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Brain Computer Interface (BCI) and Magnetic Resonance Imaging (MRI) are two powerful 

medical diagnostic techniques used for human brain studies.  However, wired power connection 

is a huge impediment for the clinical application of BCI, and most current BCIs have only been 

designed for immobile users in a carefully controlled environment.  For the ultrahigh field (≥7T) 

MRI, limitations such as inhomogeneous distribution of the transmit field (B1
+) and potential 

high power deposition inside the human tissues have not yet been fully combated by existing 

methods and are central in making ultrahigh field MRI practical for clinical use.  In this 

dissertation, radio frequency (RF) methods are applied and RF antennas/coils are designed and 

optimized in order to overcome these barriers.  These methods include: 1) designing implanted 

miniature antennas to transmit power wirelessly for implanted BCIs; 2) optimizing a new 20-

channel transmit array design for 7 Tesla MRI neuroimaging applications; and 3) developing and 

implementing a dual-optimization method to design the RF shielding for fast MRI imaging 

methods.    

First, three miniaturized implanted antennas are designed and results obtained using finite 

difference time domain (FDTD) simulations demonstrate that a maximum RF power of up to 1.8 

miliwatts can be received at 2 GHz when the antennas are implanted at the dura, without 

violating the government safety regulations.  Second, Eigenmode arrangement of the 20-channel 

transmit coil allows control of RF excitation not only at the XY plane but also along the Z 
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direction.  The presented results show the optimized eigenmode could generate 3D uniform 

transmit B1
+ excitations.  The optimization results have been verified by in-vivo experiments, and 

they are applied with different protocol sequences on a Siemens 7 Tesla MRI human whole body 

scanner equipped with 8 parallel transmit channels.  Third, echo planar imaging (EPI), B1
+ maps 

and S matrix measurements are used to verify that the proposed RF shielding can suppress the 

eddy currents while maintaining the RF characteristics of the transmit coil.    

The contributions presented here will provide a long-term and safer power transmission 

path compared to the wire-connected implanted BCIs and will bring ultrahigh field MRI 

technology closer to clinical applications. 
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1.0  INTRODUCTION 

Electromagnetic waves travel at the speed of light, and they transfer energy and information 

through empty space and media.  Within the electromagnetic spectrum, radio frequency is 

normally defined from 3 kHz to 300 GHz.  Radio frequency (RF) wave propagation is non-

ionizing radiation.  Therefore, it has been preferred for body-centric wireless communication and 

non-invasive human imaging methods.  In this dissertation, RF methodologies are used to 

facilitate human brain studies. 

The human brain is the center of the nervous system.  It controls movement, autonomic 

function (e.g. heartbeat and respiration), sensation, learning, memory, emotion and thought. Up 

to now, the human brain has been seen as one of the most phenomenal yet complex and little-

understood structures; it is susceptible to many types of irreparable damage and incurable (as of 

to date) diseases, such as Alzheimer’s disease, Parkinson’s disease, etc.  Consequently, advanced 

technologies are needed to 1) understand normal brain physiology, 2) predict, detect, and 

monitor the changes within the brain in the presence of neurological diseases, and 3) facilitate 

the treatment of brain damage or directly treat the diseases.  Brain Computer Interface (BCI) and 

Magnetic Resonance Imaging (MRI) are two powerful medical diagnostic techniques used for 

human brain studies.  However, they both face significant challenges (detailed in the following 

sections).  In this dissertation, RF methods are applied, and RF antennas/coils are designed and 

optimized in order to overcome such challenges.   
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1.1 MOTIVATION  

1.1.1 Challenges of Brain Computer interfaces: direct wire connections  

Brain Computer Interfaces (BCIs) are devices designed to establish a communication link 

between the human brain and neuro-prosthetic devices in order to study brain function and/or 

restore sensory information lost as a result of injury or disease (1).  The invasive BCIs are 

implanted either on the surface of the brain or inserted into the cerebral cortex to capture local 

field/action potentials (2-4). They provide the high spatial/temporal signal precision required for 

implementing real-time control of a robotic arm (5) and a prosthetic limb (6) to restore 

independence for people with paralysis (7).   

However, nearly all implanted BCIs require a direct power connection with external 

prosthetics devices.  These implanted BCIs can only be used in a research environment for a very 

short time due to the increase of device failure and clinical risks (8). This in turn limits 

functionality of BCI in application and clinical practice.  Researchers have tried various wireless 

power supply methods such as micro batteries and inductive coupling coils, but none of these 

power modules can be implanted in human brains safely and are able to provide stable power 

chronically.  RF power transmission is a promising approach to solve the safety problem and to 

realize long-term implantation of BCIs in users. The RF power transmission could provide more 

robust and long-term communication compared with wire-connected BCIs since it will reduce 

the tissue damage caused by the wire connections and the stress caused by plugging and 

unplugging the recording system.   
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1.1.2 Challenges of Ultrahigh-Field MRI: Transmit Fields Inhomogeneity and 

Specific Absorption Rate  

MRI is based on the nuclear magnetic resonance (NMR) phenomenon.  The extraordinary soft 

tissue contrast of MRI makes it the preferred imaging modality for diagnosing many soft tissue 

disorders especially in the brain, spinal cord, and knees.  Ultrahigh-field (≥7 Tesla) MRI is of 

high interest since it can generate higher resolution anatomical imaging, better localization 

imaging and improved spectroscopic imaging.  However, there are technical and physical 

limitations associated with ultrahigh-field imaging that have not yet been fully combated: (a) the 

inhomogeneous distribution of the transmit fields B1
+ (9-12), arising from the short wavelength 

interference effects and the large wave amplitude attenuation by high tissue conductivity and (b) 

the potential high-power deposition inside the human tissues (13,14) and the difficulty in 

supervising the local specific absorption rate (SAR) (15).  Successful ultrahigh-field human MRI 

with safe and homogeneous B1
+ field distribution will provide more accurate locations of brain 

diseases than other MRI imaging methods.  This new technology will provide neuroimaging 

researchers the opportunity to observe disease-related structural changes in detail, which until 

now could only be observed with postmortem tissue analysis (16). 

1.1.3 Challenges of Ultrahigh Field MRI: Eddy Currents 

For ultrahigh-field MRI, RF shielding is oftentimes an essential component of the transmit coils 

(17-21).  Many of the parallel transmit (PTX) trajectories use either spiral or EPI type gradient 

waveforms.  These gradient waveforms can change rapidly (22,23).  The fast-changing gradient 

waveforms induce intensive eddy currents that considerably distort the image quality.  
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Furthermore, for each transmit RF coil (i.e. head/knee/breast) used at the 7 Tesla MRI system, 

the RF coil shielding design varies, rendering the system eddy current correction potentially 

insufficient.  In addition, this spatially non-linear eddy current behavior in regions close to the 

RF coil shielding may also render post-processing methods less reliable. As a result, eddy 

currents induced on RF coil shielding could be very problematic, so a systematic method to study 

and reduce eddy currents is necessary.   

1.2 OBJECTIVES OF THIS DISSERTATION 

The main goal of this dissertation is to provide solutions (based on physics and engineering 

concepts and using RF methods) to the challenges identified in section 1.1 in order to realize the 

clinical practice of wireless implanted BCIs and 7 Tesla MRI.  Specifically, this work will design 

a compact, safe and feasible wireless communicating method for BCIs; optimize B1
+ field 

distributions to generate a more uniform magnetic field for 7 Tesla MRI; minimize eddy currents 

generated in the RF shielding, and maintain RF performance at the same time.  

 Objective 1: Design and analyze miniaturized implantable antennas for BCI 

applications. The implantable miniaturized antennas operating at radio frequency is a promising 

approach in realizing long-term wireless data/power transmission and safe implantation of BCIs 

in patients.  However, due to the limited antenna size and the electromagnetic loss from brain 

tissues, implantable miniaturized antennas suffer low radiation efficiency.  The electromagnetic 

computational method Finite-Difference Time-Domain (FDTD) method and miniaturization 

techniques are applied in this work.  The accuracy and stability of the implantable antenna FDTD 

simulation are verified.  The effects of the biocompatible insulating layers and implantation 
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environment within the human brain on the implantable antenna’s input impedance, frequency 

bandwidth and power transmission/absorption by tissues (i.e. specific absorption rate) are 

investigated.   

Objective 2: Optimize B1
+ field to mitigate the transmit field inhomogeneity. A new 20-

channel Tic-Tac-Toe (TTT) RF coil is discussed.  3D eigenmode excitation paradigms are 

studied.  Eigenmode arrangement of the 20-ch coil allows controlling RF excitation not only at 

XY plane but also along Z direction.  Based on FDTD simulation results of the head model and 

water phantom, exhaustive optimizations are used to manipulate the coil’s modes combinations 

(changing amplitudes of the excitations and phases in between) in order to generate a more 

uniform MR image where SAR regulations are considered.  A 7T MRI scanner is used to image 

the phantoms and in-vivo human subjects.  Since the load sensitivity of the TTT RF coil is 

robust, the optimization results could be extended for all patient scans without patient- specific 

simulations.   

Objective 3: Minimize the gradient fields generated eddy currents in the RF coil 

shielding.  The RF coil shielding is designed to suppress gradient field induced eddy currents 

without sacrificing the RF signal.  A new and elaborate dual-optimization method is performed 

to design the RF shielding of the TTT coil. The designed RF shielding can reduce low frequency 

magnetic field distortions due to eddy currents and simultaneously maintain the RF 

characteristics of the RF-coil.  The designs are tested on a 7T human scanner using phantoms 

and in-vivo subjects. 
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1.3 THE STRUCTURE OF THIS DISSERTATION 

The chapter-by-chapter structure of the dissertation is given below. Publications from the work 

of each chapter are also listed. 

Chapter 1 presents the specific objectives of this dissertation along with the current 

difficulties for Brain Computer Interfaces and ultrahigh field MRI.  

Chapter 2 contains a review of Brain Computer Interfaces and describes the basic MR 

physics such as the generation and reception of MR signal. Implanted antennas inside the human 

environment are described. In addition, a brief mathematical description of two major numerical 

simulation methods used in this dissertation, the finite-difference time-domain (FDTD) method 

and finite element method (FEM), are presented.  

Chapter 3 presents simulations, analyses and designs of implanted antennas for a 

wireless implantable RF-powered BCI application.  Due to their limited size and the 

electromagnetic loss from human brain tissues, implanted miniaturized antennas suffer low 

radiation efficiency. The impact of thin (on the order of 100 micrometers thickness) 

biocompatible insulating layers, dielectric properties of the biocompatible insulating layers, and 

the implantation position inside human brain tissues on the implanted antenna performance have 

been investigated.  This work resulted in two journal articles and one conference paper: 

• Yujuan Zhao, Robert L. Rennaker, Chris Hutchens, and Tamer S. Ibrahim, “Implanted 

Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design”, 

PloS one 2014; 9(7): e103945. 

