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THE SCHWINGER-DYSON EQUATIONS AND GLUON BOUND STATES

OF QCD

Joseph W. Meyers, PhD

University of Pittsburgh, 2014

Nonperturbative techniques in quantum field theory, such as lattice gauge theory, Schwinger-

Dyson equations, and applications of the renormalization group, have been successful in

describing both the propagator functions and bound states of various theories, most notably

those of quarks and hadrons in Quantum Chromodynamics (QCD). The Schwinger-Dyson

theoretical framework is presented from basic principles and developed, through examples

in a variety of quantum field theories, as a general numerical approach which can yield

valuable insight into quantum phenomenology. Explorations include the studies which I

have performed to extend bound state theory to the gauge sector of QCD, including the

influence of both gluon and ghost fields. This allows for the description of gluon bound

states (“glueballs”), which are theoretically viable explanations for previously unidentified

resonances in experimental particle searches, and is treated for the first time using the

Bethe-Salpeter formalism. This description is sufficiently robust to explore the spectrum of

glueballs and provide commentary on the potential for investigation of valence gluon content

in meson bound states. Additionally, the first investigation of the full two-loop gluon gap

equation is presented and discussed, along with general commentary on the current state of

nonperturbative QCD. This computation yields the dressed propagators for quarks, gluons,

and ghosts from the coupled set of equations.
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1.0 INTRODUCTION

The study of Quantum Field Theory has been invaluable to modern physics, where the

behavior of the smallest known constituents of matter and energy are described by a combi-

nation of mathematics and physical principles developed through the contributions of many

physicists. The known symmetries of nature have been incorporated into a set of quantum

field theories known as the Standard Model, which describe nearly all phenomena observed

in over a century of particle physics experiments. The Standard Model includes the most

fundamental particles ever observed or shown to exist in predictive theories, and successfully

describes electromagnetism and both the strong and weak nuclear forces. These theories

are based on gauge symmetry, which codifies the invariance of the fundamental degrees of

freedom under transformations by the set of operators which represent the generators of that

particular gauge group. The typical structure of these symmetries involves the invariance of

a (fermion) matter particle under this transformation, with a “force-carrier” (gauge particle)

that couples to the matter field and ensures the invariance of the complete theory under the

transformation.

The motivation for my research efforts has been to apply nonperturbative methods to

calculate various dynamical quantities of quantum field theory. The particular focus has

been on obtaining solutions for the dressed propagators for a variety of field theories and

models, as well as the spectra of composite objects composed of the fundamental particles

whose behavior is described by those theories. In addition, the particular nonperturbative

formalism I employ provides opportunities for insight into the analytic structure of quantum

field theory and the general patterns and behaviors which are common to all of the seemingly

1



disparate quantum theories of modern interest. Many aspects of modern technology and most

of the fundamental physical laws which we have identified in nature are described by the

behavior of objects in the quantum realm, and so this nonperturbative formalism can be

used to develop powerful intuition and calculational tools.

The main focus of the research presented here is the theory which describes the strong

nuclear force known as Quantum Chromodynamics (QCD). This theory of the strong inter-

action is a part of the Standard Model, but unlike the other components it is hidden from

our ordinary low-temperature, low-energy experiences. In the cases of electromagnetism or

radioactive decay, there are consequences of the fundamental interactions which produce

physical phenomena which can be more easily observed, and thus provide an easier means

of accessing and investigating the laws behind these phenomena. The more abstract link

between the strong interaction, nuclear and atomic structure, and the chemical elements

contributed to the fact that it was the last of the four fundamental forces of nature which it

has become possible to study and understand to the extent which we do today.

QCD contains fundamental matter particles called “quarks” and gauge particles called

“gluons” (along with, in certain choices of gauge, the Faddeev-Popov “ghosts”), and is built

upon the concept of the color charge first conjectured by Greenberg and others to describe the

quark bound states that had been discovered and seemed at the time to resist systematic

categorization. The color charges are described by a basis of 8 traceless 3 × 3 hermitian

matrices, which allow for 3 possible color charges for the quarks and 8 possible color states

for the gauge particles.

QCD is described by the Lagrangian (which we shall see again in Chapter 3):

LQCD = −1

2
TrSU(3) [FµνF

µν ] + ψ(i��D −m)ψ + Lgauge + Lgh, (1.1)

where:
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Aµ = TAAAµ (1.2)

Fµν = DµAν −DνAµ, (1.3)

Dµ = ∂µ + igsT
AAAµ . (1.4)

The as-yet unspecified terms appearing in the Lagrangian are chosen for a covariant gauge,

and are given by:

Lgauge = −λTrSU(3)

[
(∂ · A)2

]
, (1.5)

Lgh = −cA
(
δAB� + fACBAC · ∂

)
cB. (1.6)

This Lagrangian is designed to be invariant under the SUcolor(3) gauge symmetry, but in-

troduction of the gauge fixing term (1.5) and ghost contribution (1.6) complicate this fact.

The most general gauge symmetry transformation found to leave this Lagrangian invariant

is due to Rouet, Stora, and Tyutin, and is thus known as BRST-invariance [9,38]. The set of

transformations [69], with a constant Grassmann parameter θ, is given by:

AAµ → AAµ + θDAB
µ cB, (1.7)

ψ → ψ − igθTAcAψ, (1.8)

cA → −λθ(∂ · AA), (1.9)

cA → −g
2
θfABCcBcC . (1.10)

In addition to this transformation, an additional “auxiliary field” BA is introduced which

is invariant under the BRST transformation. This field must be included in the set of path

integral variables, and introduces additional terms Laux to (1.1):

Laux = BA(∂ · AA) +
1

2λ
BABA. (1.11)
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The resulting Lagrangian LQCD + Laux is then invariant under the symmetry transforma-

tion. This modified Lagrangian can then be used to obtain a set of identities [65,66] which

represent the gauge symmetry of QCD and are called the Slavnov-Taylor identities (STIs).

These identities are the QCD equivalent of the Ward-Takahashi identities which represent

the gauge symmetry in QED. Both sets of identities provide relationships between various

correlation functions in their respective theories, and, for example, can be used to partially

constrain the structure of dressed interaction vertices in terms of the dressing functions of

propagators and other interactions. We will discuss in Chapter 3 how these identities have

been used [2,7,8,28,30,57,67] in this capacity to design vertex models for nonperturbative studies

using the Schwinger-Dyson equations.

QCD contains a number of unusual properties that distinguish it from previous theories

and those that describe the electroweak (electromagnetism + weak nuclear) interactions.

These properties are among the reasons that perturbation theory cannot be used to describe

the dynamical behavior within the realm of interest for the various bound states which have

been observed.

One of these properties is “asymptotic freedom”, which is a means of describing the

fact that the running (or dressed) coupling of interactions in QCD becomes weaker in the

ultraviolet (UV, or high-momentum) regime, and so it is there that the perturbative power

expansion in coupling can most successfully describe the theory. At these momenta, the

dynamical quantities of QCD (which are correlation functions between the particles’ field

operators) approach the non-interacting limit of the quantum field theory (thus the name,

in the limit in which momentum becomes infinite). The particle interactions and “dressing”

of dynamical quantities become more significant as the momentum scale is reduced, such

that before one reaches the scale of bound states (O(1 GeV) and below) it is practically

infeasible to rely on perturbation theory. The cutoff at which perturbation theory ceases to

be dependable is frequently written as ΛQCD, which implies that the perturbative series in

coupling does not yield a good approximation to the quantum corrections.

Another characteristic of QCD is complementary to asymptotic freedom, and is known as
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“confinement”. In conducting a Fourier transform between the four-momentum and space-

time variables, the strongest correlations hold for combinations which produce little variation

in the exponential factor eip·x. As such, large values of momentum have their greatest in-

fluence over short distances, and for QCD this translates to O(1 fm), which is about the

size of a typical nucleon. When a high-momentum state attempts to propagate beyond this

distance, it tends to decay through a process known as “fragmentation” (or “hadronization”)

to yield a color-neutral combination of final state particles. Confinement thus describes the

process by which an asymptotic (observable) state of QCD cannot possess a nonzero color

charge. The name confinement is used because any dynamics or interactions of a color-

charged entity are confined to a tiny region of spacetime volume. A proper treatment of the

dynamical quantities in QCD should be consistent with this restriction, and at the very least

the correlation functions should not possess any poles which correspond to the propagation

of a color-charged state. Since the perturbative gluon propagator behaves as 1
p2

, the IR limit

of the dressed propagator is of particular importance. The perturbative form would imply a

massless asymptotic state of the gluon field, which would certainly violate confinement. The

absence of an IR pole in this propagator is obtained in “decoupling” solutions for the gluon

propagator, which approach a finite, nonzero value as p2 → 0. Cases where the gluon prop-

agator vanishes in the IR are referred to as “scaling” solutions due to their lack of obvious

dependence on rescaling of external momenta.

QCD also possesses a peculiar unsolved property known as the “strong-CP problem”.

This issue arises from additional terms that could be added to the Lagrangian and do not

respect the otherwise CP-symmetric formulation of QCD. The particular term can be written

as:

L��CP = − θ

64π2
εαβγδFA

αβF
A
γδ. (1.12)

Expressions of this form (though without color indices) were obtained when investigating

the axial anomaly [1,10] of the Electroweak theory. This anomaly was shown to arise from

quantum corrections to the classically conserved axial-vector current. In QCD, the term
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(1.12) presents its own puzzle, as experimental evidence [69] such as the neutron electric

dipole moment places severe restrictions on the parameter θ to be many orders of magnitude

smaller than the other constants in the theory, which is inconsistent with expectations of

naturalness. Proposed solutions include the possibility of at least one flavor of massless

quark, or introduction of a dynamical variable that leads to hypothetical particles known as

axions and allows for a symmetry transformation to suppress this additional term.

These properties of QCD are difficult to describe successfully in perturbation theory. The

perturbative propagator for the gluon possesses a pole at zero four-momentum, implying that

it should be a massless particle like the photon. The infrared (IR) is a region where pertur-

bation theory cannot be trusted at low (or even accessible) orders of the coupling constant,

and so elimination of this built-in mass pole (to prevent the possibility of a propagation as

an asymptotic state) requires other “nonperturbative” methods to describe those dynamics.

There are multiple nonperturbative tools available that have been applied to QCD. The most

successful of these are lattice QCD, renormalization group (RG) methods, and the functional

Schwinger-Dyson equations.

The most commonly known method is lattice gauge theory (or when applied to this

theory, lattice QCD), which discretizes the spacetime dependence of this quantum field

theory and simulates various states and interactions. Lattice QCD [71] has to date been

the most successful means of describing the nonperturbative physics of QCD, but possesses

certain weaknesses. In discretizing the variables to implementing Monte Carlo methods

upon a multidimensional grid, the computational requirements of lattice QCD become rather

intense. The algorithmic simplicity of lattice QCD means that it is fairly easy to implement

when the resources are available, and in fact it has become the preferred means of measuring

the computational power of the world’s largest supercomputers. The spacetime discretization

likewise yields a discretized momentum dependence, and extrapolation to the continuum

limit is difficult unless one uses progressively larger grids, which can quickly outstrip the

available resources. Despite these troubles, lattice QCD has contributed a vast amount

of information to the knowledge of nonperturbative QCD, and remains at the forefront of
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progress in advancing studies.

Studies of the renormalization group have also been able to provide nonperturbative

information about QCD. The renormalization group allows one to evolve the dynamical

quantities of a quantum field theory from the regions well approximated by perturbation

theory into nonperturbative regimes. For QCD, this means that one can start with pertur-

bative expressions in the UV, and extrapolate down to regions of interest close to ΛQCD.

This approach is used for example in “Effective Field Theories”, which use an expansion in

non-renormalizable interactions with the intent of cutting off the momentum dependence at

some scale and using the RG expressions in the UV.

The renormalization group can be described by a relation known as the Callan-Symanzik

equation, which can be expressed (for a single, self-interacting, massless field theory) as [61]:

[
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγ(λ)

]
G(n) ({xi};µ, λ) = 0, (1.13)

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  

0.1

0.2

0.3

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

Sept. 2013

Lattice QCD (NNLO)

(N3LO)

τ decays (N3LO)

1000

pp –> jets (NLO)
(–)

Figure 1: Plot of the Running Coupling of QCD as obtained from lattice gauge theory and multiple experi-
mental measurements as compiled by the Particle Data Group [56]
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where G is the renormalized Green function described by the n external particle lines, λ

the renormalized coupling, and µ the renormalization scale (suppose for example we are

discussing φ4 theory). This expression introduces quantities known as the beta-function

β(µ2) ≡ µ∂λ
∂µ

and the anomalous dimension γ ≡ µ
Zφ

∂Zφ
∂µ

(with Zφ the field renormalization

constant) which characterize the dependence of renormalized quantities on the momentum

scale used in renormalization. The beta-function describes the rate of change in the dressed

coupling at various scales, and thus determines the region of renormalization scales (and

momentum regimes) in which the quantum field theory is well described by perturbation

theory. For theories like QED, this provided confirmation that the low-momentum depen-

dence exhibited perturbative behavior, and allowed for the accuracy of early applications of

quantum field theory to the fine structure of the hydrogen atom. As described above and

shown in Figure 1, the asymptotic freedom of QCD implies that the dressed coupling [56]

becomes perturbative in the UV instead of the IR, and it is the theory’s beta-function that

provides this information. The anomalous dimension γ provides information regarding ad-

ditional logarithmic contributions to the behavior of correlation functions on their approach

to the perturbative limit, which for QCD lies in the UV. This behavior can be used as veri-

fication across the nonperturbative methods, as consistency has been demonstrated between

lattice, RG, and Schwinger-Dyson approaches. A final contribution from RG theory regards

the existence of a “fixed-point” in the IR limit, where the asymptotic behavior of the gauge

particles is found to be constrained and is useful in the treatment of running coupling compu-

tations [14,30,67]. The fixed-point represents a constraint on the gluon and ghost propagators

at vanishing momenta, and features heavily in IR analyses of QCD.

The last of these major nonperturbative methods are the Schwinger-Dyson equations of

motion. The original form was obtained by Freeman Dyson [23], who found a way to sum

classes of diagrams to all orders in perturbation theory. These equations represented the full

contribution of all interactions and dressings to the dynamical quantities, but required ex-

tensive intuition and insight into the perturbative dynamics. The same set of equations were

later obtained by Julian Schwinger [62], who employed the functional approach to quantum

8



field theory and thus generalized the patterns and tools of Dyson’s approach. The treatment

we present here is based on the generating functionals obtained from the path integral for-

malism, which provide a direct means of deriving the equations of motion for an arbitrary

quantum field theory. Using this formalism, one can obtain the nonperturbative equations

of motion for any field theory, as well as the proper means of introducing renormalized vari-

ables and constants. The well-noted weakness of these equations is that they very clearly

display a dynamical dependence on progressively higher sets of correlation functions, and

have thus come to be called the “infinite-tower” of Schwinger-Dyson equations. These equa-

tions compose an infinite-dimensioned set of relations, and furthermore tend to be expressed

(in physically-relevant spacetimes) as nonlinear integral equations which implicitly define the

nonperturbative quantities. Since the calculation of an infinite set of equations is unrealistic,

one must typically introduce a form of truncation or modeling to obtain a computationally

feasible set of equations. Despite these truncations, the content of the Schwinger-Dyson

equations includes information to all orders in perturbation theory, and so this reduction

is not directly comparable to an order-by-order calculation in that method. It is possible

(and in fact quite easy) to produce nonperturbative dynamical features in the correlation

functions from even very simple or naive truncations, as we shall demonstrate.

The relative strengths and weaknesses of lattice gauge theory and the Schwinger-Dyson

equations, along with their ability to complement each other, provide a compelling reason to

devote significant efforts to the continued progress and understanding of how these methods

relate to each other and to quantum field theory in general. The Schwinger-Dyson equations

comprise an infinite set of coupled equations and so the relation to interactions involving

many particles must be modeled or truncated to allow for practical calculation. Conversely,

lattice gauge theory is able to include the complete theory with every possible physical con-

tribution. While this eliminates the need for models or approximations, it also makes it

difficult to access the details of how different processes and theoretical ingredients can affect

each other or contribute to the solutions as a whole. The truncation of Schwinger-Dyson

equations amounts to making some approximation to the complete theory, but also allows
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for a clear and controlled analysis of how different approximations compare and how sig-

nificantly the various quantities and equations can influence each other. The inclusion of

more sophisticated or complex interactions, whether obtained through dynamical calcula-

tions or modeling, can be relatively difficult due to the rapid increase in complexity as more

particles and tensors become involved, whereas the many particle contributions are automat-

ically included and described very well by the lattice. The approximations made in lattice

gauge theory relate mostly to the resolution or granularity of the discretized spacetime and

the restriction to a finite volume, both of which can affect the method’s ability to describe

phenomena which require correlation across wide ranges of momenta and particularly those

which have significant dependence on either very large or very small scales. The analytic

representation of Schwinger-Dyson equations allows for careful development and study of

asymptotic forms of the equations, and so extrapolation to extreme values of momenta are

much more accessible than on the lattice. This allows the treatment of theories which can ex-

hibit chiral symmetry breaking, and can be applied to both the broken and unbroken regions

of the theory’s phase transition. Other theoretical applications familiar from perturbation

theory, such as scattering or investigation of condensed matter states, are also relatively

difficult to implement on the lattice, but the expression of Schwinger-Dyson equations as

relationships among dressed correlation functions allows many such applications to be easily

generalized and studied in nonperturbative realms. It is clear from these and many other

reasons that there is compelling motivation to continue to pursue both methods of nonper-

turbative research and to look for further opportunities for the calculations and insights from

each one to contribute to the other.

Beyond the nonperturbative correlation functions of QCD, there is also interest in the

bound states of the theory. The Schwinger-Dyson equations will be applied to correlation

functions of the fundamental degrees of freedom, but we also need a theoretical formalism to

discuss composite objects. Treatment of these states is done by means of the Bethe-Salpeter

equation. This equation was first published [55] without derivation, but was soon derived

by Hans Bethe and E.E. Salpeter [60], and was rapidly confirmed and reproduced by many
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others [33,42,45,63]. This equation describes a quantity called the Bethe-Salpeter amplitude,

which is a dynamical quantity that represents the coupling of the fundamental (constituent)

particles into the bound state current. The Bethe-Salpeter equation makes use of an inter-

action kernel between the constituent particles to describe the binding, and takes the form

of a resonance condition for the existence of a bound state. Once a resonance is found and

the amplitude obtained and normalized [21,43,53], it can be used to compute other dynamical

properties of the bound state such as form factors and decay constants. The ability of these

calculations to describe fermion fields and their bindings through electromagnetic and nu-

clear interactions has been demonstrated and successfully applied to many experimentally

observed states, and has thus grown into an important and highly active field of particle

physics research. In the current discussions, we are particularly interested in how these tech-

niques may be applied to the binding and interactions of other potential states in nature,

particularly the possibility of QCD’s gluons producing experimentally observable composite

objects.

In Chapter 2: Formalism, the necessary framework of path integrals and generating func-

tionals will be presented in a pedagogical manner. The Schwinger-Dyson equations will then

be extracted from the functional approach by considering symmetries of the path integral.

The general properties of Schwinger-Dyson equations will be presented and discussed, in-

cluding a diagrammatic representation, the role of truncation in the set of infinitely-coupled

equations, and the introduction of appropriate renormalization factors into the functional

calculus. Finally, the appearance of bound states in quantum field theory will be discussed

through a derivation and examination of the Bethe-Salpeter equation.

In Chapter 3: Gap Equations, a numerical approach to solving the Schwinger-Dyson

equations for the dressed propagators of an arbitrary quantum field theory will be dis-

cussed. The general structure of these “gap equations” for the one-particle-irreducible (1PI)

two-point correlation functions will be obtained from the second derivatives of the effective

action using the Schwinger-Dyson formalism. A reliable and robust method for obtaining

solutions to these equations will be discussed, as will the general approach to performing
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renormalization in nonperturbative quantum field theory. These techniques will be demon-

strated through examples in φ4 theory, QED, and QCD. The QCD examples will include

a number of truncated examples that have been explored in the standard literature of the

field, as well as the first calculation within the fully-coupled system of gap equations under

vertex-level truncations and the full suite of nonperturbative diagrams. The results of these

QCD examples will be compared and discussed in the context of lattice QCD.

In Chapter 4: Bound States, application of the Bethe-Salpeter equation to the bound

states of QCD will be presented. Given the Euclidean-space formalism which is traditionally

employed in the investigation of gap equations, the necessity of analytic continuation on the

complex 4-momentum plane will be presented and discussed. A discretized form of the Bethe-

Salpeter equation will be presented alongside an expansion in well-known analytic functions,

and the merits and weaknesses of both approaches will be discussed. The methods of solving

Bethe-Salpeter equations will be presented with the investigation of gluon bound states

(glueballs) in one of the truncated models of Chapter 3. The extension and interpretation of

this computation to include valence states including quarks and/or gluons will be discussed.
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2.0 FORMALISM

The framework of functional calculus, based upon the path integral approach to quantum

field theory (QFT), forms the (predominant) basis of investigation presented in this work.

The formalism of QFT will be presented and developed in terms of two sample cases, with

a bosonic and fermionic fields. The distinction of these two cases in the functional calculus

are more fundamental than the variation in quantum numbers, as these other properties will

be shown to be automatically included if properly expressed in the Lagrangian. Fields of a

bosonic nature are represented by c-number functional variables, which are defined by their

behavior upon commuting with other fields. Fields of a fermionic nature are represented by

Grassmann functional variables, which are defined by their behavior under anti-commutation

with each other. We will show that the definition of a QFT through its Lagrangian will

produce the appropriate functional calculus to describe the nonperturbative structure of the

theory.

2.1 PATH INTEGRALS

The functional representation of quantum field theory is built upon the path integral for-

malism as introduced by Feynman [27]. The transition element from a field configuration B

to a field configuration A is given by a sum over all possible intermediate states weighted by

a factor involving the Lagrangian density (hereafter referred to as the Lagrangian) that de-

fines the theory. The standard method of incorporating these boundary conditions involves
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identifying a path that matches the endpoints A and B, then summing over all functional

variations that keep these endpoints fixed. Working in natural units (where ~ = c = 1), this

is expressed as:

〈A|B〉 =

∫ Field Configuration A

Field Configuration B

D
(
ψ, ψ,A

)
eiS(ψ,ψ,A). (2.1)

By allowing the field configuration B to become the limit of the quantum vacuum at

some infinite time in the past, and A to become a similar limit an infinite time in the future,

we obtain the vacuum to vacuum transition element, 〈Ω|Ω〉:

〈Ω|Ω〉 =

∫
D
(
ψ, ψ,A

)
eiS(ψ,ψ,A). (2.2)

This particular function has a number of important properties. First, this determines the

proper normalization factor for any expectation value we seek to calculate. Second, this

function reveals the weighted averaging procedure which is necessary to compute statistical

averages in the QFT. Finally, modification of this path integral will define the generating

functional upon which the functional approach to QFT is based.

The vacuum expectation value (VEV) for a time-ordered set of field operators can be ob-

tained by performing the functional path integral with the set of field variables, corresponding

to each operator, included in the integrand [6,68]. Note that we use the normalization factor

in this proper definition of the expectation value, and so this can be written (using the

time-ordering operator T ) as:

〈
Ω
∣∣T (ψ1 . . . ψn1ψ1 . . . ψn2

A1 . . . Ap
)∣∣Ω〉

=
1

〈Ω|Ω〉

∫
D
(
ψ, ψ,A

) (
ψ1 . . . ψn1ψ1 . . . ψn2

A1 . . . Ap
)
eiS(ψ,ψ,A). (2.3)
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2.2 GENERATING FUNCTIONALS

The functional approach to quantum field theory is due to Schwinger, and employs the

approach of generating functions in the context of the path integral. Since the path integral

is expressed in terms of (formally unknown) functions rather than coordinate or momentum

variables, the derivatives acting upon the generator are functional in nature, and thus the

generator is considered a generating functional.

2.2.1 Definitions

The expression of quantum field theory in terms of functional calculus begins with the defini-

tion of the Generating Functional Z. By introducing a source parameter into the integrand

of the path integral, one can obtain the (normalized) VEV of any desired combination of field

operators through functional differentiation. In order to properly normalize the expectation

values, it is necessary to divide by the norm [6,40,47,68] 〈Ω|Ω〉 = Z|All Sources=0 (note that some

sources build this normalization factor into the path integral measure such that 〈Ω|Ω〉 = 1).

We define Z according to:

Z [η, η, J ] =

∫
D
(
ψ, ψ,A

)
ei[S(ψ,ψ,A)+

∫
d4x(ηψ+ψη−J ·A)], (2.4)

and express the generic form for a VEV (suppressing all spacetime dependence and tensor

indices) with proper normalization as:

〈
Ω
∣∣T (ψ1 . . . ψn1ψ1 . . . ψn2

A1 . . . Ap
)∣∣Ω〉 (2.5)

=
(i)p+n2−n1

Z[0, 0, 0]

[(
δ

δη1

. . .
δ

δηn1

)(
δ

δη1

. . .
δ

δηn2

)(
δ

δJ1

. . .
δ

δJp

)
Z [η, η, J ]

]
η=η=J=0

.

Automatic inclusion of the proper normalization factor, as well as the subtraction of

all “disconnected” or “bubble” diagrams can be accomplished by introducing the connected
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generating functional W [6,40,68]. The corresponding Feynman diagrams demonstrate that

the resulting expectation values consist only of those in which all external fields represented

by the functional derivatives are attached to the same set of internal particle lines. This

generating functional is defined as:

W [η, η, J ] = −i ln (Z [η, η, J ]) , (2.6)

with the connected functions obtained through functional derivatives according to:

〈
Ω
∣∣T (ψ1 . . . ψn1ψ1 . . . ψn2

A1 . . . Ap
)∣∣Ω〉

conn
(2.7)

= (i)p+n2−n1+1

[(
δ

δη1

. . .
δ

δηn1

)(
δ

δη1

. . .
δ

δηn2

)(
δ

δJ1

. . .
δ

δJp

)
W [η, η, J ]

]
η=η=J=0

.

2.2.2 Legendre Transform

The removal of propagators (dressed two-point correlation functions) on the external field

lines is accomplished via a Legendre Transform, in which dependence upon the functional

source variables is substituted in terms of the “Classical Fields”, a set of functional variables

which correspond to the (normalized) VEV of each field operator in the presence of nonzero

source variables and serve as conjugate variables to the functional sources. The resulting

functional generates “1-Particle Irreducible”(1PI) functions and is called the effective action.

The 1PI functions cannot be separated by removal of any internal line, and have all external

lines amputated.

The variable substitution is performed by first defining the classical field variables, here

represented by ψcl, ψcl, and Acl for the sample field types. Note that the definition of the

classical field ψcl is actually the opposite sign from the proper VEV, this is done for simplicity

in the formalism and diagrammatics to come later. Once each conjugate variable is defined,
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the proper forms for the effective action and the source variables as functional derivatives

are easily obtained. We define the conjugate pairs:

ψb cl = δW
δηb

ψa cl = δW
δηa

Aµ cl = − δW
δJµ

,

ηb = δΓ
δ ψb cl

ηa = δΓ
δ ψa cl

Jµ = δΓ
δAµ cl

,

(2.8)

and so the effective action is defined by the Legendre Transform:

Γ
[
ψ cl , ψ cl , A cl

]
= W [η, η, J ]−

∫
d4x

(
η ψ cl − ψ cl η − J · A cl

)
. (2.9)

As stated above, functional derivatives of the effective action produce the 1PI correlation

functions of the quantum field theory. It is important to note two details of these functional

derivatives. First, the functional now depends only on the classical fields as defined from the

VEVs. Second, fermionic classical field variables correspond to their role in the interaction

Lagrangian of perturbation theory, in which ψ (ψ) is paired with the external lines as created

or annihilated by ψ (ψ). The 1PI functions are then found to be:

〈
Ω
∣∣T (ψ1 . . . ψn1ψ1 . . . ψn2

A1 . . . Ap
)∣∣Ω〉

1PI
(2.10)

= i

[(
δ

δη1

. . .
δ

δηn1

)(
δ

δη1

. . .
δ

δηn2

)(
δ

δJ1

. . .
δ

δJp

)
Γ
[
ψ cl , ψ cl , A cl

]]
η=η=J=0

.

In order to properly develop the Schwinger-Dyson equations, we must also take note of

a class of identities relating the connected and 1PI expectation values. From the definition

of the connected generating functional W , we examine the two-point functions of the QFT

in the presence of nonzero sources. The propagators are defined from W as:

δ2W

δJ2δJ1

= i 〈Ω |T (A2A1)|Ω〉conn ≡ i∆′A2A1
, (2.11)
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δ2W

δη2δη1

= −i
〈
Ω
∣∣T (ψ2ψ1

)∣∣Ω〉
conn
≡ −i∆′

ψ2ψ1
. (2.12)

Since we have expressed the source variables in terms of the effective action and classical

fields, we can identify that these source-dependent propagators are actually the inverted

1PI two-point functions. This identification will become useful in the development of the

Schwinger-Dyson framework and in obtaining the Gap Equations for the fully dressed prop-

agators from those equations of motion. The precise inverse relationship can be expressed

as:

δ2Γ

δ Aµ cl (y)δ Aν
cl (x)

=

(
δ2W

δJµ(y)δJν(x)

)−1

= i
(
∆′Aµ(y)Aν(x)

)−1
, (2.13)

δ2Γ

δ ψa cl (y)δ ψb cl (x)
=

(
δ2W

δηa(y)δηb(x)

)−1

= −i
(

∆′
ψa(y)ψb(x)

)−1

. (2.14)

The identities shown correspond to field combinations which yield a physical result in the

source-free limit, but we will later employ a diagrammatic representation in which these

relations will be properly incorporated alongside functions which imply an unphysical mixing

of fields. While these mixing terms do not result in physically relevant correlation functions

for the QFT, they are in fact essential to obtaining all necessary diagrams in the Schwinger-

Dyson equations. Relations of the type (2.13) and (2.14) can also be considered in the mixed-

field cases, and consistency with the full set of such identities (physical and unphysical) has

been incorporated into our diagrammatic rules in a way that requires no special treatment.

