant density-dependent blue shift. But they should exhibit roughly the same strain

dependence as indirect excitons.

The energy of a typical strain trap can be found by pumping the system with a broadly

defocused, CW laser at a significantly higher energy than the direct line. This generates hot

carriers, which cool down and either recombine as direct excitons or turn into indirect exci-

tons via tunneling, then recombine. By observing the spectrally-resolved photoluminescence

along a spatial cross-section, the energy of the direct line as a function of position can be

found - this was done for a 14 nm sample at low stress, as shown in Figure 12.

In the same figure, the position-dependent peak energy values were extracted and fit to

the model described above using an overall energy shift, an overall position shift, the applied

force, and the effective kz as fitting parameters. While, in principle, the energy shift is not

explicitly a free parameter within the model (it should be accounted for by the band gap

energy, confinement energy, and strain) - the precision of the model parameters are such that

a small error in the overall energy, which is around 1.5 eV, will be very large with respect

to the energy variation of the trap - which is on the order of 10 meV. Likewise, the position

shift is simply for convenience, to take into account the fact that the trap is not exactly

centered. The center of the position axis could be defined such that the center of the trap is

at zero, but there would still be some uncertainty due to the slight asymmetry of the trap

profile.

The ANSYS-generated strain profile is calculated at nominally 1 N of applied force. It is
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Figure 12: A plot of the photoluminescence from the direct and biexciton line for a pair of

14 nm coupled quantum wells at low stress. On the left, the spectrally resolved log-intensity

(color scale), on the right, the extracted peak centers as a function of position.
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somewhat difficult to calibrate this to the actual force applied in the experimental setup; the

force on the pin is determined by a micrometer driven stressor at the top of the sample rod

compressing a spring. In principle, the force is simply defined by the spring constant and the

amount of compression. In practice, the variation of the spring constant and effective spring

constant of the rod with temperature makes it difficult to calibrate it directly. Instead, it

makes more sense to use the overall trap depth - which is easily observed in the luminescence

- as a measurement of the applied force, which determines all other stress effects within the

model.

To improve ease of calculation, the confinement energy is approximated using the infinite-

barrier model; the effective value of kz is not fixed at π/a, but is instead allowed to vary as

a fitting parameter. Of course, using this approach, one should pay attention to the value

predicted by the fit - it should be slightly smaller than the infinite-barrier case, but not

drastically different (the fit shown corresponds to an effective well width of 14.14 nm, only

slightly larger than the infinite barrier approximation).

It can be seen from Figure 12 that this model provides a reasonable fit to the potential

associated with the direct exciton luminescence. There are two primary differences between

the indirect exciton and the direct exciton energy profile. First, the indirect exciton will

exhibit a density-dependent blue shift. Second, the electric dipole moment of an indirect

exciton is much larger - due to spatial charge seperation - so it is shifted much more by

an electric field. A discussion of the indirect exciton fit at low density is discussed in the

following section.

2.3.2 Piezoelectric Effect

The piezoelectric effect refers to the appearance of an electric field in a crystal under stress.

It is caused by charge separation due to the deformation of the crystal lattice. In GaAs, the

induced polarization in the z -direction, Pz, in GaAs and AlAs due to the piezoelectric effect

[48] is given by,

Pz = e14εxy. (2.20)
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where e14 is a constant determined by the material. In the p-i-n doped samples, the top

and bottom layers of the sample can be assumed to be conductive. Therefore, the potential

is mostly constant across the top and bottom faces and there will be charge buildup in

the structure to cancel out the overall effect of any piezoelectric-induced field. The only

additional field felt by the indirect excitons will be due to the imbalance of induced charge

in the GaAs and Al0.45Ga0.55As layers, as discussed below.

Solving for the field in each well, there will be two constraints. First, that the total

voltage drop across the sample at any point is fixed (given by the applied voltage plus the

built-in voltage). Second, the z -component of the electric flux density must be constant at

each interface - as required by Gauss’ Law. The transverse component of the electric field

is assumed to be negligible 5. Setting up these equations and solving them for the electric

field, F, in the GaAs and Al0.45Ga0.55As regions gives6,

FW =
εB

LW εB + LBεW
VTotal +

LB
LW εB + LBεW

(PB − PW ) (2.21)

FB =
εW

LBεW + LW εB
VTotal +

LW
LBεW + LW εB

(PW − PB) (2.22)

and the difference in the polarization is given by the difference in the piezoelectric constant

values for GaAs and Al0.45Ga0.65As:

PB − PW = (εB14 − εW14)εxy. (2.23)

In the above expression, the lengths, LW and LB, are the total thicknesses of GaAs and

Al0.45Ga0.55As in the structure, respectively. In the 2D profile of the indirect exciton lumi-

nescence, it is observed that the trap profile is wider along one crystal direction and narrower

in the other. This asymmetry is not observed in the direct luminesence. One possible ex-

planation is that the indirect exciton - due to its large electric dipole moment - is shifted

5The voltage drop across the z -direction occurs over a 500 nm length scale, whereas any variation in the
potential due to polarization charge occurs over length scales associated with the strain, typically tens to
hundreds of microns.

6From here, ’W’ will be used to indicate the GaAs regions - which is the material associated with the
wells - and ’B’ will be used to indicate the Al0.45Ga0.55As regions - which is associated with the barriers
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Figure 13: Comparison between (a) εxy term from ANSYS calculations (b) and measured

deviation between DX and IX lines. (c) Model fit (green line) to measured spatial energy

deviation between direct line and indirect line (blue data points). Fit is given by αεxy + β,

where fitting parameter α gives the proportionality factor described in the text and β is an

overall energy shift.

significantly in the presence of an induced piezoelectric field. Recall that the εxy component

of the strain has a four-lobed structure, so it would make sense that the field would oppose

the overall electric field along one one crystal axis ([110] or [11̄0]) and enhance it along the

other.

To get an estimate of this shift, one can take a 2D profile of the indirect and direct

luminesence lines at relatively low density. The energy difference, ∆EIX-DX, between the two

lines is,

∆EIX-DX = −(µIX − µDX)FW (2.24)

where the µ values are the dipole moments for the indirect and direct excitons. This analysis

was done on a low-stress trap in a sample with 14 nm wells with a 4 nm barrier. The expected

dipole length for the heavy holes in this structure should be around 22 nm (see Figure 5).

In Figure 13, this measured energy difference is shown next to a representative image of the

εxy component of the strain showing that they have the same symmetry.

The proportionality constant between εxy and the energy deviation can be calculated
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entirely from geometric and material parameters,[
∆EIX-DX

εxy

]
VTotal=0

= −e(µIX − µDX)(eB14 − eW14)
LB

LW εB + LBεW
. (2.25)

Using parameters from Adachi [48], this overall proportionality factor should be around 4.7

eV. The measured proportionality constant based on fitting the shear strain calculated from

ANSYS to the measured ∆EIX-DX was found to be 2.4 eV (using the proportionality constant

and an overall energy shift - due to the overall applied bias - as fitting parameters).

It is worth noting that this result is dependent on the relatively small difference in the

piezoelectric constant in the GaAs wells and the Al0.45Ga0.55As barrier - respectively -0.16

C/m2 and -0.19 C/m2 at room temperature [48]. Not only is the limited precision a possible

source of discrepancy, the measurement was performed at low temperature. There do not

seem to be any temperature dependent measurements of the piezoelectric constant available

for the AlxGa1−xAs system in the literature. A relatively small variation in the difference

between the two parameters at low temperature could explain the factor of two difference in

the results.

A more in-depth analysis of this nature could be a useful method for measuring the

piezoelectric constant in this type of system. For it to be useful, a more careful calibration

of the direct- and indirect-dipole moments would need to be performed. This could be done,

for example, by carefully measuring the Stark shift of both lines for small pertubations

around this applied bias.

2.3.3 Oblong Trapping Potential

It is interesting to note that the characteristics of the trap are partially determined by the

symmetry of the trapping geometry. One simple way to modify this geometry is to break the

circular symmetry of the geometry discussed above. For the coupled-quantum well system,

this asymmetry is already built-in due to the piezoelectric effect described above. But it

may also be of interest to generate an asymmetric trap for direct excitons. For example, one

might expect that by using a trap geometry that is stretched along one direction, it is also

possible to make a trap with similar symmetry.
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ANSYS was used to calculate the strain resulting from a circular pin pushing into a

sample mounted on a rectangular hole in a fixed plate. The main results are shown in

Figure 14. Recall that the trapping profile is primarily determined by the energy shift of

the conduction band given in 2.9; this is proportional to the hydrostatic component of the

strain: εxx+εyy+εzz. From the shape of the hydrostatic strain, it is evident that the trapping

potential in this configuration would be slightly asymmetric, as expected.

Another feature of this geometry is the enhancement of the shear strain term, εyz. Note

that in Figure 11, the terms εyz and εxz are only significant near the edges and - even there

- have a maximum value of less than half the central value of εxx, εyy and εzz. For the

rectangular case, εyz is approximately the same value as these terms. Similar calculations

show that this is further enhanced if the pin is off-center along the y-axis - for an applied

stress at y = +125µm, the ratio of max(εyz) to max(εxx+ εyy + εzz) is around 1.29, compared

to the circular hole and the centered-pin case for the rectangular hole - where the same ratio

is around 0.30 and 1.06, respectively.

One can see from the Pikus-Bir Hamiltonian that the primary role of the εxz and εyz

terms is to mix the mj = ± 3/2 valence band state with the mj = ± 1/2 state. In the

exciton picture, this term mixes the hh exciton state with the lh exciton state with opposite

spin orientation. Selection rules will be discussed in more detail in Section 2.6, but essentially

these strain components mix bright heavy-hole exciton states with dark light-hole exciton

states, and dark heavy-hole exciton states with bright light-hole exciton states. Design of

a stressor geometry which maximizes these shear components could be one way to study a

persistent population of dark excitons - by making them partially bright - or for studying

two-photon processes - which are allowed for ∆` = 2 transitions, but suppressed for ∆` = 1

transitions.

A similar trapping geometry was experimentally studied by Bryan Nelsen [84]; in this

study, it was found that samples stressed in this geometry are strongly inclined to fracture.

It seems likely that the strain terms discussed here - εxz and εyz - are responsible for this

tendency. From the perspective of the stress tensor, one can picture σxz as a force shearing

an x -oriented crystal face in the z -direction - basically the same motion one would use in

cleaving a sample.
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Figure 14: ANSYS results near the bottom surface of a 250 µm thick GaAs sample, stressed

with a 25 µm pin, on top of a 1.25 mm × 0.50 mm hole in a fixed plate. Applied force is

nominally 1 N (not calibrated to any experimental stressor force). The plots shown are a

cross-section of the strain in the plane 2.5 µm from the bottom of the sample.
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2.4 INTERSUBBAND MIXING

The primary focus of Section 2.3 was on calculating the spatial dependence of the ground

state energy as a function of applied stress. No explicit mention was made about the eigen-

vectors or the character of the ground state. In the presence of shear strain, there will also

be some degree of mixing between the heavy hole and light hole valence bands.

The normalized eigenvectors associated with eigenvalues in (2.19) can be expressed in

the hh-lh basis,

ψ± = ghh(z)η±hh |hh〉+ glh(z)η±lh |lh〉 (2.26)

where the analytical expressions for the eigenvector components are as follows:

η±hh =
1√
2

|Rs|[(
Qs − ∆

2

)2
+ |Rs|2 ∓

(
Qs − ∆

2

)√(
Qs − ∆

2

)2
+ |Rs|2

]1/2
(2.27)

η±lh =
1√
2

(
Qs − ∆

2

)
∓
√(

Qs − ∆
2

)2
+ |Rs|2[(

Qs − ∆
2

)2
+ |Rs|2 ∓

(
Qs − ∆

2

)√(
Qs − ∆

2

)2
+ |Rs|2

]1/2
. (2.28)

The functions g(z) correspond to the envelope wave functions associated with the heavy-hole

and light-hole state in the quantum well; it is assumed that, for in-plane motion, ~k|| ≈ 0.

While complicated, there are a few important features to these terms. Provided Qs <
∆
2

,

which corresponds to the low-stress regime where the heavy-hole state is the ground state,

the magnitude of η−hh (the minus term corresponding to the lower energy eigenvalue), goes

to unity as expected in the limit of zero coupling, |Rs| → 0. The heavy-hole amplitude is

negative for both roots, the light-hole amplitude is negative for the higher-energy eigenvalue

and positive for the lower-energy eigenvalue. This will play an important role in determining

the polarization direction of the ground state, to be discussed in Section 2.6.

At trap-center, the shear strain is expected to be zero, by symmetry. In that case, the

ground state is expected to be the heavy-hole state until the crossover point, where Qs = ∆
2

.

A plot of the heavy-hole and light-hole energies (for ~k|| = 0) at the center of the trap is shown
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Figure 15: Using ANSYS results shown previously, a plot of the heavy-hole (blue) and

light-hole (green) exciton energy at trap center, as a function of applied force.

for 14 nm quantum wells as a function of the nominal applied force. At high strain, the light-

hole exciton is expected to become the ground state at trap center. This is something that

is observed in the high-stress photoluminescence, as will be discussed in Chapter 3. At the

edges of the trap, the presencence of shear strain at low stress results in a ground state which

is primarily heavy hole, with a small light hole component.

2.5 ELECTRON-HOLE EXCHANGE

From the perspective of the Luttinger-Kohn and Pikus-Bir Hamiltonians, the dark and bright

exciton states are degenerate near-zero in-plane k, and are not split by the non-zero strain

terms caused by our trap.

The largest term expected to break their degeneracy - at least for direct excitons - is

electron-hole exchange. Physically, electron-hole exchange can be thought of as a virtual

photon-emission and recombination, coupling bright states with the same angular momen-

tum. For example, an exciton composed of a spin-down electron and a +3
2

heavy hole can

re-combine, emit a virtual photon of angular momentum +1, which can immediately create
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an exciton composed of a spin-up electron and a 1
2

hole. With a non-zero hh - lh splitting,

this transition is suppressed by energy conservation, but the coupling will still be there, and

create a small splitting.

For the transition between two exciton states, the relevant matrix elements for short-

range exchange is given by [85],

H12 = −〈ψe,2| 〈ψh,2| (axSh,xSe,x + aySh,ySe,y + azSh,zSe,z) |ψe,1〉 |ψh,1〉 (2.29)

where typical exchange parameters for excitons in 7 nm GaAs quantum wells were measured

by Balili, et. al to be ax = ay = 1.14 meV and az = 0.84 meV [80]; the spin-structure of this

Hamiltonian can be seen in the same reference.

Recall that from Fermi’s golden rule, the transition rate between two states depends on

the Hamiltonian matrix element of their coupling term as follows:

r(i→ f) ∝ |〈f |H |i〉|2 (2.30)

Writing the rate and the energy matrix element between two exciton states in the same

electron and hole quantum well subbands in terms of the envelope functions, defined in

Section 1.3, one can see

〈f |H |i〉 ∝
(∫

g∗e(z)gh(z)dz

)(∫
g∗h(z)ge(z)dz

)
(2.31)

and

r(i→ f) ∝
∣∣∣∣∫ g∗e(z)gh(z)dz

∣∣∣∣4 . (2.32)

Recall that the overlap integral in the confinement direction is strongly suppressed due to

the localization of the electron and hole for spatially indirect excitons. For a typical indirect

lifetime of 1 µs, the transition rate associated with recombination is roughly three orders

of magnitude less than for the direct case, as shown in the calculation by M. Szymanska in

Figure 6. By the same logic, one can approximate that both the exchange splitting and the

transition rates associated with electron-hole exchange will be - respectively - three and six

orders of magnitude smaller than for the direct case. In the polariton system - based on
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direct excitons in coupled quantum wells - the cited values of the coupling parameters were

roughly on the order of 1 meV; for spatially indirect excitons, it can be approximated that

the splitting associated with exchange will be on the order of 1 µeV or less. As this is far

below the typical indirect exciton linewidth, effects due to exchange can likely be neglected.

2.6 LUMINESCENCE

In this section, the polarization-dependence of the exciton luminescence will be carefully

derived. Pieces of this derivation can be found in Chuang [1] and Snoke [51], but this

derivation will be careful to allow for complex polarization vector bases, which are associated

with elliptical polarization.

In order to calculate the transition rate via recombination, we need the Hamiltonian for

electron-photon interactions. This is usually approximated as,

He−ph = − e

m
~A · ~p (2.33)

where vector ~A represents the vector potential of the photon field and ~p represents the

momentum of the electron. For a plane-wave basis, the vector potential can be written as:

~A(~r, t) = ε̂
A0

2
ei(

~k·~r−ωt) + ε̂∗
A0

2
e−i(

~k·~r−ωt) (2.34)

Dropping the time-dependence, gives the following expression for the Hamiltonian:

He−ph(~r) = − e

m
(ε̂ · ~p) A0

2
ei
~k·~r − e

m
(ε̂∗ · ~p) A0

2
e−i

~k·~r (2.35)

Consider the transition rate from an initial state where there is an electron in the conduction

band and zero photons, to a final state where there is an electron in the valence band and

one photon; to calculate this, it is convenient to quantize the this Hamiltonian:

He−ph(~r) = − e

m

∑
~k,λ

[√
h̄

2ωV
(ε̂λ · ~p) a~k,λe

i~k·~r +

√
h̄

2ωV
(ε̂∗λ · ~p) a

†
~k,λ
e−i

~k·~r

]
(2.36)

In the notation of second-quantization, a†~k,λ is an operator that creates a photon of wave

57



vector ~k and polarization state λ. The adjoint of this operator destroys a photon in that

state. The sum over a λ indicates the sum over some complete basis of polarization vectors -

for a given photon propagation direction, this will be a sum over two states. For the valence

band eigenstates we use in the strain calculations, it is convenient to use right- and left-hand

circular polarization states as the basis,

ε̂RHC =
1√
2

(x̂− iŷ) (2.37)

ε̂LHC =
1√
2

(x̂+ iŷ) (2.38)

with the assumption that propagation is in the z-direction. This is appropriate when lu-

minescnece is observed primarily normal to the surface of the sample. The entire second-

quantized Hamiltonian is given by,

He−ph =

∫
d3~rΨ†(~r)H(~r)Ψ(~r) (2.39)

where the Ψ operators are associated with the electron field. These can be expanded, as-

suming the electron is in the ground state of both the conduction band and valence band

(in the lowest quantum well subbands and near ~k = 0 in-plane). It can also be assumed for

simplicity that the photon momentum is small compared to the electron momentum.

Photoluminescence arises from the transition of an electron from the conduction to the

valence band through the emission of photon. The intensity of the PL is proportional the

probability rate of the transition, the probability of a particular conduction band state being

occupied, and the probability of a particular valence band state being vacant, as follows:

I = r(i→ f)f(Ei)(1− f(Ef )) (2.40)

The transition rate can be found from Fermi’s golden rule:

r(i→ f) ∝ |〈i| ε̂λ · ~p |f〉|2 (2.41)

Here ε̂λ refers to the electric field unit vector corresponding to a particular polarization

state, denoted by λ, of the outgoing photon. To derive selection rules, one can decompose

the valence band states into the tensor product of spherical harmonics and spin states. After

58



re-arranging the expression for the Hamiltonian given above, one arrives at the following

matrix element for the recombination transition,

〈f |H |i〉 = − e

m

√
h̄

2ωV ε
ε̂∗λ · 〈v| ~p |c〉 Ivc (2.42)

where Ivc is the overlap integral between the conduction and valence band envelope wave

functions in the z -direction:

Ivc =

∫
g∗e(z)gh(z)dz (2.43)

Note that the polarization vector does not act directly on the electron Hilbert space, so it

can be factored out of the momentum matrix element. The momentum matrix elements are

easily calculated for the relevant spherical harmonics [1]:

〈S| px |X〉 = 〈S| py |Y 〉 = 〈S| pz |Z〉 =
im0

h̄
P (2.44)

The value P is referred to as the Kane’s parameter. All other momentum matrix elements

will be zero. These can be applied to the heavy- and light-hole valence band states:

ε̂∗RHC ·
〈

3

2
,
3

2

∣∣∣∣ ~p |iS ↑〉 =
m0P

h̄
, (2.45)

ε̂∗LHC ·
〈

3

2
,−3

2

∣∣∣∣ ~p |iS ↓〉 = −m0P

h̄
, (2.46)

ε̂∗RHC ·
〈

3

2
,
1

2

∣∣∣∣ ~p |iS ↓〉 =
1√
3

m0P

h̄
, (2.47)

ε̂∗LHC ·
〈

3

2
,−1

2

∣∣∣∣ ~p |iS ↑〉 = − 1√
3

m0P

h̄
. (2.48)

All other transitions are forbidden, due to the fact that the underlying spin states of the

electron do not line up, and their matrix elements are equal to zero for entirely in-plane

polarization. A more general way of writing this, which will be useful in the following
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section, is as follows: 〈
3

2
,
3

2

∣∣∣∣ ~p |iS ↑〉 =
m0P√

2h̄
(x̂− iŷ) , (2.49)〈

3

2
,−3

2

∣∣∣∣ ~p |iS ↓〉 = −m0P√
2h̄

(x̂+ iŷ) , (2.50)〈
3

2
,
1

2

∣∣∣∣ ~p |iS ↓〉 =
1√
6

m0P

h̄
(x̂− iŷ) , (2.51)〈

3

2
,−1

2

∣∣∣∣ ~p |iS ↑〉 = − 1√
6

m0P

h̄
(x̂+ iŷ) . (2.52)

The selection rules for recombination and absorption are relatively simple. Photons carry

angular momentum ` = ±1, so all transitions involving absorption or emission of photons

must be characterized by ∆` = ±1. The electron-photon coupling does not operate on spin,

so ∆s = 0. All of the valence band states listed here have orbital angular momentum of 1;

so the only forbidden transitions are the ones where the spin quantum number is different.

Recall that the light-hole states are composed of both spin-up and spin-down components,

so light-hole excitons can always emit photons off of the normal axis.

Next, the polarization of emission from the ground state for spatially-indirect excitons

is considered. In essence, the problem to be solved is to calculate the angular dependence of

intensity measured through a linear polarizer at some angle, θ. For an arbitrary angle, the

polarization angle can be defined in a linear basis as:

ε̂(θ) = cos (θ) x̂+ sin (θ) ŷ (2.53)

One major feature of a strain-based trap is that it alters the symmetry of the crystal. In the

previous chapter it was shown that the heavy-hole and light-hole states are the eigenstates

of the Luttinger-Kohn Hamiltonian when the in-plane k is equal to zero. By distorting the

symmetry of the crystal, new eigenstates are also changed, according to the expressions in

(2.26), (2.27), and (2.28).

Using the new eigenstates with the matrix elements calculated in Section 2.6, the follow-
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ing matrix elements are found:

〈ψC↑| ˆε(θ) · ~p |hh〉 = −Ihhe
i
(
θR
2

+π
4

)
P√
2
eiθ (2.54)

〈ψC↓| ˆε(θ) · ~p |hh〉 = −Ihhe
−i

(
θR
2

+π
4

)
P√
2
e−iθ (2.55)

〈ψC↑| ˆε(θ) · ~p |lh〉 = Ilhe
−i

(
θR
2
−π

4

)
P√
6
e−iθ (2.56)

〈ψC↓| ˆε(θ) · ~p |lh〉 = Ilhe
i
(
θR
2
−π

4

)
P√
6
eiθ (2.57)

The terms Ihh and Ilh represent the overlap integrals between the envelope function of the

valence and conduction band states.

