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Abstract

With the availability of large amount of genomics studies, integrating information from

multiple sources improves knowledge discovery. To address the complexity of genome and

numerous genetic features, meta-analysis that aggregate information achieves higher statis-

tical power for the measure of interest, and identify patterns among study results, sources

of disagreement among those results.

As Next-Generation Sequencing (NGS) technologies are becoming affordable and can

provide per-base resolution, NGS data serves as an appealing tool to analyze genomic fea-

tures. Among various applications of NGS technologies, chromatin immunoprecipitation fol-

lowed by high-throughput sequencing(ChIP-seq) is primarily used to provide quantitative,

genome-wide mapping of target protein and DNA interaction events. Signal peak calling

algorithms identified target regions of interest enriched in vitro. Despite the existing pro-

grams for previous ChIP-Chip platforms, peak calling of putative protein binding sites from

large, sequencing based data-sets presents a bioinformatic challenge that has required con-

siderable computational innovation. Popular peak calling algorithms, such as MACS, SPP,

CisGenome, SISSRs, USeq, and PeakSeq, are widely applied but each of them has different

emphasis on sensitivity, specificity or different size and shape selection of peaks. In the

first project of this dissertation, we propose a meta-analysis framework, ChIP-MetaCaller,

to combine multiple top-performing algorithms to identify and reprioritize the peaks. We
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provide a forward selection algorithm to decide best combination of algorithms’ output to

perform meta-analysis and showed that the result improves motif enrichment and sensitivity.

The results are more trackable by biologists for further validation and hypothesis generation.

The mechanisms of complex diseases like cancers involve changes in multiple genes, each

conferring small and incremental risk that potentially converge in deregulated biological

pathways, cellular functions and local circuit changes. To understand this complex network

requires discovery of co-expression gene modules. Literature shows using meta-analysis can

improve performance of identifying these modules from machine learning techniques in some

pilot studies. In the second project of this dissertation, we proposed approach which is based

on the clustering results of each individual study. Combining standardized distances from

genes to the medoids lead to an integrated distance matrix and perform the meta-clustering.

We compared the performance of proposed approach and Meta Clustering combining dis-

tance under three simulation settings and three real data sets and provide guidance for

practitioners.

Two projects included in this dissertation tackles different biological questions based on

genomics data. Both of them improve performance from existing methods by information

integration applying meta-analysis frameworks, and provide comprehensive biomarker de-

tection.This work could improve public health by providing more effective methodologies for

biomarker detection in the integration of multiple genomic studies.
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1.0 INTRODUCTION

1.1 HIGH-THROUGHPUT EXPERIMENTAL DATA

Genomics is a recent term that describes the study of all of a person’s genes (the genome),

including interactions of genes with each other and with the person’s environment. Genomics

includes the scientific study of complex diseases such as heart disease, asthma, diabetes, and

cancers because these diseases are typically caused more by a combination of genetic and

environmental factors than by individual genes. Genomics is offering new possibilities for

therapies and treatments for many complex diseases, as well as new diagnostic methods. Due

to the tremendous size of genome, exploration of whole genome requires high through-put

experimental data. The generation of these mainly rely on two platforms: microarray and

massively parallel sequencing.

1.1.1 Microarray

Microarray technology allows measurement of the levels of thousands of different RNA or

DNA molecules at a given point in the life of an organism, tissue or cell. With the compari-

son of levels of RNA or DNA molecules can be used to decipher the complex processes going

on simultaneously. Comparison between different genomic information under different bio-

logical conditions can yield vital information related to diseases. Microarray has been widely

applied to almost all fields of biological researches, as arrays become more easily applicable

(i.e. cheaper and reproducible). With the different designs of gene probes or experiment,

microarray technology can be widely applied to various purposes of biomarkers detection

including, profiling of expression levels, SNP detection, copy number alternation detection,
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transcription factors binding detection, etc. With decades of improvement of both the tech-

nology and data analysis methods, microarray has been recognized as a mature platform to

provide reliable high throughput data for genomics researchers.

1.1.1.1 Microarray General Procedures Based on hybridization of two DNA strands

(Southern blotting) or RNA strand with DNA strand(Northern blotting), microarray, a

multiplex ”lab-on-the-chip”, is developed to capture large amount of DNA samples. It is a

2D array on a solid substrate (usually a glass slide or silicon thin-film cell) that assays large

amounts of biological material using high-throughput screening miniaturized, multiplexed

and parallel processing detection methods. With the known bases of the material on the

chip, each DNA spot contains picomoles (10−12 moles) of a specific DNA sequence, known as

probes (or reporters or oligos). These can be a short section of a gene or other DNA element

that are used to hybridize a cDNA or cRNA (also called anti-sense RNA) sample (called

target) under high-stringency conditions. Probe-target hybridization is usually detected

and quantified by detection of fluorophore-, silver-, or chemiluminescence-labeled targets to

determine relative abundance of nucleic acid sequences in the target.

1.1.1.2 Array Types With the rapid development of microarray technology and differ-

ent research purposes, biotechnology companies have development various microarray prod-

uct including, DNA microarray, (such as cDNA microarrays, oligonucleotide microarrays,

BAC microarrays and SNP microarrays), MMChips(for surveillance of microRNA popula-

tions), Protein microarrays, Peptide microarrays(for detailed analyses or optimization of

protein-protein interactions), Tissue microarrays, Cellular microarrays (also called transfec-

tion microarrays), Chemical compound microarrays, Antibody microarrays, Carbohydrate

arrays (glycoarrays), Phenotype microarrays and etc.

Major application of DNA microarray can be further categorized by detection purposes.

• Expression profiling: In an mRNA or gene expression profiling experiment the expression

levels of thousands of genes are simultaneously monitored to study the effects of certain

treatments, diseases, and developmental stages on gene expression.
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• SNP detection: Identifying single nucleotide polymorphism among alleles within or be-

tween populations. Several applications of microarrays make use of SNP detection, in-

cluding Genotyping, forensic analysis, measuring predisposition to disease, identifying

drug-candidates, evaluating germline mutations in individuals or somatic mutations in

cancers, assessing loss of heterozygosity, or genetic linkage analysis.

• ChIP on chip: DNA sequences bound to a particular protein can be isolated by im-

munoprecipitating that protein (ChIP), these fragments can be then hybridized to a

microarray (such as a tiling array) allowing the determination of protein binding site

occupancy throughout the genome.

With the well-established statistical model to analyze and mature technology, the application

listed above is still popular in majority biological lab. Other application including alternative

splicing and fusion gene detection can be accomplished by specific design of microarray

experiment and chips as well. However, as the emerging of NGS technology, the limitation

of these application with microarray is diminished the occupation of market.

1.1.1.3 Data Analysis Proper data processing and quality control are critical to the

validity and interpretability of microarray analysis. As majority analysis is aiming at com-

parison of difference under conditions, normalization is required to standardize data to focus

on biologically relevant changes. There are many sources of systematic variation in microar-

ray experiments that affect the measured gene expression levels such as dye bias, heat and

light sensitivity, efficiency of dye incorporation, differences in the labeled cDNA hybridization

conditions, scanning conditions, and unequal quantities of starting RNA, etc. Normalization

is an important step in adjusting the data set for technical variation and removing relative

abundance of gene expression profiles. The basic idea behind all the normalization methods

is that the expected mean intensity ratio between the two channels should be one. If the

observed mean intensity ratio deviates from one, the data is mathematically processed in

such a way that the final observed mean intensity ratio becomes one. With the mean inten-

sity ratio adjusted to one, the distribution of the gene expression is centered so that genuine

differentials can be identified.
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1.1.2 Next-Generation Sequencing

As automated Sanger sequencing method is recognized as the first generation of sequencing

technology, massively parallel sequencing techniques are referred to next-generation sequenc-

ing (NGS) [20]. According to different procedure of template preparation, sequencing can be

applied to various clinical researches. For example, bisulfite treated DNA sequencing can be

used to detect methylation sites; chromatin immunoprecipitation captured reads can be ap-

plied to transcription factor and histone modification; complementary DNA sequencing are

applied to quantify gene expression profiles, and etc. Compared with microarrays, NGS can

identify and quantify genomic features without prior knowledge of genetic event locations

but scanning whole genome of organisms. This unique feature provides flexibility of genetic

study design.

1.1.2.1 NGS General Procedures NGS platforms produce enormous DNA molecular

templates and sequence the ends of these templates simultaneously to achieve collecting

hundreds of thousands base pairs information with a relatively low cost within a short time

period. However, billions of sequenced short reads and relative base calling quality (in fact,

total count and length of reads depend on the prepared library sizes of sample genome

and sequencing platform) are written into text files with size can be up to terabytes with

unknown genome location. To determine these numerous reads genome location, there are

two general approaches: de novo assembly and alignment. De novo assembly relies on only

reads pipe-up information to build up genome information. Due to the complexity of genome

and algorithm, de novo assembly involves extremely expensive computation and is usually

only applied to explore unknown genome or discover innovational genome structure. The

most common used algorithm performing de novo assembly is de brujin graph [4]. Alignment

is referring to algorithms that map short reads towards a known genome by allowing certain

mismatches due to the individual biological variation. Among existing alignment software,

the most popular ones of them, such as BWA and Bowtie, are based on Burrows-Wheelers

transform algorithm [2]. For the background information, the section below gave a general

procedure of NGS data preparation and analysis work flow.
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1.1.2.2 Template Preparation Template is referred to the recombinant DNA molecule

made up of a known region, usually an adapter sequence to which a universal primer can

bind, and a target sequence which is an unknown portion to be sequenced. The emergence

of shot-gun method during the Human Genome Project suggested to randomly breaking

genomic DNA into smaller sized fragments. These fragments can be separated into two

categories according to sequencers, template fragments which sequencer only sequence one

side of fragments (also known as single-end fragments), mate-pair templates, also known

as paired-end fragments, which sequencer sequence both ends of fragments and using the

distance between two ends to provide a more accurate alignment in later steps. Then these

reads is attached or immobilized to a solid surface of supports to allow thousands to billions

of sequencing reactions to be performed simultaneously.

Generally there are two different ways to prepare templates according to whether am-

plifying templates.The first approach is clonally amplified templates which uses emulsion

Polymerase Chain Reaction (emPCR) [6] or solid-phase amplification [11]. This approach

can avoid bacterial cloning, however, require a large amount of genomic DNA material [20].

The second approach is single-molecule templates which is more straightforward and re-

quire less starting materials. Moreover, this approach avoids PCR, which creates mutations.

Quantitative applications, such as RNA-seq [29], perform more effectively with non-amplified

template source, otherwise, removal of duplicate reads is required in a later step of data anal-

ysis.

