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ANALYSIS OF FUNCTIONAL CORRELATIONS

Scott D. Rothenberger, PhD

University of Pittsburgh, 2014

Technological advances have led to an increase in the collection of high-dimensional, nearly

continuously sampled signals. Evolutionary correlations between such signals are salient to

many studies, as they provide important information about associations between different

dynamic processes and can be used to understand how these processes relate to larger com-

plex mechanisms. Despite the large number of methods for analyzing functional data that

have been explored in the past twenty-five years, there is a dearth of methods for analyzing

functional correlations. This dissertation introduces new methods for addressing three ques-

tions pertaining to functional correlations. First, we address the problem of estimating a

single functional correlation by developing a smoothing spline estimator and accompanying

bootstrap procedure for forming confidence intervals. Next, we consider the problem of test-

ing the equivalence of two functional correlations from independent samples by developing

a novel adaptive Neyman testing procedure. Lastly, we address the problem of testing the

equivalence of two functional correlations from dependent samples by extending the adap-

tive Neyman test to this more complicated setting, and by embedding the problem in a

state-space framework to formulate a practical Kalman filter-based algorithm for its imple-

mentation. These methods are motivated by questions in sleep medicine and chronobiology

and are used to analyze the dynamic coupling between delta EEG power and high frequency

heart rate variability during sleep.
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1.0 INTRODUCTION

Researchers are often interested in examining how the relationship between variables mea-

sured on the same sample of subjects evolves over time. Specifically, an investigator may

want to model the population correlation coefficient between two variables as a smooth

curve and make inferential claims about the time-varying nature of the population correla-

tion. However, to our knowledge, no procedures have been developed thus far for the analysis

of functional correlations. The establishment of a methodology for effective estimation, re-

liable point-wise inference and formal comparisons of temporal correlation functions would

be a novel contribution to the field of functional data analysis.

Formulating a method for functional correlation estimation and inference is not a straight-

forward endeavor, as a direct application of existing techniques for functional data may lead

to substandard results. Bayesian confidence intervals, the most common tool for smoothing

spline inference, might be constructed for point-wise measures of uncertainty of a functional

correlation; however, such intervals have no overall significant level and often suffer from

serious coverage problems. In addition, the assumption of independent errors does not hold

for functional correlations; correlations between two variables measured on the same sub-

jects at different times will be dependent, making it difficult to accurately assess standard

errors. Furthermore, formal point-wise hypothesis testing procedures for functional data

with satisfactory empirical properties have thus far been elusive.

The situation becomes even more complex when testing for the overall equivalence of

two correlation functions. The simplest case arises when the functions come from two inde-

pendent groups of subjects; observed correlations will be correlated over time within each

group, but the two correlation curves will be independent. When comparing two different

correlation functions from the same group of subjects, though, correlations will be dependent
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both within and between observed correlation curves. Even in classical statistics, the usual

methods for testing equality of two simple population correlation coefficients do not apply

when the sample correlation coefficients have been calculated based on data from the same

individuals. Several tests have been developed in an attempt to address this issue. But,

as demonstrated by Dunn and Clark [13, 14], their performances vary greatly based on a

variety of factors. With no a priori knowledge of the dependence between the two sample

correlation coefficients used in the test, one must settle for a test procedure with low power

to preserve the significance level. Comparing correlated correlations in the non-functional

setting can be complicated, but procedures exist. When comparing correlated functional

correlations, a new methodology must be developed, as none exists.

The goals of the dissertation are:

1. To establish an effective method for analyzing a functional correlation

2. To develop a formal test of equivalence of two functional correlations from independent

samples

3. To develop a formal test of equivalence of two functional correlations from correlated

samples.

To meet the first goal, we propose analyzing the functional correlation between two

variables measured on the same subjects through a smoothing spline model on the Fisher’s

transformation scale. Several approaches for obtaining confidence intervals are explored.

Our findings led us to advocate a novel bootstrap procedure based on the large sample

Gaussian distribution of Fisher transformed correlations. This bootstrap-based procedure

allows one to investigate how the correlation between two variables evolves over time using

nonparametric measures of point-wise uncertainty to account for autocorrelated errors.

To formally compare functional correlations, adaptive Neyman hypothesis tests of equiv-

alence of two correlation functions, motivated by methods of Fan and Lin (1998) [20], are

developed. These tests are developed for both the setting where the samples from two

groups are independent and when these samples are dependent. The tests adaptively over-

come the curse of dimensionality, avoid the bias incurred from smoothing-based approaches,

and are well-suited for the analysis of functional correlations where inherently only one sam-
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ple correlation curve is provided from a group of signals. Connections between these tests

and state-space models are established to allow the Kalman filter to be used to formulate

algorithms for practical implementation.

The two correlation functions need not be independent; they may be from two distinct

groups of subjects, or from the same group of subjects measured under two different condi-

tions or during two different time periods.

The remainder of this dissertation is organized as follows. Chapter 2 discusses the mo-

tivating study for the proposed methods, Rothenberger et al. (2014) [58], which will be

revisited as the main example in each subsequent chapter. Briefly, the time-varying corre-

lation between delta electroencephalographic (EEG) power and high frequency heart rate

variability (HF-HRV) during sleep is examined for a cohort of 197 midlife women enrolled

in the SWAN Sleep Study. To our knowledge, this is the first study to explore the dy-

namic sleep-HRV relationship in women, and the first study to model correlations between

slow-wave sleep and nocturnal HRV as continuous functions of time.

Chapter 3 describes the analysis of a single functional correlation. Our novel hypothe-

sis test of equivalence of independent correlation functions is presented in Chapter 4, and

empirical significance and power calculations are evaluated using simulations and compared

to that of Bayesian confidence bands for hypothesis testing. The procedure developed for

testing independent functions is extended in Chapter 5 to provide a new methodology for

comparing dependent correlation functions using a novel adaptive Neyman test for depen-

dent samples. The empirical significance and power of the test are evaluated by simulation.

Lastly, conclusions are drawn in Chapter 6.
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2.0 MOTIVATING STUDY: DELTA EEG POWER AND HF-HRV

The formulation of the proposed methods for analyzing functional correlations was motivated

by our study of delta EEG power and HF-HRV during non-rapid eye movement (NREM)

sleep in midlife women [58]. The novelty of our study with respect to the basic understanding

of nocturnal physiology and the role of sleep in relation to health and functioning is intro-

duced in this section of the dissertation. The primary goals of this motivating application

are presented, and the utility of treating correlations as continuous functions of time when

examining the interaction between physiological systems is elucidated.

2.1 INTRODUCTION

The autonomic nervous system (ANS) is responsible for the unconscious regulation of in-

ternal organs and glands. The sympathetic branch of the ANS functions in physiological

actions which require a quick reaction (“fight or flight” response), while the parasympa-

thetic branch functions in activities which do not require an immediate response (“rest and

digest”). Spectral analysis of HRV, which is the elapsed time between consecutive heart-

beats, is used to quantify distinct components of cardiac autonomic tone during sleep; in

particular, the high frequency band of the HRV power spectrum (HF-HRV; 0.15-4 Hz) is

a measure of cardiac parasympathetic activity. Spectral analysis of electroencephalograms

(EEG) is used to quantify sleep depth; deep sleep is characterized by an abundance of EEG

power in the delta band (0.5-4 Hz) during non-rapid eye movement (NREM) sleep.

Mounting evidence suggests that sleep is an important determinant of health and func-

tioning, including cardiometabolic disease risk [8, 9, 22, 42, 60, 63]. Altered autonomic tone,
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as measured by decreased heart rate variability (HRV), may represent one pathway through

which sleep affects health and functioning [8, 42, 22]. Alterations in HRV have been observed

in sleep apnea and insomnia, which are the two most common sleep disorders seen in primary

care settings [47, 73]. Heart rate variability is decreased during both sleep and wakefulness in

patients with sleep apnea compared to good sleeper controls across the lifespan [31, 38, 45].

Heart rate variability also appears to normalize in conjunction with successful continuous

positive airway pressure (CPAP) treatment [23, 35]. Although the evidence is less conclu-

sive in insomnia, some studies have observed decreased HRV during sleep in patients with

insomnia compared to good sleeper controls [5, 32, 33].

Sleep and HRV are both regulated, in part, by autonomic nervous system activity. Non-

rapid eye movement (NREM) sleep is characterized by relatively greater parasympathetic

tone, indicated by greater high frequency HRV (HF-HRV), while rapid eye movement (REM)

sleep and wakefulness show increased sympathetic nervous system activity [4, 51, 64]. Gra-

dations in HRV are seen within NREM sleep, with lower levels of HF-HRV seen during stage

1 sleep and higher levels seen during stage 3 and 4 “slow-wave” sleep [4, 66]. Studies that

have evaluated cardiac autonomic tone in relation to sleep have often used a “discrete epoch”

approach in which spectral analysis of HRV is measured during five- to ten-minute epochs

corresponding to specific stages of sleep (e.g., stage N3 sleep, rapid eye movement (REM)

sleep). More nuanced methodological approaches, including those that utilize two minute

arousal-free discrete epochs, have shown that fluctuations in HRV are attributable to the

changing distribution of sleep stages [67, 68].

These studies have demonstrated that sleep and HRV are correlated in a broad sense; yet

converging evidence suggests that sleep and HRV are dynamically coupled over shorter time

intervals [24, 51, 50] and this relationship may be altered in people with sleep disturbances

such as obstructive sleep apnea (OSA) and insomnia [34, 33]. Taken as a whole, these studies

suggest that the relationship between sleep and HRV varies across time as well as among

individuals with disturbed sleep. That this relationship may be altered in association with

disturbed sleep suggests that the dynamics of the EEG-HRV relationship warrant further

investigation; such alterations might reflect variations in an underlying physiological process

critical to the restorative properties of sleep.
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Some studies have used analytical approaches that measure the strength of the linear

association between two time series in the frequency domain, suggesting that the time delay

between changes in HRV and changes in the EEG that is reliably observed in good sleepers

disappears in individuals with sleep apnea or insomnia [34, 33]. While aggregation of data

(e.g., discrete epochs, whole night averages) may reveal significant associations between sleep

and HF-HRV, this approach may obfuscate more complex EEG-HRV relationships observed

within and across NREM periods. These complex relationships may be especially important

among individuals with primary sleep disorders such as sleep apnea or insomnia [33]. Thus,

when evaluating cardiac autonomic activity as a mechanism through which sleep and sleep

disturbances affect health and functioning, the analytical approach by which physiological

data are examined in relation to one another across the night is an important methodological

consideration.

In order to address this methodological consideration, we were interested in understand-

ing if delta EEG power and HF-HRV fluctuate in relation to one another on a moment-to-

moment basis, both within and across NREM sleep periods. Specifically, we were interested

in modeling correlations between EEG delta power and HF-HRV during NREM sleep as

smooth, continuous functions of time, primarily because the dynamics of this relationship

might reflect an underlying physiological process critical to the restorative properties of delta

EEG power and cardiac parasympathetic activity during sleep. At a more basic level, un-

derstanding the time-varying nature of the EEG-HRV relationship will enable researchers

to more accurately assess HRV during sleep. A greater understanding of the dynamics

of the EEG-HRV relationship provides a more complete picture of the basic physiology of

sleep which, despite originating in the brain, is inextricably linked to peripheral physiology

[43, 62]. We chose to focus on NREM delta EEG power as it is a stable and reliable quan-

titative measure of visually-scored slow-wave sleep, which has been linked with HF-HRV in

previous studies [4, 66, 67]. Conceptually, delta EEG power and parasympathetic nervous

system activity may promote physiological restoration, a putative function on NREM sleep.

Although delta power can be detected during REM sleep, its expression during NREM sleep

is most closely tied to its role as a marker of sleep homeostasis and sleep depth [21].

To evaluate time-varying associations between HRV and the sleep EEG, we utilized
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overnight data from a sample of midlife women studied at four sites around the country:

Chicago, IL; Detroit, MI; Oakland, CA; and Pittsburgh, PA. Our study seeks to address the

following three aims that correspond to the methodological aims outlined in Chapter 1:

1. To examine how the correlation between delta EEG power and HF-HRV varies as a

function of time during NREM sleep in midlife women

2. To examine whether temporal EEG-HRV relationships in midlife women differ as a func-

tion of sleep disordered breathing and insomnia

3. To examine if the time-varying correlation significantly changes across different NREM

periods.

2.2 PARTICIPANTS AND DATA

A total of 368 women participated in the multi-site Study of Women’s Health Across the

Nation (SWAN) Sleep Study [28, 59]. Each study site recruited Caucasian participants and

members of one racial/ethnic minority group (African American or Chinese). Eligibility for

the SWAN Sleep Study was based primarily on factors known to affect sleep. Specific ex-

clusions were regular overnight shiftwork; current menopausal hormone replacement therapy

use; current chemotherapy, radiation, or oral corticosteroid use; and regular consumption of

more than 4 alcoholic drinks per day.

A subset (n = 197) of the SWAN Sleep Study cohort was used for the current analyses.

Of these participants, 19 exhibited symptoms of insomnia without sleep disordered breath-

ing (SDB), 26 exhibited symptoms SDB without insomnia, 6 exhibited both symptoms of

insomnia and SDB, and 146 did not exhibit symptoms of insomnia or SDB. Participants

were not included in the present analyses if quantitative EEG or HRV data were not avail-

able due to technical problems with the polysomnography (PSG) recording (n = 56); if they

were taking medications that affect heart rate variability (e.g., beta blockers, angiotensin-

converting-enzyme (ACE) inhibitors) (n = 57); if they were missing covariate data (n = 19);

or were missing too much HRV or EEG data to reliably interpolate HRV and/or EEG profiles

(n = 39). On average, participants not included in the present analyses had higher body
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mass index (BMI) values, reported more subjective sleep complaints, and had shorter sleep

durations, compared to participants who were included in these analyses (p−values < 0.01).

These groups did not differ in terms of NREM delta EEG power or high frequency HRV dur-

ing NREM sleep, age, menopausal status, or percent NREM sleep. The study protocol

was approved by each site’s institutional review board. Participants gave written informed

consent and received compensation for participation.

