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Candida albicans exists as a commensal in healthy adults but is one of the most common causes 

of fungal infections in the United States. Candida is known to form biofilms (highly organized 

networks of cells adherent to a surface) on foreign devices and host tissues; infections associated 

with these structures are associated with increased virulence and drug resistance. However, the in 

vitro methods of growth and quantification used to assess these characteristics are poorly 

standardized. In vitro studies suggest minor alterations in growth conditions can drastically affect 

resultant structures. This project seeks to determine the best methods for biofilm growth and 

analysis. Utilizing these methods, this study examines whether biofilm production of clinical 

Candida albicans isolates varies based on conditions of clinical collection, namely the presence 

or absence of a urinary or bloodstream catheter at time collection and clinical collection site. 

Additionally, the relationship between extent of biofilm production and antifungal susceptibility 

will be examined. Eighteen bloodstream (n=10) or urine (n=8) clinical isolates, with (n=9) and 

without (n=9) a catheter present, will be exposed to urinary catheters and allowed to grow. 

Resultant biofilm will be quantified using four reported methods: biomass by crystal violet and 

dry weight, and metabolic activity of free-floating (planktonic) and adherent (sessile) cells, 

separately. Sessile bioactivity was the most reliable of tested methods, and dry weight was the 

least. Methods of quantification did not correlate well. Based on reproducibility and correlation, 

crystal violet and sessile metabolic activity, used together, provide a good indication as to the 
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extent of biofilm production of clinical isolates. Biofilm production did not vary for isolates 

based on catheter presence or clinical site at time of collection, suggesting biofilm is capable of 

forming under many clinical conditions. Antifungal susceptibility testing of adherent biofilms 

showed increased minimum inhibitory concentrations to amphotericin B and fluconazole, with 

minor increases for caspofungin. There was no difference in drug susceptibility by catheter 

association or collection site. Biofilm susceptibility is warranted in the clinic; however, 

quantification methods described here are both labor- and time-consuming. Future studies are 

needed to develop new methods of quantification. 
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1.0  INTRODUCTION 

1.1 CANDIDA BIOFILMS 

In humans, Candida exists mainly as a commensal yeast. Asymptomatic colonization can occur 

throughout the human body – from the oral cavity to the gastrointestinal tract, and even on the 

skin. Disruption of host defenses may contribute to Candida transitioning from a commensal 

lifestyle to a pathogenic one; these potential disruptions include: long term antimicrobial therapy, 

placement of a medical devices, and surgical procedures [1].  

Candida is one of many organisms able to form biofilms, or highly organized networks of 

cells which grow adherent to a biotic or abiotic surface. Within these structures, two populations 

of phenotypically and genetically distinct cells exist; those which grow attached to a given 

surface are called sessile cells while unattached, free-floating cells in the surrounding 

environment are called planktonic cells [2, 3]. Candida albicans, a dimorphic yeast, is the most 

common of the five main species of Candida that cause infection in humans and was the focus of 

this study. Filamentation, a process unique to the species C. albicans, is not explicitly required 

for biofilm formation. However, this differentiation allows for more complex, physically stable 

structures form [4-6]. During biofilm formation, dividing cells attach to a surface. They begin to 

produce the extracellular matrix (ECM), a complex protective covering. The ECM is made up of 

a variety of substances, both secreted by growing cells and trapped in the structure from the 
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surrounding environment. These may include: carbohydrates, lipids, trapped cell fragments, and 

even viable viral particles [7, 8]. The matrix serves, most importantly, as a layer of protection, 

masking cellular immune trigger molecules present on cellular membranes and functioning to 

prohibit antifungals from accessing growing cells by physical blockage and/or drug entrapment 

[9, 10].  

1.2 CLINICAL RELEVANCE  

The lifestyle of biofilm production by Candida is a clinically relevant concern as production has 

been linked to increased virulence and drug resistance [11-13]. Biofilm growth is associated with 

a variety of indwelling devices, including catheters, shunts, contact lenses, and dentures [14, 15].  

In cases of infection, Candida spp. can be isolated from various sites throughout the human 

body, including normally sterile sites such as the bloodstream or urine. In fact, Candida species 

are the fourth leading cause of bloodstream infections in United States hospitals, with C. 

albicans accounting for over half of invasive candidiasis cases, and C. albicans alone is the third 

most common cause of catheter associated urinary tract infections [16, 17]. Unfortunately, 

increased use of medical devices is related to an increased occurrence of complications. 

Indwelling devices are very common in the intensive care unit, where a recent study reports the 

worldwide intensive care unit prevalence of candidemia (Candida present in the bloodstream) to 

be nearly 7% [18]. In a clinical setting, if a device is known to be infected, removal is 

recommended and known to be effective in many cases. This is not always feasible considering 

possible device locations [19, 20]. If the device itself is not the source of the infection, reseeding 

and regrowth on the device may occur.  
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Knowing the likely decreased susceptibility of Candida biofilm growth, confirming 

presence on a device is important to determine appropriate treatment, especially in instances 

where device removal is problematic or reseeding is likely. Many mechanisms of antifungal 

resistance in C. albicans biofilms have been reported, including the up-regulation of drug efflux 

pumps and altered genetic expression [12, 21]. This study will assess if the extent of biofilm 

production by a clinical isolates is related to increased resistance in vitro. Current methods of 

clinical susceptibility testing used to guide antifungal therapy are based on planktonic cell 

susceptibility. Biofilm structures consist of sessile (adherent) cells which behave differently than 

surrounding planktonic (free-floating) cells. In vitro studies show that these populations react 

differently to antifungal challenge [12, 22, 23] and current susceptibility methods are incapable 

of appropriately accounting for sessile cell populations.   

There are three main classes of antifungal drugs in use today. The polyene amphotericin 

B (AMB) is broadly applicable, and there are few reports of resistance. However, renal toxicity 

limits clinical use. It functions by binding ergosterol in the fungal cell wall and presumably 

causes pore formation and cell death [24].  Fluconazole (FLUC), a member of the fungistatic 

azole class, functions by blocking synthesis of the same cell wall component, ergosterol, and it is 

widely prescribed for invasive candidiasis. High levels of resistance to azoles of Candida 

biofilms have been reported for nearly 20 years [25]. The newest class of fungicidal agents are 

the echinocandins (anidulafungin, caspofungin (CSP), and micafungin). These agents, which 

inhibit synthesis of specific cell wall glucans, are highly effective against Candida infections and 

highly tolerable by patients. Limited reports of clinical resistance exist, often related to a specific 

genetic mutation [26]. Paradoxical growth (significant growth above the MIC) in the presence of 
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high concentrations of caspofungin is seen in in vitro testing, though the clinical relevance 

remains unclear [27].  

1.3 TECHNICAL HURDLES 

A discord exists between clinical susceptibility testing and the environment in which Candida 

live in vivo. Simple, standardized methods for growth, quantification and susceptibility testing of 

both sessile biofilm Candida cells are needed to address this gap. Few studies have attempted to 

look at clinically relevant Candida biofilm susceptibility patterns, due in part to the complexities 

of in vitro biofilm growth and quantification. Over time, many different methods for the 

determination of Candida biofilm biomass and bioactivity have been published [22, 28-30]. 

