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OPTICAL AND ELECTRICAL PROPERTIES OF ORGANIC SEMICONDUCTORS:  

EXPERIMENT AND SIMULATION 

 

Xialing Chen, PhD 

University of Pittsburgh, 2015 

 

 

This dissertation focuses on the charge transport of organic semiconductors, particularly in the 

presence of traps and defects. Rather than attempting to ultimately pure materials, intentional 

mixtures were made and studied. The materials were characterized by electrochemistry, UV/Vis 

spectroscopy and computational studies using density functional theory (DFT) and time dependent 

DFT (TDDFT).  

In experiment, the phthalocyanine films were prepared from solution. We explored how to 

improve the coatings of organic semiconductors on different substrates. Moreover, the effect of 

how intentionally introduced traps or barriers change the charge transport was studied using the 

spin-coated octabutoxy phthalocyanine and naphthalocyanine mixed films. It was found that the 

introduced barriers decreased the mobility. And a negative differential resistance was observed in 

the saturated region of the Field-effect-transistor (FET) measurements in the mixed films. 

  



 v 

 In simulation, density functional theory (DFT) and time-dependent density functional 

theory (TDDFT) calculations were performed to predict optical and electrical parameters of the 

semiconducting materials. In the calculations of phthalocyanine molecules with different metal  

or ligand substitutions, it was found that the electrical and optical properties of the phthalocyanine 

semiconductors could be tuned more with different organic ligands than by modifying the metal 

centers. For the mixed valence (MV) bipyridine bridged triarylamine systems, the simulation 

perfectly predicted the absorption of the spectra and the blue-shift of the spectra with different 

solvents reported by our collaborator in experiments.  
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1.0  INTRODUCTION  

There has been tremendous interest in organic semiconductors since the 1970s1 because of many 

applications in organic light emitting diodes (OLEDs),2 thin film transistors (TFTs),3 solar cells,4 

photovoltaic,5 etc. Compared to inorganic semiconductors, organic materials have advantages in 

solution processability,6 synthetic tailorability,7 and flexibility, all of which makes it quite 

promising to be fabricated on flexible substrates from solution for cheaper and rollable electronic 

devices. At this moment, there have already been commercialized OLEDs8 for displays, and 

organic photovoltaic9 grids or stations to collect solar energy. Organic semiconducting materials 

are still under-developed compared to the inorganic counterparts, mainly because of the limited 

efficiency; however, the efficiency10 has been greatly improved through the effect made in 

academia and industry.  For example, as shown in Figure 1.1, the efficiency of the organic solar 

cells increases from 4% to 12% in the past 10 years, and it suggests continued improvement. 

For inorganic crystalline semiconductors such as Si, Ge, GaAs, the crystal structure is 

formed through covalence versus ionic interactions, and the electronic structure consists of the 

valence band and conduction band separated by a forbidden gap as illustrated in Figure 1.2. 

Electrons constrained in the valence band cannot move freely until they are excited to the 

conduction band by thermal or photon assisted excitation. The example of some popular inorganic 

semiconductors and their bandgaps are listed in Table 1.1. 
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Figure 1.1. The summary of the different solar cell efficiency (from Ref. 9) reports given by National Center for 

Photovolatics  in 2013.  

 

Figure 1.2 A schematic of the electronic band structure in a typical inorganic semiconductor. Eg is the band gap, or 

the energy an electron needs to jump from the valence band to the conduction band. 
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Table 1.1. Selected examples of inorganic semiconductors and their bandgaps. 

Material Bandgap (eV) @ 300K 

Si 1.11 

Ge 0.67 

Se 1.74 

GaAs 1.43 

GaN 3.4 

CdSe 1.73 

ZnO 3.37 

 

Compared to the well understood inorganic semiconductors, the mechanism of charge 

transport in organic semiconductors is still under-explored. In some organic semiconductor films 

such as pentacene11 and rubrene, it was reported that they display bandlike transport mobility of 

𝜇~𝑇−𝑛 (n>0). However, this is only applicable to highly purified crystalline organic 

semiconductors of excellent charge transport efficiency with mobility greater than 10 𝑐𝑚2 (𝑉. 𝑠)⁄ . 

For most organic semiconductors, due to the weak van der Waals interaction and sensitivity to 

impurity, the mobility of charge transport is much smaller than the inorganic materials and deviate 

from the band theory. 

Among the many theories, thermal assisted hopping is the most popular to describe how 

charge transports in organic semiconductors. In the disordered semiconductor films from solution, 

the charge carriers are assumed to be localized, and the energy distribution obeys a Gaussian law: 

𝑔(𝐸) =  
𝑁

√2𝜋𝜎
exp (−

𝐸2

2𝜎2
) 

, where 𝑁 is the number of charge carriers, and 𝜎 is the standard deviation of the Gaussian 

distribution.  It is called the Gaussian Disorder Model (GDM),12 and the charge transport occurs 
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via hopping between the neighboring sites. The hopping rate 𝑣𝑖𝑗 for a charge to jump from site 𝑖 

to site 𝑗 can be described using the Miller-Abrahams12 formula: 

𝜐𝑖𝑗 = 𝜐0 exp(−2ɤ∆𝑅𝑖𝑗) {exp (- 
𝜀𝑗−𝜀𝑖

𝑘𝐵𝑇
)             𝜀𝑗 > 𝜀𝑖                               (1.1) 

, where 𝜐0 is a prefactor; ɤ is the inverse localization length; 𝑅𝑖𝑗 is the distance between 

site 𝑖 and 𝑗; 𝜀𝑖 𝑎𝑛𝑑 𝜀𝑗 are the energy of the site 𝑖 and 𝑗, respectively; 𝑘𝐵 is the Boltzmann constant; 

and T is the temperature. The first exponential component depicts the tunneling contribution while 

the second term is for the thermal activation. If the electron or hole jumps from a high energy site 

to a low energy site, the probability is 1. Otherwise, an exponential Boltzmann correction would 

be needed. We can see from formula (1.1) that the hopping rate depends on both the positions and 

energies of the localized states, which means that the charge transport should be affected both by 

the crystal structure and the energetic distribution of the charge carriers.  

A more commonly used formula is based on the classical Marcus Hush theory,13 where the 

charge transfer rate is described in terms of the electronic coupling element 𝑉and reorganization 

energy 𝜆.  

𝑘 =
𝑉2

ħ
[

𝜋

𝜆𝑘𝐵𝑇
]1 2⁄ 𝑒𝑥𝑝 [−

(𝑗−𝑖+𝜆)2

4𝜆𝑘𝐵𝑇
]                                                                    (1.2)           

In Equation 1.2, 𝑘𝐵  is Boltzmann constant; T is the temperature;  ħ  is the Planck`s 

constant; and 𝜀𝑖  𝑎𝑛𝑑 𝜀𝑗 are the energy of the site i and j, respectively, 

Hopping is a thermal assisted charge transfer process and the mobility increases with 

temperature. This was observed in experiments14 with a trend of ln 𝜇 ~(−
1

𝑇
 )  reported. One 

popular modification to hopping theory is the variable range hopping theory (VRH),15 where the 

1                   𝜀𝑗 < 𝜀𝑖 
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path length (𝑑𝑉𝑅𝐻) of the neighboring hopping sites varies with temperature as 𝑑𝑉𝑅𝐻~𝑇−1/4. It 

indicates that the charge transport can occur to non-nearest neighbors, but the probability of long-

range jumps drops off exponentially with temperature. 

         However, it is interesting that in some single crystalline organic semiconductors, for example, 

the rubrene explored by Gershenson,16  the mobility increases with temperature at low temperature 

and decreases at high temperature. They attributed the complex temperature behavior to the 

existence of impurities in the film. At first, there were significant amount of impurities in the film, 

and it showed the localized charge transport performance. However, after all the traps were filled 

in, the charge transports in a band-like way similar to the single crystal inorganic semiconductors. 

 

 Besides the temperature dependence, crystal structure is also critical in affecting the 

performance of organic semiconductors. For example, charge transport would be greatly enhanced 

if the film aligns with a closer crystal structure and better π-π interaction.17 Moreover, the existence 

of impurities significantly affects the charge transport. There are two categories of impurities. One 

is not conductive and called defects. The other can transport charge carriers but is of different 

energy levels from the normal transport sites, and are called traps or barriers. Figure 1.3 depicts 

how the traps and barriers influence the charge transport in organic semiconductors. In the case of 

electron transfer, if the impurity site is of a higher Lowest Occupied Molecular Orbital (LUMO) 

than the normal transport site, there would be an energy barrier to be overcome, and this kind of 

impurity site is called barrier site. On the contrary, if the LUMO of the impurity site is lower than 

the normal transport site, after the electron jumps to the impurity site, it would be trapped there as 

there is also an energy barrier to be overcome if it wants to jump to the next normal transport site. 

It is termed trap site. For the hole transport, it is the Highest Occupied Molecular Orbital (HOMO) 

that matters. Therefore, the trap site is with higher HOMO energy level than the normal transport 
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site and vice versa for the barriers.  Many research groups18 have been working hard to try to 

purify19 the materials to improve the charge transport efficiency of organic semiconductors. 

 

 

Figure 1.3. Schematic graph of how trap and barrier sites form in semiconductors  

 

Other than the charge transport ability, we are also interested in the optoelectronic 

behaviors of organic semiconductors because of their vast applications in LEDs and solar cells. 

The efficiency ƞ of an organic solar cell is ƞ =
𝑉𝑜𝑐∗𝐽𝑠𝑐∗𝐹𝐹

𝑃
∗ 100% , where 𝑃  is the input light 

intensity; Voc and Jsc represent the open-circuit voltage and short-circuit current density, and FF is 

the fill factor. The open-circuit voltage is determined by the bandgap energy of the semiconductor 

material, and the short-circuit current is proportional to the amount of the hole-electron pairs 

generated. So the open-circuit voltage gets maximized with a semiconductor of big band gap, but 

a big bandgap always means less absorption of light and therefore a smaller current density. So a 

balance of these two is needed for an optimal performance and it is important to investigate the 

energy level and absorption spectra to predict and explore promising materials for organic LED 

and photovoltaic applications. 
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2.0  THEORETICAL STUDY OF ELECTRIC AND OPTICAL PROPERTIES OF 

PHTHALOCYANINES WITH DIFFERENT METAL AND LIGAND SUBSTITUTIONS  

2.1 INTRODUCTION 

Phthalocyanines are planar macrocyclic molecules with an aromatic phthalocyanine group. The 

delocalized 18π electron system makes it thermally and chemically stable. The phthalocyanines 

are attracting more and more interest because of the vast applications. For example, due to the 

strong absorption in the visible range of 600-800nm, they are widely used as a photosensitizer in 

photodynamic therapy20 and dye-sensitized solar cells. 21 Moreover, the promising conductivity 

makes it useful in optoelectronics, such as nonlinear optical devices, 22, 23 field effect transistors, 

24 thin film solar cells. 25 However, the most important reason people are interested in 

phthalocyanines is mainly because of two reasons. First, the unsubstituted phthalocyanines are not 

soluble in most solvents but with the proper peripheral substitution, they become soluble, 26 which 

enables low-cost solution deposition techniques. Second, the electrical27, 28 and optical29 behavior 

of the phthalocyanines can be tuned by the different metal and ligand substitutions.  For example, 

in the work of Zhong, 28 they computationally studied the molecular orbitals, electronic absorption, 

IR and Raman spectra of phthalocyanines with substitutions of methoxyl or methylthio on α or β 

peripheral position. It was found that the electron donating methoxyl and methylthio introduction 

increase the HOMO and LUMO orbitals compared to the unsubstituted phthalocyanines, and the 

α substitution influenced the molecular structure and spectroscopic properties more than the β 

substitution. Meanwhile, there were also studies to elucidate the effect of modifying the metal 

center. For example, Chen27 et.al theoretically studied the phthalocyanines with metals of Fe, Co, 
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Ni, Cu and it was reported that the metal center influences the internal reorganization and hence 

affects the charge transport rate. However, there has been no quantitatively work to compare the 

contribution of the metal and peripheral substitution.  

The charge transfer rate for an electron/hole to jump to the neighboring site can be 

described by the Marcus Hush theory. 30 Based on equation 1.2, it can be seen that the electron 

transfer rate gets maximized with a large electronic coupling and small reorganization energy. The 

reorganization energy consists of the internal31 contribution between neighboring transfer sites and 

the external contribution with the surrounding solvents and environment. In this section, we intend 

theoretically to understand how the internal reorganization energy is affected by different metal 

center and ligand substitutions in phthalocyanine and naphthalocyanine molecules. The process is 

depicted in Figure 2.1.  

To theoretically explore the electrical and optical properties, DFT and TDDFT simulations 

were applied systematically to predict molecular orbitals, energy level, internal reorganization 

energy and electronic absorption spectra of phthalocyanines with different substitutions. In the 

end, the influence of metal and organic ligand substitutions is compared to discover which one 

tunes the electric and optical to the phthalocyanines to a larger extent. It is important and 

significant to guide to choose molecular candidates for applications in solar cells, LED and 

photovoltaics that require an extensive understanding of energy levels and optical spectra.  
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Figure 2.1. The scheme of how to calculate the internal reorganization energy of a hole transport process of Equation 

2.1. The energy of point a (Ea) is the single point energy obtained from the excited state of the optimized neutral 

geometry. The energy of b (Eb) is the ground state energy of the optimized geometry of the +1 cationic specie. The 

reorganization component λ1= Ea- Eb. The similar scheme would be applied to calculate λ2. The internal reorganization 

energy for reaction (2) will be the sum of λ1 and λ2. 

 

  

𝑀 + 𝑀+ → 𝑀+ + 𝑀 

a 

b 

c 

d 

(2.1) 
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2.2 COMPUTATIONAL METHODS 

        

 

 

Figure 2.2 Chemical structure of phthalocyanine (Pc); 1,4,8,11,15,18,22,25-Octabutoxy-29H,31H-phthalocyanine 

(OBuPc); naphthalocyanine (Nc); 5,9,14,18,23,27,32,36-Octabutoxy-2,3-naphthalocyanine (OBuNc). M—metal or 

H2 

 

For all compounds studied, full geometry optimizations were performed using Gaussian 09, 

Revision D.0132 with the B3LYP functional33 of a 6-31G* basis set for light atoms, and the 

1 

3  

4 
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LANL2DZ pseudopotential basis set34 for metal atoms. An example Gaussian input file is 

displayed as supplementary material (Appendix A.1). Avogadro35, version 1.0.3 was used to draw 

the molecules, generate input files for Gaussian simulations, and visualize the molecular orbitals. 

The UV-vis spectra were obtained using GaussSum36 3.0 by plotting the absorbance intensity with 

wavelength.  

The energy level of HOMO, LUMO and band gap were obtained from the optimized 

neutral geometries. Reorganization energies were calculated as illustrated in Figure 2.1. TDDFT 

simulations were applied to the optimized neutral geometries to get the electronic absorption 

spectra. The energy level, reorganization energy and electronic absorption spectra of the 

phthalocyanines with various metal and ligand substitutions are examined to determine which has 

a bigger influence on the electrical and optical properties. 

2.3 RESULTS AND DISCUSSIONS 

It is found that the substitution of octabutoxy raises both the HOMO and LUMO energy level, and 

it is more obvious in phthalocyanine than naphthalocyanine. Naphthalocyanine is about 0.5 eV 

higher in HOMO energy level and 0.3 eV smaller LUMO-HOMO band gap than phthalocyanine. 

Different metal centers (Ni, Cu, Zn) do not tune the energy level much. They affect the LUMO 

energy level more than the HOMO and band gap. It agrees with the electrochemistry result reported 

by Arıcan, et.al37 that different metal substitutions significantly affect the redox peaks. TiO and 

VO behave differently from the others and have a lower HOMO and LUMO energy levels 

compared to the other metals. To summarize, the metal centers do not tune the energy level as 

much as the ligand substitutions of phenyl or octabutoxy.  
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Visualization of the HOMO and LUMO molecular orbital (Table 2.1) can help interpret 

the observations. It is shown that the frontier molecular orbitals are mainly associated with the 

isoindole and phenyl aromatic rings, which explains why the ligand substitutions affect the energy 

level more than the metal centers in both the phthalocyanines and naphthalocyanines. Moreover, 

the VO substituted phthalocyanines have different molecular orbitals from the Cu, Ni, Zn and H2 

substituted phthalocyanines, therefore, the VO behaves differently from the other substituted 

phthalocyanines.  
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 Figure 2.3. The energy level and band gap of the Pc, OBuPc, Nc and OBuNc with different metal centers. (a) HOMO 

energy level; (b) LUMO energy level; (c) HOMO-LUMO Gap. Pc, OBuPc, Nc and 

OBuNc 

(a) (b) 

(c) 
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Table 2.1. The visualization of the HOMO and LUMO molecular orbital. (a) HOMO orbitals; (b) LUMO orbitals. 

 

HOMO Pc OBuPc Nc OBuNc 
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Table 2.1. Continued 

 

LUMO Pc OBuPc Nc OBuNc 
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Figure 2.4. The internal reorganization energy of the Pc, OBuPc, Nc and OBuNc with different metal centers. (a) 

electron transport; (b) hole transport. Pc, OBuPc, Nc and OBuNc 

(a) 

(b) 
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For the electron or hole charge transfer, the substitution of octabutoxy ligand significantly 

increases the internal reorganization energy. It can be understood by examining the molecular 

geometry of the octabutoxy substituted phthalocyanine and naphthalocyanine. As shown in Figure 

2.5, the octabutoxy substitution makes the structure not planar and therefore it will be harder for 

the octabutoxy substituted molecules to distort and reorganize compared to the flat phthalocyanine 

molecules. There have been reported X-ray data that the octabutoxy substituted nickel 

phthalocyanine shows a strained saddle38 structure instead of the planar structures in 

phthalocyanines, which agrees with our simulation results. 

 

Figure 2.5. Optimized geometry of ZnOBuPc 

 

After the DFT studies of band gap and reorganization energy, TDDFT simulations were 

conducted on the optimized geometries and the electronic absorption spectra were obtained. 

A representative example of the UV-Vis spectrum is shown in Figure 2.6 (the others are 

included as the supplementary materials in Figure A.1.) and the assignment of the peaks are 

displayed in Table 2.3. The spectra with varying metal center or peripheral ligand are also plotted 

to determine how they tune the spectra. 
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Figure 2.6. The calculated UV-VIS spectrum of the metal-free phthalocyanine molecule H2Pc. 