Ambulatory PSG sleep studies were conducted in participants’ homes on the first three

nights of the SWAN Sleep Study protocol as previously described [28]. Study staff visited

participants in their homes on each sleep study night to apply and calibrate PSG study mon-

itors. Participants slept at their habitual sleep times, and upon awakening in the morning,

participants turned off and removed the study equipment.

Participants’ apnea-hypopnea index (AHI), assessed by PSG on the first night of the

sleep study, was used to quantify sleep disordered breathing (SDB). Participants with an

AHI ≥ 15 were considered to have clinically significant SDB. The self-report Insomnia

Symptom Questionnaire (ISQ), a 13 item self-report instrument, was used to identify partic-

ipants meeting criteria for insomnia based on the American Psychiatric Association’s fourth

edition of the Diagnostic Statistical Manual (DSM-IV) criteria for insomnia and the Ameri-

can Academy of Sleep Medicines (AASM) Research Diagnostic Criteria (RDS) [3, 15]. The

ISQ retrospectively queried participants’ chronic sleep disturbances, such as difficulties ini-

tiating or maintaining sleep, or experiencing un-refreshing sleep at least 3 nights per week

over the past month or longer [48].

A single night of data was used to compute power spectral analysis of the EEG and HRV

for each participant given the high short-term temporal stability of whole night measures of

EEG delta power and HF-HRV [32]. PSG records were visually scored in 20-second epochs

[57]. Fast Fourier Transform (FFT) was employed to derive delta EEG power spectral

estimates in 4-second epochs and HF-HRV power spectral estimates in 2-minute epochs.

Delta EEG and HF-HRV epochs occurring during NREM sleep were then temporally aligned

across the entire sleep period. The bins selected for analysis of EEG and HRV data were

consecutive 4-second intervals, corresponding to the non-overlapping spectral estimates of

delta EEG power generated by FFT. Missing data were handled in a “paired” fashion; when
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4-second bins of EEG data were missing values, the corresponding 4-second bins of HRV data

were also considered missing values. Only a portion of an entire 2-minute HRV measurement

was discarded, unless the concurrent EEG data were missing for the entire 2-minute interval.

Similarly, if a 2-minute epoch of HRV data was a missing value, the simultaneous bins of

EEG data were treated as missing values.

2.3 DATA PROCESSING

Absolute delta EEG power was log-transformed and normalized HF-HRV power was square-

root-transformed in order to produce approximately normally-distributed values. Analyses

were limited to the first 3 NREM periods due to the limited amount of data available for

subsequent sleep cycles. Analyses were conducted in relative time as opposed to absolute

(clock) time to compensate for inter-individual differences in the length of individual NREM

periods. An approach similar to Achermann et al. (2003) [1] was used to compute relative

time. First, each participant’s NREM “clock” was standardized to take values between

t = −1 and t = +1. Next, the time at which the maximum in delta EEG power occurred

was detected for each participant, and this time was designated as t = 0. Finally, HRV and

EEG data for each participant were linearly interpolated and re-sampled on the new time

scale, giving the same number of relative time points per participant (T = 582) within each

NREM period.
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3.0 ANALYZING A FUNCTIONAL CORRELATION

3.1 INTRODUCTION

Before discussing our techniques for analyzing a functional correlation, it helps to describe

the data giving rise to the correlation function of interest and the various assumptions

that are needed. Some challenges faced when analyzing a time-varying correlation are also

introduced. In addition, a brief review of Fisher’s correlation transformation is provided

below, as it plays a fundamental role in our methods.

Suppose that the variables of interest are pairs of continuous functions {Xi(t), Yi(t)},

where i = 1, . . . , n denotes subject and t denotes time. As an example from our motivating

application, Xi(t) and Yi(t) may represent the delta EEG power and high frequency HRV

functions for the ith subject at time t. We assume that the observed data are a random

sample from the model  Xi(t) = µX(t) + δiX(t);

Yi(t) = µY (t) + δiY (t),
(3.1)

where EXi(t) = µX(t) and EYi(t) = µY (t) are the functional population means for all

subjects. The stochastic error processes δiX(t) and δiY (t) have mean zero and covari-

ance functions given by γX(s, t) = cov [δiX(s), δiX(t)], γY (s, t) = cov [δiY (s), δiY (t)], and

γXY (s, t) = cov [δiX(s), δiY (t)]. These functions represent the dependence between measure-

ments made on the same subject at different times and are well-defined as long as EX2
i (t) and

EY 2
i (t) are finite for all t. Note that, since observations from different subjects are assumed

to be independent, cov [δiX(s), δi′X(t)] = cov [δiY (s), δi′Y (t)] = cov [δiX(s), δi′Y (t)] = 0 for

all i 6= i′.

The autocovariance functions γX(·) and γY (·), along with the cross-covariance function
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γXY (·), are used to define the cross-correlation function (CCF) as

ρ(s, t) =
γXY (s, t)√

γX(s, s)γY (t, t)
.

The CCF is a measure of the linear association between the processes Xi(s) and Yi(t), at

possibly different values of time s and t, and −1 ≤ ρ(s, t) ≤ +1. When s = t, we have

γX(s, t) = var [Xi(t)] = σ2
X(t), γY (s, t) = var [Yi(t)] = σ2

Y (t), and CCF given by:

ρ(t) =
γXY (t)

σX(t)σY (t)
. (3.2)

Notice that ρ(t) in Equation (3.2) is simply the population correlation coefficient between

the functions Xi(t) and Yi(t) (the second time index has been dropped for ease of notation).

Analysis of the correlation function ρ(t) is the focus of this chapter of the dissertation.

If one assumes that the random functional variates {Xi(t), Yi(t)}ni=1 follow a bivariate

normal distribution at each time point t, we may write

 Xi(t)

Yi(t)

 ∼ N

 µX(t)

µY (t)

 ,

 σ2
X(t) ρ(t)σX(t)σY (t)

ρ(t)σX(t)σY (t) σ2
Y (t)

 . (3.3)

Under this distribution, Pearson’s sample correlation coefficient r(t) is an asymptotically un-

biased estimator of the population correlation coefficient ρ(t) such that
√
n [r(t)− ρ(t)]

d→

N
(

0, [1− ρ2(t)]2
)

[2]. Furthermore, if one makes the very strong assumption of indepen-

dence over time, i.e., γX(s, t) = γY (s, t) = γXY (s, t) = 0 for s 6= t, then r(s) ⊥ r(t) for

s 6= t.

Even though r(t) is an asymptotically unbiased and consistent estimator of ρ(t), it is not

optimal to perform correlation analyses on this scale. Many of the deficiencies of correlation

analyses based on the natural scale that are known in classical statistics, namely that large

sample asymptotics are slow with heteroscedastic variances that depend on the parameter of

interest, are exacerbated in the functional setting where smoothing procedures can be neg-

atively affected by heteroscedastic data. A one-to-one variance stabilizing transformation,
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known as Fisher’s correlation transformation, is commonly employed. The Fisher transfor-

mations and corresponding inverse transformations are given by Equations (3.4) and (3.5),

respectively:

z(t) =
1

2
ln

[
1 + r(t)

1− r(t)

]
, η(t) =

1

2
ln

[
1 + ρ(t)

1− ρ(t)

]
(3.4)

r(t) =
exp [2z(t)]− 1

exp [2z(t)] + 1
, ρ(t) =

exp [2η(t)]− 1

exp [2η(t)] + 1
(3.5)

It can be shown that
√
n− 3 [z(t)− η(t)]

d→ N (0, 1) [30], where z(s) ⊥ z(t) for s 6= t under

the strong independence assumption made above. The variance of z(t) is approximately

constant and equal to (n − 3)−1 for large n; i.e., the errors on Fisher’s transformed scale

are approximately homoscedastic with known variance. As this chapter of the dissertation

demonstrates, Fisher’s correlation transformation is extremely useful and provides a reason-

able framework for the analysis of a functional correlation.

Unfortunately, the assumption that γX(s, t) = γY (s, t) = γXY (s, t) = 0 for s 6= t is far

from realistic. Measurements made on the same subject at different times are naturally

expected to be dependent. Assuming such independence would lead to a biased estimate of

the variance function of z(t) (and of r(t)), and many of the distributional results given above

cannot be directly applied in practice. When the data are sampled at fixed times {tj}Tj=1,

the covariance matrix of [z(t1), . . . , z(tT )]′ will have non-zero off-diagonal elements. The

distribution of [z(t1), . . . , z(tT )]′ becomes extremely complicated, especially if the dependence

structure is not known in advance. However, as discussed in later sections, our novel method

for analyzing a correlation function circumvents such issues.

We propose that the analysis of a functional correlation be performed on Fisher’s trans-

formed scale, as opposed to the original correlation scale, for several reasons. First, the

convergence to normality of z(t) is much faster than that of r(t), especially for small sample

sizes and more extreme values of the sample correlation. Second, the large-sample prop-

erties of r(t) are very sensitive to departures from bivariate normality in the underlying

data {Xi(t), Yi(t)}ni=1 at each time t, but inference based on z(t) is still reliable when the

data are only approximately normally distributed. In addition, z(t) can take any value in

[−∞,+∞]; when mapped back to the original correlation scale, the inverse transformation
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guarantees that r(t) ∈ [−1,+1]. This may be important when constructing confidence inter-

vals for ρ(t), as the CLT for r(t) may lead to intervals which extend outside [−1,+1]. Lastly,

data on the original correlation scale can easily suffer from heteroscedasticity, while Fisher’s

transformation produces approximately homoscedastic data. Fisher’s transformation is es-

pecially necessary to ensure homoscedasticity when correlations are fairly high in magnitude,

such as those encountered in our motivating study [58] (see Section 4.4 and Figures 5 and

6). As described in the next section, we propose analyzing a functional correlation using

a smoothing spline model; however, smoothing spline methods are not efficient when the

data are heteroscedastic over time. Thus, analyzing η(t) via smoothing splines on Fisher’s

transformed scale and applying the inverse transformation is an efficient way to analyze ρ(t),

but smoothing directly on the original correlation scale is not.

3.2 ESTIMATION OF A FUNCTIONAL CORRELATION

We wish to estimate the time-varying correlation between the variables X(t) and Y (t) mea-

sured on the same i = 1, . . . , n subjects from a homogeneous population. We obtain sample

data {xij, yij}ni=1 at design points {tj}Tj=1. The sample data are assumed to be discrete re-

alizations of the random processes {Xi(t), Yi(t)}ni=1 given by Equation (3.1). The processes

are assumed to follow a bivariate normal distribution, as depicted in Equation (3.3), at each

instantaneous moment t in the continuous interval [t1, tT ]. The sample correlation coefficient

rj =

∑n
i=1 (xij − x·j)

(
yij − y·j

)√∑n
i=1 (xij − x·j)2

√∑n
i=1

(
yij − y·j

)2
is computed at each design point tj, and the Fisher-transformed correlation zj is obtained

using Equation (3.4).

The model considered throughout this section is given by

zj = η(tj) + εj , j = 1, . . . , T (3.6)

where {zj}Tj=1 are the Fisher-transformed correlations at observation times t1, . . . , tT , Ezj =

η(tj), η(·) is a smooth function on the continuous interval [t1, tT ], and ε = (ε1, . . . , εT )′ is a

13



mean zero Gaussian random vector with covariance matrix Γ. The off-diagonal elements of

Γ are left unspecified, as we do not assume to know the autocovariance function γε(tj, tk) =

cov (εj, εk) in advance. We will, however, assume that the diagonal elements of Γ are equal to

(n− 3)−1, since errors on Fisher’s transformed scale are homoscedastic with known variance

for reasonably large n. For simplicity of technical arguments, we suppose that the observation

times are equally spaced and common to all n subjects.

Our method proceeds as follows: To estimate the correlation function ρ(t) on the con-

tinuous interval [t1, tT ], we first estimate the function η(t) based on the observed data which

follow the model in Equation (3.6). We propose obtaining the estimator η̂0(t) through cu-

bic spline smoothing of the pairs {tj, zj}Tj=1 by minimizing penalized sum-of-squares, with

smoothing parameter selected through generalized cross-validation [25]. Finally, the esti-

mated correlation function of interest, denoted by ρ̂0(t), is obtained using Equation (3.5).

Some technical details of cubic spline smoothing in general are now provided under

the model in Equation (3.6), and the final results will help to understand the challenges

of confidence interval construction described in the next section. First, one assumes that

η(t) ∈ W2
2 , where W2

2 is a Sobolev space of smooth functions defined by

W2
2 =

{
f(t) : [t1, tT ]→ R1; f(t), f ′(t) absolutely continuous;

∫ tT

t1

f ′′(t)2dt <∞
}
. (3.7)

One seeks the optimal estimator η̂(t) that fits the observed data well while also being rea-

sonably smooth. For some smoothing parameter λ > 0, η̂(t) is the function that minimizes

the penalized sum-of-squares. Formally,

η̂(t) = argmin
η(t)∈W2

2

{
(z− η)

′
W (z− η) + λ

∫ tT

t1

η′′(t)2dt

}
, (3.8)

where z = (z1, . . . , zT )′, η = [η(t1), . . . , η(tT )]′, and W is a symmetric, positive-definite ma-

trix of weights. The solution η̂(t) exists and is an order four spline smooth with knots placed

at all observation times (i.e., a cubic spline smooth). Let φ1, . . . , φT+2 be (T + 2) fourth-

order B-spline basis functions with knots at t1, . . . , tT and set φ(t) = [φ1(t), . . . , φT+2(t)]
′.

Denote the T × (T + 2) matrix of basis functions as Φ =
(
φ(t1)

′ φ(t2)
′ · · · φ(tT )′

)
,

and represent the (T + 2)× (T + 2) penalty matrix R of integrated second derivatives by its
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elements
{
Rkl =

∫ tT
t1
φ′′k(t)φ

′′
l (t)dt

}T+2

k,l=1
. The smoothing parameter λ is chosen to minimize

some objective criterion; the generalized cross-validation score GCV(λ) is very popular and

will be the criterion considered in this proposal. The resulting estimator and its variance

can be written as:

η̂(t) = φ(t)′ [Φ′WΦ + λR]
−1

Φ′Wz,

var [η̂(t)] = φ(t)′ [Φ′WΦ + λR]
−1

Φ′WΓWΦ [Φ′WΦ + λR]
−1
φ(t).

