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MULTISCALE STRUCTURED SURFACES AND THEIR EFFECT ON

DRAG & FLUID FLOW

Elliot Jenner, PhD

University of Pittsburgh, 2015

In this thesis, we examine surface modification as a method for reducing fluid drag on a sur-

face. Reducing drag is of great interest for many applications, including in ship construction,

fluid pipelines, self-cleaning surfaces, and for use in MicroElectroMechanical Systems. Multi-

scale structured hydrophobic surfaces can reduce fluid drag, depending on surface chemistry

and structure geometry. We examine the properties of artificial version of bio-inspired hy-

drophobic surfaces with multiple wetting states, including some not previously tested or

known to exist.

Multiscale surfaces have structure on a small and a large scale. We evaluate the effect

of changes in the large scale features on drag properties. We also vary the fluid state on

the surfaces by application or removal of a passively retained secondary liquid. We examine

the fluid properties in a number of ways, including torque and shear rate measurement in a

custom made Cone & Plate Rheometer.

Conventional shear rate measurements in a Cone & Plate Rheometer depend on knowl-

edge of the interface; since we are measuring unknown surfaces, we must develop an alterna-

tive method. We measure the components of the shear rate tensor S directly using Photon

Correlation Spectroscopy, where we develop a general theoretical treatment for measuring

3-D flows with this technique. Previous work on Photon Correlation Spectroscopy has in-

volved only approximate solutions, requiring free parameters to be scaled by a known case,

or special cases, such as 2-D flow.
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In this thesis, we examine surface modification as a method for reducing fluid drag on a

surface. Reducing drag is important in many fields. One area in which the development of

drag reducing surfaces has the potential for application is ship design; significant fuel costs are

associated with overcoming the effects of drag on ship hulls [1]. It is also of interest for those

studying self-cleaning surfaces [2]. Fluid pipelines are another area in which drag reduction

could result in significant cost benefits; reduced drag on the pipe walls will reduce the amount

of pumping needed to move fluids through these systems [3, 4]. In MicroElectroMechanical

Systems (MEMS), fluid drag (primarily from surface tension effects) in systems is a dominant

force preventing fluids from moving, and thus reducing it is important to allow fluid systems

to function on such size scales [5]. Surface tension modifications also open up the possibility

of using these surfaces to create low-friction fluid bearings and actuators [6, 7].

In the past, methods for reducing drag by altering the fluid or the boundary layer have

been explored, such as by lubricating fluids flowing past surfaces by continuously generating

air layers across them [8, 9] or by injecting substances such as polymers into the working fluid

to lower effective viscosity and suppress turbulence [10, 11]. These proved to be inefficient due

to the need to maintain the effect continuously, as well as impractical in some applications

where there is a desire to minimize the effect on the fluid composition.

The exact way that water and surfaces interact has been explored extensively [12, 13, 14,

15]. Hydrophobic (water repelling) surfaces are surfaces that utilize surface geometry and

chemical properties in order to minimize wetting. They can occur naturally [16, 17] or be

produced artificially [18, 19, 20, 21, 22].

Efforts to create surfaces displaying high hydrophobicity have focused on biomimetics

(the duplication of natural systems), mimicking materials that have hydrophobic properties

such as lotus leaves, pitcher plant bulbs, bird feathers, or waterstrider legs, and exploring

how to enhance these properties [23, 24, 25, 26, 27]. Hydrophobicity is measured in terms

of how easily water placed on the surface can move. This can be measured in terms of how

small amounts of water, such as droplets, act on a surface, or in bulk fluids, where large

areas of the surface are completely submerged. One metric for measuring droplet behavior

is rolling angle, the angle to which a surface must be tilted for a droplet to begin rolling

across it [28]; samples with vanishingly small rolling angles tend to have high hydrophobicity.
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Another is to look at contact angle hysteresis, the difference between the interior angle the

drop makes at the point it contacts the surface at the front of the advancing drop and at the

back, which measure the energy cost of wetting/dewetting as the drop moves; low hysteresis

indicates high hydrophobicity [29]. In bulk fluids, methods of measuring drag reduction focus

on directly measuring force on the surface or velocity changes in the flowing fluids [30, 31].

A large amount of work has been focused on duplicating and improving surfaces based

on the extremely hydrophobic lotus leaf [32, 17]. Surfaces that achieve high hydrophobicity

by utilizing surface tension affects in the manner lotus leaves do are conventionally referred

to as Superhydrophobic. Surface tension is used to support the water on top of a roughened

surface, entrapping an air layer below the fluid; the lower viscosity of the trapped air allows

the main fluid to apparently slip relative to the surface.

More recently, interest has been shown in the hydrophobic properties of the pitcher plant,

which uses an oil coating to achieve hydrophobicity [33, 34]. Such surfaces are referred to as

Slippery Liquid Infused Porous Surface (SLIPS), as they function by replacing the solid-liquid

interface with a liquid-liquid interface; in this case the second liquid is one that is passively

held by the underlying surface as opposed to actively injected. The water slides across the

oil layer, creating apparent slip relative to the full-contact case. A Superhydrophobic surface

whose patterning can also hold fluid can be used as a SLIPS; we utilize this fact to switch

our samples between states, allowing for direct comparison between these two mechanisms

where the only variable is the presence or absence of the second fluid.

Drag reduction on Superhydrophobic samples has been studied, but not in a consistent

fashion; measurements have been taken in a wide variety of ways, including using strips

glued to a couette cylinder [30], flowing water through a channel made of Superhydrophobic

material [35], and by placing a sample in a Cone & Plate Rheometer [36]. A large amount of

study of these surfaces has focused on measuring the contact angle of stationary drops, which

is correlated to drag reduction on Superhydrophobic samples [37, 38]. This same correlation

has not been shown to hold for SLIPS.

Multiscale patterning combines features on different length scales (for example, nanoscopic

hairs on top of microscopic pillars [39]) to enhance the effectiveness of Superhydrophobic ma-

terials [40, 41, 42, 43, 44, 45]. Our examination of drag reduction focuses on the effect of the

3



larger scale features on multiscale surfaces. We utilize a nano-scale roughness coated with

a fluoropolymer as our underlying material; such patterning induces Superhydrophobicity

on flat surfaces [46, 47, 23]. We produce this roughness on top of concentric millimeter

scale grooves, and examine how drag is affected as we vary groove depth and groove angle.

We use single point diamond turning to create the grooves, then grow self-ordering Porous

Anodized Alumina on top of these to create the roughness, and finally spin on a polymer

coating to achieve Superhydrophobicity. These surfaces can be made into SLIPS with the

introduction of a second liquid, so we can compare the drag reduction caused by multiscale

surface variations in SLIPS as well and directly compare them to the Superhydrophobic

behavior. There have been no studies on the effects on drag properties of larger multiscale

feature on SLIPS. An examination of the mechanism responsible for Superhydrophobicity

shows that these multiscale structures have the potential to produce a SLIPS surface in a

Superhydrophobic-like state which we call SuperSLIPS which could further reduce drag; this

has not been explored before [48].

Many studies that have been performed focus on the behavior of fluid drops on surfaces.

This is not a direct measurement of drag. How well correlated drop behavior is with drag

reduction in bulk fluids is not known for all types of surfaces; it may not be well correlated

to drag properties in the case of SLIPS or SuperSLIPS at all. By taking measurements in

full immersion, we can more directly test drag properties. One method is to examine the

force or torque exerted on the surface by flowing water. This gives an average reading of

the force exerted by the water on a large area of material. We can compare our modified

surfaces to a control sample to quantify the difference in the drag.

Another way of observing the affect of changes to the surface is to measure shear rate

in the fluid; this tells us how velocity of the fluid is effected by being in contact with a

given surface. These readings are performed using Photon Correlation Spectroscopy (PCS),

which measures the light scattered from small particles in the fluid to measure its motion.

PCS measurements have been used to probe turbulent two-dimensional flow [49], Brownian

motion [50], and have been used to approximately measure three-dimensional flow in a

Couette cell and four-roll mill [51]. We study using this method to quantify the drag on

these types of surfaces.
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The Cone & Plate Rheometer (CPR) is a standard device used for measuring torque on

many types of surfaces and/or for measuring shear rate with known surfaces [52, 53]. We use

a CPR to perform torque measurements of our surfaces. We also take advantage of the well

understood shear rate properties of the device to test the use of PCS for measuring shear rate

with unknown surfaces. The mathematical treatments in prior work have either been special

cases (2-D) or have been approximate derivations with free parameters, requiring calibration

using a reference. We detail a method for performing PCS measurements of the shear rate

with no free parameters in 3-D laminar flow in a CPR. We confirm that this method works

and perform preliminary measurements on multiscale surfaces.

In Chapter 2, we look at possible surface wetting states and their requirements.

In Chapter 3, we detail our fabrication methods, as well as a brief look at durability of

such surfaces.

In Chapter 4, we detail drop testing and static immersion testing of our samples. We

also confirm the existence of the SuperSLIPS state.

In Chapter 5, we discuss the theory behind our dynamic drag measurements. We discuss

Cone & Plate Rheometers, as well as Photon Correlation Spectroscopy.

In Chapter 6, we detail our full immersion drag measurement system design and con-

struction.

Finally, in Chapter 7, we detail the results of our torque measurements and discuss our

preliminary shear rate measurements.

More detailed procedures are given in Appendix A. Other work undertaken but no di-

rectly related to the thesis is detailed in Appendix B and Appendix C.
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2.0 HYDROPHOBIC SURFACE STATES
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Hydrophobicity is the tendency of a surface to repel water; more precisely, it is the ten-

dency for water to wet less strongly to a surface. Efforts to produce surfaces possessing

high hydrophobicity have focused on biomimetics: duplicating natural materials that have

hydrophobic properties [23, 24, 25]. Duplicating and improving on the extremely hydropho-

bic lotus leaf has been a long term experimental focus [32, 17]. More recently, interest has

been shown in the hydrophobic properties of the pitcher plant, which uses an oil coating to

achieve hydrophobicity [33, 34].

Surface hydrophobicity is commonly characterized by examining the contact angle, the

interior angle at the point where a liquid/vapor interface meets a solid surface (usually tested

by looking at droplets on the surface), and the rolling angle, the angle from horizontal to

which a sample must be tipped to before a drop placed on its surface starts rolling [28].

Contact angle hysteresis, which measures the difference between the advancing and receding

contact angles when water is in motion across the surface, is also looked at; high contact

angle hysteresis indicates that water is resistant to being moved [29].

One method of making a surface hydrophobic is to make the surface rough and chemically

functionalize it [15, 14]. The interface characteristics of water in contact with a surface can be

changed by structuring, utilizing surface tension effects [46]. Alternatively, it is also possible

to produce surfaces with hydrophobic properties by altering the interface state. Methods

for altering the fluid or the boundary layer have been explored in the past, for example by

utilizing continuously fed air layers [8, 9], but these proved to be inefficient due to the need

to continuously maintain the effect. Rather than actively altering the boundary layer, if the

surface can passively retain a second fluid, water can be made to flow across it instead of

the surface itself, resulting in increased hydrophobicity without active maintenance of the

altered interface.

Water can be in several possible wetting states with respect to a surface [54, 55]. We

look at three known states, as well as one additional state which has not previously been

observed.
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Figure 1: Diagram of possible wetting stat on multiscale surfaces. a) Wenzel: fully wetted,

b) Cassie-Baxter: a layer of air separates most of the water from the surface, c) SLIPS: a

layer of an immiscible liquid separates the water from the surface, d) SuperSLIPS: a layer

of air separates most of the water from the surface, which is coated with a second liquid.
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2.1 SURFACE WETTING STATES

2.1.1 The Wenzel State

If water fully wets the surface, it is in the Wenzel state (Fig. 1a) [56]. In this state, a drop of

water placed on the surface may have a range of contact angles, but has high contact angle

hysteresis and is resistant to being moved. This is the most conventional form of surface

behavior, where the no-slip condition is applied at the liquid/solid interface and there is

no need to worry about complicated dynamics. These surfaces are extensively studied and

understood, and are the control surface in all our measurements [57, 58].

2.1.2 The Cassie-Baxter State

A surface that utilizes surface tension effects to minimize fluid drag, based on the lotus

leaf, is in the Cassie-Baxter state (Fig. 1b) [59]. If a surface has microscale structure, and

if the contact angle of the base material (or a coating thereof) and the surface geometry

of these features meets certain requirements, water can be supported on the structure by

surface tension such that it is mostly non-contacting, with a layer of air separating most

of the liquid from direct contact with the solid surface. Surfaces which support a Cassie-

Baxter state typically feature high contact angles, which in this case correlates with low

contact angle hysteresis, so water slides off easily. If such a surface possessed a contact angle

above 150◦, which corresponds to very high hydrophobicity, it is by convention referred to

as ‘Superhydrophobic’ [54]. Drops on this type of material will not spread, remaining nearly

spherical, and will instead roll off without wetting [60, 61]. These surfaces are effective, but

vulnerable to failure; since the effect is dependent on the structuring, physical damage can

reduce or negate the surfaces’ effectiveness. There are also known issues with biofouling,

where the growth of biological material on the surface impairs or negates the drag reducing

properties [62].

The Cassie-Baxter state is a consequence of surface tension interactions. With the right

geometry, the vertical component of the surface tension, acting at the interface, holds up

the liquid, so it is mostly riding on air. This can greatly reduce drag, as the majority of the
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Figure 2: Geometry of forces in Cassie hydrophobicity on a sloped surface, looking at the

response of the line directly next to the contact line on the fluid surface. d is the distance

from the top of the slope to the interface, ψ is the slope half-angle, φ is the slope angle from

the horizontal, θ is the contact angle, and γLG is the Liquid-Gas surface tension.

liquid interface is then in contact with air, rather than a solid surface to which it can wet.

Drag forces between water and air are lower than between water and most solid surfaces,

and the viscosity of air is far lower than that of water [59].

We consider the fluid interaction with a sloped surface. Looking at Fig. 2, we can write

the vertical force per unit length f acting on the water/slope interface as

f = γLG sin(θ − ψ − 90◦) = −γLG cos(θ − ψ) = −γLG sin(θ + φ) (2.1)

where γLG is the Liquid-Gas surface tension, θ is the contact angle, ψ is the slope half-

angle, and φ is the slope angle from the horizontal. We see that this prevents the interface

from moving down the slope, allowing for the lower surface of the water to rest on the
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trapped air pocket [46, 43]. Note that the geometry in Fig. 2 is for the line immediately

next to the contact line on the fluid surface; using Newton’s third law allows us to calculate

the vertical force without needing to directly consider the surface tension from the other

interfaces. Eq. 2.1 can be used as a criterion to determine how steeply sloped a surface needs

to be to enter the Cassie-Baxter state once the contact angle has been measured on a flat

surface.

We may construct our surface out of an array of microscopic spikes. Assuming that the

spikes are steep and numerous enough, each of them will contribute to holding water placed

on them out of the spaces between them, resulting in a high fraction of the water being

in contact with air rather than the underlying surface. This is similar to the classic ”bed

of nails” demonstration, spreading the weight of the water across a large number of small

supports without breaking the surface.

A force can be obtained by integrating around a closed line of contact. If we take the

tips of the microscopic spikes to be approximately circular, we can integrate Eq. 2.1 to get

the total upward force per spike Fs = −γLG2πd tan(ψ) sin(θ+φ), which shows a Hooke’s law

restoring force upward characterized by the distance down the spike the water contact line

has descended.

2.1.3 SLIPS

Instead of depending on surface tension effects, we can modify the effective surface properties

if the surface can be hold in place a second liquid which is immiscible with water. If the

second liquid wets the underlying surface, and the contact angle of the second liquid on the

surface is much lower than the contact angle of water, the second liquid will tend to coat

the surface and displace water and air from between surface features. The water will then

move along the surface of the second liquid while barely contacting any projecting features

of the solid surface(Fig. 1c). This kind of hybrid liquid-solid surface is known as a Slippery

Liquid Infused Porous Surface (SLIPS); an example of this kind of surface is the inside of a

pitcher plant [33].

If the immiscible liquid is considered as part of the surface, then a water drop on a SLIPS
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can be considered to be in a Wenzel-like state, in complete contact with the immiscible liquid

or solid surface. However, it does not wet the surface, so the only resistance to motion is the

viscous contact between the fluids and contact with the occasional projecting feature [63].

These surfaces tend to have low contact angle hysteresis, but typically have lower contact

angles than Supherhydrophobic surfaces; the mechanism lowering the drag is that the water

is sliding along the immiscible fluid without wetting, rather than being held out of contact

with the surface by surface tension effects. Compared to Superhydrophobic surfaces, SLIPS

are less vulnerable to damage, as the liquid can flow to fill in damage without radically

changing the interface characteristics; the solid surface simply acts to hold the immiscible

liquid layer in place [34, 64]. In addition to being of interest for their hydrophobic properties,

they are also of great interest in antibiofouling, as the second liquid can be selected to prevent

microorganism growth [65].

If the material is capable of retaining the second liquid, we can convert a structured

Superhydrophobic surface into a SLIPS by applying the immiscible liquid to it. For certain

immiscible liquids, a Superhydrophobic surface composed of microscopic spikes can be made

into a SLIPS. In this case, the immiscible liquid is held in between the microscopic spikes

and, when present in sufficient thickness, inside any macroscale features.

2.1.4 Multiscale Cassie-Baxter Behavior

Eq. 2.1 considers a sloped surface, but does not impose a scale requirement. If a Superhy-

drophobic material can be made in such a way that it retains its properties regardless of the

macroscale shape of the underlying surface, there is nothing preventing us from trying to

induce Cassie-Baxter behavior with respect to these larger features simultaneously.

The vertical force due to surface tension with respect to contact with the larger scale

structure is simply

Fz ∝ −γLG sin(θ′ + φ′) (2.2)

where φ′ is the angle of the slope of the larger-scale structure measured from the horizontal

near the tip, and θ′ is the apparent contact angle of water on the surface material itself. We

see that the requirement for a positive force is θ′+φ′ > 180◦. Since θ′ is the contact angle for
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the flat material surface, all that is required to generate a Cassie-Baxter state when larger

grooved features are added is to make the groove slope adequately steep. For our experiments,

we produce millimeter scale grooves in our surfaces to test multiscale behavior. We can do

this using Superhydrophobic material, which allows us to create multiscale Cassie-Baxter

surfaces.

2.1.5 SuperSLIPS

We note critically that the preceding considerations only depend on the contact angle of the

surface. The particulars of the interface, such as material composition, are not important.

Thus, if we measure the contact angle of our SLIPS material (made by applying an immiscible

fluid to our Superhydrophobic material), there is no reason to believe that a SLIPS with

sufficiently steep grooves cannot still achieve a Cassie-Baxter state relative to the larger

grooves, provided θ′ > 90◦ for the SLIPS material itself. In this hybrid state, the surface

consists of micro-scale spikes filled with immiscible liquid while the grooves are empty of

liquid and can support an air layer, theoretically providing the advantages of both types of

surfaces (Fig. 1d).

We call these SuperSLIPS, indicating that SLIPS properties are enhanced by additional

surface structure, similar to how structured hydrophobic surfaces are enhanced to become

Superhydrophobic surfaces which support a Cassie-Baxter state. SuperSLIPS could com-

bine the best features of Superhydrophobic surfaces (hydrodynamic drag reduction) and

SLIPS (self-repair and biofouling resistance), which are otherwise difficult to obtain simul-

taneously [48]. The oil-coated feathers on some preening birds, such as those of penguins,

which have been shown to retain significant air layers while underwater [66], may be natu-

ral examples of SuperSLIPS, and indicate that these surfaces could be highly desirable for

underwater applications. These surfaces have not been produced or examined prior to the

work in this thesis.
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3.0 MATERIAL FABRICATION
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There are a wide variety of methods for making Superhydrophobic surfaces. These sur-

faces are either made out of inherently hydrophobic materials (such a fluoropolymers) or

are coated to make them hydrophobic. Common substrates have regular structure (such

as spikes or posts) [40, 46, 24, 39, 67], porous structure [18, 19, 21] or unordered rough-

ening [32, 22, 23]. Current methods for the production of such surfaces are often difficult,

requiring multiple processing steps and complex, sometimes layered, materials [57]. Many of

these surfaces are prone to degradation of their hydrophobic properties, in particular when

immersed in liquids for extended periods [47, 18].

We have access to a single point diamond turning (SPDT) machine, which allows us to

cut materials to less than 10 nm surface roughness [68]; we can also cut grooves to high

precision even down to µm scale. Not all materials are compatible, but aluminum is one

that can be easily cut using diamond turning. Aluminum oxide (alumina) coatings grown

via anodization form hexagonally arranged pores if produced within current, temperature,

and voltage limits that depend on the anodizing acid used; in this case it is referred to as

Porous Anodized Alumina (PAA) [69]. We can convert this array of vertical pores into a

spiked surface by alternating anodizing growth with chemical etching steps, as illustrated in

Fig. 3. The PAA growth process is conformal to the aluminum surface, so it can be grown

as easily on a grooved surface as a flat one. If we coat the PAA surface with a hydrophobic

material, we can create samples that can be in the Superhydrophobic and either the SLIPS,

or SuperSLIPS state, depending on the geometry of the underlying sample and whether it

is coated with an immiscible liquid or not.

3.1 FABRICATION

3.1.1 Anodization

We utilize 99.999% pure aluminum discs for our substrates. For smaller test pieces, we used

50 mm diameter, 0.5 mm thick foil (Goodfellow AL000650) or 50 mm diameter 0.25 in thick

aluminum disks, while for our primary test articles we used 4 in diameter, 0.25 in thick
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Figure 3: Illustration of anodizing and etching process. We grow, then etch back, then grow.

Repeating this cycle allows us to create surface roughness with high aspect ratio from the

straight vertical pores produced by anodization.
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aluminum disks (0.25 in thick disks were originally manufactured as sputtering targets). If

we wish to create multiscale surfaces, we can cut concentric circular grooves in the aluminum

after cutting the surface flat, using dead sharp diamond tools with varying tip angles. The

grooves cannot be cut all the way to the center of the disc due to tool clearance limita-

tions. SPDT removes native oxide from our substrate, leaving a pure aluminum surface for

anodization.

Since we observed that a thick native oxide layer interferes with further processing, we

quickly place our samples in an evacuated bell jar after cutting so the diamond turned surface

experiences minimal regrowth before anodization.

Anodization is performed in 0.1175 molar citric acid (in water) at 320 V, at a current

density limit of 0.051 A
m2 and a temperature of 18-20◦C, which produces 750 nm spike sep-

aration [69]. Etching is performed in 2% w/w (in water) tetramethylammonium hydroxide

(TMAH) at 18◦C [70]. The older oxide is etched back further with each etching step, while

newer material is grown underneath at each anodization step, creating a stepped spike array.

The thickness of the oxide and aspect ratio of the spikes are easily controlled by choosing

the total charge passed through the sample during anodization and the etching times, within

certain limits. A similar technique is used to create molds for anti-reflection coatings, with

different choices of chemical and voltage, has been described in detail [71, 72]. The growth

of PAA is conformal; the pores are always perpendicular to the surface regardless of shape.