• Yujuan Zhao, Lin Tang , Robert Rennaker, Chris Hutchens and Tamer S. Ibrahim, 

“Studies in RF Power Communication, SAR, and Temperature Elevation in Wireless 

Implantable Neural Interfaces”, PloS one 2013;8(11):e77759. 
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• Yujuan Zhao, Robert Rennaker, Chris Hutchens and Tamer S. Ibrahim, “Simulation of 

Implantable Miniaturized Antennas for Brain Machine Interface Applications”, the 28th 

Applied Computational Electromagnetics Society Annual Meeting, Columbus, OH, April 

2012. 

Chapter 4 studies the 3D eigenmode excitation paradigms of a 20-channel TTT based 

RF transmit array design.  The freedom to manipulate current distribution in the X, Y, and Z 

directions contributes to the generation of targeted field distributions at 7 Tesla MRI.  The 

transmit fields are calculated using the FDTD method.  The eigenmodes of the transmit coil are 

determined using the magnetic field matrix.  The 20-ch TTT transmit array can be viewed as a 

coil composed of 5 4-channel transmit arrays.  Each transmit array is composed of 4 elements 

mounted at shifted locations in the XY plane and at different levels along the static magnet field 

(Z) direction.  For each Z level of the coil elements, 4 distinctive eigenmodes can be generated; 

the eigenmodes can excite different regions along the Z direction. Coil eigenmodes are tested on 

a 7T MRI scanner with phantoms and in-vivo human subjects.  An optimized case is also 

presented to show the eigenmode could be optimized and can generate 3D uniform B1
+ 

excitations. This work resulted in one journal article, and two ISMRM conference abstracts: 

• Yujuan Zhao, Tiejun Zhao, Tamer S. Ibrahim, “In-depth Analysis of the Electromagnetic 

Pseudo Modes Produced by a 20 channel Tic-Tac-Toe Transmit Array”, under review.   

• Yujuan Zhao, Sossena Wood, Tiejun Zhao, Narayanan Krishnamurthy,  Tamer S 

Ibrahim, “Simultaneous Excitation of Distinct Electromagnetic Modes Using a Tx 

Array”,  ISMRM Annual Meeting, April 2013, p4399. 
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• Yujuan Zhao, Tiejun Zhao, Narayanan Krishnamurthy, and Tamer Ibrahim, “In-depth 

Analysis of the Electromagnetic Modes Produced by a 20 channel Transmit Array”, 

under review the 23th ISMRM Annual Meeting, May 2015 

Chapter 5 studies the 3D transmit eigenmode optimizations.  An exhaustive search is 

used to go through all possible eigenmode combinations.  While there could be many different 

optimization solutions for the RF excitation that achieve a very similar fidelity to the targeted 

excitation pattern (homogenous B1
+ field), minimizing the specific absorption rate (SAR) and 

maximizing the B1
+ efficiency are two of the most important constraints of the optimization 

procedure.  The optimized fields are also compared with an 8-ch TEM coil.  This work resulted 

in one journal article, and three ISMRM conference abstracts: 

• Yujuan Zhao, Tiejun Zhao, Narayanan Krishnamurthy, and Tamer S. Ibrahim, “20-Ch 

Transmit Array Modes Optimization”,  under review   

• Yujuan Zhao, Tiejun Zhao, Narayanan Krishnamurthy, and Tamer S. Ibrahim, “On the E-

field construction/deconstruction and B1+ Efficiency/Homogeneity with Transmit Array 

Eigen Modes”, the 22th ISMRM Annual Meeting, May 2014, p4931 

• Yujuan Zhao, Tiejun Zhao, and Tamer Ibrahim, “Experiments and Analysis of Virtual 

Observation Points at 7T”, under review the 23th ISMRM Annual Meeting, May 2015 

• Yujuan Zhao, Narayanan Krishnamurthy, Sossena Wood, Tiejun Zhao, Shailesh B. 

Raval, and Tamer S. Ibrahim, “3D Eigenmodes Optimizations for 3D Imaging at 7T”, 

under review the 23th ISMRM Annual Meeting, May 2015 

Chapter 6 optimizes the design of RF shielding of transmit coils at 7T and reduces eddy 

currents generated on the RF shielding when imaging with rapid gradient waveforms.  One set of 

a four-element, 2x2 Tic-Tac-Toe (TTT) head coil structure is selected and constructed to study 
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eddy currents on the RF coil shielding.  The generated eddy currents are quantitatively studied in 

the time and frequency domains.  The RF characteristics are studied using the FDTD method.  

Five different kinds of RF shielding are tested on a 7T MRI scanner with phantoms and in-vivo 

human subjects. The eddy current simulation method is verified by the measurement results.  

Eddy currents induced by solid/intact and simple-structured slotted RF shielding can 

significantly distort the gradient fields.  Echo Planar Imaging (EPI) images, B1
+ maps and S 

matrix measurements verify that the proposed slot pattern can suppress the eddy currents while 

maintaining the RF characteristics of the transmit coil.  The presented dual-optimization method 

can be used to design the RF shielding and reduce the gradient field-induced eddy currents while 

maintaining the RF characteristics of the transmit coil.  This work resulted in one journal article, 

and two ISMRM conference abstracts: 

• Yujuan Zhao , Tiejun Zhao , Shailesh B. Raval , Narayanan Krishnamurthy, Hai Zheng , 

Chad T. Harris , William B. Handler , Blaine A. Chronik , and Tamer S. Ibrahim, “Dual 

Optimization Method of RF and Quasi-Static Field Simulations for Reduction of Eddy 

Currents Generated on 7T RF Coil Shielding”, Magnetic Resonance  in Medicine, DOI 

10.1002/mrm.25424. 

• Yujuan Zhao, Daniel K. Stough, Hai Zheng, Tiejun Zhao, Chad T. Harris, William 

Handler, Blaine A. Chronik, Fernando Boada, and Tamer S. Ibrahim, “Maximizing RF 

Efficiency and Minimizing Eddy Current Artifacts Using RF and Eddy Current 

Simulations”, ISMRM Annual Meeting, Melbourne, Australia,  May 2012, p 0536. 

• Yujuan Zhao, Tiejun Zhao, Daniel Stough, Chad Harris, William Handler, Hai Zheng, 

Shaohua Lin, Fernando Boada, Blaine Chronik, and Tamer Ibrahim, “Simulation and 
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experimental verification of eddy current due to RF coil shielding” , The 20th ISMRM 

Annual Meeting, Melbourne, Australia,  May 2012, p 2759. 

Chapter 7 summarizes the results and proposes future work. In addition, the significant 

contributions of this dissertation are explained in detail. 



 11 

2.0  BACKGROUND 

2.1 BRAIN COMPUTER INTERFACE  

2.1.1 Brain Computer Interfaces Review  

BCIs provide direct communication pathways between a subject’s brain and external devices (a 

computer, prosthesis, wheelchair or other device) via electrodes.  The pathways include 1) 

translating a signal from a neuron and 2) converting and inputting diagnosing signals into the 

human brain.  Through the first pathway, BCI recording devices help neurophysiologists extract 

information from the neural activities and correlate them to the brain’s thoughts, emotions, or 

other mental states. Through the second pathway, implanted BCI devices assist in realizing deep 

brain stimulation.   

The first pathway will be the major BCI format discussed in this dissertation.  For this 

kind of BCIs, brain activity rhythms, evoked potentials, steady state visually evoked potentials 

and P300 evoked potential (24) are the useful signals to measure and characterize neuron 

activities.  Neuron activities are normally analyzed by signal processing, feature extraction, 

feature selection and feature classification.  

Specific applications include medical diagnostics (25), brain function studies (26), 

function recoveries (27), external device controls and treatment of diseases such as profound 
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deafness (28) and Parkinson’s disease (29).   BCIs designed for non-medical purposes (healthy 

users) have also attracted considerable interest, and BCIs in gaming applications are some of the 

most popular (30).  

The various classes of BCIs can be distinguished by their level of invasiveness (non-

invasive or invasive) (31).  Non-invasive systems primarily record electroencephalograms 

(EEGs) (25) from the scalp surface.  The signals provided by EEGs are typically weak, since the 

signals are transmitted across different tissue layers and each tissue layer has high conductivity 

(32). Three other non-invasive technologies are magnetoencephalography (MEG), functional 

magnetic resonance imaging (fMRI) and near infrared spectroscopy (NIRS). MEG and fMRI 

technologies require a magnetic field environment; NIRS and fMRI have poor temporal 

resolution (25).  In contrast, invasive BCIs can detect the activity of small areas of the brain or 

even individual neurons. For example, for Electrocorticography (ECoG), the electrodes are 

placed directly on the surface of the brain to record electrical activity from the cerebral cortex. 

They can provide very good signal quality (high level of amplitude, low-noise) and very good 

spatial resolution.    

2.1.2 Brain Computer Interface Architecture 

A BCI system has four major components: 1) a signal acquisition system including electrodes 

and other circuitries which acquire signals from the brain; 2) a signal processing system which 

extracts signal features from the brain, selects features and translates them into device 

commands; 3) an output device that sends device commands to the external devices; and 4) an 

operating protocol that guides users’ operation and controls the sequence and speed of 

interactions between user and system.  
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The development of electronics and telecommunication research during the last decade 

has allowed the clinical application of BCIs to steadily advance. The achievements of stable 

signal probes and enormous integrated circuit chips accelerated the realization of BCI 

implantation. The BCI’s wireless data communication technique facilitates real time neural 

activity signal processing and decoding into command signals.  However, wired power 

connection is a huge impediment for the clinical application of BCIs.  Most current BCIs have 

only been designed for immobile users in a carefully controlled environment. 

2.2 IMPLANTED ANTENNA WITHIN THE HUMAN ENVIRONMENT 

2.2.1 Antenna Geometry and Miniaturization Techniques 

In antenna theory, antennas can be divided into six groups according their structure type:  wire 

antennas, microstrip antennas, aperture antennas, array antennas, reflector antennas and lens 

antennas (33).  Among them, wire antenna and microstrip antenna are commonly designed as 

antenna for implanted medical devices.  For wire antennas, there are various shapes, such as 

straight wire (like a dipole), loop and helix. The classic dipole antenna has been used for diverse 

theoretical and basic studies, but it is not suitable for implantation use since it requires a large 

stiff extension from the implanted medical devices. For microstrip antennas, their drawback is 

that the physical volume of this antenna is difficult to reduce because of the need of a dielectric 

substrate material to separate the metal and ground plane. Therefore, miniaturization techniques 

should be used to modify classical antenna dimensions and geometries while maintaining the 

desired radiation performance.  



 14 

Miniaturization techniques (34) include lumped-element loaded antennas, antennas 

loaded with materials, using ground planes and short circuits, and adding slots and notches. 

Among these techniques, dielectric loading, the use of grounding planes (like planar inverted-F 

antennas) and normal-mode helical antennas have been shown to be very effective ways of 

reducing the dimensions of antennas.  

2.2.2 Wireless Data Transmission and Power Transmission 

Antenna and RF wave propagation techniques have already been applied in BCI.  For example, 

Chae et al realized the transfer of raw data from 128 recording channels at a data rate of 90Mb/s 

by using RF technology (35). For RF telemetry data communication or wireless data transfer, 

maximum available power is calculated to characterize the performance of a communication link 

between the designed antennas and an exterior antenna: when the delivered power is 1W, the 

radiated power in the head model is 0.0057W (36). This indicates that the power could be 

transferred into a human head through RF waves.  