2.3 SCHWINGER-DYSON EQUATIONS

2.3.1 Derivation

Derivation of the Schwinger-Dyson equations begins by noting that the expectation values

produced by the generating functionals would remain unchanged by an arbitrary shift in any
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of the field variables in the Lagrangian. Consider the shift:

X(x)→ X ′(x) ≡ X(x) + δX(x), (2.15)

where X denotes any of the theory’s fields:

X ∈
[
ψ, ψ,A

]
. (2.16)

We make a variable substitution within the path integral for X ′, which leaves the path inte-

gral measure unchanged. What we recover is the identical form for the generating functional

as defined in (2.4). If we allow δX to become an infinitesimal shift in the fields, we learn

that the functional variation of Z with respect to any of the functional variables in the

path integral is precisely zero (as we would expect from having integrated over all possible

variations in X). Coupled with the invariance of the path integral measure under such a

transformation, we obtain:

0 =

∫
D
(
ψ, ψ,A

)( δS

δX(x)
+ ζXYX(x)

)
ei[S(ψ,ψ,A)+

∫
d4x(ηψ+ψη−J ·A)], (2.17)

where we have introduced a factor ζX depending on the particular field being considered.

The appropriate value for a particular X is given by (2.18).

X ψ ψ A

ζX 1 −1 −1

YX(x) η η J

(2.18)

Since neither the factor ζX nor the source YX depend upon the path integral variables, they

can be factored outside of the integration. Isolating them on the left hand side and dividing

by the path integral Z which appears, we obtain:

−ζXYX =
1

Z [η, η, J ]

∫
D
(
ψ, ψ,A

) δS
δX

[
ψ, ψ,A

]
ei[S(ψ,ψ,A)+

∫
d4x(ηψ+ψη−J ·A)], (2.19)
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δΓ

δXcl

= −ζX
1

Z [η, η, J ]

∫
D
(
ψ, ψ,A

) δS
δX

[
ψ, ψ,A

]
ei[S(ψ,ψ,A)+

∫
d4x(ηψ+ψη−J ·A)]. (2.20)

Noting that ζ2
X = 1 ∀X, we can move it onto the right hand side, and also express YX as

δΓ
δX

since it holds for all of our sample fields. From this form as expressed in (2.20), we can

substitute any arbitrary term of δS
δX

in terms of the corresponding functional derivatives with

respect to each appropriate source. This allows us to factor δS
δX

out of the integral since it no

longer contains explicit dependence on the path integral variables. We thus obtain a general

form in which δΓ
δXcl

can be obtained in terms of the connected generating functional W :

δΓ

δXcl

= −ζXe−iW [η,η,J ] δS

δX

[
iδ

δη
,− iδ

δη
,
iδ

δJ

]
eiW [η,η,J ]. (2.21)

Finally, we note that the functional variables expressed as such can have one of two

actions. Either the derivative will act upon another functional derivative in the same term

of δS
δX

which lies between itself and the generating functional at the far right, or it will act

upon the generating functional to produce one of the classical field variables. Using the

chain rule, we can commute the generating functional through to cancel with the factor

1
Z

= e−iW by including the classical field terms in the arguments of δS
δX

. We obtain (2.22)

with the understanding that a functional constant of value unity still exists at the far right

(expressed as the ·1 below), and so any functional derivative acting beyond its own term of

δS
δX

yields zero. We thus have a general form for the Schwinger-Dyson Master Equation:

δΓ

δXcl

= −ζX
δS

δX

[
iδ

δη
− ψcl,−

iδ

δη
+ ψcl,

iδ

δJ
+ Acl

]
· 1. (2.22)

In order to properly calculate the general functional derivatives such as δXcl

δYX′
, it is neces-

sary to consider all possible expressions of the form (2.13) – (2.14). These expressions are

properly considered by implementing a form such as δ
δYX

=
∑

i
δXi
δYX

δ
δXi

. It is possible and

in fact much simpler to employ a diagrammatic representation which is sufficiently robust
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to incorporate these factors. In the following section regarding the diagrammatic expres-

sion of Schwinger-Dyson equations, these factors have been taken into account and properly

incorporated into the formalism.

In the various theories we shall consider in Chapter 3: Gap Equations, we will begin with

the diagrammatic form of (2.22) as appropriate for each field variable. This will allow us

to begin the consideration of each theory starting from the Schwinger-Dyson master equa-

tion, and any necessary definitions of propagators (perturbative or dressed) and interaction

vertices will be provided. Any difference in tensor indices or quantum numbers from the

example of QCD which follows in §2.3.2 should be made clear with those basic definitions.

2.3.2 Diagrammatics

The series expansion of the effective action in terms of all classical field variables is expressed

in terms of all possible 1PI diagrams which constitute the QFT. The most convenient and

versatile way to formulate these expressions is through a diagrammatic representation, rem-

iniscent of the Feynman diagrams of perturbation theory.

The diagrammatics here will be introduced using the definitions from QCD as an ex-

ample, but extension to a variety of other theories is simple. We represent the diagrams

for the gluons as an example of a bosonic field, the quarks as an example of a fermionic

field, and the Faddeev-Popov ghosts to demonstrate a field of that type. These diagrams

can be extended to any other QFT by defining lines and propagators for the necessary field

variables, including tensor indices and quantum numbers appropriate for the field operators,

and defining the perturbative and dressed interactions to represent the physical content.

The necessary ingredient is the expression of the propagators which serve as the internal

or “virtual” particle lines. The various propagators of the nonperturbative theory are shown

in Figure 2. Each propagator is listed as a general tensor using the symbol ∆ with the

appropriate field operators as a subscript, and will be later expressed in terms of scalar

functions and specific tensors as each theory is considered. The “primed” notation indicates

that the propagator is to be understood in the presence of nonzero sources, and is thus active
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with regards to functional derivatives. A superscript of (0) indicates a perturbative quantity

as it would appear in ordinary Feynman rules or the corresponding free field theory. Within

the diagrammatics, a perturbative quantity is also indicated by the placement of a square

box upon the symbol, which implies both that the quantity is perturbative and that it does

not contain intrinsic dependence on the classical field variables.

: �0
  

: �
(0)

  

: �0
AA : �

(0)
AA

: �0
cc : �

(0)
cc

: �0
 X : �0

X 

: �0
AX : �0

XA

: �0
cX : �0

Xc

1

Figure 2: Diagrams representing the (source-dependent) propagators in QCD

Similar to the ordinary Feynman rules of quantum field theory, we introduce in Figure

3 the interaction diagrams between the fields as they would occur in perturbation theory.

As perturbative quantities independent of the classical field variables, these diagrams are

marked by a square box.

We must also define the nonperturbative vertices which may appear in the diagrammatic

formulation. This can be done in a simple manner, as these interactions can be diagram-

matically defined through a single general example as shown in Figure 4.

2.3.3 Truncation

The Schwinger-Dyson equations constitute the set of equations of motion which describe a

nonperturbative quantum field theory. The second derivatives of the effective action Γ are
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Figure 3: Diagrams representing the perturbative vertices in QCD
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Figure 4: General diagram for a nonperturbative vertex in QCD

referred to as the “Gap Equations”, which describe the dynamics of the 1PI two-point func-

tions (which turn out to be the inverse of the dressed, nonperturbative propagator ∆X1X2).

Higher derivatives of the effective action yield equations of motion for the nonperturbative

vertices which govern the interactions of the theory. As with the gap equations, we find a set

of coupled, nonlinear integral equations. The apparent feature of these equations of motion

is that each vertex equation is coupled through one or more of the diagrams to a vertex

containing a greater number of field operators. This is what constitutes the so-called “Infi-
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Figure 5: Diagrams representing the classical field variables in QCD
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Figure 6: Diagrammatic representation of functional derivatives with respect to a generic classical field
variable X

nite Tower” of Schwinger-Dyson equations, where the behavior at a lower level such as the

gap equations require a complete simultaneous knowledge of every possible 1PI interaction

vertex allowed by the theory.

Complete knowledge of the 1PI functions of a quantum field theory would represent

a full solution of the theory, as every dynamical quantity and interaction would thus be

specified. Since these equations of motion generally constitute an infinite set of coupled

integral equations, performing any practical calculation of the theory requires us to modify

the equations into a finite and manageable set. This process, known as truncation, can break

the essential symmetries of the theory by imposing some approximation. This truncation

is usually carried out at the level of vertex equations, by either employing a model for the

interaction, or by reducing the interaction to its simplest perturbative form. While this

ultimately breaks the proper formulation of the QFT, it is possible to still obtain solutions
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which contain nonperturbative information and can thus be used as a means of studying an

approximated version of the theory. In theories which have been studied using lattice gauge

theory, such as QCD, comparison to the lattice results is used to evaluate the success of the

more analytical Schwinger-Dyson approach given a particular model or truncation.

2.3.4 Renormalization

Due to the presence of loop integrals in the equations of motion, it is necessary to confront

the possibility of divergent quantities in the formalism as presented thus far. The first step is

to regulate these integrals, by which we mean the introduction of a parametrization scheme

to describe these divergences. Popular methods include Dimensional Regularization, Pauli-

Villars Regularization, or Momentum Cutoff Regularization. Each of these methods renders

the integrals finite, but at the cost of introducing an unphysical parameter which depends

on the particular regulator used. The parameter is considered in the limit where it would

correspond to no regulator having been introduced, and thus exhibits the divergent pieces of

the integral. The second step is then to renormalize the dynamical quantities, which is done

by absorbing those unphysical divergences into the theory’s input parameters by means of

previously undetermined “Z-factors”. This is ideally done by setting these factors to produce

agreement with physically measurable quantities, in which case the theory will then have

the ability to predict other experimentally accessible quantities. In theories such as QCD

where the fundamental degrees of freedom may not be physically observable, we instead

choose proxies for these measurable quantities such as results of lattice QCD or observable

properties of bound states.

In modern perturbation theory, the preferred regulator is Dimensional Regularization,

which replaces the spacetime dimensions with a continuous dependence on some infinitesimal

parameter ε (usually as d = 4∓Kε for some constant K) and allows small variations around

the integer number of dimensions in the physical theory. While this method is robustly able

to respect a theory’s symmetries, especially in gauge theories, it is difficult to implement in

our numerical and nonperturbative techniques. The preferred method which will be used
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here is to discuss the divergences present in the bare theory using a momentum cutoff regu-

lator. As will be shown in the description of numerical techniques in §3.1, our integrals are

defined using discretized grids which suffice to compute our integrals over the full volume

of four-momentum space. Our discussions of renormalization will be framed using examples

of a momentum-cutoff regulator, but this is only to demonstrate the ability of nonpertur-

bative momentum subtraction to render the equations finite. Once the renormalization is

performed, we are able to apply our numerical techniques to entirely finite and convergent

integrals in which the cutoff is already understood to have been removed.

We implement the renormalization process by introducing Z-factors in the Lagrangian

to convert the bare fields into renormalized fields. The field renormalization is carried out

through the definition of ZX as the field renormalization constant for the field X. Mass terms

will gain coefficients dictated by the type of field they describe, but in general we will identify

some mass renormalization factor Zm. Interaction terms in the Lagrangian will pick up a

combination of field renormalization terms and bare coupling constants. For each interaction

i in the theory, the vertex renormalization constant is defined as Zgi . The Lagrangian for

the renormalized theory is then obtained by substituting the field renormalization constants

according to:

Xbare =
√
ZXXrenormalized, (2.23)

which results in the following definitions in the mass and interaction terms:

ZX mX bare = Zm mX renormalized , (Fermions) (2.24)

ZX m2
X bare = Zm m2

X renormalized , (Bosons) (2.25)(∏
n

√
ZXn

)
gi bare = Zgi gi renormalized , (2.26)

where the vertex renormalization involves the n fields Xn which participate in the inter-

action. Depending on the theory being considered, there may be more than one field or
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interaction which needs to be defined in terms of the renormalized fields variables. This can

be accomplished by considering the set {X} of field variables in the context of (2.23), each

particle’s mass term in the context of (2.24) or (2.25), and each individual interaction with

coupling gi in the context of (2.26). In instances where various interactions are related by

gauge symmetry, then one can only define as many independent renormalization constants

as there are bare couplings and fields in the Lagrangian, as will be discussed in detail when

renormalizing QCD.

Once all renormalization factors have been introduced into the Lagrangian, the develop-

ment of generating functionals and functional calculus proceeds exactly as discussed above,

where all functional variables are understood to refer to the renormalized fields. This means

that only the renormalization constants which appear in the Lagrangian can appear in the

Schwinger-Dyson equations after any combination of functional derivatives. Each diagram-

matic term in a Schwinger-Dyson equation will contain exactly one of the perturbative or

“boxed” symbols, and the renormalization factors which accompanied that symbol’s term in

the Lagrangian are those which should appear on any diagrammatic term which it contributes

to the theory. In the renormalizable theories we discuss here, the two types of dynamical

variables which can appear in “boxed” form are either propagators or interactions. As such,

we will see in specific examples that the only renormalization factors which should appear

in an equation of motion are introduced by the substitutions:

∆
(0)
XX bare = ZX ∆

(0)
XX renormalized , (2.27)

Γ
(0)
{X}i bare

= Zgi Γ
(0)
{X}i renormalized

, . (2.28)

We must note that these expressions (2.27) and (2.28) are only to be used in the approach

discussed above, where the Lagrangian is expressed entirely in renormalized field variables

along with the functional calculus.
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The equations of motion also exhibit a property called multiplicative renormalizabil-

ity [12,13,14,20,30,67,70] (which is also frequently used in the construction of vertex models). This

replaces the use of the discussion which led to (2.27) and (2.28) in favor of considering only

the renormalization of dressed N -point functions of a quantum field theory. Using this ap-

proach, we could obtain the identical renormalized equations of motion directly from the

bare ones. In order to express this method, we introduce the field renormalization Z-factors

into the expectation values by replacing a bare field operator with a renormalized one:

〈
Ω

∣∣∣∣∣T
(∏

i

Xi(xi)

)∣∣∣∣∣Ω
〉

bare

=

〈
Ω

∣∣∣∣∣T
(∏

i

Z
1
2
Xi
Xi(xi)

)∣∣∣∣∣Ω
〉

renormalized

, (2.29)

which applies to both the VEV and connected functions. Due to the Legendre transform

and corresponding amputations, the 1PI functions exhibit a different modification:

〈
Ω

∣∣∣∣∣T
(∏

i

Xi(xi)

)∣∣∣∣∣Ω
〉

1PI bare

=

〈
Ω

∣∣∣∣∣T
(∏

i

Z
− 1

2
Xi
Xi(xi)

)∣∣∣∣∣Ω
〉

1PI renormalized

. (2.30)

We see that dynamical quantities such as propagators or classical field variables introduce

positive powers of the appropriate Z-factors according to (2.29), while amputated vertices of

the type used in our diagrammatics introduce negative powers of the appropriate Z-factors

according to (2.30).

As mentioned, there is one important caveat to this approach, that the expressions

above pertain only to the expectation values or dressed dynamical quantities. For instance,

the perturbative propagators or interactions under this approach are to be viewed simply

as tensors or (spatial) derivative operators. Upon inspection of the equations of motion

shown in Chapter 3: Gap Equations, one can confirm that the equations resulting from

redefinition of the Lagrangian and functional calculus in terms of renormalized fields produces

equivalent equations of motion to the introduction of factors according to the Multiplicative

Renormalizability described by (2.29) and (2.30).
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2.4 THE BETHE-SALPETER EQUATION

The Bethe-Salpeter equation serves as a method for obtaining quantitative information about

the bound states of a quantum field theory. The most general information about the con-

tribution of two valence particles i and j to the quantum bound state is represented by the

Bethe-Salpeter amplitude (2.31), and its conjugate (2.32):

ΦB,r(xa, xb;PB, {r}) ≡
〈

0
∣∣∣T (φi(xa)φj(xb))∣∣∣B, {r}〉, (2.31)

ΦB,r(xa, xb;PB, {r}) ≡
〈
B, {r}

∣∣∣T (φ†i (xa)φ†j(xb))∣∣∣0〉, (2.32)

where
∣∣∣B, {r}〉 is an eigenstate of four-momentum with eigenvalue PB and quantum num-

bers {r}, hereafter to be referred to collectively using the index r. We perform a Fourier

Transform, and impose the necessary conservation of four-momentum:

ΦB,r(xa, xb;PB) ≡
∫

dq+

(2π)4

dq−
(2π)4

eiq+·xaeiq−·xbφB,r(q+, q−;PB)δ (P + q− − q+) , (2.33)

thus

φB,r(q+, q−;PB) ≡
〈

0
∣∣∣T (a†i (q+; t)a†j(q−; t)

)∣∣∣B, r〉 , (2.34)

P = q+ − q−. (2.35)

For convenience, we have chosen to use the momenta of the fundamental particles as the

variables to this amplitude. Using the parametrizations q± = q ± η±P , with η+ + η− = 1,

we automatically satisfy the conservation of four momentum in our expressions above.

The diagrammatic form of (2.34) is shown in Figure 7.
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Figure 7: Diagrammatic representation of the Bethe-Salpeter amplitude Γij(q+, q−;λ), where P = q+ − q−.

Following the example of Nakanishi [54], we investigate the 4-point Green function of the

theory in order to derive the Bethe-Salpeter equation. The two valence particles of type i

and j determine the appropriate Green function to use. In situations involving more than

two valence particles or two or more identical particle types, substituting the quantum field

operators into an expression analogous to (2.36) produces the generalization. The Green

function dictates the most general motion in the Quantum Field theory in which (here)

particle i travels between x2 and x1, and particle j travels between y2 and y1. For the

time being we have allowed the particles i and j to potentially mix into another valence

state composed of i′ and j′, but the derivation presented here is most easily understood by

considering a no-mixing (or better yet, a “valence eigenstate”) case. These type of extensions

will be introduced when we consider specific theories in the Bound States Chapter. The

general form for this function is:

Gij;i′j′(x1, y1;x2, y2) =
〈

0
∣∣∣T (φi(x1)φj(y1)φ†i′(x2)φ†j′(y2)

)∣∣∣ 0〉 . (2.36)

This Green function can be factorized into two main pieces. First, we define a quantity

I ≡ ∆XiXi′
∆XjXj′

as the “fly-through” operator, as this represents the contribution where

both particles travel according to their own 1PI propagators without interacting with each

other. The other required quantity is the “Interaction Kernel” K, which contains all possible
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2-Particle Irreducible (2PI) interactions that the particles may have with each other. The

meaning of 2PI can also be explained as (i+ j) Irreducible, as any intermediate state which

contains only a single particle i and a single particle j (or two of the same if these are identical

particles) would not fit this definition. Much as the 1PI diagrams of the Schwinger-Dyson

formalism, this also means that the pair of external particle lines for the i and j fields are

amputated to the point of connection into the 2PI process. The equation for the Green

function G can thus be expressed schematically using:

G = I + I ·K ·G, (2.37)

= I + I ·K · I + I ·K · I ·K · I + . . . , (2.38)

where we understand the dot notation to imply attaching the external points of G or I to

the appropriate corresponding stubs of K and integrating over the momenta of any closed

loops which result. By performing amputations on this equation with I−1, we obtain:

I−1 ·G = 1 +K ·G, (2.39)

G =
(
I−1 −K

)−1
. (2.40)

Further consideration of (2.36) as it relates to a physical bound state of the particle types

i and j, then we should expect the times x0
1 and y0

1 at which the final state particles are

observed would both be later than both times x0
2 and y0

2 at which the initial particles were

observed. This would suggest a rewriting of G→ GBS as:

GBS
ij;i′j′(x1, y1;x2, y2) =

〈
0
∣∣∣T (φi(x1)φj(y1)

)
T
(
φ†i′(x2)φ†j′(y2)

)∣∣∣ 0〉 . (2.41)

With this separation, we can then expand GBS by inserting a complete set of states which

can connect the initial and final states. It can be shown that an appropriate complete set is

formed by the combination of all physical and bound states in the theory [54] distinguished
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by their quantum numbers r. After incorporating the separation between initial and final

state times, Nakanishi shows that the Green function can be written as:

GBS
ij;i′j′(x1, y1;x2, y2) =

∑
r

∫
d4P

(2π)4

ΦB,r (x1, y1;PB) ΦB,r (x2, y2;PB)

(P 2 − P 2
B + iε)

e−iP ·(X−Y ) + finite,

(2.42)

where:

X ≡ x1 − y1, (2.43)

Y ≡ x2 − y2. (2.44)

Performing the Fourier transform, we then find in momentum space:

GBS
ij;i′j′(q, k, P ) =

∑
r

ΦB,r (q+, q−;PB) ΦB,r (k+, k−;PB)

(P 2 − P 2
B + iε)

+ finite. (2.45)

We observe that each bound state corresponds to a pole in G, and for the moment we will

assume that there are no degenerate bound states. The Bethe-Salpeter equation is developed

from the combination of (2.37) and (2.45). Equating these two forms, and focusing on the

pole region around a particular bound state r′, yields:

ΦB,r′ (q+, q−;PB) ΦB,r (k+, k−;PB)

(P 2 − P 2
B + iε)

+ finite

=
I ·K · ΦB,r′ (q+, q−;PB) ΦB,r (k+, k−;PB)

(P 2 − P 2
B + iε)

+ finite′. (2.46)

Approaching the location of pole PB eliminates the finite quantities, and by comparing the

pole residues which remain we find:
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ΦB,r′ (q+, q−;PB) ΦB,r′ (k+, k−;PB) = I ·K · ΦB,r′ (q+, q−;PB) ΦB,r′ (k+, k−;PB) . (2.47)

Finally, noting that the common ΦB,r′ factor is not involved in any contractions or loop

integrals allows us to remove it and obtain the final form of the Bethe-Salpeter equation:

ΦB,r′ (q+, q−;PB) = I ·K · ΦB,r′ (q+, q−;PB) . (2.48)

In the cases we will explore in Chapter 4: Bound States, we find it to be more convenient

to handle the tensors if we consider the amputated Bethe-Salpeter amplitude χ ≡ I−1Φ. In

terms of this amplitude, the Bethe-Salpeter equation now reads:

χB,r′ (q+, q−;PB) = K · I · χB,r′ (q+, q−;PB) . (2.49)

Applying this equation to a particular theory or bound state is accomplished by iden-

tifying the scattering kernel K which contains the proper physical content, and the various

tensor forms which are needed to describe χ. The form of χ can be easily explored by placing

the appropriate field operators in (2.31) and (2.32), and considering any symmetries which

may be useful in constraining the general set of structure functions.

As will be discussed in §4.2.1, we employ an eigensystem representation to solve (2.49).

This entails interpreting this equation as a resonance condition, and once a resonance is

found the corresponding eigenvector represents the solution χ for that bound state. Proper

normalization of the amplitude χ is necessary should we intend to use it in the calculation of

dynamical quantities such as form factors or decay constants. For the investigation presented

here, we are interested in a preliminary exploration of the Glueball mass spectrum and so

identifying resonances will be the focus.
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3.0 GAP EQUATIONS

We will present the nonperturbative treatment of multiple quantum field theories as obtained

from the general form (2.22) for the Schwinger-Dyson master equation. The equations of

motion for the propagators of a quantum field theory are obtained through analysis of the

functional second derivatives of the effective action, δ2Γ
δXiδXj

. Upon taking the limit of all

functional sources vanishing, the physically relevant equations of motion result. In general,

the Schwinger-Dyson equations can be reduced to nonlinear integral equations in momentum-

space in which an inverse propagator is related to one (or more) integral expression(s) as

obtained from the various loop structures of the diagrammatic approach. We will discuss

here a set of robust numerical techniques which can be used to solve a wide range of such

equations, and demonstrate their usefulness in the context of several popular textbook and/or

physically relevant quantum field theories.

3.1 NUMERICAL METHODS

The equations of motion for the propagators ∆i in a quantum field theory are expressed

as nonlinear integral equations. In all but the simplest cases, transforming these equations

into an algebraic or differential equation is not a useful approach. A number of numerical

methods can be applied to equations of this type, including minimization of a form such as:

|∆i − f (∆i)| → 0, (3.1)
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or expansion in a complete set of functions and computing the resulting coefficients. The

method employed here is to iterate the equations of motion in terms of a set of parameters

which represent the discretized functions, and obtain the set of points which represent the

stable solution. This is equivalent to (3.1), as the accrued changes in the discretized function

tend to vanish as the proper solution is approached. This iteration is set up in a fashion

which can be understood from any of the diagrammatic equations of motion, for example

the propagator equation for φ4 theory shown in Figure 10. The unknown function ∆ in

this case is the propagator for the phion field (φ), and the function f(∆) is represented by

the terms on the right-hand side of the equation of motion. Starting from an initial guess

function (which is most assured to converge, and do so rapidly, if already close in behavior

to the solution), the function f(∆) can be computed numerically, and then used to update

the discretized form for ∆. The updated form is then used to recalculate f(∆), and so on

until a stable solution is obtained.

3.1.1 Discretization

The nonperturbative equations of motion for a renormalizable field theory allow diagrams

with no more than two momentum loops, in the variables qµ and kµ. Computation of the

integrals over these momentum loops is most easily accomplished in a 4-D Euclidean space,

where these vectors (along with the external momentum pµ) can be fully parametrized in

terms of two radial and three angular integration variables. We convert our four-momenta

into Euclidean quantities through an analogous transformation to the Wick rotation common

in perturbation theory. By implementing the integral transform:

pM0 → ip4, (3.2)

pMi → pi, (3.3)

where the index i applies to the spatial components, we obtain the desired conversion. The

remaining dependence on radial and angular integration variables in momentum space can
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be parametrized in terms of 4-dimensional hyperspherical coordinates. These variables are

defined through a Gauss-Legendre algorithm [34] which generates a set of points ri ∈ (0, 1) and

corresponding weights wi. We allow different numbers of grid points for each type of variable,

including radial momentum variables q and k, 4-D hyperspherical polar angles x ≡ cos
(
θ

(q)
1

)
and y ≡ cos

(
θ

(k)
1

)
, and one 4-D hyperspherical second polar angle z ≡ cos

(
θ

(k)
2

)
(the choice

of whether the variable is defined as pertaining to q or k is arbitrary, but we make the choice

to express it for our original loop variable q). We see that these angular parameters can

be analogously defined through the various vector products in Euclidean space, as x ≡ q·P
qP

,

y ≡ k·P
kP

, and w ≡ q·k
qk

, where the relationship between z and w is given by (3.8).

The discretized momentum grid serves two purposes in the computation. First, the grid

defines the set of points at which the free parameters representing the propagator dressing

functions are evaluated and updated. Second, it also serves as the summation grid for the

numerical integration variable q ≡ |q| (and analogously for a second variable k when two-loop

diagrams are to be considered). These points and their integral measure are mapped onto

the interval q ∈ (0,∞) according to:

q =
1

1− r , (3.4)

dq =
−dr

(1− r)2 . (3.5)

A second Gauss-Legendre grid is employed to represent the angular integrations which

appear in the four-momentum loop integrals. Both types of angular variables are needed

over the domain (−1, 1). First, we use a simple mapping for the variable x (and an identical

one for y):
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x = −1 + 2r, (3.6)

dx = 2dr. (3.7)

The remaining angular variable can be parametrized in terms of a variable z defined by the

same mapping, and so we express w as:

w = xy +
√

(1− x2) (1− y2)z (3.8)

The expressions we evaluate inside of the integrands are obtained from a symbolic treat-

ment using Mathematica [72] of the various traces and contractions which arise in the equa-

tions of motion. Given the mappings and integration variables defined above, we can express

the various (Euclidean-space) four-momenta in component form as:

pµ = (p, 0, 0, 0) , (3.9)

qµ =
(
qx, q
√

1− x2, 0, 0
)
, (3.10)

kµ =
(
ky, k

√
1− y2z, k

√
(1− y2)(1− z2), 0

)
. (3.11)

We have thus expressed all necessary parameter dependence to perform integrations over

the full volume of four-momentum space, including cases where we consider the nonpertur-

bative two-loop diagrams. The same integration grids and symbolic expressions will also

turn out to be useful in our treatment of Chapter 4: Bound States.

A final note should be made regarding the discretized form of momenta and dressing

functions. In the various models to be discussed, there can be (depending on choices of mo-

mentum routing) a necessity to evaluate the propagator functions away from the discretized
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points. The sampling of Euclidean momenta includes arguments between grid points as well

as above and below the region bounded by the grid. As such, we require means of interpo-

lating or extrapolating the scalar dressing functions over a wide range of momenta. As will

be discussed in §3.4.6, consideration of the full suite of diagrams in the gluon propagator’s

equation of motion (3.123) or Figure 25 resulted in a simple yet robust interpolation routine

which is also capable of producing reliable extrapolations into the far UV or deep IR. This

interpolation routine is based on a cubic spline fit, which is applied to a log-log form of the

dressing function (e.g. ln[F (eln(p2))] → F ′(ln(p2))). We observe that fits performed using

this algorithm provide smooth functions over the required range of momenta which are well-

suited to stable numerical integration. The results for all of the theories or models discussed

in this chapter have been revised to include this particular routine for all propagator dressing

functions.

3.1.2 Convergence and Stability of Solutions

At each iteration, an error value ε is computed which can be defined as:

ε =
∑
i

∣∣∆(p2
i )− f

(
∆(p2

i )
)∣∣ , (3.12)

where the index i refers to the discretized momentum points at which we have chosen to define

our propagator function(s). Provided that the gap equations have been properly defined

and renormalized, the successive iterations will eventually converge on the stable solutions

representing the propagators. When this occurs, the parameter ε reaches the smallest possible

value corresponding to the machine precision in evaluating the loop integrals. At this point,

the set of free parameters ∆(p2
i ) are to be understood as the discretized form of the analytical

solutions to the equation of motion being considered.

An example of a properly renormalized, stable solution is shown in Figure 8. This plot

displays the dressing functions from the nonperturbative propagators of QCD, and shows

the effect of variations in both radial and angular integration grids. The minor variations in
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Figure 8: Plots of the QCD propagator dressing functions obtained under various combinations of radial
and angular grid spacing. The scalar functions A(p2) and B(p2) are part of the quark propagator as defined
in §3.4.1, while G(p2) and Z(p2) are defined in §3.4.2.2 as two ways of parametrizing the gluon propagator.
Solutions were obtained with g2 = 1 and the set of renormalization parameters shown in Table 1.

the functions plotted is demonstration that renormalization was successfully implemented,

and that any cutoff or numerical dependence are insignificant sources of error.