 

Figure 2.7. The calculated UV spectra by varying ligand or metal center 
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Table 2.2. The wavelengths (nm) of the absorption of the Pc, OBuPc, Nc and OBuNc with different metal centers.  

        Metal         Ligand Sn E/eV E/nm f Dominant Transitions 

(configuration coefficient) 

H2 Pc 1 2.10 591.3 0.3277  LUMO+1 

2 2.11 588.2 0.4332  LUMO 

3 2.98 415.8 0.0923  LUMO

OBuPc 1 1.76 705.2 0.4584  LUMO 

2 1.80 687.6 0.3950  LUMO+1 

3 2.46 503.6 0.0962  LUMO

4 2.51 494.8 0.0400  LUMO

5 2.54 488.6 0.0378  LUMO+1

Nc 1 1.75 710.3 0.6275  LUMO 

2 1.84 675.4 0.5399  LUMO+1 

4 2.75 451.6 0.1449  LUMO

OBuNc 1 1.53 808.1 0.5749  LUMO 

2 1.65 753.4 0.5319  LUMO+1 

3 2.36 525.0 0.1467  LUMO

4 2.47 502.3 0.0211  LUMO

5 2.51 493.1 0.0337  LUMO 

       

Ni Pc 2 2.13 580.9 0.3767  LUMO 

3 2.13 580.9 0.3769  LUMO+1 

OBuPc 1 1.84 672.4 0.4243  LUMO 

2 1.87 664.4 0.4389  LUMO+1 

Nc 1 1.81 684.9 0.5535  LUMO 

2 1.81 684.7 0.5534  LUMO+1 

OBuNc 1 1.60 776.4 0.4976  LUMO 

2 1.63 762.9 0.5563  LUMO+1 

       

Cu Pc 4 2.12 585.4 0.3805  LUMO 

5 2.12 585.4 0.3804  LUMO+1 

OBuPc 4 1.80 688.4 0.4192  LUMO 

5 1.81 684.0 0.4434  LUMO+1 

Nc 4 1.80 687.4 0.5697  LUMO 

5 1.80 687.3 0.5695  LUMO+1 

OBuNc 4 1.59 780.2 0.5165  LUMO 

5 1.61 767.8 0.5712  LUMO+1 
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Table 2.2. Continued 

       

Zn Pc 1 2.12 586.1 0.3950  LUMO 

2 2.12 586.1 0.3949  LUMO+1 

7 3.32 373.5 0.0168  LUMO

8 3.31 373.5 0.0168  LUMO+1 

OBuPc 1 1.80 689.7 0.4340  LUMO 

2 1.81 686.1 0.4595  LUMO+1 

3 2.48 500.1 0.0898  LUMO 

4 2.53 490.3 0.0968  LUMO+1 

5 2.55 486.6 0.0202  LUMO+1 

Nc 1 1.81 685.9 0.5971  LUMO 

2 1.81 685.9 0.5971  LUMO+1 

5 2.87 432.7 0.1412  LUMO 

OBuNc 1 1.59 779.9 0.5447  LUMO 

2 1.61 769.8 0.5892  LUMO+1 

3 2.48 500.2 0.0502  LUMO 

4 2.50 496.3 0.1873  LUMO 

       

TiO Pc 1 2.04 606.5 0.3521  LUMO 

2 2.04 606.5 0.3522  LUMO+1 

6 3.26 380.1 0.0059  LUMO 

OBuPc 1 1.70 728.4 0.4094  LUMO 

2 1.74 711.5 0.3911  LUMO+1 

4 2.45 506.9 0.0489  LUMO 

5 2.48 499.3 0.0612  LUMO+1 

Nc 1 1.71 723.3 0.5194  LUMO 

2 1.71 723.3 0.5195  LUMO+1 

OBuNc 1 1.49 830.2 0.4564  LUMO 

2 1.52 814.5 0.5209  LUMO+1 

3 1.87 664.0 0.0128  LUMO+2 

5 2.41 513.4 0.2039  LUMO 

       

VO Pc 3 2.03 610.5 0.3447  LUMO 

4 2.03 610.5 0.3447  LUMO+1 

OBuPc 3 1.73 717.7 0.3887  LUMO 

4 1.74 711.0 0.3741  LUMO+1 

Nc 3 1.70 731.4 0.4984  LUMO 

4 1.70 731.4 0.4983  LUMO+1 

OBuNc 3 1.48 837.6 0.4506  LUMO 

4 1.49 831.6 0.4926  LUMO+1 
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For all the Pc, OBuPc, Nc and OBuNc studied, there is always an intense absorption around 

580-800 nm which is mainly attributed to the transition from HOMO to LUMO and termed the Q 

band.23, 39 There is an additional less stronger peak near 400 nm. It is called the Soret band23, 39 and 

produced by transition from the deeper occupied molecular orbitals of HOMO-1, HOMO-2 or 

HOMO-3 to the LUMO or LUMO+1. By examining the difference of the spectra with various 

metal or ligand substitutions, we can draw a similar conclusion that the ligand substitutions tune 

the absorption of phthalocyanines more than the metal center. The introduction of octabutoxy and 

phenyl ligand makes the peaks red-shifted. 

2.4 CONCLUSIONS AND DISCUSSIONS 

Calculations were performed on phthalocyanines and naphthalocyanines by varying the metal and 

ligand substitutions. DFT was used to optimize the geometries and predict electronic properties of 

molecular orbital composition, energy level and internal reorganization energy. TDDFT was 

applied to simulate the UV-VIS absorption spectra. From both the electrical and optical calculation 

results, it was found that the substitution of ligand was more influential than the modification of 

the metal center. Consequently, one can expect a considerable difference in redox potential by 

ligand substitution, but subtle changes by modulating the metal site. We will use the calculations 

to tune the charge transport in the organic field effect transistor discussed in Chapter 4. 
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3.0  ELECTRONIC COUPLING BETWEEN TWO AMINE REDOX SITES 

THROUGH THE 5,5’-POSITIONS OF METAL-CHELATING 2,2’-BIPYRIDINES  

This work was published in Chemistry- A European Journal, 2012, 18,14497-1450 ( Hai-Jing Nie, 

Xialing Chen, Chang-Jiang Yao, Yu-Wu Zhong, Geoffrey R. Hutchison, and Jiannian Yao) as 

“Electronic Coupling between Two Amine Redox Sites through the 5,5'-Positions of Metal-

Chelated 2,2'-Bipyridines”. Xialing Chen conducted the simulation work under the supervision 

of Geoffrey R Hutchison. 

 

 

3.1 INTRODUCTION 

 

 

The understanding of electron-transfer processes in conjugated donor–bridge–acceptor arrays is of 

fundamental importance for molecule-based electronic devices. Mixed- valence (MV) compounds 

provide a simple model for this purpose.40-43 In a common MV compound with Mn+-L-M(n+1)+ 

formulation,44-51 and references cited there in the organometallic redox centers  Mn+  and M(n +1)+ 

act as donor and acceptor, respectively, and L stands for an organic bridge. A special feature in 

MV systems is that the donor and acceptor component have the same composition but different 

oxidation state. 

In addition to organometallic or inorganic redox centers, the use of organic redox 

components in MV systems has received considerable interest recently.52-54 For example, hydra- 
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zine,55-57 quinone,58, 59 and nitrobenzene60, 61 have been examined as the charge-bearing sites in a 

number of organic MV systems. 

However, the most widely studied organic MV systems are those with   triarylamines.62-64 

Triarylamines   are   extensively used as hole-injecting and hole-transporting materials in a wide 

range of optoelectronic devices,65 such as photovoltaic cells,66, 67 organic light-emitting diodes,68 

and electrochromic films.69 The readily accessible N/N+ redox process of triarylamines and good 

stability of the oxidized N+  species  are some  advantages.  Most  reported  triarylamine   MV   

systems are  bridged  by  a  readily   oxidizable   organic   bridge (Figure 3.1),62, 63 for example, 

phenyl, anthracene, phenylalkynyl, phenylvinyl, platinum  alkynyl,  paracyclophane,  oligofluor- 

ene,  or  oligothiophene.  The design and study of triarylamine MV systems with new category of 

bridges is of interest. Information obtained in studies on charge transfer processes in these systems 

is useful for the design and synthesis of new optoelectronic materials. 

 

Figure 3.1. Representative organic bridges for triarylamine MV systems (n = 0–4). 

According to the Robin and Day classification,70 MV systems are characterized as Class I, 

II, or III depending on the strength of the electronic coupling between individual redox sites, which 
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ranges from essentially zero (class I), to moderate or strong (class II), and to very strong (class 

III). For a class II system, a single intervalence charge-transfer (IVCT) band in the near-infrared 

(NIR) region is frequently observed. This band is associated with the optically induced electron 

transfer between two redox sites. It is usually symmetric, broad, and of low energy and molar 

absorptivity. The energy of the IVCT band (𝜐̃𝑚𝑎𝑥 ) of a class II system is equal to the total 

reorganization energy (λ) of the involved electron-transfer process and is solvent-dependent. In 

contrast, class III systems often exhibit narrow and asymmetric IVCT bands. These bands are 

solvent-independent and sometimes have distinct vibrational structures. Recently, a new 

intermediate MV system, namely, the borderline II/III class,71, 72 has received considerable 

attraction, wherein the electron is localized but solvent is averaged. 

On the other hand, transition metal complexes with polypyridine ligands often have rich 

redox and optical properties.73-76 Incorporation of metal components into triarylamines would 

produce materials with appealing electronic properties. For example, some triarylamine containing 

ruthenium complexes have been reported to have enhanced light-harvesting strength and hole-

transporting abilities and displayed promising performances in dye-sensitized solar cells.77, 78 

 However, the use of polypyridine complexes in organic MV systems has been rarely 

documented. In conjugation with our continued interest in the design of and studies on new MV 

systems with transition metal complexes,[2g–j] we recently reported the first organic MV system 

A bridged by a polypyridine metal component50 (Figure 3.2; M = [Ru- (tpy)2], tpy = 2,2’;6’, 2’’-

terpyridine). This complex displays an IVCT band at 1240 nm. However, it overlaps strongly with 

the RuN+ transition at the lower-energy side. Following this report, we disclosed new organic 

triarylamine MV system B containing a polypyridine metal unit79 (Figure 3.2 ; M = [Re(CO)3Cl]). 

Systems A and B differ in that the two  amine sites in  A are  bridged through the  metal center, 
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while two di-p-anisylamino groups in B are connected through the 5,5’-positions of a laterally 

metal chelating 2,2’-bipyridine. However, the electronic properties of system B and the underlying 

charge transfer mechanism have not been addressed in depth. We present here a thorough study 

on system B by expanding the metal component to [Ru(bpy)2] and [Ir(ppy)3] (Scheme 3.1), where 

bpy is 2,2’-bi-pyridine and ppy is 2-phenylpyridine. The electronic proper- ties of diamine 

compounds 1–4 and newly prepared monoamine model compounds 5–8 were studied by structural, 

electrochemical, spectroscopic, and theoretical calculations. Corresponding one-electron-oxidized 

MV systems were interpreted by NIR transition analysis. In addition, frontier orbital calculations 

were performed on the one-electron-oxidized species in vacuum and various solvents to gain 

information on the spin-density population and charge-transfer mechanism. 

 

Figure 3.2. Triarylamine MV systems A and B. Counteranions are omitted. 
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3.2 EXPERIMENTAL SECTION 

Spectroscopic measurements: All UV/Vis absorption spectra were obtained by using a TU-

1810DSPC spectrometer from Beijing Purkinje General Instrument Co. Ltd. at room temperature 

in denoted solvents in a conventional 1.0 cm quartz cell. UV/Vis/NIR spectra were recorded on a 

PE Lambda 750 UV/Vis/NIR spectrophotometer.  

Electrochemical measurement: All CV measurements were made with a CHI 620D 

potentiostat with one-compartment electrochemical cell under an atmosphere of nitrogen. All 

measurements were carried out in 0.1 M Bu4NClO4/acetonitrile at a scan rate of 100 mV.s-1. The 

glassy carbon working electrode had a diameter of 0.3 mm. The electrode was polished prior to 

use with 0.05 mm alumina and rinsed thoroughly with water and acetone. A large-area platinum 

wire coil was used as counter electrode. All potentials are referenced to an Ag/AgCl electrode in 

saturated aqueous NaCl without regard for the liquid junction potential.  

Oxidative spectroelectrochemistry: Oxidative spectroelectrochemistry was performed in 

a thin-layer cell (optical length=0.2 cm) in which an ITO glass electrode was set in indicated a 

solution of the compound under study (c≈1*10-4 M) and 0.1 M TBAP as supporting electrolyte. A 

platinum wire and Ag/AgCl in saturated aqueous solution were used as counter electrode and 

reference electrode, respectively. The cell was put into a PE Lambda 750 UV/Vis/NIR 

spectrophotometer to monitor spectral changes during electrolysis.  

Computational methods: DFT calculations were carried out by using the B3LYP 

exchange correlation functional80 as implemented in the Gaussian 09 program package.81 

The electronic structures of complexes were determined by using a general basis set with 

the Los Alamos effective core potential LanL2DZ basis set for ruthenium and 6-31G* for other 

atoms.34 Solvation effects were included by employing the conductor-like polarizable continuum 
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model (CPCM) with solvent=acetonitrile and united-atom Kohn–Sham (UAKS) radii.82-84For 

calculations of the localization/delocalization of the radical cations, the B3LYP functional was 

used with 35% HF exchange instead of the usual 20%, in accordance with previous methodology 

by Kaupp et al.85 

Characterization: NMR spectra were recorded on a Bruker Avance 400 MHz 

spectrometer. Spectra are reported in ppm from residual protons of deuterated solvent for 1H NMR 

(7.26 ppm for CDCl3 and 1.92 ppm for CD3CN) and 13C NMR (77.00 ppm for CDCl3). MS data 

were obtained with a Bruker Daltonics Inc. Apex II FT-ICR or Autoflex III MALDI-TOF mass 

spectrometer. The matrix for MALDI-TOF measurement was a-cyano-4-hydroxycinnamic acid. 

Microanalysis was carried out using Flash EA 1112 or Carlo Erba 1106 analyzer at the Institute of 

Chemistry, Chinese Academy of Sciences. Compounds 1 and 3 were prepared according to 

published procedures.79 

Synthesis of ruthenium complex 2: 1 (36 mg, 0.06 mmol) and [Ru (bpy)2Cl2]·2H2O (37 

mg, 0.08 mmol, 1.2 equivalent) were added to 10 mL of ethanol and 5 mL of water. The mixture 

was stirred and heated to reflux for 4 h under N2 atmosphere. After cooling to room temperature, 

ethanol was removed under reduced pressure, followed by the addition of an excess of KPF6. The 

resulting precipitate was collected by filtering and washed with water and Et2O. The obtained solid 

was subjected to flash column chromatography on silica gel (eluent: saturated aq. 

KNO3/water/acetonitrile 1/20/500) followed by anion exchange with KPF6 to give 35 mg of 

complex 2 in a yield of 45%. 1H NMR (400 MHz, CD3CN): d=3.81 (s, 12 H), 6.56 (d, J=2.3 Hz, 

2H), 6.85 (d, J=8.8 Hz, 8H), 6.96 (d, J=8.8 Hz, 8H), 7.06 (t, J=6.7 Hz, 2 H), 7.18 (d, J=11.6 Hz, 

2H), 7.47 (d, J=5.6 Hz, 2H), 7.52 (t, J=6.7 Hz, 2 H), 7.74 (t, J=7.8 Hz, 2H), 7.82 (d, J=9.1 Hz, 2H), 

7.92 (d, J=5.4 Hz, 2 H), 8.10 (t, J=7.9 Hz, 2H), 8.22 (d, J=8.1 Hz, 2 H), 8.45 (d, J=8.1 Hz, 2H); 
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MALDI-MS: m/z 1169.3 [M-PF6]+, 1024.3 [M-2PF6]+, 868.3 [M-2PF6-bpy]+; elemental 

analysis (%) calculated for C58H50F12N8O4P2Ru·H2O: C 52.30, H 3.93, N 8.41; found: C 52.57, 

H 3.90, N 8.54.  

Synthesis of iridium complex 4: Compound 1 (50 mg, 0.08 mmol) and 2 (44 mg, 0.04 

mmol, 0.5 equivalent) were added to 10 mL of CH2Cl2 and 5 mL of MeOH. The mixture was 

stirred and heated to reflux for 6 h under an N2 atmosphere. After cooling to room temperature, an 

excess of KPF6 was added. The suspension was stirred for 30 min and then filtered to remove 

insoluble inorganic salts. The filtrate was concentrated under reduced pressure to afford a crude 

yellow solid. The obtained solid was dissolved in 20 mL CH2Cl2 and the solution washed with 

H2O (20 mL*3). The organic phase was dried over anhydrous MgSO4. The solvent was removed 

under reduced pressure, and the crude product was purified by silica gel chromatography (eluent: 

100/1 CH2Cl2/ MeOH) to give 65 mg of complex 4 (62%). 1H NMR (400 MHz, CDCl3): d=3.82 

(s, 12H), 6.06 (d, J=7.5 Hz, 2H), 6.59 (t, J=7.2 Hz, 2H), 6.72 (t, J=7.4 Hz, 2H), 6.76 (d, J=8.7 Hz, 

8 H), 6.89 (d, J=8.7 Hz, 8H), 7.12 (s, 2H), 7.15 (t, J=6.4 Hz, 2H), 7.31 (d, J=9.2 Hz, 2 H), 7.38 (d, 

J=7.7 Hz, 2H), 7.68 (d, J=5.7 Hz, 2H), 7.82 (m, 4H), 7.89 (d, J=9.2 Hz, 2H); MALDI-MS: m/z 

1111.5 [M-PF6]+; elemental analysis (%) calculated for C60H50F6N6O4PIr: C 57.36, H 4.01, N 

6.69; found: C 57.50, H 4.24, N 6.52.  

Synthesis of 5-(di-p-anisylamino)-2,2’-bipyridine (5): A suspension of 5- bromo-2,2’-

bipyridine (200 mg, 0.85 mmol), 4,4’-dimethoxydiphenylamine (293 mg, 1.28 mmol, 1.5 

equivalent), [Pd2(dba)3] (39 mg, 0.04 mmol, 5 mol%), dppf (24 mg, 0.04 mmol, 5 mol%), and 

NaO𝑡Bu (98 mg, 1.02 mmol, 1.2 equivalent) in 15 mL of toluene was heated at 140 oC for 48 h 

under N2 atmosphere in a sealed pressure tube. The system was then cooled to room temperature. 