Although wireless RF power transfer will use implanted-antenna techniques and wave 

propagation theory as well, the aim of energy transfer is different from the aim of transmission of 

data information. For wireless power transfer, the gain of the antenna is the most important 

design parameter. This is in contrast to an antenna used to transfer wireless data in which the 

crucial design parameter is the data rate/bandwidth.  The design method of a wireless energy 

antenna could be totally different than the design of an antenna for telemetry communication. 

The proposed research will present techniques on how to optimize the designs of implanted 

antenna in order to miniaturize the antennas’ dimensions and at the same time keep good 

radiation performance. 



 15 

Thanks to the development of integrated circuits (ICs) and microelectromechanical 

system (MEMS) techniques, an implanted BCI system consumes less and less power: B. 

Gossselin proposed a circuit working in the sub-microwatt range and it dissipated just 780nW of 

power in 0.07 mm2(37). With the lower threshold value of the power supply for implanted BMI 

system set as 780nW for 0.07 mm2, this could mean that for a 1mm by 2mm chip, only about 

30μW of power is needed.  

2.2.3 RF Safety  

The upper threshold value of the power supply from the wireless power transfer system would be 

limited by safety regulations. Human tissue is a special environment: layered tissue with high 

conductivity and high permittivity.  RF power absorption in the tissue may lead to an increase in 

temperature, which may cause damages at the cellular level.  SAR and temperature increment in 

brain tissues will be characterized to ensure they meet the guidelines proposed by FCC/FDA/IEC 

The temperature change in the human brain due to the operation of an internal antenna is 

evaluated (38). As thermal heating due to SAR was insignificant, this study suggests that 

wireless electromagnetic, i.e. RF, may be a viable option for brain machine interfaces in clinical 

applications.  

2.3 MAGNETIC RESONANCE IMAGING 

Spin is a physical property of nuclear particles: electrons spin on their own axis and orbit the 

nucleus; the nucleus spins about its own axis.  For MR active nuclei (nuclei with odd mass 
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numbers), spin directions are not equal and opposite; hence the nucleus has a net spin.  MR 

active nuclei act like magnet dipoles with spinning motion; therefore they will acquire a 

magnetic moment.  Normally the magnetic moments are randomly oriented. They will align their 

axis of rotation when there is an external magnetic field.  Low-energy nuclei align their magnetic 

moments parallel to the applied external field (spin-up) and high-energy nuclei align their 

magnetic moments in anti-parallel (spin-down) fashion.  High-energy nuclei are always less than 

low-energy nuclei; this relative difference produces a net magnetic moment vector.  Protium (H1) 

has one proton and it is the MR active nucleus widely used in clinical MRI, because hydrogen 

(H) is very abundant in the human body and it can create a significant magnetic moment vector 

which is called net magnetization vector (NMV).  NWV is the reason for a detectable MR signal; 

visible tissue contrast is generated by the differences of the NMV inside different tissues.  

2.3.1 Static Magnetic Field  

The static external magnetic field is called B0 and is applied along the Z direction in most 

contemporary commercial scanners. MRI systems primarily use a superconducting 

electromagnet to generate the static magnetic field.   This field generates an additional spin of the 

NMV following a circle path around B0, which is called precession.  The processional frequency 

is known as the Larmor frequency (ω ).  The strength of the static magnetic field determines the 

quantities of the spin-up and spin-down nuclei; Larmor frequency is linearly related to the B0 

strength and defined as:  

 0Bγω =  (2-1) 
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where γ is the gyromagnetic ratio, which is a constant for any given nucleus. For proton MRI, it 

is 42.56 MHz/Tesla. 1.5 Tesla and 3.0 Tesla are most commonly used in the clinical 

environment.  For a research system, field strengths up to 16 Tesla are obtainable. 

2.3.2 RF Excitation  

When an oscillating perturbation is applied on a nucleus (for MR system, refers to the proton in 

H1, since there is no neutron), the nucleus will gain energy.  If the energy is delivered at the 

processional frequency, the nucleus will resonate at the Larmor frequency. This phenomenon is 

called resonance. In a MRI system, the energy at the Larmor frequency is normally carried by an 

RF pulse and is generated by a transmit RF coil.  Some spin-down nuclei that have gained energy 

will become spin-up nuclei. Therefore the absorbed energy is used to increase the number of 

spin-down hydrogen nuclei and this procedure is called RF excitation.  The resonance also 

moves the NMV out of B0 direction Z with some flip angle.  The flip angle depends on the RF 

pulse energy and duration. The angled NMV will induce a voltage in a receive RF coil based on 

Faraday’s Law.  When the RF pulse is switched off, the NMV will move back to the B0 direction 

after a period of time, and this procedure is called relaxation. T1 (spin-lattice relaxation) and T2 

(spin-spin relaxation) measure the recovery time of longitudinal magnetization (Z direction) and 

decay time of transverse magnetization (XY plane).  Images obtain tissue contrast mainly 

through T1 recovery, T2 decay and proton density. 
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2.3.3 RF Coils 

RF Coils are used to achieve and detect proton resonance.  Based on the coil function, the coils 

that transmit signals are named transmit coils and the coils used to detect signals are named 

receive coils; and the coils used for transmit and receive at the same time are called transceivers. 

Based on the coil excited field pattern, coils can be divided into volume coils, which excite the 

entire region of interest, and surface coils, which excite the localized region of interest.  The 

birdcage coil (39) is one of the most famous commercial volume coil designs for 1.5 Tesla and 3 

Tesla MRI.  The transverse electromagnetic (TEM) resonator (40) uses transmission lines to 

reach the resonance.  Dielectric resonators (41) are based on hollow cylinders and their intrinsic 

capacitive and inductive characters of the cylinder constitute the modes of the cavity; the modes 

that carry energy at specific directions and specific modes are normally useful in MR.   

Travelling-wave (42) can generate a more uniform coverage.  Transmit and receive arrays are 

widely used in contemporary MRI systems to increase excitation homogeneity and to increase 

signal to noise ratio (SNR) respectively (43-46).  In this dissertation, a new transmit array is and 

optimized to generate a homogeneous field distribution.  The coil performance is compared with 

TEM performance.  

RF coils are also known as RF resonators. The resonant frequency is given by:  

 
LC

f
π2

1
=  (2-2) 

where L is the inductance of the coil and C is the capacitance of the coil.  

The field generated from RF coil is: 

 zyx BzByBxB 1111


++=  (2-3) 
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From an electromagnetic perspective, only the clockwise circularly polarized component 

at transverse plane (XY plane) can be used for RF excitation (47) and the transmit field is 

represented as:  

 
2
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1

yx jBB
B

+
=+  (2-4) 

Receive field is represented as:  
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In this dissertation, MRI transmit fields generated from the simulation are all calculated 

using equation (2-4).   

2.3.4 Spatial Encoding 

Spatial encoding is achieved by the superimposition of linearly-varying gradient fields upon the 

uniform static magnetic field, so MR frequency varies linearly with spatial position.  Fourier 

transformation of the received signal can separate signals from each frequency and represent the 

signal intensity at one specific physical position. Gradient coils are the hardware used to generate 

the linearly-varying gradient fields and to produce 2D/3D images. There are normally three 

orthogonal gradient coils (X, Y, Z) used for phase encoding, frequency encoding and slice 

selection respectively.  The gradient coil structures discussed in this dissertation will be shown in 

Chapter 6.  
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2.3.5 Pulse and Sequence Design 

RF pulse conveys the RF energy and can create a torque to rotate magnetic moment towards the 

transverse (XY) plane. It’s designed to resonate with the Larmor frequency to deliver the energy. 

Slice-selective SINC pulse is the most often used RF pulse, where it excites spins within a slice. 

Multi-dimensional spatial-selective pulses or spectral-spatial pulses can also be applied in MR 

system.  The behavior of RF pulses can be illuminated by the Bloch equation:  
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kjMM
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Md zyx
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
+

−
+

−×= γ  (2-6) 

where M


 is magnetization, B


 is the combined magnetic field vector from three types of 

the magnetic field: static field B0, gradient field, and RF field B1. There is no closed form 

solution for the Bloch equation for the B1 field by given the desired magnetization pattern and 

gradients waveforms. Therefore, for specific applications, different methods have been used to 

solve the Bloch equation and design RF pulses based on various assumptions. For small-flip-

angle pulse design, 0MM z


≈ . Large flip angle pulse design depends on the method used to 

solve the nonlinear Bloch equation; higher order terms have to be added to reduce image 

distortions.   

Sequence is a combination of RF pulses and gradients and it controls the way a MR 

system applies the pulses and gradients.  There are many different sequences available and 

designed for specific applications.  The major aim of a sequence design is pursue a particular 

tissue contrast with minimal artifacts as quick as possible.  Pulse sequences are normally divided 

into two categories: Spin Echo pulse sequences and Gradient echo sequences. The main 

difference between these two sequences is the way the echo or spin re-phase is achieved.   
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2.4 FINITE DIFFERENCE TIME DOMAIN METHOD 

The finite-difference time-domain method (FDTD) employs finite differences as approximations 

to both the spatial and temporal derivatives in Maxwell’s equations. It is a full-wave 

electromagnetic computational method.  It has been widely used to study the interaction between 

RF waves and human biological-tissues (48-56).  In this dissertation, FDTD is used to calculate 

implanted antenna performance (Chapter 3), and MRI RF coil transmit field distributions 

(Chapter 4, 5, 6).  

2.4.1 The Finite-Difference Time-Domain formulation 

The FDTD algorithm was introduced by Kane Yee in 1966 (57). The basic idea is to solve the 

electric and magnetic fields in the time and space using the coupled Maxwell’s curl equations. 

The differential operators of the curl equations are replaced by second-order accurate central 

difference approximations. Yee Cells (57) are selected to spatially sampling the electric and 

magnetic field vector components.  

Maxwell’s equations (58) in linear, isotropic and non-dispersive materials are given as:   

 

 M
t
BE





−

∂
∂

−=×∇  (2-7) 

 J
t
DH





+

∂
∂

=×∇  (2-8) 

 eD ρ=⋅∇
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 (2-9) 
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 (2-10) 
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Electric and magnetic flux densities are: 

 ED


ε=  (2-11) 

 HB


µ=  (2-12) 

Electric and equivalent magnetic current densities are:  

 HMM source

 *s+=  (2-13) 

 EJJ source


s+=  (2-14) 

where  

E


 : electric field (volts/meter) 

D


: electric flux density (coulombs/ meter2) 

H


: magnetic field (amperes/meter) 

B


: magnetic flux density (webers/ meter2) 

J


: electric current density (amperes/ meter2) 

M


: equivalent magnetic current density (volts/ meter2) 

ε : electrical permittivity (farads /meter) 

µ : magnetic permeability (henrys /meter) 

σ : electric conductivity (siemens / meter) 

*σ : equivalent magnetic loss (ohms /meter) 

eρ : electric charge density (coulombs / meter3) 

mρ : magnetic charge density (weber/ meter3) 

For FDTD algorism, Faraday’s Law (2-7) and Ampere-Maxwell equation (2-8) will be 

used to solve the wave equation. For general three-dimensional objects, the curl operators in 

Cartesian coordinates can be rewritten as six coupled scalar equations:  
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where xH is the magnetic field in x direction and the other components following the 

same naming format.  