In some situations, we find that the convergence of ε may not behave in the ideal manner

described above. There can be a number of contributing reasons which our computations

have identified. First, in situations where the set of renormalization parameters and coupling

values are poorly chosen, we have observed that the computation does not converge on a

39



A(.25 GeV2) 1.2

B(.25 GeV2) .11 GeV

h(1 GeV2) 1.9

G(0 GeV2) 10 GeV−2

G(.25 GeV2) 8 GeV−2

Table 1: Set of Renormalization parameters for the QCD propagator functions of Figure 8

stable set of solutions. The restriction of our parameter space in these cases is taken to mean

either that there is a constraint or relationship between the parameters that has not been

properly implemented, that the convergence towards a stable solution is impractical on our

computational time scales, or that we have simply chosen a set of parameters which do not

correspond to any physical solution (i.e., cases of Chiral Symmetry Breaking). Second, it is

possible that the computation will not converge to a stable solution if the integration grids

defined through the method of §3.1.1 have been implemented with too few grid points and

are thus unable to faithfully evaluate the loop integrals to the necessary level of precision to

obtain a solution. In these cases, it is frequently found that increasing the grid resolution will

result in improved solutions exhibiting the desired stability at the cost of longer computation

time. Third, there are situations (such as when implementing the vertex models described

in §3.4.3 or in our consideration of two-loop gluon diagrams in §3.4.6) where the initial guess

values for the propagator functions do not have the proper behavior to evaluate the desired

computation in a stable manner. In these cases, we obtain useful results by implementing a

switch in our code that disables the sensitive quantity until the solutions begin to converge

without it, then turn on the quantity and allow the solutions to re-converge on the desired

results. Finally, we have observed situations of superficial non-convergence, particularly in

the gluon equations of §3.4: QCD. In these situations, we find that ε may not begin to

converge immediately (and in fact even appear to be diverging) before “turning over” and
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converging to the solution. Some cases may even pass through multiple fluctuations before

approaching a valid solution. In these cases we find that patience through a large number

of iterations (perhaps even up into the thousands) can be quite useful.

3.1.3 Renormalization in Practice

The general means of introducing Z-factors into the Lagrangian of a quantum field theory

was discussed in §2.3.4. The functional variables used in the Generating Functionals Z,

W , and Γ are thus redefined by coefficients of the field renormalization constants ZX for

each field X. It was also discussed that only those Z-factors which appear explicitly in the

Lagrangian will follow the corresponding perturbative or “boxed” diagrammatic symbols

through the functional derivatives and appear in the equations of motion. We shall now

explain the methods by which these constants are defined in order to obtain physically

relevant solutions to the Schwinger-Dyson equations.

We consider a generic equation of motion for a single-field quantum field theory. In

addition, we assume for now that there is only one self-energy diagram in the diagrammatics.

The equation of motion for the propagator in Euclidean space can be written schematically

in the form:

1

∆XX(pµ)
= ZX

1

∆
(0)
XX(pµ)

+ iZgΣ(pµ). (3.13)

where the perturbative form of the propagator ∆
(0)
XX(p) depends strongly on whether we

are considering a bosonic or fermionic field X. In the propagators we will consider in this

work, all solutions are obtained after projection or tracing with various tensors to eliminate

all Dirac, Lorentz, or SU(3) color indices. As a result, we can discuss the general case by

describing the renormalization process for a spinless field (and merely exchanging m2 for m

if we have a fermionic equation). The equation (3.13) would then read as:

−i
∆XX(p2)

= ZXp
2 + Zmm

2 + ZgΣ(p2). (3.14)
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We consider now that, before regularization, the self-energy Σ(p2) is formally infinite. Intro-

ducing a momentum cutoff Λ2, we express the divergences of Σ(p2) using the parametrization:

Σ(p2) = Σ′(p2) + aΛ2 + bp2 log(Λ2) (3.15)

We observe now that the logarithmically divergent piece with coefficient b can be absorbed

into the definition of the constant ZX , while the quadratically divergent piece with coefficient

a can be absorbed into the definition of the constant Zm. This would eliminate the infinite

contributions of the unregulated Σ(p2) while leaving behind only the finite self-energy con-

tribution Σ′(p2). Identification of the divergent pieces would rely on fitting functions to the

self energy integral over variations in both p2 and Λ2, but this becomes difficult due to the

numerical techniques we must generally use to solve nonperturbative equations of motion.

Instead, we choose to employ a renormalization scheme based on momentum subtraction.

We first choose an arbitrary external momentum scale µ2
2 at which to define the value of Zm.

This yields:

Zm =
1

m2

( −i
∆XX(µ2

2)
− ZXµ2

2 − ZgΣ(µ2
2)

)
(3.16)

Substituting back into (3.14), we obtain:

−i
∆XX(p2)

=
−i

∆XX(µ2
2)

+ ZX
(
p2 − µ2

2

)
+ Zg

(
Σ(p2)− Σ(µ2

2)
)
. (3.17)

Choosing a second arbitrary external scale µ2
1, we solve for the value of ZX :

ZX =
1

(µ2
1 − µ2

2)

( −i
∆XX(µ2

1)
− −i

∆XX(µ2
2)
− Zg

(
Σ(µ2

1)− Σ(µ2
2)
))

, (3.18)

and substitute its value into (3.17), which yields our fully renormalized form for the propa-

gator’s equation of motion:
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−i
∆XX(p2)

=

(
p2 − µ2

2

µ2
1 − µ2

2

) −i
∆XX(µ2

1)
+

(
µ2

1 − p2

µ2
1 − µ2

2

) −i
∆XX(µ2

2)

+ Zg

[
Σ(p2)−

(
p2 − µ2

2

µ2
1 − µ2

2

)
Σ(µ2

1)−
(
µ2

1 − p2

µ2
1 − µ2

2

)
Σ(µ2

2)

]
. (3.19)

We can substitute the form of Σ(p2) from (3.15) and confirm that only contributions from the

finite piece Σ′(p2) contribute to renormalized solution ∆XX(p2). We have thus successfully

used the constants ZX and Zm to absorb the unphysical divergences, and replaced our

dependence on those unspecified constants by dependence on our input parameters ∆XX(µ2
1)

and ∆XX(µ2
2). The values for ∆XX(µ2

i ) can be chosen as practically any value, and along

with the µi they serve to set the momentum scales for the renormalized quantities. In cases

where the properties of a quantum field theory can be observed and measured, for example,

one could set the propagator functions to known or deduced values which produce agreement

with observables. In considering theories as “toy models” without a direct link to physical

data, the scales are still set by these parameters but do not have a direct interpretation as

dimensionally meaningful quantities. Any results of our computations which were obtained

using a toy model approach will be described as such to remind the reader that there is not

a direct physical meaning to the units of momentum and they instead are to be understood

only as proportions relative to the values of momenta chosen as renormalization points.

Finally, we note that renormalization of the gap equation did not determine the value

of Zg, nor are there any divergences left to be eliminated. The preferred interpretation

in this work is that the vertex renormalization factors should be left to the treatment of

that interaction’s equation of motion until being determined. Since all of the theories we

consider here are truncated at the level of propagator equations of motion, these constants

are regarded as arbitrary and so we choose to absorb all factors Zgi into the definition of their

corresponding couplings. A situation in which there are multiple interactions constrained by

gauge symmetry will be discussed in §3.4.4.
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3.2 φ4 THEORY

The first theory we will use to demonstrate the nonperturbative methods of the Schwinger-

Dyson equations is φ4 theory. This theory contains only a single interacting field φ, and is

described by the Lagrangian:

L =
1

2
(∂µφ)(∂µφ)− m2

0

2
φ2 − λ

4!
φ4. (3.20)

( )
−1

= + − +

Figure 9: Schwinger-Dyson Master Equation for φ4 theory.

( )
- 1

=)(
- 1

+ +

Figure 10: Schwinger-Dyson equation of motion for the phion propagator in φ4 theory.

: iλ

Figure 11: Perturbative vertex for φ4 theory.

As a bosonic field theory with field operators defined through their commutation rela-

tions, the “phion” field of φ4 theory can be treated nonperturbatively through the same

diagrammatic rules defined for the gluon-type fields of §2.3: Schwinger-Dyson Equations.
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The Schwinger-Dyson master equation for this theory is shown in Figure 9. The only ex-

plicit modification to the diagrammatic rules (aside from superficial changes in appearance)

is the definition of the perturbative interaction vertex as shown in Figure 11.

We identify that the perturbative form for the propagator is given by:

∆
(0)
φφ(p2) =

i

p2 −m2
0

, (3.21)

while we define the dressing function for the nonperturbative propagator as:

∆φφ(p2) = iFM(p2), (3.22)

where we include the superscript M to indicate the function as defined in Minkowski space.

The equation of motion for the phion propagator is shown in Figure 10. Using the dressing

function F (p2), we cast this in symbolic form as:

FM −1
(p2) = p2 −m2

0 −
iλ0

2

∫
d4q

(2π)4
FM(q2)

+
iλ0

6

∫
d4qd4k

(2π)8
Γ

(4)
φ(q+ p2 )φ(k+ p2 )φ(−q−k)φ(−p)

× FM

((
q +

p

2

)2
)
FM

((
k +

p

2

)2
)
FM

(
(q + k)2) . (3.23)

In order to obtain the equation in Euclidean space where our parametrization of hyper-

spherical coordinates (discussed in §3.1.1) can be applied, we perform the Wick rotation and

observe:

FM(p2
M)→ FE(p2) = −FM(p2

M) ≡ F (p2). (3.24)

We also choose to truncate the equation with the perturbative vertex Γ(4) = iλ0, which

yields:
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F−1(p2) = p2 +m2
0 −

λ0

2

∫
d4q

(2π)4
F (q2)

− λ2
0

6

∫
d4qd4k

(2π)8
F

((
q +

p

2

)2
)
F

((
k +

p

2

)2
)
F
(
(q + k)2) (3.25)

The renormalization of φ4 theory is carried out through the introduction of field and

mass Z-factors defined by:

φ0 → Z
1
2
φ φr, (3.26)

m2
0

2
→ Zφm

2
0

2
≡ Zmm

2
r

2
, (3.27)

where we understand all unlabeled couplings and field variables appearing before this point to

have represented the unrenormalized quantities, while all unlabeled quantities which follow

in our discussion of φ4 theory will be understood as renormalized.

We define the value of the propagator F (p2) at two external scales, as an example of the

“toy model” case discussed in §subsection:RenormalizationPractice, solving for the values of

Zφ and Zm. As discussed, the renormalization in this fashion naturally introduces a regulator

based on momentum subtraction. Schematically representing our equation of motion (3.25),

we can express this as:

F−1(p2) = Zφp
2 + Zmm

2 − I1 − I2(p2), (3.28)

where I1 and I2(p2) are shorthand for the loop integrals in (3.25). We note especially that

the term I1 from the tadpole diagram of Figure 10 is independent of the external momentum.

As a result, this loop integral gets entirely absorbed by the mass renormalization factor Zm,
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and does not influence the dressed propagator F (p2) in any way. The renormalized form for

the gap equation is:

F−1(p2) =

(
p2 − µ2

2

µ2
1 − µ2

2

)
F−1(µ2

1) +

(
µ2

1 − p2

µ2
1 − µ2

2

)
F−1(µ2

2)

−
[
I2(p2)−

(
p2 − µ2

2

µ2
1 − µ2

2

)
I2(µ2

1)−
(
µ2

1 − p2

µ2
1 − µ2

2

)
I2(µ2

2)

]
. (3.29)
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Figure 12: Plot of the phion propagator F (p2) as obtained from the nonperturbative equation of motion.
The propagator was renormalized using the toy model convention with F (0) = 1 and F (10, 000) = 1

10,000 .
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An example of a nonperturbative solution to (3.29) is shown in Figure 12. This solution

was obtained with λ2 = 10000, as attempts to solve the gap equation for couplings of O(1000)

or below displayed very little departure from the perturbative form. The relative weakness of

the self-energy in this case is likely due to the truncation to perturbative self-interaction and

lack of further momentum dependence in the integration kernel. We shall see an example in

§3.4.6 where a similar two-loop diagram has a more significant effect on the propagator with

O(1) coupling constants.

3.3 QED

Quantum Electrodynamics (QED) consists of a fermion theory describing electrons and a

U(1) gauge theory describing photons. QED is described by the Lagrangian:

LQED = −1

4
FµνF

µν + ψ
(
i��D −m

)
ψ + Lgauge (3.30)

where:

Fµν = DµAν −DνAµ, (3.31)

Dµ = ∂µ + ieAµ. (3.32)

We will be considering QED in covariant gauge, so we define the gauge-fixing term:

Lgauge = −λ
2

(∂ · A)2 (3.33)
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Figure 13: Photon Schwinger-Dyson Master Equation
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Figure 14: Electron Schwinger-Dyson Master Equation

3.3.1 Electrons

Considering the electron field first, we obtain the bare gap equation as shown diagrammati-

cally in Figure 16:

SM
−1

(p) = −i (�p−m)− ie
∫

d4q

(2π)4
Γψ(p)A

A
ν (q−p)ψ(q)

SM(q)γµP
µν(q − p)GM(q − p). (3.34)

We cast this equation into a pair of equations for scalar dressing functions defined by the

ansatz SM
−1

(p) = −i
(
AM (p2) �p−BM (p2)

)
. The integrands appearing in the equations of

motion are more conveniently expressed in terms of the functions:

σMV (p2) =
AM(p2)

(AM(p2))2 p2 − (BM(p2))2 , (3.35)

σMS (p2) =
BM(p2)

(AM(p2))2 p2 − (BM(p2))2 . (3.36)

We extract the equations for the quark propagator’s dressing functions by performing traces

over the Dirac indices. The necessary traces to obtain these are given by:
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Figure 15: Perturbative vertex for QED
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Figure 16: Electron Gap Equation

AM(p2) =
i

4p2
TrDirac

[
�p S

M −1
(p)
]
, (3.37)

BM(p2) =
−i
4

TrDirac

[
SM

−1
(p)
]
. (3.38)

Applying these traces to (3.34), we obtain:

AM(p2) = 1 +
1

4p2
e

∫
d4q

(2π)4
TrDirac

[
�pΓψ(p)A

A
ν (q−p)ψ(q)

SM(q)γµ

]
P µν(q − p)GM(q − p) (3.39)

BM(p2) = m− 1

4
e

∫
d4q

(2π)4
TrDirac

[
Γψ(p)A

A
ν (q−p)ψ(q)

SM(q)γµ

]
P µν(q − p)GM(q − p) (3.40)

The truncations or vertex models we will investigate employ only tensor structures which

may contain a scalar function multiplied by the perturbative vertex ieγνV
M(q, p). As such,

the traces can be explicitly carried out to yield:
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AM(p2) = 1 +
ie2

p2

∫
d4q

(2π)4
σMV (q2)GM(q − p)V M(q, p)

×
(

2q2p2 + 4(p · q)2 − 3(p2 + q2)p · q
q2 + p2 − 2q · p

)
(3.41)

BM(p2) = m− 3ie2

∫
d4q

(2π)4
σMS (q2)GM(q − p)V M(q, p) (3.42)

In order to obtain these equations of motion in Euclidean space, we must perform a Wick

rotation. Any further appearance of an unlabeled four-momentum in the electron equation

is to be understood as Euclidean, and we observe that the consequences of Wick rotation

are:

AM(p2
M)→ AE(p2) = AM(−p2

M) ≡ A(p2), (3.43)

BM(p2
M)→ BE(p2) = BM(−p2

M) ≡ B(p2), (3.44)

σMV,S(p2
M)→ σEV,S(p2) = −σMV,S(−p2

M) ≡ σV,S(p2), (3.45)

GM(p2
M)→ GE(p2) = −GM(−p2

M) ≡ G(p2), (3.46)

V M(qM , pM)→ V E(q2, p2, q · p) = V M(−q2
M ,−p2

M ,−qM · pM) ≡ V (q, p), (3.47)

and so the Euclidean space equations of motion for the electron propagator are given by:

A(p2) = 1− e2

∫
d4q

(2π)4
σV (q2)G

(
(q − p)2

)
V (q, p)

× q2

2 + 4x2 − 3
(
p
q

+ q
p

)
x

q2 + p2 − 2qpx

 (3.48)

B(p2) = m+ 3e2

∫
d4q

(2π)4
σS(q2)G

(
(q − p)2

)
V (q, p) (3.49)
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Figure 17: Photon Gap Equation

3.3.2 Photons

Our treatment of the photon propagator will be done exclusively in covariant gauges, with

a specific intent on working in Landau gauge. The Schwinger-Dyson equation for the pho-

ton propagator is shown diagrammatically in Figure 17. Considering first the perturbative

propagator’s contribution to this equation, we find that this quantity is given by:

Covariant gauge : ∆(0)
µν (p) =

(−i)
(
gµν + 1−λ

λ

pµpν
p2

)
p2 − µ2 + iε

, (3.50)

Feynman gauge : ∆(0)
µν (p) =

(−i)gµν
p2 − µ2 + iε

, (3.51)

Landau gauge : ∆(0)
µν (p) =

(−i)
(
gµν − pµpν

p2

)
p2 − µ2 + iε

≡ (−i) Pµν(p)

p2 − µ2 + iε
, (3.52)

where we have defined the transverse projection tensor Pµν(p). The dressed propagators will

be defined using the dressing functions:
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Covariant gauge : ∆µν(p) = (−i)
[
Pµν(p)G

M
C (p2) +

1

λ

pµpν
p4

]
, (3.53)

Feynman gauge : ∆µν(p) = (−i)
[
Pµν(p)G

M
F (p2) +

pµpν
p4

]
, (3.54)

Landau gauge : ∆µν(p) = (−i)Pµν(p)GM(p2) ≡ (−i)Pµν(p)
ZM(p2)

p2
. (3.55)

Starting from the general forms in covariant gauge, we observe that the inverse propagator

appearing in the equation of motion (Figure 17 or (3.58)) can be expressed in the form:

i

GM
C (p2)

(
gµν +

(
λp2GM

C (p2)− 1
) pµpν
p2

)
. (3.56)

As such, we eliminate the dependence on Lorentz indices by contracting both sides with the

projection tensor P µν(p). This yields:

P µν(p) (∆µν(p))
−1 =

3i

GM
C (p2)

. (3.57)

We thus find that the scalar dressing function GM
C (p2) for any covariant gauge can be ex-

tracted in this manner. Now restricting ourselves to Landau gauge, we find the symbolic

form for the photon propagator’s equation of motion to be:

1

GM(p2)
=

1

GM (0) (p2)
−e

3
P µν(p)

∫
d4q

(2π)4
TrDirac

[
γµS

M(q − p)Γψ(q−p)Aν(p)ψ(q)S
M(q)

]
(3.58)

As described in §3.3.1, the equations of motion will be truncated at the vertex level with

either perturbative quantities or a model vertex which is proportional to the perturbative

vertex and written as ieγνV
M(q−p, q). This allows us to perform the trace over Dirac indices

explicitly, to obtain:
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1

GM(p2)
=

1

GM (0) (p2)
− 4ie2

3

∫
d4q

(2π)4
V M(q − p, q)

{
3σMS

(
(q − p)2

)
σMS (q2)

−
(

4q2 − 3q · p+ 2
(q · p)2

p2

)
σMV (

(
(q − p)2

)
σMV (q2)

}
(3.59)

We now perform the Wick rotation to obtain the Euclidean-space form for this equation

of motion. All unlabeled four-momenta for the remaining discussion of QED are to be

understood in Euclidean space. The effect on our dressing functions is found to be:

GM(p2
M)→ GE(p2) = −GM(−p2

M) ≡ G(p2), (3.60)

σMV,S(p2
M)→ σEV,S(p2) = −σMV,S(−p2

M) ≡ σV,S(p2), (3.61)

V M(qM − pM , qM)→ V E(q2, p2, q · p) = V M(−q2
M ,−p2

M ,−qM · pM) ≡ V (q − p, q), (3.62)

which yields:

1

G(p2)
=

1

G(0)(p2)
+

4e2

3

∫
d4q

(2π)4
V (q − p, q)

{
3σS

(
(q − p)2

)
σS(q2)

+

(
4q2 − 3q · p+ 2

(q · p)2

p2

)
σV (
(
(q − p)2

)
σV (q2)

}
(3.63)
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3.3.3 QED Interactions

= - +-

Figure 18: Electron-Photon Vertex Equation.

The equations of motion for electrons (3.48) and (3.49) and photons (3.63) which we

consider here are to be truncated by introducing models for the electron-photon vertex. The

perturbative truncation yields:

Γ
(0)

ψAµψ
= ieγµ, (3.64)

which can be implemented in the equations of motion for the electron and photon propagators

by choosing V (q, p) = 1.

The other truncation option we explore is to implement a vertex model for the electron-

photon interaction based on the Ward-Takahashi Identities (WTIs) [40,68] of QED. The ap-

propriate WTI for this interaction is given by:

pµΓµ(q, k, p) = −e
[
S−1(q)− S−1(k)

]
, (3.65)

where p = q−k. The vertex model [7] based on this identity is known as the Ball-Chiu vertex.

The simplest solution which satisfies this identity based on the longitudinal constraints was

found to be:

ΓBC µ (q, k, p) = ie

[
A(q2) + A(k2)

2
γµ

+

(
�q+�k

2

)(
A(q2)− A(k2)

)
+
(
B(q2)−B(k2)

)
q2 − k2

(q + k)µ

]
. (3.66)
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For the purposes of this work, we will only be retaining the leading term of this vertex model

which is proportional to γµ, and will refer to this as the “Central Ball-Chiu” (CBC) vertex:

ΓCBC µ (q, k, p) = ie
A(q2) + A(k2)

2
γµ. (3.67)

This model can be introduced into the equations of motion for electron and photon propa-

gators by choosing V (q, p) = A(q2)+A(p2)
2

.

3.3.4 QED Renormalization

In order to renormalize the equations of motion for QED, Z-factors are introduced into the

Lagrangian (3.30) by the substitutions:

ψ0 (ψ0)→ Z
1
2
Fψr

(
Z

1
2
Fψr

)
, (3.68)

ZFm0 → Zmmr, (3.69)

A0 → Z
1
2
AAr, (3.70)

where, as in φ4 theory, we understand all prior unlabeled variables in our equations of motion

for QED as having been bare quantities and all that follow as the renormalized ones.

In order to perform our renormalization of the photon equation (which exhibits quadratic

divergences in our regularization scheme), it is necessary to introduce some means of absorb-

ing this divergence into our renormalization factors. It has been explicitly demonstrated

in QED [41] that the introduction of a photon mass term into the Lagrangian, which we

shall express as Lµ2 =
µ20
2
A · A, and renormalize it with a mass Z-factor as described in

§subsection:RenormalizationPractice. The introduction of a momentum cutoff regulator in

the loop integrals of (3.63) introduces mass-like terms into the dressed photon propagator,
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and so the photon mass term serves only to cancel those contributions and restore the gauge-

symmetry of the propagator. The renormalization of this mass term then follows according

to:

ZAµ
2
0 → Zµµ

2
r. (3.71)

Finally, the field renormalization constants and unrenormalized charge e0 represent an-

other undetermined parameter of the theory. The vertex renormalization factor is thus

defined as:

Z
1
2
AZfe0 → Zee. (3.72)

The approach to determining these renormalization factors follows the general description

of §3.1.3. The Z-factors defined in (3.68)-(3.71) are determined by fixing the values of A, B,

or G at appropriate external momentum scales.

Since we are not considering the Schwinger-Dyson equation for the electron-photon ver-

tex, we will not be explicitly determining the vertex Z-factor (3.72). For the computations

described here, we choose to absorb the factor Ze into the definition of the coupling e.

As shown in our discussion of the renormalization strategy in §3.1.3, we will determine

these Z-factors such that they naturally introduce momentum subtraction terms into the

loop integrals of (3.48), (3.49), and (3.63). If we schematically represent the equations of

motion as:

A(p2) = ZF − IA(p2), (3.73)

B(p2) = Zmm+ IB(p2), (3.74)

1

G(p2)
= ZAp

2 + Zµµ
2 + IG(p2), (3.75)
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then we obtain for the renormalized forms:

A(p2) = A(µ2
F )−

(
IA(p2)− IA(µ2

F )
)
, (3.76)

B(p2) = B(µ2
F ) +

(
IB(p2)− IB(µ2

F )
)
, (3.77)

1

G(p2)
=

(
p2 − µ2

2

µ2
1 − µ2

2

)
1

G(µ2
1)

+

(
µ2

1 − p2

µ2
1 − µ2

2

)
1

G(µ2
2)

+

[
IG(p2)−

(
p2 − µ2

2

µ2
1 − µ2

2

)
IG(µ2

1)−
(
µ2

1 − p2

µ2
1 − µ2

2

)
IG(µ2

2)

]
. (3.78)

3.3.5 Results

A sample of nonperturbative results for QED are shown in Figure 19, which were ob-

tained with e2 = 1 and renormalization conditions of A(9 GeV2) = 1.1, B(9 GeV2) = .11,

G(.01 GeV2) = 100, and G(9 GeV2) = 4
30

. Since QED features a coupling which approaches

the perturbative value in the IR (unlike QCD, which features asymptotic freedom in the UV

regime), we arrange for these renormalization conditions to approach perturbation theory

at low momentum. In particular, we emphasize that the photon propagator G(p2) ∝ 1
p2

at

our IR external scale. Surprisingly, the photon propagator we obtain features the general

shape of the decoupling (IR-finite) solutions for gluons in QCD. While it may be argued that

this is due to the introduction of an (unphysical) bare photon mass term into the theory,

we acknowledge that previous treatments [41] demonstrate that such modifications can still

respect the U(1) gauge symmetry in the dressed theory. In order to demonstrate that the

renormalization was successful, the plots of Figure 19 are shown with two different sets of

momentum grid points, Nq = 40 and Nq = 80. We observe that the photon solution and

the electron dressing function B(p2) are stable under the variation in grid size, while the

electron dressing function A(p2) seems to demonstrate dependence on the grid spacing in
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Figure 19: Plot of the electron propagator dressing functions A and B and the photon propagator dressing
functions G and Z under a variation in momentum grid resolution. Solutions were obtained with g2 = 1 and
the set of toy model renormalization parameters shown in Table 2.

the UV. Recalling that QED is a low-momentum approximation to the Electroweak theory,

we instead focus on the agreement of our various solutions in the IR and intermediate mo-

mentum regions. The observed consistency suggests that this is the proper behavior of the

nonperturbative dressing functions in QED, and thus we aim to expand these techniques to

investigations of QCD.
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A(9) 1.1

B(9) .11

G(.01) 1
.01

G(9) 1.2
9

Table 2: Toy model renormalization parameters for the QED propagator functions of Figure 19.

3.4 QCD

Quantum Chromodynamics (QCD) consists of a fermion theory describing quarks and an

SU(3) Yang-Mills theory describing gauge particles called gluons. QCD behaves according

to the Lagrangian introduced as (1.1):

LQCD = −1

2
TrSU(3) [FµνF

µν ] + ψ(i��D −m)ψ + Lgauge + Lgh, (1.1)

where:

Aµ = TAAAµ (3.79)

Fµν = DµAν −DνAµ, (3.80)

Dµ = ∂µ + igsT
AAAµ . (3.81)

The fundamental degrees of freedom are the quark and gluon fields, ψ(ψ) and A. The

defining gauge symmetry of QCD is SUColor(3), which results in 3 color charge values for

the quark sector and 8 color charge values for the Yang-Mills sector. These color charges

are defined using the traceless 3 × 3 Gell-Mann matrices TA ≡ λA

2
in the fundamental

representation. The properties of these matrices which will be used here are [44]:
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[
TA, TB

]
= ifABCTC (3.82)

Tr
[
TATB

]
=
δAB

2
(3.83)

fCDAfCDB = CAδ
AB (3.84)

fDEAfDFBfEFC =
CA
2
fABC (3.85)

fACDfBEFfCEGfDFG =
C2
A

2
δAB (3.86)

CF =
N2
C − 1

2NC

=
4

3
(3.87)

CA = NC = 3 (3.88)

The theory will be considered here in covariant gauge, specifically the Landau gauge.

This gauge fixing is accomplished by introducing a gauge term (1.5) into the Lagrangian:

covariant : Lgauge = −λTrSU(3)

[
(∂ · A)2

]
, (1.5)

which produces the desired form for a general covariant gauge. Landau gauge is obtained by

taking the limit λ→∞ once the equations of motion are defined. The equations of motion

are obtained through functional derivatives of the Schwinger-Dyson master equations, which

are shown in Figures 20–22.

= ( )−1 −
A

−

Figure 20: Quark Schwinger-Dyson Master Equation
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Figure 21: Ghost Schwinger-Dyson Master Equation
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A

+A A −
A

−

−
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− +
A

AA

−

A

+

Figure 22: Gluon Schwinger-Dyson Master Equation

3.4.1 Quark Sector

Treating the quark fields first, we obtain the gap equation (also shown diagrammatically in

Figure 23):

SM
−1

(p) = −i(�p−m)− gsTA
∫

d4q

(2π)4
Γψ(p)A

A
ν (q−p)ψ(q)

SM(q)γµP
µν(q − p)GM(q − p).

(3.89)

This is cast into scalar integrals using the ansatz SM
−1

(p) = −iδab
(
AM(p2)�p−BM(p2)

)
.

For convenience in expressing the involvement of quark propagators inside of loop integrals,

we introduce the functions:
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Figure 23: Quark Gap Equation

σMV (p2) ≡ AM(p2)

AM 2 (p2)p2 − BM 2 (p2)
, (3.90)

σMS (p2) ≡ BM(p2)

AM 2 (p2)p2 − BM 2 (p2)
.

In order to extract our scalar functions from the quark gap equation, we observe that

AM(p2) = i
12p2

TrDirac,SU(3)

[
�p S

M −1
(p)
]

and BM(p2) = −i
12

TrDirac,SU(3)

[
SM

−1
(p)
]
. Applying

these projectors, we obtain:

AM(p2) =

1− i

12p2
gsTrSU(3)

[
TA
∫

d4q

(2π)4
TrDirac

[
�pΓ

(3)

ψ(p)A
ν
(q−p)ψ(q)

SM(q)γµ
]
Pµν(q − p)GM(q − p)

]
,

(3.91)

BM(p2) =

m+
i

12
gsTrSU(3)

[
TA
∫

d4q

(2π)4
TrDirac

[
Γ

(3)

ψ(p)A
ν
(q−p)ψ(q)

SM(q)γµ
]
Pµν(q − p)GM(q − p)

]
.