Because the model in Equation (3.6) assumes that errors are homoscedastic, we can

express the covariance matrix as Γ = σ2P , where σ2 = (n− 3)−1, and the diagonal elements

Pjj = 1 for all j = 1, . . . , T . It has been demonstrated that var [η̂(t)] will be minimized when

W = P−1 [72, 39, 36]. Ideally, one uses the weight matrix . In this case, the estimator and

its variance can be re-expressed as:

η̂(t) = φ(t)′
[
Φ′P−1Φ + λR

]−1
Φ′P−1z, (3.9)

var (η̂(t)) = σ2φ(t)′
[
Φ′P−1Φ + λR

]−1
Φ′P−1Φ

[
Φ′P−1Φ + λR

]−1
φ(t). (3.10)

In contrast, since a structure for P is unknown, our estimation method sets W = I to

obtain:

η̂0(t) = φ(t)′ [Φ′Φ + λR]
−1

Φ′z, (3.11)

var [η̂0(t)] = σ2φ(t)′ [Φ′Φ + λR]
−1

Φ′P−1Φ [Φ′Φ + λR]
−1
φ(t). (3.12)

Equation (3.11) and the inverse Fisher transformation of Equation (3.5) are employed to

give our estimated correlation function ρ̂0(t).

3.3 CONFIDENCE INTERVALS FOR A FUNCTIONAL CORRELATION

The utility of an estimated functional correlation is largely determined by the accuracy of

its estimated variability. As previously mentioned, the covariance structure of the data
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{Xi(t), Yi(t)}ni=1, and subsequently the covariance structure of (z1, . . . , zT )′, is quite compli-

cated in any realistic situation. The functions γX(·), γY (·) and γXY (·) defined in Section

3.1 for the observed data will not be known in practice, and assuming parametric forms

could badly misrepresent the truth. Even if parametric models for the covariance functions

of the observed data were close to the truth, Fisher’s nonlinear correlation transformation

will most likely give rise to a large sample distribution that is not tractable or analytically

representable. Furthermore, if one were to first compute {z1, . . . , zT}, assume a form for P

and then use smoothing spline results to estimate the variability in η̂(t), a misspecification of

P could lead to very misleading inference. The following sections describe some difficulties

inherent in constructing spline-based confidence intervals for a functional correlation and our

novel method which circumvents such issues.

3.3.1 Bayesian Confidence Intervals for a Functional Correlation

Spline-based confidence intervals are typically referred to as Bayesian “confidence intervals,”

as there exists a well-established connection between smoothing spline models and Bayesian

models. Constructing Bayesian CI’s is by far the most popular approach for inference in

the smoothing spline framework. The smoothing spline estimator η̂(t) can be shown to be

equivalent to a Bayes estimate of η(t) when one assumes that η(t) is a sample function

from a certain Gaussian prior distribution [69]. In the Bayesian framework, one can con-

struct Gaussian confidence limits for η(t) based on the posterior variances of η̂(t1), . . . , η̂(tT ).

Bayesian CI’s have a certain frequentist interpretation referred to as “across the function”:

when restricting the (100 − α)% Bayesian CI’s to the observation times t = t1, . . . , tT , ap-

proximately (100 − α)% of the T intervals will cover the true values of η(t). These are not

exactly “point-wise” confidence intervals in the conventional sense; there will typically be

under-coverage where η(t) is rough and over-coverage where η(t) is smooth [26]. When the

smoothing parameter is selected via generalized cross-validation, the value of σ2 in Equation

(3.10) is estimated by

σ̂2 =

∑T
j=1 [zj − η̂(tj)]

2

T − trace
[
Φ (Φ′P−1Φ + λR)−1 Φ′P−1

] , (3.13)
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and v̂ar [η̂(t)] is easily obtained by substituting σ̂2 for σ2 in the expression for var [η̂(t)]. The

form of a Bayesian confidence interval is quite simple; for instance, a 95% Bayesian CI for

η(t) is given by

η̂(t) ± 1.96
√

v̂ar [η̂(t)]. (3.14)

Four potential approaches for obtaining confidence intervals for η(t) are described below.

The main problem inherent in these methods has been alluded to in previous sections: we

do not know the true structure of P !

1. Perform a spline smooth under the independence assumption and simply use Equations

(3.11) and (3.12) to construct Bayesian confidence intervals. Due to the gross misspec-

ification of P , the estimate of var [η̂(t)] will be far from the truth, and this method will

lead to poor inference.

2. Perform the procedure above to obtain Bayesian confidence intervals. Attempt to cir-

cumvent the specification of P through the construction of “modified” Bayesian CI’s:

vary the value of σ̂2 until (100− α)% of the observed z1, . . . , zT values are contained in

the “modified” CI’s at times t1, . . . , tT . However, such confidence intervals will not have

an “across the function” interpretation, or any reasonable interpretation at all.

3. Attempt to estimate the entire covariance matrix Γ based on residuals from a preliminary

spline smooth assuming independence to obtain P = σ̂−2Γ̂, perform a secondary spline

smooth assuming the estimated P , and lastly construct Bayesian confidence intervals.

However, this approach is seriously flawed; among other reasons, it would require a

substantial number N of replicated curves from the same n subjects under the same N

time-varying conditions. Such an estimate of Γ would be computed as Γ̂ = (N−1)−1E ′E,

where E is the N×T matrix of residuals. Γ contains T (T+1)/2 elements to be estimated,

and it is unlikely that we would ever have a large enough N to do this accurately [54]. In

fact, we will only have N = 1 reliable replications in any realistic situation. Furthermore,

even if reliable replications were available, the diagonal elements of Γ̂ would never be

equal in practice. This is necessary for the homoscedasticity assumption of our functional

correlation model.

4. Assume that the process generating the errors is stationary and construct Bayesian con-
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fidence intervals. Such an approach would greatly reduce the number of covariance

parameters to be estimated. For instance, an AR(1) process with parameter φ might be

assumed, in which case the correlation matrix P would have the form:

P (φ) =



1 φ φ2 · · · φT−1

φ 1 φ · · · φT−2

φ2 φ 1 · · · φT−3

...
...

...
. . .

...

φT−1 φT−2 φT−3 · · · 1


.

One might attempt to estimate φ based on the residuals {zj − η̂0(tj)}Tj=1 from a pre-

liminary spline smooth under the independence assumption, and then use P (φ̂) in a

subsequent spline smooth to obtain η̂(t) and var [η̂(t)]. Alternatively, one might attempt

to estimate φ while simultaneously performing the spline smooth by employing a mixed

effects smoothing spline model [70, 71, 75, 7, 40]. Similarly, one could assume more

complex stationary processes such as AR(p), MA(q), or ARIMA(p,d,q) and use the de-

scribed approaches. However, these methods are only feasible when there are just a few

extra parameters to estimate. Estimating a P that is close to the truth will most likely

require too many extra parameters under the stationarity assumption, especially when

faced with complicated data such as Fisher transformed correlations.

These various approaches based on Bayesian confidence interval construction are fundamen-

tally flawed and are expected to give unreliable or uninterpretable estimates of var [η̂(t)].

Thus, we advocate a novel bootstrap-based method for constructing confidence intervals for

a correlation function.

3.3.2 Bootstrap-based Confidence Intervals for a Functional Correlation

Parametric estimation of var [η̂(t)] is not reliable or recommended when the complex co-

variance structure of (z1, . . . , zT )′ is not known in advance. The challenges discussed above

suggest that a nonparametric procedure for estimating confidence intervals for ρ(t) may be

most appropriate to preserve the covariance structure of the data. The well-known boot-

strap, introduced by Efron [16, 17], provides an excellent framework for robust and reliable
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inference for a correlation function. The bootstrap should not be viewed as a last-resort; it is

often a dependable first choice when one is not confident in making parametric assumptions

about the data. Efron demonstrated that the bootstrap method is preferable to other resam-

pling schemes. Among other advantages in our setting, a Monte Carlo evaluation of v̂ar [η̂(t)]

based on random bootstrap samples of the observed data converges to the nonparametric

maximum likelihood estimate of var [η̂(t)] [17].

Bootstrap-based inference for Pearson correlations has been extensively explored in the

non-functional setting, leading to some debate about its relative merits compared to para-

metric methods [12, 55, 65, 18, 56]. As Efron points out in this discussion, bootstrap and

parametric methods provide nearly equivalent inferences about correlations when parametric

assumptions are very close to the truth. Furthermore, to quote Efron: “the bootstrap is not

intended to be a substitute for precise parametric results but rather a way to reasonably

proceed when such results are unavailable” [18]. The unavailability of precise parametric re-

sults is exactly the challenge we face when constructing confidence intervals for a functional

correlation, and thus we employ the bootstrap in our work.

Our novel procedure for constructing point-wise confidence intervals for ρ(t), based on

the large sample Gaussian distribution of Fisher transformed correlations, is carried out

through the following steps. For simplicity of notation below, denote the pairs of observed

functions as Ui = Ui(t) = [Xi(t), Yi(t)]
′, where U1, . . . ,Un are independent with a common

distribution F . Let Fn be the empirical distribution function of U1, . . . ,Un that puts mass

1
n

on each Ui.

1. Based on the data U1, . . . ,Un observed at times t1, . . . , tT , obtain the estimator η̂0(t)

through cubic spline smoothing of the pairs {tj, zj}Tj=1 using the proposed method of

Section 3.2.

2. Let U∗1, . . . ,U
∗
n be i.i.d. samples from Fn (i.e., random sampling with replacement from

the set {U1, . . . ,Un}). The sample {U∗1, . . . ,U∗n} is then used to calculate the sample

correlation coefficient r∗j at each time tj, and Fisher’s correlation transformation is em-

ployed to obtain z∗j , j = 1, . . . , T . Finally, Step 1 is repeated to calculate a bootstrap

estimator η̂∗1(t) through the cubic spline smoothing of the pairs
{
tj, z

∗
j

}T
j=1

.
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3. Repeat Step 2 independently a large number B of times to obtain the bootstrap estima-

tors {η̂∗b (t)}
B
b=1.

4. Let η̂∗· (t) = 1
B

∑B
b=1 η̂

∗
b (t), and compute the sample variance of the B estimators:

v̂ar [η̂∗(t)] =
1

B − 1

B∑
b=1

[η̂∗b (t)− η̂∗· (t)]
2 . (3.15)

5. At a fixed time point t, the standard percentile-based (1− α/2)% bootstrap confidence

limits for η(t) would be given by the α and (1−α/2) quantiles of {η̂∗1(t), . . . , η̂∗B(t)}. How-

ever, since the large sample distribution of Fisher transformed correlations is symmetric

and Gaussian, we instead compute the (1− α)% bootstrap CI for η(t) as

η̂0(t) ± z1−α/2 ·
√

v̂ar [η̂∗(t)] , (3.16)

where z1−α/2 is the (1−α/2) quantile of the standard normal distribution. For example,

using our method, a 95% point-wise CI for η(t) is{
η̂0(t)− 1.96 ·

√
v̂ar [η̂∗(t)] , η̂0(t) + 1.96 ·

√
v̂ar [η̂∗(t)]

}
. (3.17)

6. Lastly, if we denote the lower and upper (1− α)% confidence limits for η(t) as Lη(t) and

Uη(t), respectively, then the (1 − α)% point-wise confidence interval for ρ(t) is obtained

using the inverse Fisher transformation of Equation (3.5):[
exp

[
2Lη(t)

]
− 1

exp
[
2Lη(t)

]
+ 1

,
exp

[
2Uη(t)

]
− 1

exp
[
2Uη(t)

]
+ 1

]
(3.18)

We note that the total number of unique bootstrap samples is B =

 2n− 1

n

. In

practice, though, one does not use all B =

 2n− 1

n

 samples; for example, a sample

size as small as n = 10 subjects gives a maximum of B = 92378. There is no established

rule for how large B should be in the functional correlation setting. We suggest that B

be chosen large enough such that v̂ar [η̂∗(t)] stabilizes to a constant (within a reasonable

precision level). Since lim
B→∞

v̂ar [η̂∗(t)] is the nonparametric MLE of var [η̂(t)], and because

var [η̂(t)] is not constant over time, B must be chosen large enough such that v̂ar [η̂∗(t)] is
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stable at each time t. This recommendation may appear to give extremely large values of

B; however, in small empirical studies, we found B ≈ 1000 to be quite adequate. In fact, for

our motivating application, B = 250 was large enough to stabilize the estimated variance;

larger values of B did not noticeably change v̂ar [η̂∗(t)] at each time t.

3.4 APPLICATION: DELTA EEG POWER AND HF-HRV

The first goal of our motivating study [58] addressed the time-varying correlation between

delta EEG power and HF-HRV in midlife women during individual NREM periods. Within

a given NREM period, delta EEG power and HF-HRV values for each of the n = 197 partici-

pants were obtained at each of the T = 582 relative time points. The novel method described

in Section 3.2 was employed to estimate the functional correlation between these two vari-

ables within each NREM period. Point-wise 95% confidence intervals were constructed for

the correlation functions by applying the novel bootstrap-based method of Section 3.3.2,

using B = 250 random bootstrap samples. In the results that follow, ρ̂1(t), ρ̂2(t) and ρ̂3(t)

denote the estimated correlation functions during NREM-1, NREM-2 and NREM-3, respec-

tively.