Yee introduced notation (58) to represent a space point and time point for any function u  

as ),,(),,,( kjiutnzkyjxiu n=∆∆∆∆ , where x∆ , y∆ and z∆  are the space increments in the X,Y 

and Z coordinate directions, t∆  is the time increment, i, j, k and m are integers. Central-

difference expressions (obtained from Taylor’s theorem) for the space (X direction as the 

following example) and time derivatives for the function u are shown below respectively:  
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To achieve second-order accuracy, the error term ))(( 2xO ∆  and ))(( 2tO ∆  can be 

dropped.  Therefore, the FDTD equations become:  
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Position of the electric and magnetic field vector components about a cubic unit cell of 

the Yee space lattice are shown in Figure 2.1. Field component is a function of its one-time-step-

before value and the half-time-step-before of the surrounding fields. For electric field 

components, the surrounding fields are magnetic field components; for magnetic field 
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components, the surrounding fields are electric field components.  Spatial step is chosen based 

on the minimum wavelength of the problem; a good choice of the spatial step is: 
)20~15(

minλ , 

where minλ is the minimum wavelength inside the medium. The time step is chosen based on 

Courant-Friedrichs stability criterion; 

222max )()()(
1

1

zyx
v

t

∆+∆+∆

≤∆ , where maxv is the 

maximum wave speed inside the medium.  

 

 

Figure 2.1: Electric and magnetic field vector components with a Yee cell at (i,j,k) position 

2.4.2 One Dimensional Transmission Line Excitation 

Accurately realizing the electromagnetic wave excitation is a generic issue in FDTD modeling.  

A simple model is often used for the feed region of the antenna to save computational resources 

or to separate the analysis of the antenna from the balun. In the most often configuration, hard-

sourced E and H fields, J and M current sources and waveguide sources have been discussed 
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(58).  Another feed model is a one-dimensional transmission line (59) and the computer run-time 

is significant less than that of the hard source (60).  The coaxial cable is modeled with the use of 

the transmission line equations given by (61):   
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where V is voltage and I is current inside the transmission line, 0Z  is the characteristic 

impedance, v  is the phase velocity in the transmission line and z∆  is the spatial step.  The 

bottom of the transmission line will be terminated by an absorbing boundary condition. Source is 

defined at 0'>k .  

At the aperture topkk ''=  shown in Figure 2.2, the current is calculated from the magnetic 

field and voltage is used to update the electric field.  
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where ai , aj  and ak are the transmission line positions at x, y and z directions.  

This hybrid algorithm (1D transmission lien and 3D FDTD Yee cell) is conditionally 

stable. Continuous adjustment has to be done according to the geometry, structure and properties 

of the object in the calculation. Therefore it is not used in commercial FDTD software. In this 
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dissertation, the stability is carefully tuned for BCIs and MRI applications to simulate the coaxial 

cable transmission line excitation.  

 

 

Figure 2.2: The 1D transmission line model to the 3D grid 

2.5 FINITE ELEMENT METHOD 

Finite element method (FEM) is a great tool to solve thermal, fluid dynamics, and 

electromagnetic problems. This method stems from Ritz 1909 (62) and Courant 1943 (63).  

Clough introduced the term “finite element” for the first time in the paper “The finite element 

method in plane stress analysis” (64). In this dissertation, FEM is used to calculate low 

frequency gradient field generated eddy currents’ performance (Chapter 6). 
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2.5.1 Finite Elements in Electromagnetics  

FEM is very popular for solving electromagnetic fields, particularly in a region that has curved 

surfaces. This is because the curved surface can be modeled perfectly by triangles and 

quadrilaterals.  The method is to discretize a complex problem domain into a collection of simple 

structure element (mesh).  Then these sub-element equations are recombined into a global system 

equation (governing equation or stiffness matrix). The global equation together with initial 

values and boundary conditions will be solved to obtain the numerical solutions of the problem.  

The fundamental idea of this method is to evaluate the energy in all the elements and then 

minimize it. The widely used mathematics methods to create the equations are projective 

solution and variational reformulations. 

In the electromagnetic problem, the four Maxwell’s equation (2-7) - (2-10) can be 

reduced to two wave equations:  
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In electrostatic regime, they can be reduced into a Poisson problem: 
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or   
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 When there is no charge, it becomes Laplace’s equation:   

 02 =∇ V  (2-37) 

For cases that an object is very small compared to a wavelength, quasi-static approximations 

generally provide more efficient solutions.   

FEM will be used to solve those electromagnetic differential equations.  For a 2D 

problem, the elements are triangle or quadrilaterals having a node at each corner; for a 3D 

problem, tetrahedra, bricks, and prisms are most common choices.  The size and shape of the 

elements could be various to achieve a given degree of accuracy.  The elements are transformed 

to a set of normalized local coordinates.  Local basis function then can be written in a concise 

form.  Interpolation function is usually implemented as scalar basis function and edge element is 

usually for vector basis function.  Computer programs are used to generate the mesh of nodes 

and automatically index the elements and nodes.  Sub-matrix is calculated for each element. The 

global system combines the submatrix of each element and then the problem is reduced to solve 

one full matrix problem.  Often times, high percentage of the entries of the stiffness matrix is 

zero, so sparse matrix solutions have been used for a lot of cases.  Iterative solver is implemented 

to solve the sparse matrix equation. The output from the finite element should converge to a 

unique correct solution; normally at least two solutions to the same problem are checked:  a 

solution compares with another one of increased accuracy.  In classical FEM, convergence is 

obtained by global or local refinement of the fundamental mesh.  In this process, the order of 

approximation on each element is fixed; the error in the numerical solution can be reduced by 

increasing the number of unknowns (meshes).  High order FEM increases the polynomial order 

for each element when mesh is fixed and it can reduce the error too. 
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3.0  IMPLANTED MINIATURIZED ANTENNA FOR BRAIN COMPUTER 

INTERFACE APPLICATIONS  

3.1 INTRODUCTION 

Brain Computer Interfaces (BCIs) are devices designed to establish a communication link 

between the human brain and neuroprosthetic devices to assist individuals with neurological 

conditions.  However, because of the limitation of the power supply, most BCIs require a direct 

power connection with the external devices.  The BCIs could only be kept implanted inside the 

subjects’ brain for a very limited time, which limits functionality and therefore limits the clinical 

applications.   

Batteries can be used as BCI power supply units (60,65,66).  However, batteries present 

significant challenges due to the size, mass, toxic composition, and finite lifetime.  There are 

several research groups using the inductive coupling method to transfer the power wirelessly 

(67-69).  The coupling coils have been typically designed to operate at 10 MHz or below (quasi-

static conditions).  The drawback of the inductive coupling is that its transmission mainly 

depends on the changing of magnetic field flux, which requires a relatively large (diameter of 

several centimeters) implanted coil precisely aligned with an external coil.  The maximum 

distance between two coupling coils is limited to approximately one centimeter in order to 

maintain effective coupling results (70).   
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There are some groups studying implanted antennas to transmit data wirelessly into the 

human body (36,71-76).  Most of these implanted antennas have been designed to operate at the 

medical implant communication service (MICS) band of 402-405 MHz.  The implantable small 

profile patch antennas’ characteristics and their radiation were evaluated (36,71).  The 

transmission and reflection of microstrip antennas affected by different superstrates and 

substrates were studied (72), through numerical analysis and measurements.  The effects of 

different inner insulating layers and external insulating layers and power loss were discussed 

(73) analytically, using a spherical model. Besides, the radiation efficiency impacts of insulating 

layers were presented (74).  For GHz and above operating frequencies, the impact of the coating 

on antenna performance was studied by an implanted antenna radiation measurement setup (75).  

A pair of microstrip antennas working at microwave frequencies (1.45 GHz and 2.45 GHz) 

established a data telemetry link for a dual-unit retinal prosthesis (76). 

Recent research reveals that the electromagnetic field penetration depth inside the tissue 

can be asymptotically independent of frequency at high frequencies, and the optimal frequency 

for the millimeter sized implanted antennas is in the gigahertz range (77).  An implanted antenna 

operating in the gigahertz range could be designed into a very small profile and also solve the 

difficulties in designing efficient high data rate (78).  Therefore, an implanted antenna (operating 

in the gigahertz range) provides a promising approach to accomplish long term implantation of a 

BCI in users as well as allowing the efficient transmission of power. 

Most of the abovementioned works are assuming that the implanted antennas are 

connected with 50 Ohm transmission lines.  It is noted however, that the ratio between received 

RF power and tissue absorption depends on the input impedance of the receive antenna (77).  To 

realize the conjugate matching (i.e. optimal performance), the antenna loads including connected 
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wires and implanted chips could be designed to other values rather than being restricted to 50 

Ohms.  For example the optimal choice was a 5.6 Ohms load in Poon’s study (77).  In our work, 

we simulate and characterize the input impedance of the implanted BCI RF power receiving 

antenna operating above 1GHz.   The input impedance and efficiency of wireless implanted 

antenna is evaluated for different 1) thickness of insulating layers 2) dielectric properties of 

insulating layers 3) location of implants, and 4) tissue compositions.  Lastly, three miniaturized 

implanted antenna designs are compared and the maximum received power under the SAR 

regulations are calculated based on the FDTD simulation results.  

3.2 MATERIALS AND METHODS 

3.2.1 FDTD Simulation and the Transmission Line Feed Model  

The input impedance of an antenna of the classic structure could be calculated analytically when 

the antenna is placed in free space, buried in materials (79), or even when an insulated antenna is 

embedded inside a homogeneous lossy material (80).  However, it is extremely challenging to 

analytically calculate the impedance of an insulated antenna with arbitrary structures embedded 

in the human brain, which integrates many different lossy tissue materials. 

The FDTD method has great advantages for simulating interactions of electromagnetic 

waves with biological tissues (81).  In this work, a one dimensional transmission line feed model 

(58,60) is implemented into our in-house three dimensional (3D) FDTD method package in order 

to study the input impedance of the implanted antenna.  This simulation package developed in 

Dr. Ibrahim’s Laboratory has been widely utilized and verified in many papers (49,51,82,83).  
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The perfectly matched layers (PML) are used as the absorbing boundary conditions and the 

power radiated from the antenna in the FDTD model propagates similarly as it does in the 

lossless/lossy medium of infinite extent.  The material of the antenna is simulated as a perfect 

electric conductor (PEC) to model very good conducting materials.  To get accurate 

computational results, the integration contour of the currents is shifted one cell from the antenna 

drive point to avoid the electric fringing field in the gap (60).  To analyze the ultra-thin 

(micrometers) insulating layers effects on the antennas performance, thin material sheets are 

modeled using a three dimensional sub-cell modeling formula in FDTD (84). This efficient sub-

cell modeling method removes the limitation that spatial information should be much larger than 

the cell grid and therefore greatly reduce the computer storage requirement and computational 

time.     

