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Abstract

The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly
variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim,
we constructed an executable software analog of study participants to whom product was administered orally. The analog
is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map
abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to
achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects
analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog’s plasma
profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified,
quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important
subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize
that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study:
they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach
presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological
interactions and observed variability.
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Introduction

Pharmacokinetic analyses of drug disposition with complex

gastrointestinal absorption have been shown to be challenging [1–

3]. A host of factors including genetic and transcriptional

polymorphisms, patient physiology, disease state, experimental

or environmental condition, etc. introduce variability and impact

pharmacokinetic outcome in a networked, nonlinear, multiscale

process, which may confound analysis and hinder reliable

prediction. What factors contribute variability, and how do they

interconnect to influence disposition? What physiological and

pharmacological mechanisms underpin those processes? Answers

to these questions are expected to be complex and beyond the

grasp of currently available pharmacokinetic methods and

modeling tools. Recently we reviewed requirements for modeling

and simulation (M&S) approaches [4] that will enable developing

deep, exploitable insight into mechanisms responsible for drug

disposition (absorption, distribution, metabolism, and excretion)

and strategies to enhance predictive and explanatory capabilities

of current pharmacokinetic models. The objective of this study is

to further explore how synthetic M&S methods as described herein

can be applied to better define subject-specific plasma profiles, and

provide concrete, parsimonious, and mechanistic explanations in

the form of individualized, object-oriented, in silico models.

Previously we introduced prototypal, biomimetic, in silico

analogs for gaining insight into subject-by-formulation mecha-

nisms that contribute to intra- and interindividual variability

observed in the disposition of an extended-release oral dosage

formulation of a Biopharmaceutics Classification System (BCS)

Class I drug [5]. By analogs we mean executable software

instantiations of plausible generative mechanisms that produce

(simulate) behaviors and outcomes that mimic aspects of targeted

phenomena (e.g., human drug exposure) [6,7]. They are grounded

on object- and agent-oriented M&S methodologies, which differ

from conventional equation-based models and have different yet

overlapping uses [4]. We detailed specific steps taken to validate
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and iteratively refine analogs that corresponded to individual

subjects participating in a bioequivalence study. Final validation

against dissolution and plasma concentration data required a two-

component, heterogeneous gastrointestinal (GI) space, which we

hypothesized to map to individualized mechanistic heterogeneity

that is a consequence of dosage form–GI tract interactions. A

stringent level of similarity was established quantitatively between

the simulated and clinical outcomes.

We sought to further elaborate our approach, and engage a

scientific M&S process to challenge, falsify, and iteratively evolve

the preceding analogs to apply in the more complex case of

extended-release felodipine disposition with food interaction [8].

Felodipine is a BCS Class II drug in which in vivo drug dissolution

is the rate-limiting step for absorption except at a very high dose

[9,10]. The drug is characterized by variable bioavailability and

needs enhancement in dissolution to increase the bioavailability

[11,12]. Given differences between BCS Class I (high solubility

and high permeability) and II (low solubility, high permeability)

compounds, our expectation was that mechanism changes may be

needed to enable the analogs to achieve new validation targets,

i.e., generate disposition specific measurements that match the

felodipine plasma concentration profiles (hereafter, plasma pro-

files) as determined by prespecified similarity criteria. To that end

we followed an iterative M&S protocol [5,13,14] to parsimoni-

ously revise the earlier analog. Several mechanistic variants were

explored, subjected to validation, and falsified. Falsification

provided specific, useful insight–new knowledge–that guided

subsequent analog mechanism revision, and led to discovery of

an analog with a new, secondary component connecting to the

existing GI module. Parameterizations were found that enabled

achieving a predefined level of similarity for all six pairs of referent

plasma profiles in fasting and fed conditions.

The parameterized analogs are simple and intuitive yet abstract.

Our strong parsimony guideline prevents adding appealing, more

realistic detail until it is needed. When executed in simulation, the

details of different processes and events occurring within individual

analogs can be observed, measured, and can be analyzed in much

the same way that real-world counterparts are studied. We

hypothesize that all analog processes had counterparts within the

food interaction study: they are working, evolvable, concrete

theories of dynamic interactions occurring during product

dissolution, drug absorption and subsequent disposition within

individual subjects. Because the analogs are object-oriented,

modular, and intended for reuse and repurposing, it is straight-

forward to change mechanistic details to simulate additional

attributes or experiments, and increase (or decrease) the granu-

larity of analog features. We anticipate that experimenting on such

analogs will become an increasingly important research and

development strategy for improving formulations, and expanding

the ‘‘personalized medicine’’ vision to include complicated,

individualizable dosage forms.

Methods

Referent studies
Recent publications investigated six healthy volunteers who

were administered magnetically labeled extended-release tablets

containing felodipine under fasting and fed conditions [8,15–17].

A clinical randomized cross-over study provided dynamically

collected tablet’s GI positions and drug release data using

magnetic marker monitoring (MMM), a novel imaging technique

for the investigation of the behavior of solid oral dosage forms

within the GI tract [18]. These data were then modeled using a

new mechanism-based approach that simulated tablet movement

in the GI tract: the Gastro-Intestinal Transit Time (GITT) model

[17]. It is a nonlinear mixed-effects model that relies on some a

priori knowledge on tablet transit times inferred from the MMM

data. In the study, model characterization was presented as several

sequential zero-order drug release rates followed by zero-order

transport to the fundus, antrum, and posterior intestinal regions,

with first-order absorption across the GI tract. The results

indicated two subpopulations characterized by no return to

fundus or having one or two returns to fundus.

