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Herpes simplex virus (HSV)-1 infection of the cornea results in expansion of CD4+ and CD8+ T 

cells in the draining lymph nodes (DLN), and causes a CD4+ T cell – mediated 

immunopathological disease in the cornea called herpes stromal keratitis (HSK). During steady 

state, the cornea possesses a resident population of CD11c+ CD11b- dendritic cells (cornea-

resident DCs). CD11c+ DCs infiltrate the cornea after HSV-1 infection (cornea-infiltrating DCs), 

but their contribution to T cell expansion and the progression of HSK, as well as the role of DCs 

present in the DLN (DLN-resident DCs), following corneal infection is unknown. We employed 

mice that express high-affinity diphtheria toxin (DT) receptors from the CD11c promoter to 

selectively deplete CD11c+ dendritic cells present in the cornea and the DLN. We depleted 

cornea-resident and cornea-infiltrating DCs by timed local (subconjunctival) injection of DT into 

murine corneas.  Corneal and DLN – derived DCs were depleted by systemic (intraperitoneal) 

DT treatment. The studies outlined in this thesis demonstrate the following: 1) DCs resident in 

the cornea and DLNs at the time of infection are not essential to CD4+ and CD8+ T cell 

expansion in the DLN, nor are they necessary for HSK development. 2) Cornea-infiltrating DCs 

are responsible for most of the CD8+ T cell expansion measured at 3 and 7 days post infection 

(dpi), and contribute to the prevention of lethal encephalitis. 3) Both cornea-infiltrating DCs and 

DLN – derived DCs participate in CD4+ T cell expansion at 3 dpi, with cornea-infiltrating DC 

stimulating CD4+ T cell expansion in the DLN at 7 dpi. Lastly, 4) although DCs infiltrate the 
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cornea at the onset of disease, the development of HSK between 7 and 21 dpi did not require 

corneal DCs. In its place, associations of CD4+ T cells with MHC II – expressing corneal 

epithelial cells and macrophages may promote HSK progression in corneas depleted of DCs. 
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1.0  INTRODUCTION 

1.1 HERPES SIMPLEX VIRUS TYPE-1 

1.1.1 Epidemiology 

Herpes simplex virus (HSV)-1 is an evolutionarily ancient and ubiquitous human pathogen that 

affects the majority of the world’s population. It is estimated that at least 80% of the world’s 

population has been exposed to HSV-1 (1, 2). Though primary acquisition of HSV-1 is 

progressively delayed in industrialized countries, it occurs at a young age in developing nations 

(3). In the United States alone, the seroprevalence of HSV-1 has been estimated at 60% of the 

total population over the past 25 years (4), while in developing countries such as Tanzania , 90% 

of the population is seropositive by twenty years of age (5). Following initial primary infection 

of the orofacial region that includes the cornea, HSV-1 infects the sensory nerve termini at the 

site of infection, and travels to the innervating trigeminal ganglia (TG). There the virus 

establishes a state of latency, where nonreplicative viral genomes are maintained within neuronal 

nuclei, and no infectious viral particles are produced (6). HSV-1 has the ability to reactivate from 

latency, where replication of latent genomes occurs and infectious virus progeny is produced and 

shed towards the original site of infection. A combination of host and virus-related factors, as 
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well as amount of viral load, influences the ability of HSV-1 to reactivate and to retain latent 

viral genome (7-10). 

Loss of neuronal viral control is often asymptomatic, but the virus may undergo 

reactivation frequently and may cause viral or immune pathology at the site of primary infection. 

The spectrum of diseases caused by HSV-1 includes herpes labialis, genital lesions, herpes 

simplex encephalitis, gingivostomatitis, and herpes stromal keratitis (HSK). Infections with 

HSV-1 last for the lifetime of the host, and there is yet no known treatment. Current drug 

therapies such as acyclovir, valcyclovir, and famciclovir inhibit viral DNA synthesis and are 

only effective during productive infection but do not prevent latent virus reactivation and re-

infection (1, 11). Prophylactic and therapeutic candidate vaccines have been tested on animal 

models of herpes infection and have been largely unsuccessful in clinical trials (12, 13). Current 

strategies at vaccine development have been aimed at inducing humoral and cellular-mediated 

immunity for better protection (14). 

1.1.2 Viral structure 

HSV-1 is a double stranded DNA virus with a 152-kilobase pair genome that encodes at least 84 

viral proteins (15). The HSV-1 genome can be divided into six important regions: (i) the ‘a’ 

sequences located at the end of the linear genome and necessary for viral DNA circularization 

and DNA packaging; (ii) the long repeat (LR) region that encodes immediate early regulatory 

proteins and latency associated transcripts; (iii) the unique long (UL) region that contains genes 

for DNA replication enzymes and capsid proteins; (iv) the short repeats (RS) that encode a very 

important immediate early protein, infected cell protein 4 (ICP4); (v) the origins of replication 

found in the middle of the UL and of RS; (vi) and the unique short region that encodes 
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glycoproteins, kinases, and other proteins that are critical for viral host range and response to 

host defense. 

The viral genome is encased in an icosadeltahedral structure of viral proteins called the 

capsid, that is surrounded by an amorphous layer of proteins required to effectively initiate viral 

transcription and is collectively designated as the tegument. A lipid bilayer envelope derived 

from the host cell membrane and embedded with glycoproteins surrounds the tegument and the 

capsid. These glycoproteins aid in release of the virus from infected cells and in binding and 

entering new susceptible targets (1). 

The life cycle of herpes viruses can be divided into three segments: (i) lytic infection 

where infectious virions are produced and the host cell undergoes lysis; (ii) latent infection 

where there is limited viral gene transcription and no infectious virions are formed; and (iii) 

reactivation from latency where there is minimal viral gene transcription that may lead to DNA 

replication and production of infectious viral particles de novo. 

1.1.3 Cell entry 

HSV-1 enters the cell via fusion at the cell membrane (16, 17), endocytosis (18), or phagocytosis 

(19). The initial phase of infection involves the attachment of viral proteins glycoprotein B (gB) 

and glycoprotein C (gC) to heparan sulfate proteoglycan molecules on the host cell surface. Then 

glycoprotein D (gD) associates with certain cell surface receptors such as the herpes virus entry 

mediator (HVEM), nectin-1, or 3-O-sulfated heparan sulfate (20-23). The last step involves an 

intermediate of gB, gD, glycoprotein L (gL), and glycoprotein H (gH) to induce fusion of the 

viral envelope and the host cell plasma membrane (22). Upon entry into the host cell, HSV-1 

shuts off cellular protein synthesis by degrading host mRNA molecules through the virion host 
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shutoff (vhs) proteins (24). Using the microtubule network of the host cell, the nucleocapsid is 

transported towards the nucleus where viral DNA is introduced into the nucleus through an entry 

pore. The linear viral genome circularizes and the virus utilizes the host RNA polymerase II to 

transcribe its viral genes (25, 26). 

The transcription of HSV-1 genes is highly sequential and tightly regulated. Within 1-2 

hours of infection, HSV-1 expresses the first gene products, which are termed the immediate 

early (IE), or α-genes. These do not need de novo viral protein synthesis. The IE genes are 

critical for subsequent early viral protein expression and include infected cell protein (ICP) 0, 

ICP4, ICP22, ICP27, ICP47, and Us1.5. ICP0 facilitates viral infection and expression of all 

genes without directly binding DNA (27, 28). ICP4 upregulates expression of the early (E) or β-

genes and late (L) or γ-genes (29, 30). ICP47 inhibits the transport of viral antigens into the 

endoplasmic reticulum, thus avoiding antigen presentation (31, 32). Four to eight hours after 

infection, the β-genes get expressed and initiate viral DNA replication. These genes include 

ICP8 (a DNA-binding protein), ICP6 (a subunit of ribonucleoreductase), and viral thymidine 

kinase (TK) (1). Viral DNA replication is necessary to activate expression of the γ genes, which 

can be subdivided into two groups. γ1 genes, such as gB, can be transcribed before DNA 

replication but increase expression after DNA synthesis, while γ2 genes on the other hand, need 

DNA replication to occur for their transcription. As a whole γ gene products comprise viral 

structural proteins, glycoproteins, and tegument components required for final viral assembly (1). 

Capsids are assembled and viral DNA is packaged into the capsids. The virus acquires tegument 

components in the cytoplasm and utilizes the host cell transport machinery for cell egress as 

newly formed virions. The entire viral replication transpires in about 12 hours. 
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1.1.4 Latency 

Depending on the kind of cell infected, HSV-1 can lead to cell death or establishment of latency. 

Latency is defined as viral genome retention in neuronal cells without virion production or host 

cell destruction. During latency, viral DNA circularizes into an extra-chromosomal episome that 

is closely associated with histones (33). It is unclear how latency is established and what factors 

contribute to maintain it. It may involve circularization of the viral genome induced by 

downregulation of the IE gene ICP0 (34). It has also been suggested that the regulation and 

maintenance of latency is dependent on a dynamic relationship between the neuron, virus, and 

the host immune system (35). In our infection model of the cornea, latency is established in the 

trigeminal ganglion that innervates the eye, nose, and mouth.  There is minimal expression of 

viral genes and there is difficulty in detecting viral proteins (36). 

While there are no viral proteins detected during HSV-1 latency, there is abundant 

expression of latency associated transcripts (LAT) in infected neurons (37-39). Because of this, 

at a molecular level, latency is defined as viral gene expression limited to LAT transcription. 

Studies have shown, however, that LATs are not absolutely necessary for the establishment of 

latency or viral reactivation (40-42). LATs are critical in enhancing neuronal survival by 

blocking neuronal apoptosis (43, 44), and may promote survival of latently infected neurons by 

inhibiting transforming growth factor (TGF)-β signaling (45). LATs are also important for 

controlling viral reactivation by encoding microRNAs that impair expression of the IE gene 

ICP0 (46). LATs are also involved in determining what subtypes of neurons will be amenable to 

latent infection (47). 

It is not well-understood how HSV-1 exits from a latent state to enter into productive 

lytic infection or reactivation. Reactivation leads to production of infectious virus particles that 
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travel down the axon by anterograde transport back to the primary site of infection, which leads 

to recurrent disease. Specific conditions, such as immunocompromise, UV-B irradiation, 

hypothermia, invasive surgery, and psychological stress have been associated with reactivation 

from latency (48-54). 

The paradigm has promoted a central role for the neuron and changes in its physiology in 

influencing reactivation, but studies from our lab and others have shown that the immune 

response is actively participating in maintaining HSV-1 latency (6, 55). Reactivation can be 

inhibited by the antiviral cytokines expressed in the latently infected ganglia (56, 57), such as 

interferon (IFN) γ and tumor necrosis factor (TNF) α (6, 58). 

CD8+ T cells closely associate with neurons in the latently infected ganglia and can 

prevent reactivation ex vivo (59-61) by secretion of cytokines IFNγ and TNFα that may lead to 

neuronal apoptosis (60, 62) or by secretion of noncytotoxic lytic granules that do not kill neurons 

(63). These CD8+ T cells have been shown to be specific for HSV-1 antigens (64, 65). 

1.2 CORNEA 

Primary infection with HSV-1 involves mucosal surfaces, which includes ocular sites such as the 

cornea. The cornea is a transparent and avascular tissue that forms the outermost layer of the eye. 

It functions to protect the rest of the eye from foreign material and along with the lens, controls 

and focuses the entry of light into the eye. The corneal tissue is highly structured and is arranged 

in five basic layers (Fig. 1). The outermost region is the epithelium, which is a physical barrier 

that protects the eye and provides a smooth surface for absorption and redistribution of oxygen 

and other cell nutrients. 
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The epithelium is innervated by tiny nerve endings that make the cornea very sensitive to 

touch and pain. Below the epithelium is the Bowman’s layer, which is composed of layered 

collagen fibers that help in retaining the structure of the layer beneath it, the stroma (66, 67). The 

stroma comprises about 90% of the thickness of the cornea, is devoid of blood vessels, and is 

made up primarily of water (78%) and collagen (16%), and less amounts of proteoglycans (68, 

69). The collagen that makes up the stroma lends strength, elasticity, and form to the cornea, and 

its unique and highly organized arrangement and spacing are essential in minimizing light 

scattering thus permitting transparency. The collagen fibers of the stroma are arranged as 

orthogonal layers called lamellae, and in between the lamellae are keratocytes which function to 

synthesize collagen and proteoglycans. The keratocytes are also important in producing growth 

factors during development and tissue injury and repair (70). 

Beneath the stroma is the Descemet’s membrane, which is composed of collagen fibers 

different from those of the stroma. It is a thin but strong layer of tissue that protects against 

infection and injuries. Underneath the Descemet’s membrane is the endothelium, which serves to 

produce the collagen fibers of the Descemet’s membrane. It is the innermost layer of the cornea, 

and one of its other primary functions is to pump out excess liquid from the stroma, and transport 

cellular nutrients to the corneal cells (71, 72). This is critical because endothelial cells cannot be 

regenerated and when they are destroyed, the stroma swells with water, becomes hazy and 

eventually opaque, leading to corneal blindness. The cornea is avascular and does not depend on 

blood vessels for cell nutrients and tissue survival. A study has shown that the avascularity of the 

cornea is due to the constitutive expression of the soluble receptor for vascular endothelial 

growth factor (VEGFR)-1 in corneas, which prevents the formation of new blood vessels by 

binding VEGF (73). 
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Figure 1. Schematic of the cornea 

The diagram illustrates the basic layers of the cornea. The epithelium is the first layer on the anterior part of the 

cornea, followed by the Bowman’s layer, the stroma, Descemet’s membrane, and the endothelium.. Image was taken 

from: http://www.onset.unsw.edu.au/issue2/Contactlenses/Cornea.jpg. 

 

1.2.1 Ocular immune privilege 

Maintaining homeostasis of ocular tissues is critical to preserve vision. Inflammatory processes 

in the eye as a response to foreign insult can inflict injury to bystander cells of the retina or the 

corneal endothelium, and these may promote blindness because of an inability of these cells to 

regenerate. In some instances, the only recourse for remedy seems to be corneal transplantation. 

It is widely known that corneal allografts enjoy a remarkable advantage in that they are exempt 
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from some forms of immune-mediated inflammation, which makes them a highly successful type 

of organ transplant even in the absence of HLA-matching or immunosuppressive drugs (74-80). 

This phenomenon was recognized about sixty years ago and was termed as immune privilege 

(81, 82). 

The immune privilege of the cornea is attributed to various anatomical, physiological, 

and immunological factors that limit immune-mediated inflammation in the eye. Part of the 

reason is because under non-pathological conditions, the cornea is avascular and is devoid of 

lymph vessels. Corneal epithelial and endothelial cells are equipped with various membrane 

bound molecules that may block immunological attack. Fas ligand (FasL or CD95L) is expressed 

on all layers of the cornea, iris, retinal pigmented epithelium, and ciliary body (83). FasL is a 

molecule that induces apoptosis of infiltrating neutrophils and lymphocytes that express its 

receptor Fas (CD95) (84), and this has been shown in corneal allografts as well (85, 86). Ligands 

that induce apoptosis that are expressed in the eye include tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) (87, 88) and programmed death ligand – 1 (PD-L1) (89-91). 

Both of these molecules promote apoptosis of the cells expressing them upon engagement of 

their respective receptors. 

The aqueous humor, which is the intraocular fluid of the anterior chamber, contains 

various neuropeptides, cytokines, and growth factors that contribute to immune privilege, 

including cell membrane bound (92, 93) or soluble complement regulatory proteins (CRP) (94), 

vasoactive intestinal peptide (VIP) (95), calcitonin gene-related peptide (CGRP) (96), 

thrombospondin (TSP) (97, 98), macrophage migration inhibitory factor (MIF) (99), alpha 

melanocyte stimulating hormone (a-MSH) (100, 101), TGFβ (102, 103), secreted lymphocyte 
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antigen-6/urokinase-type plasminogen activator (SLURP)-1 (104), and as previously mentioned, 

VEGFR1. 

1.2.2 Immune cell populations of the cornea 

Due to its immune-privileged nature, the cornea was thought to lack hematopoietic cells, 

however, studies from our lab and others in the past decade have shown that this is not the case. 

The cornea, like other mucosal surfaces, is a tissue that hosts a network of antigen – presenting 

cells (APCs) that include CD11c+ dendritic cells (DCs) (105-109) and CD11b+ CD11c-

macrophages (110). This is found to be true in both mice and humans (111, 112). Almost all of 

these DCs constitutively express major histocompatibility class (MHC) II, and are located in the 

basal epithelium, with more DCs residing in the peripheral cornea and gradually decreasing in 

density towards the central cornea (107) (Fig. 2). According to Hattori, et al., like the skin, the 

DCs in the cornea include langerin+ cells in the epithelium and in the stroma (113). These MHC 

II+ dendritic cells form membrane nanotubes, which may serve as means to communicate 

between cells in the cornea (114). In our model of HSV-1 corneal infection, our lab has shown 

that these dendritic cells resident to the cornea are responsible for regulating the innate immune 

response that clears HSV-1 replication by facilitating natural killer (NK) cell migration to the 

central cornea where virus lesions are located (115). Our lab has also demonstrated that in 

humans, these corneal DCs rapidly mobilize to the site of lesions in an ex vivo infection model 

(116). 

Beneath the layer of dendritic cells in the epithelium and towards the anterior side of the 

stroma, there are CD11b+ CD11c- macrophages that express low levels of MHC II, while there 

are MHC II- CD11b+ macrophages located towards the posterior side of the stroma (107) (Fig. 
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2). This unique stratification of antigen presenting cells can also be appreciated in human 

corneas (116). Although the role of these dendritic cells in the innate immune response is 

recognized, it remains unknown how these resident DCs function in adaptive immune responses. 

 

 

Figure 2. The stratification of antigen presenting cells in the cornea 

The diagram depicts the unique stratification of antigen presenting cells in the normal cornea. Dendritic cells (green) 

expressing MHC II (red or yellow) are located in the epithelial basement membrane. Underneath, macrophages 

reside within the stroma, where MHC II-expressing macrophages (purple) are located in the anterior side, and MHC 

II-negative macrophages (blue) are in the posterior part. Image was obtained from Ophthalmol Eye Dis. 2009; 1:45-

54 (107). 
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1.2.3 Innate immune response  

With regards to microbial pathogens and from an immunological stand point, the eye is an 

exceptional organ that must maintain a perfect balance between the host immune response for 

pathogen clearance and preservation of the visual axis. Because of the inflammatory response to 

infection, there is accompanying tissue destruction that may lead to devastating and irreversible 

outcomes such as vision impairment. In order to understand this pathogenic process, it is 

imperative to identify and characterize the key molecules and immune cells that associate virus 

recognition to the innate immune response of the host, as well as the critical factors in the 

adaptive immune response generated against HSV-1 corneal infection, which contributes to both 

the host protection and ensuing immunopathology (HSK). 

1.2.4 Innate immune recognition of HSV-1 in the cornea 

In our model of HSV-1 ocular infection, the virus replicates in a lytic fashion in the corneal 

epithelium. Virus recognition by the host cell is essential to elicit a strong immune response and 

HSV-1 has several mechanisms by which it can evade host cell recognition (117, 118). 

Pathogen-associated molecular patterns (PAMPs) are highly conserved pathogen motifs that are 

recognized by host cells through what are collectively called pathogen recognition receptors 

(PRRs). HSV-1 PAMPs include glycoproteins, tegument proteins, GC-rich viral genomic DNA, 

as well as some AT-repeat regions, and virus-derived RNAs that accumulate during productive 

lytic infections. PRRs for HSV-1 include Toll-like receptors (TLRs) that alert the innate immune 

system to the presence of virus, and trigger the initial host response (119). Among them, TLR-2, 

-3, -7, -8, and -9 are known to be involved in recognition of HSV PAMPs (120-124). TLR-3, 
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recognized as an endosomal sensor, is expressed on the cell surface of corneal epithelial cells and 

fibroblasts (125-127), and its loss in mice and humans result in an enhanced susceptibility to 

herpes simplex encephalitis (128, 129). TLR-9 expression was observed in human corneal 

epithelial cells and fibroblasts after exposure to HSV antigens (130). TLRs signal through 

adaptor proteins that drive downstream type I interferon and inflammatory chemokine 

production in a highly regulated process that leads to recruitment of inflammatory cells that can 

control HSV-1 replication (131). 

 
There exists a redundancy in biological systems in that there are other innate sensors that 

are similar to TLRs and respond to pathogenic RNA or DNA stimuli. These intracellular sensors 

also specifically induce type I IFN expression (132), and in the cornea, an interferon-inducible 

transcriptional modulator called IFN-inducible protein (IFI)-16, was identified in corneal 

epithelial cells and was found to induce IFNα - mediated CCL2 production. CCL2 production 

allowed the infiltration of inflammatory monocytes secreting inducible nitric oxide synthase 

(iNOS), which along with type I IFN, suppresses HSV-1 replication (133, 134). Recent 

investigations have revealed that HSV-1 elicits type I IFN through a cytosolic DNA sensor 

system that involves the adaptor molecule Stimulator of IFN genes (STING) (135). IFI-16 may 

possibly be an innate immune sensor that can associate HSV-1 recognition to type I IFN 

responses dependent on STING (133, 136). 

First responders  

Viral recognition and replication in corneal epithelial cells induces the release of pro-

inflammatory cytokines and molecules by infected cells, bystander cells, and infiltrating cells. 

These include interleukin (IL)-1α, IL-1β, IL-8, IL-6, IFNγ, TNFα, macrophage inflammatory 

protein (MIP)-2, monocyte chemoattractant protein (MCP)-1, IL-12, and MIP-1α (137-146). 
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These pro-inflammatory cytokines can act as chemotactic factors that attract dendritic cells, 

monocytes, macrophages, neutrophils, NK cells, and γδ T cells to the site of infection, which in 

turn are critical in initial control of the virus (147-154). Natural killer cells are a component of 

the innate immune system that recognize the absence of or reduced expression of surface MHC I 

molecules often found in tumor cells or virus-infected cells. Upon detection of these cells that 

don’t express self-antigen, NK cells get activated and secrete lytic granules containing 

granzymes that cause the infected cell to undergo apoptosis. They can also clear viral replication 

by secreting antiviral cytokines such as IFNγ and TNFα, and attracting other inflammatory cells 

by expressing chemokines such as CCL2, CCL3, CCL4, CCL5, CXCL1, and IL-8 (155).  

Natural killer cells are not present in the naïve cornea and infiltrate as early as 1 day after HSV-1 

infection (unpublished data) via interactions between the chemokines receptor CXCR3 and its 

ligands CXCL9 and CXCL10 (151). In the absence of NK cells during HSV-1 infection, there is 

impaired control of viral replication in the cornea (115, 151). 

