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ON CAUSAL GEOMETRIES

Jonathan Holland, PhD

University of Pittsburgh, 2015

Causal geometries are geometric structures on manifolds for which a (non-degenerate) null

cone exists at every point, such that the null cones satisfy a version of Huygen’s principle.

Causal geometries are a natural generalization of conformal geometries (in non-Euclidean

signature). They appear naturally as incidence geometries for projective geometries in three-

dimensions, and third-order ordinary differential equations. These share features with con-

formal geometries: null geodesics exist, as does the Weyl tensor, and there are Raychaudhuri

conditions on the null geodesic deviation.
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1.0 INTRODUCTION

Soon after the development of the theory of gravitation by Albert Einstein [22], Hermann

Weyl [82] tried to do away with lengths and instead to base the theory entirely on angles

(Afriat [1], [2], [3]). In present-day language, Weyl wanted a conformally invariant theory, so

a theory invariant under the transformations g(x)→ ω(x)2g(x), where g(x) is the Lorentzian

metric of the theory and ω(x), the conformal factor, is a positive function of the space-time

point x. Indeed the purely gravitational degrees of freedom of space-time are represented

by the Weyl tensor (Weyl [83]), which is conformally invariant (Schouten [74]). However

Weyl’s theory did not agree with the experiment, as was quickly pointed out by Einstein

[23]. Weyl eventually recast and revived his theory, by turning away from gravity and

instead developing gauge theory. In the meantime, the attempt to understand the conformal

properties of gravity has led to much progress and has been a constant preoccupation of

many researchers.

The present work tries to reconcile the opposing philosophies of Einstein and Weyl.

At the same time, we effectively generalize the theory of Einstein. The reconciliation is

achieved by moving the entire theory into the tangent bundle of space-time, where the focus

is on the bundle of null directions and the associated null geodesic foliation of that bundle,

both conformally invariant constructs. In the Einstein theory, the bundle is defined by the

vanishing of the homogeneous quadratic form in the velocities, g(x)(v, v) = 0, where g(x) is

the metric and v is a tangent vector at a point x of the space-time. I generalize by allowing

the null cone to be given by a general homogeneous function of the velocities, subject only

to the genericity condition that its Hessian with respect to the velocities be non-degenerate

(and Lorentzian in the case of space-time). I call this structure a causal geometry.

A key point is that the allowed conformal rescalings are vastly generalized, the function ω

being replaced by a homogeneous function on the tangent bundle, so a function of 2n−1 free

variables, as opposed to the standard n variables, for a space-time of n ≥ 3 dimensions. So

the conformal transformations are on a more even footing with the metric, as compared with

the standard theory, where there is one function representing the conformal transformation

and 2−1n(n+1) functions encoding the metric. Our first main result is that there is a natural
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generalization of the Weyl tensor, which is proven to be invariant under the enlarged class

of conformal transformations.

Causal geometries are somewhat similar to the notion of Finsler [28] geometries, however

the null geodesics in a causal geometry are inherently non-variational. Our geometries gen-

eralize more directly those of Bryant ([9], [10]), who defines a generalized Finsler geometry

in terms of its unit sphere bundle. This is a smooth hypersurface Σ ⊂ TM for which the

projection Σ → M is a submersion, and such that in each fiber Σ is convex, connected,

and transverse to the radial direction. Bryant’s geodesics are obtained by imposing contact

conditions on the geodesic spray, and do not readily admit a variational characterization.

The geodesics in our geometry bring a similar machinery to bear on the null geodesics. Fur-

thermore, generalized Finsler geometries can be obtained from suitable causal geometries by

symmetry reduction. Conversely, a generalized Finsler geometry defines a causal geometry

in one higher dimension in a natural manner.

When extrapolating from an established physical theory, one wants to preserve as much

of the structure of the old theory as possible. One motivation for going beyond the Einstein

theory is the inevitable presence of singularities in the theory, as first brilliantly proved by Sir

Roger Penrose [66], [64], [65]. One might wish to construct a new theory free of singularities.

However, at least classically, the intuition behind the Penrose theorem is compelling and

depends only on the attractive nature of the gravitational interaction and very little on

the details of the theory. This intuition is vital to the generalized theory, so we ultimately

wish to generalize the Penrose singularity theorem to our case. Examination of the proof

given by Penrose shows that apart from general causal properties described in Kronheimer

and Penrose [50] and Geroch, Kronheimer, and Penrose [32], which do not depend on the

null cones being quadratic in the velocities, the only other ingredient needed for the proof

to go through is apparently the Raychaudhuri–Sachs effect which predicts the existence

of conjugate points for congruences of null geodesics, given that a local positive energy

condition holds and that there is a point of the congruence where the divergence is negative

(Raychaudhuri [69], [68], Sachs [70]). It is proven in Chapter 8 that the Raychauhuri–Sachs

theorem naturally generalizes to the new context, as does the Raychauhuri–Sachs effect in

the Lorentzian case, subject to a natural generalization of the local positive energy condition,

so this main ingredient of the singularity theorem goes through.

While so far this presents the theory as a generalized theory of gravity, we see potential

applications in many other areas of mathematics and physics. In our case the motivation for

constructing the theory came from two areas studied by us: neither of these areas is concerned

with generalizing the Einstein theory. Both involve the construction of a metric that is once

degenerate and yet is not generally invariant in the degenerate direction: crudely speaking, a
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metric of the form gij(x, t)dx
idxj, where the (invertible) coefficient matrix gij(x, t) in general

depends non-trivially on the parameter t. The question is what to do with this metric?

This dissertation presents a number of scenarios in which such a metric appears naturally

in mathematical problems. The remainder of this introduction serves as a rough guide.

1.1 PRELIMINARIES

Chapter 2 contains preliminaries on differentiable manifolds. We here adopt a somewhat

novel perspective in considering Ck manifolds from the point of view of sheaf theory. A

Ck manifold is a topological space equipped with a sheaf of rings that is locally isomorphic

as a ringed space to a Euclidean space with its sheaf of k-times continuously differentiable

functions. Many familiar notions from the theory of smooth manifolds require considerably

more care to define in a coordinate-independent manner for Ck manifolds than for smooth

manifolds. The root of the reason is the lack of a decent preparation theorem (Hadamard’s

Lemma 2).

To formulate everything in a coordinate-independent manner, we should like to be able

to define differentials and, more generally, jets. In this undertaking, it becomes clear why

an adequate preparation lemma is required. We should like to be able to write a function as

a Taylor polynomial plus a remainder term that is (schematically) of the form xkg(x) where

the function g is as differentiable as the original function. But in general this is not true. So

what can be done? The remarkable fact that makes this work is that it is possible to define

the topology of uniform convergence of k-jets on compacta on the sheaf of Ck functions,

without reference to partial derivatives, coordinate systems, or jets. We do this in a sneaky

way that is inspired by the celebrated theorem of Jaak Peetre [62] (in the smooth case).

The philosophy underlying this theorem is that it is possible to make sense of the notion of

“linear differential operator” without referring to any fine structure of the functions. The

sheaf of Ck functions then carries the initial topology with respect to all linear differential

operators defined on it. To justify this procedure, it is necessary to prove a slightly modified

version of Peetre’s theorem that holds for Ck functions. I do not claim any great originality

in the proof: the main thrust borrows from the proof of the C∞ version of the theorem that

appears in the book by Kollař, Michor, and Slovák [46].

For the remainder of Chapter 2, many of the standard constructions and theorems on dif-

ferentiable manifolds are reviewed. This includes constructions of the tangent and cotangent

bundle, differential forms, the Poincaré lemma, Frobenius’ theorem, and Darboux’s theorem.
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Some rather less well-trodden topics are also treated briefly, chiefly the Frölicher–Nijenhuis

bracket, which is needed in the final chapter.

Chapter 3 is devoted to Weyl geometries, which include conformal and projective geome-

tries. In the sense that we use the term, a Weyl geometry is a family of affine connections

on a manifold that is indexed by the cotangent bundle. In good cases, we show that a Weyl

geometry defines in a natural manner a kind of Cartan connection on the manifold. This is

a non-linear connection on the bundle of affine connections that defines the Weyl structure.

In the conformal and projective cases, this Cartan connection coincides with the canoni-

cal normal Cartan connection for the structure (after quotienting by appropriate parabolic

structure group).

This association of a Weyl geometry to a parabolic structure seems to offer some tanta-

lizing possibilities. Chapter 4 concerns parabolic geometries more extensively. A parabolic

structure on a vector bundle is nothing more than a suitably generic connection in the bun-

dle, together with a preferred class of filtrations of the bundle, and a distinguished filtration

in this class. Starting from these data, we show how to construct a Weyl geometry, and so

the associated connection.

1.2 CAUSAL GEOMETRIES

Chapter 5 contains the definition of causal geometries and their basic properties. A causal

geometry consists of an association of a null “cone” to each point of a space that is ruled by

unparametrized null “geodesics” in such a way that certain natural conditions are satisfied.

The most non-obvious condition is a geometrical version of Huygen’s principle, that null

cones associated to different points of the same null geodesic must make contact to first

order. So to specify a causal geometry, it is sufficient to say what the null geodesics are (and

to show that these satisfy the defining conditions).

A natural way to obtain a causal geometry is to give a Lagrangian on the tangent bundle

(subject to some non-degeneracy conditions). The null geodesics of the Lagrangian are

precisely the null stationary points of the associated energy functional. Conversely, we prove

that it is possible to associate a Lagrangian (up to an easily definable equivalence) to any

causal geometry.
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1.3 EXAMPLES OF CAUSAL GEOMETRIES

Chapter 6 presents incidence geometries, based on the parabolic structures previously defined

in Chapter 4, as examples of causal geometries. The basic idea is this: if X is a three-

dimensional manifold on which there is a notion of “geodesic” (such as a Riemannian or

projective manifold), then the space of geodesics N carries a causal structure that is defined

as follows. Two geodesics are said to be incident if they intersect at some point. A null

geodesic in N is a family of geodesics in X that intersect a given geodesic at the same point

and so that the two geodesics generate the same tangent plane at the point of intersection.

(All considerations here are local.)

We then present two examples in detail: X = S2 × R with its associated Riemannian

structure, and X is the Heisenberg group with its associated sub-Riemannian structure. An-

other example is the “paraconformal” (or, more properly, GL(2,R)) geometries of Dunajski

[20], [19]; this example is not discussed further.

1.3.1 Third-order differential equations

Chapter 7 presents the next example, which comes from the theory of third-order ordinary

differential equations (in general non-linear) under contact equivalence [41]. We may write

such a third-order differential equation in terms of the vanishing of an ideal of one-forms

in four variables: {dy − pdx, dp − qdx, dq − F (x, y, p, q)dx} where p = y′, q = y′′ and

the differential equation is y′′′ = F (x, y, y′, y′′). Here the prime denotes differentiation with

respect to the variable x. By setting p = y′ and q = y′′, the solutions of this equation coincide

with curves in the second jet space J2 with coordinates (x, y, p, q) that are everywhere tangent

to the contact distribution annihilated by the one-forms

θ1 = dy − pdx, θ2 = dp− qdx

and that are also annihilated by the one-form

ω = dq − F (x, y, p, q)dx.

A contact transformation Φ : J2 → J2 is a local diffeomorphism that preserves the contact

filtration on J2, meaning that

Φ∗θ1 ≡ 0 (mod θ1), Φ∗θ2 ≡ 0 (mod θ1, θ2).

Contact transformations act on the set of differential equations by composition. Chapter 7

is concerned with structures that are invariant with respect to transformations of this form.

5



An alternative characterization of third-order equations and contact transformations relying

only on the first jet space J1 and the contact structure associated to θ1 will be given in this

chapter.

The equivalence problem for third-order ordinary differential equations has a long history.

It was first studied under the class of point transformations by Élie Cartan [12]. In 1940, S.

S. Chern [15] focused on the equivalence problem under contact transformations. A certain

scalar invariant of the structure, called the Wünschmann invariant, divides the family of

third-order equations into two classes. Those with vanishing Wünschmann invariant admit

a natural conformal Lorentzian structure on the space of solutions. For Chern, this conformal

structure presented itself in the form of a normal SO(3, 2) Cartan connection on the solution

space or, what is the same, a conformal Lorentzian metric on that space. A geometrical

description of this conformal structure was presented much later by Fritelli, Kozameh, and

Newman [30], who showed that the general third-order equation with vanishing Wünschmann

invariant could be obtained by considering one-parameter families of null hypersurfaces in a 3-

dimensional space with a conformal Lorentzian metric. More directly, as discussed in Section

7.0.1, this case can be understood also in terms of the null geodesic spray on the bundle of

null rays: null hypersurfaces then being related by means of an envelope construction.

Chern also determined all of the contact invariants of the general third-order equation in

which the Wünschmann is nonzero. This was presented in the modern language of bundles

and connections by Sato and Yoshikawa [73], who in addition clarified the geometrical inter-

pretation of the structure as a normal SO(3, 2) Cartan connection on the space J2. Nurowski

and the second author later showed the existence of a conformal O(3, 3) structure on a certain

fiber bundle over J2 (see [60]). This O(3, 3) structure is of Fefferman [26] type, in the sense of

Graham [34], if and only if the Wünschmann invariant vanishes. Godliński [33] then proved

that the associated normal SO(4, 4) Cartan connection included the Chern–Sato–Yoshikawa

connection as its o(3, 2) part.

The structure of Chern–Sato–Yoshikawa can doubtless be understood directly in terms

of the geometry of the space of solutions of the differential equation. However, whereas when

the Wünschmann invariant vanishes, there is a standard geometry underlying the presence

of certain connections—namely a conformal Lorentzian metric on the space of solutions—

when the Wünschmann invariant is nonzero, such an underlying geometry appears to be

missing. We supply the missing geometry and examine its precise relationship with these

constructions.

Invariantly associated to the structure on J2 is a degenerate conformal Lorentzian metric

(see Nurowski [60]) whose degeneracy is in the direction of the total derivative vector field

coming from the differential equation. We prove in Chapter 7 that this degenerate conformal
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structure arises naturally from elementary geometrical constructions on a certain curve (the

polar curve) in the projective cotangent bundle of the space of solutions. The Wünschmann

invariant itself is precisely the projective curvature of this curve. Finally, the paper introduces

a new conformal invariant of fourth order in the metric that gives a complete geometrical

characterization of degenerate metrics that arise in this manner from third-order differential

equations.

There is a natural incidence relation on the space of solutions, described in Section

7.1.1. An infinitesimal or linearized version of this idea is implicit in Wünschmann’s [85]

investigations into Monge equations of the second degree (see also [52] and [15]). When the

Wünschmann invariant vanishes, two solutions are incident if and only if they lie on the

same null geodesic. When the Wünschmann is nonzero, the incidence relation still defines a

decent structure in a sense that is axiomatized in Section 7.1: roughly, the sheaf of curves

defining the incidence relation is envelope-forming. Such a family of envelope-forming curves

is dubbed a causal geometry, the terminology suggested by an affinity with structures that

typically arise in the study of hyperbolic partial differential equations. The space of incidence

curves in the solution space corresponds naturally to the points of the 1-jet space J1. When

the incidence curves through a point are linearized at that point, the resulting cone in the

tangent space resembles the null cone associated to a Lorentzian structure. The null cone

projects to a curve in the projective tangent space, called the indicatrix curve, borrowing

terminology from optics [5].

The indicatrix gives rise to a Lagrangian in a natural manner that can be written down

in terms of the general solution of the differential equation, as described in Section 7.1.2. The

Lagrangian is a function on the tangent bundle which is homogeneous of degree two with

respect to the scalar homothety of the bundle. It is not fully contact-invariant, but its locus

of zeros in the projective tangent bundle is invariant, and coincides with the indicatrix. Null

geodesics—extremals of the Lagrangian along which the Lagrangian vanishes identically—are

precisely the incidence curves. The resulting structure is a Finsler [28] analog of conformal

Lorentzian geometry in dimension 3.

The Lagrangian is in addition regular at every point of the indicatrix, and therefore

gives rise to a Hamiltonian on the cotangent bundle, which is described in Section 7.1.3.

The zero locus of the Hamiltonian inside the projective cotangent space is the polar curve

of the indicatrix. The total space of the indicatrix or its polar curve defines a 4-dimensional

bundle over the space of solutions, and the projective Hamiltonian spray defines a projective

vector field on this bundle. The 3-dimensional quotient space under the flow of the vector

field inherits a natural contact form from the cotangent bundle. The resulting space is

contactomorphic to J1, the space of 1-jets in the plane, and on it the polar curves descend
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to a path geometry that defines a third-order differential equation.

The entire procedure sketched here is summarized in the theorem, proven in §7.2:

Theorem 1. There is a natural local isomorphism between the set of third-order equations

under contact equivalence and the set of isomorphism classes of causal geometries.

It is also of interest to determine when a (degenerate) rank three conformal Lorentzian

metric g on a four-dimensional space N . The fundamental invariant associated to this

structure is

Γ = g ∧LV g ∧L 2
V g ∧L 3

V g ∧L 4
V g ∈ ∧5S2 ker(V y) ∼= S2(TN/V )

where V is the degenerate direction. Here ker(V y) is the space of one-forms annihilated

by V , and each of the Lie derivatives L k
V g lies in the symmetric square S2 ker(V y). The

space S2 ker(V y) is six-dimensional, and its fifth exterior power is naturally isomorphic to

the symmetric square S2(TN/V ) of the quotient of the tangent bundle of N by the vertical

direction V .

The following theorem is the end result of this analysis, which occupies §7.3

Theorem 2. The degenerate Lorentzian metric g on the four-manifold N arises (locally)

from a third-order differential equation if and only if either

1. Γ is nonzero and the classical adjoint of Γ vanishes identically (equivalently, Γ has rank

1). In this case, there exists a natural conformal isometry of N with J2 equipped with its

invariant degenerate metric coming from a third-order differential equation with non-zero

Wünschmann invariant.

2. LV g is proportional to g. In this case, the Wünschmann invariant vanishes and there

exists a conformal isometry of N with J2 equipped with its invariant degenerate metric

coming from a third-order differential equation that is natural up to a gauge transforma-

tion of J2.

We may pass to the three-dimensional space of solutions of the differential equation,

S. Two points of S are defined to be incident if the corresponding solutions, regarded as

curves in the (x, y, p)-space, meet and are mutually tangent. This incidence condition defines

the null cones of an ordinary conformal structure on the space S, provided that a certain

contact invariant of the differential equation, the Wünschmann [85] invariant, W , vanishes

identically. The simplest example with W = 0 is the trivial equation y′′′ = 0, with general

solution y = sx2 + 2tx + u, where the null cone is that of a flat Minkowski space with

conformal structure given by dsdu− dt2.

Élie Cartan [12] and later Shiing-Shen Chern [15] studied the space, T , with co-ordinates

(x, y, p, q). T carries a canonical direction field, V = ∂x + p∂y + q∂p + F (x, y, p, q)∂q, such
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that the quotient of T by V is the space S. Chern showed that T carries a once-degenerate

conformal metric, which is killed by V , such that it is also invariant under V (up to scale),

so passes down to S, if and only if W = 0. In the case that W 6= 0, the present author

and Sparling showed [41] that one could use the Chern metric to construct on the space S a

null cone structure by the method of envelopes and which reduces to the standard null cone

structure in the case W = 0. This null cone structure is exactly that given by the incidence

condition. Thus the causal geometry is natural for this case and one wants to develop an

analogue of the usual connection theory which applies in this case. Our theory does this,

although, ironically, the Weyl curvature vanishes identically, as it does in the standard case

of W = 0, for dimensional reasons.

The simplest example with W 6= 0 is the differential equation y′′′ = y′′. Its solutions are

y = sex + tx+ u, where the parameters (s, t, u) are global co-ordinates for S. The incidence

conditions are 0 = dy− pdx = exds+ xdt+ du and 0 = dp− qdx = exds+ dt. Eliminating x

between these equations gives the causal null cone in the form e1− du
dt + ds

dt
= 0. This is well

defined and has non-singular hessian with respect to the variables (ds, dt, du), provided only

that dt 6= 0. It is dramatically more complicated than the case of W = 0.

A remaining issue is to relate this work to that of George Sparling and Pawel Nurowski,

who built a canonical conformal structure in six dimensions that encodes the geometry of

the third-order equation and which, when W = 0 reduces to a conformal structure of the

type first given by Charles Feffermann [26]. This structure is described in Nurowski [60]

and Godlińksi [33]. When W 6= 0, one needs a generalized Fefferman structure, applied to

general parabolic geometries, as shown by Hammerl and Sagerschnig [35].
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2.0 DIFFERENTIABLE MANIFOLDS

In this chapter, we present the preliminaries on differentiable manifolds needed for the sub-

sequent investigations. Much of the basic material on sheaf theory can be found in MacLane

and Moerdijk [53] and Hartshorne [36]. The material on the Frölicher–Nijenhuis bracket can

be found in Kollař, Michor, and Slovák [46].

2.1 SHEAVES

Let X be a topological space. Let τ(X) be the category whose objects are the open subsets

of X and whose arrows are inclusions U ⊂ V of open sets. Let C be a complete category. A

presheaf on X with values in C is a contravariant functor F : τ(X)→ C. If U, V ∈ Ob(τ(X))

are two open sets with U ⊂ V , let ρU = F(U ⊂ V ) be the morphism in C associated to

the inclusion of U in V (dependence on V is suppressed). This is called a restriction map

associated to the presheaf. Functoriality of F ensures compatibility of the restriction maps:

if U ⊂ V ⊂ W , then ρU = ρU ◦ ρV .

Let U ∈ Ob(τ(X)) be an open subset of X. If {Ui} ⊂ Ob(τ(X)) is an open cover of U ,

then the restriction morphisms are

ρUi
= F(Ui ⊂ U) : F(U)→ F(Ui).

Taking a product gives a morphism

ρ : F(U)→
∏
i

F(Ui).

There are a pair of morphisms p, q :
∏

iF(Ui)→
∏

i,j F(Ui∩Uj) defined so that the following

diagram commutes
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F(Ui)
F(Ui∩Uj⊂Ui) // F(Ui ∩ Uj)

F(U)
ρ //

99

%%

∏
iF(Ui)

p //

q
//

OO

��

∏
i,j F(Ui ∩ Uj)

OO

��
F(Uj) F(Ui∩Uj⊂Uj)

// F(Ui ∩ Uj)

A presheaf is called a sheaf if, for every U ∈ Ob(τ) and every open cover {Ui} of U , the

diagram

F(U)
ρ //
∏

iF(Ui)
p //

q
//
∏

i,j F(Ui ∩ Uj)

is an equalizer. The means that if fi ∈ F(Ui) are such that ρUi∩Uj
(fi) = ρUi∩Uj

(fj) for all

pairs of indices i, j, then there is a unique f ∈ F(U) such that fi = ρUi
(f) for all indices i.

A morphism of presheaves φ : F → G over the same topological space is a natural

transformation of functors. Presheaves over X form a category. A subpresheaf of a presheaf

F on X is a presheaf F ′ on X such that F ′(U) is a subobject of F(U) for all U ∈ Ob(τ(X)).

Sheaves over X form a subcategory of the category of presheaves. The left adjoint to the

inclusion functor of sheaves in presheaves is called the sheafification functor, and is denoted

by Γ. An explicit construction is given later.

2.1.1 Examples

• If C is the category of abelian groups, then a sheaf with values in C is called a sheaf of

abelian groups.

• If C is the category of rings, then a sheaf with values in C is called a sheaf of rings.

• Let C be the category of all real unital commutative algebras and let X be a topological

space. Let CX be the presheaf that associates to each open subset U of X the algebra of

continuous real-valued functions on U , with pointwise addition and multiplication. This

is a sheaf, for if U = ∪iUi is an open covering of U , and fi ∈ CX(Ui) are continuous

functions such that fi|Uj = fj|Ui, then there exists a unique function f : U → R such

that f |Ui = fi for all i. This function is continuous, since for any open set O ⊂ R,

f−1O = ∪if−1
i O is a union of open sets (since the fi are all continuous), and is therefore

open.

• Let C k
n be the presheaf that associates to each open subset U of Rn the algebra of k-

times continuously differentiable functions f : U → R, under pointwise addition and

multiplication. This is a sheaf for the same reason as the previous example; it is a
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subsheaf of CRn . Moreover, C k
n (U) can be equipped with the structure of a Fréchet space

using the seminorms ‖f‖j,K = supx∈K ‖Djf(x)‖ for j = 0, . . . , k, and K ranging over all

compact subsets of U . This equips C k
n with the structure of a sheaf of topological rings.

• For U ⊂ Rn an open set, let C k
n,c(U) be the algebra of compactly-supported k-times

continuously differentiable functions f : U → R. This is not a presheaf in the category

C of algebras since it is not closed under restriction. On the contrary, it is a presheaf in

the category Cop, the opposite category, because to each inclusion of open sets U ⊂ V

in τ(Rn), there is an extension operator ρUV : C k
n,c(U) → C k

n,c(V ). The condition for

this presheaf to be a sheaf is that any element of C k
n,c(U) can be expressed as a sum

of extensions of elements of C k
n,c(Ui) for any open cover U = ∪iUi. This follows by the

existence of compactly supported partitions of unity subordinate to any open covering.

Spaces of distributions, which are the (topological) duals of the C k
n,c, form sheaves in the

more usual sense.

2.1.2 Stalks and germs

Let F be a presheaf on X and p ∈ X a point. Define the stalk of F at p to be

Fp = lim
←
F(U)

where the direct limit is taken over the directed set of open subsets U of X containing p.

To obtain an explicit description, suppose that C is a complete and cocomplete subcat-

egory (that is, having all limits and colimits) of the category of sets. Then Fp is the set of

equivalence classes of elements of
∐

U3pF(U) such that elements x ∈ F(U) and y ∈ F(V )

are equivalent if there is an open set W with p ∈ W ⊂ U ∩ V such that ρW (x) = ρW (y). If

f ∈ F(U), then the equivalence class in Fp corresponding to f is denoted by fp. It is called

the germ of f at p. If F is a presheaf on X, the sheafification of F has the following explicit

construction:

• Γ(U,F) is the set of all functions s : U →
∐
Fp such that for all p ∈ U , s(p) ∈ Fp and

there exists an open neighborhood V of p contained in U and a t ∈ Γ(V,F ) such that

tq = s(q) for all q ∈ V .

Define the étale space of a presheaf F on X to be the set

E(F) =
∐
p∈X

Fp.

Associated to any open set U ⊂ X, there is a map E : U × F(U) → E(F) given by

E(p, s) = sp. Equip E(F) with the final topology for this family of maps. Sections of Γ(F)
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define in a natural way continuous sections of the bundle E(F) → X. Moreover, every

continuous section of this bundle arises in this manner.

2.1.3 Operations with sheaves

Let X, Y be topological spaces and f : X → Y a continuous function. If F is a sheaf on X,

then the direct image sheaf, denoted f∗F , is the sheaf on Y given by

(f∗F)(U) = F(f−1U).

If G is a sheaf on Y , then the inverse image sheaf f−1G is the sheafification of the presheaf

U 7→ lim
V⊃f(U)

V ∈τ(X)

G(V ).

The stalk of f−1G at a point p ∈ X is just Gf(p). In particular, if X ⊂ Y is a subspace, and

i : X → Y is the inclusion map, then the sheaf i−1G is called the restriction of G to X, and

is denoted G|Z.

2.1.4 Ringed spaces

A ringed space is pair (X,OX) consisting of a topological space X and a sheaf of rings OX

on X. A locally ringed space is a ringed space (X,OX) such that OX,p is a local ring for all

p ∈ X. Denote the (unique) maximal ideal in OX,p by mX,p.

In a locally ringed space, the sheaf OX is naturally equipped with an evaluation map.

Let f ∈ OX(U) be a local section and let p ∈ U . Define evp(f) = fp mod mp.. This coset

is an element of the field OX,p/mp. In particular, mp = ker evp. When there is no risk of

confusion, denote by f(p) = evp(f).

A morphism from a ringed space (X,OX) to a ringed space (Y,OY ) is a pair (f, f ])

consisting of a continuous function f : X → Y and a morphism f ] : OY → f∗OX of sheaves

of rings on Y . A morphism (f, f ]) is a morphism of locally ringed spaces if the induced maps

of the stalks f ]p : OY,f(p) → OX,p is a local homomorphism, meaning that f ]p(mY,f(p)) = mX,p,

for all p ∈ X.

Let U be an open subset of X and f ∈ OX(U) a section of the sheaf of rings OX . The

support of f is the complement in U of the union of all open subsets V ⊂ U such that

ρV (f) = 0 in OX(V ):

supp f = U \
[⋃
{V ∈ τ(U) | ρV (f) = 0}

]
.
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Let (X,OX) be a ringed space. A sheaf of OX-modules on X is a sheaf F on X such

that, for each U , F(U) has the structure of an OX(U)-module and such that the restriction

maps of the sheaf F are compatible with the restriction maps of OX . A morphism of sheaves

of OX-modules is a morphism of sheaves F → G such that for all open sets U ⊂ X, the maps

F(U) → G(U) is a homomorphism of OX(U)-modules. The category of all OX-modules is

denoted by OX-Mod.

If (f, f ]) : (X,OX) → (Y,OY ) is a morphism of ringed spaces and F is a sheaf of

rings on Y , then the pullback of F is defined by f ∗F = f−1F ⊗f−1OY
OX . The functor

f ∗ : OY-Mod → OX-Mod is the left-adjoint of the functor f∗ : OX-Mod → OY-Mod. In

particular, there are natural isomorphisms

HomOX
(f ∗F ,G) ∼= Hom(F , f∗G)

for any OX-module G and OY -module F .

2.2 REALCOMPACTNESS

Henceforth, all algebras have identity and all homomorphisms are identity-preserving. Let

A be an algebra over the reals. A character of A is an algebra homomorphism φ : A→ R.

Proposition 1. Every character of the algebra Ck(Rn) has the form evp for some p ∈ Rn.

Proof. Let φ : Ck(Rn)→ R be an algebra homomorphism. First note that there is f ∈ kerφ

such that f−1{0} is compact. Indeed, let g ∈ Ck(Rn) be the function g(x) = |x|2. Then

f = g − φ(g)1 ∈ Ck(U) has the required property.

We will now show that Z =
⋂
f∈kerφ f

−1{0} is non-empty. Since this intersection is

compact, it is sufficient to show that it satisfies the finite intersection property. If f, g ∈ kerφ,

then f−1{0} ∩ g−1{0} = h−1{0} where h = f 2 + g2 ∈ kerφ. So Z is non-empty.

Since Z is non-empty, it contains a point p. If f ∈ Ck(Rn) is arbitrary, then f −φ(f)1 ∈
kerφ and so vanishes at p. That is φ(f) = f(p) as required.

This is also true for the algebra of Ck functions on separable Banach spaces (see [4]) and

more generally for the algebra of Ck functions on a manifold modeled on a complete separable

Mackey space [47], a category which includes all separable Fréchet spaces. If every real-

valued homomorphism of an algebra of functions on a space is given by an evaluation map,

the space and algebra are called realcompact, a notion introduced by Hewitt [38]. Smooth

realcompactness was studied (in infinite dimensions) by Kriegl, Michor, and Schachermayer

[49], who cite Milnor and Stasheff [55], and later by Kriegl and Michor [47], [48].
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2.3 DIFFERENTIABLE MANIFOLDS

Let C k
n be the sheaf of k-times continuously differentiable real-valued functions on Rn, k =

1, 2, . . . ,∞. We claim that (Rn,C k
n ) is a locally ringed space and mp is the set of germs at p

of functions that vanish at p. This is an immediate consequence of Proposition 1.

Definition 1. A locally ringed space (X,OX) is called a Ck-manifold if X is a paracompact

hausdorff space and there is a covering of X by open sets such that for each open set U of

the cover (U,OX |U) is isomorphic to the locally ringed space (Rn,C k
n ). In that case, n is the

dimension of the manifold.

If k = ∞, then (X,OX) is called a smooth manifold. The dependence of the definition

on the sheaf OX will be suppressed in later chapters. This is equivalent to the usual notion

of a Ck-manifold given in terms of charts and transition functions. We prove this after

introducing some notation.

A morphism from a Ck manifold (X,OX) to a C` manifold (Y,OY ) is a morphism of

locally ringed spaces, i.e., a pair (f, f ]) consisting of a continuous function f : X → Y and

a morphism f ] : OY → f∗OX of sheaves of rings whose localization at each point of Y is a

morphism of local rings.

If (X,OX) is a Ck manifold and ` ≤ k, then define a C` manifold (X`,OX`
) by setting

X` = X (as topological spaces) and, for each open U ⊂ X,

OX`
(U) = {h(f1, . . . , fN) | N ∈ N, f1, . . . , fN ∈ OX(U), h ∈ C`(RN)},

equipped with the pointwise operations of addition and multiplication. A more satisfactory

definition appears later. This defines a functor from the category of Ck manifolds to the

category of C` manifolds. If ` > 0, this is an equivalence of categories, by a theorem of

Hassler Whitney.

2.3.1 Local coordinates

Lemma 1. Let (X,OX) be an n-dimensional Ck manifold. There is a covering of X by open

sets Uα such that OX(Uα) admits n sections x1
α, . . . , x

n
α satisfying the following

(a) The function ψα : Uα → Rn defined by ψα(u) = (x1
α(u), . . . , xnα(u)) is a homeomorphism

of Uα onto an open subset Vα of Rn.

(b) The composition ψβ ◦ ψ−1
α : Vα ∩ Vβ → Vα ∩ Vβ is a Ck diffeomorphism.
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Proof. Let p ∈ X be given. There is an open neighborhood U of p, an open subset V of

Rn and an isomorphism (η, η]) : (U,OX |U) → (V,C k
n |V ). Let ei be the standard linear

coordinates on Rn and set xi = η](ei|V ). Then, in particular, η = (x1, . . . , xn).

Lemma 2 (Hadamard’s lemma). Let U ⊂ Rn be an open neighborhood of a point p and

let f ∈ C k
n (U). If f(p) = 0, then there are functions gi ∈ C k−1

n (U) such that f(x) =∑n
i=1(xi − pi)gi(x) for all x ∈ U .

In a star-shaped neighborhood, gi(x) =
∫ 1

0
∂f
∂xi

(p + t(x − p)) dt works. It is also clear

how to do this in an open set that does not contain p in its closure. Any neighborhood of

p can be expressed as a union of a star-shaped neighborhood and an open set with p in the

exterior. So it is enough to take a solution of the problem in these two sets and glue by a

partition of unity, a technique that we introduce presently.

2.3.2 Partitions of unity

Let (X,OX) be a locally ringed space. A partition of unity of the sheaf OX is a collection

{ρi ∈ OX(X)|i ∈ I} of global sections of OX indexed by some set I such that:

(a) The supports of the ρi are a locally finite collection of sets.

(b)
∑
i

ρi(x) = 1 for all x ∈ X, and ρi(x) ≥ 0 for all x ∈ X and i ∈ I.

Local finiteness here means that every point p ∈ X is contained in a neighborhood Up that

intersects only finitely many of the sets {suppφi | i ∈ I}. A partition of unity is subordinate

to an open covering {Uα} of X if, for each i ∈ I, there is an α such that suppφi ⊂ Uα.

Lemma 3. Let (X,OX) be a Ck manifold and {Uα} an open cover of X. Then there exists

a partition of unity {ρi} such that the following conditions hold:

(a) ρi ∈ OX(X) for all i ∈ I
(b) supp ρi is compact for all i

(c) {ρi} is subordinate to the cover {Uα}

Proof. Let ρ : Rn → R be a smooth bump function that is equal to unity on the closed unit

ball B0(1), is zero on the complement of the open ball of radius two B0(2)c, and has support

B0(2).1

By paracompactness, there is a locally finite refinement {Vi} of the original cover {Uα}.
By further refining the cover, we assume without loss of generality that each Vi has compact

1One such function is ρ(x) = φ(2−|x|)
φ(|x|−1)+φ(2−|x|) where φ(t) = e−1/t for t > 0 and φ(t) = 0 for t ≤ 0.
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closure contained in some Uα and there is a diffeomorphism φi : Vi → B0(2). Let

%i(x) =

ρ ◦ φi(x) x ∈ Vi

0 x 6∈ Vi.

Set % =
∑

i %i. This is strictly positive everywhere and so

ρi =
%i
%

is a partition of unity. Since supp ρi ⊂ Vi ⊂ some Vα this is a partition of unity subordinate

to the cover Uα. Since Vi is compact, the supports of the ρi are compact.

Because of the existence of partitions of unity, any sheaf of OX modules is generated by

its global sections.

2.3.3 Affine schemes in the smooth category

In algebraic geometry, the spectrum of a commutative ring is the set of prime ideals in the

ring, equipped with the Zariski topology, and a natural sheaf constructed using localizations

of the ring. This definition is not well-suited to smooth manifolds, however. In the smooth

category, there are several suitable notions of a spectrum. Moerdijk, Quê, Reyes [56] proceed

by defining the spectrum as ∞-radical prime ideals in the ring. This notion is well-behaved

from the categorical point of view, but the structure of these prime ideals is very complicated.

In fact, even maximal ideals in C∞ rings can have non-Archimedean quotients. We therefore

adopt the definition of Dubuc [18] (see also Joyce [44]): the spectrum of a Ck ring C is the set

of all real characters of C (algebra homomorphisms C → R). The maximal ideal associated

to any such homomorphism is called a real point of the ring C.

If (X,OX) is a Ck manifold, then evaluation at any point p of X defines a real point of

the ring C = OX(X) of global Ck functions on X. The evaluation map is thus a one-to-one

map X → spec C . It follows from Proposition 1 and Lemma 3 that this is a surjection

as well. This bijection is continuous, since any closed subset of specC has the form V (I)

for some ideal I, and the preimage of this closed set is ∩f∈If−1{0}. This bijection is a

homeomorphism:

Lemma 4. If K ⊂ X is a closed set. Then there exists f ∈ OX(X) such that K = f−1{0}.
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Proof. Using a partition of unity subordinate to a coordinate atlas, it is sufficient to prove

the statement for closed subsets K ⊂ Rn. Cover Rn \ K with a countable family of balls

Brk(xk) such that rk → 0 as k →∞. Let

φk(x) =
rkk
2k
ρ

(
x− xk

2rk

)
where ρ is the bump function from Lemma 3. Then f =

∑
k φk converges to a smooth

function that is zero precisely on K.

Define a sheaf OC on spec(C) as follows. For each m ∈ spec(C), let Cm be the localization

of C at m. (That is, the localization of A with respect to the multiplicative subset C \ m.

This is a local ring.) For U any open subset of spec(C), let OA(U) be the set of all functions

s : U →
∐

m∈U Cm such that the following conditions hold:

• s(m) ∈ Cm for all m ∈ U
• For every m ∈ U there is a neighborhood V ⊂ U of m and elements a, b ∈ A with

b 6∈ I(V ) such that, for all q ∈ V , s(q) = a/b in Cm.

Then OC is a sheaf of rings whose stalk at each m ∈ spec(C) is the local ring Cm. Thus

the pair (specC,OC) is a locally ringed space. A locally ringed space that is isomorphic to

(specC,OC) for some Ck ring C is called a Ck affine scheme. In particular, any Ck manifold

(X,OX) is an affine scheme.

Lemma 5. Let U ⊂ X be an open subset of a Ck manifold (X,OX) and f ∈ OX(U). Then

p 7→ evp f is a continuous function U → R.

2.3.4 Topology on OX

Let (X,OX) be a Ck manifold. Let CX denote the sheaf of continuous real-valued functions

on X.

Definition 2. Let U ⊂ X be open. An operator P : OX(U) → CX(U) is called support

non-increasing if suppPf ⊂ supp f for all f ∈ OX(U).

For each open U ⊂ X, let CX(U) have the compact-open topology. Equip OX(U) with

the weakest topology such that every linear support non-increasing operator P : OX(U) →
CX(U) is continuous. This topology, called here the natural topology, is complete and metriz-

able (Corollary 2 below). The sheaf OX is a sheaf of local topological rings equipped with

this topology.

A sequence fn ∈ OX(U) converges to zero if and only if P (fn) tends uniformly to zero on

compact subsets of U for all linear support non-increasing operators P : OX(U) → CX(U).
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Since this topology is metrizable, sequential convergence completely determines the topology.

If S ⊂ OX(U), let clS be the closure of S with respect to this topology.

Since OX carries the structure of a topological sheaf, each of its stalks OX,p carries the

structure of a topological algebra which is the final topology associated to the restriction

map. A function f from OX,p to a topological space is continuous if and only if it has a

continuous extension to a mapping from OX(U) to the topological space, for some open

neighborhood U of p.

2.3.5 Differentials and tangent vectors

Let A be a commutative topological R-algebra and M a topological A-module. A derivation

from A to M is a linear mapping of R-modules D : A→M such that D(ab) = aD(b)+bD(a).

Let (X,Ox) be a Ck-manifold, p ∈ X. The space TXp of all continuous derivations

D : OX,p → R is called the tangent space of X at p. The vector space mX,p/ clm2
X,p is

called the space of differentials at p and is denoted by T ∗Xp. For any fp ∈ OX,p, define the

differential of f at p by

dfp = fp − fp(p) (mod clm2
X,p) ∈ T ∗Xp.

Then T ∗Xp and TXp are dual to one another. More precisely:

Lemma 6. For (α, v) ∈ T ∗Xp × TXp, the bilinear form

〈α, v〉 = v(α)

is well-defined, and is a non-degenerate pairing of T ∗Xp with TXp.

Proof. That v(clm2
p) = 0 follows from the continuity of v, so the bilinear form does not

depend on the choice of α modulo clm2
p. For non-degeneracy, in local coordinates v has

the form vi∂/∂xi and α = αidx
i. The pairing of these is just viαi which is evidently non-

degenerate.

We associate to v ∈ TXp a derivation in the algebra ∧•T ∗Xp called the interior product

with v, denoted by vy : ∧•T ∗Xp → ∧•−1T ∗Xp, given on simple elements of the algebra by

vy(α1 ∧ · · · ∧ αr) =
r∑
i=1

(−1)i+1〈v, αi〉α1 ∧ · · · α̂i ∧ · · · ∧ αr

where the hat denotes omission from the product.
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2.3.6 Pullbacks and differentials

Let X and Y be Ck manifolds, and f : X → Y . Let p ∈ X and α ∈ T ∗Yf(p). Define the

pullback of α by f at p, denoted f ∗αp, as follows. Let α̃ ∈ OY,f(p) be a representative of α

modulo mY,f(p). Then set

f ∗α = evp f
]α̃ (mod clm2

X,p).