The functional correlations between delta EEG power and HF-HRV during the first three

NREM periods for the full sample are depicted in Figure 1. Data appear in relative time as

opposed to absolute (clock) time in order to account for inter-individual differences in NREM

period length. On the relative time scale, t = 0 designates the time at which the maximum

in delta EEG power occurs for all participants, represented in the figure by dotted vertical

lines. The top row displays the mean delta EEG power profile (natural-log-transformed)

as a function of relative time. The middle row displays the mean normalized HF-HRV

profile (square-root-transformed) as a function of relative time. The bottom row reveals

the time-varying correlation between delta EEG power and HF-HRV; solid lines represent

the estimated time-varying correlation functions, and the shaded areas represent point-wise

95% confidence intervals for the correlation functions. A correlation is deemed point-wise

significant if its 95% confidence interval does not include zero.
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Figure 1: Delta EEG power and HF-HRV: Whole Sample of Participants
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How are delta EEG power and HF-HRV correlated over time within NREM periods for

the sample as a whole? As shown in Figure 1, the estimated correlation profile for delta EEG

power and HF-HRV during NREM-1 is bimodal; ρ̂1(t) increases from zero at sleep onset to a

local maximum of ρ̂1 = +0.29 with 95% CI (0.20, 0.38). The estimated correlation function

then decreases in magnitude until t = 0, where ρ1(t) is no longer significant. Following t = 0,

the estimated functional correlation between these two physiological parameters increases to

ρ̂1 = +0.35 with 95% CI (0.25, 0.43) and remains significantly positive until the end of the

first NREM period, ρ̂1(t) approaches zero. During NREM-1, ρ1(t) is point-wise significant

for 86% of the time before the peak in delta power and 90.8% of the time after peak delta

power.

During NREM-2, the time-varying correlation between delta EEG power and HF-HRV

also has two peaks; ρ̂2(t) rises to a maximum value ρ̂2 = +0.22 with 95% CI (0.12, 0.31) and

subsequently decreases to zero when the maximum in delta EEG power occurs. After t = 0,

ρ̂2(t) increases to ρ̂2 = +0.17 with 95% CI (0.06, 0.26) and decreases back to zero by the

end of NREM-2. The amount of time during which the correlation function is significantly

positive decreased from NREM-1 to NREM-2; ρ2(t) is point-wise significant for 52.3% of

time before t = 0 and 71.4% of time following t = 0. Qualitatively, ρ̂2(t) crudely follows the

same pattern as ρ̂1(t), but the overall magnitude of ρ̂2(t) is lower. In addition, the peaks in

ρ̂2(t) are much broader compared to ρ̂1(t), and the drop in ρ̂2(t) near t = 0 is much sharper.

By the third NREM period, the magnitude of the estimated time-varying correlation

between delta EEG power and HF-HRV drops dramatically. ρ̂3(t) is unimodal and only

point-wise significant for 11% of the time before t = 0 and 46.2% of the time after t = 0.

A mere maximum of ρ̂3 = +0.15 with 95% CI (0.07, 0.23) is attained following the peak in

delta EEG power.
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4.0 COMPARING INDEPENDENT CORRELATION FUNCTIONS

4.1 INTRODUCTION

Our novel method for analyzing a single correlation function enables a researcher to explore

and gain valuable insight into the time-varying relationship between two variables measured

on the same subjects. Results from our motivating study [58] indicate that the correlation

between delta EEG power and HF-HRV varies substantially over time within NREM periods.

This finding has the potential clinical implication that, for an accurate assessment of cardiac

autonomic tone during NREM sleep based on a discrete HRV epoch, the time at which you

sample the epoch makes a difference. In addition, insomnia and sleep disordered breathing

may have marked effects on the sleep-HRV correlation profiles. How do we detect a significant

difference between the time-varying correlation functions from different types of people? We

need a way to formally test whether correlation functions differ between independent groups

of subjects.

The comparison of correlations in the non-functional data setting has been explored by

many [13, 14, 49, 44, 53, 52]. When comparing correlations from independent samples of

subjects, the work becomes easier, as the dependence between two correlations at any given

time is known to be zero. In the functional data setting, though, no formal hypothesis

test for the overall equivalence of two functional correlations exists. In developing a formal

testing procedure to compare independent correlation functions, there are several challenges

to consider:

1. Nonparametric curve estimation, such as spline smoothing, reduces variability at the

expense of introducing some bias. We would like a test procedure which circumvents the
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bias caused nonparametric curve estimation.

2. When dealing a functional correlation, the errors are correlated over time; a test that

takes the correlation structure of the data into account is necessary.

3. Many existing procedures for functional data are based on the difference in mean func-

tions from two independent sets of curves; however, we do not have replicates of corre-

lation functions to form sets of curves. When testing for equivalence of two functional

correlations, we need a procedure that can handle a single curve per group.

4. It is desirable to have a procedure that incorporates dimensionality reduction, as testing

too many dimensions accumulates large stochastic noise and decreases the ability to

detect a significant difference.

Much work has been done in the functional data setting to test for the equivalence of two

nonparametric functions, and we explored various routes in an attempt to gain insight into

testing correlation functions. Liu and Wang (2004) [41] reviewed several hypothesis testing

procedures for smoothing spline models, including approximate LMP, GML, and GCV tests.

Some methods can be extended to compare two curves. However, these methods are sensitive

to the independent errors assumption and would have to be modified to handle correlated

data. In addition, they are all subject to the bias induced by spline smoothing.

Guo (2002) [27] generalized the GML test to the mixed effects smoothing spline analysis

of variance (SSANOVA) model, which is a more suitable for correlated data. One can pa-

rameterize such a model to make the difference between two curves a functional component,

and a likelihood ratio test for the significance of that functional component can be per-

formed. But, the bias inherent in spline smoothing still remains an issue. Bootstrap-based

and L2-based tests for the equivalence of independent curves were proposed by Zhang et al.

(2010) [74]. These methods assume that curves are observed without noise, an assumption

that may be far from the truth. Furthermore, the methods require replicates of curves.

A new two-sample test procedure for functional data was introduced by Hall and Van

Keilegom (2007) [29]. The procedure actually tests for the equality of distributions of curves,

as opposed to the equality of mean functions. The procedure utilizes nonparametric curve

estimation, although the authors claim that the bias due to smoothing is minimal. However,
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the asymptotic theory is based on the assumption that the number of replicated curves goes

to infinity, and the test cannot even be performed with ony one replicate per group.

Lastly, Fan and Lin (1998) [20] provided a formal test for equivalence of two sets of curves

based on the adaptive Neyman test introduced by Fan [19] in 1996. Their procedure does

not use any nonparametric curve estimation, and it incorporates dimensionality reduction.

Correlated errors can be accounted for, assuming the errors are stationary. However, a direct

implementation of their procedures requires many curve replications. Nevertheless, the idea

behind their test is quite attractive, as it avoids most of the challenges enumerated above.

To provide a procedure for testing the equivalence of two independent correlation curves,

we developed a novel adaptive Neyman test, motivated by the ideas of Fan and Lin [20].

Our testing procedure does not inherit bias caused by nonparametric curve estimation, is

able to handle dependent errors, automatically incorporates dimensionality reduction, and

is adapted to the single curve per independent group setting provided when analyzing func-

tional correlations.

4.2 METHOD

4.2.1 The Adaptive Neyman Hypothesis Test

Before discussing our novel hypothesis test for equivalence of two independent functional

correlations, a review of the general adaptive Neyman test is provided in this section. This

review follows the discussions in Fan (2006) [19], Fan and Lin (2008) [20], and Darling and

Erdös (1956) [11]. More technical details and proofs can be found in those works.

Suppose X ∼ Nn (µ, I) is an n-dimensional normal random vector. A test of H0 : µ = 0

versus H1 : µ 6= 0 gives the maximum likelihood ratio test statistic ‖X‖2 = X2
1 + . . .+X2

n ,

which combines all n components of X into a single test statistic. Under the null hypothesis,

‖X‖2 ∼ χ2
n. For large n, the CLT gives the large sample distribution of ‖X‖2 under the

null hypothesis as ‖X‖2 ∼ N(n, 2n); under the alternative hypothesis, the large sample

distribution is ‖X‖2 ∼ N
(
n+ ‖µ‖2 , 2n+ 4 ‖µ‖2

)
. If we suppose that ‖µ1‖

2 = o(n), the
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power of the large sample test at the alternative µ = µ1 is approximately

1− Φ

z1−α − ‖µ1‖
2 /
√

2n√
1 + 2 ‖µ1‖

2 /n

 ≈ 1− Φ

(
z1−α −

1√
2n
‖µ1‖

2

)
.

Even if ‖µ1‖
2 →∞, if ‖µ1‖

2 = o(
√
n), then the power of the test approaches the significance

level α. This demonstrates that substantial noise can build up and cause the power to

diminish when one tests too many dimensions of X [19, 20].

If one has prior knowledge that large contributions to ‖µ‖2 mainly come from the first

m elements of µ, then it makes sense to consider a lower-dimensional problem and use

the smaller vector X(m) = (X1, X2, . . . , Xm)′. Neyman (1937) [46] proposed testing the m-

dimensional subproblem, hence why it is referred to as the “Neyman test.” To perform the

Neyman test, one would use the standardized test statistic 1√
2m

∑m
j=1

(
X2
j − 1

)
. The power

of the Neyman test at the alternative µ
(m)
1 = (µ11, µ21, . . . , µm1)

′ is approximately equal to

1− Φ

(
z1−α −

1√
2m

m∑
j=1

µ2
j1

)
. (4.1)

However, two issues arise: (1) m is typically not known in advance, so an appropriate esti-

mator m̂ must be found; subsequently, (2) the asymptotic distribution of 1√
2m̂

∑m̂
j=1

(
X2
j − 1

)
under H0 will not be the standard normal distribution. To help tackle these issues, we turn to

an important theorem proven by Darling and Erdös [11] which solves, in an asymptotic form,

the classical optional stopping problem. The theorem is stated as follows: Let Y1, Y2, . . . be

independent random variables with mean 0, variance 1, and a uniformly bounded absolute

third moment. Let Sm = Y1 + Y2 + . . .+ Ym and Un = max
1≤m≤n

Sm√
m

. Then for −∞ < t <∞:

lim
n→∞

Pr

{
Un <

√
2 log log n+

log log log n

2
√

2 log log n
+

t√
2 log log n

}
= exp

(
−e−t

2
√
π

)
. (4.2)

The usefulness of this result will become clear in a few more steps.

Considering the approximate power of the Neyman test given in Equation (4.1), Fan [19]

suggested the estimator

m̂ = arg max
1≤m≤n

{
1√
m

m∑
j=1

(
X2
j − 1

)}
.
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Notice that 1√
m

∑m
j=1

(
X2
j − 1

)
is an unbiased estimator of 1√

m

∑m
j=1 µ

2
j1 in Equation (4.1).

This leads to the adaptive Neyman test statistic

T ∗AN =
1√
2m̂

m̂∑
j=1

(
X2
j − 1

)
= max

1≤m≤n

{
1√
2m

m∑
j=1

(
X2
j − 1

)}
. (4.3)

Compare the form of T ∗AN to the quantity Un = max
1≤m≤n

1√
m

∑m
j=1 Yj considered in the theorem

by Darling and Erdos (1956) and appearing in Equation (4.2). Under the null hypothesis,

X2
j

iid∼ χ2
1 for j = 1, . . . ,m, and hence Yj = 1√

2

(
X2
j − 1

)
are independent random variables

with mean 0, variance 1, and a uniformly bounded third moment. Now the connection

between T ∗AN and Un is clear: they are equivalent. The asymptotic distribution of the

adaptive Neyman test statistic T ∗AN under the null hypothesis is the same extreme value

distribution given by Equation (4.2). Fan [19] uses the test statistic

TAN =
√

2 log log nT ∗AN − [2 log log n+ 0.5 log log log n− 0.5 log(4π)] (4.4)

for convenience. The finite sample distribution of TAN under H0 was calculated by simulation

and reported in Fan and Lin [20], and the asymptotic distribution is given by

lim
n→∞

Pr {TAN ≤ x} = exp [− exp(−x)] ,−∞ < x <∞. (4.5)

4.2.2 Formal Test of Equivalence of Two Independent Correlation Functions

Having provided some necessary ingredients for an adaptive Neyman test, we now propose

our novel hypothesis test of equivalence of two independent functional correlations. Suppose

we have two samples of subjects: Sample 1 consists of n1 subjects, Sample 2 consists of n2

subjects, and the two samples are independent. The goal is to formally test whether the

correlation functions from the two independent samples are equal. Consider the models

z1t = η1(t) + ε1t , t = 1, . . . , T , (4.6)

z2t = η2(t) + ε2t , t = 1, . . . , T , (4.7)
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where z1t and z2t are Fisher-transformed correlations from Sample 1 and Sample 2, respec-

tively, observed at times t = 1, . . . , T . For each sample, the Fisher-transformed correlations

are calculated from the observed bivariate data using the methods of Chapter 3. Since ob-

servation times are equally spaced and common to all subjects in both samples, we use the

time index t = 1, . . . , T for ease of notation. In these models, Ez1t = η1(t) and Ez2t = η2(t),

where η1(·) and η2(·) are continuous functions on the interval [1, T ].

It is clear that a single transformed correlation z1t (or z2t) at any instantaneous time

t asymptotically follows a univariate normal distribution. Joint normality of {z1t}Tt=1 (or

{z2t}Tt=1) is not crucial because we will be using the Fourier transform of the data to carry

out the test in the frequency domain. To ease technical arguments, we assume that the

stochastic errors {ε1t}Tt=1 and {ε2t}Tt=1 are mean zero, stationary linear Gaussian processes,

and the two processes are independent of each other; i.e., ε1t ⊥ ε2s for all t and s. Let

γ1(s, t) = cov(ε1s, ε1t) and γ2(s, t) = cov(ε2s, ε2t) be the autocovariance functions of ε1 and

ε2, respectively. Since the errors are stationary, the autocovariance functions depend on s

and t only through their difference |t− s|; we may write γ1(s, t) = γ1(h) and γ2(s, t) = γ2(h),

where the lag h = t − s. In addition, the errors are homoscedastic: γ1(0) = var(ε1t) and

γ2(0) = var(ε2t) are constants for all t. For purposes of spectral estimation, we require an

absolute summability condition for the autocovariance functions:

∞∑
h=−∞

|h| |γ1(h)| <∞ and
∞∑

h=−∞

|h| |γ2(h)| <∞. (4.8)

We denote the correlation functions of Samples 1 and 2 as ρ1(t) and ρ2(t), respectively. The

goal is to formally test

H0 : ρ1(t) = ρ2(t) for all t ∈ [1, T ] , H1 : ρ1(t) 6= ρ2(t) for some t ∈ [1, T ] . (4.9)

Because ρ(t) and η(t) are one-to-one functions of each other, we can perform an equivalent

test on the Fisher transformed scale:

H0 : η1(t) = η2(t) for all t ∈ [1, T ] , H1 : η1(t) 6= η2(t) for some t ∈ [1, T ] . (4.10)

To perform our adaptive Neyman test, we must transform the data {z1t}Tt=1 and {z2t}Tt=1

using the Fourier transform. This crucial step is performed for two reasons: (1) Salient signals
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in the time domain data are captured mostly by the low-frequency Fourier components.