(3.92)

As we will see in §3.4.3, the truncations and vertex models we will consider for the quark-

gluon interaction are all proportional to the perturbative vertex. We can thus perform the

traces to find:
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AM(p2) = 1 +
i

3p2
g2
sTrSU(3)

[
TATA

] ∫ d4q

(2π)4
σMV
(
q2
)
GM
(
(q − p)2

)
V M
q (q, p)

×
(

2q2p2 + 4(p · q)2 − 3(p2 + q2)p · q
q2 + p2 − 2q · p

)
, (3.93)

BM(p2) = m− ig2
sTrSU(3)

[
TATA

] ∫ d4q

(2π)4
σMS
(
q2
)
GM
(
(q − p)2

)
V M
q (q, p), (3.94)

where V M
q (q, p) will be determined by the choice of truncation or model.

In order to obtain expressions in Euclidean space, we perform the conventional Wick

rotation. For the remaining discussions of the quark sector, any unmarked momenta are to

be understood as Euclidean 4-vectors. We observe:

AM(p2
M)→ AE(p2) = AM(−p2

M) ≡ A(p2), (3.95)

BM(p2
M)→ BE(p2) = BM(−p2

M) ≡ B(p2), (3.96)

σMV,S(p2
M)→ σEV,S(p2) = −σMV,S(−p2

M) ≡ σV,S(p2), (3.97)

GM(p2
M)→ GE(p2) = −GM(−p2

M) ≡ G(p2), (3.98)

V M
q (qM , pM)→ V E

q (q2, p2, q · p) = V M
q (−q2

M ,−p2
M ,−qM · pM) ≡ Vq(q, p). (3.99)

Our quark gap equations can thus be expressed in terms of purely Euclidean variables,

where we define x ≡ p·q
|p| |q| as discussed in §3.1.1. Thus:

A(p2) = 1− 4

3
g2
s

∫
d4q

(2π)4
σV
(
q2
)
G
(
(q − p)2

)
Vq(q, p)

2 + 4x2 − 3x
(
p
q

+ q
p

)
q2 + p2 − 2qpx

 , (3.100)

B(p2) = m+ 4g2
s

∫
d4q

(2π)4
σS
(
q2
)
G
(
(q − p)2

)
Vq(q, p). (3.101)
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Figure 24: Ghost Gap Equation

3.4.2 Yang-Mills Sector

3.4.2.1 Ghosts The SU(3) gauge invariance (as shown by the method of Faddeev and

Popov [26]) demands that the ghost fields be included. In any covariant gauge, one must add

to the Lagrangian a term (1.6) given by:

Lgh = −cA
(
δAB� + fACBAC · ∂

)
cB (1.6)

The gap equation for the ghost field is (also shown diagrammatically in Figure 24):

HM −1AB
(p2) =− ip2δAB

+ gsfECB

∫
d4q

(2π)4
ΓcA

(p)
ACµ (q−p)c

D
(q)
δDEHM

(
q
)
P µν(q − p)GM

(
(q − p)2

)
qν ,

(3.102)

The perturbative propagator can be obtained from the first term of this equation, which

yields:

HM AB

(0) (p2) =
iδAB

p2
, (3.103)

while the dressed propagator has the form:

HM AB
(p2) = iδABHM(p2) = iδAB

hM(p2)

p2
(3.104)
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As we had for the quarks, we will note in §3.4.3 that all of the truncations and models

we employ for the ghost-gluon vertex are proportional to their perturbative interaction. We

are thus free to perform all tensor contractions to find:

HM −1AB
(p2) =− ip2δAB

+ g2
sNcδ

AB

∫
d4q

(2π)4
HM

(
q2
)
GM
(
(q − p)2

)
V M
c (q, p)

(
p2q2 − (p · q)2

q2 + p2 − 2q · p

)
.

(3.105)

We now perform the Wick rotation to obtain this gap equation in Euclidean space. For

the remainder of our discussions of ghost gap equations, any reference to unmarked momenta

should be understood as Euclidean 4-vectors. We make the observation:

HM(p2
M)→ HE(p2) = −HM(−p2

M) ≡ H(p2), (3.106)

hM(p2
M)→ hE(p2) = hM(−p2

M) ≡ h(p2). (3.107)

V M
c (qM , pM)→ V E

c (q2, p2, q · p) = V M
c (−q2

M ,−p2
M ,−qM · pM) ≡ Vc(q, p) (3.108)

The Euclidean space ghost gap equation is thus given by:

H−1(p2) = p2 − g2
sNc

∫
d4q

(2π)4
H
(
q2
)
G
(
(q − p)2

)
Vc(q, p)

(
p2q2(1− x2)

q2 + p2 − 2qpx

)
. (3.109)

We prefer to write the gap equation in terms of the dressing function h(p2), thus:

h−1(p2) = 1− g2
sNc

∫
d4q

(2π)4
h
(
q2
)
G
(
(q − p)2

)
Vc(q, p)

(
1− x2

q2 + p2 − 2qpx

)
. (3.110)
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Figure 25: Gluon Gap Equation

3.4.2.2 Gluons We will consider the gluon field in the covariant gauges. First, we obtain

the free field propagators from the terms in the Lagrangian

Covariant gauge : ∆(0)AB

µν (p) =
(−i)δAB

(
gµν + 1−λ

λ

pµpν
p2

)
p2 − µ2 + iε

(3.111)

Feynman gauge : ∆(0)AB

µν (p) =
(−i)δABgµν
p2 − µ2 + iε

(3.112)

Landau gauge : ∆(0)AB

µν (p) =
(−i)δAB

(
gµν − pµpν

p2

)
p2 − µ2 + iε

≡ (−i)δAB Pµν(p)

p2 − µ2 + iε
(3.113)

While the dressed propagators become:
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Covariant gauge : ∆AB
µν (p) = (−i)δAB

[
Pµν(p)G

M
C (p2) +

1

λ

pµpν
p4

]
(3.114)

Feynman gauge :∆AB
µν (p) = (−i)δAB

[
Pµν(p)G

M
F (p2) +

pµpν
p4

]
(3.115)

Landau gauge :∆AB
µν (p) = (−i)δABPµν(p)GM(p2) ≡ (−i)δABPµν(p)

ZM(p2)

p2
(3.116)

This equation features more terms than either the quarks or ghosts, so we will represent

the diagrams of Figure 25 in schematic form, with the labels corresponding to the loop

diagrams in the order shown:

(
∆AB
µν (p)

)−1
=
(

∆(0)AB

µν (p)
)−1

−
((

GM
1

)AB
µν

+
(
GM

2

)AB
µν
−
(
GM

3

)AB
µν
−
(
GM

4

)AB
µν

+
(
GM

Sunset

)AB
µν

+
(
GM

Squint

)AB
µν

)
(3.117)

Since we intend to work primarily in Landau gauge, we will extract the scalar dressing

function for the gluon propagator. First, in general covariant gauge we have

(
∆AB
µν (p)

)−1
=

iδAB

GM
C (p2)

(
gµν + (λp2GM

C (p2)− 1)
pµpν
p2

)
. (3.118)

We eliminate the Lorentz indices by contracting both sides with P µν(p). Tracing over color

indices, we then obtain:

TrSU(3)

[
P µν(p)

(
∆AB
µν (p)

)−1
]

=
24i

GM
C (p2)

, (3.119)
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which tells us that the scalar dressing function GC(p2) for any covariant gauge can be ex-

tracted by this method. We thus conclude that the Landau gauge gap equation would be

given by

i

GM(p2)
=

i

GM (0) (p2)

− 1

24
TrSU(3)

[
P µν(p)

(
GM

1 +GM
2 −GM

3 −GM
4 +GM

Sunset +GM
Squint

)AB
µν

]
, (3.120)

where all of the Gi which contribute to vacuum polarization are considered explicitly in

Landau gauge.

We will present each diagram in two symbolic forms, one comprised of the tensors which

appear from application of the nonperturbative diagrammatic rules, and one containing the

symbolic results of carrying out the contractions of all indices. Both forms are to be under-

stood in Euclidean space, as all factors pertaining to Wick rotation have already been taken

into account. Simplifying our notation, we introduce the following definitions in Euclidean

space and are to now understand all unmarked momenta as Euclidean 4-vectors. We observe:

GM(p2
M)→ GE(p2) = −GM(−p2

M) ≡ G(p2), (3.121)

GM
i (p2

M)→ GE
i (p2) =

−i
24
GM
i (−p2

M) ≡ Gi(p
2). (3.122)

This results in our general form for the Euclidean equation of motion for the gluon

propagator:

1

G(p2)
=

1

G(0)(p2)
+ TrSU(3)

[
P µν(p) (G1 +G2 −G3 −G4 +GSunset +GSquint)

AB
µν

]
, (3.123)

where for convenience we have absorbed the factor 1
24

from (3.119) into the definition of

the Euclidean Gi. As with the other fields, our gap equation can be expressed in terms
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of purely Euclidean momentum variables. Since the general gluon equation features the

nonperturbative two-loop diagrams GSunset and GSquint, it is necessary to introduce a second

loop variable kµ. We thus define the orientation with respect to pµ via y ≡ p·k
|p| |k| , and the

projection on qµ according to w ≡ q·k
|q| |k| , both as described in §3.1.1.

For brevity, we will also employ the shorthand Gi ≡ TrSU(3)

[
P µν(p) (Gi)

AB
µν

]
. The con-

tributions to vacuum polarization from each of the diagrams is thus:

G1 =

(
1

2

)(
1

24

)
g2
sTrSU(3) [FABCC ]

∫
d4q

(2π)4
P µν(p)Pαβ(q)V µναβG(q2) (3.124)

=
g2
sNC

3

∫
d4q

(2π)4
(7− x2)G(q2), (3.125)

G2 =

(
1

2

)(
1

24

)
g2
sTrSU(3) [fACDfBCD]

∫
d4q

(2π)4
G
(
q2
)
G
(
(q − p)2

)
P µν(p)Pαβ(q)P γδ(q − p)

Vµαγ(p,−q, q − p)Vνβδ(−p,−q + p, q) (3.126)

= −2g2
sNc

3

∫
d4q

(2π)4
G
(
q2
)
G
(
(q − p)2

)
×
(

3p4 + 3q4 − 6p3qx− 6pq3x+ p2q2 (8 + x2)

p2 + q2 − 2pqx

)(
1− x2

)
, (3.127)

G3 =

(
1

24

)
g2
sTrSU(3)

[
TATB

] ∫ d4q

(2π)4
P µν(p)TrDirac [γµS(q − p)γνS(q)] (3.128)

=
g2
sNCCF

6

∫
d4q

(2π)4

[
3σS
(
(q − p)2

)
σS
(
q2
)

+
(
q2
(
1 + 2x2

)
− 3qpx

)
σV
(
(q − p)2

)
σV
(
q2
)]
, (3.129)

70



G4 = −
(

1

24

)
g2
sTrSU(3) [fACDfBCD]

∫
d4q

(2π)4

h
(
q2
)

q2

h
(
(q − p)2

)
(q − p)2

(q − p)µP µν(p)qν (3.130)

= −g
2
sNC

3

∫
d4q

(2π)4
h
(
q2
)
h
(
(q − p)2

) 1− x2

q2 + p2 − 2qpx
, (3.131)

GSunset = −
(

1

6

)(
1

24

)
g4
sTrSU(3) [FACDEFBCDE]

∫
d4q d4k

(2π)8
G
(
q2
)
G
(
k2
)
G
(
(p− q − k)2

)
P µν(p)Pαα′(k)P ββ′(p− q − k)P γγ′(q)

VµαβγVνα′β′γ′ (3.132)

= −
(

1

12

)
g4
sN

2
C

∫
d4q d4k

(2π)8
G
(
q2
)
G
(
k2
)
G
(
(p− q − k)2

)
(3.133)

× 2

[
q2
(
11 + x2 + w2(1 + x2) + 4wxy

)
+ k2

(
11 + y2 + w2(1 + y2) + 4wxy

)
+ qk

(
w(23 + 2x2 + 2y2 + w2) + xy(3 + 5w2)

)
− pq

(
23x+ x3 + 3wy + 5wx2y + 2w2x+ 2xy2

)
− pk

(
23y + y3 + 3wx+ 5wxy2 + 2w2y + 2x2y

)
+ p2

(
11 + x2 + y2 + x2y2 + 4wxy

)]
×
[

1

p2 + k2 + q2 − 2kpy − 2qpx+ 2qkw

]
. (3.134)

71



GSquint = −
(

1

2

)(
1

24

)
g4
sTrSU(3) [FACEDfDEF fBCF ]

×
∫
d4q d4k

(2π)8
G
(
q2
)
G
(
k2
)
G
(
(q + k)2

)
G
(
(p− q − k)2

)
Pµν(p)Pαα

′
(k)P ββ

′
(q)P γγ

′
(q + k)P δδ

′
(p− q − k)

VµδαβVβ′α′γ(−q,−k, k + q)Vνδ′γ′(p, k + q − p,−k − q) (3.135)

= −g
4
sN

2
C

4

∫
d4q d4k

(2π)8
G
(
q2
)
G
(
k2
)
G
(
(q + k)2

)
G
(
(p− q − k)2

)
× 4

[
q6
(
3− 3x2 − w2(3− x2) + 2wxy

)
+ k6

(
3− 3y2 − w2(3− y2) + 2wxy

)
+ q5k

(
13w(1− w2)− 3wx2(3− w2)− 2xy(3− 5w2) + 2wy2

)
+ qk5

(
13w(1− w2)− 3wy2(3− w2)− 2xy(3− 5w2) + 2wx2

)
+ q4k2

(
9− 2x2(3− w4) + w2(7− 16w2)− 2wxy(8− 7w2)− 3y2(1− 3w2)

)
+ q2k4

(
9− 2y2(3− w4) + w2(7− 16w2)− 2wxy(8− 7w2)− 3x2(1− 3w2)

)
+ q3k3

(
2w(13− 11w2 − 2w4)− 4xy(3− w4)− w(x2 + y2)(7− 11w2)

)
− pq5

(
x(5− 7w2)− x3(5− w2) + 2wy + 4wx2y

)
− pk5

(
y(5− 7w2)− y3(5− w2) + 2wx+ 4wxy2

)
− pq4k

(
2wx(5− 8w2)− wx3(6− w2) + y(5 + w2)− x2y(15− 13w2) + 7wxy2

)
− pqk4

(
2wy(5− 8w2)− wy3(6− w2) + x(5 + w2)− xy2(15− 13w2) + 7wx2y

)
+ pq3k2

(
− 2x(5− 5w2 − 2w4) + x3(5− 7w2) + 15xy2

− 4wy(3− 2w2) + wx2y(16− 7w2)− 3wy3 − 19w2xy2
)

+ pq2k3
(
− 2y(5− 5w2 − 2w4) + y3(5− 7w2) + 15x2y

− 4wx(3− 2w2) + wxy2(16− 7w2)− 3wx3 − 19w2x2y
)

+ p2q4
(
5− x2(5− w2)− 5w2 + 4wxy

)
+ p2k4

(
5− y2(5− w2)− 5w2 + 4wxy

)
+ p2q3k

(
12w(1− w2)− wx2(6− w2)− 2xy(5− 6w2) + 3wy2

)
+ p2qk3

(
12w(1− w2)− wy2(6− w2)− 2xy(5− 6w2) + 3wx2

)
+ p2q2k2

(
10− 2w2(3 + 2w2)− 2wxy(5− 3w2)− (x2 + y2)(5− 7w2)

)]
×
[

1

(k2 + q2 + 2qkw)(p2 + k2 + q2 − 2pky − 2pqx+ 2qkw)

]
, (3.136)
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Figure 26: Quark-Gluon Vertex Equation

3.4.3 QCD Interactions

The Schwinger-Dyson equations for higher N -point 1PI correlation functions describe the

interaction vertices present within QCD. As discussed in Section 2.3.3, we observe that these

equations of motion couple to progressively higher interaction vertices of the nonperturbative

quantum field theory. Figures 26–29 show the Schwinger-Dyson equations for the nonpertur-

bative interactions of QCD which correspond to a dressing of one of the perturbative vertices

(i.e. these are the only vertex equations which contain an inhomogeneous term given by one

of the perturbative interactions). The solution of these vertex equations lies beyond the

scope of this work, but recent efforts [22,36] have begun including these equations into the

coupled set of equations being solved.

The first interaction to consider is that of the quark-gluon vertex, whose Schwinger-Dyson

equation is shown in Figure 26. The perturbative form of this equation is given by:

Γ
(0)

ψAAµψ
= igsT

Aγµ. (3.137)

The vertex model we will consider is similar to the Ball-Chiu [7] vertex of QED, and in

fact, the original QED vertex model was explored in a paper published back-to-back with a

second which explored the extension to QCD [8]. As the QED Ball-Chiu vertex was designed

to satisfy the (longitudinal) constraints of the Ward-Takahashi Identities (WTIs), we seek a

generalization which satisfies the corresponding constraints of the Slavnov-Taylor Identities
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(STIs) of QCD. Due to the influence of the Ball-Chiu model on nonperturbative studies of

gauge symmetries in both QED and QCD, the generalizations considered in QCD will still be

referred to as the “Ball-Chiu Vertex”. We will in fact be considering a set of closely related

models [2,28,30] which differ by the extent to which the ghost dependence of the Slavnov-Taylor

identity (3.138) has been considered in generalizing the original Ball-Chiu vertex model.

The appropriate Slavnov-Taylor identity to govern the quark-gluon vertex is given by:

pµΓAµ (q, k, p) = −gsTAh(p)
[
S−1(q)Kqc(q, k, p)−Kqc(k, q, p)S

−1(k)
]
, (3.138)

where p ≡ q − k is the gluon momentum and Kqc(Kqc) refers to the quark-ghost scattering

kernel (and adjoint). Treatment of the vertex appearing in this identity is made far more

complicated than the case in QED due mainly to the influence of Kqc. The form for this

vertex which will be used in the present study involves retaining only the “Central” term

of the resulting Ball-Chiu (BC) vertex, which will be henceforth referred to as the “Central

Ball-Chiu” (CBC) vertex:

ΓnCBC
A
µ (q, k, p) = igsT

Aγµh
n(p2)

A(q) + A(k)

2
, (3.139)

where we allow the exponent of h(p2) to vary as a means of parametrizing the influence of

ghost fields on the quark-gluon vertex. Choosing a value of n = 1 corresponds to neglecting

the quark-ghost scattering kernel in 3.138 and having only the explicit dependence on h(p2)

appear in the vertex model. We will find that a faithful replication of the lattice data is aided

by considering a more significant influence of the ghost propagator, specifically the n = 2

form [2] for the vertex model as suggested by Aguilar & Papavassiliou. When introducing

this vertex model into (3.100) and (3.101), we can now make the identification:

Vq(q, p) = hn
(
(q − p)2

)A(q2) + A(p2)

2
, (3.140)

and we note also that setting Vq = 1 would instead implement a truncation using only the

perturbative vertex (3.137).
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Figure 27: Ghost-Gluon Vertex Equation

The next interaction we consider is that of the ghost-gluon vertex, whose Schwinger-

Dyson equation is shown in Figure 27. In its perturbative form, the interaction is given

by:

Γ
(0)

cAABµ c
C = gsf

ABCkµ, (3.141)

where k corresponds to the incoming ghost momentum.

Modeling of the nonperturbative ghost-gluon interaction has also been considered by von

Smekal, Hauck, and Alkofer [67] who employed a direct treatment of the BRST invariance due

to the lack of previous publication of the corresponding STI. They neglect the possibility of

ghost-ghost scattering, and obtain:

ΓABCµ (q, k) = gsf
ABCkµ

(
h(p2)

h(k2)
+
h(p2)

h(q2)
− 1

)
, (3.142)

where k is again the incoming ghost momentum, q is the outgoing ghost momentum, and

p = q − k is the incoming gluon momentum. Introducing this vertex model into (3.110) is

accomplished by the identification of:

Vc(q, p) =

(
h
(
(q − p)2

)
h(q2)

+
h
(
(q − p)2

)
h(p2)

− 1

)
, (3.143)

while a choice of Vc = 1 would instead truncate the ghost equation with the perturbative

vertex of (3.141).
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Figure 28: 3-Gluon Vertex Equation

Next we consider the 3-gluon vertex, whose Schwinger-Dyson equation is shown in Figure

28. The perturbative form of this interaction is given by:

Γ
(0)

AAαA
B
β A

C
γ

(p1, p2, p3) = gsf
ABCVαβγ(p1, p2, p3) (3.144)

= gsf
ABC [gαβ(p2 − p1)γ + gγα(p1 − p3)β + gβγ(p3 − p2)α] , (3.145)

where the momenta p1, p2, and p3 are defined in the same cyclical order as the color and

Lorentz indices.

The Slavnov-Taylor identities have also been used to build model vertices [57,67] for the

3-gluon interaction. The appropriate STI for these models is given by:

pρ3Γµνρ(p1, p2, p3) = −ih(p2
3)

[
KcA

σ
µ (−p3, p2)Pσν(p2)

p2
2

Z(p2
2)
− KcA

σ
ν (−p3, p1)Pσµ(p1)

p2
1

Z(p2
1)

]
,

(3.146)
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where p1, p2, and p3 are the four-momenta for each gluon leg, and KcA(KcA) refers to the

ghost-gluon scattering kernel.

The model developed by Pennington and Wilson [57] is built by neglecting the contribution

of the ghost-gluon scattering kernel in (3.146), and can be written in the form:

ΓPWABC

µνρ (p1, p2, p3) = fABC
[
Ã+

(
p2

1, p
2
2; p2

3

)
gµν(p2 − p1)ρ et cycl.

]
, (3.147)

(where et cycl. implies two additional terms obtained by cyclic permutation of the Lorentz

indices) with:

Ã+

(
p2

1, p
2
2; p2

3

)
=
h(p2

3)

2

(
1

Z(p2
1)

+
1

Z(p2
2)

)
(3.148)

Another model was developed by von Smekal, Hauck, and Alkofer [67] which incorporates

the ghost-gluon scattering kernel into (3.146) as it was obtained for their model of the ghost-

gluon vertex (3.142). This vertex model can be written in the form:

ΓvSHAABC

µνρ (p1, p2, p3) = fABC

{[
A+

(
p2

1, p
2
2; p2

3

)
gµν(p2 − p1)ρ + A−

(
p2

1, p
2
2; p2

3

)
gµν(p1 + p2)ρ

− 2
A− (p2

1, p
2
2; p2

3)

p2
1 − p2

2

(
gµνp1 · p2 − p1 ν p2 µ

)
(p2 − p1)ρ

]
et cycl.

}
,

(3.149)

where:

A±
(
p2

1, p
2
2; p2

3

)
=
h(p2

3)

2

(
h(p2

2)

h(p2
1)Z(p2

1)
± h(p2

1)

h(p2
2)Z(p2

2)

)
(3.150)

In the interest of our equations of motion for the propagators, and working specifically

in Landau gauge, we recognize that each gluon leg of this vertex (either through internal

lines or a transverse projector with respect to external momentum) will be acted upon by
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a transverse projection tensor Pαβ(pi) with the momentum of that same leg. In the second

term of the vertex model (3.149), we note that conservation of four-momentum tells us that

(p1 + p2) = −p3, and so:

P ρ′ρ(p3) (p1 + p2)ρ = P ρ′ρ(p3)
(
− p3 ρ

)
= 0.

Also, in the third term of this model vertex we observe the structure p1 ν p2 µ. Conservation

of four-momentum tells us that p1 = − (p2 + p3) and p2 = − (p1 + p3). Thus:

P µ′µ(p1)P ν′ν(p2)
[
p1 ν p2 µ

]
= P µ′µ(p1)P ν′ν(p2)

[
(p2 + p3)ν (p1 + p3)µ

]

= P µ′µ(p1)P ν′ν(p2)
[
p3 µ p3 ν

]
, (3.151)

and so in Landau gauge the model vertex can be equivalently written as:

ΓvSHAABC

µνρ (p1, p2, p3) = fABC

{[
A+

(
p2

1, p
2
2; p2

3

)
gµν(p2 − p1)ρ

− 2
A− (p2

1, p
2
2; p2

3)

p2
1 − p2

2

(
gµνp1 · p2 − p3 ν p3 µ

)
(p2 − p1)ρ

]
et cycl.

}
.

(3.152)

We also consider an approximate form to this vertex model, in which we note that h(p2)

and Z(p2) are O(1) for wide ranges of momenta. As such, the assumption that A+ � A−

results in an approximate form for the interaction:

ΓvSHA′ ABC

µνρ (p1, p2, p3) = fABC
{[
A+

(
p2

1, p
2
2; p2

3

)
gµν(p2 − p1)ρ

]
et cycl.

}
. (3.153)
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Finally, we introduce a third 3-gluon interaction model, based on the analytic forms for

the models discussed thus far. We consider also a “hybrid” interaction, which is similar to the

Pennington-Wilson model but simply neglects the influence of the ghost dressing function:

ΓhybridABC

µνρ (p1, p2, p3) = fABC
{[
A′+
(
p2

1, p
2
2; p2

3

)
gµν(p2 − p1)ρ

]
et cycl.

}
. (3.154)

with:

A′+
(
p2

1, p
2
2; p2

3

)
=

1

2

(
1

Z(p2
1)

+
1

Z(p2
2)

)
(3.155)

The vertex models (3.147) and (3.153) have been introduced primarily for consideration in

§4.3: Glueballs. Our treatment in §3.4.5 and §3.4.6 of the equations of motion for the various

propagators of QCD will tend not to employ vertex models for the gluon-self interactions

(unless already included in published forms [46,67] of the gluon equations we study).

Figure 29: 4-Gluon Vertex Equation
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The final interaction of QCD which corresponds to dressing a perturbative vertex is the

4-gluon interaction, whose equation of motion is shown in Figure 29. Any published efforts

to model this vertex based on BRST invariance or well-established STIs are unknown to the

author at this time. The inclusion of this vertex in Schwinger-Dyson equations as a non-

perturbative entity has only recently been explored [22]. For the purposes of our calculations

here, we will make use of the perturbative form of the interaction, which is:

Γ
(0)
4

αβγδ

ABCD = −ig2
sFABCDV

αβγδ (3.156)

= −ig2
s

[
fiABfiCD(gαγgβδ − gαδgβγ)

+ fiACfiDB(gαδgβγ − gαβgγδ)

+ fiADfiBC(gαβgγδ − gαγgβδ)
]
. (3.157)

3.4.4 QCD Renormalization

In order to renormalize the equations of motion for QCD, we introduce Z-factors into the

Lagrangian (1.1). The factors introduced are defined as:

ψ0

(
ψ0

)
→ Z

1
2
Fψr

(
Z

1
2
Fψr

)
(3.158)

ZFm0 → Zmmr (3.159)

c0 (c0)→ Z
1
2
c cr

(
Z

1
2
c cr

)
(3.160)

A0 → Z
1
2
AAr (3.161)

In addition to these renormalization factors, we introduce a bare gluon mass term
µ20
2
A ·A

into the Lagrangian as well, in an effort to formalize our ability to absorb and eliminate the
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quadratic divergences we find in (3.123) (This is analogous to how we used the mass term

in renormalizing the photon propagator in QED). This term is then renormalized according

to:

ZAµ
2
0 → Zµµ

2
r. (3.162)

Finally, we acknowledge the introduction of Z-factors to each of the vertex terms of the

Lagrangian. We define separate renormalization factors for each such coupling:.

Z
1
2
AZFg0 → ZgF gF , (3.163)

Z
1
2
AZcg0 → Zgcgc, (3.164)

Z
3
2
Ag0 → Zg3Ag3A, (3.165)

Z2
Ag

2
0 → Zg4Ag

2
4A, (3.166)

but note that they are constrained by the gauge symmetry of QCD [66]. This symmetry

requires that the definitions of (3.163)-(3.166) share only a single free parameter. The con-

straints can be expressed as:

(
ZgF gF
ZF

)2

=

(
Zgcgc
Zc

)2

=

(
Zg3Ag3A

ZA

)2

=
Zg4Ag

2
4A

ZA
. (3.167)

The general approach to determining these factors again relies on the general approach

as laid out in §3.1.3. Each Z-factor of (3.158)-(3.162) is determined by fixing the value of

one of the scalar dressing functions A, B, h, or G at appropriate external momentum scales.

For our treatment of QCD, we choose these values to agree with the scales used in lattice
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studies [15,16] of the same propagator functions, and so we can identify the units of these

momentum scales and dressing functions as indicated in the plots of our results.

Determination of the vertex Z-factors (3.163)-(3.166) lies beyond the scope of the trun-

cated set of Schwinger-Dyson equations which we are considering here. It is the author’s

opinion that renormalization of the vertices through their own equations of motion is the

appropriate procedure for determining these factors in a way which is most consistent with

(3.167). For the present treatment, we choose to absorb each vertex factor Zgi into the defini-

tion of its corresponding coupling gi, and evaluate our equations of motion with independent

inputs for each coupling with the exception of holding g2
3A = g2

4A.

The result of our renormalization strategy is that the Zi naturally introduce momentum

subtractions, each of which serves to absorb a divergence which results from the loop integrals

of Figures 23-25, and is as a result determined by one of the computation’s input parameters.

If we represent the gap equations schematically as:

A(p2) = ZF − IA(p2), (3.168)

B(p2) = Zmm+ IB(p2), (3.169)

1

h(p2)
= Zc − Ih(p2), (3.170)

1

G(p2)
= ZAp

2 + Zµµ
2 +

∑
i

Gi(p
2), (3.171)

then we obtain for the renormalized equations:
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A(p2) = A(µ2
F )−

(
IA(p2)− IA(µ2

F )
)
, (3.172)

B(p2) = B(µ2
F ) +

(
IB(p2)− IB(µ2

F )
)
, (3.173)

1

h(p2)
=

1

h(µ2
c)
−
(
Ih(p

2)− Ih(µ2
c)
)
, (3.174)

1

G(p2)
=

(
p2 − µ2

2

µ2
1 − µ2

2

)
1

G(µ2
1)

+

(
µ2

1 − p2

µ2
1 − µ2

2

)
1

G(µ2
2)

+
∑
i

[
Gi(p

2)−
(
p2 − µ2

2

µ2
1 − µ2

2

)
Gi(µ

2
1)−

(
µ2

1 − p2

µ2
1 − µ2

2

)
Gi(µ

2
2)

]
. (3.175)

The set of parameters chosen for the various couplings gi serve as a means to evaluate

how successfully the gauge invariance of our solutions has been maintained, by proxy of a

comparison in the context of (3.167).