The solvent was removed under vacuum and the crude product was purified by silica gel 
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chromatography (eluent: 5/1 petroleum ether/ethyl acetate) to yield 207 mg of 5 as a yellow solid 

(64%).1H NMR (400 MHz, CDCl3): d 3.79 (s, 6H), 6.85 (d, J=8.7 Hz, 4 H), 7.09 (d, J=8.7 Hz, 4 

H), 7.19 (t, J=6.1 Hz, 1H), 7.30 (d, J=8.7 Hz, 1H), 7.73 (t, J=7.6 Hz, 1 H), 8.17 (d, J=8.7 Hz, 1H), 

8.25 (d, J=8.0 Hz, 1H), 8.28 (d, J=2.1 Hz, 1H), 8.60 (d, J=4.6 Hz, 1H); 13C NMR (100 MHz, 

CDCl3): d=55.5, 115.0, 120.1, 121.0, 122.5, 126.2, 126.8, 136.7, 139.5, 140.8, 145.2, 147.3, 149.0, 

156.2, 156.5; EI-HRMS: m/z calculated for C24H21N3O2 : 383.1634; found: 383.1638. Synthesis 

of ruthenium complex 6: 5 (50 mg, 0.13 mmol) and [Ru(bpy)2Cl2]·2H2O (82 mg, 0.16 mmol, 1.2 

equivalent) were added to 10 mL of ethanol and 5 mL of water. The mixture was stirred and heated 

to reflux for 4 h under N2 atmosphere. After cooling to room temperature, ethanol was removed 

under reduced pressure, followed by the addition of an excess of KPF6. The resulting precipitate 

was collected by filtering and washed with water and Et2O. The obtained solid was subjected to 

flash column chromatography on silica gel (eluent: saturated aq. KNO3/water/acetonitrile 

1/20/400) to give 105 mg of complex 6 (74%). 1H NMR (400 MHz, CD3CN): d=3.82 (s, 6H), 6.66 

(d, J=2.3 Hz, 1 H), 6.87 (d, J=8.8 Hz, 4 H), 7.00 (d, J=8.8 Hz, 4H), 7.09 (t, J=6.5 Hz, 1 H), 7.21 

(m, 2H), 7.36 (t, J=6.4 Hz, 1H), 7.46 (m, 3H), 7.56 (d, J=5.6 Hz, 1 H), 7.74 (m, 1H), 7.78 (d, J=6.7 

Hz, 2H), 7.87 (d, J=5.5 Hz, 1 H), 7.91 (t, J=7.8 Hz, 1H), 8.06 (m, 4 H), 8.17 (d, J=8.3 Hz, 1H), 

8.25 (d, J=8.0 Hz, 1H), 8.47 (d, J=8.2 Hz, 3H); MALDI-MS: m/z 942.3 [M-PF6]
+, 797.3 [M-

2PF6]
+, 641.2 [M-2PF6bpy]+; elemental analysis (%) calculated for C44H37F12N7O2P2Ru·4H2O: C 

45.60, H 3.91, N 8.46; found: C 45.44, H3.42, N 8.83.  

Synthesis of rhenium complex 7: 5 (50 mg, 0.13 mmol) and [Re(CO)5Cl](57 mg, 0.16 

mmol, 1.2 equivalent) were added to 10 mL of toluene. The mixture was stirred and heated to 

reflux for 8 h under N2 atmosphere. After cooling to room temperature, toluene was removed under 

reduced pressure. The obtained solid was subjected to flash column chromatography on silica gel 
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(eluent: 40/1 CH2Cl2/ethyl acetate) to give 85 mg of complex 7 (94%). 1H NMR (400 MHz, 

CDCl3): d=3.83 (s, 6H), 6.96 (d, J=8.6 Hz, 4H), 7.19 (d, J=8.6 Hz, 4H), 7.26 (overlapping with 

solvent residue,1 H), 7.33 (m, 1H), 7.79 (d, J=8.7 Hz, 1H), 7.90 (overlapping, 2 H), 8.52 (s, 1H), 

8.91 (d, J=5.1 Hz, 1H); MALDI-MS: m/z 1341.2 [2M-Cl]+, 1287.3 [2M-Cl-2CO]+, 654.3 [M-Cl]+; 

elemental analysis (%) calculated for C27H24ClN3O5Re: C 46.85, H 3.49, N 6.07; found: C 46.88, 

H 3.30, N 6.01. 

Synthesis of iridium complex 8: 5 (50 mg, 0.13 mmol) and [{Ir (ppy)2Cl}2] (70 mg, 0.065 

mmol, 0.5 equivalent) were added to 10 mL of CH2Cl2 and 5 mL of MeOH. The mixture was 

stirred and heated to reflux for 6 h under an N2 atmosphere. After cooling to room temperature, an 

excess of KPF6 was added. The suspension was stirred for 30 min and then filtered to remove 

insoluble inorganic salts. The filtrate was evaporated to dryness under reduced pressure to give a 

crude yellow solid. The obtained solid was dissolved in 20 mL of CH2Cl2, followed by washing 

with H2O (20 mL*3). The organic phase was dried over anhydrous MgSO4. The solvent was 

removed under reduced pressure, and the crude product was purified by silica gel chromatography 

(eluent: 100/1 CH2Cl2/MeOH) to give 115 mg of complex 8 (88%). 1H NMR (400 MHz, CDCl3): 

d=3.83 (s, 6 H), 6.06 (d, J=7.5 Hz, 1 H), 6.28 (d, J=7.5 Hz, 1H), 6.62 (t, J=7.3 Hz, 1H), 6.75 (t, 

J=7.5 Hz, 1 H), 6.79 (d, J=8.8 Hz, 4H), 6.89 (t, J=7.4 Hz, 1H), 6.93 (d, J=8.8 Hz, 4 H), 6.99 (t, 

J=7.5 Hz, 1H), 7.04 (t, J=6.3 Hz, 1 H), 7.13–7.20 (m, 3H), 7.35 (dd, J=9.1, 2.6 Hz, 1H), 7.42 (d, 

J=7.7 Hz, 1H), 7.56 (d, J=5.7 Hz, 1 H), 7.64 (m, 2H), 7.78 (m, 3H), 7.86 (m, 2H), 7.96 (t, J=7.7 

Hz, 1 H), 8.16 (d, J=9.2 Hz, 1 H), 8.29 (d, J=8.2 Hz, 1H); MALDI-MS: m/z 884.5 [M-PF6]+; 

elemental analysis (%) calculated for C46H37F6N5O2PIr: C 53.69, H 3.62, N 6.81; found: C 53.79, 

H 3.97, N 6.56. 



 

30 

3.3 RESULTS AND DISCUSSION 

Design and synthesis and single crystal structure: Compounds studied in this paper (1–8) are 

shown in Scheme 3.1. Electron-donating methoxy substituents were used to ensure chemical 

reversibility of the N/N+ process at an easily accessible potential. Amine atoms are directly 

connected to the bridging ligand to induce strong coupling between them. Ru, Re, and Ir metal 

components were chosen because of the stability of these complexes and their relatively high 

metal-associated oxidation potentials, which are well separated from those of triarylamines. These 

complexes could also offer an opportunity to study the effect of different oxidation states of the 

metal center (RuII, ReI, IrIII) on the electronic delocalization across the bridge. We note that a bis-

triarylboron system bridged through the 5,5’-positions of a metal-chelating 2,2’-bipyridine was 

reported by Wang and co-workers.86 However, that paper is devoted to the studies of the electron-

accepting ability of triarylborons and spectroscopic response to fluoride anions, instead of MV 

interpretation. 
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Scheme 3.1. Synthesis   of   studied   compounds.   a) [Pd2(dba)3]   (dba = trans,trans-dibenzylideneacetone),   1,1’-

bis(diphenylphosphino)ferrocene   (dppf), NaO𝒕Bu, 70 %. b) [Pd2(dba)3], dppf, NaO𝒕Bu, 64 %. c) 1.cis-[Ru(bpy)2Cl2]; 

2. KPF6, 45 %. d) [Re(CO)3Cl] , 74 %. e) 1. [{Ir(ppy)2Cl}2]; 2. KPF6, 62 %. f) 1. cis-[Ru(bpy)2Cl2]; 2. KPF6, 74 %. g) 

[Re(CO)3Cl] , 94 %. h) 1. [{Ir(ppy)2Cl}2]; 2. KPF6, 88 %. 

 

Compounds 1–8 were synthesized   as   outlined   in Scheme 3.1. The synthesis of 5,5’-

bis(di-p-anisylamino)-2,2’-bi- pyridine  (1)  has  been  reported79   previously  by  palladium-

catalyzed C-N coupling between 5,5’-dibromo-2,2’-bipyridine87 and 4,4’-

dimethoxydiphenylamine.88 A single crystal was obtained by slow evaporation of the solvent of a 

solution of 1 in CHCl3, and its X-ray crystallographic structure is shown in Figure 3.3.89 The N-N 

distance between the two amino nitrogen atoms is 9.80 Å. The two pyridine rings are essentially 

coplanar with a dihedral angle of 177.5o. Complexes 2–4 were obtained in moderate yields through 

complexion of 1 with cis-[Ru(bpy)2Cl2], [Re(CO)5Cl] , and [Ir(ppy)2Cl]2,   respectively.   5-(Di-p-
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anisylamino)-2,2’-bipyridine 5 was prepared through a similar C-N coupling between 5-bromo-

2,2’-bipyridine and 4,4’-dimethoxydiphenylamine in 64 % yield. Model complexes 6–8, with one 

amine redox site, were prepared as well for a comparison study. Some related triarylamine-

containing polypyridine ligands or complexes such as 5,5’-bis(diphenylamino)-2,2’-bipyri- 

dine,905-(di-p-anisylamino)-2,2’-bipyridine,91 an RuII complex with a 1,10-

bis(diphenylamino)phenanthroline ligand,92 and a RuII  or ReI  complex with 5,5’-bis(carbazolyl)-

2,2’-bipyridine93 have previously been reported. However, none of these was intended to study the 

N-N electronic coupling. 

 

Figure 3.3. Thermal ellipsoid plot with 50 % probability of the X-ray crystal structure of 1. Hydrogen atoms and 

solvents are omitted for clarity. 

 

Electrochemical studies: The electronic properties of these compounds were first studied 

by cyclic voltammetric (CV) analysis (Figure 3.4, Figures B.1 and B.2 in the Supporting In- 

formation, and Table 3.1).  When the scan was reversed at +1.2 V, monoamine ligand 5 displayed 

a chemically reversible N/N+ redox process at +0.86 V versus Ag/AgCl (see Figure B.1a in the 

Supporting Information, red line). However, a typical electrochemical–chemical–electrochemical 

(ECE) process was observed when the potential was scanned beyond +1.4 V. The irreversible 
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wave at +1.41 V is assigned to further oxidation of the  in situ generated N+ species (N+  N2+ 

), and a new product was formed during this  process  which  gave  rise  to  two  new  redox  couples  

at +0.63 and +1.03 V. The identity of this new product has not been determined at this stage. 

However, similar ECE processes have been previously reported for some triarylamines, and 

formation of carbazole derivatives has been suggested and proved.94, 95This electrochemical 

characteristic was more or less evident in the CV profiles of all compounds studied when the 

potential was swept beyond +1.4 V. 

 

Figure 3.4. Comparison of the cyclic voltammograms of the N/N• + processes of 1–8 in CH2Cl2. 

Bisamine ligand 1 exhibited two well-separated redox couples at +0.75 and +0.95 V versus 

Ag/AgCl (See Figure B.1e in the Supporting Information). They are associated with the stepwise 

oxidation of two amine sites to the corresponding nitrogen radical cation species (N+). The 

comproportionation constant Kc96 is 2450, which indicates moderate thermodynamic stability of 
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the electrochemically generated organic MV species. When ligands 1 and 5 are coordinated with 

RuII, ReI, or IrIII, the N/N+ processes take place at higher potential (around 200 mV more positive, 

Figure 3.4), reflecting the electron-withdrawing nature of the metal components. Similarly, two 

well-separated N/N+ processes are observed in the CV profiles of complexes 2–4, and the potential 

separation ∆E is 160, 200, and 180 mV, respectively. We stress that the ∆E value should not be 

taken as a parameter for quantitative measurement of the electronic coupling between two amine 

sites. Compounds 1–4 are not a family with analogous, closely related structures and electronic 

properties. Moreover, electrochemical data are largely dependent on the measurement conditions,  

such  as  the  solvent and supporting electrolyte.97, 98 In addition to  the  N/N+  and N+/N2+ 

processes, complexes 2 and 6 exhibit a RuII/III process overlapping with the  N+ /N2+  wave,  and  

complexes  3 and 7 display a  Re-associated  wave  at  higher  potentials.  In the  case  of  complex  

6,  the  anodic  process  is  complicated  by a desorption peak (Supporting Information Figure 

B.1b). Oxidation of iridium in complexes 4 and 8 is not evident in their CV profiles. For complexes 

2–4 and 6–8, the higher cathodic  current  compared  to  the  anodic  current  of  the peaks around 

+1.0 V is a result of  the  contamination  caused by the irreversible N+/N2+ processes. However, 

this was not an issue when the potential was scanned back before the N+/N2+ process, as shown 

in red lines in Figure B.1 in the Supporting Information. 
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Table 3.1. Electrochemical Data of Compounds Studieda 

Compound E1/2 (anodic) E1/2 (cathodic) Eb(mV) Kc 

amine-based metal-based 

1, N-N ligand +0.75, +0.95, +1.45c -- -- 200 2450 

2, N-Ru-N +0.96, +1.12, +1.50c +1.46 -1.34, -1.55, -1.86 160 510 

3, N-Re-N +0.97, +1.17, +1.52c +1.85 -1.53d 200 2450 

4, N-Ir-N +0.96, +1.14, +1.52c e -1.59, -1.98 180 1120 

5, N ligand +0.86, +1.41c -- -- -- -- 

6, N-Ru +1.04, +1.43c +1.50f -1.31, -1.53, -1.79 -- -- 

7, N-Re +1.07, +1.50c +1.82 -1.45,d -1.63d -- -- 

8, N-Ir +1.09, +1.49c e -1.48 -- -- 

aThe potential is reported as the E1/2 value vs Ag/AgCl unless otherwise noted. The anodic scan was run in 

dichloromethane. The cathodic scan was run in acetonitrile. bPotential difference of two consecutive N/N+ processes. 
cIrreversible oxidation of N+ species, Eanodic. dIrreversible reduction, Ecathodic. eNot observed. fOverlapping with 

adsorption/desorption peak. 

 

 

The cathodic CV profiles of these compounds are shown in Figure B.6 in the Supporting 

Information and the reduction potentials are summarized in Table 3.1. No reduction event was 

evident for ligands 1 and 5 within the potential window of the solvent used (CH3CN). However, 

Ru complexes 2 and 6 display three redox couples at -1.34, -1.55, -1.86 and -1.31, -1.53, -1.79 V 

versus Ag/AgCl, respectively. The first two waves are ascribed to reduction of the auxiliary bpy 

ligands, and the third couple is associated with reduction of the bridging bpy unit, which is 

connected to two electron-donating anisylamino groups and thought to be more sluggishly 

reduced. The cathodic waves of Re complexes 3 and 7 are chemically irreversible. In addition to 

the bpy-associated reduction, an irreversible Re process is believed to happen in these complexes,99 

which  complicated the electrochemical behavior. The bpy-associated reduction events  of  Ir  

complexes  4  and  8  occurred  at  -1.59  and -1.48 V, respectively. At more cathodic potential, a 

ppy associated reduction wave could be observed. 
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Density functional calculations of the neutral states of 1–8: To aid in understanding 

their electronic structures, DFT calculations were first performed on the above compounds in their 

neutral states at the B3LYP/LanL2DZ/6-31G*/vacuum level (see details in the Experimental 

Section). The ruthenium and iridium complexes are cationic. However, the term “neutral state” 

will be used to refer to their as-prepared states for consistency. The two pyridine rings of the DFT-

optimized structure of 1 are basically coplanar, consistent with its crystal structure. The LUMOs 

of 1, 3–5, 7, and 8 have major contributions from the bpy units connected to the anisylamino 

groups (Figures B.3–B.10 in the Supporting Information). However, the LUMOs of Ru complexes 

2 and 6 are mainly associated with the auxiliary bpy ligands.The bpy units connected to the 

anisylamino groups of these two complexes begin to make major contributions at higher 

unoccupied orbitals such as LUMO+2 and LUMO+3. These DFT results are in agreement with 

the above electrochemical findings. 

The upper occupied molecular orbitals of 1–4 are shown in Figure 3.5. According to the 

electron localization, these orbitals can be classified into four categories: those associated with 

both the amine and bridge components, and those lying mainly on the amine units, the metal 

components, or the bridge. Interestingly, the orderings of these orbitals are different for all four 

compounds, albeit with some similarities. The HOMOs of 1–4 are all associated with both the 

amine and bridge components. For 1, 2, and 4, the HOMO-1 levels have major density on the 

amine segments. However, HOMO-1 and HOMO-2 of 3 are dominated by Re(CO)3Cl character, 

and its HOMO-3 has a similar composition to HOMO-1 of 1, 2, or 4. The HOMO-2 and HOMO-

3 of 1 and 2 are predominantly associated with the amine components, and they are 

quasidegenerate. However, HOMO-2 and HOMO-3 of 4 have dominant contributions from the 

Ir(ppy)2 segments, and their HOMO-4 and HOMO-5 have similar compositions to HOMO-2 and 
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HOMO-3 of 1 and 2. The metal component (Ru) of 2 predominantly contributes to its HOMO-5. 

The HOMO-4 levels of 1 and 2 have major characters of the bridge units. Orbitals with similar 

bridge-associated compositions of 3 and 4 lie in lower occupied levels (Figure B.9 and Figure B.10 

in the Supporting Information). 