Ultimately, we want an expression for the radiative rate of the ground state as a function

of projection onto a linear polarization angle θ. This is found by combining the results from

2.26 with the expressions above:

| 〈ψC↑| ε̂(θ) · ~p |ψgs〉 |2 = |Igs|2||η−hh|
2P

2

4
+ |Ilh|2||η−lh|

2P
2

12
+ |η−hh||η

−
lh||Ihh||Ilh|

P 2

2
√

3
cos(2θ + θR)

(2.58)

A convenient expression for the degree of polarization can be obtained from (2.58); the degree

of polarization is defined in terms of the intensity at the angle of strongest transmission

through a linear polarizer (IMax) and the intensity at the angle of weakest transmission

through a linear polarizer (IMin):

D.O.P =
IMax − IMin

IMax + IMin

= 2
√

3
|ηhh||ηL|IhhIlh

η2
lhI

2
lh + 3η2

hhI
2
hh

(2.59)

The predicted linear polarization component is defined entirely by the complex phase of

the R-term in the Pikus-Bir Hamiltonian; from (2.59), one can see that the polarization is

mostly strongly oriented at an angle of θ = −θR. In terms of the shear strain terms and the

deformation potentials:

tan (θ) = −1

2
arg

[√
3

2
b (εxx − εyy)− idεxy

]
(2.60)

The shear strain components all scale linearly with applied force, meaning that the polar-

ization direction is independent of the magnitude of the force; it is determined entirely by

the stressor geometry.

61



Also note that if the ground state were entirely heavy hole (ηL = 0) or entirely light hole

(ηH = 0), the emission rate would be independent of polarization angle. These transitions

correspond to circularly polarized light. The effect of shear strain is to mix the heavy-hole

state that would emit right-handed circular polarization with the light-hole state that would

emit left-handed circular polarization. A superposition of two circularly polarized states

results in some degree of linear polarization.

A similar calculation can be done for the other three heavy-hole states. Surprisingly, the

angular dependence of the polarization distribution is the same for the two bright heavy-hole

states. One might expect that the linear polarized components of the two states should be

orthogonal. In fact, they are orthogonal - one state is primarily right-circularly polarized

with a small amount of left-circular polarization mixed in, the other is primarily is left-

circularly polarized. The phase difference between the two components is such that the

linear component of each state is in the same direction for both states.

Based on the plot shown in Figure 6, the overall oscillator strength of the indirect lh

exciton is predicted to be approximately ten times that of the indirect hh exciton. Using

this figure to calibrate the value of Ihh and Ilh - requiring that a pure lh state is ten times

brighter than a pure heavy hole state - the end result is Ilh/Ihh =
√

30.

These predictions are shown in Figure 16. As one would expect, the brightness relative

to an unmixed hh state rises linearly with light-hole fraction, starting at unity for the pure

hh state and peaking at 10 for the pure lh state. The degree of polarization, on the other

hand, rises very rapidly when a small amount of lh is introduced into the hh state. When the

ground state is roughly 9% light hole, the mixed state is completely linearly polarized. At

higher levels of mixing, the mixed state is dominated by the circular component contributed

by the light hole.

A typical plot of the polarization profile from the indirect excitons at high stress is

shown in Figure 17. This data was obtained by taking a number of 2D spatial images of the

indirect exciton luminescence, passed through a linear polarizer. For each pixel, the intensity

was plotted as a function of polarizer angle, and the degree of polarization and direction of

strongest polarization were calculated. This data was taken in collaboration with Nicholas

Sinclair; a more detailed discussion of the experimental and fitting procedure is presented in
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his dissertation [86].

Next to the experimental data, a plot of the expected polarization angle in the trap based

on the lh-hh mixing model discussed above is shown. It can be seen that the general spatial

dependence in the bright-regions of the trap match the predicted dependence very well; the

polarization is very close to radial and is stronger along the sides of the trap than in the

center. The dark spot at the center of the trap is a feature of the luminescence at high stress

and will be discussed in detail in the following chapter.

63



Figure 16: (a) The degree of polarization and (b) brightness of the IX ground state as a

function of its light hole fraction, as predicted by the model discussed in the text. It was

assumed that the oscillator strength of a pure IX lh exciton is roughly ten times brighter

thana pure IX hh exciton.
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Figure 17: Spatial plot of the degree of polarization (arrow length) and polarization angle of

maximum intensity (arrow direction) for the luminescence from the indirect line. Theoretical

model (left) compared to measurement (right). Color in experimental plot indicates the log-

intensity, in arbitrary units. White boxes in experimental plot highlight the clearly radial

polarization at points along [110] and [110] directions.
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3.0 BLACK HOLE EFFECT

The previous chapter dealt primarily with the properties of our system in the low-stress,

low-density regime. To observe condensation at a reasonable critical temperature (ideally,

within a range achievable with liquid helium-4), it is necessary to explore the high-density

regime. The trapping potential is strongly renormalized by the presence of indirect excitons,

so in order to maintain a trapped population, the high-density regime necessarily requires

high stress.

In this chapter, the current experimental understanding of indirect excitons in coupled

quantum wells will be reviewed, followed by a discussion of the experimental results for the

strain trapped system. Specifically, the appearance of a “black hole” at trap center - a region

of strongly suppressed luminescence that appears sharply at high stress - will be discussed,

and two possible mechanisms for this effect will be considered.

3.1 REVIEW OF LUMINESCENCE STUDIES OF CQWS

In the search for excitonic condensation, the coupled quantum well system was not a viable

candidate until the late 1990’s and early 2000’s; it was not until this time that the quality of

molecular-beam epitaxial (MBE) growth techniques was high enough to produce sufficiently

low-disorder quantum wells [87]. Low disorder is especially important for low-temperature

studies, because even small, local variations of the confinement potential can act as traps for

excitons. Recall that at 2 K, the thermal energy is around 170 µeV; so disorder in a trap of

even a few hundred µeV can lead to localization. Experiments by Kash et al. [88] on 5 nm

GaAs coupled-quantum wells with 4 nm Al0.3Ga0.7As barriers indicated that when there is
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significant localization due to impurity states, indirect excitons act more like a Fermi system

at low temperature.

Some experimental studies in the late 1990’s focused on Type II quantum wells formed

between Γ-point holes and X-point electrons in adjacent GaAs/AlAs layers with a large

magnetic field applied in the growth direction. The role of the magnetic field complicates

these experiments, but it has been predicted that direct quantum well excitons in a transverse

magnetic field act as an ideal Bose gas and exhibit an increased critical temperature over

the zero-field case[89, 90]. A number of suggestive results were reported in this system

by Butov et al. in the low-temperature (down to 350 mK) and high magnetic field regime,

including enhanced cooling rates at high density [91], increased diffusivity and radiative rate,

and a broad, low-frequency noise spectrum associated with the intensity [92]. While these

properties could be indicative of superfluidity and stimulated scattering, other explanations

were not ruled out [87]. For example, a study of the diffusion dynamics of indirect excitons

by Rapaport et al., predicts a non-linear enhancement of the diffusion rate at high density

due to the strong dipole repulsion [93].

Early experiments on untrapped indirect excitons in GaAs coupled quantum wells pro-

duced extremely suggestive results. Two experimental papers in 2002 revealed the formation

of a bright ring hundreds of microns around a focused CW laser spot[94, 95]. The high power

and low temperature onset of the ring suggested that it could correspond at the onset of

superfluid flow away from the pump spot. Later analysis indicated that this effect (1) only

occurred when carriers are excited at high energy (above the barrier band gap) and (2) was

also observed in single quantum wells; instead a model based on carrier depletion was pro-

posed [96, 97]. This picture relied on the faster diffusion rate of the lower-mass electrons,

which causes a steady-state depletion of electrons and a surplus of holes near the pump spot.

Drift-diffusion models accurately predicted a bright ring at the boundary of the electron-

and hole-rich regions, and this explanation was generally accepted.

It has been proposed that the border of the electron-rich and hole-rich regions in this

system may be a good place to look for exciton BEC. This region is far from the laser

spot, and it is likely that these carriers are thermally equilibrated with the lattice. Periodic

fluctuations in this region were initially presented as evidence of macroscopic order [98], but
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further study revealed that such fragmentation can appear in a classical drift-diffusion model

with dipole repulsion [99]. More recent experiments attempted to measure spatial coherence

in the luminescence pattern from this system at 100 mK - particularly at the ring boundary

and near localized bright spots in the interior of the ring; it was found that a coherence

length of a few microns was observable in the ring and outside of localized bright spots1

[100].

Other experiments have focused on trapped indirect excitons. In one system with a

diamond-shaped electrostatic trap 2, High et al. observed spatial narrowing and a coherence

length of a few microns (somewhat larger than the coherence length for a classical ideal gas

at the same temperature, which is approximately 0.5 µm) [101].

Optical coherence measurements are one of the most common methods for detecting

condensation in exciton systems. In a condensate, the entire population can be described

by a single, macroscopic wave function with a well-defined relative phase between spatial

locations. When an exciton within the condensate radiatively decays, the coherence of the

population should be carried over into the luminescence. There are a number of methods for

studying optical coherence; High et al. [101] employ a method called shift-interferometry.

The goal is to find the first-order spatial coherence,

g1(x,∆x) =
〈E∗(x)E(x+ ∆x)〉

〈|E(x)|2〉
(3.1)

where E(x) is the electric field amplitude at a particular point x. In this measurement, the

image of the exciton cloud is split in two in a Mach-Zehnder interferometer setup. One of

the images is shifted along the x-direction, by a length ∆x. The first-order coherence can

be extracted by measuring the intensity of the images from both arms of the Mach-Zehnder

interferometer independently (I1 and I2) and the intensity of the interference pattern between

the two:

Iint =
I12 − I1 − I2

2
√
I1I2

. (3.2)

1In this work, localized bright spots are likely defect sites where current filaments through the wells lead
to heating and reduced IX radiative lifetime. The reported coherence length drops off to about 1 µm at the
center of these spots.

2The diamond shape causes the trap to have a harmonic profile alone one dimension. The length-scale
of this trap was on the order of 10 µm.
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A small tilt from the mirror on one arm of the interferometer along the y-axis results in an

oscillating interference pattern in the y-direction. The visibility of the interference fringes

is then proportional to the first-order coherence function. In the measurements described

above, the coherence is typically characterized by a shift-dependence that looks like,

|g1(∆x)| ∝ e−∆x/ξ. (3.3)

where ξ is a measure of the coherence length. For an ideal, thermal population, the coherence

length is given by the thermal de Broglie wavelength (at the lowest temperature studied

in [101], 50 mK, the de Broglie wavelength is around 500 nm). The measured coherence

length is also dependent on the optical resolution, characterized by the point-spread function

(PSF). The primary result of [101] is an increase in the measured coherence length at low

temperature; at temperatures above 4 K, ξ sits around the PSF-limit (around 2 µ m) and

increases to around 6 µm at 50 mK. In finite systems, a coherence length comparable to or

longer than the length-scale of the system is a strong indicator of condensation. In the [101],

the HWHM of the population is shown to be 2 - 7 µm at low temperature, depending on

power.

A commentary on this work was written by Semkat et al. [102], noting that the inteference

visibility is not only dependent upon the measurement resolution, but also can depend on the

size of the intensity distribution. Semkat and coworkers claim to be able to quantitatively

model the experimental results of [101] by including the exciton cloud size dependence and

assuming the population is a thermal source (not a condensate). A reply by High et al.

[103], rejects the quantitative result of the commentary - which, they claim, incorrectly

assumes an error in the original paper - but does not directly address the dependence of

their measurements on the exciton cloud size. Notably, in the original work [101], the rise

of the fringe visibility - both in the temperature-dependence and the power-dependence - is

accompanied by a drop in the exciton cloud spatial extent.

A recent high resolution shift-interferometry measurement by Repp et al. [104] has

attempted to replicate the spatial coherence measurements described above. In this exper-

iment, similar measured coherence lengths are observed at low temperature (250 mK), but

it is confirmed by the authors that this observation is a result of the point spread function
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of the measurement, not an indicator of spatial coherence in the exciton cloud. This result

re-inforces the criticism of Semkat and coworkers [102].

It would be interesting to see if similar measurements in a trapped population with a

larger spatial extent would produce similar coherence lengths or if the result scales with

the size of the population, as would be expected of long-range coherence in a finite system.

Coherence measurements in a trapped light-hole indirect exciton population with a length

scale of 50 µm revealed no observable coherence (less than the resolution of the system,

about 12 µm) at T = 2 K [86].

A similar experiment performed by Alloing et al. [105] featured coherence measure-

ments in a wide3, single quantum well system without a trap, in the regime where the

aforementioned luminescence ring is observable. It was found that screening due to the

spatial-distribution of free electrons and holes effectively results in an electrostatic trap at

the edge of the ring at low temperature. In this study, a pulsed 1 µs pump was used to gener-

ate the ring, two weak probe pulses were used to study the spatial-dependence of the exciton

blueshift shortly after the pulse (10 ns) and later (100 ns). The early pulse is intended to

probe the indirect excitons density, the late pulse was intended to probe the low-density trap

profile.

At low temperature (below 2 K), the probe measurements in [105] seem to indicate

the appearance of a dark population of trapped excitons trapped at the outer edge of the

ring, accompanied by a bright trapped population at the inner edge. Furthermore, shift

interferometry measurements show a significant increase in the coherence length at a point

5 µm from the ring edge as temperature drops below 2 K, peaking at a coherence length

of about 1.6 µm. At high temperature, both the coherence and the electrostatic trap seem

to disappear, changing the spatial luminescence profile at the ring edge from the bright and

dark populations with a sharp boundary to a broad profile associated, presumably, with

untrapped excitons. It is unclear whether the coherence measurements here, due to the

drastic change in the luminescence profile, suffer from the same problems associated with

varying source size raised by Semkat and coworkers [102]. It is also unclear whether, due to

3In this study, the quantum well is wide enough (25 nm) that there is a significant spatial separation
between electrons and holes under an applied field, making it similar to the CQW system. A radiative
lifetime of around 20 ns is reported [105].
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the changing shape of the luminescence profile with temperature, observing the coherence

at a fixed distance from the ring is a fair comparison. Further study of this dark population

may prove informative and may suggest further tests for condensation.

Other studies attribute the appearance of an dark indirect exciton population to Bose-

Einstein condensation. Work with a circular electrostatic trap by Rapaport et al. also

reported a drop in the radiative fraction of indirect excitons at low temperature, which

coincides with an increase in the blue shift based on the expected bright exciton population

[106]; the suggested interpretation was that this corresponds to a preferential population

increase of an optically dark state, coinciding with suppressed spin-flip scattering. This

hypothesis is inspired by theoretical work by Combescot et al. [107], which proposes that

condensation is likely to occur in optically dark spin-states, or will appear as partially dark

“gray” condensates [108].

Disorder is typically problematic because it lowers mobility and causes localization. How-

ever, a number of works by Timofeev et al. used disorder fluctuations as a trapping potential;

these sites were isolated by patterning micron-scale windows in a metallic mask, and study-

ing the luminescence through the windows. This method produced a number of interesting

results, such as suppressed J = ± 1 spin-flip times and an increase in the radiative rate below

3.5 K [109]. In later experiments, an electrical bias was applied to the windows, creating

a ring-shaped trap at the window-perimeter; in these traps at low temperature, periodic

pattern formation in real- and momentum-space were observed [110] as well as a gradual

increase in the second-order correlation function above a critical power threshold [111].

While there have been a number of suggestive results reported in the literature, strong

evidence of condensation in coupled quantum wells remains elusive. Although simpler to

work with, solid state systems tend to be “messier” than similar studies in cold atom research;

one must carefully rule out other physical effects which might look like condensation at first

glance. In the following section, low temperature, high density experimental behavior of

strain-trapped indirect excitons, that was initially suggestive of BEC, will be discussed using

two models which rely only on the single particle physics.
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3.2 EXPERIMENTAL RESULTS

In the search for evidence of Bose-Einstein condensation of spatially-indirect excitons, the

primary interest is in the regime of low temperature and high density. High density is

achieved through large optical pump power in conjunction with an applied DC voltage across

the sample. As discussed earlier, the IX radiative lifetime increases exponentially with

applied voltage in the vicinity of the built-in field. A larger radiative lifetime also leads to

a larger steady-state population of indirect excitons. The experiments discussed here are

typically either CW - where the steady-state luminescence is observed in the presence of

a laser putting out roughly constant power - or chopped - where the laser is chopped on

the time-scale of IX equilibration (on the order of microseconds) and the ICCD is gated to

eliminate the short-lived DX luminescence.

The excitation source used in the following experiments was a laser diode with a Peltier

cooler, which provided a temperature-dependent, tunable wavelength near-resonant to the

DX line (which typically sits near 805 nm in 14 nm quantum wells). Indirect excitons were

introduced into the system by pumping the direct line, as discussed in Chapter 2. This is

typically far more efficient than pumping the indirect line and can also eliminate scattered

laser light from the vicinity of the IX luminescence when it is spectrally resolved.

The initial experimental results were performed for 12 nm coupled quantum wells with

a 4 nm Al0.45Ga0.55As barrier. It was later observed that the black hole effect is similar in

a system with 14 nm coupled-quantum wells, but appears at lower stress. This dependence

on the well width is a critical clue to the origin of this behavior; that is, the black hole effect

occurs in the stress regime near where the lh-exciton line crosses over the hh-exciton line.

For narrower wells, the hh-lh splitting is larger, and this regime occurs at higher stress. The

models discussed later will focus on the 14 nm system. Other than the larger critical stress

in narrower wells, the experimental observations are qualitatively the same in both systems.

The most striking feature of the high-stress, high-density regime is the dramatic ap-

pearance of a dark population at trap center. In Figure 18, the stress dependence of the

luminescence is shown. This series was taken with a CW laser at approximately 120 µW

average power, resonant to the direct line and focused on the center of the trap. The DX-
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Figure 18: Two-dimensional spatial profile of indirect exciton luminescence at fixed temper-

ature (2.2 K) and pump power (roughly 120 µW), with increasing applied force on pin. x -

and y-position axes correspond to weak and strong confinement axes ([110] and [110] crystal

directions, respectively).

luminescence and scattered laser light were removed by an 819 nm ± 20 nm bandpass filter.

It was taken at low temperature (2.2 K) and with an additional applied voltage of 0.5 V in

the same direction as the built-in field due the p-i-n doping.

It was also observed that at lower optical pump power, the black hole would close up. In

Figure 19, a spectrally-resolved, spatial cross-section of the IX luminesence through the trap

center is shown as a function of optical pump power. As with the stress series, a CW laser

is focused at trap center, resonant to the DX line. The blue shift at trap center starts off at

<1 meV in the low-density case, but increases significantly (to 3-4 meV) at higher power.

At low power, a dark region is not noticeable, but as the IX population spreads out in the

trap, the dark region appears and seems to expand slightly. The dim, spatially narrow line

at trap center is a background remnant of the tightly focused pump laser (specifically, it is

luminescence from impurity states in the substrate). An additional 0.6 V bias was applied

in the same direction as the built-in bias.

In Figure 20, it is also shown that the luminescence at trap center darkens significantly

and sharply as the temperature drops. This series shows the two-dimensional profile of the
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Figure 19: Spectrally resolved cross-section of the luminescence of indirect line at trap-center.

Temperature is fixed at 1.5 K, stress is fixed, and optical pump power is varied as shown.x -

and y-position axes correspond to weak and strong confinement axes ([110] and [110] crystal

directions, respectively).

luminescence at fixed pump power (50 µW) and a fixed stress. The DX luminesence is

removed by a bandpass filter, as with the stress series. It is worth noting that the size of

the black hole does not seem to grow as temperature drops - rather the brightness drops as

temperature decreases. 4

The experimental properties of the black hole effect in this system have been analyzed

extensively by Nicholas Sinclair [86] and Zoltán Vörös [113]. While the details will not be

repeated here, the general conclusions are as follows:

• The luminescence line broadening is largest at the center of the trap. For indirect exci-

tons, it is expected that the majority of the energy broadening arises from IX-IX scat-

tering, while the radiative lifetime should be negligible. This suggests that the density

of indirect excitons is largest at the center of the trap, but the radiative lifetime of those

excitons is relatively long compared to indirect excitons on the sides of the trap [62].

4Throughout this chapter, temperature refers to the ambient / bath temperature; it was shown in Vörös
et al. [112] that the exciton population can equilibrate to the bath temperature roughly down to 4-5 K.
Below that, the population temperature may be warmer than the bath.

74



Figure 20: Two-dimensional spatial profile of indirect exciton luminescence at fixed pump

power (50 µW) and stress, with varying temperature. Same data set as shown in Sinclair, et

al [62]. x - and y-position axes correspond to weak and strong confinement axes ([110] and

[110] crystal directions, respectively).

• The general trend of total population lifetime for indirect excitons implies that the ra-

diative lifetime increases with applied stress. It was observed that at the black hole

onset, the radiative decay is best described by a double exponential fit, characterized by

a short, early lifetime fit (∼ 10 µs) and a noticeably longer, late lifetime ( >30 µs) [86].

• New, bright excitons generated on the side of the trap flow through the black hole,

indicating it does not act as a sink for particles and that there is not a significant source

of non-radiative decay causing the darkening. This also indicates that is not likely a

structural barrier [113].

• The relative brightness of the center changes only weakly with power, but at increased

power the size of the black hole increases [113, 62].

• The size of the dark region increases with applied voltage. This is likely related to the

increase of size with pump power; increased electric field results in a larger lifetime and

increased indirect-exciton population [113].
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• The geometry of the dark region does not seem to drastically change with temperature.

Rather, the relative brightness of the center seems to increase with temperature (some-

what sharply, with the dark spot disappearing typically around 10 K; where kBT ≈ 0.9

meV) [113].

• The brightness contrast between the sides and the center varies with experimental param-

eters, but at high-stress the center can be 3-10 times less intense than the peak-intensity

[86, 62].

• The black hole appears at lower stress in 14 nm quantum wells than in 12 nm quantum

wells. In 14 nm quantum wells, it is possible to push the system into a stress regime

beyond black hole onset where the light-hole indirect exciton becomes the ground state

at trap-center. This is signaled by a bright spot at trap center; the black hole is still

visible at the periphery of the bright spot. This behavior seems to suggest that the black

hole may be related to the hh-lh splitting [86].

Bose-Einstein condensation or the formation of an electron-hole liquid as explanations

for this effect were also explored elsewhere [62, 86] and will not be re-iterated. Instead, this

work will focus on two possible ways that intersubband coupling (specifically, hh-lh coupling)

could result in relative darkening at trap center, and the relative merits of the two models

will be discussed.

3.3 MODELING THE BLACK HOLE

In the following sections, two different models for the black hole effect are discussed. From

the observations discussed in the previous section, it seems very likely that this feature is

related to a drop in the relative radiative rate at trap center - as opposed to a drop in the

local indirect exciton density - so both models rely on mechanisms for altering the local

lifetime in the trap.

It was mentioned that the IX energy scales linearly with density, but this is somewhat

of a simplification. The next section will provide a more thorough discussion of the density-

dependent blue shift and the IX-IX interaction.
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3.3.1 Modeling Blue Shift

It is expected that the interaction between indirect excitons can be quite complex, particu-

larly in the regime where quantum degeneracy is important and where phase changes may

occur. A number of theoretical works have attempted to model this interaction.

In one analysis, theorists Lozovik and Berman examined the relative contributions of

the different components of the exciton-exciton interaction in coupled quantum wells; it was

shown that in the regime where the interwell seperation is large compared to the Bohr ra-

dius, the dipole-dipole repulsion is dominant, and other contributions - from inter-exciton

exchange and van der Waals attraction - are negligible [114]. In fact, the reason that inter-

exciton exchange is negligible is similar to the reason that intra-exciton electron-hole ex-

change is negligible; the dipole-dipole repulsion between excitons forms a potential barrier

which prevents the overlap between electrons and holes.

A simple approximation showing the linear dependence of the energy on the local IX

density can be found by assuming that the indirect exciton density is a uniform distribu-

tion. This is typically called the capacitor approximation, because in this picture the IX

population is treated as a uniform positive charge density in one well and a uniform negative

charge density in the other well. Integrating to find the total energy of this system gives an

interaction energy of

Eint =
4πe2d

ε
n (3.4)

where d is the charge seperation length and n is the 2D IX density.