For surfaces that have additional cut features in the aluminum, we are careful to maintain

a constant thickness in each anodization step by increasing the current and total charge

passed through the surface by the ratio of the surface area compared to a flat disc so that

the current density if maintained; voltage is not changed as this determines pore spacing.

An example of our anodized surface is shown in cross section in Fig. 4. A step-by-step

anodization procedure can be found in Appendix A.1.3.

Spiked PAA surfaces are more hydrophilic (wet more strongly) than flat aluminum [73].

In order to achieve the Cassie-Baxter state, the surface needs to be altered to increase the

contact angle of the sloped sides of the spikes. We utilize a surface coating of Solvey Plastics

Hyflon AD-60, a hydrophobic fluoropolymer [40] (similar to Teflon AF [74]). Application of

this material to our spiked PAA surface leaves the surface Surperhydrophobic.
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It was necessary to try a variety of different methods of applying this coating, including

different thermal cycles and a variety of adhesion promoters, in order to achieve a durable

coating that could withstand testing without degrading.

5 µm

Figure 4: SEM image of a spiked PAA surface in cross section at 20 degrees inclination,

thickness 4 µm. Note the visible steps made by alternation of 8 anodization and 7 etching

steps.

3.1.2 Coating Durability Testing

3.1.2.1 Continuous Immersion We examined the use of underlying adhesion promot-

ers, as well as multiple coatings of Hyflon, to find the optimal combination for long term

water immersion. A thin foil disc was prepared with our PAA surface. The foil disc was

cut with a knife blade into smaller pieces, so there would be no variation in the underlying

structure between our samples. All samples were cleaned with isopropyl alcohol and baked

at 200◦C for 90 minutes to drive off any remaining surface liquids prior to being coated.

Two types of self assembled mono-layers (SAM) were tested: (tridecafluoro 1,1,2,2,

tetrahydrooctyl) trichlorosilane (TTTS), which is also used in the production of hydropho-
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bic surfaces [19, 75], and ethyltrichlorosilane (ETS) [76]. Hexamethyldisilazane (HMDS), a

common adhesion promoter with hydrophobic properties [77, 21], was also studied. Coating

combinations we examined are shown in table 1.

F0 Single Layer Hyflon

F1 Double Layer Hyflon

F2 ETS + Hyflon

F3 TTTS

F4 TTTS + Hyflon

F5 HMDS + Hyflon

Table 1: List of coatings tested.

Sample F2 was coated by submerging it for 30 minutes in a solution of 9.9 mL Hexane

and 0.1 mL of ETS, F3 and F4 were treated likewise with 0.1 ml of TTTS. F0 and F1 were

submerged in 10 mL Hexane for the same duration to ensure minimal variation in processing

history. F0-F4 were then baked for 15 minutes at 150◦C, and ultrasonically cleaned in

isopropanol individually to remove residue, blown dry with compressed air, and then all but

F3 were spin coated at 1000 RPM with 2% w/w Hyflon in 3M Fluorinert FC-40.

F5 was taken directly from the initial bake, allowed to cool, and then spin coated with

propylene glycol monomethyl ether acetate (PGMEA):HMDS in 4:1 solution at 4000 RPM.

This was followed immediately by a coating of the Hyflon solution at 1000 RPM (without

being allowed to dry between coatings).

Following individual coating, all samples were baked together at 75◦C for 30 minutes,

then ramped to 150◦C (heating the Hyflon above its glass transition temperature) and baked

for 3 hours. Samples were allowed to cool, then a second coating of Hyflon was applied to

F1 and all samples were subjected to the same bake cycle again to eliminate thermal history

as a variable.

At the conclusion of fabrication, samples were photographed in profile with a drop of

deionized water (held in place using a needle suspended above the surface) to determine

static contact angles. Static contact angles of 161±1◦ were seen for all samples, as shown in
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Figure 5: Profile image showing contact angle of a drop of water on the material before full

immersion in water was undertaken. Drop is held in place with a needle suspended above

the surface.

Fig. 5, indicating that they were initially superhydrophobic and very uniform in character.

Numerical fitting was used to model the outline of the drops and determine contact angles.

To test long term coating durability in water, samples were immersed for an extended

period and periodically extracted for testing (samples were allowed to air dry if any water

adhered). The rolling angle was measured by applying a series of 15 µL and 30 µL drops

at 10 different locations on each sample, then tilting the sample until the drop began to roll

and reading from an inclinometer. These readings were taken at multiple points across the

surface of the samples so that a representative sample of the surface was evaluated in the

course of a measurement series; this ensured that if any small defects were included in the

data, they did not dominate our evaluation. A reading of 90◦ was recorded for any drop

that remained adhered until or past vertical inclination. Measurements were repeated over

a period of 900 hours(37.5 days), taken at no longer than 48 hour intervals (see Fig. 6).

Initial rolling angles for all samples were low. F0 began with an average rolling angle of
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30µL Drops

15µL Drops

Figure 6: Rolling angle as a function of time. A reading of 90◦ indicates the drop adhered

up to or past vertical tilt.

0.8◦ for 30 µL drops (0.2◦ for 15 µL drops), F1 with an average of 0.0◦ (0.4◦), F2 with an

average of 4.8◦ (2.2◦), F3 with an average of 0.2◦ (0.1◦), F4 with an average of 0.05◦ (0.1◦),

and F5 with an average of 0.2◦ (0.4◦). The minimum rolling angle observed on each sample

except for F2 was 0◦; F2 began with a minimum rolling angle of 1.9◦ (0.0◦).

Fig. 6 shows complete data for all testing using both 30 µL and 15 µL drops. F5

(HMDS+Hyflon) performed the best of all samples, with a final rolling angle at an average
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of 14◦ (17◦) by the end of testing. It was also the only sample that still had any areas with

a rolling angle of 0.0◦ at the conclusion of the test. The increase in average rolling angle was

extremely gradual, and remained below or even with the next best sample throughout the

test.

The average contact angle for F1 (double Hyflon) was 7◦ after 24 hours, and reached

12◦ (21◦) after 900 hours, indicating very good stability as well, with the most hydrophobic

areas remaining having a rolling angle of 10◦ (13◦).

By comparison, F0 (single Hyflon) and F2 (ETS+Hyflon) both showed a final average

rolling angle of 70◦ (83◦) and a final minimum at 35◦ (50◦), with F2 increasing quickly and

then stabilizing, while F0 gradually increased to this point.

F3 (TTTS) and F4 (TTTS+Hyflon) both completely failed after 564 and 432 hours (216

and 168 hours), respectively, reaching a rolling angle of 90◦ across the entire surface. F4

began failing immediately, while F3 performed well for the first 12 hours, maintaining a near

zero contact angle for this time, before failing at a rate similar to F4.

(a) Normal Hyflon Coating (b) Hyflon Coating Failure

Figure 7: SEM images of sample, taken at a 20◦ angle after testing and cracked to show

profile.

Hyflon sample coatings are highly conformal in most areas, as can be seen from a com-

parison of a coated (Fig. 7(a)) and uncoated (Fig. 4) surface. Evidence that the coating is

present at all is only visible where small strings of polymer can be seen stretching across the

crack made in the surface oxide to allow for a profile view.
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Loss of hydrophobicity mostly began at one or more edges and proceeded inward, with

all samples achieving at least a small area of full wetting before the conclusion of the test.

The coating was uneven at the edges, possibly due to the non-circular shape of the samples

and/or the transition from PAA to bare aluminum at the outer edge of the anodized region.

The corners where a knife-cut edge and the edge of the anodized region met appeared to be

the most vulnerable. The edge of the anodized area transitioning to bare aluminum is visibly

different from the main body of the anodization, and was avoided in testing. As shown in

Fig. 7(b), taken after testing was completed, the coating can be clearly seen to be on top

of the surface, rather than coating it conformally. However, all the cut edges were prone

to losing hydrophobicity, possibly due to damage to the substrate patterning resulting from

being cut from the original disc.

It is possible that delamination of the coating occurred due to the cut edges and the

anodization border allowing water underneath the coating. Note that point defects away

from the edges, though they did become more hydrophilic with continued immersion, did

not tend to expand. This indicates that this is an issue with the edge itself.

A scratch accidentally occurred on F5 during handling. While this area showed a rolling

angle greater than average, it was still able to maintain a rolling angle of <15◦ (<30◦). This

demonstrates a good resistance to macroscopic physical damage as well, but was not further

investigated at this time.

Both double layer Hyflon and Hyflon with HMDS displayed similar performance. The

second layer of Hylfon may have filled in gaps in the coating of single layered samples, allowing

it to retain its properties and preventing water from undercutting the surface bonding. The

HMDS, being both an adhesion promoter and itself a hydrophobizing agent, may have acted

to both hold down the single layer of hylfon and similarly fill in gaps. The combination of

two different hydrophobizing mechanisms may account for why completely superhydrophobic

areas were able to survive.

ETS and TTTS were both unable to achieve such effects. In the case of TTTS, perfor-

mance was degraded as compared to Hyflon on its own. ETS had a short term deleterious

effect, but in the long term performance was the same as with single layer Hyflon.

All of these tests were performed on a single sample, so the effects of varying pore spacing
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and aspect ratio of the features of the PAA are not considered, and may increase or decrease

the durability and/or contact angle.

3.1.2.2 Transient Wetting Testing Long term nearly continuous immersion was tested

above. However, it was observed that these surfaces degenerated more rapidly with continual

application and removal of liquid. It was thus concluded that the coating, in addition to

having a long term immersion limit, was also subject to a limit on the number of wet-dewet

cycles that could be endured.

Having selected HMDS+Hylflon coatings as the best performing based on the previous

tests, new samples were prepared and subjected to a variety of prebake methods and final

bake temperatures. These samples were placed, slightly tilted, beneath a burette, positioned

so the water would stream onto the sample and be held in place by the burette tip until

pulled off by gravity acting on the water drop. This allowed the full surface to be subjected

to repeated wet-dewet cycles. The samples would be tested for rolling angle after a set

amount of water had been flowed across them to determine durability.

The primary parameter tested was the final bake temperature for curing the Hyflon. The

melting point for Hyflon-AF powder is not known, but bulk hyflon melting point is 280-310◦.

Bake Temp Final Rolling Angle

150◦ C 22.8◦

200◦ C 20.9◦

250◦ C 17.2◦

300◦ C 14.2◦

310◦ C 18.2◦

Table 2: Curing temperatures tested. Rolling angles are after 2 purretes (500ml) of water

dripped over sample

Best results were achieved by increasing the baking temperature to 300◦ C; further in-

crease in bake temperature rapidly worsened the outcomes, indicating the beginning of hyflon

breakdown. A further test showed that 30 min was a sufficient baking time at this higher
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temperature. Step-by-step coating procedures can be found in Appendix A.1.5.

The initial prebake was also tested. While oxygen plasma cleaning for 10 min at 50 W

was found to be superior to baking for 90 min at 200◦ C, this process could only be applied

to 2 in diameter samples, as the load lock for our vacuum chambers cannot accept samples

above 3 in diameter. For larger samples, we had to continue to use the 90 min, 200◦ C

prebake. Step-by-step pre-baking procedures can be found in Appendix A.1.2.

The full sample preparation and handling procedures used for samples in the remainder

of this thesis can be found in Appendix A.1.

25



4.0 STATIC DROPLET MEASUREMENTS & EXPERIMENTAL

VERIFICATION OF SUPERSLIPS
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Using our fabrication process (see Chapter 3), we can theoretically create samples ca-

pable of being in either the Cassie-Baxter, SLIPS, or SuperSLPIS states, depending on the

geometry and whether they have an immiscible liquid coating. Before we can proceed with

bulk fluid measurements, it is necessary that we confirm that this is true. In particular,

the SuperSLIPS states had not been observed before work in this thesis, and so it was of

paramount importance to confirm that it actually existed. We test the behavior of water

drops on these surfaces to obtain an initial understanding of their properties.

4.1 MULTISCALE SAMPLES

During durability testing (chapter 3.1.2), we established that our spiked PAA surfaces were

capable of producing contact angles on the order of 160◦, therefore based on Eq. 2.2, con-

centric grooves with an angle from the horizontal in excess of 20◦ will experience multiscale

Superhydrophobic behavior. Using thick 2 in diameter aluminum discs, we produced a flat

Superhydrophobic sample, and grooved Superhydrophobic samples with φ′ = 30◦, 45◦, 60◦

and 75◦ wall slopes, with the groove spacing fixed at 0.25 mm for all angles and cut deeply

enough that they meet to form a series of sharp ridges. The grooves were not cut all the

way to the center of the disc due to tool clearance limitations. Anodization was performed

such that PAA thickness was maintained by compensating for the difference in surface area

caused by grooving, see App. A.1.3. We do not vary the characteristics of our microscopic

spikes, as this has been explored before.

We make our samples into SLIPS or SuperSLIPS by coating with a layer of polydimethyl-

siloxane (silicone) oil (5 cSt, Sigma-Aldrich 317667) by spin coating. Note that the viscosity

of this fluid is greater than water. A water drop placed on our ungrooved SLIPS material

with a thin oil layer (spun off at 10,000 RPM) has a contact angle of 111◦. Combined with

Eq. 2.2, this predicts that SuperSLIPS will result if the slope of the larger-scale features is

greater than 69◦. This can only occur if the oil layer is thin; otherwise the oil layer will fill

in the larger scale features and produce a standard SLIPS.

We performed all measurements of samples in the Superhydrophobic state before we
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Figure 8: Data for rolling and contact angles as a function of oil layer thickness (quantified

by spin-coating speed in kRPM). Values for surfaces without any oil are indicated by dashed

lines. The apparent super-slippery regime is boxed.

coated these same samples with oil, to avoid concerns about contamination by or incomplete

removal of the oil. We varied the thickness of the oil layer on the surface by applying 1 mL

of oil to each sample and then spinning off the excess oil at various spin speeds (for 25 s) to

create a uniform coating. We tested in a thickness range from 2,000 RPM to 10,000 RPM.

As can be seen from Fig. 8, the behavior can be broken into that for thinner layers and

that for thicker layers, so we carefully examine one of each. The layer created by spinning

at 2,000 RPM was examined to asses the behavior of a thick coating, while to look at the

behavior of a thin layer we used samples spun at 10,000 RPM.

The results are summarized in Fig. 9. Several trends in the data are immediately visible.

First, oil-free samples had the highest contact angles, as expected for Superhydrophobic
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Figure 9: Rolling and contact angles of water on grooved and structured hydrophobic surfaces

with no oil coating, a thick oil coating spun off at 2,000 RPM or a thin oil coating spun

off at 10,000 RPM. Note the decrease in perpendicular rolling angle and increase in the

perpendicular contact angle at high groove angles with a thin oil layer, which may indicate

a SuperSLIPS state.

materials. Samples with a thick oil layer had the lowest contact angles and often the lowest

rolling angles, which is expected for SLIPS, where the oil effectively fills in the grooves,

creating a smooth surface for the drops to skate along. Contact angles for oil-free samples

and samples with thick oil layers did not change significantly with variations in groove angle.

Samples with thin oil layers had the highest rolling angles for almost all groove angles. In

this case, the oil did not fill the grooves, and at most groove angles the water drop was pulled

into the grooves as there was nothing preventing the formation of the Wenzel-like state with
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Figure 10: Samples half-submerged in water. Note the high reflectivity below the waterline

when an air layer is present, as on all samples without oil. More of the surface of the 75◦-

grooved sample with thinner oil layers is highly reflective than is visible in the photograph,

but the visibly reflective area depends on the viewing angle. All photographs were taken

under identical conditions; there is a change in reflectivity with groove angle.

the oil in the microscopic spikes, making it more difficult for drops to roll over the ridges.

This is expected from previous experiments on multiscale SLIPS [64].

Samples with 75◦ grooves showed comparatively anomalous behavior. The perpendicular
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rolling angle was dramatically lower compared to other groove angles and the flat surface,

near that of a flat surface with a thick oil layer. The parallel rolling angle also decreased to

below that of a flat surface with a thick oil layer, and the contact angles both increased to

nearly the oil-free values. The perpendicular contact angle, in particular, was much higher

than with other groove angles. This confirms the hypothesized change in wetting state above

69◦ groove angles.

4.2 CONFIRMATION OF THE EXISTENCE OF SUPERSLIPS

One interpretation of the behavior of water drops on samples with 75◦ grooves and a thin oil

layer is that the water was suspended from the oil-coated ridges with air filling the grooves, as

in Fig. 1d. We observed the samples submerged in water to check for evidence of SuperSLIPS,

shown in Fig. 10. Samples without oil displayed a highly reflective surface underwater, due

to total internal reflection of light off the Cassie state air layer on the surface. The strong

reflection disappeared with the addition of a thick oil layer, indicating the formation of a

SLIPS with no air layer. However, for a thin oil layer and 75◦ grooves, part of the submerged

surface was highly reflective, supporting the prediction that a Cassie-like SuperSLIPS state,

having both an oil-coated surface and an air layer, existed on the surface. The difference

in reflectivity suggests that the air layer was thinner or less complete than with the oil-free

surfaces. Note that more area on this surface was highly reflective than is visible in Fig. 10,

but due to the grooves, the entire air layer cannot be photographed from a single angle.

For additional evidence of the wetting state, we compared the behavior of 10 µL droplets

of water resting on 45◦ and 75◦ samples, both with thin oil layers. It is clear (see Fig. 11) that

on the 45◦ sample, the droplet is in complete contact with the surface in a Wenzel-like state.

However, the droplet is clearly suspended near the tips of the grooves on the 75◦ sample,

confirming that the behavior we were seeing was an indication of the Cassie-Baxter-like

SuperSLIPS.

These results demonstrate that the addition of grooves to immiscible liquid coated sur-

faces modifies the behavior of water on those surfaces, and in particular, if the features
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Figure 11: Photographs of the profile of a 10 µL drop of water on 45◦ and 75◦ grooved samples

with a thin oil layer. The drop on the 45◦ sample is fully wetting to the oil (Wenzel-like),

while the drop on the 75◦ sample is suspended over the air-filled grooves (SuperSLIPS).

have sufficiently steep slope and the oil layer does not fill the macroscopic features, there is

evidence of SuperSLIPS. The results suggest that this combination of features is a result of

having an immiscible liquid filling the gaps between nanoscale features and air filling gaps

between macroscopic features, as postulated.

32



5.0 THEORY OF THE CONE & PLATE RHEOMETER AND PHOTON

CORRELATION SPECTROSCOPY
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We wish to examine the behavior of our surfaces with respect to bulk liquid flow across

them, which can be done in several ways. Such measurements are often comparative, looking

at the change in a quantity between a reference and a test samples. By looking at the change

in torque applied to the surface, we can see an indication of how much force is being exerted

on the surface. Alternatively, by looking at the change in the shear rate S = ∂vα
∂xβ

, we see how

much less the fluid is being slowed between the point of energy injection and the dissipative

surface of our sample, which in turn tells us how much less energy is being transferred to

the surface. The two measurements are related, but measure drag in different ways; torque

measurements take an average reading over the surface of the entire sample, while shear rate

measurement tells us what is occurring at a specific point.

An apparatus commonly used for measuring torque is the Cone & Plate Rheometer

(CPR). Because of the geometry of this system, torque can be related to shear rate theo-

retically in some cases [52]; this is the conventional method of finding shear rate. However,

this relationship depends on simple boundary conditions; one of these conditions is that the

plate must be flat. As our samples are expressly not flat plates, we cannot in general utilize

these relations, and we must directly measure the shear rate in the fluid.

Direct fluid velocity measurements can be taken using hot wire anemometry [78] or Laser

Doppler Velocimetry (LDV) [79]. Obtaining shear rate requires measuring a velocity com-

ponent at a series of closely spaced points, from which the average slope is deduced. This

requires some measurement time at each location and the region of interest must be scanned,

so time-resolved measurements of shear are typically not practical with these methods. Fur-

thermore, since hot-wire anemometry requires holding a probe in the flow, it may alter the

flow and is sensitive to nearby surfaces [80, 81].

Photon Correlation Spectroscopy (PCS) measures the shear rate directly, does not require

any sensor repositioning, does not require calibration or comparison to a reference, and can

be performed to within a few percent within minutes. PCS measurements have been used

to probe turbulent two-dimensional flow [49], Brownian motion [50], and have been used

to approximately measure three-dimensional flow in a Couette cell and four-roll mill [51].

The mathematical treatments in prior work have either been special cases (2-D) or have

been approximate derivations with free parameters, requiring calibration using a reference
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to achieve relative measurements. We detail a method for PCS measurements of the shear

rate in 3-D laminar flow and the beginning of secondary flow in a cone and plate rheometer

(CPR) with no free parameters.

5.1 THE CONE & PLATE RHEOMETER

Figure 12: Schematic of a Cone & Plate Rheometer (tip truncation greatly exaggerated).

Cone must be positioned such that, if the tip were not truncated, it would touch the plate

at the tip. Our experimental samples will serve as the plate.

We begin by discussing the formalism of the Cone & Plate Rheometer. Because the

system is cylindrically symmetric, we use a polar coordinate basis (ρ, φ, z), such that the

origin is at the tip of the cone and ẑ is along the axis of rotation. Note that a CPR is always

assumed to be positioned so the point of the cone would be in contact with the surface; a

real CPR has a small (micro-meter scale) truncation to prevent rubbing, which creates a

negligible deviation from theory.

Because a CPR is cylindrically symmetric, we know that in laminar flow all derivatives

with respect to the azimuthal direction must vanish Siφ = ∂vi
∂rφ

= 0. In turbulent flow, these

terms may be nonzero, but must obey circular boundary conditions Siφ(φ = 0) = Siφ(φ =

2π).
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For a CPR, the flow state is characterized by a term proportional to the ratio of the

centrifugal to the viscous forces,

R̃ =
ρ2ωα2

12ν
=
Re

12
(5.1)

where ν = η
χ

is the kinematic viscosity (we use χ for volume density of the fluid to avoid

confusion with the radial coordinate) andRe is the Reynolds number. If R̃ . 0.5 we are in the

strictly laminar regime. For 0.5 . R̃ . 4.0, we are experiencing increasing levels of secondary

flow. For R̃ & 4.0, we are firmly in the turbulent regime. This parametric characterization

has been thoroughly tested; the factor of 12 in the denominator is a consequence of the

Navier-Stokes equations [82]. Note that for measurements that take into account the entire

gap, turbulence will begin at the edges of the cone and proceed inward as ω is increased.

5.1.1 Laminar Flow

We can solve the equations governing our system in laminar flow. In the laminar case,

vρ = vz = 0, as cross flow is a property of turbulence. The continuity equation in cylindrical

coordinates is ~5 · ~v = 1
ρ

∂ρvρ
∂ρ

+ 1
ρ

∂vφ
∂φ

+ ∂vz
∂z

, which in the laminar case reduces to 0 =
∂vφ
∂φ

.