Object- and agent-oriented, discrete event M&S
approach

Object-oriented and discrete event methods are not new but

relatively recent in pharmacokinetic modeling. The methods are

used extensively in addressing a variety of engineering and social

science problems [19–21]. Within the biomedical domain, object-

and agent-oriented models have been used for studying systems

composed of interacting components exhibiting autonomous,

complex, emergent behaviors that are not amenable to closed-

form analysis [22,23]. Object-oriented programming (OOP)

enables building software as a set of discrete, interacting,

encapsulated units (‘‘objects’’) of programming logic [24]. In

OOP, objects have state and behavior, much like their real-world

(or hypothesized) object counterparts. Object state is maintained

using object variables, and executable methods (functions,

procedures, and algorithms) define object behavior. For example,

drug metabolizing enzymes may be represented as objects having

a state (free or substrate-bound) and methods that implement key

metabolic events, e.g., substrate binding, oxidization, and product

release. Similarly, drug substrates can be represented as mobile

objects, each with an internal variable indicating its metabolic

state (unmodified, oxidized, reduced, etc.) and methods simulating

Brownian motion and other passive movement. Additional

variables can be added that specify more fine-grained details like

enzyme class, isoforms, and one or more physicochemical

properties. Enzyme-substrate interactions occur when a substrate

object encounters an enzyme, which may stochastically bind,

metabolize, and release product. Prototypal examples are

presented in [25,26]. Agent-based models are executable software

devices implemented using OOP techniques. An agent is a quasi-

autonomous object that can schedule its own actions within

simulation, and adapt to internal and external changes. Rules

define the agent’s actions; a more advanced, autonomous agent

can set or alter its own rules. Agents typically represent entities–

cells, organ systems, organisms, etc.–that exhibit some level of

autonomy and ability to engage and interact with the environ-

ment. In simulation, an agent senses and is part of its environment,

and can choose dynamically with which other agents or objects to

interact, when to engage other agents, and which of various

actions to take. Importantly, an agent is identifiable by an observer

as a cause of an effect. Discrete event M&S methods allow

execution of an object-oriented system as a discrete sequence of

events in time where each event marks a change of state in the

system [27]. A more detailed explanation is provided in [6,7,23].

Current limitations of the object- and agent-oriented M&S

approach are discussed in [20,28,29].

Framework and in silico analog design
We adapted the in silico, whole body, drug disposition M&S

framework from a previous study [5]. The framework illustrated in

Fig. 1 was built using an open source, multi-agent simulation

software library MASON [30], which supports discrete event,

discrete time simulation [27] as well as continuous time modeling.

As a pharmacological modeling framework, it has basic compo-
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nents and features for in silico experimentation and analysis,

including agents that conduct and manage experiments, process

data, and support graphical user interaction, which is available as

a stand-alone software package much like NONMEM (ICON plc,

Dublin, Ireland) and ADAPT (Biomedical Simulations Resource,

Los Angeles, CA) modeling platforms. At the framework’s core is a

pharmacologically responsive, in silico analog of a human subject

undergoing experiment (Fig. 1). It comprises a set of intercon-

nected two-dimensional grids, components, and event mechanisms

that map to a conflation of different physiological features and

processes. Component algorithms–programmatic logic state-

ments–govern analog drug (simply drug hereafter) movement

between and within individual grid spaces, and eventual elimina-

tion from the system. The resulting model differs from closed-form

pharmacokinetic models that employ sets of mathematical

equations implemented as procedural functions or subroutines

(e.g., PREDPP ADVAN in NONMEM). In lieu of equations, the

analog comprises objects and algorithms that when executed give

rise to measurable dynamic system behavior–individual and

aggregate object states that evolve over a sequences of discrete

time points and/or continuous time. Time-lapse state changes of

every object and event sequences can be measured and recorded

for visualization and post-simulation analysis, e.g., drug amount in

the analog’s grid sites and objects, the number (and frequency) of

metabolic events, the amount excreted unchanged, etc.

In our earlier study, simple, in silico mechanisms consisting of

four structures–dissolution, GI, interaction space, and plasma–

sufficed for generating varied, multi-peak plasma concentration

outcomes that matched individual plasma profiles of drug X from

a bioequivalence study [5]. Felodipine disposition characteristics

are different, but the basic processes and general, subject

physiology are assumed to be similar between the two studies,

which allowed us to begin by adopting the earlier analog. We then

followed the iterative refinement protocol to extend the analog

phenotype and achieve the new set of validation targets without

having to reengineer the whole system, and without compromising

already validated features and behaviors [13,14]. The protocol

starts with specifying referent attributes to be targeted, e.g., drug

and metabolite concentration-time data, histological and bio-

chemical measurements, morphological characteristics, etc. Next,

an initial (small) subset of attributes is selected, and an analog is

constructed, tested, and revised iteratively until the analog exhibits

the targeted attributes within a prespecified level of similarity,

thereby achieving a level of validation. Once the iteration

Figure 1. Simulation platform. The computational framework is a coarse grain analog of whole-body drug disposition experiments. It has features
to manage, support, and semi-automate simulation and analysis. An object-oriented, agent-based, discrete event model is integrated within the
framework; it is an executable software analog of a subject undergoing study. We used two-dimensional, square grids to represent basic
physiological features such as plasma and GI tract, which are interconnected to simulate drug movement across individual sites and elimination from
the system.
doi:10.1371/journal.pone.0108392.g001
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completes, the process then repeats with the addition of one or