This model ignores the effect of spatial correlation between excitons. For example, one

can calculate the indirect exciton density-dependent blue shift by considering the change in

energy of one exciton due to the presence of a thermally equilibrated IX population. Imagine

the case where a single, classical indirect exciton is pinned to the origin of a coordinate system

(~r = 0). If a density of indirect excitons is then added to the system, in thermal equilibrium

they will not uniformly distribute themselves in space; instead, they will prefer to avoid the

origin due to the repulsive interaction from the initial indirect exciton at the origin. Instead,
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one might expect that the distribution will look more like the following [115]:

n(~r) ∝ exp

[
−Uint(~r)

kT

]
(3.5)

where Uint is the two-particle IX-IX interaction potential, typically approximated as an

aligned dipole repulsion. In this approximation, there is a region around a given IX where

other indirect excitons are less likely to be found. An expression for the interaction energy

between an indirect exciton and a thermally distributed density distribution of other IX

would be [115]:

EInt =

∫
n0Uint(~r)exp

[
−Uint(~r)

kT

]
d2~r (3.6)

where n0 is a scaling factor, such that the total number of indirect excitons in the population,

N, is given by:

N =

∫
n0exp

[
−Uint(~r)

kT

]
d2~r. (3.7)

The overall effect of correlations in this system is to reduce the effective blue shift; it can

be shown that this reduction is most significant at low temperature [115, 116]. This picture

is somewhat intuitive. At low temperature, the system is stuck near the most energetically

favorable, highly correlated state; at high temperature, it is more likely to find indirect

excitons in close proximity. But it is worth mentioning that this approximation still predicts

a linear-dependence of the blue shift on density.

A more rigorous analysis of the IX-IX interaction energy was performed by Schindler and

Zimmermann [116]; therein, an effective potential between two indirect excitons is calculated

by taking the full, four-particle wave function into consideration. An experimental study by

Vörös et al. [117] was able to test the temperature dependence of the interaction energy

without directly knowing the density by measuring the slope of spectral broadening versus

blue shift. The slope measured within the range of 2-20 K agreed with the predictions of

Schindler and Zimmermann within a factor of two.

In the density regime considered in this work, the indirect exciton population exhibits a

non-negligible amount of density-dependent blue shift, typically on the order of a few meV.

For the sake of observing BEC, increasing density requires a deeper strain trap, as a larger
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density will fill up the trap quickly, flattening the trap. As far as this study is concerned, the

primary problem is how to include the IX-IX interaction in the calculation of the steady-state

density in a strain trap.

One simple approach is to assume the the blue shift is proportional to the local density,

with proportionality constant γ. Assuming Boltzmann statistics,

n(x, y) = n0exp

[
−V (x, y)

kT
− γn(x, y)

kT

]
(3.8)

where the density relative to n0 at any point can be uniquely determined by the trapping

potential V (x, y), the temperature T, and the blue shift at trap center γn0. While this

expression is clearly non-linear in density, it is relatively easy to solve numerically. It is

convenient to re-arrange it as follows:

ln

[
n(x, y)

n0

]
+
V (x, y)

kBT
+
γn0

kT

n(x, y)

n0

= 0. (3.9)

If the potential is scaled so that V = 0 at trap center, n0 can be interpreted as the density

at trap center in the absence of blue shift. Careful experimental analysis of 10 nm coupled

quantum wells by Z. Vörös suggested a value for γ of around 10−10 meV cm2 [113]. This

measurement differs from predictions by Schindler and Zimmermann [116] by about a factor

of 5; it is suspected that the error may lie largely in the difficulty in calibrating the density

[113]. It was mentioned earlier in this section that similar measurements which do not require

an estimate of the density match the theoretical predictions much more closely [117]. In any

case, is important to know this parameter to translate a particular density-dependent blue

shift into an absolute density; but the spatial-dependence of the density can be calibrated

directly from the blue shift, assuming the blue-shift actually does scale linearly with density.

Note that Boltzmann statistics are used in this model for simplicity. It is not clear

whether the black hole effect occurs in a regime where quantum degeneracy is important.

But - as the next few sections will show - it may be possible to explain this effect without

invoking Bose-Einstein statistics.
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3.3.2 Radiative Enhancement from Mixing

One consequence of shear strain at the edges of the trap - as discussed in Section 2.4 - is that

the ground-state exciton is a superposition of the light-hole state and the heavy-hole state.

The presence of mixing is confirmed by the observation of linear polarization on the edges

of the trap with applied strain. It was also shown by the numerical results in Figure 6 that

the light-hole exciton is characterized by a distinctintly shorter radiative lifetime (predicted

by this calculation to be shorter by roughly a factor of ten).

At first glance, this could result in a relative darkening of the center of the trap in the

presence of applied strain. The black hole effect appears in the stress regime near the hh-lh

crossover, where hh-lh mixing would be significant. It also appears at lower stress for wider

quantum wells, where the hh-lh splitting is smaller [86, 113].

To check this model, the intensity as a function of applied force, temperature and power

can be considered. For a given trapping potential, the density can be calculated using (3.9).

The density is entirely a function of the local trapping potential, V (x, y), the temperature,

and the total trap population. Within the model, the total trap population can be calculated

by integrating the density over the trap area. Experimentally, determining the density is

somewhat challenging; a measurement of the intensity only provides direct information of

the density if the radiative lifetime and the collection efficiency are known. Instead, it is

more convenient to use the blue shift at trap center, which - for a given temperature and

interaction parameter, γ - will have a one-to-one correspondence to the total trap population

in equilibrium.

Assuming non-radiative recombination is small, the intensity of radiative emission can

be approximated as the local density times the radiative rate τ−1
gs ,

I(x, y) =
n(x, y)

τgs(x, y)
(3.10)

where the lifetime of the ground state, τgs(x, y), is given by the relative hh and lh contribu-

tions,

1

τgs(x, y)
=
|η(gs)
hh (x, y)|2

τhh
+
|η(gs)
lh (x, y)|2

τlh
(3.11)
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Figure 21: The light-hole fraction of the ground state along a cross-section that goes through

the center of the trap, as a function of stress (parameterized by trap depth).

and the hh and lh fractions, |η(gs)
hh (x, y)|2 and |η(gs)

lh (x, y)|2, are calculated using the normalized

eigenvector components calculated in Sections 2.27 and 2.28. Recall that these are functions

of strain, and will also be functions of position in the trap. For simplicity, the mixing fraction

is calculated with a single quantum well model. The only parameter in this calculation that

could be different for coupled quantum wells is the hh-lh splitting due to confinement; for

14 nm wells with a 4 nm barrier, the difference will not be significant.

Figure 21 shows the light-hole fraction of the ground state as a function of strain trap

depth along a cross-section through the center of the trap. At higher stress, the light-hole is

predicted to punch through the heavy hole at trap-center (the center of the trap goes from

being entirely hh to being entirely lh). For 14 nm quantum wells, it is expected that the lh

fraction at the edges of the trap will be not much more than 0.1 before this happens. Using a

lh radiative rate of ten times faster than the hh rate, this means that the largest observeable

rate will be about twice that of the hh exciton.

Figure 22 shows the simulated dependence of the intensity at fixed temperature (kBT =
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0.4 meV) and increasing stress. The blue shift at trap center is fixed at a constant fraction

(0.6) of the total trap depth; this condition keeps the size of the IX cloud relatively constant

as the stress is increased. It can be seen that at low stress, the intensity profile matches what

might be expected for a population of excitons in a harmonic trap with a uniform radiative

rate. At higher stress, two bright lobes appear in the intensity. Regardless of blue shift, the

density at trap center will always be greater than or equal to the density everywhere else;

assuming a maximum mixed-to-unmixed radiative rate ratio of 2:1, this means the maximum

observed intensity contrast in this model should be about 2:1.

Figure 23 shows the same model at fixed stress (4.8 meV trap depth) and temperature

(kBT = 0.4 meV). The total density in the trap is varied, parametrized by the blue shift at

trap center. At low density, the IX population is primarily located in the dark region, making

the spatial dependence of the lifetime unobservable. At higher density, the population is

pushed further out towards the edges of the trap, causing the two-lobed structure to appear.

In two-dimensions, this two-lobed structure would correspond to a bright ring around a dark

center. Looking closely at the experimental power series in Figure 19, the interpretation

that the population is being pushed out towards a relatively fast-radiative rate region does

seem feasible.

In this model, lowering temperature simply reduces the average thermal energy of the IX

cloud, which draws the population closer to the center of the trap. At low temperature the

population would be primarily in the dark region of the trap and the contrast that causes

the black hole would disappear (basically, the same result as lowering power). In other

words, it predicts that the black hole should appear strongly at high-temperature, not low

temperature. This, of course, is the exact opposite of what is observed experimentally and

is a major issue with the radiative enhancement model.

If the IX-IX interaction was strongly temperature dependent, a lowering of temperature

could increase IX-IX blueshift; from the semi-classical model discussed in Laikhtman et al.

[115], it is expected that there would be an increase in the effective IX-IX interaction strength

at low temperature. But, in any case, a drastic increase in the blue shift as temperature

drops - which would be necessary to produce black hole onset - is not observed [117].

Furthermore, from Figure 20, it is clear that the shape of the cloud is not drastically
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Figure 22: Simulated intensity cross-section through the center of the trap, as a function

of trap depth (varying applied force). Temperature is fixed at kBT = 0.4 meV and the

density is scaled such that the blue shift at trap center is fixed at 0.6 times the trap depth.

Model assumes a single, 14 nm quantum well in GaAs/Al0.45Ga0.55As and that the light-hole

radiative rate is ten times faster than the heavy-hole rate.
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Figure 23: Simulated intensity cross-section through the center of the trap, as a function

of density, parametrized by the density-dependent blue shift at trap center. Temperature is

fixed at kBT = 0.4 meV and the empty trap depth is fixed at 4.8 meV. The model assumes

a single, 14 nm quantum well in GaAs/Al0.45Ga0.55As and that the light-hole radiative rate

is ten times faster than the heavy-hole rate.
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changing in the regime that the black hole appears. Measurements of the spectral broadening

at trap center verify that the density at the center of the trap does not drop when the black

hole appears. This strongly suggests that the black hole onset must be occuring due to

a relative drop in the radiative rate at the center of the trap with respect to the sides.

Within the radiative enhancement model, this comes about due to the appearance of a non-

zero light hole component at the edges of the trap; in this model, the intensity contrast

between the center and the sides is entirely determined by (1) the spatial variation of the

density, (2) the fraction of light-hole in the ground state as a function of position, and (3)

the ratio of the radiative rate between the hh and lh components. Having excluded a drastic

drop in density as the cause of the black hole, the radiative enhancement model could only

explain the temperature dependence if the mixing fraction or the ratio between the hh and lh

rates were strongly temperature dependent. It is expected that the mixing fraction depends

primarily only on the strain and there is no reason to expect that the radiative rate of the

heavy-hole exciton would exhibit drastically different temperature dependence than that of

the light-hole exciton.

Despite the suggestive appearance of a region of suppressed luminescence, there are a

number of other issues that indicate that the radiative enhancement picture is not sufficient

to explain the black hole effect.

The simulated intensity profile also does not seem to have the same intensity contrast

that is observed in the experimental data. From the calculations shown in Figures 21, 22,

and 23, it appears that the model predicts that the maximum intensity along the sides of

the trap are at most 2:1. Experimentally, 3:1 to 10:1 intensity contrast is observed between

the sides and the center of the trap. The contrast can be increased somewhat by adjusting

model parameters, but this sort of ad-hoc fix seems dubious.

If the radiative enhancement due to mixing is significant enough to cause a relative

darkening of the center, the black hole onset should also coincide with decreased population

lifetime. Given that the experimentally measured population lifetime increases with stress,

as discussed in the list of experimental observations in Section 3.2, it seems that the radiative

enhancement due to the lh fraction is overwhelmed by some other effect which increases the

population lifetime. It is also worth noting that a dramatic reduction in population lifetime
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is not observed when the light-hole crosses the heavy-hole and becomes the ground state at

trap center, which seems to contradict the prediction in Figure 6. When the ground state at

trap center becomes entirely light hole, one would expect that if the light hole does exhibit

a much faster radiative rate, the population lifetime would decrease dramatically. However,

this plot is calculated at zero stress; the effect of strain on the effective mass of the light-hole

band is not considered and - as will be discussed in the following section - can be significant.

3.3.3 Momentum-Space Indirect Valence Band

In Chapter 1, the dispersion relationship for unstrained GaAs quantum wells was plotted,

showing that the light-hole band is k-space indirect (Figure 3). This is consistent with

photoluminescence studies, in which the light-hole exciton line is only visible in the spectrum

at high-stress and at elevated temperature [86].

This observation seems to indicate that the heavy-hole band may become momentum-

space indirect at high stress, as the darkening at trap center seems to occur near the lh-hh

crossover point. One theoretical analysis of the effect of a compressive uniaxial stress on the

band structure of a 10 nm GaAs/Al0.21Ga0.79As quantum well, performed by Andreani et.

al. [118], predicted that the hh band does become indirect near the hh-lh crossover point5.

To test the strain dependence of this property, the expected single-particle dispersion

relationships at trap center were calculated, where εxx = εyy ≈ −εzz and εxy = εxz = εyz = 0.

This was done using the code presented in Appendix A. These calculations include single-

particle effects for both the conduction and valence bands, but do not include the binding

energy.

In Figure 24, the results are shown for 14 nm GaAs coupled quantum wells with 4 nm

Al0.45Ga0.55As barrier, in an electric field of 1 mV/nm. In (a), the energy at trap-center

for the hh- and lh-excitons is shown as a function of applied force (excluding changes in

the binding energy with strain). Note that the absolute scale of the applied force should

be taken with skepticism; due to uncertainty regarding the contact area, it is difficult to

5A compressive or tensile strain can push the hh and lh bands closer together, provided Q = εxx+εyy−2εzz
is greater than zero. This will still accompany an overall increase in the exciton energy, which is typically
dominated by the electronic term and is proportional to εxx + εyy + εzz
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calibrate the absolute value of the force. In comparing experimental data with this model,

it is more appropriate to pay attention to the bare trap depth.

Note that in Figure 24(a), the lh-state is predicted to cross over the hh-state around F =

1.2 N. Experimentally this serves as a point of reference; at higher stress than that associated

with black hole onset, the light-hole exciton line appears and punches through the heavy-

hole line. This bright spot starts off at comparable energies to the dim luminescence at trap

center, then moves below hh trap center at higher stress.

One possible explanation for the appearance of the black hole is that the heavy-hole sub-

band (or more, generally, the highest valence subband) becomes momentum-space indirect

in the presecence of strain. Recall that an indirect-gap semiconductor is one in which the

highest valence band state does not line up with the lowest-conduction band state in k-space.

In semiconductors with indirect gaps (such as silicon), radiative recombination is strongly

suppressed.

In Figure 24(b), a plot of the difference between the energy at k = 0 and the lowest

hole energy subband minima along the (110) axis is shown. At zero stress, the ground state

(the heavy hole) is momentum-space direct, so the minimum is at band-center, and this

difference is equal to zero. At an intermediate stress around the hh-lh cross-over point, there

appears to be a minimum at non-zero k which quickly appears and then disappears past the

cross-over point. The energy minimum along the (110) direction is the overall minimum of

the subband; this can be seen from Figure 25, which shows calculated 2D k-dependence of

the energy of the (a) ground and (b) excited hole subbands near the F = 1.2N case shown

in Figure 24.

To better illustrate what is happening, the plots in Figures 24(c)-(f) show cross-sections

of the dispersion along the (100)- and (110)-directions at varying force. First at zero strain

(a), right after the indirect minimum appears (b), where the indirect minimum is deepest

(c), and after the ground state has become direct again (d).

Using the same numerical procedure, it is possible to determine the location of the

valence band maximum and the direct-to-indirect gap - where applicable - for any given

strain. This was performed for the 2D strain profile at a range of applied force values; the

calculated intensity profile was plotted in Figure 26. It is assumed in these calculations that
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Figure 24: Modeled behavior of the hh- and lh-bands at trap center as a function of applied

force (14 nm CQW, 4 nm barrier, 1 mV/nm electric field). In (a), the energy of the lowest

two hole subbands. As shown in Figure 25, indirect-minima appear around F = 0.86 N, with

an energy gap shown in (b) along the (110) axis. This is further illustrated by band-digram

cross sections at (c) F = 0, (d) F = 1.0 N, (e) F = 1.2 N and (f) F = 2.0 N. In all sub-figures,

blue and red lines indicate the lower- and upper-states, respectively.
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Figure 25: The calculated in-plane k-dependence of the (a) lowest and (b) second-lowest hole

energy subbands near the hh-lh crossover, roughly where the expected direct-to-indirect gap

is the greatest (F = 1.2N in Figure 24)

.

the indirect gap, ∆EI reduces the recombination rate as follows:

1

τ
=

1

τ0

exp

[
−∆EI
kBT

]
(3.12)

where τ−1
0 is the rate for direct recombination and the energy gap is the difference between the

valence band maximum and the energy at k = 0. In other words, in order for recombination

to occur, holes must be thermally excited to near ~k = 0 6.The density was calculated using

the same mean-field approximation employed in the previous section. The temperature

is fixed at 4 K and the density-dependent blue shift is scaled at 20% of the trap depth.

Encouragingly, in the simulation a dark region appears sharply at trap center at a critical

stress value.

A similar calculation was done at fixed stress (6.2 meV) and density, while varying the

temperature. Of course, due to the assumed exponential suppression of radiative recombina-

tion, the trap center brightens at higher temperature, as shown in Figure 27. Recall that this

feature is completely absent from the radiative enhancement model. Also, the fact that the

onset temperature predicted by the direct-to-indirect gap is roughly the same as the critical

6Recall that the center-of-mass momentum of the electron-hole pair must be near-zero to lie within the
light-cone.
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Figure 26: Simulation of the intensity as a function of position, using the indirect-gap model

discussed in the text. Stress is varied, temperature is fixed at 4 K (kBT = 0.34 meV), and

the density is scaled such that the blue shift at trap center is 20% of the trap depth. Effect of

radiative enhancement from the light hole fraction is excluded, piezo-electric effect included.

Compare to data shown in Figure 18 (note that elongation direction along [110] direction is

consistent with weak axis in Figure 18).
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temperature observed experimentally may be persuasive. The maximum gap predicted by

Figure 24 is between 1-2 meV, which corresponds to roughly 10-20 K.

While the approximation in (3.12) predicts the stress- and temperature-dependence well,

the power dependence of the black hole shape is not as accurate at first glance. This can

be seen in Figure 28(b); at the chosen stress and temperature, the size of the black hole

is essentially independent of power (the peak values staying fixed around ± 60 µm as the

blue shift at trap center is varied). The reason for this is that the appearance of the direct-

to-indirect gap is spatially sharp (the rate predicted by Equation (3.12) as a function of

position is shown in Figure 28(a)). For a more gradual spatial change in the local lifetime,

the blue shift renormalizes the trap and pushes the population more towards the brighter

sides of the trap. The compromise between the weaker emission near the center and the

larger population will produce maxima that shift outward as the total density in the trap

increases. With a sharp spatial cutoff to the luminescence suppression, the intensity peak

locations will be independent of power.

The simple exponential dependence given in (3.12) is a rather rough approximation. It

assumes that the electrons and holes are acting entirely as free carriers and only recombining

at ~kh = 0. The most accurate way to do this calculation is to re-calculate the bound

exciton states associated with the hole dispersion relationship at each particular spatial

location. Performing this calculation at each spatial location for each strain value would be

extremely computationally intensive. A simple approximation to model this behavior is to

fit an effective mass to each new local valence-band minimum and relate them to an exciton

state with effective mass:

mex = me +mh(x, y). (3.13)

The effective mass of the electron is independent of stress. The effective mass of the holes

is found by fitting the hole dispersion relationship near the minima as a 2D parabola with

principal axes along the (110) and (110) directions,

Ehole =
h̄2

2mh,110

k2
110 +

h̄2

2mh,110

k2
110. (3.14)

It was observed that, in the indirect regime, there are typically five minima in the hole
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Figure 27: Simulation of the intensity as a function of temperature, using the indirect-gap

model discussed in the text. Stress is varied, the trap depth is fixed at 6.2 meV, and the

density is scaled such that the blue shift at trap center is 20% of the trap depth. Effect of

radiative enhancement due to the light hole fraction is excluded, piezo-electric effect included.

Compare to data shown in Figure 20 (note that elongation direction along [110] direction is

consistent with weak axis in Figure 20).
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Figure 28: Simulation of the intensity as a function of density-dependent blue shift at trap

center - using the rate calculated from the strain-dependent band structure (blue) and a

more complex model treating each minima as a distinct exciton state (green). The rate is

normalized such that it goes to unity far from trap center. The temperature is fixed at

4 K and the total trap-depth is fixed at 6.6 meV. Effect of radiative enhancement due to

light hole fraction is excluded, piezo-electric effect included. Compare to experimental series

shown in Figure 29.
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Figure 29: Measurement of intensity as a function of pump power for 12 nm quantum wells at

varying pump power resonant to direct line. Held at fixed temperature (1.8 K) and applied

bias (0.51 V), using bandpass filter to remove direct luminescence. Using data originally

presented in [113].

dispersion - a shallow minimum at ~k = 0, two minima approximately along the (110)-axis,

and two minima along the (110)-axis. For simplicity, these three types of states will be

labeled A, B, and C. Considering a cross-section through the strong axis, symmetry requires

that the two B exciton states are identical and the two C exciton states are identical. At

trap center, all four states are identical; away from trap center, the B states will be slightly

lower than the C states.

Away from trap center, the A exciton state will also lower until the valence band becomes

direct; meanwhile, the B and C states will become shallower until they disappear entirely. It

is assumed in this model that all three exciton states have identical binding energy. Although

they are associated with different effective masses, the binding energy depends on the reduced

mass of the electron/hole pair, which will be dominated by the much lighter electron mass

(0.067m0).

Assuming the form of the dispersion relationship in 3.14, the exciton density of states
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will be given by:

g(ε)

A
=

√
mex,110mex,110

πh̄2 . (3.15)

For Figures 28(a) and (c), the hole dispersion relationship was calculated at a range of

points along the (110) axis, starting at the trap center and increasing up to 400 µm from

the center. At each point, the effective mass (meff), energy at the minimum (E0), and depth

of the minimum (∆E) was calculated. Under the assumptions above, the total number of

excitons - NA +NB +NC - can then be calculated as follows 7:

NA ∝
∫ E

(A)
0 +∆E(A)

E
(A)
0

gA(ε)e−ε/kBTdε, (3.16)

NB ∝ 2

∫ E
(B)
0 +∆E(B)

E
(B)
0

gB(ε)e−ε/kBTdε, (3.17)

NC ∝ 2

∫ E
(C)
0 +∆E(C)

E
(C)
0

gC(ε)e−ε/kBTdε (3.18)

with the end result,

NA ∝ kBT

[√
m

(A)
ex,110m

(A)

ex,110
e−E

(A)
0 /kBT

(
1− e−∆E(A)/kBT

)]
. (3.19)

The expressions for the B and C states will be identical, changing only the three relevant

parameters. It is assumed that only direct recombination is allowed (meaning only the A

excitons can recombine) and only excitons within the light cone can recombine. Recall from

the discussion in Section 1.2 and Figure 1 that conservation of momentum and energy limits

the range of exciton k-values that can radiatively recombine. In order to couple with photons

outside of the sample (in air), energy must be conserved,

h̄c
√
k2
z,ph + k2

|| = Eex

(
~k = 0

)
+
h̄2k2

||

2mex

(3.20)

where conservation of momentum requires that k|| be the same for the exciton and photon.