 

Figure 3.5. Selected frontier orbital diagrams for compounds 1-4. 
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The use of Koopman’s theorem100 to estimate the electronic coupling parameter Hab of MV 

compounds has been demonstrated for many systems since 1990.101, 102 In the case of triarylamine 

organic MV systems, Lambert, Coropceanu, Brdas, and co-workers102, 103 used the energy 

separations ∆E between HOMO and HOMO1 to roughly estimate the amine–amine electronic 

coupling (∆E=2Hab). We note that HOMO and HOMO-1 of compounds in their studies have very 

similar orbital compositions to those of 1, 2, and 4, which have ∆E values of 0.43, 0.32, and 0.71 

eV, respectively (Figure 3.6). This suggests that iridium complex 4 may have the strongest 

electronic coupling. For rhenium complex 3, the HOMO1 composition is totally different from 

those of 1, 2, and 4. Consequently, using the HOMO and HOMO-1 separation to estimate Hab is 

meaningless for this compound. In a study of MV systems with cyclometalated ruthenium atoms 

as redox sites, Launay, Collin, and co-workers used a similar orbital splitting method to estimate 

the electronic coupling between termini.104 However, they stressed that the orbitals involved 

should have high weights on the redox sites but different symmetries. In this regard, the energy 

separation between HOMO and HOMO-3 of 3 (0.44 eV) could be taken as an estimate for the N-

N coupling, similar in magnitude to those of compounds 1 and 2. 
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Figure 3.6. DFT-calculated frontier orbital alignment for complexes 1-4. The values shown in red color represent the 

energy separations (in eV) between the HOMO and HOMO-1 for 1, 2, and 4, and between the HOMO and HOMO-3 

for compound 3. 

 

Electronic spectra and TDDFT calculations of 1–8: The electronic absorption spectra of 

1–8 were recorded to further study their electronic properties (Figure 3.7 and Table 3.2). To aid in 

the assignments of these spectra, time-dependent DFT (TDDFT) calculations of these compounds 

were performed at the B3LYP/LanL2DZ/6-31G*/vacuum level from the above DFT-optimized 

structures. Frontier orbitals that are involved in the calculated electronic transitions are provided 

in Figure B.3-B.10 (Supporting Information). The excitation energies E, oscillator strengths f, 

dominant contributing transitions, and associated percentage contributions and assignments of 

low-energy excitations are collected in Table B.1 in the Supporting Information. Monoamine 

ligand 5 displays a moderate transition in the deep-blue region (355 nm). This band is associated 

with the HOMOLUMO transition and attributed to the intra-ligand charge transition (ILCT) 

from the triarylamine component to the electron-accepting bpy unit. Ruthenium complex 6 shows 

rather complex excitations in the region between 300 and 500 nm, in addition to the intense bpy-

based intragand (IL) transitions at 288 nm. According to the TDDFT predications, we assign the 
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lowest-energy band of 6 at 460 nm to a similar ILCT transition, and the bands at 420 and 385 nm 

to the metal to ligand charge-transfer (MLCT) transitions. However, some ligand-to-ligand charge-

transfer (LLCT) character could also be involved. Complexes 7 and 8 both show a broad and 

inseparable transition in the region between 300 and 500 nm, which are attributable to an mixture 

of MLCT and ILCT transitions. This assignment is supported by TDDFT calculations as well. 

 

Figure 3.7. Electronic absorption spectra of 5–8 (a) and 1–4 (b) in dichloro- methane. 

Table 3.2. Absorption Data of Compounds 1-8.a 

Compound λmax/nm (/105 M-1cm-1) 

1, N-N ligand 294 (0.25), 388 (0.37) 

2, N-Ru-N 290 (0.74), 356 (0.30), 396 (0.30), 458 

(0.25) 

3, N-Re-N 280 (0.30), 362 (0.27), 450 (0.26) 

4, N-Ir-N 270 (0.67), 374 (0.29), 432 (0.31) 

5, N ligand 285 (0.15), 355 (0.19) 

6, N-Ru 288 (0.73), 328 (0.21), 385 (0.22) 

420 (0.20), 460 (0.16) 

7, N-Re 280 (0.23), 388 (0.18) 

8, N-Ir 264 (0.62), 338 (0.21), 390 (0.22) 

aAll spectra were recorded in a conventional 1.0 cm quartz cell. 
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Compared to 5, the diamine ligand 1 displays redshifted and more intense ILCT transitions 

centered at 388 nm. The lowest energy band of ruthenium complex 2 at 450 nm is also assigned to 

the ILCT transitions (HOMOLUMO+3 excitation), and its MLCT transitions are in a somewhat 

higher energy region. The absorption spectra of 3 and 4 are much different from those of 7 and 8 

with the same metal component. The most important changes are the appearance of two isolated 

bands at 362 and 450 nm for 3 and 374 and 432 nm for 4. For rhenium complex 3, TDDFT 

calculations suggest that the band at 450 nm is involved in both ILCT and MLCT transitions 

(S2+S3 excitations), and the band at 362 is dominated by ILCT transitions (S6 excitation). Note 

that the target orbitals for these two ILCT transitions are different: LUMO for the former and 

LUMO+1 for the latter transition. The band at 432 nm of iridium complex 4 is predominantly 

associated with ILCT transitions having HOMOLUMO character (S1 excitation), while the 

band at 374 nm is assigned to a mixture of ILCT and MLCT transitions (S7+S8 excitations). Again, 

the two ILCT transitions have different electron acceptor orbitals (LUMO and LUMO+3, 

respectively).  

NIR transition analysis of MV species: To study the electronic couplings between two 

amine sites of 1–4, these compounds were gradually converted to the corresponding one or two-

electron-oxidized species by electrochemical or chemical oxidation. When a potential from +0.6 

to +0.9 V versus Ag/AgCl at an indium tin oxide (ITO) glass electrode was applied to a solution 

of 1 in dichloromethane to induce the first-electron oxidation, the ILCT transition at 388 nm 

decreased with concomitant emergence of three new peaks at 494, 734, 1570 nm (Figure 3.8).  
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Figure 3.8. Absorption spectral changes of diamine ligand 1 in dichlorome- thane on one-electron (a) and two-

electron oxidation (b) by oxidative electrolysis. 

On further increasing the potential to +1.4 V to induce the second-electron oxidation, the 

peak at 494 nm decreased a little, the peak at 734 nm continued to increase, but the NIR peak at 

1570 nm decreased significantly. On the basis of these facts, the peaks at 494 and 734 nm are 

attributed to the electronic transitions of in situ generated N+, and the NIR peak to the IVCT 

transition. A similar absorption pattern has previously been documented for bis-triarylamine 

radical dication species.105, 106 In principle, the IVCT band should disappear completely when both 

neutral amines are oxidized. However, because the potential required to induce the second-electron 

oxidation is relatively high, [1]+ could not be completely converted to [1]2+ before decomposition, 

and we could not observe complete disappearance of the IVCT band in Figure 3.8b. Previously, 

we reported the spectral changes of 1 on stepwise addition of SbCl5 and failed to observe the IVCT 

transition.79 The above spectroelectrochemical measurement proved that an intense IVCT 

transition did exist for [1]+, and the use of SbCl5 was clearly inappropriate for 1 due to the possible 
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complexation of SbCl5 to the free coordinating sites of bpy. Figure 3.9 shows the spectral changes 

of 2–4 on oxidation with SbCl5 in dichloromethane (the spectroelectrochemical results are 

presented below). Oxidation of rhenium complex 3 was described previously79 and is also included 

for comparison. When these complexes were subjected to one-electron oxidation with SbCl5, the 

ILCT and MLCT transitions decreased, and similar N+-associated absorptions in the visible region 

to those of [1]+ appeared (582 and 788 nm for [2]+, 574 and 800 nm for [3]+, 562 and 800 nm 

for [4]+). At the same time, some broad NIR transitions were found to increase. When more 

oxidant was added to induce the second-electron oxidation of these species, the intense peaks 

around 800 nm continued to increase, while the broad NIR bands decreased gradually until they 

disappeared. It is noteworthy that a clear shoulder peak emerges around 1000 nm in Figure 3.9b, 

which can be assigned to the RuN+ electronic transition. The broad NIR transitions associated 

with the one-electron-oxidized species are somewhat unusual. In addition to a major band around 

1300 nm, some shoulder bands on the low-energy side are distinctly evident. One possibility is 

that these NIR bands consist of a single IVCT transition and some low-energy vibronic structures 

that are observable in some class II/III or III MV systems.107, 108 However, as was pointed out by 

a referee, the separation of the absorption maxima between the major band and the low energy 

shoulder band is quite large (>2000 cm-1), which seems an unusually high-frequency mode to be 

significantly coupled to the electron-transfer process. In addition, triarylamine MV systems do not 

generally show resolvable vibronic structures. Solvatochromic studies also do not suggest that the 

singly oxidized forms of complexes 2 and 3 are class III systems. Another possibility is that more 

than one distinct NIR transition is indeed present in these systems. They may possibly be 

associated with the optically induced electron transfer between two amine units with and without 

the involvement of the metal centers. The above spectral changes of 2–4, including the appearance 
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and disappearance of the IVCT bands, could also be reproduced in spectroelectrochemical 

experiments, as was done for diamine ligand 1. Figure 10 compares the NIR absorption spectra as 

a function of wavenumber of [1]+, [2]+, [3]+, and [4]+ obtained in spectro-electrochemical 

experiments in both dichloromethane and acetonitrile. All compounds exhibit blueshift 

solvatochromism of the IVCT band in acetonitrile compared to dichloromethane. This 

phenomenon is commonly observed in most reported triarylamine MV systems.62-64 However, the 

degree of the solvatochromism is different for each compound (1959, 1807, 1953, and 922 cm-1, 

for [1]+–[4]+, respectively; Table 3.3). The free di-amine [1]+ and complexes [2]+ and [3]+ have 

comparable solvatochromism, and iridium complex [4]+ has the smallest solvatochromism. The 

small blueshifted solvatochromism of [4]+ is very close to that of a class III triarylamine MV 

system bridged by 1,4-benzene (860 cm-1),109 and those of [1]+–[3]+ are slightly smaller than that 

of a class II tri-arylamine MV system bridged by para-C6H4CCC6H4 (2170 cm-1).110 Taking into 

account the shapes, energies (which are compared below), and solvatochromism of the IVCT 

bands of these systems, we tend to believe that the free diamine [1]+ and complexes [2]+ and [3]+ 

belong to the class II systems. Iridium complex [4]+ may be on the borderline between class II 

and III or close to a fully delocalized class III system, as reflected by the relatively small 

solvatochromic shift of its IVCT band. (Note: one should not speak of an IVCT band for a class 

III system, in which the valence is averaged. However, we use this term for simplicity, and it is 

acceptable to the MV community.) Oxidative experiments were also carried out on model 

complexes 5–8 with one amine group (Figure B.11 in the Supporting Information). When these 

compounds were subjected to one-electron oxidation, some new peaks around 800 nm appeared 

(776, 836, 850, 842 nm for 5–8, respectively). Similar absorption bands are present in [1]+–[4]+. 

These peaks are from the produced N+ species themselves and they should not be ascribed to 
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electron transfers from the metal to the N+ species. Very similar absorption spectra were reported 

in the oxidative spectroelectrochemical experiments on Cu, Mn, and Ni complexes of ligand 5 by 

Lemaire and co-workers.91 

 We also previously observed a RuN+ transition of a MV system A (M=Ru, Figure 2) 

at a much lower energy (1360 nm).50 In the NIR region (out to 2500 nm) of the absorption spectra 

for these model compounds (Figure B.11 in the Supporting Information), we could not observe 

any additional peaks. This fact rules out the possibility that the low-energy shoulder bands in 

Figure 3.9 for the diamine compounds are associated with the MN+ electronic transitions. 

Numerous theoretical models have been developed to interpret the IVCT bands of MV compounds.  

 

Figure 3.9. Absorption spectral changes of 2 (a and b), 3 (c and d), and 4 (e and f) in dichloromethane on one- electron 

(a, c, e) and two-electron oxidation (b, d, f) by adding different equivalents of SbCl5 while keeping the concentration 

of 2–4 constant. 

 

The most widely used are based on the Mulliken–Hush analysis,111 in which two important 

parameters, namely, electronic coupling parameter Hab and total reorganization energy λ, could be 
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quantitatively estimated for both organometallic and organic MV systems. For class II systems, 

λ=Eop, where Eop is the energy of the IVCT band maximum. The electronic coupling parameter 

Hab can be estimated by [Eq. (3.1)], where 𝜇𝑔𝑒 is the transition dipole moment of the IVCT band, 

R the diabatic electron-transfer distance, and e the elementary charge (1.6*10-19 C). This equation 

is applicable to IVCT bands of any shape, and 
𝜇𝑔𝑒

𝐷⁄  can be calculated from the integrated 

absorbance (𝜀 𝑀−1𝑐𝑚−1⁄ ) of the IVCT band as a function of wavenumber 𝜐̃ via Equation (3.2). 

 

 

The NIR bands of [1]+–[4]+ were analyzed on the basis of Marcus–Hush theory, and 

corresponding parameters are summarized in Table 3.3. The IVCT band of [1]+ is well separated 

from the transitions in the visible region. However, those of [2]+–[4]+ strongly overlap with the 

intense peaks around 800 nm. Thus, they were deconvoluted into a number of Gaussian-fitted 

functions (red lines in Figure B.16 of the Supporting Information) for the absorbance integration. 

The 𝜇𝑔𝑒 values of [1]+–[4]+ were calculated to be 6.2, 7.3, 7.0, 7.1 D, respectively, according to 

Equation (3.2). Their Hab values were calculated to 830, 1200, 1170, 1230 cm-1, respectively, 

according to Equation (3.1), where R is taken to be the calculated N-N distance. These data suggest 

that complexes 2–4 have enhanced electronic couplings over 1, and iridium complex 4 has the 

largest coupling. However, as pointed out by many studies,112 the true diabatic electron transfer 

distance is much shorter than the geometric distance between two organic redox sites due to the 

extensive delocalization of the diabatic states. Besides, the 𝜇𝑔𝑒 and Hab values were obtained by 

integrating over the whole NIR absorption. These values are rather tentative depending on what 

Hab =
geEop

eR

0.09584 ge =
opE

d 

(3.1) 
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part of the NIR transition is taken as the IVCT band. The 𝜐̃𝑚𝑎𝑥/2 value, which corresponds to the 

Hab value for a class III system, is also given for these compounds. It is clear that the Hab value 

obtained via Equation (3.1) for the nearly class III compound [4]+ is much smaller than the 

corresponding 𝜐̃𝑚𝑎𝑥/2 value (=4084 cm-1), which suggests that the true diabatic electron-transfer 

distance is indeed much shorter than the geometric distance. In addition, the Hab value for [1]+ 

(830 cm-1) is somewhat smaller than that of a bis-triarylamine compound with a biphenyl bridge 

(1550 cm-1) reported by Lambert and co-workers and calculated using the same method.62 Table 

3.3 also gives the DFT computed Hab values (see Figures 3.5 and 3.6), which gave a consistent 

result, that is, complexes 2–4 have enhanced electronic coupling and iridium complex 4 has the 

largest coupling. However, the calculated Hab value for [1]+ may be overestimated, likely due to 

the difference in calculations with and without metal atoms. DFT calculations of the cationic states 

of 1–4: To further study the electron delocalization of the one-electron oxidized complexes 2–4, 

DFT calculations on [1]+–[4]+ were carried out. Since DFT methods tend to favor delocalized 

states, hybrid functions such as B3LYP include a fraction of exact Hartree–Fock exchange to 

balance delocalization and localization effects. Recently, Kaupp, Lambert, and coworkers 

performed detailed theoretical calculations on a number of organic MV compounds85 by hybrid 

density functional methods with variable exact-exchange admixture combined with a continuum 

solvent model. They found that, when an optimum of 35% of Hartree–Fock exchange was used, 

calculations in the gas phase and with all solvents tested (acetonitrile, dichloromethane, and n-

hexane) resulted in spin delocalization for clear-cut class III systems. However, symmetry 

breaking and charge localization were observed for class II systems with polar solvents such as 

acetonitrile. These studies proved that the solvent effect is clear-cut in influencing the charge 

character of organic MV systems. Thus, we performed similar calculations of [1]+-[4]+ in the gas 
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phase and solvents of different polarities (acetonitrile, dichloromethane, and n-hexane) with 35% 

Hartree–Fock exchange (see Experimental Section for details). The spin density (a–b) plots of 

these compounds are shown in Figure B.17 in the Supporting Information. The bisamine [1]+ is 

delocalized in vacuum and n-hexane and acetonitrile. However, charge localization in one of the 

triarylamine units is evident in dichloromethane. For complexes [2]+-[4]+, distinct charge 

localization on one triarylamine is observed in both dichloromethane and acetonitrile. In case of 

rhenium complex [3]+, asymmetric spin distributions in gas and n-hexane are evident as well. 

These results differ somewhat from the findings of Kaupp et al.,85 because [2]+-[4]+ were 

experimentally determined to be more delocalized, albeit calculated to be less delocalized than 

[1]+. One reason for this difference is that 1 is a neutral organic molecule, while 2–4 are transition-

metal complexes, and they simply cannot be compared by the same calculation method. However, 

our results do agree that, when a polar solvent such as dichloromethane or acetonitrile was used 

for these calculations, spin localization and symmetry breaking did occur for non-class III systems. 