First, we examine the rheometer for the case of a flat plate. The boundary conditions are

vφ(zc) = ωρ = ω zc
tan(α)

≈ ω zc
α

and vφ(0) = 0, assuming a small cone angle α(. 6◦) and a cone

surface defined by zc = ρ tan(α) (remembering that the cone tip,if it were not truncated,

is treated as touching the plate at ρ = 0). Then vφ(z) = ω
α
z, and thus the only nonzero

component of the shear rate is

Sφz =
ω

α
(5.2)

which is independent of radial position. This means that in this case we can measure the

shear rate anywhere in the gap. Radial independence is the reason a cone is chosen for

the upper surface; if we replace the cone with another flat plate, we would instead have a

Parallel Plate Rheometer, where the gap between the plates h could be set arbitrarily; then

vφ(z) = ωρ
h
z and Sφz = ωρ

h
are proportional to radius [52].
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The stress on a plane is ~Tφz =
Fφ
Aφz

φ̂ = −ηSφzφ̂, where Fφ is the sheering force on a plane

with area Aφz in the φ̂ direction of fluid with dynamic viscosity η. The torque τ on such a

plane about the axis of fluid rotation is then

τ =

∫
(~ρ× ~Tφz)dA =

2π∫
0

R∫
0

ρ|Tφz|ρdρdφ =
2πηR3

3
Sφz =

2πηR3ω

3α
(5.3)

Where R is the radius of the cone. This relation is what is used to measure shear rate in

commercial CPR systems.

The preceding deals with a rheometer in which the plate is in the Wenzel state and only

a single fluid occupies the entire gap [52]. In the event that the plate is altered so it retains

a second fluid layer, so we have the water in contact with another fluid layer and the second

fluid layer in contact with the plate, we must now treat both layers. If the second fluid is

air, this is the the Cassie-Baxter state. The boundary condition at the cone is unchanged,

vφ(zc) = ω zc
α

. If we assume that the plate is still approximately flat, the boundary condition

at the lower plate is the same for the second fluid, so v′φ(0) = 0, where primed variables

are in the second fluid. New intermediate boundary conditions are introduced by matching

the mutual stress and the velocity of the two fluids at the interface where the fluid layers

interact, vφ(zt) = v′φ(zt) and η
∂vφ
∂z
|zt = η′

∂v′φ
∂z
|zt , where zt is the location of the boundary.

Letting H = η′

η
, the velocities in the two fluids are now

vφ(z) =
ωzc[Hz + zt(1−H)]

α[Hzc + zt(1−H)]
v′φ(z) =

ωzcz

α[Hzc + zt(1−H)]

We define the common factor of zt(
1
H
− 1) = zt(

η
η′
− 1) = δ. The velocities and shear

rates in the two fluids are then

vφ(z) =
ω

α

ρα(z + δ)

(ρα + δ)
v′φ(z) =

ω

α

ηραz

η′(ρα + δ)

Sφz =
ω

α

ρα

(ρα + δ)
S ′φz =

ω

α

ηρα

η′(ρα + δ)
(5.4)

Where we see that, unfortunately, shear rate is no longer radially independent.

Looking at the velocity of the upper fluid, we see that vφ(−δ) = 0, so δ is the position of

an imaginary surface some distance from the real surface at z = 0 where the velocity of the

upper fluid would be zero. This distance is referred to as the slip length, and is an alternative
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Figure 13: Graphical Explanation of Drag Reduction in the Cassie-Baxter State. This

shows that the extrapolated velocity of the water is non-zero at the plate when an air layer

is providing lubrication, so the water appears to be slipping. The no slip condition appears

to apply a distance δ inside the material.

way to quantify drag reduction. If η′ < η, then δ > 0 and the velocity of the upper fluid is

higher than in the single fluid case. The velocity of the primary fluid extrapolated to the

interface with the plate now has non-zero velocity, and so can be said to be slipping, hence

the name.

Integrating as in Eq. 5.3, the total torque on the plate in laminar flow is now

τ = 2πηω

[
Rα(6δ2 − 3Rαδ + 2α2R2)

6α4
+
δ3

α4
ln

(
δ

Rα + δ

)]
(5.5)

Which is significantly more complicated than the single fluid case. It is smaller than the

single fluid case so long as η′ < η, showing that adding a second fluid with lower viscosity

does reduce the torque. The torque no longer displays a simple proportionality with shear

rate, making it harder to understand exactly what lower shear rate means in terms of torque

applied to the surface.
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The preceding still posits that we can treat the plate surface and interface between the

fluid as approximately flat. For our PAA spikes alone, this may be an acceptable approxi-

mation. However, once millimeter scale grooves of any significant depth d and angle from

the horizontal φ′ (using the notation from chapter 2) are added, this approximation will very

quickly break down, so we must consider a final case. The boundary condition at the cone

is still unchanged, vφ(zc) = ω zc
α

. The boundary condition at the lower plate for the fluid

that is in contact with it, v′φ(ζ) = 0, is now more complicated, as the lower surface is now

represented by a triangle function ζ(ρ, ρ0, d, φ
′) = −2d

π
sin−1[sin(π

d
tan(φ′)(ρ−ρ0))], where the

grooves are cut into the original surface and begin at some radius ρ0 (the surface is assumed

flat for ρ < ρ0). The intermediate fluid interaction conditions, vφ(zt(ζ)) = v′φ(zt(ζ)) and

η
∂vφ
∂z
|zt(ζ) = η′

∂v′φ
∂z
|zt(ζ), are still the same in form, but zt(ζ) is no longer a constant distance

from the z = 0 plane. The velocities in the two fluids are now

vφ(ρ, z) =
ωzc[H[z + ζ(ρ)] + [zt(ζ(ρ)) + ζ(ρ)](1−H)]

α[H[zc + ζ(ρ)] + [zt(ζ(ρ)) + ζ(ρ)](1−H)]

v′φ(ρ, z) =
ωzc[z + ζ(ρ)]

α[H[zc + ζ(ρ)] + [zt(ζ(ρ)) + ζ(ρ)](1−H)]

Which is dependent on the radial position and the shape of the fluid interface. We define

the common factor of [zt(ζ(ρ)) + ζ(ρ)]( 1
H
− 1) = δ̃(ζ(ρ)), the effective spatially varying slip

length. The velocities and shear rates in the two fluids are then

vφ(ρ, z) =
ω

α

ρα[z + ζ(ρ) + δ̃(ζ(ρ)]

[ρα + ζ(ρ) + δ̃(ζ(ρ))]
v′φ(z) =

ω

α

ηρα[z + ζ(ρ)]

η′[ρα + ζ(ρ) + δ̃(ζ(ρ))]

Sφz =
ω

α

ρα

[ρα + ζ(ρ) + δ̃(ζ(ρ))]
S ′φz =

ω

α

ηρα

η′[ρα + ζ(ρ) + δ̃(ζ(ρ))]
(5.6)

and so the equation for the torque is

τ =

∫
(~ρ× ~Tφz)dA =

2π∫
0

R∫
0

ρ|Tφz|ρdρdφ = 2πη

R∫
0

ρ

∣∣∣∣ωα ρα

[ρα + ζ(ρ) + δ̃(ζ(ρ))]

∣∣∣∣ ρdρ (5.7)

Without knowing the form of δ̃(ζ(ρ)), we cannot integrate this to obtain a torque relation

(given the form of ζ(ρ), it is likely non-analytic in any case). Therefore, we cannot state any

analytic relationship between shear rate and torque for these surfaces.
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Based on this, we can see that a simple relation between torque and shear rate is truly

achieved only in the case of a flat cone and a flat plate. This arrangement is commonly used

to the properties of unknown fluids [53], but is useful for us only in that it allows us a case

where we can very easily test any independent shear rate measurement we use.

5.1.2 Turbulent Flow

For turbulent flow, multiple terms in the shear rate tensor can be non-zero, and determin-

ing any of them requires further knowledge of the flow state. Additionally, any fluid-fluid

interface is not well defined due the specially random nature of turbulence; determining the

impact of the addition of large scale structure increases the complications even further. The-

oretical discussion in turbulence is difficult and we cannot directly relate torque and shear

rate in this regime.

5.2 PHOTON CORRELATION SPECTROSCOPY

In general CPR system usage, shear rate in fluids is measured using Eq. 5.3 and a smooth

cone and plate [52]. We explicitly aim to measure the shear rate in water relative to a surface

with unknown properties, where there may not be a simple relationship between torque and

shear rate (see for example Eq. 5.7). Therefore we must measure the shear rate directly from

the fluid, in a way that does not require that we know the exact form of the relationship

between shear rate and torque beforehand. We utilize PCS measurements to obtain this

information.

PCS measurements use laser light that is scattered from small particles that seed the

flow in our CPR [83]. The scattered light is collected and the interference between the

light scattered from pairs of particles results in the decay of the intensity autocorrelation

function. At higher shear rates there is a larger spread of particle velocities and thus a wider

spread of Doppler-shifted frequencies in the scattered light, which decreases the decay time

of the autocorrelation function. Unlike LDV, which similarly uses the light scattered from
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particles to measure velocity but uses a local oscillator (or multiple beams) for a heterodyne

measurement, PCS is a homodyne measurement; no additional signal is mixed in.

PCS measures the normalized intensity autocorrelation function G(τ) = 〈I(t)I(t+τ)〉
|〈I(t)〉|2 − 1,

where the angular brackets designate an average over time and I indicates the intensity of

light scattered from the particles. Scattering occurs in a volume containing N scattering

particles defined by the intersection of the input beam and the field of view of the detector,

which is a collimating lens feeding into a single mode optical fiber. If the input beam is a

collimated Gaussian laser beam, then the electric field incident on the jth particle is

~Eincident,j(t) = ~E0e
−i~k0·~rj(t)+iω0te−[~rj(t)·~a]2e−[~rj(t)·~b]2

= ~E0e
−i~kT0 ~rj(t)+iω0te−~rj(t)

TZ1~rj(t) (5.8)

where ~rj is the displacement from the center of the scattering volume to the jth particle, ~a

and ~b are the semi-major and semi-minor axes of the input beam (allowing for the possibility

of an elliptical beam), and ~k0 is the input beam wave vector along the axis of the input

beam (|~k0| = 2πn
λ

). We write these using tensor notation (tensors represented by calligraphic

symbols) to simplify and generalize the form of the equations, where all vector quantities

are column vectors:

~k0 =
2πn

λ


k01

k02

k03

 ~a =
â

wa
=


a1/wa

a2/wa

a3/wa

 ~b =
b̂

wb
=


b1/wb

b2/wb

b3/wb



Z1 = ~a~aT +~b~bT =


b21w

2
a+a21w

2
b

w2
aw

2
b

b1b2w2
a+a1a2w2

b

w2
aw

2
b

b1b3w2
a+a1a3w2

b

w2
aw

2
b

b1b2w2
a+a1a2w2

b

w2
aw

2
b

b22w
2
a+a22w

2
b

w2
aw

2
b

b2b3w2
a+a2a3w2

b

w2
aw

2
b

b1b3w2
a+a1a3w2

b

w2
aw

2
b

b2b3w2
a+a2a3w2

b

w2
aw

2
b

b23w
2
a+a23w

2
b

w2
aw

2
b


where wa and wb indicate the radius at which the field drops to 1

e
in that direction and the

numeric subscripts indicate projection. For a circular input beam, wa = wb = w0 and 2w0 is

the conventional intensity 1
e2

beam diameter commonly given by laser manufactures.

When light scatters from a particle illuminated by the input beam, the scattered electric

field is a spherical wave, and at center of the lens of our detector it can be written as

~Escattered,j(t) = ~Eincident,j(t)
e−iκj |

~R−~rj(t)|+iωsjt

|~R− ~rj(t)|
≈ ~Eincident,j(t)

e−i~κj ·
~R

R
ei~κj ·~rj(t)eiωsjt (5.9)
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where ~R is the displacement from the center of the scattering volume to the center of the

detector along the optical axis of the detector, ωsj is the frequency of the light scattered off

the jth particle and ~κj is the scattering vector from the jth particle (|~κj| = 2πn
λ

; n is the fluid

index of refraction and λ is the laser wavelength). Looking at the equations, we see that ~κj

is parallel to ~R− ~rj(t), so κj|~R− ~rj(t)| = ~κj · (~R− ~rj(t)) = ~κj · ~R− ~κj · ~rj(t). We have also

assumed ~R� ~rj(t) in the denominator of Eq. 5.9.

Allowing for the possibility of an elliptical detector, the lens-fiber detector system has

effective major and minor axes ~c and ~d respectively:

~c =
ĉ

wc
=


c1/wc

c2/wc

c3/wc

 ~d =
d̂

wd
=


d1/wd

d2/wd

d3/wd


where wc and wd indicate the radius at which the electric field of a beam emitted from the

fiber through the lens drops to 1
e

in that direction. Only a fraction of the light scattered

off each particle is coupled in the single mode fiber by the lens of the detector. Thus the

field in the center of the fiber is ~Ej(t) ∝
√
ηj(t) ~Escattered,j(t), where ηj(t) is the coupling

efficiency, the fraction of the power transferred to the detector by the light scattered from

the jth particle [84].

In order to determine the coupling efficiency ηj(t) , we rewrite Eq. 5.9 for any observation

point.

~Escattered,j(~h, t) = ~Eincident,j(t)
e−iK|

~h+~g(t)|

|~h+ ~g(t)|
(5.10)

where K is the magnitude of the scattering vector parallel to ~h + ~g(t) (| ~K| = 2πn
λ

), ~g(t) =

~R−~rj(t) is the displacement from the particle to the center of the collimating lens, and ~h is

the vector to the observation point from the center of the lens. We neglect the phase factor

eiωst as it has no spatial dependence. Although the vector ~K changes direction as a function

of ~h, the magnitude is constant.

The field in a plane parallel to the plane of the lens may be represented by the collimated

Gaussian TEM00 mode

Ef (~h) = Efie
−(~h·~c)2e−(~h·~d)2 (5.11)

where Efi is the field magnitude.

42



The coupling efficiency is given by the overlap integral

ηj(t) =

∣∣∣∣∫
A

Escattered,j(~h, t)E
∗
f (
~h)dA

∣∣∣∣2∣∣∣∣∫
A

E2
scattered,j(

~h, t)dA

∣∣∣∣ ∣∣∣∣∫
A

E2
f (
~h)dA

∣∣∣∣ (5.12)

which indicates the ratio of power coupling between the modes through a surface A to the

total power in each mode [84]. Because G(τ) depends on the ratio of intensities, in all cases

the constant normalization terms in the denominator are unimportant.

Turning to the coupling term, for the plane containing the lens we have

ηj(t) ∝

∣∣∣∣∣∣
∫
A

Escattered,j(~h, t)E
∗
f (
~h)dA

∣∣∣∣∣∣
2

≈

∣∣∣∣∣∣
∫
A

e−iK|
~h+~g(t)|

|~h+ ~g(t)|
e−(~h·~c)2e−(~h·~d)2dA

∣∣∣∣∣∣
2

(5.13)

which is non-analytic. However, since the integral is over this infinite plane, the integral

must be the same on any parallel surface (so long as the reversed detector beam would

still be approximately collimated when it passes through that surface), and we are free to

choose the most convenient one. Thus we evaluate that integral on the surface containing

the scattering particle, where Escattered,j(~h, t) = Eincident,j(t)δ(~h− ~g(t)), which gives

ηj(t) ∝
∣∣∣e−(−~g(t)·~c)2e−(−~g(t)·~d)2

∣∣∣2 (5.14)

We can also approximately evaluate the integral on the plane containing the lens. Looking

at the spherical wave, |~h + ~g(t)| =

√
h2 + g(t)2 + 2~h · ~g(t) ≈ g(t) + h2

2g(t)
+

~h·~g(t)
g(t)

, where we

have Taylor expanded to 1st order with g(t) > h; we cannot a priori say that h2/2 �
~h · ~g(t) (as ~g(t) and ~h are nearly perpendicular). If we retain both terms in this expansion,

Escattered,j(~h, t) ≈ Eincident,j(t)
e
−iK

(
g(t)+ h2

2g(t)
+
~h·~g(t)
g(t)

)
g(t)

, so

ηj(t) ∝
∣∣∣∣e−iKg(t)g(t)

∫
e
−iK

(
h2

2g(t)
+
~h·~g(t)
g(t)

)
e−(~h·~c)2e−(~h·~d)2dA

∣∣∣∣2

=

∣∣∣∣∣∣e
−iKg(t)

g(t)

1√
( 2
w2
c
− i K

g(t)
)( 2
w2
d
− i K

g(t)
)
e
− K2(−~g(t)·~c)2w4

c
4g(t)2−2ig(t)Kw2

c e
− K2(−~g(t)·~d)2w4

d
4g(t)2−2ig(t)Kw2

d

∣∣∣∣∣∣
2

(5.15)
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If we do not retain h2/2, then we have performed the plane wave approximation and

Escattered,j(~h, t) ≈ Eincident,j(t)
e
−iK

(
g(t)+

~h·~g(t)
g(t)

)
g(t)

, which gives

ηj(t) ∝
∣∣∣∣e−iKg(t)g(t)

∫
e−iK

~h·~g(t)
g(t) e−(~h·~c)2e−(~h·~d)2dA

∣∣∣∣2
=

∣∣∣∣e−iKg(t)g(t)
πwcwde

− K2

4g(t)2
[(−~g(t)·~c)2w4

c+(−~g(t)·~d)2w4
d]

∣∣∣∣2 (5.16)

Figure 14: Comparison of the coupling efficiency in water at g = 200 mm and λ = 633 nm, as

calculated numerically on the plane of the lens, analytically evaluated on the plane containing

the particle, and approximately integrated on the plane of the lens. We also show the result

of evaluating with a plane wave approximation (neglecting h2/2) to demonstrate that this is

an overapproximation.

A comparison of Eq. 5.14, Eq. 5.15 and the numerical integral of Eq. 5.13 shows excellent

agreement when g is small compared to Kwc and Kwd, which is precisely the limit where
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diffraction effects are not large. By contrast, Eq 5.16 is very different, showing that the plane

wave approximation is a poor choice in this case (See Fig. 14).

Finally, using the exact solution (Eq. 5.14), remembering that ~g(t) = ~R − ~rj(t), and

noticing that ~R ⊥ ~c and ~R ⊥ ~d by definition, we see that

ηj(t) ∝
∣∣∣e−(−[~R−~rj(t)]·~c)2e−(−[~R−~rj(t)]·~d)2

∣∣∣2 =
∣∣∣e−(~rj(t)·~c)2e−(~rj(t)·~d)2

∣∣∣2 = |e−~rTj (t)Z2~rj(t)|2 (5.17)

where

Z2 = ~c~cT + ~d~dT =


d21w

2
c+c21w

2
d

w2
cw

2
d

d1d2w2
c+c1c2w2

d

w2
cw

2
d

d1d3w2
c+c1c3w2

d

w2
cw

2
d

d1d2w2
c+c1c2w2

d

w2
cw

2
d

d22w
2
c+c22w

2
d

w2
cw

2
d

d2d3w2
c+c2c3w2

d

w2
cw

2
d

d1d3w2
c+c1c3w2

d

w2
cw

2
d

d2d3w2
c+c2c3w2

d

w2
cw

2
d

d23w
2
c+c23w

2
d

w2
cw

2
d


Then, the electric field in center of the fiber from a single scattering particle is

~Ej(t) ∝
e−i~κ

T
j
~R

R
~Eincident,j(t)e

i~κTj ~rj(t)+iωsjte−~r
T
j (t)Z2~rj(t) (5.18)

Combining Eq. 5.18 and Eq. 5.8, we find that the detected field from a single scattering

particle is

~Ej(t) = ~EDe
−i~kTj ~rj(t)+iω′jte−~r

T
j (t)Z~rj(t) (5.19)

where ω′j = ω0 +ωsj is the Doppler-shifted frequency of the light scattered off the jth particle,

~kj = ~k0 − ~κj is the net scattering vector (|~kj| = 4πn
λ

sin(θj/2); θj is the scattering angle for

the jth particle), Z = Z1 + Z2, and ~ED ∝ ~E0
e
−i~κTj

~R

R
is the magnitude of the field, which is

constant. Because of the form of G(τ), the value of ~ED does not matter.

We assume that the particles are small enough that the velocity of each particle is the

same as the velocity of the fluid at that location, that the fluid velocity is time-independent

during the measurement, and that the beam is sufficiently small that the velocity of the fluid

can be described by a first order expansion about the center of the beam. Then the position

of the particles at some later time t+ τ can be written as

~rj(t+ τ) = ~rj(t) + ~vτ + S~rj(t)τ + ~rdif,j(τ) (5.20)
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where ~v is the average velocity of the fluid, ~rdif,j(τ) is additional displacement due to diffusion

in the time τ between t and t+ τ , and the shear rate tensor is

S =
∂vα
∂rβ

=


∂v1
∂r1

∂v1
∂r2

∂v1
∂r3

∂v2
∂r1

∂v2
∂r2

∂v2
∂r3

∂v3
∂r1

∂v3
∂r2

∂v3
∂r3



Then at a time t+ τ Eq. 5.19 becomes

~Ej(t+ τ) = ~EDe
−i~kTj [~rj(t)+~vτ+S~rj(t)τ+~rdif,j(τ)]+iω′j(t+τ)e−[~rj(t)+~vτ ]TZ[~rj(t)+~vτ ]

= ~EDe
−i~kTj ~vτe−~v

TZ~vτ2eiω
′
j(t+τ)e−i

~kTj ~rdif,j(τ)e−i
~kTj [~rj(t)+S~rj(t)τ ]e−~r

T
j (t)Z~rj(t)e−2~vTZ~rj(t)τ (5.21)

Returning to the definition of G(τ), we have

G(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

− 1 =

∑
ijkl

〈
Ei(t)E

∗
j (t)Ek(t+ τ)E∗l (t+ τ)

〉
∣∣∣∣∑
mn

〈Em(t)E∗n(t)〉
∣∣∣∣2 − 1 (5.22)

Terms relating more than two particles do not survive averaging over time if the particle

distribution is random and the particles are spread over a volume larger than the wavelength

of light used in all dimensions [85]. Applying this condition, only terms with pairs of particles

can survive in the numerator. We also note that the expectation values of the different sums

are independent. Therefore,

G(τ) =

∑
ik

〈Ei(t)E∗i (t)Ek(t+ τ)E∗k(t+ τ)〉+
∑
ik

〈Ei(t)E∗k(t)Ek(t+ τ)E∗i (t+ τ)〉∣∣∣∣∑
mn

〈Em(t)E∗n(t)〉
∣∣∣∣2 − 1

=

∣∣∣∣∣∑j 〈Ej(t)E∗j (t)〉
∣∣∣∣∣
2

+

∣∣∣∣∣∑j 〈Ej(t)E∗j (t+ τ)
〉∣∣∣∣∣

2

∣∣∣∣∑
mn

〈Em(t)E∗n(t)〉
∣∣∣∣2 − 1 (5.23)
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For the denominator,

|〈I(t)〉|2 =

∣∣∣∣∣∑
mn

〈Em(t)E∗n(t)〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
m 6=n

〈Em(t)E∗n(t)〉

∣∣∣∣∣
2

+

∣∣∣∣∣∑
j

〈Ej(t)E∗j (t)〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
j

〈Ej(t)E∗j (t)〉

∣∣∣∣∣
2

=

∣∣∣∣∣E2
D

∑
j

〈e−2~rTj (t)Z~rj(t)〉

∣∣∣∣∣
2

=

∣∣∣∣∣∣E2
DN

∞∫
−∞

e−2~rT (t)Z~r(t)dnr(t)

∣∣∣∣∣∣
2

=

∣∣∣∣E2
DN

√
πn

det(2Z)

∣∣∣∣2 = E4
DN

2 πn

det(2Z)
(5.24)

where each of the N expectation values is identical and the integral is n-Dimensional for

generality.1

The first term in the numerator of Eq. 5.23 is identical to Eq. 5.24. For particles inside

the scattering volume, there will be very little variation in the scattering vectors, so we can

let ~kj = ~k0 − ~κj ≈ ~k0 − ~κ = ~k, where ~k is the average total scattering vector (~κ is the

average scattered wave vector which is along the axis of the detector) and ω′j ≈ ω′, where ω′

is the average total phase shift. We see that each term in the sums is identical in form and

integrated over all space. We also note that displacement due to diffusion is independent of

the particle position, and so is integrated separately. Therefore

∣∣∣∣∣∑
j

〈Ej(t)E∗j (t+ τ)〉

∣∣∣∣∣
2

=

|E2
D

∑
j

〈ei~kT~vτe−~vTZ~vτ2e−iω′τei~kT~rdif,j(τ)ei
~kTS~rj(t)τe−2~rTj (t)Z~rj(t)e−2~vTZ~rj(t)τ 〉|2 =

E4
De
−2~vTZ~vτ2×∣∣∣∣∣∣
∑
j

∞∫
−∞

P (~rdif,j(τ))ei
~kT~rdif,j(τ)dnrdif,j(τ)

∞∫
−∞

ei
~kTS~rj(t)τe−2~rTj (t)Z~rj(t)e−2~vTZ~rj(t)τdnrj(t)

∣∣∣∣∣∣
2

(5.25)

where P (~rdif(τ)) is the n-D probability distribution of the displacement due to diffusion. The

integrals are evaluated over all possible particle positions and diffusion displacements.