Consequently, it provides the necessary prior that most of the important information lies

in the first m dimensions of the data, allowing an adaptive Neyman test to be employed.

(2) Correlated, stationary errors in the time domain are transformed into approximately

independent Gaussian errors in the frequency domain [6, 61]. Independence is a necessary

assumption for the distribution in Equation (4.2) to hold [11]. The frequency domain data

is then used to perform the adaptive Neyman test.

Unlike many frequency domain tests which only consider the amplitude or power at each

frequency, our procedure treats the real and imaginary parts of the Fourier transform at

each frequency as separate components. Thus, our procedure takes advantage of information

contained in both amplitudes and phases. Furthermore, many test procedures use an ANOVA

statistic to detect differences in the power spectrum at each frequency, leading to a large

number of test statistics. Corrections for multiple comparisons, such as the Bonferroni

adjustment, must be used to preserve a family-wise significance level. In contrast, our

procedure combines separate test statistics at different frequencies to give an overall powerful

test. These features make the adaptive Neyman test more appealing than other procedures

which are commonly employed in the frequency domain [20].

Our novel adaptive Neyman test for equivalence of independent correlation functions is

carried out through the following steps:

1. Denote the discrete Fourier transform (DFT) of {z1t}Tt=1 by d1(ωj), and denote the DFT

of {z2t}Tt=1 by d2(ωj). Compute d1(ωj) and d2(ωj) using the definitions

d1(ωj) =
1√
T

T∑
t=1

z1te
−2πiωjt d2(ωj) =

1√
T

T∑
t=1

z2te
−2πiωjt, (4.11)

and evaluate them at the Fourier frequencies ωj = j/T for j = 0, 1, . . . , [T/2]. Note

that d1(0), d2(0), d1(1/2) and d2(1/2) are real numbers; at all other Fourier frequencies,

d1(ωj) and d2(ωj) are complex numbers.

2. Let {Z1k}Tk=1 and {Z2k}Tk=1 be sets of the Fourier transformed data. Specifically, set Z11 =

d1(0), Z12 = Re [d1(ω1)] , Z13 = Im [d1(ω1)] , Z14 = Re [d1(ω2)] , Z15 = Im [d1(ω2)] , . . .

such that the real and imaginary parts of {d1(ωj)}[T/2]j=0 are separate elements of {Z1k}Tk=1.

Arrange the elements of {Z2k}Tk=1 in the same way.

30



3. Using the models (4.6) and (4.7), we have the following relations:

d1(ωj) = dη1(ωj) + dε1(ωj) d2(ωj) = dη2(ωj) + dε2(ωj), (4.12)

where dη1(ωj), dη2(ωj), dε1(ωj) and dε2(ωj) are the DFTs of η1(t), η2(t), ε1t and ε2t, respec-

tively. Since ε1t and ε2t are mean zero, stationary linear Gaussian processes whose auto-

covariance functions satisfy Equation (4.8), the real and imaginary parts of {dε1(ωj)}
[T/2]
j=0

and {dε2(ωj)}
[T/2]
j=0 are approximately uncorrelated errors by Theorem C.4 of [61]. Using

Theorem C.7 of [61], central limit theory gives that
{

(Re [dε1(ωj)] , Im [dε1(ωj)])
′}[T/2]
j=0

are

asymptotically independent 2 × 1 normal vectors, and Re [dε1(ωj)] and Im [dε1(ωj)] are

asymptotically independent for all j. The same results hold for dε2(ωj). Thus, the real

and imaginary parts of {dε1(ωj)}
[T/2]
j=0 and {dε2(ωj)}

[T/2]
j=0 are approximately independent

Gaussian errors.

4. Since Z1k and Z2k are approximately normally distributed, we obtain following new

models:

Z1k ∼ N
(
F1(k), σ2

1k

)
, k = 1, . . . , T , (4.13)

Z2k ∼ N
(
F2(k), σ2

2k

)
, k = 1, . . . , T . (4.14)

F1(k) and F2(k) contain the real and imaginary parts of dη1(ωj) and dη2(ωj), arranged

in the same manner as Z1k and Z2k in Step (2). F1(k) and F2(k) are frequency domain

representations of η1(t) and η2(t); they contain the same information about the correla-

tion functions. Z1k and Z2k are independent for all k, and the variance functions σ2
1k and

σ2
2k are derived from the spectral densities fε1(ω) and fε2(ω) of the stationary processes

ε1t and ε2t.

5. Because we do not know the spectral densities fε1(ω) and fε2(ω) in advance, they must be

estimated. According to Property P4.6 in [61], any spectral density can be approximated

arbitrarily close by the spectrum of an AR process. Thus, we represent the process ε1t

as an AR(p) process with the form

ε1t =

p∑
k=1

φkε1t−k + wt, (4.15)
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where wt is white noise with variance σ2
w. We use a generalized least squares procedure

to estimate the coefficients {φk}pk=1 and variance σ2
w, where the order p is selected by

minimizing the Bayesian Information Criterion (BIC). A generalized linear model is to

the Fisher transformed correlations {z1t}Tt=1 using k Fourier basis functions and an AR(p)

error structure, and we obtain the BIC. This is repeated over a large grid of values for k

and p, and the model producing the lowest BIC was selected. We obtain the “optimal”

order p, the estimated AR coefficients φ̂1, . . . , φ̂p and the estimated variance σ̂2
w. The

spectral density of ε1t is then estimated by

f̂ε1(ω) =
σ̂2
w∣∣∣1−∑p

k=1 φ̂ke
−2πiωk

∣∣∣2 (4.16)

The procedure is then repeated using {z2t}Tt=1 to obtain f̂ε2(ω).

6. Having obtained f̂ε1(ω) and f̂ε2(ω), the variance function σ2
1k described in Step (4) is

estimated by

σ̂2
1k =



f̂ε1(0) k = 1

f̂ε1(ω[k/2])/2 k 6= 1, T odd

f̂ε1(ω[k/2])/2 k 6= 1 6= T, T even

f̂ε1(ωT/2) k = T, T even

(4.17)

and σ̂2
2k is obtained in the same way using f̂ε2(ω).

7. Consider the hypotheses

H0 : F1(k) = F2(k) for all k = 1, . . . , T, H1 : F1(k) 6= F2(k) for some k = 1, . . . , T.

(4.18)

Testing these is equivalent to testing the hypotheses in (4.9) or (4.10); the only difference

is that these hypotheses are tested in the frequency domain, as opposed to in the time

domain. Both domains contain the same information; rejecting the null in (4.18) gives

the conclusion that ρ1(t) 6= ρ2(t).
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8. For k = 1, . . . , T , define the standardized difference as

Dk =
Z1k − Z2k√
σ̂2
1k + σ̂2

2k

. (4.19)

Under H0, Dk ∼ N(0, 1), and D2
k ∼ χ2

1. Since Z1k and Z2k in models (4.13) and (4.14)

are independent for all k, the random variables {D2
k}

T
k=1 are independent with mean 1

and variance 2. Thus,
∑m

k=1 (D2
k − 1) /

√
2 is the sum of m independent random variables

with mean 0, variance 1, and uniformly bounded absolute third moment. Thus, we can

use the adaptive Neyman procedure to test H0.

9. Let the adaptive Neyman test statistic be

T ∗AN = max
1≤m≤cT

{
1√
2m

m∑
k=1

(
D2
k − 1

)}
, (4.20)

where cT is some constant tending to infinity with cT ≤ T , and define the standardized

adaptive Neyman test statistic as

TAN =
√

2 log log cTT
∗
AN − [2 log log cT + 0.5 log log log cT − 0.5 log(4π)] . (4.21)

Comparing Equation (4.21) with Equation (4.4) reveals that the test statistics have the

exact same form. We reject H0 when TAN is too large. The finite sample distribution of

TAN under H0, calculated by simulation and reported in Fan and Lin (2008) [20], can be

used to perform this test. As an example, the critical value for α = 0.05 and cT = 100 is

3.90; we reject H0 when TAN ≥ 3.90.

Theorem 3 in Fan and Lin (1998) [20] provides valuable information. If the condition (4.8)

holds and certain regularity conditions are met, then the asymptotic distribution of TAN

under H0 is given by: Pr(TAN < x)→ exp [− exp (−x)] as T →∞.

The conclusion to be drawn from the theorem is this: the effect of stationary errors on the

null distribution is asymptotically negligible, and the impact of a chosen variance estimator,

such as ours given in (4.17), is also asymptotically negligible. It is worth noting that the

quantity cT was introduced to allow one to perform their own dimensionality reduction

before the adaptive Neyman test automatically does it. For instance, if one believes that

only the first k = 100 components contain useful information and that the remaining Fourier
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components are noise, then the power of the adaptive Neyman test may be further improved

by setting cT = 100. However, unless one has very good information to support such a belief,

the value of cT should be equal to or very close to T ; otherwise, the test may lose its claimed

significance level.

4.3 SIMULATIONS

In order to evaluate the performance of our adaptive Neyman test of equivalence of indepen-

dent functional correlations, empirical significance and power calculations were implemented

using simulations. Bivariate time-series data were randomly generated to mimic measure-

ments from two independent samples of subjects. The data were simulated to give rise to

known correlation functions which we observe with noise.

To investigate the empirical significance level of our test, we considered the following

correlation function common to both samples of subjects, which is displayed in Figure 2:

ρ1(t) = ρ2(t) = tanh
[
0.55 sin2 (2πt/T )− 0.1

]
.

For power calculations, we used very similar correlation functions for the two samples of

subjects, as shown in Figure 3:

ρ1(t) = tanh
[
0.6 sin2 (2πt/T )− 0.1

]
, ρ2(t) = tanh

[
0.5 sin2 (2πt/T )− 0.1

]
.

Three sets of balanced sample sizes were considered: n = 25, n = 50, and n = 100.

Three values of T were investigated: T = 100, T = 200, and T = 500. In all 9 settings, the

simulated bivariate normal data [Xij(t), Yij(t)]
′ for subject i in group j at fixed time t have

the following properties:

• Xij(t) = 0.5 + 0.3 sin (πt/T − 0.3) + δijX(t)

• Yij(t) = 5 + 2.3 sin3 (πt/T − 0.1) + δijY (t)

• δijX(t) is a Gaussian AR(1) process with parameter φ = 0.5 and variance 0.02

• δijY (t) is a Gaussian AR(1) process with parameter φ = 0.5 and variance 0.4

• corr [Xij(t), Yij(t)] = ρj(t).
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Figure 2: Independent Samples: Correlation function for evaluating empirical significance

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Time

Tr
ue

 C
or

re
la

tio
n 

F
un

ct
io

ns

Figure 3: Independent Samples: Correlation functions for evaluating empirical power
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A sample realization of r1(t) and r2(t) for T = 200 and n = 50 subjects per group, in

the case where ρ1(t) 6= ρ2(t), is shown in Figure 4. Black points are values of r1(t), and red

points are values of r2(t); it is very difficult to see any difference in the underlying correlation

functions based on the observed data.
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Figure 4: Independent Samples: Example of simulated data

In each setting, N = 1000 simulations were run, and our adaptive Neyman procedure was

employed to test for equality of the independent correlation functions. Tests were performed

at the α = 0.05 level of significance. For comparison purposes, we also used two types

of Bayesian simultaneous confidence bands based on penalized spline estimators to test for

equality of correlation functions. The first was developed by Tatyana Krivobokova [37],

and we refer to her method as “TK” in the simulation results. The second confidence

band approach was introduced by Ciprian Crainiceanu [10], and we abbreviate his method

as “CC.” Lastly, we call our own testing procedure “AN.” The results of the empirical

significance and power calculations are given in Tables 1 and 2, respectively.

In 7 out of 9 settings of this simulation study, our adaptive Neyman test achieved a

Type I error rate that was lower than the Type I error rates of the other two procedures.
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Table 1: Comparing Independent Correlation Functions: Empirical Significance Results

T = 100 T = 200 T = 500

AN 0.130 0.069 0.035

n = 25 CC 0.097 0.108 0.187

TK 0.110 0.118 0.196

AN 0.127 0.053 0.036

n = 50 CC 0.089 0.127 0.215

TK 0.111 0.144 0.216

AN 0.101 0.061 0.038

n = 100 CC 0.107 0.093 0.197

TK 0.122 0.118 0.202

Table 2: Comparing Independent Correlation Functions: Empirical Power Results

T = 100 T = 200 T = 500

AN 0.346 0.423 0.797

n = 25 CC 0.213 0.322 0.685

TK 0.253 0.348 0.683

AN 0.534 0.731 0.982

n = 50 CC 0.355 0.599 0.925

TK 0.401 0.643 0.928

AN 0.809 0.968 1.000

n = 100 CC 0.627 0.909 0.999

TK 0.670 0.928 0.999
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The empirical significance level of our test was markedly closer to the desired α = 0.05 level

for T = 200 and T = 500 than the other two tests. The CC and TK procedures based

on simultaneous confidence bands had particularly poor performance for T = 500; all of

their empirical significance levels were approximately 0.20. In contrast, the Type I error

rate of our procedure was slightly lower than 0.05 for T = 500. The adaptive Neyman test

performed fairly well at T = 200, while the empirical levels of the other two methods were

roughly twice as large as the desired level. All three procedures had roughly the same Type

I error rate for T = 100; our method outperformed the other two at n = 100, but not by

much. Virtually all of their lowest empirical significance levels were achieved at the smallest

value of T considered. In most cases, the Type I error rates of the CC and TK procedures

grew larger as T increased; the empirical significance level of the adaptive Neyman test,

however, inflated as T decreased for all three values of n considered.