Another major immune cell population that infiltrates the cornea early after infection is 

neutrophils. Neutrophils are white blood cells that are part of the innate immune system and are 

recruited to the site of infection to facilitate viral clearance by phagocytosis of infected cells and 

production of mediators such as nitric oxide. Initial studies showed that depletion of neutrophils 

by using an antibody to Gr-1 delayed virus clearance after HSV-1 infection (154). However, Gr-

1 is expressed in other immune cells such as monocytes (156), DCs (157), and CD8+ T cells 

(158). Upon further investigation however, specific depletion of neutrophils by the antibody to 

Ly6G did not promote HSV-1 clearance (159), indicating a more critical role for other cells 

expressing Gr-1 such as inflammatory monocytes (115). 
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After HSV-1 infection, macrophages are stimulated by TLR to secrete type I interferons 

(IFNs) (160). These type I IFNs and the subsequent signaling cascade are critical in controlling 

early HSV-1 replication (146, 161). Macrophages are activated by IFNγ from NK cells to control 

HSV-1 replication by releasing iNOS (162, 163). Even with the antiviral cytokines expressed 

and the early responding cells that infiltrate after HSV-1 infection of the cornea, the virus still 

gains access to the sensory nerve termini found in the corneal epithelium. This virus is 

transported in a retrograde axonal fashion to the TG within 24-48 hours after infection (164), and 

replicates up until 4 days post infection (165). NK cells, macrophages, and γδ T cells enter the 

TG after the virus starts replicating (165-167). 

Virus spread from infected to neighboring neurons is limited by nitric oxide (NO) and 

TNF produced by macrophages and by granzymes A expressed by NK cells (167, 168). 

Infiltrating NK cells secrete IFNγ to activate macrophages to produce NO and TNF, and γδ T 

cells secrete type II IFNs to limit viral replication. This is not enough however, as the adaptive 

immune response is necessary to completely eliminate virus replication. Without a functional 

adaptive immune system, mice lose control of the virus and develop encephalitis (169).  

1.2.5 Dendritic cells 

Dendritic cells are a population of hematopoietic cells with critical roles in immunity, activating 

and initiating the immune system to respond to immune tolerance and danger signals elicited by 

pathogens. These cells are located throughout the body, and bridge the innate and adaptive 

immune responses by sampling antigens in these peripheral tissues, transport them to the 

draining lymph nodes (DLNs), where they can present them to potential naïve responding T 

cells. They are highly specialized cells that can capture, process, and present antigens to T cells. 
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These interactions between naïve T cells and DCs fine tune complex immune responses by 

controlling the primary activation and subsequent fate of the T cells, and therefore, also the 

outcome of the immune response (170). 

Dendritic cell subsets 

 It is now very well established that DCs are very heterogeneous and consist of 

phenotypically, developmentally, and functionally distinct subpopulations (171-173). It is 

thought that this diversity is necessary to encompass the various kinds of pathogens encountered 

by the immune system, and this is reflected by the differences in expression of pathogen 

recognition receptors on different DC subsets (174-176). 

These DC subsets have been defined traditionally by precursor, anatomical location, 

function, and phenotype. Broadly, they can be categorized into pre-dendritic cells (pre-DCs), 

conventional dendritic cells (cDCs), or inflammatory or monocyte – derived DCs. 

Pre-DCs most often need additional microbial or inflammatory stimuli to further develop 

into fully functional DCs. One example of a pre-DC is the plasmacytoid dendritic cell (pDC). 

Plasmacytoid dendritic cells do not present antigen as efficiently as the other DC subtypes but 

they migrate between the blood, spleen, and lymph nodes, and secrete type I IFNs during viral 

infections (177-180). Monocytes, which are precursors of macrophages, can act as pre-DCs and 

differentiate into inflammatory or monocyte – derived DC (181). 

Conventional DCs already exhibit dendritic cell form and function in the steady state, and 

can be divided into lymphoid – tissue DCs and migratory non – lymphoid tissue DCs, where the 

latter has the ability to migrate to the DLNs through the lymphatics. The cDCs in lymphoid 

tissues can be categorized based on their expression of cell surface molecules: CD8α+ 
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CD11blowDCs and CD4+ CD11bhi DCs (182). The counterpart of the CD8α+ CD11blowDC subset 

is identified in humans as the DC expressing blood –dendritic cell antigen (BDCA3) (183-185). 

Migratory DCs, depending on the tissue they populate, are distinguished by their 

differential expression of the integrins CD11b and CD103 (186, 187). An exception is the 

migratory DCs in the lamina propria of the intestines, which express both (188, 189). 

Langerhans cells, which are the model migratory DCs, are tissue-resident DCs that are 

found in epithelium of the skin, cornea, as well as the intestinal, respiratory, and reproductive 

tracts (113, 190-193). Initially thought to be the only cell that expresses the C-type lectin 

langerin in the skin, it was recently demonstrated that CD103+ dendritic cells also express 

langerin (190). 

As suggested previously, inflammatory DCs are not present in the steady state, but appear 

after inflammation or infectious stimuli both in the periphery and in lymphoid organs, and can be 

derived from CCR2+ Ly6chi monocytes (194). One example is the TNF/iNOS producing (Tip) 

DCs (195). Another example is the DC that develops after infection of mice with Listeria 

monocytogenes (196). A detailed characterization of these DCs is described in Table 1. 

Table 1. Dendritic cell subsets 

DC subtype 
Location and 

migration 
Markers in mice Function 

Plasmacytoid DCs 
Blood, spleen, 

lymph nodes 

CD11cint, CD11blow, 

Gr-1+, B220+ 

Secretes type I 

interferons 

Conventional DCs    

 

Lymphoid 

tissue-

resident 

DCs 

Thymus, spleen, 

lymph nodes 

CD11c, CD8+/-, 

CD4+/-, 

Cross – 

presentation;  

capture of antigens 

from migratory DCs 

or from blood; 
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antigen presentation 

 

Migratory 

tissue-

resident 

DC 

Peripheral tissues 

such as skin, lungs, 

intestine, cornea 

CD11c, CD103+/, 

CD11b+/- 

Sentinels in 

peripheral tissues; 

migrates to DLN for 

antigen presentation 

to T cells 

Inflammatory 

dendritic cells or 

monocyte-derived 

DC 

Anywhere, 

during 

inflammation, 

rarely during 

steady state 

CD11c, CD11b, 

Ly6c, CD64, MAR-1 

Antigen 

presentation; TNF 

and iNOS producing 

DCs; secretes IL-12, 

IL-23 

Langerhans cells 

(an example of 

migratory tissue - 

resident DC) 

Epithelial layers of 

different tissues 

Langerin, CD11clo, 

CD11bint, Birbeck 

granules, EpCAMhi, 

Antigen 

presentation to T 

cells; deletion of 

self-reactive T cells; 

induction of Th2, 

Th17, Treg cells 

 

1.2.6 HSV-1 infection of dendritic cells 

Although the function of DCs in the cornea is not well characterized, the role of DCs in other 

peripheral tissues in response to infection with HSV-1 has been well studied. Dendritic cells are 

very effective at detecting pathogen and pathogen-associated molecular patterns (PAMP). DC 

recognition of HSV-1 is followed by secretion of vital antiviral cytokines such as IL-6 and IL-12 

(197). It is intriguing that in response to some HSV-1 strains, cytokine release can be controlled 

by stimulation of TLR9 through viral DNA (197) or TLR2 through viral glycoproteins gH/gL or 

gB (198).  Dendritic cells also elicit the release IFNα/β after HSV recognition, and this facilitates 
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inhibition of immediate-early HSV gene expression, prevention of virion release from infected 

cells, and impedance of the progression of infection from peripheral tissues to neurons (199). 

The importance of Type I IFNs in control of HSV-1 infections is illustrated in infected mice 

lacking the receptor for IFNα/β that are impaired in counteracting virus spread from primary 

infection to the central nervous system (133, 161, 200). 

Plasmacytoid dendritic cells are regarded as a major producer of IFNα/β (201) through 

TLR9 stimulation (124). However, their importance in HSV-1 infections appears to be 

contingent on the route of inoculation. Effective control of vaginal submucosal (202) and 

systemic (203) HSV-1 infections appear to require pDCs. Plasmacytoid DCs however, do not 

seem to be necessary for clearing cutaneous HSV-1 infections (203). The fact that myeloid 

differentiation primary response gene 88 (MyD88), an adaptor molecule necessary for TLR2 and 

TLR9 signaling, does not influence viral replication after subcutaneous or corneal infection (133, 

203), suggests that IFNα/β responses rely on various pattern recognition receptors. Additionally, 

after intracellular HSV-1 DNA recognition, type I IFN production by pDCs and conventional 

DCs require the adaptor molecule STING (135). These observations may imply that to activate 

cytosolic receptors, DCs have to be infected, while to stimulate various endosomal TLRs, DCs 

have to take up viral antigen.  

As previously described, DCs have the ability for recognition of foreign antigens through 

PRRs (204). Once there is recognition, the DC undergoes maturation, upregulation of MHC II 

and costimulatory molecules, possible antigen uptake, egress from peripheral tissue, and 

migration to the DLNs for antigen presentation to T cells.   

The case is different though if the DC gets infected. Various research groups have shown 

in vitro that upon HSV-1 infection of immature DCs there is a downregulation of expression of 
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costimulatory molecules such as CD40, and this is achieved by the formation of a complex 

between HSV-1 gene CD80, CD86, as well as MHC I molecules (205). MHC I-dependent 

antigen presentation to CD8+ T cells is then partially blocked, product ICP47 and the cellular 

protein transporter associated with antigen processing (TAP). This inhibits the translocation of 

the MHC I-peptide complex to the cell surface in vivo (32, 206, 207). Overall, HSV-1-infected 

DCs, whether mature or immature, reduce their stimulatory capacity towards T cells (208). 

Infection with HSV-1 has been shown to reduce the expression of the invariant chain and HSV-1 

glycoprotein B has been shown to interact with human leukocyte antigen (HLA)-DR and HLA-

DM polypeptides, thus interrupting MHC II antigen processing and subsequently reducing CD4+ 

T cell responses (209). 

Initially believed to be due to viral cytopathic effects, studies have shown that HSV-1 can 

actively cause apoptosis of infected cells (210, 211).  HSV-1 induces apoptosis in a two phase 

fashion where there is an early induction of anti – apoptotic mechanisms (212), and there is a late 

phase where pro – apoptotic mechanisms are activated (213). This inhibition of apoptosis in the 

early stages is to guarantee that the virus is able to complete viral replication before the host is 

able to establish defense mechanisms against the virus. 

Migration of DCs from the infected site to the DLN is increased after HSV-1 infection 

(214-216). However, adoptive transfer studies with infected or uninfected DCs have shown that 

the infected DCs are impaired or prevented from migrating to the DLN (217). This is possibly 

due to its augmented attachment to fibronectin, which leads to increased adhesion to the 

extracellular matrix through lymphocyte function-associated factor (LFA) 1, as has been shown 

in vitro with HSV-infected human monocyte-derived DCs (218). In the skin, DC expression of 

molecules such as E-cadherin also tightly binds DCs to keratinocytes, and Langerhans cells from 
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HSV-infected skin downregulate E-cadherin for release to the DLN (219). HSV-1 is able to 

downregulate chemokines receptors CCR7 and CXCR4 on mature DC, which allow DC to 

migrate to the lymph nodes in response to chemokines CCL19 and CXCL12 respectively (220). 

Moreover, infected DCs are also not able to respond to CCL19 (221). 

1.2.7 Dendritic cells and the adaptive immune response to HSV-1 

The archetype mechanism for antigen presentation is that local tissue – resident DCs 

phagocytose microbial antigens and migrate to the DLNs to activate naïve T cells or to induce 

tolerance (222). This has been shown in an HSV-1 vaginal submucosal infection model (223), a 

skin lentivector immunization model (224), and a skin hypersensitivity model (225). 

Still, it has also been shown that DCs that derive from infiltrating monocytes can 

stimulate effector CD8+ T cells at peripheral sites of infection (226, 227). Consistent with these 

studies, it was also shown that the CD11b+ DC subpopulation that infiltrate the vaginal 

submucosa after infection and not the skin-resident Langerhans cells, present antigen to CD4+ T 

cells (228). 

There is another prevailing view however, that DCs resident to the lymph node can 

present antigen to T cells (229), indicating one possibility that the migratory tissue – resident 

DCs ingested the peripheral antigen and ferried it to the DLNs for antigen presentation by 

lymphoid-resident DC. Inhibiting the migration of tissue-resident DC diminished the CD8+ T 

cell responses in the DLN, indicating that antigen presentation on MHC I molecules relies on the 

egress of DC from the infected tissue (214). In these studies, blocking DC migration did not 

interfere with free virus passively draining to the lymph nodes, so presentation by CD8+ DCs 
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was not a consequence of live virus infecting these DCs. These were shown in HSV-1 skin 

infection models (214, 230, 231). 

Alternatively, the lymphoid – resident DC can acquire antigen by passive drainage 

through the lymphatic system, as antigens injected into the skin can access the DLNs within 30 

minutes (232, 233). Indeed less than 24 hours after footpad challenge, HSV-1 antigens were 

detected in the lymph nodes (234), and lymphoid – resident DC was shown to mediate antigen 

presentation to CD4+ and CD8+ T cells after HSV-1 skin infection (223). 

Another potential system is for both migratory tissue-resident DCs and lymphoid-resident 

DC to cooperate with each other. Identification of various DC subsets in the DLN after 

epidermal HSV-1 infection demonstrate that it is the lymph node resident CD8+ DCs that present 

viral antigens to CD8+ T cells (235). In a skin immunization model, DLN-resident DCs were 

necessary to initiate activation and trapping of cognate CD4+ T cells, whereas migratory DCs 

were required for proliferation (236). In a skin vaccine model against fungi, it was shown that 

monocyte – derived DCs take up fungal antigen to the DLNs, while lymph node resident DCs, 

along with migrating skin-resident DCs, present antigen and prime CD4+ T cells (237). This 

highlights that how the adaptive immune response is orchestrated by different DC 

subpopulations depends on the route of antigen entry, the nature of the pathogen, and the DC 

subset residing at the site of infection. 

1.2.8 Cross-presentation of HSV-1-derived antigens by dendritic cells 

For lymphoid-resident DCs to take up virally infected cellular material instead of being infected 

directly, these DCs have to take up exogenous antigen through the MHC class I presentation 

pathway through antigen cross-presentation (238-242). The requirement for cross-presentation of 
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HSV-derived antigens was shown in experiments utilizing mice that have a deficiency in 

gamma-IFI lysosomal thiol reductase (GILT), where HSV-specific cytotoxic T lymphocyte 

responses were impaired (243). GILT-less DCs are not able to present viral antigens to CD8+ T 

cells even in the presence of other HSV-infected cells, unless they are directly infected with the 

virus (243). The ability of the CD8+ DC subset in the lymph nodes to cross-present HSV antigen 

was established in vitro through an experiment incubating CD8+ DCs with bystander cells 

infected with mutant HSV virus defective in virion formation (gH- or gB-deficient HSV), 

ensuring that only the bystander cells were productively infected, and not the CD8+ DCs (244). 

These bystander cells were incapacitated in their antigen presentation, and upon incubation with 

CD8+ T cells, proliferation could only be credited to the CD8+ DCs. 

After HSV infection, the capacity of CD8+ DCs to stimulate CD8+ T cells is dependent 

on their expression of TLR3 and TIR-domain-containing adapter-inducing IFNβ (TRIF) (245). 

Because TLR3 can be located in endosomes and HSV-1 infection produces a lot of viral RNA 

intermediates (246), it is likely that the TLR3 signaling pathway is involved in cross-presentation 

of antigen from dead or dying HSV-infected cells by CD8+ DCs. 

1.3 ADAPTIVE IMMUNE RESPONSE 

Antigen presentation by DCs to naïve B cells, as well as to CD4+ and CD8+ T cells, initiates the 

adaptive immune response to HSV-1. Upon activation, B cells produce neutralizing antibodies 

that reduce viral spread (247). B cells can also function as APCs to induce HSV-specific CD4+ T 

cell responses, and subsequently, B cell – deficient mice have impaired CD4+ T cells and IFNγ 

responses (248). 
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1.3.1 CD4+ T cells 

CD4+ T cells or T helper (Th) cells function, as their name suggests, in helping to activate and 

facilitate the survival of different immune cells. They aid B cells in antibody production and 

isotype switching. They also activate macrophages to develop their phagocytic and antimicrobial 

activities, as well as recruit neutrophils, eosinophils, and basophils to sites of infection and 

inflammation. Especially in the case of virus infections, they enable or “license” APCs to 

activate CD8+ T cells through costimulatory interactions (CD4+ T cell help), thus enhancing 

effector CD8+ T cell responses and contributing to the maintenance of a functional CD8+ T cell 

memory population. Through the cytokines and chemokines produced by CD4+ T cells, they 

orchestrate a wide array of immune responses (249, 250). 

Upon recognition of foreign antigen by naïve CD4+ T cells in the context of MHC II on 

DCs, CD4+ T cells undergo massive proliferation and differentiate into various CD4+ T cell 

subtypes. Depending on the appropriate cytokine stimuli provided by the APCs, the activated 

transcription factors induced, and the sustaining cytokine environment at the time of 

presentation, these CD4+ T cells expand and differentiate into various effector or regulatory 

phenotypes that can function to limit the pathogen, or serve as memory CD4+ T cells that can 

combat pathogen after re-challenge. In certain cases, these CD4+ T cells may be aberrantly 

activated and may contribute to immunopathology and autoimmunity. 

The first discovered and consequently the best-characterized subsets are the Th1 and Th2 

subtypes, which are known to secrete IFNγ and IL-4, respectively (249). The CD4+ T cells 

generated in response to viral infections, including HSV-1, mainly have a Th1 phenotype and 

produce large amounts of IFNγ and IL-2 and express the transcription factor T-bet (251). This 

differentiation occurs in the presence of high levels of IL-12, type I IFNs, and IFNγ (252), 
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although Th1 cell responses may be generated in the absence of IL-12 and type I IFNs (253-

255).  Th1 helper CD4+ T cells contribute to macrophage activation, inflammation, cell-mediated 

immunity and autoimmunity (256). On the other hand, Th2 cells secrete IL-4, IL-5, IL-13, and 

are generated in the presence of IL-4 (257). They function under the transcription factor GATA3 

and induce allergic and helminth responses (258).  

Another CD4+ T cell subtype, Th17 cells, are characterized by IL-17 production and have 

been implicated in models of chronic inflammation, autoimmunity, and immunopathological 

conditions such as graft versus host disease (259), Type 1 diabetes (260), rheumatoid arthritis 

(261), and colitis (262). With regards to virus infections, Th17 effector responses have been 

characterized in models of HSV (263), mouse cytomegalovirus (MCMV) (264), influenza (265), 

and vaccinia virus (266). Th17 cells are generated in the presence of IL-6 and TGFβ and under 

the transcription factor retinoic acid receptor - related orphan γt (RORγt) (267, 268). 

Another subset, the T regulatory cells (Tregs), suppress inflammatory responses by 

expressing molecules such as TGFβ, cytotoxic T lymphocyte activated (CTLA) – 4, IL-10, and 

galectin (269-271). Treg differentiation is induced by the transcription factor forkhead box P3 

(FoxP3) (272, 273). Increased numbers of Tregs have been observed in human and animal 

models of virus infections and serve to both limit tissue damage and pathology especially in 

infections with West Nile Virus, respiratory syncytial virus (RSV), and influenza (274-276), and 

reduce overall magnitude of antiviral immune responses (277, 278). 

The more recently characterized T cell subsets include follicular T helper (Tfh) cells, Th9 

cells, and Th22 cells. T follicular helper cells are another specialized subset of CD4+ T cells that 

provide B cell help through costimulatory CD40-CD40L interactions thus promoting B cell class 

switching. They are defined by the expression of transcription factor Bcl6, PD – 1, CXCR5, 
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inducible T cell costimulator (ICOS), and the cytokine IL-21 (279). Tfh cells are necessary for 

generating humoral responses against lymphocytic choriomeningitis virus (LCMV), vesicular 

stomatitis virus (VSV), influenza (280, 281), and human immunodeficiency virus (HIV) (282). 

Th22 cells, on the other hand, are defined by their expression of the cytokine IL-22. It is thought 

that these cells are involved in inflammatory and autoimmune diseases such as psoriasis, 

rheumatoid arthritis, Crohn’s disease and atopic dermatitis (283).  Lastly, Th9 cells are identified 

by their production of the cytokine IL-9 and require IFN-γ-regulatory factor 4 (IRF4) for their 

differentiation (284). These cells are implicated in the pathogenesis of autoimmunity, allergy, 

and asthma (285-287). There is not a lot known about the involvement of both Th9 and Th22 

CD4+ T cells in virus infections. There is substantial ambiguity however as to how many subsets 

there are, the relationships between the precursors of each subset and their outcomes, and the 

level of plasticity that each subset possesses. 

The involvement of CD4+ T cells in our model of HSV – 1 infection of the cornea will be 

elaborated on in a later section on the CD4+ T cell-mediated immunopathology called herpes 

stromal keratitis, which is caused by HSV corneal infection. 

1.3.2 CD8+ T cells  

CD8+ T cells or cytotoxic T cells (CTLs) have the remarkable ability to specifically respond to 

pathogens by substantial expansion and differentiation into antigen-specific effector cells that 

can migrate to all tissues to clear the system of infections such as HSV-1. Indeed, it was work 

with LCMV-infected mice that initially showed the dual requirement for viral antigen plus self 

MHC I in presentation to CD8+ T cells (288), as well as for the antigen-driven proliferation of 

these CD8+ T cells (289, 290). 
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Based on T cell subset depletion studies and experiments with CD8-deficient mice, CD8+ 

T cells contribute to resistance against intracellular infections with virus, bacterial, and protozoan 

pathogens. Without CD8+ T cells in mice, HSV-1 clearance is impaired in the TG and leads to 

fatal encephalitis (291, 292).  

During an infection, naïve CD8+ T cells are primed by APCs in lymphoid organs such as 

the lymph nodes or spleen. CD8+ T cells are located primarily in the T cell zones while DCs 

have an extensive network throughout the T and B cell zones and the subcapsular sinus of the 

draining lymph nodes (293). In parasite or virus infection models, it was shown that naive CD8+ 

T cells encounter antigen-presenting DCs in the subcapsular sinus region or the interfollicular 

region of the DLNs (294, 295). Particulate antigen or pathogen is delivered via the lymphatics 

through passive migration or by migrating DC carriers. Even in the presence of other APCs such 

as CD169+ macrophages lining the subcapsular sinus that get infected in the course of infection, 

naïve CD8+ T cells preferentially interact with DCs (296).  

Immediately after infection in the periphery, naïve CD8+ T cells migrate quickly towards 

the peripheral regions of the T cell zone in response to either the gradient of cognate antigen 

(294) or to the dynamic changes in lymph node structure or chemokines levels (295, 297). 

Simultaneously, DCs relocate to the same area and acquire antigens from infected cells by direct 

infection or cross presentation. The proximity of the antigen – rich area to the subcapsular region 

maximizes the immune response in specialized areas of the lymph nodes.  

At the peak of the primary response to the pathogen, there is a heterogeneous population 

of generated antigen-induced CD8+ T cells that differ in phenotype and function. The majority of 

CD8+ T cells are comprised of short lived effector cells (SLECs) that die after the infection is 
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cleared, while memory precursor effector cells (MPECs) that are less stimulated go on to survive 

and form a part of the memory CD8+ T cell population (298, 299). 