1
∫∞
−∞ e−x

TAx dnx =
√

(π)n

detA . This can be verified by applying the unitary transform a†a = 1, where this

diagonalizes A, and then performing the integral in eigenspace. Such a transformation does not change the
determinant.
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For the integral over particle positions in Eq. 5.25, we have2

∞∫
−∞

ei
~kTS~rj(t)τe−2~rTj (t)Z~rj(t)e−2~vTZ~rj(t)τdnrj(t) =

√
πn

det(2Z)
e−

1
8
~kTS(2Z)−1ST~kτ2e−

1
2
i~kTS~vτ2e

1
2
~vTZ~vτ2 (5.26)

The n-D probability density for diffusion is P (~r(τ)) = 1√
4πDτ

n e−
~r2

4Dτ , where D = kBT
3πηd

is

the diffusion constant; kB is Boltzmann’s constant, T is the temperature of the liquid, d is the

diameter of the scattering particles, and η here is the dynamic viscosity of the fluid [86, 50].

So for the integral over the diffusion displacements in Eq. 5.25 we have

∞∫
−∞

P (~rdifj(τ))ei
~kT~rdif,j(τ)dnrdif,j(τ) =

1√
4πDτ

n

∞∫
−∞

ei
~k·~rdif,j(τ)e−

~rdif,j(τ)
2

4Dτ dnrdif,j(τ) = e−Dk
2τ (5.27)

Putting these into Eq. 5.25, we have (noting that the N terms in the summation are

identical)∣∣∣∣∣∑
j

〈Ej(t)E∗j (t+ τ)〉

∣∣∣∣∣
2

= E4
DN

2 πn

det(2Z)
e−2Dk2τe−~v

TZ~vτ2e−
1
4
~kTSZ−1ST~kτ2 (5.28)

Therefore,

G(τ) =
〈I(t)I(t+ τ)〉
|〈I(t)〉|2

− 1 = e−2Dk2τe−~v
TZ~vτ2e−

1
4
~kTSZ−1ST~kτ2 (5.29)

The average velocity is important only at very high velocities (~vTZ~v � 〈Sαβ〉2) [49],

where particles will be pass into and out of the beam during the course of a measurement.

We can write the diffusion factor as e−qτ , where q = 2Dk2 in the case of no shear; in the

presence of shear, q also includes effects such as Taylor Diffusion [87]. This allows us to easily

account for the effect of diffusion while fitting our data without worrying about the precise

value of q under given conditions. This effective diffusion enhancement is visible in all data,

2
∫∞
−∞ e−~x

TA~x+ ~BT ~xdnx =
√

(π)n

detAe
1
4
~BTA−1 ~B . This can be verified by applying the unitary transform

a†a = 1, where this diagonalizes A, and then performing the integral in eigenspace. Such a transformation
does not change the determinant.
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explaining the initial non-zero slope of G(τ), but does not effect the shear measurement. A

constant factor G0 is included to account for detection efficiency considerations, minimum

measurement time and noise; its exact value is unimportant. The value of G0 is obtained

during fitting but is not relevant for determining the shear rate. Therefore we may write

Eq. 5.29 as

G(τ) = G0e
−qτe−

1
4
~kTSZ−1ST~kτ2 (5.30)

which can be easily fit once the tensors in the exponent are evaluated for the geometry

at hand. In contrast to previous 3-D theoretical treatment [51], Eq. 5.30 can be used to

obtain quantitatively exact shear rate measurements; the unknown factors (q and G0) are

unimportant and all other factors in the equation can be determined independently.

This treatment recovers the previously presented results for 2-D flow [49], with corrections

for including the coupling effects. Note that the definition of w used in [49] is in terms of

intensity, rather than electric field. In Cartesian coordinates with the water constrained to

the x-y plane (~v = vxx̂ + vyŷ + 0ẑ), circular input beam with size w0 for an input laser

perpendicular to the water plane and detector with size ws at some angle from the input

beam, and assuming laminar flow (S = Sxy = ∂vx
∂ry

is the only non-zero component), this is

G(τ) = G0e
−qτe

−
k2xS

2
xyw

2
0w

2
s

4(w2
0+w

2
s)

τ2

(5.31)

To account for this correction, all shear rates reported in [49] should be increased by 10%

(with w0 = 141 µm and ws = 386 µm [88]).

Note that PCS measurement is not sensitive to components of S involving the velocity

perpendicular to the plane containing ~k, ~k0 and ~κ. For example in a CPR, we can eliminate

terms involving vz in our measurement by constraining ~k to be in a ρ, φ plane.

5.2.1 PCS Measurements in a Cone & Plate Rheometer

In the laminar limit detailed in Section 5.1, Eq. 5.30 reduces to

G(τ) = G0e
−qτe

−
k2φS

2
φzw

2
bw

2
d

4(w2
b
+w2

d
)
τ2

(5.32)
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Where kφ = ~k · φ̂. Note that G(τ) in this case depends only on the size of the beam and the

detector in the ẑ direction. For laminar flow we can simply fit Eq. 5.32 to find
k2φS

2
φzw

2
bw

2
d

4(w2
b+w2

d)
,

which has no unknown parameters except Sφz. In the event we leave laminar flow, other

additive terms in the exponent may appear.

Care must be taken to obtain the proper projection of ~k. Neither the incident beam nor

scattered beam will generally be along either the ρ̂ or φ̂ axes, and so in order to evaluate

~kTSZ−1ST~k, we must properly determine kφ. With ~k assumed to be directed in a ρ, φ plane,

this gives, in terms of either the component vectors or the total vector,

~k0 − ~κ =
2πn

λ
(sin(ψ)ρ̂+ cos(ψ)φ̂)− 2πn

λ
(sin(ψ + θ)ρ̂+ cos(ψ + θ)φ̂)

~k =
4πn

λ
sin

(
θ

2

)(
sin

(
π

2
− θ

2
− ψ

)
ρ̂+ cos

(
π

2
− θ

2
− ψ

)
φ̂

)
where ψ = tan−1

(
R′

R

)
is the angle the φ̂ direction makes with the incoming beam at the

observation point, R being the beam perihelion distance relative to the cone center and R′

being the distance past this point of the center of the scattering volume. Then

kφ = (~k0 − ~κ) · φ̂ =
2πn

λ
cos(ψ)− 2πn

λ
cos(ψ + θ) (5.33)

kφ = ~k · φ̂ =
4πn

λ
sin

(
θ

2

)
cos

(
π

2
− θ

2
− ψ

)
(5.34)

So we must keep track of R and R′ in addition to θ if we are to properly interpret our results.

These factors are under the control of the experimenter.
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6.0 DESIGN & CONSTRUCTION OF THE APPARATUS
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While the static measurements performed in Chapter 4 provide some indication the

behavior of the various wetting states, they do not tell the whole story. In those tests, we

examined the behavior of single droplets, which may not be a good indicator of how these

surfaces behave with regard to bulk water or full immersion. Droplet behavior involves the

removal of water, and thus is inherently measuring wetting and de-wetting. Therefore the

static tests are useful for applications where water/surface contact is transient, such as for

repelling rain or spills. The behavior of surfaces may be different when water is instead

continuously flowing along them.

In Chapter 5, we discussed torque and liquid shear in the Cone & Plate Rheometer

(CPR), a standard diagnostic device for examining drag in bulk liquids. Commercially

produced CPR systems are primarily concerned with measuring shear, strain, and torque of

uncharacterized high viscosity fluids, rather than the reaction of fluids to different surfaces.

As seen in Eq. 5.3, shear rate is simply related to torque in laminar flow with a smooth

cone and smooth plate. This relation is what is used to compute shear rate from torque in

commercial systems. Because we are measuring interfaces with unknown properties, and for

which we do not have a simple relationship between torque and shear rate, we must utilize

an alternative method of measuring shear rate. We utilize Photon Correlation Spectroscopy

(PCS).

Commercial systems also depend on the viscosity of the sample to hold the liquid in the

gap during high-speed measurements; water is relatively low viscosity and will be flung out

of the gap at comparatively low speeds, especially if one of the surfaces is hydrophobic. We

also cannot readily see through the uneven surface of water held in place by surface tension.

It would be advantageous to hold the water with a transparent tank, allowing us to see into

the gap and to hold the water in place at high speeds.

To enable measurements of torque and shear rate with unknown surfaces from low to

high speeds, we constructed a our own custom CPR system.
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6.1 CONE & PLATE RHEOMETER AND PCS MEASUREMENT SYSTEM

Our custom CPR/PCS system was designed to allow for measurement of both the torque,

via a magnetic and optical readout, and the shear rate, via PCS measurements. The physical

requirements on our design were:

• It must contain the water in a closed, transparent tank. Then the water cannot be

ejected from the gap when surface tension is no longer sufficient to hold it in position,

any irregularities in the gap are readily visible (bubbles, etc.), and we can perform for

PCS measurements, which require a clear optical path through the gap.

• The torque sensing must be able to register torque in the µNm range.

• The gap must be able to be set with µm accuracy with reasonable uncertainty.

• We must be able to control and readout the relative angle and position of the laser beam

and optical detector for PCS measurements (located outside the tank), and adjust their

relative positions.

Note that we will avoid taking measurements close to the edge of the cone in order to

minimize errors, as edge effects may differ from theory and previous work since we are in

full immersion.

6.1.1 Cone Alignment

As is standard practice, a small truncation is present at the tip of our cone, so as to prevent

it from rubbing on the lower surface when spun. This truncation is kept small to minimize

the irregularity it creates [53]. Our cone is constructed to match the parameters of com-

mon commercially available rheometer cones (which were used in some initial testing of our

surfaces by our collaborators at Oak Ridge National Laboratory, see Chapter 7.1.1), with a

radius of 30 mm and a vertical truncation of 51 µm (0.002 in) [89, 31]. We use cones with

α = 2◦ and α = 6◦ slopes from horizontal. The cone is rough machined on a conventional

lathe and then diamond turned to the exact dimensions needed using custom chucks.

We drive the cone with a stepper motor. In a CPR, it is assumed that the cone is

positioned such that if the truncation were not present, the tip of the cone with be exactly
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at the lower surface [52]. In order to perform this alignment, the cone and the motor are

mounted on a movable X-shaped crossbar. This crossbar is connected at each of the 4 ends

to 3/4-28 threaded rods with sleeve bearings. This allows the user to move the stage up

and down by very fine increments using nuts underneath the bearings. A second pair of

nuts pressing on wavesprings from above forms a compression pair around each adjustment

point, ensuring that the crossbar cannot vibrate and preventing the sleeves from jamming

on a thread as the crossbar is moved, since the weight of the motor and crossbar is very low.

In order to measure the spacing, a circular ring is placed on the upper lip of the cone.

This ring is diamond turned such that it rests directly on the lip and the spacing from the

top surface of the ring to the plate will be a fixed number when the cone is at the designed

distance from the plate. The target spacing for the cone and measurement ring used is

1.74 mm; the exact value of this spacing is unimportant so long as it is known (it can be

checked by using a machining standard 0.002 in shim). There are several slots in this ring

through which a probe may be dropped to measure the top surface of the sample; we measure

the spacing by taking a reading from the top surface, then rotating the ring so the probe

will drop through a slot onto the lower surface. This is done as far out as possible on the

sample, and well away from the gap, since it slightly mars the sample surface. The ring is

solid and is captured by the cone when attached, since making the ring separate so it could

be removed would introduce uncertainty into how it was resting on the cone lip; it is raised

and secured to the cross plate while the experiment is in use.

A Linear Variable Differential Transformer (LVDT) is used to measure the distance

between the upper surface of the ring and the plate. The model selected has a linear range

of 2 mm, and is calibrated (using the Diamond Turning Machine’s nanometer precision

stages) to 1 V/mm (Omega LD320-2.5). By moving between the 4 gaps between the cross

plate arms, it is possible to align the cone position to within approximately 10 µm. This

alignment is performed using all 4 positions so the cone is no tilted relative to the plate.
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6.1.2 Torque Measurement

In high end commercial rheometers, torque measurement is performed using a magnetically

suspended drive spindle, by reading the added torque needed to achieve a given speed [89].

This drive spindle system is extremely complex. We instead utilize a simpler method, by

allowing the tank to rotate against a calibrated magnetic spring and reading the rotation

angle. Reading small torques requires negligible resistance from the sensing apparatus, while

simultaneously requiring that the motion of the apparatus be as nearly critically damped

as possible. Utilizing SPDT, magnets, and mineral oil, we were able to produce a suitable

system. We place our samples in a tank, and allow the entire tank and the water inside it to

rotate, because engineering a watertight pass through to allow the plate to move indepen-

dently would be difficult and would introduce drag and hysteresis from the seal.

6.1.2.1 Air Bearing The active air-bearing is an extremely low resistance system al-

lowing movement with minimal friction [90]. The two faces of the bearing are separated by

a continuously replenished air layer, so there is no solid-solid contact and minimal viscous

resistance from the air. They require extremely smooth surfaces to function well, which

are not easily produced in conventional machining; such surfaces are easily achievable with

SPDT [68]. By placing our tank on such a bearing, it will be free to rotate with negligible

resistance from the bearing.

Support is needed in both the vertical and the rotational directions in order to allow free

rotational motion. Rather than use 2 separate bearings to provide support in each direction

individually, a conical bearing design was selected. This allowed the entire system to be

supported by a single bearing, making the construction of the system much simpler.

Construction parameters for our cone are dictated by factors such as desired weight

capacity and physical size, and available pressurized air. In order to relate these factors, we

must look at the gas flow in the bearing. Such flow is well understood in general [90]; we

present here the specific case for our conical bearing. The notation used is standard for the

topic of bearing engineering and does match that used elsewhere in this thesis; please refer

to Fig.16.
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Figure 16: Cross-Section of the air bearing, cut in half at the rotation axis. We show only 1

side as the bearing is symmetrical. D is the total height of the bearing, reo is the radius of

the top of the bearing, rei is the radius of bottom of the bearing, h is the height of the gap

separating the bearing from the stator, ζ is the angle of the bearing from the vertical, Ps

is the pressure of the air source and rd and Pd are the radius and pressure at the dispenser

(the place where air enters the bearing).

The following conditions are assumed inside the bearing:

• Frictional forces due to viscous shearing of the gas dominate

• Gas inside the bearing is in laminar flow

• The gas obeys no-slip boundary conditions at the walls
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• Pressure on the walls is uniform

The gap between the rotor and the stator can be treated with a small slot of width a

and height h going from the bottom to the top of the bearing, where we will construct our

total bearing out of a sum these slots around the perimeter of the bearing. Given these

conditions, the Navier-Stokes Equation in Cartesian coordinates becomes

∂2v

∂y2
=

1

µ

∂P

∂x
(6.1)

where v is the velocity along the bearing (x̂ direction) at a point, P is the pressure at that

point, and µ is the dynamic viscosity of the gas. x̂ the direction along the bearing gap (with

the origin at the bottom of the bearing), while ŷ is the direction across the gap.

Integrating Eq. 6.1 twice with respect to y, we find that

v =
1

µ

dP

dx

y2

2
+ Ay +B (6.2)

where A and B are integration constants. From the no-slip boundary condition, we have

v(y = 0) = 0, so B = 0, and v(y − h) = 0, so A = − 1
2µ

dP
dx
h. Therefore

v =
y(y − h)

2µ

dP

dx
(6.3)

Which is parabolic in y.

If we now look at the mass flow rate m = ρ
∫
A
~v ·d ~A down the slot, where ρ is the density

of the gas, we find

m = ρa

∫ h

0

vdy =
ρa

2µ

dP

dx

∫ h

0

y(y − h)dy = −h
3ρa

12µ

dP

dx
(6.4)

where a is the perpendicular size of the region (ẑ direction). Because we are working with

a conical bearing, a = rΦ, where r is the radius of the bearing at that point and Φ is the

angular extent of the slice of the bearing we are examining. The radius at the bottom of the

bearing is rei, and that at the top is reo. We further see that x = (r − rei)/ sin(ζ), where ζ

is the angle of the bearing from vertical. Substituting, we see that

m = −h
3ρrΦ sin ζ

12µ

dP

dr
(6.5)
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Because we are in laminar flow, we may treat this as an ideal gas, so PV = nRT , where

V is the volume of the gas, n is the number of moles of gas, R is the molar gas constant, and

T is the absolute temperature. We can rewrite this in molar form as PM̃ = ρRT , where M̃

is the molar mass. Then

m = −h
3M̃rΦ sin ζ

12µRT
P
dP

dr
(6.6)

Solving for PdP , we have

PdP = − 12µRTm

h3M̃Φ sin ζ

dr

r
(6.7)

We must now pause before integrating this equation. We insert gas at some dispenser

pressure Pd, at a location midway up the bearing. We notate this location with the radius

of the bearing at that point rd or the distance up the slot xd, where rd = rei + xd sin(ζ).

From this location, the gas will flow away from the dispenser in both directions, decreasing

in pressure as it moves through the bearing gap. When flowing in the negative x̂ direction,

that mass flow rate will be negative, however it is more convenient to consider the magnitude

of the flow rate and handle the sign externally. Performing the integration, we find that

P 2 = P 2
d ∓

24µRTm±

h3M̃Φ sin ζ
Loge

r

rd
(6.8)

Where the upper sign indicates flow in the positive x̂ direction and the lower sign indicates

flow in the negative directions. We notate the magnitude of the mass flow rate m± to

indicate that it is not necessarily the same in both directions. We note here that because

of the nature of natural logarithms, this is a decreasing function in both directions. If we

now go to the ends of the bearing, where Pe is the external pressure outside the bearing (in

general atmospheric pressure), and solve for the mass flow rates in both directions (in terms

of P 2
d − P 2

e , which is positive), we find

m+ =
(P 2

d − P 2
e )h3M̃Φ sin ζ

24µRTLoge
reo
rd

m− = −(P 2
d − P 2

e )h3M̃Φ sin ζ

24µRTLoge
rei
rd

(6.9)

If the mass flow rate, and thus the pressure gradient, are different depending on the direction

of flow, the bearing will not be stable. Therefore we set the mass flow rates to be equal in

both directions; then −Loge reird = Loge
reo
rd

, or more simply rd =
√
reireo. This fixes the
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location of the dispensers relative to the other dimensions. Then the total flow rate M

would be

M =
(P 2

d − P 2
e )h3M̃Φ sin ζ

24µRT

Loge
rei
reo

Loge
rd
rei
Loge

rei
rd

(6.10)

where M is the total mass flow rate into the bearing through a single orifice. Remembering

that m+ = m− = M/2, and removing the variable having to do with the opening we are not

dealing with,

P 2 = P 2
d ∓ (P 2

d − P 2
e )Loge

r

rd

Loge
reo
rd

for r ≥ rd

Loge
rei
rd

for r < rd

(6.11)

where again the upper case is for positive flow and the lower is for negative flow. Note that

this derivation is for a region with a single dispenser, so rather than letting Φ go to 2π, there

must be N regions of equal size that are vector-summed to get the total force, where N is

the number of orifices. This is the pressure applied perpendicular to the bearing surface.

It should be noted that the dispensers are generally very small orifices in order to decrease

M . Thus Pd is very slightly smaller than the pressure provided by a compressor or other

source, Ps. Since the orifice is circular, we use the Navier-Stokes Equation in cylindrical

coordinates 1
r
∂
∂r

(r ∂v
∂r

) = 1
µ
∂P
∂z

, where r is the radial directional with the original in center of

the orifice. The solution with no slip conditions yields v = − 1
4µ

∂P
∂z

(R′2− r2), where R′ is the

radius of the orifice. Then mO = M =
∫ R′

0
v2πrdr = −ρπR′4

8µ
∂P
∂z

= −πR′4M̃
8µRT

P ∂P
∂z

, where we

have again used the ideal gas law and we note that the flow through the orifice must be the

same as the total flow in the bearing. Then the pressure difference from going through the

orifice is

P 2
d = P 2

s −
16µMRT

πR′4M̃
(l + h) (6.12)

Where l is depth of the orifice. We include the cylinder inside the bearing directly above the

orifice because as the bearing spacing shrinks the constriction at the end of the orifice will

increase.

We can now simply calculate the net force applied to the rotor in the vertical direction,

Fw = N cos ζ
∫
~P · d ~A = NΦ cos ζ

sin ζ

∫
Prdr, where the integral must be done numerically. We

note that the net force in the horizontal direction is zero (because oppositely located dis-

pensers produce oppositely directed horizontal force), but a horizontal stiffness can be found
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by considering the derivative from a single outlet with respect to h.

For our bearing, we selected reo = 3 in, D = 2 in, N = 6 dispensers, and ζ = 40◦. This

means that the air inputs needed to be 0.8 in from the base of the bearing, and with an air

gap of h = 1µm the bearing can support a total mass (including the mass of the rotor) of

approximately 5 kg. This load capacity is more than sufficient, and was selected to allow for

a wide safety margin and so there would be plenty of capacity for any future uses.

6.1.2.2 Magnetic Torque Readout If unrestrained, the air-bearing would turn freely

under any applied torque. While the speed at which it turns is a function of the applied

torque, this would be heavily effected by the flowing liquid inside the tank but outside the

gap, and would also be vulnerable to crashing. We instead provide a calibrated magnetic

spring, such that the bearing rotates to a fixed angle; that angle then allows us to calculate

the torque.