1.1.2.3 Sequencing and Imaging According to different sequencing platforms, there

are four different imaging methods: Illumina/Solexa and Helicos BioScences uses Cyclic Re-

versible Terminators(CRT); Life/APG performs Sequencing by Ligation; Roche/454 applies

Single-nucleotitde addition: Pyrosequencing ; and Pacific Biosciences uses Real-time sequenc-

ing. There are essential differences in sequencing clonally amplified and single-molecule tem-

plates. Clonal amplification results in a population of identical templates, each of which has

undergone the sequencing reaction. Upon imaging, the observed signal is a consensus of the

nucleotides or probes added to the identical templates for a given cycle. This places a greater

demand on the efficiency of the addition process, and incomplete extension of the template
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ensemble results in lagging-strand dephasing. The addition of multiple nucleotides or probes

can also occur in a given cycle, resulting in leading-strand dephasing. Signal dephasing

increases fluorescence noise, causing base-calling errors and shorter reads [9]. Because de-

phasing is not an issue with single-molecule templates, the requirement for cycle efficiency

is relaxed. Single molecules, however, are susceptible to multiple nucleotide or probe addi-

tions in any given cycle. Here, deletion errors will occur owing to quenching effects between

adjacent dye molecules or no signal will be detected because of the incorporation of dark

nucleotides or probes.

1.1.2.4 Genome Alignment and Assembly After sequencing and imaging, the se-

quencer machine generates numerous number of base pair information and corresponding

per base calling quality. The general format is FastQ, sometime with a suffix .fastq or .fq.

The nucleotide information is recorded as either A,T,C,G, or N (which means unknown which

nucleotide). Corresponding quality score is commonly recorded by ACSII transformed phred

score. Different platforms produces different scores and accuracy estimates.

To locate the short reads genomic location requires either align to a known reference

sequence or assembled de novo. The decision depends on not only the study purposes but

also computational workload and cost as mentioned above.

The alignment reference genome is sequenced in former study and can be download from

multiple databases, such UCSC (University of California at Santa Cruz), NCBI (National

Center for Biotechnology Information), and Ensembl (European Bioinformatics Institute and

the Wellcome Trust Sanger Institute).

De novo assembly is subjected to explore and discover genomic regions that do not exist in

the reference genome. Structural variants are shown highly correlated with cancers. Cancer

patients’ genome may be highly disordered where de novo assembly has been recommended

compared to alignment. However, due to the complexity of its algorithm, assemblies have

been reported mostly for bacterial genomes and mammalian bacterial artificial chromosomes

[30], [32], but still challenging to apply in human genomes.
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1.1.2.5 Downstream Applications of NGS The purpose of generating these large

numbers of reads with NGS is to explore genomic features. The applications of NGS data

include small region variants or structural variants discovery, quantifying transcriptomes

regulation, alternative splicing discovery, epigenetic biomarkers profiling and etc. Variants

discovery is achieved by resequencing target regions or whole genome to address differences

with reference genome or genome from matched normal samples usually based on Exome-seq

or Whole Genome Sequencing. Transcription level studies are commonly based on RNA-seq

data. Methylation site detection can be discovered with sequencing a bisulfite treated DNA-

seq data while using a converted reference. Transcription factor and histone modifications

biomarkers are analyzed based on ChIP-seq data.

1.2 ”OMICS” DATA INTEGRATION

The term data integration refers to the situation where, for a given system, multiple sources

and types of data are available and we want to study them integrative to improve knowl-

edge discovery. The integration of different sources of data can improve the limitation of

sample size from single studies; the integration of different types can help researchers to

better understand the influence of genetic effects. For example, in the study of prostate can-

cer [31], we have two datasets describing the system, one containing information about gene

expression at the mRNA level and the other describing the CpG DNA methylation profile.

In several studies [19] [24] where gene expression and DNA methylation data were avail-

able, the genome-wide relationships between DNA methylation and gene expression have

been investigated in order to infer generic rules to questions such as: ”Does DNA methyla-

tion regulation occurs at CpG islands and/or shores?”, or ”How does DNA methylation in

promoters/gene-bodies/enhancers regulate gene expression?”. These kinds of analyses have

advanced our understanding of gene regulation by providing ”generic rules yet with several

exceptions” that associate epigenetic modifications with transcription.
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1.2.1 Microarray Meta-analysis

As the microarray technology has been widely applied to almost all biomedical fields, gen-

eration of various kinds of this high-throughtput technology genomic data is common for

biological research. Tremendous amount of studies based on microarray platform has been

conducted. There are several pulibcly available data depositories collected majority tran-

scriptome data from microarray experiments generated from past decade, such as Gene Ex-

pression Omnibus [21] and ArrayExpress [8] . However, the ability to manage and compare

the resulting data can be problematic. It is very common that transcriptomic studies are

focused on same or related diseases. Combining information from such studies can achieve

the goal of increase sample size and further lead to more desirable statistical power. Classical

meta-analysis in statistics that combining multiple studies which of similar hypothesis can

be modified and applied to the genomic information integration.

General genomic data integration can be categorized into two major settings accord-

ing to the term used in the review paper (Tseng et al 2012) [28]. Genomic information

integration that combine result from multiple transcriptomic studies are termed as hori-

zontal genomic meta-analysis. On the other hand, combining multiple sources of genomics

information is termed as vertical genomic meta-analysis. These kinds of multi-dimentional

integration usually include but not restrict to, transcriptome expression profile, genotypes,

and copy number variation of DNA fragments, methylation, microRNA and phenotype. In

this dissertation, we will meta-analysis in gene co-expression module detection in Chapter 3

and we will emphasize more on horizontal genomic meta-analysis.

Among horizontal genomic meta-analysis, there are multiple different purposes of in-

tegration of information. Differentially Expressed (DE) gene detection is a commonly used

downstream analysis. Meta-analysis frameworks have been widely applied to combine results

of DE genes detection, and achieved a significantly improve of sensitivity. Pathway analy-

sis is another statistical tool to infer correlation of DE evidence in the data with pathway

knowledge from established databases. Shen and Tseng, et al. [26] developed a systematic

framework of Meta-Analysis for Pathway Enrichment (MAPE) which integrates information

at gene level, at pathway level and a hybrid of the two. Another analysis commonly applied
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to microarray data is prediction analysis, also known as classification analysis or supervised

machine learning. The purpose of this analysis is to predict category membership of new

observation based on the discriminant model build with training data set. Combining of this

kind of analysis is aiming to improve discrimination with two or more study populations.

Network and gene co-expression module detection is another application of transcriptomic

data analysis. When multiple transcriptomic studies are combined, most methods have been

developed to improve differential analysis (candidate marker detection) and pathway analy-

sis. These methods mostly extend from traditional meta-analysis by combination effect sizes

or p-values of multiple studies to a genome-wide scale [28]. But in the field of co-expression

module detection, no systematic study of integrative methods for combining multiple tran-

scriptomic studies is available, to the best of our knowledge. This leads to the development

of methods in Chapter 3. Details of this type of analysis will be further described in section

3.2.

1.3 CHIP-SEQ TECHNIQUE FOR GENOME-WIDE MAPPING OF

PROTEIN-DNA INTERACTIONS

Biomarkers of protein-DNA interactions have been proved essential for understanding tran-

sciptional regulation [10]. The combination of nucleosome positioning and dynamic modi-

fication of DNA and histones play an important role in gene regulation and lead to differ-

entiation [23]. ChIP (Chromatin ImmunoPrecipitation) is a powerful method to selectively

enrich for DNA sequences bound by a particular protein in living cells. To identify all the

enriched DNA sequences, downstream techniques including old techniques tilling array and

massively parrallel sequencing can be applied. The ChIP process enriches specific crosslinked

DNA-protein complexes using an antibody against the protein of interest. Oligonucleotide

adaptors are then added to the small stretches of DNA that were bound to the protein of

interest to enable massively parallel sequencing. Antibody captured DNA sample sequenc-

ing result compared with no antibody effect chromatin input is used to decide reads signal

enrichment region. The summit of the signal peak is highly likely the DNA-protein binding
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site. Compared to ChIP-chip, ChIP-seq technology provides multiple outstanding features.

The resolution of ChIP-seq can be specified to single nucleotide while ChIP-chip relies on

the size of array probes usually 16-100bps. ChIP-chip’s coverage of genome is limited by

sequences on the array, and repetitive regions are usually masked out. The genome coverage

of ChIP-seq depends on the mappability of reads and repetitive regions can be covered. The

coverage can be increased by include more lane run of sequencer or use longer reads, however,

these properties requires higher cost. For example, Illumina Hi-seq 2000 platform generate

approximately 4 million reads with length of 100bps with cost of $1000-$2000 per Illumina

lane and depends on the design, one lane can process multiple samples.

Nearly all ChIP-Seq data so far have been generated on the Illumina Genome Analyzer,

although other platforms such as Applied Biosystems SOLiD and the Helicos platform are

also available for ChIP-Seq. The Illumina and the SOLiD platforms currently generate

100400 million reads in a single run, typically with 60 to 80% of reads that can be aligned

uniquely to the genome.

Downstream data analysis of sequencing data requires careful statistical modeling. Al-

gorithms that convert reads aggregation into peaks signals are recognized as peak callers.

Various callers use Poisson or negative binomial distribution to address the count data of

reads. The output of different callers are vary on reporting different lengths of binding

regions or different measurement of significance levels, and raises difficulty to compare re-

sults from each others. In Chapter 2, we proposed a ChIP-MetaCaller framework provides

practical output combining result from multiple callers.

1.4 GENE CO-EXPRESSION MODULE

Global gene expression profile studies using microarray are widely applied. Gene expression

profile can be used to identify gene co-expression modules. Sets of genes expression patterns

which are highly correlated across samples may reflect sharing similar function and common

regulatory pathways [18], [13]. Literatures has shown using gene co-expression analysis to

build up networks, identify gene communities, and gene shared functions [5], [7].
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Gene co-expression networks offer genome wide information associated with specific

molecular mechanisms in diseases. In Gaiteri et al. (2014) [12], they mentioned multi-

ple co-expression network analyses in mental diseases studies. The differential co-expression

analysis insights into testable predictions due to gene-gene co-expression correlations re-

late to core features of brain activity and structure, including spatial patterns, inter-tissue

communication, epigenetic changes and other non-coding features of regulatory networks.

Multiple factors can influence the co-expression pattern of gene-gene links, such as tran-

scription factor targets, microRNA targets, inter-tissue communications and etc. However,

technical, such as batch effect, and cell-type variability can also generate similar pattern of

gene co-expression which is potential confounders for the biologically meaningful regulation

pattern.

As gradually increasing numbers of gene co-expression studies, a framework of combining

single studies is proposed by Chang et al. (2014) [3]. In Chapter 3, we will propose a

meta-clustering method to combine several gene expression profile studies, and use Pearson

correlation to measure similarity between genes. Based on averaging distance matrices,

which are calculated by one minus correlation matrices, to construct a combined distance

of studies and applied penalized K-Medoids clustering algorithm [27] to determine the gene

co-expression modules. In Chapter 3, we proposed another approach which combine studies

at clusters levels and compare with Changs methods.