There is evidence that a single naïve CD8+ T cell has the potential to differentiate into 

both effector and memory T cell subsets (300, 301). Contrastingly, it is also suggested that even 

before the first cell division, the fate of each CD8+ T cell is already sealed as indicated by high 

degrees of variations in levels of yellow fluorescent protein (YFP) in responding CD8+ T cells of 

IFNγ-YFP reporter mice (302). Later encounters with DCs and other factors such as 

inflammatory signals and costimulation may regulate the differentiation of effector CD8+ T cells. 

Still, there are studies that imply that the heterogeneity in CD8+ T cells is enforced at the time of 

the first cell division, as indicated by differences in expression of the transcription factor T-bet 

(303, 304). 

Accordingly, once a naïve CD8+ T cell divides, it can undergo as many as 19 cell 

divisions and this translates to a potential expansion of 500,000 fold (305). Maximal 

proliferation is achieved by the integration of multiple signals from the T cell receptor (TCR), 

costimulatory molecules, and inflammatory cytokines like IL-12 and type I IFNs (298, 299). 

The first signal is recognized by the TCR as presented by the antigen-presenting cell in 

the context of MHC. The second set of signals comes from costimulation upregulated on APCs 

once it has received maturation signals (i.e. TLR activation). These costimulatory interactions 

include B7-CD28 or CD40-CD154 on DC – T cell respectively, and in their absence, T cells will 

experience antigen tolerance (306, 307). There are a lot of members of the TNF receptor (TNFR) 

family such as 4-1BB, OX40, glucocorticoid-induced TNF-related protein (GITR) and CD27, 

which function as important costimulatory molecules to CD8+ T cells (308). The third set of 

signals originates from cytokines that activate T cells and promote differentiation into various 
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effector T cell subsets. IL-12 expressed by APCs supports the terminal differentiation of a naïve 

CD8+ T cell capable of resisting intracellular pathogens like HSV-1 (309-312). IL-2 is another 

cytokine that promotes CD8+ T cell differentiation by regulating T-bet and eomesodermin 

expression (304, 313) via a mammalian target of rapamycin (mTOR)-dependent signaling 

pathway (314). 

Subsequently after antigen recognition, activated CD8+ T cells upregulate chemokines 

receptors such as CXCR3 to allow infiltration into peripheral tissues (315). Another mechanism 

through which CD8+ T cells are recruited into the site of infection is through CD4+ T cell help. In 

an HSV-2 infection model, CD4+ effector T cells infiltrate the vaginal tissue earlier than CD8+ T 

cells, and express IFNγ to promote secretion of CD8+ T cell – attracting chemokines CXCL9 and 

CXCL10 by the vaginal epithelium (316). This was also shown in the skin (317). Other 

peripheral tissues such as the lung and intestine do not exhibit the same CD4+ T cell help 

requirement for effector CD8+ T cell recruitment but there was no viral antigen detected in those 

models. 

In our model of HSV-1 ocular infection, the sites where CD8+ T cells migrate to are the 

cornea and trigeminal ganglia. T cell numbers peak 5 to 8 days after initial infection in C57Bl/6 

mice, and at about 12 dpi in BALB/c mice. At the site of infection and upon recognition of an 

infected or foreign cell, CD8+ T cells release lytic granules such as granzymes delivered to the 

target cell through pore-forming proteins called perforin, which allow entry of these proteins into 

the infected cell. Granzymes activate the cell’s apoptosis machinery so it will undergo 

programmed cell death. CD8+ T cells also express antiviral cytokines such as IFNγ and TNF.  
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T cell memory 
 

After T cell expansion, T cells undergo contraction, where 90 – 95% of the effector CD8+ 

T cells die. In the ensuing period, 5-10% of these T cells remain to become long-lived memory 

effector T cells. These memory CD8+ T cells survive longer and rapidly respond upon re-

challenge with the same antigen (318-321).  

What signals do CD8+ T cells receive to initiate and regulate the contraction phase? The 

inflammatory environment at the time of priming influences contraction. With limited 

inflammation, there is reduced effector T cell expansion and no contraction period (322). Among 

the factors that occur during priming which do not affect contraction include the duration of the 

initial TCR stimulus (323), and the kinetics of pathogen clearance (324, 325). One probable 

reason why contraction occurs is that there is a limited amount of cytokines that promote 

survival available for the expanded population of CD8+ T cells. This deprivation may be 

responsible for cell death during contraction (326-330). Reintroducing these cytokines such as 

IL-2 (331) or IL-15 (329) during the contraction phase facilitates CD8+ T cell survival and 

reduces the degree of contraction. 

The second possibility could be that the fate of the cell is determined even before 

contraction transpires. It has been shown that there are two kinds of effector subsets that 

develops at the peak of expansion: a subset that is defined phenotypically as IL-7Rαhigh and killer 

cell lectin-like receptor G1 (KLRG-1)low and which preferentially survives the contraction phase 

(memory precursor cells); and a subset defined as IL-7Rαlow and KLRG-1high which selectively 

undergoes cell death (terminally differentiated or short lived effector cells) (332). Terminally 

differentiated effector cells do not form functional memory cells and are eliminated in the 

contraction phase (321). After differentiating into memory cells, effector T cells maintain 
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expression of certain molecules and develop into either central memory or effector memory cells. 

Central memory cells are located within the lymphoid organs, are defined phenotypically by the 

expression of CD44, CD127, CD62L, and CCR7, and quickly respond to antigen re-challenge 

(333). Effector memory cells are found in peripheral tissues, are devoid of lymphoid organ 

homing receptors CD62L and CCR7, and maintain expression of CD44 and CD127. In 

comparison to central memory cells, effector memory cells are able to immediately secrete IFNγ 

and TNFα upon antigen stimulation (334). 

HSV-1 and latency 

As previously mentioned, the innate immune response in the form of macrophages and γδ 

T cells control viral replication in the trigeminal ganglia while the adaptive immune response is 

being developed. Once the virus establishes latency, the immune response is one of several 

factors that prevent viral reactivation.  Following expansion of CD8+ T cells in the DLNs, they 

migrate into the TG beginning 5-6 dpi, and peak in number by 8 dpi. These CD8+ T cell numbers 

then decrease and maintain a stable population hereon to form the memory T cell pool even after 

latency is established. In both mice and humans, latently infected neurons are surrounded by 

activated CD8+ T cells, indicating antigenic stimulation even in the absence of virion formation 

(60, 335, 336). 

CD8+ T cell expression of CD69 and granzyme B, and the inflammatory environment in 

the TG indicate dynamic involvement of the immune system during latency (56, 57, 64, 337). In 

the C57Bl/6 model of infection, approximately half of these CD8+ T cells are specific for an 

immunodominant epitope on the viral protein glycoprotein B (gB498-505) (64, 338). It has been 

recently discovered that the other half of these infiltrating CD8+ T cells in the TG form a 

repertoire also specific for 18 other subdominant epitopes on 11 HSV proteins (339).  
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Differences in antigen presentation or processing, precursor frequency, and the route of infection 

may play a role in establishing this remarkable immunodominance. 

Prior studies from our lab have demonstrated that HSV-specific CD8+ T cells actively 

prevent the virus from reactivating in ex vivo latently infected neuronal cultures (59, 60).  CD8+ 

T cells protect from neuronal virus reactivation partly in a lytic fashion by secreting IFNγ (58, 

340), and in a non-lytic mechanism by secreting lytic granules with granzyme B (63). IFNγ 

blocks reactivation by inhibiting the expression of immediate early genes ICP0, as well as 

blocking after the expression of late genes such as gH and gC (58, 340). Granzyme B is a lytic 

protein that enters the cell and induces apoptosis by cleaving caspases. In latently infected 

neurons, granzyme B cleaves an essential immediate early protein ICP4 thus halting virus 

replication and reactivation. More importantly, in an environment where it is imperative to 

eradicate the virus but protect the host, this mechanism does not kill the infected neurons that 

cannot regenerate. 

1.4 IMMUNE RESPONSE AND IMMUNOPATHOLOGY 

1.4.1 The pathogenesis and epidemiology of herpes stromal keratitis (HSK) 

The research focus of our lab is the innate and adaptive immune response against HSV-1 

infection of the cornea and the immunopathological consequence of this infection, herpes 

stromal keratitis. HSK is the leading cause of infectious blindness in developed countries. In the 

United States, ocular HSV-1 infections occur at about 37 years of age (341, 342), with about 12 

out of 100,000 people getting newly infected annually (343). Although HSV-1 corneal infections 

 32 



do not always lead to HSK, when HSK does develop, it presents as a progressive and recurring 

disease. The recurring nature of HSK is thought to be  due to reactivation of latent HSV-1 in the 

TG, and shedding at the corneal surface (344). HSK may progress from either infectious 

epithelial keratitis, where epithelial dendritic shaped lesions are caused by replicating virus 

destroyed epithelial cells (345), or be the primary manifestation of HSK stromal involvement 

(346). 

Clinically, HSK is characterized by opacity in the stroma, edema, and neovascularization 

believed to be triggered by persistent incidences of virus reactivation and shedding to the cornea 

(347-349). The robust immune response against viral proteins elicits the infiltration of immune 

cells, blood vessel ingrowth, and corneal stromal damage that contributes to opacity and edema. 

The inflammation can be suppressed by corticosteroids but subsequent scar tissue develops (350, 

351). Clinical HSK is categorized as either necrotizing, characterized by necrosis, epithelial 

defect, active viral replication, and immune-mediated tissue damage in the stroma (345, 352); or 

non-necrotizing, defined by leukocytic infiltration and neovascularization, without viral 

replication (351). 

Murine models of HSK have been developed to investigate disease pathogenesis. Like in 

human HSK, mouse HSK starts with dendritic epithelial lesions, and HSV also gains access to 

sensory neuron termini of mice during replication in the corneal epithelium. However, HSK in 

mice develops following primary infection and after viral clearance from the cornea, while HSK 

in humans is often accompanied by viral replication. Still, murine HSK closely resembles the 

immune or non-necrotizing keratitis in humans with dense leukocytic infiltrate and 

neovascularization. 
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In the mouse model, HSK starts at about 7 dpi, in the absence of viral replication. 

Stromal opacity worsens progressively and peaks in severity between 14 to 21 dpi. New blood 

vessels and lymph vessels creep into the avascular cornea and is induced by HSV-1 infection 

(348, 353, 354) via VEGF production of infected corneal epithelial cells and neutrophils (355). 

Blocking neovascularization by inhibition of VEGF or VEGF signaling is a possible therapeutic 

target to treat HSK (356-358). 

The inflammatory infiltrate in the mouse cornea during HSK contain mostly neutrophils 

(~80 to 90%), DCs, CD4+ T cells, and some CD8+ T cells (148, 359-361). There is also a milieu 

of inflammatory and angiogenic factors which contribute to the stromal damage during HSK, 

including matrix metalloprotease 9 (MMP-9) (362), IL-17 (263, 363), IFNγ (364), and IL-2 

(365). 

1.4.2 The role of CD4+ T cells in HSK 

In earlier studies with HSK, it was shown that the disease did not develop in athymic nude mice 

that lack T cells (366) unless T cells were adoptively transferred into those mice, indicating that 

the immunopathology is T cell – dependent (367). Further investigation showed that CD4+ T 

cells in particular were responsible for mediating HSK in mice (368-370), and that CD4+ T cell – 

depleted mice or CD4 – deficient mice do not readily develop HSK (371, 372). This is logical 

since a majority of the T cells in HSK corneas are CD4+ T cells rather than CD8+ T cells (373). 

Research in our lab has shown nevertheless that in CD4 – deficient mice, CD8+ T cells can 

mediate HSK, albeit transient and less severe, if the mice are infected at a higher dose (372). 

Indeed, CD4+ T cells that produce Th1 cytokines IL-2 and IFNγ induce neutrophil 

infiltration during HSK. IL-2 promotes chemotaxis and survival of neutrophils while IFNγ 
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upregulates platelet endothelial cell adhesion molecule (PECAM)-1 expression on blood vessel 

endothelial cells, thus encouraging neutrophil migration into the cornea (148, 365). Blocking 

either of these cytokines inhibits progression of the disease (364). 

These CD4+ T cells are also a source of IL-17 (Th17 CD4+ T cells), and they appear to be 

required for the infiltration of CD4+ T cells that secrete IFNγ (Th1 CD4+ T cells). Also, 

inhibiting IL-17 early during the infection and late during HSK progression reduces HSK 

severity (263). These studies are consistent with the concept of CD4+ T cells (Th1 and Th17) 

orchestrating HSK disease development. But what is stimulating CD4+ T cell activity and how? 

Is viral antigen required for HSK to occur? The mechanism by which the disease starts is 

uncertain, but there have been three proposals to explain how CD4+ T cells trigger HSK: 1) 

molecular mimicry, 2) bystander activation, and 3) HSV-1 specificity. 

Cantor’s group proposes HSK is a CD4+ T cell - mediated autoimmune response to host 

antigens that have very similar epitopes to the HSV-1 viral protein UL6 (374-377). In their 

model of autoimmune HSK however, immunopathology was only demonstrated in infections 

with only one HSV-1 strain (KOS), and did not occur in another (RE). Moreover, another group 

showed that CD4+ T cells specific for the UL6 protein was not able to induce HSK, and that 

there is no cross reactivity between the UL6 protein and corneal proteins (378). It was also 

shown that isolated CD4+ T cell clones from HSK corneas in humans do not recognize UL6 or 

corneal antigens (379). 

The second theory by Rouse’s group proposes that antigens specific to HSV are not 

particularly required for HSK and that the inflammatory environment induced during HSK is 

enough to stimulate effector T cell activity and induce bystander CD4+ T cells to mediate 

disease. Their studies were performed in HSV-infected mice with CD4+ T cells specific for 
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ovalbumin (OVA). These mice developed severe disease after HSV-1 infection, and OVA-

specific CD4+ T cells were found in their corneas. It was also shown that depleting these CD4+ T 

cells abrogated the disease (380). Yet because these mice were not capable of mounting an 

immune response against HSV-1, virus clearance was impaired and HSV infection was lethal to 

the mice. When acyclovir was employed to limit virus replication, inflammation was diminished 

in comparison (381). This indicates that infectious virus can stimulate bystander activation of 

CD4+ T cells to induce inflammation, but not necessarily in mice that can control virus 

replication. Bystander CD4+ T cells may contribute to the disease but the aforementioned studies 

also suggest that HSV-1 specific CD4+ T cell effector function is required for initiating and 

prolonging HSK. 

Our lab proposes that this is the case. CD4+ T cells specific for HSV antigens have been 

derived from human (379, 382) and mice corneas (our lab’s unpublished observation). 

Furthermore, when mice were tolerized to HSV-1 antigens at the time of infection, the mice were 

less vulnerable to disease (383). The likelihood is bystander activation of non HSV-specific 

CD4+ T cells and stimulation of HSV-specific CD4+ T cells both contribute to disease 

progression and maintenance. In the absence of infectious virus at the time of HSK onset, it is 

possible that HSV-1 antigens are shed into the corneal surface for HSV-specific CD4+ T cells to 

respond to and this initiates disease. The cytokine milieu that is established may play a role in 

bystander activation of other CD4+ T cells and this may prolong disease. 

1.4.3 Antigen – presenting cells in HSK 

Since CD4+ T cells orchestrate HSK, and it is apparent that there is a requirement for HSV 

antigen specificity to establish the disease, what presents viral antigen to these CD4+ T cells? Do 

 36 



the APCs present in the cornea during HSK play a role in disease progression? Interestingly, 

there is a large influx of DCs that enter the cornea that coincides with when the disease starts. A 

previous study from our lab has suggested that APCs in the cornea during HSK might play an 

important role. In the experiment, presumed Langerhans cells (as defined by MHC II) were 

ablated from mice corneal epithelium by UV-B irradiation in one eye, and left untouched in the 

other, and then the mice were infected bilaterally in both eyes. This allowed a normal adaptive 

immune response to develop against HSV-1 because one of the mice eyes had intact APCs and 

this allowed the question of would HSK develop in the absence of APCs. Disease developed in 

the non-depleted eye, but not in the depleted one; which indicated a requirement for APCs to 

stimulate CD4+ T cells during HSK (384). We now know that both DCs and macrophages 

present in the cornea express MHC II, and this study did not detail which population was ablated 

and for how long. In a study comparing HSV-1 strains with distinct differences in inducing HSK 

severity, it was shown that HSV-1 KOS infected corneas, the virus of which generates lower 

occurrences and milder levels of HSK severity in mice than the strain HSV-1 RE, has less DCs 

infiltrating into the central cornea (369).  

Additionally, a critical factor for T cell activation is the engagement of costimulatory 

molecules. Further proof for the requirement for APCs is that blocking the costimulatory 

molecule B7.1 in the cornea deterred the development of HSK (385), and so did blocking 4-1BB 

and 4-1BB ligand interactions (386). Neither interactions between OX40 and OX40L nor CD40 

and CD40L were essential however (387, 388). By and large, even if the importance of APCs in 

HSK has been implied, the question of which particular antigen presenting cells and how they 

contribute to HSK has not been elucidated completely. 
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1.5 THE ROLE OF COSTIMULATION IN ADAPTIVE IMMUNITY 

The initiation of antigen-specific T cell responses relies on the interaction between the T cell 

receptor and peptide-MHC complexes. Apart from TCR signaling, signals mediated through cell 

surface costimulatory receptors and their respective ligands expressed on APCs are required for 

proliferation and survival of T cells. There is differential expression of costimulatory receptors 

on T cells, and ligand expression is tightly regulated, indicating specific roles for each 

costimulatory interaction between receptor and ligand. 

Costimulatory molecules are generally categorized into two families: the 

immunoglobulin (Ig) superfamily of CD28 and ICOS (CD278) and their ligands (389); and the 

TNFR and TNF superfamily (CD40-CD40L, CD27-CD70, OX40/CD134-OX40L/CD252, and 

4-1BB/CD137-4-1BBL/CD137L) (390). This introduction will focus on two of the best-

characterized costimulatory interactions: between CD28 and CD80/CD86, and CD40 and 

CD154. 

1.5.1 CD28/CTLA-4 and CD80/CD86 

CD28 is expressed constitutively on naïve T cells (391), and promotes proliferation after binding 

with ligands CD80 or B7.1 and CD86 or B7.2. These interactions are hampered by interactions 

of the B7 molecules with the inhibitory receptor CTLA-4 (CD152). CTLA-4 is the higher 

affinity receptor for CD80 and CD86 (392-394), and its expression is immediately upregulated 

after T cell activation (395). On most APCs, CD86 is constitutively expressed at low levels and 

is rapidly upregulated, whereas CD80 expression is induced only after APC maturation and 

activation (396, 397). The expression of CD80 and CD86 is modulated by the activation state of 
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the APC. Innate receptors on APCs recognize stress, infection, and cellular damage, which lead 

to induction of transcription, translation, and recruitment of CD80 and CD86 to the cell surface. 

The expression of CD80 and CD86 is modulated by the activation state of the APC (397, 398). 

Members of the CD28 family are characterized by a variable Ig like extracellular domain 

and a short cytoplasmic tail. Upon binding of CD80 or CD86 on APCs to CD28 on T cells, 

signaling downstream is mediated through the phosphatidylinositol 3-kinase-protein kinase B 

(Akt) pathway and growth factor-receptor-bound protein 2 (Grb2) (399, 400). Ligation of the 

CD28 molecule promotes recruitment of lipid rafts to the immunological synapse which lowers 

the activation threshold of the T cell and enhances the magnitude of the overall T cell response 

(399). CTLA-4 expression is then upregulated instantly and regulates T cell responses negatively 

through different mechanisms. It is able to sequester CD80 and CD86 away from CD28 by its 

high affinity to these molecules. It can recruit phosphatases such as Src homology region 2 

domain-containing phosphatase 1 (SHP-1) and SHP-2, thereby, dephosphorylating downstream 

signals of the TCR. It transduces a signal into the APCs, consequently enhancing the catabolism 

of tryptophan, thereby creating an inhibitory environment for the T cell (401, 402). Once CTLA-

4 is upregulated, the expression of CD28 is subsequently downregulated by endocytosis (403).  

CD80 and CD86 have largely redundant functions. Synergized with signals from the 

TCR, they both provide critical co-stimulatory signals to increase and maintain a T cell response 

through interacting with CD28 (306).  CD28 ligation by itself does not have an effect on T cell 

activation, but with TCR signaling it regulates the threshold for T cell activation and 

considerably decreases the amount of TCR engagements required for T cell activation (404). The 

outcome of this interaction is increased IL-2 production, upregulation of CD25 (the IL-2 receptor 

α chain), entry of the T cell into the cell cycle, and enhanced T cell survival through the 
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upregulation of the antiapoptotic molecule Bcl-XL (399, 400). CD28 signaling leads to 

augmentation and sustaining of T cell responses by promoting T cell survival to enable cytokines 

to effect expansion and differentiation of T cells (405-409). The responses of previously 

activated T cells are also optimized by CD28 through enhancing IL-2 production and T cell 

survival. 

Costimulatory molecules orchestrate critical interactions to enhance antiviral T cell 

responses. Various characteristics of viral infections establish which costimulatory molecules are 

necessary for the immunity of the host. Additionally, viruses have evolved numerous 

mechanisms of immune evasion to hinder T cell costimulation, therefore studying and targeting 

T cell costimulation improves antiviral immunity. The absence of CD28 signaling negatively 

impacts CD4+ and CD8+ T cells (410). Several murine models of acute viral infection depend 

heavily on CD28 costimulation such as infections with influenza A virus (281, 411), VSV (412), 

and vaccinia virus (413). During influenza infections, signals downstream of CD28 ligation are 

necessary for IL-2 mediated T cell survival and expansion (414), IL-2 production by memory T 

cells (415), and secondary immune responses are impaired when CD28 and CD80/CD86 

interactions are inhibited (416). Lack of CD28 interactions was shown to promote reduction of 

the immune response specific to subdominant epitopes to influenza (411). Furthermore, memory 

CD8+ T cell responses and viral clearance depend on CD28 costimulation during secondary 

responses against influenza and HSV-1 (417). 

For viruses that are able to establish latency such as murine gamma herpes virus-68 (HV-

68) (413, 418, 419) and murine cytomegalovirus (MCMV) (420), CD8+ T cell responses and 

control of virus replication require CD28-CD80/CD86 costimulation. CD4+ and CD8+ T cell 
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responses specific to HSV-1 were also ablated in infected mice where CD28 interactions were 

blocked (421).  

This dependence on CD28 costimulation does not apply for all virus infections however. 

For instance, the magnitude of acute CD8+ T cell responses specific for LCMV does not change 

when there is a lack of CD28 and CD80/CD86 interactions (407). Subsequent studies have 

shown that in models where there is strong TCR signaling, (like in acute LCMV infections), 

CD28 costimulation may not be as critical (422), and the requirement for costimulation is 

overcome (404, 423). There is rapid and extensive replication of LCMV and persistence of virus 

and viral antigen at high levels that may provide a strong and sustained TCR signal to override 

the need for CD28 costimulation. The lack of dependence for CD28 may possibly be due to 

differences in the duration of TCR signaling (404). Nevertheless, without CD28 costimulation, 

LCMV-specific memory precursors are found to be defective phenotypically and qualitatively 

(424, 425). Indeed, CD28 costimulation widely impacts the development of virus-specific T cell 

responses. 