As any solid contact would introduce friction into the system, the most logical resistance

is a magnetic torque. A permanent NdFeB block magnet ( 1
16
× 1

16
× 3

16
in) is placed on a shaft

hanging from the bottom of the bearing (the shaft axis is on the bearing axis of rotation). A

pair of NdFeB ring magnets (11
4
OD× 3

4
ID× 1

8
in) in a Helmholtz configuration on the table

generate a stable magnetic field. This provides a simple magnetic spring from the dipole

torque ~τ = ~µ× ~B, or more simply |τ | = µB cos(θ) = β cos(θ), where µ is the dipole moment

of the central magnet and B is the field it is immersed in. We paramaterize this with β

since for real magnets the field produced by the rings will have some non-uniformity over the

expanse of the block magnet, and the dipole moment for an extended object is not simply

calculated. β must be found by calibrating the system anytime the ring spacing is changed.

The torque applied to the sample by the fluid is found by reading the angle at which the

bearing is at equilibrium under this magnetic spring.

It should be noted that this torque is a simple restoring force; the bearing will oscillate as

a driven underdamped harmonic oscillator about the equilibrium when the cone is rotating.

In order to easily read out the steady applied torque (as well as minimize the occurrence of

major oscillations which endanger the bearing), it is necessary to apply additional damping

so as to force decay to equilibrium. This is achieved by hanging a paddle off the shaft holding
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the magnet; this paddle is placed in an appropriate damping fluid which will ideally damp

transient motions, while leaving steady forces unaffected. This fluid must have a high enough

viscosity to bring us near critical damping, without appreciable additional drag or hysteresis.

Because avoiding additional drag and hysteresis was more important than rapid damping,

a damping fluid consisting of mineral oil (η ≈ 2.2cP ) with a damping time on the order

of minutes was experimentally chosen in preference to stronger but more hysterically prone

and/or non-Newtonian damping fluids (such as Sugar water, Mollasses, or Corn Syrup).

Therefore one must wait 3 minutes after any change in applied torque for equilibrium to be

reached before a reading is taken. Viscosity was measured by dropping a ball of radius rball

through a tube filled with the fluid; then viscosity is η =
2r2ball(ρball−ρfluid)g

9vterm
, where vterm is the

terminal velocity of the ball.

6.1.2.3 Moire Pattern A moire pattern is used to read the angle. The moire pattern

consists of a 50/50 clear/black sinusoidal pattern of lines, with a π
2

phase shift forming

a central clear line and a period of 0.245 mm. Our moire grid pattern is 2 in in diameter,

printed at high DPI on a transparency and then cut out and fixed to a diffuser in a rotational

optical mount. This pattern is reflected off of a mirror attached the shaft holding the bar

magnet, and the reflection is recorded with a CCD camera (Amscope MU300 - 1/2” Sensor,

2048x1536 Resolution, 3.2 µm square Pixels). Using the long direction of the sensor for

maximum range, this gives 6.55 mm of total readable displacement.

This image is vertically averaged, creating a 1-D array of pixel values. An fft of the data

is then performed, and this is compared to a simulation of the fft of the grid at each possible

position using chi-squared fitting to select the best match. Then displacement of the pattern

from center is accurately determined by checking what the displacement was for the chosen

simulation. Note that the simulations take a long time to be generated, but can be reused

so long as the grid and camera are not moved (if either is moved, the apparent period of the

grid in the image can change).

In order to translate the horizontal displacement into an angle, we trace the central ray.

Looking at Fig. 17, we see that π
4

= ε + θ and ε + φ = θ + π
4
− ψ + φ which tells us that

θ = ψ
2
. Examining the ray between the final lens and the CCD, we see that tan(ψ) = h

f
. So
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the angle of rotation is simply

θ =
tan−1(h/f)

2
(6.13)

Where f is the focal length of our imaging lenses and h is the distance of the bright from

center. In this way, the angle of rotation of the mirror can be determined to within 0.001◦,

relative to a chosen 0 point. This requires that the strength of the constraining magnetic

field (the spacing of the ring magnets) be such that at the maximum torque of interest the

central bright will still be visible on the CCD. Added range can be achieved by setting the

0 of the system with the central bright reflection at one end of the CCD and only applying

torque in one direction.

The torque system must be calibrated in order to determine β. Two simple methods are

available. In one, a string is wrapped around the hanging axle and a weight is hung from

the other end. The bearing will rotate until the torque from the magnetic field is equal to

the applied torque from the weight. The torque exerted on the axle is then τ = mgr, where

m is the mass of the weight, g is gravitational acceleration, and r is radius of the axle. The

calibrating equation is then

mgr = β sin(θ) ≈ βθ (6.14)

where we can in general use the small angle approximation due to the small size of the

angles involved. In order to more accurately obtain a value for β, we take this reading for

multiple masses and fit a line to sin(θ) = mgr/β + a0; using the slope serves to average

out measurement errors. This measurement requires running the string over small bar or a

pulley to transition from the horizontal to the vertical direction, which may induce a small

amount of frictional hysteresis, so careful selection of the string and bar/pulley are needed

to minimize this effect.

We can also obtain calibration by examining the free oscillation of the bearing in the

magnetic field. This must be done carefully to avoid accidentally damaging the bearing. In

order to use this method, the moment of inertia I of the entire moving assembly must be

known (we remove the damping vane, which is so light as to be negligible). Net torque on

the bearing is τ = Iα = β sin(θ) ≈ βθ, where α = θ̈ = d2θ
dt2

. We then have Iθ̈ = βθ, so
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Figure 17: Diagram of optics with ray tracing, and image of Moire Grid (grid will only print

accurately on a 1200 dpi or greater printer). Mirror is on the shaft hanging from the rotor.
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θ = A sin(ωt+ δ) +O, where ω2 = β/I, so

β = Iω2 (6.15)

By fitting the angle as a function of time, we can obtain ω and thus β. This method is

faster and easier to perform, and lacks the systematic issues of the other method, so once

we confirmed that both methods yielded the same calibration (to within error), we used this

second method exclusively.

6.1.3 PCS Measurements

The additional requirements on our CPR in order to perform PCS measurements were min-

imal. The only added requirements were that the sample be raised high enough inside the

tank that a laser could be passed through the rheometer gap in plane and that the cone

angle be high enough that, at the measurement point, the gap is large enough for the laser

beam to pass through with as little clipping as possible by either the cone or the plate. This

second point necessitated the use of a 6◦ cone for these measurements, the highest angle we

could reach without rendering the theory discussed in Chapter 5.1.1 invalid. Simple optical

stages and rods allowed us to achieve the needed degrees of freedom to control the laser

and detector positions. Our system was designed to allow for manual 3-D linear transla-

tion/tilt and horizontal rotation of the detector, as well as horizontal rotation, vertical tilt,

and vertical displacement of our laser source.

To measure the shear tensor, we direct a Gaussian laser beam from a HeNe laser (6 mW,

λ = 632.8 nm, beam diameter 2w = 0.81 mm) into the cylindrical glass tank and through

the cone-plate gap of our CPR. The tank is filled with water in which we have suspended a

low concentration of spheres of diameter d=0.4 µm, ultrasonically dispersed, as scattering

particles (they are small enough to follow the local velocity; the Stokes number is much less

than unity [91]). The concentration of particles is kept low to avoid multiple scattering.

With this incident intensity the photon counting rate is of the order of 750 kHz to 1.5 MHz

(when shielded from ambient light) at a scattering angle of 20.5◦. The measurement count

rate will increase if unshielded, but as this light will be uncorrelated the measurement of

shear is insensitive to ambient light levels.
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Figure 18: Overhead schematic view of a PCS measurement in a Cone & Plate Rheometer.
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Figure 19: Picture of the Dynamic Measurement system as currently configured.

We take measurements by orienting the beam and receiver in the horizontal plane, parallel

to the plate. The collimating lens (Thorlabs TC12FC-633) receives the scattered light, which

is coupled into the single-mode optical fiber (Thorlabs SM600), so that the direction of the

received light is well defined. The coupled light is transmitted to an avalanche photodiode

based single photon counting module (Excelitas SPCM-AQRH-14-FC). The SPCM signal is

fed into an ALV-5000 autocorrelation card that converts the intensity I(t) into an intensity

autocorrelation function G(τ). The effective sizes wc and wd of the detector can be found by

measuring the dimensions of a laser beam sent backward through the fiber and out through

the collimator.

Readout of the scattering angle and the location of the scattering volume was achieved

by running a beam back through the detector’s optical fiber. An image was taken from
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above using a Nikon D5000 equipped with a 30mm fixed focal length lens (to allow for

photographing at f1.8 for low light sensitivity); the camera was placed on a transparent

plastic plate on top of the four support rods. Finding the angle and positions required manual

analysis of the resulting image (see for example Fig. 33). Vertical alignment between the laser

and the detector simply involved maximizing the count rate for the scattered light. Setting

the height and tilt of the input beam so it passed through the gap parallel to the surface

and without clipping was done manually by operator’s best judgment (quantitative methods

such as maximizing the transmitted power tended to favor reflection), which introduces the

possibility of experimental error.

6.1.4 Design Flaws/Issues with the current system, and Future Improvements

The current iteration of the system has several issues which make it difficult to use, or which

could be improved upon in future refinements.

• The LVDT measurement points are currently between the crossbar limbs. This means

that measurements with the LVDT do not isolate the two rotation axes of the crossbar,

making adjustment slightly more difficult. Placing holes in the crossbar itself, so the

measurement locations are in line with the threaded rods, will make adjustment easier.

• The adjustment of the laser angle and position is difficult and time consuming. The stages

must be set to a position, a picture taken, and then the picture manually analyzed in

order to get the current locations; these action must be repeated until the desired position

is reached. This can take 5 min or longer per positioning attempt; the total alignment

process can sometimes require hours due to interaction with the curvature of the tank

making it hard to judge exactly how the beams will move with a given adjustment. A

more efficient means of adjustment is needed.

• The adjustment of the height of the laser in the gap and of the tilt of the laser so as to be

parallel to the sample surface are both performed by eye by the operator. This leads to

the possibility of experimental errors either from imperfect leveling or accidental clipping.

Adjusting this by maximizing the transmitted power was found to favor reflecting off the

cone rather than minimizing clipping.
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• Currently, the camera for taking the image of the lasers is not fixed, merely put on a

plate that is placed on top of the threaded rods. A fixed solution may improve the speed

of the alignment, and possibly allow for automation.

• There is a limited field of view from above due to the crossbar, the motor, and the

cone. Some scattering angles cannot be tested without rearranging both the laser and

the detector, as one or both beams are not visible from above. An alternative method of

measuring the intersection location and the scattering angle may increase efficiency.

• On samples which possess an air layer, bubbles can form during immersion or can transfer

to the surface from the cone or the alignment ring. This makes the air layer loading incon-

sistent, greatly increasing the systematic errors in both torque and PCS measurements.

While this is partly a property of these materials, developing methods for minimizing

this variability will increase repeatability.

• Bubbles attached to either the surface of the sample or the cone, passing through or

permanently present in the beam path, will disrupt PCS measurement by scattering the

beam. This can require disassembling and reassembling the apparatus to remove the

bubbles, or can make it impossible to take usable readings at some speeds if previously

fixed air bubbles become mobile due to increasing shear.

• Because the air bearing is constructed using screw-in orifices sealed with teflon tape, the

airflow is not completely uniform inside, leading to a very slight constant torque. This is

compensated for by the fact that torque measurements require zeroing, which includes

this slight offset, but an alternate method for constricting the airflow may achieve better

uniformity.

• The mineral oil used for damping oscillations was selected as the best out of the materials

that were tested. A fluid with more ideal damping characteristics may be found with

more exhaustive testing.

• The ALV-5000 is an older correlator system, and requires a Windows 2000 system to

run it as it uses the deprecated ISA slot. We used remote access from a newer computer

via VNC and graphical recognition via the Sikuli Python package in order to automate

the measurement process. A newer commercial correlator or a custom built solution will

allow for greater ease of use.
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• The ALV-5000 has several limits on functionality, including a minimum averaging time

of 2 s, which prevents the gathering of very short time data, and a maximum automated

repetition rate of 20 runs, which prevents gathering very large data sets without manually

restarting after 20 cycles and creating a time gap. A newer commercial correlator or a

custom built solution will mitigate these issues.

• On our grooved samples, it is desirable to scan horizontally over the surface when per-

forming PCS measurements, in order to spatially resolve the effects of the patterning (see

chapter 7.2). This capability is not included in the current PCS optics setup; the input

laser is fixed with regard to linear translations in the horizontal plane and all translation

and rotation stages are manually operated. Both the input laser and the detector stage

will need to be equipped with automated positioning stages to allow for these spatially

resolved measurements, and a method for reading the scattering angle and the location

in an automated fashion (accounting for tank curvature effects on the angles) will also

be needed.
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7.0 FLUID DRAG ON PATTERNED SURFACES
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Using our Cone & Plate Rheometer (CPR) system, we measure how drag is effected

by multiscale surfaces and changes in surface wetting state. Our samples have structure

on two length scales: microscopic spikes and micro to millimeter scale concentric grooves.

Our surfaces can also be switched between the Cassie-Baxter and the SLIPS/SuperSLIPS

(depending on sample geometry) state in the absence or presence of silicone oil. We explore

changes in drag behavior caused by varying the larger scale features (groove depth, groove

angle) and the interface type (Superhydrophobic, SLIPS/SuperSLIPS) of our samples. We

do not vary the characteristics of our microscopic spikes, as this has been explored before.

Drag reduction via surface modification has been studied on some Superhydrophobic

materials, but not in a consistent fashion; measurements have been taken in a wide variety

of fashions, including using strips glued to a couette cylinder [30], flowing water through a

channel made of Superhydrophobic material [35], and by placing a sample in a CPR [36].

By measuring a large parameter space consistently, we hope to be able to more simply

compare the effect of different surface modifications. Drag measurements in bulk fluids have

never been performed on SLIPS or SuperSLIPS, so these measurements will give the first

indications as to whether these surfaces are useful for drag reducing applications.

7.1 TORQUE MEASUREMENTS

Our primary method for quantifying the drag reduction is via torque measurements taken

with our CPR system. We compare the torque on a control sample to that on our modified

surfaces. This gives gives an average reading of the force exerted on a large area of material

by a fluid.

When discussing the data, we will refer to samples as X-Y Z, where X is the groove

angle in degrees (from the horizontal), Y is the groove depth in mm, and Z is SH for

Superhydrophobic, SLIPS for SLIPS, or SSLIPS for SuperSLIPS.
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7.1.1 ORNL tests

A selection of samples (flat bare aluminum control, 45-10 SH, 45-100 SH, and 45-1000 SH)

were prepared in our laboratory at The University of Pittsburgh and then tested at the Center

for Nanophase Materials Science at Oak Ridge National Laboratory by our collaborator, Dr.

Charlotte Barbier. Torque was measured using a commercial CPR (TA Instruments AR

2000) with a 2◦ cone having a radius of 30 mm and a vertical truncation of 51 µm (parameters

of our custom system were chosen to match). These tests were performed before the work

detailed in Chapter 4. Because the commercial system lacked a tank, the plate holding the

sample was constructed with a slanted lip to help retain the water. Water was pipetted

onto the sample, then the cone was lowered into position with an automated positioning

system, and then excess water was removed if needed. Measurements were performed from

2 to 6 rad/s with a 0.5 rad/s increment, then from 6 to 70 rad/s with a 4 rad/s increment

(or as high as could be managed before water was ejected from the gap).

These measurements show that the grooving produces a measurable change in drag, and

that this change varied with groove depth (see Fig. 20). 1000 µm grooves were more effective

in the laminar regime but drag reduction rapidly decreased until it was even with 10 µm

grooves as turbulence set in. 100 µm grooves gave a fairly even 15% reduction through the

entire range of measurement (see Fig. 21) [31].

7.1.2 Comparing Superhydrophobic and SLIPS/SuperSLIPS behavior

To gain an understanding og the effect of groove angle, as well as to examine SLIPS and

SuperSLIPS samples (which we had not yet begun studying when the measurements were

taken at Oak Ridge), we prepared a new set of samples for testing in our custom CPR

(detailed in Chapter 6). We did not test every sample geometry that was examined in

chapter 4, as this would require an inordinate number of samples, and it was also likely that

many of the geometries would show similar behavior, as they did in drop testing. A trio of

representative geometries were chosen instead. For control purposes, a flat aluminum plate

and its Superhydrophobic and SLIPS analogues were examined. To represent a SLIPS on a

multiscale surface, 45◦ grooves were examined, as they are steep enough to be significantly
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Figure 20: Measurements of 45◦ grooved samples with varying groove depth taken at Oak

Ridge National Laboratory. Inset shows a closeup of the laminar region.

Figure 21: Reduction in torque compared to flat control for 45◦ grooved samples with varying

groove depth taken at Oak Ridge National Laboratory.
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different from flat samples, but too shallow to become SuperSLIPS when oil coated. These

samples also allowed us to compare our system with the commercial one. Finally, 75◦ grooves

were examined as they will become SuperSLIPS when coated with oil.

Grooved samples were cut to depths of 20 mm, 100 mm, and 500 mm and cut such

that adjacent grooves met at the surface of the sample. Our system was designed to utilize

4 in samples in order to mimic the standard industrial rheometer used by Oak Ridge; this

required that coating of SLIPS samples with a thin layer of oil be performed at 8 kRPM for

2 min, rather than the 10 kRP for 25 s as in Chapter 3 (the size made it impossible to safely

spin at the higher speed). As can be seen from Fig. 8, the difference between these speeds

in not significant.

Superhydrophobic samples, 75-500 SLIPS, and 75-100 SLIPS all displayed a visible air

layer when immersed, showing that samples were achieving their respective Cassie-Baxter

state, while all other samples (including 75-20-SLIPS; we presume this sample is acting as a

SLIPS) did not.

Our measurements were taken using our custom CPR, from 0 to 10 rad/s with a 1 rad/s

increment, then from 10 to 50 rad/s with a 5 rad/s increment. A 2◦ cone is used; secondary

flow began at 5.5 rad/s and full turbulence began at 44 rad/s (at the edges of the cone).

Torque measurements taken with the tank filled to a fixed level are shown in Fig. 22.

We render the data as percentage reduction of torque, relative to the flat aluminum control,

shown in Fig. 24. We can clearly see from these graphs that 45-500 SH has the best torque

reduction in secondary and turbulent flow at about 27%, followed closely by 45-100 SH

with about 24% and 75-500 SH with about 20%. Looking closely at the the laminar regime

(Fig. 23), we see 45-500 SH is still best, but with 75-500 SH having slightly better drag

reduction than 45-100 SH. Most samples did not exceed 10% reduction at any point.

The torque is quite a bit higher than anticipated analytically, even in laminar flow. This

is due to added torque on the outer surface of the tank, which proved to be a larger effect

than anticipated. We are unsure how much of the measurement was due to the sample and

how much is due to the tank.

In order to mitigate this issue, additional measurements were taken by completely drain-

ing the tank via pipet as soon as the full tank measurement were complete (without removing
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Figure 22: Torque Measurements with a full tank. Note that all measurements are well

above analytic expectations.

Figure 23: Torque Measurements with a full tank in Laminar flow.

76



Figure 24: Percentage drag reduction with a full tank.

the sample or changing any other factors), leaving in place only the liquid trapped between

the cone and the plate by surface tension. This more closely resembles traditional CPR

measurements, and has the disadvantage that measurements can only be taken until the

liquid is thrown out of the gap.

Torque measurements with the CPR in this ’minimal water’ configuration can be seen

in Fig. 25 (lines end at the highest speed before water was ejected from the gap). We look

closely at the laminar region in Fig. 26. We again render the data as percentage reduction of

torque, relative to the flat aluminum control, shown in Fig. 27. We clearly see that 45-500 SH

gives the highest drag reduction in secondary flow at 30%, and retains water longer than

most other samples, as before. 45-500 SLIPS, 45-100 SLIPS, 45-20 SLIPS, and 75-20 SLIPS

were the only samples to retain water into the beginning of full turbulence; these samples all

displayed at best 10% reduction in torque and were SLIPS. This indicates that patterning

SLIPS increases water retention; Flat SLIPS and SuperSLIPS, as well as all SH samples,

ceased retaining water before this point, reaching at best 35 rad/s.
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Figure 25: Torque Measurements with minimal water. Lines that end early indicate that

water was ejected from the gap under centrifugal forces above that speed.

Figure 26: Torque Measurements with minimal water in Laminar flow.
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Figure 27: Percentage drag reduction with minimal water compared to a flat plate. Lines

that end early indicate that water was ejected from the gap under centrifugal forces above

that speed.

For laminar flow the reduction is approximately constant, so we show the average torque

in laminar flow for each sample in Fig. 28. We see once again from this data that 45-

500 SH provides the largest drag reduction of any sample, at slightly below 40% reduction

in laminar flow. Interestingly, this is far higher than the best performance of the 45-1000 SH

sample tested by ORNL, which may indicate that making the grooves too deep causes the

drag reduction performance to worsen. 75 SH samples performed poorly in general, barely

breaking 10% reduction and being much less effective than 45 SH samples at all depths.

75-500 SLIPS had the best SLIPS performance at about 25% reduction, nearly 2/3 the

performance of our best superhydrophobic samples. 45-100 SLIPS was slightly more drag

reducing at 16% than 45-100 SH and 75-100 SLIPS, which were about equivalent around

10%. 75-100 SH and 75-20 SLIPS samples had notably bad performance, giving almost
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Figure 28: Average percentage drag reduction with minimal water in Laminar flow compared

to a flat plate.

no drag reduction at all. Overall, SLIPS material showed the ability to reach about 10%

reduction with 1 exception, being slightly worse than SH material in most cases when not

SuperSLIPS. When SuperSLIPS was achieved, it tended to be more drag reducing than SH

samples with the same geometry.

However, there the question of how much of this drag reduction is due to the effect of

simply grooving the surface, as such grooving is already known to produce drag reduction

without microstructuring [92]. To check this, we measured a series of bare metal controls,

cut to the same shape as each sample, and percentage reduction was recalculated relative

to these grooved controls. Looking at Fig. 29, and most strikingly at Fig. 30, we see that,

while for 45◦ grooved samples only a very small portion of the drag reduction was due to the
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Figure 29: Percentage drag reduction with minimal water compared to identically shaped

grooved controls. Lines that end early indicate that water was ejected from the gap under

centrifugal forces above that speed.

groove shape, for 75◦ grooved samples the Superhydrophobic coating makes little difference.

45-500 SH provides the largest drag reduction of any sample, at slightly below 37% reduction

in laminar flow, dropping to 30% in secondary flow. 45-100 SLIPS was slightly more drag

reducing at 10% than 45-100 SH at 8%. 45-20 SH at 16% and 45-20 SLIPS at 9% performed

better than 45-100 SH. SuperSLIPS still show improved behavior relative to the behavior of

Superhydrophobic samples of the same shape, but on the whole 75◦ grooves are measurably

worse than any surface with 45◦ grooves. SuperSLIPS do not appear to provide a useful

benefit based on these measurements, as the overall drag reduction performance is less than

that of more easily produced Superhydrophobic surfaces or SLIPS. However, there is still the

possibility that the state may prove more useful on other materials where it can be achieved

on less steeply angled surfaces.