more attributes from the curated list and/or an increase in the

level of similarity threshold for validation. A goal of iterative

refinement is to shrink plausible mechanism space [7]. For

felodipine disposition modeling, several iterations were undertaken

in which we challenged analog mechanisms, falsified several and

revised them to improve outcome similarity to referent plasma

profiles. Shown in Fig. 2 is the analog that achieved validation. It

has an additional grid space (GI/tissue space C), which connects

from existing GI/tissue spaces to plasma. Other analog features

were unchanged: Dissolution connects to GI/tissue spaces A and

B, which individually connect to plasma; no interconnection

between them was needed. Relative to our earlier work, GI/tissue

spaces A and B map to GI tract and interaction space, respectively.

Analog parameters
Table 1 lists parameters that are accessible to the user for

analog configuration, initialization, and simulation execution. The

parameters define structural component specifications (e.g., grid

sizes) and constraints that apply to drug disposition such as the

probabilities and extent of drug movement between and within

individual grids. They remain constant during execution unless

changed externally by the user or the Experiment Manager.

Table 1 parameters are not part of the observations made on the

analog: it is the objects’ internal states (e.g., drug amount in

plasma) that are measured and correspond to single point variables

in equation-based models. They also do not correspond to derived

pharmacokinetic parameters like clearance, half-life, and volume

of distribution. As described below, pharmacokinetic parameters

are determined from measurements (e.g., drug plasma concentra-

tions) made on the in silico analog while it executes, which

simulates a human subject undergoing study.

Default values shown in Table 1 apply automatically when the

analog first initializes, which produce a simple, one-peak plasma

profile. The parameters can be modified before or during

simulation. Changes are delayed and take effect in subsequent

simulation runs for the following parameters: GridWidth, Grid-
Height, InitDose, MaxCencentration, DispersionOn, and Disperse-
Count. Changes in all other parameters take effect immediately

and influence simulation outcome as it unfolds. Individual

Figure 2. In silico model. The current, validated analog comprises five spaces that map abstractly to the dissolution site, plasma, and GI/tissue
features that are hypothesized to impact felodipine disposition. The arrows indicate drug object movement. Drug objects move between
interconnected spaces and exit from the plasma grid. Simulated mixing and distribution occurs within each space, which we implemented using a
discrete dispersion algorithm. Structural and functional heterogeneity can be introduced at any scale. Spaces shaded differently within a grid (e.g., GI/
tissue space A) indicate that their properties can be customized, should that be needed to represent heterogeneity. Relative to our prior work [5], GI/
tissue spaces A and B map to the GI tract and interaction space, respectively. The in silico model is a discrete event system, i.e., system dynamics
emerge as a consequence of events executing at discrete time points. Drug movements within and between spaces are represented as events and
scheduled for every simulation cycle. Scheduling of events and simulation time management are handled automatically by a simulation engine
(MASON library) instantiated within the framework, which includes an event scheduler and simulation clock.
doi:10.1371/journal.pone.0108392.g002
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parameters affect outcome differently, and the effects of one or

more parameter changes may be offset by changes in other

parameters. Parameters pertaining to drug movement, as

described below, can be altered to effect slow or more rapid

accumulation of drug in specific spaces. For instance, the

parameters (GAtoPFract, GAtoPProb, GBtoPFract, etc.) govern-

ing movement from GI/tissue spaces to plasma may be assigned

higher values to raise plasma drug concentrations, while increasing

the values of PtoEFract and/or PtoEProb tends to produce a

sharper descent and lower plasma concentrations. Delay param-

eters (e.g., DtoGDelay) can be altered likewise to introduce a lag in

drug movement between respective spaces and postpone the

appearance of drug in plasma. Atypical plasma profiles that

exhibit two or more peaks can be obtained by varying DiffGRatio
and related parameters like GtoCFract, GBtoPProb, and GCtoP-
Fract that control movement between GI/tissue spaces A, B, and

C and subsequent transfer to plasma. See Figures S1, S2, S3, S4,

S5, S6, S7, S8, S9, and S10 in File S1 for specific examples of how

parameter changes impact outcome.

Drug movement
There are two forms of analog drug movement: inter- and intra-

grid, as detailed in [5]. Briefly, movement between interconnected

grids occurs with parameter-controlled probabilities. Within each

time step, a fraction of drug present is transferred from one grid

location to another with some probability. For example, drug

movement from GI/tissue space A to plasma is governed by the

parameters GAtoPProb and GAtoPFract that specify, respectively,

the probability of movement occurring and the fraction of drug

transferred at grid location (x, y) in each simulation cycle. These

parameters impact the rate of drug movement between intercon-

nected spaces: lower probability and/or fraction values lead to a

reduction in the mean rate of drug movement. Intra-grid

movement effects distribution within (but not between) plasma,

GI, and other structures. It uses a discrete approximation

algorithm for local dispersion, which executes independently of

inter-grid movement. The parameter DisperseCount specifies the

number of algorithm iterations executed per simulation cycle;

higher number reflects more rapid distribution. Within a

simulation cycle, grid-to-grid movement events execute in the

following sequence: 1) elimination from plasma; 2) movement

from GI/tissue spaces to plasma; and 3) movement from

dissolution to GI/tissue spaces. All other events execute in

pseudorandom order.

System dynamics
Simulation time advances in discrete time steps 0, 1, 2, …, t.