1.5.2 CD40-CD40L/CD154 

Due to its critical role in immunity, one of the best-described costimulatory molecules is the 

receptor CD40. CD40 is a member of the TNFR family, and is expressed by B cells, professional 

APCs, and non-immune cells and tumors. It binds CD40L or CD154, which is expressed on 

activated T cells and in other non-hematopoietic cells under inflammatory conditions. CD40 

signaling regulates a variety of molecular and cellular processes that include the initiation and 

progression of cellular and humoral immunity. 
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CD40 is a hydrophobic transmembrane protein with an extracellular domain that is 

homologous to other TNF family members. Its expression was initially described on B cells, and 

now has been characterized on DCs, monocytes, macrophages, platelets, and non-immune cells 

such as epithelial and endothelial cells, as well as myofibroblasts and fibroblasts (426-428). 

Although its expression is constitutive on some cell types, CD40 expression may be regulated by 

secreted factors such as IFNγ, IL-1, IL-3, IL-4, TNFα (429-436), granulocyte/macrophage 

colony-stimulating factor (GM-CSF) (437), HIV (438), Epstein-Barr virus (EBV) (439), phorbol 

esters (440), Mycobacterium tuberculosis bacilli (441), 12-O-tetradecanoy phorbol-13-acetate 

(TPA) (442), antibodies against IgM or CD20 (442), as well as ultraviolet light exposure (443). 

CD40L/CD154 is a type II transmembrane protein, the expression of which has been 

observed on activated mature T cells and γδ T cells. However, an inflammatory environment can 

induce CD154 expression on monocytes, NK cells (444), B cells (445), macrophages, and DCs 

(446). CD154 expression has been induced on vascular endothelial and smooth muscle cells 

(447-449), basophils (450, 451), eosinophils (452), platelets (453, 454), and mast cells (450, 

455). 

The ligation of CD40 to CD154 facilitates the trimerization of CD40 and the direct or 

indirect recruitment of the adapter proteins TNFR-associated factors (TRAFs) to the cytoplasmic 

domain of CD40 (456). TRAF protein recruitment leads to the activation of the canonical and 

non-canonical nuclear factor (NF)-κB pathways, as well as the mitogen-activated protein kinase 

(MAPKs), phosphoinositide 3-kinase (PI3K), and phospholipase Cγ (PLCγ) pathways. Upon 

ligand binding of CD40L to CD40, TRAF family members TRAF1, TRAF2, TRAF3, TRAF5, 

and TRAF6 are recruited to CD40 cytoplasmic domains. Depending on the cell type involved, 

CD40 mediates signaling through TRAF proteins and can either activate or inhibit various 
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signaling pathways. On the other hand, CD40 signaling has been shown to occur independent of 

the TRAF proteins and through the Janus family kinase 3 proteins (Jak3). Direct binding of Jak3 

to the CD40 cytoplasmic domain induces STAT5 phosphorylation (457, 458). 

Besides being a key regulator in T cell costimulatory signals, CD40 ligation upregulates 

expression of other numerous costimulatory ligands on antigen presenting cells, such as CD80, 

CD86, 4-1BBL, OX40L, and CD70 (459-464). Therefore CD40 interactions influence T cell 

costimulation indirectly by activating APCs. CD40/CD40L binding is critical for the formation 

of germinal centers and antibody class switching. It is also involved in generating CD8+ T cell 

memory (465-467). Nonetheless, CD40 is indispensable in primary CD8+ T cell responses 

against VSV infections, but not of LCMV (468). CD4+ T cell responses such as cytokine 

production and expansion specific to LCMV however, depend on CD40 interactions. It has also 

been shown that CD40-CD154 costimulation is required for generating antiviral CD4+ T cell 

responses but is dispensable for CD8+ T cell responses (469). Similarly, blockade of 

CD40/CD40L interactions has a greater impact on CD4+ T cells than CD8+ T cells in the HSV-1 

skin infection model (421). Therefore, the requirement for CD4+ and CD8+ T cell costimulation 

is varied, and depends on the nature of the virus and the ensuing viral infection. Additionally, 

one or more costimulatory molecules are critical for the development of T cell-dependent 

immunity. 
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2.0  STATEMENT OF THE PROBLEM 

Dendritic cells are a heterogeneous lineage of innate immune cells that perform critical functions 

in host defense against attacking pathogens, which include HSV-1. They are strategically located 

at the interface of self and non-self, in lymphoid organs, and in mucosal tissues such as the skin 

and the cornea.  Though its presence in an immune privileged site such as the cornea has long 

been confirmed, in an environment that lacks blood and lymphatic vessels, and 

immunosuppressive and anti-inflammatory factors are present, it is intriguing what role these 

antigen-presenting cells would play.  

Interaction between dendritic cells and herpesviruses mainly takes place by contact with 

host mucosa. Although this association promotes lifelong protective immunity, in the immediate 

scenario, it can lead to colonization of the host instead. This suggests that dendritic cell function 

is not completely abolished by infection and that the mechanism by which protective immunity is 

achieved should be investigated. How the DCs in the cornea may respond to HSV infections to 

generate immunity is highly relevant for conceiving novel antiviral therapies and vaccines 

against these pathogens. 

Consequently, studying the role of corneal dendritic cells in the context of herpes stromal 

keratitis is also important. There is no live virus detected in the cornea once disease is initiated, 

and CD4+ T cells mediate the neutrophilic infiltrate that cause the tissue scarring and destruction 
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in the cornea. Simultaneous with the development of opacity, dendritic cells enter the cornea as 

well. Whether they contribute to disease persistence and establishment is not known.  

 

 45 



3.0  SPECIFIC AIMS 

1. Determine the relative contribution of cornea-resident dendritic cells, cornea-infiltrating 

dendritic cells, and lymph node-resident dendritic cells in expanding the CD8+ T cells in the 

draining lymph nodes after infection. 

Hypothesis: Cornea-derived (cornea-resident and cornea-infiltrating) dendritic cells are 

necessary in generating HSV-specific CD8+ T cells in the DLNs after infection. 

 

2. Determine the role of cornea dendritic cells in expanding the CD4+ T cells in the draining 

lymph nodes after infection, as well as in the re-stimulation of CD4+ T cells in the cornea 

during herpes stromal keratitis. 

Hypothesis: Cornea-derived (cornea-derived and cornea-infiltrating) dendritic cells are necessary 

in generating HSV-specific CD4+ T cells in the DLNs after infection. Dendritic cells present in 

the cornea during HSK are important in the progression of HSK. 
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4.0  MATERIALS AND METHODS 

4.1 REAGENTS 

The following fluorochrome-labeled antibodies were used: PerCP-conjugated anti-CD45 (clone 

30-F11), phycoerythrin (PE)-Cy7-conjugated anti-CD4 (clone RM4-5), allophycocyanin-Cy7 

(APC-Cy7)-conjugated anti-CD8 alpha (clone 53-6.7), fluorescein isothiocyanate (FITC)-

conjugated anti-CD80 (clone 16-10A1), and PE-conjugated anti-I-A/I-E (clone M5/114.15.2) 

were purchased from BD Pharmingen (San Diego, CA).  

eFluor 450-conjugated anti-CD3 (clone 17A-2), eFluor780-conjugated anti-CD3 (clone 

17A-2), V450-conjugated anti-CD11b (clone M1/70), allophycocyanin-conjugated anti-CD11c 

(N418), PE-conjugated anti-CD70 (clone FR70), allophycocyanin-conjugated anti-CD80 (clone 

16-10A1), allophycocyanin-conjugated anti-CD90.1 (also known as Thy1.1, clone HIS51), and 

PE-Cy7-conjugated anti-I-A/I-E (clone M5/114.15.2) were purchased from eBiosciences (San 

Diego, CA).  

Pacific Blue-conjugated anti-CD40 (clone 3/23), PE-Cy7-conjugated anti-CD86 (clone 

GL-1), Alexa Fluor 780-conjugated anti-I-A/I-E (clone M5/114.15.2), and APC-Cy7-conjugated 

anti-Ly6c (cloneHK1.4) were purchased from Biolegend (San Diego, CA). The appropriate 

isotype control antibodies were purchased from their respective vendors.  
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4.2 MICE 

4.2.1 Mice strains 

Female wild-type (WT) C57BL/6J, BALB/cJ and CD11c-DTR [C.FVB-Tg(Itgax-

DTR/EGFP)57Lan/J and B6.FVB-Tg(Itgax-DTR/GFP)57Lan/J] mice, 6–8 week old, were 

purchased from The Jackson Laboratory (Bar Harbor, ME). Mice transgenic for the HSV 

glycoprotein B specific T-cell receptor (gB-T) were a gift from Francis Carbone (470). The gB-T 

mice were crossed onto Thy1.1 background by mating gB-T mice to Thy1.1+ mice and back 

crossing them for four generations to yield homozygous Thy1.1+ gB-T+ mice. All experimental 

animal procedures were reviewed and approved by the University of Pittsburgh Institutional 

Animal Care and Use Committee and adhered to the Association for Research in Vision and 

Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research.  

 

4.2.2 Virus purification and HSV-1 infection of the cornea 

HSV-1 strain RE was grown in Vero cells and intact virions were isolated on Optiprep gradients 

according to the manufacturer’s instructions (Accurate Chemical and Scientific, Westbury, NY). 

For ocular HSV-1 infection, mice were anesthetized by intraperitoneal (i.p.) injection of 2.0 mg 

ketamine hydrochloride and 0.04 mg xylazine (Butler Schein, Pittsburgh, PA) in 0.2 ml HBSS 

(Mediatech, Manassas, VA). The abraded central corneas of anesthetized mice were infected by 

topical application of 3 μl RPMI 1640 (Lonza, Walkersville, MD) containing 1 × 105 plaque 

forming units (PFUs) of virus. All animal experiments were conducted in accordance with 
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guidelines established by the University of Pittsburgh Institutional Animal Care and Use 

Committee.  

4.2.3 Generation of bone marrow chimeras 

Bone marrow chimeras were created by transferring bone marrow from CD11c-DTR mice into 

lethally irradiated WT BALB/cJ or WT C57Bl/6 mice to avoid lethality associated with multiple 

DT treatments of CD11c-DTR mice (471). Briefly, BALB/cJ or C57Bl/6 hosts underwent two 

treatments of 500 rads in an animal γ-irradiator, and 2.0 × 106 bone marrow cells from CD11c-

DTR respective donors were transferred intravenously. The resulting mice (referred to herein as 

CD11c-DTR chimeras) were housed under immunocompromised mouse conditions and treated 

regularly with 2 mg/ml neomycin from Sigma-Aldrich (St. Louis, MO) in their drinking water. 

The CD11c-DTR chimeras were fully reconstituted and ready for experimental use after 8 

weeks. 

4.2.4 In vivo diphtheria toxin treatments 

Diphtheria toxin (DT) purchased from Sigma–Aldrich was prepared in a sterile solution of PBS 

at a concentration of 1 mg/ml. Transient DC depletion was effected in CD11c-DTR chimeras by 

a single i.p. injection of 175 ng DT; continuous DC depletion entailed additional i.p. treatments 

of 100 ng DT per mouse every 3 days. Local DC depletion in the cornea was effected by a single 

injection to the conjunctiva (subconjunctival or s.c.) of 30 ng DT; continuous DC depletion was 

done with additional subconjunctival treatments of 30 ng DT per mouse eye every 3 days. 
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4.2.5 In vivo antibody treatments 

Systemic CD154 blockade was performed by an i.p. treatment with 250 ug hamster anti-MR-1 

(BioXCell, West Lebanon, NH) at -1, 2, and 5 dpi. Systemic CD86 blockade was accomplished 

by an i.p. treatment with 200 ug rat anti-GL-1 (BioXCell, West Lebanon, NH) at -2, 1, and 4 dpi; 

local CD86 blockade was performed by an s.c. treatment with 20 ug of the antibody to the 

infected eye. 

4.2.6 Scoring of herpes stromal keratitis 

Mice were monitored for HSK on alternate days between 7 and 21 days post-infection (dpi) by 

slit lamp examination. A standard scale ranging from 1 – 4 based on corneal opacity was used: 

1+ mild corneal haze, 2+ moderate opacity, 3+ complete opacity, 4+ corneal perforation. Disease 

incidence was defined as HSK score greater or equal to 2 by 15 dpi. 

4.3 PHENOTYPIC ANALYSIS OF CELLS 

4.3.1 Tissue preparation for flow cytometry 

At indicated times, draining lymph nodes and corneas were harvested from euthanized mice. 

DLNs were minced to yield single cell suspensions and incubated with 500 μl DMEM (Lonza) 

containing 10% FCS (Atlanta Biologicals, Atlanta, GA) and 420 U/ml collagenase type I 

(Sigma-Aldrich) for 30 min at 37°C. For trigeminal ganglia excision, mice were anesthetized and 
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injected with 0.3 ml heparin (1000 U/ml) and then euthanized by exsanguination. Excised TG 

were digested in 100 μl per TG of DMEM (BioWhittaker) containing 10% FCS and 400 U/ml 

collagenase type I (Sigma-Aldrich) for 1 hour at 37°C, and dispersed into single cell suspensions 

by trituration through a p-200 pipette tip. Staining was performed with designated antibodies for 

30 minutes at 4°C unless otherwise indicated. Data were collected on a FACSAria cytometer and 

analyzed by FACSDiva software (BD Biosciences). 

4.3.2 Isolation of dendritic cells 

The draining lymph nodes were removed from mice infected at the time periods indicated in the 

figures, and were minced and digested in 420 U/mL collagenase type 1 (Sigma-Aldrich) at 37°C 

for 30 min and treated with 120 IU/mL DNAse (Sigma) for 15 min at room temperature. Cell 

suspensions were prepared by processing through a 70-µm cell strainer (BD) and washed with 

PBS. The cells were then treated with 0.5 M EDTA and were incubated at room temperature for 

5 min. Single cells were incubated with 100 uL antibody mix provided in the Dynabeads Mouse 

DC Enrichment Kit (Invitrogen) to deplete T cells, mIgM+ B cells, NK cells, erythrocytes, and 

most granulocytes, under continuous shaking for 20 min at 4°C. Resuspended Depletion MyOne 

SA Dynabeads (Invitrogen) were incubated with the cells for 15 min at 4°C. Bead-absorbed cells 

were removed using a Dynal magnet (Invitrogen). Non-depleted cells were stained with the 

antibodies mentioned earlier after incubating for 10 min at 4°C in the presence of anti-CD16/32 

(clone 2.4G2; BD) antibody to block Fc receptors. Stained cells were sorted and analyzed by 

FACSAria. Post isolation analyses indicate 70-85% purity of all DC populations.  
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4.3.3 Tracking of migratory dendritic cells through FITC painting 

Mice were anesthetized and corneas were painted with 3 µl of a 1% FITC solution in 

acetone/dibutyl phthalate (1:1 ratio; Sigma-Aldrich). The cervical lymph nodes were isolated, 

and single cell suspensions were prepared as described in DC isolation and sorting.  

Isolated lymph node cells were first enriched for DCs by depleting NK cells, T cells, B 

cells, and erythrocytes, and were stained with eFluor 450-conjugated anti-CD3 (clone 17A-2; 

eBioscience), V450-conjugated anti-CD11b (clone M1/70; eBioscience), allophycocyanin-

conjugated anti-CD11c (clone N418; eBioscience), Pacific Blue-conjugated anti-CD40 (clone 

3/23; Biolegend), FITC-conjugated anti-CD80 (clone 16-10A1; BD Pharmingen), and PE-Cy7-

conjugated anti-CD86 (clone GL-1; Biolegend). 

4.3.4 Tracking of surrogate antigen to the draining lymph nodes 

In experiments using surrogate antigen, 20 ug of Alexa Fluor 594 conjugated to ovalbumin 

(OVA – AF594) (Life Technologies, Carlsbad, CA) in 3 uL PBS was applied topically onto mice 

corneas after infection. 

4.3.5 Phenotypic analysis 

For all phenotypic analyses, cells were stained for CD45 to permit gating exclusively on bone 

marrow-derived cells. Dendritic cells were defined as CD11c+ CD3- cells. For analysis of CD8+ 

and CD4+ T cell populations and their phenotype, cells were stained with anti-CD3 to gate on T 

cells, and then with anti-CD8α and anti-CD4. For analysis of HSV-1 specific CD8+ T cells (gB-
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CD8), cells were additionally co-stained with anti-CD8α and with tetramers to glycoprotein B 

(gB)498-505, ribonucleoreductase 1 (RR1)822-829, RR1982-989, and infected cell protein 8 (ICP8)171-

178. 

4.3.6 Measurement of T cell proliferation  

Infected mice received an i.p. injection of 1 mg bromodeoxyuridine (BrdU) per mouse to 

measure T cell proliferation. DLN and TG were excised 4 hours after BrdU injection, and 

dispersed cells were stained with anti-CD45, anti-CD8α, and anti-CD4 for 30 mins at 4°C, and 

gB498-505 tetramer, RR1822-829 tetramer, and ICP8171-178 and ICP8876-883 tetramers for 1 hour at 

room temperature. CD4+ and CD8+ T cells that divided over the 4 hour period were quantified by 

flow cytometry using a BrdU proliferation assay kit (catalog no. 559619; BD Pharmingen) 

according to manufacturers’ instructions.  

4.3.7 Measurement of T cell apoptosis 

A Caspatag assay kit (Chemicon International, Cat # APT420) was used according to 

manufacturer’s instructions to quantify cells CD8+ T cells undergoing apoptosis. Single cell 

suspensions of DLN cells from infected mice were stained with antibodies to CD45, CD8, and 

CD4. Cells were then washed with FACS buffer, incubated with Caspatag FLICA reagent (1μl of 

the 30X FLICA reagent per TG and 10 uL of the 30X FLICA reagent per lymph node) for 1 hour 

at 37°C, and were washed twice with Caspatag Wash buffer before flow cytometry analysis. 
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4.4 WHOLE MOUNT FLUORESCENCE MICROSCOPY 

Whole corneas were excised, flattened by making radial incisions, washed in PBS 4% FBS, and 

incubated with anti-CD16/CD32 for 1 hour at 4°C. They were then treated with 1% 

paraformaldehyde for 2 hours, washed two more times in PBS 4% FBS, incubated with the 

appropriate antibodies overnight at 4°C, washed in PBS 4% FBS for 15 min at 4°C three more 

times, and mounted. DLNs were excised, cut in half, carefully washed in PBS 4% FBS, 

incubated with anti-CD16/CD32 for 1 hour at 4°C, incubated with the appropriate antibodies 

overnight, and then were washed in PBS 4% FBS for 20 min five times. Lymph nodes were then 

treated with 2% paraformaldehyde for 2 hours at 4°C, and then washed in PBS 4% FBS for 20 

min three times before mounting. Images were acquired on an Olympus Fluoview 1000× 

confocal microscope with a 1.4 NA 60× oil objective or a 0.85 NA 20× oil objective. Images 

were acquired by sequential scanning to avoid fluorescence crossover, and Z stacks were 

acquired at Nyquist sampling frequency through the tissue. All image reconstructions were made 

using Metamorph.  

4.5 STATISTICAL ANALYSIS 

All statistical analyses were computed with GraphPad Prism software, using one way ANOVA 

with Bonferonni’s posttest and unpaired Student’s t tests. The p values < 0.05 were considered 

statistically significant.  
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5.0  THE ROLE OF DENDRITIC CELLS IN THE EXPANSION OF CD8+ T CELLS IN THE 

DRAINING LYMPH NODES AFTER CORNEAL INFECTION 

Not unlike other mucosal surfaces, the immune-privileged cornea has its own resident dendritic 

cells located in the corneal epithelium of mice and humans. The dendritic cell paradigm suggests 

that these DCs can take up antigen and transport them to the draining lymph nodes for 

presentation to T cells.  Various murine models have indicated that this is not always the case. 

There exists distinct DC subpopulations depending on phenotype, development, and function 

that may play specialized roles in antigen presentation and cytokine secretion, as well as 

induction of T cell tolerance and immunity. A particular DC subset is implicated depending on 

the antigen route, the nature of the pathogen, and the resident DC subset at the site of pathogen 

uptake. The roles of DCs in the cornea (cornea-resident DC), the ones infiltrating after HSV-1 

infection (cornea-infiltrating DC), and the DC resident to the DLN (DLN-resident DC) are not 

well understood.  
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5.1 SUBCONJUNCTIVAL INJECTION OF DIPHTHERIA TOXIN DOES NOT 

REMOVE LYMPHOID RESIDENT CD11CHI CELLS 

CD11c-DTR chimeras (CD11c-DTR bone marrow into WT mice recipients) on both BALB/c 

and C57Bl/6 backgrounds were generated as described in Materials and Methods to circumvent 

issues of continuous diphtheria toxin (DT) treatment in CD11c-DTR mice (471). DCs expressing 

enhanced GFP under the CD11c promoter completely reconstituted the cornea and draining 

lymph nodes of CD11c-DTR chimeras as early as 6 weeks (115). All CD11c-DTR chimeras 

were used 8 weeks after bone marrow reconstitution. 

DT treatment selectively ablates CD11c-expressing cells in the cornea.  Resident 

macrophages in the cornea do not express CD11c, and therefore are not affected by DT 

treatment. Natural killer cells and plasmacytoid dendritic cells reportedly express some levels of 

CD11c (472-474). However, no pDCs are detected in the cornea after HSV-1 infection, and 

while natural killer cells do infiltrate, they are not depleted by DT treatment (115). 

To address the importance of cornea-resident DCs, ensuring that local diphtheria toxin 

treatment into the conjunctiva of mice eyes (subconjunctival treatment) only depleted corneal 

dendritic cells, and that DT leakage doesn’t occur in the DLN where it can deplete DLN – 

resident DCs were critical. Treatment with DT i.p. (systemic DC depletion) 2 days before 

infection effectively depleted CD11c+ DCs from the corneas (Fig. 3A, 3B) and lymph nodes 

(Fig. 3C) of reconstituted CD11c-DTR chimeras for 3 days. Subconjunctival (s.c.) treatment of 

DT (corneal DC depletion) 2 days before infection efficiently depleted CD11c+ DCs in the 

cornea (Fig. 3A, 3B) for 3 days, but did not ablate the CD11c+ DCs in the DLNs (Fig. 3C). 

Subconjunctival treatment of corneas with PBS (no DC depletion) does not affect DCs in the 

corneas (Fig. 3A, 3B) and lymph nodes (Fig. 3C) of CD11c-DTR chimeras.  
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Figure 3. Selective depletion of resident corneal DCs. 