Since f ] is a morphism of local rings, this is independent of the choice of representative α̃

and so is a well-defined linear map f ∗ : T ∗Yf(p) → T ∗Xp. Let dfp : TXp → TYf(p) be the

adjoint of f ∗ relative to the duality pairing from Lemma 6.

Definition 3. (a) A morphism (f, f ]) : (X,OX)→ (Y,OY ) is a submersion at p if dfp is a

surjection. A morphism is a submersion if it is a submersion at every point p ∈ X.

(b) A morphism (f, f ]) : (X,OX) → (Y,OY ) is an immersion at p if dfp is injective. A

morphism is an immersion if it is an immersion at every point.

(c) A morphism (f, f ]) : (X,OX) → (Y,OY ) is a local diffeomorphism if it is both a sub-

mersion and immersion. Such a morphism is a diffeomorphism if, in addition, f is a

homeomorphism of topological spaces.

(d) A morphism (f, f ]) : (X,OX) → (Y,OY ) is an embedding if it is an immersion and f

is a homeomorphism onto its image.

Let Mankn be the category whose objects are n-dimensional Ck manifolds and whose

morphisms are the Ck local diffeomorphisms. Lemma 1 implies that any manifold M ∈
Ob(Mankn) is a coequalizer in Mankn of open subsets of Rn:∐

Ui ∩ Uj
//
//
∐
Ui //M

2.3.7 Jets

Let (X,OX) be a Ck manifold, p ∈ X, and ` ≤ k. The `-jet space of X at p is the quotient

of OX,p by the (`+ 1)th power of the maximal ideal:

J `OX,p = OX,p/ clm`+1
X,p .

(If ` =∞, we set m∞X,p = ∩∞i=1m
i
X,p.) The equivalence class of any germ f ∈ OX,p in J `OX,p

is denoted by j`fp, and is called the `-jet of f at p. There is a canonical splitting of the `-th

jet space at p:

J `OX,p = R⊕ mX,p

clm`+1
X,p

into the constants plus the functions that vanish at p. Let K`
X,p = mX,p/ clm`+1

X,p .
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The powers of the maximal ideal mX,p in OX,p define a filtration on OX,p:

clmk+1
p ⊂ clmk

p ⊂ · · · ⊂ mp ⊂ OX,p. (2.1)

This induces a filtration of OX,p/m
k+1
p whose associated graded vector space is

Gr(OX,p/ clmk+1
p ) =


OX,p

mp
⊕ mp

clm2
p
⊕ · · · ⊕ clmk

p

clmk+1
p

k <∞
OX,p

mp
⊕ mp

m2
p
⊕ · · · k =∞

Each direct factor clm`
p/ clm`+1

p is canonically isomorphic to the `-th symmetric power of

mp/ clm2
p under the natural surjection

Sym`(mp/ clm2
p)→ clm`

p/ clm`+1
p

defined on simple elements by a1 � · · · � a` 7→ a1 · · · a`.
A splitting of the filtration on OX,p/ cl k+1

p is an isomorphism of filtered vector spaces

φp : OX,p/ clmk+1
p → Gr(OX,p). Let U ⊂ X be open and x1, . . . , xn be n sections of OX(U)

such that dx1
p∧· · ·∧dxnp is nonzero throughout U . Then there is a natural splitting associated

to this coordinate system: any f ∈ OX,p/m
k+1
p can be written uniquely as

f =
∑
|α|≤k

fαdx
α (mod clmk+1

p )

the sum extending over multiindices α = (α1, . . . , αn) ∈ Zn≥0 with |α| = α1 + · · · + αn ≤ k,

with dxα = dxα1 · · · dxαn.

Let ` ≤ k be a positive integer, and define the topology of compact convergence of `-jets

on OX as follows. For each open U ⊂ X, let fi, f ∈ OX(U). We shall say that fi → f if

every compact set K ⊂ U can be covered by a finite number of coordinate neighborhoods Uγ

having a refinement Vγ ⊂ V γ ⊂ Uγ by open sets with compact closures such that j`fi → j`f

uniformly on K∩Vγ for each γ. This topology is induced by a countable family of seminorms,

and is therefore metrizable. When ` = k, it is also a complete topological vector space.

If (X,OX) is a Ck manifold, define the C` manifold (X`,OX`
) by letting X` = X as a

topological space and, for each open set U ⊂ X`, OX`
(U) to be the ring of functions of the

form g(p) = h(f1(p), . . . , fN(p)) for some N ∈ N, fi ∈ OX(U), and h ∈ C`(RN). Note that

each OX`
(U) is the completion of OX(U) in the topology of compact convergence of `-jets.
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2.3.8 Linear differential operators

Let (X,OX) be a Ck manifold. A linear differential operator of order r and class ` ≤ k − r
is a mapping P : OX(X)→ OX`

(X) that is linear with respect to constants and that factors

as

OX(X)
jr−→J r

X(X)
iP−→ OX`

(X)

for some morphism of OXk−r
(X)-modules iP : J r

X(X)→ OX`
(X).

The following theorem is due to Peetre [62] when k =∞:

Theorem 3. Let P : OX(X)→ OX`
(X) be a support non-increasing linear transformation.

Then P is a linear differential operator of class ` and (finite) order r for some r ≤ k − `.

We prove the statement for finite k, as this does not seem to be well-known in that case.

For k =∞, we refer to the original papers [62], [63], or the book [46]. Our approach to the

problem with finite k can be diagonalized to prove the case k =∞ as well.

Lemma 7. For any x ∈ X and C > 0, there is an open neighborhood U of x such that, for

all y ∈ U \ {x} and f ∈ OX(X) with jkf(y) = 0, we have |Pf(y)| < C.

Proof. The statement is local, and is invariant under Ck diffeomorphism, so we prove it in

Rn. Suppose to the contrary that there exists a sequence xj → x and positively separated

balls Bj centered at xj and fj ∈ C k(Rn) such that jkfj(xj) = 0 but Pfj(xj) ≥ C > 0.

Since jkfj(xj) = 0, there is a ball Bδj(xj) ⊂ Bj in which, for all multiindices |α| < k

(and |β| = k if k <∞),

sup
y∈B′j
|∂αfj(y)| ≤ 2−jδ

|α|
j

sup
y∈B′j
|∂βfj(y)| ≤ 2−j.

Let ρ : Rn → R be a smooth bump function that is equal to 1 on B1/2(0) and vanishes

identically outside B1(0), and put

ρj(y) = ρ

(
y − xj
δj

)
be a bump function supported in the ball Bδj(xj). Consider the infinite sum

g(y) =
∞∑
j=1

ρ2j(y)f2j(y).

The above estimates guarantee that the k-jets of the partial sums of this series converge

uniformly, and so g is Ck.
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Now we have on the one hand P g(x2j) ≥ C and on the other that P g(x2j+1) = 0. But

this implies that limj→∞ P g(xj) does not exist, which contradicts the fact that P g is C`.

Lemma 8. Let L : C k
n (U)→ C `

n(U) be a linear differential operator

L =
∑
|α|≤k

pα(x)
∂

∂xα
.

Then L has order ≤ k − `.

Proof. Let r be the order of L. By evaluating L against polynomials, it follows that each

pα must be C`. There is a dense open subset of U consisting of all x ∈ U such that every

pα is either nonzero at x or is identically zero in a neighborhood of x. Pick such an x0 and

let V ⊂ V ⊂ U be a neighborhood of x0 such that every pα is either identically zero in V

or does not vanish anywhere in V . Performing a translation as needed, we can assume that

0 6∈ V . Let f ∈ C k(U) \ C k+1(U) be an arbitrary function. For each multi-index α, let

Fα = L(xαf). (2.2)

Then Fα ∈ C `(U) by hypothesis. Taking the Fα as given functions, (2.2) is an overdetermined

system of equations that can be solved for ∂|β|f/∂xβ for any β with |β| = r such that pβ 6= 0

by Gauss reduction, but with coefficients in the ring C `(U). So ∂|β|f/∂xβ ∈ C `(U). But

this is only possible for all f if |β| ≤ k − `.

Proof of Theorem 3. We first show that under the same hypotheses as the lemma, P f(y) = 0

for all y ∈ U \ {x} such that jkf(y) = 0. Indeed, suppose that b = P f(y) were non-zero.

Let g = 2Cf/b. Then jkg(y) = 0 that |P g(y)| < C. But P g(y) = 2C, a contradiction.

So in U \ {x},
P =

∑
|α|≤k

fα∂α (2.3)

where the fα are C`. Since P sends Ck functions to C` functions on all of U , the fα admit

continuations to C` functions on U , so that (2.3) holds throughout U .

Corollary 1. Let X be a Ck manifold, and U ⊂ X an open set. Then any linear support non-

increasing operator L : OX(U) → OX`
(U) is a differential operator of order ≤ k − `. There

exists a locally finite covering of U by coordinate neighborhoods (Ui, φi) and an associated

partition of unity ρi such that for all f ∈ OX,c(U)

Lf =
∑
i

∑
0≤|α|≤k−`

pi
∂α

∂xα
((ρif) ◦ φ−1

i )

for some coefficients pi ∈ OX`
(U).
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Proof. For g ∈ OX(φi(U)), let Lig = L(g ◦ φi). By Theorem 3, Li is a differential operator

of order at most k − `. We have f =
∑

i ρif , so Lf =
∑

i Li((ρif) ◦ φ−1
i ), whence the

corollary.

Corollary 2. If X is a Ck manifold and U ⊂ X is open, then the natural topology on OX(U)

is metrizable and complete.

Proof. Cover U by a locally finite collection of coordinate neighborhoods (Ui, φi) admitting

a partition of unity ρi as in Corollary 1. If K ⊂ U is a compact set, define a seminorm | · |K
on OX(U) by

|f |K =
∑

Ui∩K 6=∅

max
0≤|α|≤k

∣∣∣∣∂α(ρif) ◦ φ−1
i

∂xα

∣∣∣∣ .
By Corollary 1, the natural topology on OX(U) is the initial topology for the family of

seminorms | · |K for K ⊂ U compact. Now let U =
⋃
iKi be a decomposition of U into a

countable family of compact sets Ki. The metric

d(f, g) =
∑
i

|f − g|Ki

2i(1 + |f − g|Ki
)

defines the natural topology on OX(U). This metric is complete by a standard argument.

2.3.9 Lie groups

Definition 4. A Lie group is a C∞ manifold G together with the structure of a group such

that the map (x, y) 7→ xy−1 is a smooth morphism G×G→ G.

Real algebraic groups are always Lie groups. Closed subgroups of Lie groups are Lie

groups.

The main examples come from the classical groups:

• The most fundamental example is the group GL(V) of linear automorphisms of a real

vector space V. If V has dimension n, we also write GL(n).

• The subgroup of transformations of determinant 1 is the special linear group SL(V) =

SL(n).

• The subgroup of automorphisms of a nondegenerate quadratic form Q on V is the real

orthogonal group O(Q). The special orthogonal group SO(Q) = O(Q) ∩ SL(V) is the

group of automorphisms of unit determinant. This is also denoted by SO(p, q) where the

diagonalization of Q has p positive and q negative entries.
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• The group of automorphisms of a nondegenerate skew-symmetric form ω (that is, a

symplectic form) is the symplectic group Sp(ω). In this case, n is always even, and any

two symplectic forms are conjugate under the orthogonal group, so the group is written

Sp(n,R).

• A complex structure J : V → V is a linear transformation satisfying J2 = − Id. Com-

plex structures only exist in even dimensions. The group of transformations preserving

a nondegenerate quadratic form Q and commuting with an orthogonal complex struc-

ture J is the pseudo-unitary group U(Q, J). These too are classified by the signature

of the quadratic form, and we denote by U(p, q) the pseudo-unitary group associated

to a quadratic form of signature (2p, 2q). A pseudo-unitary transformation whose re-

striction to an eigenspace of J has unit determinant is called a special pseudo-unitary

transformation. The special pseudo-unitary group is denoted SU(p, q).

• A quaternionic structure on V is a pair of anti-commuting complex structures J,K. There

exists a quaternionic structure on V if and only if n = 4m is a multiple of 4. Denote

by GL(J,K) the group of linear automorphisms of V that commute with J and K. All

quaternionic structures are conjugate under GL(V), so we can denote the equivalence

class of these by GL(m,H). The subgroup of all transformations whose restrictions

to the eigenspaces of J have unit determinant is the special quaternionic linear group

SL(m,H).

• The quaternionic symplectic group Sp(p, q) is the subgroup of SL(m,H) preserving a

pseudo-unitary structure of signature (p, q) with respect to the complex structure J .

• The quaternionic orthogonal group SO(m,H) is the subgroup of SL(m,H) preserving a

non-degenerate complex-valued quadratic form on an eigenspace of J for which the other

complex structure K is orthogonal.

More on the geometry of the classical groups is contained in Chapter 4, as well as a

description of the geometry of the real forms of the exceptional groups.

2.3.10 Jet groups

Let m0 be the maximal ideal in C∞n corresponding to the origin, and let Gn be the set of all

germs (f1,0, . . . , fn,0) ∈ m⊕n0 such that df1,0 ∧ · · · ∧ dfn,0 6= 0. This set is the group of germs

at the origin of local diffeomophisms φ = (f1, . . . , fn) : U → Rn from a neighborhood U of

the origin to Rn such that φ(0) = 0. The composition and inverse of two such germs is again

such a germ, so Gn is a group.

For each ` ∈ Z≥0, let N` = I + m`+1
0 with I the identity diffeomorphism of Rn, and let

N∞ =
⋂∞
`=0 N`. Then N` is a normal subgroup of Gn. The jet group of order ` = 0, 1, . . . ,∞
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is the quotient group G`
n = Gn/N`. This is a Lie group for all ` < ∞. When ` = 1, the

inclusion of the linear transformations of Rn in Gn gives an isomorphism GL(n) ∼= G1
n. For

` > 1, G`
n is a semidirect product of GL(n) with a nilpotent composition series by nilpotent

subgroups Nk
r = Nr/Nk:

N` . · · · . N1.

Moreover, G∞n is the inverse limit of the G`
n for ` <∞, under the directed set of morphisms

G∞n → · · · → G2
n → G1

n → G0
n = {I}.

It is thus a topological group with the inverse limit topology. The following theorem, due to

Epstein and Thurston [24] characterizes the actions of Gn on metrizable spaces:

Theorem 4. If G∞n acts continuously on a metrizable topological space of Lebesgue dimension

k, then N2k+1 acts trivially.

As a consequence, the action of Gn factors through the action of G2k+1
n . In particular,

any finite-dimensional continuous linear representation of G∞n factors through a jet group of

finite order.

The group Gn acts on the stalk C k
n,0 of k-times continuously differentiable functions of

Rn at 0 by composition under which the filtration (2.1) is stable. Hence the action of Gn

descends to the k-th order jet space C k
n,0/m

k+1
0 , and the kernel of this action is Nk. So Gk

n

acts on C k
n,0/m

k+1
0 . Concretely, C k

n,0/m
k+1
0 is the truncated polynomial algebra of k[x1, . . . , xn]

modulo the ideal generated by all homogeneous polynomials of degree k + 1. The action of

Gk
n is given by truncated polynomial composition. This is the contragredient representation

of the jet group Gk
n. The standard representation of Gk

n is the dual of the contragredient

representation.

In addition to linear representations, there is a class of important nonlinear actions of

the jet groups on spaces of k-velocities T kn , which is the manifold of all k-jets at the origin

of smooth curves γ : R → Rn such that γ(0) = 0. Concretely, T kn = (R[t]/(tk+1))n is the

n-th Cartesian power of the polynomial algebra in one variable truncated to degree k. The

space T kn is an affine space, and so carries a canonical smooth structure. The group Gk
n acts

smoothly by composition on T kn , but this action is nonlinear.

Let πnn+r : Rn+r → Rn be the projection mapping onto the first n coordinates and let Gk
n,r

be the subgroup of Gk
n+r consisting of the k-jets of all local diffeomorphisms φ : Rn+r → Rn+r

with φ(0) = 0 that cover a local diffeomorphism of Rn → Rn. This is most conveniently

expressed as a differential equation, that

∂

∂xn+1
πnn+r ◦ φ = · · · = ∂

∂xn+r
πnn+r ◦ φ = 0.
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For example, when k = 1, G1
n,r is the subgroup of G1

n,r = GL(n + r) consisting of the

invertible block upper triangular (n + r) × (n + r) matrices with an n × n block and r × r
block down the diagonal.

2.4 VECTOR BUNDLES

Throughout this section (X,OX) is a Ck-manifold of dimension n. A Ck vector bundle over

X consists of a Ck manifold (E,OE) together with surjective a Ck morphism π : E → X

and the structure of a real vector space on each of the fibers π−1(p) for all p ∈ X such that

the following local triviality condition holds

• For each p ∈ X there is a neighborhood U of p and a Ck diffeomorphism ψ : π−1U →
U × Rr for some r ∈ Z≥0 such that the following diagram commutes

π−1U

π
""

ψ // U × Rr

{{
U

and such that ψ|π−1(x) : π−1(x) → Rr is a linear isomorphism of vector spaces for all

x ∈ U .

A vector bundle is trivial if there is a trivialization of the bundle over U = X. If S ⊂ X

is any subset, then we define E|S = π−1(S). Note that we do not at the moment assume

that the dimension of a vector bundle is constant, although in subsequent chapters we do

impose this. In that case, the dimension of the fiber is called the rank of the vector bundle

E, denoted rankE.

Following [46], the category of vector bundles over Mankn, denoted by Vectkn, is a category

whose objects Ck vector bundles E
π−→ X with X a Ck manifold, and whose morphisms

between two bundles E
π−→ X and E ′

π−→ X ′ are pairs of Ck mappings g : X → X ′ and

f : E → E ′ such that the diagram

E
f //

π
��

E ′

π′

��
X g

// X ′

commutes, and such that for each x ∈ X, f |π−1(x) : π−1(x)→ π−1(g(x)) is a linear transfor-

mation. We say that f : E → E ′ covers g : X → X ′. There is a functor B : Vectkn →Mankn:
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the base functor. The category of vector bundles over X, denoted VectX , is the subcategory

consisting of all vector bundles over X and morphisms that cover the identity map of X.

Let U ⊂ X be an arbitrary open subset. The space of Ck sections of E over U are

denoted by Γ(E,U), and defined by

Γ(E,U) = {s ∈ Ck(U,E) | π ◦ s = idU}.

Each Γ(E,U) is naturally an OX(U)-module under pointwise multiplication, so Γ(E) is a

sheaf of OX-modules.

If E is a vector bundle over X, then the sheaf of polynomial functions P on E makes

sense. Over an open set U ⊂ X, P(U) is the algebra of all function f : E|U → R of the

form

f(x) =
∑
|α|≤M

fα(π(x)) evπ(x)〈s1, x〉α1 · · · evπ(x)〈sN , x〉αN

for some M ∈ Z≥0, functions fα ∈ OX(U), and s1, . . . , sN ∈ Γ(E∗, U).

The algebra of Ck functions on E is then recoverable from the algebra of polynomial

functions as in §2.3.7: OE(E|U) is the algebra of all functions f : E|U → R of the form

f(x) = g(h1(x), . . . , hN(x))

for some Ck function g : RN → R and h1, . . . , hN ∈P(U). (We can do this by taking some

of the hi to be the local coordinates on X, and the remaining hi to be a basis of sections of

the dual space of E.) So the algebra of polynomial functions determines the Ck structure

(E,OE).

2.4.1 Locally free sheaves

A sheaf of OX-modules is free if it is isomorphic to a direct sum of copies of OX . The rank

of such a sheaf of modules is the number of copies of which it is the sum. A sheaf F of

OX-modules is locally free if there is an covering of X by open sets Ui such that, for each i,

F|Ui is a free OX |Ui-module. The rank of a locally free sheaf F at p is the dimension of the

vector space Fp/mpFp over OX,p/mX,p.

Locally free sheaves inherit a topology from the topological ring structure on OX . A

sequence sn of sections of OX(Ui) converges if and only if the components of sn in the

trivialization of OX(Ui) converge in the topology of OX(U).

The sheaf Γ(E,−) associated to a rank r vector bundle E on X is a locally free sheaf of

rank r. Each point has a neighborhood U such that E|U is trivial, and so F(U) is generated

as an OX(U)-module by r sections.
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Lemma 9. The sections functor Γ : VectX → OX −Mod is an equivalence of categories

onto its image, consisting of all locally free finite rank sheaves. That is, there is a functor

V that associates to any locally free sheaf F a vector bundle V(F) such that Γ(V(F), X) is

naturally isomorphic to F(X) as an OX(X)-module.

The proof follows the Spec construction of Hartshorne [36], page 128. A related theorem

of Serre [75] (in the analytic category) and Swan [79] establishes the equivalence of finitely-

generated projective modules and vector bundles on compact manifolds.

Proof. We construct first the sheaf of polynomial functions P on V(F). For U an open

subset of X, let P(U) be the set of all functions f : F(U)→ OX(U) that can be expressed

as

f(x) =
∑
|α|≤M

hα〈s1, x〉α1 · · · 〈sN , x〉αN

for some M ∈ Z≥0, hα ∈ OX(U), and sections s1, . . . , sN of the dual sheaf F∗(U). Then

P(U) carries the structure of an OX(U)-algebra under the pointwise operations of addition

and multiplication. In particular, there is an inclusion OX(U) ⊂P(U).

Let V(F) = spec P(X). Let π : V(F) → spec OX(X) ∼= X be the mapping that

associates to any algebra homomorphism φ : P(X)→ R the algebra homomorphism π(φ) =

φ|OX(X) : OX(X) → R. If p ∈ X is a given point, then points of π−1(p) are those

algebra homomorphisms φ : A → R such that φ|OX(X) = evp is evaluation at p. Such a

homomorphism is determined by a linear function on the real r-dimensional vector space

(Fp/mpFp)∗. Thus, by the double-duality isomorphism, π−1(p) is naturally in one-to-one

correspondence with the real vector space Fp/mpFp. This defines the linear structure on the

fibers of π.

For local triviality, let U be a neighborhood of p such that F(U) is free. Shrinking U

if necessary, we can assume that there are global sections σ1, . . . , σr of F(X) such that the

si|U generate F(U) (freely) as an OX(U)-module. A point of V(F)|U is then an evaluation

map of OX(U), together with an assignment of a real value for each of the sections s1, . . . , sr.

Thus there is an isomorphism V(F)|U → Rr×U that is linear on each fiber. The transition

functions are Ck between two overlapping open sets, since the transition between one set of

local free generators s1, . . . , sr of F(U) and another set of local free generators s′1, . . . , s
′
r of

F(V ) is an r × r matrix with coefficients in OX(U ∩ V ).

A section of the sheaf F defines a section of the vector bundle V(F). Conversely, a

section of V(F) defines a local section of F .
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2.4.2 Operations on vector bundles

If πE : E → Y is a Ck vector bundle on Y and f : X → Y a Ck map, then there is a

unique vector bundle over Y up to isomorphism, the pullback bundle f−1E, and a bundle

map f−1E → E that covers f such that the diagram commutes

f−1E //

πf−1E

��

E

πE
��

X
f // Y

At a point p ∈ X, the fiber of f−1E is given by f−1Ep = Ef(p). (This is also known as the

fibre product of E with X over f .)

In particular, when X is a vector bundle on E and f = πX is the bundle projection,

the pullback bundle π−1
X E is canonically isomorphic to π−1

E X. Because of the symmetry, we

denote this vector bundle by X⊕E, the direct sum. It is a vector bundle over Y whose fiber

at each point p ∈ Y is the direct sum of vector spaces Xp ⊕ Ep. The associated locally free

sheaf is Γ(X)⊕ Γ(E).

If E,F are Ck vector bundles over a Ck manifold X, the sheaf of all OX-module ho-

momorphisms from Γ(E) to Γ(F ) is a locally free sheaf of OX-modules. The associated

vector bundle is denoted by Hom(E,F ) = HomVectX (E,F ), and consists of all vector bundle

homomorphisms T : E → F that cover the identity automorphism of X. A special case is

where F = X × R is the rank one trivial bundle; then E∗ := Hom(E,F ) is called the dual

bundle associated to E.

The tensor product bundle is the bundle associated to the locally free sheaf Γ(E)⊗Γ(F ).

The tensor product is the left adjoint of the Hom functor, and in particular we have E⊗F ∼=
Hom(E∗, F ) via a natural isomorphism in both E and F .

2.4.3 Natural vector bundles and sheaves

A natural vector bundle is a covariant functor F : Mankn → Vectrn, r ≤ k, such that the

following conditions hold:

• B ◦ F = I

• If i : U → X is an inclusion of an open set in X ∈ Ob(Mankn), then Fi is an inclusion

of π−1
FX(U) in FX.

• If φ : P ×M → N is a Ck map such that for all p ∈ P , φ(p,−) : M → N are local

diffeomorphisms, then F̃ φ : P × FM → FN defined by F̃ φ(p,−) = F (φ(p,−)) is Cr.

That is, F sends smoothly parametrized systems of local diffeomorphisms to smoothly

parametrized systems of bundle morphisms.
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A natural sheaf is a covariant functor from Mankn to the category of sheaves of modules such

that the analogs of these properties are satisfied. Some examples of natural sheaves are the

cotangent sheaf, the tangent sheaf, and sheaves of jets.

If F is a natural bundle, then the group Gn of germs of diffeomorphisms of Rn preserving

the origin carries a linear representation on the fiber FRn
0 . If this representation factors

through G∞n , then by virtue of Theorem 4, it must factor through a representation of Gk
n.

Conversely, a natural bundle can be associated to any representation of Gk
n by an associated

vector bundle construction (see §2.4.9).

The following theorem of Epstein and Thurston [24] characterizes the natural bundles:

Theorem 5. A natural bundle F : Mankn → Vectrn is Cr isomorphic to an associated vector

bundle of some jet group Gs
n for 0 ≤ s ≤ 2 rankF + 1 and s+ r ≤ k.

2.4.4 Cotangent sheaf

Let (X,OX) be a Ck manifold of dimension n and F a sheaf of OX-modules on X. A

derivation D : OX → F is a morphism of sheaves that defines a derivation of R-modules

DU : OX(U)→ F(U) on each open subset U of X.

Definition 5. Let (X,OX) be a Ck manifold. The sheaf of Kähler differentials on X is

a sheaf ΩX of OX-modules equipped with a continuous derivation d : OX → ΩX of OXk−1
-

modules such that the following universal property holds. For any sheaf of topological OXk−1
-

modules F , and any continuous derivation D : OX → F , there exists a unique morphism of

OXk−1
-modules iD : ΩX → F such that D = iD ◦ d.

If U is an open set in X, then ΩX(U) is the OXk−1
(U)-module obtained by quotienting

the free OXk−1
(U)-module on the set {da | a ∈ OX(U)} by the closure of the idea generated

by {d(1)} ∪ {d(ab)− ad(b)− bd(a)|a, b,∈ OX(U)}.
Concretely, consider the Cartesian product (X × X,OX×X), with projections π1, π2 :

X × X → X and diagonal embedding ∆ : X → X × X. The ideal sheaf I of ∆ is the

kernel of ∆] : OX×X → ∆∗OX . Then ΩX = ∆∗I / cl I 2. For f ∈ OX , define df ∈ ΩX by

df = ∆∗(π∗1 − π∗2)f (mod cl I 2).

The sheaf ΩX is functorial in X. If f : X → Y is a morphism of Ck-manifolds, then for

any derivation D : OX → F , there is a derivation f∗D : f ∗OY → F given on sections by

(f∗D)g = D(f ]g). In particular, for the derivation dX : OX → ΩX , we obtain a derivation

f∗dX : f ∗OY → ΩX . By the universal property, there is a unique linear map

f ∗ΩY

Ωf−→ ΩX (2.4)
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Ωf : f ∗ΩY → ΩX such that f∗dX = Ωf ◦ dY .

The sheaf ΩX is a locally free OXk−1
-module of rank n. Indeed, let p ∈ X be given and

choose germs x1, . . . , xn in OX,p that form a basis of mp/ clm2
p. By Hadamard’s lemma, any

germ in ΩX,p has the form fidx
i for some fi ∈ OXk−1,p.

The exterior algebra Ω•X is defined as the sheaf of graded unital anticommutative OX-

algebras

Ω•X =
⊕
j

∧jOXk−1
ΩX .

Denote by Ωj
X = ∧jΩX the degree j graded part of the algebra. In particular, Ω0

X = OX and

Ω1
X = ΩX .

There is a sequence of derivations

Ω•Xk

d−→ Ω•+1
Xk−1

d−→ · · · d−→ Ω•+kX0

of derivations of algebras that satisfies d2 = 0 and that at each level extends the differential

d : OX`
→ Ω1

X`−1
. This defines the exterior derivative.

2.4.5 Cotangent bundle

Let (X,OX) be a Ck manifold and T ∗X = V(ΩX) be the Ck−1 vector bundle associated to

the sheaf ΩX . This is the cotangent bundle of X. By construction, the fiber at each point

p ∈ X is T ∗Xp = mp/ clm2
p.

Theorem 6. The cotangent bundle defines a natural bundle Mankn → Vectkn. This is the

natural bundle associated to the dual of the standard representation of G1
n = GL(n)

If f : X → Y is a morphism of Ck manifolds, then (2.4) induces a mapping of bundles

f ∗ : T ∗Y → f−1T ∗X.

2.4.6 Tangent sheaf and bundle

Let (X,OX) be a Ck manifold. The sheaf of derivations D : OX → OXk−1
is is called the

tangent sheaf of X, denoted XX . Sections of the sheaf are vector fields on X. This is a

locally free sheaf, and is dual (as an OX-module) to the cotangent sheaf ΩX .

The tangent bundle TX of a Ck manifold (X,OX) is the bundle associated to the locally

free sheaf XX , the tangent sheaf of X. This is the natural bundle associated to the standard

representation of G1
n = GL(n). The fiber at a point p ∈ X is TXp, the space of derivations

OX,p → R.
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There is a Ck−1 bilinear duality pairing 〈−,−〉 : TX ×X T ∗X → R that in the fiber at

each point of X agrees with the duality pairing in Lemma 6.

If f : X → Y is a morphism of Ck manifolds, the differential of f at p is the map dfp :

TXp → TYf(p) that maps a derivation D : OX,p → R to the derivation D◦f ]f(p) : OY,f(p) → R.

This defines fiberwise a Ck−1 bundle map df : f−1TX → TY that is the pointwise adjoint

of the pullback f ∗ : T ∗Y → f−1T ∗X under the duality pairing 〈−,−〉. There is in general

an obstruction to defining the pushforward of a f∗v of a vector field v in XX . Indeed, if

D : OX → OX`
is a derivation, then f∗D = D ◦ f ] : f ∗OY → OX`

is not necessarily a

derivation f ∗OY → f ∗OY` .

2.4.7 Jet bundles

Let (X,OX) be a Ck manifold. As in §2.4.4, let I be the sheaf of ideals of the diagonal

∆(X) in the product manifold (X ×X,OX×X). For ` ≤ k, the `-th order jet sheaf of X is

the sheaf of OX modules on X defined by J `
X = ∆∗

(
OX×X/ cl I `+1

)
. We observe that, for

any p ∈ X, J `
X,p/mpJ `

p
∼= OX,p/ clm`+1

p is the space of `-jets at p. There is a mapping of

sheaves j` : OX →J `
X that is linear with respect to constants.

The bundle associated to the locally free sheaf J `
X,p of OXk−`

-modules is the `-th order

jet bundle of X, and is denoted J `X. If U ⊂ X is an open set and f ∈ OX(U) is a Ck

function on U , then associated to f is the section j`f ∈J `
X(U).

As in §2.3.7, there is a canonical splitting of J `
X = OX ⊕K `

X where

K `
X = ∆∗

(
I / cl I `+1

)
.

And an associated bundle decomposition of J `X into the direct sum of a trivial bundle with

K`X: J `X = R ×K`X. The distinguished subbundle K`X has fiber at each point p ∈ X
the space K`

X,p of §2.3.7 consisting of all jets at the point p of functions that vanish when

evaluated at p.

There is a natural bundle map d : J `X → T ∗X defined by setting, for p ∈ X and

σ ∈ J `Xp, dσp = (df)p where f ∈ OX,p is a representative of σ modulo clm`+1
p . This induces

an action of vectors on jets at a point: if v ∈ T Xp is a vector, then v(σ)p = vydσp.

More generally, if F is a locally free sheaf of OX-modules, then the `-th order jet sheaf

associated to F is the sheaf

J `F = ∆∗(∆∗F/ cl I `+1).

For p ∈ X, we have

(J `F)p/ clmp(J
`F)p ∼= Fp/ clm`+1

p Fp
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If f : X → Y is a Ck morphism, then there is a Ck−` bundle map j`f : J `Y → f−1J `X,

called the `-jet of f .

2.4.8 Fibered manifolds

A Ck fibered manifold consists of a pair of Ck manifolds X,E, and a surjective submersion

πE : E → X. The vertical bundle associated to πE is the subbundle of TE defined by

ker dπE. Because πE is a submersion, the vertical bundle is a Ck−1 vector bundle in its own

right, whose rank is everywhere the (constant) nullity of the linear operator dπE. If U is an

open subset of X, then E|U = π−1
E U

πE |U−−−→ U is a fibered manifold over U .

A morphism of fibered manifolds πE : E → X, πE′ : E ′ → X ′ is a pair of Ck maps

f : E → E ′ and g : X → X ′, with g a local diffeomorphism, such that the following diagram

commutes

E
f //

π
��

E ′

π′

��
X g

// X ′

As in the case of vector bundles, the morphism f is said to cover the morphism g. A sub-

fibered manifold is a submanifold E ′ of E such that πE|E ′ : E ′ → X remains a surjective

submersion. The original space X is trivially a fibered manifold over itself, with πX = id the

identity operator. A section of πE is a morphism of fibered manifolds s : (X, id)→ (E, πE);

that is, it is a Ck map s : X → E such that πE ◦ s = idX . The space of sections of πE over

an open subset U ⊂ X is denoted Γ(πE, U). This is a sheaf of sets.

If πE : E → X and πF : F → X are two fibered manifolds over the same base X, then

the fiber product πE×XF : E ×X F → x is constructed as follows. Let ∆ : X → X × X

be the diagonal embedding of X in its Cartesian product with itself. Then πE × πF :

E × F → X × X defines a fibered manifold over X × X. Since πE × πF is a submersion,

its restriction to the fiber over any closed submanifold is also a submersion. In particular,

set G = (πE × πF )−1(∆X). Then πE × πF |G : G → ∆(X) is a surjective submersion.

Precomposing this with the diffeomorphism ∆−1 defines the fibered manifold E ×X F .

A fibered manifold is called a fiber bundle if it is locally trivial. That is, there exists a

Ck manifold F such that, for all p ∈ X, there exists an isomorphism of fibered manifolds

E|U ∼= F × U .

34



2.4.9 Principal bundles

A right principal bundle is a Ck fiber bundle πP : P →M together with a Lie group G that

acts on the right of P via a Ck action R : P ×G→ P such that

• The orbits of G are precisely the fibers of πP : R(p,G) = π−1(π(p)) for all p ∈ P .

• The fibers of πP are principal homogeneous spaces for the action of G.

For a fixed g ∈ G, denote by Rg : P → P the right action by g.

A left principal bundle is the analogous object with a left action L : G× P → P instead

of a right action. Any left principal bundle can be given the structure of a right principal

bundle by setting Rg = Lg−1 and vice-versa.

2.4.10 Associated bundles

Let P be a principal bundle on a Ck manifold X with structure group G. Suppose that G

acts smoothly and transitively on the left on a smooth manifold F . Then G acts on the

space P × F via g : (p, f) 7→ (p · g−1, g · f). The quotient space by this action is a Ck fiber

bundle over X, denoted P ×G F . This is called the associated bundle.

2.4.11 Principal jet bundles

Let (X,OX) be a Ck manifold of dimension n and ` ≤ k. Let P `X be the space of all

invertible `-jets of mappings X → Rn. Specifically, we construct this as a subset of the n-th

fiber product of K`X with itself. If u : X → Rn is a Ck mapping such that u(p) = 0, the 1-jet

of u at a point p ∈ X is j1
pu defines an affine mapping of (mp/m

2
p)
∗ to Rn. If this mapping

is invertible, then we will say that j1
pu is an invertible 1-jet. Now, an ` jet of u : X → Rn

is said to be inverible at p if the associated 1-jet is invertible. Then P `X is the space of all

invertible `-jets in the n-th fiber product of K`X with itself. Since this is an open condition,

P `X inherits the differentiable structure of a Ck−` manifold from K`X. The group G`
n acts

on the left on P ` by composition of jets. The associated bundle T `X = P `X ×G`
n
T `n is the

bundle of velocities of order ` on X. At any point p ∈ X, the fiber T `Xp consists of all

equivalence classes of curves γ : R → X with γ(0) = p, where two curves γ1 and γ2 are

equivalent if they have `-th order contact at 0: j`γ1(0) = j`γ2(0)

Let πE : E → X be a fibered manifold of rank r. Let πnn+r : Rn+r → Rn be the

projection of Rn+r onto the first n coordinates. Define the bundle P `πE to be the subbundle

of P `E consisting of all `-jets of functions E → Rn+r that locally cover a morphism of

fibered manifolds. More precisely, for p ∈ E, (P `πE)p consists of all jets σ in P `Ep such that
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v(j`πnn+r ◦ σ) = 0 for all vertical vectors v ∈ (ker dπE)p. This is a closed submanifold of P `E

and is a principal bundle for the reduced structure group G`
n,r.

2.5 VECTOR FIELDS AND DIFFERENTIAL EQUATIONS

2.5.1 Vector fields

Let (X,OX) be a Ck manifold, and for ` ≤ k − 1, and XX,` be the sheaf of derivations of

OX-modules OX → OX`
.The sheaves XX,` for 0 < ` ≤ k − 1 are a decreasing sequence of

nested subsheaves of XX,0. The commutator of two derivations of OX modules D,D′ ∈XX,`

given by [D,D′] = D ◦ D′ − D′ ◦ D lies in XX,`−1. With this bracket, each of the sheaves

XX,` is a sheaf of Lie algebroids. When k =∞, XX is a sheaf of Lie algebras, being closed

under the bracket.

The following lemma collects some basic facts about derivations:

Lemma 10. Let (X,OX) be a Ck manifold, U ⊂ X an open set, and D ∈XX,k−1(U).

(a) If c is a constant then D(c) = 0.

(b) If f ∈ OX(U) and supp(f) ⊂ K, then supp(D(f)) ⊂ K.

Proof. (a) Note that D(1) = 0 for any derivation D, since D(1) = D(12) = 2D(1), and so

D(c) = 0 for any constant c.

(b) We will show that, for any open set V ⊂⊂ U \ K, D(f)|V = 0. Let φ ∈ OX(U) be a

function that vanishes identically on V and is equal to one on K. Then φf = f and so

D(f) = φD(f) + fDφ. On restriction to V , the right-hand side vanishes.

If U ⊂ X is open, and φ = (x1, . . . , xn) : U → Rn is a Ck coordinate system, then for

i = 1, . . . , n, the differential operator ∂/∂xi : OX(U)→ OXk−1
(U) defined by

∂

∂xi
f = (∂i(f ◦ φ−1)) ◦ φ

is a vector field. More generally, a linear combination of the form

D =
n∑
i=1

vi
∂

∂xi

is in XX,k(U) provided that all vi ∈ OXk−1
(U).
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Theorem 7. Let U be an open subset of the Ck manifold X and D ∈ XX(U). For any

x ∈ U , there is a neighborhood V and Ck local coordinates (x1, . . . , xn) : V → Rn and

coefficients vi ∈ OXk−1
(U) such that

D =
n∑
i=1

vi
∂

∂xi
. (2.5)

It is sufficient to work with vector fields in Rn. It follows by Peetre’s theorem that it

is sufficient to verify that D has the form (2.5) when evaluated against smooth functions.

Define vi = D(xi). If f ∈ C∞(Rn) and x0 ∈ Rn, then by Hadamard’s lemma, there is a

smooth function G : Rn → (Rn)∗⊗ (Rn)∗ such that f(x)− f(x0) = 〈df, x−x0〉+ 〈G(x), (x−
x0)⊗ (x−x0)〉. Applying D to both sides and evaluating at x0 gives, invoking the derivation

property and Lemma 10 (a), that

(Df)(x0) = D(〈df, x− x0〉),

as required.

2.5.2 Fundamental theorem of ordinary differential equations

Let X and P be Banach spaces, A ⊂ R × X × P an open set containing a point (t0, x0, p0),

and f : A → X a Ck function (k ≥ 1). We shall here consider the following initial value

problem for a function x : (t0 − ω, t0 + ω)→ X:

x′(t) = f(t, x(t), p) for all t ∈ (t0 − ω, t0 + ω)

x(t0) = y.
(2.6)

(Here p ∈ P is a parameter, and y is the initial condition.)

Theorem 8. Then there exists ω > 0 and open neighborhoods U of x0 and V of p0 such

that (2.6) has a unique solution in the interval [t0 − ω, t0 + ω] for each y ∈ U and p ∈ V .

Moreover, the mapping (t, y, p) 7→ x(t, y, p) is Ck on (t0 − ω, t0 + ω)× U × V .
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There is a maximal open subset of A on which this unique solution can be continued.

A proof, which can be found in [86], goes as follows. Write z(s) = x(t0 + ωs)− y for all

s ∈ [−1, 1]. The problem (2.6) reduces to solving

z′(s)− ωf(t0 + ωs, z(s) + y, p) = 0 for all s ∈ [−1.1]

z(0) = 0.
(2.7)

Introduce the Banach spaces Z = {x ∈ C1([−1, 1],X) | z(0) = 0} and W = C([−1, 1],X).

Then (2.7) has the form

F (z, ω, t0, y, p) = 0

where F : Z× R× R× U × V →W. At the point Q = (0, 0, t0, y, p) we have

DzF (Q)z = z′.

In particular, DzF (Q) : Z → W is a bijection, since to each w ∈ W , there is a unique z

satisfying z′ = w, namely z(s) =
∫ s

0
w(t) dt. Thus the conditions of the Hildebrandt–Graves

[39] implicit function theorem are met, and the level set of (2.7) in a neighborhood of Q can

be written as a Ck graph z(·) = z(·;ω, t0, y, p).

Lemma 11. Let V ∈ XX be a vector field on X. For each p ∈ X, there is a neighborhood

U of p, an ε > 0, and a Ck−1 function φ : (−ε, ε)× U → X such that the following hold:

(a) For each fixed t ∈ (−ε, ε), φ(t, ·) : U → X is a Ck−1 diffeomorphism onto its image.

(b) φ(0, ·) is the identity diffeomorphism U → U .