The edge of the light cone is where kz,ph = 0, meaning all energy is going into matching the

7Ultimately, the goal is to calculate the ratio of radiatively accessible excitons to the total exciton pop-
ulation, which will then be normalized to the unstressed value. So, for simplicity, these terms will only be
calculated up to a proportionality constant.
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in-plane momentum. In the limit where the energy gap is large compared to the exciton

in-plane kinetic energy, the light cone is defined by the following condition:

k|| ≤
E(k|| = 0)

h̄c
. (3.21)

For a gap energy of 1.52 eV near T = 0 and a confinement energy of about 30 meV, this

corresponds to a k -value of 7.9 µm−1. For an exciton dispersion relationship Eex(~k), the

fraction of carriers within the light cone is given by:

fLC ∝
1

NA

(
L

2π

)2 ∫
k in LC

e−E(~k)/kBTd2~k (3.22)

The energy spread associated with carriers in the light cone is expected to be on the order

of a few µeV, which will be small compared to kBT at 2 K. Under this approximation, the

integrand of (3.22) is approximately unity. This means that the number of excitons within

the light cone can be approximated as:

NLC ∝
(
L

2π

)2

π

(
Egap

h̄c

)2

e−E
(A)
0 /kBT (3.23)

Finally, assuming the radiative rate is slow enough for the system to remain in thermal

equilibrium, the rate will be proportional to the overall fraction of excitons within the light

cone:

1

τrad

∝ NLC

NA + 2NB + 2NC

(3.24)

Using this expression and fitted values for the exciton parameters, the radiative rate as

a function of position is plotted in Figure 28(a). Compared to the model using only the

direct-to-indirect gap, this result is characterized by a distinctly lower radiative rate at the

center of the trap and does not exhibit a sharp cutoff at the point where the band structure

becomes indirect. Instead, the rate slowly approaches the expected unstressed radiative rate;

the curve is normalized so that the tail approaches unity far from the center of the trap.

Outside of the k-space indirect region, the variation in the rate comes from the changing

fraction of excitons within the light cone (due to the varying effective mass).

From the expression in (3.24), a plot of the intensity distribution along the strong axis as
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a function of total density (parametrized by the blue shift at trap center) is shown in Figure

28(c). In the gap model (using the expression in (3.12)), shown in Figure 28(b), the size of

the dark region is constant. In the exciton model, the size of the black hole is small at low

density and grows as the blue shift pushes excitons into the brighter region. The dotted line

on plot Figure 28(c) roughly traces out the peak intensity across the series; the position of

the peak intensity grows from around 60 µm at the lowest density, to around 110 µm. This

result compares well to a similar experimental series shown in Figure 29, where the indirect

exciton density is changed by varying the optical pump power.

3.4 CONCLUSIONS

A number of explanations have been considered for the sharp suppression of radiative emis-

sion of indirect excitons at trap center. Initially, Bose-Einstein condensation was an at-

tractive possibility, given that the effect appears to have a dramatic high density and low

temperature onset [119]. Since this effect has been observed, a number of works, both the-

oretical [107] and experimental [106], have proposed that a condensate of indirect-excitons

will be optically dark, or that a persistent dark population of indirect excitons might be a

symptom of a condensate. But subsequent tests for BEC in the black hole regime, such as

measurements of optical coherence from the emitted light at trap center, did not support

this hypothesis [62].

The radiative enhancement model discussed in Section 3.3.2 was presented in Sinclair

et al. [62] as one possible explanation for the darkening effect, with the caveat that many

of its features were not explained by the model; e.g, the temperature-dependence, the fact

that the modeled relative degree of darkening was not as significant as observed, and the

lifetime variation with strain. In that analysis, it was suggested that the black hole effect

may appear because of radiative enhancement due to the light hole fraction in conjunction

with some other effect, such as an electron-hole liquid phase transition.

The appearance of a momentum-space indirect bandgap at intermediate strain seems to

the explain all the major features of the luminescence suppression, tying together most of the
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information that has been gathered about this effect since it was first observed in 2007. Still,

there are a few experimental tests that could be used to verify that it is the dominant factor

in the black hole effect. For example, one strong point in favor of this model is that it would

exhibit the same lifetime characteristics observed experimentally - a relatively short initial

lifetime (associated with the high density black hole regime), followed by a longer lifetime at

low density (where the majority of the population is in the dark region). The temperature

dependence of the radiative lifetime was not studied extensively in the black hole regime; it

would be expected that the late lifetime associated with emission at trap center should drop

exponentially as temperature decreases, as the population of holes at k = 0 drop.

Assuming that the proposed model is correct, where does it leave this system in the search

for Bose-Einstein condensation of indirect excitons? At face value, the suppression of direct-

bandgap emission at trap center could be problematic, particularly if optical measurements

are the primary tool of investigations Even if the direct transition is thermally allowed,

the ground state of the system - which is momentum-space indirect, may not be optically

accessible in the BEC regime. Still, it is worth remembering that one reason indirect excitons

are a desirable system in the search for BEC is that they have a long radiative lifetime. If

this effect is now understood, this method could provide an additional tool for enhancing the

radiative lifetime of indirect excitons. Furthermore, the interaction between the hh-lh bands

could open the door to experiments that are not possible with other trapping techniques.

Alternatively, this regime can be avoided entirely by switching to narrower quantum

wells. If a structure were designed with a hh-lh splitting of greater than 20-30 meV, it is

likely the sample would break well before any band-mixing effects became noticeable. While

there are trade-offs with going to narrower wells (such as increased disorder scattering), it

could allow for a much less complicated strain trap.

It is also worth considering that it may not be as easy to detect condensation in the IX

system; in the microcavity polariton system, optical coherence is easily observable in the

BEC regime. But, in the same way that liquid helium-4 does not exhibit the same, drastic

k-space narrowing that is observable in weakly interacting atomic systems, it may be likely

that such signatures will not be as dramatic in IX systems.

Another approach to this system is to search for superfluidity by performing transport
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measurements. However, because excitons are charge neutral, performing transport experi-

ments on indirect excitons is not as straightforward as it is for unbound carriers. In Chapter

4, a method for making transport measurements on optically injected excitons will be ex-

plored in detail.
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4.0 TRANSPORT

Transport measurements are one of the primary tools of semiconductor physics. Transport

typically refers to the motion of charge carriers in response to some stimulus, usually to an

applied electric potential gradient. Transport measurements are not as straightforward in

excitonic systems; due to the charge neutrality of excitons, they do not experience drift in

response to an in-plane electric field.

The experimental work discussed in the previous chapters dealt with excitons that are

optically generated and studied with optical measurements (predominantly photolumines-

cence spectroscopy). However, there has been a great deal of work in the study of coupled

electron-electron, hole-hole and electron-hole 2D layers (typically called bilayers), which - in

certain regimes - strongly resemble indirect excitons in coupled quantum wells. There have

been a number of claims of condensate-like effects in these systems. In the following section,

a brief literature review of these experimental studies will be presented.

For a number of reasons, there has been little overlap between optical studies and trans-

port measurements. In the remainder of this chapter, a method of doing transport measure-

ments on optically generated excitons will be proposed and the preliminary results will be

discussed.

4.1 REVIEW OF TRANSPORT EXPERIMENTS IN BILAYERS

The Eisenstein group at Caltech was one of the first to explore independent contacting of cou-

pled bilayer systems. Generally, these structures utilized coupled 2D electron gases (2DEG);

in other words, structures where selective doping sets up equilibrium electron populations
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in both wells. This method of achieving independent well contact requires thin samples (≈

50µm) patterned with etched mesa structures. Diffused indium contacts are used to provide

contact with both wells and bias contacts are patterned on both top and bottom surfaces

to cut off individual wells [120]. By adjusting the bias values, the conducting path between

any two diffused indium contacts can be restricted to either individual well, both wells, or

neither (cutoff behavior is demonstrated by the conductance dropping off with two distinct

plateaus as a function of cutoff bias, corresponding to cutoff of both wells). This behavior is

similar to the operation of a MOSFET, where the flow of current can be cut off by an applied

bias at the gate. The bilayer structure in this type of system is typically composed of two

wide quantum wells (around 20 nm) and a relatively thick AlxGa1−xAs barrier. The bar-

rier thickness and height are both typically larger than in CQW optical studies, to strongly

suppress tunneling between wells.

Another method for constructing 2D electron-hole systems is the undoped electron-hole

bilayer (uEHBL) device used by the Sandia National Labs group [121]. The basic idea

behind this system is that n-type NiGeAu contacts and p-type BeAu both make contact

with the wells. The sample is thinned carefully using an epoxy bond and stop etch (EBASE)

technique. This approach uses a preliminary HF wet etch, employing an Al0.55Ga0.45As layer

as a stop-etch, then a secondary citric acid etch step, using GaAs as a stop-etch. This

precision is necessary, because the relative position of each well with respect to the top and

bottom contacts determines the majority carrier in each well. For example, the population

in the bottom well is independently controlled by the bottom gate, and the population the

top well is independently controlled by the top gate. This allows a balanced population of

electrons and holes to be established without resorting to a large magnetic field or optical

pumping.

It is possible to explore electron-hole pairing in 2DEGs under a large magnetic field in

the growth direction. In the presence of a magnetic field perpendicular to the plane of the

quantum well, confined electrons will undero cyclotron motion in the plane of the well. If

the magnetic field is sufficiently large, the radius of that motion will be small enough that

quantization effects are important (the electron must fit an integer number of wavelengths

in a round trip). Depending on the radius of these orbits, a finite number of electrons can
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fit in a particular spatial area. The degenerate states associated with electrons moving in

orbits of the same size is referred to as a Landau level. When the number of electrons is such

that no more electrons associated with the minimum cyclotron radius can fit in a particular

spatial area, that is referred to as the first Landau level being filled. In the same way that

vacant electronic states can be treated as positively charged holes, a partially filled Landau

level of a 2DEG can also be treated as a mixed population of electrons and holes [122].

In the bilayer 2DEG system, interesting effects can be observed when the two layers

are coupled. If the two layers are close enough1 they effectively share their Landau level.

In other words, an electron in either the top or bottom well will take up the spatial area

associated with a particular Landau level. If the magnetic field is such that the Landau level

of a single well would be filled (referred to as unity total filling fraction, νT = 1), the system

is expected to be in a state such that each well is effectively in filling fraction 1/2. So each

layer can be treated as equal populations of electrons and holes.

The Eisenstein group published a number of papers where they examine interlayer tun-

neling current as a function of magnetic field. There are three primary experimental results

which are cited as being indicative of coherent pairing: resonant tunneling between layers,

strong Coulomb drag between layers, and a drastic drop in the counterflow Hall resistivity

[124, 125].

Tunneling conductance is typically measured by using a small-AC signal (in the range of

10-100 µV) on top of a larger DC bias; in experiments by Spielman et al., the small signal

bias is placed across the two wells, and the resulting current through the wells is measured as

a function of DC bias[126, 123]. In these papers, a large small-signal differential conductance

(dI/dV) is measured at zero interlayer voltage (peaking at around 20-50 times higher than

the conductance at non-zero DC bias). This resonant peak is only observed near νT = 1,

disappears at larger effective barrier widths d/`, disappears at high density [126], appears

gradually below 200 mK [123], and is quenched by in-plane magnetic field [123]. The resonant

peak corresponds to a width of a few µV and is associated with a current discontinuity of

around 30 pA; in the non-differential I-V curve, the current peak near zero bias is around

1In these systems, the relevant length scale is the magnetic length, ` = (h̄/eB)
1/2

; effects attributed to
coupling are typically observed around d = 1.6` [123].
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15 pA, dropping off to around 10 pA away from the resonant peak [123].

The significance of tunneling measurements is that a resonant enhancement of tunneling

can be indicative of high correlation between electrons in neighboring layers. In the νT = 1

regime, there should be an equal population of electrons and holes in the two layers. In the

completely uncorrelated case, an electron attempting to make the jump between the two

wells has a high chance of being blocked by the presence of another electron. In a strongly

correlated system where electrons in one layer are perfectly lined up with holes in the other

layer (and vice-versa), the conditions are far more favorable to tunneling.

Another interesting feature of this system is a dramatic drop in the counterflow resis-

tivity in the same regime as the resonant tunneling effect (low temperature, νT = 1). The

counterflow configuration is when the current in one layer is directed opposite to the flow of

current in the other layer. In the exciton picture, this corresponds to a current of excitons;

electrons flowing in one layer are bound to holes flowing in the opposite layer, which corre-

sponds to equal and opposite current flow within the two wells. One counterflow method is

to flow current through one well, pass it through a shunt resistor, and re-direct it (in the op-

posite direction) through the other well; this method is typically called either series or shunt

counterflow [125]. Measurements by Kellogg et al. [127], reveal a drop in the longitudinal

and Hall resistivity in the counterflow configuration below 500 mK and at νT = 1. Around

the same time, similar results were published for a similar system by Tutuc et al. [128]. In

both cases, the parallel current resistivity also drops drastically with temperature, while the

direct Hall resistivity does not change (as expected from the quantum Hall effect) [127].

Another variation on the counterflow configuration is a counterflow drag experiment,

where current is passed across one well in a closed circuit; a sensing resistor is then placed in

parallel with the other well and is used to measure the induced current. If there is significant

drag between the two layers, the current passing through the top well will induce an opposite

current in the opposite well. In a population of excitons, this would correspond to inducing

a current of holes in one well by pushing their corresponding electrons (or vice versa). In a

paper by Nandi et al., “perfect” Coulomb drag is reported in a bilayer system near νT = 1;

i.e., the ratio of the induced current to the drive current was measured to be nearly unity (at

T = 17 mK, d/` = 1.5, and near zero DC bias) [129]. An earlier work by Morath et al. [130]
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report similar measurements in the uEHBL system discussed earlier in this section; in this

paper, a fit to the drag resistance versus temperature closely matches a theoretical model by

B.Y.K. Hu [131] which assumes a superfluid transition. However, Hu’s model predicts that

the drag resistance should be sharply peaked when the electron and hole populations are

balanced; instead, measurements by Morath and coworkers reveal an exponential increase in

drag resistance when the electron density is decreased relative to the hole density [130].

Early analysis of these results suggested that they were a signature of Bose-Einstein

condensation [132]. One criticism of this claim is that all effects described above - resonantly

enhanced tunneling, decreased counterflow , and strong drag effects - could be signatures

of electron-hole pairing, rather than condensation. After exciton formation, there will be

strong spatial correlation between electrons and holes in the neighboring layers; one would

expect that the tunneling rate would jump, simply because of the heigtened probability of

an electon in one well being adjacent to a hole in the other well.

A defense against this criticism is that pairing should only increase the tunneling rate

by roughly a factor of two. If the motion of an electron is completely uncorrelated to the

presence of an electron-or-hole in the half-filled neighboring well, one would expect that it

has equal probability of being adjacent to an electron or hole. If instead it is perfectly bound

to a hole, that probability is raised from 50% to near 100%. However, one must pay attention

to the fact that differential resistance is typically being measured. In a direct measurement of

the current in [123], the actual current peak near zero bias is less than double the tunneling

current observed in the “incoherent” regime, although it is very narrow.

It may turn out that it is difficult to distinguish between pairing and condensation in

this system. The reported effects tend to appear at very low temperatures, typically in the

100 mK range. Due to the large barrier typically used - typically 10-20 nm with 20 nm wells

- the binding energy between interlayer electrons and hole may be very small. In the CQW

system described in earlier chapters, where the electron-hole separation, is around 10-20 nm

total (4 nm barriers with 14 nm wells, will give an average e-h separation around 20 nm),

with - based on the result in Figure 5 - an expected binding energy of around 3 meV (35 K).

If pairing only occurs below 150 mK (as shown in [123], in a system with a 10 nm barrier),

this would correspond to a binding energy of around 12 µeV. It is also unclear whether in
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this density regime Coulomb screening significantly lowers the expected binding energy of

pairing.

In BCS superconductors, the binding energy for Cooper pairs tends to be higher than

the thermal energy associated with the “condensation” threshold, which means that as soon

as Cooper pairs form, they will immediately condense into a coherent state; it is not en-

tirely clear whether the dramatic effects observed in this system, while clearly indicative of

enhanced electron-hole correlation, are also indicating the appearance of a coherent state of

excitons [133].

4.2 FABRICATION

The desired structure differs from previous systems described in Section 4.1 in a number of

ways. In these systems, a balanced population of electrons and holes are generated in the

system, either by applying a large magnetic field and tuning the filling fraction or through

a complicated bias configuration in a self-aligned structure. The goal here is to enable

transport measurements in a system where a balanced population of electrons and holes can

be generated optically. First, it is necessary to use a structure with a small barrier width;

the large barrier width used by other groups essentially eliminates tunneling current between

the wells. However, in order to optically generate indirect excitons, it is necessary to either

generate direct excitons and let them tunnel to form IXs or optically excite indirect excitons

directly, both require some coupling across the barrier.

It is also desireable to have a thicker sample, with the eventual goal of performing

transport measurements on a strain-trapped population of indirect excitons. While thin

samples are more susceptible to stress, they are also more fragile. This is a significant risk

with samples that require time-intensive processing. A sample thickness of 100 µm is far

easier to work with than a 50 µm sample. This also would lower the bias voltage necessary

for cutoff behavior.

The wafer this structure is fabricated from is similar to that described in previous chap-

ters; the coupled quantum well structure is composed of 14 nm quantum wells with a 4 nm
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Figure 30: (a) An illustration of the sample design. The black layer represents the thin /

optically transparent top contact, the dark blue region represents the unetched mesa and

the lighter blue represents the etched region. (b) An image of an actual sample under a

microscope. (c) and (d) show cross-sections along the respective paths shown in part (a).
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barrier in a GaAs/Al0.45Ga0.55As system. For simplicity, the superlattice was replaced with

Al0.45Ga0.55As (compare Figure 7 in Chapter 1 with the structure shown in Figure 30(c)).

The desired sample has several basic features. First, the flow of indirect excitons needs

to be able to be cut off with an applied bias. To do this, they must be constricted to flow

within a channel. As indirect excitons are restricted to the coupled quantum wells, channels

can be fabricated by etching away the coupled quantum well region. This region is labeled

as the “CQW mesa” in Figure 30(a) and is shown in cross-section in Figure 30(d). The

channel width is designed to be 100 µm.

Second, to establish a population of indirect excitons with tunable lifetime, it must be

possible to apply a DC bias to the central region. To achieve this, a Au-Ti contact is

deposited over this area (the large black box with two contacts coming in from the top and

bottom, in Figure 30(a)). Likewise, it is necessary to put a bias contact over each channel,

so that it can be independently biased at high or low voltage compared to the central bias.

These are the four other black contacts shown in Figure 30(a). The width of the bias contact

arms across each channel is 50 µm, with a 5-10 µm gap between the arms and the central

contact (the structure shown in Figure 30 has a 10 µm gap). The central contact must be

somewhat transparent, so that light can be injected into the central region.

A sketch of the cutoff behavior is shown in Figure 31 for free carriers and in Figure 32

for indirect excitons. The cutoff arm is designed to form a barrier or a trap for electrons or

holes, depending on the relative bias voltages in the central bias region and under the arm

contacts. It is expected that the trap configuration will not dramatically impede the motion

of carriers; in steady-state, the net number of carriers falling into the trap must equal the

population leaving the trap on the other side.

The response of indirect excitons to the cutoff bias is a little different; indirect excitons

will always be trapped under the highest voltage contacts, because indirect excitons expe-

rience the lowest energy in regions of highest electric field in the growth direction. The

indirect exciton energy barrier height (or trap depth), as shown in Figure 32, is proportional

to the change in the electric field in the growth direction and the electric dipole moment of
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Figure 31: A sketch of the expected cutoff behavior, dependent on the cutoff arm voltage

Varm and the central bias voltage Vcg applied to the central contact and the diffused contact.

Real-space cross section of sample shown in (a), energy diagrams in (b) and (c). In the

regime where the arm voltage is greater than the central bias voltage (b), the cutoff arm acts

as a barrier for hole transport. In the opposite regime (c), the cutoff arm acts as a barrier

for electron transport. Barrier heights will be proportional to the voltage difference and are

expected to be on the order of 100 meV.
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Figure 32: A sketch of the behavior of indirect excitons in response to the cutoff arm voltage

Varm and the central bias voltage Vcg, based on geometry in Figure 31(a). Indirect exciton

energy is proportional to the field (barrier height is discussed in Section 4.2, will be roughly

1-10 meV for votlages used). When the magnitude of the arm voltage is higher than that of

the central bias voltage, as in (a) and (b), indirect excitons will see a trap at the arm contact.

When the magnitude of the arm voltage is lower than that of the central bias voltage, as in

(c) and (d), indirect excitons will see a barrier at the arm contact. The direction of the bias

voltage determines the orientation of the electron and hole in the coupled quantum wells.

For simplicity, the charge polarization of the indirect excitons are assumed to be the same

in the two regions.

109



the indirect exciton,

∆EIX = µ
∆V

∆z
(4.1)

where a typical dipole moment is given by the electron charge multiplied by 20 nm and

∆z (the thickness of the insulating layer) is around 1 µm. This gives an expected barrier

height of 2 meV for every 100 mV offset between the cutoff arm and the central bias. Recall

that indirect excitons do not directly move in the response to in-plane field, so any observed

current will ultimately be due to the presence of free carriers entering or leaving the arm

bias regions. However, in steady state the population of indirect excitons is in equilibrium

with the population of free carriers at the edges of the contacts, so it is expected that the

motion of free carriers can still be used to probe the population of indirect excitons.

Third, it must be possible to inject current into the wells. Diffused indium contacts are

shown in yellow on the CQW mesa contact pads in Figure 30(a). These contacts extend into

the structure and provide a path for current injection directly into both wells. Alternatively,

indium alloys, such as InSn or InZn, can be used as n-type or p-type contacts, respectively

(see discussion in Section 4.2.2); to avoid shorts to the n-type substrate, InZn was used for

our samples.

4.2.1 Lithography and Etching

The fabrication of the structure in Figure 30(a) requires two lithography steps; one to estab-

lish the mesa structure and one to define the contact geometry. Both photolithography steps

described below were performed using AZ 5214 E Image Reversal Photoresist. For these two

steps, both positive and negative photoresist is necessary; image reversal photoresist can be

used as either with essentially the same process, making it a convenient choice.

This type of photoresist is initially insoluble in its respective developer solution (AZ 300

MIF). After exposure to UV light, the exposed region becomes soluble. At this point, the

sample could be developed and the photoresist would act as positive resist (the exposed

region would be removed). However, if the sample temperature is elevated a second reaction

occurs in the resist, causing the exposed region to become permanently insoluble to the
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developer solution. The entire sample can then be flood exposed with UV light, which

causes all photoresist not exposed during the first run to become soluble. Thus, everything

exposed during the first step would act as negative resist (everything outside the initially

exposed region would be removed).

The image reversal heat treatment is very sensitive to temperature and bake time. A

reversal bake of 120 ◦ C for 90 seconds on a hot plate worked well. It is critical that the hot

plate is properly calibrated and the temperature is reliable.

The first step in the fabrication process is establishing the mesa structure. This creates

a microscale channel (channel thickness approximately 100 µm) in which the excitons are

confined. This is achieved through a simple lithography process; an unprocessed sample

is coated with photoresist and exposed in a manner that ensures that only the photoresist

covering the mesa region is insoluble in a particular developer solution. After rinsing the

sample in developer, the photoresist in the mesa region remains. The photoresist used does

not react to the etchant solution, and thus provides a barrier for wet etching.

Typically, all wet etching methods for GaAs include two steps - oxidation of the top

surface and removal of that oxide [134]. For the stress trapping experiments discussed in

Chapters 2 and 3, it is necessary to simply thin samples in a uniform fashion. A simple

method for doing so is through polishing the sample with a solution of bromine and methanol

(between 1:10 to 1:20 dilution). In this solution, bromine acts as a strong oxidizer and

the methanol is an inactive diluting agent. The removal of the oxide layer is achieved by

mechanically polishing the sample.