When the three complexes are compared, the rhenium complex [3]+ appears to the least 

delocalized. This indeed agrees with the above experimental results, which showed that the IVCT 

of [3]+ had the largest solvatochromic effect and the smallest Hab value. TDDFT calculations of 

the cationic states of 1–4: To aid in the assignment of the visible and NIR transitions of [1]+–

[4]+ shown in Figures 8–10, TDDFT calculations were performed on the above DFT-optimized 

structures of these open-shell compounds. Similar level of theory (UB3LYP/ LanL2DZ/6-31G*) 

with the consideration of solvent effect (solvent=dichloromethane or acetonitrile) was employed 

for these calculations. Calculated low-energy excitations of these complexes are summarized in 

Table B.2 and corresponding frontier spin orbital involved in these excitations are shown in 

Figures B.14–B.17 in the Supporting Information. One common feature of these calculated results 
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is that two major absorption bands are predicted for all complexes in the NIR region in either 

solvent. The predicted lowest D1 excitations are all dominated by a b-electron excitation from the 

highest occupied spin orbital (β-HOSO) to the lowest unoccupied spin orbital (β-LUSO) of 

individual compound (160B161B for [1]+, 249B250B for [2]+, 197B198B for [3]+, and 

249B250B for [4]+.). These excitations are associated with the IVCT transitions for each 

compound. Although 160B and 161B of [1]+ have symmetrical configurations, the 

aforementioned frontier orbital for [2]+–[4]+ are clearly asymmetric and the spin locations switch 

from one triarylamine segment to another after excitation, which is in agreement with the nature 

of the IVCT transitions. In addition, electron redistribution on the bridge unit is also evident for 

all compounds on D1 excitation. The predicted maxima of the IVCT transitions for all complexes 

are much more red-shifted than the experimental values. The predicted IVCT energies of [2]+–

[4]+ are lower than that of [1]+, which is contradictory to previous experimental findings. Another 

contradiction between experiments and calculations is the IVCT energy difference of each 

compound in two solvents studied. As was discussed above, the ∆𝜐̃𝑚𝑎𝑥 values between acetonitrile 

and dichloromethane for [2]+ –[4]+ (particularly [4]+) are smaller than those of [1]+. However, 

[1]+ is predicted to have a slightly weaker solvatochromic effect (0.2 eV) than [2]+–[4]+ (0.3 

eV). These contradictions again suggest that comparison of calculation results between a pure 

organic system and a transition metal complex should be made with great care. A second 

moderately intense band around 700–800 nm for all compounds is predicted. These predictions 

agree well with the experimentally observed bands (Figure 3.10). These bands are all associated 

with a b-electron excitation from a triarylamine-dominated orbital (159B for [1]+, 244B or 245B 

for [2]+, 193B for [3]+, and 242B or 243B for [4]+) to their β-LUSOs. They are associated with 

charge transfer from the triarylamine unit to the bridge segment and have nothing to do with the 
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metal components. These bands are also present in model compounds 6–8 after one-electron 

oxidation, as shown in Figure B.11 of the Supporting Information. For complexes [2]+–[4]+, some 

additional excitations with small oscillator strength are predicted in addition to the above-

discussed two main bands. These weak excitations are predicted to be of MLCT character. These 

excitations are not observable in Figure 3.10. However, it is possible that they are embedded in 

the NIR envelopes and cannot be discerned due to low intensities. 

3.4 CONCLUSION 

We have prepared a series of 2,2’-bipyridine derivatives with two appended di-p-anisylamino 

groups as new prototype organic MV systems for studying metal chelation mediated electron 

coupling between organic redox sites. Model compounds with one di-p-anisylamino group and 

different metal components were also prepared and studied. Experimental and computational 

studies showed that the charge delocalization of organic MV systems could be enhanced by lateral 

metal chelation. The iridium complex exhibits the strongest coupling among all compounds 

studied. The singly oxidized forms of complexes 2–4 exhibit unusual absorption patterns, which 

evidence the presence of more than one distinct NIR transition. This implies that the underlying 

charge-transfer mechanism may differ from that of normal triarylamine MV systems due to 

possible involvement of the metal components. The nature of the IVCT transitions is supported by 

TDDFT calculations on these open-shell forms. Although the exact mechanism is not known at 

this stage, introduction of metal components into organic MV systems would give rise to new 

hybrid materials with impressive electronic properties, which will make them potentially appealing 
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materials for optoelectronic applications such as NIR electrochromic and/or photocurrent 

generation devices.50 
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4.0  CHARGE TRANSPORT IN IMPERFECT ORGANIC FIELD EFFECT 

TRANSISTORS: PHTHALOCYANINE MIXTURES AS CHARGE TRAPPING 

MODELS 

This work is to be submitted for publication. Adam G Gagorik conducted the Monte Carlo 

simulation. Joel  Gillespie and Xinfeng Quan collected the XPS and AFM experimental data, 

respectively. Xialing Chen was contributed for the rest of the calculation and experimental work. 

All authors discussed the result and were under the supervisor of Professor Geoffrey R Hutchison. 

 

 

 

4.1 TRAP EFFECT IN ORGANIC SEMICONDUCTOR 

 

As discussed in Chapter 1, charge transport in organic semiconductors is sensitive to impurities. 

There are two kinds of “impurities” as depicted in Figure 4.1: traps and barriers. For a hole 

transport, the introducing of a higher HOMO molecular site is to trap the host semiconductor 

molecule, while it work as a barrier (or “scatter” as in some other papers113, 114) if the “impurity” 

has a lower HOMO energy level than the semiconductor. Due to the weak Van der Waals 

interaction,115 the charge transport in the organic semiconductors can be greatly hindered by 

impurities. Therefore, there are efforts trying to purify the materials, for example, it was reported 

by Palstra, et.al that the mobility of pentacene could be increased from 35 cm2 .V-1.s-1 to 58 cm2 

.V-1.s-1 by removing significant amounts of impurities through vacuum sublimation. Besides the 

effort of reducing impurity sites through purification, there have also been work to decrease the 
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trap sites116 with surface fictionalization  and increase the charge transport. For example, an 

additional layer of silanes or some other polymer passivation layer is always deposited before 

growing n-type semiconductors, in order to reduce the electron trapping sites introduced by the 

silanol in the original SiO2 substrate. 

 

Figure 4.1. The schematic graph of introducing traps or barriers into semiconductor. 

Negative differential resistance is a phenomenon that, unlike the regular electronic 

component that presents a positive resistance, the current decreases with increasing voltage. People 

are interested in negative differential resistance (NDR) due to the extensive applications in 

switching circuit and electronic oscillators.117 The first observation of NDR was made in 1974 in 

a GaAs118 sandwiched structure of double barriers. Since then, there have been quite a number of 

reports119, 120 showing NDR effect, for example partially doped119, 120 carbon nanotube. It is 

believed that the negative resistance occurred due to electronic barrier introduced at the p-n 

junction of diodes or chemical doping in semiconductors such as carbon nanotube.  

In this work, the traps/barriers introduction was first time experimentally investigated with 

FET measurements of organic semiconductor films fabricated from solution. We used the 

molecule of  Nickel (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (NiOBuPc) as 

the host site and (5,9,14,18,23,27,32,36-Octabutoxy-2,3-naphthalocyanine (OBuNc) as the dopant 

site. All of the pure and mixed films were fabricated from solution by spin-coating. To understand 
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how different amounts of “dopant” affect the charge transport to the host organic semiconducting 

system, we varied the concentration of the dopant molecule from 2.5% to 100%. The mobility was 

measured with FET measurements. And the effect of the dopant was studied by examining the 

concentration of dopants to mobility, and the result was compared with our computational work.121 

Moreover, we observed the NDR by introducing mixture sites of deep barriers experimentally and 

interpreted this phenomenon using the Monte Carlo simulation.  

4.2 FABRICATION OF ORGANIC FIELD EFFECT TRANSISTOR DEVICES: 

PHOTOLITHOGRAPHY 

4.2.1 Photolithography 

The fast growth of semiconductor in the past several decades was brought about by reducing the 

cost per transistor, that is, scaling down the size, and therefore increasing the number of devices 

per chip. Ever since the 1960s, there have been extensive amounts of fabrication techniques 

emerging to create feature sizes from micron122 to nanometer.123, 124  Photolithography is a widely 

commercialized microfabrication method among these various techniques. It covers the critical 

size from nanometer to micrometer and costs much less than the finer resolution methods, such as 

e-beam lithography and scanning probe lithography. In addition to a good balance between critical 

size and cost, it is also easy to operate and scale-up in manufacturing.  

The principle of photolithography is that a radiation sensitive photoresist is spin-coated on 

a substrate, and a mask with designed patterns shields the underlying photoresist when exposed to 

the UV light. Based on the type of mask and photoresist, the image on the mask will be written 
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directly to the photoresist or its negative image will be written. After exposure, the wafer is put in 

the solution of developer and the designed patterns appear on the wafer. There are two different 

kinds of photoresists: positive photoresist and negative photoresist. For the positive photoresist, 

once exposed to the UV light, it will become soluble in developer. Contrarily, the negative 

photoresist would become resistant to developer and stick to the substrate once exposed. 

4.2.2 Etch vs. lift-off 

There are two different schemes to fabricate a micro-device: etch and lift-off. The former is a 

subtractive process while the latter is additive. The principle of these two methods is depicted as 

in Figure 4.2. 

 

 

 

Figure 4.2. The scheme to depict how to fabricate devices with etch (a) or lift-off (b). 

In etching, the pattern is protected by photoresist while the other area is exposed to the 

etchant. Based on what kinds of etchants are used, there are wet etching and dry etching. Etchant 
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solutions such as HF, KOH are used in wet etch while fluorine or chlorine vapors of CH3F, SF6 

are normally used in dry etches. The pros and cons of these two processes are listed in Table 4.1. 

Table 4.1. The advantages and disadvantages of the wet and dry etching process. 

Etch Method Pros Cons 

Wet etch High selectivity, simple 

equipment, high throughput 

(batch process) 

Isotropic, high chemical and 

waste disposal cost 

Dry etch Anisotropic, easy and cheap 

disposal of waste 

Poor selectivity, complex 

instrument 

 

 

For the process of lift-off, photoresist is sequentially spin-coated, exposed and developed 

to get the mirrored pattern. Then metal is deposited and washed with acetone. In the end, metal on 

the photoresist would be removed, and devices are left on the substrate.  

 Different combinations of mask and photoresist will be used depending on the design of 

process. For example, if devices are going to be fabricated by lift-off, positive photoresist and a 

dark mask (Figure 4.3) would be used so that the UV radiation passes through the pattern and the 

exposed photoresist would be dissolved in the developer and form the mirrored image. Similarly, 

to get a design after etching, a positive photoresist along with a clear mask is needed to get the 

exposed area etched. 
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Figure 4.3.  The two types of masks: clear vs. dark mask. For the clear mask, the pattern area is covered with metal 

and shielded against the UV radiation. While for the dark mask, the pattern area is clear and the rest is protected by 

metal. 

 

4.3 EXPERIMENTS 

MATERIALS. All essential chemicals and reagents were purchased from Sigma-Aldrich and 

used without further purification. Their chemical structures are shown in Figure 4.4. The substrates 

were made of silicon wafers with 300 nm dry thermal oxidized SiO2 (<0.005 Ω.cm, <100>) on top 

of the boron-doped 500-550 µm Si purchased from University Wafer. 

INSTRUMENTS. The fabrication of microelectrodes was conducted in the Nanoscale 

Fabrication and Characterization Facility Center (NFCF) of University of Pittsburgh using 

conventional photolithography technique. FET measurements were performed using a Keithley 

2612 Source Meter. The organic semiconductor films were spin-coated using the KW-4A spin-

coater from CHEMAT Technology Inc. The electrochemistry analyzer was purchased from CH 

Instruments, Inc. Film thickness was measured with a KLA-Tencor Alpha-Step IQ surface profiler. 
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Atomic Force Microscopy (AFM) measurement was performed using an Asylum Research MFD-

3D SPM. Probes with Ti/Pt coated on a silicon tip (AC240TM, Asylum) with a first mode 

resonance frequency of 70 kHz, and a normal stiffness of 2 N/m were used. Topography and phase 

images were recorded. Roughness and section data was obtained from the default analyzing 

software. X-ray photoelectron spectra (XPS) were collected on an in-house custom-built 

instrument utilizing a Leibold EA10 hemispherical energy analyzer operating with a constant 50 

eV pass energy. The experiments were performed at a base vacuum of 10-9 Torr or better and used 

the Ka line of Al for X-ray excitation (1487 eV). Samples were cleaned with a 5kV Ar ion gun 

prior to analysis. XPS background was subtracted using the Shirley method, and theoretical 

sensitivity factors were used for quantitative analysis.  

  

 

Figure 4.4.  The chemical structure of nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine ( 

NiOBuPc) and (5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine ( OBuNc). The two structures differ in both 

metal center and peripheral ligand substitution. 

 

EXPERIMENTS. Microelectrodes for FET measurements were fabricated for bottom-

contact devices with 70 nm of Au with 3 nm of Ti as the adhesion layer was deposited onto silicon 
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wafer. To improve signal, interdigital microelectrodes were used with 50 µm long and 450 µm 

wide channels (Figure C.1). The backside of the wafer was scratched to be conductive and attached 

to aluminum foil to connect to the gate probe.  Details of the fabrication of FET devices are 

included in Appendix C. 

Before depositing the semiconducting films, the bottom-contact devices were pretreated as 

follows: sonication in acetone for 30 s, followed by immersion in piranha solution (2:1 by volume 

of concentrated H2SO4 and H2O2) for 2 h, rinsing with ultrapure water, blowing with nitrogen and 

then immersing in the octadecyltrichlorosilane (1% in toluene) for 3 h. Finally, the devices were 

rinsed with toluene and dried with nitrogen before spin-coated. Pure and mixed solutions of 

NiOBuPC / OBuNc (17.4mM combined total concentration in toluene) were spin-coated on the 

substrates. Samples were stored in vacuum overnight before characterization. 

Electronic Structure Calculations. The molecular orbital and frontier energies were 

obtained after optimization of the geometries, using density function theory80 (DFT) with B3LYP 

function33 in Gaussian 09. The basis set was 6-31G for C, N, O, H and LANL2Z pseudo potential34 

was used for the metal.  

Monte Carlo Transport Simulations. Our group has developed a coarse-grained Monte 

Carlo hopping model to study charge transport in thin film OFETs and OPVs.121, 125, 126 In this 

work, we have used the model to predict the effect of traps, barriers, and defects on OFET current-

voltage characteristics (IV curves), to gain deeper understanding of the experimental results. 
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4.4 RESULTS AND DISCUSSIONS 

After the films had been made, physical and electrical characterizations were performed to collect 

information of morphology, electrochemistry and mobility.  

Surface Profiler. Four kinds of films were spin-coated, and the thicknesses were measured 

with surface profiler. It was found that the pure NiOBuPc and OBuNc films were 200 nm thick on 

average while the thickness of the mixed 40% and 60% NiOBuPc films were 100 nm. However, 

as charge transport occurs mainly in the first several layers127 near the interface of semiconductor 

and insulator, all films are thick enough to rule out the possibility that the mobility is going to be 

affected by the thickness. 

Elemental Analysis. To make sure that the composition of the films is the same as the 

solutions prepared, XPS was used to confirm the weight percentage of the elements in the films. 

The results (Table D.1 in the supporting information) showed that the film had the same 

composition as prepared from the solution, indicating that the percentage of traps we introduced 

in the solution matched the ratio of mixture component in the films, themselves. 

Energy Level. Gaussian computations were performed to predict the energy level 

theoretically, and hence determine the energy difference between the host site and doping 

semiconductors. The computational energy difference for the two materials is -0.028 eV for 

HOMO and -0.385 eV for LUMO, a much larger difference in LUMO than HOMO, which can be 

understood with the observation of orbital diagram in Table 4.2. It shows that the HOMO orbitals 

of NiOBuPc and OBuNc both have a major contribution from phthalocyanine and phenyl rings 

while the LUMO orbitals of these two molecules look quite different. The aromatic phthalocyanine 

rings still have a bigger contribution to OBuNc LUMO energy but in NiOBuPc, the LUMO orbital 

mainly locate on one of the octabutoxyl alkyl arm.  



 

61 

 

 

Figure 4.5. Energy level scheme for the NiOBuPc and OBuNc  

 

 

 

 

 

 

 
Table 4.2. The diagram of frontier orbitals in NiOBuPc and OBuNc. 

 

 

 

 

 

 

 

 

 

 

Molecule NiOBuPc OBuNc 

 

 

HOMO 

  

 

 

LUMO 
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We also used Differential Pulse Voltammetry (DPV) to experimentally measure the energy 

difference in HOMO. The difference of the first oxidation peak of NiOBuPc and OBuNc was 0.01 

eV, close to the simulation prediction.  
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Figure 4.6 Differential Pulse Voltammetry of NiOBuPc (blue) and OBuNc (red). The concentration is 0.01 mM in 

the solvent of CH2Cl2. Reference electrode: Ag/AgCl; working electrode: glassy carbon; counter electrode: Pt  

 

 

FET measurements. We scanned Vds from 0 to -30 V and varied Vg ( 0, -5 V, -10 V, -15 

V).  The result showed that the material is a p-type semiconductor. With a specific gate voltage 

applied, Ids increased linearly in the beginning and became saturated at large Vds, typical of FETs. 
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The representative FET output graph. 
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Figure 4.7 A representative output of FET measurement of NiOBuPc films 

 

𝐼𝑑𝑠 =
𝑊𝐶𝑖

2𝐿
𝜇(𝑉𝑔 − 𝑉𝑜)2                                                                                  (4.1) 

 

Field effect mobility can be deduced from equation 4.1, which describes the source-drain 

current in the saturation region. In equation 4.1, 𝑉𝑜 is the extrapolated threshold voltage, 𝜇 is the 

field-effect mobility, W is the channel width, L is the channel length, and 𝐶𝑖 is the capacitance per 

unit area of the insulating layer. The slope of a plot of √𝐼𝑑𝑠   vs. 𝑉𝑔 is equal to the square root of   

𝑊𝐶𝑖

2𝐿𝜇
, from which field-effect mobility can be calculated. 
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After calculating mobility of the pure and mixed films (Table D.3 in supporting 

information), we can examine mobility as a function of the percentage of the traps introduced. The 

plot is as follows: 

 

Figure 4.8 Mobility with the different amount of barriers in experiment (left) and simulation (right). Note that while 

the experimental electrochemistry suggest the OBuNc should be shallow barrier (i.e. -0.01 V) , comparison with the 

Monte Carlo transport simulations suggest the effect is much more significant, more like with deep barriers. 

 

The asymmetrical trend of mobility agrees with the prediction of our simulation. However, 

it is unexpected that the experimental shallow traps behave like the deep barriers simulated. 

Moreover, we found that in the mixed films, the Ids decayed after it reached the saturation, 

which agrees with the prediction of the computation work125 in our group by Hanwell, et.al.  This 

negative resistance behavior is simulated to be achieved through the introduction deep barriers to 

hinder the conducting path in the semiconductor. It is discussed in detail in Appendix D.4. 
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Figure 4.9 The output data of one 75% OBuNC film that showed the negative differential resistance. 

 

AFM Measurements. Surface topology of the films with different composition was 

characterized by Atomic Force Microscopy (AFM) with tapping mode. Samples with OBuNc 

percentage of 0%, 25%, 50%, 75%, and 100% were chosen as models to see surface topology 

variety. As shown in Figure 4.11, surfaces of all five films are smooth with a small height 

roughness (1.5 nm for the OBuNc and around 0.3 nm for the other four samples) across 5 µm × 5 

µm area. No observable crystalline domains were seen from both height and phase images (Figure 

D.5-D.6), indicating a homogeneous distribution of “traps” in the film at the scale of 5 µm × 5 µm. 
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Figure 4.10 AFM height images (5 µm × 5 µm) of samples containing OBuNc a) 0%, b) 25%, c) 50%, d) 75%, and 

e) 100%. Height roughness is 1.52 nm for 0%, 0.30 nm for 25%, 0.32 nm for 50%, 0.30 nm for 75%, and 0.28 nm for 

100%.  