With respect to power calculations, our procedure outperformed the other two in every

case. Fan’s motivation for choosing the estimator m̂ in Equation (4.3) was based on the

large sample power of the Neyman test; the observed power of our adaptive Neyman testing

procedure provides some evidence that Fan’s choice of estimator paid off. However, the high

power of our procedure is not as impressive as it appears for low values of T in light of the

fairly large Type I error rates. Nevertheless, this simulation study demonstrates that our

adaptive Neyman test for equivalence of independent correlation functions is quite powerful

and performs very well even when faced with a small n and true correlation functions that

are extremely close to each other, particularly for large T.

4.4 APPLICATION: DELTA EEG POWER AND HF-HRV

The second aim of our motivating study [58] addressed whether time-varying relationships

between delta EEG power and HF-HRV in midlife women differ as a function of sleep dis-

ordered breathing and insomnia. A total of 32 participants in our study met criteria for

clinically significant sleep disordered breathing (SDB), 25 participants in our study met cri-

teria for insomnia, and 146 participants did not exhibit symptoms of insomnia or SDB (i.e.,
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146 participants were considered non-disorder controls). As a preliminary step in addressing

the second goal of our study, the correlation functions during the first three NREM periods

of sleep were analyzed separately for the SDB group, insomnia group, and the control group.

Figures 5 and 6 show the correlation profiles for SDB participants and insomnia participants,

respectively. Figure 7 reveals the correlation profiles for non-disorder controls.

In these figures, data appear in relative time as opposed to absolute (clock) time in order

to account for inter-individual differences in NREM period length. On the relative time

scale, t = 0 designates the time at which the maximum in delta EEG power occurs for all

participants, represented in the figure by dotted vertical lines. The top row displays the mean

delta EEG power profile (natural-log-transformed) as a function of relative time. The middle

row displays the mean normalized HF-HRV profile (square-root-transformed) as a function of

relative time. The bottom row reveals the time-varying correlation between delta EEG power

and HF-HRV; solid lines represent the estimated time-varying correlation functions, and the

shaded areas represent point-wise 95% confidence intervals for the correlation functions. A

correlation is deemed point-wise significant if its 95% confidence interval does not include

zero.

Does the time-varying relationship between delta EEG power and HF-HRV differ as a

function of sleep apnea? As shown in Figures 5 and 7, compared to controls, the estimated

correlation function for participants with sleep apnea is stronger and higher in magnitude

for virtually the entire first NREM period, reaching a maximum of ρ̂ = +0.62 with 95% CI

(0.46, 0.73) near t = −0.5. During NREM-2, the correlation function appears higher for par-

ticipants with sleep apnea compared to controls, although a formal test is needed to confirm

whether the difference is statistically significant. During NREM-3, the functional correla-

tion between delta EEG power and HF-HRV looks stronger in participants with clinically

significant SDB compared to non-disorder controls, particularly before t = 0.

To formally test whether these observed differences are statistically significant, we em-

ploy the adaptive Neyman test for independent samples. For NREM-1, the standardized

adaptive Neyman test statistic is TAN = 26.39, giving p − value < 0.00001. For NREM-2,

the adaptive Neyman test gives TAN = 2.77 and 0.05 ≤ p−value ≤ 0.10 For the last NREM

period, the adaptive Neyman test gives TAN = 7.73 and p − value ≈ 0.005. Thus, even
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Figure 5: Delta EEG power and HF-HRV: Sleep disordered breathing (SDB) participants
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Figure 6: Delta EEG power and HF-HRV: Insomnia participants
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Figure 7: Delta EEG power and HF-HRV: Non-disorder control participants
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if we correct for multiple comparisons, the difference in correlation functions is extremely

statistically significant during NREM-1 and very significant during NREM-3, evincing that

SDB participants have significantly higher time-varying correlations than control partici-

pants during those periods, while the difference in correlation functions is not statistically

significant during NREM-2.

Does the relationship between delta EEG power and HF-HRV differ as a function of

self-reported insomnia? As shown in Figures 6 and 7, the functional correlation between

delta EEG power and HF-HRV during the first NREM period reaches an estimated max-

imum of ρ̂ = +0.62 with 95% CI (0.35, 0.79) before t = 0 and an estimated maximum of

ρ̂ = +0.78 with 95% CI (0.65, 0.87) after t = 0 in the insomnia group, while the estimated

correlation function for controls attains maximum values ρ̂ = +0.26 and ρ̂ = +0.32 before

and after t = 0, respectively. The correlation between delta EEG power and HF-HRV re-

mains noticeably stronger for the insomnia group compared to non-insomnia controls during

NREM-2. The estimated correlation function reaches a maximum of ρ̂ = +0.60 with 95%

CI (0.38, 0.77) before t = 0 and a maximum of ρ̂ = +0.49 with 95% CI (0.19, 0.70) after

t = 0 in the self-reported insomnia group. In contrast, the maximum correlation attained

in non-insomnia controls is ρ̂ = +0.22. Self-reported insomnia appears unrelated to the

time-varying relationship between delta EEG power and HF-HRV during NREM-3.

Formal comparisons using the adaptive Neyman procedure give the test statistic TAN =

292.10 with p − value � 0.00001 for NREM-1 and TAN = 46.91 with p − value < 0.00001

for NREM-2. For the last NREM period, the adaptive Neyman test gives TAN = −2.41

and p − value > 0.5. The dynamic coupling between delta EEG power and HF-HRV is

extremely significantly stronger in participants with insomnia compared to non-insomnia

controls during NREM-1 and NREM-2, but there is no significant difference between insom-

nia participants and controls during NREM-3.
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5.0 COMPARING DEPENDENT CORRELATION FUNCTIONS

5.1 INTRODUCTION

In our motivating study [58], the methods presented in Chapter 3 were used to analyze the

time-varying correlation between delta EEG power and HF-HRV during individual periods

of NREM sleep in the sample of midlife women as a whole. Qualitative comparisons suggest

that the time-varying correlation between delta EEG power and HF-HRV in our whole sample

of midlife women may differ across different NREM periods of sleep. In order to conclude

statistically significant differences, though, a formal test of equivalence must be employed.

One might be tempted to use our novel adaptive Neyman test for equivalence of inde-

pendent correlation functions. But, that procedure would not be appropriate for testing

whether the delta EEG-HRV correlation function changes significantly across different peri-

ods of NREM sleep, as the samples for the different NREM periods consist of data from the

same group of subjects. As such, correlations will be dependent both within and between

samples, and a procedure to test for equivalence of dependent functional correlations is re-

quired. However, in order to compare correlated functional correlations, a new methodology

must be developed, as none exists.

Even in the non-functional data setting, testing for equality of two simple population

correlation coefficients can be a complicated issue when the two sample correlation coef-

ficients are computed from a single set of individuals. Traditional testing procedures for

independent samples must be adjusted, or new methods must be constructed, when testing

with dependent samples [13, 14, 49, 44, 53, 52]. Numerous tests have been proposed to

compare correlated correlations between two pairs of variables measured on the same sample

of subjects; however, their performances vary greatly based on many factors. To illustrate
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some of the challenges faced when comparing correlation coefficients from a single sample,

we will discuss some very simple testing procedures given by [13, 14].

Dunn and Clark [13, 14] describe several large sample testing procedures which assume a

four-variate normal distribution for the observed data and employ Fisher’s correlation trans-

formation. For most procedures, the test statistic has the simple form d =
√

n−3
2(1−c) (z1 − z2),

where z1 and z2 are observed Fisher-transformed correlations from a common sample con-

sisting of n subjects, and c is the asymptotic correlation coefficient between z1 and z2. The

statistic d ∼ N
(√

n−3
2(1−c) (η1 − η2) , 1

)
with Ez1 = η1 and Ez2 = η2; the null hypothesis

H0 : η1 = η2 and the standard normal distribution are used to test whether the two pop-

ulation correlation coefficients are equal. Some of the tests explored by the authors are

mentioned below:

1. “Best” test. The value of c is known and simply plugged into the test statistic d.

2. Independent test. It is assumed that c = 0; in other words, the test is carried out as if z1

and z2 were obtained from independent samples, each consisting of n subjects.

3. Two-contrast test. No assumptions about c are made. The sample is divided into two

equal parts, and both z1 and z2 are computed from each half-sample. The four Fisher-

transformed correlations are used to construct two univariate tests, and the acceptance

region for the overall test is the intersection of the acceptance regions for the two uni-

variate tests.

4. Sample estimate test. No assumptions about c are made. Instead, the value of c is

estimated using the observed four-variate data, and this estimate of c is simply plugged

into the test statistic d.

Asymptotic power curves were calculated for the “best,” independent and two-contrast tests.

Small sample (n = 26) power was obtained by simulation for the two-contrast and sample

estimate tests. The power of the tests were evaluated at various values of c and δ, where

δ = |η1 − η2|.

Out of all the approaches for which asymptotic power was considered, the “best” test is

the most powerful while maintaining the desired significance level for all values of c, as would

be expected. However, the value of c is virtually never known, so the “best” test should not
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be considered. When c is positive, the independent test is asymptotically more powerful

than the two-contrast test for large values of δ, while the reverse is true for small values of δ.

But, as c approaches zero from above, the independent test is asymptotically more powerful

for all δ. When c is negative, the independent test has high asymptotic power; however, it

does maintain its claimed level of significance. Thus, if one is willing to assume that c is

positive and very small, then the independent test may actually be an appropriate choice

for large n. Without any knowledge of c, though, the two-contrast test is recommended for

large sample sizes, even though it has low power.

For small n, the sample estimate test may seem attractive due to its high power for most

values of c and δ, but it is unacceptable due to its highly variable significance level. The

two-contrast test has fairly low power for small n, although it does maintain its claimed

significance level. Thus, the two-contrast test is recommended for small sample sizes. We

conclude that the performance of tests of equality of simple population correlation coeffi-

cients may depend highly on sample size and unknown parameters when the correlations are

calculated on the same subjects. Furthermore, without prior knowledge of the dependence

between the sample correlation coefficients, one may have to settle for a test with low power

in order to preserve the significance level.

5.2 METHOD

In developing a new methodology for comparing dependent functional correlations, we start

with our adaptive Neyman procedure for comparing independent functional correlations.

Similar to the construction of tests for correlated correlations in the non-functional data

setting, we modify our adaptive Neyman test procedure for independent samples to allow

for dependence between the two samples. Our method does not assume that the correlation

structure of observed correlations is known in advance; it is estimated using the observed

data. Briefly, when comparing two correlated functional correlations, we treat the observed

Fisher-transformed correlations as a two-dimensional vector process zt. A novel state-space

model for the observed vector process zt is fit through maximum likelihood estimation to
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quantify the error structure of zt parametrically, under some very reasonable assumptions.

The spectral matrix f(ω) of zt encapsulates the correlation structure of observed Fisher-

transformed correlations in the frequency domain, and it is estimated using the MLE’s of

parameters in the state-space model.

5.2.1 Formal Test of Equivalence of Two Dependent Correlation Functions

Suppose we have two samples of subjects: Sample 1 consists of n1 subjects, Sample 2 consists

of n2 subjects, and the two samples are dependent. Often, the two samples consist of data

from the same group of subjects observed under different conditions or over different time

periods. To formally test for equivalence of correlation functions from the two samples, the

univariate models (4.6) and (4.7) for independent samples are not applicable because the

observed Fisher-transformed correlations are correlated over time both within and between

samples. Consider the bivariate model

 z1t

z2t

 =

 η1(t)

η2(t)

+

 ε1t

ε2t

 , t = 1, . . . , T , (5.1)

where z1t and z2t are Fisher-transformed correlations from Sample 1 and Sample 2, respec-

tively, observed at times t = 1, . . . , T . We calculate the Fisher-transformed correlations for

each sample using the methods of Chapter 3 and assume that observation times are equally

spaced and common to all subjects in both samples. As in the previous chapter, Ez1t = η1(t)

and Ez2t = η2(t), where η1(·) and η2(·) are continuous functions on the interval [1, T ]. Unlike

before, though, the error terms ε1t and ε2s are not independent for all times t and s.

It is not crucial to assume joint normality of all observed Fisher-transformed correlations,

for we will be using the Fourier transform to carry out the test in the frequency domain, as

in Section 4.2.2. To ease technical arguments, here we assume that εt = (ε1t, ε2t)
′ is a mean

zero, stationary linear Gaussian vector process. Let the 2× 2 autocovariance matrix of εt be

Γε(s, t) = cov(εs, εt). The elements of Γε(s, t) are the cross-covariance functions γ11(s, t) =

cov(ε1s, ε1t), γ12(s, t) = cov(ε1s, ε2t), γ21(s, t) = cov(ε2s, ε1t), and γ22(s, t) = cov(ε2s, ε2t).

Under the assumption of joint stationarity, these functions depend on s and t only through
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their difference |s− t|, so we represent the autocovariance matrix as Γε(s, t) = Γε(h), where

the time lag h = s− t. Thus, we have

Γε(h) =

 γ11(h) γ12(h)

γ21(h) γ22(h)

 =

 cov(ε1,t+h, ε1,t) cov(ε1,t+h, ε2,t)

cov(ε1,t, ε2,t+h) cov(ε2,t, ε2,t+h)

 .