BALB/c CD11c-diptheria toxin receptor (DTR) bone marrow chimeras were given subconjucntival injections of 30 

ng diptheria toxin (corneal DC depletion), intraperitoneal injections of 150 ng DT (systemic DC depletion), or PBS 

B 

C 
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(no DC depletion). Two days after treatment, corneas were excised, fixed, and mounted for confocal microscopy 

imaging. A) Representative images taken of the whole corneas of mice that acquired no DC depletion, corneal DC 

depletion, or systemic DC depletion demonstrate effective depletion of dendritic cells with both DT treatments. B) 

Representative z-stack and three dimensional projections from the paracentral region of the cornea show both DT 

treatments effectively deplete DCs in the cornea. C) Lymph nodes were excised 2 days after treatment, treated with 

collagenase to yield a single cell suspension, stained with antibodies to CD11c, and analyzed for EGFP and CD11c 

expression. Representative flow cytometry plots show depletion of CD11c+ EGFP+ cells after systemic DT 

treatment, but not after corneal DT treatment. Numbers on flow cytometry plots are percentages of CD11c+ EGFP+ 

cells gated on CD45+ cells. Data are representative of three experiments, with 3 to 5 mice per group. 

5.2 DENDRITIC CELLS BEGIN TO RECONSTITUTE THE CORNEAL TISSUE 3 

DAYS AFTER DIPHTHERIA TOXIN TREATMENT 

Dendritic cell depletion only lasts for three days. After local or systemic DT treatment at -2 dpi, 

CD11c+ EGFP+ DCs repopulate the cornea (Fig. 4A) and DLN (Fig. 4B) of chimeras at 1 dpi. 
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Figure 4. Reconstitution of dendritic cells into tissue of CD11c-DTR mice 3 days after diptheria toxin 

treatment. 

BALB/c CD11c-DTR bone marrow chimeras were given subconjunctival injections of 30 ng DT (corneal DC 

depletion), intraperitoneal injecions of 150 ng DT (systemic DC depletion), or PBS (no DC depletion). Mice were 

infected with HSV-1 2 days after treatment. At 1 dpi (3 days after treatment), corneas were excised, fixed, and 

mounted for confocal microscopy imaging. A) Representative z-stack and three-dimensional projections from the 

paracentral region of the cornea show infiltrating cells expressing EGFP from the CD11c promoter at 1 dpi. B) 

Lymph nodes were excised at 1 dpi, treated with collagenase to yield a single cell suspension, stained with 

antibodies to CD11c, and analyzed for EGFP and CD11c expression. Representative flow cytometry plots show 

recovery of DC at 1 dpi. Numbers on flow cytometry plots are percetanges of CD11c+ EGFP+ cells gated on CD45+ 

cells. Data are representative of three experiments, with 3 to 5 mice per group. 

A 
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5.3 CORNEA-RESIDENT DC ARE NOT ESSENTIAL FOR CD8+ T CELL 

EXPANSION IN THE DLN 

To determine the importance of cornea-resident DCs in CD8+ T cell expansion in the DLN, 

CD11c-DTR chimeras were treated with DT once 2 days before infection either locally through a 

s.c. injection or systemically through an i.p. injection to deplete DCs until 1 dpi. At 3 dpi, no 

significant difference was shown among the absolute numbers of BrdU+ CD8+ T cells in 

systemic DC depleted, corneal DC depleted, and non-DC depleted chimeras (Fig. 5A). No 

significant difference was observed among the absolute numbers of BrdU+ CD8+ T cells in 

systemic DC depleted, corneal DC depleted, and non-DC depleted chimeras when measured with 

a BrdU pulse from 0 to 3 dpi (Fig. 5B) at 3 dpi or after a 4 hour BrdU pulse at 7 dpi (Fig. 5C), 

thus suggesting that DC resident to the cornea are not necessary to expand CD8+ T cells in the 

DLN. 
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Figure 5. Cornea-resident DCs are not important for CD8+ T cell expansion in the DLN. 
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BALB/c CD11c-DTR chimeras were given subconjunctival injections of 30 ng DT (corneal DC depletion), i.p. 

injections of 150 ng DT (systemic DC depletion), or PBS (no DC depletion). Chimeras received a single treatment 

of DT 2 days before HSV-1 infection (as indicated by unfilled arrows) to deplete cornea-resident DCs locally or to 

deplete both cornea-resident and DLN-resident DCs systemically, and DCs that migrate into the tissue at 1 dpi. 

Chimeras received i.p. injections of 1 mg bromodeoxyuridine (BrdU) at indicated times. DLN were excised at 3 or 7 

dpi and processed to yield single cell suspensions. DLN cells were stained with antibodies to CD3, CD8, and BrdU 

to measure CD8+ T cell proliferation by flow cytometry. Bar graphs show mean ± SEM of absolute number of 

proliferating (BrdU+) CD8+ T cells per DLN. Depletion of cornea-resident DCs does not influence CD8+ T cell 

proliferation when measured at 3 dpi using A) a 4 hour BrdU pulse or B) 3 day BrdU pulse, or C) when measured at 

7 dpi using a 4 hour BrdU pulse. The p values for group differences were analyzed using a one-way ANOVA with 

Bonferroni posttests (all comparisons between groups are not significant). Data are representative of three 

experiments, with five mice per group. 

5.4 CORNEA-INFILTRATING DC ARE IMPORTANT FOR EARLY EXPANSION 

OF CD8+ T CELLS IN THE DLN AT 3 DPI 

In CD11c-DTR chimeras, DCs reconstitute tissue 3 days after DT treatment (115). Thus, to 

deplete DCs that are recruited into the cornea after infection (cornea-infiltrating DC), DC 

depletion was extended by treating the chimeras with DT at 2 days before infection and 1 day 

after infection to allow ablation of DC until 4 dpi. At 3 dpi, there was a complete abrogation in 

the absolute numbers of BrdU+ CD8+ T cells after corneal DC depletion (p<0.0001, p=0.0004), 

and the numbers were comparable to that of naïve chimeras (Fig. 6A). No significant difference 

was observed between the absolute numbers of BrdU+ CD8+ T cells of corneal DC depleted and 

systemic DC depleted chimeras, indicating that the effect of depletion of corneal DC is enough to 

abrogate BrdU+ CD8+ T cell numbers (Fig. 6A). However, when DC were depleted through 3 
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dpi and DLN were harvested only at 7 dpi, the absolute numbers of BrdU+ CD8+ T cells 

recovered to the levels of non-DC depleted mice (Fig. 6B).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Early CD8+ T cell expansion is solely dependent on infiltrating corneal DCs. 
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BALB/c CD11c-DTR bone marrow chimeras were given local (subconjunctival) or systemic (intraperitoneal) 

treatments of DT at -2 and +1 dpi (as indicated by unfilled arrows) to deplete cornea-derived DCs (corneal DC 

depletion) or both cornea-derived DCs and DLN-resident DCs (systemic depletion) up to 4 dpi, or PBS (no DC 

depletion). Chimeras received i.p. injections of 1 mg BrdU 4 hours before excision of DLN. Single cell suspensions 

of DLN were stained with antibodies to CD3, CD8, and BrdU to measure CD8+ T cell proliferation by flow 

cytometry. Bar graphs show mean ± SEM of absolute number of proliferating (BrdU+) CD8+ T cells per DLN. A) 

CD8+ T cell proliferation was significantly reduced by corneal DC depletion and systemic DC depletion. B) Corneal 

or systemic DC depletion up to 4 dpi did not influence CD8+ T cell expansion when measured at 7 dpi. The p values 

for group differences were analyzed by a one-way ANOVA with Bonferroni posttests [A) no DC depletion vs 

corneal DC depletion and no DC depletion vs systemic DC depletion are p < 0.05, and corneal DC depletion vs 

systemic DC depletion is not significant, B) no depletion vs systemic DC depletion, no depletion vs corneal DC 

depletion, and systemic DC depletion vs corneal DC depletion are not significant]. Data are representative of three 

experiments, with five mice per group. 

5.5 CORNEA-INFILTRATING DC ARE CRITICAL FOR EXPANSION OF 

IMMUNODOMINANT HSV-1-SPECIFIC CD8+ T CELLS IN THE DLN AT 7 DPI 

CD8+ T cell proliferation recovered by 7 dpi, suggesting either stimulation by cornea-infiltrating 

DC reconstituting the cornea and then migrating to the lymph nodes after 3 dpi, or that DLN-

resident DC are now able to stimulate T cells over time. Thus, to test the first possibility, we 

prolonged DC ablation to 7 dpi. Chimeras were treated with DT at 2 days before infection, 1 dpi, 

and 4 dpi before excision at 7 dpi. Corneal and systemic DC depletion up to 7 dpi abrogated the 

absolute numbers of BrdU+ CD8+ T cells when compared to numbers of non-DC depleted mice. 

There was no significant difference between absolute numbers of BrdU+ CD8+ T cells of corneal 
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DC depleted and systemic DC depleted chimeras (Fig. 7A) indicating that ablation of corneal 

DC is enough to abrogate generation of CD8+ T cells in the DLN. 

The immunodominant epitope in CD8+ T cells against HSV-1 infection of C57Bl/6 mice 

is in glycoprotein B (gB). To determine if corneal DC depletion affects expansion of HSV-

specific CD8+ T cells, we employed CD11c-DTR chimeras on a C57Bl/6 background (generated 

as described in Materials and Methods). A significant reduction in proliferating gB-specific 

CD8+ T cells is observed at 7 dpi after corneal or systemic DC depletion, as detected through 

tetramer staining, indicating that cornea-infiltrating dendritic cells are important in generating 

CD8+ T cells specific to HSV after corneal infection (Fig. 7B). 
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Figure 7. Late CD8+ T cell expansion is dependent on infiltrating corneal DCs. 

BALB/c or C57Bl/6 CD11c-DTR bone marrow chimeras were given local (subconjunctival) or systemic 

(intraperitoneal) treatments of DT at -2, +1, and +4 dpi (as indicated by unfilled arrows) to deplete cornea-derived 

DCs (corneal DC depletion) or both cornea-derived DC and DLN-resident DC (systemic DC depletion) up to 7 dpi, 

or PBS (no DC depletion). Chimeras received i.p. injections of 1 mg BrdU 4 hours before excision of DLN. A) 

Single cell suspensions of DLN from BALB/c chimeras were stained with antibodies to CD3, CD8, and BrdU to 

measure CD8+ T cell proliferation by flow cytometry. B) Single cell suspensions of DLN from C57Bl/6 chimeras 

were stained with MHC class I tetramers containing the HSV-1 glycoprotein B (gB)498-505 epitope. Bar graphs show 

mean ± SEM absolute numbers of proliferating (BrdU+) CD8+ T cells per DLN. The p values for group differences 

were analyzed by a one-way ANOVA with Bonferroni posttests [no DC depletion vs corneal DC depletion and no 
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DC depletion vs systemic DC depletion are p < 0.05, corneal DC depletion vs systemic DC depletion is not 

significant]. Data are representative of three experiments, with five mice per group. 

5.6 CORNEA-INFILTRATING DC ARE CRITICAL FOR EXPANSION OF 

SUBDOMINANT HSV-1-SPECIFIC CD8+ T CELLS IN THE DLN AT 7 DPI 

To determine if local corneal DC depletion also affected the proliferation of CD8+ T cells 

specific to subdominant epitopes as well, MHC I tetramers that contain the HSV-1 proteins 

ribonucleotide reductase 1 (RR1)882-829, RR1982-989, or infected cell protein 8 (ICP8)171-178 

epitopes were used to stain DLN of CD11c C57Bl/6 chimeras. At 7 dpi, both corneal and 

systemic DC depletion significantly reduces the absolute numbers of proliferating CD8+ T cells 

specific for the RR1982-989 epitope or a pool of CD8+ T cells specific for both RR1882-829 and 

ICP8171-178
 (Fig. 8).. 

 

 

 

 

 

 

 

 

 

Figure 8. Expansion of subdominant CD8+ T cells is dependent on infiltrating corneal DCs 
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C57Bl/6 CD11c-DTR bone marrow chimeras were given local (subconjunctival) or systemic (intraperitoneal) 

treatments of DT at -2, +1, and +4 dpi (as indicated by unfilled arrows) to deplete cornea-derived DCs (corneal DC 

depletion) or both cornea-derived DC and DLN-resident DC (systemic DC depletion) up to 7 dpi, or PBS (no DC 

depletion). Chimeras received i.p. injections of 1 mg BrdU 4 hours before excision of DLN at 7 dpi. Single cell 

suspensions of DLN from C57Bl/6 chimeras were stained with antibodies to CD8 and MHC class I tetramers 

containing the HSV-1 glycoprotein B (gB)498-505, ribonucleotide reductase 1 (RR1)882-829, RR1982-989, or infected cell 

protein 8 (ICP8)171-178 epitopes. Bar graphs show mean ± SEM absolute numbers of proliferating subdominant 

(BrdU+) CD8+ T cells per DLN. The p values for group differences were analyzed by a one-way ANOVA with 

Bonferroni posttests [no DC depletion vs corneal DC depletion and no DC depletion vs systemic DC depletion are p 

< 0.05, corneal DC depletion vs systemic DC depletion is not significant]. Data are representative of three 

experiments, with five mice per group. 

5.7 CORNEA-INFILTRATING DC ARE CRITICAL FOR POPULATION OF THE 

TRIGEMINAL GANGLIA WITH CD8+ T CELLS AND ARE CRITICAL TO PREVENT 

LETHAL INFECTIONS 

When corneal DC depleted and systemic DC depleted chimeras were allowed to live past 7 dpi, 

they develop signs of encephalitis. This is presumably due to a significant reduction of CD8+ T 

cells able to control the virus in the trigeminal ganglia (Fig. 9A). Mice that are depleted of 

cornea-infiltrating DC and are systemically depleted of DC succumb to death at about 9 to 10 dpi 

(Fig. 9B). 
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Figure 9. Infiltrating corneal DCs influence the repopulation of CD8+ T cells in the trigeminal 

ganglia after infection and prevent lethal infections. 

BALB/c CD11c-DTR bone marrow chimeras were given local (subconjunctival), or systemic (intraperitoneal) 

treatments of DT at -2, +1, and +4 dpi to deplete cornea-derived DC (corneal DC depletion) or both cornea-derived 

and DLN-resident DC (systemic DC depletion) up to 7 dpi, or PBS (no DC depletion). A) The trigeminal ganglia 

(TG) of treated or non-treated chimeras were excised, treated with collagenase to yield a single cell suspension, and 

stained with antibodies to CD3 and CD8 to measure the numbers of CD8+ T cells in the TG. Bar graphs show mean 

± SEM absolute numbers of CD8+ T cells per TG. The p values for group differences were analyzed by a one-way 

ANOVA with Bonferroni posttests [no DC depletion  vs corneal DC depletion and no DC depletion vs systemic DC 

depletion  are p < 0.05, corneal DC depletion vs systemic DC depletion is not significant]. Data are representative of 

three experiments, with five mice per group. B) Chimeras treated or not treated with DT as described were followed 

for survival. Corneal DC depleted and systemic DC depleted mice succumbed to encephalitis at 9-10 dpi. 

B 
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5.8 CORNEA-INFILTRATING DC MIGRATE TO THE DRAINING LYMPH 

NODES AFTER HSV-1 INFECTION 

We tracked antigen-presenting cells that migrated to the DLN from the cornea using 1% FITC, 

as described in Materials and Methods. At steady state, there are about 800 cells that travel from 

each cornea to its respective DLN. In comparison to the naïve cornea, FITC painting of the 

infected cornea 16 hours before harvest at 3 dpi showed migration of about 200 more dendritic 

cells from the cornea to the DLN (Fig. 10). 

 

 

 

 

 

 

 

 

 

Figure 10. Infiltrating corneal DCs migrate to the DLN. 

Wild type BALB/c mice were infected with HSV-1 and at 2 dpi, 1% fluorescein isothiocyanate (FITC) was applied 

onto their corneas. The DLN of these mice were excised at 3 dpi, treated with collagenase to yield a single cell 

suspension, enriched for CD11c+ cells by negative isolation, stained with antibodies to CD11c, and analyzed for 

FITC uptake by CD11c+ cells through flow cytometry.  Representative flow cytometry plots demonstrate the 

CD11c+ cells migrating to the DLN (FITC+) in naïve mice that received FITC, and increased numbers of CD11c+ 

FITC+ cells migrating to the DLN in HSV-infected mice. Absolute numbers of CD11c+ FITC+ cells are shown for 

each group. Data are representative of three experiments, with 10-20 lymph nodes per group. 
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5.9 CORNEA-RESIDENT DENDRITIC CELLS EXPRESS CD86 AND 

UPREGULATE CD80 AFTER INFECTION 

The aforementioned findings are consistent with the idea that cornea-infiltrating DC are more 

capable at presenting antigen to CD8+ T cells than do DLN-resident DC. Initial activation of a 

naïve T cell occurs upon interaction of TCR with a specific peptide presented by MHC 

molecules and additional signals from costimulation and inflammation are required for an 

effective T cell response. To characterize the differences between cornea-infiltrating and DLN-

resident DC, we decided to analyze the expression of the costimulatory molecules CD80 and 

CD86 in WT BALB/c mice. As illustrated in Fig. 11, cornea-infiltrating DC only express CD80 

after infection. CD86, on the other hand, is expressed by cornea-resident DC in the naïve cornea, 

and continue expressing CD86 after infection (Fig. 11). 

 

Figure 11. Costimulation of dendritic cells in the HSV-infected cornea. 
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BALB/c CD11c-DTR bone marrow chimeras were infected with HSV-1 and at 1 dpi, their corneas were excised, 

along with uninfected cornea controls, stained with antibodies to CD80 or CD86, fixed, and mounted for confocal 

microscopy imaging. Representative images taken of the peripheral corneas of uninfected mice demonstrate CD11c+ 

cells expressing CD86, but not CD80. Representative images taken of the peripheral corneas of infected mice show 

CD11c+ cells expressing CD80 or CD86. Images are representative of three independent experiments, with three 

mice per group. 

5.10 CORNEA-INFILTRATING DC HAVE GREATER EXPRESSION OF 

COSTIMULATORY MOLECULES COMPARED TO DLN-RESIDENT DC 

To track if cornea-infiltrating DC maintain expression of these molecules after migration to the 

DLNs, cornea-infiltrating DC were labeled with 1% FITC as described in Materials and 

Methods, and their migration into the DLN and expression of costimulatory molecules were 

assessed. In naïve mice, DLN-resident DC (DC not labeled with FITC) express low levels of 

CD40, CD70, CD80, CD86, and MHC II (Fig. 12). After infection, the MFI of these molecules 

when measured for DLN-resident DC do not change significantly. Moreover, cornea-infiltrating 

DCs express more CD40, CD70, CD80, CD86, and MHC II per cell than DLN-resident DC. 

These results suggest that preferential upregulation of costimulation in cornea-infiltrating DC 

compared to DLN-resident DC may allow cornea DCs to stimulate CD8+ T cell expansion. 
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Figure 12. Infiltrating corneal DCs have greater levels of costimulation in the DLN compared to 

DLN-resident DCs. 

Wild type BALB/c mice were infected with HSV-1 and at 2 dpi, 1% fluorescein isothiocyanate (FITC) was applied 

onto their corneas. The DLN of these mice were excised at 3 dpi, treated with collagenase to yield a single cell 

suspension, enriched for CD11c+ cells by negative isolation, stained with antibodies to CD11c, CD40, CD70, CD80, 

CD86, and MHC II. Representative flow cytometry plots show a greater frequency and mean fluorescence intensity 
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(MFI) of costimulatory molecules expressed by CD11c+ FITC+ cells in HSV-infected mice compared to CD11c+ 

FITC+ cells in naïve mice. Data are representative of three experiments, with 10-20 lymph nodes per group. 

5.11 CD86 IS NOT REQUIRED FOR THE EXPANSION OF CD8+ T CELLS IN THE 

DLN AFTER HSV-1 OCULAR INFECTION 

One of the molecules highly expressed by cornea-infiltrating DC compared to DLN-resident DC 

is CD86 (Fig. 12). To test the importance of CD86 interactions, mice were treated with anti-

CD86 antibody (clone GL-1) 2 days before and 1 day after infection. At 3 dpi, there was no 

significant difference between the percentage and absolute numbers of BrdU+ CD8+ T cells (Fig. 

13). Consequently, there was no significant difference in absolute numbers of CD8+ T cells, thus 

indicating that CD86 does not play a critical role in the generation of CD8+ T cells in the DLN 

after HSV-1 infection. 
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Figure 13. CD86 interactions are not necessary for CD8+ T cell expansion in the DLN. 

Wild type BALB/c mice were infected with HSV-1 and received 200 ug anti-CD86 (clone GL1) antibody 

intraperitoneally (systemic CD86 blockade), 20 ug anti-CD86 antibody subconjunctivally (local CD86 blockade), or 

treated with the corresponding isotype antibody, at -2, and +1 dpi. Mice received 1 mg BrdU intraperitoneally at 3 

dpi. Four hours after, DLN were excised, processed to yield a single cell suspension, and stained with antibodies to 

CD3, CD8, and BrdU. Bar graphs show mean ± SEM percentage or absolute numbers of proliferating (BrdU+) CD8+ 

T cells per lymph node.  The p values for group differences were analyzed by a one-way ANOVA with Bonferroni 

posttests [no DC depletion vs corneal DC depletion, no DC depletion vs systemic DC depletion, and corneal DC 

depletion vs systemic DC depletion are not significant]. Data are representative of three experiments, with five mice 

per group. 
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5.12 CD154 IS NOT REQUIRED FOR THE EXPANSION OF CD8+ T CELLS IN THE 

DLN AFTER HSV-1 OCULAR INFECTION 

CD40, an important costimulatory molecule with roles in viral immunity, is known to be 

expressed on B cells, professional antigen-presenting cells and binds CD154 or CD40L, which is 

expressed generally on T cells. It is also one of the costimulatory molecules highly expressed by 

cornea-infiltrating DC compared to DLN-resident DC (Fig. 12). To test the importance of CD40 

interactions, mice were treated locally or systemically with anti-CD154 antibody (clone MR-1) 

i.p. at -1, +2, and +5 dpi. At 7 dpi, there was no significant difference in the percentage and 

absolute numbers of CD8+ T cells after corneal or systemic CD154 blockade (Fig. 14A). 

However, a significant reduction was observed between the percentage and absolute numbers of 

proliferating BrdU+ CD8+ T cells in the lymph nodes of systemically blocked mice (Fig. 14B), 

implying that either there is a greater rate of death in these CD8+ T cells or that egress of these 

cells from the lymph nodes is happening very quickly. To measure the frequency of dying cells, 

Caspatag PanCaspase kit was used. No significant difference was observed in the percentage and 

absolute numbers of CD8+ T cells that were labeled positive with Caspatag (Fig. 14C), 

suggesting that after CD154 blockade, CD8+ T cells leave the lymph nodes instantly. 
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Figure 14. CD154 (CD40L) interactions are not necessary for CD8+ T cell expansion in the DLN. 