At the feeding location, the antenna is excited by the virtual transmission line (85), which 

is injected with a differentiated Gaussian pulse with sufficient frequency content around the 

intended operational frequency.  The differentiated Gaussian pulse is: 
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The parameter T affects the pulse-width and the time delay of the pulse.  S is a temporal 

delay parameter.  A set of suitable parameters for S (5.8) and T (0.1) have been chosen for a 

wideband spectrum of frequencies ranging from 1GHz to 4GHz according to the geometries of 

the antennas to be simulated.  
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3.2.2 Antenna Geometry and Antenna Performance Parameters 

The antenna reciprocity theorem (33) guarantees that a good transmitting antenna is also a good 

receiving antenna.  The transmission/radiation efficiency is in part proportional to the radiation 

resistance (33,74).  Generally for one specific antenna design, the radiation resistance of the 

antenna increases when the antenna size is larger (86).  In addition, the chip circuitry (attached to 

the implanted antenna) typically possesses high input impedance values (~80-200 Ohms).  

Therefore, for efficient operation (minimal mismatch), it is highly favorable to have the input 

impedance of the implanted antenna in the same range (~80-200 Ohms).   The input impedance 

of a folded dipole antenna is approximately four times the impedance of a dipole antenna when 

the length of the folded dipole equals to half wavelength (33), which is on the order of about 300 

Ohm in the free space.  As a result, a modified folded dipole antenna (rectangular antenna) was 

chosen for the following analysis.  

Due to the inhomogeneous and lossy environment (human head), the relation between 

power reception and the implantation depth of the antenna does not strictly follow the Friis 

transmission formula as it is not a far field RF problem.  Therefore the radiation pattern is not 

used to study the antennas’ performance in this work.   Since the RF power is absorbed by the 

body and can result in tissue heating, the major concern about the wirelessly powering the BCI 

devices is mainly related to this safety issue.   As a result, the main performance parameter of the 

BCI implanted antennas mainly depends on power reception in relation to tissue absorption i.e. 

SAR rise.  Thus any geometry/feeding design of the antenna will aim at achieving maximum 

power reception for a given local SAR.  Furthermore, from circuit theory, a maximum transfer of 

power from a given voltage source to a load occurs when the load impedance is the complex 

conjugate of the source impedance.  Therefore, the input impedance of the implanted antenna is 
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studied as the major power transmission indicator.  The antennas can be used at any frequency 

where they exhibit enough power receptivity for a given local SAR.  The input impedance and 

the received power of the implanted antenna are calculated through voltage and current 

information from the transmission line feed model (58,60) used in this study.   

3.2.3 Human Head Model 

Antennas are implanted inside a 3D 19 materials head model which is developed from 1.5 tesla 

MRI images (87).  The tissue properties are defined (49) based on the study (88).  In order to 

compare the different effects of phantoms and the head model, two phantoms (different shapes) 

with the same single tissue material are also implemented, which are shown in Figure 3.1.  The 

size of the head model/phantom is 182 mm×187mm×230 mm.  The implantable electrode arrays 

are normally implanted inside the cortex and the processing chip is between the dura and the 

grey matter (65).  Therefore, the dielectric properties of these two single-tissue head phantoms 

are calculated from the average of properties of the dura and the grey matter (88) (relative 

permittivity of 46 and conductivity of σ=1.6 S/m).   

 

Figure 3.1: Three different human model phantoms used for antenna performance analysis. a) Sagittal cross 

sections of the multi-tissue head model at the middle slice; b) Sagittal cross section of the homogenous head-

shaped phantom model at the middle slice; c) Homogeneous rectangular shape phantom model. 
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3.2.4 Antenna Measurement Set-up 

In this work, the accuracy of the FDTD simulation package results is also verified by antenna 

measurement results.  The test setup consisted of a vector network analyzer (Agilent, 300 kHz -3 

GHz) incorporating an SMA connector to attach the antenna.  This connector is calibrated into 

the connected coaxial cable, in order to account for the connector’s effect (phases and 

impedances) on the measurements.  A 5 cm monopole antenna is built up by a copper rod 

(diameter is about 2.6 mm) and measured in the RF lab to characterize the antenna performance, 

in terms of its input impedance and resonance frequencies.  The measurement set-up is shown in 

Figure 3.2. 

 

 

Figure 3.2: Monopole antenna measurement set up 
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3.3 RESULTS 

3.3.1 Measurement Validation of the FDTD Simulations 

The operation of a 10 cm dipole antenna including its excitation using transmission line feeding 

is simulated in order to compare with the measurements of a monopole antenna (60).  The 

simulation results of the dipole antenna in free space/air are divided by a factor of two in order to 

compare with the monopole antenna measurement results (60,89).  Comparison of the antenna’s 

input impedance obtained using simulations and experimental measurements are shown in Figure 

3.3.  The excellent agreement between the simulation results and the measurement results from 

0.5 GHz to 3 GHz verifies the accuracy of the simulation including the FDTD method as well as 

the implemented virtual transmission line feed model.  The FDTD package was also verified by 

analytical analysis inside lossy materials (49).  

 

 

Figure 3.3: A comparison of the FDTD simulation results with the measurements for the input impedance of 

the monopole antenna 
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3.3.2 Effects of Ultra-thin Insulating Layers  

Biocompatible insulating materials are used to surround implanted antennas in order to prevent 

metallic oxidation and avoid the short circuit effect from high conductive human head tissues. 

These biocompatible insulating layers could even the electromagnetic wave transition between 

the source and the head model and reduce the coupling with the lossy human tissues (73).  From 

the antenna miniaturization techniques aspect, the dielectric loading (biocompatible insulating 

material) has also been shown to be a very effective way of reducing the dimensions of the 

antenna (34).  Furthermore, the tissue model in the area immediately surrounding the implant 

affects the antenna performance considerably (71).  In this work, the impacts from the 

micrometer scale insulating layers are studied. 

A physical description of the rectangular antenna with a length of 13 mm and width of 3 

mm (the thickness and width of the wire of this implanted antenna is negligible) surrounded by 

the insulating layer is shown in Figure 3.4(a).  In the Figure 3.4(a), the dark rectangular line is 

the antenna wire and the grey part is the biocompatible insulating material mesh.  The excitation 

is located at one of the longer parallel wires.  The antenna surrounded by the insulating layer is 

numerically implanted into the center of the brain of the 3D anatomically detailed human head 

model (Figure 3.4(b)).   
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Figure 3.4: Geometry of the antenna and head model a)  Implanted rectangular antenna; b) Antenna position 

inside the head model (sagital view of the head model is shown), the color bar scale represents the relative 

permittivity values 

 

The simulation’s spatial resolution is set to 1mm in this study. The thicknesses of the 

insulating layers are changing from 25 um to 330 um (thin material sheets are modeled using the 

three dimensional sub-cell modeling formula in FDTD (84)).  Since the biocompatible materials 

are usually polymers and ceramics, which are low conductivity materials, the relative 

permittivity of the insulating layers is simulated as 2.1 (polycarbonate) in this simulation and the 

conductivity is approximately zero (90,91).   

The results in Figure 3.5 demonstrate that the thickness of insulating layers significantly 

impacts the antenna’s resonance frequency and input impedance, which in turn will affect the 

antenna’s radiation efficiency.  The results could be explained: when an antenna is implanted 

inside the human head model, the dielectric constant of insulating layers (2.1 in this case), is 

much smaller than that of the head tissues.  The velocity of the electromagnetic wave is higher in 

the small dielectric constant material thus yielding longer operating wavelength.  Therefore the 

resonant frequency with the same length antenna will shift to higher frequency when compared 
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to non-insulating cases.  This effect increases when the insulating layer becomes thicker (from 

25 um to 330um).  The real part of the input impedance also increases because of the decreased 

average dielectric constant of the whole surrounding volume of the implanted antenna, including 

the insulating material and the brain tissues.  In other words, the lossy human tissue material is 

moved away from the near field of the implanted antenna with a micrometer insulating layer 

which will lead to higher radiation efficiency.  For example, with the 330 um insulating-layer 

antenna the real part of the input impedance (which is 420 Ohm) more than doubles that obtained 

with the 25 um insulating-layer antenna (which is 180 Ohm) as shown in Figure 3.5. 

From the simulation results plot of the frequency and input impedance in Figure 3.5, the 

input impedance values don’t change dramatically for insulating layers with different thickness if 

the operating frequency is larger than the resonant frequency (1.7 GHz -4 GHz).  Therefore, for 

this implanted antenna, if the operational frequency is chosen in this frequency band, the 

mismatch from the thicknesses changing will be minimal.   

 

Figure 3.5:  Effects of thin insulating layers on the input impedance of the implanted antenna inside the head 

model 
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3.3.3 Effects of the Insulating Layer Dielectric Properties  

The same geometry of the rectangular implanted antenna shown in Figure 3.4(a) is simulated 

with two different biocompatible insulating layers (the simulated insulating layers have the same 

thickness of 0.33 mm in the two simulations) inside the human head model.  The simulation 

results are shown in Figure 3.6.  

 

Figure 3.6: Simulation results of antennas surrounded with insulating layers with the same thickness but the 

different dielectric properties 

 

The simulation results in this section show not only that the thickness of the insulating 

material affects antenna performance, but also the dielectric property of the insulating materials 

influence the performance of the implanted antenna inside the human brain.  The results reveal 

that the antenna resonant frequency shifts to a lower frequency when the antenna is embedded 

inside a high dielectric constant insulating layer.  Figure 3.6 also shows that the first resonant 

frequency is around 1.4 GHz if the relative permittivity is 2.1.  If the antenna is embedded in the 
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material with relative permittivity of 21, the center resonant frequency will be around t 0.9 GHz.  

Higher averaged dielectric constant of the media surrounding the antenna reduces the wavelength 

of the electromagnetic waves inside the media. As the length of the antenna depends on the 

wavelength of the antenna’s operational frequency, high dielectric constant insulating layer 

consequently facilitates the reduction of the antennas geometric dimensions.  However, a high 

dielectric constant insulating layer may reduce the real part of the input impedance of the 

antenna, which in turn may hamper the radiation efficiency.  Therefore, a balance design of high 

radiation efficiency and smaller dimensions is crucial to achieve optimal performance.   

3.3.4 Effects of the Head Tissues Properties  

The performance of the implanted antenna is influenced by all surrounding materials, which 

include the biocompatible insulating layers and the lossy human head tissues.  In this section, the 

same rectangular antenna is simulated at three different locations inside the human brain model.  