(c) If |s|, |t|, |s+ t| < ε and x, φ(t, x) ∈ U , then

φ(s+ t, x) = φ(s, φ(t, x)).

(d) For any f ∈ OX(U), f ◦ φ(t, ·) is Ck in t and

V (f) =
d

dt
f ◦ φ(t, ·)

∣∣∣∣
t=0

.
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The function φ is called the flow of the vector field V , and is denoted by φ(t, ·) = FltV .

A proof can be found, for instance, in Spivak [78]. Since the problem is local, it is

sufficient to work in Rn with the vector field V =
∑

i v
i∂/∂xi. The function φ = (φ1, . . . , φn)

is obtained as a solution of the initial value problem


d
dt
φi(t, x) = vi(φ(t, x))

φ(0, x) = x.

The initial value problem locally has a Ck−1 solution. The local semigroup property (b)

follows by differentiating both sides and invoking uniqueness of the solution.

There is no way to obtain one degree more of differentiability in the theorem. More

precisely, it is only in the direction of v that an additional order of differentiability is obtained,

while the order of differentiability in directions transverse to v is in general unaffected. For

example, let f : R → R be a C0 function, and v = f(x)∂/∂y be a vector field in R2. Then

the flow of v is φ(t, x, y) = (x, y + f(x)et) which is not C1 as a function of (t, x, y), but is

smooth for fixed x as a function of y, t.

2.5.3 Lie derivatives

Let V ∈XX(U) and α ∈ Ωr
X(U). Define LV α ∈ Ωr

Xk−1
(U) by

LV α = d(V yα) + V ydα.

This agrees with the limit

LV α = lim
t→0

φ∗tα− α
t

where φt is the flow of V .

If V1, V2 ∈XX,`(U), then define [V1, V2] ∈XX,`−1(U) on functions f ∈ OX(U) by

[V1, V2](f) = V1(V2(f))− V2(V1(f)).

We also set LV1V2 = [V1, V2]. This measures the failure of the derivations V1 and V2 to

commute. In fact, if φ1,t is the flow of V1 and φ2,s is the flow of V2, then acting on functions

φ∗1,tφ
∗
2,sφ

∗
1,−tφ

∗
2,−s = Id +st[V1, V2] + o(s, t).
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2.6 FROBENIUS THEOREM

Definition 6. Let (X,OX) be a Ck manifold, k ≥ 2. If I ⊂ Ω•X is a homogeneous ideal,

then denote by Ik the degree k part of I.

• The sheaf of ideals I is called a differential ideal if dI ⊂ I ⊗OXk−1
OXk−2

.

• The sheaf of ideals I is called completely integrable if each point x0 ∈ X has an open

neighborhood U such that I(U) is generated by the differentials of some set of functions

in OX(U).

If an ideal is completely integrable, then it is differential. The converse is true for ideals

generated by one-forms:

Theorem 9. Every differential ideal I that is generated by r linearly independent one-forms

at each point is completely integrable.

For every p0 ∈ X, there is a neighborhood U together with a local coordinate system

(x1, . . . , xn−r, y1, . . . , yr) such that I1(U) is spanned by one-forms

ωi = dyi +
n−r∑
α=1

f iαdx
α, i = 1, . . . , r.

The condition on the ωi ensures that

∂f iα
∂xβ

+
r∑
j=1

∂f iα
∂yj

f jβ

is symmetric on α and β.

Thus the theorem is a consequence of the following considerations. Let E,F be Banach

spaces and U ⊂ E × F an open set. Let f : U → L(E,F ) be a C1 function with values in

the Banach space of continuous linear maps E → F . If x is a variable in the space E and y

is a variable in F , then a solution of the differential equation

dy

dx
= f(x, y) (2.8)

in an open set V ⊂ E is a function φ : V → F such that Dφ(x) = f(x, φ(x)) for all x ∈ V .
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Lemma 12. For a given (x0, y0) ∈ U , there exists a neighborhood V of x0 in E and a unique

C1 solution φ of the equation

dy

dx
· (x− x0) = f(x, y) · (x− x0) (2.9)

in V such that φ(x0) = y0. The solution to this equation is a solution of (2.8) in V if and

only if for every x in V the element

D1f(x, φ(x)) +D2f(x, φ(x))f(x, φ(x)) (2.10)

of L2(E,F ) in symmetric (under the canonical identification of L(E,L(E,F )) with the space

of bilinear F -valued forms on E).

The proof of the lemma has two steps. The first step is to show that (2.9) has a unique

solution in a neighborhood, by using the fundamental existence and uniqueness theorem

for ordinary differential equations. The second step is then to show that the integrability

condition (2.10) guarantees that the solution for (2.9) is actually a solution of (2.8). For a

complete proof, refer to H. Cartan [14].

Definition 7. An OX-subalgebroid A of XX is a sheaf of OX-modules contained in XX such

that [A,A] ⊂ A⊗OX
OXk−1

.

A distribution D of rank r on X is an r-dimensional subbundle of TX. An integral

manifold of D is an r-dimensional immersed submanifold i : Y ⊂ X such that di(TY ) = D.

Theorem 10. Let D be a rank r distribution such that Γ(D) be an OX-subalgebroid of

XX . Then through each x ∈ X, there is a unique maximal integral r-dimensional Ck−1

submanifold of X.

2.7 GROWTH VECTOR OF A DISTRIBUTION

Let (X,OX) be a Ck manifold, k ≥ 1, of dimension n. Let H ⊂ XX be a locally free

subsheaf of OXk−1
-modules. Let H 1 = H and H r+1 = [H ,H r]. For p ∈ X, let nr(p)

be the dimension of the OXk−r,p-module H r
p . The growth vector (see [57]) of the sheaf H

at the point p is the vector-valued function (n1(p), . . . , nr(p)). Note that ni ≤ ni+1 since

H i+1 ⊃H i ⊗OXk−i
OXk−i−1

.

Of special interest is when the sheaf H generates the entire Lie algebroid of vector fields

on X. That is, for each point p ∈ X, there exists an r (depending on p) such that nr(p) = n.
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The special case of such structures having growth vector (2, 3, 5) were studied by Cartan

[13], and later in the context of general relativity in [17].

A contact structure is a distribution H of hyperplanes such that n1 = n − 1, n2 = n,

and such that for v, w ∈XX ,

(v, w) 7→ [v, w] (mod H ⊗OX
OXk−1

)

defines a non-singular pairing into XXk−1
/H ⊗OX

OXk−1
at each point. A contact structure

is equivalently specified by a nonzero differential one-form α on X that annihilates the

distribution H . The one-form is determined up to scaling by a nonzero function, and a

particular choice of such one-form is called a contact form. The non-singularity condition

implies that dα|H has rank n− 1 at every point. Being a skew form, this can only occur if

n is odd, say n = 2m + 1. In that case, the non-singularity condition is equivalent to the

requirement

α ∧ (dα)m 6= 0.

2.8 POINCARÉ’S LEMMA

Let X be a Ck manifold. Let it : X → X × [0, 1] be the inclusion of X in the X × {t} slice.

Define the fiber integration operator I from differential p-forms on X × [0, 1] to differential

(p− 1)-forms on X by integration of α up the fiber of X × [0, 1]→ X.

Lemma 13 ([78]). I is a chain homotopy from i∗0α to i∗1α, whenever α is a p-form on

X × [0, 1]:

i∗1α− i∗0α = d(Iα) + I(dα)

Proof.

i∗1α− i∗0α =

∫ 1

0

d

dt
i∗tα ∧ dt

=

∫ 1

0

(L∂/∂tα) ∧ dt

=

∫ 1

0

(
∂

∂t
ydα

)
∧ dt+ ‘

∫ 1

0

(
d
∂

∂t
yα

)
∧ dt

= I(dα) + d(Iα).
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In particular, we have the Poincaré lemma:

Theorem 11. Suppose that X is smoothly contractible to a point. Then any closed p-form

on X is exact, for p > 0.

Proof. Let β be the closed form in question, and φt, 0 ≤ t ≤ 1, be a smoothly parameterized

family of maps such that φ0(X) = {?} and φ1 = id. Define α on X × [0, 1] uniquely by the

requirements i∗tα = φ∗tβ, ∂
∂t
yα = 0. Then α is closed and i∗0α = 0. So by the chain homotopy

lemma,

β = d(Iα).

2.9 DARBOUX RANK

Definition 8. Let α be a one-form on a manifold X of dimension n.

• If α ∧ (dα)m 6= 0 and (dα)m+1 = 0, then α is said to have Darboux rank 2m+ 1.

• If (dα)m 6= 0 and α ∧ (dα)m = 0, then α is said to have Darboux rank 2m.

Examples.

1. If n = 2m+ 1 and α has Darboux rank m, then α is a contact form on X.

2. If n = 2m and α has Darboux rank m, then dα defines a symplectic form on X. In that

case α is called a symplectic potential.

3. The one form dx0 + y1 dx
1 + · · ·+ ym dx

m has Darboux rank 2m+ 1 whenever

(x0, x1, . . . , xm, y1, . . . , ym) are 2m+ 1 independent functions.

4. Likewise, the one form y1 dx
1 + · · ·+ ym dx

m has Darboux rank 2m whenever

(x1, . . . , xm, y1, . . . , ym) are 2m independent functions.

Definition 9. Let α be a contact form on X. Then α ∧ (dα)m trivializes the top exterior

power of the bundle T ∗M . So there exists a vector field V canonically dual to the 2m-form

(dα)2m. This vector field is called the Reeb vector field associated to the contact form α, and

satisfies V yα = 1, V ydα = 0.

The following theorem is due to Darboux [16]

Theorem 12. Let X be a Ck manifold of dimension n and α a one-form of constant Darboux

rank on X. If the rank of α is 2m (even), then in a neighborhood of any point of X, there

exist 2m independent functions (x1, . . . , xm, y1, . . . , ym) such that α = y1 dx
1 + · · ·+ ym dx

m.

Otherwise, if the rank of α is 2m+ 1, then in a neighborhood of any point of X, there exist
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2m+ 1 independent functions (x0, x1, . . . , xm, y1, . . . , ym) such that α = dx0 + y1 dx
1 + · · ·+

ym dx
m.

The following lemma is due to Moser [58]:

Lemma 14. Let X be a smooth manifold, x ∈ X, and let ωt,−T ≤ t ≤ T , be a smoothly

parameterized one-parameter family of symplectic forms on a manifold X such that the fol-

lowing conditions are met:

1. evx ωt is independent of t

2. d
dt
ωt is exact

Then there is a neighborhood U of x and a one-parameter family of diffeomorphisms φt :

U → φt(U) ⊂ X such that φt(x) = x and φ∗tωt = ω0.

Proof. Write d
dt
ωt = dθt and let Vt be the unique vector field such that Vtyωt = θt. By the

existence and uniqueness theorem for differential equations, there exists a neighborhood U

of x and a unique one-parameter family of local diffeomoprhisms φt (depending smoothly on

t) such that φ0 = id and
d

dt
φt = dφt(Vt).

(A compactness argument shows that such a solution exists for all t in the interval [−T, T ],

by adjusting the size of the neighborhood U as needed.) Hence,

d

dt
φ∗tωt = φ∗t

(
d

dt
ωt + LVtωt

)
= 0.

So φ∗tωt = ω0 for all t.

Corollary 3. Let X be a symplectic manifold of dimension n = 2m and x ∈ X. Then there

there is a neighborhood U of x and n independent functions (y1, . . . , ym, x
1, . . . , xm) on U

such that ω|U =
∑

i dyi ∧ dxi

Proof. Since the problem is local, we can work in Rn and take x = 0. Choose a sym-

plectic frame in the tangent space at x. This symplectic frame defines linear coordinates

(x1, x2, . . . , xm, y1, . . . , ym) on Rn, and so a symplectic structure ω0 =
∑

i dyi ∧ dxi. Let

ωt = tω+ (1− t)ω0. Then in a sufficiently small neighborhood of x, ωt satisfies the hypothe-

ses of Lemma 14.
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Proof of Theorem 12. The strategy of the proof is to reduce to the symplectic case, when

n = 2m and α has rank 2m, and then invoke the corollary.

Even rank: If the rank of α is even, let H = ker dα be the set of vector fields satisfying

V ydα = 0. Note that H is a distribution on X of dimension n − 2m. Moreover, because

α∧(dα)m = 0, the kernel of α is contained in the kernel of dα. It follows that H is involutive:

[H ,H ] ⊂ H . By the Frobenius theorem around any point p of X we can decompose a

suitable neighborhood of p into a product U = R2m×Rn−2m with H the vertical distribution

for the projection onto the first factor. Also, since H annihilates α and α Lie derives to

zero along any section of H , α itself is a pullback of a one-form on the first factor R2m.

This form is then a symplectic form.

Odd rank: Let H = kerα ∩ ker dα. Then H is an involutive distribution of dimension

n − 2m − 1. As is the even case, we split a neighborhood of a point p in X as U =

R2m+1 × Rn−2m−1 and α descends to a contact form on the first factor. Hence we may as

well assume that α was a contact form to begin with. In that case, let V be the Reeb vector

field of α. Then α is also Lie derived along V , so α descends to a symplectic form on the

quotient of U by the vector field V .

In either case, it is sufficient to establish that, if α is a symplectic potential on a man-

ifold X of dimension n = 2m, then in a neighborhood of each point of X there exist 2m

independent functions (x1, . . . , xm, y1, . . . , ym) such that α =
∑

i yidx
i. Corollary 3 implies

that we can choose functions so that

dα =
∑
i

dyi ∧ dxi.

So by Poincaré’s lemma, α = df +
∑

i yidx
i for some function f . By making a linear change

in f if necessary, we can assume that evx df = 0. Then, by the argument of Lemma 14

applied to the one-parameter family αt = t df +
∑
yidx

i, there is a neighborhood of x and a

diffeomorphism so that φ∗(
∑
yidx

i) = α, as required.

2.10 STRUCTURES ON THE COTANGENT BUNDLE

Let M be a smooth manifold and T ∗M its cotangent bundle. Let X denote the total space

of the deleted cotangent bundle T ∗M \ {0}, with bundle mapping π : X → M . The bundle

of tensors on X is denoted by T X. The duality pairing between the tangent bundle TX

and cotangent bundle T ∗X will be denoted by y, so that if v ∈ TX and α ∈ T ∗X, then vyα

is a scalar.
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Let E = π−1T ∗M be the pullback of T ∗M under π to a bundle over X. Then E is

naturally identified with the subbundle im π∗ of forms in T ∗X that are horizontal with

respect to π.2 Equivalently, E is the subbundle of forms α ∈ T ∗X that factor through dπ:

for some α̃ ∈ T ∗M
α(X) = α̃(dπX), (2.11)

for every X ∈ TX. The dual pairing between E and E∗, which is naturally isomorphic to

π−1TM , will be denoted by angle brackets 〈·, ·〉E. The pairing 〈·, ·〉E : E × E∗ → R is then

extended to tensors in (T X ⊗ E)× (T X ⊗ E∗) by setting

〈t⊗ e, s⊗ e′〉E = t⊗ s〈e, e′〉E

for all t, s ∈ T X, e ∈ E, and e′ ∈ E∗, and extending by bilinearity. Likewise, we extend

the definition of the pairing bilinear pairing y : TX × T ∗X → R to a bililnear mapping

(TX ⊗ E)× (T ∗X ⊗ E)→ E ⊗ E∗ by extending bilinearly

(v ⊗ e)y(α⊗ e′) = (vyα)e⊗ e′.

The bundle E has a tautological section (over X) given by p(x, α) = π∗α for all x ∈ M
and α ∈ TxM . This is the diagonal section of E when regarded as the fiber product E =

T ∗M ×M T ∗M .

Let θ be the section of Ω1(X)⊗ E∗ defined on arbitrary vectors v ∈ TX by

vy θ = dπv ∈ TM.

The usual canonical one-form of X is given by

ω = 〈p, θ〉E.

If V is a vector field on M , then define the momentum PV associated to V to be the function

on X given by first lifting V to a vector Ṽ on X and then contracting with the canonical

one-form

PV = Ṽ yω

Since ω is horizontal, it is annihilated by vertical directions, and so PV does not depend on

the choice of lift of V .

Let V X ⊂ TX be the subbundle that is vertical for π; that is V X = ker dπ. There is a

natural isomorphism V X ∼= E. Abstractly, this identification is represented as a tautological

2Throughout the discussion, “naturally” means that there is a natural transformation of bundle functors
on the category of smooth manifolds under local diffeomorphism. See [46].
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section of TX ⊗E∗ denoted by ∂/∂p. This section is equivalently characterized by the pair

of equations

∂

∂p
y θ = 0

∂

∂p
y dPV = π−1V ∈ E∗

for all vectors V on M . The first of these statements is equivalent to ∂
∂p
y π∗α = 0 for all

one-forms α on M . Note that dPX and π∗α generate the full cotangent space of X, and so

these properties are sufficient to characterize ∂/∂p by duality.

We define for later use the operator L∂/∂p : Γ ((E∗)⊗r) → Γ ((E∗)⊗r+1) as follows. On

functions (tensors of degree zero), let

(L∂/∂pf)(π∗α) =

〈
∂

∂p
ydf, π∗α

〉
E∗
.

Then, on tensors of degree r, for all α1, α2, . . . , αp+1 ∈ Γ(T ∗M), put(
L∂/∂pT

)
(π∗α1, π

∗α2, . . . , π
∗αp+1) = L∂/∂p[T (π∗α1, π

∗α2, . . . , π
∗αp)](π

∗αp+1).

We observe that this defines a tensor of degree r + 1: this follows since ∂/∂p acts purely

vertically.

2.10.1 Poisson brackets

The manifold X is a symplectic manifold, equipped with the symplectic form dω where

ω = 〈p, θ〉E is the canonical one-form. This is a nonsingular two-form in ∧2T ∗X, and so it

has an inverse, denoted dω−1, in ∧2TX. If f, g are two functions, then define the Poisson

bracket of f and g by

{f, g} = (dω)−1(df, dg).

In local coordinates,

{f, g} =
∂f

∂pi

∂g

∂xi
− ∂g

∂pi

∂f

∂xi
.

The Poisson bracket {−,−} : C∞(X) × C∞(X) → C∞(X) is a skew-symmetric real-

bilinear mapping that defines derivation in either argument, with respect to the structure of

C∞(X) as a multiplicative ring:

{f, gh} = {f, g}h+ {f, h}g

and that satisfies the Jacobi identity

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.
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2.11 STRUCTURES ON THE TANGENT BUNDLE

Let M be a smooth manifold of dimension n ≥ 2. The tangent bundle TM of M consists

of pairs (x, v) with x ∈ M and v ∈ TMx, the tangent space to M at x. The bundle

projection πTM : TM → M is defined by πTM(x, v) = x. The double tangent bundle

TTM is the tangent bundle of the tangent bundle, and consists of triples (x, v, w) where

(x, v) ∈ TM and w ∈ TTM(x,v). The bundle projection πTTM : TTM → TM is defined by

πTTM(x, v, w) = (x, v) ∈ TM .

In local coordinates xi of M , there are induced linear coordinates vi in each fiber of TM ,

defined by

v = vi(v)
∂

∂xi

∣∣∣∣
x

.

Then TTM also carries fiber coordinates in the 2n-dimensional space TTM(x,v), denoted by

ξi, νi, defined at w ∈ TTM(x,v) by

w = ξi(w)
∂

∂xi

∣∣∣∣
(x,v)

+ νi(w)
∂

∂vi

∣∣∣∣
(x,v)

.

Apart from the bundle projection πTTM : TTM → TM on the second tangent bundle,

there is also another natural projection given by the differential dπTM : TTM → TM . In

the local coordinates described above,

dπTM
∂

∂xi
=

∂

∂xi

dπTM
∂

∂vi
= 0.

The kernel of dπTM is called the vertical subbundle, and is denoted by V TM . There is a

natural isomorphism between V TM and the pullback bundle π−1
TMTM , given as follows. Let

x ∈ M and v, w ∈ TMx. The one-parameter group Lw(s) : (x, v) 7→ (x, v + sw) as s ∈ R
varies, is a well-defined one-parameter group of diffeomorphisms of TMx to itself. Denote the

generator of this one-parameter group by λ(x,v)(w) = L′w(0). Then λ(x,v) : TMx → V TM(x,v).

This is a linear isomorphism for each fixed (x, v) ∈ TM , and it depends smoothly on (x, v).

So it is an isomorphism λ : π−1
TMTM → V TM of vector bundles over TM . In coordinates,

λ
∂

∂xi
=

∂

∂vi
.

Since π−1
TMTM = TTM/V TM , it is convenient to compose λ with the quotient map q :

TTM → TTM/V TM to obtain λ = λ ◦ q : TTM → V TM . Then the image and kernel
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of λ are both the vertical bundle V TM . As a tensor, λ can be identified with a section of

V 0TM ⊗ V TM , In coordinates,

λ
∂

∂xi
=

∂

∂vi
, λ

∂

∂vi
= 0

and, as a tensor, λ = dxi ⊗ ∂
∂vi

.

Let X be a vector in TTM . Define a differential operator DX : C∞(TM) → C∞(TM)

by

DX(f) = LλXf.

In local coordinates, if X = ξi ∂
∂xi

+ νi ∂
∂vi

, then DX(f) = ξi ∂f
∂vi

. Let D : C∞(TM) →
ΓTM(T ∗TM) be the one-form valued operator

(Df)(X) = DXf.

If X, Y ∈ ΓTM(π−1
TMTM) are two vector fields that are lifts of vector fields from M , then

D2
X,Y = DXDY = DYDX ,

and D2
X,Y (f) depends bilinearly on X, Y . Commutativity follows from the commutativity of

the one parameter groups LX and LY defined previously.

Let TM ′ be the tangent bundle with the zero section removed, and πTM ′ = πTM |TM ′ :

TM ′ → M the induced projection of TM ′ onto M . Let SM be the space of oriented one-

dimensional linear subspaces of TM . Let δs : TM ′ → TM ′ be the scaling δs(x, v) = (x, sv)

for s > 0, and let H = d
ds
δs|s=1 be the homogeneity vector field. This defines a group action

of (0,∞) on TM ′, and SM is the quotient bundle of TM ′ by the group. Let πSM : SM →M

be the projection onto M . There is a factorization πTM ′ = πSM ◦ σ where σ : TM ′ → SM

is the quotient mapping.
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2.11.1 Frölicher–Nijenhuis bracket

Let X be a smooth manifold and Ω(X) = ⊕rΩr(X) be the graded algebra of smooth differ-

ential forms on X. A derivation of degree k of Ω(X) is a real linear map D : Ω(X)→ Ω(X)

such that

• D : Ωr(X)→ Ωr+k(X)

• For any α ∈ Ωa(X) and β ∈ Ωb(X), D(α ∧ β) = (Dα) ∧ β + (−1)kaα ∧Dβ

Let Derk(Ω(X)) be the space of derivations of degree k of Ω(X), and let Der(Ω(X)) =

⊕k∈Z Derk(Ω(X)) be the graded vector space of all derivations; this supports the structure

of a graded Lie algebra, where the bracket of homogeneous elements K ∈ Derk(Ω(X)), L ∈
Der`(Ω(X)) is defined by

[K,L] = K ◦ L− (−1)k`L ◦K.

Extending by bilinearity to all of Der(Ω(X)), the resulting bracket is easily seen to define a

graded Lie algebra:

• The bracket is graded anticommutative:

[K,L] = −(−1)k`[L,K]

for K ∈ Derk(Ω(X)), L ∈ Der`(Ω(X))

• The bracket satisfies the graded Jacobi identity:

(−1)j`[J, [K,L]] + (−1)kj[K, [L, J ]] + (−1)`k[L, [J,K]] = 0.

Let Ωk(X,TX) = Ωk(X)⊗ TX denote the sheaf of k-forms on X with values in TX. If

v ∈ ΓX(TX) is a vector field, then the insertion operator iv : Ω(X)→ Ω(X) is a derivation

of degree −1. The insertion operator extends to an operator iK ∈ Derk−1(Ω(X)), by defining

iω⊗v = ωiv for K ∈ Ωk(X,TX) extending by linearity.

Definition 10. Let K ∈ Ωk(X,TX). Define the Lie derivative along K by

LK = [iK , d] = iK ◦ d+ (−1)kd ◦ iK .

The following is proven in [46]:

Theorem 13. Any derivation D ∈ Derk(Ω) can be decomposed uniquely as

D = LK + iL

for some K ∈ Ωk(X,TX) and L ∈ Ωk+1(X,TX).
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Proof. Restrict D to the subalgebra of smooth functions D|C∞ : C∞ → Ωk. There exists

a unique K ∈ Ωk(X,TX) such that D|C∞ = Lk. So, by replacing D by D −LK , we can

assume without loss of generality that D|C∞ = 0. Then D|Ω1 : Ω1 → Ωk is linear with

respect to C∞ functions, and so there is a unique L ∈ Ωk+1 such that D|Ω1 = iL. Since

D is uniquely determined by its action on generators of the algebra Ω, this completes the

proof.

Definition 11. For K ∈ Ωk(X,TX) and L ∈ Ω`(X,TX) define the Nijenhuis–Richardson

bracket [K,L]∧ by

i[K,L]∧ = [iK , iL].

Define the Frölicher–Nijenhuis bracket [K,L] by

L[K,L] = [LK ,LL].

The algebraic properties of the curvature and related quantities are most easily expressed

using the Nijenhuis–Richardson bracket [59] and the Frölicher–Nijenhuis bracket [31].

Lemma 15. [LK , iL] = i[K,L] − (−1)k`LiLK

Proof. On functions [LK , iL]f = LiLKf . Also by the Jacobi identity, [[LK , iL], d] = L[K,L]

(since d graded-commutes with LK). Hence by Theorem 13, the lemma holds.

Lemma 16.

[K, [L1, L2]∧] = [[K,L1], L2]∧ + (−1)k`1 [L1, [K,L2]]∧−

−
(
(−1)k`1 [iL1K,L2]− (−1)(k+`1)`2 [iL2K,L1]

)
Proof. By definition of the two brackets,

L[K,[L1,L2]∧] = [LK , [[iL1 , iL2 ], d]]

= [[[LK , iL1 ], iL2 ], d] + (−1)k`1 [[iL1 , [LK , iL2 ]], d] by the Jacobi identity

= L[[K,L1],L2]∧ − (−1)k`1L[iL1
K,L2]+

+ (−1)k`1L[L1,[K,L2]]∧ + (−1)(k+`1)`2L[iL2
K,L1]

by Lemma 15.

The following is also useful:

Lemma 17. If K,L ∈ Ω1(X,TX), then, evaluated on vector fields A,B,

[K,L](A,B) = [KA,LB]− [KB,LA]− L([KA,B]− [KB,A])

−K([LA,B]− [LB,A]) + (KL+ LK)[A,B].
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2.12 CONNECTIONS IN FIBERED MANIFOLDS

Let X be a Ck manifold of dimension n. Let πE : E → X be a Ck fibered manifold, and

denote by V ⊂ TE the vertical bundle V = ker dπE. Then an Ehresmann connection in E

is a surjective bundle homomorphism P : TE → V such that P ◦P = P . The kernel of P is

the horizontal distribution H ⊂ TE, and since the image of P is a projection TE = H ⊕ V .

In particular, for all e ∈ E, dπE,e : He → TπE(e)M is an isomorphism of vector spaces. The

inverse is called the horizontal lift he : TπE(e)M → He, which defines a mapping of bundles

h : π−1
E TM → TE. Conversely, if a distribution H of subspaces of TE is given which splits

the exact sequence of bundles

0→ V → TE
dπE−−→ π−1

E TM → 0

then the associated projection operator P : TE → V is an Ehresmann connection in the

forgoing sense.3

For vector fields X, Y on M , the curvature is defined by

R(X, Y ) = P [h(X), h(Y )] = [h(X), h(Y )]− h([X, Y ]).

This is bilinear in X and Y and does not depend on how X and Y are extended away from

πE(e), and therefore defines a section of

π−1
E ∧

2 T ∗M ⊗ V.

By the tensor-hom adjunction, Hom(TE, V ) ∼= T ∗E⊗V , the operator P can be regarded

as a differential form on E with values in the vertical distribution V . If local coordinates xi

are given on M and fiber coordinates γα are given in E, then P can be represented in the

form

P = ωα ⊗
∂

∂γα

where the one-forms ωα, called the connection forms, are given by

ωα = dγα +Nαj dx
j

where Nαj are the connection coefficients. In this language, the horizontal lifts of the basic

coordinate vector fields are

h∂/∂xi =
∂

∂xi
−Nαi

∂

∂γα

3More details on the general theory of Ehresmann connections can be found in [46].
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since these satisfy ωα(h∂/∂xi) = 0 and dπE,e(h∂/∂xi) = (∂/∂xi)πE(e), the two conditions that

uniquely characterize the horizontal lift.

Since the coordinate vector fields commute, the curvature is given in coordinates by

Rij = [h∂/∂xi , h∂/∂xj ] =

(
∂Nαi

∂xj
− ∂Nαj

∂xi
+Nβi

∂Nαj

∂γβ
−Nβj

∂Nαi

∂γβ

)
∂

∂γα
.

There is an alternative characterization of Ehresmann connections that we shall some-

times employ. Let J1πE denote the space of 1-jets of local sections of πE : E → M . This

space is naturally fibred over E, for if s : U → E is a the germ of a section of πE near a

point x ∈M , then j1
xs 7→ s gives a fibration π1

E : J1πE → E. An Ehresmann connection cor-

responds in a natural way to a section σ : E → J1πE of this fibration, which we shall denote

by e 7→ σe. Indeed, the horizontal lift h : π−1
E TM → TE is then defined by he(X) = dσe(X).

Conversely, let Grn(TE) denote the Grassman bundle of n-planes in TE. This is naturally

a fibre bundle over E with fibre Grn(Rn+dimV ). Let Gr′n(TE) be the subbundle consisting of

horizontal subspaces: those that intersect V = ker dπE only in the zero subspace. This is an

open subset of the full Grassman bundle and so carries a compatible smooth structure. The

projection P of an Ehresmann connection is determined by the splitting TE = H+V , which

in turn is given by a section H of Gr′n(TE) over E. There is an isomorphism of bundles over

E between J1πE and Gr′n(TE): if σ : U ⊂ M → TE is a local section in a neighborhood

U of a point x ∈ M , then dσ(TxM) ⊂ Tσ(x)E is a horizontal subspace which depends only

on the jet j1
xσ. This defines a natural mapping J1πE → Gr′n(TE) that associates to each

1-jet of a section at x its tangent space at x. This mapping is a smooth immersion (by

looking in local coordinates). Furthermore, it is surjective since any n-plane in Tx,eE that

does not meet Vx,e is tangent to a local section. So J1πE ∼= Gr′n(TE). Since a distribution

of horizontal subspaces on E is just a section of Gr′n(TE), this establishes the converse.

2.12.1 Basic example: Linear connections in vector bundles

Suppose that πE : E → M carries the structure of a vector bundle. Let πTE : TE → E

denote the projection in the tangent bundle of the total space of E. Since E is a vector

bundle, affine translation in the fibre gives a canonical identification of the vertical tangent

space with the fibre at each point. That is, there is an isomorphism of bundles

ν : π−1
TEE → ker(dπE) ⊂ TE.

A linear connection in E is usually thought of as a mapping ∇ : Γ(TM ×M E)→ Γ(E)

which, with respect to the C∞(M)-module structure, is linear in its first argument and is a

53



derivation in its second argument. The action of ∇ on a section (X, σ) is usually denoted by

∇Xσ. If σ ∈ Γ(E) is a section of E and X is a vector at a point x0 ∈M , then ∇Xσ(x0) ∈ Ex0
does not depend on how X is extended to a vector field away from x0. Furthermore, since

∇ is a derivation in its second argument, it factors through the 1-jet prolongation to define

a mapping of fibre bundles

∇ : TM ×M J1E → E

which is linear in its first argument and a derivation with respect to the J1M -module struc-

ture in its second arguement.

The horizontal distribution can be defined directly in terms of horizontal curves in E.

Let xt be a smooth curve through x0 with ẋ0 = X. Fix σ0 ∈ Ex0 . There is a unique curve

µ(t) through σ0 that lifts xt such that

∇ẋtµ = 0.

The horizontal lift of X is then defined by h(X) = µ′(0). Alternatively, call a section σ

horizontal at σ0 ∈ Ex0 if ∇Xσ(x0) = 0 for every x. The horizontal lift to Tσ0E is the

operator dσ for any horizontal section at σ0. This also furnishes a description of the entire

horizontal subspace:

Hσ0 = dσ(Tx0M)

where σ is any horizontal section at σ0.

A more convenient approach, that will allow us to introduce some notation, is to define

the horizontal lift of a vector field X on M directly as a vector field on E, which we risk

confusion and denote by ∇X . If σ : M → E is a section and f : E → R is a smooth function,

then define

(∇Xf) ◦ σ = X(f ◦ σ) + 〈df, ν(∇Xσ)〉

where the pairing is the duality between T ∗E and TE.

Given a frame eα of E, the fibre coordinates are the dual coframe eα : E → R. Given a

coordinate system xi on M , define the connection coefficients Γjαi, by

∇∂/∂xieα = Γβαieβ.

Then

∇∂/∂xi =
∂

∂xi
+ Γβαie

α ∂

∂eβ
.
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2.12.2 Ehresmann connections, principal connections, and Cartan connections

Suppose that E →M is a fiber bundle with structural group G. Then there is an associated

principal G-bundle Q → M , unique up to isomorphism, such that E = Q ×G F where F

is the generic fibre of E equipped with its left G-action. A principal connection on Q is a

one-form ω on E with values in g, the Lie algebra of G that is equivariant with respect to the

right action (R∗gω = Adg−1 ω) and reproduces the generators of the right action on vertical

vectors (Xg = dRg(ω(X))).

A principal connection on Q induces an Ehresmann connection on any associated bundle.

An Ehresmann connection is called a G-connection if, along any sufficiently small smooth

curve γ : [0, 1]→M , the horizontal displacement Eγ(0) → Eγ(1) (which may only be defined

on an open subset of the fiber) is a transformation in G.

Under suitable hypotheses, the G-connections are precisely those that arise by reduction

from a principal connection in the associated principal bundle. Let f ∈ F be an arbitrary

point of the fiber. Assume that G acts transitively on F and that the Lie algebra g of G acts

faithfully on TfF . The principal connection can then be reconstructed by the Lie derivative

of the G-connection as follows. Take an admissible local trivialization of E, say ψ : E|U →
U ×F . The trivialization ψ also gives a splitting of the tangent bundle T (E|U) ∼= TU ⊕TF .

Use this splitting to identify the vector fields T 1
0 F on F ith vector fields on T (E|U), and

let (T 1
0 F )G be the G-invariant vector fields of this kind. Note that the Lie algebra g acts

on (T 1
0 F )G by Lie differentiation. If X ∈ TU is a tangent vector on U ⊂ M , then the

horizontal lift h(X) is an infinitesimal G-action if and only if Lh(X) acts on (T 1
0 F )G as an

element of g. Since g→ gl(TeF ) was assumed to be injective, X 7→ Lh(X)|TeF is a one-form

with values in g. This is the connection form θψ represented in terms of the gauge ψ. Under

a change of gauge, ψ(x) → g(x) · ψ(x), and the G-invariant vertical vector fields change by

a factor of g−1. The connection transforms via

θg·ψ = Adg θψ + g∗ωG

where ωG is the Maurer–Cartan form of G. This is the compatibility condition needed to

induce an equivariant connection on the associated principal bundle Q, equipped with the

right action of G.

A G-connection in E →M is said to be of Cartan type if in addition there is a preferred

section σ : M → E such that P ◦dσ : TM → V E is an isomorphism.4 This preferred section

is called a soldering of M to the fibre, and is a means for regarding the fibres as tangent

to M itself. The bundle Q carries a preferred reduction to a principal bundle Q0 for the

4See [21] or [45].
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isotropy group G0 of the fiber F . The principal connection on Q restricts to a principal G0-

equivariant form on Q0 with values in the full Lie algebra g which reproduces the generators

of the vertical action. The isomorphism condition on the soldering implies that ω : TQ0 → g

is an isomorphism of vector spaces. That is, we get a Cartan connection in the usual sense.
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3.0 WEYL GEOMETRIES

In [82], Hermann Weyl famously introduced his conformal theory of relativity, in which the

connection was replaced by a family of connections containing the information of the null

geodesics of the spacetime. While this theory was dismissed as nonphysical by Einstein,

decades later it became the basic foundation for gauge theory. Such a family of connections

is what we shall call a Weyl structure. Weyl structures and their generalizations have been

studied as a part of the program of parabolic geometries introduced by Charles Fefferman

and Robin Graham [27].

Our first significant result is that a Weyl structure on a conformal manifold can be

identified in a conformally-invariant way with a bundle of affine spaces each of which carries

a canonical conformal structure. Such a bundle of affine spaces can be completed to a bundle

of conformal spheres by adding a point at infinity, which is then regarded as being tangent to

the manifold at the point of contact. We shall construct a natural Ehresmann connection on

the space of Weyl connections whose parallel transport maps are conformal mappings of these

spheres. By lifting to a principal bundle of conformal frames on the total space of the bundle

of Weyl connections, this recaptures the normal conformal Cartan connection. The approach

is significant because it is bottom-up rather than top-down: starting with the space of Weyl

connections, one automatically recovers all of the other structural information (including the

structure groups themselves). Typically the normal conformal Cartan connection is bottom-

up: starting with the structural groups in advance, one is able to pick a canonical connection

subject to certain conditions. This logically prior approach in turn generalizes to a large class

of geometries, consisting of any suitably generic bundle of affine connections on a manifold.

3.1 WEYL STRUCTURES IN CONFORMAL GEOMETRY

We begin by defining Weyl structures as applied to the study of conformal differential ge-

ometry. Let M be a conformal manifold of dimension n > 2, and g a representative element
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of the conformal class. A Weyl structure is a family of torsion-free affine connections ∇γ,

indexed by one-forms γ, such that

(∇γ
Xg)(Y, Z) = −2γ(X)g(Y, Z).

Observe that, while this definition of the connection ∇γ depends on the choice of con-

formal representative, the family of all connections does not so depend, and forms a fiber

bundle which we shall denote by W . Upon choosing a connection γ0, this fiber bundle can

be naturally identified with the cotangent bundle. Thus there is a conformally invariant

isomorphism of affine bundles between W and the affine cotangent bundle.

The connection with γ = 0 is the Levi-Civita connection, and the change in connection

is given by

∇γ
XY = ∇0

XY + γ(X)Y + γ(Y )X − 〈X, Y 〉g−1(γ).

In a coordinate basis, the change in connection has connection coefficients

Γkij = γjδ
k
i + γiδ

k
j − γkgij

where the inverse metric has been used to raise the index in the last term.

Let Dγ denote the exterior covariant derivative. By extending the ring of scalars to the

ring of differential forms, Dγ is the unique derivation of Ω(M)-algebras

Dγ : Ω(M)⊗T → Ω(M)⊗T

that agrees with the exterior derivative on sections of Ω(M), and such that on sections of

T ,

Xy(DγT ) = ∇γ
XT.

Note that Dγg = −2γ ⊗ g.
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3.1.1 Curvature and invariant decomposition

The curvature Rγ of the connection ∇γ is defined by

Rγ(X, Y ) = [∇γ
X ,∇

γ
Y ]−∇γ

[X,Y ].

So Rγ is a two-form with values in End(TM), which can be identified with the (super)-

commutator of derivations

Rγ = [Dγ, Dγ] = 2(Dγ)2.

The curvature satisfies the Bianchi identity

Rγ(X, Y )Z +Rγ(Y, Z)X +Rγ(Z,X)Y = 0.

Using the background metric, the curvature Rγ is identified with a covariant rank-four tensor

Rγ(X, Y,W,Z) = 〈Rγ(X, Y )W,Z〉g.

This is skew-symmetric on X, Y , but is only skew-symmetric on W,Z when γ is the Levi-

Civita connection, since by the Ambrose-Singer theorem skewness on W,Z implies that the

connection has O(n) holonomy, but the Levi-Civita connection is the unique torsion-free

affine connection with O(n) holonomy.

The Ricci tensor is the trace1

Ricγ(X, Y ) = tr(Z 7→ Rγ(Z,X)Y ).

Since Rγ is generally not skew in X, Y , the Ricci tensor may fail to be symmetric. In fact,

the Bianchi identity establishes that

2 Alt(Ricγ)(X, Y ) = tr(Rγ(X, Y )). (3.1)

Now (Dγ)2g = −2dγ ⊗ g, or equivalently ([∇γ
X ,∇

γ
Y ] − ∇γ

[X,Y ])g = −4 dγ(X, Y )g. On the

other hand, ([∇γ
X ,∇

γ
Y ] − ∇γ

[X,Y ])g = −2 Sym(g ◦ Rγ(X, Y )). Taking the trace with respect

to g gives −2 tr(Rγ(X, Y )) = −4n dγ(X, Y ). Combined with (3.1), this implies

Alt(Ricγ)(X, Y ) = n dγ(X, Y ).

1With these curvature conventions, the round sphere has positive Ricci curvature.
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In particular, the Ricci tensor is symmetric if and only if dγ = 0; that is, if γ is the locally

the differential of a conformal scale.2 This calculation shows also that

Sym(g ◦Rγ(X, Y )) =
2

n
Alt(Ricγ)(X, Y ).

In what follows, R will denote a generic tensor with the same symmetries as Rγ, and

similarly with Ric. Let σ : ∧2T ∗M ⊗ T ∗M ⊗ T ∗M → ∧2T ∗M ⊗ T ∗M ⊗ T ∗M be the cyclic

permutation of the first three arguments of a covariant tensor:

σ(R)(X, Y, Z,W ) = R(Y, Z,X,W )

and let b = 1
3
(I + σ + σ2) be the Bianchi symmetrization map

b(R)(X, Y, Z,W ) =
1

3
(R(X, Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W )).

On covariant rank-two tensors, define the trace trg by trg k = tr(X → g−1(k(X,−))) where

g−1 : T ∗M → TM is the self-adjoint map defined by duality 〈g−1(α), X〉g = α(X) for all

α ∈ T ∗M and X ∈ TM . Let c denote the Ricci trace map: c(R)(X, Y ) = trg R(X,−, Y,−)

so that

Ric = c(R).

The scalar curvature is defined by

Sc = trg Ric .

Let s : ∧2T ∗M ⊗ T ∗M ⊗ T ∗M → ∧2T ∗M ⊗ T ∗M ⊗ T ∗M be the map

s(R)(X,Y, Z,W ) =

= R(X, Y, Z,W ) +R(X, Y,W,Z)− 1

n
(c(R)(X, Y )− c(R)(Y,X))g(Z,W ).