In the previous chapter for the adaptive Neyman test pertaining to independent samples,

we had implicitly set γ12(h) = γ21(h) = 0. In the context of dependent samples, though, we

do not make such an assumption; the stochastic errors {ε1t}Tt=1 and {ε2t}Tt=1 from the two

samples are correlated with each other in some way. Given that the large-sample distribution

of an observed Fisher-transformed correlation from a sample of size n is Gaussian with known

variance (n− 3)−1, and continuing to assume that εt is a stationary linear Gaussian vector

process, we can write Γε(0) as:

Γε(0) =

 (n1 − 3)−1 θ (n1 − 3)−
1
2 (n2 − 3)−

1
2

θ (n1 − 3)−
1
2 (n2 − 3)−

1
2 (n2 − 3)−1

 ≡ Σε , (5.2)

where θ = corr(ε1t, ε2t) = γ12(0)√
γ11(0)
√
γ22(0)

is a constant parameter for all t, and −1 ≤ θ ≤

1. The notation Γε(0) ≡ Σε is introduced for notational simplicity, since Σε is the time-

independent covariance matrix of εt. The model (5.1) can be represented a bit more concisely

and using a bivariate normal distribution:

zt ∼ N2 (η(t),Σε) , t = 1, . . . , T , (5.3)

where zt = (z1t, z2t)
′, and η(t) = [η1(t), η2(t)]

′. Analogous to the independent samples case,

we require absolute summability conditions on the auto- and cross-covariance functions for

the purpose of spectral estimation:

∑∞
h=−∞ |h| |γ11(h)| <∞∑∞
h=−∞ |h| |γ12(h)| <∞∑∞
h=−∞ |h| |γ21(h)| <∞∑∞
h=−∞ |h| |γ22(h)| <∞

. (5.4)
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As in the previous chapter, we denote the correlation functions of Samples 1 and 2 by

ρ1(t) and ρ2(t), respectively. We will formally test

H0 : ρ1(t) = ρ2(t) for all t ∈ [1, T ] , H1 : ρ1(t) 6= ρ2(t) for some t ∈ [1, T ] . (5.5)

Because ρ(t) and η(t) are one-to-one functions of each other, we may perform an equivalent

test on the Fisher-transformed scale:

H0 : η1(t) = η2(t) for all t ∈ [1, T ] , H1 : η1(t) 6= η2(t) for some t ∈ [1, T ] . (5.6)

Our adaptive Neyman test of equivalence of dependent correlation functions is performed

through the following steps:

1. First, we must transform the data {zt}Tt=1 using the Fourier transform. Similar to the

univariate DFT (4.11), we can perform the vector Discrete Fourier Transform (vector

DFT) on the observed Fisher-transformed correlations. Denote the vector DFT of zt by

d(ωj) = [d1(ωj), d2(ωj)]
′. Compute d(ωj) using the definition

d(ωj) =
1√
T

T∑
t=1

zte
−2πiωjt, (5.7)

and evaluate d(ωj) at the Fourier frequencies ωj = j/T for j = 0, 1, . . . , [T/2]. We may

also write the vector DFT in terms of its real and imaginary parts:

d(ωj) = dc(ωj)− i · ds(ωj). (5.8)

The terms dc(ωj) and ds(ωj) are referred to as cosine and sine transforms of zt, re-

spectively, evaluated at frequency ωj. They may be alternatively computed using the

formulas

dc(ωj) =
1√
T

T∑
t=1

zt cos(2πωjt) and ds(ωj) =
1√
T

T∑
t=1

zt sin(2πωjt). (5.9)

2. Let {Zk}Tk=1, where Zk = (Z1k, Z2k)
′, be vectors of the Fourier transformed data, ar-

ranged such that the cosine and sine transforms of the data are separate elements of

{Zk}Tk=1. Specifically, let Z1 = dc(0), Z2 = dc(ω1), Z3 = ds(ω1), Z4 = dc(ω2),

Z5 = ds(ω2), . . ., allowing the real and imaginary components of d(ωj) at each frequency

to be distinct vectors.
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3. Denote the vector DFTs of η(t) and εt by dη(ωj) and dε(ωj), respectively. Due to the

linearity of the DFT operator, we have

d(ωj) = dη(ωj) + dε(ωj).

Using the definitions above, we obtain the following relations:

d(ωj) = [dη,c(ωj)− i · dη,s(ωj)] + [dε,c(ωj)− i · dε,s(ωj)] ,

d(ωj) = [dη,c(ωj) + dε,c(ωj)]− i · [dη,s(ωj) + dε,s(ωj)] ,

dc(ωj) = dη,c(ωj) + dε,c(ωj),

ds(ωj) = dη,s(ωj) + dε,s(ωj),

where dη,c(ωj) and dη,s(ωj) are the cosine and sine transforms of η(t), respectively, and

dε,c(ωj) and dε,s(ωj) are the cosine and sine transforms of εt, respectively. Because εt is

a mean zero, stationary linear Gaussian vector process whose cross-covariance functions

satisfy (5.4), {dε,c(ωj)}[T/2]j=0 and {dε,s(ωj)}[T/2]j=0 are sets of approximately uncorrelated

vector errors by Theorem C.6 of [61]. Using Theorem C.7 in [61], central limit theory

gives that
{(
d′ε,c(ωj),d

′
ε,s(ωj)

)′}[T/2]

j=0
are asymptotically independent 4×1 normal vectors.

Thus, {dε,c(ωj)}[T/2]j=0 and {dε,s(ωj)}[T/2]j=0 are sets of approximately independent Gaussian

vector errors.

4. Given the steps above, our data in the frequency domain approximately follows the

bivariate normal distribution, and we can write the following new model:

Zk ∼ N2 (F (k),∆k) , k = 1, . . . , T . (5.10)

Here, F (k) = [F1(k), F2(k)]′ is the frequency domain representation of η(t), containing

the same information about the correlation functions. The elements of {F (k)}Tk=1 are

arranged in the same fashion as {Zk}Tk=1 in Step (2) above: F (k) is equal to either

dη,c(ωj) or dη,s(ωj), depending on the value of k. The covariance matrix ∆k is derived

from the spectral matrix f(ω) of the stationary vector process εt.
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5. The spectral matrix f(ω) of the error process εt must be approximated in order to

estimate the covariance matrix ∆k in Step (4) above. Because we assume that εt is a

stationary vector process, its spectrum can be approximated arbitrarily closely by the

spectrum of a causal vector autoregressive (VAR) process [61]. Thus, we can obtain

a parametric spectral estimator by modeling εt as a causal VAR(p) process with the

representation

εt =

p∑
k=1

Φkεt−k +wt, (5.11)

where {Φk}pk=1 are 2× 2 transition matrices and wt = (w1t, w2t)
′ is a vector white noise

process with covariance matrix Σw. The spectral matrix of such a process is given by

f(ω) =
[
Φ−1

(
e−2πiω

)]
Σw

[
Φ−1

(
e−2πiω

)]?
, (5.12)

where Φ−1 (e−2πiω) =
[
I2 −

∑p
k=1 Φke

−2πiωk]−1, and ? denotes the complex conjugate

transpose. A novel state-space model and the Kalman filter are employed to perform

maximum likelihood estimation of the matrices {Φk}pk=1 and the white noise covariance

matrix Σw, where the “optimal” VAR order p is determined by minimizing the BIC. The

state-space model and estimation procedure are described in the next subsection, so we

defer such details for now. Having obtained the MLEs, the parametric spectral estimator

is given by

f̂(ω) =
[
Φ̂−1

(
e−2πiω

)]
Σ̂w

[
Φ̂−1

(
e−2πiω

)]?
. (5.13)

6. Once f̂(ω) is obtained, an estimate of the covariance matrix ∆k in Step (4) may be

derived. We first consider the approximate joint distribution of the cosine and sine

transforms of εt: dε,c(ωj)

dε,s(ωj)

 = (dε1,c(ωj), dε2,c(ωj), dε1,s(ωj), dε2,s(ωj))
′ ∼ N4 (0,Ω(ωj)) . (5.14)

The 4× 4 covariance matrix Ω(ωj) can be written in terms of 2× 2 matrices C(ωj) and

Q(ωj):

Ω(ωj) =
1

2

 C(ωj) −Q(ωj)

Q(ωj) C(ωj)

 , (5.15)
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for all ωj 6= 0, 1
2
; at the frequencies ωj = 0 and ωj = 1

2
, the covariance matrix is given

by 2Ω(ωj). The covariance matrix Ω(ωj) of the joint distribution of cosine and sine

transforms of εt is related to the spectral matrix f(ωj) (i.e., the covariance matrix of the

vector DFT dε(ωj)) by the following equation:

f(ωj) = C(ωj)− i ·Q(ωj). (5.16)

Having obtained the 2×2 complex matrix f̂(ω), it is evaluated at the Fourier frequencies

{ωj}[T/2]j=0 , and the real and imaginary parts of the spectral estimator are separated to give

Ĉ(ωj) and Q̂(ωj). Note that 1
2
Ĉ(ωj) is the estimated covariance matrix of both dε,c(ωj)

and dε,s(ωj) for all ωj 6= 0, 1
2

(at the endpoints, the estimated covariance matrix is Ĉ(ωj)).

Thus, the covariance matrix ∆k in Step (4) is estimated by:

∆̂k =



Re
[
f̂(0)

]
k = 1

1
2
Re
[
f̂(ω[k/2])

]
k 6= 1, T odd

1
2
Re
[
f̂(ω[k/2])

]
k 6= 1 6= T, T even

Re
[
f̂(1/2)

]
k = T, T even

. (5.17)

7. Consider the hypotheses

H0 : F1(k) = F2(k) for all k = 1, . . . , T, H1 : F1(k) 6= F2(k) for some k = 1, . . . , T.

(5.18)

Testing these is equivalent to testing the hypotheses in (5.5) or (5.6); the only difference

is that these hypotheses are tested in the frequency domain, as opposed to in the time

domain. Both domains contain the same information; rejecting the null in (5.18) gives

the conclusion that ρ1(t) 6= ρ2(t).

8. Using the model (5.10) and ∆̂k from (5.17), define the standardized difference as

Dk =
Z1k − Z2k√

∆̂k11 + ∆̂k22 − 2∆̂k12

, k = 1, . . . , T . (5.19)

Under H0, Dk approximately follows the standard normal distribution, and D2
k ∼ χ2

1.

The random variables {D2
k}

T
k=1 are independent with mean 1 and variance 2. Thus,∑m

k=1 (D2
k − 1) /

√
2 is the sum of m independent random variables with mean 0, variance
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1, and uniformly bounded absolute third moment. We now have the necessary ingredients

to use the adaptive Neyman procedure to test H0.

9. Let the adaptive Neyman test statistic be

T ∗AN = max
1≤m≤cT

{
1√
2m

m∑
k=1

(
D2
k − 1

)}
, (5.20)

where cT is some constant tending to infinity with cT ≤ T , and define the standardized

adaptive Neyman test statistic as

TAN =
√

2 log log cTT
∗
AN − [2 log log cT + 0.5 log log log cT − 0.5 log(4π)] . (5.21)

We reject H0 when TAN is too large. The finite sample distribution of TAN under H0,

calculated by simulation and reported in Fan and Lin (1998) [20], can be used to perform

the test.

5.2.2 State-Space Model for Dependent Correlation Functions

In the adaptive Neyman test procedure for comparing correlation functions from dependent

samples, the spectral matrix f(ω) of the Gaussian vector error process εt in model (5.1) had to

be estimated. The process εt was represented as a causal VAR(p) process, but the procedure

used to estimate the VAR parameters {Φk}pk=1 and Σw was only briefly mentioned. In this

section, we describe in detail how such estimates are obtained using state-space modeling and

maximum likelihood estimation. As no procedures exist for estimating the bivariate error

structure of correlations observed over time from two dependent samples, our state-space

approach is truly novel.

State-space models, also known as dynamic linear models (DLMs), are extremely useful

in analyzing multivariate time series. Such models consist of two components: a state

equation and an observation equation. The state equation represents some process that we

do not observe directly; instead, we observe a linearly transformed version of it with noise

added, and this observed process is represented by the observation equation. There exists an

equivalence between stationary VAR models and stationary state-space models [61]; thus, a

state-space formulation of our model (5.1) could be quite useful.
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Consider the bivariate regression model

zt = Γut + εt , (5.22)

where zt is an observed two-dimensional vector process, ut = (ut1, . . . , utr)
′ are r regressors

which may or may not depend on time, Γ is a 2×r matrix of regression parameters, and εt is a

two-dimensional VAR(p) process. This model could be fit to the observed Fisher-transformed

correlations zt = (z1t, z2t)
′ specified in (5.1) in order to estimate the VAR(p) parameters of

the error process εt, where Γ̂ut would be an estimate of [η1(t), η2(t)]
′ for suitably chosen

regressors {ut}Tt=1. We can fit the bivariate regression model (5.22) by first putting it into

state-space form, where the state equation and observation equation are given by

xt+1 = Φxt + Ψwt , t = 0, 1, . . . , T , and (5.23)

zt = Γut + Axt +wt , t = 1, . . . , T , (5.24)

respectively. In the state equation, xt is a 2p-dimensional unobserved process, the initial

state x0 ∼ N2p (µ0,Σ0), Φ is a 2p×2p matrix, Ψ is a 2p×2 matrix, wt
iid∼ N2 (0,Σw), and wt

is independent of x0. In the observation equation, zt is 2-dimensional, and A = [I2, 0, · · · , 0]

is a 2× 2p matrix. Comparing the regression model to the observation equation, we notice

that εt = Axt +wt is the VAR(p) error process. The matrices Φ and Ψ are defined as

Φ =



Φ1 I2 0 · · · 0

Φ2 0 I2 · · · 0
...

...
...

. . .
...

Φp−1 0 0 · · · I2

Φp 0 0 · · · 0


and Ψ =


Φ1

Φ2

...

Φp

 . (5.25)

Our goals are to determine the “optimal” VAR order p and to estimate {Φk}pk=1 and Σw

based on observed Fisher-transformed correlations. Recall that Σε, the time-independent

covariance matrix of εt given by equation (5.2), contains known information; the state-space

formulation allows us to use the known information when fitting the model. For simplicity,

assume that Samples 1 and 2 consist of the same number of subjects (or the same subjects),
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such that n1 = n2 = n. Then, we have Σε = (n − 3)−1

 1 θ

θ 1

, where −1 ≤ θ ≤ 1. For a

VAR(1) error process, the white noise covariance matrix can be written as Σw = Σε−Φ1ΣεΦ
′
1.

Thus, for p = 1, we see that Σw is a function of 5 parameters: the 4 elements of Φ1 and θ. If

we did not take advantage of the known information about Σε, then Σw would be a function

of 7 parameters. Furthermore, we would be misrepresenting the true large-sample variance

of Fisher-transformed correlations by estimating 3 virtually unrestricted parameters for Σε.

For the general VAR(p), we can represent Σw in terms of the matrices Φ and Σε. First,

we define the 2p× 2p matrices

Σ̃w =


Σw 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 and Σ̃ε =


Σε 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 . (5.26)

Then, Σ̃w and Σ̃ε are related by the equation

vec(Σ̃w) =
[
I(2p)2 − Φ⊗ Φ

]
vec(Σ̃ε) , (5.27)

where vec is the stack operator (stacking the elements of a matrix into a vector), and ⊗

denotes the Kronecker product. The elements of Σw can be extracted from vec(Σ̃w) by

keeping track of their order.