Biomass is most often established by crystal violet staining or dry weight measurement, and 

bioactivity is determined by the enzymatic reduction of XTT (2,3-bis-(2-methoxy-4-nitro-5-

sulfophenyl)-2H-tetrazolium-5-carboxanilide) into formazan dye.  

It is known that even small manipulations in protocols can drastically change results [31, 

32]. Different media, substrates, temperatures, incubations periods, and/or Candida strains lead 

to the formation of phenotypically different structures. For example, one study shows that the 

irregular substrate polymethacrylate is capable of supporting Candida albicans biofilms 25-30 

microns high. In the same study, organism exposed to smooth silicone elastomer resulted in 

biofilm over ten times as high (450 microns) [2]. On the contrary, Teflon, a very smooth surface 

was shown by another group to be much less capable of supporting biofilm growth as compared 

to irregular surfaces [31].  Beyond those of substrate irregularity, other alterations can be made: 
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ranging from basic growth in a 96 well culture plate to complicated and expensive systems 

which mimic blood or urine flow through a vessel [22, 33-35].  

Testing susceptibility introduces an additional layer of complexity. Susceptibility is 

dependent on structure, growth conditions affect structural changes based on conditions [36].  

Specifically, it is well recognized that different substrates result in biofilms of varying mass, 

strength, and activity [31, 36]. One recent study looked at the susceptibility of 115 clinical 

isolates, but biofilms were grown on polystyrene, a material not commonly used in medical 

devices [37]. Length of incubation following adherence and time of drug exposure, generally an 

additional 24 or 48 hours, are not often consistent. As biofilms age and mature, tolerance 

increases, which has been linked to increased metabolic activity [2]. Therefore, quantification 

and susceptibility of biofilm will vary based duration of the in vitro growth period. It is unclear 

how the observed changes in tolerance over time in vitro connect to the “age” of a biofilm within 

a patient. Taken together, selecting the appropriate in vitro conditions is a critical step in 

developing a biofilm assay.  

In this study, Candida isolates were collected from either the human bloodstream or urine 

– two distinct environments. The experimental conditions in vitro were standardized across 

isolates to detect differences in biofilm production. Importantly, there are differences between 

the bloodstream and urine, such as pH and access to viable nutrients, which may affect an 

organism’s ability to produce biofilm. Moreover, immune cells and products are more often 

present in the bloodstream. Organisms capable of developing biofilms in spite of the immune 

responses found in the more nutrient-rich bloodstream seem likely to have an increased fitness in 

comparison to organisms which have had to adapt to life in the harsher environment of the urine.  

 



 6 

1.4 PURPOSE 

 

Additional in vitro research is needed to address the current limitations of biofilm quantification 

and antifungal susceptibility testing of biofilm-associated Candida. Until these gaps in 

knowledge are addressed, the clinical impact of biofilm production cannot be clearly understood. 

For this study, clinical Candida albicans were collected from two common sites of 

infection, the bloodstream and the urine. These sites are often associated with indwelling 

catheters, known to be associated with biofilms. This study seeks to identify if detectable 

differences of biofilm production exist in organisms themselves rather than simply 

environmental conditions. Isolates propagated in the blood and urine – comparable to media 

differences for in vitro studies, may have adapted to growth under their respective in vivo 

environments to the point that in vitro testing is capable of discerning this.  

Specifically, I hypothesize that clinical Candida albicans isolates collected through an 

indwelling catheter will have an increased ability to form biofilm due to their exposure to a 

device in vivo. Additionally, I hypothesize that biofilm production will be lower among isolates 

collected from the urine as they will have adapted to a less nutritionally robust environment. In 

other words, isolates in the urine may be more dependent on obtaining nutrients rather than 

altering lifestyle to aid survival, while bloodstream isolates have decreased pressure to perform 

basic cellular functions and can therefore adapt in other ways, including an increased production 

of biofilm. Furthermore, I expect that increased biofilm production will be associated with 

decreased antifungal susceptibility.  

Three objectives are proposed to test these hypotheses. First, identification of 

reproducible methods of biofilm growth and quantification on a clinically relevant substrate must 
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be established. Second, biofilm production by catheter association and collection site will be 

compared. Thirdly, the relationship between biofilm production and sessile antifungal 

susceptibility will be assessed. As described here, these objects are within the scope of a Master 

of Science thesis project. 
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2.0  EXPERIMENTAL DESIGN 

2.1 ISOLATES 

Eighteen clinical Candida albicans isolates from the bloodstream (n=10) or urine (n=8) were 

collected from unique patients at the University of Pittsburgh Medical Center between 2010 and 

2013, as a part of routine care. Nine isolates were collected from patients without indwelling 

catheters at the site of collection. Nine were collected from patients through a bloodstream or 

urinary catheter which had been in place for ≥ 3 days. These will be referred to as “catheter 

associated” throughout further analyses. Isolates were stored at -80°C in yeast peptone dextrose 

(YPD) broth containing 20% glycerol. Prior to each set of experiments, organisms were 

subcultured on Sabouraud dextrose agar overnight, and a single colony was chosen to inoculate 

YPD at 35°C overnight, with agitation. Inoculums were standardized using a spectrophotometer 

and diluted in Roswell Park Medical Institute (RPMI) medium at pH=7.0 supplemented with 2% 

glucose to a final concentration of 1x106 cfu/ml prior to catheter adherence. 

2.2 BIOFILM GROWTH ON A CLINICAL SUBSTRATE 

Literature review and preliminary tests were performed to determine the best substrate for use in 

this study. Of four tested substrates (three types of urinary catheters and an intravenous needle), 
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Bard® urinary catheters were chosen for their clinical applicability and ability to readily support 

Candida biofilm, as well as for availability and low cost. After the first set of quantification 

experiments were completed, the catheter used became unavailable. Additional quantification 

experiments and sessile susceptibility testing were completed on a Bard® urinary catheter with 

28% larger surface area, per one centimeter segment. Composition was identical. Methods of 

preparation, growth, and quantification of biofilm were the same for both sets of experiments. 

Owing to the aforementioned idiosyncrasies in measuring biofilm production, results for the two 

sizes of catheter will be presented separately. Biofilms were grown according to established 

methods, with minor adaptations - as standardized one centimeter long catheter segments were 

used throughout [22, 28, 29].  

Figure 1 shows the process of growth and quantification that was applied for all 

experiments. Segments were sterilized by autoclave and incubated at 37°C overnight with 

inactivated fetal bovine serum (FBS) prior to inoculation with C. albicans. Serum 

preconditioning has been shown to reduce electrical and hydrophobic interactions between 

Candida cells and substrate, more consistent with in vivo conditions [31]. The use of 37°C 

throughout also more closely mimics in vivo conditions. Serum was aspirated and segments were 

rinsed twice with sterile water to remove residual FBS. Each segment was transferred to a sterile 

24-well culture plate, and 1.5 ml of organism at 1x106 cfu/ml was added to entirely cover the 

segment. C. albicans was allowed to adhere for 90 minutes at 37°C on a rocking table. Media 

and organism were immediately aspirated, and segments were washed twice with room 

temperature phosphate buffered saline (PBS) at pH=7.4 to remove non-adherent cells. Catheter 

pieces were moved to a fresh 24-well plate containing 1.5ml fresh, room temperature RPMI per 
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well. Plates were arranged in Ziploc bags, to avoid over-evaporation of media, and incubated for 

48 hours at 37°C on a rocker.  