 

Discussion. It was reported by Ma113 that both traps and barriers would decrease the 

mobility but in a different extent. What they found is that traps reduced the mobility more than the 

barriers and it is due to the different mechanism of how traps and barriers work: By introducing 

traps, the semiconductor charge carriers would be trapped and couldn’t move freely until there is 

a large enough thermal activation, therefore traps decrease the mobility a lot. However, in the 

introduction of barriers, the charge carriers are hindered by the barriers to some extent but most of 

them can still move freely in the film. There was another work114 by Qiu`s group that the effect of 

traps and barriers were examined by doping host semiconductor material of 4,4’-N,N’-
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dicarbazolebiphenyl (CBP) with three different semiconductors of various energy level differences 

as low barriers, deep traps and deep barriers. What they observed is that shallow traps and barriers 

decreased the mobility more than the deep dopants. And they proposed a mechanism that in the 

case of shallow traps/barriers, the energy barrier is not very big and the charge transport would 

still proceed in the regular hopping path between hopping site and trap site. However, if the energy 

barrier of the introduced dopants is big enough, the hole/electrons would avoid jumping to the trap 

sites and instead take a neighboring host-host site with an elongated path. Therefore, the mobility 

would not be significantly reduced. However, the simulation conducted in our group121 predicted 

the behavior of traps and barriers differently. First of all, both the traps and barriers decrease the 

mobility and do not increase until a minimum is obtained. And the position of the minimum is 

related to the energy difference between the normal site and trap/barrier site. Second, it was shown 

that deep traps/barriers decreased the mobility more strongly than the shallow traps, which is 

contrary to the report of Qiu114.  

Our FET conductivity measurements show that the introduction of OBuNc decreased the 

charge transport in NiOBuPc strongly even though the morphology of the films did not look quite 

different, which agrees with the simulation. However, the shallow barriers in the experiment 

produced the asymmetrical mobility curve and NDR, both of which indicate the behavior of deep 

barriers predicted by the simulations. 
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4.5 CONCLUSION 

We explored the effect of barriers to the charge transport in organic semiconductors 

processed from solution. The AFM topography and FET conductivity measurements show that by 

introducing controlled amount of barriers, there is not an obvious difference in morphology or 

domain size, but the conductivity changes significantly. It is found that 2.5% of OBuNc to 

NiOBuPc decreases the mobility by 90%, which is accordant with the simulation of deep traps, 

barriers, and defects. But what is different between the experiment and our simulation is that the 

shallow barriers in our experiment behave more like the deep barriers predicted in simulation. Both 

the graph of mobility with percentage of barrier and the observance of NDR in the experiment 

agrees with the simulation prediction of deep barriers, however, based on the energy levels of the 

two molecules, OBuNc should work as shallow barriers in the charge transport of NiOBuPc 

molecules. We could not explain this discrepancy at this moment. It may be because the 

introduction of shallow barriers affects the crystal alignment and decreases the electronic coupling 

in the semiconducting system.  

Based on this work, we draw two practical conclusions for the organic semiconductors 

fabricated from solution. First, the introduction of a small amount of “impurities” reduces the 

mobility a lot, so it is important to purify the semiconductors and make the fabrication defect-free. 

Second, if people want to make devices with negative resistance, it is very easy to do: make a 

mixture of phthalocyanines like this. No need for photo-irradiation as reported previously128. 
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5.0  IMPROVING COATING OF PHTHALOCYANINE FILMS FROM SOLUTION 

This work is to be submitted for publication. Paula B Hoffmann collected the Kelvin Probe AFM 

data. Xialing Chen was contributed for the rest of the calculation and experimental work. All 

authors discussed the result and were under the supervisor of Professor Geoffrey R Hutchison. 

 

5.1 INTRODUCTION 

Phthalocyanines (Pcs) is a group of materials attracting more and more interest because of their 

wide-ranging applications in photodynamic therapy,20 nonlinear optical application,22, 23 field 

effect transistors,129, 130 solar cells.21, 39, 131 Phthalocyanine films are usually fabricated by thermal 

evaporation techniques129, 132 because they cannot dissolve in most solvents. However, with 

chemical modification of the peripheral ligand, substituted Pcs can be synthesized to become 

soluble.23, 39, 133 The octabutoxy38 and tetrasulfonic134, 135 acid, tetrasodium substituted 

phthalocyanines are two of those soluble in solution. To date, there are lots of techniques to 

fabricate films from solutions: drop-cast,136 spin-coating,137 Langmuir Blodgett,23 inkjet 

printing.138, 139 Among the many methods, layer-by-layer133, 135, 140 (LBL) deposition is a method 

that makes use of the interaction between neighboring layers and can control the thickness of the 

films. The mechanism of the process is described in Figure 5.1. The first layer of molecule 

(molecule A) is adsorbed onto the substrate and then the second layer of molecule (molecule B) 

deposited on top of A because of the interaction between molecule A and B. Electrostatic attraction 

between positively and negatively charged polymers is the most widely used method to form LBL 
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films. It has been frequently used in biology and chemistry research to fabricate films from 

solution. 

 

Figure 5.1. Schematic mechanism of how layer-by-layer films form 

The mechanism of layer-by-layer is still under-explored compared to other methods like 

spin-coating and drop-cast. Due to the weaker electrostatic interaction, it135, 140 is found that the 

layer-by-layer process is quite sensitive to experimental conditions of concentration of solution, 

choice of solvents, pH, ionic strength, etc. Therefore, it is important to study the factors that are 

critical to producing reproducible and uniform layer-by-layer films. 

 This chapter was designed to fabricate phthalocyanine films using layer-by-layer method 

and explore how to form good coating on glass and ITO substrates. The multilayer films were 

grown by alternatively dipping the substrates in sulfonated sodium substituted phthalocyanine 

solutions of pH 11 and pH 3. Based on the spectra, electrochemistry, morphology and surface 

potential information detected, it is found that  

 

the critical factor to form LBL films is the trace amounts of PDDA in the water bath, which is 

different from a previous report141 that the pair of different pH is the key for the LBL films from 

the sulfonated sodium substituted phthalocyanines. 
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5.2 EXPERIMENTS 

 Materials. All essential chemicals and reagents were purchased from Sigma-Aldrich. Copper 

phthalocyanine-3, 4′, 4″, 4″′-tetrasulfonic acid tetrasodium salt (CuPs) and Poly 

(diallyldimethylammonium chloride) (PDDA) (Mw<100,000 g. 𝑚𝑜𝑙−1 , 35%wt.% in water) were 

used without further purification.  Their chemical structures are shown in Figure 5.2. ITO slides 

(30-60 Ω/sq surface resistance) were also bought from Aldrich. Glass substrates (microscope 

slides) were obtained from VWR International. 

                   

Figure 5.2. Chemical structure of the CuPs and polymer PDDA. 

Instrument. The pH meter was purchased from Mettler Toledo. The UV spectra were 

collected with the HR 2000+CG-UV-NIR spectroscope from Oceanoptics with the light source of 

DH-2000-BAL. 

Multilayer Preparation. Ultrapure water was used for all the experiments, which was 

obtained by an ion-exchange and filtration unit (Milli-Q Academic, Millipore Corp.). The 

resistivity is 18.2 Mcm. After being rinsed in acetone and boiling water for 30 minutes, the 

glass substrates were dried with nitrogen gas, and immersed sequentially in 1:3 

(30% 𝐻2𝑂2: 𝐻2𝑆𝑂4 ) hot piranha and 𝐻2𝑂2: 𝑁𝐻4𝑂𝐻: 𝐻2𝑂  1:1:6 (by volume) solutions for 30 

minutes, rinsed in water, and blown dry with nitrogen gas. Before the immersion in phthalocyanine 

solutions, the substrates were treated with pH 3 PDDA solution for another 30 minutes, and then 
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washed in a water bath of 2 L for 30 s three times. For the ITO slides, the procedure is similar 

except that the substrates were treated with oxygen plasma in Plasma Cleaner or Reactive Ion 

Etcher or UV Ozone142 Cleaner for 10 minutes instead of piranha solution. 

The phthalocyanine solutions were prepared by dissolving 0.0163 g solute (CuPS, NiPS or 

the mixture of these two) in 10 ml water. A manual procedure3 was used to grow each cycle of the 

LBL films: the substrate was immersed in the solution for 20 minutes, rinsed in the water bath for 

30 s, dried with nitrogen gas, and immersed in the solution for another 20 minutes. For every two 

cycles, an absorbance UV spectrum was collected. 
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5.3 RESULTS AND DISCUSSION 

 

 

Figure 5.3 (top) UV-VIS spectrum for the slides cycled with the CuPS solution; (bottom) the height of the absorbance 

peak around 330 nm and 610 nm with number of bilayers. 
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Figure 5.4 (top) UV-VIS spectrum data for the slides cycled with the NiPS solution; (bottom) the height of the 

absorbance peak around 330 nm and 610 nm with number of bilayers. 

 

There are consistently two absorption peaks143 for the CuPs and NiPs films. The one in the 

range of 600-700 nm, termed Q-band, is due to the electronic transition from HOMO to LUMO 

and responsible for the color of the compound. It is sensitive to the peripheral substitution and 
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environment. The absorption near 600 nm is for monomers while the absorption near 700 nm 

corresponds to dimers. The ratio of these two peaks indicates the information of aggregation in the 

films.  The ultra-violet absorption is denoted as a Soret band, and mainly attributed to the transition 

between the deeper occupied energy levels (HOMO-1, HOMO-2, etc) to LUMO as illustrated in 

Chapter 2. The other mixed CuPs and NiPs (20%, 40%, 60%, 80% CuPs in Appendix E) films also 

show absorption of Q-band and Soret band. Moreover, solutions of different pH were also utilized 

and it was found that both pH 3 and pH 11 could produce LBL films, which means that pH is not 

the most important to grow LBL films as discussed by Bertoncello, et.al.144  And we checked the 

water bath with and without PDDA to see how it affects the film process. The result is as in Figure 

5.5. 
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Figure 5.5. The UV-VIS spectrum of the glass slides immersed in the CuPs solution and rinsed with the PDDA water 

bath (top) and ultrapure water bath (bottom). 
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It is shown that a small amount of PDDA in the water bath is critical to get the layer by 

layer films. PDDA is a positively charged polymer while CuPs and NiPs aromatic complex are 

negatively charged. So it is reasonable that the trace amount of PDDA in the water bath helps 

attract the Ps and assist film to grow. The amount of PDDA in the water bath was quantitatively 

varied (Figure 5.6), and different pH was examined to see if they bring any difference to the UV-

Vis absorbance. 
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Figure 5.6. The spectra data of CuPs solutions of different pH (pH 3, pH 11) and varying amounts of PDDA in the 

water bath for absorption at 612 nm.  The absorption of 328 nm is in supporting information. 

 

 

It shows that more PDDA in the water bath helps grow the films. Moreover, pH 3 CuPs 

solution produces a thicker film than the pH 11 solution. To figure out the difference between the 

pH 3 and pH 11 CuPs solutions, the pH 11 CuPs solution was titrated to pH 3 to see if there is a 
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protonation by changing the pH. The titration curve shows that there is a sharp change in the pH 

of 10-4. It145 was reported that in 𝐻2𝑆𝑂3 there are two protonation processes at 𝑝𝐾𝑎1 =1.85 

and 𝑝𝐾𝑎2=7.20, so the turning point in Figure 5.7 is believed to be the second protonation of 

H2SO3 (𝐻𝑆𝑂3
− ⇌ 𝐻+ + 𝑆𝑂3

2−). 
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Figure 5.7. Titration curve of the CuPs solution (10 ml of 1.66 mM) with HCl of  2.4126 mM. 

 

 

To further characterize the electrical and surface information of the films made of different 

solutions (pH, PDDA), Kelvin Probe AFM was used to collect the surface potential and 

morphology as in Figure 5.8 and 5.9. 
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Figure 5.8 Morphology (top left) and surface potential (top right) plots of the film made from pH 3 CuPs solution 

and cycled in the water bath with PDDA. (Bottom) Histogram of surface potential image shown above before any 

image modification. 
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Figure 5.9 Morphology (top left) and surface potential (top right) plots of the film made from pH 3 CuPs solution 

and cycled in the water bath without PDDA. Histogram (bottom) of surface potential image shown above before any 

image modification. 

By comparing Figure 5.8 and Figure 5.9, it seems that the films made from water bath with 

PDDA are thicker and more positive in surface potential than those grown from water bath without 

PDDA. It is because PDDA is a positively charged polymer and makes the surface more positively 

charged.  
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5.4 CONCLUSIONS 

In summary, we have examined the mechanism of the layer-by-layer growth of CuPs films. The 

addition of PDDA and variation of the pH were studied, and it was found that a small amount of 

PDDA is the most critical factor to growing the layer-by-layer films. It was also found that a pH 3 

CuPs solution tends to produce a thicker film than the pH 11 solution. Based on the titration of the 

CuPs solution, it was found that the sulfonic substitution on the phthalocyanine can be protonated 

or deprotonated by varying pH, therefore affects absorption of the films in different pH.  
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6.0  SUMMARY 

 

In this dissertation, we explored the optical and electrical behavior of organic semiconductors by 

experiment and simulation. In order to electrically characterize the semiconductor films, we also 

fabricated transistor devices and studied how to improve the coating process from solution. To 

summarize, this work involves device fabrication, thin film growth, materials characterization, and 

computational interpretation. It enhances the understanding of the optical and charge transport 

behavior of organic semiconductors, and also provides guidance on potential semiconductor 

candidates for applications in LED, photovoltaic, transistor, etc. 

Chapter 1 provided a brief introduction to the classical theories of charge transport in 

organic semiconductors and literature reports of experimental and simulation in terms of the 

temperature dependence, trap introduction, and optoelectronic performance. 

Chapter 2 performed calculations to study how different metal and peripheral ligand 

substitutions affect the electrical and optical properties of phthalocyanine molecules. With the 

electrical and optical simulations of energy level, reorganization energy and optical absorption 

spectra, it was concluded that the optical and electrical properties of the phthalocyanines were 

tuned more with the peripheral substitution than the metal center. 

Chapter 3 conducted the electrical and optical simulations of the triarylamine mixed 

valence systems bridged with different components. Four different MV complexes chelated with 

H2, Ru, Re and Ir bridges were simulated. Molecular orbital and energy levels were obtained 

through DFT calculations. Electronic absorption was simulated with TDDFT simulations. 

Electronic coupling was computed based on the energy level, shape and solvatochromism of the 



 

83 

spectra. Experiments show that the metal chelation increase electronic coupling while simulations 

indicate that the ligand species delocalize the MV system more than the metal chelated species. 

The discrepancy may come from the different basis sets we used in the simulation for bridge with 

and without metals. But it is still quite accurate to help interpret and assign the electrochemistry 

and UV spectra data obtained in experiments. 

Chapter 4 explored how the introduction of traps affects charge transport in organic 

semiconductors. Different amount of trap sites were intentionally introduced into the transport site, 

and the conductivity were measured. By plotting the mobility with the percentage of trap 

concentration, it shows that 2.5% of traps decreased the mobility by 90% and produced an 

asymmetrical graph as simulated. Moreover, we also observed negative differential resistance in 

the mixed films which was attributed to the block of the charge transport path. However, what was 

contradictory between the experiment and simulation was that our traps behave like deep barriers 

in the simulation though it was a shallow barrier considering the energy level difference detected 

in experiment and simulation. We suspected the discrepancy happens because the solution 

processed films are different in structure from the perfectly aligned crystal structure assumed in 

our simulation. 

 

Chapter 5 discusses the layer-by-layer process of phthalocyanine films.  

Different parameters (pH, PDDA, composition) were examined to find out the critical factor to 

growing layer by layer films from sulfonated sodium phthalocyanines. It was found that the layer-

by-layer films could be fabricated using one solution with either pH 3 or pH 11. The key to growing 

layer-by-layer films was that there must be PDDA in the water-bath.  

          To quantitatively study the influence of PDDA, we conducted experiments with different 
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amount of PDDA in the water bath and found that the films did not grow without PDDA and the 

amount of phthalocyanines adsorbed increase with the amount of PDDA in the water bath. To 

further understand the electrical and surface information of the PDDA assisted layer by layer films, 

Kelvin probe AFM was used to characterize the surface potential of the different films. A more 

positive surface potential was observed for the films with PDDA, which further demonstrates the 

existence of the positively charged polymer PDDA on the films. 
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Appendix A SUPPORTING INFORMATION FOR CHAPTER 2 

Appendix A.1 SAMPLE DFT INPUT FILE 

The following is an example input file of nickel phthalocyanine DFT calculation to optimize the 

geometry with basis set of 6-31G and LANL2DZ. 