The space of curvature tensors associated to Weyl connections is ker b ∩ ker s ⊂ ∧2T ∗M ⊗
T ∗M ⊗T ∗M , and we are interested in the decomposition of this space into irreducible O(n)-

submodules. Note that b2 = b and, since σ is a unitary automorphism of order 3, b is

self-adjoint, and so I − b is the orthogonal projection of ∧2T ∗M ⊗ T ∗M ⊗ T ∗M onto ker b.

2This is consistent with the fact that the skew part of the Ricci curvature of an affine connection is the
curvature two-form of the induced connection on the canonical bundle. Existence of a parallel section of the
canonical bundle gives rise to a parallel conformal scale and vice-versa.

60



If h, k are a pair of covariant rank two tensors, their Kulkarni–Nomizu product is the

rank four tensor defined by

h7 k(X,Y, Z,W ) =

= h(X,Z)k(W,Y ) + h(Y,W )k(Z,X)− h(X,W )k(Z, Y )− h(Y, Z)k(W,X).

The tensor h7k is skew on X, Y and on Z,W . When h and k are symmetric, it satisfies the

Bianchi identity and furthermore, c(g 7 h) = (n− 2)h+ (trg h)g. It follows that, for n > 2,

the mapping h 7→ g7h : Sym2 T ∗M → ker b is an injective homomorphism of O(n)-modules.

We claim that ker b ∩ ker s decomposes (orthogonally) into O(n)-modules

R = S ⊕ Λ⊕ Z ⊕W

with

S =
Sc

2n(n− 1)
g 7 g

Λ =
1

n
(2 Alt(Ric)⊗ g − g 7 Alt(Ric))

Z =
1

n− 2
Sym0(Ric) 7 g

where Alt is the alternating part, Sym0 is the trace-free symmetric part. It is clear that

S,Λ, Z are irreducible. It follows from classical invariant theory that W is irreducible as well

(see, e.g., [8]).

It is convenient for later work to define the Schouten tensor by

Σ 7 g = S + Z

so that

Σ =
Sc

2n(n− 1)
g +

1

n− 2
Sym0(Ric)

=
1

n− 2

(
Sym Ric− Sc g

2(n− 1)

)
.
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3.1.2 Curvature of Weyl connections

We return now to the case of the curvature Rγ of the Weyl connection γ. Our next objective

shall be to express this in terms of R0, the curvature of the Levi-Civita connection. For

convenience, we shall here use (abstract) indices, and extend the usual ring of scalars of

tensorial objects to include differential forms. So there is a natural one-form θa expressing

the isomorphism of covariant tensors with one-forms (which are scalars) wa 7→ θawa. The

change in connection, for X ∈ Ω(M)⊗T 1
0 M , is

DγXa = D0Xa + ΓabX
b

where

Γab = γbθ
a + γδab − θbγa.

So, the change to the curvature endomorphism is

1

2
(Rγ)ab =

1

2
(R0)ab +D0Γab + ΓacΓ

c
b

=
1

2
(R0)ab + (D0γb)θ

a + dγ δab + θbD
0γa − γθaγb − θaθbγcγc − γθbγa

1

2
Rγ
ba =

1

2
R0
ba + dγ gab − 2

(
θ[aDγb] − θ[aγγb] +

1

2
θ[aθb]γcγ

c

)
.

So, in terms of the (0, 4) curvature tensor, the conformal change is

Rγ = R0 + 2(dγ)⊗ g − g 7
(
D0γ − γ ⊗ γ +

1

2
〈γ, γ〉g

)
= R0 + (2(dγ)⊗ g − g 7 dγ)− g 7

(
SymD0γ − γ ⊗ γ +

1

2
〈γ, γ〉g

)
Since the Schouten tensor is the symmetric Ricci part of the curvature decomposition,

it transforms according to

Σγ = Σ0 −
(

SymD0γ − γ ⊗ γ +
1

2
〈γ, γ〉g

)
.

In indices,

Σγ
ij = Σ0

ij −∇0
(iγj) + γiγj −

1

2
γkγ

kgij.

It is natural to define the rho tensor to be the (0, 2) tensor whose symmetric part is Σ and

whose skew part is −dγ:

Pγ = Σγ − dγ.
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Written out in indices

Pγ
ij =

1

n
Ricγ[ij] +

1

n− 2

(
Ricγ(ij)−

Scγ gij
2(n− 1)

)
.

By taking traces, the Ricci tensor can be completely recovered from the rho tensor. In

particular, one vanishes if and only if the other does. The rho tensor transforms according

to

Pγ
ij = P0

ij −∇0
i γj + γiγj −

1

2
γkγ

kgij.

The transformation law can be conveniently re-expressed as

Pγ
ij = P0

ij −∇
γ/2
i γj

or, equivalently,

Pγ = P0 −Dγ/2γ.

The γ/2 comes from our unfortunate factor-of-two conventions.

3.1.3 Connection on the space of Weyl connections

We shall define a natural Ehresmann connection on the total space of W . From the previous

section, the Ricci curvature associates to each section γ of W the tensor Ricγ ∈ T ∗M⊗T ∗M .

At a point x0, Ricγ(x0) depends only on the 1-jet j1
x0
γ, so the Ricci tensor factors through

the 1-jet prolongation in the sense that there exists a bundle mapping

ric : J1πW → π−1
W (T ∗M ⊗ T ∗M)

such that

Ricγ = ric(j1γ).

The equation ric(j1γ) = 0 defines a submanifold of J1πW , which is the image of a unique

section σ : W → J1πW over W . This, in turn, corresponds to an Ehresmann connection.3

To obtain a more explicit description of the Ehresmann connection, we shall implicitly

identify W with T ∗M . Let xi be local coordinates on M and γi are the induced fiber

coordinates of T ∗M defined by γi(x, α) = ∂/∂xiyα. The Levi–Civita connection defines an

3In other words, an Ehresmann connection is a distribution of subspaces in TW that are horizontal with
respect to the submersion πW : W → M . For x0 ∈ M , call a section σ : M → W horizontal at x0 if
Ricγ(x0) = 0. The tangent spaces at x0 to all horizontal sections at x0 give the horizontal distribution of
the connection.
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Ehresmann connection on T ∗M as follows. The horizontal lift of X ∈ TM , denoted ∇0
X , is

the vector field on T ∗M defined by

∇0
X(π∗Wf) = X(f)

∇0
X(γi) = −Γkijγ

jXk

where Γkij are the usual Christoffel symbols for the Levi–Civita connection.

Alternatively, the connection is determined by the family of one-forms

ωj = Dγj − γji dxi

where Dγj is the Levi-Civita connection applied to γj (regarded as a one-form), and the

coefficients γji are obtained by solving Ricγij = 0 for ∇0
i γj. The horizontal space is the

annihilator of the system of one-forms ωj.

Since Ric vanishes precisely when P does, the transformation law for P gives

γji = P0
ij + γiγj −

1

2
γkγkgij.

Moreover, the pullback of the connection one-form ωj along a section γ(x) is just

γ∗ωj = −P γ
ji dx

i.

The associated horizontal lifts can be represented in the form

h(X) = ∇0
X +

(
P0(∂/∂γ,X) + γ(X)γ(∂/∂γ)− 1

2
〈γ, γ〉 〈X, ∂/∂γ〉

)
.

Indeed, the Levi–Civita connection, by fixing a section of W , induces an isomorphism W ∼=
T ∗M of vector bundles. Then the Levi–Civita connection also induces a vector field ∇0

X

on T ∗M , defined by the two conditions ∇0
Xπ
∗
Wf(x) = Xf(x) and ∇0

X(γi) = ∇0
Xγi, the

Levi–Civita connection applied to the section γi of T ∗M .
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3.1.4 Conformal structure on the space of Weyl connections

The bundle W is naturally isomorphic as an affine bundle to T ∗M . The differential of this

isomorphism is a canonical invertible section ν of the bundle Hom(VW, π−1
W T ∗M). Define a

metric in the vector bundle VW → W by

gV (S, T ) = g−1(ν(S), ν(T )).

where g is the given representative of the conformal class on M . In local coordinates,

gV (∂/∂γi, ∂/∂γj) = gij.

From the local coordinate description, this defines a metric that scales in the fiber if g

is conformally rescaled. Indeed, the vector field ∂/∂γi does not change under a conformal

rescaling, and the metric itself just scales by the reciprocal of the conformal factor. Therefore

each fibre of W →M carries naturally the structure of a conformally flat manifold.

The conformal structure is compatible with the connection in the sense that it is preserved

under parallel transport. Indeed, we have

(Lh(X)g)(∂/∂γi, ∂/∂γj) = g−1(∇Xdx
i, dxj) + g−1(dxi,∇Xdx

j)−

− g ([h(X), ∂/∂γi], ∂/∂γj)− g (∂/∂γi, [h(X), ∂/∂γj]) .

Write

h(X) = ∇X +

(
P0(∂/∂γ,X) + γ(X)γ(∂/∂γ)− 1

2
〈γ, γ〉 〈X, ∂/∂γ〉

)
.

We have g([∇X , ∂/∂γi], ∂/∂γj) = g(∇Xdx
i, dxj), so the only terms that remain are

−g ([h(X)−∇X , ∂/∂γi], ∂/∂γj)− g (∂/∂γi, [h(X)−∇X , ∂/∂γj]) =

= g
(
Xiγk∂/∂γk + γkX

k∂/∂γi − γigk`Xk∂/∂γ`, ∂/∂γj
)

+ (i↔ j)

= X iγkg
kj + γkX

kgij − γigk`Xkg`j + (i↔ j)

= X iγj + γkX
kgij − γiXj + (i↔ j)

= 2γkX
kgij.

Thus because Lh(X)g is proportional to g, h(X) is an infinitesimal conformal map of the

fibre.

Note however that the connection is not complete, even locally, so the parallel transport

map is only locally defined in each fibre. Indeed, fix a point p of M and a vector X at p.

Then lying over p, Lh(X)g is unbounded, and so a curve in M with initial velocity X at p has
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horizontal lifts that escape to infinity in arbitrarily small time. This suggests attempting to

conformally compactify the fibres, and to extend the connection if possible to the conformal

compactification.

The conformal compactification takes many copies of W , each identified with T ∗M , and

glues them together smoothly along a diffeomorphism in a way that adds a null cone to the

fibre at infinity (or a point in the case of Euclidean signature). Let N be the null cone of

W . Let φ : W \N → W \N be inversion in the “unit sphere” of the fiber.4 For each affine

translation τ : W → W , the mapping τ−1φτ is a special conformal transformation from

W \ τ−1N to itself. Let Wτ be the family of copies of W , indexed by all affine translations

τ , and let W∞ be an additional copy of W corresponding to the structure at infinity. Define

an equivalence relation on the disjoint union W∞∪̇
⋃̇
τWτ by

xτ ∼ x∞ ⇐⇒ x∞ = τ−1φτ(xτ )

xτ ∼ xτ ′ ⇐⇒ xτ = τ−1φ−1τ(τ ′)−1φτ ′(xτ ′)

Then the space

Ŵ =

(
W∞∪̇

⋃̇
τ
Wτ

)
/ ∼

is a smooth bundle onM with compact fibres. Since the mappings φ and τ are both conformal

in the fibres, Ŵ carries an induced (flat) conformal structure. The fiber of Ŵ is a compact

conformal space isomorphic to the conformal sphere Sp,q ∼= Sp × Sq in signature p, q.

In coordinates, let γi be the local fiber coordinates on W and let µi = γi ◦ φ. Then

µi =
γi
γkγk

γi =
µi
µkµk

So φ is a diffeomorphism. It is conformal, since

dφ
∂

∂γi
= (µkµ

k)
∂

∂µi
− 2µiµk

∂

∂µk
(3.2)

and so

g(dφ(∂/∂γi), dφ(∂/∂γj)) = (µkµ
k)2gij.

Each mapping τ is a conformal diffeomorphism as well, being a translation of an affine space

with an invariant conformal structure.

4In non-Euclidean signature, this is inversion in the hyperboloid g(γ, γ) = 1. In coordinates, φ(γ)i =
γi
γkγk
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The null cone of W∞ in each fiber defines a natural subset of Ŵ . The vertex of this null

cone defines a canonical section σ : M → Ŵ . It remains to show that the connection on W

extends to a (necessarily unique) connection on Ŵ , and that the section σ is generic with

respect to this connection. It will then follow that the Ehresmann connection in Ŵ is of

Cartan type.

We shall show that the horizontal lift extends smoothly along the gluing of W0 and W∞.

The other gluings are handled similarly. In addition to (3.2), we have

dφ(∂/∂xi) =
∂

∂xi
+

[
∂

∂xi
log(µkµ

k)

]
µr

∂

∂µr
.

Then the horizontal lift of the coordinate vector field ∂/∂xj transforms via

dφ(h(∂/∂xj)) =
∂

∂xj
+

[
∂

∂xi
log(µkµ

k)

]
µr

∂

∂µr
+

[
Γkijγk + P0

ij + γiγj −
1

2
γkγkgij

]
∂

∂γi

=
∂

∂xj
+

[
∂

∂xi
log(µkµ

k)

]
µr

∂

∂µr
+

+

[
Γkij

µk
µ · µ

+ P0
ij +

µiµj
(µ · µ)2

− 1

2
(µ · µ)−1gij

][
(µ · µ)

∂

∂µi
− 2µiµr

∂

∂µr

]
=

∂

∂xj
+

[
Γkijµk + (µ · µ) P0

ij +
µiµj
µ · µ

− 1

2
gij

]
∂

∂µi
−

− 2

[
µiΓkij

µk
µ · µ

+ µi P0
ij +

1

2

µj
µ · µ

]
µr

∂

∂µr

=
∂

∂xj
+

[
∂

∂xi
log(µkµ

k)

]
µr

∂

∂µr
+

+

[
Γkijµk + (µ · µ) P0

ij −
1

2
gij

]
∂

∂µi
− 2

[
µiΓkij

µk
µ · µ

+ µi P0
ij

]
µr

∂

∂µr

=
∂

∂xj
+

[
Γkijµk + (µ · µ) P0

ij −
1

2
gij

]
∂

∂µi
− 2µi P0

ijµr
∂

∂µr

[since µiΓkij
µk
µ·µ = 1

2
∂
∂xj

log(µkµ
k).]

This extends smoothly to the null cone µ · µ = 0 at infinity, and therefore the connection

extends to a smooth connection on the bundle Ŵ .
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3.1.5 Curvature of the connection

An Ehresmann connection can be expressed as the simultaneous vanishing of a system of

1-forms on the total space of the fiber bundle. In local coordinates xi on the base M and

fiber coordinates γi, such one-forms can be written

ωi = dγi +Nij dx
j.

The horizontal lifts hi of the coordinate vector fields ∂/∂xi can be written

hj =
∂

∂xj
−Nij

∂

∂γi
.

The curvature of a nonlinear connection is defined in terms of the horizontal lifts hi by

Rijk
∂

∂γk
= [hi, hj].

Write

ωj = dγj +

(
Γkijγk + P0

ij + γiγj −
1

2
γkγkgij

)
dxi

where Γkij are the Christoffel symbols for the Levi-Civita connection ∇0. The horizontal lifts

of the coordinate vector fields are

hj =
∂

∂xj
−
(

Γkijγk + P0
ij + γiγj −

1

2
γkγkgij

)
∂

∂γi

Write

ωb = D0γb −
(

P0
ab + γaγb −

1

2
γcγ

cgab

)
θa.

Then

ha = ∇0
a +

(
P0
ab + γaγb −

1

2
γcγ

cgab

)
∂

∂γb
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3.2 WEYL STRUCTURES IN PROJECTIVE GEOMETRY

Two torsion-free affine connections on a manifold M are projectively equivalent if they have

the same geodesics, apart from reparameterization. Thus affine connections ∇ and ∇′ are

projectively equivalent if

∇′XY = ∇XY − γ(X)Y − γ(Y )X

for some one-form γ. A projective structure on M is an equivalence class of affine connections.

In such cases, the data of M together with this equivalence class of affine connections is called

a projective manifold. In what follows, fix a background affine connection∇0. Then the space

of all affine connections in the projective equivalence class is parametrized by a one-form γ.

The associated exterior covariant derivative Dγ is given by

DγXa = D0Xa − γXa − θaγcXc = D0Xa + ΓabX
b

where Γab = −γδab − θaγb. The curvature is

(Dγ)2Xa = Dγ(D0Xa + ΓabX
b)

= (D0)2Xa + ΓabD
0Xb + (DγΓab )X

b − ΓabD
γXb

= (D0)2Xa + ΓabD
0Xb + (D0Γab )X

b − ΓcbΓ
a
cX

b + ΓacΓ
c
bX

b−

− ΓabD
0Xb − ΓabΓ

b
cX

c

= (D0)2Xb + (D0Γab )X
a − ΓcaΓ

c
bX

a.

So the change in curvature is (D0Γab )− ΓcaΓ
c
b. We have

D0Γab = −dγδba + θaD0γb

and

ΓcaΓ
c
b = (−γδca − θcγa)(−γδbc − θbγc) = γθbγa.

So

(Dγ)2Xa = (D0)2Xa + (−dγδab + θaD0γb − γθbγa)Xa.

The curvature endomorphism transforms by

(Rγ)ab = (R0)ab − 2(dγ)δab + 2θaD0γb − 2γθbγa.
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The Ricci tensor transforms as

Ricγ(X, Y ) = Ric0(X, Y )− 2dγ(X, Y )− (n− 1)(∇0
Xγ)(Y )− (n− 1)γ(X)γ(Y ).

Define the Rho tensor by

Pγ(X, Y ) =
−1

n2 − 1
(nRicγ(X, Y ) + Ricγ(Y,X))

so that

Pγ(X, Y ) = P0(X, Y ) + (∇0
Xγ)(Y ) + γ(X)γ(Y ).

As before, call a section γ of W horizontal at x0 if Pγ(x0) = 0. Horizontal sections are

therefore those for which

(∇0
Xγ)(Y ) = −P0(X, Y )− γ(X)γ(Y ).

In terms of local coordinates xi on M , the connection one-forms are

ωj = dγj +
(
Γkijγk + P0

ij + γiγj
)
dxi

where Γkij are the connection coefficients for ∇0 in the coordinate system. The horizontal

lifts of the coordinate vector fields are

h(∂/∂xi) =
∂

∂xi
−
(
Γkijγk + P0

ij + γiγj
) ∂

∂γj
. (3.3)

The fibre of W carries a natural projective structure, along with the local Lie group

action of PGL(n + 1) on the fibre. The infinitesimal generators of the Lie group are vector

fields of the form (
Ajiγj + ci + bjγjγi

) ∂

∂γi
.

The vector field in (3.3) is an infinitesimal generator for the projective group. Hence the

connection preserves the projective structure on the fibre. This projective structure admits

a compactification through a point at infinity, as in the conformal case.
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3.3 GENERALIZED WEYL GEOMETRIES

Let W → M be a fiber bundle of affine connections on M . For a fixed section γ of W , the

curvature tensor at a point x ∈M is defined by on vectors X, Y, Z ∈ Tx0M by first extending

them to vector fields X̃, Ỹ , Z̃ in a neightborhood of x, and then setting

Rγ(X, Y )Z = [∇γ

X̃
,∇γ

Ỹ
]Z̃ −∇γ

[X̃,Ỹ ]
Z̃.

Since the expression on the right-hand side is linear with respect to constant scalings, and

is independent of how X, Y, Z are extended away from x, the curvature defines a tensor in

∧2T ∗M ⊗ T ∗M ⊗ TM .5 The Ricci tensor is

Ricγ(X,Z) = tr(Y → Rγ(X, Y )Z).

At a point x0, Ricγ(x0) depends only on the 1-jet j1
x0
γ, so again the Ricci tensor factors

through the 1-jet prolongation in the sense that there exists a bundle mapping

ric : J1πW → π−1
W (T ∗M ⊗ T ∗M)

such that

Ricγ = ric(j1γ).

However, the solution of the equation ric(j1γ) = 0 may fail to define a submanifold of J1πW ,

or even if it does, it may fail to be the image of a section σ : W → J1πW over W . Call the

Weyl geometry generic if the solution of ric(j1γ) = 0 is a smooth section of J1πW .

Let xi be local coordinates onM . A section ofW is specified by the connection coefficients

Γkij = Γkij(γα, x
i) where γα are fiber coordinates on W . A nonlinear connection in W is a

horizontal distribution for the fibration W → M . Call a section γ horizontal at x0 if

Ricγ(x0) = 0. This equation involves the first partial derivatives ∂γα/∂x
i, and if we can

always solve uniquely for these second derivatives, then the connection is uniquely determined

and so the Weyl geometry is generic. The leading symbol of Ricγ in γα is

∂αΓkij∂kγα − ∂αΓkik∂jγα.

The bundle W generic if this linear transformation of the second partials ∂kγα is invertible.

We note that this condition is not automatically satisfied. For instance, fix a background

connection ∇ and consider the projectively related connections

∇γ
YX = ∇0

YX + γ(Y )X

5Here we have implicitly used the tensor-hom adjunction, and we shall do so henceforth without comment.
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for γ a one-form. (This family of connections has torsion.) The curvature is given by

RγX = 2(Dγ)2X = 2(D0)2X + 2(dγ)X = R0X + 2(dγ)X

and so the Ricci tensor is

Ricγ = 2dγ.

But it is clearly not possible to determine all first derivatives of γ from the vanishing of dγ.

3.4 GENERALIZED CIRCLES

Let W → M be a generalized Weyl geometry whose curvature is generic in the sense of

Section 3.3 and let c be curve in M . Through any initial point wo ∈ π−1(c(0)), there is a

unique horizontal lift hc of c to W under the Ehresmann connection, valid for small time.

At each point c(t) of the curve, the horizontal lift hc(t) is an affine connection in Tc(t)M .

Thus we have a curve and an affine connection in the tangent space to M at each point of

the curve. It therefore makes sense to ask whether the curve is a geodesic with respect to

that affine connection.

Definition 12. A curve c in M is called a circle if there exists an initial w0 ∈ W such that

c is an affinely parametrized geodesic with respect to the horizontal connection hc.

3.4.1 Conformal case

We consider the calculation in the conformal case. Let g be a background metric representing

the conformal class on M . A Weyl connection is any connection ∇γ that satisfies

∇γg = −2γ ⊗ g

where γ is a one-form. The mapping γ 7→ ∇γ sets up an isomorphism between the bundle

W of admissible Weyl connections and the cotangent bundle. This mapping depends on the

choice of conformal scale, in terms of which there is a preferred section ∇0: the Levi-Civita

connection. Any other connection ∇γ can be represented explicitly in terms of ∇0 by the

formula

∇γ
XY = ∇0

XY + γ(X)Y + γ(Y )X − 〈X, Y 〉g−1(γ)

which is to say that the change of connection is expressed by the connection coefficients

Γabc = γbδ
a
c + γcδ

a
b − γagbc.
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The rho tensor transforms via

Pγ
ab = P0

ab −∇0
aγb + γaγb −

1

2
γcγ

cgab.

Suppose that c is a non-null curve, and γ is the horizontal lift of that curve. By definition,

this means that Pγ = 0 along the lifted curve. Equivalently,

∇0
aγb = P0

ab + γaγb −
1

2
γcγ

cgab. (3.4)

Now, let va = ċa be the velocity along the curve c and Aa = vb∇0
bv
a the acceleration

(relative to the Levi-Civita connection). The condition for c to be a conformal circle is that

vb∇γ
b v

a = 0, where γ is a lift of c satisfying P γ = 0. Equivalently,

Aa + 2vbγbv
a − vbvbγa = 0. (3.5)

Taking Aa and va as given, we can solve this equation explicitly for γ:

γa =
Aa

vcvc
− 2

vdAd
(vcvc)2

va. (3.6)

On the other hand, we may differentiate (3.8) once more by applying vc∇0
c , then use

(3.7) to reduce the resulting equation to first order in γ, and finally use (3.9) to eliminate

γ from the resulting expression. The final equation is thus a third-order condition on the

curve c.

Carrying this through, we have

vb∇γ
b v

i = vb∇0
bv
i + 2vbγbv

i − vbvbγi

= Ai + 2vbγbv
i − vbvbγi

vc∇γ
cv

b∇γ
b v

i = vc∇0
cv
b∇γ

b v
i + vcγcv

b∇γ
b v

i − γivcvb∇γ
b vc + viγcv

b∇γ
b v

c

= vc∇0
cA

i + 2vc∇0
c(v

bγbv
i)− vc∇0

c(v
bvbγ

i)+

+ vcγcv
b∇γ

b v
i − γivcvb∇γ

b v
c + viγcv

b∇γ
b v

c.
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The last three terms involve vb∇γ
b v

i, which we are assuming to be zero. Applying (3.7) and

(3.8), followed by (3.9) to the remaining two terms gives

vc∇0
c(v

bγbv
i) =

(
vcv

cγbγb − 2vcγcv
bγb + vcvb P0

cb + vcγcv
bγb −

1

2
γdγ

dvcv
c

)
vi+

+ vbγbA
i

= P0
abv

avbvi +
A2

2v2
vi − 1

v4
(v · A)2vi − 1

v2
(v · A)Ai

vc∇0
c(v

bvbγ
i) = −2vcv

cγbv
bγi + vbvb

(
vcP0

c
i
+ vcγcγ

i − 1

2
γdγ

dvi
)

= v2P0
a
i
va − A2

2v2
vi − 2

v4
(v · A)2vi +

v · A
v2

Ai

where we have denoted vava by v2, AaAa by A2 and vaAa by v · A. So finally we have

vc∇γ
cv

b∇γ
b v

i = vc∇0
cA

i + 2vc∇0
c(v

bγbv
i)− vc∇0

c(v
bvbγ

i)

= vb∇0
bA

i − v2Pi
av

a + 2P 0
abv

avbvi +
3A2

2v2
vi − 3v · A

v2
Ai

Thus a curve c is a conformal circle if and only if

vb∇0
bA

i = v2Pi
av

a − 2P 0
abv

avbvi − 3A2

2v2
vi +

3v · A
v2

Ai

which is precisely the way conformal circles are defined in [7].

3.4.2 Alternative geometrical characterization

In [7], an alternative geometrical characterization of conformal circles appears. A non-null

curve is a conformal circle if and only if it is a geodesic in some conformal scale e2Υg such

that va PdΥ
ab = 0. This is quite different from our definition, which asserts that there is a (not

necessarily closed) one-form γ such that Pγ
ab = 0 along the curve. However the two criteria

are related as follows. First suppose that va is a geodesic vector field in the conformal scale

gab and va P0
ab = 0. Along the curve it is possible to write

P0
ab = ∇0

aγb

where γb = 0 along the curve. Hence Pγ
ab = 0 and va∇γ

av
b = va∇0

av
b + 2(vbγb)v

a− (vbvb)γa =

va∇0
av

b = 0 along the curve. Conversely, if Pγ = 0 along a curve, then there exists locally a

closed one-form µ such that µb = γb and va∇0
aµb = va∇0

aγb along the curve.
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3.4.3 SL(2,R) structure

We now show how any non-null curve c carries a natural parametrization up to the standard

action of SL(2,R) by fractional-linear transformations on the real projective line. Let c be

any (unparametrized) curve through p, and suppose that c(0) = p. It is always possible to

choose a γ such that c is a geodesic for ∇γ in some parametrization, provided we do not

demand that γ be a horizontal section of W . Let L be the subbundle of W consisting of all

such connections γ. This is an affine line bundle, since γ is determined by the velocity and

acceleration by (3.9).

Fix a parametrization t of c. Then, since (3.9) transforms under reparametrization τ(t)

via

γa 7→ γa + αva,

where α = −τ ′′(t)/τ ′(t)2 it follows that L consists of all one-forms of the form γa + αva.

The restriction of the Ehresmann connection on W induces an Ehresmann connection on

L. We can derive the condition for a section of L to be horizontal (in one dimension, every

connection is integrable). In the ambient space, the section is horizontal if P γ+αv = 0. Thus

in the one-dimensional space c, the condition is that P γ+αv
ab vavb = 0:

P 0
abv

avb − (v · A)α +
v4

2
α2 − v2v(α)− v · ∇0

vγ + v2α(v · γ)− v2

2
γ2 + (v · γ)2 = 0.

Contracting (3.9) with v gives v · γ = −v·A
v2
.. Also γ2 = A2/v4. Hence

P 0
abv

avb − 2(v · A)α +
v4

2
α2 − v2v(α)− v · ∇0

vγ −
A2

2v2
+

(v · A)2

v4
= 0.

Differentiating (3.9) and contracting with v twice gives

v · ∇0
vγ = −v · ∇

0
vA

v2
+ 4

(v · A)2

v4
− 2

A2

v2
.

So

P 0
abv

avb − 2(v · A)α +
v4

2
α2 − v2v(α) +

v · ∇0
vA

v2
− 5A2

2v2
+ 5

(v · A)2

v4
= 0.
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3.5 THREE-DIMENSIONS

We describe here a metric that is attributed to Sparling in [60] on a natural principal bundle

over a conformal three-manifold. We then prove a theorem that the null geodesics of this

metric project to conformal circles on M . We begin in arbitrary dimension, then specify to

dimension three.

Definition 13. Let M be a conformal manifold of signature (p, q). Let CO(M) be the bundle

of conformal linear mappings u : Rp,q → TM . This is a principal right CO(p, q)-bundle over

M . Let PCO(M) = CO(M)/GL(1). This is the bundle of orthonormal frames of M .

Let θ = (θ1, . . . , θn) : TCO(M) → Rn be the canonical one-form, defined by θ(Xu) =

u−1(π∗X). A Weyl connection ω = (ωji ) : TPCO(M) → co(p, q) is any torsion-free co(p, q)

connection on CO(M).

Lemma 18. Up to scale, the tensor θ[i � ωjk] does not depend on the choice of Weyl con-

nection. Moreover, it is invariant under the GL(1) action up to an overall scale and is

annihilated by the vertical distribution of CO(M)→ PCO(M).

Proof. Fix a background metric g representing the conformal structure on M . Let $ be the

Levi-Civita connection of g. Then there exists a one-form γ on M such that

ωji = $j
i + γδji + γiθ

j − γjθi

where (γi)u := γ(ui) are the components of γ in the frame at each point of the frame

bundle, and we have denoted by the same symbol γ the pullback of γ to O(M). Evidently,

θ[i � ωjk] = θ[i �$jk].

Next, the metric g allows a reduction of the structure bundle π : CO(M)→ O(M) to an

O(p, q). Let λ be the real scaling coordinate of CO(M)/O(p, q). Then

$j
i = π∗$j

i +
dλ

λ
δji .

from which the remaining assertions of the lemma follow.

76



3.5.1 The case n = 3

As a result of the lemma, if εijk denotes the canonical skew-symmetric density on CO(M),

then the symmetric form gS = εijkθ
iωjk descends to a conformal structure on PCO(M). The

signature of this metric is always (3, 3) (regardless of p and q).

The flat case is SU(2) × SU(2). The metric is gS = ωij � θji where ωji and θji are the

Maurer–Cartan coframe on each factor of SU(2). A null geodesic is a curve (a(t), b(t)) such

that a(t)−1b(t) and a(t)b(t) are both geodesics. Note that these project to circles on SU(2).

In general, let ωi = εijkωjk. The coframe (θi, ωj) defines an absolute parallelism on

O(M). The Cartan structure equations are

dθi = −εijkωj ∧ θi

dωi = −εijkωj ∧ ωk +
1

2
εijkG

k
` θ
j ∧ θ`

where G = Ric−(trRic) Id /2 is the Einstein tensor in dimension 3. These equations can be

written in vector notation:

dθ = −ω × θ

dω = −ω × ω +
1

2
θ ×G(θ).

Let (pi, qj) be the associated fiber coordinates on T ∗O(M) associated to the absolute

parallelism, so that the canonical one-form is

α = piθ
i + qiω

i = p · θ + q · ω.

The symplectic form is thus

dα = dp · θ + dq · ω − p · (ω × θ)− q · (ω × ω) +
1

2
q · (θ ×G(θ)).

Let H = p · q be the Hamiltonian. We will find the null geodesic spray, so H = 0 and

dH = p · dq + q · dp.

Let

V =
1

2
(q ×G(q)) · ∂

∂p
+ (p× q) · ∂

∂q
− q · ∂

∂θ
− p ∂

∂ω
.

Then V is the geodesic spray. Indeed,

V ydα =
1

2
(q ×G(q)) · θ + (p× q) · ω − p · (ω × q)−

− 1

2
q · (θ ×G(q)) + p · dq + 2q · (p× ω)

= q · dp+ p · dq = dH.
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3.5.2 Conformal circles

Fix a metric g representing the conformal structure of M . Let ∇γ be the Weyl connection

characterized by

• ∇γg = −2γ ⊗ g
• ∇γ

XY −∇
γ
YX = [X, Y ].

A circle relative to the connection ∇γ is a pair (c(t), A(t)) consisting of a curve c(t) and

an endomorphism A(t) ∈ co(Tγ(t)M) such that

• The tracefree part of A is covariantly constant along c: ∇γ
ċ

(
A− trA

n
Id
)

= 0

• ċ is an eigenvector of A2

• ∇γ
ċ ċ = Aċ

The trace of A represents a parametrization freedom in the curve.

Let ωji ∈ co(p, q) be the connection 1-form on CO(M) associated to the connection ∇γ,

and let θi be the canonical 1-form. Then (ωji , θ
i) form an absolute parallelism of CO(M),

so there are coordinates p ∈ Rn and A ∈ co(p, q) in the fibers of T ∗CO(M) so that the

canonical symplectic potential is given by α = p · θ + tr(Aω).

Define a vector field W on the total space of T ∗O(M) by

W = (Aq) · ∂
∂q
− q · ∂

∂θ
− tr

(
A
∂

∂ω

)
.

Lemma 19. The integral curves of W project to circles on M .

Definition 14. A curve c in M is called a conformal circle if there exists a Weyl connection

∇γ compatible with the conformal structure such that:

• c is a circle for the connection ∇γ

• The Ricci curvature of ∇γ vanishes identically along c.

Theorem 14. The following conditions on a smooth, non-null curve c in M are equivalent:

1. There exists a Weyl connection ∇γ such that c is a circle for ∇γ and the Ricci tensor of

γ vanishes along c

2. There exists a Weyl connection ∇γ such that c is a geodesic for ∇γ and the Ricci tensor

of γ vanishes along c

3. There exists a function λ(t) such that

∇vA = v2P (v)− 2(v · P (v))v − 3A2

2v2
v +

3v · A
v2

A+

(
λ′ − λ2

2

)
v

where ∇ is the Levi-Civita connection of any representative metric of the conformal class

v = ċ is the velocity of the curve, A = ∇vv is the acceleration, and P : TM → TM is

the Schouten tensor.
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3.5.3 Proof of theorem

We first prove the equivalence of (1) and (2). The implication that (1) implies (2) is trivial,

since every geodesic is a circle. Conversely, suppose that

∇γ
vv = Sv + λv

where S is a skew-symmetric endomorphism that is parallel transported along c. Choose a

conformal scale so that v(g(v, v)) = λ. Let

γ′ =
µv − Sv
g(v, v)

where µ is a function to be determined. Then

∇γ+γ′

v v = ∇γ
vv + 2g(γ′, v)v − g(v, v)γ′

= Sv + λv + 2µv − 2g(v, Sv)

v2
v − µv − Sv

= (λ+ µ)v.

So c is a geodesic with respect to the connection ∇γ+γ′ .

Next we shall select µ so that the Ricci curvature vanises along c. We have

vaP γ+γ′

ab = −va∇γ
aγ
′
b + vaγ′aγ

′
b −

1

2
γ′cγ

′cvb

= λγ′ − v(µ)v + µSv + µλv − S2v − λSv
g(v, v)

+

+
µ2v + µSv

g(v, v)
− 1

2

(
µ2

g(v, v)
+
g(Sv, Sv)

g(v, v)2

)
v

=
−v(µ)v + S2v + (µ2/2)v − (2g(v, v))−1g(Sv, Sv)v

g(v, v)
.

Since v is an eigenvector of S2, this is proportional to v. Setting it to zero is a first-order

ordinary differential equation in µ that can be solved locally.

Finally, we will prove the equivalence of (2) and (3). A Weyl connection is any connection

∇γ that satisfies

∇γg = −2γ ⊗ g

where γ is a one-form. The mapping γ 7→ ∇γ sets up an isomorphism between the bundle

W of admissible Weyl connections and the cotangent bundle. This mapping depends on the

choice of conformal scale, in terms of which there is a preferred section ∇0: the Levi-Civita
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connection. Any other connection ∇γ can be represented explicitly in terms of ∇0 by the

formula

∇γ
XY = ∇0

XY + γ(X)Y + γ(Y )X − 〈X, Y 〉g−1(γ)

which is to say that the change of connection is expressed by the connection coefficients

Γabc = γbδ
a
c + γcδ

a
b − γagbc.

The rho tensor transforms via

P γ
ab = P 0

ab −∇0
aγb + γaγb −

1

2
γcγ

cgab.

Suppose that c is a curve, and γ is the horizontal lift of that curve. By definition, this

means that P γ = 0 along the lifted curve. Equivalently,

∇0
aγb = P 0

ab + γaγb −
1

2
γcγ

cgab. (3.7)

Now, let va = ċa be the velocity along the curve c and Aa = vb∇0
bv
a the acceleration

(relative to the Levi-Civita connection). The condition for c to be a conformal circle is that

vb∇γ
b v

a = λva, where γ is a lift of c satisfying P γ = 0. Equivalently,

Aa + 2vbγbv
a − vbvbγa = λva. (3.8)

Taking Aa and va as given, we can solve this equation explicitly for γ:

γa =
Ua

vcvc
− 2

vdUd
(vcvc)2

va (3.9)

where Ua = Aa − λva.
On the other hand, we may differentiate both sides of (3.8) once more by applying vc∇0

c ,

then use (3.7) to reduce the resulting equation to first order in γ, and finally use (3.9) to

eliminate γ from the resulting expression. The final equation is thus a third-order condition

on the curve c.

The right-hand side differentiates to λ′va + λAa. Carrying through the procedure de-

scribed for the left-hand side, we have

vc∇0
cv
b∇γ

b v
i = vc∇0

cA
i + 2vc∇0

c(v
bγbv

i)− vc∇0
c(v

bvbγ
i).

To each of the terms involving γ, apply (3.7) and (3.8), followed by (3.9). The result is

vc∇0
cv
b∇γ

b v
i = vb∇0

bA
i − v2P 0i

a v
a + 2P 0

abv
avbvi +

3A2

2v2
vi − 3v · A

v2
Ai + λA+

1

2
λ2vi.

Thus a curve c is a conformal circle if and only if

vb∇0
bA

i = v2P i
av

a − 2P 0
abv

avbvi − 3A2

2v2
vi +

3v · A
v2

Ai + λ′v +
1

2
λ2v.
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3.5.4 n = 3 revisited

Corollary 4. In dimension n = 3, the null geodesics of the metric gS project to conformal

circles on M .

Proof. Let C be a null geodesic for gS and c its projection. Choose a Weyl connection ∇γ

such that the Ricci tensor vanishes identically along c. The curve C is then an integral curve

of the vector field

V |G=0 = (p× q) · ∂
∂q
− q · ∂

∂θ
− p ∂

∂ω
.

So C satisfies the differential equation

ċ = q

∇γ
ċ ċ = −p× q = Aq

with A = p×−. In particular, as p is constant along c, so is A. Moreover, at any point of

c, we have

A2ċ = p× (p× q) = (p · q)p− (p · p)q

= Hq − (p · p)q = −(p · p)q

since H = 0 (the geodesic C is null). So the curve c satisfies the three conditions defining a

conformal circle in §3.5.2.
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4.0 PARABOLIC GEOMETRIES

The purpose of this chapter is to describe a large class of geometries that admit Weyl

connections in the sense described in the previous chapter. These are the parabolic geometries

and are precisely those that are associated to Cartan connections modeled on the quotient of

a Lie group by a parabolic subgroup. Such geometries include the conformal and projective

geometries already discussed, and a host of others. A survey appears in the textbook of [11].

4.1 PARABOLIC GROUPS

Let G be a connected complex semisimple Lie group with Lie algebra g. A Borel subgroup

of G is a Lie subgroup B whose Lie algebra b is a Borel subalgebra: a maximal solvable

subalgebra of g. A parabolic subalgebra p is a subalgebra of g that contains a Borel subalgebra,

and a subgroup of G is called parabolic if its Lie algebra is.

Suppose that t is a maximal toral subalgebra of the Borel subalgebra b, and let Φ ⊂ t∗

be the root system for g. Then b is specified uniquely by knowing t and a subset ∆+ ⊂ Φ

consisting of the associated simple positive roots: it is the direct sum of the non-negative

root spaces. A parabolic subalgebra p splits into eigenspaces for Φ, and so is completely

determined by saying which negative root spaces that it contains. These, in turn, are deter-

mined by specifying the root spaces corresponding to those negative simple roots (elements

of −∆+) that it contains. The exclusion of a negative simple root from a parabolic subgroup

can be annotated in terms of the Dynkin diagram of g by crossing out the corresponding

node. Thus, in particular, the Borel subalgebra has all the nodes crossed, and the whole

of g has none of the nodes crossed. The parabolic Lie algebra (and group) obtained in this

manner is said to be associated to the uncrossed simple roots. The parabolic containing a

given Borel is uniquely determined by these root data, and so this characterizes the parabolic

up to equivalence.

Associated to a parabolic subgroup P of G is the homogeneous space G/P . This is a
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compact manifold (in fact, it is a nonsingular projective variety). This homogeneous space is

can be identified with an adjoint orbit of the maximal compact subgroup of G, and has the

form Gc/Pc where Gc and Pc are the maximal compact subgroups of G and P , respectively.

Suppose now that G is a real reductive Lie group containing a maximal torus T . Then

T decomposes into a maximal split torus times a compact part. The possibilities here are

characterized by the Satake diagram of the group, obtained from the Dynkin diagram of the

complexification of G by showing the action of a Cartan involution on the associated root

spaces according to the following rules:

• If the involution interchanges two root spaces associated to a pair of simple compact

roots, then an arrow is drawn connecting the roots of the Dynkin diagram.

• The (remaining) root spaces that are associated to compact roots are invariant under

conjugation, and are shaded.

• The remaining root spaces are all associated to non-compact roots, and these are left

unshaded.

Possible Satake diagrams coming from Cartan’s classification are given in Tables 1–6 (see

also Helgason [37]).