1.4.1 Network and Co-expression Analysis

Most complex diseases include dysfunction at the levels of genes, cells, tissues, organ regions

and feedback between these networks at multiple biological scales. The overlapping effect of

all these levels may lead to pathogenic mechanism of diseases obscure when taking measure-

ment at single level. Gene co-expression network analysis provides genome-scale information

and also has the potential to highlight specific molecular mechanisms in disease particularly

if the biophysical basis of co-expression is integrated into network analysis and if researchers

examine network properties beyond modules and hubs. In a recent review paper, Gaiteri

and Ying et al. 2014 [12] summarized the multi-scale mapping of gene expression traits
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and co-expression networks into the following steps: 1) Globel co-expression networks; 2)

Network decomposition to modules; 3) Within module disease traits; 4) Local co-expression;

5) Additional molecular networks. The building of whole networks is extremely complicated

and including computational and biological efforts. In this dissertation, we focused on the

first two steps.

When the mRNA expression of two or more genes is correlated across multiple samples,

these genes are recognized to be coexpressed. These coexpression links are generally inferred

from large microarray or RNA sequencing studies with no reference to the mechanisms

behind these correlations. Studies in multiples species, tissues and platforms have shown

that coexpressed genes tend to be functionally related (Obayashi et al. 2008; Oldham et

al 2006). Gene sets that are densely interconnected by coexpression links within the global

gene network are commonly known as clusters or modules [12]. If a significant fraction

of genes in a module relate to a gene ontology category or canonical pathway, through

guilt-by-association (GBA) the remaining genes in the module are assumed to be related to

that function (Gillis and Pavlidis 2012, Wolfe et al. 2005). Understanding the mechanisms

of gene regulation during certain biological condition is one of the most difficult problems

among oncologists because this regulation is likely comprised of complex genetic interactions.

Building network of gene sets are typically based on detection of gene-gene co-expression

modules. The underlying assumption is that the magnitude of co-expression between any

pair of genes is associated with greater likelihood that two genes interact.

1.4.2 Clustering Analysis

Unsupervised machine learning (also known as cluster analysis) is a common method to

discover gene co-expression modules by assign genes into groups under a predefined distance

measure when these modules have unknown labels. The application of clustering analysis

in categorizing genomic data is not restricted to identify co-expression module. Complex

diseases may be caused by different mechanisms. Clustering analysis is applied to identify

groups of patients into subtypes of diseases according to expression profiles. Representa-

tive diseases include leukemia (Golub et al., 1999), lymphoma (Rosenwald et al., 2002),
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glioblastoma (Parsons et al., 2008; Verhaak et al., 2010), breast cancer (Lehmann et al.,

2011; Parker et al., 2009), colorectal cancer (Sadanandam et al., 2013) and ovarian cancer

(Tothill et al., 2008). In this dissertation, we focus our discussion on cluster analysis on

high-throughput biological data for identifying gene modules, especially in the analysis of

microarray expression profiles.

There are large variety of clustering methods, including , hierarchical clustering (Eisen

et al 1998), K-means and its variants, mixture Gaussian model-based clustering (Yeung

et al 2001), graph-theoretical method (Sharan et al. 2003), and tight clustering (Tseng

2005). Comparative study for gene clustering in expression profiles (Thalamuthu et al., 2006)

suggests that clustering methods allowing scattered objects not being clustered, with explicit

or implicit model assumptions, and with resampling evaluations seem to perform better.

Penalized Weighted K-mediods (Tseng 2007) extended from K-mediods by adding penalty

term to allow a set of scattered objects without being clustered. Weights are introduced

to account for prior information of preferred or prohibited cluster patterns to be identified

as well. In Chapter 3, we extend the Penalized Partition Around Mediods(PPAM) with a

meta-analysis framework to integrate multiple study targeting the same disease or biological

conditions to detect potential gene co-expression modules.
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2.0 CHIP-METACALLER: AN ASSEMBLY METHOD TO COMBINE

MULTIPLE CHIP-SEQ PEAK CALLERS TO IDENTIFY AND

REPRIORITIZE THE PEAKS

2.1 BACKGROUND

Genome-wide ChIP experiment is used to detect binding site of a target protein’s DNA

interaction events. The procedure detecting these interactions is based on searching maximal

signal-to-noise ratio through whole genome of organism.(Landt et. al. 2012). Target DNA

cross-linked protein antigen which captured by beads attached antibody can be purified by

precipitation. Unlinked DNA fragments are later enriched and mapped to genome locations

indicates the interaction event regions. In ChIP-chip analysis, enriched DNA fragments

is fluorescently labeled and hybridized to microarray chip. Thus, the detection of signals

highly depend on design of probes on the chip. The ChIP-seq analysis which unlinked DNA

fragments are analysed by high-throughput DNA sequencing platform. The detection of

ChIP-seq analysis can provide better genome coverage and higher sensitivity for organisms

with large genomes. There are many factors that are potential obstacles and leads to bias

in ChIP-seq analyzes. Antibody deficiencies which either lack of reactivity to the intended

target or can be reactive to other DNA interact proteins are general problem for both ChIP-

chip and ChIP-seq. Genomic coverage due to local genome structure such as GC contents

may also include the mappability of sequencing reads which lead to bias to true signals.

Pair-end sequencing is well suited for providing additional information in detecting structural

rearrangement and adjusting multiple mapping issues in other genomic studies. However,

in ChIP-seq analysis, the design of only sequencing two ends of DNA fragments can lead to

fragment bias and bring difficulty to estimate the true binding sites. Other design issues, for
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example, read depth or imbalanced depths for ChIP and chromatin input samples which is

used as control for background noise is discussed in review papers. (Shirley Liu et al. 2012,

Marc T. Facciotti et al. 2010). Beside the obstacles from sequencing procedure and design

of experiments, the influence oriented from choice of computational algorithm and relative

parameters should not be underestimated.

The ChIP-seq procedure generate library of DNA fragments which are significantly en-

riched in regions that target protein binded with. Afterward alignment software (e.g. bowtie,

bwa, and etc.) determine the genome locations of these billions of reads by mapping these

sequence ’tags’ against a known genome reference. In the downstream analysis, ChIP-seq

peak callers based on statistical models scan through whole genome to search for regions

significantly enriched in the ChIP sample compared with chromatin background or a uni-

versal background. There are more than 30 published peak calling algorithms until present.

Generally, most peak callers are based on either Poisson model or negative binomial model

to address the count data. For instance, MACS [33] uses a localized Poisson parameter to

test significance of tag enrichment adjusting the local mapping structure; CisGenome [15]

applies a negative binomial model for overdispersion. Other calling algorithms use tags on

different strand information to construct the score by considering the enrichment changing

of different strands (e.g. SPP [17]). The performance of different algorithms are well studied

by multiple review papers in aspects of sensitivity, specificity, motif enrichment analysis,

dependency of read depth and reproducibility (e.g. Shirley Liu et al. 2012). However, there

is no universal best performed software in all aspects so far. Facciotti et al. (2010) compared

pair-wise overlap of peak list by 11 programs. Although there are 75-80% overlap of smallest

peak list across programs, there are only 45-55% of peaks shared with smaller peak lists

with a large peak list, which indicates among the top ranked peaks across different callers

are similar while relative lower ranked peak lists can be very different.

As senarios showed in figure 1, different peak callers apply different algorithms and report

various peak regions. The top one track in each figure (1A, 1B and 1C) is the chromatin

background, while the second tracks are reads pilp-up from the Su(Hw) antibody treated
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sample. Track 3 to 6 are detected peak regions reported by MACS, SISSRs, CisGenome,

and SPP respectively. Data generating this figure are from pair-end reads. As track two

shows, we can see due to the nature of pair-end reads, there are two major peaks in this

figure. However, the true motif binding site should be located in the middle of the two

peaks due to fragment bias. MACS has relatively accurate predict for the enrichment region

containing the true binding site. SISSRs tend to capture narrow regions; on the other hand,

SISSRs reported two small regions of local reads enrichment. SPP reported a very long

region (reported region comes from SPP output named with suffix ”narrow peaks”), which

will certainly cover the true signal but also include non-significant area.

Motivated by the cases discussed above, we propose a meta-analysis based approach to 

combine sigficant peaks detected by different callers, reprioritize the peak rank and evaluate 

the results in terms of accuracy compared to ChIP-chip and motif enrichment analysis in 

multiple datasets. The purpose of this study is to integrate information from multiple callers 

and provide a robust list of biologically meaningful region detection. The major difficulties 

encountered come from three aspects. Firstly, unlike ChIP-chip can that can map events by 

probes, there is no unified matching matching of peak region identity by different callers. To 

address this issue we combine peaks by measuring genomic distance and construct candidate 

peak identities (CPIs). Secondly, the measurement of significant level provide by different 

callers are variables, ranging from p-value, FDR, folder enrichment or standardized score. We 

propose to use quantile normalization and use rank information mapped to a reference 

distribution for the top ranked peaks of each callers. Finally, significant level of non-top 

ranked peaks will be treated as missing values and be addressed by evidence aggregation 

adjusted for truncated p-values. The detailed procedure is discussed in the methods section.
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2.2 METHOD AND MATERIALS

2.2.1 Data Sets

Our analysis are based on 3 datasets, 2 datasets generated from Drosophila S2 cells, are

kindly provided by Dr. Shirley Liu’s lab. The other human ChIPseq dataset is based

on STAT1 binding in K562 cells performed by Yale University, which is downloaded from

ENCODE project website, we use interferon-α and interferon-γ stimulated cells data as cases

while non-antibody treated cells sample as background control. For each stimulated group

there are two subgroups with different interferon treated time, either 30mins or 6h for both

case and control groups. And there are 2 biological replicates in each subgroups.

Drosophila S2 cells ChIP-seq datasets were generated for a site-specific transcription factor

(Suppressor of Hairy-wing) and a histone modification (H3K36me3). For both experiment,

there existed two datasets including single-end and pair-end reads. Additional chromatin

input experiment are also performed with both single-end and pair-end respectively as

background information. ChIP-seq data is generated by Illumina Genome Analyzer IIx

following the manufacturer’s protocols. ChIP-chip analysis was using the MAT algorithm,

which is among the best peak-calling algorithms for ChIP-chip data from Affymetrix data

with a band width of 250 bp, a p-value cutoff of 10−5 and a false discovery rate cutoff of 5%.

2.2.2 Meta-Caller Method

As discussed in the introduction, the potential obstacles of combine results from multiple

peak callers are discordant definition within each callers, various measurements of significant

levels of signal, and missingness of peak detection in a subset of callers. Thus, we propose

a general workflow shown in Figure 2. We generate common candidate peak identities

(CPIs) by exhaustively searching the union of peak signals called by all software. Quantile

normalization with the reference p-value distribution is applied to top ranked peaks of each

callers. Non-significant peaks with no mormalized p-values are treated as missing values.
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Meta-analysis by combining p-values using Fisher’s method is performed and finally the

CPIs are reprioritized.