 

 

Figure 1: Growth and Quantification of Biofilms.  From a single isolated colony, each of the 18 isolates were 

grown and quantified as shown above. The entire process was completed twice (once on each narrow and wide 

segments). 
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2.3 QUANTIFICATION 

Each isolate was added to two separate catheter segments for each method of biomass production 

and two for measurement of metabolic activity (planktonic and sessile activity were performed 

on the same catheter segment). Following the 48 hour growth period, plates were removed from 

the incubator and each structure was quantified (Figure 2). 

 

 

Figure 2: Candida albicans Biofilm Growth on a Catheter Segment.  Off-white Candida albicans biofilm growth 

on one centimeter segments of red rubber catheter is visible to the naked eye after 48 hours. 

 

2.3.1 Biomass 

Biofilm mass was determined using two commonly referenced methods [29, 37]. The first 

utilizes crystal violet staining to determine the presence of biofilm material, living and non-

living, on the catheter surface [38]. For this project, after the 48 hour growth period, planktonic 

cells were aspirated after the 48 hour growth period and segments were carefully transferred to a 

sterile 48-well culture plate. One milliliter of 1% crystal violet in PBS was added, ensuring full 

submersion of the catheter. Stain was allowed to penetrate for 45 minutes at room temperature, 

then vacuumed (Figure 3, Panel A). Segments were rinsed twice with sterile water to remove 
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excess stain. To release attached stain (Figure 3, Panel B), 1ml of 70% ethanol/10% isopropanol 

was added for 15 minutes.  

 

 

Figure 3: Crystal Violet Quantification of Sessile Biomass.  Panel A shows the purple staining of the biofilm 

growing adherent to the pink catheter segment. Panel B shows the release of dye which is then transferred to a fresh 

96 well plate for OD readings, as shown in panel C.  

 

From each catheter containing well, 200µl of released dye were moved to a 96 well plate 

(Figure 3, Panel C), in duplicate, and optical density (OD) was measured at a wavelength of 490 

nanometers (nm). Special care was taken not to disturb biofilm structure, which would interfere 

with OD readings. OD of the alcohol mixture alone was also measured, and readings were 

adjusted to remove this background signal.  

The second method of biomass determination measures dry weight. Standard methods of 

dry weight determination involve removal by scraping or sonication and collection by 

centrifugation [29]. Multiple movements of these small flakes of cellular material are required 

throughout this process, which is undesirable as accuracy is often sacrificed as sample is often 

lost. Therefore, in this study, assessment of dry weight was significantly modified to ensure 

inclusion of biofilm structure present on the interior lumen or the catheter and to remove any 

acknowledged inaccuracies introduced by scraping methods. Here, pre-growth catheter weight 
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was subtracted from dried, post-growth weight to determine net biofilm weight. Planktonic cells 

were removed and catheter segments were rinsed twice with sterile water. Liquid was aspirated 

and the plate lid was vented to allow segments to dry overnight.  

2.3.2 Metabolic Activity 

Metabolic activity was determined for planktonic and sessile cells separately using a well-

established enzymatic XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-

carboxanilide) reduction assay [22, 39, 40]. The XTT assay determines metabolic activity based 

on cellular production of NADPH which reduces the tetrazolium ring of XTT to form an orange 

formazan dye. Increased OD readings correspond to a greater color change, indicative of a higher 

metabolic activity. XTT was suspended in PBS at 2mg/ml and filter sterilized, in batch. XTT is 

light-sensitive, and unstable once suspended, therefore aliquots were frozen at -80°C, protected 

from light, for no more than three months. Appropriate volumes were thawed and diluted to 

0.5mg/ml with PBS on the day of each experiment, and 1µl of 10mM menadione was added per 

10ml of enzyme to accelerate the enzymatic reaction (as described in previous reports) [30]. 

To determine baseline planktonic metabolic activity, overnight cultures of each organism 

were standardized to 1x106 cfu/ml, and 100µl of organism was transferred to a 96 well culture 

plate, in duplicate. Each well then received 100µl of prepared enzyme (final concentration 

0.25mg/ml XTT, 0.5µM menadione). To control for the turbidity caused by cellular growth, 

control wells for each organism were made by adding 100µl of organism and 100µl of PBS.  

Plates were wrapped in aluminum foil, to protect the enzyme from light, and statically incubated 

at 37°C for 2-3hours. Wells of XTT alone were used as to confirm no light activation occurred. 

Colorimetric change, which correlates to metabolic activity, was measured by OD at 490nm. 
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Background readings of organism plus PBS (no enzyme) were subtracted from active well values 

to adjust for cell interference.  

After 48 hours, biofilm metabolic activity was measured for both planktonic and sessile 

growth. Five hundred microliters of planktonic cells were carefully transferred to a fresh plate, 

and the remaining planktonic cells were aspirated. Catheter segments were rinsed twice with 

sterile water and transferred to a fresh plate, to avoid testing activity of cells growing adherent to 

the polystyrene plate. To ensure similar concentrations of enzyme for both catheter and 

planktonic tests, 500µl of sterile, room temperature PBS was added to catheter containing wells. 

All wells received 500µl of prepared enzyme (final concentration 0.25mg/ml XTT, 0.5µM 

menadione). Plates were wrapped in aluminum foil, to protect the enzyme from light, and 

statically incubated at 37°C for 2-3hours. Wells of XTT alone were used as control to ensure 

there was no light activation or enzyme contamination. Colorimetric change, which correlates to 

metabolic activity, was measured by OD at 490nm by carefully transferring 200µl of enzyme to 

a fresh 96 well plate (Figure 4). 

 

 

Figure 4: Bioactivity Quantification by XTT Assay.  The top row contains planktonic cells corresponding to the 

catheter in the middle row. The bottom row contains controls. Three isolates are tested here, each in duplicate. 
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2.4 SUSCEPTIBILITY TESTING 

2.4.1 Standard Planktonic Measurement 

Minimum inhibitory concentrations (MICs) were determined against AMB, CSP, and FLUC 

according to the Clinical and Laboratory Standards Institute (CLSI) methods [41]. Briefly, a 1.0 

x 103 cells/ml inoculum in RPMI, was exposed to doubling dilutions of AMB (0.015-16µg/ml), 

CSP (0.015-16µg/ml) and FLUC (0.06-64µg/ml) for 24 hours at 35°C. MIC endpoints were read, 

visually, at 50% inhibition of control (no drug) for CSP and FLUC and 100% inhibition for 

AMB, as defined by the CLSI. 

2.4.2 Sessile Cell Measurement 

For each isolate, 24 segments of wide catheter were prepared and biofilm was grown for 48 

hours, as described above.  Following the biofilm growth period, planktonic cells were aspirated 

and washed once with sterile, room temperature PBS. Eight segments were used for each drug. 

Segments were transferred to a sterile 48-well plate containing RPMI with doubling dilutions of 

drug ranging from 0.12-8µg/ml for AMB and CSP and 8-512µg/ml for fluconazole. Higher 

ranges were used for sessile testing than for planktonic as decreased susceptibility of biofilm 

populations was expected. RPMI alone served as control. Plates were incubated for an additional 

24 hours at 35°C to mimic conditions of planktonic MIC testing as described by the CLSI [41]. 