All data presented except for our control sample is for singular runs. The control measure-
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Figure 30: Average percentage drag reduction with minimal water in Laminar flow compared

to identically shaped grooved controls.

ment was repeated 4 times to examine repeatability and to provide a more robust comparison

basis for the percentage presentation. Examining average performance over a large number

of runs would provide for less noise, but this is impractical for our setup.

Experimentally, one of the main points of uncertainty is in the air layer loading of our

surfaces. Future work would benefit from finding a way to obtain more consistent loading;

currently we must simply accept whatever air layer is present (our only method of controlling

this is to remove and reapply the water if there are visible bubbles or other issues). This

could lead to differences in air loading beyond the differences caused by varying geometries

and surface states that we have no control over. This importance of this issue is increased

because our measurements take such a long time (due to alignment and equlibration time),
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leading us to only take single measurements on most samples, so that this effect is not

averaged out over multiple runs.

7.2 PHOTON CORRELATION SPECTROSCOPY MEASUREMENTS

Torque measurements do not directly measure the behavior of the fluid itself, and are an

average measurement over the entire surface. Measurements of the shear rate, on the other

hand, allow us to measure the fluid directly and locally. Photon Correlation Spectroscopy

(PCS) measurements, as discussed in Chapter 5.2 allow us to directly measure the shear

rate. This is done by scattering the light from a collimated HeNe laser off of particles seeded

in the flow, and collecting this light with a collimating lens feeding into a single mode optical

fiber.

For these measurements we utilize a 6◦ cone to allow our beam to pass through the gap

without major clipping. For this cone, taking our measurements at a radius of about 15 mm,

the onset of secondary flow is about 2 rad/s and the onset of turbulence was seen at about

15 rad/s [82](due to slight positional differences between runs, the transition speeds shift

slightly between samples). Before we can measure our novel surfaces, we must confirm that

the method works by checking it on our control sample.

7.2.1 Verifying Our Method For Shear Rate Measurement

PCS data taken in fluid flowing past a flat aluminum plate, and a fit curve to that data,

are shown in Fig. 31. The shear rate vs cone speed curve generated by our apparatus is

compared to the theoretical line (Eq. 5.3) in the laminar limit in Fig. 32. Data sets were

gathered by increasing the cone speed from 0.2 rad/s to 3.0 rad/s in increments of 0.2 rad/s,

with data at each cone speed averaged from 20 repeated readings at that speed with an

averaging time of 10 s each. Five complete data sets were gathered, with a full removal of

the sample and realignment between sets, to test the repeatability of the measurement.

We see remarkably good agreement with the theoretical values of shear rate in the laminar
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Figure 31: Data and fit for a measurement taken at 0.4 rad/s cone speed at a scattering

angle of 20.5◦ on a control sample, with a 2w0 = 0.81 mm beam and a 2ws = 1.05 mm

detector. The left graph shows the raw data, while the right shows fitting with Eq. 5.32 on

a logarithmic scale vs τ 2, so G(τ) is a straight line except near τ 2 = 0.

regime, where the average slope of the Shear Rate vs Cone Speed graph over the 5 data sets

was 9.61± 0.03 rad−1, a 0.6% error compared to the theoretical slope of 9.55 rad−1. Slopes

from individual data sets showed a statistical error of at most ±0.5%, while individual slopes

varied from the theoretical value by a maximum of ±2%, larger than could be accounted for

by statistical error alone, indicating additional sources of error in our experiment.

Tests of repeatability indicate that the additional error results from limited repeatability

in assembly and alignment, including the setting of the scattering angle, measurement of the

widths of the input beam and the lens/fiber detector, determination of the direction of the

velocity at the measurement point (which is needed to properly perform the scalar product

~k · φ̂, see Fig. 33), errors vertically aligning the beam and the receiver with each other and

the gap, and error in the distance of the cone from the plate. Despite these issues, our

measurements were still highly accurate, indicating that the method is quite robust.
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Figure 32: A single data set showing the measured and theoretical shear rate as a function

of cone speed at a scattering angle of 20.5◦ for a single run on a flat control sample.

7.2.2 Shear Rate Measurements on Superhydrophobic Samples

We examined each of our Superhydrophobic samples using PCS measurements, at a scat-

tering angle of 20.5◦ and a radius of approximately 15 mm; shear rate measurements in the

laminar regime can be seen in Fig. 34. We graph the reduction in shear rate, which should

be approximately proportional to the reduction in drag, in Fig 35. Looking at these graphs,

it appears that simply making a flat surface Superhydrophobic can be detrimental at lower

speeds, having a 4% increase in shear rate at worst. Unlike other surfaces, our flat Superhy-

drophobic surface varies non-linearly in the laminar regime, increasing from 0% reduction at

1 rad/s to 7% as we enter secondary flow. The reduction in shear rate for grooved surfaces

is mostly grouped by groove depth, with no significant differences between the reduction

seen for 45◦ grooves and 75◦ except at the lowest groove depth. Grooving to 500 mm shows
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Figure 33: Example of measurement of the position and angle of scattering. The point where

the beams cross is where shear rate is being measured. R and R′ must be kept track of to

determine ψ (see Chapter 5.2.1)

great improvement at the lowest speeds at almost 10%, but this rapidly decreases to around

3% with increasing flow speed. 100 mm deep grooves give slight but reasonably consistent

reduction throughout the laminar regime at 2-3%, actually slightly improving with increased

shearing. At 20 mm, however, 75◦ grooves are far superior, giving a consistent reduction of

1%; still smaller than that given by 100 mm or 500 mm grooves. In contrast, 45◦ grooves at

this depth lead to increased shear, barely reaching 0% reduction in the laminar regime. A

possible mechanism behind the loss of drag reduction in the more deeply grooved samples is
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Figure 34: Shear Rate in the Laminar Regime as a function of cone speed.

that the deeper grooves are unable to hold onto the thicker air layer as shearing increases.

Another possible mechanism is that the thicker air layers in the grooves enter heavy turbu-

lence before the water leaves laminar flow; Reynolds number is proportional to viscosity, and

turbulence manifests more strongly in larger fluid volumes.

When looking at the laminar torque and shear rate measurements taken, we see some

inconsistencies. Most notably, the shear rate measurements do not indicate a significant

difference in the shear rate with groove angle, while the torque measurements of superhy-

drophobic samples show 75◦ grooves performing much worse than 45◦ grooves at all depths.

In chapter 5.1.1, we saw a scaling relationship between torque and shear rate in the

simple case of a flat plate and a single fluid. However, as shown in Eq. 5.5, even in the

case of simple superhydrophobic surfaces the introduction the air layer makes it difficult to
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Figure 35: The percentage reduction in shear rate, relative to a flat aluminum plate, in the

Laminar Regime as a function of cone speed.

relate torque and shear rate, and as shown in Eq. 5.7, we cannot analytically relate torque

and shear rate at all in the presence of large scale structure. We expected that, while it

would not be possible to quantitatively transform between the torque and shear rate, the

measurements would still have the same qualitative relationships across our various samples.

This does not appear to be the case.

There are several issues with these measurements. We took shear rate measurements at

a single point, but the shear rate is likely not only a function of radius in general but also of

the surface grooving, behaving differently over the points, the troughs, and as a function of

the instantaneous depth of the grooves. These differences would only become more apparent
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as we move into turbulence. Even in laminar flow, we cannot say we are in exactly equivalent

locations relative to the grooves on each sample, as our alignment only informs us of our

position relative to the cone. Therefore single point measurements such as these are not

truly representative. We would need to be able to scan the scattering volume across the

surface structure in order to reasonably state that we have sufficient data to account for the

variations in flow they cause. We would need to significantly modify our apparatus to allow

automation of the positioning in order to take these readings across a representative space

above the sample (at least several grooves); it would also require additional theoretical work

to understand how to interpret the spatially varying information.

We do not analyze measurements in the turbulent regime for several additional reasons.

First, our measurements are taken over 10 s, so we may be missing fine details in the

turbulence due to averaging. In all likelihood, readings of the turbulence probably contain

multiple shear rates as the flow fluctuates, so analysis would be required to extract the

different rates and see if there is any structure to these fluctuations. In order to more

effectively take readings in turbulence, we would need to acquire or construct a new hardware

correlator that could read shorter timescales. From a theoretical standpoint, there will no

longer be only a single component of S that is non-zero in turbulence, so a method must be

found for decomposing the fit to G(τ) into the different shear components, and to account

for the time varying nature of the flow.

While we establish that the method is well behaved in simple flows, our data is not

sufficient to make direct comparison to torque measurements as a technique for measuring

drag on samples of this type. Note that even with the need to scan horizontally, we still

vastly reduce the amount of movement needed compared to older methods, such as LDV.
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8.0 CONCLUSIONS
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In this thesis, we have examined the static wetting and dynamic drag properties of

mutltiscale structured surfaces. Our surfaces were composed of a spiked Porous Anodized

Alumina microstructure with a polymer coating over a set of micro to millimeter scale

concentric grooves. We varied the depth and angle of these grooves and explored the effect

this had on the Superhydrophobic and SLIPS wetting and drag properties.

We investigated the wetting properties of multiscale Superhydrophobic surfaces and

SLIPS by examining the contact and rolling angles as we altered the angle of our millimeter

scale concentric grooving, as well as observing the samples underwater. As anticipated from

previous work, contact angles on SLIPS were much lower than on Superhydophobic surfaces,

but this did not lead to significant increases in the rolling angle. For some groove angles,

rolling angle was lower on SLIPS than for similar Superhydrophobic samples, which would

seem to indicate that the SLIPS state is capable of providing higher drag reduction than

Superhydrophobic samples for some geometries.

By varying the oil layer thickness, we also found clear evidence that, pursuant to geo-

metric conditions on the grooves and a proper oil level, the SuperSLIPS state does exist. It

has a noticeable effect on the rolling and contact angles, and can it can be clearly seen to

reduce the wetting contact of droplets on surfaces.

Our investigation of torque showed that drag reduction is greatly influenced by the groove

geometry. Both Superhydrophobic and SLIPS/SuperSLIPS samples displayed changes in the

drag correlated to varying groove depth and angle. We found that multiscale SLIPS with

45◦ grooves have some drag reducing potential, even managing to approximately match the

drag reduction of hydrophobic samples of the same geometry in a few cases. This shows that

SLIPS can be used in drag reducing applications if their anti-fouling properties are desirable,

and in a few cases they may be preferable. SuperSLIPS outperformed identical Superhy-

drophobic samples, which had negative or near zero drag reduction compared to simple bare

aluminum of the same shape. These results demonstrate that SuperSLIPS have an effect

on the properties of surfaces, but do not provide a significant benefit compared to SLIPS

with wider or more shallowly angled grooves, particularly since wider and shallower grooves

are easier to produce. Further experiments would be needed to determine if SuperSLIPS

surfaces are practical; in particular, the state needs to be looked at on material that can
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transition from SLIPS to SuperSLIPS with wider/shallower grooves. They show potential

for increasing drag reduction in cases were multiscale surfaces are otherwise of little benefit,

but on the surfaces tested, the net drag reduction is not significant compared to more easily

produced SLIPS.

Additional measurements at more groove angles and depths would provide a better un-

derstanding of what factors influence drag. Specifically, further exploration of depth on

45◦ samples may demonstrate an optimal depth for maximum drag reduction, while explo-

ration of drag with regard to groove angle may explain why 75◦ groove angles performed

so badly. Multiscale SLIPS samples do not appear to provide much benefit compared to

Superhydrophobic samples in terms of drag reduction alone, so further work is mainly indi-

cated for anti-fouling benefits. The anti-fouling behavior of SuperSLIPS has not been tested,

so it is possible that SuperSLIPS on an alternative material could more effectively achieve

anti-fouling drag reduction, but at this time this is pure supposition. Generally, more consis-

tent air loading of Superhydrophobic and SuperSLIPS samples would be beneficial to future

torque measurements, making comparisons between runs simpler. As far as our system is

concerned, faster cone alignment and better damping would also make it possible to take

more measurements more quickly.

We tested an alternative method of performing drag measurements, by directly mea-

suring the shear rate using Photon Correlation Spectroscopy (PCS), which had not been

applied with quantitative accuracy to 3-D flows before. We successfully confirmed that PCS

measurements worked in simple laminar flow, as our readings of the single non-zero shear

rate component on flat samples agree with theory and extensive prior work to within 2%

error. Our principle derivation does not depend on use of a CPR for measurements, so this

formalism can be applied to other systems.

It had been hoped that, despite the non-analytic theoretical relationship between torque

and shear rate on multiscale surfaces, experimental work would show qualitatively propor-

tional behavior, but this does not appear to be the case. It is apparent that looking at a

single shear rate measurement, which takes a reading only at a single location on a sample, is

a poor choice for comparison to torque measurements, which average over the entire sample,

in cases where the sample is not spatially homogeneous.
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Further theoretical work is needed to understand PCS measurements in turbulent flow,

and to relate these to torque in our system. Work is also needed to understand this relation-

ship in laminar flow in a Cone & Plate Rheometer in the case of non-homogeneous flows.

Measurements need to be taken across an area of the sample, so that the spatial variation

in the shear rate in relation to the spatial variation in the sample can be examined. Mea-

surements in turbulent flow would also be better taken in shorter amounts of time, which

will require the purchase or construction of a new correlator that can go to lower averaging

times. With this shorter time data, we should be able to see changes in the shear rate as

eddies occur in the scattering volume, or alternatively, if the eddies are too fast, it may be

possible to decompose the data in order to see substructure. This indicates that further work

with the method could provide useful information on turbulent flows, which are in general

difficult to observe.

Overall, this work provides us with an insight into drag properties on Superhydrophobic

and multiscale SLIPS samples, opens up investigation of a new type of surface wetting state,

the SuperSLIPS state, and begins to explore a new method for the investigation of fluid flow

involving complex surfaces.
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APPENDIX A

PROCEDURES
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A.1 ANODIZATION AND COATING PROCEDURE

A.1.1 Anodization System

Figure A.1: Anodization System Wiring.
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Figure A.2: Anodization Controller Box Circuit Diagram. Input and output colored dots

match plugs on box. High Voltage Power Output is ground to negative voltage when reversing

switch is in forward anodization position. Power and mosfet manual flip switches and the

relay must all be closed to engage anodization. AC inputs take American 110 V 60 Hz power

via built in cables.

A.1.2 Sample preparation

Before being cut on the Diamond Turning Machine, the samples must be annealed. Annealing

temperature depends on size and shape of material.

Sample Type Temperature

2in Diameter 0.5mm Thick 500◦C

2in Diameter 0.25in Thick 655◦C

4in Diameter 0.25in Think 500◦C

Anneal discs for 16 hours. After cutting on Diamond Turning Machine, if not being

anodized immediately, store in vacuum to prevent native oxide regrowth.
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A.1.3 Anodization

Chemicals for anodization

• Citric Acid 0.1175 Molar:

– 2 in system: 23.5 mL 1 Molar Citric Acid + 176.5 mL H2O

– 4 in system: 47 mL 1 Molar Citric Acid + 353 mL H2O

• Tetramethylammonium Hydroxide (TMAH) 2%wt (81ml 25% TMAH + 749mL H2O):

– 2 in system: 200 mL

– 4 in system: 400 mL

1. • For Thin Foil samples: Apply water to center of mediator disc such that it is coating

with a thin film of liquid across the surface. Place disc on mediator, being sure to

touch only outer edge. Beware as discs bend extremely easily.

• For Thick Disc samples: Place aluminum foil strips around rim of holder. Ensure

disk is properly seated.

2. Screw down upper vessel. Tighten evenly using alternating pattern. Do not over torque,

as this will deform upper vessel and sample.

3. Open coolant lines; watch for leaks and correct.

4. Add rinse water (greater than chemical volume), place stirrer and rinse for at least

1 minute at 500 RPM+. For the anodization stirrer, be careful when putting in, as

teflon rods are breakable.

5. While rinsing, prepare anodization cycle script. Always power cycle the automated

switch box (by pulling and reconnecting the plug) before starting the software. Turn on

all multimeters, the power supply, and engage the power switch on the power control

box. Watch for warnings and failures in the initialization; reload the VI once errors are

fixed. If the chiller is not responding, power cycle it with the switch on the rear.

6. Check cycle script carefully. While the settings for a step can be changed while the script

is in progress (step is re-read every time it starts), whether or not the step is used and

how many times it runs cannot be changed once the script is started. Group repetitions

are set by the first group member and groups must be contiguous.
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7. Attach thermocouple and check that the relevant multimeter is reading a logical temper-

ature (in Celsius). Ensure that coolant lines are open.

8. Dump rinse water into beaker (for disposal or reuse) and add or prepare insitu Citric

acid solution.

9. Put in anodization grid and stirrer and activate. Anodization steps are stirred at

500 RPM.

10. Begin script. Bath will cool to precooling temperature before starting first anodize.

Disengage power circuit safety; for the duration of the script, power will be controlled by

the computer operated switch, and will automatically engage when an anodization step

begins.

11. Ensure electrical contact occurs at start of first cycle. If current does not go to limit,

tighten screws a little and flick the MOSFET switch on and off until connection is

established. Once it has connected once, it will always connect on future steps.

12. Observe initial anodize to ensure there are no issues. If there are issues making electrical

connections, try slightly tightening the upper vessel and/or flipping the manual power

switch open and closed. Abort if needed.

13. Pour Citric Acid into designated beaker, and add rinse water. Rinse cycles should always

stirred be at 500 RPM, by whichever stirrer is in. Dual rinse between steps: one quick

rinse (about 30 s), and a thorough rinse for 2 min. Second rinse water can be reused as

first rinse water in the following swap for conservation.

14. Separate pause steps are used to allow for rinsing and swapping liquids. To proceed from

a pause step, push ‘Go To Next Step’. Be careful to move mouse away from button, so

as to not accidentally hit this button during a step or double tap it.

15. Measure out TMAH and add to jig. Have the stirrer already in place and running

at 100 RPM before adding TMAH. Beaker volume markings are sufficient for TMAH

measurement.

16. The software will sound a gong at the end of each step. Change liquids as needed. Do

not mix up liquids. When going to anodization, let citric acid reach 18◦ or less before

engaging current.
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17. The chiller will stop at the end of the final anodize (there will be no gong). Coat the

sample in IPA while dissembling the upper vessel. Remember to close the coolant lines

before releasing the screws, to prevent leakage. Also turn off the MOSFET switch,

preventing any power from flowing into the grid. For samples directly in contact with

the coolant, a vacuum may develop under sample; In this case, slightly open the outlet

value in order to equalize.

Notes and warnings:

• Upper area is manual controls.

• The precool temperature will cool down the bath initially to the set temperature. All

temperatures are ±0.5 degree Celsius.

• Set each step individually. Always place a pause step when changing working fluids. Any

steps with a pause between them will proceed with no break. In the event of problems,

the previous and next step buttons may be used to navigate the cycle (this will reset the

timer/counter in any steps involved). If paused, use the next step button to proceed.

• Be sure to save (using the File Actions area) before exiting, as all data will be lost on

restart. In the event of error, find the file listed under Run Data File location at the

bottom of the VI and rename it before the next load-up of the controller; this file holds

the data while the run is in progress and will not be overwritten until the next time the

VI is initialized.

• Any steps with group none will act independently, and if a repeat is set it will repeat

this step without proceeding.

• All grouped items will repeat using the first group members repeat count; after pressing

start, all following group members numbers will change to match. Groups will repeat

sequentially, running through all steps in order before returning to the first. Group

assignments, repeat counts, and whether a step is active cannot be changed while the

sequence is running. Other step settings may be changed so long as the step is not

currently being executed; steps are reread from the GUI everytime they start.

• If the Use settings for all steps box is checked, the first steps voltage and current settings

will override any manual entries for the later steps; an override switch is also provided if
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only a few steps need to be changed.

• If different voltages are needed throughout, then they must be set manually.

• Step names are for user assistance only; they will appear in the status box to help the

used track what they are doing. They are not recorded in the data file.

• The chiller requires time to start up. When in maintain mode, the chiller will try to hold

the bath temperature constant, as read from the thermocouple. While in set mode, the

chiller will hold based on the temperature of the coolant fluid in the chiller lines. It is

recommended that the chiller be set reasonably close to where it needs to be when next

engaged during steps when it is not maintained, as there is some rise and fall time.

• For pause steps, it is recommended to use set mode, as the thermocouple may be discon-

nected, in air or in rinse fluid during most operations during a pause. Check what the

temperature on the chiller is in the following step and set the pause step to this value

for smooth transition.

• VI can take a second to register clicks. Do not get impatient. If you click twice, it will

double register.

• Chiller does not stop until the end of the sequence. Be sure to stop it manually before

removing sample if a fault occurs, as coolant is under pressure while it is running. Closing

the cooling valves with the chiller running may cause damage to the chiller.

• Chiller circulates 4:1 Water:Propylene Glycol as coolant. Propylene Glycol will not

evaporate if spilled. Be aware that anytime the coolant passthrough under the sample

is uncovered, coolant will escape. If the lines are closed, there may still be some seepage

from the liquid inside the base. May be cleaned using paper towels.

• The pythics VI will freeze if the remote power switch fails. The VI must then be reloaded.

Remember to move/rename the data file before reloading, and to note sequence location.

You can resume a sequence by restarting the VI (after power cycling the switch), but

you will need to set the active steps and the repetition counts correctly to resume.

• Do not set measurement period below .5s, as this will result in slowdown.
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A.1.4 Spinner Programs

The following are the parameters of the spinner programs that will be used throughout the

rest of this appendix.

Step Time (s) Speed (RPM) Acceleration Index

1 6 100 001

2 13 500 001

3 30 4000 005

4 16 0 001

Table A.2: Spinner Program B Parameters

Step Time (s) Speed (RPM) Acceleration Index

1 6 100 001

2 13 500 001

3 30 1000 005

4 8 0 001

Table A.3: Spinner Program F Parameters

A.1.5 Hyflon Coating

1. Clean Sample Thoroughly

2. • 2 in Samples: Oxygen Plasma Clean for 7min at 50W, at a pressure of 25 mTorr

and a flow rate of 20 Sccm for Ar and 8 Sccm for O2. Move from vacuum to coating

as fast as possible.

• 4 in Samples: Bake at 200◦C for 2 Hours in convection oven. Allow minimal time to

cool, while covered.

3. Apply HMDS: Spin Coat with (1:4 HMDS:PGMEA) using program B. Wait 10 s after

full coat before starting spinner.
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4. Apply Hyflon: Do not wait or allow HMDS to dry. Spin Coat using Program F.

5. Bake 30min at 75◦C in convection oven (preheat oven)

6. Bake 30min at 300◦C in furnace (preheat furnace to 75◦C, then ramp as fast as possible

with sample inside, Start timer when at 300◦C.)