1. Individual Analysis Raw FastQ reads are aligned with tools Bowtie version 0.12.7

with options that allowing 2 mismatch per read. Human ChIP-seq reads are aligned

against UCSC hg19 reference and Drosophila reads are aligned against Ensembl BDGP5

reference. We chose 6 algorithms that are capable of using chromatin input data, are

not restricted to only TF or histone marks, are supportive for analyzing ChIP-seq data,

and are among the most cited algorithms. These peak callers are MACS (version 2),

SISSRs [16] and PeakSeq(version 1.4), SPP, CisGenome (version 2.0), USeq [22] (version

8.7.9) and PeakSeq [25] (version 1.25). The output BAM files from Bowtie are applied

to these algorithms respectively. The output data matrix of each caller contains peak

chromosome location, peak summit, and index of peak calling strength pij for the jth

peak in the ith caller. For MACS, SISSRs, and PeakSeq, data matrices report p-values;

for CisGenome and USeq, they report FDR; and SPP report Swtd scores, which are based

on the count of tags both upstream and downstream.

We use ci, where i is from 1 to K = 6, to denote the ith caller. By setting default

thresholds in each caller, we observed Ni reported peaks for the ith caller. For the peak

reported by the ith caller denoted by mij, we observed a peak location Sij = [lij, uij],

and an observed p-value or significant score pij.

2. Construct Candidate Peak Identities

Below we construct Candidate Peak Identities(CPIs) using a graphical algorithm. Nodes

represent different peak events from callers, mij. Nodes will be connected by edges when

the pair-wise distance are below a threshold d. Define pair-wise distance function D(·, ·)

between any two peaks is defined as:

D(Sij, Si′j′) =


0,when Sij and Si′j′ overlap;

min(|uij − li′j′| , |lij − ui′j′|), non-overlapping and on same chr;

∞,when Sij and Si′j′ are on different chromosomes.

(2.1)
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Two nodes, mij,mi′j′ , which are the jth and j′th observed peak event from callers

ci, ci′respectively, will be connected with an edge, if and only if, D(Sij, Si′j′) ≤ d, where

d is a distance threshold that we set at d = 50bps in this paper. The CPIs are identified

by searching the maximal connected subgraphs. We define CPIs with chromosome coor-

dinate interval [Lij, Uij], where Lij is minimum of lij, and Uij is maximum of uij of all

peaks in the CPI. Figure 3 shows two example CPIs.

Suppose we obtain M CPIs. Denote by S̃j (1 ≤ j ≤ M) the jth CPI and p̃ij significant

score of the jth CPI in the ith caller. When a CPI contians multiple peaks in a caller

(e.g. caller c2 in Peak2 of Figure 3), the significance score is summarized by geometric

mean. When a CPI contans no peak for a specific caller (e.g. caller c4 in Peak2 of

Figure 3), the significance score is treated as missing at this step. Finally, we obtain a

signifiance score matrix U = {p̃ij; i ∈ [1, 6], j ∈ [1,M ]}.

3. Quantile Normalization and Missing Value Imputation

To compare significant scores across different caller outputs, we applied quantile-

normalization method which is widly applied to eliminate batch effect in microarray

data analysis. Bolstad et. al. (2003) [1] proposed the method is to make identical

distribution of probe intensities for each array. We applied this idea and use significant

score vectors from three callers (MACS,SISSRs, and PeakSeq) which report p-value to

build a reference p-value distribution. Then normalized p-values of CPIs from each caller

vectors is generated according to the quantile of CPIs from the CDF of reference p-value

distribution. The detailed steps is described as below:

We denote significant score vectors as P̃i = {p̃i1, ..., p̃iM}T , note that U = {P̃1, ..., P̃6}.

U =


p̃11 · · · p̃61
...

. . .
...

p̃1M · · · p̃6M

 (2.2)

• Allocate truncated p-values: To destinguish p̃ij is whether missing or not, we intro-

duce the censoring indicator τ as below:

τij =

 0, if p̃ij is observed;

1, if p̃ij is missing.
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Since each caller only reports top significant peaks, we assuming the missing p-values

truncated due to non-significant and uniformly distributed from the threshold αi to

1.

• Building reference p-value distribution: We assume the caller generating p-values

are with caller index 1 to 3. The minimum count of non-missing p-values is m.

After sorting, we have working matrix U∗. We form matrix Um by column bind

non-missing part of P̃1, P̃2, and P̃3 (i.e. the left upper m by 3 element of matrix U∗).

Row-wise average of Um is taken as a vector of p-value, (p̃∗1, · · · , p̃∗m). Based on this

p-value vector, function that maps rank to p-value, denoted as Fp(r) is generated as

reference p-value distribution.

U∗ =



state 1 2 3 4 5 6

1 p̃∗11 p̃∗(21) p̃∗(31) p̃∗(41) p̃∗(51) p̃∗(61)

2 p̃∗12 p̃∗(22) p̃∗(32) p̃∗(42) p̃∗(52) p̃∗(62)
...

...
...

...
...

...

m p̃∗(1m) p̃∗(2m) p̃∗(3m) p̃∗(4m) NA p̃∗(6m)

m+1 p̃∗(1m+1) p̃∗(2m+1) NA p̃∗(4m) NA NA
...

...
...

...
...

...

M NA p̃∗(2M) NA p̃∗(4M) NA NA


(2.3)

• Truncated p-value imputation and normalization: As we described above, we im-

puted missing p-value by mean imputation and normalized non-missing p-values as

the fomula below, the resulting p-value is denoted as ρij:

ρij =

 1+αi

2
, if τij = 1;

Fp(rij), if τij = 0.

where rij is the rank of jth CPI in ith caller.

Since mathematics form of quantile normalization is not that straight forward, we give

a real data example shown in Figure ??
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4. Meta-Analysis Procedure to Reprioritize CPIs

In the quantile normalization step, we intentionally normalize all significant scores into

a p-value based reference distribution. To reprioritize the CPIs, we apply a conventional

Fisher’s method to combine the normalized p-value of the six callers. Under the circum-

stance of non-missing value, meta-analysis that combining p-value can be achieved by

directly applying Fisher’s method by calculating evidence aggregation:

T =
K∑
i=1

−2ln(ρij) (2.4)

Under null hypothesis, T ∼ χ2
2K , where K is number of combined studies. However,

in our case, truncated p-value which is mean imputed is combined here. The Fisher’s

original assumption does not hold.

Tang et. al. (2014) proposed evidence aggregation mean imputation method to impute

truncated p-value and derived the mean imputed evidence aggregation distributions. We

applied this method and calculated mean imputed evidence aggregation as:

ρ̃ij = ρijI{τij=0} +
1 + α

2
I{τij=1} (2.5)

T̃ =

Ki1∑
i=1

F−1X (ρij)I{τij=0} +
K∑

i=Ki1+1

F−1X (ρij)I{τij=1} (2.6)

Define

A =

Ki1∑
i=1

F−1X (ρij) (2.7)

bi = F−1X (
αi
2

) + F−1X (
1 + αi

2
) (2.8)

c =
K∑

i=Ki1+1

F−1X (
1 + αi

2
) (2.9)
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The the CDF of evidence aggregation is followed:

Pr(T < t) =

Ki2∑
l=0

f(l;Ki2, αi)F
−1
A (t− c−

Ki2∑
i=1

ibi) (2.10)

where Ki2 is number of censored p-value for caller i, f(l;Ki2, αi) is binomial density and

F−1A is the CDF of A which follows N(0, Ki1). From this CDF of evidence aggregation

we can get the combined p-value for all peak clusters with truncated p-value taken into

consideration. Table 1 is an example of reported list by ChIP-MetaCaller with the

information of CPIs combined peak ID and significant measure from each callers and a

combined p-value in the last column.

2.2.3 Evaluation Criteria

2.2.3.1 Motif Enrichment Analysis We use transcription factor related motif enrich-

ment to measure the biological meaning of the reported list. Motif enrichment analysis

is measuring among total number of basepair from reported top ranked list of callers, the

number of relative motifs count.

2.2.3.2 Accuracy comapre with ChIP-chip We use the enriched region identified by

ChIP-chip analysis as a subset of true positive peaks to evaluate the overall sensitivity among

all peak calling sofwares. The sensitivity is defined as the number of overlapped ChIP-chip

peaks among the number of top ranked ChIPseq caller identified peaks.

2.2.4 Caller Selection

Combining all the callers’ result into the meta-analysis is not always the best approach,

for two reasons: first, combining more information will not only introduce true positive

but also false positive; secound, combining more callers result may lead to CPI be junction

of multiple signal related peaks into one CPI which is extremely long. Then, based on

motif enrichment analysis, we performed forward caller selection on ENCODE data to give

22



a general guidance of caller selection in this meta-analysis framework. Based on single caller

results’ performance, we start meta-analysis combining only best two callers, and at each

step add in another caller. Choose the best addition caller to perform next step forward

addition until add more caller will not improve the motif enrichment. We start from the

combining two callers and choose the best performanced two callers to start according to the

Motif Enrichment Analysis result. Then we add in one of the other caller at a time. The

forward selection will be stopped when the motif enrichment will not improve.

2.3 RESULT

2.3.1 Caller Selection

For the forward caller selection, we started from combining two best performaned callers

MACS and SISSRs, then we add one callers into meta-analysis. Among all combining three

callers meta-analysis result, combining MACS, SISSRs, and Useq out performaned others.

Then based on MACS, SISSRs, and Useq, we add another callers into meta-analysis. How-

ever, as Figure 5 shows, none of other combination performs better than combining MACS,

SISSRs, and Useq. Thus, for a motif pattern unknown dataset, the MetaCaller framework

may based on combining MACS, SISSRs, and Useq.

2.3.2 Motif Enrichment Analysis and Sensitivity

Motif associated ranked peaks was performed to evaluate the true discovery rate only on

datasets (ENCODE data and Su(Hw) dataset) with known motif pattern of capturing an-

tibody. We scan ChIP-seq peak sequences with the corresponding position-weight matrix

(PWM) to check the coverage of peaks contain the known motif of Su(Hw) or STAT1 tran-

scription factor. We use JASPAR database motif PWMs as preference and compare the

performance between different callers. Motif enrichment score (MES) is calculated as ratio

of number motif included in the peaks to number of top-ranked peaks.

We use the enriched region identified by ChIP-chip analysis as a subset of true positive
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peaks to evaluate the overall sensitivity among all peak calling sofwares. The sensitivity is

defined as the number of overlapped ChIP-chip peaks among the total number of ChIP-chip

analysis detected regions. To adjust the bias oriented from different peak region lengths from

callers, we use relative CPI defined regions as peak regions from single callers to overlap with

ChIP-chip peak regions.