A Borel subgroup of G is obtained first by going up to the complexification GC, and then

taking the real points of a Borel group in GC. Likewise, the parabolic groups are obtained

first by complexifying and then restricting. So parabolic subgroups of a real reductive group

G can be specified by decorating the Satake diagram depending on whether or not a root is

included in the complexified parabolic.

In general, the more compact roots are included in the real form, the smaller the Borel

group becomes, and the Borel subgroup of the compact form is just the maximal torus itself.

To describe the geometry of certain homogeneous spaces, it is convenient to introduce the fat

Borel subgroup, which is the smallest parabolic subgroup containing all of the compact simple

root spaces. (Thus the crossed nodes in the Satake diagram coincide with the unshaded nodes

for the fat Borel.)

4.2 LINEAR ALGEBRA

In this section, F is a field of characteristic different from 2.
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4.2.1 Affine spaces

An affine space over F is a set A equipped with a free and transitive action of the additive

group of some vector space V over F on A, denoted by v.x for v ∈ V and x ∈ A. In that

case, A will be called an affine torsor for V. By definition, if p, q ∈ A then there is a unique

element of V denoted by −→pq such that

−→pq.p = q.

The affine space A is a principal homogeneous space of the group V and, once a particular

point p ∈ A is chosen, the association of each x ∈ A the vector −→px ∈ V establishes a V-

equivariant isomorphism from A to V. For such an isomorphism, the point p is said to

witness an origin for A.

A function f : A→ B of affine spaces is called affine linear if

f((t−→pq).p) = (t
−−−−−→
f(p)f(q))).f(p)

for all p, q ∈ A and t ∈ F. An affine linear functional is an affine linear function whose target

is the underlying affine space of the ground field F.

By the dual space to an affine space A, we shall mean the linear space of all affine-linear

functionals on V modulo the constant functions. Thus the dual space of A is canonically

isomorphic to the dual space of V.

4.2.2 Filtered vector spaces

Let V be a vector space. A filtration on V of length n is an ascending chain of linear subspaces

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ Vn+1 = V. When we wish to refer to a filtration as a

whole, we will denote the n-tuple (V1, . . . ,Vn) by V•.
The dimensions di = dimVi are an important invariant of the filtration, called the

dimension vector of the filtration and denoted by d•. The set of all dimension vectors forms

a lattice under inclusion.

For i < j let ιi,j : Vi → Vj be the inclusion mappings, and let πi,j : V/Vi → V/Vj be

the associated projections. A splitting of the filtration on V is a family of maps pi : V→ V,

i = 1, 2, . . . , n, such that the following conditions hold:

(a) p1 + p2 + · · ·+ pn = Id

(b) pi ◦ pi = pi for all i

(c) pi ◦ pj = 0 for all i 6= j

(d) π0,i ◦ pi = 0 for all i (that is, im pi ⊂ Vi)
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It follows from (a) and (d) that π0,i ◦ pi+1 : V → Vi+1/Vi is surjective, and that Vi ⊂
ker pi+1.

The kernel of the mapping

pi+1 + pi+2 + · · ·+ pn

contains Vi, so it descends to the quotient to give a map Si : V/Vi → V that satisfies

π0,i ◦ Si = idV/Vi
. (4.1)

Conversely, given an n-tuple of linear maps Si : V/Vi → V satisfying (4.1), the maps

pi = Si ◦ π0,i+1 : V→ V satisfy (a)–(d).

The space of all splittings with a given dimension vector is thus identified with the affine

space S(V•) of solutions (S1, . . . , Sn) to (4.1). Once a particular splitting is chosen to witness

an origin for this affine space, it can be identified with the space of all n-tuples of linear maps

from from V/Vi → V whose image is in Vi = ker π0,i.

Hence S(V•) is an affine torsor for
⊕
i

Hom(V/Vi,Vi).

Dual to the Si are the projection mappings Pi : V→ Vi defined by the partial sums

Pi = p1 + p2 + · · ·+ pi.

The Pi satisfy

ι0,i ◦ Pi = idVi
(4.2)

Conversely, any n-tuple of mappings Pi : V → Vi satisfying (4.2) determines a splitting by

setting pi = Pi − Pi−1.

4.2.3 Isotropic flags

Let X be a finite-dimensional vector space over F, fix ε ∈ {+1,−1}, and let h : X× X → F
be a non-degenerate bilinear form satisfying

εh(x, y) = h(y, x) (4.3)

for all x, y ∈ X.

A pair of linear subspaces U and V of X are orthogonal under h if h(u, v) = 0 for all

u ∈ U and v ∈ V. The set of subspaces orthogonal to a given subspace U is a complete lattice

ordered by subspace inclusion, and so has a maximal element: the orthogonal annihilator of

U, denoted U⊥h . The linear subspace U is isotropic if U ⊂ U⊥h . That is, h|U×U is identically

zero. The meaning of the term isotropic in this context is that it is impossible to distinguish

between two elements of U using only h. In view of the non-degeneracy of h, the dimension
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of an isotropic subspace cannot exceed half the dimension of X. In X ⊗F F, this necessary

condition for the existence of an isotropic subspace is also sufficient: there exist isotropic

subspaces of every dimension not exceeding half the dimension of X.

All maximal isotropic subspaces of X have the same dimension; this dimension is called

the (Witt) index s(h) of the bilinear form h. For instance, if ε = −1, then the dimension

of X is even and s(h) is one half the dimension. If F is algebraically closed, then the index

is s(h) = bdimX
2
c. Any maximal isotropic space in X ⊗F F contains a Gal(F/F)-invariant

subspace of dimension s(h).

A subspace U ⊂ X is coisotropic if U⊥h ⊂ U. That is, if U⊥h is isotropic. A space is

totally anisotropic if U ∩ U⊥h is the zero subspace. A subspace is totally anisotropic if and

only if h|U×U is itself non-degenerate.

A filtration of X by linear subspaces

0 = X0 ⊂ X1 ⊂ · · ·Xn ⊂ Xn+1 = X

is called an isotropic flag if each of X1, . . . ,Xn is isotropic. There are no isotropic flags at

all unless 2dn ≤ dimX, and otherwise all isotropic flags with a given dimension vector can

be described by first picking an isotropic subspace Xn of dimension dn (if there is one), and

then considering all filtrations of Xn with dimension vector (d1, . . . , dn−1).

4.2.4 Adjoints, unitary transformations, and projections

The adjoint of a linear tranformation A : X → X is the linear transformation A∗h : X → X
defined by h(Ax, y) = h(x,A∗hy) for all x, y ∈ X. In view of the symmetry condition (4.3),

there is no distinction between left and right adjoints. The involution A 7→ A∗h defines an

algebra isomorphism End(X) → End(X)op. The fixed points of this involution are called

self-adjoint operators.

An operator U ∈ End(X) is unitary if U∗h = U−1. The unitary group U(h) is the group

of all unitary mappings.

An operator P is called a projection onto a subspace V ⊂ X if imP = V and P 2 = P .

A projection is called isotropic if its image is isotropic and coisotropic if its kernel is.1 Any

isotropic projection is unitarily diagonalizable, and in particular all projections onto the

same isotropic subspace are conjugate to one another under U(h). If P is a projection onto

a linear subspace V ⊂ X, then IdX−P ∗h is a coisotropic projection onto V⊥.

1The image of an operator is isotropic if and only if A∗hA = AA∗h = 0.
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4.2.5 Duality

Extend the bilinear form h to the exterior powers ∧kX by setting

h(x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk) = det(h(xi, yj))1≤i,j≤k.

Let n = dimX. Let Σ ∈ ∧nX be an arbitrary volume form such that h(Σ,Σ) = d 6= 0.

Modulo squares in F, d is uniquely defined. Its class in the group F×/(F×)2 is an important

invariant of h.

Define an operator ? : ∧kX→ ∧n−kX by

(?α) ∧ β = h(α, β)Σ

for all α, β ∈ ∧kX. Acting on p-forms, ?2 = (−1)p(n−p)d.

4.2.6 Even dimensions

In particular, if n = 2m is even, then ? ∈ End(∧mX) and, acting on m-forms, ?2 = (−1)md.

The eigenvalues of ? are ±
√
δ where δ = (−1)md, and ? diagonalizes over F(

√
δ). The

eigenspaces are complementary isotropic subspaces in ∧mX⊗F(
√
δ). If δ is already a square

in F, then the eigenspaces are in ∧mX. Otherwise, there is a nontrivial field automorphism

σ of F(
√
δ) fixing F, and a pair of σ-conjugate eigenspaces ∧m+X and ∧m−X in ∧mX⊗ F(

√
δ)

corresponding, respectively, to the eigenvalues +
√
δ and −

√
δ.

A maximal isotropic linear subspace U ⊂ X ⊗ F is called self-dual if ∧mU is a (one-

dimensional) subspace of ∧m+X⊗ F, and antiself-dual if it is instead a subspace of ∧m−X⊗ F.

Any maximal isotropic space is either self-dual or antiself-dual. The mapping U 7→ ∧mU
from maximal isotropic subspaces into the projective space of ∧mX⊗ F is one-to-one onto a

nonsingular projective variety of dimension m(m− 1)/2 which is the projectivization of the

variety of simple elements of the exterior power.
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4.2.7 Grassmannians

Let V be a vector space over F. For a fixed dimension vector d•, define the Grassmannian of

type d•, denoted Grd•(V), to be the set of all filtrations of V with dimension vector d•. A local

coordinate system on Grd•(V) is provided by putting a basis of V into a normal form under

the action of a block upper-triangular subgroup of GL(V) with blocks down the diagonal of

size di. Generically, such a normal form is block lower-triangular with the identity matrix

down the main diagonal. The Weyl group of GL(V) moves from one coordinate patch to

another, and the transition on the overlap of two coordinate patches is given by polynomial

functions in the coordinates. Thus Grd•(V) carries naturally the structure of an algebraic

variety over F.

If d• ⊂ d′• are two dimension vectors, one included in the other, then there is a mapping

of the Grassmannians πd′•,d• : Grd′•(V) → Grd•(V) given by forgetting the parts of the d′•-

filtration that do not have dimensions corresponding to a d•-filtration.

4.2.8 Real, complex, and quaternionic structures

We now specialize to the case of F = R. An endomorphism J : V → V such that J2 = −I
is called a complex structure. This makes V into a C-module; in particular, V necessariliy

has even dimension. Because the minimal polynomial is an irreducible quadratic x2 + 1, J

is diagonalizable over C with eigenvalues ±i. The eigenspaces of J in the complexification

V ⊗ C are each isomorphic as real vector spaces to V. Denote them by W and W. The

complex structure acts by multiplication by i on W and by −i on W.

A quaternionic structure on V is a pair of anticommuting complex structures J and K.

Given such a pair, JK is also a complex structure and V is a module over the quaternion

algebra H via the map H → End(V) that sends j 7→ J , k 7→ K, i 7→ JK. This gives V the

structure of an H-module; in particular, V has dimension a multiple of 4.

If V is a complex vector space, then a real structure on V is a complex-linear isomorphism

σ : V → V. These spaces are already isomorphic as real vector spaces, and so we identify

them as real vector spaces. If W is the set of fixed points of σ, then V = W ⊕ iW, so V is

the complexification of W.
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4.3 EXCEPTIONAL GROUPS

The real forms of the exceptional Lie groups can also be put into these terms. We refer

to the original works of Freudenthal [29], as well as the recent investigations of Landsberg

and Manivel [51]. The parabolic homogeneous spaces are organized by Freudenthal’s magic

square (due to Freudenthal and Tits [80],[81]). The magic square also classifies certain Lie

algebras connected with Jordan algebras in dimension 3, and there are many constructions

from this perspective; Baez [6] contains a survey.

Table 7: Geometries of Freudenthal’s magic square

R C H O

2-dimensional elliptic geometry B1 A2 C3 F4

2-dimensional projective geometry A2 A2 + A2 A5 E6

5-dimensional symplectic geometry C3 A5 D6 E7

metasymplectic geometry F4 E6 E7 E8

Here the two dimensional elliptic geometries correspond to the projective planes over the

four real division algebras:

• RP2: the symmetric space associated with the Lie group SO(3) of type B3

• CP2: the symmetric space associated to the special unitary group SU(3) of type A2

• HP2: the symmetric space associated to the quaternionic unitary group Sp(3) of type C3

• OP2: the Moufang plane, which is the symmetric space F4/ Spin(9)

The groups are all compact at this level. In elliptic geometry, there is no distinction between

points and lines: the polar of every point is a line and vice versa. The distinction between

points and lines appears at the level of projective geometry.

At the projective level, there is a larger group of transformations corresponding to

collineations in the 2-dimensional elliptic geometries. These groups are non-compact, given

(respectively) by

• The group of projective transformations of the real projective plane, PGL3(R), a real Lie

group of split type A2.

• The group of projective transformations of the complex projective plane, PGL3(C), a

real Lie group of type A2 × A2 (with one factor split and the other compact).
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• The group SL3(H) = SU∗(6), a group of type A5 (see tables)

• The group E6

Associated to each of the projective spaces is the cotangent bundle of the vector space

underlying the projective space. This symplectic space carries a symplectic action of the

group of collineations, but also admits a larger group action by all linear symplectic trans-

formations that respect the underlying vector space structure (real, complex, quaternionic, or

octonionic). For the associative division algebras, this is essentially a classical construction.

For the non-associative algebra of octonions, the symplectic space is described explicitly in

terms of the exceptional Jordan algebra in Freudenthal [29]. For a recent account, with ex-

plicit formulas, see Sparling and Tillman [77] and Landsberg and Manivel [51]. The relevant

groups that appear on this row of the table are, respectively, Sp(6,R), SU(3, 3), SO∗(12),

E7.

The final row consists of the metasymplectic geometries. These are geometries charac-

terized by the presence of families of 5-dimensional symplecta on which the groups of the

previous row act. These geometries, too, admit explicit descriptions in terms of symplectic

spaces associated with the Jordan algebra. For details, including a description of the flag

structure corresponding to the fourth row of Freudenthal’s table, see Landsberg and Manivel

[51].

There has been much interest in the last row of Freudenthal’s table in string theory and

related areas. The group F4 appears naturally in the work of Sati [71] in the M -theory

associated to 11-dimensional supergravity, who also describes a possible topological origin

of the theory via bundles with fiber the Moufang plane. Furthermore, the exceptional group

E8 is the standard gauge group for topological M -theory (see Sati [72] for a survey). Recent

work of the author and Sparling has shown that the entire structure of this table can be

described in terms of a pair of trialities.

4.4 FILTRATIONS ON VECTOR BUNDLES

Let M be a smooth manifold and T→M a vector bundle (over the field F = R or C) with a

linear connection D and a distinguished filtration T• of length n by smooth subbundles Ti.
For each i = 1, 2, . . . , n, define mappings Ai : TM → Hom(Ti,T/Ti) for v ∈ TM by

Ai(v) : T 7→ DvT (mod Ti)
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on sections T ∈ Γ(Ti). At a point p ∈M , the right-hand side vanishes on mpΓ(Ti) where mp

is the maximal ideal of C∞(M) corresponding to the point p, and so descends to a (smooth)

linear mapping on the bundle Ti itself.

The Ai are not independent: they satisfy the compatibility conditions

Aj(v) ◦ ιi,j = πi,j ◦ Aj(v) (4.4)

for all 1 ≤ i < j ≤ n. Let A• = (A1, · · · , An). Then

A• : TM → A

where A is the subbundle of
⊕

i Hom(Ti,T/Ti) consisting of all a• such that aj◦ιi,j−πi,j◦ai =

0 for each 1 ≤ i < j ≤ n. The connection D is called generic if A• : TM → A is an

isomorphism.

Given any smooth splitting of the the filtration on T, the operators in A block decompose,

and so A can be identified with the space
⊕

i Hom(Ti/Ti−1,T/Ti).

Lemma 20. A is dual to the space S(T•) of splittings of T•.

Proof. Use a particular splitting to witness the origin of S(T•). On the one hand, this

splitting permits an identification of S(T•) with
⊕

i Hom(V/Vi,Vi) which can (via the chosen

splitting) be further broken into direct summands of the form Hom(pj(T), pi(T)) with j > i.

On the other hand, via this selfsame splitting, the direct summands Hom(Ti/Ti−1,T/Ti) of

A can also be broken down into pieces of the form Hom(pi(T), pj(T)) for j > i.

Suppose that D is a generic connection on T. Associated to each splitting of T• defined

by an n-tuple S• = (S1, . . . , Sn), Si ∈ Hom(Ti,T/Ti), there is a natural affine connection

∇S on M defined by

Ai(∇S
vw) = π0,i ◦ [Dv(Si ◦ Ai(w) ◦ Pi)] ◦ ι0,i.

Here Pi ∈ Hom(T,Ti) are the mappings associated to a filtration as described in §4.2.2, and

innermost expression is the composite

T Pi−→ Ti
Ai(w)−−−→ T/Ti

Si−→ T

which lies in End(T). The operator ∇vw as defined actually is an affine connection, meaning

that it is linear in v, additive in w, and satisfies the Leibniz product rule. Moreover, the

association S• 7→ ∇S is an affine-linear injection from the bundle of splittings (a finite

dimensional affine bundle over M) to the bundle of all affine connections on M (also a finite

dimensional affine bundle whose fibers are affine torsors of TM ⊗ T ∗M ⊗ T ∗M).

Thus to any vector bundle T with a preferred filtration T• and generic connection, there

is a naturally associated Weyl geometry.
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4.5 ISOTROPIC FLAGS ON VECTOR BUNDLES

Suppose now that a vector bundle T on M is equipped with a smooth unitary structure

h (in the style of §4.2.3) and an isotropic flag T• of length n by smooth subbundles of T.

Suppose also that T comes equipped with a linear connection D compatible with the unitary

structure, meaning that h(Dvx, y) +h(x,Dvy) = v(h(x, y)) for all differentiable sections x, y

of T and all v ∈ TM .

In light of the compatibility condition on D, if U is any smooth subbundle of T, then

Dv : Γ(U) → Γ(U⊥h). Define, for i = 1, 2, . . . , n, a mapping Ai : TM → Hom(Ti,T⊥h
i /Ti)

for v ∈ TM by

Ai(v) : x 7→ Dvx (mod Ti)

for all sections x of Ti. As in §4.4, this descends to a mapping on the bundle Ti. The Ai are

related by (4.4)

Aj(v) ◦ ιi,j = πi,j ◦ Aj(v)

whenever i < j. So the image of the n-tuple A·(v) = (A1(v), . . . , An(v)) is in the subbundle

A of
⊕

Hom(Ti,T⊥h
i /Ti) of solutions of (4.4). The connection D is called generic if A• :

TM → A is an isomorphism.

Suppose that D is a generic connection on T. Now associated to each splitting of T•
defined by an n-tuple S• = (S1, . . . , Sn), Si ∈ Hom(Ti,T/Ti), there is a natural affine

connection ∇S on M defined by

Ai(∇S
vw) = π0,i ◦ [(IdT−P ∗hi )Dv(Si ◦ Ai(w) ◦ Pi)] ◦ ι0,i. (4.5)

Here Pi ∈ Hom(T,Ti) are the mappings associated to a filtration as described in §4.2.2, and

innermost expression is the composite

T Pi−→ Ti
Ai(w)−−−→ T⊥h

i /Ti
Si−→ T

which lies in End(T), so it makes sense to apply Dv to it giving a section of T. The coisotropic

projection IdT−P ∗h then projects this element of T onto T⊥h
i , thus guaranteeing that the

right hand side of (4.5) is in the image of Ai.
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5.0 CAUSAL GEOMETRIES

5.1 CONES

Let V be an n-dimensional real vector space. The multiplicative group R+ = (0,∞) acts by

dilation on V . Denote this action by δs : v 7→ sv. The quotient of V \ {0} by this action

is the (n − 1)-sphere, denoted by SV . Let π : V \ {0} → SV be the associated projection

map. Equip SV with the final topology associated to this projection. Then SV carries

the structure of a smooth manifold. A smooth atlas on SV is given as follows. For each

α ∈ V ∗ \ {0}, let Uα ⊂ SV be given by

Uα = π{x ∈ V | α(x) > 0}.

Let Vα = {x ∈ V | α(x) = 1}. This is an affine hyperplane in V , and so is diffeomorphic

to Rn−1. Observe that Uα = π(Vα). The pairs (Vα, π) define the charts of the atlas. The

transition mappings between a pair of charts are ψα,β(x) = α(x)
β(x)

x. Moreover, if a Euclidean

norm is specified on V , then the composition of the inclusion of the Euclidean sphere Sn−1

with the projection π onto the orbit space SV

Sn−1 ⊂−→ V \ {0} π−→ SV

is a diffeomorphism.

A cone K in an n-dimensional real vector space V is a set of vectors in V \ {0} that

is invariant under the group of positive dilations. Associated to a cone K is the subset

SK ⊂ SV consisting of all of the rays {αv|v ∈ V, α > 0}. Conversely, if S ⊂ SV is a subset,

then the set

Co(S) = {x ∈ V \ {0} | x ≡ s (mod R+) for some s ∈ S}

is a cone, called the cone over S. If S ⊂ SV is open, then Co(S) is also open. If K is a

cone, then K is equal to the cone over SK.
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Let K be a cone in V . A function F : K → R is called homogeneous of degree k if

F ◦δs = skF for all s ∈ R+. If f : S → R, then f ◦π : Co(S)→ R is a homogeneous function

of degree 0. Define a sheaf OV (k) on SV by setting, for each open subset U ⊂ SV ,

Γ(OV (k), U) = {F : Co(U)→ R | F is smooth and homogeneous of degree k}.

For example, if f : SV → R is a smooth function, the composition f ◦ π : Co(V ) → R is a

smooth function that is homogeneous of degree 0. So we can identify the sheaf OV (0) with

the sheaf O of smooth functions on SV .

A cone is called smooth if SK is an embedded smooth hypersurface on the (n−1)-sphere

SV . In general, if H ⊂ SV is an embedded smooth hypersurface, then for each p ∈ H, there

is a neighborhood U of p in SV and a smooth function f : U → R satisfying the following

properties:

1. H ∩ U = f−1{0}
2. df is nonzero throughout U .

Such a function is called a (smooth) local defining function of H. The composition

F0 = f ◦π ∈ Γ(OV (0), U) is a smooth local defining function of Co(H) in the open set Co(U)

that is homogeneous of degree 0. Assuming without loss of generality that U ⊂ Uα for some

α ∈ V ∗, then the function Fk ∈ Γ(OV (k), U) defined by Fk(x) = α(x)kF0(x) is a smooth

local defining function that is homogeneous of degree k, for arbitrary k ∈ R.

Local defining functions are not unique. If Fk(x) and F ′`(x) are smooth defining functions

that are homogeneous of degrees k and `, respectively, then Fk(x)/F ′`(x) is also smooth and

vanishes nowhere. The ambiguity in picking a smooth local defining function in a given open

set U is thus

Fk(x) = Ω(x)F ′`(x)

where Ω ∈ Γ(OV (k − `), U) is a non-vanishing function.

There is a topological obstruction to the existence of a global defining function:

Lemma 21. There exists a global defining function of SK ⊂ SV if and only if SK is closed.

Proof. If f were a global defining function, then SK = f−1{0} is the preimage under a

continuous function of a closed subset of R, and is therefore closed.

Conversely, since SK is compact, it has a finite covering SK ⊂
⋃n
i=1 Ui by open sets Ui

with the following properties

• Each Ui can be equipped with a defining function fi : Ui → R (satisfying 1 and 2 above).

• Ui \ SK has two connected components. [These connected components are necessarily

the sets f−1
i (−∞, 0) and f−1

i (0,∞).]
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Since SK is orientable, the Z/2Z-valued Čech cocycle {sgn(fi/fj)}1≤i<j≤n is exact in a

tubular neighborhood of SK with the zero section deleted. Thus we can write sgn(fi/fj) =

εiεj where each εk = ±1 and is locally constant on Uk \ SK.

Now decompose SV \ SK = V1 ∪ · · · ∪ VN into a finite number of (open) connected

components. Since these are connected, the 0-cocycle defined by the εi extends over each

Vj; denote this extension by εj. Let ρi, i = 0, 1, . . . , n, %j, j = 1, . . . , N , be a compactly

supported smooth partition of unity subordinate to the cover {U1, . . . , Un, V1, . . . , VN} of SV .

Then

f =
∑
i

εiρifi +
∑
j

εjρj

is a global defining function for SK.

5.1.1 Cones in vector bundles

Let M be a smooth manifold and E →M be a rank r real vector bundle. Denote by E ′ the

submanifold of the total space of E obtained by deleting the zero section. The multiplicative

group R+ = (0,∞) acts by dilation on E ′, δs : v 7→ sv. The quotient of E ′ by this action is

the (n − 1)-sphere bundle, denoted by SE. Let π : E ′ → SE be the associated projection

map. As a set, the fiber of SE over a point p ∈M is the sphere SEp associated to the vector

space Ep. Furthermore, SE carries the structure of a smooth fibre bundle over M , with fibre

Sn−1, with the induced local trivializations from those of the bundle E.

A cone in E is a subset of E ′ that is invariant under the action of the group R+. A cone

in E is smooth if it is an embedded smooth hypersurface of the total space of E ′. If S ⊂ SE
is a subset, then Co(S) ⊂ E ′, the cone over S, is defined as the preimage of S under π. A

function F : Co(S) → R is homogeneous of degree k if F ◦ δs = skF for all s ∈ R+. Define

a sheaf on SE by setting for each open U ⊂ SE,

Γ(OE(k), U) = {F ∈ C∞(Co(U)) | F is homogeneous of degree k}.

5.1.2 Tangent cones

Definition 15 ([25], 3.1.21). Let N ⊂ Rn. The tangent cone to N at a point p ∈ S, denoted

Tan(N, p) is the set of v ∈ Rn such that for every ε > 0, there exists r > 0 and x ∈ N with

|x− p| < ε and |r(x− p)− v| < ε.
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This is evidently a (closed) cone. In fact,

Tan(N, p) = (0,∞) ·
⋂
ε>0

cl

{
x− p
|x− p|

| x ∈ (N \ {p}) ∩Bε(p)

}
.

The notion of tangent cone is diffeomorphism-invariant:

Lemma 22 ([25], 3.1.21). If N ⊂ Rn, U is an open neighborhood of p ∈ N , and φ : U → U ′

is differentiable at p onto an open subset of Rn such that dφ(p) is a linear isomorphism, then

dφ(p) : TpM → Tφ(p)M defines a continuous bijection of CpN to Cφ(p)φ(N).

Let M be an n-dimensional differentiable manifold and N a subset of M . The tangent

cone Tan(N, p) at a point p ∈ M is the subset of TpM defined so that for any local diffeo-

morphism φ : U → Rn of an open neighborhood U of p, the following diagram commutes:

Tan(N, p)
⊆ //

dφp
��

TpM

dφp

��
Tan(φ(N), φ(p))

⊆ // Tφ(p)M

We shall be primarily interested in the case where N is a continuous (C0) hypersurface

of M . If S ⊂ M is an embedded smooth submanifold, then the tangent cone to N along S

is the union, in the tangent bundle TM |S, of the tangent cones Tan(N, p) as p varies over

S:

Tan(N,S) =
⋃
p∈S

Tan(N, p).

We will say that N is smooth with respect to a differentiable submanifold S if Tan(N,S) is

a smooth cone in the vector bundle TM |S over S.

5.1.3 Relative differentials

Our approach to relative differentials is from [25], 3.1.22.

Definition 16. Let N ⊂ M be a subset of a differentiable manifold M , and X a normed

space. A function f from a subset of M into X is called differentiable at a point p relative

to N if there is an open neighborhood U of p and a differentiable function g : U → X such

that f |(U ∩N) = g|(U ∩N). In that case, L = dgp|Tan(N, p) is called the differential of f

relative to N at p.
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The differential is well-defined by this construction since if g1 and g2 were two differ-

entiable representatives extending f to a common neighborhood U , then (g1 − g2)|(N ∩
U) = 0 and so also d(g1 − g2)p|Tan(N, p) = 0. The notion of relative differentiabiliy is

diffeomorphism-invariant. We may thus refer to relative-differentiability of mappings with

values in smooth manifolds.

Definition 17. A mapping f : K → M from a smooth cone K ⊂ V to a smooth manifold

M is called smooth if it is smooth as a mapping of manifolds and there is a neighborhood U

of 0 ∈ V and an extension of f to a smooth function g : U →M .

The hypotheses on f guarantee that f can be extended to a local diffeomorphism g of a

neighborhood of 0 ∈ V into M . In particular,

Lemma 23. Let f : K → M be a smooth mapping of a smooth cone K ⊂ V into a smooth

manifold M . Let v ∈ K \ {0}. Then

lim
ε→0+

Tan(f(K), f(εv)) = f∗Tan(K, v)

where the limit on the left is taken in the topology in the Grassmannian bundle of (n− 1)-

planes in TM .

We would like to be able to talk about conical subsets of manifolds. Roughly, a subset

of a manifold is conical (with respect to a point p, its vertex) if there is a local coordinate

system in which the subset is a cone. An obvious shortcoming of this definition is that the

notion of generators of the cone is no longer meaningful away from the point p. We would like

to build in a notion of the generators of a cone. This is supplied by the following definition:

Definition 18. Let M be a smooth manifold. Let S ⊂M be an embedded smooth submanifold

of M , and N ⊂M a subset that is smooth with respect to S. A conical fibration of N over S

is a smooth embedding φ from a neighborhood of the origin in Tan(N,S) to N such that the

relative differential dφp : Tan(N, p) → Tan(N, p) is the identity for all p ∈ S. Two conical

fibrations φ and φ′ are equivalent if there is a locally Lipschitz mapping s : Tan(N,S) →
(0,∞) such that φ(x) = φ′(s(x)x) for all x ∈ Tan(N,S).

5.2 CAUSAL GEOMETRIES

The following definition concerns submanifolds of the product space M×M of a differentiable

manifold M with itself, equipped with the product differential structure, and projections
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π1, π2 : M ×M → M . Let ∆ ⊂ M ×M be the diagonal. If N ⊂ M ×M and p ∈ M , let

Np ⊂M be the horizontal slice through p: Np = N ∩ π−1
2 (p) = {x | (x, p) ∈ N}.

Definition 19. A causal geometry on a smooth manifold M is an embedded Lipschitz hy-

persurface N ⊂ M ×M that is smooth with respect to ∆ equipped with a conical fibration

over ∆ such that the following conditions hold:

(A) Suppose that v ∈ Tan(Np, p), q = φp(s1v) and r = φp(s2v) with 0 < s1 < s2. Let

w = dφp(sv)

ds

∣∣∣
s=s1

. Then w ∈ Tan(Nq, q) and r = φq((s2 − s1)w).

(B) In this situation, Tan(Np, r) = Tan(Nq, r) ⊂ TrM .

This definition requires some discussion. The intuitive picture is a family of submanifolds

(“null cones”), one for each point of the manifold M , that are fibered in a way corresponding

to the possible trajectories that a luminous signal can travel (“null geodesics”). Condition

(A) implies that a null geodesic from a point p to q, if it stops at an intermediate point r,

remains a null geodesic if its history prior to the point r is ignored. A signal cannot cheat

by first traveling to some intermediate point, and then veering off in some direction that will

take it outside the null cone. This is the meaning of (B).

The vector w in (A) is called the transport of v along the geodesic. When there is no risk

of confusion, we will use the same symbol v to denote the transport of v along the geodesic

it generates. We shall need the following technical reformulation of (B):

Lemma 24. Condition (B) is equivalent to the following property:

(B’) Let v ∈ Tan(Np, p) \ {0} and q = φp(v) ∈ Np. Then λTan(Np, q) = Tan(Tan(Nq, q), v).

Proof. Assume that condition (B) holds. Let rε = φp((1 + ε)v), so that by (B) Tan(Np, rε) =

Tan(Nq, rε). By Lemma 23, limε→0+ Tan(Nq, rε) = λTan(Np, q). But since Np \ {p} is a

smooth hypersurface, limε→0+ Tan(Np, rε) = Tan(Np, q).

Conversely, suppose that (B’) holds. Let q = φp(v0). Let v : [−ε, ε] → Tan(Np, p) be

a smooth function such that v(0) = v0, a one-parameter variation of v0. Let w0 be the

transport of v0 to q. By (B’), there is a one-parameter variation of w0 such that

(φp)∗dv = dw.

Pushing forward both sides of this equation by φq establishes (B).

So, a causal geometry determines the following structure:

Property 1. NP \ {P} is a smooth embedded hypersurface in M

Property 2. The singular variety NP is ruled by a pencil of smooth curves NPQ from P to

Q, as Q varies over NP \ {P}.
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Property 3. For every Q ∈ NP \ {P}, the curve NPQ on NP coincides with the curve NQP

on NQ: NPQ = NQP .

Property 4. Let CP be the set of tangents at P to the curves NPQ as Q varies over NP \{P}.
Then CP is a regular (smooth) surface in the projective tangent space PTPM .

(The surface CP is called the indicatrix.)

Property 5. Let Q,R ∈ NP \ {P} be given distinct points which are mutually incident.

Then the tangent plane to NP at R is the same as the tangent plane to NQ at

R: TRNP = TRNQ. (Envelope condition)

5.2.1 Subgeometries, equivalence, and gluing

Let N be a causal geometry on M . A subgeometry of N is an open subset M1 of M and an

open subset N1 of N that defines, with the induced conical fibration, a causal geometry on

M1. A causal geometry N on M defines a subgeometry on any open subset M1 by setting

N1 = N ∩ (M1 ×M1) together with the induced conical fibration. This causal subgeometry

is denoted by N |M1.

Two causal geometries N and N ′ on M are equivalent if there is an open neighborhood U

of ∆ in M ×M such that N ∩U = N ′ ∩U and the induced conical fibrations are equivalent.

(This is in the spirit of the notion of isomorphism of microbundles introduced in Milnor [54].)

Lemma 25. Let Mi be an open cover of M , and Ni causal geometries in Mi such that

the subgeometries Ni|Mj is equivalent to Nj|Mi for all i, j. Then there is a unique causal

geometry N on M such that N |Mi is equivalent to Ni for all i.

The equivalence class of causal geometries obtained in this way in the gluing of the

subgeometries Ni.

The main invariant of a causal geometry is its null cone bundle:

Definition 20. Let N be a causal geometry on M . The subbundle (dπ2) Tan(N,∆) ⊂ TM ′

is called the null cone bundle and is denoted by H .

This is the infinitesimal null cone at each point of M . The null cone bundle depends

only on the equivalence class of the causal geometry. Moreover, if N1 is a subgeometry of

N and H1 is the associated null cone bundle, then H1 ⊂ H as well. Theorem 16, proven

later, establishes that the null cone bundle completely characterizes the causal geometry up

to equivalence.
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5.3 CAUSAL GEOMETRY ASSOCIATED TO A LAGRANGIAN

5.3.1 Lagrangians

Let M be a differentiable manifold, TM its tangent bundle. A C2 local section L of OTM(k)

is called a Lagrangian. A Lagrangian is called indefinite if dL is everywhere nonzero, and

L assumes both positive and negative values in each tangent space. A Lagrangian is non-

degenerate if its Hessian in the vertical directions is a non-singular bilinear form.

Let X be the set of all C1 embedded curves γ : [a, b]→M with fixed endpoints γ(a) and

γ(b) such that the image of dγ : T [a, b]→ TM is in the domain of L. When M is equipped

with a smooth metric X becomes a Banach manifold whose connected components are the

C1-isotopy classes of such mappings. The tangent space of X at γ, TγX, is the Banach space

of C1 sections of γ−1TM vanishing at a and b with the W 1,∞ norm, denoted by ‖ · ‖1,∞.

Such a vector field v can be extended to a vector field in a small neighborhood of γ, and the

flow of this vector field generates a C1 map F (t, s), F : [a, b]× (−ε, ε)→M , such that

• F (t, 0) = γ(t)

• (∂F/∂s)(t, 0) = v.

This F is called a variation of γ.

For any Lagrangian L, the Lie derivative LvL is well defined along a curve γ ∈ X, by

LvL(γ(t)) =
∂

∂s
(L ◦ F )(t, 0)

where F is any variation of γ.

A Lagrangian L can be pulled back along a C1 curve γ ∈ X to a continuous function on

[a, b], denoted γ∗L, and defined by

(γ∗L)(t) = L(γ∗(d/dt)).

The energy functional of a curve γ ∈ X is defined by

E[γ] =

∫ b

a

γ∗Ldt.

Since γ is an embedded curve, it has a tubular neihborhood (Hirsch [40]); that is, a

neighborhood U that is diffeomorphic to the normal bundle of γ such that γ goes to the zero

section under this diffeomorphism. There is a global coordinate system on U , say xi. This

is called a tubular coordinate system. In that case,

LvL =
∂L

∂xi
vi +

∂L

∂ẋi
v̇i.
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Lemma 26. E : X → R is a C1 function on X. Moreover, dE : TX → R is the Euler–

Lagrange functional

dEγ(v) =

∫ b

a

LvLdt.

Proof. We work in the global coordinate system xi on the tubular neighborhood U of γ ∈ X.

If v ∈ TγX is sufficiently small in norm, then γ(t) + v(t) is also in X. We have

∣∣∣∣E[γ]− E[γ + v]−
∫ b

a

LvLdt

∣∣∣∣ ≤ ∫ b

a

|γ∗L− (γ + v)∗L−LvL| dt

≤ C‖v‖2
1,∞ sup

γ
|D2L|

where D2L denotes the Hessian of L with respect to all of the variables xi and ẋi. So E is

differentiable at γ, and its derivative is the Euler–Lagrange functional. The derivative dEγ

depends continuously on γ, again by the smoothness of L.

A geodesic is a critical point of E. This is a curve γ ∈ X such that

dEγ(v) = 0

for all v ∈ TγX. In a tubular coordinate system, this reduces to the Euler–Lagrange system

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0.

Let L be a non-degenerate Lagrangian. A vector v is called null if L(v) = 0. A geodesic

for L is called null if its tangent vector is null at every point. Two points in M are called

null related if there is a null geodesic connecting them. The null cone of a point p ∈ M is

the subset consisting of all points of M that are null related to p. Let Np be the null cone

of p. For each p ∈M , let φp : Tan(Np, p)→ Np be the map that associates tangent vector v

to Np at p the null geodesic with initial condition v.

Theorem 15. Suppose that L : TM → R is a non-degenerate Lagrangian. For each p ∈M
let Np the null cone through p, and φp the associated conical fibration. Let N =

⋃
p∈M(Np, p)

and φ(n, p) = φp. Then N, φ is a causal geometry on M .
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Proof. For each P ∈ M , the indicatrix CP = {v ∈ PTPM | L(P, v) = 0} is smooth. For a

curve γ in M , consider the energy functional

E[γ] =
1

2

∫ b

a

L(γ(t), γ′(t)) dt.

A null geodesic is a curve γ that is an extremal for E along which L(γ(t), γ′(t)) ≡ 0. The

family of null geodesics for a (possibly singular) Lagrangian defines a causal geometry if

and only if the Lagrangian is regular at every point of the cone over CP in TPM for each

P , in the sense that its vertical Hessian is nondegenerate in directions tangent to CP . In

coordinates xi for M and fiber coordinates ẋi for TM , this is the condition that the Hessian

matrix ∂2L
∂ẋi∂ẋj

be nonsingular in directions tangent to the null cone. This is also a sufficient

condition for L to be conserved along an extremal, and thus the null geodesics are precisely

those extremals of the energy for which L(γ(0), γ′(0)) = 0.

The Euler–Lagrange system is a second order ordinary differential equation for the curve

γ(t). By smooth dependence on initial conditions, for initial conditions lying on the hy-

persurface L(P, γ′(0)) = 0 sufficiently near the origin of the tangent space TPM , the null

geodesics foliate a smooth hypersurface in M , giving Properties 1–2. Property 3 follows since

the null geodesics are critical points of the energy under compactly supported variations, and

so in particular are characterized independently of the direction of their parameterization.

Property 4 follows from the regularity of the Lagrangian. Finally, for Property 5, it is suf-

ficient to show that, for any point P , and any variation γs of null geodesics through P ,

∂L

∂ẋi
dγi

ds

∣∣∣∣
s=0

= 0. (5.1)

This then establishes that the null cone at P is tangent to the indicatrix at every point,

which is equivalent to Property 5 of §5.2. By the Euler–Lagrange equations,

0 =
d

ds
L(γs, γ̇s) =

∂L

∂xi
dγi

ds
+
∂L

∂ẋi
dγ̇i

ds

=

(
d

dt

∂L

∂ẋi

)
dγi

ds
+
∂L

∂ẋi
dγ̇i

ds

=
d

dt

(
∂L

∂ẋi
dγi

ds

)

So the left-hand side of (5.1) is constant along the curve γ(t), as required.
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If the homogeneity k of the Lagrangian is equal to 1, then the null geodesics have no

natural parameterization. Otherwise, if γ is an unparametrized null geodesic for a Lagrangian

L of homogeneity k 6= 1, it satisfies the Euler–Lagrange equation

∂L

∂xi
− d

dt

∂L

∂ẋi
= λ

∂L

∂ẋi

where λ is a free function of t. This freedom λ can be absorbed by reparametrizing the curve.

We henceforth impose that k 6= 1 on all Lagrangians. Section 8.1.1 discusses a Legendrian

formulation that is independent of the homogeneity of any associated Lagrangian.

5.3.2 Lagrangians associated to a causal geometry

Let N, φ be a causal geometry on M . For each p ∈ M , the tangent cone K = Tan(Np, p)

defines a Lipschitz hypersurface SK ⊂ STpM . There exists a locally defined Lipschitz

function L : TpM → R that is homogeneous of degree two and such that dL is defined at

almost every point of SK

Theorem 16. Let U ⊂ SM be an open set and L ∈ Γ(OTM(k), U) a Lagrangian that

gives a defining function for H in U . The causal geometry defined by L is equivalent to a

subgeometry of N . Furthermore, N is equivalent to the gluing of all the causal subgeometries

obtained in this manner.

Proof. Fix p ∈M and v ∈ Tan(Np, p)∩ co(U). Let γ(t) = φp(tv), where φ is a representative

of the conical fibration. We must first show that, for sufficiently small t, γ(t) is a null geodesic

with respect to the Lagrangian L. First, by Definition 19 (A), γ is null. It remains to show

that it is a geodesic.

Let vs ∈ Tan(Np, p) be a variation of v for s ∈ (−1, 1), so that v0 = v. Let γs(t) = φp(tvs).

Then γs is a variation of γ along rays of Np. We will work in a tubular coordinate system

around γ. Lemma 24 implies that along ∂L
∂ẋi

annihilates every vector tangent to Np along γ.

In particular,
∂L

∂ẋi
dγis
ds

∣∣∣∣
s=0

= 0.