Endpoints were determined visually in a manner similar to that for standard MICs. MICs were 

read as a 50% reduction of control (no drug) metabolic activity for CSP and FLUC and 100% 

inhibition for AMB. 
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In this study, drug was used as treatment rather than prevention. Therefore, 

measurements of biomass would not accurately evaluate the effect of drug on structures. Living 

cells must be distinguished from dead cells. The XTT assay as performed on catheter segments is 

capable of determining susceptibility. There are numerous reports in the literature describing 

metabolic activity as a measure of biofilm drug response [22, 28, 42]. Again, 200µl of enzyme 

was transferred to a fresh 96 well plate, taking special care to not remove planktonic cells or 

biofilm structure which would interfere with OD readings (Figure 5). 

 

Figure 5: XTT Results for Determination of Sessile Minimum Inhibitory Concentrations.  A susceptibility test 

of one isolate to amphotericin B (top row), caspofungin (middle row), and fluconazole (bottom row). The left most 

well contains no drug, and dilutions of drug begin in column two and double as wells move to the right. 

2.5 STATISTICAL ANALYSIS 

Analysis was performed using GraphPad Prism5 software. Continuous variables were compared 

by the Mann-Whitney U test, and correlations were assessed using the non-parametric Spearman 

correlation coefficient. These tests are appropriate for a small sample size that is not normally 

distributed. Fisher’s exact test was used to analyze presence of paradoxical growth. Significance 

was set at P < 0.05. Intraclass correlation coefficients were calculated in SAS, version 9.4, with 

the help of the University of Pittsburgh Statistical Consulting Center. 
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3.0  RESULTS 

3.1 PRELIMINARY TESTING 

Baseline metabolic activity for isolates in their planktonic state was compared to ensure any 

variation found in biofilm metabolic activity was specific to biofilm production. Baseline activity 

of isolates (in their planktonic state) did not vary by collection site (Figure 6, left) or association 

with an indwelling catheter (Figure 6, right). There was one isolate which showed significantly 

higher production.  

 

Figure 6: Metabolic activity of Candida albicans. Metabolic activity of isolates did not vary at baseline.  
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Use of a clinically relevant substrate was desired. Four clinical substrates were tested for 

their ability to support Candida albicans biofilm growth. Positive biofilm growth was defined as 

measureable sessile cell metabolic activity (Figure 7). Antimicrobial coated urinary catheter 

segments did not support growth and were therefore excluded. Intravenous needles were capable 

of supporting biofilm, but they proved difficult to prepare and were a potential safety hazard. 

Therefore, they were also eliminated. Silver ion antimicrobial coated urinary catheters did allow 

for growth. Red rubber urinary catheters supported growth to a similar extent as the silver coated 

catheters. As such, the cheaper and more readily available Bard® red rubber foley catheter was 

chosen as the best clinically relevant substrate to study the difference in Candida albicans 

biofilm production and susceptibility. 

 

 

Figure 7: Substrate Testing.  Four Candida albicans isolates were grown on four different clinical substrates, in 

duplicate. Mean optical density and standard deviation are shown here. Metabolic activity varied across substrates. 
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3.2 NARROW CATHETER 

3.2.1 Quantification 

Biofilm production of all 18 clinical Candida albicans isolates was quantified following 48 

hours of growth on 0.5cm x 1cm catheter segments, as detailed above. Each test (crystal violet, 

dry weight, sessile metabolic activity, and planktonic metabolic activity) was performed in 

duplicate on each experiment day; Table 1 shows the average results for each isolate by each 

method, as well as select descriptive statistics.  
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Table 1: Biofilm Production on a Narrow Catheter by Four Methods.  Values shown are the averaged result of 

two catheter segments for each isolate analyzed on the same day. Summary statistics are listed at the bottom.  

 

Site of 
Collection 

Catheter 
Association Isolate Crystal       

Violet  (OD) 
Dry        

Weight (mg) 
Sessile         

XTT  (OD) 
Planktonic 
XTT  (OD) 

Bloodstream 

Yes 

732 0.027 0.250 0.070 0.262 
779 0.042 1.950 0.332 0.224 
816 0.043 1.950 0.312 0.257 
819 0.031 0.600 0.107 0.337 
829 0.051 1.650 0.141 0.452 

No 

207 0.035 2.100 0.384 0.218 
623 0.030 1.600 0.269 0.132 
778 0.017 1.700 0.169 0.106 
857 0.005 1.250 0.866 0.058 
896 0.038 0.900 0.891 0.681 

Urine 

Yes 

O-141 0.042 0.500 1.018 0.521 
O-363 0.012 3.150 0.892 0.698 
O-763 0.016 3.000 0.809 0.605 
O-772 0.136 1.550 0.698 0.760 

No 

O-239 0.082 1.650 0.633 0.593 
O-766 0.104 2.200 0.618 0.686 
O-767 0.066 0.550 0.304 0.812 
O-835 0.082 0.400 0.612 0.749 

Blood Median 0.070 1.625 0.506 0.602 
Urine median 0.074 1.600 0.666 0.692 

Site of Collection: P-value 0.897 0.859 0.360 0.203 
Catheter Median 0.076 1.650 0.496 0.577 

Non-Catheter Median 0.066 1.550 0.698 0.686 
Catheter Association: P-value 0.863 0.965 0.162 0.162 

Overall Minimum 0.005 0.250 0.253 0.058 
Overall Median 0.071 1.625 0.626 0.637 

Overall Maximum 0.136 3.150 1.018 0.889 
Overall Standard Deviation 0.040 0.848 0.247 0.178 
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3.2.2 Correlation of Quantification Methods  

Spearman correlations were used to assess the consistency of the commonly reported methods of 

biofilm production used in this study (Figure 8). There were no significant correlations between 

any of the tested methods on this substrate. The lack of correlation by planktonic XTT was 

expected – it is a measure of the activity of free cells in the environment, not those adherent to 

the catheter. All other methods measure identical populations of cells, and it is reasonable to 

expect these methods would indeed correlate.  The two measures of biomass, crystal violet and 

dry weight, should correlate, but that is not seen here. The lack of correlation suggests that at 

least one of the methods is insufficient for accurately quantifying biofilm. The differing results in 

biofilm production by method for each isolate imply that at least one of these methods is 

inadequate at quantifying biofilm production. 
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Figure 8: Correlation of Methods of Biofilm Production on Narrow Catheter. There were no significant 

correlations across tested methods.  
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3.2.3 Production by Catheter Association 

Clinical isolates were chosen based on the presence of a catheter at the collection site for ≥3 days 

at time of collection, or no catheter association. Biofilm production was then examined based on 

this classification. Isolates exposed to a foreign device, such as a catheter, for an extended period 

of time may adapt for increased ability to grow adherent to these devices. Despite the expectation 

that these populations would differ in biofilm production, there was no difference in bioactivity 

or biomass production based on collection through a catheter (Figure 9).  
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Figure 9: Biofilm Production on Narrow Catheter by Catheter Association.  Biofilm production of isolates 

collected through a catheter that had been in place ≥3 days as compared to production of isolates that were not 

associated with a long-term catheter, by all four methods. No statistical differences were found between the groups 

for any method, as determined by the Mann-Whitney U test. Catheter associated and non-catheter associated 

medians for each method, respectively: crystal violet: 0.076 vs 0.066, P = 0.863; dry weight: 1.65 vs 1.55, P = 