2.3.3 Accuracy Comparison

2.3.3.1 Drosophila S2 cells Data In the Su(Hw) dataset, we use both the motif en-

richment and ChIP-chip accuracy criteria to benchmark the performance. In Figure 6, results

of peak calling from six individual callers are presented for the single-end dataset (left) and

paired-end dataset (right). Since some callers tend to generate narrow peaks (e.g. SISSRs)

while others may generate wide peaks, we calculate the total number of base pairs included

among the top peaks on the x-axis. On the y-axis, the number of motifs contained in the top

peaks is shown. Since SISSRs particularly identified narrow and smaller number of peaks,

we observe that it identifies a large number of motifs in relatively small number of base

pairs (green curve). We applied a forward selection algorithm by adding the best next caller

at a time and generated a meta-caller that combines MACS, SISSRs and Useq using our

meta-analysis algorithm (red line in Figure 5). This meta-caller clearly detects more motifs

than other callers for a given amount of base pairs in the top peaks. Figure 6 shows the

result of adding an additional caller to the MACS-SISSRs-Useq meta-caller.

Next, we consider the high confident peaks detected by ChIP-chip as the (pseudo-) gold

standard and perform an evaluation of the accuracy on both Su(Hw) transcription factor

data and H3K36me3 antibody data. In Figure 7, x-axis represents the number of top-ranked

peaks selected by each individual or meta callers. On the y-axis, we calculate the sensitivity

of peak detection (i.e. among peaks detected by ChIP-chip, the percentage of peaks detected

by the callers). Meta-caller clearly recover more ChIP-chip signals than other callers for a

given amount of base pairs in the top peaks. The result demonstrates meta-caller perform

equally with the best performance caller with very topped rank and have higher sensitivity

than other callers when rank higher.

24



2.3.3.2 ENCODE STAT1 Data Similarly, We performed motif enrichment analysis

on ENCODE STAT1 dataset with same strategy which used in analyzing Drosophila data.

Among 8 datasets, according to motif enrichment, ChIP-MetaCaller out-performed in 5

datasets (Infa6hrep1, Infg30rep1, Infg30rep2, Infg6hrep1, and Infg6hrep2). In other datasets,

either SISSRs or PeakSeq have a outstanding performance that ChIP-MetaCaller cannot

achieve. When SISSRs is already reach a very high sensitivity, combining other callers can

not increase more true positive addition to SISSRs detection. And for specific dataset of

Infa6hrep2, PeakSeq out perform all the other callers, and the MetaCaller conclude from

forward selection based on all 8 datasets that does not include result from PeakSeq which

lead to missing true positive detections. The result demonstrates mostly inferior or equal

performance when adding one more caller.

2.4 CONCLUSION AND DISCUSSION

In this paper, we extensively compared six ChIP-seq calling algorithms (MACS, SPP, SISSRs,

CisGenome, Useq and PeakSeq) in two datasets (SuHw and ENCODE STAT1). We used

the corresponding motif binding sites retrieved from an existing database JASPAR as the

first benchmark. When ChIP-chip data are available (in the first SuHw dataset), we treat

the confident peaks called from ChIP-chip as the gold standard and use the sensitivity

calculation as the second benchmark. Since no caller dominantly outperforms other methods,

we proposed a meta-calling algorithm by combining multiple callers. In the two sets of data

evaluated, the meta-caller outperformed individual callers in most situations. Combining

MACS, SISSRs and Useq seem to provide the best performance except for one dataset in

ENCODE where PeakSeq outperforms all other methods by a large margin. In this case,

including PeakSeq in the meta-caller will improve the performance.

In a routine application when the motif pattern and binding sites are known, we suggest

to use the information and apply the forward selection algorithm to select the best subset

of callers for constructing a meta-caller. There are a few limitations of our study. Firstly,

the motif binding patterns and binding sites from the database may not always be available

25



or accurate. This may affect the application to future datasets. Secondly, we treat the

confident peaks called from ChIP-chip as the gold standard in the evaluation of SuHw.

The logic sounds contradictory to the intuition and common belief that ChIP-seq is more

accurate thatn ChIP-chip. But since we use a conservative threshold for ChIP-chip to obtain

confident peaks and we use this criterion as the secondary benchmark, the result seems to

be consistent with the motif enrichment evaluation.
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Figure 1: View of ChIP-seq raw reads pile-up and software defined peak regions
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Table 1: An Example of ChIP-MetaCaller Report.

CPI Chr Start End MACS ID MACS m SISSRs ID SISSRs m CisGenome ID CisGenome m SPP ID SPP m p value

174 chr2L 3107975 3109032 286 1.226e-27 6159 0.0043 466 0.310493 160 3884.0077 4.595e-49

... ... ... ... ... ... ... ... ... ... ... ... ...

2240 chr2L 8514846 8515328 714 2.616e-03 9375 0.0780 NA NA 419 250.4781 1.248e-08

... ... ... ... ... ... ... ... ... ... ... ... ...

48641 chr2L 12366075 12366374 NA NA 1167 0.0096 2141 0.982061 573,574 456.655 3.922e-12

Figure 2: General workflow of ChIP-MetaCaller.
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Figure 3: Definition of CPIs.
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Figure 4: Real data example of quantile normalization.
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Figure 5: Motif Enrichment Analysis based forward selection of combination of callers.

This figure shows comparison of combine MACS, SISSRs, and Useq against combining these

three callers plus one more caller.
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Figure 6: Motif enrichment score based on Su(Hw) dataset, by comparing fraction of

containing a motif by total base pair included from top ranked peaks.
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Figure 7: Sensitivity by ChIP-chip peak overlap among top ranked peaks. Su(Hw) single-

end (topleft), and pair-end (topright);H3K36me3 single-end (bottomleft), and pair-end (bot-

tomright)
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Figure 8: Motif enrichment analysis for the 8 datasets from ENCODE project.
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3.0 GENE META CLUSTERING

3.1 BACKGROUND

Many genetic diseases are complex in their etiology and caused by a combination of multiple

genetic abnormalities. Researchers investigated same biological problem based on data gen-

erated by tissue sample provided by patients and donors. Combining multiple studies in co-

expression analysis can integrate information and achieve larger sample size. Many previous

studies have extended cluster analysis on gene expression profile to integrative studies. Some

studies (Mabbott,N.A. et.al. 2009, Carrera,J. et. al. 2009,J upiter,D.C. and VanBuren,V.

(2008)) directly merged individual finding in single studies into a network. Others combine

pairwised gene interactions across studies by either vote counting (Niida,A. et. al. 2009) or

Fisher’s method (Srivastava,G.P. 2010) which is similar to meta-analysis for DE detection.

Segal et al. conducted probably the first large-scale microarray meta-analysis for network

or co-expression analysis and developed module map by combining 1975 arrays in 26 cancer

studies to characterize expression behavior of 2849 modules collected from various sources

(e.g. Gene Ontology, KEGG pathways and gene expression clusters). Wang et al. formulated

a regularized approach to combine multiple time-course microarray studies for inferring gene

regulatory networks. Zhou et al. proposed a 2nd-order correlation analysis to construct net-

work and functional annotation by combining 39 yeast data sets. Huttenhower et al. used a

scalable Bayesian framework to combine studies for pairwise meta-correlation and predicted

functional relationship. Wang et al. developed a semi-parametric meta-analysis approach for

combining co-expression relationships from multiple expression profile data sets to evaluate

similarity and dissimilarity of gene network across species. Steele et al. proposed a weighted

meta-analysis Bayesian network based on combining statistical confidences attached to net-
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work edges and a consensus Bayesian network to identify consistent network features across

all studies. However, none of the methods above provides a general framework of expression

profile integration to detect gene co-expression modules. A proposed meta-clustering based

on co-expression analysis is performed by Chang et al. (2014) [3] at combining studies at

distance measure levels. In this chapter, we will also propose to perform meta-clustering

at clusters level and perform comprehensive evaluations. Instead of detecting co-expression

pattern of all studies, the new proposed method is aiming to detect co-expression gene mod-

ules at combining cluster result from single clustering studies. A general workflow of two

meta-clustering analyses is shown in Figure 9.

3.2 MATERIALS AND METHODS

3.2.1 MetaClustering by combining distances(MetaCluster.D)

The existing way to combine multiple transcriptome studies to construct co-regulated gene

modules using meta-clustering algorithm is proposed by Lun-Ching Chang [3]. Denote by

Xgsk the gene expression intensity of gene g, sample s and study k, and

Xgk = (Xg1k, . . . , XgSk) the vector of gene expression intensities of gene g and study k.

Define the dissimilarity measure as distance between gene i and gene j for a given study

k is calculated by d
(k)
i,j = 1 − |cor(Xik, Xjk)|, where cor(Xik, Xjk) is the Pearson correlation

of the two expression intensity vectors. To combine the dissimilarity information of the K

studies, we took mean of meta-dissimilarity measure between gene i and gene j as d(gi, gj) =

Mean(d
(1)
ij , d

(2)
ij , . . . , d

(K)
ij ). Given the meta-dissimilarity measure, the Penalized K-medoids

clustering algorithm was then applied to construct co-expression gene modules [27]. The

target function to be minimized by Penalized K-medoids is shown below:

L(C) =
G∑
i=1

∑
gi∈Ch

d(gi, gh) + λ · |S| (3.1)

where the clustering result C = (C1, . . . , CH , S), contain H non-overlapping tight clusters

and a set of scattered genes S cannot be groupped into any of H clusters. gh denote the
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MetaClustering Distance MetaClustering Clusters 

Figure 9: General workflow of meta-clustering methods to combine co-expressed genes in

different approaches. A. Meta-clustering Distances; B. Meta-clustering Clusters
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mediod gene of cluster h whose average distance to all other genes in the cluster is minimal.|S|

denoted the size of the scattered gene set S. λ is a tuning parameter controlling the tightness

of gene clusters and the number of scattered genes.

3.2.2 MetaClustering by Combining clustering results(MetaCluster.C)

Unlike using average dissmilarity measure, we propose an alternative MetaCluster.D ap-

proach. To help understanding the concepts,we generate a 2D data case showed in Figure

10. We use: k as the index of studies, k = 1, ..., K; i as the index of genes i = 1, ..., G;

h as the index of cluters, h = 1, ..., H. Yet we have data matrix Xgs = (Xgs1, . . . , XgsK),

the dissimilarity measure for gene i and gene j is calculated the way described in section

3.2.1. Instead of averaging distance matrix across studies, we applied Penalized K-mediods

clustering algorithm to each study. The clustering results in a matrix C = (C(1), . . . , C(k)).

Each vector of C, Ck = (Ck
1 , . . . , C

k
H , S

k) contains H gene clusters and a scattered gene set.

We denote Ok
h as the mediod fo cluster h in study k. dkih is denoted as the euclidean

distance of gene i to Ok
h. δ

k
h is distance threshold for cluster h. We normalize the distance

across clusters by dividing the threshold.

ukih =
dkih
δkh

(3.2)

Then we use averaging distance to the mediods from the tightest cluster as the cluster

distance represented the study. In the case showed in Figure 10, we choose the vkij with the

orange color. Compare the distance between two gene vectors in Figure 10A and B, the

visually nearer pairs of genes set will conclude a smaller vkij. In comparison between 10A

and C, we can see, two genes from different clusters, will conclude a larger vkij compare to

those are from same cluster.

vkij = f(ukih, u
k
jh) = argmink

∑
(i,j)

ukih + ukjh
2

(3.3)

Then we use two different combine method to generate the entry distance matrix of P-PAM.