Hence, since γ∗sL = 0,

0 =
d

ds
γ∗sL =

∂L

∂xi
dγis
ds

+
∂L

∂ẋi
dγ̇is
ds

.

On the other hand,

0 =
d

dt

(
∂L

∂ẋi
dγis
ds

)
=

(
d

dt

∂L

∂ẋi

)
dγis
ds

+
∂L

∂ẋi
dγ̇is
ds

.
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Combining these equations gives (
∂L

∂xi
− d

dt

∂L

∂ẋi

)
dγis
ds

= 0.

Hence
∂L

∂xi
− d

dt

∂L

∂ẋi

is annihilated by every vector tangent to Np. So

∂L

∂xi
− d

dt

∂L

∂ẋi
= λ

∂L

∂ẋi

where λ is a free function of t. Thus γ is a null geodesic for L.
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6.0 INCIDENCE GEOMETRIES AND TWISTOR THEORY

This chapter presents a simple class of examples of causal geometries based on incidence of

geodesics in projective manifolds. The model for these geometries comes from twistor theory,

which is the incidence geometry of lines in projective space. The complex version of twistor

theory is described in great detail in [67]. The real version, that we study here, is described

in [42].

6.1 REAL TWISTOR THEORY

Let T be a four-dimensional real vector space and let X = PT be the associated projective

space. In any affine patch of X, there is a natural affine connection. These affine connections

patch together modulo projective equivalence to define a (flat) projective structure on PT,

the geodesics of which are just the images in X of the two-dimensional linear subspaces of

T. In particular, the space of lines (geodesics) in X is the Grassmannian M = Gr2(T) of

two-dimensional subspaces of T (or, equivalently, of lines in the projective space PT). Call

two distinct points of M incident if the corresponding lines in PT intersect in a point. For

any point p ∈ M, define the null cone Np to be the subset of M consisting of all q that are

incident with p. If distinct points p and q are incident, then they determine a point x ∈ PT
(the point of intersection) as well as a 2-plane in P ⊂ PT (the plane tangent to both lines).

The null geodesic determined by p and q is the set of r ∈ M such that r passes through x

and is tangent to P there. If p is fixed, this defines a conical fibration of Np.

The four-dimensional space M embeds naturally as the Klein quadric in P(∧2T) given

by M = {A ∈ P(∧2T)|A ∧ A = 0}. The embedding associates to a two-plane x in T (that

is, a point of M) the exterior square ∧2x in ∧2T. Define on ∧2T the line bundle-valued non-

degenerate symmetric form g(A,B) = A∧B ∈ ∧4T, so that M is the projective null cone of

g. The quadric M is foliated by two distinct families of planes, called α and β planes. An

α plane is the two-dimensional subvariety of M consisting of all projective lines in X = PT
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(that is, points in M) containing a fixed point. For fixed x ∈ X, a point A of the Klein

quadric lies on the α plane associated to x if and only if A = [x ∧ y] for some y ∈ T. In

particular, α planes are actually planes. A β plane is the two-dimensional subvariety of M
consisting of all lines in PT (that is, points of M) contained in a given plane in PT. Duality

exchanges α and β planes, so β planes are also planes. Since the quadric is foliated by two

families of two-planes, the signature of g is (3, 3).1

Let α ∈ T∗ be a non-zero linear form on T. When restricted to the quadric M, the

symmetric form gα(dx, dx) = g(dx,dx)
α(x)2

is annihilated only by the homogeneity vector field and

is Lie derived along this vector field, so it descends to the quotient space M. Thus M carries a

natural conformal structure, and this conformal structure is exactly what defines the causal

structure on M described in the previous paragraph. (The metric gα is actually flat, so

this is a flat conformal structure. There is also a global constant curvature metric in the

conformal class g(dx,dx)
h(x,x)

, where h is a positive definite symmetric bilinear form; see Holland

and Sparling [43] for an application to cosmology in the case of Lorentzian signature.)

6.1.1 Projective spin bundles

Returning now to the spaces M and PT themselves, observe that M is the space of lines in

PT (a three-dimensional projective space), and PT is the space of α-planes in M, via the

double-duality isomorphism. There is therefore a correspondence space in PT ×M , called

the projective primed spin bundle PS′. This is the subset of PT × M consisting of pairs

(x,A), where A is a line in PT, such that x lies on the line A. Or under the double duality

isomorphism, this is the subspace of PT ×M consisting of pairs (x,A), where A is a point

of M, such that x is an α-plane through A.2

The dual twistor space is the space of β-planes in M. The projective spin bundle is the

correspondence space of points in M and β-planes.

6.1.2 Projective null twistor space

The spaces PT and PT∗ have a correspondence space between them, denoted by PN, the

projective null twistor space, contained in PT × PT∗ whose points are pairs (z, α) with z a

1This can also be seen by introducing a basis ei of T, the vectors ei ∧ ej with i < j define a basis of ∧2T.
So for x ∈ ∧2T, we have x =

∑
1≤i<j≤4 x

ijei ∧ ej for some real coefficients xij . In these coordinates,

g(x, x) = x ∧ x = 2(x12x34 − x13x24 + x14x23)e1 ∧ e2 ∧ e3 ∧ e4

so g has signature (3, 3).
2We have suppressed here any mention of the dual primed (and unprimed) spin bundles. We are here

working projectively, so there is no distinction for us between the spin bundle and its dual.
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point on the plane determined by α.

6.1.3 Flag manifolds

We define the following flag manifolds associated to T:

• Projective twistor space: PT = Gr1(T) = {V1 ⊂ T| dimV1 = 1}
• Spacetime: M = Gr2(T) = {V2 ⊂ T| dimV2 = 2}
• Dual projective twistor space: PT∗ = Gr3(T) = {V3 ⊂ T| dimV3 = 3}
• Projective null twistor space PN = {(V1, V3)|V1 ⊂ V3 ⊂ T, dimV1 = 1, dimV3 = 3}
• Projective primed spin bundle PS′ = {(V1, V2)|V1 ⊂ V2 ⊂ T, dimV1 = 1, dimV2 = 2}
• Projective spin bundle PS = {(V2, V3)|V2 ⊂ V3 ⊂ T, dimV2 = 2, dimV3 = 3}
• The complete flag variety F = {(V1, V2, V3)|V1 ⊂ V2 ⊂ V3 ⊂ T, dimV1 = 1, dimV2 =

2, dimV3 = 3}.

Let GL(T) be the group of linear automorphisms of T. Each of these flag manifolds is

evidently a homogeneous space for GL(T) that we now proceed to describe. Let B be a

Borel subgroup of GL(T). Expressed in a suitable basis {e1, e2, e3, e4} of T, B is the group

of all invertible upper-triangular matrices, and so B is just the stabilizer of the complete flag

T1 ⊂ T2 ⊂ T3 ⊂ T of subspaces of T formed by the span of successive elements of the basis:

Ti = span{e1, . . . , ei}. Hence F = GL(T)/B.

A parabolic subgroup of GL(T) is a subgroup corresponding to a subalgebra of gl(T) that

contains the Borel algebra (see Chapter 4 for a general discussion). Up to equivalence, any

parabolic subalgebra is generated by the Borel subalgebra, along with some of the simple

negative root spaces. The parabolic subgroups can be labeled by Dynkin diagrams where

a node is crossed if it the corresponding simple negative is not contained in the parabolic

algebra, and a Dynkin node is filled in if it is. The various possible groups are listed here.

A matrix element is crossed if it is zero in the group.

Each of these parabolic subgroups is a stabilizer of some flag. The Dynkin diagram with

a cross in the i position stabilizes the subspace Ti. There are maps going from these various

spaces to one another, as summarized in the commutative diagram of Figure 6.1.3.

We now inquire what the situation is when the spacetime M is replaced by an arbitrary

4-manifold M with an ultrahyperbolic ((2, 2)-signature) conformal structure. The conformal

structure on M is determined by, and uniquely specifies, a normal conformal Cartan connec-

tion in the style of [76] and [42]. This consists of the data of a principal P (•−−×−−•)-bundle G

over M and a gl(T)-valued one-form ω : G → gl(T) that is an isomorphism in each tangent

space that is equivariant under the P (•−−×−−•) action and sends the generators of the vertical

action to the corresponding elements of the Lie algebra p(•−−×−−•).
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Figure 1: Parabolic subgroups of GL(T)

114



Figure 2: Lattice of parabolic subgroups of GL(T)

F
×−−×−−×

(V1,V2,V3)7→(V2,V3)

{{

(V1,V2,V3)7→(V1,V2) //

(V1,V2,V3)7→(V1,V3)

��

PS′
×−−×−−•

(V1,V2)7→V1

��

(V1,V2)7→V2
||

PS
•−−×−−× (V2,V3)7→V2

//

(V2,V3)7→V3

��

M
•−−×−−•

��

PN
×−−•−−×

(V1,V3)7→V1 //

(V1,V3) 7→V3
||

PT
×−−•−−•

||
PT∗
•−−•−−×

// {?}
•−−•−−•

The twistor distribution on G is the codimension 3 distribution on G defined by D =

ω−1(p(×−−•−−•)) ⊂ TG . The dual twistor distribution is the distribution D′ = ω−1(p(•−−•−−×)).

An α-surface in M is the projection to M of an integral surface of D and a β-surface is the

projection of an integral surface of D′. In the flat case, these coincide with the α and β

planes, respectively. In general, however, the distributions D and D′ are not integrable in

the sense of Frobenius: a necessary and sufficient condition for integrability of each is the

vanishing of the corresponding SO(2, 2) irreducible component of the Weyl tensor.

Assuming integrability of D, the twistor space (denoted T (M)) is defined as the space

of leaves of the foliation or, equivalently, the space of α-surfaces in M . We shall assume that

this is a decent space: precisely, the quotient by the foliation is a submersion onto T (M).

The twistor space comes equipped with a notion of geodesics: two twistors A and B are

incident if the corresponding α surfaces in M intersect. When M is the conformally flat

model geometry Gr2(R4), the twistor space is just PT, and the geodesics in PT correspond

to the geodesics of the natural projective structure on PT. In general, the system of curves

in T (M) defining the geodesics may not correspond to any projective connection on T (M).
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6.2 INCIDENCE IN PROJECTIVE THREE-MANIFOLDS

Let X be a three-dimensional projective manifold. Call two geodesics on X incident if they

intersect at some point. In a local patch of any point of X, the space of geodesics is a

four-dimensional manifold, denoted M(X). For p ∈ M(X), let Np be the subset of M(X)

consisting of all geodesics incident with p. If q ∈ Np, then p and q intersect in a unique point

x. Define the conical fibration of Np to be the set of all geodesics that intersect p at the same

point x and whose tangents lie in the plane tangent to p and q at x. This defines a causal

geometry on M(X). This is only a conformal structure if X is actually flat (Theorem 17).

If p and q are incident geodesics in X, then the null M(X)-geodesic through pq is the

same whether it is regarded as lying on Np or Nq. Moreover, if p, q, r are mutually incident

geodesics, and we move r a small amount to another geodesic incident with q, then that

geodesic will be incident to first order with p as well. (This is because a small movement of r

can be decomposed into a translation and a twist in the tangent space to X at the common

point of intersection, each of which preserves incidence to first order.)

A projective structure on X can be specified by a (unique) normal3 projective Cartan

connection consisting of a principal P (×−−•−−•)-bundle G and equivariant sl4(R)-valued one-

form ω : TG → sl4(R) that is an isomorphism of each tangent space, and that sends the

generators of the vertical action to the corresponding elements of p(×−−•−−•). The Cartan

connection descends to an isomorphism of G /P (×−−×−−•) with the projective tangent bundle

of X, denoted PTX with projection πPTX → X. The distribution ω−1p(•−−×−−•) is invariant

under P (×−−×−−•), and therefore descends to the quotient space. This gives a distribution V

on PTX, which is one-dimensional (and so automatically integrable). The space of integral

curves of the distribution is the spaceM(X) of geodesics in X. Let πM(X) : PTX →M(X)

be the associated projection mapping. We shall assume that we are working in a small

enough patch of X to ensure thatM(X) is a manifold and π a submersion. The causal cone

in TM(X) is the image of the vertical distribution V PTX under dπM(X). The image of each

fiber of V PTX is a 2-plane in TM(X), and this family of 2-planes foliates the null cone.

Theorem 17. The one-form ω defines a conformal Cartan connection onM(X) if and only

if X is flat.

Proof. Sufficiency is clear.

For necessity, fix an affine connection P : TTX → V TX compatible with the projective

structure. Let λ : TTX → V TX be the canonical surjective nilpotent operator described in

3Normality is a curvature condition that we shall not go into; see Sharpe [76] or Čap and Slovák [11].
The Cartan connection obtained from a generic projective structure by the approach described in Chapter
3 is such a normal connection.
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Chapter 1, and H the homogeneity vector field of TX (a section of V TX over TX). The

geodesic spray associated to P is the vector field V = (I − P )(λ
−1

(H)). Let p ∈ M(X)

be a particular geodesic in X and t be a coordinate along this geodesic. The tangent space

to M(X) at p is the space of sections of the quotient bundle K = TTX ′/ span(H, V ) that

are Lie derived along V . (It makes sense to take the Lie derivative along V of sections of

K since the distribution spanned by H and V is integrable and, in particular, is itself Lie

derived along V .)

A vector x in K projects to a null vector in M(X) if and only if λx ≡ 0 (mod H): this

is the condition that an infinitely near geodesic to p meets p at the point πX(x) ∈ X.

Let ε : ∧3V TX → E[1] be the canonical map from the top exterior power of V TX to

the space of 1-densities on TX. Define a quadratic form on TTX by

Q(x) = ε(H, λx, Px).

Since λV = H, this annihilates the subspace spanned by H and V , and so descends to a

quadratic form on K. If Q is Lie derived up to scale along V , then it defines a conformal

structure on M(X). Conversely, if the causal structure on M(X) comes from a conformal

structure, then this conformal structure is of this form.

So for the causal structure ofM(X) to be a conformal structure, a necessary and sufficient

condition is for Q to be Lie derived up to scale along the geodesic spray V . Since LV x = 0

and LV λ = P , we have (up to multiples of Q itself)

(LVQ)(x) = ε(H, λx, (LV P )x)

which is precisely the projective curvature function of X.

6.2.1 Twistor geometry

The null geodesics of the causal geometry on M = M(X) are labeled by pairs (x, P ) with

x ∈ X a point, and P a two-dimensional linear subspace of TxX. That is, the null geodesics

in M can be identified with the points of Gr2(TX), the Grassmannian of two-planes in TX.

There are a natural family of surfaces in M , called the α surfaces. An α surface consist

of all points p ∈ M such that the corresponding geodesics in X intersect at the same point

of X. Any two points of a given α-surface are null-related to one another.

Although globally the structure of the space of geodesics in X can be quite complicated,

we can specialize to a more tractable case: let Y be a Riemannian two-manifold, and consider

the Riemannian cylinder X = R × Y (with the natural product metric). The geodesics in

R × Y are just Cartesian products of geodesics on R and geodesics on Y . Let us write a
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geodesic in the form (t, γ(t)) with t ∈ R and γ(t) ∈ M . Assuming that Y is complete,

this geodesic is uniquely determined by γ(0) and γ′(0). So the space of geodesics in X is

M = TY ′, the tangent bundle of Y with the zero section deleted.

6.2.2 Example: The sphere

For example, with Y = S2, the natural product metric on X is ds2 = dt2 + dσ2 where t is

the natural coordinate on R and dσ2 is the round sphere metric with constant curvature 1,

which in the standard geodesic polar coordinates has the form dσ2 = dφ2 + sin2 φ dθ2. A

geodesic on X is uniquely determined by its initial (t = 0) position ~x, unit normal vector

~n tangent to the sphere at x, and the speed er > 0 at which its projection onto S2 travels

around a great circle there. So the space of geodesics is isomorphic to S(TS2)× (0,∞).

Suppose that a pair of geodesics (~x1, ~n1, r1), (~x2, ~n2, r2) are given. The projection of these

geodesics onto S2 must meet (generically in two points). These geodesics are incident if they

intersect at the same parameter time. (This is equivalent to the intersection of the lifted

geodesics on the cylinder C.)

Suppose that Z ∈ S2 is the nearest point of intersection of the two geodesics. Then Z

lies simultaneously on the planes ~n1 · Z = 0 and ~n2 · Z = 0. So Z = ~n1 × ~n2/|~n1 × ~n2|. The

time taken for the geodesic (~x1, ~n1, r1) to reach Z is the measure of the angle between ~x1 and

Z divided by the speed er1 : e−r1∠(~x1, ~n1×~n2). Hence the condition for the two geodesics to

be incident is

er2∠(~x1, ~n1 × ~n2) = er1∠(~x2, ~n1 × ~n2).

Or, equivalently,

er2 arccos
(
|~n1 × ~n2|−1[~x1, ~n1, ~n2]

)
= er1 arccos

(
|~n1 × ~n2|−1[~x2, ~n1, ~n2]

)

where [−,−,−] denotes the scalar triple-product.

To determine the causal structure, fix a geodesic specified by the triple (~x1, ~n1, r1) =

(~x, ~n, r), and set ~x2 = ~x + d~x, ~n2 = ~n + d~n, r2 = r + dr. We also impose that ~x · d~x =

~n · d~n = ~x · d~n + ~n · d~x = 0. Then |~n× ~n2| = |d~n| and [−, ~n, ~n2] = [−, ~n, d~n]. Let ~t = ~n× ~x
so that together ~t and ~x form an orthonormal basis for the plane orthogonal to ~n and ~t and

~n form an orthonormal basis for the plane orthogonal to ~x. Then it is possible to write

d~n = (~t cos θ+ ~x sin θ)dρ and d~x = ~t dx+ ~n dy. Since ~x · d~n = −~n · d~x, we get sin θ dρ = −dy
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so d~x = ~t dx − ~n sin θ dρ. Observe that |d~n| = dρ and ~n × d~n = (~x cos θ − ~t sin θ)dρ, so

[~x, ~n, d~n] = cos θ dρ and [d~x, ~n, d~n] = − sin θ dx dρ. Now consider the incidence condition

er+dr arccos
(
|d~n|−1[~x, ~n, d~n]

)
= er arccos

(
|d~n|−1[~x+ d~x, ~n, d~n]

)
=⇒ edr arccos (cos θ) = arccos (cos θ − sin θ dx) .

Expanding this in a series, keeping the first order terms gives

cos(dx/dr) = cos(θ)

where θ = arctan(~x · d~n/~t · d~n).

Specialize now to the case where ~x = ~e3 is the north pole, ~n = ~e2, and r = 0, so that the

geodesic is the prime meridian in the standard spherical coordinate system travelled with

unit speed. Then ~t = ~e1 and we have

d~x = ~e1dx− ~e2 sin θdρ

d~n = (~e1 cos θ + ~e3 sin θ)dρ

The space M ∼= S(TS2) × (0,∞) is a principal homogeneous space for SU(2) × (0,∞),

the Lie group H∗ of non-zero quaternions.4 The Lie algebra is the quaternion algebra H
under the natural commutator [x, y] = xy − yx. To be invariant under the adjoint action,

the causal cone in the Lie algebra must be of the form f(Re(x), | Im(x)|) = 0.

4Notice that this group is a split form of the compact group U(2), which in turn corresponds to the
incidence problem where the geodesics on S2 carry a U(1) parametrization instead of real parametrization.
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6.3 INCIDENCE IN THE HEISENBERG GROUP

Let X be the three dimensional Heisenberg group. This is the group of upper triangular

unipotent matrices


1 z x

0 1 y

0 0 1

. Topologically this is R3. The Lie algebra of X is generated

by the vector fields

v1 =
∂

∂x
− 1

2
y
∂

∂z

v2 =
∂

∂y
+

1

2
x
∂

∂z

v3 =
∂

∂z

which satisfy the commutation relations [v1, v2] = v3 and [v1, v3] = [v2, v3] = 0. The Heisen-

berg group is equipped with a canonical invariant contact one-form σ = dz − 1
2
(x dy − y dx)

that is annihilated by v1 and v2. The form v2
1 + v2

2 defines an invariant cometric on X that

induces the hamiltonian H = 1
2
(µ(v1)2 + µ(v2)2) on T ∗X, where µ = pxdx + pydy + pzdz is

the natural moment map associated to the cotangent bundle.

So X carries the following metric structure. Let P1 = (x1, y1, z1), P2 = (x2, y2, z2) ∈ X
be fixed. The distance from P1 to P2 is obtained by drawing a circular arc in the xy-

plane containing the points (x1, y1) and (x2, y2) such that the chordal area enclosed by the

crescent-shaped region bounded by the arc and the chord joining its endpoints is |z1 − z2|.
The distance between the two points is the length of the circular arc. The geodesics in X

are helices. They project to circles in the xy plane, and over any arc of the circle the change

in height is equal to the signed chordal area enclosed by the arc, measured in a positive

sense. (If the geodesic winds round the circle several times, the chordal area is of course

taken cumulatively.)

This metric structure comes from the following sub-Riemannian structure on X. Let

A = ∂
∂x
− 1

2
y ∂
∂z

The four-dimensional space of geodesics is coordinatized by (x, y, r, φ) where (x, y) is

the center of the associated circle, r is its radius, and φ is a polar angle representing the

intersection of the geodesic with the xy-plane.

We now determine the incidence condition. Suppose that two circles with respective

centers C1, C2 and radii r1, r2 are given. Generically these intersect at two points A and B.

Let C be the point of intersection of AB and C1C2. Let y = |AC|; by symmetry y = |BC| as
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well. Let ρ = |C1C2| and x = |C1C|. Since the angle at C is right, the Pythagorean theorem

gives the relations

x2 + y2 = r2
1

(ρ− x)2 + y2 = r2
2.

Solving this system gives

x =
ρ2 + r2

1 − r2
2

2ρ

y =
1

2ρ

√
4ρ2r2

1 − (ρ2 + r2
1 − r2

2)2.

This gives the equations for the points of intersection of the two circles. The angles

α = ∠C2C1A and β = ∠AC2C1

The corresponding Heisenberg geodesics intersect if and only if the heights of the geo-

desics over the intersection points agree. Let φ1 and φ2 be the respective polar angles that

each of the geodesic makes at z = 0.

For a circle of radius r, the chordal area subtended by an angle γ is r2γ
2
− r2 sin γ

2
. Let θ

be the angle that the ray
−−−→
C1C2 makes with the positive x axis, and let α = ∠C2C1A and

β = ∠AC2C1 (both in the range [0, π]). The height of the first geodesic at the intersection

point A is then
r2

1(α + θ + φ1)

2
− r2

1 sin(α + θ + φ1)

2

and the height of the second geodesic at the intersection point A is

r2
2(−β + θ + φ2 + π)

2
− r2

2(sin(−β + θ + φ2 + π))

2
.

The angles α and β are given by

α = cos−1

(
ρ2 + r2

1 − r2
2

2ρr1

)
β = cos−1

(
ρ2 − r2

1 + r2
2

2ρr2

)
.
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Figure 3: Incidence of geodesics in the Heisenberg group
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r2

d−
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Now, let φ1 = φ, φ2 = φ + dφ, r1 = r, r2 = r + dr, and ρ = dρ. Putting these in to

the equation of the causal cone and keeping first order terms gives the causal cone in the

tangent space at z given by

0 = 2 sin(θ + φ) dr2 +

(
2 sin(θ + φ) +

√
1− dr2

dρ2

)
dρ2+

+ 2

(
π + θ + φ− cos−1

(
dr

dρ

)
− cos(θ + φ)

√
1− dr2

dρ2

)
dr dρ+

+ 2r cos(θ + φ) dr dφ+ r

(
1 + 2

√
1− dr2

dρ2
sin(θ + φ)

)
dφ dρ
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7.0 THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS

A third-order differential equation under contact equivalence can be conveniently regarded

as the following data.

1. A three-dimensional contact manifold J1.

2. A generic three-parameter family of (unparameterized) contact curves in J1.

The contact structure on J1 can represented as a one-form θ which is only invariantly defined

up to scale. By Darboux’ theorem, there exist coordinates (x, y, p) on J1 such that θ =

dy − pdx. A contact curve is a curve whose tangent annihilates θ at each point. The family

of curves is generic if at each given point of J1 and tangent direction v at x annihilating

θ there exists a unique curve through x with tangent along v. These curves are identified

with the (prolongation of) solutions of the differential equation. Two such structures are

locally equivalent if there is a local diffeomorphism of J1 to itself that preserves the contact

structure and sends one system of curves to the other.

Given a third-order differential equation, it is clear how to generate such a structure

by prolongation (see, for instance, [61]), and the resulting structure depends only on the

contact-equivalence class of the differential equation, by Bäcklund’s theorem. Conversely,

suppose we have chosen coordinates (x, y, p) on J1 such that θ = dy−pdx. The distinguished

class of curves is of the form

x = χ(s; a, b, c)

y = ψ(s; a, b, c)

p = π(s; a, b, c)

where a, b, c are the three parameters defining a curve in the class, and s is an evolution

parameter of the curve. There is a gauge freedom in selecting the parameterization s of the

curve, and so this freedom is eliminated this by imposing the condition dx/ds = 1 (that

is, by effectively taking x itself to be the parameter). The contact relation takes the form
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p = dy/dx. Imposing this relation and differentiating ψ three times gives the system of

equations

y = ψ(x; a, b, c)

y′ = ψx(x; a, b, c)

y′′ = ψxx(x; a, b, c)

y′′′ = ψxxx(x; a, b, c).

Solving the first three equations for a, b, c in terms of x, y′, y′′ and substituting the result into

the third equation gives a third-order differential equation y′′′ = F (x, y, y′, y′′).

Associated to the jet space J1 there is naturally a fibration π : J2 → J1. This is the

subbundle of the projective tangent bundle PTJ1 of J1 given as the annihilator of θ: J2 = θ⊥.

Specifically, J2 is given fiberwise by

J2
x =

{
v ∈ PTxJ1 | vyθ = 0

}
.

It is a four-dimensional space fibered over J1 with S1 fibers. The space J2 defined here

supports the following contact-invariant structure, independently of the differential equation.

This characterization is the four-dimensional analog of structures studied in five dimensions

by Doubrov, the author, and Sparling in [17].

Lemma 27. 1. There exists a natural filtration

T 1 ⊂ T 2 ⊂ T 3 ⊂ T 4 = TJ2

of the tangent bundle of J2. Here T 1 is the vertical distribution for the fibration J2 → J1,

T 2 is a tautological bundle of 2-planes, and T 3 is the annihilator of the pullback of θ.

2. On sections, [Γ(T 1),Γ(T 2)] = [Γ(T 1),Γ(T 3)] = Γ(T 3) and [Γ(T 3),Γ(T 3)] = Γ(T 4).

Specifically, T 2 is the tautological 2-plane bundle whose fiber at a point (x, u) ∈ J2
x ⊂

PTxJ1 consists of all vectors v such that π∗v is in the direction of u. In terms of the (x, y, p)

coordinates on J1, any vector field of the form ∂/∂x+p∂/∂y+q∂/∂p annihilates the contact

form θ = dy−pdx. Therefore this q defines a fiber coordinate for the fibration J2 → J1 that

allows the vector fields generating T 2J2 to be expressed as X = ∂/∂q, the vertical vector field

for the fibration, and ∂/∂x+ p∂/∂y + q∂/∂p. The lemma follows by taking commutators.

Lemma 28. Any two four-manifolds equipped with this structure are locally isomorphic: a

filtration T 1 ⊂ T 2 ⊂ T 3 ⊂ T 4 on the tangent bundle, such that

[Γ(T 1),Γ(T 2)] = [Γ(T 1),Γ(T 3)] = Γ(T 3) and [Γ(T 3),Γ(T 3)] = Γ(T 4).
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Proof. Let M be a manifold equipped with such a filtration and let θ be a nonvanishing

one-form annihilating T 3M . Let N be the 3-manifold obtained by passing to the (locally

defined) quotient modulo the flow of T 1M . The distribution T 3M is Lie derived along T 1M ,

and so descends to a distribution of 2-planes on N . Nowhere is this distribution Frobenius

integrable, and so it defines a contact structure on N . By Darboux’ theorem, N is locally

contactomorphic to J1 with its standard contact structure and coordinates (x, y, p). Letting

q be a fiber coordinate on M → N , X = ∂/∂q generates T 1M and θ = dy − p dx. Plane

subbundles of T 3 on which LX maps surjectively onto T 3 are all related by a change in

the fiber coordinate q. Indeed, as X commutes with ∂/∂p, the latter vector field does not

lie in T 2. The bundle T 2 must contain a solution Y of LXY = ∂/∂p. One such solution is

Y = ∂/∂x+p∂/∂y+q∂/∂p, and the ambiguity, modulo T 1, in the solution is a transformation

of the form Y 7→ Y + λ∂/∂p where X(λ) = 0. Noting that λ is independent of q, this

ambiguity in the choice of Y can be absorbed into a change of coordinates q 7→ q + µ where

µ(x, y, p) satisfies the differential equation µ − µx − µy − µp = λ. So we are free to choose

the fiber coordinate q so that T 2 is generated by X and Y = ∂/∂x + p∂/∂y + q∂/∂p. The

coordinates (x, y, p, q) now defined on M establish a local diffeomorphism with J2 that sends

T 1M , T 2M , and T 3M to T 1J2, T 2J2, and T 3J2, respectively.

The differential equation is specified in terms of a splitting of the first level of the filtration

T 1J2 ⊂ T 2J2. This is achieved by means of a vector field V of the form V = ∂/∂x +

p∂/∂y + q∂/∂p + F (x, y, p, q)∂/∂q representing the total derivative. While V itself is not

contact-invariant, the splitting direction consisting of all multiples of V is. This splitting

can invariantly be described in terms of the system of curves on J1 that gives the differential

equation. Lying over a point x ∈ J1, the point u ∈ J2
x of the fiber is by definition a projective

tangent vector at x. Passing through x in the direction defined by u is a distinguished curve

of the differential equation. This curve determines a tangent direction at every point which

therefore specifies a lift to J2. The vector V(x,u) is the tangent direction to the lifted curve

at the point (x, u) ∈ J2.

7.0.1 Conformal structure

It is possible to construct from these data a degenerate conformal Lorentzian metric g on

J2. The degenerate direction for the metric is V , and the vector field X is null with respect

to the metric. In terms of the coordinates (x, y, p, q) on J2, this metric is given by

g = 2[dy − p dx][dq − 1
3
Fq dp+K dy + (1

3
qFq − F − pK)dx]− [dp− q dx]2 (7.1)
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where K = 1
6
V (Fq)− 1

9
F 2
q − 1

2
Fp. In Section 7.3, the present paper constructs this metric in

a manifestly contact-invariant fashion. The (locally defined) quotient space M = J2/V is a

three-manifold, but the metric g may not be Lie derived up to scale along V , and so need

not pass down to the quotient. The Lie derivative LV g is proportional to g if and only if

the Wünschmann invariant of the original differential equation vanishes. The Wünschmann

invariant is given by

W = Fy + (V − 2
3
Fq)K. (7.2)

Vanishing of this invariant is a necessary and sufficient condition for M to possess an invariant

Lorentzian conformal structure.

Going the other way, let M be a conformal Lorentzian 3-manifold. Define S to be the

bundle over M with fiber S1 that, at each point P , consists of all null directions in PT ∗PM.

The pullback metric is degenerate in the vertical direction, and so S supports the structure

of a degenerate conformal Lorentzian 4-manifold for which the degenerate direction is a

conformal Killing symmetry. There is a canonical symplectic potential ψ defined on the

total space of the cotangent bundle of M. The form ψ is annihilated by the scaling in the

fiber, and is Lie derived up to scale, and so descends to give a form θ up to scale on S.

The condition θ ∧ dθ 6= 0 follows since ψ ∧ dψ on T ∗M does not vanish when pulled back to

nonzero sections M → T ∗M. Indeed, in local coordinates x = (x1, x2, x3) on M with fiber

coordinates p = (p1, p2, p3) on T ∗M, ψ∧dψ = (p·dx)(dp·dx) = −1
2
(p×dp)·(dx×dx). Since

dx × dx has three linearly independent components, and p × dp vanishes only on vectors

parallel to the generator of scalings in T ∗M, ψ ∧ dψ does not vanish when pulled back along

any section of the projective cotangent bundle, and so a fortiori it does not vanish when

pulled back to S.

The vector field X is the given by the null geodesic spray in S. To describe this, fix a

metric g in the conformal class on M. On T ∗M the geodesic Hamiltonian is H = π∗g−1(ψ, ψ),

which gives rise to the Hamiltonian vector field Ĥ, defined by Ĥydψ = dH. An integral

curve µ of X projects to a geodesic of M , and the fiber component of µ is the covelocity

of the geodesic. The image of S under the map S → T ∗M is the null cone at every point

of M. This is everywhere tangent to the spray Ĥ, because a geodesic being initially null

will always remain null. Furthermore, Ĥ scales quadratically in the cotangent bundle, and

descends to a direction field on the projective cotangent bundle PT ∗M. This direction field

is everywhere tangent to S, and so restricts to a direction field X on S.

Passing to the (locally defined) quotient by X gives the space of null geodesics—the

twistor space T. It follows from the definition of X and θ that Xyθ = 0 and Xydθ = 0.

The second assertion follows by pulling back Xydψ = dH to the null cone, and using the

fact that H vanishes identically there. Thus θ descends to a contact structure on the twistor
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space. The fibers of S→M project to the distinguished curves of the twistor space.

To prove that these distinguished curves are suitably generic, we verify that S admits a

structure satisfying the conditions of Lemma 28. Let T 1 be the bundle spanned by the null

geodesic spray X and T 3 be annihilator of θ. From θ ∧ dθ 6= 0, it follows that T 3 is not

Frobenius integrable, and so [Γ(T 3),Γ(T 3)] = Γ(TS). Moreover, since θ is annihilated by X

and Lie derived along it, [Γ(T 1),Γ(T 3)] = Γ(T 3).

It remains to identify T 2 and to show that [Γ(T 1),Γ(T 2)] = Γ(T 3). Let V be a nonvan-

ishing vertical vector field for S→M and let T 2 = span{X, V }. One such vector field V can

be given in terms of the angular momentum operator L = p× ∂/∂p. Then L is tangent to

the null cone, because it annihilates H. On homogeneous functions of degree 0, the angular

momentum factors through a scalar operator L(f) = V (f)p, which defines the vector field

V . Because θ is horizontal, any such vector field, being vertical, annihilates θ. Furthermore,

[X, V ]yθ = LX(V yθ) = 0 as well, so [X, V ] ∈ T 3. It remains only to show that X, V, [X, V ]

are linearly independent. Each of these vector fields is at most first order in the metric, and

therefore independence follows by a calculation in normal coordinates. In these coordinates,

X = −p · ∂/∂x and so on the one hand

[X,L] = p× ∂

∂x

and on the other hand, on the null cone this acts as p[X, V ] on functions homogeneous of

degree zero. Finally,

dθ ([X,L] ,L) = (p · p)g − p⊗ p

which vanishes nowhere on the null cone. Thus [Γ(T 1),Γ(T 2)] = Γ(T 3).

So modulo the explicit construction of the degenerate metric and the assertion that

specifically it is the Wünschmann invariant that governs whether the degenerate metric de-

scends to the 3-manifold, we have proven the following theorem (proven in Fritelli, Kozameh,

Newman [30] by entirely different methods):

Theorem 18. There is a natural local equivalence between third-order differential equa-

tions under contact transformations with vanishing Wünschmann invariant and conformal

Lorentzian 3-manifolds.

7.1 CAUSAL GEOMETRIES ON THE SPACE OF SOLUTIONS

This section develops the natural geometric structure associated to the space of solutions

M to a third-order equation. This structure reduces to a conventional Lorentzian conformal
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structure if and only if the Wünschmann invariant vanishes. To motivate this discussion,

the previous section establishes the basic properties of the (possibly locally defined) double

fibration

S

�� ��
T M

An individual fiber of the submersion S→M projects down to give a trajectory solving

the differential equation in T: this is a re-expression of the notion that M is a space of

solutions of the differential equation. The fibers for the other submersion S→ T also project

down to the space of solutions M, although their precise meaning has heretofore not been

identified in general.

When the Wünschmann invariant vanishes, M carries a natural conformal Lorentzian

metric by Theorem 18, and S is canonically identified with the null cone bundle associated

to this metric. The space T is then the twistor space: the quotient of S by the null geodesic

spray. The fibration S → M can be understood as the subbundle of the projective tangent

bundle PTM of null directions. Under this correspondence, a null cone with vertex at P ∈M
corresponds to a one-parameter family of null geodesics, which in turn is identified with the

trajectory defining the solution P .

This structure can be axiomatized in a manner that allows construction of the spaces

S and T, along with their natural contact structure. The one parameter families of null

geodesics starting at each point P give rise to a cone in the tangent space TPM with vertex

at the origin. Equivalently, such a cone is the affine cone over some curve in the projective

space PTPM. Here locality considerations may mean that the cone may fail to close up

completely, or the associated curve may have one or more singular points. Henceforth, we

shall work only near regular points of the curve.1

7.1.1 Incidence relation and the indicatrix

Two solutions y1 and y2 to the differential equation y′′′ = F (x, y, y′, y′′) are said to be incident

if, at some point x, one has

y1(x) = y2(x), y′1(x) = y′2(x).

That is to say, two curves are incident if and only if the associated solution curves in the J1

intersect. In the latter interpretation, the incidence relation is manifestly contact-invariant.

1We can localize near a point of T and a point of M simultaneously. Thus all solutions can be assumed
to be fully regular, but cannot necessarily be continued for all time. The geometrical implication is that we
may isolate a smooth part of the null cone at each point of M, but the “cone” need not then close up.
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The set of all solutions incident with a given solution P ∈M cuts out a surface NP with

a conical type singularity at the vertex P . The generators of this cone can be described as

follows. If Q is a solution incident with P , then the curve NPQ consisting of solutions R

incident with P at the same point of J1 as Q. (Our localization assumption implies that two

distinct solutions are incident at most at a single point of J1.) The surface NP is thus ruled

by the pencil of curves NPQ as Q varies over solutions incident with P .

Theorem 19 establishes that the conical fibration associated to this incidence relation is

a causal geometry on the space of solutions of a third-order differential equation. In this

setting, the first four Properties described in §5.2 are fairly natural assumptions that make

precise the notion that the NP should be a cone based at P . The envelope condition, in

terms of the bundle J1 → M, guarantees that the one-form θ, whose annihilator is the 3-

plane bundle that lifts the tangent planes through the vertices of the cones NP , is Lie derived

along the fibers of the fibration J2 → J1.

7.1.2 The causal geometry associated to a differential equation

At each point P of M, denote by

y = f(x;P )

the solution to the differential equation represented by P . We break contact invariance in

specifying the differential equation, but shall ultimately be concerned only with the contact-

invariant information that can be extracted from f . Locally, this solution depends smoothly

on x and P . The underlying assumption under which M is a differentiable manifold smoothly

parameterizing a space of solutions is that in local coordinates P = (p1, p2, p3) on M, the

Wronskian determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f
∂p1

∂f
∂p2

∂f
∂p3

∂fx
∂p1

∂fx
∂p2

∂fx
∂p3

∂fxx
∂p1

∂fxx
∂p2

∂fxx
∂p3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (7.3)

To obtain a more concrete description of the cone NP through a particular solution

P ∈ M and the associated curves NPQ that rule the cone defined in the previous section,

suppose that γ(t) is a parameterization of the curve NPQ such that γ(0) = P . Since all

points along γ(t) are incident with P at the same point (x, y, y′), the following two equations
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must hold along γ:

f(x; γ(t)) = f(x; γ(0))

fx(x; γ(t)) = fx(x; γ(0)).
(7.4)

Under generic conditions, the second equation can be used to solve for x in terms of γ(0)

and γ(t), and then substituted into the first equation which may then be solved for the

admissible values γ(t). Although ostensibly this system of equations is not invariant under

contact transformations, by Bäcklund’s theorem a contact transformation will preserve the

space of solutions γ(t). This is geometrically evident because the causal geometry itself is

contact-invariant.

Solutions of these equations arise as first integrals of the differentiated forms

d

dt
f(x; γ(t)) = 0

d

dt
fx(x; γ(t)) = 0

(7.5)

with initial conditions γ(0), γ′(0). The initial conditions are not completely arbitrary. Rather

if γ(0) is fixed, then γ′(0) is constrained by the requirement that

d

dt
f(x; γ(t))

∣∣∣∣
t=0

= 0

d

dt
fx(x; γ(t))

∣∣∣∣
t=0

= 0

(7.6)

The second equation of (7.6) can be solved to obtain the parameter x in terms of the

initial conditions γ(0), γ′(0), by (7.3). The following Lagrangian is homogeneous of degree

two in γ′(0):

L(γ(0), γ′(0)) =
d

dt
f(x(γ(0), γ′(0)); γ(t))

d

dt
fxx(x(γ(0), γ′(0)); γ(t))

∣∣∣∣
t=0

(7.7)

The second factor ensures that the Lagrangian is regular (Lemma 29). For fixed γ(0), the

values of the tangent γ′(0) satisfying equation (7.6) cut out an affine cone over a curve in

the projective tangent space at γ(0). This cone is the “null cone” for the Lagrangian L, and

it coincides with the tangent cone to Nγ(0) at the vertex γ(0). As in Property 4 of §7.1.1,

for P ∈M, denote by CP ⊂ PTPM the curve cut out in the projective tangent space by the

equation L(P, v) = 0.
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Although the Lagrangian L is not itself contact-invariant, by the argument already given

its locus of zeros is contact-invariant. Under contact transformations, the Lagrangian is

determined up to rescaling by a nonvanishing function of γ(0) and γ′(0),

L(γ(0), γ′(0))→ Ω(γ(0), γ′(0))L(γ(0), γ′(0)).

The curves NPQ that generate the causal cone NP are extremals for the energy functional

E[γ] =
1

2

∫ b

a

L(γ(t), γ′(t)) dt.

Theorem 19. A third-order differential equation determines a causal geometry.

Proof. Property 1 of §7.1.1 reflects our running localization assumption that the third-order

differential equation under consideration is regular. In local coordinates on M, the system

of equations

f(x; q1, q2, q3) = f(x; p1, p2, p3), fx(x; q1, q2, q3) = fx(x; p1, p2, p3) (7.8)

for unknowns x,Q = (q1, q2, q3) and fixed P = (p1, p2, p3) has Jacobian matrix


fx(x; q1, q2, q3)− fx(x; p1, p2, p3) ∂f

∂q1

∂f
∂q2

∂f
∂q3

fxx(x; q1, q2, q3)− fxx(x; p1, p2, p3) ∂fx
∂q1

∂fx
∂q2

∂fx
∂q3

 .