3.4.5 Truncation Examples

3.4.5.1 Swimming with Quarks Pennington’s Swimming with Quarks [58] considers a

presentation of QCD in which only the quark equations (3.100) and (3.101) are considered

dynamically. The truncations imposed on these equations is to employ the perturbative

gluon propagator and quark-gluon vertex, which can be included as:

GSwQ(p2) = G(0)(p2) =
1

p2
(3.176)

Vq(q, p) = 1 (3.177)
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The gap equations for this truncation allow all external momenta to be expressed through

either the integration kernel or the perturbative gluon propagator. As such, all angular

variables appear in well-defined analytical expressions, and thus the angular integrals can be

carried out explicitly. Performing these integrals yields gap equations involving only a single

integration:

A(p2) = ZF , (3.178)

B(p2) = ZFm+
g2
F

4π2

∫
ds′ σS(s′)

[
Θ
(
s′ − p2

)
+
s′

p2
Θ
(
p2 − s′

)]
, (3.179)

where in Landau gauge we find that upon angular integration the self-energy contribution

to (3.178) vanishes. As a result, we simply use the perturbative value of A(p2) = ZF = 1.

The step functions can be used to assign integration bounds, which display the dependence

on the external momentum p2 in an easily accessible way.

B(p2) = ZFm+
g2
F

4π2

[∫ p2

0

ds′
s′

p2
σS(s′) +

∫ ∞
p2

ds′ σS(s′)

]
(3.180)

This form of the integrals can be used to obtain a differential form for the quark gap equation.

By applying d
ds
≡ d

d(p2)
, we obtain the differential form:

d

ds

(
s2dB

ds

)
= − g2

F

4π2
sσS(s) (3.181)

We note especially that the quark’s mass renormalization does not appear in this expres-

sion. This implies that both the bare and renormalized solutions to the gap equations obey

the same differential equation, and are thus solutions within the same “family of curves”

which exhibit this behavior. Substitution of (3.181) into (3.180) yields a set of boundary

conditions for the solutions of the differential equation. These boundary conditions are:
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[
s2dB

ds

]
s=0

= 0 (3.182)

[
B(s) + s

dB

ds
− ZFm

]
s→∞

= 0 (3.183)

Our method of solving these differential forms is to perform a stepping operation in

momentum space, generating the solution from a fixed value and slope at p2 = 0. Due to

the nature of the differential equation, we will find that the boundary condition at s → ∞
is satisfied automatically. In order to prime our solution with the proper slope, we must

examine the asymptotic solutions in the IR region. Making the assumptions that s2 d2B
ds2
�

2sdB
ds

, we obtain the asymptotic form of the differential equation:

dB

ds
= − g2

F

8π2

1

B
(3.184)

We can solve this equation for B(s), which yields:

B(s)
s→0
=

√
B2(0)− g2

F

4π2
s (3.185)

The solution to this quark model can thus be solved in two ways, either through the

iterative method described in §3.1 Numerical Methods, or through a numerical differential

equation solver. A comparison of the results from these two methods is shown in Figure

30, in which the differential solution was primed with the same value of B(0) which was

implemented in the renormalization of the integral equation. The agreement between these

two forms demonstrates that the renormalization in this model is equivalent to selecting a

specific solution out of the “family of curves” by an arbitrary choice of boundary conditions.
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Figure 30: Comparison of solutions to the Swimming with Quarks [58] model obtained through the inte-
gral form (3.180) and the differential form (3.184). Solutions were obtained with g2 = 50 and toy model
renormalization parameter (or boundary condition) B(0) = 5.

3.4.5.2 Fits to Lattice Gluons Another level of sophistication can be added to the

quark-only dynamical model which started in Swimming with Quarks. In that section we

had considered the quarks under the influence of a specific gluon model: the perturbative

propagator. Generalizing that method, we consider the quark gap equation where G can be

replaced by an arbitrary analytical expression. This expression can relate to any of a number

of gluon models, including the Maris-Tandy model [48,49], a perturbative model based on a

massive color-charged boson, or any other desired form. For the present example, in order

to make contact with Glueballs [50], we choose to employ analytical models based on fits to

the lattice gluon results of Bogolubsky et al. [15]. The lattice data is shown in Figure 32.
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Figure 31: Comparison of solutions to the Swimming with Quarks [58] model which have: (a) Identical (toy

model) boundary conditions of B(0) = .3 but coupling values of α ≡ g2

4π = 3 (red) and α = 10 (purple), and
(b) Identical coupling α = 3 but different (toy model) boundary conditions B(0) = .3 (blue) and B(0) = .6
(green).

Our fit to the Lattice gluon data was based on an “entire” model for the gluon function,

in which the form is analytically defined as an entire function with a branch cut along

the negative real axis. It has been suggested [5] that this type of analytical behavior could

function in such a way as to automatically incorporate confinement into QCD models due

to the lack of any poles which could be associated with a propagating particle. The best fit

in this form was obtained to be:

GEntire(p
2) = 1.409

(
1.0− e−2.0(p2−1.144)

p2 − 1.144

)
. (3.186)

In addition to the gluon models based on in-house fitting to the lattice data, we also

considered published forms for the gluon propagator. One particular form was a fit [2] to

similar lattice data using more sophisticated expressions. The best fit under these conditions
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Figure 32: Plot of the Lattice Gluon Propagator as provided by Bogolubsky et al. [15]

was shown to be:

GAP(p2) =
1

M2(p2) + p2
(

1 + 13
32

g2

π2 ln
[
p2 + 8.55M2(p2)

4.32

]) , (3.187)

where:

M2(p2) =
.5204

p2 + .5202
. (3.188)

The final gluon model we will consider here is the one presented by Maris and Tandy [49].
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The general form for this model is given by:

GMT(p2) =
1

p2

 πω6
Dp4e−

p2

ω2 +

2πγm

(
1− e−

q2

4m2
t

)
ln

[
τ +

(
1 + q2

Λ2
QCD

)2
]
 . (3.189)

We implement the parameter set used by Williams [70] as listed in Table 3.

ω .4

D .933

γm
12

33−2∗6

mt .5

τ e2 − 1

ΛQCD .234

Table 3: Set of parameters for the Maris-Tandy gluon propagator model.

The various analytic fits to the gluon propagator G(p2) were applied to the quark equa-

tions (3.100) and (3.101) as well as the ghost equation (3.110). The introduction of vertex

models is left in the general sense, to explore the possible results that could be obtained with

the various truncations and models discussed in §3.4.3.

In Figure 33 we show various solutions of the quark propagator’s equations of motion

with the Aguilar-Papavassiliou and Maris-Tandy gluon models as defined in (3.187) and

(3.189). These solutions were obtained with the perturbative quark-gluon vertex truncation.

In the investigation of dynamical Chiral Symmetry Breaking (XSB), we note that the mass

renormalization parameter Zm of (3.169) does not exist in the theory. As such, only the field

renormalization ZA can be carried out, and thus the equation for B(p2) can only be rendered

finite if the resulting solution either vanishes or tends to zero in the UV more strongly than

A(p2). This allows us to explore the phenomena of XSB in great detail, as a given gluon

propagator model can produce the necessary XSB when the coupling is increased beyond a
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Figure 33: Demonstration of dynamical chiral symmetry breaking using the (a) Maris Tandy and (b) Aguilar-
Papavassiliou gluon propagator models. Note that XSB solutions do not allow for renormalization of the
equation for B(p2), but the renormalization parameter A(9 GeV2) = 1 was used, where the units of GeV
arise from the scales introduced by the lattice G(p2).

certain critical value g2 > g2
crit. The critical value of coupling depends strongly on the gluon

model employed in the equations, and we observe that the Maris-Tandy model produces XSB

at a smaller coupling than what we show for the Aguilar-Papavassiliou model. The ability

of these equations to incorporate arbitrary functions G(p2) with or without the inclusion

of vertex models provide a robust framework for evaluating the behavior of quarks under

varying behavior in the gluon propagator or the quark-gluon interaction.

Figure 34 shows that the computation can produce a wide array of results in the quark

sector. Various cases involve unbroken chiral symmetry, XSB, and the dressing of massive

quarks. These solutions were obtained using the entire gluon model (3.186), with a variety

of couplings g2. We observe that the XSB cases require a critical coupling to dynamically

generate a quark mass, but that the cases involving perturbatively massive quarks produce

a nontrivial dressing for any value of coupling.

Finally, we consider the ability of these gluon models to reproduce available lattice data

90



 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1e-06  0.0001  0.01  1  100  10000  1e+06

A
(p

2 )

p2 (GeV2)

Massive, g2=1
Massive, g2=4
Massive, g2=8

Chiral, g2=4
Chiral, g2=4.93

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-06  0.0001  0.01  1  100  10000  1e+06

B
(p

2 ) 
(G

eV
)

p2 (GeV2)

Massive, g2=1
Massive, g2=4
Massive, g2=8

Chiral, g2=4
Chiral, g2=4.93

Figure 34: Plots of the quark propagator dressing functions A and B using the n = 2 CBC vertex and a
variety of couplings and perturbative masses, obtained using the entire gluon model. The renormalization
parameters A(9 GeV2) = 1 and (for massive quark cases) B(9 GeV2) = .65 GeV were used, and again the
entire model fit to the lattice G(p2) implies units of GeV.

for the quarks and ghosts. Figure 35 shows comparisons of our solutions with the quark lattice

data of Bowman et al. [16] and the ghost lattice data of Bogolubsky et al [15]. The entire gluon

model (3.186) was used for these computations. The quark equation was considered using

perturbative vertices and the n = 0 CBC vertex, while the ghost equation was considered

with a perturbative vertex but allowing for extra enhancement by a factor of h(p2
gluon) in

the dressed vertex. We find that the potential agreement of quarks with the lattice data

are improved slightly by the vertex model, but there is significant difficulty in obtaining a

convincing match. We will revisit this difficulty in §3.4.6, and comment further on the role

of vertex models. We find that the perturbative vertex solution for the ghost propagator

can be tuned into good agreement with the lattice data, but the ad-hoc enhancement of

the ghost-gluon interaction does not yield satisfactory results. Consideration of the ghost-

gluon vertex model discussed in §3.4.3 will be considered in the fully-coupled propagator

system, but we will find there also that the ghost results support the idea [3,19] that the ideal

ghost-gluon vertex model will be very similar to the perturbative interaction.
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Figure 35: Plots using the entire gluon model of the quark propagator dressing functions A and M = B
A with

perturbative and n = 0 CBC vertices in comparison to the quenched massive quark lattice data of Bowman
et al [16]. Renormalization parameters A(9 GeV2) = 1 and B(9 GeV2) = .033 GeV were used.

3.4.5.3 Mandelstam’s Equation In Mandelstam’s QCD approximation scheme [46], the

gluon gap equation is considered first as truncated by considering only the gluon loop dia-

gram in the vacuum polarization. It is argued that the Ward Identities serve to truncate the

dressed 3-gluon vertex which remains, and that in doing so both the dressed vertex and one

of the gluon propagators in the loop are replaced by their perturbative forms. Due to the

more involved dependence on external momentum as compared to the quark equations of

Swimming with Quarks, this equation will only be considered in its integral form. Mandel-

stam had intended that the renormalization conditions would enforce a 1/p behavior in Z(p),

which at the time was believed to be the necessary condition for confinement. We choose

here instead to introduce the field renormalization factor ZA and (alternatively) either the

gluon mass Zµ or coupling Zg renormalization factors according to our general scheme. The

unrenormalized form of his equation is:
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1

Z(p2)
= ZA + Zµ

µ2

p2
+
Zgg

2

16π2

[∫ p2

0

d(q2)

p2

(
7

8

q4

p4
− 25

4

q2

p2
− 9

2

)
Z(q2)

+

∫ Λ2

p2

d(q2)

p2

(
7

8

p4

q4
− 25

4

p2

q2
− 9

2

)
Z(q2)

]
(3.190)
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Figure 36: Results for the gluon propagator functions G and Z from Mandelstam’s equation under two
different approaches to renormalization. The solutions were obtained with g2 = 1 and renormalization
parameters were G(0 GeV2) = 10 GeV−2 and G(.01 GeV2) = 1

.01 GeV2.

The numerical approach to solving (3.190) was conducted in a number of ways to explore

the robustness of our renormalization and numerical techniques. Since the renormalization

intentions of Mandelstam are no longer in line with the modern understanding of confined

gluon behavior (in particular the infrared behavior of decoupling or scaling solutions for

the propagator), we take the liberty of introducing renormalization factors as described in

§3.4.4 and implementing multiple interpretations of the Z-factors mentioned. Comparison

of results from the various methods employed are shown in Figure 36, where the solutions

were obtained in both schemes with identical values for the dressing functions at the same

external scales µ2
1 and µ2

2 and the same coupling g2 = 1. The first approach would be to fol-

low our conventional description exactly, and introduce both field and mass renormalization
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factors while absorbing Zg into the coupling g2. What results is a renormalized equation

taking a form as described in (3.175). Our alternative scheme was to abandon the mass

renormalization approach, and instead try to use the as-yet undetermined vertex renormal-

ization factor Zg to serve as the means to absorb quadratic divergences. This method yields

the renormalized equation:

1

Z(p2)
=

(
Z2(µ2

2)− Z2(p2)

Z2(µ2
2)− Z2(µ2

1)

)
1

Z(µ2
1)

+

(
Z2(p2)− Z2(µ2

1)

Z2(µ2
2)− Z2(µ2

1)

)
1

Z(µ2
2)
. (3.191)

where we have introduced the notation Zi(p
2) = Gi(p

2)
p2

. Solutions based on this method

display unusual characteristics, notably that the field renormalization factor ZA becomes

vestigial and serves only to fix the value of Z(p2) at some external scale without actually ab-

sorbing any divergence. Comparison of solutions obtained with ZA determined as described,

or simply set as ZA = 1, are practically equivalent (modulo a small scaling factor) provided

that µ1 lies in the region where asymptotic freedom takes effect. The reason for this is

shown by consideration of what Zg does when its renormalization is performed in the gap

equations, which is to filter out the finite coefficient of the leading divergence while elimi-

nating the contribution of any lower divergence. As such, only the quadratically divergent

pieces of G2 can actually contribute to the vacuum polarization in this equation of motion,

and only finite coefficients of those divergent portions can appear. The solution obtained

through the mass renormalization scheme displays the general shape characteristics of the

lattice studies [15] and looks distinctly different from the results of the vertex renormalization

scheme. We interpret this difference to amount to an inconsistency in the meaning of the

coupling g2 in these two cases, and that the same physics should still result if the couplings

were instead tuned to produce similar shapes for the solutions.

3.4.5.4 vSHA Equations In the same work [67] which discussed the ghost-gluon model

and one of the 3-gluon models of §3.4.3, von Smekal, Hauck, and Alkofer applied their vertex

models to the propagators of the Yang-Mills sector. The resulting equations possessed a form
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in which the angular integrals could be done analytically, and so again we consider integral

equations involving only a single integration. The equations of motion for both gluon and

ghost propagators in this approach were found to be (with augmentation of our gluon mass

term, to be discussed below):

1

Z(p2)
= ZA + Zµ

µ2

p2
+ Zg

g2

16π2

Nc

3

[∫ p2

0

d(q2)

p2

(
7

2

q4

p4
− 17

2

q2

p2
− 9

8

)
h(q2)Z(q2) (3.192)

+

∫ Λ2

p2

d(q2)

p2

(
7

8

p2

q2
− 7

)
h(q2)Z(q2)

]

+
g2

16π2

Nc

3

[
3

2

∫ p2

0

d(q2)

p2

q2

p2
h(p2)h(q2) +

1

2

∫ Λ2

p2

d(q2)

q2
h2(q2)− 1

3
h2(p2)

]
,

1

h(p2)
= Zc −

g2

16π2

3Nc

4

[
1

2
h(p2)Z(p2) +

∫ Λ2

p2

d(q2)

q2
h(q2)Z(q2)

]
. (3.193)

This system of propagator equations of motion will be considered, as was done for Man-

delstam’s equation, under two approaches to renormalization. The first of these methods is

that which was described generally in §3.4.4 using a gluon mass term to absorb quadratic

divergences, while the second approach is analogous to the vertex renormalization described

in §3.4.5.3 and uses the gluon propagator’s equation to determine the vertex renormalization

factor Zg. This second method produces a slightly different form in this case, because we

observe in (3.192) and (3.193) that the vertex renormalization factor only appears on the

gluon loop term G2 in the gluon propagator’s equation. It may be difficult to recognize that

this is the same diagram which we called G2 in our general discussion, but the appearance

of the combination h(q2)Z(q2) instead of a pair of gluon propagators is a result of the ver-

tex model employed. The vertex-based renormalization approach, if we start from a gluon

equation in the schematic form:

1

Z(p2)
= ZA + ZgZ2 + Z4, (3.194)
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Figure 37: Results of the von Smekal, Hauck, and Alkofer propagator equations for the Yang-Mills system
under two different approaches to renormalization of the gluon equation. Solutions were obtained with g2 =
.11 and renormalization parameters G(0 GeV2) = 10 GeV−2, G(.01 GeV2) = 1

.01 GeV2, and h(16 GeV2) =
1.24.

then this approach results in the renormalized equation:
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1

Z(p2)
=

(
Z2(µ2

2)− Z2(p2)

Z2(µ2
2)− Z2(µ2

1)

)
1

Z(µ2
1)

+

(
Z2(p2)− Z2(µ2

1)

Z2(µ2
2)− Z2(µ2

1)

)
1

Z(µ2
2)

+

[
Z4(p2)−

(
Z2(µ2

2)− Z2(p2)

Z2(µ2
2)− Z2(µ2

1)

)
Z4(µ2

1)−
(
Z2(p2)− Z2(µ2

1)

Z2(µ2
2)− Z2(µ2

1)

)
Z4(µ2

2)

]
.

(3.195)

We show in Figure 37 a comparison of our solutions to these equations (3.192) and (3.193)

as obtained through the two renormalization methods. Unlike the plot we presented for

Mandelstam’s equation, we find that the two sets of solutions are very similar to each other

and at the level of visual inspection are practically indistinguishable. We thus conclude

that the interpretation of the coupling g2 in this particular model is relatively insensitive

to the details of renormalization procedure and so our solutions from the two methods are

physically equivalent. While obtaining these solutions, it was noted that although agreement

between the two renormalization methods was very good, both methods also suffered from

severe numerical stability problems. The plots of Figure 37 were obtained as before with

identical sets of renormalization parameters and coupling, but are shown for the case where

g2 = .11. Any attempts to increase the coupling much beyond this value caused unstable

and non-converging numerical behavior in both schemes. It may be pointed out that the

step functions which represent the integration bounds of these equations result in integrands

which are, in various cases, either non-continuous or continuous and not smooth. Since

our numerical integration algorithms are based on Gauss-Legendre grids over the full four-

momentum space as discussed in §3.1.1, they are not well suited to resolving the transition

regions of these integrands, and numerical errors are likely to be introduced as a result.

3.4.6 Fully Coupled System

The final truncation we will discuss here [51] involves consideration of the fully coupled system

of equations (3.100), (3.101), (3.110), and (3.123). The dressing functions for the quark,
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ghost, and gluon propagators are all considered dynamically in the Landau gauge. The

computations include the contributions of every diagram truncated and/or modeled at the

vertex level, notably including the nonperturbative two-loop diagrams of the gluon equation

(3.123) (Figure 25).

The full set of diagrams was built up slowly to explore the stability and contribution of

the various parts. The initial stage was to include the self energy diagrams in the ghost and

quark equations and only the ghost loop G4 in the gluon vacuum polarization. This implies a

coupled set of gluon and ghost equations, while the quarks depend only on the output of the

gluon equation with no feedback. The next inclusion was the gluon loop G2, which presented

certain numerical difficulties. Since the asymptotic behavior of the gluon propagator features

more prominently in the renormalized convergence of this loop than the O(1) ghost dressing

function h(p2) did in G4, it was necessary to include a more robust means of extrapolating the

UV behavior beyond our furthest grid point. An attempt was made to fit the perturbative

behavior to the highest grid point and extrapolate in this manner, but the integral did not

stabilize. We examined the behavior of our (naive) interpolation routine for G(p2), and noted

that the function was continuous but not smooth when passing over a momentum grid point.

We thus introduced a cubic spline interpolation routine to reduce the effects of discontinuous

slope, but found that it did not match smoothly onto the extrapolation routine. Finally, we

discovered that using applying the cubic spline interpolation to the propagators on a log-log

scale (e.g. ln[G(eln(p2))]) resulted in a sufficiently smooth interpolation routine which could

also produce high-fidelity extrapolation in the far UV. This algorithm was then implemented

for the other interpolations in σV,S(p2) and h(p2). Inclusion of further gluon diagrams was

much simpler beyond this point, and so the quark loop G3 and the two-loop diagrams GSunset

and GSquint were subsequently incorporated into the system with little difficulty.

The coupling values chosen for these computations can be divided into two general sets.

The original intent (which we refer to as “universal coupling”) was to employ a single,

universal coupling g2 which applied to all of the vertices of (3.163)-(3.166). The second

approach (which we refer to as “differentiated coupling”) was to independently specify the
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couplings for each vertex in an effort to most closely reproduce the lattice data [15,16] of

dressing functions for all of the propagators.

The universal coupling value was chosen to provide the best possible fit to data [15] of the

lattice gluon propagator. Plots of the various dressing functions obtained in this scheme are

shown in Figure 38. While this approach seemed to provide the most direct compatibility

to the gauge symmetry constraints of (3.167), there were a number of shortcomings in the

results. The best possible fits to the lattice gluon propagator resulted in poor agreement

with the lattice data for the other propagators’ dressing functions. In addition, the values of

universal coupling which produced good agreement with the gluon lattice data (or in fact,

any range of coupling which resulted in a stable computation of the gluon equation) were

unable to simultaneously produce dynamical chiral symmetry breaking in the quark sector.

The universal coupling scheme was also used to investigate the contribution of each loop

diagram of the gluon equation. The comparison of the various integrals is shown in Figure

39, in terms of the vacuum polarization Πi for each loop i. The expression for Πi is taken

to mean the quantity in brackets in (3.175), which is then divided by p2 and then plotted.

The expression for Πtot is obtained by considering the sum over the individual Πi as shown

in the same expression (3.175). The plots are shown for two different sets of renormalization

parameters, but there are some common observations to be made in the two cases. The

dominant contribution to the vacuum polarization for both cases is seen to come from the

gluon loop term G2. The next largest contributions arise from GSquint and then G4, again

in both cases. As expected [14], of the two-loop diagrams we find that ΠSquint � ΠSunset.

While we casually state that the contributions of the quark loop G3, the ghost loop G4,

and the sunset diagram GSunset do not contribute significantly, it has been noted [67] that

the nonlinear nature of gap equations implies that every contribution does in fact have a

fundamental impact on the solution obtained. Despite this aspect of nonlinear equations,

we can compare to simpler computations which did not include all of the diagrams and thus

observe that they were still very close approximations to the results of the more complete set

of equations and so evaluating the relative significance of the various terms is not necessarily

99



inappropriate.

The differentiated coupling approach was able to improve the over-all agreement to the

various sets of lattice data, and has the advantage that the solutions were obtained in a self-

consistent manner. We find that the shift from universal to differentiated coupling schemes

has a relatively minor impact on the solutions obtained from the gluon propagator, while at

the same time providing vastly improved fits for the quark and ghost propagators.

The comparison to quark lattice data [16] in Figure 40 shows the dressing functions A(p2)

and M(p2) ≡ B(p2)
A(p2)

. The various solution curves plotted corresponded to changes in the

quark-gluon vertex model. Solutions were obtained using the perturbative vertex (3.137)

and the CBC vertex (3.139) with various values of n. We observe that agreement with

lattice (particularly for A) is improved by use of the CBC vertex, and that as we increase

the value of n = 0, 1, 2 we obtain further improvement and our solution for A matches the

lattice data over a widening range.

The comparison to Yang-Mills lattice data [15] of Figure 41 shows the ghost and gluon

dressing functions h(p2) and G(p2) under two different sets of renormalization parameters,

with the most obvious difference being the momentum scale at which the non-IR renormal-

ization point µ2
1 of the gluon propagator’s equation of motion was matched onto the lattice.

We find that the differentiated couplings could only suffice to mimic the lattice results at the

IR and intermediate-momentum enhancement regions. Conversely, the ghost propagator’s

dressing function was relatively easy to tune into good agreement with the lattice. We can

also quantify the agreement of our ghost and gluon solutions with their respective sets of

lattice data. The anomalous dimension for each of these fields has been studied in litera-

ture [30,67,70] in the general covariant gauge, and shown to correspond to the behavior of the

correlation functions in the UV. Agreement between lattice results and the literature values

is quite strong. The established behavior for the ghost and gluon propagators are:
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G(p2) ∝ ln(p2)γG

p2
, (3.196)

h(p2) ∝ ln(p2)γh . (3.197)

The analytic values for the anomalous dimensions γG and γh in general covariant gauge at

one-loop order are given by:

γG =
3ξNc − 13Nc + 4nf

22Nc − 4nf
, (3.198)

γh =
3ξNc − 9Nc

44Nc − 8nf
, (3.199)

where ξ = 1
λ

is another popular definition for the gauge fixing parameter from Lgauge, Nc

is the number of colors in the SU(N) Yang-Mills theory (in our case, Nc = 3), and nf is

the number of fermion species to which the Yang-Mills theory has been coupled (in our case

nf = 1). The comparison of these values to our numerical results is shown in Table 4, and

is consistent with our qualitative statements regarding the agreement between our solutions

and the lattice data in the UV. The vertex models for the gluon’s self interactions in §3.4.3:

QCD Interactions have not been explicitly included in these computations due primarily to

the complicated contractions which would result in much slower computation of the two-loop

diagrams in the gluon’s equation of motion.
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3.4.7 Comparison to Other Work

The equations and results presented here in Chapter 3 reflect a mixture of original research

and reproductions of earlier work published by others. We now seek to clarify the distinction

between these efforts.

The Schwinger-Dyson equations for QCD are well-established, and so the forms presented

for various gap equations (in the sense of general vertex models or perturbative truncations)

are well within the means of any practitioner of this type of nonperturbative quantum field

theory. The diagrammatic rules and expressions presented here were a deliberate effort to

describe a self-contained means of defining this framework, and are in full agreement with

the symbolic forms which result from the functional calculus.

The default renormalization scheme presented here is common practice in the nonpertur-

bative treatment of massive fields, and so for example the renormalized equation presented

for φ4 theory are in line with standard subtractive renormalization of such equations. The

same method as applied to the gauge particles of QED and QCD are not such common

practices, and to the author’s knowledge only a consideration of massive photons [41] has ever

been seriously explored as a means of renormalizing the gap equations. The introduction

of Proca-like mass terms in these two theories are explorations into an unconventional (and

in QCD, completely new) means of rendering the gauge sector’s propagators finite. As dis-

cussed in §3.1.3, the apparent conflict between the mass term and gauge symmetry is not

actually a concern, as the mass is only introduced to absorb divergent mass-like terms which

arise in the formulation of the nonperturbative regularization of integrals over loop momenta

and thus serves to restore the gauge symmetry which the regulators would otherwise break.

There has been much discussion preceding and since the writing of Meyers and Swanson

(2014) regarding the proper means of introducing and determining Z-factors for QCD (and

Schwinger-Dyson equations in general). The common discussions in literature tend to em-

ploy means of subtracting “spurious” behavior at each iteration of the gap equations, and the

meaning of this undesired behavior evolves with the contemporary notions of confinement

and gluon behavior. It may be particularly noted however, that a recent review [37] sought to
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categorize and describe many of the renormalization strategies in current practice in order to

urge practitioners to converge on a standard method, but noted that the variation in results

from these strategies are still no more significant than the numerical and systematic errors

present in modern computations.

In the time of Mandelstam’s model [46] discussed in §3.4.5.3, it was believed that con-

finement required the gluon propagator to diverge in the IR even more strongly than the

perturbative 1
p2

behavior. In order to obtain this behavior, he parametrized the propagator

into a const.
p4

piece and a second dressing function. After solving for the constant coefficient,

the integral equation was recast to solve for the new dressing function. In our treatment of

the same equation examined by Mandelstam, we implemented the renormalization scheme

discussed in §3.4.4 along with an alternative scheme which does not use the mass term. We

obtained decoupling (IR-finite) solutions from both approaches, and have shown them here.

We are currently unaware of any other treatment which has produced a decoupling-type

solution to this particular equation.

The Yang-Mills model [67] of von Smekal, Hauck, and Alkofer incorporated a more sophis-

ticated set of vertex models. The renormalization approach used was focused predominantly

on the running coupling and information from the renormalization group (RG). They per-

formed the renormalization such that it would reproduce both the IR fixed point of QCD and

an RG-invariant running coupling, and so obtained good agreement with the asymptotic be-

havior of lattice as discussed in §3.4.6. This treatment of renormalization required in-depth

analysis of the vertex models’ behaviors in various momentum regimes, and was presented

for their models as well as the Mandelstam truncation discussed above. The equations of

motion which they obtained and solved were thus modified into a customized form for each

truncation. In our own calculations, we were interested in the ability to swap out various

vertex models in a modular fashion and so chose not to explicitly include RG considerations.

As such, we instead introduced the interpretation of our results as described, in which agree-

ment with lattice data and the asymptotic behavior were used to evaluate our solutions. Our

solutions were obtained using two different renormalization approaches as we had done for
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Mandelstam’s equation, and it was rather surprising to find that the two approaches were

in very good agreement with each other. It is also clear that the shape of our solutions

(especially in terms of Z(p2)) are not in good agreement with the lattice results, but this

shortcoming is due most likely to the rather limited range of couplings over which we could

obtain stable solutions.