For clinical usage, the BCI devices are normally implanted between the dura and the grey matter 

(65).  Hence, the three different locations are all proposed around the dura, which is responsible 

for keeping in the cerebrospinal fluid.  In Figure 3.7, the dura is represented by the light orange 

color around the brain cortex.  Above the dura is the cortical bone and below the dura are the 

combination tissues of the dura and grey matter in the head model.  Their constitutive properties 

and the simulated antenna positions in this head model are listed in Table 3.1. The same 

insulating layer (thickness of 1 mm and relative permittivity of 2.1) is used for three different 

simulation cases.   
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Table 3.1. Dielectric property of three adjacent major tissues at three different locations inside the human 

head (Figure 3.8) at 2.4GHz 

Tissue and distance from the surface Conductivity[S/m] Relative permittivity 

Bone Cortical, 1.6 cm  0.385 11.41 

Dura , 1.9 cm  1.639 42.099 

Brain Grey Matter, 2.24 cm 1.773 48.994 

 

 

Figure 3.7: Implanted antenna at three different locations inside the human head model 

 

Table 3.1shows that at 2.4 GHz the conductivity and relative permittivity of grey matter 

(1.773 S/m and 48.994 respectively) are similar to the dura’s dielectric property (1.639 S/m and 

42.099 respectively) and different from that of the bone(0.385 S/m and 11.4) (88).  These 

similarities and differences hold true for all other frequencies of interest.  Figure 3.8 displays 

input impedance of the implanted antenna at the three different implanted positions inside the 

human brain shown in Figure 3.7. 
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Since these three implantation positions are adjacent to each other, we assume that any 

performance difference of the antenna is not caused by the implantation depth.  The results show 

that the implanted antenna performs differently in bone and in the dura while the same antenna 

performs relative similar when the antenna is implanted in the dura and directly under the dura.  

In addition, the brain tissues are separated from the implanted antenna by the biocompatible 

insulating layers. The frequency shifts and the impedance variations caused by the changes in the 

tissues properties changes are not as significant as the biocompatible insulating layers’ impacts.   

 

Figure 3.8: Input Impedance of the implanted rectangular antenna at three different locations inside the 

human head (Figure 3.7) 

 

The input impedance of the antenna implanted above the dura, where cortical bone is 

present, is larger than the other two cases.  Therefore, the antenna implanted in low conductivity 

tissues (e.g. cortical bone) may facilitate the antenna radiation efficiency.  In addition, the 

antenna frequency could be altered with time caused by saline absorption (75) resulting in 

instability in the antenna performance.  The brain tissues, with properties that are stable over 
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time and have less saline content (i.e. the cortical bones), may be preferable for antenna 

implantations from the considerations of antenna transmission efficiency as well as RF circuit 

stabilization.  This of course will impact the design and dimensions of the micro wires and 

applicability of the BCI.   

3.3.5 Effects of the Human Head Phantom Shape and Dielectric Properties 

A head shaped phantom with single liquid mixture was experimentally used by other groups to 

test the human head’s effects on the implanted antenna.  For example, in (92) the return loss and 

transmission parameters were measured using a head shape phantom by Schmidt & Partner 

Engineering for the dosimetric assessment system. To answer whether a multi-tissue head 

phantom is necessary for measuring the implanted antenna performance accurately, and whether 

a head shaped phantom with one homogeneous material could be used to test implanted antenna 

performance (frequency bandwidth and input impedance), the antenna performance is studied 

inside three different 3D phantom models.  We utilized a multi-tissue head model, a homogenous 

head model, and a rectangular phantom model, all of which have the same head height, length, 

and width (see Figure 3.1.)  As mentioned, the relative permittivity is ε=46 and conductivity is 

σ=1.6 S/m for the rectangular phantom model and the homogenous head model. 

The 3mm by 12mm rectangular antenna with 1mm insulating layer is implanted 19 mm 

under the top of the multi-tissue head model (Figure 3.1(a)) (the spatial resolution of the 

simulation is 1mm), which is just under the dura of this head model.  It is centered at the coronal 

and axial directions.  The same insulated rectangular antenna is implanted at the exactly same 

physical positions inside the homogenous head shape phantom and the rectangular shape 

phantom model respectively.   
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The simulation results are presented in Figure 3.9 and demonstrate that the performances 

of the implanted antenna are highly similar inside the three head/phantom models, although the 

shapes of the head phantoms are different.  Especially, the results are identical when the antenna 

is implanted inside the homo-head model and when it is inside the homo-phantom model.  This 

verifies that the phantom model shape is not necessary to assess the implanted antenna’s 

performances (input impedance and resonance frequency) for this application.  A rectangular 

homogenous phantom could be used instead of a more complex head-shaped phantom to assess 

the BCI implanted antenna’s specific characteristics (frequency band and input impedance).  

 

Figure 3.9: Input Impedance of the antenna when implanted 19 mm inside the multi-tissue head model, the 

head shaped homogenous phantom model and the rectangular homogenous phantom model 

 

While an homogenous rectangular head-sized phantom could be used to study the 

implanted antenna’s bandwidth and input impedance, the head shape as well as the presence of 

different types of tissues is necessary to study heating/SAR/power transmission.  This is because 
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SAR as well as the power will change when RF waves go through different tissues, therefore the 

rectangular homogenous phantom may not be accurate to advise such information.  

3.3.6 Designs of the Implanted Antennas 

Around 2.4 GHz, a minimum wavelength (15mm) shows up in high water content material–the 

Cerebra Spinal Fluid (CSF) in human head tissues.  Results of the one-cell-gap-feeding models 

show convergence to the true value if using fine grids (60,93), so spatial resolution of 0.165 mm 

( x∆/minλ =90) is implemented for the following miniaturized antenna designs.  The time 

resolution of FDTD is calculated based on the stability conditions to satisfy the stability 

criterion. 

Three implanted antenna designs are simulated and compared in this study.  The same 

insulating material is used for these implanted antenna simulations (the thickness is 0.33mm).  

The thickness of 0.33 mm is chosen because it is a feasible thickness to manufacture and 

assemble.  The surrounding biocompatible material is peek (73) polymer (the relative 

permittivity is 3.2), which has excellent mechanical properties (stiffness, toughness and 

durability).  

The first antenna design considered is a rectangular antenna.  The detailed geometry is 

shown in Figure 3.10(a).  Its input impedance as a function of frequency was calculated using the 

FDTD model and is shown in Figure 3.10(b).  The first resonant frequency (when the imaginary 

part of the input impedance is zero) is around 1.6 GHz.  In order to reduce the circuit 

mismatching effect, the frequency bandwidth could be chosen between 2 GHz and 4 GHz 

(because the impedance of the antenna is relative stable in this frequency band).   
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Figure 3.10: Geometry (a) and input impedance of the implanted rectangular antenna (b) 

 

The second implanted antenna design considered is a serpentine antenna or a meander 

line antenna (94) which substantially has the greater length in a specific surface area.  The 

geometry detail of the implanted serpentine antenna is shown in Figure 3.11(a).  The size of the 

implanted serpentine antenna (length of 13.695 mm and width of 3.96 mm) is almost the same as  

the length of the implanted rectangular antenna (length of 13.695 mm and width of 4.29 mm), 

but has a much longer physical wire length (55.935 mm for the serpentine antenna and 31.35 mm 

for the rectangular antenna). From the simulation results of the input impedance and frequency in 

Figure 3.11(b), the first resonant frequency is around 1.38 GH, which is 220 MHz lower than the 
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first resonant frequency of the implanted rectangular antenna.  The frequency bandwidth could 

be chosen between 1 GHz and 2 GHz (the impedance of the antenna is relative stable in this 

frequency band).  The real part of the input impedance of the serpentine antenna is almost one 

fifth of that associated with the rectangular antenna at their respective bandwidths (stable 

resistance slope as a function of frequency); 18 Ohm around 1.5GHz for the serpentine antenna 

and 100 Ohm around 2.4 GHz for the rectangular antenna.  

 

Figure 3.11: Geometry (a) and input impedance of the implanted serpentine antenna (b) 

 

The third implanted antenna design considered is a dipole antenna. The geometry detail 

of the implanted dipole antenna is shown in Figure 3.12. The first resonant frequency is around 
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5.2GHz, which shows that the dipole antenna is electrically shorter than the other two antennas.  

Since the 5.2 GHz falls out of our accurate simulated range (1 GHz to 4 GHz), the impedance 

and frequency plot is not shown here.  The real part of the input impedance around 2 GHz is 

around 14 Ohm.  

 

Figure 3.12: Geometry of a dipole antenna 

3.3.7 Maximum Power Reception without SAR Violations 

The SAR safety regulations regarding RF power deposition in the head varies for different 

applications.  In this work, the power receptions of the implanted antennas are analyzed based on 

the IEEE RF safety Standard developed by the International Committee on Electromagnetic 

Safety (ICES) IEEE 2005 (95)and the International Commission on Non-ionizing Radiation 

Protection (ICNIRP) safety regulations (96) with respect to human exposure to radiofrequency 

electromagnetic fields up to 300 GHz.  With respect to SAR limits, the frequency is from 100 

kHz to 3 GHz in IEEE regulation and 100 kHz–10 GHz in ICNIRP regulation.  According these 

two SAR regulations, the local SAR peak averaged over any 10g of tissue in the head must be 

less than or equal to 2 W/kg.   

In order to calculate the maximum power reception under the SAR limitations, a dipole 

antenna is chosen as the external transmitting antenna and the three different implanted antennas 
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are simulated as the receiving antennas.  Based on the analysis of these three designed antennas 

(especially the rectangular antenna and the serpentine antenna), the common preferred frequency 

band is around 2GHz.  Therefore, the length of the external antenna is defined as75 mm (with 

negligible thickness).  Its resonant frequency is around 2GHz (simulated and analyzed when the 

head model existing in the environment near the antenna).  The distance between the transmit 

and receive antennas is about 30 mm; the inner antenna is just under the dura and the outside 

antenna is about 10mm away from the surface of the head.  Their excitation positions of transmit 

and receive antennas are vertically centered and placed at the same plane.  The multi-tissue head 

model is used to study the maximum received power from the implanted receiving antenna 

without violating the SAR limits. 

Considering the implanted rectangular/serpentine/dipole antennas’ input impedance 

characteristics, the simulated load of implanted chip and circuits (virtual transmission line 

connected to the antenna ports) are modified to match with the real part of input impedance of 

the implanted receiving antenna at frequency 2.0GHz.  Considering there are also reactive parts, 

it is not a perfect match.  Hence the calculated (in this work) maximum available power will 

represent a less optimized scenario: while the real part of impedance is identical for both the 

implanted receiving antenna and the chip circuitry/transmission lines, no matching circuit is 

utilized to compensate for the mismatch in the imaginary part.  The calculated maximum power 

received by the three antenna designs at the SAR limit is shown in the Table 3.2. The results 

could be changed from the calculated results in this work (more power can be received 

potentially) once the source is matched to the load perfectly.   

Table 3.2 shows the serpentine antenna allows for more power reception at the SAR limit 

than the rectangular antenna: the maximum received power is 1.8 mW at the SAR limit when the 
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serpentine antenna is implanted around the dura.  While the results show the superiority of the 

serpentine antenna in terms of power reception, the higher input impedance of the rectangular 

antenna allows for better interfacing with the typically expected high input impedance of the chip 

circuitry (less impedance mismatch).   