The matrix always has rank two by (7.3). Moreover, at a solution Q 6= P of the original

system, the lower left-hand corner cannot be zero, by uniqueness of solutions. Thus the

first column, along with one of the remaining three columns must yield an invertible 2 ×
2 submatrix. The implicit function theorem then implies that the solution is a smooth

submanifold away from the vertex Q = P .

For Property 2, NPR is the set of solutions Q = (q1, q2, q3) of (7.8) for a given value of

x, P = (p1, p2, p3). Because (7.8) has rank two in the qi variables, the space of solutions is a

smoothly embedded curve. These curves clearly cover NP . Furthermore, two distinct curves

meet only at the vertex P , by uniqueness of solutions of differential equations.

Property 3 is obvious. Property 4 is equivalent to the assertion that L is a regular

Lagrangian, which is proven in Lemma 29 of the next section.
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Finally, suppose without loss of generality that in the statement of Property 5, R is a

point between P and Q on NPQ. Along the curve NPQ the value of the parameter x is fixed,

and NPQ itself consists of all points R such that

f(x;R) = f(x;P )

fx(x;R) = fx(x;P ).

The tangent plane to NP at the point R is the annihilator of dRf(x,R).2 This is the same

tangent plane as that obtained by interchanging the roles of P and Q.

7.1.3 Hamiltonian formulation

As in the previous section, for P ∈M, let y = f(x;P ) denote the solution of the differential

equation corresponding to P . Once again, contact-invariance is broken, but ultimately we

will only be concerned with contact-invariant information contained in the solution. Let dPf

denote the exterior derivative of f regarding x as constant. In local coordinates (p1, p2, p3)

on M,

dPf(x; p1, p2, p3) =
∂f

∂p1

dp1 +
∂f

∂p2

dp2 +
∂f

∂p3

dp3.

Then x 7→ dPf(x;P ) defines a curve in the cotangent space T ∗PM. Denote the associated

projective curve by C̃P ⊂ PT ∗M.

This curve is linked to the curve CP cut out by the Lagrangian via the following con-

struction. Let V be a three-dimensional vector space and C a smooth curve in the projective

plane PV . The dual projective plane PV ∗ is naturally identified with the space of lines in

PV . The dual curve C∗ is the curve in PV ∗ defined by locus of lines tangent to C. Suppose

that C is a nondegenerate curve in PV , with parameterization t 7→ γ(t). At a point γ(t)

of C, the corresponding point of the dual curve is obtained by solving for γ∗(t) ∈ PV ∗ the

equations

〈γ∗(t), γ(t)〉 = 0

〈γ∗(t), γ′(t)〉 = 0.

Properly speaking, to make sense of the second equation, it is necessary to choose a lift

of γ to a curve in V . Modulo the first equation, the second equation does not depend on

the choice of lift, and so there is no ambiguity in speaking of the solution of the system of

equations.

2Here and elsewhere, the notation dRf(x;R) is the exterior derivative of f with respect to the variable
R only. Equivalently, it is the exterior derivative of f modulo the relation dx = 0.
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Proposition 2. C̃P ⊂ PT ∗PM and CP ⊂ PTPM are mutually dual.

Proof. The curve C̃P is characterized as the image of the map

x 7→ dPf(x;P ).

The dual curve to C̃P is defined by the equations

〈γ∗(x), dPf(x;P )〉 = 0

〈γ∗(x), dPfx(x;P )〉 = 0.
(7.9)

But these two equations are identical with the equations that characterize CP .

Alternatively, choose local coordinates at P and linearize the differential equation at the

solution defined by P . Then

f(x; p1, p2, p3) = φ1(x)p1 + φ2(x)p2 + φ3(x)p3

and so

dPf = φ1(x)dp1 + φ2(x)dp2 + φ3(x)dp3.

The incidence relation between f(x; p1, p2, p3) and a nearby solution f(x; p1+dp1, p2+dp2, p3+

dp3) is then precisely

φ1(x)dp1 + φ2(x)dp2 + φ3(x)dp3 = 0

φ′1(x)dp1 + φ′2(x)dp2 + φ′3(x)dp3 = 0

but these are the same equations that characterize the dual curve of C̃P .

Lemma 29. Let L : TM→ R be a Halitonian (7.10). Then L is regular in a neighborhood

of each point of CP .
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Indeed, it is sufficient to show that the Hessian matrix ∂2L/∂q̇i∂q̇j is nonsingular at each

point of CP . The Lagrangian is defined by

L(q, q̇) =

(
q̇i
∂f

∂qi
(x(q, q̇), q)

)(
q̇j
∂fxx
∂qj

(x(q, q̇), q)

)
. (7.10)

The function x(q, q̇) is defined by

q̇i
∂fx
∂qi

(x(q, q̇), q) = 0. (7.11)

In particular, by implicit differentiation,

∂x

∂q̇i
= − ∂fx/∂qi

q̇k∂fxx/∂qk
. (7.12)

At a point of CP , in addition the following holds:

q̇i
∂f

∂qi
(x(q, q̇), q) = 0. (7.13)

The Hessian at a point of CP is computed by differentiating (7.10), imposing (7.11) and

(7.13) along the way, and then finally substituting (7.12). In detail, denote fi = ∂f/∂qi,

fxi = ∂fx/∂qi, etc., and xi = ∂x/∂q̇i. Then

L = q̇kfkq̇
`fxx`

Li = fiq̇
`fxx` + q̇kfkfxxi + q̇kfxkxiq̇

`fxx` + q̇kfkq̇
`fxxx`xi

Lij = fxixj q̇
`fxx` + fifxxj + fiq̇

`fxxx`xj + fjfxxi+

fxjxiq̇
`fxx` + q̇kfxxkxixj q̇

`fxx` + fj q̇
`fxxx`xi (mod (7.11), (7.13))

= −fxifxj + fifxxj + fxxifj − fifxj
(
q̇`fxxx`
q̇kfxxk

)
− fxifj

(
q̇`fxxx`
q̇kfxxk

)
by (7.12). Thus the Hessian matrix of L has the form

HessL = −AAT +BCT + CBT

where the column vectors A,B,C are defined by

Ai = fxi

Bi = fi

Ci = fxxi −
q̇`fxxx`
q̇kfxxk

fxi.
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By the hypothesis (7.3), A,B,C are linearly independent, and so

det HessL = −(det[A B C])3 6= 0,

which establishes the lemma.

The Legendre transformation associated to the Lagrangian L is a function L : TM →
T ∗M covering the projection onto M . Over a point P ∈ M, L : TPM → R, and L = DL,

the vertical exterior derivative of L. The Hamiltonian on the cotangent bundle associated to

the degree 2 homogeneous function L is defined by H = L ◦L −1. Here L −1 is the inverse,

possibly only locally defined near points of CP , of the function L : TPM → T ∗PM .

By Lemma 29, H is well-defined in a neighborhood of the preimage of CP under L . The

Hamiltonian, where it is defined, vanishes precisely on the dual curve C̃P . Indeed, in local

coordinates,

Li =
∂L

∂q̇i
= fiq̇

`fxx` + q̇kfkfxxi + q̇kfxkxiq̇
`fxx` + q̇kfkq̇

`fxxx`

= fiq̇
`fxx`

when evaluated at any point of CP . Thus L is proportional to dpf at each point of CP .

Inverting, we conclude that L ◦L −1(dPf) = 0, so H vanishes along C̃P .

The following alternative construction of the Hamiltonian also applies, by linearizing

the problem at P . In local coordinates at P , φi(x) = ∂f
∂pi

, i = 1, 2, 3 define independent

solutions of the linearized ordinary differential equation. In terms of these three solutions,

the linearized equation itself can be recovered by solving the 3× 3 system for the unknown

coefficients hi:

φi(x)h0(x) + φ′i(x)h1(x) + φ′′i (x)h2(x) = φ′′′i (x), i = 1, 2, 3. (7.14)

Cramer’s rule gives

h0(x) =

∣∣∣∣∣∣∣∣∣
φ′′′1 φ′1 φ′′1

φ′′′2 φ′2 φ′′2

φ′′′3 φ′3 φ′′3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ1 φ′1 φ′′1

φ2 φ′2 φ′′2

φ3 φ′3 φ′′3

∣∣∣∣∣∣∣∣∣

, h1(x) =

∣∣∣∣∣∣∣∣∣
φ1 φ′′′1 φ′′1

φ2 φ′′′2 φ′′2

φ3 φ′′′3 φ′′3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ1 φ′1 φ′′1

φ2 φ′2 φ′′2

φ3 φ′3 φ′′3

∣∣∣∣∣∣∣∣∣
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h2(x) =

∣∣∣∣∣∣∣∣∣
φ1 φ′1 φ′′′1

φ2 φ′2 φ′′′2

φ3 φ′3 φ′′′3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
φ1 φ′1 φ′′1

φ2 φ′2 φ′′2

φ3 φ′3 φ′′3

∣∣∣∣∣∣∣∣∣

.

The Lagrangian of the original equation localized at the point P is equal to the La-

grangian of the linearized equation. It is given first by solving

φ′1(x)q1 + φ′2(x)q2 + φ′3(x)q3 = 0

for x as a function of q1, q2, q3. In that case,

L(q) = (φ1(x(q))q1 + φ2(x(q))q2 + φ3(x(q))q3) (φ′′1(x(q))q1 + φ′′2(x(q))q2 + φ′′3(x(q))q3) .

The associated Hamiltonian is obtained by the same construction, but applied to solu-

tions φ̃1, φ̃2, φ̃3 of the adjoint equation to (7.14):

y(x)h0(x)− (y(x)h1(x))′ + (y(x)h2(x))′′ = −y′′′(x).

The following theorem is due to Wilczynski [84]; cf. also Olver [61]:

Theorem 20. The projective curves x 7→ φ1(x) ∂/∂q1 +φ2(x) ∂/∂q2 +φ3(x) ∂/∂q3 in PTPM
and x 7→ φ̃1(x) dq1 + φ̃2(x) dq2 + φ̃3(x) dq3 are mutually dual.
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7.2 HAMILTONIAN SPRAY

As the point P varies, the dual curve C̃P cut out by the Hamiltonian defines a subfibration

of the projective cotangent bundle PT ∗M. The four-manifold defined by the total space of

this fibration is denoted here by S, and the cone over S in the cotangent bundle T ∗M is

denoted by S̃. The canonical one-form θ on T ∗M is homogeneous of degree one, and pulls

back to a natural one-form defined up to scale on S̃.

For a fixed choice of Hamiltonian homogeneous of degree two, define the Hamiltonian

spray on T ∗M as the unique vector field X such that

Xydθ = dH.

The Hamiltonian spray is invariant up to scale under rescalings of H. Moreover, it is tangent

to the variety S̃ cut out by H = 0 since XydH = 0. The vector field X is homogeneous of

degree one: if µt : T ∗M → T ∗M denotes the dilation mapping in the fibers, then Xtα =

t(µt)∗Xα.

The Hamiltonian spray will now be used to define a filtration on TS in a manner analogous

to the proof of Theorem 18. Let V be a nonvanishing vector field that is vertical for the

fibration S→M. Let T 1 ⊂ TS be the subbundle spanned by X, T 2 the subbundle spanned

by X, V . Let T 3 ⊂ TS be the annihilator of θ. Since X and V both annihilate θ, T 2 ⊂ T 3.

Moreover, since θ is annihilated by X and is Lie derived along it, [Γ(T 1),Γ(T 2)] = Γ(T 3).

Because θ ∧ dθ does not vanish when pulled back along on any section of the cotangent

bundle, it also does not vanish on S and so T 3 is not Frobenius integrable at any point, and

thus [Γ(T 3),Γ(T 3)] = Γ(TS)

It remains only to show that [Γ(T 1),Γ(T 2)] = Γ(T 3). It is sufficient to prove that

X, V, [X, V ] are linearly independent. As in the proof of Theorem 18, it is convenient to

work with a particular choice of vector field V . Define the tensor h ∈ Sym2 T (T ∗M) to be

the vertical Hessian of H. In coordinates,

hij =
∂2H

∂pi∂pj
,

and let hij be the inverse of hij. These two tensors can be used to raise and lower indices.

Let ε be the associated volume tensor in the fiber. In coordinates

ε = εijkdpi ⊗ dpj ⊗ dpk.

The angular momentum

Li = εijkpjhk`
∂

∂p`
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kills H, since ∂H/∂p` = p`, and so is tangent to the null cone bundle S̃. Furthermore, on

homogeneous functions of degree zero along the null cone, Li factors through a scalar operator

Li = piV , because pi and ∂/∂pi are an orthogonal basis for the orthogonal complement of

pi. This defines a vertical vector V . To show that X, V, [X, V ] are linearly independent, it

is enough to show that dθ([X,Li], Lj) 6= 0. The Lie bracket is given by

[X,Li] = −εijkpj
∂

∂xk
+ T ij

∂

∂pj

for some tensor T . So

dθ([X,Li], Lj) = εimnpmhknε
jknpk = pipj − pkpkhij

which does not vanish when restricted to the null cone.

Thus by Lemma 28, S equipped with its geodesic spray and vertical vector field is lo-

cally isomorphic to the space J2. Because of the preferred direction V , the inclusion of

bundles T 1 ⊂ T 2 splits, and thus gives rise to a third-order differential equation the distin-

guished curves of which are the fibers of S→ M. The entire procedure is reversible, by the

construction of the preceding section, which establishes Theorem 1.

7.3 RECOVERING THE DEGENERATE METRIC

The degenerate metric on S is defined as follows. A point of S consists of a point P ∈ M
and v ∈ CP . Now, through v ∈ CP , there is a uniquely defined osculating conic to CP at

v. This osculating conic in turn defines a unique conformal metric hP,v : T ∗M× T ∗M→ R.

A degenerate conformal Lorentzian metric is defined by pullback on the subspace of the

cotangent bundle of S that annihilates the vertical direction:

gP,v(α, β) = hP,v(π∗α, π∗β).

A proper degenerate conformal Lorentzian metric is obtained by dualizing.3 In order to derive

the formula for the metric (7.1), it is necessary to obtain explicit formulas for the osculating

conic of a projective curve. The overall program is inspired by the work of Wilczynski [84].

3If V is a vector space and W ⊂ V , and B is a nondegenerate bilinear form on W , then B gives rise
to a linear isomorphism TB : W → W ′. The dual (degenerate) form on V ′ is given by the mapping

TB̃ : V ′ → V ′/W⊥
∼=−→ W ′

T−1
B−−−→ W

⊂−→ V where the first is the quotient map, the second is the natural
isomorphism, the third is the inverse of TB , and the last is the inclusion map.
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Suppose that φ(t) = (φ1(t), φ2(t), φ3(t)) parametrically specifies the homogeneous coor-

dinates of a projective curve, with det(φ, φ′, φ′′) 6= 0. The projective curve is a conic provided

that there exists a 3× 3 symmetric non-singular matrix A such that

φTAφ = 0.

Supposing that φ is given, the task is to determine a matrix A such that at a given point

t = t0 this holds to as many orders in the expansion in powers of t− t0 as possible. Since A

is regarded projectively, it has 5 independent numerical components. These are obtained by

solving the system of 5 equations linear in the entries of A:

(φTAφ)(t0) = 0

(φTAφ)′(t0) = 0

(φTAφ)′′(t0) = 0

(φTAφ)′′′(t0) = 0

(φTAφ)(4)(t0) = 0.

Once such a matrix is found, the obstruction to continuing to the fifth order is the derivative

(φTAφ)(5)(t0), and is the so-called “projective length element” associated to the curve.

By the first two equations, Aφ(t0) is proportional to the cross product φ(t0)×φ′(t0), and

since A is taken projectively, we can fix a scale by taking

Aφ(t0) =
φ(t0)× φ′(t0)

det(φ(t0), φ′(t0), φ′′(t0))

or, equivalently, φ(t0)TAφ′′(t0) = 1. The third and fourth equations then give, respectively

φ′T (t0)Aφ′(t0) = −1

φ′T (t0)Aφ′′(t0) = −1

3

det(φ, φ′, φ′′′)(t0)

det(φ, φ′, φ′′)(t0)
.

The final equation now gives

3φ′′T (t0)Aφ′′(t0) + 4φ′T (t0)Aφ′′′(t0) = −det(φ, φ′, φ(4))(t0)

det(φ, φ′, φ′′)(t0)
.

Now the coordinates of the curve φ(t) satisfy a third-order differential equation

φ′′′(t) = h0(t)φ(t) + h1(t)φ′(t) + h2(t)φ′′(t)
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where hi are given explicitly in terms of determinants of φ and its first three derivatives as

in (7.14). The above equations reduce to

φT (t0)Aφ(t0) = 0

φT (t0)Aφ′(t0) = 0

φT (t0)Aφ′′(t0) = 1

φ′T (t0)Aφ′(t0) = −1

φ′T (t0)Aφ′′(t0) = −1

3
h2(t0)

3φ′′T (t0)Aφ′′(t0) + 4φ′T (t0)Aφ′′′(t0) = −h2
2(t0)− h′2(t0)− h1(t0).

The last equation simplifies by substituting (7.14) for φ′′′ and then using the remaining

equations to give

3φ′′T (t0)Aφ′′(t0) =
1

3
h2

2(t0)− h′2(t0) + 3h1(t0).

The obstruction (φTAφ)(5)(t0) can now be calculated by expanding any terms involving

φ′′′, φ(4), φ(5) in terms of lower order and then using the above equations. We find that

(φTAφ)(5)(t0) = 12h0(t0) + 4h1(t0) +
8

9
h2(t0)3 − 6h′1(t0)− 4h2(t0)h′2(t0) + 2h′′2(t0), (7.15)

which is precisely the Wünschmann invariant for the equation (7.14).

The matrix A obtained from this procedure is also of interest, because it gives the

conformal Lorentzian structure. In the basis (φ, φ′, φ′′),4 the symmetric 2-tensor A is given

by

A =



0 0 1

0 −1 −1
3
h2(t0)

1 −1
3
h2(t0) 1

9
(h2

2(t0)− 3h′2(t0) + 9h1(t0))


.

When, as in section 7.1.3, the curve φ(t) ∈ TPM is the linearization of the solution

f(x;P ) to the differential equation at a point P ∈M, then (7.14) is the linearization of the

differential equation at P :

h0(x) = Fy(x, f(x;P ), fx(x;P ), fxx(x;P )), h1(x) = Fp(x, f(x;P ), fx(x;P ), fxx(x;P )),

4That this basis is “nonholonomic” (i.e., nonconstant) is significant for the inverse construction, discussed
presently.
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h2(x) = Fq(x, f(x;P ), fx(x;P ), fxx(x;P ))

The projective length element obtained from (7.15) agrees with the Wünschmann invariant

(7.2) of the original equation. Substituting in for the components of the 2-tensor A gives the

metric

g = −
(
∂

∂p

)2

+ 2
∂

∂q

∂

∂y
− 2

3
Fq

∂

∂p

∂

∂q
+
F 2
q − 3V (Fq) + 9Fp

9

(
∂

∂q

)2

.

The dual degenerate conformal metric, defined on the full tangent bundle of S, agrees with

(7.1).

7.4 INVERSE PROBLEMS

By Theorem 1, every causal geometry gives rise to a third-order differential equation. A more

subtle inverse problem is, given a rank three degenerate conformal Lorentzian metric on the

tangent bundle of a four manifold, when is there a causal geometry from which it arises?

More precisely, given a one-parameter family of plane conics, defined by 3×3 nondegenerate

symmetric 2-tensors A(t), when is there a plane curve φ(t) such that, as t→ t0,

φ(t)TA(t0)φ(t) = O(t− t0)5?

Interchanging t and t0, a necessary and sufficient condition is that

φ(t0)TA(t)φ(t0) = O(t− t0)5.

So at each t0, the point φ(t0) must satisfy five equations

φ(t0)TA(t0)φ(t0) = 0

φ(t0)TA′(t0)φ(t0) = 0

φ(t0)TA′′(t0)φ(t0) = 0

φ(t0)TA′′′(t0)φ(t0) = 0

φ(t0)TA(4)(t0)φ(t0) = 0

In this system, the matrices A(t0), A′(t0), A′′(t0), A′′′(t0), A(4)(t0) should be regarded as given,

and the 3-vector φ(t0) as unknown homogeneous coordinates. The system is clearly overde-

termined: the two (projective) degrees of freedom in φ(t0) must satisfy five equations. Geo-

metrically the point φ(t0) must simultaneously lie on five plane conics, but the intersection

of more than two plane conics is generically empty.
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The overdetermined system gives rise to a consistency condition on A and its first four

derivatives, which we now describe. In the generic case, we can solve the linear equations

for a 3× 3 symmetric matrix X

trA(t0)X = 0

trA′(t0)X = 0

trA′′(t0)X = 0

trA′′′(t0)X = 0

trA(4)(t0)X = 0.

(7.16)

This can be solved uniquely for X, up to scaling, provided the system has rank five. The

consistency condition is then that the solution X has rank one and so splits as an outer

product

X = φ(t0)φ(t0)T .

This happens if and only if every 2× 2 minor of X vanishes.5

7.4.1 Intermediate cases

When (7.16) has rank one, the Wünschmann invariant vanishes. When it has full rank, then

it gives rise to a causal curve provided the 2 × 2 minors of the solution X all vanish. A

calculation done in Mathematica shows that, for structures coming from third-order equa-

tions, these are the only two possibilities: either the system has full rank (and thus nonzero

Wünschmann) or it has rank one (and zero Wünschmann).

However, a priori such a system, coming from an arbitrary degenerate conformal Lorentz-

ian structure in four dimensions, can have any rank between 1 and 5. It is interesting to

understand why these intermediate cases do not lead to causal curves.

Rank 2. Suppose that (7.16) has rank two (in an interval around t0). Then A′′(t) =

f(t)A(t) + g(t)A′(t) for some functions f and g. The initial matrices A(t0), A′(t0) can be

brought simultaneously into diagonal form by a transformation of the form

A(t0) 7→MTA(t0)M, A′(t0) 7→MTA′(t0)M.

5The minors are not independent, however. The variety in P(Sym2(R3)) on which the 2 × 2 minors of
a symmetric 3 × 3 matrix vanish is the well-known Veronese surface, which is not a complete intersection.
Locally it is the zero locus of any three minors coming from distinct rows and columns.

142



Relative to this fixed initial basis, A(t) and A′(t) remain diagonal throughout the interval of

existence. It is convenient to put

~A(t) =


A11(t)

A22(t)

A33(t)

 , ~X =


X11

X22

X33

 .
The two equations of (7.16) reduce to

trA(t)X = ~A(t) · ~X = 0

trA′(t)X = A′11(t)X11 + A′22(t)X22 + A′33(t)X33 = 0

Solving:
~X = ~A(t)× ~A′(t)

up to an overall scale. Now if φ(t) is a curve solving

φ(t)TA(t)φ(t) = 0 φ(t)TA′(t)φ(t) = 0

then the entries of φ must square to the entries of ~X, so that

φ(t) =


±
√
~A× ~A′ · e1

±
√
~A× ~A′ · e2

±
√
~A× ~A′ · e3

 .
Differentiating gives

φ′i(t) = ±g(t)

2

√
~A× ~A′ · ei

and so φ′ is proportional to φ. Thus the range of φ(t) is a projective point (in the complex

sense).6 Therefore there are one or no solutions, depending on whether the square roots are

all real.

Rank 3 and 4. We argue indirectly that, if (7.16) has rank 3 or 4 throughout an interval

and φ(t) is a C3 solution in that interval, then φ(t) parameterizes either a projective point

(as in the rank 2 case) or a line (which is degenerate from our point of view). We were

unable to devise a direct argument analogous to the rank 2 case. In general, because φ(t)

is a three-vector, there must be a non-trivial linear relation between φ(t) and its first three

6Indeed, if φ(0) and φ′(0) are linearly independent, then φ(0)×φ′(0)·φ(t) satisfies a second order ode with
both initial conditions zero, so φ(0)× φ′(0) · φ(t) ≡ 0 which implies that φ(t) is constrained to a projective
line. If φ(0) and φ′(0) are linearly dependent, then smoothness of dependence on initial conditions gives the
result.
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derivatives. This must either give a proper third-order equation in an interval, or else there

is a linear relation between φ, φ′, φ′′. In the latter case, φ(t) does indeed parameterize a

line (if it satisfies a second order equation) or a point (if the equation is first order). In

the former case, the coefficients of A(t) can be given in terms of φ(t), φ′(t), φ′′(t) and the

coefficients of the third-order equation h1(t), h2(t), h3(t), as in the previous section. But, as

already indicated, this implies that the system (7.16) has rank either 1 or 5, a contradiction.
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8.0 STRUCTURE OF CAUSAL GEOMETRIES

This chapter discusses the structure of causal geometries. The main theorems are the theorem

that there is an analog of the Weyl tensor depending only on the causal structure, and that

the Raychaudhuri–Sachs theorem holds for causal geometries. The main ingredients are

therefore in place to derive the singularity theorem along the lines of Penrose [65].

This chapter is organized as follows. It begins with a discussion of the null geodesic

dynamics, in which the causal geometry is specified by a subbundle of the sphere bundle

over a manifold M . For any Lagrangian representing the causal geometry, it is possible to

associate an Ehresmann connection on the null cone bundle. This connection depends on the

choice of Lagrangian, but its dependence can be described fairly explicitly. The associated

curvature also depends on the choice of Lagrangian, but a suitable tracefree part of it does

not. This trace-free part agrees exactly with the Weyl tensor when the causal geometry

comes from a quadratic Lagrangian.

8.1 NULL GEODESIC DYNAMICS

8.1.1 Legendrian dynamics

Let M be a smooth manifold of dimension n ≥ 3. We here recall the notation of §2.11: TM ′

denotes the tangent bundle with the zero section deleted; SM = STM is the sphere bundle;

σ : TM ′ → SM is the projection map. The dynamics is specified by a smooth hypersurface

G (of dimension 2n − 2) in the unit sphere bundle SM , with π(G ) = M , which has the

property that for any x ∈ M , the intersection G ∩ SMx is a smooth submanifold of the

sphere SMx of dimension n− 2. Note that the space H = σ−1G , a smooth hypersurface in

TM ′ invariant under the scaling (x, v)→ (x, tv) for t > 0, also specifies the dynamics.

If (x, v) ∈H , the vertical tangent space VH(x,v) to H at (x, v) is the intersection of the

tangent space to H at (x, v) with the vertical space V TM(x,v). So VH(x,v) has dimension

145



n − 1. The image of VH(x,v) under the map λ
−1

(x,v) : V TM(x,v) → TMx is then a subspace

of TMx, also of dimension n− 1. There is then a unique maximal subspace of TH(x,v) that

projects down under the map dπTM ′ to λ
−1

(x,v)(VH(x,v)). This subspace is a codimension one

distribution within TH , and therefore defines a distribution of hyperplanes on H :

ΛH = TH ∩ dπ−1
TM ′

(
λ
−1

(VH )
)
.

This entire construction is invariant under the scalar homothety δ, and so ΛH descends to

a distribution of ΛG on G as well.

Definition 21. A contact symmetry of a distribution Λ on a manifold X is a one-parameter

local group of diffeomorphisms of X that preserves Λ and whose generators are everywhere

tangent to Λ.

Definition 22. The dynamics of G is the space of contact symmetries of ΛG .

8.1.2 Lagrangian approach to the dynamics

Let H have local defining equation G(x, v) = 0 where G is a smooth function defined over

an open set U of TM ′ that is invariant under δ satisfying:

• DG 6= 0 throughout U

• G homogeneous of some real degree k: G(x, tv) = tkG(x, v) for all t > 0 and all (x, v) ∈ U .

For convenience, we shall henceforth assume that k 6= 1.

There is a bilinear form gh on π−1
TM ′TM defined for vector fields X and Y that lift vector

fields on M by

gh(X, Y ) = DXDYG = DyDXG = D2
X,YG.

The definition is independent of the choice of lift of X and Y , and it is bihomogeneous under

rescalings X → (π∗TM ′a)X and Y → (π∗TM ′b)Y where a, b are functions on M , and so it gives

rise to a bilinear form. The h here stands for “horizontal”, a reflection of the fact that gh is

a section of V 0TM ⊗ V 0TM . Applying λ
−1

yields a bilinear form gv in V ∗TM ⊗ V ∗TM :

gv(X, Y ) = gh(λ
−1

(X), λ
−1

(Y )).

Here the subscript v means “vertical”, since gv is a bilinear form on V TM . In coordinates,

gv =
∂2G

∂vi∂vj
dvi ⊗ dvj = gijdv

i ⊗ dvj

gh =
∂2G

∂vi∂vj
dxi ⊗ dxj = gijdx

i ⊗ dxj.
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Lemma 30. Let α ∈ ΓTM ′(T
∗TM ′) be the differential form α = DG. Then, on restricting

to H , the distribution ΛH is the annihilator of α in TH .

Proof. By the assumption thatDG 6= 0, the image of TH under α is always one-dimensional,

and so the annihilator of α is a distribution of hyperplanes in TH . Suppose α(X) = 0 for

X ∈ TH . Then, by definition of the D operator, λXy dG = 0. So λX ∈ VH . That is,

X ∈ λ−1(VH ) as required.

Lemma 31. gh(X, Y ) = 2dα(λX, Y )

Proof. Both sides vanish if either X or Y is vertical, so it is sufficient to establish the lemma

under the additional assumption that X and Y are lifts of vector fields from M . Since

α(λX) = 0,

2dα(λX, Y ) = (LλXα)(Y ) = λX(α(Y ))− α([λX, Y ])

= D2
X,YG− α([λX, Y ]) = gh(X, Y )− α([λX, Y ])

But if X and Y are lifts of vector fields, then [λX, Y ] is vertical, and so α([λX, Y ]) = 0.

Assume henceforth that the bilinear form gv is nondegenerate. This assumption is justi-

fied in part by

Lemma 32. The bilinear form gv is nondegenerate if and only if dα is a symplectic form

on a neighborhood of H in TM ′.

Proof. The subspace V TM ′ is an isotropic space for dα. Choose a complementary space

HTM ′ in TTM ′. Then dα induces a bilinear form on V TM ′ × HTM ′ and dα(X, Y ) =

2gv(X,λY ).

In coordinates,

α =
∂G

∂vi
dxi.

Set pi = ∂G/∂vi. By the nondegeneracy of g, the Jacobian matrix ∂pi/∂v
j is nonsingular,

and so this defines a new set of (local) coordinates on TM ′. In the new coordinates,

α = pidx
i.

These are the “canonical coordinates” for the dynamical system.

The symplectic form dα allows us to define the Poisson bracket of two functions f1, f2

(in a neighborhood of H ) by

{f1, f2} = (dα)−1(df1, df2).

This satisfies the usual rules:
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• {f1, f2} = −{f2, f1}

• {f1, {f2, f3}}+ {f2, {f3, f1}}+ {f3, {f1, f2}} = 0

• {f1, c} = 0 if c is constant

• {f1, f2 + f3} = {f1, f2}+ {f1, f3}

• {f1, f2f3} = {f1, f2}f3 + {f1, f3}f2

The last three properties imply that the operator {f1,−} : f2 7→ {f1, f2} is a derivation on

smooth functions, and therefore corresponds to a vector field on M .

In the canonical coordinates,

{f,−} =
∂f

∂pi

∂

∂xi
− ∂f

∂xi
∂

∂pi
.

As we are interested in the intrinsic geometry of H , we shall consider the pullback of α

to H .

Lemma 33. When pulled back to H , α has Darboux rank 2n− 3:

α ∧ (dα)n−2 6= 0, (dα)n−1 = 0.

Proof. The fibers of H → M are n − 1 dimensional, and the bilinear form gv on VH is

annihilated by the generators of scaling up the fiber. So on VH , gv has rank n− 2. By the

argument in the previous lemma, (dα)n−1 = 0. However, applying the previous argument to

ΛH = α0, and choosing a complement for this in TG gives α ∧ (dα)n−2 6= 0.

The first main result uses the Darboux theorem:

Lemma 34. Let M be a manifold of dimension 2n − 1 and α a one-form of Darboux rank

2r − 1. Then the space of vector fields X such that

Xyα = 0, α ∧LXα = 0 (8.1)

forms an integrable distribution of rank 2(n− r).
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Proof. Using the usual version of Darboux’ theorem, there exists a coordinate system

x, y1, . . . , yn−1, p1, . . . , pn−1 on M such that

α = dx+
r−1∑
i=1

pi dy
i,

with the last (n− r) p’s and y’s not participating. Hence the vector fields ∂/∂pi and ∂/∂yi

for i = r, . . . , n− 1 form an integrable distribution of rank 2(n− r) satisfying (8.1).

Now, note that any X satisfying (8.1) must also satisfy

Xy(α ∧ (dα)r−1) = 0.

But α∧ (dα)r−1 = ±dx∧ dp1 ∧ · · · ∧ dpr−1 ∧ dy1 ∧ · · · ∧ dyr−1 is annihilated by X if and only

if X is a linear combination of ∂/∂pi and ∂/∂yi for i = r, . . . , n− 1.

Theorem 21. The dynamical vector fields on H are spanned as a C∞ module by H (the

generator of the scaling symmetry of H ) and the vector field V = (k − 1){G,−} restricted

to H .

The particular normalization of V ensures that it defines a spray; see Lemma 35 below.

Proof. By Lemma 33, there are exactly two linearly independent dynamical vector fields at

every point. Note that V is tangent to H since V (G) = (k−1){G,G} = 0, and H is tangent

to H since H is invariant under the scaling action. These are linearly independent, since

V (π∗H f) = (k− 1){G, π∗H f} is nonzero for some smooth function f on M , but H(π∗H f) = 0

for all such f .

Now, note that H satisfies Hyα = 0 (since λH = 0). If X is a lift of a vector field on

M , then δsλX = s−1λX. Differentiating gives LH(λX) = −λX. For such a vector field X,

[H,X] is vertical and so λ[H,X] = 0. It follows that α([H,X]) = 0, and therefore

(LHα)(X) = LH(λXydG)− α([H,X])

= −λXy dG+ λXyLHdG

= (k − 1)λXy dG = (k − 1)α(X).

Finally, in a neighborhood of H , V is characterized by

V ydα = −(k − 1)dG.
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Pulling back to G = 0 gives V ydα = 0. By the previous calculation, Hy dα = (k − 1)α.

Hence

V yα = (k − 1)−1V yHy dα = −(k − 1)−1HyV y dα

= Hy dG = kG

which also vanishes on H .

In coordinates, the dynamical vector fields are

H = vi
∂

∂vi

V = vi
∂

∂xi
+ ui

∂

∂vi
, uigij =

∂G

∂xj
− vi ∂2G

∂xi∂vj
.

The integral curve of the vector field V through a point (x, v) projects to a curve in M

whose initial velocity is v. That is, V is a semispray.

Lemma 35. V is a spray:

• [H,V ] = V

• H = λV

Proof. The calculations in the proof of the preceding lemma give

[H,V ]y dα = LH(V y dα)− V y(LHdα)

= k(V y dα)− (k − 1)V y dα = V y dα,

so [H,V ] = V .

For the second property, the definition of gh implies

dα(X,λY ) =
1

2
gh(X, Y ) = dα(Y, λX) = −dα(λX, Y ).

In particular, with X = V ,

dα(λV, Y ) = −dα(V, λY ) = (k − 1)dG(λY ) = (k − 1)α(Y ) = dα(H,Y ).

This is true for all Y and so H = λV by nondegeneracy of dα.
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Passing down to the sphere bundle SM , only the dynamical vector field V survives, up

to an overall positive scale, since H is in the kernel of dσ : TTM → TSM . This gives a

foliation of G by the dynamical curves, the (maximally extended) trajectories of V . These

dynamical curves are called null geodesics. The space of null geodesics, denoted by N , has

dimension 2n− 3. The distribution ΛG is Lie derived along the dynamical vector fields, and

so descends to a codimension one distribution on N . This distribution is a contact structure

since the relation αG ∧ (dαG )n−2 6= 0, valid for any nonzero αG in the annihilator of ΛG , also

descends to the quotient.

The null geodesics are naturally oriented, since at each point p of G , the vector field V

descends to a ray through the origin in TpG , which is oriented. The bundle G is time oriented

if and only if the space of oriented null geodesics is the disjoint union of two components,

N = N +∪N −, such that the oriented null geodesic through (x, v) lies in N ± if and only if

the oriented null geodesic through (x,−v) lies in N ∓. Then the elements of N + are called

future oriented and the elements of N − are called past oriented.

On H , the integral curves of V are called affinely parametrized null geodesics. These

carry a natural parametrization up to a translation, since they are the integral curves of

a single vector field. This natural parametrization requires having a particular defining

function G for H , although the definition of (unparametrized, oriented) null geodesics on

G does not.

8.2 EHRESMANN CONNECTION

8.2.1 The Ehresmann connection on H

The purpose of this section is to establish the following:

Theorem 22. There exists a unique operator P : TTM ′ → V TM ′ satisfying for all X, Y ∈
TTM :

1. (LV gh)(X, Y ) = gv (PX, λY ) + gv (PY, λX)

2. 2dα(X, Y ) = gv (PX, λY )− gv(PY, λX)

This operator defines an Ehresmann connection on TM ′, meaning that it has maximal rank

and satisfies P = P ◦ P . Furthermore,

P =
1

2
(IdTTM ′ +LV λ) . (8.2)

The restriction of P to H is also an Ehresmann connection on H : P (TH ) = VH .
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(Recall that λ is a section of V 0TM ′ ⊗ V TM ′, gh is a section of V 0TM ′ ⊗ V 0TM ′, and

gv is a section of V ∗TM ′ ⊗ V ∗TM ′.)

The proof is broken down into several lemmas.

Lemma 36. The Frölicher–Nijenhuis bracket of λ with itself is zero: [λ, λ] = 0. Thus if

X, Y ∈ ΓTM ′(TTM
′), then

λ([λX, Y ] + [X,λY ]) = [λX, λY ].

Moreover [V, λY ] = −Y (mod V TM ′) for all vector fields Y .

Proof. If X, Y ∈ ΓTM ′(TTM
′), then

1

2
[λ, λ](X, Y ) = [λX, λY ]− λ([λX, Y ] + [X,λY ])

The right-hand side vanishes if X or Y is a section of V TM ′, since V TM ′ is an integrable

distribution on which λ vanishes. Thus it suffices to prove that it vanishes if X and Y are

both lifts of vector fields from M . In that case, if f is a function on M , then

[λX, Y ]π∗TM ′f = (λX)Y π∗TM ′f = (λX)π∗TM ′((dπTM ′Y )f) = 0.

Hence [λX, Y ] ∈ ΓTM ′(V TM
′); likewise [X,λY ] ∈ ΓTM ′(V TM

′). So λ([λX, Y ] + [X,λY ]) =

0. Finally, [λX, λY ] = 0 as well for X, Y lifts of vector fields on M , since the one-parameter

groups LX and LY (defined in §2.11) commute in that case.

It remains only to show that [V, λY ] = −Y (mod V TM ′) for all vector fields Y . Taking

X = V in the first part gives

λ([λV, Y ] + [V, λY ]) = [λV, λY ].

But λV = H, so rearranging gives

λ[V, λY ] = (LHλ)(Y ) = −Y

as claimed.

Lemma 37. Any operator P : TTM ′ → V TM ′ satisfying property (1) has maximal rank

and satisfies P ◦ P = P .
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Proof. In view of the fact that imP ⊂ V TM ′ by assumption, it is enough to show that

P (λ(X)) = λ(X) for all X. This then proves that the range of P is equal to the vertical

tangent space, and that P acts as the identity on its range. Therefore P ◦ P = P , and P

has maximal rank.

To prove the claimed identity, (1) gives

(LV gh)(λX, Y ) = gv(PλX, λY ) + gv(PY, λλX)

= gv(PλX, λY )

since λλX = 0. Expanding the left-hand side,

(LV gh)(λX, Y ) = V (gh(λX, Y ))− gh([V, λX], Y )− gh(λX, [V, Y ])

= −gh([V, λX], Y )

since every vertical direction lies in the kernel of gh. But, by Lemma 35, [V, λX] = −X
(mod V TM), and therefore

−gh([V, λX], Y ) = gh(X, Y ).

Putting these together,

gh(X, Y ) = gv(PλX, λY ). (8.3)

This is true for all X, Y , and so PλX = λX, as claimed.

Lemma 38. There exists a unique P ∈ ΓTM ′(T
∗TM ′⊗V TM ′) satisfying conditions (1) and

(2).

Proof. If (1) and (2) hold, then

gv(PX, λY ) =
1

2
((LV gh)(X, Y ) + dα(X, Y )) .

By the non-degeneracy of gv and the fact that λ : TTM ′ → V TM ′ has maximal rank, this

admits at most a unique solution P (X) valid for all Y . To prove existence, it is enough to

show that the kernel of

Y 7→ (LV gh)(X, Y ) + dα(X, Y )

contains the kernel of λ, which is also the image of λ, V TM ′. So consider

(LV gh)(X,λY ) + dα(X,λY ) = −gh(X, [V, λY ]) + dα(X,λY )

= gh(X, Y )− gh(X, Y ) = 0

where we have used the fact that V is a spray in simplifying the first term, and the definition

of gh in simplifying the second term.
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Lemma 39. The unique connection P satisfying (1) and (2) is given explicitly by

P =
1

2
(IdTTM ′ +LV λ) .

Proof. Let P be the connection characterized by (1) and (2) and let P1 = 1
2

(IdTTM ′ +LV λ).

We will show that P1 acts as the identity on V TM ′, and that kerP1 = kerP . The first claim

follows at once from

(LV λ)(λX) = [V, λ2X]− λ[V, λX] = λX.

For the second claim, X ∈ kerP1 if and only if (LV λ)(X) = −X, or, equivalently,

−X = [V, λX]− λ[V,X].

Now X ∈ kerP if and only if

(LV gh)(X, Y ) = −2dα(X, Y )

for all Y ∈ TTM ′. Note

(LV gh)(X, Y ) = V (gh(X, Y ))− gh([V,X], Y )− gh(X, [V, Y ])

= V (dα(λX, Y ))− 2dα(λ[V,X], Y )− 2dα(λX, [V, Y ])

= 2dα([V, λX], Y )− 2dα(λ[V,X], Y )

= 2dα((LV λ)(X), Y ).

If X ∈ kerP1, then this last display reduces to −2dα(X, Y ), and so X ∈ kerP . Conversely,

if X ∈ kerP , then the same calculation shows that 2dα((LV λ)(X), Y ) = −2dα(X, Y ) for

all Y , and hence (LV λ)(X) = −X by the nondegeneracy of dα, and so X ∈ kerP1.