The fully-coupled system of gap equations for QCD as presented in §3.4.6 were obtained

directly from the Lagrangian using the methods described in §2.3. To the author’s knowl-

edge, this research was the first instance of all diagrams present in the QCD gap equations

being included in a dynamical computation of the propagators. A previous investigation of

the nonperturbative two-loop diagrams [14] focused on evaluating the diagrams using an IR

analysis and then approximating the two-loop integrals to a one-loop form which matched

the IR behavior, and so the two-loop integrals were not actually performed across the full

range of momenta. Other investigations [22,36] which sought to expand the number of dia-

grams in the Schwinger-Dyson equations choose to maintain the gluon gap equation in terms

of the one-loop diagrams and include interactions from truncated forms of the vertex equa-

tions shown in §3.4.3. While it would be a daunting task, a future computation combining

the full suite of diagrams in the propagator equations with coupled vertex equations would

have an easy claim to the state of the art in the Schwinger-Dyson equations of QCD.
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Figure 38: Plots of the solutions to the fully coupled system of QCD propagator dressing functions under
two sets of renormalization parameters and a universal coupling value. The renormalization parameters for
quarks, ghosts, and the IR point for gluons were A(.25 GeV2) = 1.39, B(.25 GeV2) = .43, h(1 GeV2) = 1.9,
andG(0 GeV2) = 10 for all curves, while the second gluon renormalization point wasG(.25 GeV2) = 8 GeV−2

with g2 = .36 for the blue curves and G(21.5 GeV2) = .0665 with g2 = .83 for the purple curves.
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Figure 39: Plot of the relative contributions of the diagrams from (3.123) (Figure 25) to the gluon propa-
gator’s vacuum polarization, under two different sets of renormalization parameters. The renormalization
parameters for quarks, ghosts, and the IR point for gluons were A(.25 GeV2) = 1, B(.25 GeV2) = .033,
h(1 GeV2) = 1.9, and G(0 GeV2) = 10, while the second gluon renormalization point was G(.25 GeV2) =
8 GeV−2 with g2 = .36; and (b) G(21.5 GeV2) = .0665 with g2 = .83.
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Figure 40: Comparison of the quark propagator dressing functions A and M ≡ B
A to the lattice data of

Bowman et al. [16] Solutions were obtained with differentiated coupling values and variety of vertex models.
Renormalization parameters were A(.25 GeV2) = 1, B(.25 GeV2) = .033, h(16 GeV2) = 1.24, G(0 GeV2) =
10, and G(.25 GeV2) = 8 GeV−2, while the couplings were g2AAA = .2 and g2cAc = 1.57, with g2

ψAψ
= 5.29

for the bare vertex, g2
ψAψ

= 12.08 for the n = 0 CBC vertex, g2
ψAψ

= 7.2 for the n = 1 CBC vertex, and

g2
ψAψ

= 3.85 for the n = 2 CBC vertex.
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Figure 41: Comparison of the ghost and gluon propagator dressing functions h and Z to the lattice data
of Bogolubsky et al. [15] The solutions were obtained using differentiated coupling values and two sets of
renormalization parameters in the gluon equation. Renormalization parameters were A(.25 GeV2) = 1,
B(.25 GeV2) = .033 GeV, h(16 GeV2) = 1.24, and G(0 GeV2) = 10 GeV−2, with G(.25 GeV2) = 8 GeV−2

with couplings g2AAA = .2, g2cAc = 1.6, and g2
ψAψ

= 6.5 for the blue curves, and G(21.5 GeV2) = .0665 GeV−2

with couplings g2AAA = .54, g2cAc = 1.97, and g2
ψAψ

= 8.4 for the purple curves

Literature (Lattice) γi Numerical γi

G(p2) −.565 −.29

h(p2) −.218 −.21

Table 4: Comparison of anomalous dimension parameters γi exhibited by Lattice QCD results and the
numerical results of our fully coupled system.
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4.0 BOUND STATES

The bound states of a quantum field theory are typically studied using the quantities dis-

cussed in §2.4: The Bethe-Salpeter Equation. In particular, we are interested in the reso-

nance condition contained within (2.49) so that we may investigate the mass spectrum of

the gluon bound states (Glueballs) of QCD. We recall that the bound state whose mass

pole we approached to derive (2.48) corresponds to the Bethe-Salpeter Amplitude Φ (or χ)

which solves the equation. The analytic behavior used to conduct that derivation assumes

that there were not other bound states within an arbitrary but vanishing distance from that

particular pole, but in the case of possible degeneracy we apply the equation with the inten-

tion that orthogonal Bethe-Salpeter amplitudes can be produced out of linear combinations

of the solutions we find. The general approach will be to scan across regions of time-like

Minkowski momenta and search for values which satisfy the resonance condition and thus

represent the mass of a bound state.

4.1 ANALYTIC CONTINUATION

4.1.1 Necessity

The Bethe-Salpeter equation which we use to investigate bound states is based on the be-

havior of the scattering function GBS in the vicinity of a mass pole. To correspond to a

physical state, the four-momentum must have a time-like value related to the bound state’s
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Figure 42: Plot of the real and imaginary parts of Z(s) as obtained through direct continuation.

mass p2
M = m2

BS > 0. The results we have discussed for various propagators in Chap-

ter 3: Gap Equations were primarily solved at space-like Euclidean values of momentum,

p2
E = −p2

M > 0. As a result, we must investigate the effect of introducing an imaginary

value of bound state momentum PB = {ip; p ∈ R} into the arguments of those propagators.

The propagators contained within the loop integrals we shall consider in the Bethe-Salpeter

formalism have the arguments q2
± which we define as:

q2
+ = (q + ηip)2 = q2 − η2p2 + 2iηqpx, (4.1)

q2
− = (q − (1− η) ip)2 = q2 − (1− η)2p2 − 2i(1− η)qpx, (4.2)

and so we recognize that they must be analytically continued into a form which is valid

within some region of a complex momentum plane q2
± → s ∈ C. We set the positive real

s axis to correspond to space-like Euclidean values and maintain q ∈ R. Choosing a value

of η = 1
2

results in the boundaries for q2
± being placed symmetrically in the upper and
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lower half-planes [25], with the extreme values occurring when the angular variable is at the

integration bounds, x = ±1. The domain of q2
± we thus require is defined by a parabolic

boundary encompassing the positive real axis, whose apex lies on the negative real axis.

Once the propagators (and any dressed vertices involving similar arguments of complex

four-momenta) are known within such a region, then the Bethe-Salpeter equation can be

properly considered for a bound state of a physical mass up to the chosen value m2.

4.1.2 Methods – Direct Continuation

The simplest possible form of analytic continuation applies only in cases where the integral

equation for a propagator can be cast in a linear form. This method can apply to situations

such as §3.4.5.1 §3.4.5.2, or §3.4.5.3 where a gluon propagator is expressed symbolically. In

these cases, the self-energy integral contains a factor of the unknown propagator along with

an analytical expression for a gluon propagator. By choosing a fully asymmetric momentum

routing, the external momentum P (and thus the dependence on complex values) can be

placed entirely within the known gluon propagator. The assumption is then that the pertur-

bative 1
p2

form or functions which were fit to the lattice gluon data [15] can be relied upon for

complex values as well. The procedure is then to solve for the unknown propagator along

the Euclidean axis, and then evaluation of the gap equation at arbitrary complex momenta

requires only that Euclidean solution and insertion of the complex value into the integration

kernel and known form for the gluon propagator. We thus evaluate the gap equation as such

and using the output to yield the continued propagator.

The Mandelstam gluon model of §3.4.5.3 is an example of a propagator which can be

continued as such. Treatment of the angular integral for complex momenta reveals that the

integrand of (3.190) generalizes to complex momenta if one simply replaces the argument

inside of the step function (or the integration bounds) to refer to the magnitude |p2| instead

of the Euclidean p2. The gluon propagator can then be obtained as described above. Plots

of the real and imaginary parts of G(p2) are shown in Figure 42, along with a comparison to

the initial solution obtained along the Euclidean axis. It is a rather surprising result, as the
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decoupling solution requires Z(0) = 0, but the continued form reveals that the propagator is

well described by a simple pole (as one would have in a massive boson’s perturbation theory)

along the Minkowski axis. The pole structure is visible in Figure 42, and attempts to fit this

function as a simple pole on the complex s-plane are in agreement to the level of numerical

precision.

4.1.3 Methods – Cauchy-Riemann Continuation

The dynamical functions needed on the complex plane can be obtained in a number of ways,

all amounting to some form of analytic continuation within the propagator’s equation of

motion. One possible approach is to directly consider an analytic continuation of the purely

Euclidean solution. The propagators are expected to be represented by analytic functions in

some region enclosing the positive real axis, where our Euclidean momenta sit. The analytic

nature of these functions means that they must obey the Cauchy-Riemann equations within

this region. We choose to express these relations using a complex value of z = reiφ in polar

form. Analyticity of a function F then implies that the value of dF
dz

is independent of the

direction from which the infinitesimal limit is taken. We use the polar form to compare the

contributions along the radial and tangential directions:

dF

dz
=e−iφ

∂F

∂r
=
−ie−iφ
rφ

∂F

∂φ
(4.3)

⇒∂F

∂φ
= irφ

∂F

∂r
. (4.4)

We thus find that the function can be generated in the tangential direction by solving

a first-order differential equation with the boundary conditions set by our Euclidean-axis

solution. This method is cast as a stepping operation starting with a ray extending down

the positive real axis, and using numerically calculated radial derivatives to generate the

solution on an adjacent ray separated by a fixed polar angle ∆φ. While this is the simplest
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and most easily implemented method of analytically continuing the propagator functions

on the complex s plane, there are some technical barriers which cause this not to be the

preferred approach. First, the rays generated in this fashion extend from the origin along

a particular polar angle using our discretized momentum grid. Due to the required domain

for the Bethe-Salpeter equation, one must perform the continuation the whole way to the

negative real axis before the necessary region is obtained in full. In addition, the fact that we

have primed our boundary condition using a discretized solution to the equation of motion

and that the condition laid out as such is not known on a continuous boundary, numerical

instability in the differential solution prevents this approach from yielding the complete

continuation that we require.
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Figure 43: Plot of the magnitude and phase of the quark propagator function σS(s) on the complex plane,
as obtained using the entire gluon model and a Cauchy-Riemann algorithm.

In particularly well-behaved examples, it is possible for this approach to yield the con-

tinued propagator on the whole complex plane. Figure 43 shows an example of a successful

Cauchy-Riemann continuation for the quark function σS(s). The propagator was obtained

on the Euclidean axis using the entire gluon model. In this example, we found that con-

tinuing the dressed propagator in the form of σS produced a more stable computation than

attempting to treat A or B individually. We note also that the quark propagator appears to
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have inherited a branch cut along the negative real axis which was also present in the entire

model for the gluon propagator.

4.1.4 Methods – Double-Grid Continuation

Another approach can be formulated using the rays described in §4.1.3. Instead of solving

the Euclidean equations first, we choose to discretize the complex solutions in the radial and

angular directions, and employ a 2-dimensional interpolation routine to obtain the argument

for arbitrary points on the complex plane. The radial interpolation is performed as in the

purely real Euclidean examples of Chapter 3 as discussed in §3.1, but we now introduce

a cubic spline fit in a purely linear fashion along the angular direction. We are thus able

to iterate the full complex plane to obtain a solution at all points, but there are some

considerations and limitations.

The domain of complex momentum points discussed in §4.1.1 apply also to the propa-

gators appearing in the gap equations for complex momenta. Since the integration grids for

an arbitrary point fall into a parabolic region about the positive real axis (and extending

somewhat into the left half-plane where Re[s] < 0), the function on or near the Euclidean

axis tends to converge most rapidly. It cannot be expected that the solution at an arbitrary

point will converge to a stable solution until its domain has done so, and so we find that

the solution’s convergence spreads outward from the positive real axis where the initial sta-

bilization occurs. The time required to obtain stable solutions is thus increased by both the

expanded number of grid points and the means by which the solution converges.

A common discussion [4,5,11,24,25,29,31] among studies which perform analytic continuations

of propagator functions is the appearance of singularities, typically in the left half-plane

and appearing at paired locations of complex conjugates. In the method to be discussed in

§4.1.5, it is required for the continuation to be valid that the unknown solution is purely

analytic within the parabolic region. If that method encounters an unexpected singularity,

then the assumptions made in its definition are invalid. What occurs in the current method

is that the appearance of a singularity at any point in the complex plane will prevent the
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valid solution from being found at any point whose complex domain includes the singular-

ity. The reason for this is that the function is known only in a discrete numerical sense,

and neither the integration grids nor interpolation routine are well-suited to resolving the

location or analytic structure of such singularities. The direct continuation method is thus

most beneficial in exploring the unknown analytic behavior of solutions to the propagators’

equations of motion, but at the same time requires vastly increased computation times which

may include significant devotion to regions which cannot be expected to produce a stable

or valid solution. We thus conclude that this method is sufficient for bound state studies,

but in the interest of computational efficiency may not be the most advantageous option

available.

4.1.5 Methods – Contour Continuation

An alternative approach [11,25,31] to continuing the propagators onto the complex s plane is

based on an application of the Cauchy Integral Theorem. Suppose that we evaluate the

propagator’s equation of motion for an arbitrary complex point p2 ∈ C. Expressing this in

Cartesian form as p = P + iα, and generalizing our angular parameter as x ≡ q·p
|q|(P+iα)

, we

find for q2
±:

q2
+ = q2 + η2(P 2 − α2) + 2ηqPx+ 2iηα(qx+ ηP ) (4.5)

q2
− = q2 + (1− η)2(P 2 − α2)− 2(1− η)qPx− 2i(1− η)α (qx− (1− η)P ) (4.6)

Consider a momentum point on the boundary of q2
+ when x = ±1 and η = 1. If we define

p′ = P ′ + iα′, then we make the identifications:

P ′ = q ± P, (4.7)

α′ = α, (4.8)
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with complementary expressions should we consider q2
− and η = 0. Thus, the extreme

values required by q2
± under a fully asymmetric momentum routing scheme define a con-

tour of complex momenta P which share a constant imaginary component α. We con-

clude that should we define a contour C in the complex s-plane lying on values where

s = {(P ± iα)2;P, α ∈ R;α = const.} (plus a closure line at the infinite limit of Re[s]), then

any possible argument using this routing would lie upon or within the contour. We could thus

use the contour to host our discretized solutions for various propagators, and use Cauchy’s

Integral Theorem to generate them at any point within the contour:

∆φφ(s) =
1

2πi

∮
C

dz
∆φφ(z)

z − s . (4.9)

In considering the closure line at the mouth of our parabolic contour, we note that the

integrand of (4.9) must vanish more rapidly than 1
z

as Re[z] → ∞ for it to be properly

neglected.

We define our discretized solution along this contour, with the input value α to char-

acterize the largest bound state mass mB we could consider. The solution is discretized

along grid points defined by setting q = 0 in (4.5) or (4.6) with fully asymmetric momentum

routing, and using the integration/discretization momentum grid of §3.1.1 as the set of val-

ues for P . Since we must define the discretized solution along both arcs of the contour (or

modify our prior integrands to take advantage of the conjugation symmetry implied by the

Schwarz Reflection Principle), we must (effectively) perform twice as many updates at each

iteration. Also, the computation time for this method involves an additional integration over

the contour in place of our interpolation routine. We find that this is still preferable to the

brute force continuation method of §4.1.4 provided that the chosen contour with parameter

α contains a purely analytic region for the propagators being considered.

It turns out that the fully asymmetric routing presents a “worst-case scenario” as far as

the integration domain is concerned. If we revisit the forms of (4.5) and (4.6) with η = 1
2
, we

would instead find that the complex values of q2
± are now bounded by the contour we would

obtain with α′ = α
2
. We could have argued in the asymmetric case that our integration
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grids never quite reach x = ±1 and so we only require points within the original contour

(otherwise we would have to impose an additional factor of 2 in (4.9) for points lying on the

contour), but the equal sharing case of momentum routing avoids this discussion entirely.

We may note also, that despite the lack of requiring the continued propagators at points

lying in the band between the α and α
2

contours, the fundamental assumption made in the

definition of (4.9) is that the propagator has no singularities in the full α-contour region.

As such, we cannot forcibly extend this continuation beyond the same limiting singularities

(if present) which were discussed in §4.1.4. While this presents a possibility that the input

value of α may cause unexpected instability, we choose to take that risk in the interest of

computational efficiency when a stable solution does exist.

4.2 NUMERICAL METHODS

In order to find solutions to the resonance condition implied by the Bethe-Salpeter equa-

tion (2.49), we employ the same discretized integration grids which were described in §3.1.1.

Multiple methods have been explored in this work, with distinct methods of characterizing

the angular dependence of the (amputated) Bethe-Salpeter amplitude χB,r(q+, q−;P ). Since

this function has only two independent four-momenta as arguments, we will discuss the nu-

merical approach using the generic structure function F (q, P ). The Bethe-Salpeter equation

will be expressed in terms of loop integrals having the general form:

F (k, P ) =

∫
d4q

(2π)4
K(q, k, P )F (q, P ). (4.10)

We note that the momentum dependence of F (q, P ) can be expressed in terms of three

parameters, which as discussed in §3.1.1 are given by q ≡ |q|, x ≡ q·P
qP

, and P ≡
√
P · P (the

last of which has been modified from our earlier definition to incorporate the complex nature

of P ). The integration kernel K(q, k, P ) contains an analogous dependence on the radial and

angular parameters of the two-loop integrals of Chapter 3: Gap Equations. We thus employ
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the angular definitions for k as described in §3.1.1 by introducing the parameters y ≡ k·P
kP

and w ≡ q·k
qk

, where w = w(x, y, z) with z ≡ cos
(
θ

(q)
2

)
.

One trivial angular integral can be done analytically, while the one over z can be (nu-

merically) performed since only K depends on this parameter. We thus have left only the

variables required to express F (k, P ) and F (q, P ), which are P , q, k, x, and y. As mentioned

at the beginning of the chapter, we will scan over values of bound state momentum to search

for resonances, and so for the computation at any particular value P it is essentially a fixed

parameter. We must thus devise a method of expressing the momentum and angular depen-

dence of F in a way that takes the form of matrix multiplication, and have explored two

different approaches. The first approach will be to simply map the discretized radial and

angular momentum variables into a single “Super-Index”, and the second will be to expand

the angular dependence in terms of Chebyshev polynomials and employ a mapping of radial

and Chebyshev indices in F to express it as another column vector.

4.2.1 Eigensystem Representation

In order to examine our resonance condition (2.49) for arbitrary values of P , we can express

it in a generalized form for arbitrary bound state momentum:

λχ = K · χ. (4.11)

We thus note that a solution χ to this generalized equation is represented by an eigenvector,

and that examination of the structure of K (which has been conveniently represented above

as a matrix) will suffice to find the possible eigenvalues {λ}. The search for bound state

masses which can satisfy the resonance condition is thus reduced to a search for values of P at

which one (or more) eigenvalue satisfies λ = 1. Should one desire to then examine dynamical

bound state properties, then the corresponding eigenvector is a discretized representation of

the Bethe-Salpeter amplitude χ.

It is important to implement a numerical eigensystem routine which is capable of diag-

onalizing complex-valued matrices due to the nature of P . A number of such routines are

118



available [32,59] with this capability, and have been used to a various extent in this work.

4.2.2 Chebyshev vs. Super-Index

As mentioned above, we explore two methods of discretizing the unknown Bethe-Salpeter

amplitude χ such that the resonance condition can be expressed as matrix multiplication.

The two methods differ primarily on their treatment of the angular parameters x and y, as

the same momentum grid from §3.1.1 is used for the radial parameters q and k. We shall

now describe and compare these two methods.

4.2.2.1 Point Basis Diagonalization The Point Basis or Super-Index method is based

on simply discretizing the radial and angular dependence on momentum. For example,

the function F (qi, xj;P ) (recall P is effectively fixed) could be easily represented as a 2-

dimensional array with index [i, j]. We choose to map this into a single parameter, which we

shall represent as [i+ j×Nq]. We see that the matrix is thus expressed in block form, where

each block (of which there are Nx×Nx) is Nq×Nq and corresponds to a pair of x and y grid

points. This matrix is filled with the arguments of the kernel along with necessary factors

from integration measures and weights. We perform the integral over z numerically on the

fly as we fill the matrix, and so it is put into a form sufficient for the discussions of §4.2.1.

The advantage of this form is its conceptual simplicity, as well as the clear dependence on

the discretized grid resolutions. For a particular choice of grid points Nq and Nx, the error

arises purely from the numerical integration in z and the integrations in q and x which are

represented by the matrix multiplication.

4.2.2.2 Chebyshev Basis Diagonalization To analytically express the expansion of

the structure function in some complete set of functions, we first introduce a generic form

for the bound state equation:

F (k, y;P ) =

∫
d4q

(2π)4
K(q, k, x, y, z;P )F (q, x;P ). (4.12)
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We seek the analogue of a partial wave expansion in 4D Minkowski space, as opposed

to the quantum mechanical wave expansion in 3D Euclidean space. The measure of d4q

introduces a weight factor
√

1− x2, which suggests that the ideal basis functions may be

one of the kinds of Chebyshev polynomials. Should we choose to expand the combination

(1−y2)F (k, y;P ), the weight function in the integral would allow us to choose the Chebyshev

polynomials of the first kind, Tn(y). Instead, we shall choose to expand F (k, y;P ) alone,

which demands that we use Chebyshev polynomials of the second kind, Un(y). We shall use:

F (k, y;P ) =
∑
n

fn(k;P )Un(y) (4.13)

and (4.14)

K(q, k, x, y, z;P ) =
∑
l,m,n

hlmn(q, k;P )Um(x)Un(y)Pl(z). (4.15)

The resonance condition, in this expansion, yields:

fn(k;P ) =
1

8π2

∑
m

∫
q3dq fm(q;P )h0mn(q, k;P ), (4.16)

where

h0mn(k2
E, P

2
E, q

2
E) =

4

π2

∫ √
1− x2dx

√
1− y2dyUm(x)Un(y)

∫
dφ2H(P 2

E, k
2
E, q

2
E, y, x, cosφ2).

(4.17)

We note in particular that the lack of any z dependence outside of K produces the orthogo-

nality condition for P0(z), and so we set l = 0 in (4.15) with no loss of generality. This would

allow us (given the particular form and manageability of K) to hypothetically produce an

analytic expansion in the Chebyshev polynomials, but as we shall see in §4.3.2 and §4.3.3,

the symbolic form for the kernels is incredibly complicated.

To obtain a finite-dimensioned matrix, it is necessary to truncate the Chebyshev expan-

sion at a particular order of polynomial nMAX. We thus form (once again) a block diagonal
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representation of the kernel K. The blocks are still of dimension Nq × Nq as for the Point

basis, but now we have nMAX × nMAX blocks. The mapping described is also in a form to

which the discussion of §4.2.1 applies.

The discussion of numerical errors in the Chebyshev basis is more complicated than for

the point basis. In addition to the series truncation at nMAX, the evaluation of the orthog-

onality integrals to obtain (4.17) were performed using the discretized angular grid, and so

the series truncation error is further compounded by the numerical error from integration

of both x and z (which we also had in the point basis). So while we may have avoided

explicit dependence on the discretized integrals while filling the matrix representation of K,

we acknowledge that the errors of §4.2.2.1 apply in addition to the exclusion of higher-order

Chebyshev polynomials.

In addition to the need for a discretized angular grid (to perform the projection inte-

grals), this approach also requires that we set a maximum order of Chebyshev polynomials,

nMAX, to obtain a finite-dimensioned eigensystem. This introduces an additional level of

approximation to this method, and is among the reasons why we developed a preference for

the Point Basis.

4.2.2.3 Results and Comparison Both the Point Basis and Chebyshev Basis meth-

ods were successful in calculating the eigenvalues which result from the resonance condition

(4.37) over a range of pseudoscalar masses. The agreement is impressive for the low-lying

resonances, particularly the ground state. These comparisons validate both methods, but

expose a weakness in the Chebyshev Basis. In order to obtain a finite-dimensioned eigen-

system, it was necessary to truncate the function expansion at a certain order of Chebyshev

polynomial, nMAX, where in this case nMAX = 5. We see in this graph that the solutions pro-

duced by such a calculation are only reliable for the first nMAX resonances, beyond which the

truncation of the Chebyshev expansion introduces increasing levels of error. A comparison

of the eigenvalue curves which demonstrates this departure is shown in Figure 44.
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Figure 44: Comparison of the eigenvalue curves for the 0−+ glueball, calculated using both the Point Basis
(lines) and Chebyshev Basis (points) methods, obtained with g2 = 1 and the entire gluon model.

4.3 GLUEBALLS

As mentioned, the defining property of the SU(3) symmetry underlying Quantum Chromo-

dynamics is the existence of a color charge possessed by the constituents of all Baryons,

the quarks, and featuring gluons as the mediator of the strong nuclear force. Unlike the

(macroscopically) more familiar electromagnetism based on U(1) charges, the gluons also

carry a value of color charge, though in an adjoint representation to the three quark color

charges. As charged particles, we have seen in §3.4.3 QCD Interactions that the gluons

are capable of interacting not only with quarks, but with themselves as well. It has been

long suspected [18,39,64] that in addition to the familiar baryon states, there could also be

122



= - + - -

- + - -

+ - + +

++ -

Figure 45: Functional expression for the 2-gluon glueball Bethe-Salpeter amplitude

= - - +

Figure 46: Functional expression for the ghost-antighost mixing contribution to the glueball Bethe-Salpeter
amplitude

bound states of QCD having only gluons as the constituents. These hypothetical bound

states are known as Glueballs. We consider here the simplest valence contribution to glue-

balls, consisting of a bound pair of gluons. The development and continued improvement of

the analysis presented here would seek to make contact with recent experimental results [35]

which suspect that higher excited states of these glueballs have already been detected. If

one were to use the functional approach to deriving the Bethe-Salpeter amplitude as though

the bound state were another field in our Lagrangian (though one which cannot propagate

as an internal line), we would obtain the equation of motion shown in Figure 45 for the

2-gluon valence Bethe-Salpeter amplitude. The functional nature of this equation explicitly
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Figure 47: Functional expression for the quark-antiquark mixing contribution to the glueball Bethe-Salpeter
amplitude

shows the coupling to other valence states, as one might expect given our experiences with

the Schwinger-Dyson equations. We observe Bethe-Salpeter amplitudes which would couple

the 2-gluon glueball to the 3-gluon and 4-gluon glueballs, a quark-antiquark (meson) bound

state, a ghost-antighost bound state, as well as quark-antiquark-gluon and ghost-antighost-

gluon hybrid states. The functional approach thus naturally incorporates the possibility of

valence particles mixing through intermediate bound states. In order to fully characterize

the system, we thus require the equivalent expressions for the ghosts and quarks, which are

shown in Figures 46 and 47 respectively.

= + +

Figure 48: Equation for the gluon Bethe-Salpeter amplitude which was used in the present computation.

= +

Figure 49: Equation for the ghost Bethe-Salpeter amplitude which was used in the present computation.

The truncated kernels which we considered for the computation discussed here are shown

in Figure 48 and Figure 49 for the gluon and ghost amplitudes, respectively. A simple
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ansatz for the vertex dressings was made [50] before examination of the functional forms

shown in Figures 45-47 were examined, and consistency with the gap equations for QCD

would suggest that one of the vertices attached to a valence leg should have been left bare.

This modification might be a first step toward improving upon the computation we have

performed. In addition, early attempts were made to include a coupling to the truncated

quark Bethe-Salpeter equation shown in Figure 50 (and the additional diagram in the gluon

equation shown in Figure 51), but the choice of structure functions employed did not lead

to a well-conditioned matrix for our eigensystem routine.

= +

Figure 50: Equation for the quark Bethe-Salpeter amplitude which was initially attempted for the extension
to glueball-meson mixing of §4.4.

= + + +

Figure 51: Extended equation for the gluon Bethe-Salpeter amplitude which was initially attempted for the
extension to glueball-meson mixing of §4.4.

4.3.1 Symmetries of the 2-gluon Valence Contribution

In order to consider the glueball Bethe-Salpeter amplitude, we return to our definition 2.31

and apply it to the present case:

Γµν(x, y;P, λ) =
〈

0
∣∣∣T(Aµ(x)Aν(y)

)∣∣∣M(P, λ)
〉

(4.18)

Our studies of the Bethe-Salpeter amplitudes will be based upon a general ansatz for a
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2nd rank Lorentz tensor. Given the available elements, and noting that we would prefer to

define our ansatz for the Fourier transform of (4.18), we obtain:

Γµνab (q+, q−;λ) = δab
(
Qλg

µν +Rλq
µ
+q

ν
+ + Sλq

µ
−q

ν
− + Tλq

µ
+q

ν
− + Uλq

µ
−q

ν
+ + Vλε

µναβ q+ α q− β
)

(4.19)

We will investigate which forms from a general ansatz can be made consistent with a

gluonic bound state. We will accomplish this by imposing gluon field symmetries and the

commutator for general times (to represent Bose symmetry):

T Aµ(x)T † = Ãµ(−x̃) (4.20)

PAµ(x)P† = Ãµ(x̃) (4.21)

CAµ(x)C† = − AT µ (x) = −λ
T
a

2
Aµa(x) (4.22)[

Aµ(x), Aν(y)
]

= ∆µν(x− y) (4.23)

where we employ the four-vector transformation ãµ ≡ (a0,−~a)µ. Application of the time-

reversal (4.20), parity (4.21), and charge-conjugation (4.22) transformations to the Bethe-

Salpeter amplitude yields:

Γµν(x, y;P, λ)
T−→
〈

0
∣∣∣T(Ãµ(−x̃)Ãν(−ỹ)

)∣∣∣M(P̃ , λT )
〉
, (4.24)

Γµν(x, y;P, λ)
P−→ η

(M)
P

〈
0
∣∣∣T(Ãµ(x̃)Ãν(ỹ)

)∣∣∣M(P̃ , λP )
〉
, (4.25)

Γµν(x, y;P, λ)
C−→ η

(M)
C

〈
0
∣∣∣T(Aµ(x)Aν(y)

)∣∣∣M(P, λC)
〉
. (4.26)

Aside from identifying that η
(M)
C = +1 for the 2-gluon glueball, the only transformation

which we will consider by itself is the parity transformation (4.25). Instead, we will combine

all three of these transformations to obtain:

Γµν(x, y;P, λ)
CPT−−→ η

(M)
P η

(M)
C

〈
0
∣∣∣T(Aµ(−x)Aν(−y)

)∣∣∣M(P, λ)
〉

(4.27)
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Next, we shall apply Bose symmetry. Due to the fact that ∆µν(x − y) can be factored

out of the scalar product, we are left with terms proportional to
〈
0
∣∣M(P, λ)

〉
= 0 from the

RHS of (4.23). As such, our surviving terms yield:

Γµν(x, y;P, λ)
Bose−−−→

〈
0
∣∣∣T(Aµ(x)Aν(y)

)∣∣∣M(P, λ)
〉

(4.28)

Finally, we demand that Γµν is invariant under CPT and the Bose symmetry, so we can

equate results of (4.27) and (4.28) to eliminate the anti-time ordering and find:

Γ
∗ µν

(x, y;P, λ) = η
(M)
P η

(M)
C Γ

∗ µν
(−x,−y;P, λ) (4.29)

⇒ Γµν(x, y;P, λ) = η
(M)
P η

(M)
C Γµν(−x,−y;P, λ) (4.30)

where the last of these was obtained by assuming that η
(M)
P and η

(M)
C are real. Fourier

transforming this yields:

Γµν(q+, q−;P, λ) = η
(M)
P η

(M)
C Γµν(−q+,−q−;P, λ). (4.31)

Comparison to our general form shows that all of our 2nd rank terms in (4.19) are consistent

with this result.