Table 3.2. Maximum power reception under IEEE and ICNIRP SAR limit (2 Watts perKg per 10gm) 

at 2 GHz when the implanted antenna is placed right under the dura 

Antenna 

Maximum power reception  

(mW) 

Rectangular antenna 1.3 

Serpentine antenna 1.8 

Dipole antenna 0.578 

 

 

Furthermore, the maximum power reception has also been investigated when the 

rectangular antenna was implanted inside the cortical bone.  The calculated result shows that the 

rectangular antenna implanted at the bone could receive about 2.5 times more RF power at the 

SAR limit than that obtained when the antenna is implanted at the dura.  

3.4 CONCLUSION 

Miniaturized antenna designs for the BCI application were simulated and analyzed in this work.  

The simulation results show that the micrometer thickness insulating layer can significantly 

impact implanted antenna performance.  The proper selection of the dielectric properties of the 
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biocompatible insulating layers and the implantation position inside head brain tissues would 

facilitate the RF power transmission/reception.  The shape of the head model may not be a 

critical factor, but the dielectric properties of surrounding tissues can impact the implanted 

antennas’ input impedance and its operational frequency bandwidth. 

Based on three miniaturized antenna designs’ simulation results, maximum power of 1.8 

mW could be received by an implanted serpentine antenna when it is implanted inside the dura at 

the IEEE and ICNIRP SAR limit. Assuming a 25% RF/DC conversion efficiency (due to the 

switching nature of the harvester circuits), the implantable BCI device can consume 450 uW or 

less based on the results in this work.  Our current designs of simple implantable chip consume 

about 35 uW (97) which means the designed miniaturized antenna could provide sufficient 

power to this available chip design if placed in the dura. 
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4.0  IN-DEPTH ANALYSIS OF THE ELECTROMAGNETIC PSEUDO MODES 

PREDUCED BY A 20 CHANNEL TIC-TAC-TOE TRANSMIT ARRAY 

4.1 INTRODUCTION 

Ultrahigh-field (≥7T) MRI can be exploited for many different medical research purposes and 

applications through higher resolution anatomical imaging, better localization imaging and 

improved spectroscopic imaging. However, there are technical and physical limitations 

associated with ultrahigh-field imaging that have not yet been fully combated: a) the 

inhomogeneous distribution of the transmit fields B1
+ (9-12), b) potential high power deposition 

inside the human tissues (13,14) and the difficulty to supervise the local specific absorption rate 

(SAR) (15), c) the accuracy of B1
+ field mapping methods challenged by the large dynamic range 

of the transmit fields (98), etc. 

Innovative RF coil designs have been proposed in order to optimize the RF (SAR and B1
+ 

field) performance of ultrahigh field MRI (99-101).  Among many techniques, the eigenmode 

approach has been applied to solve various electromagnetic problems. 2D image uniformity of a 

spherical phantom was improved by linearly combining 8 harmonic modes where the addition of 

higher-order harmonics was shown to significantly affect the RF uniformity (102).  Eigenmode 

approaches have also been utilized to analyze the signal to noise ratio (SNR) behavior of phased 

array receive coils (103,104).  The higher-order resonant modes were also used to facilitate 
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parallel imaging performance in order to improve g-factor or to increase acceleration factor 

(105).  

In this work, an excitation paradigm is presented utilizing a new 20-channel, 5-sided Tic-

Tac-Toe based RF transmit array design for 7T MRI (100).  The coil performance was studied 

using the eigenmode approach.  Eigenmodes were numerically calculated from the simulated 

magnetic fields by using finite difference time domain (FDTD) method, and experimentally 

compared using a 7T human MRI scanner.  The design of the transmit array renders 20 transmit 

elements that are positioned into 5 different Z (direction along the magnet axis) levels, where 

each level is composed of 4 transmit elements that are positioned at shifted locations in the XY 

plane; i.e. the XY positions of the transmit elements differ at each level.  For each of the 5 levels, 

there are 4 different distinctive modes that can be generated (named as Quadrature, Opposite-

phase, Anti-quadrature and Zero-phase modes in this work); hence there are 20 distinct modes 

that can be excited in total.  While the array is inherently coupled by design, the computed fields 

were calculated as well as experimentally demonstrated when all the channels are taken into 

consideration.  As a result, five of these modes (one from each level) can be exactly and 

simultaneously excited with power splitters (the splitter number could be arranged based on how 

many parallel transmission lines are available in the MRI system).  The eigenmodes performance 

is successfully tested on a 7T MRI scanner by scanning a phantom and in-vivo with 7 human 

subjects.  These modes are consistent between different human subjects. 



 57 

4.2 MATERIAL AND METHODS 

4.2.1 The RF Coil 

In this work, a 20-channel head transmit array was studied.  Figure 4.1 (a) shows the schematic 

diagram of a four-element, 2x2 Tic-Tac-Toe transmit array design (100,106,107).  The red part is 

composed of 4 crossed hollow copper struts. The yellow parts, which represent the copper rods, 

are partially inside the copper struts. The copper struts and copper rods work together as four 

crossed coaxial transmission lines.  Tuning and matching of the coil are done by changing the 

length of the copper rods inside the copper struts.  The green part represents an RF copper 

shielding, which is placed at the back of the crossed transmission line structures.  This RF copper 

shielding functions as the ground of a cavity resonator. The RF copper shielding is slotted with 

specific patterns to reduce eddy currents while the RF performance  is maintained (108).  The 4 

excitations are also shown in Figure 4.1(a). Figure 4.1 (b) shows an assembled RF coil system 

composed of 5 sets/sides of the 2x2 Tic-Tac-Toe transmit array (total of 20 transmit elements).  

All the coil structures, including the coil base, coil assemble box, and coil struts base (not shown 

in the figure) were printed by a 3D printer and the coil system was tuned and tested using an 

Agilent Network Analyzer (Santa Clara, US).  These 5 sets of coils are decoupled (S12 ~-20dB).  

For each set/side (shown in Figure 4.1(a)), the coupling is higher: S12~=-7dB (adjacent 

elements) and S13~=-3dB (opposite elements.) Figure 4.1 (c and d) shows the relative position 

between the 20 transmit channels loaded with a water phantom model (c), and a human head 

model (d). The excitation locations are also indicated by the red dots.  
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Figure 4.1: Coil schematic diagrams and load positons. 

(a) Schematic diagrams of a four-element, 2x2 Tic-Tac-Toe transmit/receive array design. The copper rods 

are partially inside the copper struts. They function as four crossed coaxial transmission lines. (b) An 

assembled RF coil system, composed of 5 sets of the 2x2 Tic-Tac-Toe transmit array (total of 20 transmit 

elements). (c) The resolution is 1/16 inch. Spherical water phantom (108 by 108 by 108 FDTD Yee cells). The 

red dots indicate the excitation points of three sets of the 2x2 Tic-Tac-Toe transmit/receive arrays; other 
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excitations are at the back of this 3D plot.  (d) Human head model (114 by 117 by 144 FDTD Yee cells). (e) 

The head model was divided into 8 different regions of interest (ROIs) for this study. Central Main Brain 

(ROI1) is indicated by green and it is a cylinder (Seen from the sagittal view, it is a rectangular box and seen 

from the axial slice, it is a circle and the radian is 25 mm). ROI2 Peripheral Main Brain (yellow region) is the 

brain outside of the ROI1. The Brain Stem ROI3 is indicated by light red.  The Cerebellum ROI4 is purple. 

ROI5 including the skin, skull, eyes and CFS is indicated by blue. 

 

The B1
+ field is then analyzed inside 8 regions of interest. They are shown in Figure 

4.1(e). Based on human head characteristics as well as the electromagnetic characteristics of the 

transmit array, we divided the regions of interest into the following:  

1) Central Main Brain = ROI1,  

2) Peripheral Main Brain = ROI2, 

3) Brain Stem = ROI3,  

4) Cerebellum = ROI4,  

5) Surrounding the Main brain (skin + bone + eyes + CSF) = ROI5, 

6) Main Brain = ROI6 = ROI1+ROI2,  

7) Lower Brain = ROI7 = ROI3+ROI4,  

8) Upper Head = ROI8 = ROI5+ROI6= ROI1+ROI2+ROI5. 

4.2.2 Determination of Eigenmodes  

Mathematically, the direct sum of the eigenspaces is equal to the whole space;  the superposition 

of eigenfunctions can be used to represent arbitrary function conditions (109).  For MRI 

applications, current distributions can be controlled through manipulating the amplitude and 

phase between coil elements.  A specific current distribution on the array elements determines an 
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eigenmode (110).  Targeted field distributions can then be represented by the superposition of 

eigenmodes.  

In this work, field distributions are arranged by: 

 

 

(4-1) 

 where C is the B1
+ field matrix which is generated by an array with L 

transmit channels. There are n points/pixels inside the region of interest (ROI).  CC * shows the 

correlation between the array channels. The eigenmodes can be calculated by: 

 vvCC λ=)( *  (4-2) 

where v is a unitary matrix of eigenvectors;  is a diagonal matrix of 

eigenvalues.  With solutions for (4-2), Cv  will be the spatially pseudo independent fields or 

eigen channels/modes of this transmit coil; v  gives the phase and amplitude between each coil 

channel; iλ  represents the field energy for eigenmode i .   

4.2.3 Helmholtz Equation and Current Requirements 

For source-free fields, Helmholtz equation (111) is:  

 022 =+∇ AkA  (4-3) 
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where A is the magnetic vector potential which is defined by the magnetic fields B: AB ×∇= . 

Thus if we can find A of a current distribution, B can be obtained from A by a differential (curl) 

operation (112); if B is a constant everywhere (homogeneous fields), curl of A should be a non-

zero constant and A should be non-zero. 2∇ is the Laplace operator, k is the wavenumber. If A is 

non-zero and 2k  is non-zero, A2∇  will also be non-zero value, which means the vector potential 

is a second-order changing factor.   

In this work, along the static field 0B direction (Z direction in Figure 4.1 (c) and (d)), the 

transmit array can be grouped as 5 different rows/levels of 4 elements: Top Level, Level1, 

Level2, Level3 and Level4.  From each level, MRI useful field distributions can be generated.  