One simulation cycle is executed to completion per time step.

Algorithms implementing drug movement repeat some number of

times within a simulation cycle. By default, grid-to-grid movement

at each grid site (x, y) is computed once per cycle following the

sequence describe above. For intra-grid movement, the Disperse-
Count parameter (Table 1) sets the number of iterations that the

algorithm executes; the default number is two, i.e., the movement

occurs twice within a simulation cycle. Algorithm executions

(events) are scheduled and managed automatically by MASON’s

simulation controller. All events are discrete: each event is

assumed to occur at a singular instance of time. System dynamics

Table 1. In silico analog parameters.

Parameter(s) Default Value Description

GridWidth, GridHeight 100 Grid width (x-axis) and height (y-axis) applied to all grids

XScale 1 Scalar factor applied to map simulation cycles to real time

YScale 120 Scalar factor applied to the dose fraction in plasma to account for differences
between dissolution and plasma concentration measures

InitDose 10000 Total drug amount (number of drug objects) initialized and distributed within the
dissolution grid at the start of simulation

DtoGDelay 1 Initial delay (number of time steps) before initiating drug transfer from dissolution
to GI/tissue spaces A and B

DtoGFract 0.1 Fraction of drug amount transferred from individual dissolution sites to
corresponding GI sites. Valid range: 0–1 inclusive

DtoGProb 0.8 Probability of transfer from individual dissolution sites to GI/tissues spaces A and
B. At the start of a transfer event, a pseudo-random number, 0#p#1, is
generated. Transfer occurs if p#DtoGProb. Valid range: 0–1 inclusive

DiffGRatio 1 % of drug transferred to GI/tissue space A. For example, when set to 0.8, 80% of
drug transfers to space A, and 20% to space B

GtoCDelay, GtoCFract, GtoCProb 0, 0, 0 Initial delay, fraction transferred, and the probability of transfer from GI/tissue
spaces A and B to corresponding sites in space C

GAtoPDelay, GAtoPFract, GAtoPProb, GBtoPDelay,
GBtoPFract, GBtoPProb, GCtoPDelay, GCtoPFract,
GCtoPProb

0, 0.1, 0.8 Initial delay, fraction transferred, and the probability of transfer from individual GI/
tissue sites to corresponding plasma sites

PtoEDelay, PtoEFract, PtoEProb 0, 0.1, 0.8 Initial delay, fraction eliminated, and the probability of elimination from individual
plasma sites

DisperseRate 0.1 Simulated dispersion rate, which abstractly corresponds to the diffusivity of the
target drug. Valid range: 0–1 inclusive

EvapRate 0 Loss rate, which specifies the fractional concentration amount evaporated (i.e.,
dissipated) per dispersion step. Valid range: 0–1 inclusive

DisperseCount 2 Number of dispersion step iterations executed per simulation cycle

doi:10.1371/journal.pone.0108392.t001
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emerge as a consequence of discrete events executed in a sequence

that change the system state. System state (e.g., the drug amount in

plasma and how it changes over time) is what we observe and

measure.

Comparison of felodipine plasma concentrations
We defined similarity criteria to determine whether a simulated

outcome is sufficiently similar to features of the referent plasma

profile. Analogs achieving the criteria are considered valid (until

falsified). Recent examples are provided in [25,26]. The similarity

criteria define upper and lower bounds around the referent values,

and require that a specified number or ratio of simulated values

occur within those bounds. Narrower bounds are more stringent

and harder to achieve, much like requiring regression models (e.g.,

NONMEM) obtain lower objective function values. For this study,

validation required that all nonzero values lie within a band +/2

30% of referent values, and additionally, four or more values lie

within +/210% of referent values. The stringency level was

specified so that analog plasma profiles achieving the criteria

match their referent more closely than did those obtained using

the nonlinear mixed-effects approach [17].

The units, dimensions, and/or objects to which a variable or

model constituent refers establish groundings. Our analogs have

been designed to use relational grounding for maximum flexibility,

where variables, parameters, and input/output (I/O) are in units

defined by other system components. That contrasts with absolute

grounding, in which variables, parameters, and I/O are grounded

to real-world units like mm, kg, ml, etc. Differences along with

discussions of when to prefer one, the other, or some hybrid are

discussed in [4,31]. Because the analogs are relationally grounded,

we need separate mapping to translate simulation metrics to real-

world units. Direct comparison of time-plasma concentration data

required us to map both time and plasma concentrations. For

mapping time, we applied the following: tr = (ts – offset) * XScale,

where tr is referent time (h), ts is simulation time step, and

offset = 1. The offset factor accounts for the simulation start time,

which can be set to any discrete number, and the actual execution

timing of measurements. In the current study, we set the start time

to zero, i.e., the initial simulation cycle executes at ts = 0, and

measurements made at the end of cycle (but prior to starting next

cycle), hence the offset of one time step. For plasma drug values,

we used: C = Aplasma * d/YScale, where C is plasma concentration

(nmol l21), Aplasma is the total drug amount in plasma space, and d
is the referent dose. XScale and YScale are scaling factors as

described in Table 1; further detail is provided in [5].