7. Minimally crack oven door to allow oven to cool to about 100◦ c before removing sample.

8. Cover immediately upon removal from oven to keep dust off

Notes:

• Be aware that samples are too hot to handle by hand, use tweezers or tongs to grasp the

sample or use a cover glass to slide samples onto carrying plates.

• Center well before coating (center based on anodized part, not overall disc)

• Spread coatings across surface to improve quality (easier to coat with spinner lid up,

then close)

• Errors direct function of time to coat; be aware of dust

• Touch outside anodized area only once coated

A.1.6 Hyflon Patterning

Photo patterning:

1. Clean Sample

2. Coat sample with AZ1512 Photoresist Using Program F, three coats

3. Soft Bake sample for 1 min at 100◦C for thin foil or 10 min for think disc.

4. Expose sample1:

• 5.5 min in exposure column with UV light

• Direct write using DTM in lithography mode. Change between a slow speed to write

and a very fast sped to run past asreas that should not be exposed. Using a 2x lens,

with the laser at 2.25W, expose with 60 mm/min write speed and 500 mm/min run

speed.

5. Develop PR using TMAH for 1 min, rinse in DI water and dry

1NOTE: Numbers given are approximate. Exact values depend on current properties of Photoresist,
which change over time due to aging.
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6. Oxygen Plasma Clean for 10min at 10W or apply metal coating

7. Remove PR by spraying with Acetone and Isopropanol, then blow drying

DTM Patterning:

1. Clean Sample

2. Mount sample to disc

3. Coat sample with AZ1512 Photoresist Using Program F, three coats

4. Affix to DTM and cut pattern

5. Release sample, taking care never to touch the upper surface

A.2 RHEOMETER LOADING & VERTICAL ALIGNMENT

1. Place sample in holder and secure with horizontal screws. Make sure sample is reasonably

centered if uundersized. Do not over tighten as plastic screws will strip.

2. Place Sample holder in sample tank gently, and press down onto alignment pins. Be

careful not to touch the top surface of the sample. It may be necessary to apply pressure

to the holder to make it go completely onto the pins; apply pressure only to the outer

rim are (where the vertical screw holes are). Be careful not to break glass cylinder.

3. Screw in vertical screws. These screws minimize the disturbance the holes cause in the

fluid flow, they only minimally hold down the sample holder. Do not over tighten as

plastic screws will strip.

4. Adjust bushing nuts coarsely to ensure cone will not touch sample accidentally when

crossplate is lowered.

5. Fill tank high enough that the sample will not be accidentally uncovered when putting

it in place. If needed, tilt, empty, or shake in order to deal with bubbles or other issues.2

6. Ensure the air bearing is not floating to prevent damage. Lift crossplate and place the

sample tank onto the air bearing, rotating it until it drops onto the alignment pins.3

7. Lower the crossplate onto the top of the bushings, watching carefully for bubbles on the

lower surface.4
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8. Lower crossplate slowly and carefully down the bushings. Be aware that it will sometimes

stick, resulting in a more sudden movement that intended.5

9. Carefully lower the alignment ring until it is resting on the upper lip of the cone.6

10. Check for air bubbles. If they are present and will present an issue, remove the sample

holder and try again after removing them.

11. Screw down and tighten the upper bearing nuts. The crossbar may jerk downward if any

bushings were stuck on a tread.

12. Adjust LVDT so entire travel to be used is within -1.5 to +1.5 V (linear range at 1V/mm)

and secure. a reading of .8 V when on the alignment ring is ideal for a 1.74 mm target

spacing.

13. If the experiment will use the airbearing, turn it on now.

14. Perform the following steps, proceeding in a star pattern around the 4 measurement

positions, until all 4 readings are within 10 µm of target:

a. Place LVDT on the alignment ring between the gaps.

b. Check the reading on top of measurement plate. The reading will not be the same

at all 4 positions.

c. Subtract target spacing from this reading to get target reading. Do not be shocked

if this reading is static for several runs; opposite sides may be acting counter to each

other.

d. Lift LVDT and rotate plate so LVDT is in gap

e. Adjust plate to average of LVDT reading and target. Adjusting to the target will

tend to overshoot, increasing the time it takes to align.

15. Lift and secure measurement plate

16. If performing torque measurement, ensure pattern is in an acceptable 0 position; adjust

as needed.

Notes:

• Do not take a single reading on one side and use throughout. Cross is not 100% even.

Take a new reading each time a position is taken.

6Watch for accidental bubble capture during this step; any bubbles that are trapped on the sample once
alignment is complete cannot be removed without starting over.
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• Perform alignment with motor on, as there is a slight change in height from the off state.

• Always align with air bearing in the same state (on or off) as it will be during measure-

ments.

• Always make sure the airbearing is off when taking the sample tank on and off.

• Watch for suspicious changes in readings. If plate gets too low, it can be pushed up

by the sample, giving the illusion of the cone needing to be lowered when it is actually

being pushed into the sample. If air bearing is on, check that it moves freely after each

adjustment. Take care not to hit the damper plate into the sides of the damping tank,

as this will upset the zero point.

• When the airbearing is on, rotate both nuts on side together as much as possible. With

the airbearing off, or when making very tiny adjustments with it on, designate one nut

to each measurement position and adjust only it.

• Target is set during machining so that the gap will be a specific size (plate thickness + a

leftover gap space). To check, use a flat plate and a thickness gauge (think metal shim)

at nearest thickness.

• Be sure that no items are touching the air bearing during measurement.

• The control lines for the motor frequently fall down and touch the air bearing during

alignment; make sure to pin then back up.

• Always check that the motor is working before beginning measurement cycles. Occa-

sionally it can electrical issues which cause it to not move at all or to oscillate instead

of rotating. Powercyle the motor and restart the VI to fix this. Once the motor is seen

rotating normally, it will generally not fault later in the process.

A.3 TORQUE CALIBRATION

Inertial Calibration is recommended, as it involves lower uncertainties and less physical

meddling with the apparatus, but both methods are viable. Inertial Calibration is also much

faster.
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A.3.1 Inertial Calibration

1. Center pattern in video window

2. Disconnect damper plate

3. Displace air bearing so that oscillations will traverse entire visible area

4. Record video of oscillations for at least 5 periods

5. Open video in Open Source Physics Tracker and fit to find oscillation frequency ω

6. κ = Iω2, where I is the moment of inertia of the entire air bearing and κ is the calibration

constant, represent µB, where µ is the moment of the center magnet and B is the magnetic

field from the ring magnets.

7. Reattach the damper plate and re-level it

Notes:

• Be sure to include all parts that are attached to the air bearing at the time of measure-

ment in I.

• Beware of spilling damping oil or dropping damper plate into the oil.

• Damper plate will twist vertically when screwed, so it must be gently re-leveled after

screw is tightened.

A.3.2 Gravity Calibration

As this method is not generally used, it is highly manual, as time was not spent automating

it extensively.

1. Turn off air bearing. Wrap string around air bearing shaft just above the mirror. be sure

to wind at least twice, with final wind going around the shaft itself and not over other

winding, tape, or other obstructions. Ensure string does not fall into mirror slot.

2. Turn on air bearing. Run sting over to pulley, and adjust so string is horizontal and

hangs over pulley and into open air. Tie a loop in the string for hanging masses.

3. Set grid so it is as far as possible to the side for maximum range.

4. Taking a calibration point:

a. Displace air bearing in one direction.
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b. Wait 3 min for bearing to stop oscillating.

c. Using time lapse function in AmScope viewer (under capture), take 100 images.

Label as weight of *mass*g, ie 1.45g. For no mass, label as 0.0g.

d. Displace air bearing in opposite direction.

e. Wait 3 min for bearing to stop oscillating.

f. Using time lapse function in AmScope viewer (under capture), take 100 images.

Label as *mass*g, ie 1.45g. For no mass, label as 0.0g. To distinguish direction of

displacement, you may add 0.000001g to the label without significant error.

5. Take points with at least 4 masses if possible.

6. Open ‘grid readout’ pythics VI.

7. Load first 0g image. Set center as close as possible by eye.

8. Press ‘Find Grid Parameters’. This will work out the actual grid center and spacing. If

threshold is below 0.50, set to 0.50, or an indentation will appear in the simulation grid.

9. Press ‘Load Simulation’ and load the best available simulation, or press Simulate to

generate a new simulation (takes about half and hour). Simulations must have a period

within ±5 bits and a threshold within ±0.10 for reliable pattern matching. If threshold is

too high, check to see if it still is close with a lower number; as long as it is approximately

representative, it will lock.

10. Set batch processing mode to ‘Zero’ and press ‘Batch Process’. This will find the average

center of the zero mass images, giving more accurate absolute readings.

11. Set batch processing mode to ‘Calibrate’, and press ‘Batch Process’. This will step

through all the images in the folder and output to file labeled Results which will be

placed in the same folder.

12. Open ‘fitting mag torque const.py’ and set file path to this results file. Fit parameter κ

is given in the CMD window as the first printed item.

13. Remove string from center shaft.

Notes:

• Ensure that the string is taught for all measurements. At low enough mass, the string

will not be straight and this method cannot be used.
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• Ensure that mass does not pull so hard that grid center is more than half out of view of

the camera. At this point the software cannot tell the difference between the center and

the rest of the pattern.

A.4 TORQUE MEASUREMENT

A.4.1 Measurement

1. Check grid position using AmScope viewer to ensure it is as far to the left as possible

for clockwise rotation (right for counter-clockwise).

2. Load ‘automatic delay series moire grid’ pythics VI and set output file location.

3. Check all settings

4. Push start. Check camera internal settings.

5. Allow sequence to run. Avoid jostling experiment.

Notes:

• Ensure that maximum speed does not move the grid so far that the center is more than

half out of view of the camera. At this point the software cannot tell the difference

between the center and the rest of the pattern. If this happens, magnets must be moved

closer and the system re-calibrated or a lower maximum torque must be accepted.

• Pythics settings cannot be changed while code is running.

• Camera settings are Manual exposure with an exposure time of 16 ms and a gain of

5 (maximum), Mode Gray and Flip Horizontal (under misc panel), and a resolution of

2048x1536 (maximum).

• Be sure to close AmScope viewer, as it will block the camera from being accessed by

pythics.

• If Amscope viewer is choppy, disconnect laptop power cable. AmScope viewer (but not

pythics) has issues with the camera when on wall power, but not battery.
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A.4.2 Data Processing

1. Open ‘grid readout’ pythics VI.

2. Load first 0 speed image. Set center as close as possible by eye.

3. Press ‘Find Grid Parameters’. This will work out the actual grid center and spacing. If

threshold is below 0.50, set to 0.50, or an indentation will appear in the simulation grid.

4. Press ‘Load Simulation’ and load the best available simulation, or press Simulate to

generate a new simulation (takes about half and hour). Simulations must have a period

within ±5 bits and a threshold within ±0.10 for reliable pattern matching. If threshold is

too high, check to see if it still is close with a lower number; as long as it is approximately

representative, it will lock.

5. Set batch processing mode to ‘Zero + Measure’ and press ‘Batch Process’. This will find

the average center of the zero speed images, giving more accurate absolute readings, and

then step through all the images in the folder and output to file labeled ‘Results.txt’

which will be placed in the same folder. These actions may be triggered individually

using the respective batch processing modes.

6. Copy ‘Trend Graph.py’ to the folder with this data and run it. It will then output a

Torque vs. Speed graph.

7. Place the folder name of the ‘Results.txt’ file in the folder list in ‘Unified Trend Graph’

to add the data to a multi-set graph.

8. Place the folder name the desired control sample and of the ‘Results.txt’ file in the folder

list in ‘Unified Trend Graph percent’ along with to add the data to a multi-set percent

reduction graph.

9. Place the folder name of the ‘Results.txt’ file in the folder list in

‘Unified Trend Graph weighted percent’ along with the desired control sample’s to add

the data to a multi-set weighted average percent reduction graph. This should be used

in laminar flow only.

Notes:

Pythics VI will proceed if you forget to load a simulation. This can be detected by the

simulated grid not moving with each image scanned, and by the process being much faster
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than normal. For Zero cycle, will set nonsense number to zero. For Measure cycle, will

output meaningless results. In either case, reload VI and begin again.

A.5 PCS MEASUREMENTS

A.5.1 Measurement

1. Prepare particle solution at a concentration of 0.15µLparticleF luid
mLWater

, sonicating for at least

10 min if fresh or 5 min if refilling. Particle solution should not be reused if older than

1 week or if left to sit for more than a day. Solution may be discarded down the sink.

Solution should be refrigerated (not frozen) when not in use.

2. Ensure Air Bearing is off.

3. Fill tank with particle-infused water. Check for any floating dirt and pipette it out

(remove as little liquid as possible). If air bubbles are an issue, empty, tilt and refill until

an acceptable level is reached.

4. Place the sample on the apparatus.

5. Turn on input HeNe laser. Check that the laser beam is almost completely uniform. If

visible flecks are passing through it the liquid may be degraded or dirty.

6. Ensure correlator and its computer are powered on.

7. Check that count rate is acceptable (lower the cone to near the surface and run at any

speed; the count rate due to diffusion alone is not stable). If receiving 0 count rate, make

sure fibre is plugged into avalanche photodiode and if it is and still receiving 0 counts,

power cycle/adjust the plug on the photodiode until it turns on.

8. Finish alignment.

9. Check height and tilt are approximately correct for detector by plugging fibre into fibre-

coupled laser and observing the reverse beam. It may be necessary to turn off or block

the input beam temporarily to see this beam.

10. Place Plexiglas plate on threaded rods and center camera on motor. After centering,

change focus to the top of the plate.
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11. Angular Alignment:

a. Turn off room lights so you can see the beams clearly using blackout curtains. In or-

der to see the centering circles inscribed on the tank’s outer ring, it may be necessary

to let some light in so they are visible in photographs.

b. Rotate and move lasers as needed. It may be necessary to detach the detector

rotation stage from the linear stage for extremely large changes, as the is a limited

range achievable at each position. Ensure that the input beam is not clipping on the

cone of the plate.

c. Adjust height of detector to get maximum count rate. Be aware of reflections.

d. Run laser back through detector

e. Take picture of Laser beams, visible in particle-infused water.

f. Turn on room lights

g. Transfer image to computer and open in Adobe Photoshop or GIMP.

h. Rotate image such that input beam is horizontal. If editor attempts to crop to

square, override.

i. Carefully trace both beams using line tools.

j. Align the corners of a rectangle object as well as possible to the inscribed circles on

the tank clamp. Be sure to align to the same circle on both sides. Mark the center of

rotation as the center of this rectangle. Dropping the red channel to 0% with 200%

contrast can make the circles easier to see.

k. Using measurement tools, find the angle between the beams, the distance from the

center to the input beam, and the distance from the center to the intersection of the

beams. Record in Measured beam parameters.txt in the folder for this test; the data

processing will acquire this data from the file automatically.

12. Perform alignment as many times as needed to achieve desired parameter values. Re-

member to use locking screws to secure stages.

13. Plug fiber into photodiode, cover with black cloth, and ensure acceptable count rate (at

least > 1 kHz). Signal should be unaffected by turning the lights on and off; if a signal

change is seen, reposition cloth. Fine vertical adjustment should not throw off angular

alignment.
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14. Taking data:

a. Load ‘automatic delay series PCS’ python VI

b. Set speed sequence and ensure parameters are correct

c. Open https://sremote.pitt.edu/ and log in with ‘Network Connection’ method.

d. Click ‘Firewall-PHYAST-SSLVPN-RemoteMonitors-NetworkConnect’

e. Start ‘Network Connect’

f. Open VNC connection to correlator computer

g. Ensure default directory in ‘save as’ is pointing at desired save location. Sequence

will save in whatever directory is brought up by the dialogue box. If a different

directory is needed, save a dummy file and then delete it.

h. Press start in pythics VI

i. IMMEDIATELY change to the VNC window. Program will take control of mouse;

if VNC window is not up it will then fault because it cannot find the GUI elements

it is working with. If so, restart and try again.

j. Let run. For duration of run, computer should not be used as VNC must remain on

top and sequence requires mouse control.

15. In VNC, use ‘Transfer Files’ dialogue to move files to local computer.

Notes:

• Alignment should be checked anytime the apparatus is unscrewed.

• All samples are not the exact same height. Ensure that lasers are clear of all surfaces.

Clipping the beam will cause measurement errors. Clipping can be seen in the data by a

reversal or jump in the general slope as laminar flow is exited to about where turbulent

flow begins.

• In order to operate the software on the remote Windows 2000 system, a package called

Sikuli is used. This package uses pattern recognition to find buttons and moves the

mouse to them. Scripts are programmed separately from the main python program and

called from the command line using the subprocess module. Changes in how the script

behaves must be done in the Sikuli GUI. While Sikuli does not lock out the mouse, it

cannot register if the user has moved the mouse independently of its control, so it can fail
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to function properly if the user tries to use the mouse at the same time. While running

scripts, it is recommended the computer not be touched.

• Sikuli is supposed to bring the VNC window to the foreground, but a bug prevents this

from working when called from python at the time of writing. Therefore, the user must

ensure that after hitting the start button in pythics, the VNC window is brought to the

front and left there for the remainder of the run.

• If the VNC connection stops responding properly or disconnects, restart it and continue

from the last good PCS cycle. No saving will occur until the end of a cycle, so if a file

exists, the data was saved.

• If cycle fails to start, hit e-stop and retry. Occasionally a residual call can become queued

in the buffer and prevent the next sequence from starting properly.

A.5.2 Data Processing

1. Open ‘Data Process’ pythics VI. You may load individual data runs for viewing with

‘Load Data’.

2. Press ‘Batch Process’. This will process all data in a folder and output results to ‘Re-

sults.txt’ in the same location.

3. Copy ‘Trend graph.py’ into folder with these results and run it. This will generate a

Shear Rate vs. Speed graph.

4. Place the name of folder name containing the ‘Results.txt’ file in the folder list in ‘Uni-

fied Trend Graph’ to add the data to a multi-set graph.

5. Place the folder name containing the desired control sample’s ‘Results.txt’ file and the

folder name containing the desired sample’s ‘Results.txt’ file in the folder list in ‘Uni-

fied Trend Graph percent’ to add the data to a multi-set percent reduction graph.

Notes:

• Batch process will not graph the individual runs; if you need to see them use ‘Load Data’

to load individual files. It is recommended you check at least one run each time to ensure

fitting is not misbehaving.
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• Batch processing will process any data files in the same folder. To exclude files, place

them in a subfolder.

• Data points can be excluded from graphing by ‘Trend graph.py’ by commenting them in

‘Results.txt’ using ‘#’.

• Any physical parameters not encoded in the file name or the parameter file (ie. Cone

Radius, Fluid Viscosity, Index of refraction) are saved in the VI. They will reset to default

values for water on each reloading of the VI unless the default is changed.

• If there is a parameter file, the VI will set the values of ‘Scattering Angle’, ‘Measurement

Position’, and ‘Perihelion Distance’ to match what is in this file on load. To set these

manually, remove the parameter file from the directory.

• The ‘Low End Noise Threshold’ sets the minimum time below which all data is noise

from the Avalanche Photo diode. The default of 0.01 µs is good in most cases.

• Fitting uses all points between the low noise cuttoff (which eliminates shot noise from the

SPCM) and the Low G Threshold (which excludes noise once the correlation has fully

decayed). Fitting fits to G0e
−ate−Xt

2
, where a and X are the fitting parameters. a is

discarded without use, since the linear part compensates for effects we are not examining.

• The ‘Exponential Fit dV/dt’ is the actual fit data, taking into account uncertainties.

The linear fit information is provided as a sanity check and to help detect errors, and

should not be used for reporting.

• Graph rescaling can be disengaged by unchecking ‘Automatically Rescale to fit?’.
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APPENDIX B

FLYING CARPETS
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The Crookes Radiometer was first created by Sir William Crookes in 1874. An example

of this device is shown in Fig. B.1, where the bulb is partially evacuated and each vane

is typically 1cm2 by 0.1mm. When exposed to light, this device is observed to spin in

rough correlation to the intensity of light shone upon it, with the driving force apparently

acting on the blacked surfaces. This force, on the order of 2 µN, is generated by the heat

gradient resulting from the difference in absorption between the black and white surfaces; the

temperature difference is on the order of 0.1-0.5 K. This force is dependent on the pressure

in the vessel; for the original Crookes design it vanishes as the pressure is increased and also

decreases as pressure is continually lowered past a critical point [93].

This force, referred to as a Knudsen Force, a Gas-Kinetic Force, or a Radiometric Force,

is of limited value on the size scale at which first discovered. However, the fact that it

functions without the need for physical connection to a motor or moving parts makes it

practical for use in small devices; given the magnitude of the force, this effect is perfectly

suited to providing propulsion to micro and nano-scale mechanical systems.

Radiometric forces are a non-equilibrium edge effect, the result of the flow of gas around

the edge of an object under a temperature gradient, from cold to hot. This flow interacts

with the surface within one mean-free-path of the edge. The remainder of the surface is

inactive dead weight; this is why Crookes’ model ceases to function at atmospheric pressure,

where the mean-free-path is 70nm. The magnitude of the effect is also dependent on the

thickness of the vane. Having a thickness equal to the mean-free-path in the gas in which the

vane is immersed maximizes the force. Since this is an edge effect, the options for increasing

the active/inactive surface ratio are to shrink the vane to the one mean-free-path scale or

to perforate a larger vane, increasing the amount of active edge and minimizing the dead

weight. We attempted to follow the latter course, producing a thin, regularly perforated vane

via nano-fabrication that can generate significant force at atmospheric pressure, such that it

can generate, under a reasonable heat gradient, a force sufficient to more than overcome its

own weight.
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Figure B.1: A Crookes Radiometer (Image from http://en.wikipedia.org/wiki/

Crookes_radiometer)

B.1 THEORY OF RADIOMETRIC FORCES

Radiometric forces are primarily examined using the kinetic theory of gases. The phe-

nomenon is an inherently non-equilibrium gas flow process, and thus statistical mechanics

must be applied very carefully. A purely mathematical explanation of the effect was devel-

oped by Boltzmann, Reynolds, and Hettner, while Einstein provided a tractable qualitative

model which produces the correct result to within constants [93].
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B.1.1 The Physical Picture of the Force

Einstein’s model of the Gas-Kinetic Force is useful for explaining physically why there is a

force on the vane. We consider a vane that is free to move and has been given ample time

for the sides of the vane and the gas in their vicinity to reach their respective equilibrium

after having a temperature gradient placed across the vane. Looking at the gas near the

surface, above and below the vane but away from the edges, the pressure must be constant.

Therefore, the density must be higher on the cold side of the vane.

Within a mean free path of the edges, this requirement is broken because the particles

can move around the edge, meaning that equilibrium cannot be reached so long as the

temperature gradient exists, as a pressure difference between the two sides is present. Because

of this pressure difference, the higher density cold particles tend to diffuse into the lower

density hot region. This essentially acts as a low power jet, decreasing pressure near the

edge on the cold side. Despite the higher speed of the hot molecules, they tend to be deflected

back into the hot region either by the migrating cold particles or those in the cold region, due

to the relatively high density. This also tends to increase the rate of collision on the hot side,

which delivers more energy per impact due to temperature, further increasing the pressure

from that direction. Note that these effects rapidly fall off on both sides past a single mean

free path of the edge, as the remaining area of the surface is effectively an infinite sheet

at equilibrium with even pressure on both sides. Using this picture, Einstein obtained the

identical pressure equation to what will be derived below to within numerical constants.