The first one is Meta.C.avg by:

D = 1− 1

K

K∑
k=1

V k
ij (3.4)
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The other method, Meta.C.max, is combine by using only the maximum distance:

D = 1−mink∈KV k
ij (3.5)

The method of average is aim to combine the distance information of all the study with

equal weight. On the other hand, the method of using the maximum distance among all

the studies is aiming to be conservative when combining result across studies, which require

same clustering label across all the studies.

3.2.3 Parameter Selection

Like K-means and its variants clustering methods, PPAM algorithm require a input param-

eter of the number of clusters. Moreover, PPAM uses parameter λ as a coefficient of penalty

term to control number of scattered genes. In some situation, investigator or researcher is

certain about these parameters according to prior information. Thus, user can directly set

K and control λ to restrict predictive genes count. For instance, in study of yeast cell cycle,

previous literature has prove that there are approximately 200 genes related to yeast cell

cycle and there are four stage of cell cycle, user can directly set K = 4 and control λ to

restrict predictive genes count around 200. However, in the case, that user have no idea of

the setting of these parameters, we apply two methods to provide estimation of parameters

from data.

After we introduce the method of estimating parameters, for simplicity, we would like

to transform original parameters λ used in PPAM paper into a corresponding parameters

β which controls the clustered gene proportion. This can be easily accomplished by R

programming. This procedure is complemented by trying different λ to fit the setting of β.

3.2.3.1 Prediction Strength In this paper we follow the prediction-based resampling

method proposed by Tibshirani et al. (2005) (also see Breckenridge, 1989; Dudoit and

Fridlyand, 2002) for selecting k and λ. The idea of this prediction strength method is that by

searching through different pairs of (k, λ) from the parameter space, find the best parameter

pairs according of current the data set. The way to measure the ”best”, is by splitting the
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2-D Model Illustrate Definition of Distance in MetaCluster.C 

A. 
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Figure 10: 2 Dimensional Model illustration of distance in MetaCluster.C.
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whole data set X into two equal sized sub-data sets: training set Xtr and testing set Xte.

The main idea involves three steps: (a) cluster the training data Xtr; (b) cluster the testing

data Xte (c) measure how well the training set clustering result predicts co-memberships in

the testing data.

The correct parameter selection should generate consistent clustering results in training

and testing data and produce a good prediction in step (c). We denote by C(Xtr; k, λ)

the clustering operation on the training data. Following the convention in Tibshirani et

al. (2001), we denote by D[C(Xtr; k, λ), Xte] the (n/2) by (n/2) co-membership matrix in

the testing data Xte judged by the clustering result from training data, C(Xtr; k, λ). The

nearest centroid criterion is used for such judgment, that is, each point in the testing data

is assigned to the nearest cluster centroid of C(Xtr; k, λ). For any pair of points i and i′ in

the testing data, the i− i′th element of the comembership matrix D[C(Xtr; k, λ), Xte]ii′will

take the value 1 if both i and i′ fall into the same cluster under C(Xtr; k, λ) judgment and

zero otherwise. We denote by (Cte
1 , ..., C

te
k , C

te
k+1 = Ste) the resulting cluster indexes from

clustering the test data in step (b) such that Xte = ∪k+1
j=1C

te
j and n1, ..., nk+1 are the number

of observations in each cluster. The prediction strength of the training and testing data split

is defined as:

ps(k, λ) = min1≤j≤k+1

∑
i 6=i′∈Cte

j
I(D[C(Xtr; k, λ), Xte]ii′ = 1)

nj(nj − 1)
(3.6)

where I(•) is the indicator function which equals 1 if the statement is true and 0 otherwise.

Intuitively, we compute for each cluster in the test data, the proportion of all pairs of

objects that are also assigned in the same cluster by the training cluster centroids judgment.

We repeat the independent samplings for the training and testing data (10 times in this

dissertation) and the averaged prediction strength ps is reported. Normally (k∗, λ∗) =

argmax ps(k, λ) is used for final clustering in practice. However, in the context of gene

clustering in microarray, we may want to select as large k and as small λ as possible with

reasonably high prediction strength (ps < 0.6or0.7) so that many important tight cluster

patterns are retrieved.
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3.2.3.2 Consensus Clustering Although, prediction strength can theoretically provide

estimation of both k and λ simultaneously, sometimes the prediction strength does not give

a clear maximum across parameter space. In this scenario, we applied iterative consensus

clustering (ICC) algorithm to estimate the number of clusters k and after the cluster num-

ber is fixed, then we estimate the parameter λ. The procedure of consensus clustering is

(a)subsample 80% sample from original data set for 50 times; (b)use PAM algorithm to

cluster these data sets with parameter k range from [2,10]; (c)based on the similarity matrix,

calculate the consensus index change when k is increase. The best number of k is chosen by

selecting the gain of consensus index does not exceed certain threshold. Beside of consensus

index, there are heatmaps generated for each k based on the consensus matrix. The more

consistent clustering result across iterations, the darker the color in the heatmap is. Clear

block pattern along the diagonal of the heatmap indicates consistent clustering result across

iteration. The detailed calculation and algorithm can refer to Wilkerson, M.D. 2010.

3.2.4 Evaluation Criterion

For the comparison between cluster results, we compare the predicted label with known label

or other methods predicted label using adjusted rand index (Hubert and Arabie, 1985)(ARI).

3.2.4.1 Concordance across Studies For the purpose to show the consistence result

of meta-analysis frame works, we compare not only the meta-analysis result of combining all

the studies to the single studies results, but also shows the leave one out meta analysis result

with left-out studies’ result. The performance is bench-marked by adjusted rand index(ARI).

3.2.4.2 Statility To estimate the stability of each methods, we use bootstrapping

method to sample same number of samples of each study with replacement, then apply each

method to the bootstrapped data set. Compare the clustering result with original data sets

result. Methods with good stability will show higher ARI of this comparison.

3.2.4.3 Biological Meanings To estimate the biological meanings, we apply detected

co-expression modules of each methods to pathway enrichment analysis. The background
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knowledge for pathway analysis ,we select database from KEGG, GO and Biocarta with rel-

ative species and relative conditions. We expect outstanding methods detected co-expression

modules will have more significant pathways.

3.2.5 Data Sets

3.2.5.1 Simulated Data Set To better understand the performance of different meta-

analysis framework and compare to single study clustering results, we construct simulated

data set with S(S = 4) and K(K = 5) under three different senarios. The different senarios

are related to different distributions of gene expression profiles across samples. To best mimic

the nature of microarray study, we construct predictive genes with correlation structure and

noise genes (e.g. housekeeping genes or unexpressed genes). Below are the detailed generative

steps to create co-expression module predictive genes, and noise genes.

1. Mean expression pattern across samples: we simulated three differen expression pattern

here with different mean expression level. Here we call this mean expression pattern

template expression.

• Senario 1: Samples under different subtypes: Under this senario, we want to mimic

the situation that there are co-expressed gene modules can predict sample with

clusters (subtypes of diseases or biological conditions related to phenotype). We

simulated data set that based on ground truth of gene expression profiles within each

co-expression modules, samples can categorized into T (T = 4) subtypes; number of

samples of each subtype t in study s are followed a poisson distribution with mean

30: Nst ∼ POI(30); number of predictive gene of module m: nm ∼ POI(100); mean

of expression level: µtm ∼ UNIF (−3, 3).

• Senario 2: Samples under monotone time series pattern: Under this senario, we

want to mimic the situation that samples are taken from different time points and

predictive gene expression value will monotone increase or decrease across time. We

simualted number of samples of each study s: Ns ∼ POI(100); number of predictive

gene of module m: nm ∼ POI(100); mean of expression level µm = am + bm ∗ xcm

with am ∼ N(0, 3); bm ∼ N(0, 3); cm ∼ N(1, 0.5); (cm > 0).
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• Senario 3: Samples under cyclic time series pattern: Under this senario, we want to

mimic the situation that samples are taken from different time points and predictive

gene expression value will change with a cyclic pattern across time. The difference be-

tween this with senario 2 is the mean of expression level µm = am+bm∗sin(
πx

50
+ cm)

with am ∼ N(0, 1); bm ∼ N(1.5, 0.5); cm ∼ N(5, 2).

2. Correlation structure of predictive genes: with the template expression level across sam-

ples, we simulated the co-expression structure by letting expression of genes within same

module followed a multi-variate normal distribution.

• Add biological variation to template expression level of gene i: X ′stmi ∼ N(µtm, σ
2
1);

• Add in within module correlation structure:

(Xstm1, ..., Xstmnm)T ∼ MVN(X ′stmi, ρΣstm); where Σstm is standardized Σ′stm(keep

diagonal elements equal to 1) and:

Σ′stm ∼ W−1(Φ, v); here W−1 is inverse Wishart distribution, v = 150(v > nm −

1),Φ = 0.5Inm+0.5Jnm , Inm is identity matrix and Jnm is matrix with all the elements

are 1.

In this simulation study, we want to evaluate the performance of different method while

the within module variation increaese, i.e. ρ increases.

3. Noise gene: in this step, we add in house keeping genes that are not related to the

prediction of co-expression modules by simulating: number of scattered genes: G0 =

1000; mean expression level for the scattered genes: µtm ∼ UNIF (−5, 5); expression

level for scattered genes: Xsgi ∼ N(µtg, σ
2
2); expression variation of scattered genes is

fixed: σ2
2 = 1.

Heatmaps of simulated data are shown in Figure 11 and Figure 12.

3.2.5.2 Yeast Cell Cycle Data Yeast cell cycle data, orignally published in Spellman’s

(Futcher et. al. Citation) paper, is a classical gene expression profile which studies yeast

genes whose trancscipt levels in various periodically cell cycles. DNA microarrays data

generated from strains with 4 different cell cycle arresting methods:α Factor, Elutriation,

and cdc15 and cdc28 tempreture-sensitive mutant. Samples are taken periodically. More

than 6000 genes microarray log2 transformed intensity ratios are recorded in the data.
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Heatmap example of single study simulated under senario 1: 

Predictive Genes 

Scattered Genes 

T1 T3 T2 

Figure 11: Simulated data visualization of senario 1
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Figure 12: Simulated data visualization of senario 2 and 3
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3.2.5.3 Breast Cancer Data In this data set, we combine four independent breast

cancer studies: Wang (Wang et al., 2005), Desmedt (Desmedt et al., 2007), TCGA (Network,

2012) and METABRIC (Curtis et al., 2012). First three studies contain about 150-500

samples. Wang and Desmedt applied Affymetrix U133A chip that generated logintensities

ranging between 2.104 and 14.389, while TCGA adopted Agilent Custom 244K array that

produced log-ratio intensities ranging between -13.816 and 14.207. METABRIC (Curtis et

al., 2012), which contained 1,981 samples from Illumina HT12 arrays. All probes in three

studies were matched to gene symbols before meta-analysis.