Simulation experiment design
The following describes design and execution of simulation

experiments. First, the top-level system components–Experiment

Manager and Data Processing Agent–were initialized to set up and

manage individual simulations. Next, the Experiment Manager

generated a new instantiation of the analog intended to mimic a

study participant. A pseudo-random number generator was

initialized concurrently for use by the algorithms governing drug

movement. The analog instantiation was parameterized to values

specified by the user or default values if not specified (e.g., during

initial run). At the start of simulation, the dissolution grid was

initialized to the specified dosage value; GI/tissue grid values were

set to zero as baseline concentrations. The simulation started

following initialization, and lasted for some number of simulation

cycles. In silico drug movement occurred within the analog per

simulation cycle as described above. Simulated plasma drug

concentrations and other state values were measured every cycle.

At simulation’s end, the recorded measurements were written to

files managed by the Data Processing Agent, and the analog

instantiation was expunged from the system. A new analog

instantiation was created for each simulation experiment.

Pharmacokinetic analysis
To further characterize and compare disposition outcomes, we

estimated pharmacokinetic parameters from the referent and

analog plasma concentration curves using noncompartmental

methods (Phoenix WinNonlin 6.0, PharSight Corp., St. Louis,

MO). Directly estimated parameters were peak plasma concen-

trations (Cmax, nmol l21), peak time (tmax, h), and lag time (tlag, h).

Area under the plasma concentration-time curve over all time

points (AUCall, nmol l21 h) was calculated using the linear

trapezoidal method. No estimation of terminal phase parameters

was made with the observation time window ,8 h.

Implementation tools
We implemented the framework using a multi-agent simulation

library, MASON [30] and a general-purpose programming

language Java [32]. Java is an object-oriented programming

language, which differentiates from traditional procedural pro-

gramming languages like Fortran (NONMEM and ADAPT are

Fortran-based). We used R 2.15.1 (http://www.r-project.org) for

data analysis and graph production. GetData Graph Digitizer

(http://getdata-graph-digitizer.com) was used to digitally capture

the referent and simulation data from [17].

Results

The analog instantiation in Fig. 1 represents a human subject

undergoing study. Analog execution simulates an experiment

being conducted on that subject. Given a referent plasma profile, a

new analog instantiation was initialized, and parameterized with

default values (Table 1). Larger grid sizes did not measurably alter

outcome (not shown). Once initialized, we executed the model for

a set number of cycles, and measured drug levels in plasma, GI,

etc. after each cycle. Similarity criteria were applied to determine

if validation targets were achieved. If not, we adjusted parameter

values and repeated the simulation. Adjustments were based on

heuristics gained from examining failures and how changes in

individual parameters impact overall disposition. When parameter

adjustments failed to achieve our similarity criteria, the analog’s

particular mechanism was falsified (along with all identically

performing finer grain variants), thereby shrinking the space of

plausible coarse grain mechanisms [7]. Achieving the similarity

criteria typically required ,20–30 iterations; complex profile

shapes necessitated more iterations. The analog was falsified if we

failed to discover a satisfactory match within 100 iterations for any

one of the referent plasma profiles.

Starting with the analog from [5], we discovered parameteri-

zations that enabled it to validate against several referent plasma

profiles but failed to do so for others, which falsified that analog.

We subsequently conducted several cycles of mechanism revision,

testing, and falsification to discover the new variant that validated

against all six pairs of referent profiles. An early, simple revision

maintained the same grid spaces with new connections between

the GI/tissue spaces A and B, however we failed to find

parameterizations to achieve validation. Next, an additional space

was added, and connected in parallel to the existing GI/tissue

spaces for increased heterogeneity, but that also failed to validate.

Several, subsequent mechanism revisions had a new grid

connecting from the dissolution to GI/tissue space A, from the

GI/tissue space A to B, or reciprocal links between GI/tissue

spaces. Some produced improved outcomes, however all such
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variants failed validation (results not shown). We continued the

process until we arrived at the Fig. 1 analog. It achieved validation

targets using an additional GI/tissue space as shown in Fig. 2.

Figures 3 and 4 present in silico plasma profiles from the final,

validated analog under fasting and fed conditions, respectively,

shown with the GITT model predictions from [17]. All achieved

the similarity criteria with the analog parameterized to Table 2

values, which we obtained after performing many iterations of

parameter adjustment and/or mechanism refinement as described

above, and selecting for those that performed better based on

visual and quantitative comparisons [5]. Except for analog Subject

29s profile under the fasting condition, validation required some

portion of drug to move through GI/tissue space C to plasma.

Also, absorption in most subjects engaged the heterogeneous GI

mechanism, with more extended inflow, and delayed outflow from

space B, which helped to capture the drastic, sharp ascents

observed under the fed condition (e.g., Fig. 4D, E, F). Visual

comparison shows that the GITT model’s predicted concentra-

tions tended to underestimate Cmax, notably evident in cases

where the referent exhibited multiple peaks, e.g., analog Subjects 3

and 6 under the fasting condition. In comparison, analogs

generally performed well in approaching Cmax and tmax, even in

cases where the profile exhibited aberrant, complex features. One

noteworthy exception was analog Subject 59s plasma profile under

the fed condition (Fig. 4E), which displayed a peculiar, sharp drop

in plasma concentration before ascending rapidly to attain Cmax.

The analog and GITT model both failed to produce close

approximations to Cmax and tmax although the analog result was

somewhat closer to the referent Cmax and sharply lower

concentration around 3.25 h. On the other hand, the analog did

relatively well in predicting Subject 49s plasma concentrations

(Fig. 3D, 4D) that increased steeply to reach Cmax that far

exceeded the peak concentration in all other profiles (up to twelve-

fold differences).