B.1.2 Derivation of Gas Kinetic Forces

Following kinetic theory, the approximate first-order distribution of velocities in the presence

of a temperature gradient is

f(~v) =
β

π

(3/2)

e−β(v2x+v2y+v2z)

[
1 + Avy

(
5

2
− β(v2

x + v2
y + v2

z

)]
(B.1)

where A = 15
32nπσ2T

√
2πβ dT

dy
, n is the number density, β = m

2kBT
, T is the temperature, kB is

Boltzmann’s Constant, m is the molecular mass and πσ2 is the molecular cross section [94].
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Figure B.2: Schematic Closeup of a radiometer vane edge. L is the thickness of the vane,

λ is the mean free path, Tc is the colder temperature and Th is the hotter temperature.

Classical black/white painting for a vane is indicated.

Given this distribution, the pressure on a given surface in the normal direction is

P =
2

A

d(pH − pC)

dt

= 2nm

∫ ∞
−∞

dvx

∫ ∞
−∞

dvz

[∫ 0

−∞
dvyv

2
yf(~v)−

∫ ∞
0

dvyv
2
yf(~v)

]
=

15k∆T

16
√

2πσ2L
(B.2)

where p is the momentum of the gas particles at the semi-infinite surface and the factor of

two is added to take into account that the collisions are approximately elastic [93].

Substituting for the mean free path
(
λ = kBT√

2πσ2P

)
and the Knudsen Number

(
Kn = λ

L

)
,

this can be re-expressed as

P =
15nkB∆T

16L
λ =

15nkB∆T

16
Kn (B.3)
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These integrals were taken over the entire plate. However, from Einstein’s model, it is

known that the central surface of the plate cannot contribute to the force. It is therefore only

the area λ`, where ` is the perimeter of the vane, that contributes to the force. Accordingly

the total force on a square vane [94] is

F =
15nkB∆T

16
Kn(λ`) (B.4)

B.1.3 Optimization

This force increases as L is decreased toward the scale of the mean free path, but it must

obviously have some bounds on acceptable lengths and temperatures before the approxima-

tions become invalid. A bound on the temperature gradient can be found by examining the

pressure on the cold surface alone, PC = nkBT
2
− 15kB∆T

32
√

2πσ2L
(PH is identical except for the

sign). Since pressure cannot be negative in this context, this imposes an upper limit on the

temperature gradient,

∆T

L
≤ 16T

15λ
(B.5)

However, if the thickness of the plate were much less than the mean free path of the gas,

then the effect of the edge would become vanishing. Therefore

0 < λ ≤ L. (B.6)

Therefore, L = λ is seen to be the optimum vane thickness.

Since the force is proportional to perimeter, a larger vane would seem to be a simple

solution for increasing the force. However, increasing vane size with a simple square geometry

as used by Crookes would increase vane mass far more rapidly than perimeter. Therefore,

alternate geometries must be considered must to increase the force.
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B.1.4 Alternative Geometry: The Perforated Vane

Looking at Einstein’s explanation of the force, and with good intuitive agreement based

on the above equations for the pressure, it seems clear that a fairly straightforward way

to increase the force acting on the vane is to perforate it. This results in more edges at

which the force can be active and simultaneously decreases the total mass. If we look at

a hexagonally packed 50% area fraction array of circular holes, we can consider the force

acting on one unit cell of the pattern. Then the considerations are identical as those for the

preceding derivation, except that instead of the outer perimeter of a solid square, we are

treating an area that is the net perimeter of the perforations. Therefore the active area is

λ`′ = λ
A

r
, where A is the total active area of the vane and r is the radius of the circular

holes. The force from the holes is therefore [93]

F =
15nkB∆T

16
Kn

(
λ
A

r

)
(B.7)

For a hole diameter on the order of the mean free path of a gas, which is typically

nanometers, A
r

is much greater the perimeter ` so long as the vane is several mean free paths

or greater across. Note that this requires that the material between holes and the holes

themselves be at least a mean free path across, or else the derivation of the pressure becomes

incorrect.

B.2 FABRICATION

We construct vanes using PAA anodized using oxalic acid. Anodization of pure Al (99.999%)

in oxalic acid under proper temperature and electrical conditions results in a self-ordered

hexagonal array of pores with 100nm spacing and 40nm diameter. Thickness of this oxide is

easily controlled by anodization time [69]. Our target dimension is 70 nm, the average mean

free path of air at room temperature (20◦C), so the spacing and pore size provided by this

process is nearly ideal.

At 20◦C, n ≈ p
kBT

= 250.3477 × 1021Molecules/m3. Then the force available from a

membrane in Newtons would be (324.04A∆T ), assuming the ideal case of λ = r = L =
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Figure B.3: Schematic top view of a perforated vane. Inset shows a schematic side view.

70 nm. If 1 mm2 of active area can be subjected to a 0.1 K temperature difference, then a

force of 32µN can theoretically be achieved, enough to lift 3.27 mg.

A large sheet of alumina on the order of 70nm thick would be unable to support its

own weight. For structural integrity purposes, a much thicker inactive skeleton must be

produced to support the thinner active membrane. We produce a millimeter scale hexagonal

array with 50% fill fraction, on the order of 20 microns thick, and engineer in this layer

indentations containing the membranes which will be our active areas. These indentations

are 50 µm diameter. In order to create regions of variable thickness, we utilize 2 anodization

steps. After creating the initial thick layer, we perform photolithography and etching to

define through holes where our thinner oxide will reside, then reanodize briefly to grow it.

We then remove the remaining aluminum and open and widen our pores. The final product

is schematically represented in Fig. B.3.
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B.2.1 Fabrication Process

The thick anodization is carried out over 15 hours at 40V, 20mA in 0.3 molar Oxalic acid at

6◦C while the acid is being stirred at 500RPM. This produces on the order of 20µm of oxide.

AZ1512 Photoresist (PR) cannot be placed directly on porous materials, because it will

tend to penetrate into the pores, and PR inside the pores of such thick oxide will be nearly

impossible to remove, while that on the surface will tend to delaminate. To solve this issue,

we offaxis sputter coat the oxide with 180nm of W and Al. The Al is patterned using 15:1

H2O:85% phosphoric acid [95] at 50◦C and the W is imprinted with the pattern using 30%

H2O2 [70]. The layer of Al is needed because the PR delaminates from W in H2O2, while a

direct layer of Al could not easily be selectively removed. Note that interlayer stresses cause

the Al and W to separate in etching if layer thicknesses exceed 225nm. Once the pattern has

been imprinted in the coatings, the PR is removed and the open areas are etched through

to the bottom. This is done by etching in phosphoric acid at 50◦C, which also removes the

Al coating, with 1 mL chromic acid added once the sputtered layer is cleared. The addition

of chromic acid stops the etching of Al but not alumina, leaving clean, unetched aluminum

at the bottom of the indentations.

We then reanodize the sample, which grows a new layer in the indented regions. This

is far more controllable than trying to etch down to this thickness in the previous step, and

also improves ordering in the indentations as the indentations in the underlying aluminum

generated by the previous anodization act as an ordering template [96]. We widen the pores

by briefly etching in Phosphoric acid at room temperature.

Wet etching in 1:2:0.4:4 CuSO4:HCl:H2O2:H2O on a strainer while coated with PMMA

frees the membrane by dissolving the remaining Al backing. Etching in 1:1 CuSO4:HCl has

been successfully used in this way to separate 100nm membranes in the past [96, 97], however

this leads to redepostion of Cu on the membrane, requiring careful cleaning. The additional

H2O2 and HCl act to keep the Cu in solution, resulting in a clean membrane. Alternate

methods involving the use of FeCl3 have been pursued in the past, however these lead to

Fe contamination (clearly visible as the membranes turn rust brown) and clogging of our

porous membranes [98]. A further etch in room temperature phosphoric acid removes the
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naturally occurring end caps on the pores, resulting in through holes. The PMMA is then

removed, leaving porous, variable thickness, single piece alumina membranes.

Figure B.4: Schematic of Etching Process

While this fabrication was performed successfully a few times, the fabrication method in

its entirety proved to be unreliable. Consistent adhesion and thickness of the metal layers

proved elusive, and patterning yielded inconsistent results. Fig B.5 shows a membrane that

was successfully created, although the thickness was incorrect.

B.2.2 Heat Gradient & Measurement of the Force

A sufficiently large heat gradient must be generated in order for the effect to become ob-

servable. Ideally, simply placing the membrane on a hotplate will provide enough heating,

however this will tend to simply heat the entire sample and the surrounding air evenly,

whereas a gradient is require between the sides of our samples. In order to gain more control

over the heating and to increase repeatability and comparability to theory, a couple different

approaches were considered.

One approach would be to use laser heating. An absorbing coating would be applied

to one side. However, this method has the disadvantage that it would require a specialized
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Figure B.5: SEM Image of a Variable Thickness Membrane, cracked so the cross section is

visible. Thicknesses are not optimized. Inset shows a closeup of the thin region.

stage in order to give the beam access to the lower side if we wish to apply the force in the

upward direction. One way to read the temperature induced by the laser could be to use

thermo-florescent phosphors as the absorber [99, 100].

Another approach considered would use a metal coating to absorb microwaves and heat

the membrane. This may be more useful as it does not require optical access, however

it is harder to determine the temperature gradient being produced. The difficulty lies in

determining how much microwave energy is being converted into heat.

The method used to measure the force is dependent on the magnitude of the force we

are able to achieve. In the ideal case, the force would be large enough to generate significant

lift. In this case the force can be simply determined by utilizing a micro-balance in order

to measure the changes in the measured weight of the membrane. If the force proved to be
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much smaller than anticipated, it would be necessary to utilize a torsion pendulum system

capable of measuring a minute displacement of the membrane when it is heated. This will be

more difficult to translate into a force measurement. The sample could be suspended from a

wire of known torsional stiffness and the displacement measured using laser interferometry.

This would be made more difficult by the fragility of the membranes.

B.3 OUTCOME

We chose not to continue this work in light of the difficulties in the fabrication. Anodization

and etching techniques and lessons learned were used as the basis for the techniques detailed

in Chapter 3.
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APPENDIX C

DROP BEARINGS
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Friction between contacting solid surfaces is a dominant force on the micro-scale and

a major consideration in the design of Micro-Electro-Mechanical Systems (MEMS). Non-

contact fluid bearings have been investigated as a way to mitigate this issue. Here we

discuss a new design for surface tension-supported thrust bearings utilizing patterned Su-

perhydrophobic surfaces. We examine sources of instability in the design, and demonstrate

that it can be simply modeled and has superior stiffness as compared to other designs.

C.1 INTRODUCTION

MEMS are increasingly finding practical application. Friction from solid-solid contacts in

bearings and hinges can lead to device failure or breakage, so practical devices have primarily

used flexing components, such as cantilevers, rather than rotating shafts and gears, which are

common in macro-scale devices. Frictional concerns are one of the primary obstacles to using

rotating components for MEMS [101]. In macroscopic devices, air bearings with an actively

injected lubricating gas layer or journal bearings with a dynamically maintained lubricant

film are used in high-performance applications, but engineering such intricate structures is

challenging in MEMS [102]. The use of surface tension to maintain a liquid lubricant layer

is an alternative that is most effective in MEMS, since surface tension is very significant

in microscopic devices. Furthermore, surface tension and fluid pressure at these scales can

actually be used to passively support a MEMS bearing, eliminating all solid-solid contact.

In such bearings, a liquid, usually water or an aqueous solution, is used between the two

solid surfaces. Variations in surface wetting (e.g. hydrophobicity) are used to pin the liquid

in position. The liquid-solid contact is low friction compared to solid-solid contacts, allowing

parts to slide with less stiction and lower wear [6].

Surface tension supported liquid bearings with a variety of geometries have been inves-

tigated. In the simplest case, a single drop of water trapped between identical hydrophilic

pads in the center of the bearing (Fig. C.1a) supports the rotating part (rotor) above the

stationary substrate (stator). Wear is reduced due to the lack of solid contact and concen-

tricity of the pads is well maintained by surface tension, but the tilt stability is poor, as there
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Hydrophilic
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Drop & Axle Bearing Ring & Axle Bearing

a)a) b)

c) d)

Figure C.1: Liquid bearing configurations, showing top view and cross section.

is little energetic cost to tipping the rotor even to the point of a collision between the rotor

and stator. Using a ring of water reduces the hydrodynamic drag on the surfaces somewhat

by reducing the wetted surface area (Fig. C.1b), and has increased tilt stiffness [7]. The tilt

stiffness can be greatly increased by breaking up the wetting ring into discrete drops and

making the rotor Superhydrophobic, as in Fig. C.1c. Since the drops do not wet to the rotor

surface, a central drop, which wets to both sides, is added to the center to maintain the

relative positions of the surfaces. The decreased contact area between the water and solid

can reduce the hydrodynamic drag, and the superhydrophobic contacts provide high lifting

forces and reduce titling, but energy loss due to the remaining contact angle hysteresis of

the superhydrophobic surface may dominate the sources of drag [103].

The ideal surface tension supported liquid bearing would provide high stiffness in all

directions while minimizing all sources of drag. Our work investigated a new ring and axle
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Model of Assembled Bearing Rotor

Stator

Bearing

Figure C.2: A model of ring and axle liquid bearing, with photographs of a rotor, stator

and assembled bearing. The model rotor is rendered as partially transparent so the liquid

pattern can be seen.

bearing design (Fig. C.1d and Fig. C.2), which combines several of the best features of other

designs. The design uses a central drop, which wets hydrophilic areas on both the rotor and

the stator, as an axle. The axle holds the rotor down and keeps the rotor concentric with the

stator. A ring of water is wetted to a hydrophilic annulus on the stator, while the surface

of the rotor in contact with the ring is superhydrophobic. The ring provides a vertical force

to balance that of the axle, and stiffens the bearing with respect to tilting. Since there is

no wetting and dewetting in the system as the rotor spins, there are no hysteretic losses.

This new ring and axle liquid bearing design is not unconditionally stable, e.g. the ring will

actually push the rotor to tilt if it is overfilled with water. Here, we examine this system

and determine the parametric region of stability.

The axle and ring each generally provide two contributions to the forces acting on the

rotor: the force due to Laplace pressure, which is the result of the pressure difference across

the liquid surface, and the force directly due to surface tension of the water acting on

the rotor. Even in the simplest cases, calculating the stability and stiffness of the bearing

analytically is not trivial, and numerical solution is more practical. We examine the bearings

via numerical modeling using energy minimization [104].
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C.2 MODELING

We performed simulations of our bearings using Surface Evolver [105], an open source finite

element analysis system. Surface Evolver minimizes the energy of the liquid surface subject

to constraints, which include the size and contact angles of the wetting and non-wetting

surfaces, and the volume of liquid in each region. The effect of gravity is also included, using

experimental values for the mass of the rotor. Only the liquid surface was directly modeled;

the rotor and stator were represented by boundary conditions and constraints. Typically,

the distance between the rotor and stator is allowed to vary, but the angle of the rotor is

fixed in any one calculation. The stiffness of the bearing and the equilibrium tilt angle were

calculated by displacing the rotor vertically or tilting the rotor while adjusting the liquid-

air interface to minimize energy. The tilt with the minimum energy was recorded as the

equilibrium tilt, while the curvature of the energy versus height or tilt was used to calculate

the stiffness. An example of a generated liquid surface mesh can be seen in Fig. C.4.

Not all combinations of constraints resulted in physically realizable bearing configura-

tions. In the model, a configuration was considered unstable if either the center drop sepa-

rated or the contact of the ring of water on the upper surface vanished at any point during

the calculation. For a range of axle and ring volumes, the model was used to determine if

the configuration would be stable and, if stable, the equilibrium rotor height, tilt, and tilt

stiffness.

C.3 FABRICATION

To verify the validity of the model, the bearing design was also experimentally tested. We

fabricated Superhydrophobic surfaces on thin 2 in foil, for use as rotors, and 2 in discs,

for use as stators, using the method detailed in Chapter 3 (these methods were initially

developed here). The stator ring and axle hydrophilic areas were patterned by coating

the Superhydrophobic surface with photoresist and sputter-depositing Ti, then performing

lift off, to form a 1.25 mm radius circular hydrophilic region for the axle and an annular
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hydrophilic region with an average 3.35 mm radius and a width of 1.4 mm. SPDT was

then used to cut out 1 cm diameter rotors from 0.5 mm thick discs with a superhydrophobic

surface produced by the same method. SPTD was also used to remove the superhydrophobic

structure in a 1.25 mm radius circle at the center of the rotor to create a matching hydrophilic

circle for the axle water to wet. The rotor hydrophilic area was defined by SPDT instead

of photolithography to guarantee concentricity of the rotor edge and the axle to within the

accuracy of the ultra-precision lathe used for SPDT (< 100 nm). A rotor and stator pair are

shown in Fig. C.2.

C.4 EXPERIMENTAL

Hydrophilic
Liquid
Hydrophobic

a) b)

Unstable - Disconnected Axle Unstable - Over�lled Axle

Unstable - Over�lled Ring

c)

Unstable Bearing Stable Bearing

Figure C.3: Illustration of possible unstable bearing states. Images of a failed and a func-

tional bearing are shown below.

Experimentally, the bearings were photographed in profile over a range of center and

ring liquid volumes (examples shown in Fig. C.3). The parts were allowed to completely

dry between tests to minimize fluid volume uncertainties, and the ring and axle hydrophilic

regions were filled with water just before placement to minimize evaporation. To achieve

full wetting of both axle pads reliably with such small volumes of water, half of the volume

had to be placed on each side. Rotors were handled by vacuum tweezers from the back side

to ensure that the superhydrophobic surfaces were not damaged. After placement of the

rotor, the entire bearing was carefully rotated to ensure that the image was taken in profile
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perpendicular to the tilt. Image analysis was then used to find the height and angle of tilt.

In both experiments and models, we find that there are several possible sources of in-

stability. If the axle has insufficient liquid relative to the ring, the liquid on the rotor and

stator will not join to form an axle or will re-separate due to the lift from the ring with most

of the water on one side, and the rotor will not remain centered (Fig. C.3a). If the liquid in

the ring is insufficient relative to the axle, then the rotor is lifted partially off of the ring and

tips to one side, since balancing on the center drop alone is unstable (Fig. C.3b). Finally, if

the ring has too much water in it, it bulges asymmetrically, again resulting in a tilted (and

often off-center) rotor (Fig. C.3c).

Fig. C.4 shows the results of experiments and models with the same range of axle and ring

volumes. There is an exact match between the predicted and measured regions of stability.

This shows that a simple model can predict the stable range of parameters for the bearing.

There are unstable regions to the left and right of the stable volume regions in Fig. C.4.

The upper left unstable region is caused by too much liquid in the ring compared to that in

the axle, resulting in a bulge in the ring or separation of the axle. The lower right unstable

region results from too much liquid in the axle compared to that in the ring, resulting in the

rotor tipping over.

The experimentally measured and numerically modeled rotor heights show reasonable

agreement. Both show increasing height of the rotor with increasing volume in either the

axle or the ring. Quantitatively, the results agree to within 30% with no free parameters

in the model. The results for the rotor tilt show less agreement between the experiments

and model. The model predicts effectively no tilt in the stable region, while experimentally

measurable tilt is observed, particularly near the high ring volume and low axle volume

boundary of the stable region. This experimental tilt seems to fluctuate without any clear

trend, and is not highly repeatable. It is likely that experimentally this results from the

assembly process of the bearing, where the bearing is not guaranteed to start off with zero

tilt; i.e. near the edge of the stable region, there may be some hysteresis in the tilt.

With some evidence that the model is accurate, we can then predict the stiffness of the

bearing with respect to tilt (vertical stiffness is not generally difficult to achieve, and thus

is not analyzed). The results, calculated from the dependence of the energy of the system
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Figure C.4: Graphs of height and tilt angle for the examined ring and axle volumes, where

the color axes are height in mm and tilt in degrees, respectively. The stable regions match

between the experiments and model, although particular tilt angle is not well correlated. We

also show modeled tilt stiffness, where the color axis is k in nJ/degree2, and an example of our

model mesh, which directly simulates only the liquid surface (solid contacts are represented

by constraints).

on tilt, are shown in Fig. C.4. As a comparison, for a single bearing thicknesses (0.38 mm),

a model drop bearing has a spring constant of 0.32 nJ/degree2 (drop covers the same area

as the full ring and axle bearing), a ring bearing has a spring constant of 0.34 nJ/degree2

(ring inner radius equal to the outer radius of th axle of the ring and axle bearing), and a

ring and axle bearing has a spring constant of 2.55 nJ/degree2, which represents a significant
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improvement. The tilt stiffness of ring and axle bearings is calculated to generally increase

with decreasing volume of liquid in either the axle or ring. It is likely that having less liquid

in the ring directly increases the stiffness, while less liquid in the axle pulls the rotor closer

to the stator and compresses the ring, increasing its stiffness.

C.5 OUTCOMES

Surface tension supported ring and axle bearings have significant potential for use in MEMS

due to their low frictional losses and complete lack of solid on solid contact. These results

demonstrate that these devices are stable over a large range of ring and axle volumes, and that

this region can be modeled using energy minimization, simplifying design and experimental

work with these devices. It also shows that these devices have a higher spring constant for

a given size than alternative designs.

A common objection to water-based liquid bearings is that, while promising from a

mechanics standpoint, the evaporation of the liquid water makes them of limited practical

use. Although the testing presented here was performed with pure water, we have also

tested longer term use of a saturated water-CaCl2 solution on superhydrophobic surfaces

with patterned hydrophilic regions. This solution has similar surface tension to pure water

and since CaCl2 is deliquescent, it can actually pull moisture from the air, rather than

allowing the water to evaporate. In practice, this solution was stable over a period of at

least a year under ambient conditions, and shows no signs of evaporation or corrosion of the

underlying surface.

These bearings were originally developed for the purpose of demonstrating effective low

drag microscopic systems. Initial plans to measure the deceleration of our bearings using

a high speed camera in order to quantify drag had issues with consistently assembling the

bearing and getting it up to speed without introducing instability into the system. Methods

considered for spinning up the rotors included spinning up the stator and then suddenly

stopping it or adding magnets to the rotors and spinning up using magnetic torque (the

reverse of this would eventually be applied to our torque system). Sample durability also
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proved to be a challenge, as the need to continually remove and replace the rotors revealed

that our surfaces needed further refinement (see Chapter 3.1.2). Attempts at scaling the

process down also revealed that we were at the lowest size our fabrication method for the

rotors could tolerate; there was too little surface area for them to be held on the diamond

turning machine chuck reliably when they were shrunk further. Thus we would have had

to completely redesign our fabrication to reduce the size of the bearings. It was therefore

decided to pursue a project that we could achieve with our current surfaces and fabrication

method.
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