0.965; sessile XTT: 0.496 vs 0.698, P = 0.162; and planktonic XTT: 0.577 vs 0.686, P = 0.162. These values are 

also found in Table 1. 
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3.2.4 Production by Clinical Site of Collection 

To ascertain if statistical differences existed between isolates collected from the bloodstream 

versus the urine, quantification results of 48 hour growth on narrow rubber catheter were 

compared. The Mann-Whitney U test was performed for each method individually (Figure 10, 

Table 1). Differences in the physical environment from which these isolates were collected, such 

as pH, availability of nutrients, and vessel flow, may cause behavioral changes in the isolates, 

including the ability to produce biofilm. However, biomass as measured by crystal violet or dry 

weight did not vary by clinical collection site. Similarly, XTT measures of metabolic activity did 

not vary for planktonic or catheter associated cells.  
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Figure 10: Biofilm Production on Narrow Catheter by Clinical Collection Site. Biofilm production of isolates 

collected from the bloodstream as compared to the production of isolates collected from the urine, by all four 

methods. No statistical differences were found between the groups for any method, as determined by the Mann-

Whitney U test. Bloodstream and urinary medians for each method, respectively: crystal violet: 0.070 vs 0.074, P = 

0.897; dry weight: 1.625 vs 1.6, P = 0.859; sessile XTT: 0.506 vs 0.666, P = 0.360; and planktonic XTT: 0.602 vs 

0.692, P = 0.203. These values are also found in Table 1. 
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3.3 WIDE CATHETER 

3.3.1 Quantification 

Extent of biofilm production was quantified for all 18 clinical Candida albicans isolates 

following 48 hours of growth on 0.6cm x 1cm catheter segments, as detailed in the Experimental 

Design. Each test (crystal violet, dry weight, sessile metabolic activity, and planktonic metabolic 

activity) was performed in duplicate; average results for each isolate by each method, as well as 

select descriptive statistics can be found in Table 2.  
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Table 2: Biofilm Production on a Wide Catheter by Four Methods.  Values shown are the averaged result of two 

catheter segments for each isolate analyzed on the same day. Summary statistics are listed at the bottom. 

 

 Site of 
Collection 

Catheter 
Association Isolate Crystal       

Violet  (OD) 
Dry        

Weight (mg) 
Sessile         

XTT  (OD) 
Planktonic 
XTT  (OD) 

Bloodstream 

Yes 

732 0.051 1.950 0.267 0.352 
779 0.054 2.350 0.327 0.483 
816 0.070 4.000 0.330 0.429 
819 0.030 1.400 0.149 0.368 
829 0.042 0.950 0.243 0.431 

No 

207 0.073 1.900 0.629 0.527 
623 0.043 1.000 0.200 0.256 
778 0.047 1.100 0.098 0.273 
857 0.033 0.000 0.158 0.098 
896 0.042 0.000 0.507 0.474 

Urine 

Yes 

O-141 0.110 0.550 0.382 0.525 
O-363 0.102 0.500 0.592 0.419 
O-763 0.054 4.317 0.399 0.360 
O-772 0.037 2.617 0.225 0.657 

No 

O-239 0.058 3.717 0.302 0.506 
O-766 0.078 4.250 0.312 0.277 
O-767 0.040 0.500 0.148 0.453 
O-835 0.052 0.950 0.232 0.346 

Blood Median 0.045 1.250 0.255 0.398 
Urine median 0.056 1.784 0.307 0.436 

Site of Collection: P-value 0.142 0.593 0.633 0.408 
Catheter Median 0.047 1.400 0.243 0.368 

Non-Catheter Median 0.054 0.950 0.312 0.453 
Catheter Association: P-value 0.269 0.929 0.297 0.258 

Overall Minimum 0.030 0.000 0.098 0.098 
Overall Median 0.051 1.250 0.284 0.424 

Overall Maximum 0.110 4.317 0.629 0.657 
Overall Standard Deviation 0.022 1.455 0.151 0.128 
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3.3.2 Correlation of Quantification Methods 

Once again, Spearman correlations were used to investigate the correlation between each of the 

methods, as the data presented is not normally distributed (Figure 11). Similar expectations 

existed for this slightly larger substrate as for the narrow catheter. Since planktonic XTT tests a 

distinct population of cells it was not expected to show correlation, and again this method did not 

correlate. Biomass as measured by dry weight and crystal violet did not correlate again, despite 

the expectation that these methods would align. Interestingly though, for this substrate, a strong 

correlation exists between crystal violet and sessile metabolic activity (r = 0.721, P < 0.001).  No 

other methods correlated. 
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Figure 11: Correlation of Methods of Biofilm Production on Wide Catheter.  Sessile metabolic activity 

correlated well with measures of crystal violet. No other methods correlated significantly. 
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3.3.3 Production by Catheter Association 

Quantification results by each method were analyzed by the Mann-Whitney U test to determine 

if significant differences exist between biofilm production and association with (or absence of) a 

catheter at time of collection. Once again, measures of both bioactivity and biomass production 

showed no correlations as stratified by catheter association (Figure 12). 

 

Figure 12: Biofilm Production on Wide Catheter by Catheter Association.  Biofilm production of isolates 

collected through a catheter that had been in place ≥3 days as compared to production of isolates that were not 

associated with a long-term catheter, by all four methods. No statistical differences were found between the groups 

for any method, as determined by the Mann-Whitney U test. Catheter associated and non-catheter associated 

medians for each method, respectively: crystal violet: 0.047 vs 0.054, P = 0.269; dry weight: 1.4 vs 0.95, P = 0.929; 

sessile XTT: 0.243 vs 0.2312, P = 0.297; and planktonic XTT: 0.368 vs 0.453, P = 0.258. These values are also 

found in Table 2.Table 2 
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3.3.4 Production by Clinical Site of Collection 

Biofilm production by each method was tested by Mann-Whitney U test to determine if 

significant differences existed between isolates collected from the bloodstream versus urine 

(Figure 13, Table 2). No significant differences were seen in this dataset. 

.  

Figure 13: Biofilm Production on Wide Catheter by Clinical Collection Site. Biofilm production of isolates 

collected from the bloodstream as compared to the production of isolates collected from the urine, by all four 

methods. No statistical differences were found between the groups for any method, as determined by the Mann-

Whitney U test. Bloodstream and urinary medians for each method, respectively: crystal violet: 0.045 vs 0.056, P = 

0.142; dry weight: 1.25 vs 1.784, P = 0.593; sessile XTT: 0.255 vs 0.307, P = 0.633; and planktonic XTT: 0.398 vs 

0.436, P = 0.408. These values are also found in Table 2. 
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3.4 METHODOLOGICAL VARIABILITY 

On each day, biofilms were quantified on two separate catheter segments for each method of 

biomass quantification and two separate segments for bioactivity. Results from these same-day 

duplications were compared by approximating the Spearman rank correlation coefficient, rs, for 

each method. Individually, these values, found in Table 3, show the reliability of each test for 

each isolate. Reliability increases as values approach one.  This test does not assume normality, 

appropriate for the small number of observations presented here.  Associations are unchanged 

when analyzed by the intraclass correlation coefficient (ICC), which assumes normality. ICC is a 

proportional measure of variance [43].  Using the ICC, correlations between the narrow and wide 

catheter were 0.759, 0.420, 0.353, and 0.424 for crystal violet, dry weight, sessile and planktonic 

metabolic activity, respectively. 