A noncompartmental analysis was conducted to estimate

pharmacokinetic parameters from the analog’s plasma profiles,

and confirm similarity between the in silico and referent

pharmacokinetics. The estimated parameters are shown in

Table 3. In agreement with our visual assessment, Cmax and tmax

estimations were similar between the in silico and referent

outcomes. AUCall was also similar although the in silico profiles

had somewhat higher estimations. Small differences were noted in

the lag time (tlag) for the fed condition but not the fasting

condition. Peak plasma concentration and lag time as well as

AUCall estimations had large variance, partly attributed to Subject

49s plasma concentration-time measurements that deviated

considerably from the other plasma profiles as noted above. The

outlier effect was especially evident in the fasting condition where

the standard deviation exceeded the mean for all three parameters

(Table 3).

Discussion

Modeling and simulation scenarios have been discussed in

which conventional pharmacokinetic methods are most useful

[4,5,7]. They would have well characterized dosage forms,

established in vitro-to-in vivo correlation (IVIVC), little intra-

individual variability, and explainable interindividual variability

supported by ample quantitative data. Such cases can be

characterized by locations substantially right-of-center on the

Fig. 5 use case spectra, which favors validation of inductive data

models that can produce trustable predictions. One’s location

shifts left when dealing with complicated pharmacokinetics (e.g.,

complex, extended-release formulations) because uncertainty

increases and precise knowledge diminishes. The generators of

Figure 3. Drug plasma concentration vs. time profiles of individual subjects under fasting conditions. We used the analog from Fig. 2.
To simulate a subject undergoing study, we started with default parameter values to initialize the analog and execute simulation. Analog plasma
concentration was recorded each time step and compared with the referent profile at the end of simulation. If the outcome failed to validate, i.e.,
satisfy a prespecified level of similarity, we adjusted parameter values and repeated simulation. We repeated the process until the similarity was
achieved. The analog parameterized to Table 2 values produced individual outcomes (black lines) that validated against the corresponding referent
profiles. For comparison, the GITT model’s predicted concentrations (dotted curves) are reproduced from [17]. Observed concentrations (red) are
from [8].
doi:10.1371/journal.pone.0108392.g003
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Figure 4. Felodipine plasma concentrations following food intake. We used the same protocol described in Fig. 3 and in Methods to
simulate drug disposition under the fed condition. Red circles: observed concentrations [8]; black lines: analog outcomes; dotted curves: the GITT
model’s predicted concentrations [17].
doi:10.1371/journal.pone.0108392.g004

Table 2. Subject-specific parameter values used for validation (fasting/fed).

Subject

Parameter 1 2 3 4 5 6

XScale 0.45 0.45 0.45 0.45 0.45 0.45

YScale 6800/6200 6800/6200 6800/6200 600/560 6800/2800 6800/3100

DtoGDelay 0/4 1 0 3/4 1/2 0/3

DtoGFract 0.6/0.25 0.3/0.7 0.5/0.6 0.7 0.8 0.3/0.5

DtoGProb 0.8 0.5/0.8 0.6 0.8 0.9 0.5

DiffGRatio 0.15/0.25 1/0.2 0.7/0.05 0.7/0.05 0.6/0.2 0.8/0.3

GtoCDelay 0 0 0 0 0 0

GtoCFract 0.3 0/0.2 0.2 0.2/0.1 0.2 0.3/0.1

GtoCProb 0.2/0.3 0/0.4 0.3/0.2 0.2/0.1 0.2/0.3 0.2

GAtoPDelay 0 0 0 0 0 0

GAtoPFract 0.9 0.9 0.6 0.32/0.7 0.6 0.6

GAtoPProb 0.9 0.9 0.8 0.5 0.5/0.7 0.5

GBtoPDelay 6/11 6/5 10/7 7/9 6/9 14/7

GBtoPFract 0.3/0.5 0.3/0.8 0.8/0.5 0.6/0.45 0.8/0.75 0.8

GBtoPProb 0.3/0.5 0.3/0.7 0.9/0.5 0.5 0.5/0.8 0.5

GCtoPDelay 10/9 0/9 8/4 8/9 8/5 8/12

GCtoPFract 0.35/0.5 0/0.9 0.9/0.8 0.6 0.8 0.8

GCtoPProb 0.3/0.6 0/0.7 0.8/0.7 0.6 0.7 0.8

PtoEDelay 0 0 0 0 0 0

PtoEFract 0.35/0.2 0.3 0.33/0.3 0.6/0.55 0.35/0.8 0.3/0.4

PtoEProb 0.8 0.6/0.35 0.7/0.45 0.8/0.7 0.5/0.6 0.8

doi:10.1371/journal.pone.0108392.t002
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underlying phenomena are unclear. The reliable, quantitative data

that would be needed to discern and validate (or falsify) plausible

generative mechanisms are typically lacking or scarce. When intra-

and interindividual variability increases, one’s location shifts

further left, and risks of relying on inductive methods and

imposed, idealized assumptions increase dramatically. When left-

of-center, conventional approaches can fail because one or more

assumptions on which the formal analytic approach rests are

invalid, or different mechanisms apply to subsets of individuals,

but not on all occasions. In those situations, different modeling

methods, like those presented herein, are needed to begin

developing explanatory mechanistic knowledge that can be

exploited to guide formulation design, pharmacokinetic profiling,

clinical trial enrichment strategies, etc.