Wild type BALB/c mice were infected with HSV-1 and received 300 ug anti-CD40L (clone MR-1) antibody 

intraperitoneally (systemic CD154 blockade), 30 ug anti-CD40L antibody subconjunctivally (local CD154 

blockade), or treated with the corresponding isotype antibody at -1, +2, and +5 dpi. Mice received 1 mg BrdU 

intraperitoneally at 7 dpi. Four hours after, DLN were excised, processed to yield a single cell suspension, and 

stained with antibodies to CD3, CD8, and BrdU. Bar graphs show A) mean ± SEM absolute numbers of 

proliferating (BrdU+) CD8+ T cells per lymph node, B) mean ± SEM absolute numbers of CD8+ T cells, and C) 

mean ± SEM absolute numbers of Caspatag+ CD8+ T cells. The p values for group differences were analyzed by a 

one-way ANOVA with Bonferroni posttests [no DC depletion vs corneal DC depletion, no DC depletion vs systemic 

C 
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DC depletion, and corneal DC depletion vs systemic DC depletion are not significant]. Data are representative of 

three experiments, with five mice per group. 

5.13 DISCUSSION 

The cornea constitutes an immune privileged mucosal surface that was previously thought to be 

due to the absence of antigen presenting cells. However, recent studies have shown that the 

normal mouse cornea possesses a population of CD11c+ CD11b- DCs and F4/80+ CD11b+ 

macrophages (107, 110), but their purpose has yet to be determined. Our group has previously 

shown that dendritic cells indirectly control HSV-1 replication in the cornea by influencing 

natural killer cell migration into the central cornea where viral lesions are located (115). 

However, the role of corneal dendritic cells in initiating the adaptive immune response against 

HSV-1 is not defined. 

We examined the roles of cornea-resident DC, cornea-infiltrating, and DLN-resident DC. 

We addressed this by utilizing CD11c-DTR-EGFP bone marrow chimeras to ablate the dendritic 

cells at different time points locally in the cornea or systemically to deplete cornea- and DLN-

resident DC during HSV-1 ocular infection. A subconjunctival injection of diphtheria toxin 

afforded us to deplete corneal DC without ablating DC in the DLN (Fig. 3). 

The presence of dendritic cells in the corneal epithelium expressing Langerin in naïve 

mice has been reported by Hattori, et al (113), and our group has found CD11c+ cells in the naïve 

corneal epithelium, some expressing langerin. After local DT treatment, we deplete all CD11c+ 

cells, which include the CD11c+ langerin+ cells in the cornea. Unlike the dendritic cell subsets in 

the skin which include Langerhans cells in the epidermis and dermal dendritic cells, there is no 
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counterpart for dermal dendritic cells in the cornea. Thus, the roles of these DC subpopulations 

may be different from what has been characterized in other mucosal tissue (223, 475). 

Using this approach, we depleted cornea-resident DC by giving chimeras DT 2 days 

before infection, and our results demonstrated that in contrast to previous studies (223), steady-

state tissue – resident DC in the cornea are not required in priming of CD8+ T cells. Diphtheria 

toxin only allows depletion in this system for 3 days and DC reconstitutes the tissue soon 

afterwards (Fig. 4). DC egress from the site of infection to the DLN is amplified after HSV-1 

infection (214-216), but in studies by Eidsmo, et al., productively infected DCs were not 

identified in the DLN (217). The lack of a role for cornea-resident dendritic cells may be because 

of its lack of migration capabilities. In vivo imaging studies have shown that DC in the central 

and peripheral cornea are generally non-motile but change morphology upon stimulation (476). 

It is also a possibility that a lytic virus such as HSV-1 can render directly infected tissue-resident 

DC in the cornea unable to participate in T cell priming (205, 208, 221, 477). Therefore, our data 

showing cornea-infiltrating DCs presenting HSV-1 antigen to CD8+ T cells in the DLN reflect 

antigen presentation by DC that are not directly infected by the virus, but by those that acquire 

viral antigen from infected epithelial cells or infected DC in the cornea. 

Presumably, during infection, monocytes come in and differentiate into DC that can take 

up antigen and generate a robust T cell response in the DLN even with depletion of cornea-

resident DC (Fig. 5). Thus in the absence of cornea-resident DC, cornea-infiltrating DC are able 

to assume this role. Extending the depletion to 3 dpi show an abrogation of the absolute numbers 

of CD8+ T cells that were undergoing proliferation in mice that were depleted of DC 

systemically or depleted of DC locally, compared to non-DC depleted mice (Fig. 6A). This 

indicates that corneal-infiltrating DC are sufficient to cause expansion in CD8+ T cells and we 
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see the same effect when systemic DT treatment depletes both corneal DC and DLN-resident 

DC. However, when mice were allowed to live after DC depletion from -2 dpi to 3 dpi, CD8+ T 

cell proliferation recovered to the same numbers as the non-depleted mice at 7 dpi, thus 

suggesting that cornea-infiltrating DC migrating after 3 dpi or DC resident to the DLN were able 

to stimulate the CD8+ T cells (Fig. 6B).  

Local DC depletion from -2 to 7 dpi to determine if cornea-infiltrating DC or DLN-

resident DC are responsible for CD8+ T cell proliferation in the DLN after 3 dpi showed 

considerable reduction of proliferating CD8+ T cells, and the same significant reduction is seen 

when DC are systemically ablated continuously both in BALB/c (Fig. 7A) and C57Bl/6 (Fig. 7B 

and 7C) chimeras. This decrease is seen in both immunodominant and subdominant CD8+ T 

cells (Fig. 8). However, the absolute numbers of proliferating CD8+ T cells in cornea DC 

depleted or systemic DC depleted mice are still significantly higher than that of naïve mice, 

suggesting the presence of other antigen presenting cells in the DLN that are able to stimulate 

these CD8+ T cells. Furthermore, the data also indicate that dendritic cells, presumably 

monocyte-derived, infiltrate the cornea after infection, migrate to the DLN and are necessary in 

CD8+ T cell expansion in the DLN after 3 dpi. In contrast, a recent study by Iijima, et al. 

demonstrated that monocyte-derived DC in the vaginal submucosa were found to be dispensable 

in priming of naïve CD4+ T cells but are more necessary in regulating cytokine production from 

infiltrating effector T cells at the infection site (475) while tissue – resident dendritic cells were 

required to generate the initial CD4+ and CD8+ T cell responses (223). This contrast in the roles 

of DC reflects the differences in the mucosal tissues at hand. The number of dendritic cells in the 

corneal epithelium is minor compared to that of the vaginal mucosa and therefore there is a 
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possibility that most of them will be infected, thus leaving none of the tissue – resident DC able 

to prime naïve T cells. 

Dendritic cells or monocytes differentiating into DCs enter the cornea after infection. 

Uptake of viral antigens from dying infected epithelial and cells by cornea-infiltrating DC may 

provide a means for a greater number of dendritic cells that can present antigen to naïve cognate 

T cells in the DLN. It may be viewed as a scheme to outdo the immune evasion mechanisms by 

HSV. Transfer of antigens to uninfected DCs undermines the ability of the virus to downregulate 

the expression and peptide loading of MHC I molecules by infected cells. 

Mice that were depleted of corneal DC and DC systemically developed signs of 

encephalitis such as the presence of ruffled fur, slightly hunched back, limb paralysis, and 

lethargy, at about 7 dpi, and had to be sacrificed by day 10 post infection. CD8+ T cells are 

necessary in protection against HSV-1, and there may be impairment in function or number of 

CD8+ T cells generated to migrate to the trigeminal ganglia to prevent virus spread to the brain 

(Fig. 9). 

The results above demonstrate that CD8+ T cells may require cornea-infiltrating DC to 

carry and deliver antigen. What makes the DC derived from the cornea different? We could not 

sort for migratory dendritic cells in the DLN coming from the cornea because of their small 

numbers (Fig. 10) and therefore could not use them for T cell stimulation assays. T cell 

costimulation is an important event after TCR triggering as it provides a requirement for T cell 

activation. Thus upon looking at their costimulatory phenotype, DC in the cornea begin to 

express costimulatory molecules CD80 and CD86 after infection (Fig. 11). Moreover, through 

FITC tracking (Fig. 10), a greater expression per cell is observed for MHCII, CD40, CD70, 
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CD80, and CD86 in cornea-infiltrating DC, compared to that of the DLN-resident DC (Fig. 12), 

presumably enabling these DC to stimulate naïve CD4+ and CD8+ T cells more readily. 

To determine which costimulatory molecule on infiltrating corneal DCs is critical, 

antibodies to block costimulation were utilized. Local or systemic neutralization of costimulatory 

interactions between CD154 and CD40 (Fig. 14), as well as CD86 and CD28 (Fig. 13), did not 

influence the generation of CD8+ T cells in the DLN. Early studies indicate that CD28 and CD40 

are important costimulators for immune responses against herpes viruses (413, 421). Previously, 

our lab has shown that CD154/CD40 interactions are not relevant in generating CD8+ and CD4+ 

T cells in the DLN (387). It is possible that CD80, another ligand for CD28, may compensate 

when CD86 is impaired. It is also possible that other costimulatory molecules, such as CD70, 

ICOSL, and 4-1BBL (478), may make up for the lack of CD154 and CD86. Another alternative 

theory is that it is a combination of these molecules that is important and should be expressed by 

cornea – infiltrating dendritic cells to activate CD8+ T cells. A reagent such as CTLA4-Ig that 

targets CD28 itself may be important to determine if both CD86 and CD80 are necessary. 

In summary, our findings demonstrate that in this model, cornea-infiltrating dendritic 

cells, and not the tissue-resident DC in the cornea, are necessary in priming of naïve CD8+ T 

cells. The ability of cornea-infiltrating DC to induce proliferation may be in part due to its high 

expression of the costimulatory molecules CD40, CD70, CD80, and CD86. We also show that 

the contribution of tissue-resident vs tissue – infiltrating dendritic cells in modulating antiviral 

immunity depends on the tissue of concern and on what kinds of DC subpopulations are present. 
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6.0  THE ROLE OF DENDRITIC CELLS IN THE EXPANSION OF CD4+ T CELLS IN THE 

DRAINING LYMPH NODES AND IN THE PROGRESSION OF HERPES STROMAL 

KERATITIS 

Various infection models have shown the necessity of different subpopulations of dendritic cells 

in activation of antigen-specific T cells. Whether cornea-resident dendritic cells are important for 

HSV-specific CD4+ T cell proliferation during priming in the lymph nodes is not clear. Although 

cornea-infiltrating DCs appear to be more important than DLN-resident DC in generating CD8+ 

T cells, it might not necessarily be the case for CD4+ T cells. 

After infiltrating corneal DC come in during infection, a second upsurge of dendritic cells 

enter murine corneas around 7 dpi that coincides with the onset of HSK. Besides activating CD4+ 

T cells in the DLN, cornea-infiltrating DC may be a source of stimulation for CD4+ T cells that 

access the cornea during disease. Greater numbers of dendritic cells in the cornea is linked with 

greater HSK opacity. Additionally, blocking B7 costimulation locally in the cornea hampers 

disease severity and occurrence. Taken as a whole, these studies imply a role for dendritic cells 

in the progression of herpes stromal keratitis. 
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6.1 CORNEA-RESIDENT DC ARE NOT ESSENTIAL FOR CD4+ T CELL 

EXPANSION IN THE DLN 

The previously described depletion strategy was used to determine the requirement for dendritic 

cells resident to the cornea (DC present in the cornea before infection) in expanding CD4+ T 

cells in the draining lymph nodes after HSV-1 infection, by subconjunctival or intraperitoneal 

injection of DT 2 days before infection. To measure proliferation of CD4+ T cells, chimeras 

received 1 mg BrdU 4 hours before harvest of draining lymph nodes for flow cytometric analysis 

at 3 dpi. At 3 dpi, there was no significant difference among the absolute numbers of BrdU+ 

CD4+ T cells in corneal DC – depleted, systemic DC – depleted, and non – DC depleted 

chimeras (Fig. 15A). Since proliferation was only measured for 4 hours, and differences in CD4+ 

T cell expansion might be more evident if expansion was measured for a longer period, chimeras 

then received 1 mg BrdU upon infection and everyday up until 3 dpi. Dendritic cells in these 

mice were depleted locally in the cornea or systemically at -2 dpi. Draining lymph nodes were 

then harvested at an earlier point (3 dpi) to measure proliferation of CD4+ T cells. At 3 dpi, there 

was no significant difference among the absolute numbers of expanding CD4+ T cells in mice 

that were corneal DC – depleted, systemic DC-depleted, or not depleted (Fig. 15B). 

Additionally, at 7 dpi, there was no significant difference in proliferating CD4+ T cell numbers 

after corneal DC depletion before infection (Fig. 15C). This indicates that DC resident to the 

cornea before infection are not important in the expansion of CD4+ T cells in the draining lymph 

nodes after HSV-1 infection. 
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Figure 15. Cornea-resident DCs are not necessary for CD4+ T cell expansion. 
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BALB/c CD11c-DTR bone marrow chimeras were given subconjunctival injections of 30 ng DT (corneal DC 

depletion), intraperitoneal injections of 150 ng DT (systemic DC depletion), or PBS (no DC depletion). Chimeras 

received a single treatment of DT 2 days before HSV-1 infection (as indicated by unfilled arrows) to deplete cornea 

– resident DCs locally or to deplete both cornea – resident and DLN – resident DCs systemically, and DCs that 

migrate into the tissue at 1 dpi. Chimeras received i.p. injections of 1 mg bromodeoxyuridine (BrdU) at indicated 

times. DLN were excised at 3 or 7 dpi and processed to yield single cell suspensions. DLN cells were stained with 

antibodies to CD3, CD4, and BrdU to measure CD4+ T cell proliferation by flow cytometry. Depletion of cornea – 

resident DCs does not influence CD4+ T cell proliferation when measured at 3 dpi using A) a 4 hour BrdU pulse or 

B) 3 day BrdU pulse, or C) when measured at 7 dpi using a 4 hour BrdU pulse. The p values for group differences 

were analyzed using a one-way ANOVA with Bonferroni posttests (all comparisons between groups are not 

significant). Data are representative of three experiments, with five mice per group. 

6.2 CORNEA-RESIDENT DC ARE NOT ESSENTIAL FOR HSK PROGRESSION  

Not surprisingly, when corneal DC – depleted, systemic DC – depleted, and non – depleted DC 

chimeras were allowed to develop HSK, all of these mice progressed to having disease at the 

same kinetics (Fig. 16). 
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Figure 16. Depletion of cornea-resident DC does not influence HSK progression. 

BALB/c CD11c-DTR bone marrow chimeras were given subconjunctival injections of 30 ng DT (corneal DC 

depletion), intraperitoneal injections of 150 ng DT (systemic DC depletion), or PBS (no DC depletion), at -2 dpi to 

deplete cornea-resident DCs locally or to deplete both cornea-resident and DLN-resident DCs systemically, and DCs 

that migrate into the tissue at 1 dpi. Mice were observed for disease progression and recorded as mean ± SEM HSK 

severity.  
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6.3 CORNEA-INFILTRATING DC AND DLN-RESIDENT DC BOTH CONTRIBUTE 

TO THE EARLY EXPANSION OF CD4+ T CELLS IN THE DLN 

After DT treatment of CD11c-DTR chimeras once, dendritic cells start to reconstitute tissue after 

3 days (Fig. 4) (115). Dendritic cells that migrate into the cornea after infection could be more 

important than cornea-resident DC in CD4+ T cell expansion in the DLN so chimeras received 

DT at -2 and +1 dpi to prolong depletion of dendritic cells locally or systemically up until 3 dpi. 

Chimeras received 1 mg BrdU 4 hours before harvest at 3 dpi and BrdU incorporation of CD4+ T 

cells was measured through flow cytometry. At 3 dpi, absolute numbers of BrdU+ CD4+ T cells 

of corneal DC – depleted mice was reduced to less than half compared to that of mice with intact 

DC. Absolute numbers of BrdU+ CD4+ T cells of systemic DC – depleted mice on the other 

hand, was ablated completely. These values were significantly reduced compared to that of the 

corneal DC – depleted mice and was comparable to that of the naïve mice. This suggested that 

there is a need for infiltrating corneal DC in expanding CD4+ T cells, but since the CD4+ T cell 

response gets totally abrogated after systemic DC depletion, there is also a role for DC resident 

to the DLN in contributing to these responses (Fig. 17A). 

To determine what would transpire if DCs are allowed to reconstitute the tissue after DC 

depletion up until 4 dpi, the draining lymph nodes of these mice were taken out at 7 dpi. At 7 

dpi, BrdU+ CD4+ T cells in the DLN of mice that were either corneal DC – depleted, systemic 

DC – depleted recovered to the levels of non-DC-depleted mice (Fig. 17B). 
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Figure 17.  Both cornea-infiltrating DC and DLN-resident DC play a role in CD4+ T cell expansion in 

the DLN at 3 dpi. 

BALB/c CD11c-DTR bone marrow chimeras were given local (subconjunctival) or systemic (intraperitoneal) DT 

treatments at -2 and +1 dpi (as indicated by unfilled arrows) to deplete infiltrating corneal DCs (corneal DC 

depletion) or both infiltrating corneal DCs and DLN-resident DCs (systemic DC depletion) up to 4 dpi, or PBS (no 

DC depletion). Chimeras received i.p. injections of 1 mg BrdU 4 hours before excision of DLN. Single cell 
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suspensions of DLN were stained with antibodies to CD3, CD4 and BrdU to measure CD4+ T cell proliferation by 

flow cytometry. Bar graphs show mean ± SEM of absolute number of proliferating (BrdU+) CD4+ T cells per DLN. 

A) CD4+ T cell proliferation was significantly reduced by corneal DC depletion and abrogated by systemic DC 

depletion. B) Corneal or systemic DC depletion up to 4 dpi had no impact on CD4+ T cell proliferation measured at 

7 dpi. The p values for group differences were determined using a one-way ANOVA with Bonferroni posttests [(A) 

no DC depletion versus corneal DC depletion, no DC depletion versus systemic DC depletion, and corneal DC 

depletion versus systemic DC depletion are p < 0.05, (B) no depletion versus systemic DC depletion, no depletion 

versus corneal DC depletion, and systemic DC depletion versus corneal DC depletion are not significant]. Data are 

representative of three experiments, with five mice per group.  

 

6.4 THE ABSENCE OF DENDRITIC CELLS UP UNTIL 4 DPI DOES NOT 

INFLUENCE THE PROGRESSION OF HSK 

Since proliferation of CD4+ T cells in the chimeras recovered after local or systemic DC 

depletion until 4 dpi, when they were followed up for disease, it was not surprising that there was 

no significant difference found in HSK progression among the different groups (Fig. 18).  
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Figure 18.  Depleting DC from the cornea and/or the DLN does not affect HSK progression. 

BALB/c CD11c-DTR bone marrow chimeras were given local (subconjunctival) or systemic (intraperitoneal) DT 

treatments at -2 and +1 dpi to deplete cornea – infiltrating DCs (corneal DC depletion) or both cornea – infiltrating 

DCs and DLN – resident DCs (systemic DC depletion) up to 4 dpi or PBS (no DC depletion). Mice were observed 

for disease progression and recorded as mean ± SEM HSK severity. Data are representative of three experiments, 

with five mice per group. 

6.5 ANTIGEN APPLIED TO THE CORNEA DRAINS TO THE LYMPH NODES 

EVEN IN THE ABSENCE OF CORNEA DENDRITIC CELLS 

How do DLN-resident DC acquire antigen even in the absence of cornea-infiltrating DC? We 

hypothesized that antigen can passively drain through the lymphatics even without cornea-

infiltrating DC migrating to the DLN. To serve as a surrogate antigen, ovalbumin labelled with 

Alexa Fluor 546 was topically introduced onto the corneas of CD11c-DTR chimeric mice at the 

time of infection. These mice were either corneal DC-depleted, systemic DC-depleted, or kept 
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their DC intact. At 1 dpi, DLN were harvested, cut in half, stained with an antibody to CD11b, 

and mounted whole for imaging through confocal microscopy. Images of non – depleted mice 

show that OVA is acquired by CD11c+ dendritic cells in the DLN, and in the absence of cornea – 

infiltrating dendritic cells, OVA still gains access to the DLN and is taken up by dendritic cells. 

In the absence of dendritic cells systemically, OVA still drained to the DLN (Fig. 19). 
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Figure 19.  OVA antigen drains to the lymph nodes with or without DC from the cornea. 
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BALB/c CD11c-DTR bone marrow chimeras given PBS (no DC depletion), local (subconjunctival), or systemic 

(intraperitoneal) DT treatments at -2 dpi to deplete cornea-infiltrating DCs (corneal DC depletion) or both cornea-

infiltrating DCs and DLN-resident DCs (systemic DC depletion) up to 1 dpi or PBS (no DC depletion). Corneas 

were infected with HSV-1 and Alexa Fluor 594-conjugated ovalbumin (OVA-AF594) was applied onto the corneas. 

At 1 dpi, DLNs were excised, cut in half, fixed with 1% paraformaldehyde and mounted for confocal microscopy 

imaging of DCs distinguished by EGFP expression from the CD11c promoter (green) and AF594-tagged OVA 

(red). Compressed images of z-stacks in the xy plane of lymph nodes are representative of three experiments, three 

to five mice per group. 

6.6 BEYOND 3 DPI, CD4+ T CELL EXPANSION IN THE DLN IS MORE 

DEPENDENT ON CORNEA-INFILTRATING DC THAN DLN-RESIDENT DC 

We demonstrated that absolute numbers of proliferating CD4+ T cells recover at 7 dpi after 

depleting cornea-infiltrating DC only or both cornea-infiltrating DC and DLN-resident DC from 

-2 to 4 dpi. This indicated that after 4 dpi, either cornea-infiltrating DC start to come into the 

cornea again and then migrate to the DLN to present antigen to CD4+ T cells, or that DLN-

resident DC are now capable of antigen presentation. To test this possibility, CD11c – DTR 

chimeras received a continuous treatment of DT either locally or systemically to deplete DC up 

until 7 dpi. Mice received 1 mg BrdU 4 hours before harvest of DLN at 7 dpi. At 7 dpi, there is a 

significant difference between the absolute numbers of proliferating CD4+ T cells in corneal DC 

– depleted mice and that of the non-DC – depleted mice. There is also a significant reduction in 

BrdU+ CD4+ T cell numbers in systemic DC-depleted mice compared to that of the non-DC – 

depleted mice. The BrdU+ CD4+ T cell numbers were comparable however, between corneal DC 

– depleted and systemic DC-depleted mice, indicating that contrary to what was seen at 3 dpi, 
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there seems to be a greater involvement for cornea-infiltrating DC than for DLN-resident DC in 

CD4+ T cell expansion at 7 dpi. Proliferating CD4+ T cell numbers are not completely abrogated 

in corneal DC-depleted mice or systemic DC-depleted mice, suggesting another kind of antigen – 

presenting cell in the DLN may play a role in CD4+ T cell expansion (Fig. 20A). 