This solution is inappropriate for patterning / selective etching; without the polishing

step, the oxide layer is not removed efficiently, leading to extremely uneven etch rates across

the sample. For the purposes of patterning, a 1:1:10 solution of phosphoric acid, hydrogen

peroxide, and DI water were used. In this case, the hydrogen peroxide acts as the oxidizing

agent and the phosphoric acid dissolves the oxide once it is formed [134].

It is important for the etch step to penetrate the quantum wells, but not to reach the

substrate (see Figure 30 (d)). If the Au-Ti bias contact is deposited directly to the n+ GaAs

substrate, it forms a relatively good contact - essentially shorting the bias contacts to the

substrate. For most of the samples discussed here, the insulating region of the sample is
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Figure 33: Plot of etch depth as a function of time for GaAs/Al0.45Ga0.55As structure shown

in Figure 30. Etching process uses 1:1:10 solution of phosphoric acid, hydrogen peroxide,

and DI water near room temperature (around 20◦ C). Solution is gently stirred during etch

process.

around 1 µm thick.

To avoid overetching it is necessary to have a good calibration of the etch rate. This cali-

bration was performed by taking six small test chips and partially covering them with glyptol

(red enamel paint). Each sample was then immersed in the aforementioned phosphoric acid

solution for time intervals ranging from 10 s to 60 s. The glyptol acts as an etch barrier,

producing a step between the etched and unetched regions. The glyptol is then removed

with acetone and the step height is measured at several different points along each sample

using a surface profiler. A plot of depth versus etch time is shown in Figure 33. Subsequent

etches with the shown sample have been consistent with the fitted etch rate of 10.7 nm/s ±

0.81 nm/s. Variation in the etch rate can be reduced through more careful calibration of the

concentration; however, this level of variability is adequate for ensuring that the etch does

not proceed into the doped substrate.

In general, dry etch techniques - specifically reactive ion etching (RIE) - are preferable

due to a higher degree of directionality. Wet etch techniques tend to be mostly isotropic;
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as the solution etches down into the sample, it also etches sideways into the region covered

by photoresist, a process called undercutting. With RIE, it is possible to etch straight

down, producing much straighter sidewalls. Undercutting is problematic if the feature size is

comparable to the etch depth; with this structure, the feature size (100 µm) is much larger

than the etch depth (less than 1 µm), so a wet etch is possible. This can be desireable, as

wet etching is cheaper and more convenient; RIE systems typically involve strongly reactive

gases and are more often designed for silicon etching than GaAs 2.

4.2.2 Contacts

Metal-semiconductor contacts fall under two classifications: Ohmic contacts and rectifying,

or Schottky, contacts. An Ohmic contact is characterized by a linear voltage drop across the

contact as a function of voltage. Schottky contacts are characterized by a potential barrier

at the semiconductor-metal interface and typically exhibit an exponential I-V curve at low

voltage.

According to the early Schottky model of rectifying contacts, the height of the potential

barrier is determined by the work function of the metal, that of the semiconductor, and the

position of the semiconductor Fermi level within the bandgap. If the work function of the

metal is higher than that of the semiconductor, the interface can lower energy by transferring

charge from the semiconductor to the metal. This results in the distortion of the valence and

conduction bands until the Fermi levels line up in equilibrium. In general, this will result in

a barrier for the injection of electrons (or holes).

There are primarily two mechanisms for the transfer of charge across a Schottky barrier.

For a population of carriers at finite temperature, some fraction will have enough thermal

energy to hop over the barrier. This process is called thermionic emission, the current from

which is determined by the barrier height φB and the temperature [135]:

I(V ) ∝ T 2exp

(
− qφB
kBT

)[
exp

(
qV

kBT

)
− 1

]
. (4.2)

This expression assumes that the barrier height is large compared to the temperature. Al-

2Silicon RIE typically involves fluorine-based chemistry, while GaAs requires chlorine-based gas mixtures
[134].
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ternatively, if the barrier is thin enough, there is a non-negligible probability of the carriers

tunneling through it. This process is typically called field emission. It is strongly depen-

dent upon the width of the barrier (called the depletion region) is determined by the doping

concentration of the semiconductor [135].

Early on, it was apparent that the Schottky model did not accurately predict the Schottky

barrier height observed experimentally [136]. It was found that the height of the potential

barrier at a metal-semiconductor interface is relatively insensitive to the work function of

the metal, a phenomenon called Fermi level pinning. It was later realized that the surface

states of the semiconductor are the primary factor in determining the barrier. Beyond this,

the specifics can be quite complex and can depend strongly on surface treatment and quality,

making the barrier height somewhat difficult to predict [137].

Typically, there are two strategies for producing an Ohmic contact to GaAs. The first is

to reduce the height of the barrier. Due to Fermi level pinning, this is not particularly easy.

Furthermore, thermionic emission drops off exponentially at low temperature. At T = 4 K,

the thermal energy kBT is 0.34 meV. At this temperature, a barrier of even one percent

of the GaAs band gap (1% of 1.43 eV, or 14 meV), is a substantial barrier. Alternatively,

by increasing the doping concentration of the semiconductor at the interface, the thickness

of the depletion region can be reduced, which can drastically lower the resistance due to

improved tunneling current [134].

In practice, Ohmic contacts to GaAs involve some method for alloying GaAs to produce

an intermediate, low-bandgap layer. Usually, one component of the contact alloy acts as a

p-type or n-type dopant for GaAs. One common example is Au/Ge/Ni - where Ge can act

as a p or n-type dopant for GaAs, depending on preparation [134].

The method of Ohmic contact that we use for injection into the quantum wells is a

simple diffused indium contact. Based on a model by Sebestyen [138] and Auger electron

spectroscopy measurements by Lakhani [139], the indium diffuses into the GaAs crystal,

with indium density varying with distance into the sample. Close to the contact will be

a primarily InAs layer. Deeper, there will be a layer of Iny(x)Ga1−y(x)As alloy, where the

alloy fraction y(x) decreases as the distance from the contact x increases. This prevents

the formation of a sharp barrier and provides an Ohmic contact. InZn alloy contacts have
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Figure 34: A sketch of the band diagram for a diffused indium contact with heavy zinc

doping (p+). Low temperature band gaps for InAs (0.42 eV) and GaAs (1.52 eV) were used

[1]. Solution to diffusion equation (error function) used to aproximate variation of band gap;

a more rigorous profile can be calculated by following approach used by Sebestyen [138].

been reported to form Ohmic contact to p-type GaAs [140, 141] and InSn or pure indium

[139] forms an Ohmic contact to n-type GaAs. For the purposes of these experiments, InZn

contacts were used to avoid shorts between the diffused contacts and the n-type substrate.

A sketch of the band diagram going from the InAs region to the GaAs is shown in Figure

34.

The bias contacts are not intended to inject current into the sample. In fact, current

injection through the quantum wells results in heating, which is undesireable. The primary

role of the bias contacts is to provide a constant electric field underneath the contact. So

in this case the presence of a Schottky barrier is not an issue. For the bias contacts, a

10 nm layer of titanium was deposited onto the GaAs surface, followed by 60 nm of gold.

The titanium layer prevents the diffusion of gold atoms into the gallium surface, while still

allowing good adhesion between the gold and GaAs layers. For optical experiments, it is

necessary to have some degree of optical transparency near 800 nm, hence the need for thin

contacts. At 800 nm wavelength, the absorption from gold is the primary issue. Using the
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extinction coefficients of gold [142] and titanium [143] at this wavelength , roughly 95% of the

power is absorbed by a 10 nm Ti / 60 nm Au contact. Typical pump power for generating

indirect excitons is on the order of 100 µW or less, so increasing the input power by a factor

of 10-100 is not a major problem, other than the additional heating. However, it does make

it difficult to perform time-gated experiments at late times after a pump pulse, where the

photoluminescence tends to be dim.

4.3 CONDUCTIVITY MEASUREMENTS

The basic type of transport measurement employed here is the measurement of conductivity

between the diffused contacts as a function of various bias and optical pumping conditions.

• To prove independent contact to individual quantum wells, it would be interesting to

look for cutoff behavior as observed in [120]. In these experiments, it was possible to

detect double-plateau behavior as the cutoff-arm bias voltage is increased. Due to the

lack of an intrinsic electron population due to doping, this behavior may look different

in our system.

• With a steady-state population of indirect excitons in the central region (due to optical

pumping), it would be interesting to measure the conductivity as a function of density.

Excitons should not inherently carry current, but the ionization of excitons near the edge

of the bias contacts can generate current, potentially providing a tool for probing the IX

population.

• The indirect exciton population is also dependent on the radiative lifetime, which is

strongly dependent on the applied bias. The dependence of conductivity on the central

bias would also be of interest.

In order to properly study the conductivity as a function of DC bias on the central and arm

contacts, it is necessary to decouple the biasing voltage from the probe signal. One way to to

do this is to apply a small AC signal on top of the DC voltage at the probe points and measure

the resulting AC current. Effectively this gives a differential, small-signal measurement of
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the conductivity around a particular DC bias. A common method of doing this type of

measurement is to use a lock-in amplifier - an instrument designed to measure a small AC

signal of a particular frequency from an input with a low signal-to-noise ratio.

The details of this measurement technique will be discussed in the following section.

4.3.1 Lock-in Amplifiers

A lock-in amplifier (LIA) is a device used to extract a small-AC signal of a particular fre-

quency from a noisy background. Consider a signal sitting on top of large band-width noise:

v(t) = Vssin(ω0t) +

∫ ∞
−∞

Vnoise(ω)eiωtdω. (4.3)

A lock-in operates by multiplying the input signal by an internally or externally generated

reference signal. The frequency of the reference is chosen such that it coincides with the

signal being measured,

vref(t)v(t) = VrefVssin(ω0t)sin(ω0t+ φref) +

∫ ∞
0

VrefVnoise(ω)sin(ω0t+ φref)e
iωtdω. (4.4)

where φref is the phase offset between the reference and the measured signal. The product

of the signal and reference can be de-composed as follows:

sin(ω0t)sin(ω0t+ φref) =
1

2
[cos(φref)− cos(2ω0t+ φref)] . (4.5)

It is easy to see that when the multiplied signal is passed through a low-pass filter with a

cutoff frequency much less than ω0,

LPF [vref(t)v(t)] =
1

2
VrefVscos(φref) (4.6)

the first term is passed because it is DC (zero frequency). Thus, the output of the lock-in

amplifier is a DC signal which is proportional to the amplitude of the component of the

input at the reference frequency.

The second term in (4.6) is filtered out. For example, if a signal with frequency f0 is
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averaged for time T3, the integrated 2ω0 term will be multiplied by a pre-factor of (2ω0T )−1.

For a f0 = 30 Hz signal averaged over 1 s, this reduces the 2ω0 term by a factor of about

380. This will appear as a small ripple on the DC output.

Likewise, the power associated with the noise is reduced in a similar fashion. Integrating

the signal over time-scale T can be approximated as a low-pass filter with cutoff frequency

1
T

. For the case of of noise that is frequency-independent within a large bandwidth the RMS

reduction is given by the following:√
〈v2(t)〉Filtered
〈v2(t)〉

=

√√√√ ∫ 1/T

0
V (ω)2dω∫ ωBW

0
V (ω)2dω

∼ 1√
ωbandwidthT

. (4.7)

If the background noise is distributed over a band-width on the order of kHz, a one-second

integration time could cut down the total power of the noise by a factor of 1000. More

realistically, there will be sources of noise strongly peaked at particular frequencies; provided

they are far from the reference frequency, they will be reduced even more strongly.

Ideally, the output of the LIA is a DC voltage, typically scaled so that the output is equal

to the RMS voltage of the measured signal. Note that the input signal will not necessarily

be in phase with the reference signal; typically, a LIA can output the RMS voltage of the

component that is in-phase or the component that is 90◦ out of phase.

4.3.2 Measurement

With this sample geometry the primary goal was to be able to gate electrons and holes in

either quantum well independently using the arm contacts.

The measurement setup, shown in Figure 35, was designed so that a small sensing re-

sistance is used to measure the current going into the top-indium injection contact. For a

small AC signal on top of a DC bias voltage, the current can be expanded around the bias

voltage:

I (VDC + v(t)) = I (VDC) +

(
dI

dV

)
V=VDC

Vssin(ωt). (4.8)

3Recall that an average over time T is essentially a low-pass filter with a characteristic cutoff frequency
on the order of 1/T.
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Figure 35: (a) A top-view of a typical cross-configuration sample with contacts labeled and

(b) a diagram of the lock-in measurement setup. The central bias contact and two diffused

contacts are biased at a fixed DV voltage with respect to the substrate. A small (10 mV

RMS at 30 Hz) signal was applied across the diffused contacts (V
(+)
t and V

(−)
b ) and sensing

resistor (980 Ω); the AC current was measured by detecting the voltage across the sensing

resistor.

119



Provided the sensing resistance is small compared to the total resistance, the voltage mea-

sured by the LIA will be the small-signal AC current multiplied by the sensing resistance:

Vout = Rsens

(
dI

dV

)
V=VDC

Vs,RMS. (4.9)

In the following measurements, the system will occasionally in the regime where the small

signal reistance is not much larger than the sensing resistance (typically a sensing resistance

of approximately 1 kΩ was used). It is easy to correct for this by properly treating the system

as a voltage divider. The choice of the sensing resistor is a trade-off; a small resistance will

produce a small voltage, large resistors tend to exhibit higher thermal noise (due to the

higher drive signal voltage necessary). Trial-and-error suggested that measurements below

0.1 mV tended be noisier and more prone to instability.

A sketch of the equivalent circuit diagram for these measurements is shown in Figure

36. This diagram will be discussed in more detail in Section 4.3.3.2 in the context of the

experimental measurements.

4.3.3 Results

In the following sections, the results of transport measurements on the sample shown in

Figure 35 are discussed. The AC small-signal conductance around each DC bias point was

measured, as described in the previous section. Unless otherwise specified, the reference

source was a 30 Hz signal with 10 mV peak-to-peak amplitude put out by the internal

reference of the lock-in amplifier. A sensing resistance of around 1 kΩ was typically used to

measure the injected current. The noise on the LIA input signal was reduced with variable

cutoff high- and low-frequency rolloff filters, typically set to 3 Hz and 100 Hz. The output

filter was typically set to a time-constant between 300 ms and 3 s, depending on the stability

of the signal, with a 12 dB/octave rolloff rate.

All low temperature measurements were performed in a continuous flow cryostat with

optical access. The sample was mounted on a piece of copper board with silver paste. The

temperature sensor was mounted on the sample rod, less than 1 cm away from the sample,
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Figure 36: An equivalent circuit model of the measurement setup shown in Figure 35. Rele-

vant parameters are the sensing resistor (Rs), the contact resistance of the top and bottom

diffused contacts (R
(C)
t and R

(C)
b ), the tunneling resistance of the top and bottom difused

contacts to the substrate (R
(T )
t and R

(T )
b ), and the resistance across the quantum wells (Rq).

The small-signal AC source (vs) and DC bias (V ) are also shown.
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Figure 37: In (a), room temperature of dI/dV for overetched sample where there is low

resistance (on the order of 100 Ω) between the bias contacts and the substrate, leading

to significant leakage current. Increase in conductivity with bias likely due to heating, as

suggested by plot of DC power through bias contacts, shown in (b).

but not in direct thermal contact with it. As such, the temperature reading is indicative of

the ambient bath temperature, but heating due to current may make the sample somewhat

hotter. With the exception of the “over-etched” sample mentioned in Section 4.3.3.1, the

current injected into the sample through the DC contacts was relatively small, typically less

than 50 µA. With bias voltages less than 1 V, this would correspond to heating of less than

100 µW. This is very likely to be much smaller than the heating due to optical pumping.

This current restriction limited the bias ranges possible, but was necessary to avoid heating

or damaging the sample.

4.3.3.1 Over-etched Samples Preliminary measurements were done on an early batch

of samples with a thinner GaAs buffer layer, which resulted in undesirably high DC current

between the bias contacts and the substrate. At room temperature, a typical differential

conductance curve (between diffused contacts V
(+)
t and V

(−)
b ) with varying central bias volt-

age is shown in Figure 37(a), showing a relatively flat dependence at low voltage, followed by
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Figure 38: The small-signal AC conductance from t(+) to b(−) diffused contacts (see Figure

35) as a function of central bias voltage (Vcg) at low temperature (T = 4 K). Arm bias

contacts are floating.

a gradual drop in resistance. Going far past this voltage range often resulted in irreversible

damage to the contacts, characterized by shorts to the substrate.

Figure 37(b) shows that the drop in resistivity is strongly correlated with the DC elec-

trical power dissipated by the sample through the bias contacts, suggesting that this effect

was primarily caused by heating. These measurements were also performed with the diffused

indium contacts floating with respect to the DC bias, suggesting there was likely also a large

barrier to transport. This may be why the conductance is relatively flat at low bias voltages,

compared to subsequent measurements.

New samples were prepared with a thicker buffer layer, preventing the etching process

from uncovering the substrate and drastically reducing the leakage current between the

bias contacts and the substrate. The thicker buffer layer samples are used for all other

measurements in Section 4.3.3.2 and after.

4.3.3.2 Applied Central Bias To study the effect of the central bias contact on trans-

port across the sample at low temperature, the small-signal AC conductance was measured,
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as described in Sections 4.3.3 and 4.3.2. Conductance was measured between the diffused

indium contacts labeled t(+) and b(−) (shown in Figure 35(b)), as a function of the DC volt-

age applied to the central bias contact with respect to ground (Vcg). The DC voltage at the

indium contacts were also set to the central bias voltage (to minimize any voltage barrier

at the edge of the central bias contact) and the arm bias contacts were left floating. The

measurement was performed at 4 K.

It can be seen from the results of this measurement, in Figure 38, that the conductance

is smallest at zero bias, and increases as the absolute value of the central bias increases. The

conductance seems to be almost symmetric with respect to zero bias, but increases somewhat

more rapidly at positive bias.

The transport path of interest is the one that goes straight through the coupled quantum

wells; but it also possible for current to flow from the diffused contact and directly into the

doped substrate. Ideally, the conductance of interest - that associated with the quantum

wells - is much larger than that associated with leakage into the substrate. To determine the

size of this effect, the DC I-V curve was measured between each of the diffused contacts and

the grounded substrate. The I-V curve was used to approximate the differential conductance

as a function of central bias voltage. This measurement was performed at room temperature,

and is shown in Figure 39.

The conductance curve of the two diffused contacts, as well as the central bias contact,

match the behavior of the small-signal conductance across the sample measured in Figure

38. This measurement was performed at high temperature for simplicity (to isolate the

leakage current measurement from low temperature effects), but to provide a fair point of

comparison, a plot of the temperature dependence of the conductance at a fixed central

bias voltage (Vcg = 145 mV) is shown in Figure 40. It can be seen that the measured

conductance at room temperature is comparable to the tunneling conductance between the

diffused contacts and the substrate (roughly on the order of 100 MΩ−1).

This result suggests that the primary cause of the increase in conductance with bias

voltage, shown in Figure 38, is due to increased carrier flow into the substrate from the

diffused contacts. The significant drop in conductance as a function of temperature is likely

also caused by the decreased population of thermally excited carriers and the thermal hopping
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Figure 39: A plot of the differential DC conductance from ground to the top diffused contact,

to the bottom diffused contact, to the central bias contact, to the top arm contact, and the

bottom arm contact (as labeled in Figure 35(b)) as a function of the DC applied voltage

between that contact and ground. Measurement performed at room temperature.
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Figure 40: A plot of the small signal AC conductance with a fixed central bias voltage (Vcg

= 145 mV) and floating arm bias contacts as a function of temperature.

of carriers over the energy barrier between the diffused contacts and the substrate.

To gain a better understanding of the effect of tunneling current, a simple equivalent

circuit model of the measurement setup is shown in Figure 36. Based on the measurement

from Figure 39, the resistance from the evaporated bias contacts to the quantum well and

the substrate are ignored (assumed to be infinite). The sensing resistor is chosen so that

it is small compared to the equivalent resistance of the sample and is used to measure the

current injected into the sample (is). In the approximation where the sensing resistor can

be ignored, the equivalent differential resistance of the sample is given by:

∂vs
∂is

= R
(C)
t +

R
(T )
b + (R

(C)
b +R

(T )
b ) Rq

R
(C)
b(

Rq+R
(t)
t

R
(T )
t

)(
R

(T )
b +R

(C)
b

R
(C)
b

)
+

R
(T )
b

R
(T )
t

(4.10)

The parameters in this expression are as labeled in Figure 36. It is expected that the contact

resistance should be significantly less than the tunneling resistance; even if there is a barrier

associated with injection of current from the indium contacts into the quantum wells (the

contact resistance), it should be significantly less than the barrier associated with injection of
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current into the substrate. In this approximation (R
(C)
b , R

(C)
t → 0), the equivalent resistance

is given by a much simpler expression:

∂vs
∂is

=
R

(T )
t Rq

Rq +R
(T )
t

(4.11)

or, alternatively, in terms of the conductance:

∂is
∂vs

=
1

R
(T )
t

+
1

Rq

(4.12)

While tunneling into the substrate is not ideal, it is not necessarily a major issue. Primarily,

the goal is to look for cutoff behavior associated with variation of the arm bias contacts with

respect to the overall, central bias. The evaporated contacts are also not significantly coupled

to the substrate, as shown in the plot of the DC conductance between ground and the top

arm, bottom arm and central bias contacts in Figure 39. At typical bias voltages of a few 100

mV, the conductance of the evaporated contacts are about one to two orders of magnitude

lower than the diffused contacts. At a fixed central bias, it is expected that varying the arm

bias voltages will not significantly effect the tunneling conductance to the substrate, but

may change the conductance of the path through the quantum wells. Therefore any change

in the equivalent conductance, as shown in (4.12), will be due to changes in the conductance

of the path through the quantum wells.

4.3.3.3 Effect of Optical Pumping The effect of optical excitation on the conduc-

tance was measured by focusing a CW laser diode on the central mesa structure. The laser

wavelength was tuned so that it was near resonant to the direct exciton line (between 800

nm and 805 nm). The small signal AC conductance was measured, in the same manner as

discussed in previous sections, as a function of the laser pump power. To reduce the effects

of heating, the laser was blocked after each measurement and the dark conductance was

measured. In Figure 41, the conductance as a function of pump power is shown. For each

data point, the result is normalized with respect to the dark value at that data point. This

measurement was taken at fixed central bias voltage (Vcg = 145 mV) and temperature (5 K,

with some instability over time within ± 1 K). The dark values were taken in a dimly lit
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Figure 41: A plot of the small signal AC conductance with a fixed central bias voltage (Vcg =

145 mV) and floating arm bias contacts, as a function of optical pump power. Conductance

is normalized with respect to dark value. Laser is focused on central mesa region, near

resonant to direct line (λ between 800 nm and 805 nm). Temperature is fixed at 5 K ± 1 K.

room, with ambient light level significantly less than typical laser powers 4

A clearer picture of the power dependence is seen by looking at the conductance versus

central bias curve at several power values. A plot of the conductance as a function of Vcg is

shown in Figure 42 at several different pump powers: 0 µW, 520 µW, 900 µW, 2000 µW, and

2900 µW. These curves are shown in Figure 42. It seems that the power dependence shown

in Figure 41 is not due to an overall increase in the conductance, but rather due to a shifting

of the conductance curve symmetry point. This likely results from the build-up of optically

generated charge in the sample, causing a built-in field that increases with optical power.

A positive built-in bias shifts the conductance minimum to lower applied bias (presumably,

where Vbuilt-in + Vapplied = 0).