3.2.5.4 Mouse Metabolism Data Mouse Metabolism Dataset: Energy metabolism in

mouse model. An energy metabolism disorder in children is associated with very longchain

acyl-coenzyme A dehydrogenase (VLCAD) deficiencies. In an ongoing unpublished project,

two genotypes of the mouse modelwild type and VLCAD-deficient were studied for three

types of tissues (brown fat, liver and heart) with 4 mice in each genotype group. Microarray

experiments were applied separately to study the expression changes across genotypes.

3.3 RESULTS

3.3.1 Simulation Result

3.3.1.1 Tuning Parameter In the Figure 13, we showed iterative consensus cluster-

ing(ICC) heatmaps of k = 4 and k = 5 for the simulated data. When k approaches the best

cluster number, the heatmap shows clear pattern. In addition to visualization of heatmap,

the lower panel of figure 13 included increase of consensus index, and showed that when k

is beyond 5, there is almost no gain of consensus index. Figure 13 is an example of ICC

for scenario 1 simulated data at ρ = 5. In conclusion, ICC can predict cluster number

k = 5 which is consistence with the true simulated module number. Beside of this example,

the estimation of cluster number have a consistent result with above example under other

simulated scenarios.
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Figure 13: The Heatmaps of consensus clustering result to decide cluster number

48



5 10 15 20

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

ARI

rho

A
R
I

Meta.D
Meta.C
S1
S2
S3
S4

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ARI Senario2 Cyclic Pattern

rho

A
R

I

●

●

●

●

●

●

● Meta.D.avg
Meta.C.max
S1
S2
S3
S4
Meta.C.avg
Meta.D.max 0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ARI Senario2 Monotone Pattern

rho

A
R

I

Meta.D.avg
Meta.C.max
S1
S2
S3
S4
Meta.C.avg
Meta.D.max

Figure 14: ARI of methods across different ρ under three different simulated scenarios(Note:

When ρ exceeds 20, the ARI will not further decreases.)

3.3.1.2 Compare to Underlying Truth Since we simulated the data sets, we know

the true co-expression module label of each gene. Here we compare the predicted label to

the true label under different covariance matrix (ρ range from 1 to 20). Under each ρ, we

simulated 100 data sets and calculated average ARIs over 100 simulations and their standard

errors.

As Figure 14 shows, as with module covariance increases, ARI of all methods decreases.

Both meta-analysis frameworks, MetaClust.D and MetaClust.C, outperform the single clus-

ters result in simulated scenario 1. Under scenario 2 and 3, MetaClust.C with combining

maximum distance recover better module labels than the other methods.

Why MetaClust.D perform poorly when ρ increases:

• Major Prediction Error: mislabel predictive gene into scattered gene sets;

• When within module variation increases, it is more likely one gene in certain study have

similar pattern with scattered gene, especially when monotone pattern, bm is small, the

curve is flat;

• MetaClust.D averages distance over studies, lead to a larger distance, tend to cluster this

kind of gene into scattered gene set;

• MetaClust.C calculate minimum standardized distance to the centroids first and then

take the largest distance across study can avoid this kind of mislabel.
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3.3.1.3 Concordance Across Studies Here we use leave one study out at a time per-

form clustering and compare to the left out study to mearsure the clustering result concor-

dance . ARIs result listed in table2 to table 4 are based on ρ = 9 as according to Figure 14,

this value is smallest ρ that can distinguish the performance of methods. As tables showed,

similarity between single studies clustering results are relatively lower than that between

both meta-analysis frameworks and single studies in all three simulated scenarios. This con-

clude that both meta-analysis frameworks conclude the clustering results from single study

and recover the module information.

3.3.1.4 Stability Here we use bootstrapping on samples in each study, and compare

bootstrapping cluster result to whole data set to measure the clustering result stability. The

ARI values listed in the table 5 to 6 are average over 100 times bootstrapping and number

in the brackets are the standard errors. Each bootstrap sample same numbers of samples

with replacement. The result listed in the table shows that stability decreases as within

module variation(ρ) increases along with standard error over bootstrapping increases for all

the methods. At low within module variation situations, all the methods have good stabil-

ity. However, as expression value became noisy within modules, meta-analysis frameworks

outperform single studies in sense of stability under all three simulation settings.
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Table 2: ARI of Concordance Across Studies measurement: Simulation Senario 1

Method S1 S2 S3 S4

S1 1

S2 0.852 1

S3 0.796 0.809 1

S4 0.877 0.861 0.816 1

MC.D(-S1) 0.912

MC.D(-S2) 0.908

MC.D(-S3) 0.878

MC.D(-S4) 0.842

MC.C(-S1) 0.861

MC.C(-S2) 0.831

MC.C(-S3) 0.836

MC.C(-S4) 0.814
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Table 3: ARI of Concordance Across Studies measurement: Simulation Senario 2

Method S1 S2 S3 S4

S1 1

S2 0.681 1

S3 0.812 0.825 1

S4 0.710 0.834 0.616 1

MC.D(-S1) 0.791

MC.D(-S2) 0.817

MC.D(-S3) 0.861

MC.D(-S4) 0.791

MC.C(-S1) 0.691

MC.C(-S2) 0.821

MC.C(-S3) 0.724

MC.C(-S4) 0.800
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Table 4: ARI of Concordance Across Studies measurement: Simulation Senario 3

Method S1 S2 S3 S4

S1 1

S2 0.621 1

S3 0.768 0.801 1

S4 0.613 0.787 0.794 1

MC.D(-S1) 0.786

MC.D(-S2) 0.821

MC.D(-S3) 0.808

MC.D(-S4) 0.753

MC.C(-S1) 0.778

MC.C(-S2) 0.868

MC.C(-S3) 0.863

MC.C(-S4) 0.879

Table 5: ARI of Stability measurement: Simulation Senario 1

Method MC.D MC.C S1 S2 S3 S4

ρ = 1 0.99(0.01) 0.99(0.01) 0.98(0.01) 0.99(0.01) 0.99(0.01) 0.99(0.01)

ρ = 5 0.95(0.05) 0.97(0.02) 0.92(0.05) 0.96(0.03) 0.93(0.03) 0.89(0.02)

ρ = 9 0.88(0.04) 0.86(0.03) 0.72(0.04) 0.74(0.07) 0.71(0.02) 0.69(0.05)

ρ = 13 0.74(0.07) 0.72(0.07) 0.51(0.06) 0.56(0.12) 0.53(0.10) 0.59(0.10)

ρ = 17 0.58(0.08) 0.62(0.10) 0.32(0.15) 0.29(0.08) 0.43(0.12) 0.39(0.09)
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Table 6: ARI of Stability measurement: Simulation Senario 2

Method MC.D MC.C S1 S2 S3 S4

ρ = 1 0.90(0.05) 0.99(0.02) 0.99(0.01) 0.98(0.01) 0.99(0.02) 0.98(0.02)

ρ = 6 0.90(0.05) 0.97(0.05) 0.92(0.08) 0.96(0.03) 0.93(0.05) 0.89(0.06)

ρ = 11 0.80(0.08) 0.84(0.05) 0.72(0.06) 0.71(0.05) 0.73(0.06) 0.68(0.05)

ρ = 16 0.69(0.07) 0.72(0.07) 0.60(0.06) 0.56(0.04) 0.55(0.07) 0.59(0.08)

ρ = 21 0.63(0.08) 0.68(0.08) 0.36(0.09) 0.49(0.09) 0.56(0.08) 0.38(0.10)

Table 7: ARI of Stability measurement: Simulation Senario 3

Method MC.D MC.C S1 S2 S3 S4

ρ = 1 0.92(0.01) 0.95(0.02) 0.93(0.01) 0.92(0.01) 0.92(0.02) 0.94(0.02)

ρ = 6 0.90(0.05) 0.91(0.05) 0.93(0.08) 0.93(0.04) 0.89(0.06) 0.81(0.08)

ρ = 11 0.82(0.05) 0.81(0.10) 0.70(0.05) 0.73(0.08) 0.72(0.07) 0.72(0.05)

ρ = 16 0.75(0.07) 0.69(0.08) 0.60(0.07) 0.56(0.07) 0.55(0.07) 0.60(0.08)

ρ = 21 0.62(0.10) 0.60(0.10) 0.38(0.11) 0.49(0.07) 0.47(0.09) 0.62(0.10)
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3.3.2 Yeast Cell Cycle Data

3.3.2.1 Data Preprocessing This data set contain 4 studies described in section 3.2.5.

Each study contains expression values for 6183 gene features and 18-24 samples. We use

KNN [14] method to impute the missing values and use IQR selected genes with top rank

sum of means and standard deviation.

3.3.2.2 Parameter Estimation We calculated prediction strength as described in

method section. Figure 16 shows the prediction strength in the parameter space of four

single studies. Then we average the ps value across studies and show in Figure 17. As figure

shows, there is not a consistant global maximum prediction strength across all the studies.

Thus, we would like to use ICC estimate of number cluster. As figure ?? shows, when

k = 5 there is clearly consensus clusters in heatmap and consensus index gain beyond this

point does not change much. With prior information, yeast cell cycle related gene count is

approximate 200. Thus we decided to choose cluster number k = 5 while set β = 0.25 to

include around 250 genes as predictive genes.

3.3.2.3 Clustering Results Clustering result generated by each methods are shown

with heatmaps in Figure 18. We can see although single studies have clearly cluster pattern,

however, there is no consistancy of these clusters across studies according to results shown in

Table 8. The both MC C and MC D generated clusters have less clear pattern compare to

single study, but there still clearly clusters pattern. The reason clusters pattern in heatmaps

from two meta-analysis is less clear may due to the heteogeniety of the data.

55



alpha	
   cdc15	
   cdc28	
   elu	
  

Figure 15: Consensus Clustering Result of Yeast Cell Cycle Data Set
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Figure 16: The Prediction Strength Estimated from Yeast Cell Cycle Dataset
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Figure 17: The Prediction Strength Estimated from Yeast Cell Cycle Dataset, averaged

across studies
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Figure 18: The Heatmaps of cluster result of Yeast Cell Cycle Dataset
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3.3.2.4 Concordance across studies Leave one study out analysis described in 3.3.1.3

is to mearsure the clustering result concordance across studies. ARIs result listed in table

8 shows gene modules detected by two meta frameworks with left one study out data sets

can have more similarity to the left study result. Compare to the ARIs in simulation study

and BRCA data set (result shown in section 3.3.3), the value of ARIs in this measurement is

smaller. This is due to the concordance across single studies is lower which means different

single studies conclude non-consistant gene co-expression modules.

3.3.2.5 Stability Here we use bootstrapping on samples in each study, and compare

bootstrapping cluster result to whole data set to mearsure the clustering result stability.

The ARI value listed in the table 9 are from 100 times bootstrapping. Each bootstrap

sample same numbers of samples with replacement. As table shows, MC D outperform

single studies, while MC C have a relative high stability as well.