 

 

Table 3: Experimental Variability as Determined by Spearman Rank Correlation Coefficient.   Spearman rank 

correlation coefficient (rs) for each tested method. 

 

Crystal 
Violet 

Dry 
Weight 

Sessile 
XTT 

Planktonic 
XTT 

NARROW 
CATHETER 

Approximation of 
Spearman rs 

0.951 0.401 0.923 0.894 

WIDE 
CATHETER 

Approximation of 
Spearman rs 

0.67 0.793 0.767 0.791 
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3.5 ANTIFUNGAL SUSCEPTIBILITY 

3.5.1 Standard Minimum Inhibitory Concentrations 

Standard (planktonic) MICs were determined according to CLSI guidelines for AMB, CSP, and 

FLUC. Analysis showed that MICs did not vary by collection site or with the presence of a 

catheter at time of collection, as would be expected. Results are detailed in Table 4. 

 

Table 4: Standard and Sessile Minimum Inhibitory Concentrations. MICs shown are visual consensus results 

from testing on two separate days. All MICs shown are in µg/ml. 

Site of 
Collection 

Catheter 
Association Isolate 

Standard MICs Sessile MICs 

AMB CSP FLUC AMB CSP FLUC 

Bloodstream 

Yes 

732 0.25 0.12 0.12 1 0.12 512 

779 0.25 0.12 >64 2 ≤0.12 512 

816 0.25 0.12 0.12 2 >8 >512 

819 0.25 0.12 0.12 ≤0.12 0.25 256 

829 0.25 0.12 >64 0.25 ≤0.12 128 

No 

207 0.25 0.12 >64 1 ≤0.12 >512 

623 0.25 0.12 0.12 ≤0.12 ≤0.12 16 

778 0.25 0.12 >64 1 >8 512 

857 0.12 0.12 0.12 ≤0.12 ≤0.12 8 

896 0.12 0.12 >64 ≤0.12 ≤0.12 256 

Urine 

Yes 

O-141 0.25 0.12 >64 4 0.25 512 

O-363 0.25 0.12 0.12 4 4 512 

O-763 0.25 0.12 0.12 0.5 ≤0.12 >512 

O-772 0.25 0.06 1 0.25 ≤0.12 512 

No 

O-239 0.25 0.12 0.06 1 0.12 >512 

O-766 0.25 0.12 >64 2 0.12 >512 

O-767 0.25 0.12 0.12 0.25 ≤0.12 ≤8 

O-835 0.25 0.25 0.25 ≤0.12 ≤0.12 512 
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3.5.2 Sessile Minimum Inhibitory Concentrations 

Each of three antifungals (AMB, CSP, and FLUC) were applied to 48 hour old biofilms 

grown on wide catheter segments for 24 hours. Sessile MICs were visually defined by a 50% 

reduction in metabolic activity for caspofungin and fluconazole and a 100% reduction for 

amphotericin B, as compared to control (no drug) (Table 4). MICs were analyzed by site of 

collection and catheter association; no statistical differences were found. 

3.5.3 Correlations of Biofilm Production and Antifungal Susceptibility 

Spearman correlations were used to evaluate the relationship between biofilm production and 

sessile MICs for AMB, CSP, and FLUC. Biofilms are known to be associated with decreased 

resistance, therefore high producing isolates would be expected to have higher MICs. 

Correlations were strong between AMB MICs and both crystal violet (r = 0.827, P < 

0.001) and sessile metabolic activity (r = 0.520, P = 0.026) (Figure 14). CSP did not associate 

with any quantification method of biofilm (Figure 15). FLUC MICs correlated best with biofilm 

production; three of four tested methods were found to have a significant relationship (Figure 

16Figure 16). Both measures of biomass production, crystal violet and dry weight, significantly 

correlated with FLUC MICs (r = 0.739, P < 0.001 and r = 0.772, P < 0.001, respectively). In 

addition, sessile metabolic activity as measured by XTT correlated well with FLUC MICs (r = 

0.576, P = 0.012). 
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Figure 14: Correlation of Sessile Amphotericin B MICs and Quantification Methods.  Crystal violet and sessile 

metabolic activity correlate well with AMB MICs. Spearman correlation data is shown with linear regression. Note: 

The x-axis is in log 2 scale for ease of viewing the doubling dilution scale of susceptibility testing, therefore the 

linear regression plot is curved. * denotes P < 0.05. 
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Figure 15: Correlation of Sessile Caspofungin MICs and Quantification Methods.  CSP MICs did not correlate 

to any method quantifying biofilm production. Note: The x-axis is in log 2 scale for ease of viewing the doubling 

dilution scale of susceptibility testing. Spearman correlation data is shown with linear regression. Note: The x-axis is 

in log 2 scale for ease of viewing the doubling dilution scale of susceptibility testing, therefore the linear regression 

plot is curved.  
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Figure 16: Correlation of Sessile Fluconazole MICs and Quantification Methods.  Crystal violet, dry weight 

and sessile metabolic activity all correlate well with FLUC MICs. Spearman correlation data is shown with linear 

regression. Note: The x-axis is in log 2 scale for ease of viewing the doubling dilution scale of susceptibility testing, 

therefore the linear regression plot is curved. * denotes P < 0.05. 
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3.5.4 Paradoxical Effect 

The presence of paradoxical growth of Candida albicans, defined as growth in consecutive wells 

greater than 2 dilutions above the MIC, was assessed for all antifungals [44]. Paradoxical growth 

in standard or sessile tests was seen only with CSP. Paradoxical growth is well described for 

Candida in the presence of CSP, though the clinical relevance is questionable given that the 

effect is eliminated in the presence of human serum [44]. When tested by standard methods, 

none of the isolates showed paradoxical growth at 24 hours; after 48 hours, the effect appeared in 

two of the 18 isolates.  

Paradoxical growth of biofilm associated cells is previously described [27, 45]. Studies of 

Candida biofilm paradoxical growth in the presence of caspofungin often use much higher drug 

concentrations than were used here; therefore, it was unclear whether the effect would be 

observed. Indeed, paradoxical activity of biofilms was seen after 24 hours of caspofungin 

exposure in 11 of 18 isolates (Table 5). There were no significant differences in the presence or 

absence of paradoxical growth between isolates with or without catheter association (Fisher’s 

exact test P = 0.348) or bloodstream and urine isolates (Fisher’s exact test P = 0.630). 

Paradoxical growth did not correlate to sessile MIC for any drug (tested by Mann-Whitney U-

test, AMB: P = 0.449, CSP: P = 0.959, and FLUC: P = 0.178). 