For the extended release felodipine formulation, food interac-

tion is an important factor that alters the drug’s pharmacokinetics,

but the underlying mechanisms are mostly unknown [8], a

circumstance corresponding to being center-left in Fig. 5. Plasma

profiles also exhibit unusual, unexplained, individual variability

with or without concurrent food intake. Multiple peaks appear in

some but not all individual profiles. When confronted with such

complex phenomena, it is reasonable to posit that there can be

multiple, different generators causing those unusual plasma

profiles. If reality is center-left in Fig. 5, then a seemingly

plausible, inductive, conceptual mechanistic hypothesis can be

flawed in ways that are not obvious until that mechanism is

instantiated (made real, concrete) and executed. See [25] for

several examples and a detailed discussion. We argue that it is

scientifically prudent to explore multiple mechanistic hypotheses

and clearly falsify some of them using in silico experimentation.

That is because any complex phenomenon can have multiple,

equally valid and plausible generators [33]. It would be

particularly useful, given appropriate subject-specific data, to

discover one or more mechanistic hypotheses that are equally

explanatory for all subjects as demonstrated by achieving

prespecified validation targets. A purpose of the synthetic, object-

and agent-oriented M&S approach used herein is to both fill out

and then shrink the space of plausible mechanisms missed by

conventional inductive methods [7]. It provides means–particu-

larly in situations characterized by multisource uncertainty and

scarce knowledge–to explore and discover one or more equally

explanatory mechanistic hypotheses that can be parameterized to

generate individualized plasma profiles that match their counter-

part quantitatively. This study demonstrates important, early

progress toward those goals.

Specific, limiting problems in attempting to model fit the

felodipine data have been discussed from the classical modeling

perspective [17]. Some complications, such as having to reformu-

late mathematically the inherently discrete, noncontinuous aspects

of drug movement and disposition, are easily resolved using the

approach described herein. Prediction of individual pharmacoki-

netics from sparse data is more challenging. The problem is

evident with Cmax, which is very important for dosage adjustment

and as a measure of exposure to determine maximum therapeutic

or adverse effect [34]. The GITT model performs better than an

empirical lag-time model [17], however, its predicted profiles tend

to underestimate Cmax, which, if consistent, may suggest

confounding systematic bias or invalid assumptions. Part of the

argument being made for concurrent and synergistic use of

synthetic methods is that focusing on discovering and building

plausible, generative mechanisms parsimoniously reduces the risk

of instantiating such conceptual bias. The validated analog plasma

profiles (Figs. 3 and 4) provide evidence supporting that argument.

The observed similarity between in silico and clinical plasma

profiles establishes a degree of confidence in analog-to-referent

mappings (Fig. 6), even though the actual events and processes in

the two systems are very different. Having satisfied the plasma

profile similarity criteria, the simulations stand as challengeable yet

tested theories about events that may have occurred within

subjects following dosing.

A significant M&S challenge, which applies to both classical and

synthetic modeling, is the problem of overfitting. In equation-

based pharmacokinetic modeling the problem is over-parameter-

ization. Physiologically more ‘realistic’ models are susceptible

because they require a large number of individual parameter

estimates. Sparse data aggravates the problem. The analogous

problem in synthetic modeling occurs when we add more detail

than is actually needed to achieve the current use cases and

validation targets. When building an analog, there is a strong

impulse to add mechanistic details (specific regions of the intestine,

for example) simply because we have knowledge of those details

and evidence that, under some circumstances, they can influence

plasma profile shape. As discussed in [5], doing so too early can

lead to overly complex and unnecessary analog features. We

minimized those problems by adhering to a strong parsimony

guideline as specified previously [13,14]. So doing also helps avoid

inscription error, i.e., the logical fallacy of assuming the conclusion

and programming in (consciously or otherwise) aspects of the result

we expect to see. Whereas classical inductive methods require a

sizable set of quantitatively precise, networked assumptions, many

beyond validation, the scientific M&S process requires no

comparable assumptions: analog specifications and parameteriza-

tion are made through iterative experiment and mechanism

refinement. Upon achieving validation targets, we simply hypoth-

esize that, at comparable levels of explanatory granularity, analog

Table 3. Pharmacokinetic parameter estimates.

Parameter Observed In Silico

Fasting Fed Fasting Fed

tlag (h) 0.460.5a 1.661.2a 0.460.5 1.160.7

tmax (h) 4.160.8 4.561.0 4.160.8 4.760.9

Cmax (nmol/l) 16.7621.8 27.3629.4 16.8622.3 26.9628.8

AUCall (h?nmol/l) 53.9656.9 54.3647.6 55.3656.3 57.4652.1

tlag, lag time; tmax, peak concentration time; Cmax, peak concentration; AUCall, area under the plasma concentration-time curve from dosing up to the last time point.
Data expressed as mean 6 SD. a From [8].
doi:10.1371/journal.pone.0108392.t003
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mechanisms have subject specific counterparts as illustrated in

Fig. 6A.

The analog’s coarse grain GI/tissue spaces and event mecha-

nisms are an acknowledgement of multi-source uncertainty, where

coarse grain mechanisms serve as placeholders for more fine-

grained mechanistic details that will challenge (or support) aspects

of the hypothesized mechanisms implemented in Fig. 2. Lam et al.