3.3.2.6 Biological Meanings We conducted pathway enrichment analysis using

Fisher’s exact test, which set genes in the clusters as signal and 6 Yeast cell cycle related

pathways as background (pathways information downloaded from KEGG database). As

jitter plots in Figure 19 shows, there is very weak signals of Fisher’s exact test p-value

for all the methods clustered result. This indicates although we use MC C and MC D

methods identified stable co-expression modules, the detection do not seem to associated

with mechanism of yeast cell cycles.
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Table 8: ARI of Concordance Across Studies measurement: Yeast Cell Cycle Data

Method Alpha Cdc15 Cdc28 Elu

Alpha 1

Cdc15 0.032 1

Cdc28 0.048 0.020 1

Elu 0.006 0.022 0.016 1

MC.D(-alpha) 0.227

MC.D(-cdc15) 0.288

MC.D(-cdc28) 0.353

MC.D(-elu) 0.243

MC.C(-alpha) 0.095

MC.C(-cdc15) 0.173

MC.C(-cdc28) 0.188

MC.C(-elu) 0.191

Table 9: ARI of Stability measurement: Yeast Cell Cycle Data

Method MC.D MC.C Alpha Cdc15 Cdc28 Elu

ARI 0.385 0.368 0.257 0.363 0.239 0.299
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Figure 19: The Heatmaps of cluster result of Yeast Cell Cycle Dataset

62



3.3.3 Breast Cancer Data

3.3.3.1 Data Preprocessing Four studies of this data set is labeled as ”BRCA”,

”GSE7390”, ”GSE2034”,and ”METABRIC” with description in section 3.2.5. Each study

contains expression values for more than 22,000 gene features and 18-24 samples. We use

KNN(citation) method to impute the missing values and use IQR selected top 1000 genes

with means rank sum and standard deviation rank sum.

3.3.3.2 Parameter Selection Here we calculated (k, β) pairs related prediction

strength. β is range from [0.1,1], k is range from [2,10]. Prediction strength value by

parameters is shown in figure ??. The general pattern of ps value decreases when k decreases

and β increases. As there is no global maximum of ps in the parameter space, we followed

suggestion in (Tseng 2012), to keep relativly large k and small β to achieve tight cluster.

Therefore, we decided to choose β = 0.2 ( 200 genes as predictive) and cluster number k = 4

.

Then we use consensus clustering to valid our estimation of number cluster. Here we

calculated resample 80% samples from each study at a time, calculate consensus index and

iterative for 50 times. As figure ?? shows, when k = 4 there is clearly consensus clusters in

heatmap and consensus index gain beyond this point does not change much.

Thus, we decided to choose cluster number k = 4 which is consistent with prediction

strength method result.

3.3.3.3 Clustering results After the clustering analysis, we matched the gene modules

by the best gene overlapping through the different methods. As ?? shows, meta-analysis

frame works keeps orginal module pattern within single studies. Moreoever, the meta-

analysis methods, provide a consistent modules across studies.

3.3.3.4 Biological Meanings To evaluate the biological meaning of detected modules,

we applied pathway enrichment analysis which perform using Fisher’s exact test by testing

association of selected intrinsic genes and genes in a particular pathway. We applied the Bio-
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Figure 20: Prediction Strength of BRCA data set
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Figure 21: Consensus Clustering Result of BRCA Data Set
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Figure 22: Heatmap of BRCA studies MetaClust.D, and MetaClust.C
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Carta Database obtained from MSigDB (http://www.broadinstitute.org/gsea/msigdb/

collections.jsp#C2). This database contains 217 curated cancer related pathways and is

particularly suited to evaluate the breast cancer example. Figure ?? shows the jitter plot

pathway enrichment p-values at log-scale (base 10). The blue horizontal solid line corre-

sponds to p = 0.01 signicant level threshold. The pathway enrichment result from meta

analysis frameworks can recover most significant pathways in single studies.

Beside BioCarta database, we also applied pathway enrichment analysis on 1822 Gene

Oncology (GO) pathways. Figure ?? shows the jitter plot pathway enrichment p-values at

log-scale (base 10). The red horizontal solid line corresponds to the Bonferroni adjusted p

= 0.05 signficant level threshold. Again, the pathway enrichment result from meta analysis

frameworks can recover most significant pathways in single studies. MC D detected cluster

4 are more significant according to Fisher’s exact test.

3.3.3.5 Concordance Across Studies Here we use leave one study out at a time and

compare to the single study to mearsure the clustering result concordance across studies.

ARIs result listed in table 10 shows gene modules detected by two meta frameworks with

left one study out data sets can have more similarity to the left study result.

3.3.3.6 Stability Here we use bootstrapping on samples in each study, and compare

bootstrapping cluster result to whole data set to mearsure the clustering result stability.

The ARI value listed in the table below are from 100 times bootstrapping. Each bootstrap

sample same numbers of samples with replacement.Each bootstrap sample same numbers of

samples with replacement. As table 11 shows, MC C outperform single studies, while MC D

have a relative high stability as well.
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Figure 23: Jitter Plot of BioCarta Pathways in BRCA studies
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Figure 24: Jitter Plot of GO Pathways in BRCA studies
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Table 10: ARI of Concordance Across Studies measurement: Breast Cancer Data

Method BRCA GSE7390 GSE2034 METABRIC

BRCA 1

GSE7390 0.415 1

GSE2034 0.560 0.423 1

METABRIC 0.300 0.308 0.319 1

MC.D(-BRCA) 0.753

MC.D(-GSE7390) 0.830

MC.D(-GSE2034) 0.836

MC.D(-METABRIC ) 0.781

MC.C(-BRCA) 0.758

MC.C(-GSE7390) 0.719

MC.C(-GSE2034) 0.900

MC.C(-METABRIC ) 0.471

Table 11: ARI of Stability measurement: Breast Cancer Data

Method MC.D MC.C BRCA GSE7390 GSE2034 METABRIC

ARI 0.527 0.561 0.486 0.509 0.398 0.368
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3.3.4 Mouse Metabolism Data

3.3.4.1 Data Preprocessing Four studies of this data set are based on sample from

different organ of mouse, which are labeled as ”brown”, ”heart”, ”liver”,and ”skeleton” with

description in section 3.2.5. Each study contains expression values for more than 14,495 gene

features and 9-12 samples. We use KNN(citation) method to impute the missing values and

use IQR selected top 1000 genes with means rank sum and standard deviation rank sum.

3.3.4.2 Parameter Selection Here we calculated (k, β) pairs related prediction

strength. β is range from [0.1,1], k is range from [2,10]. According to figure ??, there is no

global maximum among parameter space across all the studies. ”Liver” study with k = 4

shows a local maximum of prediction strength value. As we average prediction strength

across study at same parameters, shown in figure ??, there is neither global maximum nor

obvious drop of ps. In this case, we decide to use ICC to decide cluster number first.

Here we calculated resample 80% samples from each study at a time, calculate consensus

index and iterative for 50 times.

As figure ?? suggested, we decided to choose cluster number k = 5. Based on this

decision, we decided to choose β = 0.4 ( 400 genes as predictive) according to figure ??.

3.3.4.3 Clustering Result Figure ?? shows the result of single studies, MC D, and

MC C. Since we observe that sample LCAD.3 in liver tissue study shows an outlaid pattern

with other samples and this pattern dominate the prediction of modules, we decided to

exclude LCAD.3 sample from study ”liver”. The clustering result excluding sample LCAD.3

from study ”liver” is shown in figure ??.

3.3.4.4 Concordance Across Studies Again, we used same approach to estimate con-

cordance across studies as which applied to previous data sets. As mentioned in Yeast Cell

Cycle data analysis, the low between studies similarity of detected modules affect the perfor-

mance of both MC C and MC D. But still, MC D have higher ARI compare to that measures

similarity between single studies.
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Figure 25: ARI of Stability measurement: Breast Cancer Data
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Figure 26: ARI of Stability measurement: Breast Cancer Data
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Figure 27: ARI of Stability measurement: Breast Cancer Data
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Figure 28: Heatmap of Mouse Metabolism Data
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Figure 29: Heatmap of Mouse Metabolism Data: exclude sample LCAD.3
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3.3.4.5 Stability Here we use bootstrapping on samples in each study, and compare

bootstrapping cluster result to whole data set to mearsure the clustering result stability.

The ARI value listed in the table below are from 100 times bootstrapping. Each bootstrap

sample same numbers of samples with replacement. With this dataset, stability measurement

among all the methods have relative small standard deviation. This is due to the small sample

size in original data.

3.4 CONCLUSION

As the result we shown in 3 simulation data sets and 4 real data sets, meta-analysis frame-

works proposed, MC C and MC D, perform better in consideration of concordance across

studies and stability. Under the simulation settings, MC C combining the maximum dis-

tance over all studies have better recovery of underline truth, while MC D combining by

average distance have better stability. Among real data analysis, MC C and MC D have

relative same stability and concordance. Whether two proposed meta-analysis frameworks’

detected co-expression modules are biological meaningful, is highly depend on the single

study detected module consistance across studies.
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Table 12: ARI of Concordance Across Studies Measurement on Mouse Metabolism Data:

exclude sample l.LCAD.3

Method Brown Heart Liver Skeleton

Brown 1

Heart 0.058 1

Liver 0.148 0.057 1

Skeleton 0.026 0.010 0.046 1

MC.D(-Brown) 0.436

MC.D(-Heart) 0.447

MC.D(-Liver) 0.573

MC.D(-Skeleton) 0.551

MC.C(-Brown) 0.221

MC.C(-Heart) 0.485

MC.C(-Liver) 0.188

MC.C(-Skeleton) 0.341

Table 13: ARI of Stability Measurement on Mouse Metabolism Data

Method MC.D MC.C Brown Heart Liver Skeleton

ARI 0.52(0.01) 0.48(0.01) 0.50(0.01) 0.42(0.02) 0.46(0.01) 0.47(0.01)
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4.0 SUMMARY

Large-scale meta-analysis of genomic studies is becoming increasingly common, because it is

now more feasible and there are a greater volume of data sets available. In this dissertation,

I have addressed these issues as follows:

In chapter 2, I proposed ChIP-MetaCaller which provide a meta-analysis framework of

combining ChIP-seq peak signals. In the sense of sensitivity, the proposed method are also

recover more signals included in ChIP-chip analysis detection. In terms of enrichment of

motifs, meta-analysis combining result from MACS, SISSRs, and Useq provide a higher

sensitivity peak list; in specific dataset, the optimal combination of callers may differ, user

may use caller selection strategies provide by this study to explore.In conclusion, we suggested

to perform the ChIP-MetaCaller with combining results from MACS, SISSRs, and Useq. And

search the motif pattern within top ranked peak regions. And with a known motif pattern

dataset, user may use forward selection to obtain an optimal combination of callers’ result

to achieve better discovery.

In chapter 3, we proposed two approaches to integrate genomic expression profiles and

compared these meta-analysis frameworks with single studies in sense of stabiliry, concor-

dance across studies and biological meanings. And suggested that both MC C with average

distance and MC D with maximum distance provide a stable and consistant way to integrate

expression profiles datasets.
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