In coordinates,

P =
(
dvi + U i

jdx
j
)
⊗ ∂

∂vi
U i
j = −1

2

∂ui

∂vj
, uigij =

∂G

∂xj
− vi ∂2G

∂xi∂vj
.

The horizontal lift of the coordinate vector fields ∂/∂xi are

h(∂/∂xi) = (I − P )(∂/∂xi) =
∂

∂xi
− U j

i

∂

∂vj
.

Lemma 40. The operator P : TTM ′ → V TM ′ satisfying (1) and (2) is such that on H ,

P (TH ) = VH .
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Proof. Let X be a vector field in TH that Lie commutes with V . Since λV = H,

gv(P (X), H) = gv(P (X), λV ) =
1

2
(dα(X, V ) + (LV gh)(X, V )) .

It is sufficient prove that both terms of the right-hand side are zero. By the calculations in

the proof of Theorem 21

dα(X, V ) = (k − 1)dG(X) = 0

since X is tangent to H . Also, since X and V commute by hypothesis,

(LV gh)(X, V ) = V (gh(X, V )) .

Now gh(X, V ) = −2dα(X,λV ) = −2dα(X,H) = (k − 1)α(X), and thus

V (gh(X, V )) = (k − 1)V (α(X)) = (k − 1)(LV α)(X) = (k − 1)dG(X) = 0.

8.3 CURVATURE

8.3.1 Tidal force

Theorem 23. Let P be the connection of Lemmas 37 and 38. Then there exists S ∈
ΓTM ′(V

0TM ′ ⊗ V 0TM ′) such that 1
2
(L 2

V gh)(X, Y ) = gv(P (X), P (Y )) + S(X, Y ) for all

X, Y ∈ TTM ′. Conversely, P is the unique operator such that

1. (LV gh)(X, Y ) = gv(P (X), Y ) + gv(X,P (Y )) for all X, Y ∈ TTM ′.

2. There exists S ∈ V 0TM ′⊗V 0TM ′ such that 1
2
(L 2

V gh)(X, Y ) = gv(P (X), P (Y ))+S(X, Y )

for all X, Y ∈ TTM ′.

The symmetric tensor S is called the tidal force tensor.

Proof. For the first claim, it is enough to show:

1. (L 2
V gh)(λX, λY ) = 2gv(λX, λY )

2. (L 2
V gh)(λX, Y ) = 0 for all X and Y in the kernel of P .
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Indeed, assuming these are both true, decomposing two vectors X = Xh+Xv and Y = Yh+Yv

into kerP and imP components,

(L 2
V gh)(Xh +Xv, Yh + Yv)− gv(Xv, Yv) = (L 2

V gh)(Xh, Yh)

which defines S(X, Y ).

For (1), since (LV gh)(λX, λY ) = 0 and gh(λX,Z) = gh(Z, λY ) = 0 for all Z,

(L 2
V gh)(λX, λY ) = −(LV gh)([V, λX], λY )− (LV gh)(λX, [V, λY ])

= 2gh([V, λX], [V, λY ]) = 2gh(X, Y ) = 2gv(λX, λY ).

For (2), Y is in the kernel of P if and only if

(LV gh)(Y, Z) + 2dα(Y, Z) = 0

for all Z. Hence

(L 2
V gh)(λX, Y ) = V ((LV gh)(λX, Y ))− (LV gh)([V, λX], Y )− (LV gh)(λX, [V, Y ])

= V (gv(P (λX), λY )) + dα(Y, [V, λX])− gv(P (λX), λ[V, Y ])

= V (gh(X, Y )) + dα(Y, [V, λX])− gh(X, [V, Y ])

= (LV gh)(X, Y ) + gh([V,X], Y ) + dα(Y, [V, λX])

= gh([V,X], Y ) + 2dα(Y, [V, λX])

since dα(X, Y ) = 0 for X, Y ∈ kerP . Now,

[V, λX] = (LV λ)(X) + λ[V,X] = (2P − Id)X + λ[V,X]

= −X + λ[V,X].

So, continuing the above calculation gives

(L 2
V gh)(λX, Y ) = gh([V,X], Y ) + dα(Y, λ[V,X]) = 0

where we have used again the fact that dα(X, Y ) = 0 along with Lemma 31.

For the converse statement, let P be the affine space consisting of all operators P :

TTM ′ → V TM ′ satisfying

(LV gh)(X, Y ) = gv(P (X), λ(Y )) + gV (λ(X), P (Y )).
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By Lemma 37, any such P satisfies P ◦P = P , and so defines a projection onto V TM ′. Any

such operator is completely determined by its kernel. But for the P satisfying Lemma 38, it

follows from the first part of the lemma that

kerP =
⋂

X∈V TM ′
ker[(L 2

V gh)(X,−)].

8.3.2 Curvature of the connection

The curvature of the Ehresmann connection P is the section of V 0TM ′ ⊗ V 0TM ′ ⊗ V TM ′

defined by

R(X, Y ) = P [(Id−P )(X), (Id−P )(Y )].

Since the vertical bundle is integrable, this evaluates to

R(X, Y ) = [PX,PY ]− P ([PX, Y ] + [X,PY ]) + P [X, Y ].

Equivalently, this can be re-expressed in terms of the Fröhlicher–Nijenhuis bracket [46], by

R =
1

2
[P, P ].

Lemma 41. The Bianchi identity holds: [P,R] = 0. That is,

[PX,R(Y, Z)] +P [R(X, Y ), Z] +R([X, Y ], Z)−R([PX, Y ], Z) +R([PY,X], Z) + cyclic = 0.

Define Sλ ∈ T ∗TM ′ ⊗ V TM ′ to be the unique tensor such that

gv(S
λX,λY ) = S(X, Y )

for all X, Y , where S is the tidal force tensor of Theorem 23. The curvature determines the

tidal force, and vice versa:

Theorem 24. The curvature and tidal force are related by

SλX = −R(V,X)

for all X, Y ∈ TTM ′. Moreover,

[λ, Sλ] = −3

2
R.

The following lemma is of interest in its own right:
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Lemma 42. The tidal force tensor satisifies

S(X, Y ) =
1

2
gv(P (L 2

V λ)X,λY ).

So Sλ = 1
2
P (L 2

V λ). Moreover, if X, Y ∈ kerP , then

S(X, Y ) = −gv(P [V,X], λY ). (8.4)

Proof. Note first the operator identities

P (LV λ) = P, (LV λ)λ = λ. (8.5)

Thus

P (L 2
V λ)λX = P [V, (LV λ)λX]− P (LV λ)[V, λX] = 0.

So it is sufficient to establish the first statement of the lemma under the additional

hypothesis that X, Y ∈ kerP . In that case

X = −(LV λ)X

so

P (L 2
V λ)X = P [V, (LV λ)X]− P (LV λ)[V,X]

= −P [V,X]− P [V,X] = −2P [V,X].

So to prove the first part of the lemma, it is enough to show (8.4).

Since X, Y ∈ kerP , it follows by Theorem 23 that 2S(X, Y ) = (L 2
V gh)(X, Y ). Now,

2S(X, Y ) = (L 2
V gh)(X, Y ) = V (LV gh(X, Y ))−LV gh([V,X], Y )−LV gh(X, [V, Y ])

= −2dα([V,X], Y ) + 2dα(X, [V, Y ])

= 2V (dα(X, Y ))− 4dα([V,X], Y )

= −4dα([V,X], Y )

since dα(X, Y ) = 0 for X, Y ∈ kerP by Theorem 22. Thus, applying Theorem 22 twice

more,

2S(X, Y ) = −4dα([V,X], Y ) = −2(LV gh)([V,X], Y ) = −2gv(P [V,X], λY ).
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Proof of Theorem 24. For the first identity, it is enough to show that (L 2
V gh)(X, Y ) =

−2gv(R(V,X), λY ) for all X, Y ∈ kerP . Since V ∈ kerP as well, R(V,X) = P [V,X],

and so the last part of Lemma 42 gives

S(X, Y ) = −gv(R(V,X), λY ),

as claimed.

Now, by the first part of the theorem, Sλ = −1
2
iVR. So, by Lemma 16,

2[λ, Sλ] = −[λ, [V,R]∧]

= − ([[λ, V ], R]∧ + [V, [λ,R]]∧ − [iV λ,R] + [iRλ, V ]) .

Now iRλ = 0, iV λ = λV = H, and

[H,R] = [[H,P ], P ] + [P, [H,P ]] = 0

[[λ, V ], R]∧ = −[LV λ,R]∧ = −[2P − Id, R]∧

= −2[P,R]∧ + [Id, R]∧ = 2R +R = 3R.

So

[λ, Sλ] = −(3R + [V, [λ,R]]∧). (8.6)

Now, we claim that [λ,R] = 0. By the graded Jacobi identity,

[λ,R] =
1

2
[λ, [P, P ]] = −[P, [λ, P ]].

From P = 1
2
(Id +LV λ),

[λ, P ] =
1

2
([λ, Id] + [λ, [V, λ]]) =

1

2
[λ, [V, λ]]

since [λ, Id] = 0 by Lemma 17. The graded Jacobi identity applied once more gives

−[λ, [V, λ]] + [V, [λ, λ]] + [λ, [λ, V ]] = 0.

But [λ, λ] = 0 by Lemma 36, and [V, λ] = −[λ, V ]. So [λ, [V, λ]] = 0, and therefore [λ,R] = 0,

as claimed.

So (8.6) becomes [λ, Sλ] = −3
2
R as required.

Since R is skew-symmetric in its arguments, the first part of the theorem implies imme-

diately

Corollary 5. For any X ∈ TTM ′, S(V,X) = 0.
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8.4 CONFORMAL TRANSFORMATIONS

A generalized conformal transformation is the transformation from the Lagrangian G(x, v)

to the Lagrangian Ĝ(x, v) where

G(x, v) = Ĝ(x, v)J(x, v)−1.

Here J(x, v) is a non-zero function, smooth and defined in a neighborhood of the cone

G(x, v) = 0. We have the homogeneities, valid for any real t > 0:

G(x, tv) = tkG(x, v)

Ĝ(x, tv) = tpĜ(x, v)

J(x, tv) = tqJ(x, v)

where

p− q = k 6= 1, p 6= 1.

Denote by V̂ the dynamical vector field with respect to the transformed Lagrangian Ĝ.

Lemma 43. The dynamical vector field V transforms via V̂ = V + bH + GT where b =

−(p− 1)−1J−1V (J) = (k − 1)−1J−1V̂ (J) and T is some vertical vector field.

Proof. Since both V and V̂ satisfy Lemma 35, λ(V − V̂ ) = 0, and therefore the two vector

fields can only differ by a vertical vector field. But working modulo G = 0, since V̂ are

dynamical vector fields on H , V̂ must be in the span of V and H, and so

V̂ = V + bH (mod G = 0)

for some function b.

It remains to show that b = −(p− 1)−1J−1V (J) = −(k− 1)−1J−1V̂ (J). By definition of

α, α̂ = Jα +GDJ , and so pulling back to H gives

dα̂ ≡ dJ ∧ α + Jdα (mod G, dG).

Contracting with V gives on the one hand V ydα̂ ≡ V (J)α since V yα = 0 and V ydα =

−(k − 1)dG ≡ 0. On the other hand, using V = V̂ − bH gives

V ydα̂ ≡ −b(p− 1)α̂ ≡ −b(p− 1)Jα

because V̂ ydα̂ = −(p− 1)dĜ ≡ 0 and Hydα̂ = (p− 1)α̂. Combining these two calculations

gives b = −(p − 1)−1J−1V (J), as claimed. By symmetry, −b = −(k − 1)−1JV̂ (J−1) =

(k − 1)−1J−1V̂ (J), and so b = −(k − 1)−1J−1V̂ (J−1) as well.
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Lemma 44. LV̂ λ = LV λ− bλ−Db⊗H − α⊗ T +GLTλ.

Proof.

LV̂ λ(X) = [V̂ , λX]− λ[V̂ , λX]

= [V + bH +GT, λX]− λ[V + bH +GT,X]

= LV λ(X) + bLHλ(X)− (DXb)H +GLTλ(X)− (DXG)T +X(G)λT

= (LV λ− bλ−Db⊗H +GLTλ− α⊗ T ) (X)

where the last equality follows since LHλ = −λ, DXG = α(X) by definition, and λT = 0

since T is vertical.

8.4.1 Weyl tensor

Recall that ΛH is the subbundle of TH consisting of vectors X that annihilate α: α(X) = 0.

Then VH ⊂ ΛH and also the dynamical vector field V is a section of ΛH .

Definition 23. The umbral bundle is the vector bundle E over H defined as the quotient

of ΛH by the kernel of gh|ΛH ×ΛH
.

The umbral bundle is a rank n − 2 vector bundle over H . It is so named because in

§8.5, the pullback of E along sections of H can be regarded as a space of infinitesimal

screens onto which an object, placed into the null geodesic spray, will cast a shadow. This

interpretation is due to Sachs [70].

The kernel of gh|ΛH ×ΛH
is the subspace of ΛH spanned by VH and the dynamical vector

field V . Indeed, gh(V,X) = (k − 1)α(X), which vanishes if X ∈ ΛH . Thus ker(gh|ΛH ×ΛH
)

contains V . It also contains VH , since the kernel of the bilinear form gh on the full tangent

space TTM is V TM . From rank considerations, gh|ΛH ×ΛH
has degree of degeneracy at

most n, and so the kernel must in fact be equal to VH ⊕ spanV . Thus

E =
ΛH

VH ⊕ spanV
.

If X ∈ ΛH , denote by [X] the equivalence class of X in E. The tensor gh descends to a

non-degenerate metric on E, via

gE([X], [Y ]) = gh(X, Y ).

When it is restricted to ΛH × ΛH , S vanishes if either argument is in the kernel of gh (by

Corollary 5). Thus by restriction S defines a section of E∗ ⊗ E∗. Define an endomorphism

S]E : E → E by setting gE(S]EX, Y ) = S(X, Y ) for all X, Y ∈ E.
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Definition 24. The Weyl tensor W ∈ ΓH (E∗ ⊗ E∗) is the trace-free part of the restriction

of the tidal force tensor S(X, Y ) to (X, Y ) ∈ E × E. That is,

W (X, Y ) = S(X, Y )−
(

1

n− 2
trS]E

)
gE(X, Y )

for (X, Y ) ∈ E × E.

Notice that we are now working on H exclusively, and so G = 0.

Theorem 25. The Weyl tensor depends only on H ⊂ TTM ′, not on the choice of defining

function G.

In other words, the Weyl tensor is conformally invariant with respect to the class of

conformal transformations described at the beginning of §8.4.

Proof. By Lemma 42, S]E[X] = 1
2

[
λ
−1
P (L 2

V λ)X
]

for X ∈ ΛH . So to prove that W is

conformally invariant, it is sufficient to compute P̂ (L 2
V̂
λ) on E, and then to neglect terms

that are proportional to λ, since these will only modify the trace. We shall therefore compute

L 2
V̂
λ modulo terms involving G, dG, α, since these are zero on E, modulo H since P̂H = H

which is in V TM ′ and so also zero in E in which the vertical space is quotiented, and modulo

V since P̂ V ≡ P̂ V̂ (mod H) ≡ 0. We treat each term of Lemma 44 in turn:

(
LV̂ LV λ

)
X = [V̂ , (LV λ)X]− (LV λ)[V̂ , X]

= [V + bH +GT, (LV λ)X]− (LV λ)[V + bH +GT,X]

≡ L 2
V λ(X) + b(LHLV λ)(X) + LGT (LV λ)(X) (mod G, dG, α,H, V )

≡ L 2
V λ(X) + LGT (LV λ)(X).

by homogeneity of V and λ. Now LGT (LV λ)(X) vanishes modulo G for X ∈ ker dG. Hence

(
LV̂ LV λ

)
X ≡ L 2

V λ(X).

The second term is

(
LV̂ (bλ)

)
X ≡ V̂ (b)λX + b(LV̂ λ)X

≡ V̂ (b)λX + b(LV λ)X − b2λX.

The third term is (
LV̂ (Db⊗H)

)
X ≡ −DXb⊗ V ≡ 0.
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The remaining terms are zero, since they involve α and G:

LV̂ (GLTλ) ≡ 0(
LV̂ (α⊗ T )

)
≡ 0.

Thus we have

L 2
V̂
λ ≡ L 2

V λ− b(LV λ) + (b2 − V̂ (b))λ.

We now compute P̂L 2
V̂
λ. By the transformation law for LV̂ λ,

P̂ = P − 1

2
(bλ+Db⊗H + α⊗ T −GLTα).

Note that since Lvλ = 2P − Id, PLvλ = P and λLV λ = −λ. Among the remaining terms

are those involving the α⊗ T term of P̂ contracted with a term of L 2
V̂
λ. Of these, it follows

from α ◦ P = 0 that LV λ preserves the annihilator of α, and so the term (α ⊗ T )(bLV λ)

term vanishes when restricted to ΛH . Since α ◦ λ = 0, the (α ⊗ T )λ terms vanish. Finally,

the term involving (α⊗T )(L 2
V λ) vanishes on ΛH = kerα since the kernel of α is Lie derived

along V .

So, applying P̂ to L 2
V̂
λ gives

P̂L 2
V̂
λ ≡ PL 2

V λ− bP + (b2 − V̂ (b))λ− 1

2
bλL 2

V λ−
1

2
b2λ

≡ PL 2
V λ+

(
1
2
b2 − V̂ (b)

)
λ− 1

2
bλL 2

V λ− bP

It is now sufficient to show that the last two terms cancel; that is:

λL 2
V λ = −2P.

We have

λL 2
V λ(X) = λ ([V, [V, λX]]− 2[V, λ[V,X]] + λ[V, [V,X]])

= λ[V, [V, λX]]− 2λ[V, λ[V,X]]

= λ[V, [V, λX]] + 2λ[V,X].
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If X is in the image of P , the first term vanishes because imP = kerλ, leaving only the

second term which is −2X. If instead X ∈ kerP , then LVX = −X. So

λ[V, [V, λX]] + 2λ[V,X] = λ[V,−X + λ[V,X]]− 2λX

= −λ[V,X] + λ[V,−λX]− 2λX

= 2λX − 2λX = 0

as required. Thus, in summary

P̂L 2
V̂
λ ≡ PL 2

V λ+
(

1
2
b2 − V̂ (b)

)
λ.

Since the term multiplying λ only modifies the trace of S, this completes the proof.

8.5 RAYCHAUDHURI–SACHS EQUATIONS

We review the Raychaudhuri–Sachs equation of standard general relativity. Let M be a

spacetime manifold of dimension n ≥ 3, equipped with an indefinite metric, g of signature

(p, q). Denote the Levi-Civita connection of g by ∇.

Let k be a null vector field that is nowhere zero and satisfies the equation of an affinely

parametrized geodesic ∇kk = 0. The integral curves of k are null geodesics that foliate

M : that is, they constitute a null geodesic congruence. Associated to the vector field k

is a natural vector bundle K of dimension n − 2 with a metric of signature (p − 1, q − 1)

(so Euclidean in the case where g is Lorentzian). This bundle consists of the (n − 2)-plane

elements (or “screens”) onto which the infinitely near curves of the congruence would cast

the shadow of an object. This bundle was introduced in this way by Sachs [70]. A precise

definition of this bundle is in section 8.5.2.

The Raychaudhuri–Sachs equation then governs the rate at which this shadow expands

(or contracts) as the screens advance along a particular geodesic of the congruence. A

principal ingredient in the derivation of the equation is the notion of the divergence of k, of

which there are potentially several candidates (that turn out to agree):

• The Lie derivative of the volume element of M along k.

• The Lie derivative of a natural volume element for the bundle K.

• The trace of the endomorphism ∇k.
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8.5.1 Notation and conventions

The curvature tensor R ∈ ΓM(∧2T ∗M ⊗ End(TM)) is defined by the relation

R(X, Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z.

The Ricci tensor is given by

Ric(X, Y ) = tr(Z 7→ R(X,Z)Y ).

The metric defines an isomorphism between the tangent and cotangent bundles of M : define

g : TM → T ∗M by

g(X) : Y 7→ g(X, Y ).

This is a self-adjoint transformation (by the symmetry of g) that is invertible (by the non-

degeneracy of g). The inverse g−1 : T ∗M → TM defines a metric g−1 on T ∗M by

g−1(α, β) = β(g−1(α)).

The metric will be used to convert vectors into covectors systematically using the “musical

isomorphism”:

• If X is a vector, define X[ = g(X).

• If α is a covector, define α] = g−1(α).

The volume element of M is a density on M that is defined on a collection of vectors

v1, . . . , vn by

|Ω(v1, . . . , vn)|2 = | det[g(vi, vj)]i,j=1,...,n|.

This is a section of the density bundle | ∧n T ∗M |. If an orientation is given on M , then

it is possible to choose a representative volume form, denoted Ω, for the density |Ω|. In a

distinguished oriented local orthonormal basis1 of vector fields X1, . . . , Xn,

Ω(X1, . . . , Xn) = |Ω(X1, . . . , Xn)| = 1,

extended by multilinearity.

Since a local one-parameter group of diffeomorphisms must preserve orientation, the Lie

derivative of |Ω| along any differentiable vector field is well-defined. The divergence of a

differentiable vector field X is defined by

(divX)|Ω| = LX |Ω|.

Now, for the Raychaudhuri–Sachs equations, assume in addition that k is hypersurface

orthogonal. This is equivalent to the condition that the distribution k⊥ = (k[)0 ⊂ TM of

(n− 1)-planes annihilating k[ be integrable in the sense of Frobenius: k[ ∧ dk[ = 0.

1For a metric of indefinite signature, an orthonormal basis is any basis such that g(Xi, Xj) = ±δij .
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8.5.2 The umbral bundle of the congruence

Let k⊥ denote the distribution of (n− 1)-planes orthogonal to k. Thus, at a point x ∈M ,

k⊥x = {v ∈ TxM | g(k, v) = 0} = (k[x)
0.

Lemma 45. The distribution k⊥ is Lie-derived along k. That is, if v ∈ ΓM(k⊥), then

Lkv ∈ ΓM(k⊥).

Proof. If v is a section of k⊥, then g(k, v) = 0. So

0 = k(g(k, v)) = g(∇kk, v) + g(k,∇kv) = g(k,∇kv)

= g(k,Lkv) + g(k,∇vk)

= g(k,Lkv) +
1

2
v(g(k, k)) = g(k,Lkv)

so Lkv is also in k⊥, as required.

Note that k is a section of k⊥, since it is null. Therefore the following definition makes

sense:

Definition 25. Let K be the quotient bundle K = k⊥/ span k.

If a small object is placed in the path of the congruence k, then the bundle K naturally

describes a family of screens onto which the shadow of an object is cast. Hence, this is the

umbral bundle for the null geodesic congruence k. It is the pullback of the umbral bundle

defined in §8.4.1 by the section k of the null cone bundle H ; see §8.6 for more details.

Let [v] denote the equivalence class of v ∈ k⊥ modulo k. Since k⊥ and span k are both

Lie derived along k, the Lie derivative Lk descends to a differential operator on the quotient

K, by setting

Lk[v] = [Lkv].

The Lie derivative extends to a unique derivation on the tensor algebra of K that commutes

with tensor contraction.

The metric g in TM induces a bilinear form gk⊥ on k⊥, and the vector k is in the kernel

of gk⊥ . Hence gk⊥ descends to a bilinear form on K via the rule

gK([X], [Y ]) = gk⊥(X, Y ).

The bilinear form gK is a metric of signature (p− 1, q − 1) on K.
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The tidal force along k is the endomorphism S] : TM → TM given on vectors X by

S]X = R(k,X)k.

Since S]k = 0 and the image of S] is orthogonal to k, S] induces an endomorphism of K via

S]K [X] = [S]X].

The bilinear form S on TM and SK on K given by

S(X, Y ) = g(S]X, Y ), SK([X], [Y ]) = gK(S]K [X], [Y ])

are both symmetric, by the symmetries of the Riemann tensor.

8.5.3 Divergence

Definition 26. Let X be a vector field. The divergence of X, denoted divX, is defined by

the equation

(divX)|Ω| = LX |Ω|

For the vector field X, define the endomorphism ∇X of TM by ∇X : Y 7→ ∇YX.

Lemma 46. The divergence of X is the trace of ∇X ∈ ΓM(End(TM))

divX = tr∇X.

Proof. Let v1, . . . , vn be a local basis of smooth sections of TM , and let α1, . . . , αn be the

dual basis of T ∗M , defined by αi(vj) = δij. Let Ω be the local section of ∧nT ∗M representing

|Ω| obtained by declaring the basis vi to be positively oriented. First note that if α is a

one-form and Y a tangent vector, then

0 = Y y (α ∧ Ω) = α(Y )Ω− α ∧ Y yΩ

so

α ∧ Y yΩ = α(Y )Ω. (8.7)
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By Cartan’s identities,

LXΩ = d(XyΩ) =
∑
i

αi ∧∇vi(XyΩ)

=
∑
i

αi ∧ (∇viX)yΩ +
∑
i

αi ∧Xy∇viΩ

=
∑
i

αi ∧ (∇viX)yΩ

=
∑
i

αi(∇viX)Ω = tr(∇X)Ω

by (8.7).

Fixing an orientation on TM equips the bundle K with an induced orientation, and the

associated volume forms are related by

kyΩ = k[ ∧ ΩK

where y is the interior product. The validity of this equation does not depend on the choice

of coset representative of ΩK modulo the ideal generated by k[, and so defines ΩK uniquely

as a section of ∧n−2K∗. If no orientation on M is specified, then this only defines a density

|ΩK | in the determinant bundle | ∧n−2 K∗|.

Definition 27. Define divK k by

(divK k)|ΩK | = Lk|ΩK |.

Lemma 47. divK k = div k

Proof. Working locally with an orientation on M , we have kyΩ = k ∧ ΩK . So

Lk(kyΩ) = Lk(k ∧ ΩK)

kyLkΩ = k ∧LkΩK

(div k)kyΩ = (divK k)k ∧ ΩK .

The image of the endomorphism ∇k lies in k⊥, since g(∇Xk, k) = 1
2
X(g(k, k)) = 0.

Furthermore, k lies in the kernel of ∇k, since k is an affinely parametrized geodesic vector

field. Therefore, ∇k descends to an endomorphism ∇k|K : K → K.
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Lemma 48. For any p = 1, 2, . . . ,

tr((∇k)p) = tr((∇k|K)p)

Proof. In general, if A is an endomorphism of a vector space V whose image lies in a subspace

W , then trA = tr(A|W ). Since ∇k is a linear operator whose image lies in k⊥, tr(∇k)p =

tr((∇k)p|k⊥). But (∇k)p|k⊥ = (∇k|k⊥)p, and so tr(∇k)p = tr(∇k|k⊥)p. Now, since span k

lies in the kernel of ∇k|k⊥ , tr(∇k|k⊥)p = tr(∇k|K)p, as required.

8.5.4 Rate of change of the divergence

The purpose of this section is to compute the rate of change of the divergence of k. Let

R(k,−)k denote the endomorphism R(k,−)k : X 7→ R(k,X)k. Then:

Lemma 49. ∇k∇k = −(∇k)2 +R(k,−)k

Proof. For a vector field X,

(∇k∇k)(X) = ∇k∇Xk −∇∇kXk

= R(k,X)k +∇X∇kk +∇[k,X]k −∇∇kXk

= R(k,X)k −∇∇Xkk

= [−(∇k)2 +R(k,−)k](X)

Lemma 50.

k(div k) = − tr[(∇k)2] + Ric(k, k)

= − tr[(∇k|K)2] + Ric(k, k)

Proof. The first equation follows by taking a trace from the previous lemma. The second

equation follows from tr(∇k)2 = tr(∇k|K)2.

Lemma 51. trS] = trS]K

Proof. The image of S] lies in k⊥ and the kernel of S] contains k. Thus the lemma follows

by the argument of Lemma 48.
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8.5.5 Invariant decomposition

Let

∇k|K = Alt(∇k|K) + Sym0(∇k|K) +
1

n− 2
(div k) IdK

be the decomposition of ∇k|K into its irreducible components for the action of O(p−1, q−1):

the alternating, symmetric trace-free, and trace parts. Here the metric gK is used to identify

End(K) with K∗ ⊗K∗ in order to define the symmetric and alternating parts.

For the next theorem, introduce the following notation, standard in the relativity litera-

ture when n = 4:

• θ = div k is called the expansion of the congruence k in the relativity literature

• σ = Sym0(∇k|K) is the shear tensor

• ρ = Alt(∇k|K) is the rotation tensor

Theorem 26.

k(θ) = − tr(ρ2)− tr(σ2)− θ2

n− 2
+ Ric(k, k)

= − tr(ρ2)− tr(σ2)− θ2

n− 2
+ trS].

Proof. This is a restatement of Lemma 50 under the decomposition

∇k|K = ρ+ σ +
1

n− 2
θ IdK .

The absence of cross-terms owes to the orthogonality of the different irreducible representa-

tions of O(p− 1, q − 1). The second equality follows from the definition of S].

8.5.6 Hypersurface orthogonality

If k is hypersurface orthogonal, then the distribution k⊥ = (k[)0 is integrable in the sense of

Frobenius, and therefore dk[ ≡ 0 (mod k[).

Lemma 52. If k is hypersurface orthogonal, then tr(ρ2) = 0.

Proof. If k is hypersurface orthogonal, then there exists locally a one-form µ such that

dk[ = µ∧ k[. Since k is a geodesic vector field, kydk[ = 0, and since k is also null k[(k) = 0,

so µ(k) = 0 as well. Now

tr(ρ2) = dk[(k, µ]) = 0

as claimed.

Theorem 26 becomes the Raychaudhuri–Sachs equations:
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Corollary 6. If k is hypersurface orthogonal, then

k(θ) = − tr(σ2)− θ2

n− 2
+ trS].

8.5.7 Raychaudhuri effect

Lemma 53. Suppose that J is a vector field that Lie commutes with k. Then J is a Jacobi

field along any integral curve of k.

Proof. Covariantly differentiating 0 = [k, J ] = ∇kJ −∇Jk along k gives

0 = ∇2
kJ −∇k∇Jk

= ∇2
kJ −R(k, J)k

which is the Jacobi equation

In particular, since k is hypersurface orthogonal, there are n − 2 (Jacobi) vector fields

J1, . . . , Jn−2 that are orthgononal to k, Lie commute with k, and are linearly independent of

k. On passing to the quotient, these Jacobi fields define a basis of K. Pick such a basis, and

let λK = |ΩK(J1, . . . , Jn−2)|.
In the Lorentzian case of a space-time of n-dimensions, the signature of the metric gE of

the bundle E is either positive or negative definite, according as g has signature (n − 1, 1)

or (1, n − 1). Thus in the Raychaudhuri–Sachs equations, the trace tr(σ2) is non-negative,

and it is zero if and only if σ = 0. Thus Corollary 6 gives

k(θ) ≤ trS],

or equivalently,

L 2
k λK ≤ trS]λK .

The null positive energy condition is the condition

Ric(n, n) ≤ 0 for all null vectors n.

So when the null positive energy condition holds,

L 2
k λK ≤ 0

Note that this equality only requires that Ric(k, k) ≤ 0 be valid for the particular tangent

vectors along the given null geodesic.
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Now suppose that θ < 0 at some point x0 of the congruence. By definition of θ, at that

point LkλK = θλK < 0. Then λK will become zero along the geodesic tangent to k through x0

at some time prior to the finite affine parameter t = −(n− 2)/θ(x0). Since k is hypersurface

orthogonal, the vectors J1, . . . , Jn−2 span the tangent space of this hypersurface up to the

point where the volume λK degenerates to zero. At or before that point, the geodesic in

question must have a conjugate point. The existence of this conjugate point is the key to

the proof by Sir Roger Penrose [65] of his singularity theorem.

8.6 THE GEOMETRIC RAYCHAUDHURI–SACHS THEOREM

In this section, we lift the geometry underlying the Raychaudhuri–Sachs theorem to the

bundle H and at the same time generalize it to regular causal geometries. We first recall

some basic sheaf theory.

Let p : Y→ X be a (continuous) map of topological spaces.

• A point y ∈ Y is said to be a sheaf point if and only if there exists an open set Uy in Y,

such that y ∈ Uy and such that the restriction of p to Uy is a homeomorphism onto its

open image p(Uy) in X.

• The sheaf space Sp ⊂ Y of p is the collection of all its sheaf points, with the induced

topology. Note that Sp is an open subset of Y.

• The triple (Y,X, p) is said to be a sheaf if and only if p is surjective and Sp = Y.

• The triple (Y,X, p) is said to be a stack if and only if p is surjective and Sp is dense in

Y, i.e. the closure Sp = Y .

• The triple (Y,X, p) is said to be a branched cover if and only if it is a stack and both Y
and X are Hausdorff topological spaces.

For example:

• Put S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, the unit circle in the plane. Then the map

e : R → S1 given by the formula e(t) = (cos(t), sin(t)), for any t ∈ R makes (R,S1, e) a

sheaf.

• Consider the complex parabola Y = {(x, y) ∈ C2 : y2 = x} and let p(x, y) = x ∈ C
for any (x, y) ∈ Y. Then the triple (Y,C, p) is a stack, with Sp = Y − {(0, 0)} and is a

branched cover.

If (Y,X, p) is a stack, and if U is an open subset of X, then a section s of the stack over U

is a map s : U → X, such that p ◦ s = idU .
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The key concept we need is that of a Sachs manifold. Let M be a manifold of dimension

n and let G ⊂ SM be a regular causal geometry. Denote the natural surjection from G

to M by p. Denote a representative one-form of the contact structure of G by αG . Put

H = σ−1(G ) and denote by αH a representative one-form of the contact structure of H .

Also denote by q the natural surjection from H to M .

• A Sachs manifold for the causal geometry G is a smooth submanifold S of G of dimension

n, such that:

– The triple (S,M, p|S) is a branched cover.

– S is ruled by (unparametrized) null geodesics: i.e. the null geodesic spray V of G is

everywhere tangent to S.

– S is hypersurface orthogonal: the restriction of the three-form αG dαG to S vanishes

identically.

• An affine Sachs manifold for the causal geometry G is a submanifold T of H of dimension

n, such that:

– The triple (T ,M, q|T ) is a branched cover.

– T is ruled by affinely parametrized null geodesics: i.e. the null geodesic spray V of

H is everywhere tangent to T .

– T is hypersurface orthogonal: the restriction of the three-form αH dαH to T vanishes

identically.

• A Sachs section for a causal geometry H over an open set U ⊂M is a section of a given

Sachs manifold, whose domain is U .

• A Sachs congruence on an open subset U ⊂M is the foliation of U by the null geodesics

giving the foliation of a Sachs section. Note that the Sachs congruence is automatically

hypersurface orthogonal, with normals the (null) tangent vectors to the foliation and the

congruence and the section determine each other uniquely.

In the special case of a standard space-time, the Sachs congruence exactly agrees with the

congruence needed for the Raychaudhuri–Sachs equation and we see that in that case the

affine Sachs manifold is simply the natural lift to the tangent bundle of the Sachs congruence,

so we have a natural generalization.

Now let a Sachs section s : M →H be given. The connection P : TH → VH defines

an endomorphism Ps ∈ End(TM) given by

Ps(X) = λ
−1
P (s∗X).

Let k be the tangent vector field of the congruence, so s∗k = V . The tensor gh pulls back

under s to a metric gs = s∗gh on M . Moreover, k[ = s∗α. Since gh(V, V ) = k(k − 1)G, it

follows that gs(k, k) = 0 since s is a section of H where G = 0.
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The bundle K is defined as before as k⊥/ span k, where k⊥ is the orthogonal complement

of k with respect to the metric gs. This is naturally isomorphic to the pullback under s

of the umbral bundle E defined in section 8.4.1. The metric gs induces a metric gK on K,

which is of definite signature if gv has Lorentzian signature. Let ∇ denote the Levi-Civita

connection of gs. The Lie derivative Lk preserves ker k[, by Lemma 45. Likewise the Lie

derivative extends to all associated tensor bundles.

Lemma 54. Ps = ∇k where ∇ is the Levi-Civita connection associated with the metric

gs. In particular k is an affinely parametrized geodesic with respect to the connection ∇.

Moreover, the pullback of the tidal force tensor along s is the sectional curvature of ∇ in the

direction of k:

S(s∗X, s∗Y ) = gs(R(k,X)k, Y )

where R is the Riemann tensor associated to ∇.

Proof. The proof of the first claim proceeds by verifying that the two tensors have the same

skew and symmetric parts. On the one hand,

(Lkgs)(X, Y ) = k(gs(X, Y ))− gs(∇kX −∇Xk, Y )− gs(X,∇kY −∇Y k)

= gs(∇kX, Y ) + gs(X,∇kY )− gs(∇kX −∇Xk, Y )− gs(X,∇kY −∇Y k)

= gs(∇Xk, Y ) + gs(X,∇Y k).

On the other hand,

(Lkgs)(X, Y ) = (LV gh)(s∗X, s∗Y ) = gv(Ps∗X,λs∗Y ) + gv(λs∗X,Ps∗Y )

= gh(λ
−1
Ps∗X, s∗Y ) + gv(s∗X,λ

−1
Ps∗Y )

= gs(PsX, Y ) + gs(X,PsY ).

This shows that ∇k and Ps have the same symmetric part.

For the skew part, on the one hand

2(s∗dα)(X, Y ) = 2dk[(X, Y )

= gs(∇Xk, Y )− gs(X,∇Y k)
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and on the other hand

2(s∗dα)(X, Y ) = 2dα(s∗X, s∗Y ) = gv(Ps∗X,λs∗Y )− gv(λs∗X,Ps∗Y )

= gh(λ
−1
Ps∗X, s∗Y )− gh(s∗X,λ

−1
Ps∗Y )

= gs(PsX, Y )− gs(X,PsY ).

Since Ps = ∇k, ∇kk = Psk = λ
−1
PV = 0 since V is horizontal for the Ehresmann

connection P . Hence k is an affinely parametrized geodesic.

For the final claim, Theorem 23 implies that it is sufficient to prove

1

2
(L 2

k gs)(X, Y ) = gs(∇Xk,∇Y k)− gs(R(k,X)k, Y )

since Ps = ∇k by the first part of the lemma. The identity

Lk∇k = ∇k∇k

holds, so

1

2
(L 2

k gs)(X, Y ) = gs(∇Xk,∇Y k) +
1

2
gs((∇k∇k)(X), Y ) +

1

2
gs(X, (∇k∇k)(Y ))+

+
1

2
gs(∇∇Xkk, Y ) +

1

2
gs(X,∇∇Y kk)

= gs(∇Xk,∇Y k) +
1

2
(gs(R(k,X)k, Y ) + gs(X,R(k, Y )k))

= gs(∇Xk,∇Y k) + gs(R(k,X)k, Y )

by the symmetries of the Riemann tensor.

The operator S]E : π−1
TM ′TM → π−1

TM ′TM defined in §8.4.1, when restricted to the section

s defines an operator S]s : TM → TM . By the previous lemma, S]s(X) = Rs(k,X)k.

Moreover, as in §8.5, the image of S]s lies in k⊥ and its kernel contains k, so S]s descends to

and operator S]K : K → K. Moreover, trS]s = trS]K = Ric(k, k)

As in §8.5.3, the divergence of k can be defined in several equivalent ways. If |Ω| is the

canonical density associated to the metric gs, then

Lk|Ω| = (div k)|Ω|.

If |ΩE| is the canonical section of the determinant line bundle | ∧n−2 E|, then

Lk|ΩE| = (divE k)|ΩE|.

Alternatively, the divergence can be defined as the trace of ∇k = Ps, or the trace of ∇k|E =

Ps|E. The results of §8.5.3 imply that these are equal:
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Lemma 55. θ = div k = divE k = tr(∇k) = tr(Ps) = tr(∇k|E) = tr(Ps|E)

The proof of Theorem 26 goes through as in §8.5:

Theorem 27. Let

Ps|E = AltPs|E + Sym0 Ps|E +
trPs|E
n− 2

IdE

= ρ+ σ +
θ

n− 2
IdE

be the decomposition of Ps into its irreducible O(p− 1, q − 1) components. Then

k(θ) = − tr(ρ2)− tr(σ2)− θ2

n− 2
+ trS].

8.6.1 The Lorentzian case: the geometric Raychaudhuri–Sachs effect

Now consider the case that the fibre metric gv in V TM ′ is Lorentzian, which implies in

turn that gs is also Lorentzian, and so the metric gK of the bundle K has positive or

negative definite signature. Then the quantity tr(σ2) of the Raychaudhuri–Sachs equation

is non-negative. Also impose the positive energy condition: trS] ≤ 0. As in §8.5, let

J1, . . . , Jn−2 be a collection of vector fields orthgonal to k that commute with k, and set

λK = |ΩK(J1, . . . , Jn−2)|. Then

LkλK = θλK , L 2
k λK ≤ 0.

Now if at a point of the congruence we have θ < 0, then it follows that the graph of λK along

the (affinely parametrized) null geodesic through the point is decreasing and concave down,

so λK reaches zero in finite affine parameter time in the future. So we have the theorem:

Theorem 28. Let X be a given null geodesic in M that is future complete, so its affine

parameter ranges to positive infinity. Suppose that everywhere along X the positive energy

condition trS] ≤ 0 holds. Suppose there is a section of a Sachs manifold, defined in a

neighborhood of X, such that X is a member of the congruence foliating the Sachs manifold.

Then the divergence of the congruence is everywhere non-negative along X.
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complètes, Partie III, volume 2. Gauthier-Villars, Paris, 1955.
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[31] Alfred Frölicher and Albert Nijenhuis. Theory of vector-valued differential forms. I.
Derivations of the graded ring of differential forms. Nederl. Akad. Wetensch. Proc. Ser.
A. 59 = Indag. Math., 18:338–359, 1956.

[32] R. Geroch, E. H. Kronheimer, and R. Penrose. Ideal points in space-time. Proc. Roy.
Soc. London Ser. A, 327:545–567, 1972.
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general linear group, 24
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group, 25
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Lie derivative, 39

Lie group, 24

linear differential operator, 22
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null cone bundle, 105
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quaternionic orthogonal group, 25
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realcompactness, 14

restriction map, 10

ringed space, 13
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morphism, 13

sheaf, 11
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special orthogonal group, 24
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special quaternionic linear group, 25

stalk, 12
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submersion, 20

support, 13
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tangent bundle, 32
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tangent sheaf, 32

Third-order differential equation, 121

twistor theory, 109

vector bundle, 27

direct sum, 30
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tensor product, 30

vector field, 36

vertical bundle, 34
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Sp(n,R), Sp(ω), 25
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