[25] showed how analog mechanisms can be made more fine-

grained, more biomimetic, and thus more realistic. A reason for

taking the next step and marginally increasing detail would be to

identify differences between equally plausible mechanisms that

could be challenged using a focused wet-lab experiment, like those

described by Weitschies et al. [8]. The set of competing, equally

plausible, finer grain analogs would all master the original

similarity criteria: they would be equally valid and equally

explanatory. Being different at some level of mechanistic detail,

there will be event differences during execution, which may reveal

tenuous hypotheses that need to be revisited, or may bring into

focus new hypotheses–secondary sites of food interaction [35],

ancillary absorption pathways [36], transitory drug sequestration

[37,38], etc.–that if later validated may help build confidence in

analog predictions and bring us closer to unraveling mechanism

culprits that confound current analysis. An experiment that

measures counterparts in vitro or in vivo will provide evidence

that may falsify aspects of some or all of the competing

mechanisms. Our expectation is that such tight coupling of

in silico and wet-lab experimentation can generate the evidence

needed to identify causes of excessive dosage form performance

variability, and suggest formulation strategies based on predictive,

prospective simulations to improve oral pharmacokinetics and

efficacy.

We further envision integrating the conventional pharmacoki-

netic modeling approach with synthetic methods used herein.

Doing so is not straightforward partly because appropriate tools

are lacking within the pharmaceutical research and development

domain to contemporaneously support and bridge the two

approaches. One harmonization strategy is to augment existing

pharmacokinetic modeling platforms with object-oriented, discrete

event modeling capabilities. So doing may seem somewhat

futuristic, but technologies and technical underpinnings for

enabling heterogeneous M&S capabilities are in use today in

different engineering domains [39–41]. In the case of NONMEM

Figure 5. Analog use cases. Each analog experiment (a use case) focuses on one or more aspects of its referent, e.g., felodipine plasma profiles.
The particular referent can be characterized by its approximate location on each of the four lower spectra. Those locations guide analog grounding
decisions and constrain the characteristics of predictions that the validated analog can make. An analog, in turn, can be located anywhere along a
spectrum of software devices (models) ranging from synthetic (used herein) to purely inductive models. Conditions on the far right of the three lower
spectra are supportive of continuous mathematical models that are constrained by their formalism and rely on absolute grounding that, upon
validation, can make trustable, precise predictions. When center-left, where explanatory, mechanistic knowledge is scarce, the focus needs to shift to
mechanism discovery, explanation, and exploration, which are facilitated by relational grounding [7,31], and reliance on the agent-oriented, discrete
event methods used herein is most appropriate.
doi:10.1371/journal.pone.0108392.g005
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or ADAPT, language updates and extensions to Fortran are now

available to support OOP [42] as well as discrete event simulations

[43]. They subsume older, Fortran-based constructs and enable

new object-oriented system components to coexist, execute,

inform, and interface with procedural subroutines (e.g., PREDPP)

within a common, computational framework. New user function-

alities will be feasible, such as rapid virtual prototyping and

automated (supervised or unsupervised) model evolution, which

can facilitate large-scale, exploratory, mechanism-focused phar-

macological M&S.

A key benefit of synthetic, object-oriented M&S is the ease with

which existing details can be altered and/or new details added. It

is relatively straightforward to ‘‘drill down’’ to explore finer grain

mechanism theories while still being parsimonious. For example,

objects representing different cell types (e.g., enterocytes) that

contain other objects that map to molecules–metabolic enzymes,

drug and efflux transporters, etc.–can be added to individual grid

locations as done in [13]. The goal might be to explore plausible

answers to a question like this: is there a single, somewhat finer

grain analog, in which one or more features are common for all

subjects, that behaves individually the same as the coarse grain

mechanism? The approach is described as tunable resolution [44].

If the answer is yes, we may be getting closer to identifying the

problematic drug-absorption-food interaction features, possibly

related to BCS class types. So doing would make it easier to

explain and enhance product performance. We anticipate that

these expanded, exploratory methods will enable solving such

long-standing mysteries as why some oral drugs are highly variable

Figure 6. Analog–subject mappings. The engineering objective is to have biomimetic software mechanisms (blue) in which we are building
confidence that events occurring during simulations, at different granularities, mimic corresponding events at comparable granularities hypothesized
to occur in subjects (green) following dosing. A. Generative mechanisms, phenomena, and their causes occurring during simulations stand as
hypotheses (currently quite abstract–coarse grain) about counterparts occurring within each subject. Because all analog events are concrete, those
hypotheses are also concretizable mappings. B. The immediate goal is to achieve acceptable, quantitative similarity criteria (measure-to-measure
mappings) between each subject’s felodipine plasma profile features and its analog’s counterpart. As similarity criteria are achieved, our confidence
increases that simulation details may be predictive. Importantly, influential events within each space can be traced during execution and so can be
falsified (or not) by future wet-lab or clinical observations.
doi:10.1371/journal.pone.0108392.g006
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beyond what is currently related to BCS classification. Improved,

explanatory, mechanistic insight is expected to foster technological

innovations to better control variability and improve individual

treatment outcomes.

Conclusion

We used the investigational, in silico framework in Fig. 1 to

explore plausible mechanistic hypotheses for the highly variable,

complex pharmacokinetics of an extended-release felodipine

formulation. The framework comprises an object-oriented,

discrete event, whole-body analog supported by features for

semi-automated experimentation and analysis. Subject-specific

parameterizations enabled each executed analog’s plasma profile

to quantitatively mimic features of corresponding individual

subject plasma profiles with food interaction. These new methods

provide much-needed M&S means to begin unraveling causative

mechanisms underlying complex pharmacological phenomena

and accelerate progress toward truly personalized medicine.
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File S1 Simulated disposition outcomes following
changes in analog parameterization. Starting with the
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concentration-time profiles. Analog drug concentrations were

measured in dose fraction and recorded each time step following

the same protocol described in Methods.
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