%NProcShared=4 

%Chk=nickel-phthalocyanine-opt.chk 

#opt B3LYP/genecp 

 

 nickel-phthalocyanine-opt 

 

0 1 

C          1.37841        2.91314        0.20998 

C          0.25765        2.05549        0.16337 

C          0.42937        0.65422        0.20685 

C          2.67720        2.37602        0.29602 

C          1.73386        0.14680        0.29830 

C          2.24079       -1.15004        0.33868 

C          3.93832        0.17580        0.39799 

N          3.59815       -1.12666        0.38554 

C          2.81515        0.98205        0.33881 

N          5.25608        0.65467        0.40941 

C          6.32152       -0.06331        0.40205 

C          7.56506        0.48462        0.37190 

C          8.46847       -0.54093        0.34831 

C          7.93364        1.82451        0.33818 

C          9.83936       -0.27077        0.29201 

C          9.29610        2.12662        0.27332 

C         10.25051        1.08410        0.25127 

C          7.72564       -1.72214        0.36519 

N          6.39248       -1.42227        0.38851 

N          1.52838       -2.21831        0.29945 

C          2.04932       -3.54251        0.30710 
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N          3.36048       -3.88441        0.33533 

C          3.41188       -5.24002        0.30668 

C          2.11948       -5.74789        0.24895 

C         -0.10989       -4.80161        0.16657 

C          1.62203       -7.05006        0.17867 

C         -0.64032       -6.09822        0.09251 

C          0.22144       -7.22097        0.10081 

N          4.61221       -6.01736        0.28260 

C          5.81584       -5.53683        0.29851 

N          6.13151       -4.20985        0.34934 

C          7.48695       -4.13705        0.32038 

N          8.23212       -2.91689        0.33101 

C          8.03519       -5.42289        0.21259 

C          6.97730       -6.30357        0.20425 

C          7.17778       -7.68953        0.07530 

C          9.36128       -5.88225        0.08929 

C          9.58409       -7.27155       -0.05032 

C          8.49709       -8.17015       -0.05636 

C          1.27254       -4.66840        0.24563 

Ni         4.86364       -2.67337        0.37431 

H         -1.71243       -6.23344        0.02596 

H         -0.19942       -8.21518        0.04223 

H          1.23530        3.98817        0.17942 

H         -0.73727        2.48135        0.09484 

H          9.60957        3.16247        0.23387 

H         11.30047        1.33378        0.19549 

H         10.59398       -7.65895       -0.15712 

H          8.68237       -9.23579       -0.16739 

H          2.28578       -7.90433        0.17657 

H         -0.75560       -3.93092        0.15271 

H         -0.42979       -0.00089        0.16382 

H          3.53897        3.03199        0.32464 

H          7.18626        2.60972        0.34641 

H         10.56850       -1.06702        0.26526 

H          6.34856       -8.38423        0.06002 

H         10.20324       -5.20226        0.08371 

 

Ni     0 

S   3   1.00 

      7.6200000             -0.4082550 

      2.2940000              0.7455308 

      0.8760000              0.5325721 

S   4   1.00 

      7.6200000              0.1872591 

      2.2940000             -0.3966964 

      0.8760000             -0.4954003 
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      0.1153000              1.0844343 

S   1   1.00 

      0.0396000              1.0000000 

P   3   1.00 

     23.6600000             -0.0481558 

      2.8930000              0.6258473 

      0.9435000              0.4715158 

P   1   1.00 

      0.0840000              1.0000000 

P   1   1.00 

      0.0240000              1.0000000 

D   4   1.00 

     42.7200000              0.0372699 

     11.7600000              0.1956103 

      3.8170000              0.4561273 

      1.1690000              0.5621587 

D   1   1.00 

      0.2836000              1.0000000 

**** 

C 0 

6-31G 

**** 

N 0 

6-31G 

**** 

H 0 

6-31G 

**** 

NI     0 

NI-ECP     2     10 

d potential 

  3 

1    469.9324331            -10.0000000 

2     85.4236411            -69.4084805 

2     21.2674984            -12.0951020 

s-d potential 

  4 

0    162.1686097              3.0000000 

1    176.5333232             22.0253618 

2     68.9562010            443.0181088 

2     13.5792838            145.5696411 

p-d potential 

  4 

0     69.0181506              5.0000000 

1    275.5955596              4.9882824 

2     47.1315453            256.6945853 
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2     12.9874075             78.4754450 

 

Appendix A.2 TDDFT CALCULATION OF UV-VIS SPECTRUM  
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Figure A.1. Simulated electronic absorption spectra of phthalocyanine molecules with different metal centers. 
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Figure A.2. Simulated electronic absorption spectra of octabutoxy phthalocyanine molecules with different metal 

centers. 
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Figure A.3. Simulated electronic absorption spectra of octabutoxy phthalocyanine molecules with different metal 

centers. 
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Figure A.4. Simulated electronic absorption spectra of octabutoxy phthalocyanine molecules with different metal 

centers. 
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Appendix B SUPPORTING INFORMATION FOR CHAPTER 3 

 

Figure B.1. Anodic cyclic voltammetric profiles of 1-8 in CH2Cl2 containing 0.1 M Bu4NClO4 as the supporting 

electrolyte at a scan rate of 100 mV/s. 
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Figure B.2. Cathodic cyclic voltammetric profiles of 1-8 in CH3CN containing 0.1 M Bu4NClO4 as the 

supporting electrolyte at a scan rate of 100 mV/s. 

 

 
 

Figure B.3. HOMO and LUMO diagrams of 5. 
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Figure B.4. Selected frontier orbital diagrams of 6. 
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Figure B.5. Selected frontier orbital diagrams of 7. 
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Figure B.6. Selected frontier orbital diagrams of 8. 

 

 

 

 
Figure B.7. HOMO and LUMO diagrams of 1. 

 
 

 
 

Figure B.8. Selected frontier orbital diagrams of 2. 
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Figure B.9. Selected frontier orbital diagrams of 3. 

 

 
 
 

 
 

Figure B.10. Selected frontier orbital diagrams of 4. 
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Table B.1. Selected excitation energy (E), oscillator strength (f), dominant contributing transitions and the 

associated percent contribution and assignment of compounds studied. [a] 

a. Compound b. Sn c. E/eV d. E/nm e. f f. Dominant Transitions 

(contribution)
[b]

 
g. Assignment 

h. 5, N ligand i. 1 j. 3.28 k. 377 l. 0.55 m. HOMO LUMO (88%) n. ILCT 

o. 6, N-Ru p. 3 q. 2.37 r. 523 s. 0.2056 t. HOMO LUMO+2 (90%) u. ILCT 

 v. 6 w. 2.64 x. 470 y. 0.0029 z. HOMO-2 LUMO (41%) aa. MLCT 

     bb. HOMO-2 LUMO+1 (13%) cc. MLCT 

     dd. HOMO-3 LUMO (17%) ee. MLCT 

 ff. 7 gg. 2.65 hh. 467 ii. 0.026 jj. HOMO LUMO+3 (87%) kk. LLCT 

ll. 7, N-Re mm. 2 nn. 2.53 oo. 490 pp. 0.0506 qq. HOMO-2 LUMO (56%) rr. MLCT 

     ss. HOMO-1 LUMO (18%) tt. MLCT 

     uu. HOMO LUMO (21%) vv. ILCT 

 ww. 3 xx. 2.81 yy. 441 zz. 0.325 aaa. HOMO-2 LUMO (37%) bbb. MLCT 

     ccc. HOMO-1 LUMO (20%) ddd. MLCT 

     eee. HOMO LUMO (31%) fff. ILCT 

ggg. 8, N-Ir hhh. 2 iii. 2.71 jjj. 458 kkk. 0.282 lll. HOMO LUMO (76%) mmm. ILCT 

     nnn. HOMO-1 LUMO (12%) ooo. MLCT 

 ppp. 3 qqq. 3.03 rrr. 410 sss. 0.035 ttt. HOMO-1 LUMO (81%) uuu. MLCT 

     vvv. HOMO LUMO (13%) www. ILCT 

xxx. 1, N-N yyy. 1 zzz. 3.05 aaaa. 406 bbbb. 1.12 cccc. HOMO LUMO (89%) dddd. ILCT 

eeee. ligand       
ffff. 2, N-Ru-N gggg. 5 hhhh. 2.36 iiii. 526 jjjj. 0.056 kkkk. HOMO LUMO+2 (95%) llll. LLCT 

 mmmm. 6 nnnn. 2.48 oooo. 500 pppp. 0.434 qqqq. HOMO LUMO+3 (89%) rrrr. ILCT 

 ssss. 9 tttt. 2.57 uuuu. 483 vvvv. 0.0021 wwww. HOMO-5 LUMO (15%) xxxx. MLCT 

     yyyy. HOMO-4 LUMO (7%) zzzz. MLCT 

     aaaaa. HOMO-3 LUMO (12%) bbbbb. LLCT 

     ccccc. HOMO-2 LUMO (43%) ddddd. LLCT 

 eeeee. 20 fffff. 2.85 ggggg. 434 hhhhh. 0.0605 iiiii. HOMO-6 LUMO+1 (25%) jjjjj. MLCT 

     kkkkk. HOMO-5 LUMO (19%) lllll. MLCT 

     HOMO-6 LUMO (30%) MLCT 

mmmmm. 3, N-Re-N nnnnn. 1 ooooo. 2.56 ppppp. 484 qqqqq. 0.0503 rrrrr. HOMO-1 LUMO (80%) sssss. MLCT 

 ttttt. 2 uuuuu. 2.69 vvvvv. 461 wwwww. 0.60 xxxxx. HOMO LUMO (62%) yyyyy. ILCT 

     HOMO-1 LUMO (16%) zzzzz. MLCT 

 aaaaaa. 3 bbbbbb. 2.70 cccccc. 459 dddddd. 0.117 HOMO-2 LUMO (81%) eeeeee. MLCT 

 ffffff. 6 gggggg. 3.27 hhhhhh. 379 iiiiii. 0.316 HOMO LUMO+1 (86%) jjjjjj. ILCT 

kkkkkk. 4, N-Ir-N 1 llllll. 2.61 mmmmmm. 474 nnnnnn. 0.598 HOMO LUMO (87%) oooooo. ILCT 

 pppppp. 7 qqqqqq. 3.12 rrrrrr. 397.4 ssssss. 0.154 tttttt. HOMO-2 LUMO+2 (36%) MLCT 

     HOMO LUMO+3 (45%) ILCT 

 uuuuuu. 8 vvvvvv. 3.12 wwwwww. 396.8 xxxxxx. 0.166 HOMO-2 LUMO+2 (38%) MLCT 

     HOMO LUMO+3 (46%) yyyyyy. ILCT 

 

[a] Computed at the TDDFT/B3LYP/LanL2DZ/6-31G*/vacuum level of theory. [b] The 

actual percent contribution = (configuration coefficient)2 × 2 × 100%. 
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Figure B.11. Absorption spectral changes of 5 (a), 6 (b), 7 (c), and 8 (d) in dichloromethane upon one-

electron oxidation by oxidative electrolysis (for 5) or chemical oxidation with SbCl5      (for 6-8). 
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Figure B.12. Decovoluion of the NIR spectra of of [2]+ (a), [3]+ (b), and [4]+ (c). The irregular noises at the 

low energy side were deleted intentionally before deconvolution. 
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Figure B.13. Spin density plots of [1]
+

-[4]
+ 

in gas phase and different solvents. Distinct charge 

localization was observed for [2]
+

- [4]
+ 

in acetonitrile, as highlighted in red rectangles. H atoms have 

been omitted for clarity. 
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 Dn E/eV E/nm f 

[1]+
 CH2Cl2 1 0.70 1779.9 0.7529 

[N-N]+  2 1.73 716.0 0.1805 

 CH3CN 1 0.72 1730.2 0.7392 

  2 1.74 711.4 0.1701 

[2]+
 CH2Cl2 1 0.61 2033.6 0.612 

[N-Ru-N]+  2 0.87 1422.2 0.0034 

  3 1.06 1171.3 0.0045 

  5 1.53 810.1 0.2097 

 CH3CN 1 0.64 1922.6 0.519 

  2 0.82 1505.6 0.0032 

  3 1.00 1238.9 0.0051 

  5 1.59 778.43 0.0569 

  6 1.61 771.1 0.1932 

[3]+
 CH2Cl2 1 0.61 2035.6 0.612 

[N-Re-N]+
  2 1.08 1150.5 0.0002 

  3 1.16 1069.6 0.004 

  4 1.52 814.5 0.0898 

  5 1.53 808.5 0.1866 

 CH3CN 1 0.64 1950.6 0.5372 

  2 1.20 1031.2 0.0004 

  3 1.28 965.8 0.002 

  4 1.55 800.1 0.0656 

  5 1.58 785.1 0.2045 

[4]+
 CH2Cl2 1 0.60 2082.1 0.5608 

[N-Ir-N]+
  2 0.78 1584.0 0.0012 

  3 0.81 1529.7 0.0455 

  5 1.37 903.5 0.0003 

  6 1.44 858.1 0.0004 

  7 1.55 800.0 0.1932 

 CH3CN 1 0.63 1972.2 0.4886 

  2 0.80 1545.3 0.002 

  3 0.82 1504.3 0.0408 

  5 1.39 890.5 0.0003 

  6 1.47 841.2 0.0003 

  7 1.59 781.4 0.0829 

  8 1.60 772.7 0.1635 

 

 (0.997) 

(0.998) 

(0.996) 

(0.997) 
(0.996) 
(0.997) 
(0.995) 

(1.011) 
(0.999) 
(0.999) 
(0.931) 
(0.931) 

(0.999) 
(0.993) 
(0.989) 
(0.993) 

(1.003) 
(0.998) 
(0.985) 
(0.993) 
(0.997) 
(0.995) 

 (0.960) 
(0.947) 
(0.980) 
(0.936) 
(0.937) 
(0.987) 

 

 
 

Table B.2. Calculated low-energy excitations of one-electron oxidized species of 2-4 at the Level of 

B3LYP/LanL2DZ/6-31G. 

 
Dominant Transitions  
 
(1.007) 
(0.961) 
(1.009) 
(0.944) 

 
(1.010) 

 
 

 
(1.005) 

 

 
 
 
 
 
 
 
 

(1.007) 
 

 
 
 
 
 
 
 
 
 

(0.997) 
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Figure B.14. Frontier orbital diagrams of 1
+ 

involved in the predicted excitations listed in Table B.2. 

 

 

 
 
 
 

 

 

Figure B.15. Frontier orbital diagrams of 2
+ 

involved in the predicted excitations listed in Table B.2. 
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Figure B.16. Frontier orbital diagrams of 3
+ 

involved in the predicted excitations listed in Table B.2. 

 

 

Figure B.17. Frontier orbital diagrams of 3
+ 

involved in the predicted excitations listed in Table B.2. 
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Appendix C SUPPORTING INFORMATION FOR CHAPTER 4 

Design and Fabrication of Organic Field Effect Transistor Devices. Before fabrication, the 

photolithography mask (Figure C.1) was designed with computer-aided design (CAD). The critical 

dimension in our design is 1 µm. Interdigital electrodes with multiple channels were designed to 

enhance the current signal. Channels of different geometries and dimensions were created to 

determine the optimal device for a specific project. 

 

Figure C.1. Primary die for our first generation source-drain electrodes 

 

The procedure to fabricate the device in Figure C.2 is: 

(1) Deposit 4 nm of Ti, 80 nm of Au onto the 4” silicon wafer using an e-beam 

evaporator. 

(2) Wash with acetone, isopropanol, DI water, and blow dry with nitrogen gas. 

(3) Hard bake on a hotplate of 120 ℃ for 30 minutes  
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(4) Spin coat the primer of hexamethyldisiloxane (HMDS) and positive photoresist of 

AZ 4210 onto the substrate. The spin recipe is 10 s, 500 rpm for the pre-spin and 30s, 

3000 rpm for the second spin, which produces a 2.5 µm thick photoresist layer. 

(5) Soft bake at 95 ℃ for 5 minutes. 

(6) Expose with the Karl Suss MA6 Mask Aligner for 3.5 s. 

(7) Develop with the developer (1 AZ400K:3 DI water) for 1 minute. 

(8) Rinse with DI water to remove the extra developer, dry with nitrogen gas and soft 

bake at 70 ℃ for 1 minute to get rid of moisture residue. 

(9) Etch Au with aqua regia (3 HCl:1 HNO3:4 H2O ) for 1 minute. 

(10) Etch Ti with HF solution for 10 s.  

(11) Wash with acetone, isopropanol and water, and blow dry with nitrogen. 

 

Figure C.2. Fabrication process of our first generation of devices 
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Before testing the fabricated devices, we tested the probe stage and Keithley source meter 

with the purchased N-type IRF513 metal-oxide-semiconductor FET (MOSFET) to make sure that 

the instrument and connection were working correctly. 
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Figure C.3. Output of the standard N-type IRF 513 Power MOSFET.  

            As shown in Figure C.3, the output was of a typical N-type FET: the drain-source current 

increases with the gate voltage and saturates when the drain-source voltage gets large enough. The 

standard tests with IRF 513 MOSFET device indicate that our semiconductor parameter analyzer 

works correctly. So the next we did was to deposit the semiconductor onto the devices to check 

the quality of the devices fabricated.  Poly (3-hexylthiophene) (P3HT)146 (1 mg/mL in chloroform) 

was drop-casted and tested.  
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Figure C.4. FET measurement for poly (3-hexylthiophene) test device 

The FET measurements on the devices, however, did not show expected gate dependence. 

The source-drain current decreased with gate, which is not normal. We suspected the gate leakage 

was severe as we used wet etching in the fabrication, which may produce some pinholes or defects 

to the SiO2 insulating layer and makes the gate not correctly working. 

Therefore, we switched to lift-off to see if it can improve the fabrication. As we did not 

have negative photoresists in the cleanroom at that time, a new dark mask was needed to conduct 

lift-off process with the positive photoresist. Moreover, it was observed that the 1 µm channel was 

too small to develop and the interdigital devices turned out to work better than the rectangular 

ones. So we increased the critical dimension of the new mask to 3 µm and implemented more 

interdigital channels than the first mask. Moreover, experiments showed that the gate was not well 

connected to the stage, so an additional gate mask was designed to fabricate gate electrodes on the 

front side of the chips for semiconductors with very low mobility that require maximized current 

signal.  



 

 108 

The pair of masks is as in Figure C.5. The gate mask is to expose the area where the gate 

electrodes would be made and the source-drain mask is to fabricate the source-drain electrodes. 

There is a fiducial mark in the center for alignment.  

 

Figure C.5. The source-drain mask (left) and gate mask (right) 
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As shown in the source-drain mask in Figure C.6, the three big rectangles on the top left 

are the gate electrodes while the others are source and drain electrodes. The channels  are 3-30 µm 

long and 250-700 µm wide for the rectangular patterns. For the interdigital electrodes, there are 5 

bigger electrodes with 12 channels of 50 µm long, 450 µm wide and 7 smaller ones with 5 channels 

of 50 µm long0, 500 µm wide. For each geometry, more than one electrode was designed to make 

sure that the measurement can be repeated to get an average data. 

 

 

 

Figure C.6. Primary die for the new source-drain mask. 
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The new recipe of the fabrication is as follows: 

(1) Wash with acetone, isopropanol, DI water and dry with nitrogen gas. 

(2) Hard bake with the hot plate at 120 ℃ for 30 minutes. 

(3) Spin coat the primer of hexamethyldisiloxane (HMDS) and positive photoresist of 

Shipley 1827 on the wafer. The spin recipe is 10 s, 500 rpm for the pre-spin and 40s, 

6000 rpm for the second spin, which produces a PR layer of 2 µm thick. 

(4) Soft bake at 95 ℃ for 5 minutes. 

(5) Expose with the NFCF Q4000 mask aligner for 30 s. 

(6) Develop with the solution of 351 developer (1developer:3 DI water) for 1 minute. 