Next, we shall investigate the effects of the parity transformation. This transformation

implies that we should flip the sign of all spatial 4-vector components, and it is clear from

(4.25) that the time-time and space-space elements are unchanged while mixed time-space

elements receive a sign change, as shown schematically in (4.32).


+ - - -

- + + +

- + + +

- + + +

 (4.32)
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Examination of (4.19) reveals that the metric term and all outer products of momenta

transform in the same way. As such, we conclude that the even parity Bethe-Salpeter

amplitude is given by

Γµνab (q+, q−;P, 0++) = δab
(
Qgµν +Rqµ+q

ν
+ + Sqµ−q

ν
− + Tqµ+q

ν
− + Uqµ−q

ν
+

)
. (4.33)

The final term, which includes the antisymmetric tensor εµναβ, transforms with an additional

sign change on all elements, as shown schematically in (4.34). This can be seen by recalling

that the antisymmetric tensor is only nonzero if {µναβ} are some permutation of {0123}.
The time-time element, as well as the diagonal space-space elements, are strictly zero. Of

the remaining elements, the mixed time-space elements are only nonzero if q+ α q− β are both

spatial components, thus no sign flip. Similarly, the nonvanishing space-space elements are

only nonzero if one of α and β is a time component and the other a spatial component,

which results in a sign flip.


- + + +

+ - - -

+ - - -

+ - - -

 (4.34)

As such, we conclude that the odd parity Bethe-Salpeter amplitude is given by

Γµνab (q+, q−;P, 0−+) = δabV ε
µναβ q+ α q− β . (4.35)

4.3.2 The 0−+ Glueball

From our earlier discussions of parity, we learn that the only available tensor for a 0−+

glueball amplitude is εµναβk
α
+k

β
−. We define the reduced Bethe-Salpeter amplitude with its

structure function as:

χ0−+

µν (k+, k−)δAB = F (k, P )δABεµναβk
α
+k

β
− (4.36)
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4.3.2.1 Perturbative Vertices The resonance condition from gluon exchange (the sec-

ond integral in the gluon equation (4.38)) is the only nonzero contribution to the (Yang-Mills)

0−+ glueball. In Landau gauge, this yields:

F (k, P ) =
ig2
sNc

k2P 2 − (k · P )2

∫
d4q

(2π)4
F (q, P )G

(
q2

+

)
G
(
(q − k)2

)
G
(
q2
−
)

×
{

8P 2(q · k)2 + 8k2(P · q)2 + 8q2(P · k)2 − 8P 2q2k2

− 16(P · q)(P · k)(q · k) + P 4(q · k)− P 2(P · q)(P · k)

−
(
P 2(q · k)− (P · q)(P · k)

)(4q2k2 − 2(q · k)2 + (P · (q − k))2

(q − k)2

)}
(4.37)

In general, other contributions are possible from the ghost fields. In particular, we

consider the mixing kernel diagrams shown in Figure 52.

Careful examination of the term denoted γg gh in Figure 52 shows that the integrand

contains the combination (q − k)µ k− ν ε
µναβ q+ α q− β. This quantity vanishes due to the

fact that there are four contractions involving combinations of only three vectors kµ, qµ,

and Pµ. The term denoted γgh g in Figure 52 contains the combination q+ µ (q − k)ν . This

does not by itself vanish, however the scalar combination we employed to obtain (4.37)

yields q+ µ (q − k)νε
µναβ k+ α k− β in the integrand, which vanishes for the same reason. We

conclude that there is no gluon-ghost mixing for the 0−+ glueball, and so (4.37) is our

complete resonance condition in the Landau gauge.

4.3.2.2 Dressed Vertices The inclusion of the vertex dressing functions in our bound

state equation leads to considerable complication of the integrand, and so the computation is

defined at the level of (4.38)−(4.40) with the dressing functions V αβγ(P1, P2, P3) unspecified.

This allows for investigation of various vertex dressing models with a single input parameter

at runtime, where the appropriate scalar dressing functions V (P1, P2, P3) as called in the
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≡ γg gh AB (q+, q−)

≡ γgh g
µν
AB (q+, q−)

Figure 52: Bethe-Salpeter terms involving the gluon-ghost mixing kernel.

code are the only difference between models which share a common tensor structure. We are

considering first the approximate form of the vSHA gluon vertex (3.153), the Pennington-

Wilson model (3.147), and the hybrid dressing model (3.154). The dressing in these cases

can be seen as introducing a scalar function with each metric term in the perturbative

gluon vertex, where the three functions are related by cyclic permutations of the arguments.

The dressed ghost vertex can similarly be expressed as a scalar function multiplying the

perturbative vertex, and so there is an identical argument for neglecting the ghost equations

as with the perturbative vertices. This also allows us to include the preceding perturbative

case by providing an option for V (P1, P2, P3) = 1, such that the form (4.37) is recovered

numerically.
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4.3.3 The 0++ Glueball

Since no Lorentz indices are needed to characterize a J = 0 state, the Bethe-Salpeter am-

plitude for a J = 0 glueball can be expressed as an outer product of a 2nd-rank Lorentz

tensor with a 2nd-rank color tensor. As we will see, the color dimensions arise in forms

which reduce to an identity matrix and so do not need to be considered extensively. This

behavior is reasonable, as the color-singlet nature of any physically-observed particle should

imply that there should be no preference for any particular gluon color state. In terms of

the (reduced) Bethe-Salpeter amplitude, propagators, and generalized vertex functions, the

coupled system of bound state equations, for the gluons, ghosts, and fermions respectively,

are:

χµν(k+, k−)δAB =ig2
0f

ACDfBCD
∫

d4q

(2π)4

[
2gµνgαβ − gµαgνβ − gµβgµα

]
χαβ(q+, q−)G(q+)G(q−)

+ ig2
0f

ACDfBCD
∫

d4q

(2π)4
χαβ(q+, q−)G(q+)G(q−)G(Q)

× Pγγ′(Q)V µγα(−k+,−Q, q+)V νγ′β(−k−, Q, q−)

− g2
0

δAB

2

∫
d4q

(2π)4
Tr [γµS(q+)χF(q+, q−)S(−q−)γνS(Q)]

× hn(k+)hn(k−)

4
[A(q+) + A(Q)] [A(q−) + A(Q)]

+ ig2
0f

ACDfBCD
∫

d4q

(2π)4
χG(q+, q−)H(q+)H(q−)H(Q)

×
[
qµ+
h(k+)

h(q+)
+Qµ

(
h(k+)

h(Q)
− 1

)]
×
[
Qν h(k−)

h(Q)
− qν−

(
h(k−)

h(q−)
− 1

)]
, (4.38)

131



χG(k+, k−;P )δAB =− ig2
0f

ACDfBCD
∫

d4q

(2π)4
k+ µ k− ν χ

µν(q+, q−)G(q+)G(q−)H(Q)

×
[
h(q+)

h(Q)
+
h(q+)

h(k+)
− 1

] [
h(q−)

h(Q)
+
h(q−)

h(k−)
− 1

]
+ ig2

0f
ACDfBCD

∫
d4q

(2π)4
k+ µ k− ν P

µν(Q)χG(q+, q−)H(q+)H(q−)G(Q)

×
[
h(Q)

h(q+)
+
h(Q)

h(k+)
− 1

] [
h(Q)

h(q−)
+
h(Q)

h(k−)
− 1

]
,

(4.39)

χF(k+, k−;P ) =g2
0T

A · TA
∫

d4q

(2π)4
γµS(−Q)γνχ

µν(q+, q−)G(q+)G(q−)

× hn(q+)hn(q−)

4

[
A(k+) + A(Q)

][
A(Q) + A(k−)

]
+ ig2

0T
A · TA

∫
d4q

(2π)4
γµS(q+)χF (q+, q−)S(−q−)γνP

µν(Q)G(Q)

× h2n(Q)

4

[
A(k+) + A(q+)

][
A(q−) + A(k−)

]
, (4.40)

where we have suppressed the fermion’s Dirac and color indices. For the present computation

we do not directly consider (4.40) as it pertains to Glueballs, but the extension it provides

will be discussed in §4.4. The equations include the possibility for the modeled gluon self

interaction discussed in §3.4.3 and §4.3.2.2, where:

V αβγ(1, 2, 3) = V βγ
1 (P2 − P3)α + V γα

2 (P3 − P1)β + V αβ
3 (P1 − P2)γ. (4.41)

For the vertex models (3.153), (3.147), and (3.154), the dressing functions are simply terms

involving a metric tensor like V αβ
3 = V3g

αβ. As mentioned previously, the bare vertex case

can be recovered by V (P1, P2, P3) = 1.

As described in the §4.3.1, the most general form for the 0++ glueball Bethe-Salpeter

amplitude is shown in (4.33).
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If we were working in Feynman gauge, it would be obvious that the tensors are unaffected

by amputation of the gluon lines and so the only difference between Γ and χ is the definition

of the structure functions. The ansatz for χ would thus be:

χµνAB(q+, q−;P, 0++) = δAB
(
Agµν +Bqµ+q

ν
+ + Cqµ−q

ν
− +D′qµ+q

ν
− + Eqµ−q

ν
+

)
, (4.42)

where multiplication of the structure functions {ABCD′E} by the scalar portions of the

gluon propagators yields the structure functions {QRSTU}.
In Landau gauge, the investigation of the reduced amplitude must be performed carefully

due to the presence of projection operators P µν(q±) in the gluon propagators. As such, there

is no inverse operator which can directly transform Γ into χ, and so the definition of χ appears

to be ambiguous. Instead, we note that the projection operators allow only the transverse

components of χ to appear in the integral. If we contract the entire gluon Bethe-Salpeter

equation with appropriate projection operators, we can similarly reduce the equation to

only the equivalent transverse forms on the LHS. Since we obtain our scalar equations by

contracting the equation with a 2nd rank tensor which shares these transversality properties,

this has no effect on our resonance condition. We could alternatively state that the structure

functions introduced with the transverse terms are the only independent functions in the

resonance equation, where all other possible structure functions are functionally dependent

on the transverse portions and can be determined by using more general projectors on the

LHS.

Due to the restriction of functional independence to transverse components, we take

advantage of the fact that the (physically relevant) Bethe-Salpeter amplitude is transverse

to the momentum of each gluon leg contracted to that particular index:

q+ µ χ
µν = χµν q− ν = 0, (4.43)

which yields three scalar equations among the structure functions
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0 = q+ · χ · q+ = Aq2
+ +Bq4

+ + C(q+ · q−)2 +D′q2
+(q+ · q−) + Eq2

+(q+ · q−), (4.44)

0 = q− · χ · q− = Aq2
− +B(q+ · q−)2 + Cq4

− +D′q2
−(q+ · q−) + Eq2

−(q+ · q−), (4.45)

0 = q+ · χ · q− = A(q+ · q−) +Bq2
+(q+ · q−) + Cq2

−(q+ · q−) +D′q2
+q

2
− + E(q+ · q−)2. (4.46)

Solution of this system of equations yields the final ansatz for the 0++ glueball amplitude,

which depends on only two structure functions, A and D′.

χµνAB(q+, q−;P, 0++) = δAB

{
A

(
gµν − qµ−q

ν
+

q+ · q−

)
(4.47)

+D′
[
qµ+q

ν
− −

(
q2
−

q+ · q−

)
qµ+q

ν
+ −

(
q2

+

q+ · q−

)
qµ−q

ν
− +

q2
+q

2
−

(q+ · q−)2
qµ−q

ν
+

]}

= δAB

{
A

(
gµν − qµ−q

ν
+

q+ · q−

)
+D′

(
qµ+ −

(
q2
−

q+ · q−

)
qµ−

)
⊗
(
qν− −

(
q2

+

q+ · q−

)
qν+

)}
(4.48)

= δAB

{
A

(
gµν − qµ−q

ν
+

q+ · q−

)
+D

(
qµ+ −

(
q2−

q+·q−

)
qµ−

)
⊗
(
qν− −

(
q2+

q+·q−

)
qν+

)
(
q+ −

(
q2−

q+·q−

)
q−

)
·
(
q− −

(
q2+

q+·q−

)
q+

) }, (4.49)

where we have rescaled the structure function D = D′
(
q+−

(
q2−

q+·q−

)
q−

)
·
(
q−−

(
q2+

q+·q−

)
q+

)
.

Truncating at the perturbative vertices, we see that the ghost fields can potentially mix

with the gluon bound state. The Bethe-Salpeter equation for the ghost’s contribution is

shown in Figure 49, which must be considered in conjunction with the gluon’s equation to

preserve consistency with gauge invariance to the level of our truncations and modeling.

Figure 51 also shows the Bethe-Salpeter equation for the quark fields, which is also able to

mix with the gluons when we generalize beyond the pure Yang-Mills theory, but for now the

consideration will only include the valence gluon/ghost content.
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Consideration of the structure of the ghost Bethe-Salpeter amplitude is much simpler, as

the same color-diagonal arguments apply and there are no further tensor indices to represent.

The ghost amplitude contains a single structure function F , and the requirement for 0++

symmetry is consistent with a scalar function:

χABG (k+, k−;P ) = δABF (k+, k−;P ). (4.50)

Due to the complicated nature of the contractions expressed in (4.38)–(4.40), the sym-

bolic form for these equations will not be given explicitly, as each required term can be most

simply expressed using hundreds or thousands of lines when expressed in code (if not careful

about obtaining the most fully simplified form from Mathematica, the expressions can easily

reach tens of thousands of lines).

The various structure functions, 1 for the ghosts and 2 for the gluons, require an expansion

of the eigensystem matrix described in §4.2.1. We thus express the kernel in matrix form

such that each structure function contributes to an Nq×Nx “Super-Block” as describe above.

For the 0++ glueball, we thus have a 3×Nq ×Nx-dimensioned square matrix subdivided by

such Super-Blocks. For example, the diagonal Super-Blocks represent a structure function’s

contribution to its own scalar equation, while the off-diagonal Super-Blocks express the

mixing between distinct structure functions and/or valence particles. The significance of

this form for valence-mixing situations will be further discussed in §4.4

4.3.4 Glueball Results

As discussed in §4.2, the Point basis (Super-Index) is our preferred method of expressing

the resonance equation as an eigensystem. Furthermore, we choose to employ the symbolic

expressions for the tensor contractions as obtained from Mathematica, since the in-code

contractions result in computationally intensive summation loops which lack the speed and

increased precision of evaluating the (rather complicated) symbolic expressions. These sym-

bolic expressions depend on a generic form for the gluon propagator, provided that it is an

analytic function on the complex plane and thus well-suited to inclusion in the integrands.
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The various continuation methods discussed in §4.1 could be successfully applied to a relative

few of the gluon propagator models discussed in QCD, and even then only under very restric-

tive sets of input parameters. As a result, the glueball resonances were investigated using

only the entire model gluon propagator of (3.186) as fit to the lattice data of Bogolubsky et

al [15].

Figure 53: Comparison of resonance eigenvalues to the lattice results for glueball masses of Morningstar et
al. [52]. Solid lines represent 0++ eigenvalues, dashed lines are 0−+. All solutions were obtained with the
entire gluon model and g2 = .1681

Our findings are consistent with a glueball ground state of mass O(1GeV) for both parity

states [52], and the existence of several excited states with slightly greater mass. A comparison

to lattice QCD results for the ground and first excitation glueball states is shown in Figure

53.

Unfortunately for experimental verification, the observed resonances that can be clearly

identified [35] by modern detectors lie in the 2 − 3 GeV mass range and represent O(10)

excited states that are beyond our current capability for computing bound state spectra.

Nonetheless, the possibility of fitting pure-gluon bound states to experimental observation

136



represents an exciting extension to the theoretical understanding of QCD and the nature of

of nuclear and particle physics.

4.4 GLUEBALL + MESON STUDIES

The expansion of the eigensystem representation to describe the 0++ glueball describes a clear

path for consideration of the mixed-valence bound states. We did not call much attention to

the ghost valence content of these glueball states, because despite the unobservable nature of

the fundamental particles of QCD the ghosts are suppressed by a further layer of conceptual

understanding. The ghosts are not meant to be fundamental dynamical degrees of freedom

(i.e. fundamental particles) of the theory, but only to serve as a mathematical crutch to

preserve the gauge symmetry for gluons through the gauge-fixing procedure. Despite this

interpretation of unphysical ghosts, they serve (along with the multiple structure functions

for the 0++ gluon contribution) to reveal the nonperturbative treatment of valence particle

states.

As mentioned in §4.2.1, the identification of a resonance state implies that the corre-

sponding eigenvector is a discretized representation of the Bethe-Salpeter amplitude(s) χ.

Despite the expansion of “Super-Block” contributions from various structure functions and

valence states, the eigenvector provides a telling and conclusive means to assess the true

valence contribution of any resonance.

Conventional practice has declared the observable states of QCD to fall into categories

such as mesons and baryons, but to date the possibility of gluon binding had been lack-

ing from these definitions. The conditions imposed by confinement merely suggest that no

color-charged entity can be observed as an asymptotic state. The benefit of extending va-

lence content beyond the quark sector is that any solution (eigenvector) that satisfies the

resonance condition is a recipe for the physically realistic and relevant particle content of that

state. For example, if a meson state consisted purely of a quark and anti-quark with no gluon
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contributions, then the eigenvector produced at that resonance would contain a discretized

Bethe-Salpeter amplitude for the quark sector and a null set for any other valence sector.

The only means by which such an assessment could be made is to include potential contri-

butions from gluons, ghosts, and quarks in any imaginable (and computationally feasible)

consideration of the generalized Bethe-Salpeter equation for all observed bound states.

In particular, the coupling of the scalar glueball to the meson sector has been investigated

at the perturbative level [17]. In that investigation, it was noted that the coupling to quark

fields was proportional to the current quark mass and thus the pion decay channels would be

suppressed by the light quark masses and kaons would instead dominate. Our preliminary

studies of this mixing revealed that the quark contributions in a nonperturbative approach

are proportional to factors of B(p2) and so are consistent with the earlier attempts.

138



5.0 CONCLUSIONS

The nonperturbative treatment of quantum field theory has been presented here in a ped-

agogical manner that should suffice to instruct a future practitioner in the methods and

content required to reproduce and expand upon the investigations described. The formalism

was developed out of the context of a textbook-level understanding of field theory to provide

a sure basis for the study of these nonperturbative equations.

The nonperturbative methods have been applied to a number of quantum field theories

with multiple choices of modeling or truncation. These theories were presented to illustrate

the methods and capability of the Schwinger-Dyson equations, and to provide context for

the computation of the fully coupled system of gap equations for QCD. In the context of

the gluon gap equation, we were able to compare the relative contributions of the various

diagrams and identify a clear and persistent hierarchy in the significance of each term.

As mentioned, the fact that these solutions result from nonlinear equations might make

arguments of significance seem dubious, but it can be confirmed through comparison to

previous treatments of the equations, by myself and others, that approximations based on

arguments such as these can provide useful insight into the dynamics and physical content

of the theory. As another example, we were able to develop a set of equations for the quark

propagator which depends in a very general way on the gluon propagator’s dressing function.

As a result, the comparison between the various models such as Swimming with Quarks, fits

to the lattice gluon propagator, or even the inclusion of a dynamically calculated gluon

propagator can be directly compared based on the change of only a single contribution to

the integrand. This example also shows the versatility of the Schwinger-Dyson formalism,
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as the cases involving modeled or perturbative gluon propagators can be easily revisited

and reproduced using the same computational tools as the fully coupled model by making

relatively simple modifications. These comparisons across many levels of approximation

provide a high level of confidence that we are able to produce consistent results from these

equations, and that our interpretations and conclusions are built on a solid analytical and

computational foundation.

The Schwinger-Dyson equations thus provide a clear and reliable method for advancing

the understanding of how our approximations affect the quality of the solutions we obtain.

From any starting approximation, the option to expand the set of equations or introduce

more sophisticated treatments is always available, and it is relatively easy to compare to

previous efforts and assess the importance of the new elements in the calculation. As men-

tioned, the fact that these solutions result from nonlinear equations might make arguments

of significance seem dubious, but it can be confirmed through comparison to previous treat-

ments of the equations, by myself and others, that approximations based on arguments such

as these can provide useful insight into the dynamics and physical content of the theory. We

obtained solutions within QCD which demonstrated many different situations which could

produce decoupling solutions for the gluon propagator or chiral symmetry breaking in the

quark sector.

Our computation of the fully coupled system of QCD gap equations with the inclusion of

nonperturbative two-loop diagrams for the gluon propagator represents the most complete

treatment of these equations to date. The agreement of our results with lattice QCD was

impressive but not perfect. Future research with a special focus on improving the dynamical

models for interaction vertices is sure to provide a corresponding improvement in the quality

of solutions obtained. This dynamical treatment and renormalization of the vertex equations

could provide an unambiguous means of performing nonperturbative renormalization, which

have the potential to absorb or prevent the quadratic divergences of the gluon equation

without recourse to schemes involving the introduction of gluon mass terms or the fitting

and subtraction of the unphysical behaviors that may arise. Much as the gauge symmetry
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causes such divergences to cancel in perturbation theory, the issues discussed regarding

their appearance in the nonperturbative treatment seem to imply that the vertex models

do not sufficiently represent those symmetries. The consideration of these interactions in

the Schwinger-Dyson formalism would be increasingly difficult, but the benefit they would

provide has the potential to be equally great.

The Schwinger-Dyson equations are a powerful means for studying quantum field theory.

Further investigation of their structure and continued progress beyond the current state of

truncations and models promise to yield valuable insights into the physical content of Quan-

tum Chromodynamics and other quantum field theories. While progress in this formalism

is sometimes overlooked in favor of the complementary nonperturbative methods of lattice

gauge theory, there are properties that can be more easily examined through one method or

the other. We have demonstrated that the Schwinger-Dyson equations can produce reliable

calculations of the propagators across many different field theories, and that the analytical

formulation of these equations of motion can be easily compared across seemingly different

theories. We have shown that the diagrammatic expressions for the equations of motion are

based on very general properties of the particles and interactions, and that for example the

c-number or Grassmann nature of a field variable or the number of particles in a perturba-

tive vertex have a more significant affect on these expressions than the particular quantum

numbers or tensor structures which define the fields. These other properties feature heavily

in the translation between the diagrammatic and analytical expressions, but we have shown

that the structure of perturbative interactions or propagators can provide a great deal of

information for the choice of tensor expansions, dressing functions, and vertex models, and

so the translation between these representations can be easily generalized and applied to a

new theory. In addition to the particular field content, we have shown that a consistent set

of nonperturbative renormalization strategies can be easily applied across a wide range of

quantum field theories. This is a powerful application of the Schwinger-Dyson formalism, as

information regarding the success or failure of a renormalization approach in one situation

can be extremely useful in the consideration of other theories whose equations of motion
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describe similar analytic behavior or perturbative expressions.

Along with the physical motivations for the continued pursuit of nonperturbative quan-

tum field theory, there are technological reasons as well. The continued improvement of com-

puter technology has made it possible for rapid advances in many topics of computational

physics, including the ability to obtain good approximations to the continuum solutions of

Schwinger-Dyson equations on a consumer-end machine and the progressively finer grid spac-

ings now possible in lattice QCD. Since computational limitations are part of the difficulty

in extending the Schwinger-Dyson formalism to include dressed interactions, it is likely that

continued improvement of the technology will allow for further investigation of these quan-

tities even without significant progress in the analytical development. As a comparison, the

computation of propagators as discussed here would have been prohibitively intense even

as of a few decades ago and so we cannot rule out the possibility of great progress from

brute-force applications of future technology.

The discussions of gluon content in the bound states of QCD provide another interest-

ing application of nonperturbative quantum field theory. Since the fundamental degrees of

freedom in this theory are strictly unobservable due to confinement, its bound states are the

experimentally observable entities and their spectra and properties are the measurable quan-

tities we can obtain. The conventional explanation for the particle zoo is built around the

simplest valence combinations of quarks that can have the properties used to define mesons

and baryons, but experimental evidence is mounting for the existence of more exotic states

such as diquarks and glueballs. The traditional definitions of the hadrons may thus merely

be a representation of the leading contribution to these states, while comparison to the tower

of Schwinger-Dyson equations would suggest that it is quite likely that more complex and

exotic valence states have some level of influence on these states and perhaps even a direct

contribution.

Investigations of the Bethe-Salpeter equation as presented here have the potential to shine

some light on these exotic states and the possibility of mixing into more familiar ones. As

the quality of nonperturbative solutions for propagators and interactions are improved, the
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ability of bound state computations to faithfully include dynamical properties will likewise

improve. Improvement of the dynamical ingredients and computational tools that have

been developed here may allow for more direct comparison to observations and experiment.

The main difficulty in expanding this approach is that the simplistic scattering kernel we

described does not seem to provide a good description of glueball dynamics, and so it would

be necessary to develop a far more robust and sophisticated kernel before the desired results

would be possible. As an additional challenge, lattice results have suggested phenomena

such as gluelumps and flux tubes which involve massive numbers of gluons and suggest that

many-particle states make significant contributions to glueballs and related structures. Since

large numbers of particles are a particular weakness of the current state of Schwinger-Dyson

equations, it is possible and in fact extremely likely that this bound state formalism would

require a significant amount of progress and development before these computations could

prove themselves useful.
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[3] A. C. Aguilar, D. Ibáñez, and J. Papavassiliou. Ghost Propagator and Ghost-Gluon
Vertex from Schwinger-dyson Equations. Phys. Rev. D, 87:114020, Jun 2013. doi:
10.1103/PhysRevD.87.114020. URL http://link.aps.org/doi/10.1103/PhysRevD.

87.114020.

[4] R. Alkofer, W. Detmold, C. S. Fischer, and P. Maris. Analytic Properties of the Landau
Gauge Gluon and Quark Propagators. Phys. Rev. D, 70:014014, Jul 2004. doi: 10.
1103/PhysRevD.70.014014. URL http://link.aps.org/doi/10.1103/PhysRevD.70.

014014.

[5] Reinhard Alkofer and Lorenz von Smekal. The Infrared Behaviour of QCD Green’s
Functions: Confinement, Dynamical Symmetry Breaking, and Hadrons as Relativistic
Bound States. Physics Reports, 353(56):281 – 465, 2001. ISSN 0370-1573. doi: http:
//dx.doi.org/10.1016/S0370-1573(01)00010-2. URL http://www.sciencedirect.com/

science/article/pii/S0370157301000102.

[6] D. Bailin and A. Love. Introduction to Gauge Field Theory: Revised Edition. Graduate
Student Series in Physics. Taylor & Francis, 1993. ISBN 9780750302814. URL http:

//books.google.com/books?id=A9MU9pvcEGQC.

[7] James S. Ball and Ting-Wai Chiu. Analytic Properties of the Vertex Function in Gauge
Theories. I. Phys. Rev. D, 22:2542–2549, Nov 1980. doi: 10.1103/PhysRevD.22.2542.
URL http://link.aps.org/doi/10.1103/PhysRevD.22.2542.

144

http://link.aps.org/doi/10.1103/PhysRev.177.2426
http://link.aps.org/doi/10.1103/PhysRev.177.2426
http://link.aps.org/doi/10.1103/PhysRevD.83.014013
http://link.aps.org/doi/10.1103/PhysRevD.87.114020
http://link.aps.org/doi/10.1103/PhysRevD.87.114020
http://link.aps.org/doi/10.1103/PhysRevD.70.014014
http://link.aps.org/doi/10.1103/PhysRevD.70.014014
http://www.sciencedirect.com/science/article/pii/S0370157301000102
http://www.sciencedirect.com/science/article/pii/S0370157301000102
http://books.google.com/books?id=A9MU9pvcEGQC
http://books.google.com/books?id=A9MU9pvcEGQC
http://link.aps.org/doi/10.1103/PhysRevD.22.2542


[8] James S. Ball and Ting-Wai Chiu. Analytic Properties of the Vertex Function in Gauge
Theories. II. Phys. Rev. D, 22:2550–2557, Nov 1980. doi: 10.1103/PhysRevD.22.2550.
URL http://link.aps.org/doi/10.1103/PhysRevD.22.2550.

[9] C Becchi, A Rouet, and R Stora. Renormalization of Gauge Theories. An-
nals of Physics, 98(2):287 – 321, 1976. ISSN 0003-4916. doi: http://dx.doi.
org/10.1016/0003-4916(76)90156-1. URL http://www.sciencedirect.com/science/

article/pii/0003491676901561.

[10] J.S. Bell and R. Jackiw. A PCAC Puzzle: π0 → γγ in the σ-Model. Il Nuovo Cimento
A, 60(1):47–61, 1969. ISSN 0369-3546. doi: 10.1007/BF02823296. URL http://dx.

doi.org/10.1007/BF02823296.

[11] Martina Blank. Properties of Quarks and Mesons in the Dyson-Schwinger/Bethe-
Salpeter Approach. PhD thesis, University of Graz, 2011. URL http://arxiv.org/

abs/1106.4843. arXiv:1106.4843 [hep-ph].