 

 

 

 

 

 



 40 

 

Table 5: Paradoxical Growth in the Presence of Caspofungin.  Based on visual MIC readings, two isolates 

exhibited paradoxical growth at 48 hours by standard methods. Visual reading of sessile MICs showed 11 of 18 with 

paradoxical growth, noted here by shading. All MICs shown are in µg/ml. For isolates with MIC > 8, one of the 

replications showed clearance and paradoxical growth.  

Site of 
Collection 

Device 
Association Isolates 

Standard Sessile 

CSP CSP 

Bloodstream 

Yes 

732 0.12 ≤0.12 
779 0.12 ≤0.12 
816 0.12 >8 
819 0.12 0.25 
829 0.12 ≤0.12 

No 

207 0.12 ≤0.12 
623 0.12 ≤0.12 
778 0.12 >8 
857 0.12 ≤0.12 
896 0.12 ≤0.12 

Urine 

Yes 

O-141 0.12 0.25 
O-363 0.12 4 
O-763 0.12 ≤0.12 
O-772 0.06 ≤0.12 

No 

O-239 0.12 0.12 
O-766 0.12 0.12 
O-767 0.12 ≤0.12 
O-835 0.25 ≤0.12 
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4.0  DISCUSSION 

The purpose of this study was to test biofilm production by Candida albicans across various 

reported methods of quantification and analyze the results based on catheter association, clinical 

collection site, and sessile antifungal susceptibility. Each of the four methods of biofilm 

quantification (crystal violet, dry weight, planktonic and sessile activity) exhibited strengths and 

weaknesses (Table 6).  

 

 

 

 

 

 

 

 

 

 

 

 



 42 

Table 6: Summary of Strengths and Weaknesses for Each Quantification Method. 

Strengths Weaknesses 

Crystal Violet 

- Simple to execute 
- Results are based on colorimetric change 
- Visual and OD interpretations are 
possible 
- All supplies and reagents are found in 
standard microbiology labs 

- Does not distinguish between living and 
dead structures 
- Narrow range of results may be 
indicative of an insensitive test 

Dry Weight - Simple to perform and analyze 
- No special equipment is required 

- Does not distinguish between living and 
dead structures 
- Pre-weighing segments can be time 
consuming 
- Reliability is questionable 
- Requires 24 hours of additional time to 
allow for drying 

Metabolic 
Activity – 

Planktonic and 
Sessile 

- Once prepared, simple to carry out 
- Results are based on colorimetric change 
- Visual and OD interpretations are 
possible 
- Most of assay run time is hands-off 

- Preparation and storage of enzyme 
introduces more technically challenging 
concepts 
- Does not account for non-metabolically 
active structures, such as the ECM 
- Requires purchase of specific reagents 

 

 

From a technical standpoint, biomass assessment by crystal violet is simple to accomplish 

and results are rapidly obtained. This method was highly reliable for the narrow catheter and the 

wide catheter, albeit to a lesser degree (Table 3).  This shows that technical duplicates (within the 

same day) correlated very well. The modestly disparate results between catheter sizes indicate 

inter-day variability. The narrow range of all values, regardless of catheter size, may be an 
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indication of an insensitive test (Figure 9, Figure 10). Future studies designed to test the intra- 

and inter-day variability for biofilm quantification techniques are needed.  

Biomass was also calculated by dry weight. This method is the simplest of tested 

methods to execute. Pre-weighing of catheter segments to determine net biofilm weight rather 

than sonication or scraping attempted to reduce variability due to loss of sample or incomplete 

removal. However, some flaking or loss of biofilm structure was observed. The lack of reliability 

in this method can be seen in the markedly lower Spearman rs for the narrow catheter tests (Table 

3). Wide catheter testing showed a much higher rs. It is possible that by the second round of 

testing, there was unconscious technical adjustment due to experience. Technical expertise may 

improve reliability for this test. The inability of dry weight to correlate with other methods is 

supported by the variability shown in this study and is consistent with current literature [29]. The 

wide range in results, nearly 3mg for the narrow catheter, and over 4mg for the wider segments, 

may be an indication of the erratic nature of this test, or that the isolates themselves are capable 

of producing drastically different structures. Contingent upon additional testing, including vast 

microscopic imaging, this wide range holds true, if reproducibility can be achieved, this test may 

be highly effective at distinguishing differences in biofilm production across isolates.  

Methods of biomass quantification are inherently unable to differentiate between living 

and non-living structures, therefore neither of these methods should be used alone to account for 

a clinical Candida albicans isolate’s ability to produce biofilm.  

Once considered a highly irreproducible method for biofilm quantification, the testing of 

metabolic activity of Candida biofilms has become more clearly defined in recent years [22, 30, 

39]. Assay set up is fairly uncomplicated, and interpretation of results by optical density is 
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simple. There are still limitations. For example, inherent variability in enzyme activity, 

particularly by individual lot can cause problems in interpretation and comparison. 

Measurements of planktonic activity are less commonly reported in the literature as an 

indication for biofilm growth as compared to measures of sessile metabolic activity. Still, 

planktonic cell measurement is important because it represents the activity of cells which are 

released in the final stage of biofilm maturation – “dispersal,” or release of portions of sessile 

structure into the surrounding environment. Reports in the literature suggest that these cells are 

different from as compared to non-biofilm associated planktonic cells [46]. It appears that 

measures of planktonic activity are fairly reliable, regardless of catheter size (Table 3). Future 

studies focusing specifically on rate of dispersal may indicate a relationship between the extent 

of dispersal (or the rate of maturation) planktonic cellular activity.  

Sessile XTT is a more direct method of biofilm quantification and it is simple to perform. 

If incubation time and concentration are kept consistent, sessile XTT provides a good indication 

for the extent of biofilm metabolic activity. Correlation between duplicates was very good for the 

both sizes of catheter (Table 3). It is important to note again that this method does not account 

for differences in production of ECM. As has been mentioned here already, the ECM is at least 

in part responsible for decreased drug susceptibility, and therefore its presence is important [10]. 

Biomass on the other hand, does account for ECM production. In quantifying biofilms, sessile 

metabolic activity should not be used alone to measure biofilm production.  

Correlation results substantiate the claim that limited association exists between 

quantification methods. Indeed, biomass as determined by crystal violet and sessile metabolic 

activity of growth on wide catheter segments were the only methods to correlate. This correlation 

can most likely be attributed to an increased number of living and dividing cells rather than an 
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increase in metabolically inactive ECM. Similar correlations have been recently reported in the 

literature, leading to the introduction of proposed methodological cutoffs to classify the 

production of biofilm using crystal violet of sessile metabolic activity [47]. Further validation of 

these cutoffs is needed to determine both if they are reproducible and if they are clinically 

relevant.  

Based on the strengths and weaknesses of each tested method, along with correlation 

data, it is reasonable to support the use of two tests when assessing biofilm production of clinical 

isolates. Ideally, a method for determining each biomass and bioactivity would be used, to ensure 

that over or underproduction of ECM was not mistaken for presence or absence of a strong 

biofilm phenotype. The ECM is indeed part of the overall biofilm structure, but it is not 

metabolically active and therefore cannot be measured by XTT reduction. As dry weight is not a 

particularly dependable method, use of crystal violet to determine biomass would be best. 