Recently, a C57BL/6 CD4+ T cell epitope was identified on HSV-1 glycoprotein D 

(gD290-302) (479), the depletion of corneal DC was repeated in C57BL/6 CD11c-DTR bone 

marrow chimeric mice and the expansion of HSV-specific CD4+ T cells in the DLN was 

measured using MHC II multimers containing the gD epitope.  The HSV-specific CD4+ T cell 

expansion in C57BL/6 mice was reduced by 55%, comparable to the 53% reduction in expansion 

of the overall CD4+ T cells in BALB/c mice (Fig. 20B).   
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Figure 20.  DC migrating from the cornea are the main DC responsible for expansion of CD4+ T cells 

at 7 dpi. 
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BALB/c or C57Bl/6 CD11c-DTR chimeras were given local (subconjunctival) or systemic (intraperitoneal) 

treatments of DT (as indicated by unfilled arrows) at -2, +1, and +4 dpi to deplete cornea-derived (corneal DC 

depletion) or cornea-derived and DLN (systemic DC depletion) DCs up to 7 dpi, or PBS (no DC depletion). Mice 

received i.p. injections of 1 mg BrdU 4 hours before excision of DLN. A) Single cell suspensions of DLN from 

BALB/c chimeras were stained with antibodies to CD3, CD4, and BrdU to measure CD4+ T cell proliferation by 

flow cytometry. B) Single cell suspensions of DLN from C57Bl/6 chimeras were stained with MHC II multimers 

containing the HSV-1 glycoprotein D (gD)290-302 epitope. Bar graphs show mean ± SEM absolute number of 

proliferating (BrdU+) CD4+ T cells per lymph node in BALB/c chimeras (A) or proliferating (BrdU+) gD-specific 

CD4+ T cells per lymph node in C57Bl/6 chimeras. The p values for group differences were analyzed by using a 

one-way ANOVA with Bonferroni posttests (no DC depletion versus corneal DC depletion and no DC depletion 

versus systemic DC depletion are p < 0.05, corneal DC depletion versus systemic DC depletion is not significant). 

Data are representative of three experiments, with five mice per group. 

6.7 CORNEA DENDRITIC CELLS ARE NOT REQUIRED FOR RE – 

STIMULATION OF CD4+ T CELLS IN THE CORNEA DURING HSK 

Mice infected with HSV-1 in their corneas start to develop an immunopathological disease 

mediated by CD4+ T cells around 7 dpi. A massive infiltration of immune cells such as CD4+ T 

cells, neutrophils, dendritic cells, and monocytes occurs during HSK onset. Our previous study 

using UV-B irradiation to locally deplete corneal DC suggested a requisite role for corneal DC in 

re-stimulating the effector CD4+ T cells that mediate HSK in infected corneas (384). Since UV-B 

could affect cells other than DC, we re-evaluated this role for corneal DC using DT treatment to 

deplete only DC and evaluated its effect on HSK progression.  Intraperitoneal DT treatment was 

performed to deplete corneal DC without the possible confounding mechanical effect of 

subconjunctival injections. 
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To determine if dendritic cells that infiltrate the cornea are necessary in activating the 

CD4+ T cells that orchestrate the disease, DC were depleted from CD11c – DTR chimeras by 

continuous systemic treatment with DT from 7 dpi up until 21 dpi. Corneas were excised from 

DT treated and mock treated mice at 10, 15, and 21 dpi, the cells were dispersed with 

collagenase, and analyzed by flow cytometry for expression of various cell lineage markers. 

Representative flow plots and bar graphs show complete depletion of CD11c+ EGFP+ cells in the 

corneas of these mice (Fig. 21A). When these mice were scored for disease, chimeras 

systemically depleted of DC developed HSK at the same rate as the non-DC depleted mice, 

indicating that cornea-infiltrating DC during HSK may not be important for disease progression 

(Fig. 21B).  
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Figure 21.  Dendritic cells present in the cornea during HSK are not necessary for disease progression. 

Wildtype and CD11c-DTR BALB/c bone marrow chimeras were infected with HSV-1 and were given 

intraperitoneal injections of PBS or DT every other day from 7 to 21 dpi. A) Corneas were excised at 10, 15, and 21 

dpi; treated with collagenase to yield a single cell suspension; stained with antibodies to CD11c and CD45; and 
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analyzed by flow cytometry for CD11c expression and EGFP expression from the CD11c promoter. Representative 

flow plots show CD11c+ EGFP+ cells gated on CD45+ cells. Numbers on flow cytometry plots represent percentage 

of CD11c+ EGFP+ cells gated on CD45+ cells. B) Mice were observed for disease progression and recorded as mean 

± SEM HSK severity. The significance of group differences in HSK severity was determined by calculating the area 

under the curve for each mouse and then performing an ANOVA with Bonferroni posttests (posttest comparisons of 

all pairs of groups are not significant). Data are representative of three experiments, with five mice per group. 

6.8 DENDRITIC CELL DEPLETION HAD NO EFFECT ON CD4+ T CELL AND 

NEUTROPHIL INFILTRATE IN THE CORNEA DURING HSK 

In line with the HSK data, DC depletion had no effect on the percentage and absolute numbers of 

infiltrating CD4+ T cells or neutrophils into the cornea (Fig. 22). 

Figure 22.  Cellular infiltrate into the cornea is not changed after depletion of DC during HSK. 
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CD11c-DTR BALB/c bone marrow chimeras were infected with HSV-1 and were given intraperitoneal injections of 

PBS or DT every other day from 7 to 21 dpi. Corneas were excised at 10, 15, and 21 dpi; treated with collagenase to 

yield a single cell suspension; stained with antibodies to CD45, CD4, CD11b, and Ly6g; and analyzed by flow 

cytometry for CD4+ T cells and neutrophils. Bar graphs show mean ± SEM frequency and absolute number of CD4+ 

T cells and CD11b+ Ly6g+ neutrophils (gated on CD45+ cells). The significance of group differences in number and 

frequency of leukocyte populations in DC-depleted and non-depleted mice was analyzed by a Student t test. Data are 

representative of three experiments, with five mice per group. 

6.9 IN THE ABSENCE OF DENDRITIC CELLS, CD4+ T CELLS MAY ASSOCIATE 

WITH MHC II POSITIVE CORNEAL EPITHELIAL CELLS OR MACROPHAGES 

The lack of an effect of DC depletion in HSK progression might be explained by the presence of 

other immune cells that are able to activate CD4+ T cells in the absence of dendritic cells. To 

determine what antigen presenting cells might be present in the cornea that express MHC II, 

corneas of 10 dpi DC-depleted and non-depleted CD11c-DTR chimeras were excised and stained 

with markers for immune cells (CD45), macrophages (F4/80), and CD4+ T cells (CD4). CD4+ T 

cells appear to be interacting with MHC II+ F4/80+ macrophages and MHC II positive –, CD45 

negative cells with location and morphology consistent with epithelial cells in HSV-1 infected 

corneas of both DC – depleted and non – depleted mice (Fig. 23). 
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Figure 23.  In the absence of infiltrating corneal DCs, CD4+ T cells may interact with epithelial cells 

and macrophages that express MHC II. 

CD11c-DTR BALB/c bone marrow chimeras were infected with HSV-1 and were given intraperitoneal injections of 

PBS or DT every other day from 7 to 10 dpi. At 10 dpi, corneas were excised from mice with no DC depletion 

(upper left and right panels) or systemic DC depletion (lower left and right panels). Confocal microscopic images in 

 102 



the xy plane from the periphery of corneal whole mounts depict CD4 (white), MHC II (red), F4/80 (green), and a 

merged image on the first two columns, or CD45 (green), CD4 (blue), MHC II (red), and a merged image on the last 

two columns. White arrows identify CD4+ T cells that are closely associated with MHC II+ macrophages and corneal 

epithelial cells. All data are representative of three experiments (mean ± SEM of five mice per group). 

6.10 DISCUSSION 

Determining the contributing roles of cornea-infiltrating DC and DLN-resident DC in the 

proliferation of CD4+ T cells in the draining lymph nodes after primary infection of the cornea 

with HSV-1 is possible by a subconjunctival injection of diphtheria toxin into the eye, and this 

does not affect the DC population in the draining lymph nodes (Fig. 3). Our results show that 

cornea-resident DCs are not necessary in priming of CD4+ T cells in the DLN at 7 dpi (Fig. 15), 

and contrasts with studies with HSV-1 infection of the vaginal submucosa which demonstrate 

that steady state tissue – resident DC are involved with naïve CD4+ T cell priming (223). The 

disparity in these observations may be explained by accessibility to antigen. In the studies of 

Lee, et al (223), antigen conjugated to fluorochrome applied onto the vaginal compartment was 

detected only in the vaginal submucosa and not in the DLN. There was no free flowing antigen 

acquired from the lymph in the DLN in these mice. However, in our model, antigen applied onto 

the corneal mucosal surface accessed the DLN after infection (Fig. 19).  As previously 

mentioned, another explanation for this could be that DCs resident to the cornea do not have 

migrating capabilities and therefore cannot be involved in initiating adaptive immune responses 

in the DLN (21). Also, lytic infections with HSV-1 of dendritic cells can undermine its 

participation in CTL priming (22-26). It is more likely that antigen presentation to CD4+ T cells 

is performed by uninfected dendritic cells that take up viral antigen from infected epithelial cells 
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or dendritic cells from the cornea. Predictably, when chimeras depleted of resident corneal DCs 

or DCs systemically were allowed to develop HSK, they established disease at the same rate as 

non – depleted mice as observed from 7 dpi onwards (Fig. 16). 

We show that dendritic cells come into the cornea after infection, and that in the absence 

of cornea-resident dendritic cells, cornea-infiltrating DCs can presumably take up viral antigen 

and present to CD4+ T cells in the DLN. Prolonging the depletion with treatments of diphtheria 

toxin at -2 and 1 dpi extends local corneal or systemic depletion until 4 dpi, and will affect 

dendritic cells infiltrating the cornea and other tissues after 1 dpi. Our results demonstrate that 

local DC depletion reduces absolute numbers of BrdU+ CD4+ T cells to a third of that of the non-

depleted mice (Fig. 17A). On the other hand, systemic depletion completely abrogates the 

absolute numbers of BrdU+ CD4+ T cells (Fig. 17A), indicating that there is a role for both 

cornea-infiltrating DCs and DLN-resident DCs in promoting CD4+ T cell responses in the DLN. 

This trend is also reflected in work by Allenspach, et al. which demonstrated the need for both 

DC populations: that lymph node – resident DCs trap antigen – specific CD4+ T cells to initiate 

activation, while DCs migrating from peripheral tissues are necessary to induce proliferation 

(236). This trend is different from what transpires with CD8+ T cell proliferation after corneal or 

systemic DC depletion, where there is a greater dependence of CD8+ T cells on DC coming from 

the cornea in generating CD8+ T cells in the DLN (Fig. 6A). There may be a reflection of the 

differences in activation requirements between CD4+ and CD8+ T cells early in the infection. It is 

also possible that CD4+ T cells are able to license DLN-resident DCs through CD40-CD154 

interactions, thus enabling them to stimulate CD4+ T cells themselves. 

However, when chimeras locally or systemically depleted of DC from -2 to 4 dpi were 

observed at 7 dpi, the absolute numbers of proliferating CD4+ T cells in both DC – depleted 
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groups recovered to that of the non – depleted chimeras (Fig. 17B). This suggested that after 4 

dpi, either cornea-infiltrating DC migrating to the DLN are still necessary to stimulate CD4+ T 

cell responses or that at this time point, DLN-resident DCs are now capable of doing so. 

Expectedly, when chimeras depleted of cornea-infiltrating DC or DLN-resident DC were 

observed for disease starting at 7 dpi, they developed disease not unlike the non – depleted 

chimeras (Fig. 18). 

Experiments using topical application of OVA-AF594 onto the corneal surface 

demonstrate that DLN-resident DC are able to acquire antigen in the DLN even when cornea-

infiltrating DC are not present. OVA – AF594 gets to the DLN through the lymphatics and are 

acquired in the DLN by CD11c+ cells (Fig. 19). 

Both cornea-infiltrating and DLN-resident DC can participate in stimulating CD4+ T cell 

responses. To establish if CD4+ T cell proliferation beyond 3 to 4 dpi still requires both DC 

populations, continuous depletion of local corneal-infiltrating DC or DCs all throughout was 

done up until 7 dpi, and proliferation was measured at 7 dpi. Our results show that after 3 dpi, 

continuous local DC depletion reduces absolute numbers of BrdU+ CD4+ T cells to half of the 

non – depleted mice, and is similar to that of the continuous systemically depleted mice (Fig. 

20A). This is also reflected in tetramer staining done in C57Bl/6 chimeric mice where the CD4+ 

T cell epitope in the protein gD is known (Fig. 20B). This indicates that beyond 4 dpi, cornea-

infiltrating DCs migrate to the DLN, and are more important than DLN-resident DC in CD4+ T 

cell priming. In our murine model of HSV-1 corneal infection, virus starts to get cleared from the 

epithelium at 4 dpi. Therefore, in the absence of replicating virus in the eye at 4 dpi, cornea-

infiltrating DC may be necessary to carry viral antigen to the DLN for antigen presentation, and 

DLN-resident DC may not obtain any free flowing antigen. 
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CD4+ T cell responses in both corneal DC depleted mice and systemic DC depleted mice 

were not reduced completely to the levels of naïve mice, indicating that some other antigen 

presenting cell may be important in stimulating these responses. Possibly, MHC II – expressing 

antigen presenting cells such as macrophages or B cells could play a role in priming CD4+ T cell 

responses against HSV-1 as well. B cells in the DLN can capture and efficiently process antigen 

for presentation and has been demonstrated in an autoimmunity model (480-482). Likewise, 

CD169+ macrophages resident to the DLN are capable of cross-presenting antigens to antigen – 

specific CD8+ T cells as shown in a tumor model (483, 484).  

It was not determined if chimeras that were depleted of DC continuously in the cornea or 

systemically from -2 to 7 dpi were able to acquire immunopathology because at 9 to 10 dpi, these 

mice succumbed to death due to encephalitis (Fig. 9B). Absolute numbers of proliferating CD8+ 

T cells was reduced considerably in the DLN of chimeras that were either locally or systemically 

depleted of DC from -2 to 7 dpi (Fig. 7 and 9). Consequently, corneal DC depletion led to fewer 

CD8+ T cells migrating to the DLN that are able to control virus replication in the trigeminal 

ganglia (Fig. 9A).  

The requirement for dendritic cells in herpes stromal keratitis is not clear. HSK is an 

immunopathological disease mediated by CD4+ T cells and is characterized by stromal edema, 

leukocytic infiltration, and neovascularization. Previous studies have shown that a higher degree 

of opacity is related to greater number of infiltrating dendritic cells into the cornea (359, 384). 

Also, the necessity for costimulation was shown in HSK with experiments that involved blocking 

interactions between B7.1 and CD28 (385), as well as 4-1BB and 4-1BBL (386). However, other 

costimulatory molecules such as OX40 (388) and CD40 (387) are not required for HSK. Still, 
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several studies have shown the importance of dendritic cells or blood – derived dendritic cells in 

the re-stimulation of T cells at the site of infection in both influenza and HSV models (37-40). 

In a more definitive experiment to see if dendritic cells were necessary for CD4+ T cell 

activation in the cornea, both mice eyes were infected with HSV-1, and antigen presenting cells 

were depleted from mice by treating one eye with UV-B irradiation, and then the other eye was 

left untreated (19). The irradiated eye did not develop disease, while the untreated eye did, 

denoting a role for antigen presenting cells for HSK. On the contrary, when we treated our 

CD11c-DTR chimeras with DT systemically starting at 7 dpi and up until 21 dpi, CD11c+ cells 

were depleted in their corneas (Fig. 21A), and there was not a significant difference in the 

incidence and severity of disease in our mice (Fig. 21B). Indeed, analyzing the infiltrate in HSK 

corneas, there is no difference in the frequency and absolute numbers of infiltrating CD4+ T cells 

and neutrophils between DC depleted and non-depleted mice (Fig. 22). In the UV-B irradiation 

experiments, antigen – presenting cells were detected by their expression of CD205. It is possible 

that UV-B irradiation depletes other immune cells such as macrophages or monocytes, and was 

not detected in those experiments. Interestingly, this is contradictory with what Iijima, et al. 

demonstrated in their model where monocyte – derived dendritic cells are not required for 

priming, but are necessary for re-stimulating cytokine production by effector CD4+ T cells at the 

infection site (40). 

It is also conceivable that other MHC II expressing cells are able to stimulate CD4+ T 

cells in the cornea in the absence of dendritic cells. A lot more CD11b+ macrophages or 

inflammatory monocytes compared to DCs infiltrate the cornea during HSK, and interactions 

between CD4+ T cells and F4/80+ macrophages may be more important in the progression of the 
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disease (Fig. 23). Additionally, CD45 negative epithelial cells in the cornea express MHC II 

after infection (Fig. 23), and could conceivably interact with CD4+ T cells.  

In summary, these studies indicate that cornea-resident dendritic cells are not necessary 

in initiating an adaptive immune response in the DLN against HSV-1. These findings also 

establish a requirement for both cornea-infiltrating dendritic cells and DLN-resident dendritic 

cells in priming a CD4+ T cell response early against HSV-1 infection of the cornea. In the later 

part of the infection when virus gets cleared in the corneal epithelium, there is a need for cornea-

infiltrating dendritic cells to carry antigen to the DLN where it can present to CD4+ T cells. 

Conversely, DCs are not required in the cornea to re-stimulate CD4+ T cells that infiltrate during 

HSK. 
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7.0  SUMMARY AND CONCLUSIONS 

It is now well recognized that the mucosal surface of the cornea is resident to dendritic cells. Its 

presence in the cornea implies a role for these DCs as gatekeepers of the body against pathogen 

and injury. The recent years has also seen major advances in our understanding of the 

development and the heterogeneity of these dendritic cells based on their location and function. 

Contingent on the DC subpopulation and microenvironment, DCs can elicit differential but 

appropriate immune responses to commensal and pathogenic microbial species, resulting in 

protection against infectious disease. 

The studies outlined here have demonstrated the importance of DCs derived from the 

cornea in HSV-1 infection. Through the usage of CD11c-DTR mice to ablate dendritic cells, we 

show that dendritic cells resident to the cornea before HSV-1 ocular infection are not necessary 

to prime an immune response in the draining lymph nodes of infected mice. Though they are 

important in orchestrating the early events that enable innate immune cells such as natural killer 

cells and inflammatory monocytes to clear virus from the cornea (115), they do not contribute to 

generating HSV-specific CD4+ and CD8+ T cells in the draining lymph nodes. 

In its place, the dendritic cells present in the cornea after infection are essential in 

expanding the T cells in the DLN. In the absence of these cornea-infiltrating DCs, we show an 

abolition of CD8+ T cell proliferation as early as 3 dpi, as well as later (7 dpi) in the infection. 

The need for infiltrating DC in initiating proliferation in the DLN, instead of cornea-resident DC 
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or DLN-resident DC, implies that infiltrating corneal DC are more competent in presenting to 

CD8+ T cells. Resident corneal DC may be inhibited from stimulating T cells due to death by 

lytic infection, the inability to migrate, or by failure to upregulate costimulatory molecules due to 

the virus’s immune evasion strategies. Additionally, the costimulatory phenotype of infiltrating 

corneal DC shows greater levels of expression compared to DC resident to the DLN. However, 

blocking costimulatory interactions between CD40 and CD40 ligand, as well as between CD86 

and CD80, did not influence the generation of CD4+ and CD8+ T cells, suggesting that other 

molecules such as CD80, OX40 ligand, or ICOS ligand may compensate. This significant 

reduction in expansion after depletion of infiltrating corneal DC led to a decrease in CD8+ T cells 

migrating to the trigeminal ganglia. Consequently, mice were not protected against encephalitis 

and expired at about 9 dpi. 

Cornea-infiltrating DCs are critical in expanding CD4+ T cells in the DLN as well. 

However, we demonstrate that it is a combined effort of both DLN-resident DCs and cornea-

infiltrating DCs early in the infection. In the absence of cornea-infiltrating DC, DLN-resident 

DCs are able to acquire antigen that passively drain through the lymph during infection. Though 

antigen gains access to DLN-resident DCs, CD8+ T cells solely need DCs coming from the 

cornea for presentation. This may reflect a disparity between the activation requirements of 

CD4+ and CD8+ T cells. 

Dendritic cells have also been implicated in the disease herpes stromal keratitis (359).  

The affector part of the immune response that occurs during this CD4+ T cell – mediated 

immunopathology appears to involve antigen-presenting cells. However, continuous DC ablation 

starting at disease onset did not influence the severity and frequency of HSK. Further 

investigation shows that in the absence of dendritic cells in the cornea during disease, epithelial 
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cells in the cornea, as well as F4/80+ macrophages express MHC II molecules that may be 

capable of activating CD4+ T cells in the cornea. 

Through detecting HSV through pattern recognition receptors, taking up and transporting 

HSV-derived antigens to the lymph node, and activating naïve HSV-specific T cell responses 

and activating effector T cells at sites of infection, dendritic cells bridge innate and adaptive 

immune responses. The need for functional specialization between DC subsets implies a fine-

tuning of immune responses based on the kind of pathogen at hand and where it is encountered. 

Our comprehension of dendritic cells and HSV pertaining to immunity against acute infections 

has expanded, and recently, so have DC – HSV studies pertaining to HSV reactivation and 

latency. Immune complications related to HSV such as encephalitis and keratitis is a major 

concern worldwide, yet there is still no vaccine against herpes (485). 

Research is necessary to completely comprehend how the immune system responds to 

HSV infection, and looking deeper into how the balance and communication between specialized 

DC subsets is modulated based on context is imperative for an effective antiviral response and 

maintenance of immune homeostasis. 
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8.0  FUTURE DIRECTIONS 

8.1.1 What distinct specific DC subsets are necessary in priming the CD4+ and CD8+ T 

cell immune responses? 

It is widely accepted that conventional DCs, pDCs, Langerhans cells, and monocyte-derived DCs 

are developmentally distinct lineages. At steady state, although the dendritic cells in the cornea 

do not express CD11b, it was recently characterized as CD103low (113). We determined that 

there is no necessary and sufficient role for cornea-resident DC in the expansion of T cells in the 

DLN. Additionally, although the specific role of CD8+ lymphoid tissue resident DCs in cross 

presentation has been demonstrated for different models of HSV-1 infection (214, 244), it has 

not been established for infections of the corneal mucosal surface. 

The CD11c-DTR mouse model has been extensively used to study the functions of DCs 

in vivo but it has been shown since that other non-DCs express CD11c as well, such as 

macrophages, activated monocytes, pDCs, and activated T cells (471, 474, 486). Alternate 

knockout mouse models have been established ever since to look at delineating roles of specific 

DC subsets. 

Langerhans cells resident to the cornea have been identified in the corneal epithelium 

(113), but the role of these cells has not been established. Employing Langerin - (diphtheria toxin 

subunit A) DTA mice that have constitutive absence of Langerhans cells (225), can confirm their 
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importance in priming T cells in the DLN. Alternatively, inducible ablation of Langerhans cells 

can also be performed in Langerin-DTR mice (487). 

A plethora of cytokines and transcription factors regulate the genetic program that 

determines the specification and differentiation of these diverse DC subsets. Loss of expression 

of certain transcription factors has been demonstrated to be the principal cause of defects in DCs 

and other immune cells developmentally (488-490). The roles of each of these different DC 

categories may be elucidated through the transcriptional regulators that define each individual 

DC population. Although there have been a lot of transcription factors that have been determined 

to direct various dendritic cell lineages (reviewed in (491)), we will be focusing on some that 

may be relevant to our infection model (summarized in Table 2). 