4A rough measurement of the ambient light levels were found by looking at the “dark” measurement of
a silicon optical power meter head with an active area of ≈ 0.8 cm2, calibrated to λ = 800 nm. In a dimly
lit room, a power reading of ≈ 50 nW was observed; compared to ≤ 10 nW with all overhead lights off.
Conductance variation between the dimly lit and entirely dark room was measureable, but was typically
only a few percent.
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Figure 42: A plot of the small signal AC conductance as a function of central bias voltage

(Vcg) and floating arm bias contacts, for varying values of optical pump power. Laser is

focused on central mesa region, near resonant to direct line (λ between 800 nm and 805 nm).

Temperature is fixed at 6.5 K ± 1 K.
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Figure 43: A to-scale plot of the band diagram along a cross section between the central bias

contact and the substrate along the growth direction (for sample discussed in Sections 4.3.3.2

- 4.3.3.4. In the presence of a built-in electric field (Fbi) due to band bending, photogenerated

carriers (indicated by dotted red line), will build up at the boudary of GaAs and AlGaAs

layers, resulting in a photo-induced field (Fphoto) in the quantum well region, pointed in the

same direction as the built-in field.
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The likely explanation for this behavior is illustrated in Figure 43. The sample under

examination includes a 100 nm GaAs region directly under the metal contact and a 500 nm

GaAs region directly on top of the doped substrate. Under illumination, electron-hole pairs

will also be generated in this region. In the presence of a built-in field due to band bending,

charge buildup will occur at the boundaries of the AlGaAs barriers, enhancing the built-in

field across the AlGaAs barrier and the quantum wells. The observed behavior in Figure 42

is consistent with a positive built-in and photogenerated voltage from contact to substrate,

as the flat-band peak seems to shift towards negative applied bias with increased power.

4.3.3.4 Cutoff-arm Behavior To look at the effect of the cutoff arm bias contacts, the

small signal AC conductance is measured at fixed central bias. Ultimately, the goal is to use

the cutoff arms to indepedently contact each quantum well, but for the purposes of testing,

the top and bottom arms were tied together (such that Varm = Vtg = Vbg). Ideally, this

would allow the conducting path through the two wells to be entirely cut off in two steps, in

a fashion similar to Eisenstein’s work [120]. Under only ambient light in a dimly lit room,

the dependence of the conductance on the arm voltage is measured at a fixed central bias

value of 145 mV. This result is shown in the top plot of Figure 44. Unlike the central bias

dependence shown in Section 4.3.3.2, this result is clearly asymmetric about zero bias. It

also does not appear to be symmetric around the central bias voltage (145 mV).

The same measurement with optical excitation (at 1 mW and 3 mW power) are shown

in the lower two plots of Figure 44. The same general trend persists, although there appears

to be a relatively sharp step behavior that appears only under optical pumping. In the 1

mW case, the conductance seems to exhibit a 30 MΩ−1 step over 250 mV; in the 3 mW

case, it is roughly a 20 MΩ−1 step over the same range. In the dark case, the change in the

conductance over this range is only about 8 MΩ−1.

Taking into account the power dependence shown in Figure 42, the three plots shown in

Figure 44 is not a fair comparison. At fixed applied central bias voltage, the effective bias

changes with pump power. From Figure 44, it is impossible to tell whether the step-behavior

is specifically due to carriers generated in the quantum wells or simply due to the shift in

the bias voltage.

131



Figure 44: A plot of the small signal AC conductance at fixed central bias (Vcg = 145 mV),

as a function of arm bias voltage (top and bottom bias arms are tied together, Vtg = Vbg).

Cases shown are for no pump laser (background light only), 1 mW optical power, and 3

mW optical power. Laser is focused on central mesa region, near resonant to direct line (λ

between 800 nm and 805 nm). Temperature is fixed at 5 K ± 1 K.
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Figure 45: A plot of the small signal AC conductance as a function of arm bias voltage (top

and bottom arm contacts are shorted together) at fixed optical pump power of 1100 µW, for

varying values central bias voltage. Central value (Vcg = -122 mV) is near the conductance

minimum for this pump power; other values are roughly equidistant from conductance min-

imum (≈ ± 120 mV). Laser is focused on central mesa region, near resonant to direct line

(λ between 800 nm and 805 nm). Temperature is fixed at 4.5 K ± 0.5 K.
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A more fair comparison is shown in Figure 45. In this plot, the dependence of the

conductance on arm bias voltage is measured at fixed optical pump power (1100 µW) at

several different central bias values. A rough measurement of the conductance versus Vcg was

performed with the arm contacts floating, revealing that the conductance minimum occurred

roughly at -120 mV. The curves in Figure 45 were measured at the floating conductance

minimum value, -122 mV, and at points roughly equidistant from the central value (-2 mV

and -252 mV).

The result of this measurement is interesting; near zero effective central bias (Vcg = -122

mV), there is little effect due to the variation of arm voltage. At positive effective central bias

voltage (Vcg = -2 mV), the step behavior appears with high conductance at lower voltage.

At negative central bias voltage, a similar step occurs with high conductance at negative

voltage. In both cases, the step appears to be relatively sharp, occuring over 100-200 mV.

It is difficult to directly compare the magnitudes of the conuctance between the two

curves in Figure 45; the conductance dependence on effective central bias is not completely

symmetric (as can be seen in Figure 42). However, the shape of the curve is qualitatively

different in the two scenarios.

One might expect that the arm voltage could slightly alter the tunneling into the sub-

strate. In this scenario, one would expect that the conductance would increase when the arm

voltage magnitude increases in the same direction as the effective central bias offset. That is,

at negative effective central bias (Vcg = -252 mV in Figure 45), this effect would increase the

conductance when the arm voltage is very negative. For both positive and negative effective

bias points, this is the opposite of what is observed. This suggests that the tunneling current

into the substrate is not significantly changed by the arm bias contacts.

It is worth noting that, based on Figure 31, an arm potential of Varm < Vcg corresponds

to a barrier for electrons, while the opposite case indicates a barrier for holes. This seems

to suggest that the observed asymmetry could be explained due to a change in the majority

carrier when the polarity of the central bias is reversed. Using this interpretation, the curves

in Figure 45 suggest that holes are the majority carrier when the effective central bias is

negative (Vcg = -252 mV) and electrons are the majority carrier when effective central bias

is positive (Vcg = -2 mV). It is not entirely clear why this change would occur. It may be

134



important that when the polarity of the central bias changes, the orientation of electrons and

holes in the top and bottom wells also changes. Under positive bias, elecrons are expected

to be primarily in the top well, under negative bias, holes are expected to be primarily in

the top well.

While the step behavior only seems to appear under optical excitation, the asymmetry

around Varm = 0 does not go away. However, there are noticeable changes in the conductance

when the ambient light is reduced by turning off all overhead lights in the lab, suggesting

the system is very sensitive to background light (see footnote in Section 4.3.3.3).

The drastic change in the behavior under optical excitation seems to suggest that trans-

port of excitons are involved. From the diagram in Figure 32, a cutoff in indirect exciton

transport is expected to occur when the arm voltage opposes the direction of the central

bias voltage. One can see from Figure 45, that this is the opposite of what is observed

experimentally. For a net negative central bias, a positive applied arm bias increases the

conductivity (and vice versa).

Alternatively, this effect could be attributed to a gradient of the potential across the

sample, as illustrated in Figure 48. In this illustration, a DC voltage V is applied to the bias

contacts and the diffused contacts. Directly adjacent to the diffused contacts, the voltage in

the plain of the wells will be approximately V, assuming the contact resistance is negligible.

Away from the diffused contacts, the GaAs can be treated as an insulating for calculating

the DC electric field. Under the bias contact, the voltage at the plane of the quantum wells

will be given by the distance from wells to the substrate / ground (0.34 µm) divided by the

total distance from the contact to the substrate (1.08 µm), which will result in a voltage

around 70% of the applied bias.

Also shown in Figure 48 is the effect of a positive and negative bias on the energy band

diagram, taking this effect into consideration. If the indium contacts are sufficiently doped

with zinc, near the contact the surrounding material can be treated as InAs [138] in the

heavily p-doped regime. It is also assumed that the Fermi level stays fixed just above the

InAs valence band; under the bias, this creates a trap for where carriers can accumulate (for

positive potential, holes will accumulate, for negative potential electrons will accumulate).

This picture is consistent with the cutoff behavior in Figure 45. At positive total bias, an
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Figure 46: A plot of the small signal AC conductance as a function of arm bias voltage (top

and bottom arm contacts are shorted together) at fixed optical pump power of 940 µW and

constant central bias voltage (Vcg = +50 mV). Conductance minimum at this pump power

was observed to be around Vcg = -100 mV. Laser is focused on central mesa region, near

resonant to direct line (λ between 800 nm and 805 nm). Plotted for a range of temperature

values: 3 K, 7.5 K, 22 K, 55 K
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Figure 47: A plot of the small signal AC conductance as a function of arm bias voltage (top

and bottom arm contacts are shorted together) at fixed optical pump power of 940 µW and

constant central bias voltage (Vcg = -150 mV). Conductance minimum at this pump power

was observed to be around Vcg = -100 mV. Laser is focused on central mesa region, near

resonant to direct line (λ between 800 nm and 805 nm). Plotted for a range of temperature

values: 3 K, 7.5 K, 22 K, 55 K
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Figure 48: Shown is a cross-section of the sample, where a voltage V is applied to the central

bias contact and the diffused indium contacts. Where the diffused contacts are in contact

with the quantum wells, the voltage in the plane of the wells will be approximately V. Far

away from the diffused contacts and under the bias contact, the voltage in the plane of the

wells is reduced, as shown. In the bottom two panels, the energy bands for positive and

negative applied voltage are shown, illustrating a shift in the Fermi level (green) relative to

the intrinsic GaAs Fermi level (teal), resulting in an imbalance of electrons and holes under

the contact, respectively.
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excess of holes accumulates under the contacts which provide a conducting path across the

sample. The flow of holes can be cut off by sufficiently positive arm bias, which is what is

observed in the positive bias case in Figure 48. In the negative bias case, electrons will accu-

mulate and the opposite behavior should be observed. Near zero bias, the structure should

be near flat band, meaning there will be no accumulation of carriers under the contacts, and

a uniformly low conductance is expected (and is observed). Recall that there will always be

non-negligible conductance due to tunneling into the substrate, so it is not surprising that

the conductance does not drop to zero in the cutoff regime.

The temperature dependence of this effect was tested up to 55 K, revealing that it

persists up to relatively high temperature for both positive (Figure 46) and negative (Figure

47) effective bias. However, it does appear that magnitude of the step decreases significantly

for the negative bias case for temperatures above 3 K (from, about 50 MΩ−1 at 3 K, to

around 10 MΩ−1 in the range 7.5 K to 22 K, and 20 MΩ−1 at 55 K) while the positive bias

curve is more or less constant (around 10-15 MΩ−1 for temperatures up to 22 K, increasing

to around 30 MΩ−1 at 55 K). The sharp change in the negative bias case at low temperature

could, alternatively, indicate that a sharp increase in the step size would also occur for the

positive bias case, but at a temeprature lower than 3 K. It is worth noting that drastic change

in the negative bias curve at low temperature occurs primarily on the high-conductivity size

of the step. The low conductivity side of the step stays fixed around 25-30 MΩ−1.

4.3.4 Conclusions

From the results in Section 4.3.3.4, there is some indication that the cutoff arm bias has some

effect on the transport, although the role played by electrons and holes within the structure

is unclear. There is some indication that either one might play the role as the predominant

charge carrier within certain regimes.

To fully understand the operation of this system, it would be useful to further isolate some

of the many variables that are not well understood. For example, an identical sample could

be grown in which the coupled quantum well structure is replaced with a single quantum well

of equivalent width. This would help determine which experimental results are dependent
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upon the orientation of electrons and holes within the coupled quantum well structure. It

would also be useful to perform the same measurements on a sample with no quantum

wells, to help identify which effects are simply related to properties of the contacts and the

structure that surrounds the quantum wells.

A better understanding of the sysem could also be achieved simply by more thoroughly

exploring the parameter space. It is clear that the conductance is strongly dependent on

each of the bias voltage values, as well as the optical pump power. A more complete set of

curves similar to Figure 45 could be informative. As would a more thorough exploration of

the temperature dependence of the cutoff behavior.

In all the arm bias measurements discussed in the previous sections, the two arms were

tied together. Measurements were also performed where the top and bottom arm contacts

were varied independently; unfortunately, without a thorough understanding of what to

look for, the parameter space in this scenario is very large (particularly when the central

bias contact is also varied) and these measurements were not very informative.

If the model suggested by Figure 48 is correct, it means that the conductance is primarily

a signature of free carriers, not excitons. However, the measurements shown here were

performed using only two of the four diffused contacts in the sample. It may be possible to

choose a bias configuration such that the region under the central bias contact is positively

biased with respect to one set of the diffused contacts and negatively biased with respect to

the other set; this would provide a conducting path for electrons through one set of contacts

and a conducting path for holes through the other set, which was the primary design goal

of this project (to achieve seperate contact to the top and bottom wells). It may also be

possible to balance the bias voltages such that there is not imbalance of charge under the

contacts (leading to an equal population of electrons and holes, and minimizing the presence

of free carriers).

If the motion of charge in this structure can be thoroughly understood and reliable, inde-

pendent contact of the wells can be demonstrated, drag and series counterflow measurements

- as discussed in Section 4.1 - could be performed. For example, a series counterflow exper-

iment could be performed by using the top contact to allow current to flow only through

the top well and the bottom contact to allow current to flow only through the bottom well.
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One side of the top well would then be shorted to one side of the top well, creating a path

for current to go through the top well in one direction and in the bottom well in the op-

posite direction. The counterflow current can then be used as a tool to measure indirect

exciton density or mobility. A sharp increase in the conductance at high pump power or low

temperature could be an indicator of a superfluid transition.

A more ambitious goal would be to use this structure with the stress trapping technique

discussed in previous chapters. Ideally, this could be a technique to probe the density of

a dark exciton population. For the reasons discussed in Chapter 3, it seems unlikely that

the sudden appearance of a dark population in the stress-trapped population is due to the

appearance of a condensate, it does not rule out that there is some condensate fraction

present. It may be possible that it is present, but more easily detected with transport

measurements than via the photoluminescence.
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APPENDIX A

MATLAB FUNCTION FOR FINDING SINGLE-PARTICLE ELECTRON

AND HOLE ENERGY

The theoretical background needed to set up the single-particle eigenvalue equations for the

conduction and valence bands are discussed in Chapter 2. Here, the numerical details and

MATLAB code will be presented. The code presented here calculates the energy eigenvalues

and eigenvectors for a particular value of in-plane ~k, strain tensor εij, structural parameters

(e.g., well width, barrier composition, barrier width, etc.), and electric field. An example

script that uses this function to calculate the trapping potential for a range of force values

is presented in Appendix B.

A.1 CALCULATION DETAILS

There are several important components that go into calculating the energy eigenvalues of

electrons and holes in the coupled quantum well system. First, the effect of the potential in

the growth direction in conjunction with non-zero in-plane momentum must be considered. A

quantum well is essentially a finite, one-dimensional potential well, which is an easily solved

problem. However, there are important corrections that must be made due to subband

mixing at finite k and due to the variation of the effective mass in the wells and in the

barriers. Second, the strain contributions from the Pikus-Bir terms need to be included

in the Hamiltonian. Third, the effect of an electric field in the growth direction must be
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included. These issues will be outlined in the following sections.

A.2 LUTTINGER-KOHN HAMILTONIAN

The form of the Luttinger-Kohn Hamiltonian is shown in (1.24). While the kinetic energy

terms are diagonal in the plane-wave basis, the potential is not. Due to the sharpness of

the boundary, a plane-wave expansion of the potential would have components at very large

momentum; this suggests it is more efficient to work in a spatial basis in the z -direction. In

this case, all kz terms must be re-written in terms of derivatives in z :

P =
h̄2γ1

2m0

(
k2
x + k2

y

)
− h̄2

2m0

∂

∂z
γ1(z)

∂

∂z
, (A.1)
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2m0

(
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)
+ 2
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, (A.2)
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2
√

3 (kx − iky)

(
∂

∂z
γ3(z) + γ3(z)

∂

∂z

)
, (A.4)

where the Luttinger-Kohn parameters - γ1, γ2 and γ3 - have also been re-written to be

functions of z. Note that when the mass is a function of position, the LK parameters do not

commute with the momentum operator and one must pay close attention to their order. The

shown expressions are symmetrized, as required to ensure continuity of the wave function

and the probability current density [1]:

Jz(z) ∝ 1

m(z)

[
ψ∗

∂

∂z
ψ − ψ ∂

∂z
ψ∗
]
. (A.5)

To project the LK Hamiltonian onto a discrete position basis, the partial derivatives in z need

to be discretized. The discretization scheme must also be carefully considered to ensure that

the continuity conditions are satisfied. One appropriate scheme requires that the material

parameters and wave function be defined on a staggered grid [59]:

∂

∂z
γ(z)

∂

∂z
ψ(z)→

γn+ 1
2

∆z2
ψn+1 −

γn+ 1
2

+ γn− 1
2

∆z2
ψn +

γn− 1
2

∆z2
ψn−1 (A.6)
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V (z)→ 1
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Vn+ 1

2
+ Vn− 1

2

)
(A.8)

Here, each term has been re-defined on a discrete grid in the z -direction, with grid spacing

∆z. The wave function and the material parameters have been on defined two separate grids

that are offset by 1
2
∆z. For a grid with N points, this is converted from a 4×4 matrix to

a 4N×4N matrix. Accuracy requires that the grid spacing be relatively small compared to

the well size. The boundary conditions are effectively defined such that the wave function

goes to zero at the edges of the problem space, so it is necessary that the edges are far away

compared to the penetration depth into the barrier. In the code below, a barrier of 100 nm

is assumed on each side of the well (unlike other geometric parameters, this was hard-coded

and is not an input parameter of the function). It was found that a grid spacing on the order

of 0.1 nm provided good agreement with analytical results at k = 0 (within a few percent

for low lying eigenvalues for typical quantum well widths). Total mesh lengths on the order

of 2000-5000 are typically used.

It is worth noting that, while the Hamiltonian in this basis is extremely large - a

20,000×20,000 matrix for N = 5000 - the number of non-zero elements is very sparse. In each

N×N position-submatrix, only elements on the diagonal or one step away from the diagonal

will be non-zero, which totals 3N − 2 non-zero elements out of N2. In the 4×4 Luttinger-

Kohn submatrix, only 12 out of 16 elements are non-zero. In the end, only 3
4

(3N − 2)

elements out of (4N)2 total elements will be non-zero. For N = 5000, there will be 45,000

non-zero elements out of 400 million. To store and diagonalize these matrices efficiently, it

is necessary to use algorithms designed to deal with sparse matrices. Such tools are built in

to MATLAB and are utilized by the script in Section A.7.
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A.3 STRAIN

The role of strain in this calculation is discussed in detail in Chapter 2. Once the Hamiltonian

is constructed as described in Section A.2, the strain terms of the Pikus-Bir Hamiltonian

(as shown in (2.13)) can simply be added to the Hamiltonian along the diagonals of each

position submatrix. The strain values are calculated using ANSYS, as discussed in Appendix

C.

A.4 ELECTRIC FIELD

There are a number of ways to deal with an applied electric field, Fz. The simplest is to add

the electric potential energy to the potential energy due to the quantum well structure:

V (z)→ V (z) + qFzz. (A.9)

This works well for small electric field values, where the total voltage drop from the well to

the edge of the problem space is less than the depth of the well, and is the method used in

the code in Section A.7.

If the electric field is too large, confined states that are lower in energy than the quantum

well states will appear at the boundaries. In the actual structure, an extended tail into the

structure will exist and there may be a continuum of free states that are below the confined

states of the quantum well1. In practice, once carriers are localized in the quantum well, the

tunneling rate out of the well is expected to be small compared to the radiative recombination

rate, making confined quantum well states a reasonable approximation.

Another simple fix is to solve for the quantum well confined states at zero electric

field, calculate the matrix elements of the electric field operator in this basis, and then

re-diagonalize the Hamiltonian in the basis of the zero-field eigenstates. This approximates

the Stark shift for confined states, but eliminates the component of the wave function ex-

1Analytically, the eigenstates for a quantum well in a constant electric field are Airy functions, which
have an oscillating tail away from the quantum well [59]. The presence of a superlattice complicates the
analysis.
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tending far outside the quantum wells. This approach was implemented and compared to

the case where the field is simply added to the potential energy. For electric field values

relevant to this work (a few mV/nm), both methods produced similar results.

A.5 OPTIMIZATION

In MATLAB, it can be inefficient to define matrices element by element within a for-loop. It

is typically far more efficient to vectorize this process. In the code below, for-loops are used

extensively. This was a conscious decision, as the discretization scheme is somewhat complex

and this approach makes the code more readable. It was also found that the diagonalization

step is significantly more computationally intensive than the step where the matrices are

defined 2, so any improvement due to vectorizing the matric element allocation would be

incremental. Nonetheless, this is one way the code below can be optimized.

If only the lowest few eigenvalues are desired, the run time can be significantly reduced

by properly setting the numberEigenvalues variable to the minimum possible value. It is

possible to generate all 4N eigenvalues, but only a small number of the lowest eigenvalues are

physically meaningful. When the energy eigenvalues are larger than the quantum well depth,

the calculated eigenstates will be simply the quasi-continuum associated with unconfined

states. In other words, the eigenvalues will be determined by confinement at the boundaries

of the problem space.

A.6 REFERENCES

The material parameters used in the following code were taken from Chuang [1].

2In one characteristic run where N = 5000, over 98% of the run time was found to be devoted to calculating
the eigenvalues and eigenvectors. Defining the matrix elements required 1-2% of the entire run time.
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A.7 CODE

function [eigenStates,Xpts] = ...
CarrierEigenStates(kVector, strainComponents, geometryParameters,...
electricField, numberEigenvalues,showMsgsSwitch)

% Inputs:
% kVector = [kx, ky] − In plane k−vector of electron or hole
% strainComponents: Data structure containing exx, eyy, ezz, exy, eyz, exz
% geometryParameters: Data structure that describes whether single well or
% CQW, barrier width, well width, alloy fraction, and
% number of divisions
% numberEigenvalues: The number of lowest eigenvalues the program
% calculates − calculates four times as many for hole
% states
% electricField: Transverse field in meV/nm
% showMsgsSwitch: Boolean variable, shows progress messages and warnings
% in MATLAB command window if true

% Outputs:
% Xpts: 1xN vector containing the sampled positions
% eigenStates: Data structure containing electron and hole eigenvalues and
% eigenvectors

% Harvesting input parameters

kx = kVector(1);
ky = kVector(2);

exx = strainComponents.exx;
eyy = strainComponents.eyy;
ezz = strainComponents.ezz;
exy = strainComponents.exy;
eyz = strainComponents.eyz;
exz = strainComponents.exz;

xAlloy = geometryParameters.alloyFraction;

Npts = geometryParameters.numberDivisions;

% Material Constants for GaAs

Egap GaAs = 1519; % meV, T = 0 K

Egap AlGaAs = 1519 + 1447*xAlloy − 0.15*(xAlloyˆ2);
% meV, T = 0 K, alloy fraction < 0.4, Chuang

if(showMsgsSwitch)
disp('Warning: Assuming T = 0 K for band gap.' + ...