Crystal violet is easily run in parallel with sessile metabolic activity. Together, these methods 

provide a good indication as to the extent of biofilm production by clinical isolates. 

It is reasonable to propose that the biofilm phenotype is altered upon exposure to a 

foreign device. Surrounding environments will elicit different cellular responses, and genetic 

differences have been shown exist between Candida in its planktonic lifestyle as compared to the 

biofilm lifestyle [48-51]. In an effort to accurately assess the impact of catheter association, nine 

of the isolates chosen for this study were collected through catheters that had been in place for at 

least three days. After this amount of time, it would be reasonable to assume that the organism 

had associated with the catheter. Remarkably, no difference was seen in biofilm production for 

Candida albicans collected from a catheter as compared to no catheter being present, despite the 

hypothesis that biofilm production would be greater for isolates exposed to a catheter in vivo. 
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The overall biomass and bioactivity were not differentially altered in these populations. There 

are a number of explanations for this lack of distinction between groups. Namely, the organisms 

may be capable of adapting to the in vitro environment quickly, eliminating any changes which 

occur in vivo by the time testing occurs in vitro. Additionally, the methods may be insufficiently 

sensitive to detect any differences which exist. It is also possible that no differences exist.  

In an analogous manner, the human bloodstream and urine are physically distinct 

environments for organism growth. They offer similar challenges to microbial growth such as 

vessel flow and drug exposure. Nutrient sources and pH, for example, vary between the sites, 

likely causing adaptation in infecting organisms. Adaptations are often connected to better 

survivability.  Yet, the increased ability to form biofilm does not obviously prove beneficial at 

either of these sites. Why these organisms change from the planktonic to biofilm lifestyle is 

unclear. Against the original hypothesis that differing in vivo conditions will alter biofilm 

production, production did not vary by clinical site of collection by any method in this study. 

Again, it may be that testing conditions allowed adaptation, effectively erasing any differences 

that may occur within the human body. This finding is consistent with similar reports in the 

literature – Shuford, et al. noted that there were no differences in dry weight and metabolic 

activity across invasive versus non-invasive sites [23]. Keeping in mind that the methods used 

between studies are not yet fully standardized, comparisons between that study and this report 

are tenuous. 

Decreased susceptibility of clinical Candida albicans biofilms to AMB is not often 

reported. Five of eighteen (27.7%) isolates tested showed a greater than 2-fold increase in AMB 

MICs between standard and sessile populations. Sessile AMB MICs correlated well with biofilm 

production as measured by crystal violet and sessile XTT. This is consistent with the belief that 
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biofilm ECM is able to ensnare or otherwise prevent drugs from accessing their targets, in this 

case the cell wall component ergosterol. The clinical significance of these findings is unclear.  

The magnitude of MIC increase was markedly lower with AMB than with FLUC – the other 

drug to correlated increased biofilm production with increased MIC.  

Decreased susceptibility to the azoles is a widely recognized feature of Candida biofilms 

[13, 25]. Azole efflux pumps are triggered in the earliest stages of biofilm formation, even 

without drug pressure, though the clinical relevance of this phenomenon is not well understood 

[52, 53]. A greater than 2-fold increase in fluconazole MIC was observed in 12 of 18 (67%) 

tested isolates. This included 8 of 9 urinary isolates, suggesting that there is a predisposition of 

these isolates to become resistant to fluconazole. It is plausible that these isolates have been 

exposed to this drug previously, thereby hastening adaptation, especially considering that 

fluconazole is excreted in the urine, 60-80% unchanged. Fluconazole MICs correlated with three 

of the four methods of biofilm production: crystal violet, dry weight, and sessile XTT. Together, 

the high percentage of isolates exhibiting increased MICs in the biofilm state along with the 

correlation to three methods of biofilm quantifications are highly suggestive that the biofilm 

lifestyle is inherently predisposed to decreased fluconazole susceptibility.  

Caspofungin MICs did not correlate with any method of biofilm production. As shown in 

Table 4, there was little change between planktonic and sessile susceptibility. Drug activity was 

maintained, suggesting CSP still able to inhibit β-glucan synthase. Interestingly, a recent study 

suggests there is much less β-glucan present in Candida biofilms than previously thought [11]. 

This calls to question how CSP is so effective against these cell populations considering the 

target of drug activity (β-glucan) is not a large component of the cell wall structure. In all, CSP 

was the most effective at attenuating biofilm activity as compared to AMB and FLUC among the 
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isolates we tested. Only three isolates exhibited a greater than 2-fold increase in CSP MIC. 

While MICs remained low, in vitro paradoxical growth of Candida biofilms in the presence of 

CSP was observed, consistent with current literature [27, 45]. Of the isolates tested here, 61% 

exhibited paradoxical growth in the presence of CSP. Testing did not go above 16µg/ml. There is 

evidence that paradoxical growth occurs at concentrations well above 16µg/ml for Candida 

albicans biofilms. Paradoxical growth may occur in a higher percentage of our tested isolates, 

though the range of tested drug here did not allow capture of that growth. Clinical relevance of 

paradoxical growth remains unknown; the increased prevalence of this effect shown in the 

biofilm lifestyle suggests that the two phenotypes may be linked. Further investigation is needed 

to determine if common pathways exist.  

Consistent with current literature, higher MICs were seen in biofilm-associated cells as 

compared to planktonic cells [12, 22, 23]. Using standard MIC results obtained from a clinical 

microbiology laboratory may be insufficient when assessing appropriate dosing levels required 

to eradicate an infection. However, it is impractical to suggest methods such as those described 

here should be utilized in routine testing. First, not all infections are biofilm-associated. 

Secondly, even if biofilm growth is suspected, it may be difficult to discern whether an infection 

is associated with a device or if there is a mucosal biofilm seeding a device. Finally, even if 

methods could be perfected, and novel testing products, such as the Calgary biofilm device, 

became readily available, the time required to grow and subsequently test susceptibility produces 

unusable data [54]. Patient care requires faster turnaround than is currently feasible for 

susceptibility testing of Candida biofilms. 

A major limitation of this study is the small sample size; however, this study was 

intended as a pilot study. Additionally, there was no confirmation of biofilm structure by 
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microscopy, as is often standard in similar studies. Despite these limitations, this report gives 

evidence for the potential use of sessile metabolic activity in combination with crystal violet 

measurement to determine the extent of biofilm production by clinical isolates. These methods 

could be employed in further testing to determine differences between clinical isolates that were 

not identified here. 



 50 

5.0  CONCLUSION 

In conclusion, this study shows that clinical Candida albicans isolates form distinct biofilms on 

clinical catheter segments, as confirmed by four methods of quantification. Data presented here 

address the three main objectives of my thesis project. First, reproducible methods of Candida 

albicans biofilm growth and quantification were established. The combination of sessile XTT 

and crystal violet are recommended as methods of quantification in future studies, rather than the 

use of only one method of quantification. Second, comparison of biofilm production did not vary 

by catheter association or clinical collection site, suggesting the biofilm phenotype is similar 

throughout in many in vivo environments. Third, strong relationships between biofilm production 

and sessile MICs for amphotericin B and fluconazole were shown. If these relationships hold 

true for biofilms produced in vivo, the presence of biofilms may need to be considered when 

interpreting clinical susceptibility data, as results may be falsely low.   
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