(7) Rinse with DI water to remove extra developer and dry with nitrogen.  

(8) Deposit 5 nm of Cr and 80 nm of Au with e-beam evaporator. 

(9) Lift-off with acetone. 

 

Figure C.7. Fabrication flow of the new devices 
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The standard tests of the new device were conducted with drop-casted P3HT as before, and 

the result is shown in Figure C.8. 
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Figure C.8. The FET graph of the device tested with P3HT. 

Compared to the previous devices, the new devices produced a larger current signal and 

improved gate dependence. However, we checked the gate current signal and found that there was 

still gate leakage in order of magnitude of µA. As the F- was used to etch the gate contact, and it 

is quite possible the HF penetrated to the insulating SiO2 layer even if the device was protected 

with photoresist before etching. So we decided to avoid using HF in the process, scratch the SiO2 

in the backside, and attach the exposed doped Si to conductive aluminum tape with silver paint to 

make a good contact with the gate probe (Fig C.9).  
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Figure C.9. The device and FET stage 
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Figure C.10. The output of testing the new generation of device with P3HT: source-drain current with source-drain 

voltage. 
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Figure C.10 showed that the devices produced better output: gate dependence was 

improved, and the trend of saturation showed up. Moreover, the gate leakage was smaller than the 

device etched with HF. After the test P3HT, we deposited the semiconductor we are interested in 

onto the devices and tested it. The FET result of the spin-coated Nickel(II) 1,4,8,11,15,18,22,25-

octabutoxy-29H,31H-phthalocyanine is shown in Figure C.11. The linear and saturated gate 

dependence of the source-drain signal was perfect along with the gate leakage noise of 𝑛𝐴, quite 

good device performance. 
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Figure C.11. The output of source-drain (left) and gate (right) signal with the film of Nickel(II) 

1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine. 
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Appendix D SUPPORTING INFORMATION FOR CHAPTER 4: 

CHARACTERIZATION OF THE OCTABUTOXY PHTHALOCYANINE AND 

NAPHTHALOCYANINE FILMS 

Appendix D.1 XPS MEASUREMENT 

Pure NiOBuPc and mixed NiOBuPc/OBuNc film were detected. The elemental analysis was 

reported to see if the composition of the film is the same as prepared from solution. 

 

Sample 1: Pure NiOBuPc 
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Figure D.1. XPS measurement of the film made with pure NiOBuPc solution. Note: Copper peaks are due to the 

sample holder 
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Table D.1. The XPS analysis result of the pure NiOBuPc film. 

Element Int. area S(sensitivity factor) I/S Cx(atom%) No. of atoms Theor.Ratio 

C 7531 1.00 7531 82.7 64 79 

N 1079 1.80 599 6.6 8 9.8 

O 2520 2.90 869 9.5 8 9.8 

Ni 1535 14.61 105 1.1 1 1.2 

Sum: 12665 na 9104 99.9 81 99.8 
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Sample 2: Mixed NiOBuPc + OBuNc 
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Figure D.2. XPS measurement of the film made with  NiOBuPc/OBuNc (50/50) solution.  
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Table D.2. The XPS analysis result of the 50/50 mixed phthalocyanine films. 

Element Int. area S(sensitivity 

factor) 

I/S Cx(atom%) Number of 

atoms 

Theor.Ratio 

C 6947.5 1.00 6947.5 81.8 144 81.4 

N 933 1.80 518 6.1 16 9.03 

O 2843 2.90 980 11.5 16 9.03 

Ni 635 14.61 43.5 0.5 1 0.56 

Sum: 11358.5 na 8489 99.9 177 100.02 
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Appendix D.2 FET MEASUREMENT 

NiOBuPc are mixed with OBuNc, conductivity of the pure and the mixed films were collected and 

mobility was calculated.  
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 Table D.3. The experimental mobility data of the pure and mixed films of NiOBuPc/OBuNc 

Note: the different figures within the same device represent the mobility with the same film but different area of a same device. 

Film(% of 

OBuNc) 
Std. error Average  

Mobility (10-5 cm2/V.s)  

Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 Device 7 

0 
0.575 

 

3.89 

 

2.8 

6.31 

1.95 

4.07 

7.67 

6.38 

4.66 

2.5 

4.74 

1.5 

2.55 

1.55 

   

2.5 
0.089 

 

0.443 

 

0.619 

0.079 

0.037 

0.138 

0.367 

0.476 

0.444 

0.974 

0.692 

0.606 

    

5 
0.128 

 

0.623 

 

0.184 

0.206 

0.682 

0.391 

1.52 

1.1 

0.97 

0.634 

0.779 

0.131 

0.252 

    

10 
0.015 

 

0.063 

 
0.107 

0.042 

0.077 
0.027     

25 
0.072 

 

0.178 

 

0.449 

0.045 
0.013 

0.034 

0.484 
0.030 0.191   

50 
0.123 

 

0.539 

 
0.030 0.030 

0.822 

0.543 

0.99 

0.928 

0.436 

0.535 

   

75 
0.198 

 

0.778 

 

0.195 

0.164 

0.1 

0.181 

0.166 

 

0.056 

1.91 

1.34 

1.11 

1.93 

1.24 

0.741 

0.879 

 

  

82.5 
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1.359 

 

1.91 

1.72 

1.34 

1.11 

1.93 

1.24 

0.741 

0.879 

     

90 
0.305 

 

3.576 

 

4.03 

2.47 

2.46 

3.54 

5.36 

4.87 

4.81 

4.85 

3.29 

3.05 

3.13 

6.07 

5.2 

6.19 

2.5 

2.42 

2.05 

  

95 
0.403 

 

3.463 

 

4.77 

3.85 
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3.39 

5.61 

5.32 
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5.79 
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100 
0.586 

 

4.212 

 
0.71 
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0.912 

7.87 

6.64 
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7.29 

6.23 

5.21 

5.32 

1.79 

2.54 

1.78 

3.09 

2.88 

2.42 

2.52 

8.46 

7.04 
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Before using the mixed of NiOBuPc/OBuNc, we also tried mixing NiOBuPc with 

terthiophene or ZnOBuPc. But neither of them worked. It turned out that the pure terthiophene and 

ZnOBuPc do not show FET behavior, and introducing them into the NiOBuPc could not produce 

a mobility graph of a range of 0%-100%. The source-drain current decreased to a noise level when 

more than 50% of terthiophene or 3% of ZnOBuPc was introduced. Moreover, in the simulation 

model, we assume both the transport site and trap site are able to transport charges. So the 

terthiophene and ZnOBuPc are not ideal candidates for this project. 
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Table D.4.  The experiment mobility data of the pure and mixed films of NiOBuPc/terthiophene 
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Figure D.3. Mobility with percentage of terthiophene in the NiOBuPc/terthiophene mixed films. 

Film(%of terthiophene) Std. error Average  

Mobility (10-5 cm2/V.s) 

 Device 1 Device 2 
Device 3 

0 
0.39 

 

1.60 

 

0.959 

0.606 

 

1.94 

3.65 

1.53 

2.37 

1.12 

0.638 

 

25 
0.20 

 

0.76 

 

0.951 

1.34 

0.493 

0.701 

0.355 

 
 

50 
0.21 

 

0.50 

 

0.808 

 

0.145 

0.228 

0.836 

 

 



 

 122 

ZnOBuPc (%)
0 2 4 6 8 10

M
o

b
il

it
y
 (

1
0

-5
c

m
2

/V
.s

)

0

2

4

6

 

Figure D.4. Mobility with percentage of ZnOBuPc in the NiOBuPc/ZnOBuPc mixed films. 
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Appendix D.3 AFM SCANNING 

Tapping mode AFM images were obtained. Morphology and surface roughness of the different 

films were examined. 

 

 

 

Figure D.5. AFM height images of samples containing OBuNc of a) 0%, b) 25%, c) 50%, d) 75%, and e) 100% and 

their corresponding section line (f-j).  
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Figure D.6. AFM phase images of samples containing OBuNc of a) 0%, b) 25%, c) 50%, d) 75%, and e) 100%. Phase 

images were recorded simultaneously with height images in Figure D.37. Phase roughness is below 1˚, indicating 

composition homogeneity of all five films.  
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Appendix D.4 MONTE CARLO SIMULATION 

The model consists of a coarse grained lattice of sites, each 1 nm3 in size.  A site represents 

a single, conducting organic molecule, such as phthalocyanine.  The dimensions of the lattice can 

vary.  In this work, we have simulated thin films with an area of 1024*256 nm2 and thickness of 3 

nm.  Charge transport in OFETs occurs mainly within the first few layers, near the dielectric- 

semiconductor interface, so the difference in film thickness is not expected to be significant. 

The molecular sites can be empty or occupied by a charge carrier, such as a hole.  When a 

hole occupies a site, this corresponds to an electron being removed from the molecule’s highest 

occupied molecular orbital (HOMO).  Note that holes are more likely to move to molecules with 

higher HOMO energy.  This is rationalized by imagining the electron that has to move to a lower 

energy when the hole moves to a higher energy.   

In a pure system, all sites are assigned an equal HOMO energy.  Traps (for holes) are 

introduced into the system by shifting the HOMO energy of a site up by some value, for example, 

0.01 - 0.1 eV.  Likewise, barriers (for holes) are introduced into the system by shifting the HOMO 

down by some value.  Additionally, very large barriers, termed defects, can be added.  Defects 

represent dust and unreactive chemical impurities.  In the model, carriers cannot transport to defect 

sites. The assignment of trap and barrier energies is performed explicitly, unlike the traditional 

Gaussian Disorder Model (GDM), in which site energies are assumed to take on a Gaussian 

distribution.  In this work, traps and barriers were placed homogenously at randomly chosen sites. 

Site energies also explicitly incorporate the Coulomb interactions between charge carriers 

in the film.  While most theoretical models do not include the detailed effects of Coulomb 

interactions between carriers due to computational cost, they prove to be very influential in the 

dynamics on mechanism of charge transport in the film.  The Coulomb interaction is long ranged 
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and the static dielectric constant is small (~2-3.5) in the organic materials used in thin films.  

Similarly, the interactions are strong due to the localization of charges onto the molecular sites and 

the close proximity of charges. 

On the left side of the lattice is a source electrode, which injects holes into the system at a 

constant probability (90%).  Holes are injected into a site directly adjacent to the electrode, should 

it be unoccupied.  On the right side of the lattice is a drain electrode.  Holes which are adjacent to 

the drain can attempt to leave the lattice with a constant probability of success (90%).  The choice 

of a constant probability for the injection and removal of charge carriers represents an assumption 

that the energetic barriers at the electrode-semiconductor interfaces are constant and small, as we 

have tested previously.  

A potential is applied between the source and drain electrode (VDS).  This potential is 

assumed to be linear, and modulates the HOMO energy at each site. The model does not explicitly 

contain a gate electrode.  However, the potential of the gate electrode can be treated by applying a 

field along the z-direction, which has the effect of moving charges into layers near the 

semiconductor-dielectric interface.  Only 3 layers were used in the simulation, therefore no field 

in the z-direction was applied. Ample evidence suggests only the first 1-3 layers are involved in 

charge transport.  The gate electrode also determines how many charge carriers are in the system.  

A constant charge carrier concentration of 1% (7864 carriers) was used here, matching on 

experimental gate voltage of 15.7 V through the 300 nm SiO2 dielectric. 

Initially, before the simulation starts, these charges are placed randomly.  Randomly placed 

charges can be thought of as the result of the gate electrode oxidizing molecular sites or as residual 

charges present in the film.  Although equilibration times are longer, identical long term behavior 
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is achieved by starting the simulation with no charges and allowing them all to be injected by the 

source electrode. 

A typical simulation can be described as follows.  Charges are first randomly placed.  The 

movement of charges is assumed to occur via thermally activated hopping, which can be described 

using Marcus Hush theory. Hopping occurs because electronic states are localized on molecular 

sites in organic semiconductors, a result of the weak electronic interactions and disorder present 

in the system. At each step, charges attempt to hop to a randomly chosen adjacent site.  The energy 

change, which includes the source-drain potential VDS, the trap energy, and the Coulomb 

interaction, is used in the Metropolis criterion to determine the probability of hopping.  The 

criterion is modified by a coupling constant that enforces a small probability to remain on a site, 

even when the energy change is negative.  A value of 33% is used.  To maintain detailed balance, 

this coupling constant also multiplies the Boltzmann factor.  As a result, moves to lower energy 

are accepted 1/3 of the time.  At the end of each step, the source electrode attempts to inject new 

carriers. 

A dynamic interpretation of the states produced is accomplished by associating a timescale 

with the moves, regardless of if they are accepted or rejected. For example, carriers will spend 

more time on states of low energy, like trap states, by nature of a small probability to move to 

higher energy states. The timescale chosen for a fundamental move is ~ 1 ps, and is consistent with 

quantum chemistry calculations and fast, efficient charge transfer.  The charge transfer rate and the 

coupling constant only affect the magnitude of electrical currents calculated by our code and not 

the trends observed.  The current is calculated by monitoring how many carriers exit the drain 

electrode.  The process is repeated at different VDS to construct a current-voltage curve. 
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Simulations of thin film OFETs with dimensions of 1024x256x3 nm3 with 1% charge 

carriers (7864 max carriers) were performed.  Current was calculated for 0.5 µs and results 

averaged over three simulation replicas.  Only hole transport was considered.  Coulomb 

interactions were treated using point charges, delocalized Gaussian charges, and non-interacting 

charges.  For Gaussian charges, the standard deviation chosen was 1 nm, 1.25 nm, and 1.5 nm.  IV 

curves were calculated for systems with a mixture of 75% semiconductor and 25% shallow traps 

(-0.05 eV), 25% high barriers (0.50 eV), and 25% defects.  VDS was varied between 0 and -150 V.  

Additionally, the slope of the IV curve in the saturation region (differential conductance) was 

measured as a function of trap/barrier energy (-1.0 to 1.0 eV) by calculating a few IV points in the 

saturation region (120, 140, 150 V). 
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Figure D.7. The differential conductance in the saturation region as a function of trap or barrier energy for a system 

with 25% traps or barriers  

Figure D.7 shows the differential conductance in the saturation region as a function of trap 

or barrier energy for a system with 25% traps or barriers.  Differential conductance indicates how 
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the conductance is changing as the voltage increases and is simply the slope of the IV curve.  When 

the trap energy is zero (pure system), the differential conductance is small and positive (0.04 𝑛𝑆).  

Ideal saturation would mean that the conductance does not change with voltage.  This system is 

very near, but not completely saturated. 

Interestingly, as the trap or barrier energy increases, the differential conductance reaches a 

maximum at +/- 0.16 eV.  The peak for traps (0.68 𝑛𝑆) is nearly twice the height as the peak for 

barriers (0.32 𝑛𝑆).  A larger differential conductance indicates a perturbed onset of ideal saturation.  

Therefore, this suggests that traps are a larger hindrance to charge transport than barriers, likely 

because it is thermodynamically favorable to fall into a trap.  The peak location is near the energy 

associated with the potential difference between the source and drain electrodes at saturation for 

an adjacent site hop (e * 150 V / 1024 nm * 1 nm ~ 0.15 eV).  It is this energetic driving force, 

along with the Columbic interactions between carriers, which drives carriers out of traps or into / 

past barriers.  The presence of a peak indicates that traps / barriers are (at first) an increasing 

hindrance to ideal saturation. 

As traps deepen beyond -0.16 eV, the differential conductance begins to fall and remains 

zero for traps deeper than -0.4 eV.  Although the differential conductance calculated is zero beyond 

-0.4 eV, a saturated IV curve does not exist.  When traps are this deep, there is no current, because 

nearly all carriers become trapped.  There are many more trap sites than carriers.  The simulation 

assumptions, such as constant carrier concentration, may be invalid in this region. 

Barriers behave differently as they become larger than 0.16 eV.  The differential 

conductance falls off, and becomes negative beyond 0.4 eV.  At this energy, the barriers become 

insurmountable hills or defects. 
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Figure D.8. The simulated I-V curves for systems with 25% barriers (a), defects (b) and traps (c).  

 

Figure D.8 (a) shows IV curves for systems with 25% high barriers (+0.50 eV).  Curves 

are shown for Coulomb interactions treated as point charges, delocalized Gaussian charges (sigma 

= 1.0, 1.25, 1.50 nm), and non-interacting charges.  All curves exhibit negative differential 

conductance in the saturation region (-0.013, -0.019, -0.021, -0.025, -0.042 𝑛𝑆 ).  As charge 

(a) (b) 

(c) 
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interactions become weaker (higher sigma), the negative differential conductance becomes more 

negative and thus the system more resistive.  A mechanism for defect induced negative differential 

conductance was proposed by Hanwell. Non-interacting carriers become blocked / immobilized 

by the presence of defects, leading to a negative differential conductance.  However, when 

Coulomb interactions are present, other carriers are funneled around the defects by the Coulomb 

interaction with blocked carriers.  This leads to a smaller differential conductance and faster onset 

of ideal saturation. 

Figure D.8 (b) shows IV curves for systems with 25% defects.  Again, curves are shown 

for the varying treatments of Coulomb interactions.  Curves show a negative differential 

conductance in the saturation region (-0.015, -0.020, -0.042 𝑛𝑆 ) of similar magnitude to the 

corresponding curves for high barriers (-0.013, -0.021, -0.042 𝑛𝑆).  This indicates that the barriers 

are behaving like defects. 

Figure D.8 (c) (traps) shows IV curves for systems with 25% shallow traps (-0.05 eV).  

Curves are shown for Coulomb interactions treated as point charges, delocalized Gaussian charges 

with sigma = 1.00 nm, and non-interacting charges.  All three exhibit positive differential 

conductance (0.065, 0.057, 0.026 𝑛𝑆), in agreement with Figure D.39.  Non-interacting charges 

show the smallest differential conductance in the saturation region and reach near ideal saturation 

at lower voltages (~-100 V) than interacting charges (> 150 V).  However, non-interacting charges 

show lower current (-75 𝑛𝐴) in the saturation region compared to interacting charges (-80 𝑛𝐴).  

This is a result of Coulomb interactions removing carriers from trap sites. 
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Appendix E SUPPORTING INFORMATION FOR CHAPTER 5 
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Figure E.1.The spectra data of CuPs solutions of different pH (pH 3, pH 11) and varying amounts of PDDA in the 

water bath for absorption at 328 nm. 
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Figure E.2.UV-vis spectra of the mixed films with 80% (a), 60% (b), 40% (c) and 20% (d) of CuPs. 
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