'Arbitrary temperature not implemented yet.');
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end

Vc = 0.67*(Egap AlGaAs − Egap GaAs);
Vv = 0.33*(Egap AlGaAs − Egap GaAs); %% Chuang, 0.67/0.33

%% Transport parameters for valence band of GaAs, AlAs and alloy

gamma1GaAs = 6.8; % From Chuang
gamma2GaAs = 1.9;
gamma3GaAs = 2.73;

gamma1AlAs = 3.45;
gamma2AlAs = 0.68;
gamma3AlAs = 1.29;

gamma1Well = gamma1GaAs;
gamma2Well = gamma2GaAs;
gamma3Well = gamma3GaAs;

gamma1Barr = xAlloy*gamma1AlAs + (1−xAlloy)*gamma1GaAs;
gamma2Barr = xAlloy*gamma2AlAs + (1−xAlloy)*gamma2GaAs;
gamma3Barr = xAlloy*gamma3AlAs + (1−xAlloy)*gamma3GaAs;

alpha0 = 38.1; % meV*nm*nm, hbarˆ2/(2*m0)

% Generates potential as a function of position
[˜,Velectron] = Potential1D(0,Vc,geometryParameters, Npts);
[Xpts,Vhole] = Potential1D(0,Vv,geometryParameters, Npts);

delta = (max(Xpts)−min(Xpts))/Npts; % Grid size

% Generates transport mass parameters as a function of position
gamma1(1:Npts) = gamma1Barr;
gamma2(1:Npts) = gamma2Barr;
gamma3(1:Npts) = gamma3Barr;

gamma1(Vhole == 0) = gamma1Well;
gamma2(Vhole == 0) = gamma2Well;
gamma3(Vhole == 0) = gamma3Well;

%% Assigns effective electron mass as a function of position

electronMassGaAs = 0.067;
electronMassAlAs = 0.15;

electronMassWell = electronMassGaAs;
electronMassBarr = electronMassGaAs*(1−xAlloy) + electronMassAlAs*xAlloy;

electronMass(1:Npts) = electronMassBarr;
electronMass(Velectron == 0) = electronMassWell;

%% Generate deformation potential parameters as a function of position

acGaAs = −7.17e3; % Chuang, in meV
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avGaAs = 1.16e3;
bGaAs = −1.7e3;
dGaAs = −4.55e3;

acAlAs = −5.64e3;
avAlAs = 2.47e3;
bAlAs = −1.5e3;
dAlAs = −3.4e3;

acWell = acGaAs;
avWell = avGaAs;
bWell = bGaAs;
dWell = dGaAs;

acBarr = xAlloy*acAlAs + (1−xAlloy)*acGaAs;
avBarr = xAlloy*avAlAs + (1−xAlloy)*avGaAs;
bBarr = xAlloy*bAlAs + (1−xAlloy)*bGaAs;
dBarr = xAlloy*dAlAs + (1−xAlloy)*dGaAs;

ac(1:Npts) = acBarr;
av(1:Npts) = avBarr;
b(1:Npts) = bBarr;
d(1:Npts) = dBarr;

ac(Vhole == 0) = acWell;
av(Vhole == 0) = avWell;
b(Vhole == 0) = bWell;
d(Vhole == 0) = dWell;

% Generates Hamiltonian for electron states
if(showMsgsSwitch)

disp('Generating the electron Hamiltonian...');
end

% Allocates Hamiltonian in position basis as sparse matrix
MatrixElectron = spalloc(Npts,Npts,3*Npts−2);

for nn = 1 : Npts

if(nn == Npts | | nn == 1)
MatrixElectron(nn,nn) = Velectron(nn) ...

− electricField*Xpts(nn) + ...
(alpha0/electronMass(nn))*(kxˆ2 + kyˆ2) + ...
(2*alpha0/electronMass(nn))*(1/deltaˆ2) + ...
ac(nn)*(exx + eyy + ezz);

end

if( nn < Npts)

MatrixElectron(nn,nn) = 0.5*(Velectron(nn)+Velectron(nn+1)) − ...
0.5*electricField*(Xpts(nn) + Xpts(nn+1)) + ...
(alpha0/(0.5*electronMass(nn) + ...
0.5*electronMass(nn+1)))*(kxˆ2 + kyˆ2) + ...
(alpha0/(deltaˆ2))*((1/electronMass(nn))+...
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(1/electronMass(nn+1))) + ac(nn)*(exx + eyy + ezz);

MatrixElectron(nn,nn+1) = ...
−(alpha0/(deltaˆ2))*(1/electronMass(nn+1));

end

if(nn > 1)
MatrixElectron(nn,nn−1) = −(alpha0/(deltaˆ2))*(1/electronMass(nn));

end

end

if(showMsgsSwitch)
disp('Calculating the electron eigenvalues and eigenvectors...');

end
[electronEigenvectors,electronEigenvalues] = ...

eigs(MatrixElectron,numberEigenvalues,0);

% Sort eigenvalues and eigenvectors (from smallest to largest)
[electronEigenvalues, order] = sort(diag(electronEigenvalues),'ascend');
electronEigenvectors = electronEigenvectors(:,order);

% Generates Luttinger−Kohn Hamiltonian for hole states in position basis

if(showMsgsSwitch)
disp('Generating the hole Hamiltonian...');

end

M11 = spalloc(Npts,Npts,3*Npts−2);
M12 = spalloc(Npts,Npts,3*Npts−2);
M13 = spalloc(Npts,Npts,Npts);
M22 = spalloc(Npts,Npts,3*Npts−2);

for nn = 1 : Npts

if(nn == Npts | | nn == 1)

M11(nn,nn) = Vhole(nn) + electricField*Xpts(nn) + ...
2*(alpha0/(deltaˆ2))*(gamma1(nn) − 2*gamma2(nn)) + ...
alpha0*(gamma1(nn)+gamma2(nn))*(kxˆ2 + kyˆ2) − ...
(av(nn) + 0.5*b(nn))*(exx + eyy) − (av(nn) + b(nn))*ezz;

M22(nn,nn) = Vhole(nn) + electricField*Xpts(nn) + ...
2*(alpha0/(deltaˆ2))*(gamma1(nn) + 2*gamma2(nn)) + ...
alpha0*(gamma1(nn)−gamma2(nn))*(kxˆ2 + kyˆ2) − ...
(av(nn) − 0.5*b(nn))*(exx + eyy) − (av(nn) − b(nn))*ezz;

M13(nn,nn) = alpha0*(−sqrt(3)*gamma2(nn)*(kxˆ2 − kyˆ2) + ...
1i*2*sqrt(3)*gamma3(nn)*kx*ky) + ...
(sqrt(3)*b(nn)/2)*(exx−eyy) − 1i*d(nn)*exy;

M12(nn,nn) = 0.5*d(nn)*(exz−1i*eyz);
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end

if(nn < Npts)

M11(nn,nn) = 0.5*(Vhole(nn) + Vhole(nn+1)) + ...
0.5*electricField*(Xpts(nn) + Xpts(nn+1)) + ...
(alpha0/(deltaˆ2))*(gamma1(nn) + gamma1(nn+1) − ...
2*gamma2(nn+1) − 2*gamma2(nn)) + 0.5*alpha0*(gamma1(nn)+ ...
gamma2(nn) + gamma1(nn+1) + gamma2(nn+1))*(kxˆ2 + kyˆ2) − ...
0.5*(av(nn) + av(nn+1) + ...
0.5*b(nn) + 0.5*b(nn+1))*(exx + eyy) − ...
0.5*(av(nn) + av(nn+1) + b(nn) + b(nn+1))*ezz;

M11(nn,nn+1) = −(alpha0/(deltaˆ2))*(gamma1(nn+1)−2*gamma2(nn+1));
M11(nn+1,nn) = −(alpha0/(deltaˆ2))*(gamma1(nn+1)−2*gamma2(nn+1));

M22(nn,nn) = 0.5*(Vhole(nn) + Vhole(nn+1)) + ...
0.5*electricField*(Xpts(nn) + Xpts(nn+1)) + ...
(alpha0/(deltaˆ2))*(gamma1(nn) + gamma1(nn+1) + ...
2*gamma2(nn+1) + 2*gamma2(nn)) + 0.5*alpha0*(gamma1(nn)− ...
gamma2(nn) + gamma1(nn+1) − gamma2(nn+1))*(kxˆ2 + kyˆ2) − ...
0.5*(av(nn) + av(nn+1) − 0.5*b(nn) − ...
0.5*b(nn+1))*(exx + eyy) − 0.5*(av(nn) + av(nn+1) −...
b(nn) − b(nn+1))*ezz;

M22(nn,nn+1) = −(alpha0/(deltaˆ2))*(gamma1(nn+1)+2*gamma2(nn+1));
M22(nn+1,nn) = −(alpha0/(deltaˆ2))*(gamma1(nn+1) + 2*gamma2(nn+1));

M13(nn,nn) = ...
alpha0*(−0.5*sqrt(3)*(gamma2(nn)+gamma2(nn+1))*(kxˆ2 − kyˆ2)...
+ 1i*sqrt(3)*(gamma3(nn)+gamma3(nn+1))*kx*ky) + ...
(sqrt(3)*0.5*(b(nn)+b(nn+1))/2)*(exx−eyy) − 1i*d(nn)*exy;

M12(nn,nn) = 0.5*(d(nn) + d(nn+1))*(exz−1i*eyz);

M12(nn,nn+1) = ...
−1i*alpha0*2*sqrt(3)*(kx−1i*ky)*(1/(2*delta))*gamma3(nn);

M12(nn+1,nn) = ...
1i*alpha0*2*sqrt(3)*(kx−1i*ky)*(1/(2*delta))*gamma3(nn);

end
end

M24 = M13;
M34 = −M12;
M33 = M22;
M44 = M11;
M21 = ctranspose(M12);
M31 = ctranspose(M13);
M42 = ctranspose(M24);
M43 = ctranspose(M34);

MatrixHole = sparse(4*Npts,4*Npts);
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MatrixHole(1:Npts,1:Npts) = M11;
MatrixHole(1:Npts,Npts+1:2*Npts) = M12;
MatrixHole(1:Npts,2*Npts+1:3*Npts) = M13;
MatrixHole(Npts+1:2*Npts,1:Npts) = M21;
MatrixHole(Npts+1:2*Npts,Npts+1:2*Npts) = M22;
MatrixHole(Npts+1:2*Npts,3*Npts+1:4*Npts) = M24;
MatrixHole(2*Npts+1:3*Npts,1:Npts) = M31;
MatrixHole(2*Npts+1:3*Npts,2*Npts+1:3*Npts) = M33;
MatrixHole(2*Npts+1:3*Npts,3*Npts+1:4*Npts) = M34;
MatrixHole(3*Npts+1:4*Npts,Npts+1:2*Npts) = M42;
MatrixHole(3*Npts+1:4*Npts,2*Npts+1:3*Npts) = M43;
MatrixHole(3*Npts+1:4*Npts,3*Npts+1:4*Npts) = M44;

if(showMsgsSwitch)
disp('Calculating the hole eigenvalues and eigenvectors...');

end

[holeEigenvectors,holeEigenvalues] = ...
eigs(MatrixHole,4*numberEigenvalues,0);

% Sort eigenvalues and eigenvectors (from smallest to largest)
[holeEigenvalues, order] = sort(diag(holeEigenvalues),'ascend');
holeEigenvectors = holeEigenvectors(:,order);

eigenStates = struct('electronEigenvalues',electronEigenvalues,...
'electronEigenvectors',electronEigenvectors,'holeEigenvalues',...
holeEigenvalues,'holeEigenvectors',holeEigenvectors);

function [Xpts,V] = Potential1D(Vwell,Vbar,geometryParameters, Npts)

% Outputs the potential along the quantum well direction as a function of
% position.
% bufferWidth is space between edge of well and boundary of problem space
% If you make bufferWidth too small you can get confinement effects between
% edges. But you can adjust this if runtime is too slow.

aWell = geometryParameters.wellWidth;
% Space between edge of well and boundary of problem space
% You can make this smaller for smaller grid size, if you make it too
% small, you may get boundary effects
bufferWidth = 100;
V(1:Npts) = 0;

if(˜geometryParameters.isCQW)
problemSpace = (aWell + 2*bufferWidth);
Xpts = linspace(−0.5*problemSpace,0.5*problemSpace, Npts);
V(abs(Xpts) >= 0.5*aWell) = Vbar;
V(abs(Xpts) < 0.5*aWell) = Vwell;

else
barWidth = geometryParameters.barrierWidth;

problemSpace = (2*aWell + barWidth + 2*bufferWidth);
Xpts = linspace(−0.5*problemSpace,0.5*problemSpace, Npts);

152



V(1:Npts) = Vwell;
V(abs(Xpts)<0.5*barWidth) = Vbar;
V(abs(Xpts)>0.5*barWidth + aWell) = Vbar;

end
end
end
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APPENDIX B

MATLAB SCRIPT FOR FINDING TRAP PROFILE

This script requires the CarrierEigenStates.m script presented in Appendix A and the output

from the ANSYS calculation from Appendix C. This particular script parses the profile as

a diagonal cross-section along a 2D strain map (in other words, as a cross-section along

the [110] direction in the plane of the quantum wells). Run time can be reduced by only

calculating the lowest few eigenvalues or by lowering the resolution and/or total size of the

spatial grid discussed in Appendix A.2. The latter option should be done conservatively and

one should double check the accuracy of the results after doing so.

The CarrierEigenStates function also is only intended to take the strain components

as scalars. To more efficiently utilize MATLAB’s ability to manipulate arrays, the Car-

rierEigenStates.m should be altered and the for-loops in this script should be eliminated.

Alternatively, the run time can be improved on systems with multiple processors or multiple

cores by replacing the inner for-loop with a parallelized parfor-loop.

%% Strain Trap Profile Script

% Strain values exx, eyy, ezz, exy, eyz, and exz must be imported into
% workspace as 2D arrays. Strain should be calculated at nominal 1 N force.

% Calculates the lowest three electron eigenstates and lowest six hole
% eigenstates.

F0 = [0.25 0.50 0.75 1.00 1.25 1.50]; % Nominal force values
fVals = length(F0);
Nx = length(exx); % Size of strain matrix
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electricField = 1; %mV/nm

ElectronEnergy1(1:Nx,1:6) = 0; %Pre−allocating arrays
ElectronEnergy2(1:Nx,1:6) = 0;
ElectronEnergy3(1:Nx,1:6) = 0;

HoleEnergy1(1:Nx,1:6) = 0;
HoleEnergy2(1:Nx,1:6) = 0;
HoleEnergy3(1:Nx,1:6) = 0;
HoleEnergy4(1:Nx,1:6) = 0;
HoleEnergy5(1:Nx,1:6) = 0;
HoleEnergy6(1:Nx,1:6) = 0;

for nn = 1 : 1
nn
Fval = F0(nn);

for ii = 1 : Nx

kVector = [0,0];

% 14 nm coupled quantum wells with a 4 nm barrier,
% 0.45 alloy barrier
geometryParameters = struct('wellWidth',14,'isCQW',true,...

'alloyFraction',0.45,'numberDivisions',4000, 'barrierWidth',4);

% At each point, strain is scaled according to force
strainComponents = struct('exx',exx(ii,ii)*Fval,'eyy',...

eyy(ii,ii)*Fval,'ezz',ezz(ii,ii)*Fval,'exy',...
exy(ii,ii)*Fval,'exz',exz(ii,ii)*Fval,'eyz',...
eyz(ii,ii)*Fval);

% Eigenstates are calculated using CarrierEigenstates.m
[eigenStates,Xpts] = CarrierEigenStates(kVector,...

strainComponents, geometryParameters,electricField,3,false);

ElectronEnergy1(ii,nn) = eigenStates.electronEigenvalues(1);
ElectronEnergy2(ii,nn) = eigenStates.electronEigenvalues(2);
ElectronEnergy3(ii,nn) = eigenStates.electronEigenvalues(3);

HoleEnergy1(ii,nn) = eigenStates.holeEigenvalues(1);
HoleEnergy2(ii,nn) = eigenStates.holeEigenvalues(2);
HoleEnergy3(ii,nn) = eigenStates.holeEigenvalues(3);
HoleEnergy4(ii,nn) = eigenStates.holeEigenvalues(4);
HoleEnergy5(ii,nn) = eigenStates.holeEigenvalues(5);
HoleEnergy6(ii,nn) = eigenStates.holeEigenvalues(6);

end
end
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APPENDIX C

CALCULATING STRAIN MAP USING FINITE-ELEMENT SOFTWARE

C.1 GENERATING STRAIN WITH ANSYS

This code is intended to be executed in the ANSYS Mechanical APDL (ANSYS Parametric

Design Language) environment. After the following script is run, the equilibrium solution is

saved to memory.

This script is modified from the code and finite-element geometry generated by Ryan

Balili for studying the microcavity polariton system [144], which was originally designed in

collaboration with R.H. Reid [80]. Parameters and geometry were modified to account for

differences in coupled quantum well structure. The material parameters used herein are from

Adachi [48].

finish

/clear

/title, CQW - Wuenschell

! Units:

! Length units in mm

! Force units in N
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! Geometric parameters:

thickness = 0.140 ! Chip thickness (mm)

width = 2.500 ! Horizontal size of chip (mm)

pinradius = 0.050 ! Pin radius (mm)

holeradius = 1 ! Hole radius (mm)

!Nominal applied force in Newtons

!Do not trust this! Use trap depth to calibrate force.

load = 1.0

!Finite-element geometry generated by defining geometry in ANSYS GUI

!and translated into code. Based on geometry used by

!R. Balili and R.H. Reid

!Keypoints

!Geometry of mesh (number of grid points):

npts1 = 8 ! Region under pin

npts2 = 30 ! Region over hole

npts3 = 7 ! Region over plate

nptsI = 7 ! Divisions of inner arc

nptsO = nptsI ! Divisions of inner arc

nptsEdge = nptsI ! Divisions along outer edge

nptsz = 11 ! Divisions in growth direction

! Plotting

/triad, off

/prep7

local, 11, 1
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! Generate key points

csys, 0

k, 1, 0, 0, 0

k, 2, pinradius, 0, 0

k, 3, holeradius, 0, 0

k, 4, width/2, 0, 0

k, 5, width/2,width/2,0

k, 6, 0, width/2, 0

k, 7, 0, holeradius, 0

k, 8, 0, pinradius, 0

csys, 11

k, 9, pinradius, 45, 0

k, 10, holeradius, 45, 0

csys, 0

k, 11, -pinradius, 0, 0

k, 12, -holeradius, 0, 0

k, 13, -width/2, 0, 0

k, 14, -width/2,-width/2,0

k, 15, 0, -width/2, 0

k, 16, 0, -holeradius, 0

k, 17, 0, -pinradius, 0

csys, 11

k, 18, pinradius, 225, 0

k, 19, holeradius, 225, 0
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csys, 0

k, 20, -width/2,width/2,0

csys, 11

k, 21, pinradius, 135, 0

k, 22, holeradius, 135, 0

csys, 0

k, 23, width/2,-width/2,0

csys, 11

k, 24, pinradius, 315, 0

k, 25, holeradius, 315, 0

csys, 0

kgen, 2, all, , , , , thickness, 25

! Generate lines

l, 1, 2, npts1 $l, 26, 27, npts1

l, 1, 11,npts1 $l, 26, 36, npts1

l, 2, 3, npts2 $l, 27, 28, npts2

l, 11, 12,npts2 $l, 36, 37, npts2

l, 3, 4, npts3 $l, 28, 29, npts3

l, 12,13, npts3 $l, 37, 38, npts3

l, 1, 8, npts1 $l, 26, 33, npts1

l, 1, 17, npts1 $l, 26, 42, npts1
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l, 8, 7, npts2 $l, 33, 32, npts2

l, 17,16, npts2 $l, 42, 41, npts2

l, 7, 6, npts3 $l, 32, 31, npts3

l, 16, 15, npts3 $l, 41, 40, npts3

l, 4, 5, nptsEdge $l, 29, 30, nptsEdge

l, 5, 6, nptsEdge $l, 31, 30, nptsEdge

l, 13, 14, nptsEdge $l, 38, 39, nptsEdge

l, 14, 15, nptsEdge $l, 39, 40, nptsEdge

l, 13, 20, nptsEdge $l, 38, 45, nptsEdge

l, 20, 6, nptsEdge $l, 45, 31, nptsEdge

l, 4, 23, nptsEdge $l, 29, 48, nptsEdge

l, 23, 15, nptsEdge $l, 48, 40, nptsEdge

csys, 11

l, 2, 9, nptsI $l, 27, 34, nptsI

l, 9, 8, nptsI $l, 34, 33, nptsI

l, 8, 21, nptsI $l, 33, 46, nptsI

l, 21, 11, nptsI $l, 46, 36, nptsI

l, 11, 18, nptsI $l, 36, 43, nptsI

l, 18, 17, nptsI $l, 43, 42, nptsI
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l, 17, 24, nptsI $l, 42, 49, nptsI

l, 24, 2, nptsI $l, 49, 27, nptsI

l, 3, 10, nptsO $l, 28, 35, nptsI

l, 10, 7, nptsO $l, 35, 32, nptsI

l, 7, 22, nptsO $l, 32, 47, nptsO

l, 22, 12, nptsO $l, 47, 37, nptsO

l, 12, 19, nptsO $l, 37, 44, nptsO

l, 19, 16, nptsO $l, 44, 41, nptsO

l, 16, 25, nptsO $l, 41, 50, nptsO

l, 25, 3, nptsO $l, 50, 28, nptsO

csys, 0

l, 9, 10, npts2 $l, 34, 35, npts2

l, 10, 5, npts3 $l, 35, 29, npts3

l, 18, 19, npts2 $l, 43, 44, npts2

l, 19, 14, npts3 $l, 44, 39, npts3

l, 21, 22, npts2 $l, 46, 47, npts2

l, 22, 20, npts3 $l, 47, 45, npts3

l, 24, 25, npts2 $l, 49, 50, npts2

l, 25, 23, npts3 $l, 50, 48, npts3

csys, 0
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l, 1, 26, nptsz

l, 2, 27, nptsz

l, 3, 28, nptsz

l, 4, 29, nptsz

l, 5, 30, nptsz

l, 6, 31, nptsz

l, 7, 32, nptsz

l, 8, 33, nptsz

l, 9, 34, nptsz

l, 10, 35, nptsz

l, 11, 36, nptsz

l, 12, 37, nptsz

l, 13, 38, nptsz

l, 14, 39, nptsz

l, 15, 40, nptsz

l, 16, 41, nptsz

l, 17, 42, nptsz

l, 18, 43, nptsz

l, 19, 44, nptsz

l, 20, 45, nptsz

l, 21, 46, nptsz

l, 22, 47, nptsz

l, 23, 48, nptsz

l, 24, 49, nptsz

l, 25, 50, nptsz

! Generate volumes

V, 1, 2, 9, 8, 26, 27, 34, 33

V, 2, 3, 10, 9, 27, 28, 35, 34
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V, 9, 10, 7, 8, 34, 35, 32, 33

V, 10, 5, 6, 7, 35, 30, 31, 32

V, 10, 5, 4, 3, 35, 30, 29, 28

V, 1, 8, 21, 11, 26, 33, 46, 36

V, 8, 7, 22, 21, 33, 32, 47, 46

V, 21, 22, 12, 11, 46, 47, 37, 36

V, 22, 20, 6, 7, 47, 45, 31, 32

V, 22, 20, 13, 12, 47, 45, 38, 37

V, 1, 11, 18, 17, 26, 36, 43, 42

V, 11, 12, 19, 18, 36, 37, 44, 43

V, 18, 19, 16, 17, 43, 44, 41, 42

V, 19, 14, 13, 12, 44, 39, 38, 37

V, 19, 14, 15, 16, 44, 39, 40, 41

V, 1, 17, 24, 2, 26, 42, 49, 27

V, 17, 16, 25, 24, 42, 41, 50, 49

V, 24, 25, 3, 2, 49, 50, 28, 27

V, 25, 23, 15, 16, 50, 48, 40, 41

V, 25, 23, 4, 3, 50, 48, 29, 28

ET,1,SOLID185

! Material Properties:

! Define elastic tensor in N/mm^2

! Using parameters for GaAs, taken from Adachi

! At T = 0 K

TB,ANEL,1,1,21,0
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TBTEMP,0

TBDATA,,12.11e4,5.48e4,5.48e4,0,0,0

TBDATA,,12.11e4,5.48e4,0,0,0,12.11e4

TBDATA,,0,0,0,6.04e4,0,0

TBDATA,,6.04e4,0,6.04e4,,,

! Create Elements:

mshape, 0

vmesh, all

! Boundary Conditions:

! Top and bottom plates allow no displacement

! ux, uy, uz = 0 in plate region

! Top plate (with circular hole in top)

csys, 11

nsel, s, loc, x, holeradius, width

nsel, r, loc, z, thickness

d, all, all, 0

csys, 0

alls

! Bottom plate (with circular hole)

csys, 11

nsel, s, loc, x, holeradius, width

nsel, r, loc, z, 0

d, all, all,0
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csys, 0

alls

! Apply load:

! Assumes constant force over circular pin

! More complicated pin models give similar results

csys, 11

nsel, s, loc, x, 0, pinradius

nsel, r, loc, z, thickness

*get, ncount, node, 0, count

f, all, fz,-load/ncount

csys, 0

alls

! Transfer loads to model:

sbctran

/pbc, all, 1

eplo

fini

/sol

solve

fini
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Figure 49: A top-down view of the 3D finite-element mesh generated by the script given.
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C.2 READING RESULTS FROM ANSYS

The following script should be run directly after running the above script. It outputs the

strain components approximately in the plane of the quantum wells (500 nm from the bottom

of the sample). This particular script generates a relatively high-resolution 2D map of all six

strain components (approximate resolution is 8 µm). The data is output to 300 text files.