[12] J. C. R. Bloch. Multiplicative Renormalizability of Gluon and Ghost Propagators in
QCD. Phys. Rev. D, 64:116011, Nov 2001. doi: 10.1103/PhysRevD.64.116011. URL
http://link.aps.org/doi/10.1103/PhysRevD.64.116011.

[13] J. C. R. Bloch. Multiplicative Renormalizability and Quark Propagator. Phys. Rev.
D, 66:034032, Aug 2002. doi: 10.1103/PhysRevD.66.034032. URL http://link.aps.

org/doi/10.1103/PhysRevD.66.034032.

[14] J. C. R. Bloch. Two-Loop Improved Truncation of the Ghost-Gluon Dyson-Schwinger
Equations: Multiplicatively Renormalizable Propagators and Nonperturbative Running
Coupling. Few-Body Systems, 33(2-3):111–152, 2003. ISSN 0177-7963. doi: 10.1007/
s00601-003-0013-3. URL http://dx.doi.org/10.1007/s00601-003-0013-3.

[15] I.L. Bogolubsky, E.-M. Ilgenfritz, M. Müller-Preussker, and A. Sternbeck. Lattice
Gluodynamics Computation of Landau-Gauge Green’s Functions in the Deep In-
frared. Physics Letters B, 676(13):69 – 73, 2009. ISSN 0370-2693. doi: http:
//dx.doi.org/10.1016/j.physletb.2009.04.076. URL http://www.sciencedirect.com/

science/article/pii/S0370269309005206.

[16] Patrick O. Bowman, Urs M. Heller, Derek B. Leinweber, Maria B. Parappilly, An-
thony G. Williams, and Jianbo Zhang. Unquenched Quark Propagator in Landau
Gauge. Phys. Rev. D, 71:054507, Mar 2005. doi: 10.1103/PhysRevD.71.054507. URL
http://link.aps.org/doi/10.1103/PhysRevD.71.054507.

[17] Michael Chanowitz. Chiral Suppression of Scalar-Glueball Decay. Phys. Rev. Lett., 95:
172001, Oct 2005. doi: 10.1103/PhysRevLett.95.172001. URL http://link.aps.org/

doi/10.1103/PhysRevLett.95.172001.

145

http://link.aps.org/doi/10.1103/PhysRevD.22.2550
http://www.sciencedirect.com/science/article/pii/0003491676901561
http://www.sciencedirect.com/science/article/pii/0003491676901561
http://dx.doi.org/10.1007/BF02823296
http://dx.doi.org/10.1007/BF02823296
http://arxiv.org/abs/1106.4843
http://arxiv.org/abs/1106.4843
http://link.aps.org/doi/10.1103/PhysRevD.64.116011
http://link.aps.org/doi/10.1103/PhysRevD.66.034032
http://link.aps.org/doi/10.1103/PhysRevD.66.034032
http://dx.doi.org/10.1007/s00601-003-0013-3
http://www.sciencedirect.com/science/article/pii/S0370269309005206
http://www.sciencedirect.com/science/article/pii/S0370269309005206
http://link.aps.org/doi/10.1103/PhysRevD.71.054507
http://link.aps.org/doi/10.1103/PhysRevLett.95.172001
http://link.aps.org/doi/10.1103/PhysRevLett.95.172001


[18] Frank E. Close. Scalar Glueballs and Friends. Nuclear Physics A, 623(12):125 – 134,
1997. ISSN 0375-9474. doi: http://dx.doi.org/10.1016/S0375-9474(97)00430-2. URL
http://www.sciencedirect.com/science/article/pii/S0375947497004302.

[19] Attilio Cucchieri, Tereza Mendes, and Antonio Mihara. Numerical Study of the Ghost-
Gluon Vertex in Landau Gauge. Journal of High Energy Physics, 2004(12):012, 2004.
URL http://stacks.iop.org/1126-6708/2004/i=12/a=012.

[20] D. C. Curtis and M. R. Pennington. Truncating the Schwinger-Dyson Equations: How
Multiplicative Renormalizability and the Ward Identity Restrict the Three-Point ertex
in QED. Phys. Rev. D, 42:4165–4169, Dec 1990. doi: 10.1103/PhysRevD.42.4165. URL
http://link.aps.org/doi/10.1103/PhysRevD.42.4165.

[21] R. E. Cutkosky and M. Leon. Normalization of Bethe-Salpeter Wave Functions and
Bootstrap Equations. Phys. Rev., 135:B1445–B1446, Sep 1964. doi: 10.1103/PhysRev.
135.B1445. URL http://link.aps.org/doi/10.1103/PhysRev.135.B1445.

[22] Anton K. Cyrol, Markus Q. Huber, and Lorenz von Smekal. A Dyson-Schwinger Study
of the Four-Gluon Vertex. arXiv, arXiv:1408.5409 [hep-ph], 2014. URL http://arxiv.

org/abs/1408.5409.

[23] F. Dyson. The s Matrix in Quantum Electrodynamics. Phys. Rev., 75:1736–1755,
Jun 1949. doi: 10.1103/PhysRev.75.1736. URL http://link.aps.org/doi/10.1103/

PhysRev.75.1736.

[24] G. Eichmann, A. Krassnigg, M. Schwinzerl, and R. Alkofer. A Covariant View on the
Nucleons Quark Core. Annals of Physics, 323(10):2505 – 2553, 2008. ISSN 0003-4916.
doi: http://dx.doi.org/10.1016/j.aop.2008.02.007. URL http://www.sciencedirect.

com/science/article/pii/S0003491608000328.

[25] Gernot Eichmann. Hadron Properties from QCD Bound-State Equations. PhD thesis,
University of Graz, 2009. URL http://arxiv.org/abs/0909.0703. arXiv:0909.0703
[hep-ph].

[26] L.D. Faddeev and V.N. Popov. Feynman diagrams for the yang-mills field. Physics
Letters B, 25(1):29 – 30, 1967. ISSN 0370-2693. doi: http://dx.doi.org/10.1016/
0370-2693(67)90067-6. URL http://www.sciencedirect.com/science/article/

pii/0370269367900676.

[27] R.P. Feynman and A.R. Hibbs. Quantum Mechanics and Path Integrals. International
series in pure and applied physics. McGraw-Hill, 1965. URL http://books.google.

com/books?id=14ApAQAAMAAJ.

[28] C. S. Fischer and R. Alkofer. Nonperturbative Propagators, Running Coupling, and
the Dynamical Quark Mass of Landau Gauge QCD. Phys. Rev. D, 67:094020, May

146

http://www.sciencedirect.com/science/article/pii/S0375947497004302
http://stacks.iop.org/1126-6708/2004/i=12/a=012
http://link.aps.org/doi/10.1103/PhysRevD.42.4165
http://link.aps.org/doi/10.1103/PhysRev.135.B1445
http://arxiv.org/abs/1408.5409
http://arxiv.org/abs/1408.5409
http://link.aps.org/doi/10.1103/PhysRev.75.1736
http://link.aps.org/doi/10.1103/PhysRev.75.1736
http://www.sciencedirect.com/science/article/pii/S0003491608000328
http://www.sciencedirect.com/science/article/pii/S0003491608000328
http://arxiv.org/abs/0909.0703
http://www.sciencedirect.com/science/article/pii/0370269367900676
http://www.sciencedirect.com/science/article/pii/0370269367900676
http://books.google.com/books?id=14ApAQAAMAAJ
http://books.google.com/books?id=14ApAQAAMAAJ


2003. doi: 10.1103/PhysRevD.67.094020. URL http://link.aps.org/doi/10.1103/

PhysRevD.67.094020.

[29] C. S. Fischer, P. Watson, and W. Cassing. Probing Unquenching Effects in the Gluon Po-
larization in Light Mesons. Phys. Rev. D, 72:094025, Nov 2005. doi: 10.1103/PhysRevD.
72.094025. URL http://link.aps.org/doi/10.1103/PhysRevD.72.094025.

[30] Christian S. Fischer. Nonperturbative Propagators, Running Coupling and Dynamical
Mass Generation in Ghost - Anti-Ghost Symmetric Gauges in QCD. PhD thesis, Uni-
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[43] D. Lurié, A. J. Macfarlane, and Y. Takahashi. Normalization of Bethe-Salpeter Wave
Functions. Phys. Rev., 140:B1091–B1099, Nov 1965. doi: 10.1103/PhysRev.140.B1091.
URL http://link.aps.org/doi/10.1103/PhysRev.140.B1091.

[44] A.J. Macfarlane, A. Sudbery, and P.H. Weisz. On Gell-Mann’s λ-Matrices, d- and
f-Tensors, Octets, and Parametrizations of SU(3). Communications in Mathematical
Physics, 11(1):77–90, 1968. ISSN 0010-3616. doi: 10.1007/BF01654302. URL http:

//dx.doi.org/10.1007/BF01654302.

[45] S. Mandelstam. Dynamical Variables in the Bethe-Salpeter Formalism. Proceed-
ings of the Royal Society of London. Series A. Mathematical and Physical Sci-
ences, 233(1193):248–266, 1955. doi: 10.1098/rspa.1955.0261. URL http://rspa.

royalsocietypublishing.org/content/233/1193/248.abstract.

[46] S. Mandelstam. Approximation Scheme for Quantum Chromodynamics. Phys. Rev.
D, 20:3223–3238, Dec 1979. doi: 10.1103/PhysRevD.20.3223. URL http://link.aps.

org/doi/10.1103/PhysRevD.20.3223.

[47] F. Mandl and G. Shaw. Quantum Field Theory. A Wiley-Interscience publication. John
Wiley & Sons, 2010. ISBN 9780471496830. URL http://books.google.com/books?

id=Ef4zDW1V2LkC.

[48] Pieter Maris and Craig D. Roberts. π- and k-meson Bethe-Salpeter Amplitudes. Phys.
Rev. C, 56:3369–3383, Dec 1997. doi: 10.1103/PhysRevC.56.3369. URL http://link.

aps.org/doi/10.1103/PhysRevC.56.3369.

148

http://www.nature.com/scientificamerican/journal/v247/n5/pdf/scientificamerican1182-142.pdf
http://www.nature.com/scientificamerican/journal/v247/n5/pdf/scientificamerican1182-142.pdf
http://books.google.com/books?id=CxYCMNrUnTEC
http://books.google.com/books?id=CxYCMNrUnTEC
http://ptp.oxfordjournals.org/content/7/2/217.abstract
http://ptp.oxfordjournals.org/content/7/2/217.abstract
http://link.aps.org/doi/10.1103/PhysRev.140.B1091
http://dx.doi.org/10.1007/BF01654302
http://dx.doi.org/10.1007/BF01654302
http://rspa.royalsocietypublishing.org/content/233/1193/248.abstract
http://rspa.royalsocietypublishing.org/content/233/1193/248.abstract
http://link.aps.org/doi/10.1103/PhysRevD.20.3223
http://link.aps.org/doi/10.1103/PhysRevD.20.3223
http://books.google.com/books?id=Ef4zDW1V2LkC
http://books.google.com/books?id=Ef4zDW1V2LkC
http://link.aps.org/doi/10.1103/PhysRevC.56.3369
http://link.aps.org/doi/10.1103/PhysRevC.56.3369


[49] Pieter Maris and Peter C. Tandy. Bethe-Salpeter Study of Vector Meson Masses and
Decay Constants. Phys. Rev. C, 60:055214, Oct 1999. doi: 10.1103/PhysRevC.60.
055214. URL http://link.aps.org/doi/10.1103/PhysRevC.60.055214.

[50] Joseph Meyers and Eric S. Swanson. Spin Zero Glueballs in the Bethe-Salpeter For-
malism. Phys. Rev. D, 87:036009, Feb 2013. doi: 10.1103/PhysRevD.87.036009. URL
http://link.aps.org/doi/10.1103/PhysRevD.87.036009.

[51] Joseph Meyers and Eric S. Swanson. The Gluon Propagator with Two-Loop Schwinger-
Dyson Equations. Phys. Rev. D, 90:045037, Aug 2014. doi: 10.1103/PhysRevD.90.
045037. URL http://link.aps.org/doi/10.1103/PhysRevD.90.045037.

[52] Colin J. Morningstar and Mike Peardon. Glueball Spectrum from an Anisotropic Lattice
Study. Phys. Rev. D, 60:034509, Jul 1999. doi: 10.1103/PhysRevD.60.034509. URL
http://link.aps.org/doi/10.1103/PhysRevD.60.034509.

[53] Noboru Nakanishi. Normalization Condition and Normal and Abnormal Solutions of
the Bethe-Salpeter Equation. Phys. Rev., 138:B1182–B1192, Jun 1965. doi: 10.1103/
PhysRev.138.B1182. URL http://link.aps.org/doi/10.1103/PhysRev.138.B1182.

[54] Noboru Nakanishi. A General Survey of the Theory of the Bethe-Salpeter Equation.
Progress of Theoretical Physics Supplement, 43:1–81, 1969. doi: 10.1143/PTPS.43.1.
URL http://ptps.oxfordjournals.org/content/43/1.abstract.

[55] Yoichiro Nambu. Force Potentials in Quantum Field Theory. Progress of Theo-
retical Physics, 5(4):614–633, 1950. doi: 10.1143/ptp/5.4.614. URL http://ptp.

oxfordjournals.org/content/5/4/614.short.

[56] K.A. Olive et al. Review of particle physics. Chin.Phys., C38:090001, 2014. doi:
10.1088/1674-1137/38/9/090001.

[57] M. R. Pennington and D. J. Wilson. Are the Dressed Gluon and Ghost Propagators in
the Landau Gauge Presently Determined in the Confinement Regime of QCD? Phys.
Rev. D, 84:094028, Nov 2011. doi: 10.1103/PhysRevD.84.094028. URL http://link.

aps.org/doi/10.1103/PhysRevD.84.094028.

[58] M.R. Pennington. Swimming with Quarks. J.Phys.Conf.Ser., 18:1–73, 2005. doi: 10.
1088/1742-6596/18/1/001. URL http://arxiv.org/abs/hep-ph/0504262.

[59] Roldan Pozo. Template Numerical Toolkit (TNT) and JAMA/C++. URL http:

//math.nist.gov/tnt/index.html.

[60] E. E. Salpeter and H. A. Bethe. A Relativistic Equation for Bound-State Problems.
Phys. Rev., 84:1232–1242, Dec 1951. doi: 10.1103/PhysRev.84.1232. URL http://

link.aps.org/doi/10.1103/PhysRev.84.1232.

149

http://link.aps.org/doi/10.1103/PhysRevC.60.055214
http://link.aps.org/doi/10.1103/PhysRevD.87.036009
http://link.aps.org/doi/10.1103/PhysRevD.90.045037
http://link.aps.org/doi/10.1103/PhysRevD.60.034509
http://link.aps.org/doi/10.1103/PhysRev.138.B1182
http://ptps.oxfordjournals.org/content/43/1.abstract
http://ptp.oxfordjournals.org/content/5/4/614.short
http://ptp.oxfordjournals.org/content/5/4/614.short
http://link.aps.org/doi/10.1103/PhysRevD.84.094028
http://link.aps.org/doi/10.1103/PhysRevD.84.094028
http://arxiv.org/abs/hep-ph/0504262
http://math.nist.gov/tnt/index.html
http://math.nist.gov/tnt/index.html
http://link.aps.org/doi/10.1103/PhysRev.84.1232
http://link.aps.org/doi/10.1103/PhysRev.84.1232


[61] D.V. Schroeder. An Introduction to Quantum Field Theory. Levant Books, 2005. ISBN
9788187169529. URL http://books.google.com/books?id=yL3PnQk84HwC.

[62] Julian Schwinger. On the Greens Functions of Quantized Fields. i. Proceedings of the
National Academy of Sciences, 37(7):452–455, 1951. doi: 10.1073/pnas.37.7.452. URL
http://www.pnas.org/content/37/7/452.short.

[63] Julian Schwinger. On the Greens Functions of Quantized Fields II. Proceedings of the
National Academy of Sciences, 37(7):455–459, 1951. doi: 10.1073/pnas.37.7.455. URL
http://www.pnas.org/content/37/7/455.short.

[64] J. Sexton, A. Vaccarino, and D. Weingarten. Numerical Evidence for the Observation of
a Scalar Glueball. Phys. Rev. Lett., 75:4563–4566, Dec 1995. doi: 10.1103/PhysRevLett.
75.4563. URL http://link.aps.org/doi/10.1103/PhysRevLett.75.4563.

[65] A.A. Slavnov. Ward Identities in Gauge Theories. Theoretical and Mathematical Physics,
10(2):99–104, 1972. ISSN 0040-5779. doi: 10.1007/BF01090719. URL http://dx.doi.

org/10.1007/BF01090719.

[66] J.C. Taylor. Ward Identities and Charge Renormalization of the Yang-Mills Field.
Nuclear Physics B, 33(2):436 – 444, 1971. ISSN 0550-3213. doi: http://dx.doi.
org/10.1016/0550-3213(71)90297-5. URL http://www.sciencedirect.com/science/

article/pii/0550321371902975.

[67] Lorenz von Smekal, Andreas Hauck, and Reinhard Alkofer. A Solution to Coupled
Dyson-Schwinger Equations for Gluons and Ghosts in Landau Gauge. Annals of Physics,
267(1):1 – 60, 1998. ISSN 0003-4916. doi: http://dx.doi.org/10.1006/aphy.1998.5806.
URL http://www.sciencedirect.com/science/article/pii/S0003491698958067.

[68] S. Weinberg. The Quantum Theory of Fields: Foundations. Number V. 1 in The
Quantum Theory of Fields. Cambridge University Press, 1995. ISBN 9780521550017.
URL http://books.google.com/books?id=doeDB3_WLvwC.

[69] S. Weinberg. The Quantum Theory of Fields. Number V. 2 in The Quantum Theory of
Fields 3 Volume Hardback Set. Cambridge University Press, 1996. ISBN 9780521550024.
URL http://books.google.com/books?id=sn9QvU5dmBQC.

[70] Richard Williams. Schwinger-Dyson Equations in QED and QCD and the Calculation
of Fermion-Antifermion Condensates. PhD thesis, Durham University, 2007. URL
http://etheses.dur.ac.uk/2558/. Available at Durham E-Theses Online.

[71] Kenneth Wilson. Confinement of Quarks. Phys. Rev. D, 10:2445–2459, Oct 1974. doi:
10.1103/PhysRevD.10.2445. URL http://link.aps.org/doi/10.1103/PhysRevD.10.

2445.

150

http://books.google.com/books?id=yL3PnQk84HwC
http://www.pnas.org/content/37/7/452.short
http://www.pnas.org/content/37/7/455.short
http://link.aps.org/doi/10.1103/PhysRevLett.75.4563
http://dx.doi.org/10.1007/BF01090719
http://dx.doi.org/10.1007/BF01090719
http://www.sciencedirect.com/science/article/pii/0550321371902975
http://www.sciencedirect.com/science/article/pii/0550321371902975
http://www.sciencedirect.com/science/article/pii/S0003491698958067
http://books.google.com/books?id=doeDB3_WLvwC
http://books.google.com/books?id=sn9QvU5dmBQC
http://etheses.dur.ac.uk/2558/
http://link.aps.org/doi/10.1103/PhysRevD.10.2445
http://link.aps.org/doi/10.1103/PhysRevD.10.2445


[72] Wolfram Research, Inc. Mathematica, Version 10.0, Champaign, IL (2014).

151


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Set of Renormalization parameters for the QCD propagator functions of Figure 8
	2. Toy model renormalization parameters for the QED propagator functions of Figure 19.
	3. Set of parameters for the Maris-Tandy gluon propagator model.
	4. Comparison of anomalous dimension parameters i exhibited by Lattice QCD results and the numerical results of our fully coupled system.

	LIST OF FIGURES
	1. Plot of the Running Coupling of QCD as obtained from lattice gauge theory and multiple experimental measurements as compiled by the Particle Data GroupPDG-2014
	2. Diagrams representing the (source-dependent) propagators in QCD
	3. Diagrams representing the perturbative vertices in QCD
	4. General diagram for a nonperturbative vertex in QCD
	5. Diagrams representing the classical field variables in QCD
	6. Diagrammatic representation of functional derivatives with respect to a generic classical field variable X
	7. Diagrammatic representation of the Bethe-Salpeter amplitude ij(q+,q-;), where P = q+-q-.
	8. Plots of the QCD propagator dressing functions obtained under various combinations of radial and angular grid spacing. The scalar functions A(p2) and B(p2) are part of the quark propagator as defined in §3.4.1, while G(p2) and Z(p2) are defined in §3.4.2.2 as two ways of parametrizing the gluon propagator. Solutions were obtained with g2=1 and the set of renormalization parameters shown in Table 1.
	9. Schwinger-Dyson Master Equation for 4 theory.
	10. Schwinger-Dyson equation of motion for the phion propagator in 4 theory.
	11. Perturbative vertex for 4 theory.
	12. Plot of the phion propagator F(p2) as obtained from the nonperturbative equation of motion. The propagator was renormalized using the toy model convention with F(0)=1 and F(10,000)=110,000.
	13. Photon Schwinger-Dyson Master Equation
	14. Electron Schwinger-Dyson Master Equation
	15. Perturbative vertex for QED
	16. Electron Gap Equation
	17. Photon Gap Equation
	18. Electron-Photon Vertex Equation.
	19. Plot of the electron propagator dressing functions A and B and the photon propagator dressing functions G and Z under a variation in momentum grid resolution. Solutions were obtained with g2=1 and the set of toy model renormalization parameters shown in Table 2.
	20. Quark Schwinger-Dyson Master Equation
	21. Ghost Schwinger-Dyson Master Equation
	22. Gluon Schwinger-Dyson Master Equation
	23. Quark Gap Equation
	24. Ghost Gap Equation
	25. Gluon Gap Equation
	26. Quark-Gluon Vertex Equation
	27. Ghost-Gluon Vertex Equation
	28. 3-Gluon Vertex Equation
	29. 4-Gluon Vertex Equation
	30. Comparison of solutions to the Swimming with QuarksSwQ model obtained through the integral form (3.180) and the differential form (3.184). Solutions were obtained with g2=50 and toy model renormalization parameter (or boundary condition) B(0)=5.
	31. Comparison of solutions to the Swimming with QuarksSwQ model which have: (a) Identical (toy model) boundary conditions of B(0)=.3 but coupling values of g24=3 (red) and =10 (purple), and (b) Identical coupling =3 but different (toy model) boundary conditions B(0)=.3 (blue) and B(0)=.6 (green).
	32. Plot of the Lattice Gluon Propagator as provided by Bogolubsky et al. Bogolubsky2009
	33. Demonstration of dynamical chiral symmetry breaking using the (a) Maris Tandy and (b) Aguilar-Papavassiliou gluon propagator models. Note that XSB solutions do not allow for renormalization of the equation for B(p2), but the renormalization parameter A(9 GeV2)=1 was used, where the units of GeV arise from the scales introduced by the lattice G(p2).
	34. Plots of the quark propagator dressing functions A and B using the n=2 CBC vertex and a variety of couplings and perturbative masses, obtained using the entire gluon model. The renormalization parameters A(9 GeV2)=1 and (for massive quark cases) B(9 GeV2)=.65 GeV were used, and again the entire model fit to the lattice G(p2) implies units of GeV.
	35. Plots using the entire gluon model of the quark propagator dressing functions A and M=BA with perturbative and n=0 CBC vertices in comparison to the quenched massive quark lattice data of Bowman et alBowman. Renormalization parameters A(9 GeV2)=1 and B(9 GeV2)=.033 GeV were used.
	36. Results for the gluon propagator functions G and Z from Mandelstam's equation under two different approaches to renormalization. The solutions were obtained with g2=1 and renormalization parameters were G(0 GeV2)=10 GeV-2 and G(.01 GeV2)=1.01 GeV2.
	37. Results of the von Smekal, Hauck, and Alkofer propagator equations for the Yang-Mills system under two different approaches to renormalization of the gluon equation. Solutions were obtained with g2=.11 and renormalization parameters G(0 GeV2)=10 GeV-2, G(.01 GeV2)=1.01 GeV2, and h(16 GeV2)=1.24.
	38. Plots of the solutions to the fully coupled system of QCD propagator dressing functions under two sets of renormalization parameters and a universal coupling value. The renormalization parameters for quarks, ghosts, and the IR point for gluons were A(.25 GeV2)=1.39, B(.25 GeV2)=.43, h(1 GeV2)=1.9, and G(0 GeV2)=10 for all curves, while the second gluon renormalization point was G(.25 GeV2)=8 GeV-2 with g2=.36 for the blue curves and G(21.5 GeV2)=.0665 with g2=.83 for the purple curves.
	39. Plot of the relative contributions of the diagrams from (3.123) (Figure 25) to the gluon propagator's vacuum polarization, under two different sets of renormalization parameters. The renormalization parameters for quarks, ghosts, and the IR point for gluons were A(.25 GeV2)=1, B(.25 GeV2)=.033, h(1 GeV2)=1.9, and G(0 GeV2)=10, while the second gluon renormalization point was G(.25 GeV2)=8 GeV-2 with g2=.36; and (b) G(21.5 GeV2)=.0665 with g2=.83.
	40. Comparison of the quark propagator dressing functions A and MBA to the lattice data of Bowman et al.Bowman Solutions were obtained with differentiated coupling values and variety of vertex models. Renormalization parameters were A(.25 GeV2)=1, B(.25 GeV2)=.033, h(16 GeV2)=1.24, G(0 GeV2)=10, and G(.25 GeV2)=8 GeV-2, while the couplings were g2AAA=.2 and g2cAc=1.57, with g2A=5.29 for the bare vertex, g2A=12.08 for the n=0 CBC vertex, g2A=7.2 for the n=1 CBC vertex, and g2A=3.85 for the n=2 CBC vertex.
	41. Comparison of the ghost and gluon propagator dressing functions h and Z to the lattice data of Bogolubsky et al.Bogolubsky2009 The solutions were obtained using differentiated coupling values and two sets of renormalization parameters in the gluon equation. Renormalization parameters were A(.25 GeV2)=1, B(.25 GeV2)=.033 GeV, h(16 GeV2)=1.24, and G(0 GeV2)=10 GeV-2, with G(.25 GeV2)=8 GeV-2 with couplings g2AAA=.2, g2cAc=1.6, and g2A=6.5 for the blue curves, and G(21.5 GeV2)=.0665 GeV-2 with couplings g2AAA=.54, g2cAc=1.97, and g2A=8.4 for the purple curves 
	42. Plot of the real and imaginary parts of Z(s) as obtained through direct continuation.
	43. Plot of the magnitude and phase of the quark propagator function S(s) on the complex plane, as obtained using the entire gluon model and a Cauchy-Riemann algorithm.
	44. Comparison of the eigenvalue curves for the 0-+ glueball, calculated using both the Point Basis (lines) and Chebyshev Basis (points) methods, obtained with g2=1 and the entire gluon model.
	45. Functional expression for the 2-gluon glueball Bethe-Salpeter amplitude
	46. Functional expression for the ghost-antighost mixing contribution to the glueball Bethe-Salpeter amplitude
	47. Functional expression for the quark-antiquark mixing contribution to the glueball Bethe-Salpeter amplitude
	48. Equation for the gluon Bethe-Salpeter amplitude which was used in the present computation.
	49. Equation for the ghost Bethe-Salpeter amplitude which was used in the present computation.
	50. Equation for the quark Bethe-Salpeter amplitude which was initially attempted for the extension to glueball-meson mixing of §4.4.
	51. Extended equation for the gluon Bethe-Salpeter amplitude which was initially attempted for the extension to glueball-meson mixing of §4.4.
	52. Bethe-Salpeter terms involving the gluon-ghost mixing kernel.
	53. Comparison of resonance eigenvalues to the lattice results for glueball masses of Morningstar et al.MorningstarPeardon. Solid lines represent 0++ eigenvalues, dashed lines are 0-+. All solutions were obtained with the entire gluon model and g2=.1681

	Acknowledgements
	1.0 INTRODUCTION
	2.0 FORMALISM
	2.1 Path Integrals
	2.2 Generating Functionals
	2.2.1 Definitions
	2.2.2 Legendre Transform

	2.3 Schwinger-Dyson Equations
	2.3.1 Derivation
	2.3.2 Diagrammatics
	2.3.3 Truncation
	2.3.4 Renormalization

	2.4 The Bethe-Salpeter Equation

	3.0 GAP EQUATIONS
	3.1 Numerical Methods
	3.1.1 Discretization
	3.1.2 Convergence and Stability of Solutions
	3.1.3 Renormalization in Practice

	3.2 4 theory
	3.3 QED
	3.3.1 Electrons
	3.3.2 Photons
	3.3.3 QED Interactions
	3.3.4 QED Renormalization
	3.3.5 Results

	3.4 QCD
	3.4.1 Quark Sector
	3.4.2 Yang-Mills Sector
	3.4.2.1 Ghosts
	3.4.2.2 Gluons

	3.4.3 QCD Interactions
	3.4.4 QCD Renormalization
	3.4.5 Truncation Examples
	3.4.5.1 Swimming with Quarks
	3.4.5.2 Fits to Lattice Gluons
	3.4.5.3 Mandelstam's Equation
	3.4.5.4 vSHA Equations

	3.4.6 Fully Coupled System
	3.4.7 Comparison to Other Work


	4.0 BOUND STATES
	4.1 Analytic Continuation
	4.1.1 Necessity
	4.1.2 Methods – Direct Continuation
	4.1.3 Methods – Cauchy-Riemann Continuation
	4.1.4 Methods – Double-Grid Continuation
	4.1.5 Methods – Contour Continuation

	4.2 Numerical Methods
	4.2.1 Eigensystem Representation
	4.2.2 Chebyshev vs. Super-Index
	4.2.2.1 Point Basis Diagonalization
	4.2.2.2 Chebyshev Basis Diagonalization
	4.2.2.3 Results and Comparison


	4.3 Glueballs
	4.3.1 Symmetries of the 2-gluon Valence Contribution
	4.3.2 The 0-+ Glueball
	4.3.2.1 Perturbative Vertices
	4.3.2.2 Dressed Vertices

	4.3.3 The 0++ Glueball
	4.3.4 Glueball Results

	4.4 Glueball + Meson Studies

	5.0 CONCLUSIONS
	BIBLIOGRAPHY