The signals that are necessary for DC precursors to differentiate into the CD8α and 

CD103 lineages are integrated by these transcription factors: IRF8, E4BP4 (E4 promoter binding 

protein 4), ID2, and BATF3 (basic leucine zipper transcription factor, ATF-like 3). 

 

Table 2. Transcriptional programming of different DC subsets 

Transcription factor 
Transcription factor 

family 
Function 

IRF8 
Interferon-regulatory 

factor 

Required for the development of pDCs and 

CD8α+ and CD103+ cDCs 

ID2 

Inhibitor of DNA 

binding family protein 

containing HLH 

domains 

Required for the development of CD103+ DCs 

and CD8α+ DCs in the spleen and popliteal 

LN; not required for mesenteric LN DCs 

BATF3 bZip family 

Required for establishing CD103+ DC 

lineage, have impaired development of 

CD8α+ DCs 
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E4BP4/NFIL3 PAR-related bZip 

transcription factor 

Required for the development of CD8α+ DCs 

IRF4 
Interferon-regulatory 

factor 

Required for the development of non-CD8α+ 

DCs 

Zbtb46 

Broad complex, 

Tramtrack, Bric-a-

brac, and Zinc finger 

Required for the development of all 

conventional DCs 

Mycl1 Basic helix-loop-helix 
Required for the development of CD8α+ and 

CD103+ DCs 

 

IRF8 is a transcription factor that is required for the development of pDCs and 

conventional DC subsets, particularly the CD8α+ and CD103+ subsets. IRF8-deficient mice have 

diminished numbers of CD11c+ CD8+ as well as CD8- DCs that are not able to upregulate 

costimulatory molecules nor secrete cytokines in the presence of microbial products (492-494). 

IRF8 also regulates some DC functions, including TLR9 expression and IFNα secretion by pDCs 

(495), as well as IL-12 production by CD8α DCs (496). CD4+ T cell expansion in the DLN after 

HSV-1 ocular infection is partly dependent on DLN-resident DC at 3 dpi, while CD8+ T cell 

expansion relies solely on the presence of cornea-infiltrating DC. If there is a role for the CD8+ 

DC subset located in the DLN, we may find that after infecting IRF8 knockout mice with HSV-1 

in the cornea, CD4+ T cell expansion, and not CD8+ T cell expansion, may be reduced. 

Interestingly, IRF8 knockout mice do not produce IL-12p40, lack Th1 polarization, and are 

susceptible to infections with intracellular pathogens (497-501). Therefore we expect IRF8 

knockout mice to develop HSK, consistent with studies from our lab which demonstrate that IL-

12p40-/- mice establish disease with the same severity as wild type mice (502). Alternatively, the 

importance of CD8α+ and CD103+ DCs, can be studied in mice without the transcription factor 

ID2. Loss of ID2 prevents the development of these two DC subsets (503, 504). 
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The first transcription factor that was demonstrated to regulate the development of CD8α+ 

DCs is BATF3 (505). It has since been shown to be involved in establishing the CD103+ CD11b- 

DC lineage in lymphoid tissues as well (506). Although the absence of Batf3 in knockout mice 

does not completely abolish CD8α DCs (504, 507, 508), there is a profound impairment in the 

ability of these mice to act against infections with West Nile virus (505), influenza (509), and 

Toxoplasma gondii (510). Contrastingly, a lack of susceptibility to Listeria in Batf3 KO mice has 

been demonstrated and is due to failure of this bacterium to productively infect Batf3-dependent 

CD8α+ and CD103+ DCs (511). Batf3 KO mice are also defective in cross-priming (512), which, 

taken with the previous studies, implies that Batf3 is critical for cross presentation of exogenous 

antigens to CD8+ T cells. Infecting Batf3 KO mice ocularly with HSV-1 will confirm if cross 

presentation is necessary for T cell priming, as well as if there is a role for CD8α+ DCs. 

E4BP4 or NFIL3 is a basic leucine zipper transcription factor that is essential for CD8α+ 

DC development. Nfil3-/- mice lack CD8α+ DCs in lymphoid tissues, but retain the CD8α- cDCs 

and plasmacytoid DC subpopulations. These knockout mice were demonstrated to have defective 

CD8+ T cell cross priming and impaired IL-12 secretion after TLR3 ligation. Remarkably, 

dendritic cell development is controlled by NFIL3 through the transcription factor Batf3. Like in 

Batf3-/- mice, infecting these mice ocularly with HSV-1 will help us determine the requirement 

for CD8α+ DCs and if there is cross-priming is critical to generate CD8+ T cells after infection 

(513).  

Studies with another interferon related transcription factor, IRF4, have revealed that the 

loss of this transcription factor leads to a defect in the development of CD11bhigh CD8α- 

conventional DCs (514). Additionally, the spleen of these mice lack CD4+ CD8α- (also CD11b+) 

DCs. More recently, it has been demonstrated that IRF4-dependent dendritic cells are necessary 
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for control of Th2 responses in the context of allergy (515, 516), as well as for IL-17 responses 

in lung and gut mucosal surfaces (517). The studies above are consistent with the notion that 

CD11b+ dendritic cells are dedicated to stimulate CD4+ T helper cells, and loss of IRF4 solely 

only on CD11c+ DCs impairs the configuration of peptide-MHC II complexes and results in 

insufficient priming of CD4+ T helper cells, but not of CD8+ T cells (518). We have shown that 

DLN-resident DC can contribute to CD4+ T cell responses early during infection. Which specific 

DLN-resident DC subpopulation and whether CD11bhigh DCs are important can be determined 

by infecting IRF4 KO mice. 

Methods such as gene array analyses, that allow comparison of expression levels of 

various genes between DC subsets and have determined the significance of previously studied 

DC-related genes such as Batf3 and Id2, have led to the identification of more transcription 

factors that regulate the differentiation of DCs. Zbtb46, a zinc finger transcription factor, was 

found to be preferentially expressed on DC precursors and conventional DCs, and not monocytes 

or other immunes populations through microarray analysis (519, 520). Ly6chi monocytes 

upregulate CD11c and MHC II upon infection or upon stimulation with cytokines and TLR 

ligands in vitro (156, 521, 522). Upon diphtheria toxin treatment in CD11c-DTR mice infected 

with Listeria monocytogenes, these Ly6chi CD11chi cells are depleted (519). However, in mice 

that encode the diphtheria toxin receptor into the Zbtb46 gene (zDC-DTR mice), it was found 

that DT treatment did not alter the numbers of CD11c+ Ly6chi cells. In our studies, infiltrating 

CD11c+ cells in the cornea express CD11b, and so to further confirm the ascribed roles for 

infiltrating DCs and resident corneal DCs, zDC-DTR mice can be infected ocularly and depleted 

of conventional DCs all throughout infection. 
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In the same line, the transcription factor Mycl1 is highly expressed in resident CD8α+ and 

migratory CD103+ conventional DCs, as well as pDCs. Interestingly, the expression of Mycl1 is 

regulated by IRF8 and GM-CSF. Mice deficient in Mycl1 are not able to prime CD8+ T cells 

optimally in Listeria and VSV infections (523). If CD8α+ or CD103+ DCs were necessary in 

priming immune responses to HSV-1 ocular infections, we would see a deficiency in them upon 

infection of Mycl1-deficient mice. 

Severe immunodeficiencies and reduced resistance to various pathogens in humans are a 

consequence of impairment in these transcription factors. Accordingly, determining the 

implications of the deficiencies in these pathways in the event of bacterial, fungal, and viral 

infections are critical to appreciate the underlying immune regulation performed by DCs. 

8.1.2 What other markers are expressed by DCs infiltrating the cornea? 

Further characterization of DCs infiltrating the cornea is necessary to be able to illustrate what 

transpires in the cornea during ocular HSV-1 infection. Different strategies to identify the 

different CD11c+ DCs exist but they fail to separate CD11b+ conventional DCs from CD11b+ 

monocyte derived DCs. Dendritic cells resident to the cornea do not express CD11b. However, 

corneal DCs infiltrating after infection express CD11b, indicating their myeloid origin. The 

molecule Ly6c has been used to tell apart CD11b+ monocyte-derived DCs from CD11b+ 

conventional DCs (524), but the expression of Ly6c is transient and occurs when monocytes 

differentiate into DCs. 

Recent studies have revealed that staining for CD64 and MAR-1 distinguishes monocyte-

derived dendritic cells from conventional DCs (525, 526). CD64 is the high affinity IgG receptor 

FcγRI typically expressed in macrophages, while MAR-1 is the antibody clone that recognizes 
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the high affinity IgE receptor FcεRI expressed on mast cells and basophils. Using these two 

markers, as well as Ly6c, CD103, and CD11c, and other DC tracking techniques (CFSE or FITC 

labeling) as well as fluorescent viruses, may determine if there are different DC subsets 

infiltrating the corneas and if there is a DC subpopulation that preferentially gets infected, or 

presents antigen to T cells in the DLN. 

8.1.3 Is migration of cornea – infiltrating DCs carrying antigen necessary in T cell 

priming?  

Evidence from our CD11c-DTR mice has shown that in the absence of resident corneal DCs and 

infiltrating corneal DCs, proliferating CD8+ T cell responses are abolished at 3 dpi, but there is 

only about a 50% reduction in CD4+ T cell responses. Freely flowing antigen also gain access to 

the DLN even without DCs coming from the cornea and this may explain how DLN-resident 

DCs also participate in priming CD4+ T cells. This suggests that in the case of CD8+ T cells, 

there is direct presentation of corneal DCs to cytotoxic T lymphocytes, or that DCs from the 

cornea are necessary to take antigen down to the DLN for DLN-resident DCs to process and 

present it to CD8+ T cells. 

In the presence of inflammation and injury, dendritic cells undergo maturation and 

upregulate CCR7 expression. CCR7 directs the migration of DCs from peripheral tissue to the 

DLN through its interactions with its ligands CCL19 and CCL21 (527-529), and consequently, 

DCs in peripheral tissues of CCR7 KO mice are unable to travel to the DLN. To establish the 

requirement for DCs migrating from the cornea in carrying viral antigen for presentation to the 

CD8+ T cells in the DLN, mice deficient in CCR7 can be infected ocularly. If CD8+ T cell 

responses do not change compared to wild type mice, this will indicate that viral antigen gets to 
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the DLN, and DLN-resident DCs are able to present to CD8+ T cells. Whether it is through 

cross-presentation or direct presentation is not easily established, as both live virus and viral 

antigen can drain to the lymph nodes freely. If the CD8+ T cell responses are lower, then it would 

suggest that cornea-infiltrating DCs are necessary in taking the antigen to the DLN, and possibly 

also for presentation to T cells. 

Cornea-infiltrating DCs have presumably developed from blood monocytes that enter the 

cornea after infection. It has been shown that egress of monocytes from the bone marrow (530) 

and recruitment of monocytes to infected tissue require the chemokine receptor CCR2 (475). 

Infecting CCR2 knockout mice ocularly will establish if there is a need for DCs derived from 

inflammatory monocytes that infiltrate the cornea after infection in priming T cell responses in 

the DLN. Experiments with CCR2 knockout mice will also confirm if there is indeed no role for 

infiltrating corneal DCs in clearing the virus from the cornea as our lab has shown previously 

(115). Additional studies with these mice can determine if inflammatory monocytes that infiltrate 

the cornea during disease contribute to herpes stromal keratitis by re-stimulating CD4+ T cells in 

the cornea.  

8.1.4 What role do DCs play in the trigeminal ganglia during latency? 

Dendritic cells that may derive from monocytes infiltrate the trigeminal ganglia as well after 

HSV-1 ocular infection. It has been shown that stimulation of tissue – resident memory T cells 

after HSV-1 secondary challenge in the flank is dependent on dendritic cells (531). The role 

these dendritic cells play in expanding T cells in the TG, contributing to their effector function 

and survival after HSV-1 ocular infection is not well established.  
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It is well accepted that antigen presentation to promote effector function to CD8+ T cells 

in the TG is through HSV-infected neurons. Antigen presentation to CD4+ T cells however, 

requires antigen-presenting cells such as DCs and macrophages expressing MHC II molecules. 

Potentially, DCs that enter the TG upregulate MHC II and could phagocytose dying cells that 

have been infected. They can then present these viral antigens to CD4+ T cells. Utilizing CD11c-

DTR mice and depleting DCs in these mice during latency will show if there is loss of antiviral 

cytokine production in CD4+ and CD8+ T cells that infiltrate the TG, if there is reduced 

proliferation of these T cells, and if there is increased viral reactivation in these TGs due to 

diminished T cell effector function. 

Other possible functions for DCs in the TG could involve regulating the migration and 

retention of memory T cells possibly through chemokine production (532). Ablating DCs during 

latency will establish if there are changes in immune cells infiltrating the TG as well as 

differences in chemokine transcript that may occur. 

8.1.5 What is the role of other costimulatory interactions during priming, latency, and 

HSK? 

We previously described above, how blockade of either CD86 or CD40L interactions did not 

affect CD4+ or CD8+ T cell responses. CD80 and CD86 typically have overlapping functions 

during viral infection. When either one of these ligands is absent, virus-specific T cell responses 

are similar in infections with MHV-68, MCMV, and VSV (412, 413, 419, 420). In vaccinia virus 

infections however, CD86 is favored over CD80 in generating vaccinia-specific CD8+ T cell 

responses (533). Thus in our ocular HSV-1 infection model, it may be necessary to block CD80, 

or to block both CD80 and CD86 functions using a CTLA4-Ig fusion protein to affect the 
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generation of CD4+ or CD8+ T cells in the DLN. Redundant signaling in costimulation may be 

significant. 

The expression of other costimulatory molecules such as CD70, ICOSL, 4-1BBL, and 

OX40L on cornea-infiltrating dendritic cells and DLN-resident DCs may need to be studied as 

well. Utilizing blocking antibodies to interfere with costimulation or infecting knockout mice 

with HSV-1 may demonstrate the importance of specific costimulatory molecules in generating 

acute responses against HSV-1 infection. 

It is also important to determine if there is only one dendritic cell subset that can provide 

multiple costimulatory signals. Do different antigen presenting cells provide various 

costimulatory signals?  

It is possible that various factors during viral infection influence which costimulatory 

receptor/ligand pairs are necessary to enhance virus-specific T cell responses. These parameters 

include route and dose of infection, tissue tropism, antigen presenting cell subsets in the tissue of 

concern, rate of virus replication, TLR stimulation, and viral immune evasion. Interestingly, the 

expression of costimulatory molecules may be found on distinct subsets of APCs that localize at 

the infection site and migrate to the DLN (227). 

The requirement for costimulation during herpes stromal keratitis has not been fully 

studied. Though the studies presented here have shown that dendritic cells are dispensable during 

HSK, and other costimulatory interactions such as OX40/OX40L are not necessary (388), the 

necessity for costimulation in HSK progression has been demonstrated only through B7 (385) 

and 4-1BB/4-1BBL interactions (386) locally in the cornea. Other costimulatory molecules may 

be contributing and may be important. 
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Of great interest as well is whether tissue – resident memory CD4+ and CD8+ T cells that 

infiltrate the trigeminal ganglia during latency require costimulatory signals for survival and 

maintenance, as well as for activation upon secondary infection. Blocking costimulatory 

interactions during latency using antibodies will be able to answer those questions. 

With the significance of costimulation for the development of viral immunity being 

known, it is imperative to define which costimulatory molecules are required for generating 

protective antiviral T cell responses, contributing to disease and immunopathology, and 

establishing when their function is necessary. This information is critical for improving vaccine 

design and efficacy against a diversity of pathogens. 

8.1.6 What is the role of other immune cells present in the cornea in the innate and 

adaptive immune responses in HSV-1 ocular infection? 

Immune cells such as macrophages, natural killer cells, and neutrophils have always been 

considered as effector cells that have little influence in fine-tuning the adaptive immune 

response. Numerous reports have been challenging that long-held view. 

Macrophages resident in the cornea of naïve mice have been identified and located in the 

corneal stroma (110). Although various functions have been attributed to these macrophages 

after HSV-1 infection such as restricting virus replication and contributing to delayed 

hypersensitivity type responses (152), it is not clear if they present and process HSV-1 antigen to 

contribute to adaptive immune responses after corneal infection. Utilizing local clodronate 

depletion 2 days before infection in HSV-infected C57Bl/6 mice, and determining if there is 

expansion of CD8+ and CD4+ T cells in the DLN will prove if cornea-resident macrophages play 

a role in initiating adaptive immune responses. Extending clodronate depletion after infection 
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will establish if macrophages that may infiltrate the cornea after infection contribute to T cell 

proliferation in the DLN. 

Alternatively, Macrophage Fas-Induced Apoptosis (MAFIA) mice (534) may be used. In 

cells of these mice that express the mouse colony-stimulating factor 1 receptor (Csf1r) promoter 

(such as macrophages and DCs), a transgene was inserted containing a mutant human FK506 

binding protein 1A that can bind the drug AP20187. Upon treatment with AP20187, Fas ligand is 

selectively activated in macrophages and DCs, and these cells proceed to apoptosis. Since we 

have previously shown that DCs resident to the cornea are not critical in generating CD4+ and 

CD8+ T cell responses in the DLN, employing these mice and depleting both macrophages and 

DCs will show if resident corneal macrophages are necessary in expanding T cells in the DLN. 

 The absence of macrophages resident to the cornea have also been implicated in the 

development of corneal inflammation, decreased cytokine production, impaired pathogen 

clearance, and reduced cellular infiltration after fungal and bacterial infections (535-537). In 

these studies, corneal macrophages were shown to contribute to the recognition of PAMPs that 

initiated the cascade of innate immune responses necessary to clear pathogen replication. It is 

possible that macrophages in the cornea can aid in viral recognition after HSV-infection (538). 

Natural killer cells infiltrate the cornea after infection and have been shown to be able to 

control virus replication (539). Though its innate immune functions are well characterized, its 

involvement in regulating adaptive immune responses has been shown in various models, to 

stimulate or inhibit T cell responses (540). Both direct interactions between NK cells and T cells, 

as well as indirect, which involve interactions with dendritic cells and the impact of NK cells on 

the infected cells and pathogen burden, underlie NK cell modulation of T cell function. 
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In recent years, the significant role of a two-way crosstalk between natural killer cells and 

dendritic cells has been clearly elucidated. The results of this interaction lead to development of 

an efficient innate immune response, through DC-mediated NK cell activation, and to a robust 

adaptive immune response, through NK-mediated DC maturation. Early NK cell interactions 

with other leukocytes can have enduring consequences on both quantity and quality of memory T 

cells, as well as influence the exhaustion of T cells during chronic infections (541). 

Activation of NK cells promotes DC maturation through the cytokines TNFα and IFNγ. 

Both these cytokines enhance the levels of costimulatory molecule expression in DCs and 

contribute to IL-12 secretion by DCs (542, 543). Moreover, exposure of NK cells to cytokines 

such as IL-12, IL-18, and IL-15, which are produced by dendritic cells, can promote T cell 

differentiation, survival, and activation (544, 545).  IFNγ produced by NK cells can modulate the 

differentiation of monocytes into dendritic cells at the infection site (546). Furthermore, DC and 

NK cell interaction can replace CD4+ T cell helper signals to generate efficient CTL responses 

(547, 548). Additionally, evidence has been shown that NK cells may support antigen cross 

presentation of DCs. Dendritic cells are able to take up antigen from dying cells lysed by NK 

cells and present them in the context of MHC I (549, 550). In a tumor model, it has been shown 

that activated NK cells recruited to the tumor site promote DC maturation and migration to the 

LN. These DCs then cross present tumor antigens to CD8+ T cells in the LN. Depletion of NK 

cells in this system leads to an abrogation of CD8+ T cell priming (551). Impairing NK cell 

function in the cornea using an anti NK1.1 blocking antibody will help determine if T cell 

effector function, activation, and expansion is impacted in the DLN as well as in the TG after 

HSV-1 infection.  
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The role of neutrophils in regulating T cell function and priming appears to be more 

complex and less characterized. They infiltrate the corneas of HSV-infected mice as early as 1 

dpi (unpublished data), and although their role in virus clearance in the cornea is contentious 

(115, 159, 552), they may contribute to virus-specific T cell responses at the site of pathogen 

entry (553, 554). Recently, it was shown in a contact hypersensitivity model that neutrophils are 

important for DC migration to the lymph nodes and priming of T cells specific to the contact 

allergen (555). Interestingly, neutrophils have been proven to carry antigen and migrate to the 

DLN themselves through the aid of CCR7 (556-558) and directly cross prime T cells (559). 

Establishing a role for neutrophils in the adaptive immune responses against HSV requires 

depleting neutrophils locally and early in corneal infection and studying proliferation and 

effector function of antigen-specific T cells in the DLN. 

8.1.7 Does the cytokine and chemokine milieu in the DLN change with DC depletion? 

We observe a reduction in expansion of both CD4+ and CD8+ T cells upon corneal DC depletion 

but it is not known if the cytokine production of these T cells were affected by DC ablation. 

After ablation of DCs in the cornea, T cells from the DLN can be isolated and stimulated with 

bone marrow-derived DCs pulsed with HSV antigen and intracellular cytokine staining may 

reveal changes in production of Th1 cytokines such as IFNγ and IL-12, Th17 cytokines such as 

IL-17 and IL-22, and Th2 cytokines such as IL-10 in CD4+ T cells. The gene expression of these 

cytokines may also be analyzed by quantitative PCR. There may also be a difference in immune 

cells infiltrating the DLN from the blood after infection (560). 

 125 



8.1.8 Do dendritic cells contribute to nerve damage observed in HSV-infected mice and 

mice that develop HSK? 

The murine model of herpes stromal keratitis mirrors a lot of the immunopathological features 

found in the human disease, but it is much more similar to a more chronic and severe HSK. HSK 

in humans is characterized by loss of blinking reflex as a consequence of retraction of sensory 

nerve ends in the corneal epithelium during HSK. Recent studies from our laboratory has shown 

that a similar retraction occurs in corneal nerves of mice, and that the stromal inflammation 

occurring during mouse HSK is due to corneal surface exposure and desiccation promoted by 

corneal nerve damage and loss of blink reflex (561). Preventing desiccation leads to a milder 

form of the disease. The corneal nerve retraction, loss of blink reflex, and associated pathology 

was found to be reversible and is influenced by CD4+ T cells. Nerve damage occurs as early as 2 

dpi in mice, but it is not known if the dendritic cells infiltrating the cornea after infection 

contribute to nerve damage and retraction associated with HSK. Depleting DCs after infection 

and determining if it affects blink reflex and contributes to pathology later in the infection can be 

established in CD11c-DTR mice.  

On a broader scale, the interactions between dendritic cells and corneal nerves remain 

poorly characterized. In a murine model of diabetes mellitus, it was suggested that contact 

between DCs and the subbasal nerve plexus of the cornea can trigger nerve damage found in 

diabetic corneas (562). Important questions include: are dendritic cells located in close 

apposition to nerves in the cornea? Do cornea dendritic cells respond to corneal nerve damage? 

Corneal nerves are also known to secrete neuropeptides such as Substance P and 

vasoactive intestinal peptide (563-565), and these peptides can possibly influence the 

recruitment, survival, and activation of dendritic cells (566, 567). 
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