This script can take a long time to run. Faster processing time can be achieved by

lowering the resolution, cutting down the problem space, or only reading out a 1D cross-

section (the last option is a vast improvement; for a 300 × 300 grid, it will run 300 times

faster). Keep in mind that this script only reads out the existing results, so modifying

the resolution will only reduce the amount of information extracted, it does not effect the

accuracy of the simulation.

! Post-Process:

/post1

/NERR, 0

XInc = width/299

! Loops over rows along 2D profile

! Takes a long time to run!

*DO, II, 1, 300

Xpt = -width/2 + XInc*(II-1)

PATH,LinePath,2,300,300,!Define path for data

PPATH,1,0,Xpt,-width/2,0.0005,0,!Path at bottom of sample (500 nm from bottom)
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PPATH,2,0,Xpt,width/2,0.0005,0,

AVPRIN,0, ,

PDEF, ,EPEL,X,AVG

AVPRIN,0, ,

PDEF, ,EPEL,Y,AVG

AVPRIN,0, ,

PDEF, ,EPEL,Z,AVG

AVPRIN,0, ,

PDEF, ,EPEL,XY,AVG

AVPRIN,0, ,

PDEF, ,EPEL,YZ,AVG

AVPRIN,0, ,

PDEF, ,EPEL,XZ,AVG

AVPRIN,0,,

PDEF, ,U,Z,AVG

/PAGE,1000,,1000,

/OUTPUT,CQW_091813_%II%,txt,

!List strain

PRPATH, EPELX, EPELY, EPELZ, EPELXY, EPELYZ, EPELXZ
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/OUTPUT

*ENDDO

C.3 MATLAB SCRIPT FOR PROCESSING ANSYS RESULTS

This code is intended to process the output files generated by the code in the previous

section, but can be easily modified for different ANSYS simulations. All results are saved

as a MATLAB workspace containing 2D arrays of all six strain components and a vector

containing the associated x - and y-values.

%% Program for processing files from ANSYS
%% Based on output files named "CQW 091813 1.txt", "CQW 091813 2".txt, etc.

clear all;
close all;

DataSetName = input('Enter name for data set: ','s');

warning('off','MATLAB:dispatcher:InexactCaseMatch')

Name = 'CQW 091813 ';
FileType = '.txt';
NFiles = 300; % Number of files
NLines = 301;
Width = 2.5; % Width of problem space in mm

exx(1:NFiles,1:NLines) = 0; %Pre−allocate strain matrices
eyy(1:NFiles,1:NLines) = 0;
ezz(1:NFiles,1:NLines) = 0;
exy(1:NFiles,1:NLines) = 0;
eyz(1:NFiles,1:NLines) = 0;
exz(1:NFiles,1:NLines) = 0;

for nn = 1 : NFiles

FileName = strcat(Name,num2str(nn),FileType);
fid = fopen(FileName);
C = textscan(fid,'%s');
DataCell = C{1};
[M1,M2] = size(DataCell);
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NCount = 1;
Skip = 1;

for mm = 1 : M1

CurrentString = DataCell{mm};

if strcmp(CurrentString,'EPELXZ') && Skip == 1

Skip = 0;

elseif Skip == 0

findDoubles = length(strfind(CurrentString,'E'));

if findDoubles > 1

CurrentString = strrep(CurrentString,'−0.',' −0.');
x = sscanf(CurrentString,'%f %f');

for qq = 1 : findDoubles

NumberList(NCount) = x(qq);
NCount = NCount + 1;

end

else

NumberList(NCount) = str2num(CurrentString);
NCount = NCount + 1;

end
end

end

NumberMatrix = vec2mat(NumberList,7);

exx(nn,:) = NumberMatrix(:,2);
eyy(nn,:) = NumberMatrix(:,3);
ezz(nn,:) = NumberMatrix(:,4);
exy(nn,:) = NumberMatrix(:,5);
eyz(nn,:) = NumberMatrix(:,6);
exz(nn,:) = NumberMatrix(:,7);

fclose(fid);

end

Xpt = linspace(−0.5*Width,0.5*Width,NFiles);
Ypt = linspace(−0.5*Width,0.5*Width,NLines);
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save(strcat(DataSetName,'.mat'),'exx','eyy','ezz','exy','eyz','exz','Xpt','Ypt');
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APPENDIX D

TIME-AVERAGED TRAPPING

The idea of using a time-dependent spatially-inhomogeneous electric field to trap indirect

excitons is partially inspired by the use of the time-orbiting potential (TOP) magnetic trap-

ping geometry used in cold atom research. For atoms with a magnetic dipole moment, ~µ,

the energy shift due to the presence of a static magnetic field, ~B, is given simply by

∆E = −~µ · ~B. (D.1)

A quadrupolar magnetostatic trap profile is easily created using a pair of symmetric anti-

Helmholtz coils; while this configuration provides tight confinement, loss from the center of

the trap is high due to Majorana spin flip [145]. In the quadrupolar geometry, the minimum

of the magnetic field is at the center of the trap, so atoms whose magnetic moment is opposite

the direction of the field will feel a confining potential; atoms aligned with the field will be

sitting on top of a potential hill and will be quickly expelled from the trap. Away from trap

center, spin flip is suppressed due to the splitting between the two states. Near the center

of the trap, where the two states are nearly degenerate, spin flip can be a significant source

of loss [146].

The TOP trap is a variation on the static, quadrupolar trap that includes a magnetic

field that rotates slowly in-plane. The time scale of the time-dependent field is designed

to be long compared to the spin flip time, but short compared to the time scale associated

with motion of atoms in the trap [145]. The atoms feel a time-averaged, harmonic trapping
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potential with a energy gap that breaks the spin degeneracy at the center [147]. Due to the

gap, spin flip near trap center is suppressed.

In the TOP configuration, the primary source of loss is associated with the sides of

the trap. This can be an attractive feature, because higher kinetic energy particles are

preferentially removed to from the trap, which tends to lower the average thermal energy of

the trapped population [145]. It is easy to see how this is preferable to the static quadrupole

trap, where particles at trap center - the coldest part of the population on average - are

preferentially removed from the trap. The process of lowering the average energy of a system

by preferentially removing high energy particles is known as evaporative cooling and is one

of the major tools of cold atoms research.

As discussed in Chapter 2, a spatially inhomogeneous electrostatic trap is also charac-

terized by a spatially dependent radiative lifetime. Indirect excitons are trapped by high

electric field in the growth direction, which also corresponds to longer radiative lifetime (as

discussed in Chapter 1). Therefore, it would be expected that some degree of evaporative

cooling occurs naturally in electrostatic traps, due to the shorter lifetime along the trap

periphery compared to at trap center. In practice, this benefit is likely reduced by the flat-

tening of the trapping potential at high density. Evaporative cooling can also be introduced

by altering the geometry of the trap, for example, by creating a trap with a lip, over which

high energy particles can simply escape; this approach was applied to an electrostatic trap

by Hammack et al. [148, 149].

Ultimately, there are two features of the TOP trap that the trapping technique discussed

in this appendix attempts to mimic. First, during at least part of the cycle particles at

the edges of the trap should be expelled - either by the trapping potential itself or due to

radiative recombination. Second, the indirect exciton population should feel a time-averaged

confinement potential that is at least 5-10 meV deep (the achievable density is largely limited

by the trap flattening due to density-dependent blue shift).

One method that may achieve these goals is the introduction of a slowly varying, spatially-

inhomogeneous electric field on top of an overall applied bias. An implementation of this

approach is outlined in the following section.
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Figure 50: Image of a mounted sample with quadrupolar contacts under shown in (a). The

four quadrants can be independently driven with AC signals of varying phase, shown is the

case where opposing quadrants are 180◦ out of phase. In (b), the trapping and anti-trapping

electric field profile along dotted lines is shown, calculated under assumptions that voltage

is constant across metal pads and varies linearly between pads.

D.1 DEVICE

The quadrupolar trapping geometry, shown in Figure 50(a), was fabricated by lithographi-

cally patterning photoresist to cover the non-contacted region of the sample. The wafer it

was taken from consisted of 14 nm CQWs separated by a 4 nm barrier, grown on an n-type

substrate, and topped with a p-type capping layer. The sample was coated via e-beam evap-

oration with 5 nm of gold on top of 11 nm of titanium. The photoresist was then removed,

leaving four independent, optically-transparent contacts. It can be seen in Figure 50(a), that

the four contacts meet at a box in the center (with a side length of approximately 100 µm)

which forms the trapping region.

The four quadrants can be independently driven by AC signals with a constant, DC

offset. The DC offset is chosen to be larger than the amplitude of the AC signals; this

insures that the AC signals alternately enhance and oppose the DC field. Depending on the

relative phase of the four quadrants, a number of trapping geometries can be implemented.
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The configuration discussed here is such that opposite quadrants are shorted to the same

phase, while adjacent quadrants are 180◦ out of phase (this is the configuration shown in

Figure 50(a)). This results in a geometry where the IX population is trapped along one axis

and anti-trapped along the other. By flipping the trapping and anti-trapping direction back

and forth on a time-scale faster than the response time of the IX diffusion rate, one might

expect that the population will experience a time-averaged trapping potential. A plot of the

expected electric field along the growth direction (Fz) along the two axes (shown by white,

dotted lines in Figure 50(a)) is shown in Figure 50(b). The plot is calculated assuming a

constant gradient of the potential in the region between the contacts, using 2D interpolation,

and uses a DC bias of 2V with a modulation of 0.5 V. This would be the instance of strongest

confinement for an AC signal of 1 Vptp amplitude.

D.2 EXPERIMENTAL RESULTS

In the experimental results shown here, a quasi-steady state population of indirect excitons

is introduced into the system by resonantly pumping the direct line. The excitation source

is a chopped laser diode with a 50% duty cycle (4 µs / 8 µs ). Due to the long radiative

lifetime of indirect excitons, this chopping does not drastically decrease the steady state IX

population, while minimizing heating. The series discussed here uses an overall 2 V DC bias

with an AC signal of 1 Vptp applied in the quadrupolar geometry discussed in Section D.1.

The indirect exciton population was studied by observing the time-averaged luminescence

(using an ungated ICCD).

The frequency-dependence of the luminescence profile was studied at low temperature (6

K). The primary goal was to look for evidence of enhanced trapping as a function of driving

frequency. In the low-frequency limit, there is no reason to expect that any time averaged

trapping will occur; the population will quickly diffuse out of the trapping area before the

trapping direction switches and the population is pushed back towards the center. Signatures

of enhanced trapping could include spatial narrowing, an increase in the intensity, or an

increase in the density-dependent blue shift. For each image in the series, the IX population
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Figure 51: The measured energy broadening of the luminescence as a function of AC fre-

quency. Based on a DC voltage of 2 V and AC signal of 1 Vptp in the quadrupolar geometry.

was spectrally resolved along one of the trapping axes. The mean energy of the luminescence

〈E〉, the spectral FWHM ∆E, the peak intensity height of the cross-section, and the spatial

FWHM were measured at each frequency value.

A plot of the energy width is shown in Figure 51 and a plot of the peak intensity is shown

in Figure 52. A clear trend appears in the frequency dependence for both plots - the spectral

width of the signal decreases with frequency as the peak intensity of the population increases.

One possible interpretation of this behavior is that the voltage felt by the quantum wells

is frequency dependent due to the characteristic charging time of the p-i-n structure. The

insulating region of the structure will have some capacitance, which can be approximated

using a simple planar capacitor model:

C =
AεGaAs

d
(D.2)

where A is the area of the contact region - which is on the order of 1 mm2 - and d is the

thickness of the insulating region - which is around 700 nm. The expected capacitance

according to this approximation is 0.2 nF. The relevant resistance will be be the contact
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Figure 52: Measured intensity height of the spectrally-resolved luminescence as a function

of AC frequency. Based on a DC voltage of 2 V and AC signal of 1 Vptp in the quadrupolar

geometry.

resistance to the metal pads; due to thin contact pads used this will be non-negligible,

but is less than 100 Ω. The RC constant corresponds to a charging time of 50 ns and a

characteristic frequency of about 50 MHz, so it is reasonable to expect that the charging

time is not significant in the ≤ 20 MHz frequency range. Furthermore, attempts to fit the

response to an RC voltage divider, ∣∣∣∣ vS

vin

∣∣∣∣ =
1

1 + ω2R2C2
, (D.3)

where vS is the voltage across the sample and vin is the input voltage, resulted in a very poor

fit. Instead, the most accurate fit was to a decaying exponential:

∆E = ∆EHF + (∆ELF −∆EHF ) exp

[
− f
f0

]
(D.4)

with the high-frequency energy shift ∆EHF , the low-frequency energy shift ∆ELF , and a

characteristic frequency f0 as fitting parameters. A non-linear least squares fit to this model

gave (with 95% confidence intervals) ∆EHF = 3.23 meV ± 0.02 meV, ∆ELF = 5.34 meV ±
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0.07 meV, and f0 = 231 kHZ ± 6.4 kHz. A characteristic frequency of 230 kHz corresponds

to a time scale of about 4 µs; the relevance of this time scale will be discussed in more detail

in the following section.

In the quadrupolar trapping geometry, the net additional bias due to the AC voltage

should be zero. At trap center, the potential should be approximately equal to the DC

voltage offset at all times due to the symmetry of the AC bias. However, this smearing

of the energy at low frequency does seem to indicate that the population at trap center is

adiabatically shifting back and forth with time. An imbalance in the contact resistance of

the quadrupolar contacts could introduce an asymmetry in the trapping potential, which

could result in a shift at trap center.

One can see from Figure 52, that the maximum intensity of the population exhibits

roughly the opposite behavior of the energy width. Assuming the total population is inde-

pendent of frequency, it makes sense that the spectrally-resolved peak intensity would be

larger when the the luminescence is less smeared out over energy. It is worth noting from

Figure 52 that there is a distinct dip in the intensity around f = 6 MHz, while there is no

corresponding feature in the frequency-dependence of the energy width. A plot of the mean

energy, shown in Figure 53, also shows that the mean energy is the lowest between 5-10 MHz

driving frequency. The mean energy shift can be indicative of the time-averaged density at

trap-center (due to the density dependent blue shift). Both features could indicate that the

steady-state population may be lower at trap center.

The spatial width of the population did not change dramatically with frequency; instead,

it was observed to remain fixed within the measurement noise at a FWHM of around 200

µm ± 10 µm. Note that this is also roughly the size of the contact window, so it seems there

does not seem to be significant confinement in this regime.

It does not appear from these results that there was any frequency-dependent enhance-

ment of the population density, which seems to indicate that trapping did not occur. A time-

dependent drift-diffusion model will be used in the following section to study the quadrupolar

geometry and provide some perspective for the experimental results.
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Figure 53: The measured mean energy shift of the luminescence as a function of AC fre-

quency, defined such that the minimum value is zero. Based on a DC voltage of 2 V and AC

signal of 1 Vptp in the quadrupolar geometry.

D.3 NUMERICAL MODELING

Given that no drastic effects were observed in the luminescence of the IX population, it

was necessary to gain a deeper understanding of the trap dynamics before spending more

time experimentally exploring the parameter space. The indirect exciton population in a

time-varying AC trap should be reasonably modeled using the classical drift-diffusion model

with a time-dependent potential and radiative decay:

∂n

∂t
(x, y, t) = ∇ · (D∇n(x, y, t)) +∇ · (µ∇U(x, y, t))− n(x, y, t)

τRad(x, y)
. (D.5)

The diffusion constant of indirect excitons in coupled-quantum wells was measured by Z.

Vörös [113] for a variety of quantum well widths. Therein it is shown that the diffusion

constant scales as well-width to the sixth-power, due to the effect of roughness scattering

being more prevalent for thin-wells. In Vörös’ work, the diffusion constant was found to be

9.4 cm2/s for 14 nm quantum wells and 2.08 cm2/s for 12 nm quantum wells.
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In the classical regime, mobility µ is closely related to the diffusion constant via the

Einstein relation:

µ =
D

kT
. (D.6)

In the regime where quantum degeneracy is significant, this expression must be modified

(see works by Ivanov [150, 151]). For the purposes of the calculations discussed below only

the classical limit will be considered. Quantum degeneracy introduces a density dependence

to the mobility, which significantly complicates the model. The purpose of this calculation

is to examine whether high density can be achieved at all; thus, it is reasonable to start

with the classical regime. If this geometry does not provide time-averaged trapping within

the classical regime, it is unlikely that it will be possible to rech a high enough density to

observe quantum degeneracy.

To approximate the time-scale associated with motion in the trap discussed above, one

can consider roughly how long it would take an indirect exciton to drift from trap center to

the periphery under an appropriate potential gradient. For a change in potential, ∆U 1 ,

across a fixed distance, ∆x, at temperature T the relevant time scale can be approximated

as:

∆t ≈ ∆x2kBT

D∆U
. (D.7)

Using ∆x ≈ 50 µm, T = 10 K, the value 9.4 cm2/s from [113] for the diffusion constant, and

a potential change of 10 meV from the center of the trap to the periphery, this expression

predicts a time scale of approximately 230 ns, corresponding to a frequency of about 4 MHz.

Recall from the discussion of experimental results in Section D.2 that the indirect population

response to the AC bias seemed to depend on a characteristic frequency scale of 230 kHz;

however, there were also features in the data shown in Figures 52 and 53 in the vicinity of

6 MHz.

The time-dynamics of the density profile, n(x, y, t), were calculated using a finite-difference

calculation of the drift-diffusion model in D.5, with a grid spacing of 1 µm and a variable

1Using a constant drift force, ∆U/∆x, is not strictly correct, because the potential is shown to be parabolic
in Figure 50- not linear. But for the sake of an order-of magnitude calculation, the average potential gradient
from the center to the edge of the trap is used as an approximation.
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time step. The initial population is localized within 1 µm of the origin and allowed to

evolve with time. As discussed below, both density-dependent blue shift and radiative de-

cay are ignored in the model; these assumptions, while clearly not a valid representation of

the system, provide the simplest scenario to calculate the upper-bound of confinement (as

both processes reduce the effectiveness of the trap). It will be shown that, even by making

these assumptions, this configuration does not provide favorable conditions for confinement,

making it unnecessary to develop a more rigorous model.

For the purpose of calculating the electric field, the electric potential was assumed to

be constant across the contact surfaces. In the region between the contacts, the potential

was calculated using a 2D linear interpolation. The spatial scale of the gap between the

top contacts is large (100 µm) compared to the thickness of the insulating region (around 1

µm), so it is expected that the in-plane electric field induced by the varying potential will

be small compared to the field in the growth direction. The spatial thickness of the p-type

capping layer is expected to smear out the spatial profile of the trapping potential, but this

layer is typically only 100 nm thick and not a perfect conductor, so the potential profile will

mostly be intact directly above the insulating region.

As an additional simplifying assumption, radiative decay will also be ignored. The life-

time is strongly dependent on electric field, so it is expected that it could vary by an order

of magnitude as the electric field varies. This might be a useful property in terms of evap-

orative cooling, but if the trapping potential is too leaky to maintain a large steady-state

population, additional sources of loss will not improve the situation. In other words, a model

which excludes radiative loss shows the upper limit of trapping capability.

Another simplifying assumption is to ignore the density-dependent blue shift. In prin-

ciple, this can be modeled by adding a term to the potential U(x, y, t) that is proportional

to the density; however, at high density the non-linearity of this term introduces numeri-

cal instability issues and slows down the calculation. Density-dependent blue shift serves

primarily to flatten out the trapping potential, so it is expected that confinement will be

strictly worse in the high-density limit than it is at low density.

There are a few metrics one can use to gauge the effectiveness of a trap. In Figures 54

and 55 the simulated population average of the radius-squared from the center of the trap
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is plotted with respect to time, as a function of AC frequency and trap depth, respectively.

It can easily be shown that for free diffusion in a two-dimensional system with diffusion

constant D, this quantity varies linearly with time:

〈r(t)2〉 = 4Dt. (D.8)

This is also a good way to test the validity of the numerical model; for small trapping

potential, the model should approach the result for free-diffusion.

One can see from the frequency series in Figure 54 that the time-dependence of 〈r2〉

approaches the untrapped case as frequency is increased. Likewise, in Figure 55, the value of

〈r2〉 varies linearly with time as the potential is decreased to zero. However, both plots also

reveal that the value of 〈r2〉 is always greater than the free diffusion case for all calculated

values of the trapping potential depth, U0, and potential frequency. This suggests that

this geometry will not work well for trapping; on average, the population spreads out more

quickly in this potential than in the untrapped case.

However, one other metric worth looking at is the peak density. Shown in Figure 56

is the peak density of the population as a function of time, for a range of trap depths.

While the lower bound of the max-density curves for the trapped case are universally lower

than the untrapped (U0 = 0 meV) case, the trapped curves do exhibit instantaneous peak

densities which are significantly larger than the untrapped case. Physically, this occurs when

the AC component of the potential flips and the untrapped axis becomes the trapped axis.

The population that was initially spread out in this direction is quickly forced back into the

center. This effect may have some merit, in the sense that it could be used to achieve high

peak density in a trap.

It is clear that even with extremely liberal assumptions, this configuration will not provide

time-averaged confinement without some re-design of the geometry. From inspection of the

population dynamics, it appears that the primary issue is the flat potential profile outside

of the trap. There is a reasonable trapping potential in the central region, but once excitons

diffuse outside of this region (under the plates) they are completely untrapped.

One approach to fixing this issue would be to increase the size of the central region.

Specifically, if the size of the trapping potential is larger than the typical diffusion length of
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an IX during its lifetime, it is expected that the leakage out of the trap will be much smaller.

The gap between the contacts can also be problematic, because they form untrapped channels

which provide an additional source of loss. Minimizing the size of this gap (currently 50 µ

m) would also be an improvement.
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Figure 54: Population average of r2 as a function of time, modeled using finite-difference

calculation of drift-diffusion model discussed in text. Initial population is essentially delta

function at the center (spot size small compared to trap dimensions). Trap depth is fixed at

7 meV, while frequency of oscillation is varied.
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Figure 55: Population average of r2 as a function of time, modeled using finite-difference

calculation of drift-diffusion model discussed in text. Frequency is fixed at 1 MHz, while

trap depth is varied.
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Figure 56: Peak density as a function of time, modeled using finite-difference calculation of

drift-diffusion model discussed in text. Oscillation frequency is fixed at 1 MHz, while trap

depth is varied.
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