Notice that Σw is a function of Φ and θ; once the estimates
{

Φ̂k

}p
k=1

and θ̂ are obtained,

we automatically have Σ̂w. We can consider the elements of Σw to be redundant parameters

if {Φk}pk=1 and θ already lie in the parameter space. In most other cases of fitting state-space

models, Σw itself is estimated along with {Φk}pk=1, as the elements of Σε are usually unknown.

In addition to not having to estimate an extra 2 parameters, our state-space model ensures

that the diagonal elements of Σε remain fixed and equal to (n− 3)−1, the true large-sample

variance of Fisher-transformed correlations.
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5.2.3 The Kalman Filter and Maximum Likelihood Estimation

Before describing the maximum likelihood estimation of unknown parameters via the Kalman

filter for our state-space model, some notation and assumptions are required. Keep in mind

that we only observe the Fisher-transformed correlations zt; the state process xt must be

estimated using the observed Fisher-transformed correlations. Our main goal of employing

the state-space model is to produce estimators of the parameters driving the unobservable

signal xt, given the data Zs = {z1, z2, . . . ,zs} up to time s. For the purpose of estimating

the parameters {Φk}pk=1 and θ, we deal with times s ≤ t.

Consider the conditional expectation of xt given the observed data Zs up to time s. We

define this as:

xst = E (xt | Zs) . (5.28)

The corresponding mean-squared error is defined as:

P s
t = E

[
(xt − xst) (xt − xst)

′] . (5.29)

We assume that the processes are Gaussian; as such, P s
t is also the conditional error covari-

ance. Thus, we also have:

P s
t = E

[
(xt − xst) (xt − xst)

′ | Zs
]
. (5.30)

We note that the covariance between (xt − xst) and Zs is zero for all t and s. Combined

with the Gaussian assumption, (xt − xst) and Zs are independent. Thus, the unconditional

distribution of (xt − xst) and the conditional distribution of (xt − xst) given Zs are equal.

The prediction errors, which we will call the innovations, are defined for t = 1, . . . , T as:

et = zt − E (zt | Zt−1) = zt − Axt−1t − Γut. (5.31)

The innovations are Gaussian and independent. Lastly, we define the variance of the inno-

vations for t = 1, . . . , T as:

Σt = var (et) = var
[
A
(
xt − xt−1t

)
+wt

]
= AP t−1

t A′ + Σw. (5.32)
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The Kalman filter is a crucial component of parameter estimation for state-space models;

it allows us to calculate the innovations and their variances for use in maximum likelihood

estimation. We provide the equations that define the Kalman filter for our state-space model

without proof (see Property 6.5 in [61] for the general Kalman filter with correlated noise).

For our state-space model specified in (5.23) and (5.24), with initial conditions

x0
1 = Φµ0 and P 0

1 = ΦΣ0Φ
′ + ΨΣwΨ′, (5.33)

the one-step-ahead predictions, for t = 1, . . . , T , are given by

xtt+1 = Φxt−1t +Ktet and (5.34)

P t
t+1 = ΦP t−1

t Φ′ + ΨΣwΨ′ −KtΣtK
′
t, (5.35)

where Kt =
[
ΦP t−1

t A+ ΨΣw

]
Σ−1t . (5.36)

The filtered values of the state and error variance, for t = 1, . . . , T , are given by:

xtt = xt−1t + P t−1
t A′Σ−1t et+1 and (5.37)

P t
t = P t−1

t − P t−1
t A′Σ−1t AP t−1

t . (5.38)

The innovations et = zt−Axt−1t −Γut and innovation variances Σt = AP t−1
t A′+ Σw, for

t = 1, . . . , T , are obtained using (5.33)-(5.36). From these, we can construct the innovations

form of the likelihood function. To estimate the parameters that specify our state-space

model, represented by Θ = {µ0,Σ0,Φ1, . . . ,Φp, θ,Γ}, we minimize the negative log-likelihood

function

−l(Θ) =
1

2

T∑
t=1

log |Σt(Θ)|+ 1

2

T∑
t=1

et(Θ)′Σt(Θ)−1et(Θ). (5.39)

The minimization of−l(Θ) begins by setting reasonable initial values for the parameters in Θ.

The Kalman filter equations (5.33)-(5.36) are then used to obtain an initial set of innovations

et(Θ) and innovation covariance matrices Σt(Θ). Next, one iteration of a Newton-Raphson

procedure is run to minimize −l(Θ), and a new set of estimates for the parameters in Θ are
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obtained. The Kalman filter is run again using the updated Θ, and another Newton-Raphson

iteration is performed. This is repeated until −l(Θ) stabilizes within some pre-specified and

small amount. The values contained in Θ at the last iteration are the MLE’s of the state-

space model parameters.

Having provided the necessary ingredients for our state-space model and maximum like-

lihood estimation using the Kalman filter, we now list the steps to obtain
{

Φ̂k

}p
k=1

and Σ̂w,

which are needed to estimate the spectral matrix f(ω) of εt:

1. Assume the state-space model (5.23)-(5.24) for the observed Fisher-transformed correla-

tions zt from Samples 1 and 2.

2. Employ Fourier basis functions as the regressors {ut}Tt=1 in (5.24), where the parameter

matrix Γ contains the unknown coefficients for the basis functions. Note that the number

of basis functions does not have to be equal for Samples 1 and 2; this allows each

correlation function in [η1(t), η2(t)]
′ to be most accurately captured by Γ̂ut. To account

for the different number of basis functions, set the corresponding parameters in Γ equal

to zero.

3. Construct a large grid of values for the VAR order p, the number of Fourier basis functions

r1 for Sample 1, and the number of Fourier basis functions r2 for Sample 2. For each

grid point {p, r1, r2}, obtain estimates of {Φk}pk=1, θ and Γ using the maximum likelihood

estimation procedure described above, along with the negative log-likelihood value −l(Θ̂)

at the final iteration of the MLE procedure.

4. For each grid point {p, r1, r2} and its corresponding −l(Θ̂), calculate the Bayesian Infor-

mation Criterion (BIC) given by

BIC(p, r1, r2) = 2
[
−l(Θ̂)

]
+ (4p+ r1 + r2 + 1) [ln(T ) + ln(2π)] . (5.40)

Obtain the estimates
{

Φ̂k

}p
k=1

and θ̂ from the fitted model which gives the smallest BIC

and calculate the estimator Σ̂w using equations (5.2), (5.26) and (5.27).

5. Lastly, construct the parametric spectral estimator f̂(ω) by plugging Σ̂w and
{

Φ̂k

}p
k=1

into equation (5.13).
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5.3 SIMULATIONS

Empirical significance and power calculations were implemented using simulations to assess

the performance of our novel adaptive Neyman hypothesis test of equivalence of correlated

functional correlations. In order to simulate two correlated correlation coefficients that vary

over time, four-variate data were randomly generated to mimic four variables measured on

the same sample of subjects over time.

More specifically, we simulated Gaussian time-series data [X1(t), X2(t), X3(t), X4(t)]
′ giv-

ing rise to two correlated but non-overlapping sample correlation coefficients that vary over

time with known population correlation functions. We formulated our model for the under-

lying data using the properties detailed below, and we obtained the relationships governing

these properties by extending the methods for simulating simple, non-functional correlations

given by Dunn and Clark [13, 14] to our time-varying setting.

When evaluating the empirical significance level, we used the following common correla-

tion function, which is displayed in Figure 8:

ρ12(t) = ρ34(t) = tanh
[
0.55 sin2 (2πt/T )− 0.1

]
.

When performing power calculations, we used the following very similar correlation functions,

which are shown in Figure 9:

ρ12(t) = tanh
[
0.6 sin2 (2πt/T )− 0.1

]
,

ρ34(t) = tanh
[
0.5 sin2 (2πt/T )− 0.1

]
.

We set c = 0.3 and ρ13(t) = ρ24(t) = 0.5, we assumed ρ14(t) = ρ23(t), and we solved

for ρ14(t) (and equivalently, for ρ23(t)) numerically in terms of all of the other correlation

functions. In addition, we set EX1(t) = EX2(t) = EX3(t) = EX4(t) = 0, and σ2
1 = σ2

2 =

σ2
3 = σ2

4 = 1.

A sample realization of r12(t) and r34(t) for T = 200 and n = 50, in the case where

ρ12(t) 6= ρ34(t), is shown in Figure 10 below. Black points are values of r12(t), and red points

are values of r34(t).

59



0.0 0.2 0.4 0.6 0.8 1.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Time

Tr
ue

 C
or

re
la

tio
n 

F
un

ct
io

n

Figure 8: Dependent Samples: Correlation function for evaluating empirical significance
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Figure 9: Dependent Samples: Correlation functions for evaluating empirical power
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Figure 10: Dependent Samples: Example of simulated data

The data were simulated using three balanced sample sizes: n = 25, n = 50, and n = 100.

Three values of T were used: T = 200, T = 350, and T = 500. From the simulated four-

variate data, we calculated sample correlations and employed the adaptive Neyman test of

equivalence of dependent functional correlations. Tests were performed at the α = 0.05

level of significance. When investigating the empirical significance level, we used N = 3500

simulation runs for each setting, as the empirical level was slow to converge. For empirical

power calculations, we used N = 1000 runs for each setting. The results are summarized in

Tables 3 and 4.

Table 3: Comparing Dependent Correlation Functions: Empirical Significance Results

T = 200 T = 350 T = 500

n = 25 0.0588 0.0486 0.0434

n = 50 0.0611 0.0366 0.0483

n = 100 0.0657 0.0529 0.0443
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Table 4: Comparing Dependent Correlation Functions: Empirical Power Results

T = 200 T = 350 T = 500

n = 25 0.722 0.738 0.958

n = 50 0.890 0.791 0.974

n = 100 1.000 0.909 0.936

The empirical significance levels obtained in all 9 settings are quite satisfactory. T = 200

gives the largest Type I error rates, all slightly higher than α = 0.05, with the largest level

0.0657 occurring when n = 100. In contrast, the empirical significance levels for T = 500 are

all slightly less than 0.05. The smallest Type I error rate, 0.0366, occurs when T = 350 and

n = 50. The adaptive Neyman test of equivalence of dependent functional correlations also

performs very well with respect to power. The power is largest when T = 200 and n = 100,

where a value of 1 is achieved.

5.4 APPLICATION: DELTA EEG POWER AND HF-HRV

The third aim of our motivating study [58] addressed whether the time-varying correlation

between delta EEG power and HF-HRV in the whole sample of 197 midlife women changes

significantly across different NREM periods. The functional correlation profiles for the three

NREM periods of sleep are shown in Figure 1. Qualitatively, the correlation function is

bimodal during NREM-1 and NREM-2, with peaks both preceding and following t = 0.

However, the peaks in the correlation function during NREM-2 seem broader compared

to NREM-1, and the drop in correlation near t = 0 looks much sharper during NREM-2.

During NREM-3, the correlation function is unimodal with a blunted peak following t = 0.

In addition, the overall magnitude of the functional correlation between delta EEG power

and HF-HRV appears to be larger in the first NREM period, compared to the second and
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third NREM periods. Overall, the functional correlation between these two physiological

parameters does seem to change across the three NREM periods. The largest difference can

be seen during NREM-1 compared to NREM-3, while the smallest difference appears to be

during NREM-2 compared to NREM-3.

To formally test whether the time-varying correlation between delta EEG power and HF-

HRV in full sample significantly differs as a function of NREM period, we use the adaptive

Neyman test for dependent samples. When comparing the correlation functions during

NREM-1 and NREM-2, the standardized adaptive Neyman test statistic TAN = 31.00, and

the corresponding p − value < 0.0001. The difference in time-varying correlation during

NREM-1 compared to NREM-3 is also extremely significant; the formal test gives TAN =

301.43 and p − value < 0.0001. Somewhat surprisingly, the functional correlation between

delta EEG power and HF-HRV changes extremely significantly during NREM-2 compared

to NREM-3 as well, as the test statistic TAN = 115.20 and the p−value < 0.0001. It appears

that modest changes in magnitude as well as moderate changes in shape of the time-varying

correlation across NREM periods lead us to conclude highly significant differences.
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6.0 DISCUSSION

We presented a new methodology for estimation, point-wise inference, and formal compar-

isons of functional correlations. The utility of our methods was demonstrated by our moti-

vating study of the time-varying correlation between delta EEG power and high frequency

heart rate variability during sleep in midlife women [58]. Our estimation technique may be

used to model the correlation between two variables measured on a sample of subjects as a

continuous function of time, and confidence intervals may be constructed for point-wise in-

ference using our novel bootstrap procedure. Further, beyond these tools for the estimation

and inference of a single functional correlation, we developed a new method for the formal

hypothesis testing of two functional correlations via adaptive Neyman tests for independent

and dependent samples.

As the number of questions one could pose concerning functional correlations is nu-

merous, these formal methodologies are not exhaustive and lead to future work. One area

of future work is the analysis of overlapping correlations. There exists two kinds of corre-

lated correlations: overlapping and non-overlapping correlated correlations. To illustrate the

difference between the terms “overlapping” and “non-overlapping”, consider a four-variate

random normal vector (X1, X2, X3, X4)
′. The correlations ρ12 and ρ34 are non-overlapping

in the sense that they do not involve a common variable, whereas the correlations ρ12 and

ρ13 are overlapping because they both involve the common variable X1. The asymptotic

correlation between overlapping sample correlation coefficients is different in form than that

of non-overlapping sample correlation coefficients, and future work will explore methods for

analyzing overlapping correlation functions.

A second area of future research will address local tests for identifying local differences.

The tests considered here are global tests and only provide information about the across the
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curve equivalence but do not identify areas within the time interval where this difference

occurs. Future work will develop procedures that, if the global test concludes differences

between groups, identify where this difference occurs. These procedures will have to over-

come the challenge of involving an infinite amount of correlated local tests and will need

to incorporate local building blocks, as opposed to the global smoothing spline and Fourier

blocks used here.
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