We identify the eigenmodes for each of the 5 levels.  Based on the eigenmode (4-2), there are 4 

different excitations/channels for each level.  As a result, the current can be changed not only at 

the XY plane but also along the Z direction.  The freedom to manipulate the current distribution 

of different coil elements can contribute to the generation of homogenous magnetic fields (113-

115).  However, coil arrays have typically shown the capability to control current distributions at 

the XY plane, while not very commonly in the Z direction. It is worth noting that there are some 

coil designs that can potentially generate Z plane current control.  For example multi row/ring 

transmit arrays that allow parallel transmission approaches (116-118); a rotating RF coil 

approach has been studied (119,120); a spiral volume coil has been discussed (121) to improve 

the RF field homogeneity.  
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4.2.4 Simulations and Experiments  

An in-house Finite-difference time-domain (FDTD) package with an accurate transmission-line 

feed mechanism is implemented to model the RF performance of the Tic-Tac-Toe transmit coil 

(122).  The transmission-line feed model properly simulates the excitation/reception source and 

thus can provide more accurate quantitative values of a coil’s input impedance, power input and 

coupling between coil elements. This simulation package has been previously utilized and 

verified (48,49,83,108,122,123).  The magnetic fields are calculated with a spherical phantom 

model (diameter=17.1cm, conductivity=0.46 S/m and relative permittivity=79) and a human 

head model ( cmcmcm 9.226.181.18 ×× ), which was rescaled from the virtual family Duke Model 

(124). They are both shown in Figure 4.1(c) and (d). Eigenmodes are calculated using simulated 

field distributions by (4-2) and readily realized with sets of amplitudes and phases through 

different array element combinations.   Since the simulation package accurately accounts for 

coupling between the transmit array elements (successfully verified with network analyzer 

measurements), which is high between elements on each Tic-Tac-Toe side/set and low between 

elements on different sides, the calculated eigenmodes (B1
+ distributions) are also successfully 

verified by experiments done with a similar-sized phantom and in-vivo human subjects on a 

Siemens 7T human scanner (Erlangen, Germany) equipped with 8 parallel transmission lines 

(PTX).  In-vivo B1
+ maps were acquired using saturated turbo FLASH methods (SatTFL) and 8 

flip angles were acquired for each measurement.  



 63 

4.3 RESULTS  

4.3.1 Eigenmodes inside the Phantom and the Head Model  

By applying (4-2), the calculated relative phases are shown in Table 4.1for each level of the coil 

elements with each eigenmode. The relative phase between elements is uniformly distributed: 

being 90° for Mode1, 180° for Mode2, 270°for Mode3 and 0°or 360° for Mode4. There are small 

phase errors (≤10°) between different levels, which may be generated by the aligning of the 

phantom or the human head model within the coil. The amplitude differences are also very small 

(between different elements) - within 14%. In our experiences, the phase will be the major factor 

that impacts the field distribution patterns for most cases.  

Table 4.1: Relative Phases of the 5 Levels of the Coil for the Phantom 

 Mode1 
(Quadrature) 

Mode2 
(Opposite-phase) 

Mode3 
(Anti-quadrature) 

Mode4 
(Zero-phase) 

Top Level (0, 90.2, 180.4, 270.2) (0, 179.0, -0.1,  180.9) (0, -91.6, -181.1, -269.4) (0, -0.4, -0.5, 0) 
Level1 (0, 90.8, 181.8, 271.1) (0, 179.6,  -1.3, 179.1) (0, -87.7,-172.9,- 264.8) (0, -2.3,-7.6,-5.0) 
Level2 (0, 89.0, 176.4, 267.4) (0,175.1,  10,  173.3) (0,-96.0 ,-186.5, -270.0) (0,-2.3,1.8,-3.5) 
Level3 (0,  89.7, 179.5, 269.8) (0, 178.6, -3.5, 178) (0,-92.9,-183.0, -270.1) (0, -1.8, 0,  -1.7) 
Level4 (0, 90.0, 180.8, 270.7) (0,179.8,  -0.6, 179.6) (0,-89.6,-179.5,-269.9) (0, 0, 0.7,0.5) 

4.3.1.1 B1
+ Field and SAR Comparison for Mode 1 at Different Levels 

The B1
+ field distribution of Mode 1 for all levels is displayed in Figure 4.2. Figure 4.2 

(top section) shows that the Mode1 provides center brightness for both head and phantom and 

the brightest spots along the Z directions are at different locations for the different levels.  For 

the phantom with Mode1 of the Top Level, the bright spot is toward the highest point of the top 

part of the phantom; for Level1 and Level4, the bright spot is at the lower half of the phantom; 

for Level2 and Level3, the bright spot is at the top half of the phantom, while the highest 
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excitations are lower than that of the Top Level.  The same analysis is also applied on the human 

head model: Mode1 of Level1 and of Level4 excite lower regions than that with the Top level. 

The B1
+ field intensities of Mode1 of Level2 and Level3 are lower than that of Level1 and 

Level4. The asymmetric shape (front and back) of the head changed the field distribution and the 

modes are not as independent as inside the homogeneous spherical phantom. 

The B1
+ field phase distribution maps are shown in the mid-section of Figure 4.2. The 

phase distributions of Mode1 are symmetrically centered and are slowly varying (note 

that ππ 22 =− , i.e. the intense blue color equals the intense red color in the colorbar). 

Comparing the phantom and the human head model, the phase patterns are very similar. 

The locations of the peak SAR per average B1
+ are also comparable between the phantom 

and the head model (bottom section of Figure 4.2).  Furthermore, the locations of the high B1
+ 

intensities per average SAR won’t always generate high local SAR: note that for Level4 

locations with the brightest B1
+ field intensity correspond to a minimum SAR at the same 

locations. 
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Figure 4.2: Central sagittal, and 3 axial slices of 1) B1
+ field distributions (phase and intensity maps) per 

average SAR over the entire 3D volume that is equal to 3.2 W/kg/10g and 2) SAR distributions per average 

B1
+ field intensity inside the ROIs (B1

+ field intensity is normalized to 1.97uT).  
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For the phantom the 3D ROI is the entire 3D phantom, and for the human model it is the ROI8.  The 3 axial 

slices were chosen together with the sagittal slices to show the 3D information. The three axial slices are 

equally distributed along the B0 direction inside the phantom. The three slices inside the human head model 

are at the exact same locations with respect to the coil elements as the three slices shown inside the phantom.  

Spherical water phantom: 108 by 108 by 108 FDTD Yee cells and Human head model: 114 by 117 by 144 

FDTD Yee cells. 

4.3.1.2 B1
+ Field and SAR Comparison for Other Modes at Different Levels 

Transmit field distributions for different modes at different levels are compared in Figure 

4.3. The B1
+ field distributions and intensities (per average SAR = 3.2 W/Kg) over the specified 

8 ROIs for different modes and levels are shown in Figure 4.4. When comparing to other modes 

and with different intensities along the Z axis (depending on which level is utilized) the 

following observations are noted: 

a) Mode1 generally excites the Central Main Brain (ROI1) and Brain Stem (ROI3).  

b) Mode2 generally excites the Peripheral Main Brain (ROI2) and Cerebellum (ROI4). 

c) Mode4 generally excites the Cerebellum (ROI4), while the intensity is 15% less than 

that of Mode2 on an average;  

d) Inside the Main Brain (ROI6), average B1
+ field intensities of Mode1 are 13% higher 

than that of Mode2 over all the coil levels while similar inside Upper Head (ROI8).  Average B1
+ 

field intensities of Mode3 are similar to Mode4’s.  Average B1
+ field intensities of Mode1 and 

Mode2 are approximately twice of that with Mode3 and Mode4 inside Main Brain and Upper 

Head (ROI6 and ROI8).  

e) Inside Lower Brain (ROI7), average B1
+ field intensities of Mode3 are similar to 

Mode1’s and Mode2’s.  
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f) Inside the Cerebellum (ROI4), average B1
+ field intensities of Mode1 and Mode2 are 

higher than that of Mode3.  Compared to other ROIs (intensities are generally less than  

T6101 −× per 3.2 W/kg), average B1
+ field intensities of Mode3 are most localized at ROI5 

(intensities ~ T6102 −×  per 3.2 W/kg). 

g) For most ROIs, the average B1
+ field intensities of Mode1 of Level2 and of Level3 are 

about a third less than that of Mode1 of Level1 and Level4.  

h) For several ROIs, Mode3 and Mode4 have similar average B1
+ field intensities.  

Nonetheless, the average B1
+ field  intensities of Mode4 are almost twice of that of Mode3 inside 

Brain Stem (ROI3) and Cerebellum (ROI4) and hence the Lower Brain (ROI7).  

i) The maximum values of the average B1
+ field intensities over Main Brain (ROI6) and 

Lower Brain (ROI7) per average SAR = 3.2 W/kg are T6102.3 −× and  T61094.2 −× respectively.  
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Figure 4.3: B1
+ distributions for different modes. Center sagittal slices of B1

+ field distributions per average 

SAR over the entire 3D volume (normalized to 3.2 W/kg/10g) are presented.  Field patterns inside the 

phantom and human head model are comparable.   
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Figure 4.4: Average B1
+ intensities calculated inside 8 different ROIs (shown in Figure 4.1.)  The values of the 

average B1
+ intensities are normalized to an average SAR over the entire 3D head volume. The unit is Tesla 

per 3.2 W/kg/10g. 

4.3.1.3 Peak Local SAR 

The peak local SAR is regulated by IEC/FDA safety regulations (<10 W/kg over any 10 

gram of tissue). The ratios between peak local SARs and average SARs are normally considered 

(Figure 4.5).  The following observations are also noted for peak local SARs: 

a) The ratio is generally less than 6 for the human head model for the bulk of modes and 

levels.   

b) The Top Level has higher peak over average SAR ratios when compared to the other 

levels. For example, the ratio for Mode1 of Top Level is 11.1. This can be explained by the SAR 

map in Figure 4-2. There is a hot spot inside the CSF just under the dura. If that mode on that 

level were to be utilized, such peak-to-average SAR can be reduced through a) RF shimming in 

combination with different levels and/or b) pushing the head down along the Z axis, in the 

current situation the top of the head is only 35 mm away from the copper of the top strut. It is 

noted however that the peak local SAR for Top Level Mode1 is about the same as that of Mode 1 
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of Level2 and Level3 while the average SAR is less which leads the peak to average ratio to be 

higher for Top Level Mode1.   

c) For the human head, the best average SAR per average B1
+ intensity is generated by 

Mode1 of Level4: the average SAR value inside ROI8 is 1.16 W/kg per 1.97uT. The preferable 

cases will be higher average B1
+ intensity per average SAR and lower peak SAR per average B1

+ 

intensity/SAR.  

 

Figure 4.5: The ratio between the local peak SAR and average SAR over the entire 3D head volume for 

different levels and modes. 

4.3.2 Experimental Demonstration 

Modes inside the phantom and the head are compared with experimental measurements in Figure 

4.6.  Two sample B1
+ field distribution maps (Top and Level1) within the water phantom are 

shown in central axial slices.  Seven healthy human subject studies were conducted with signed 

consent forms approved by the Institutional Review Board at the University of Pittsburgh.  
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Three simulated B1
+ field distribution maps inside the human head model are also shown 

in Figure 4.6 and compared with in-vivo B1
+ maps in central sagittal slices.  The comparisons are 

done for the in-vivo scans of all 7 human subjects. The 20-Channel Tic-Tac-Toe coil’s modes are 

highly consistent with different human subjects. 

 

Figure 4.6: Experimental and simulated B1
+ field distributions for the phantom and the human head. The two 

central axial slices of Mode1 are compared for the phantom and three central sagittal slices are compared for 

the human head 

 

One preliminary uniform excitation pattern over ROI 8 (Upper Head: Central Main 

Brain, Periphery Main Brain plus eyes, CSF, skin and bones) with minimal average SAR was 

generated by a combination of these modes. The goal was to achieve the lowest possible average 

SAR with ( 
)(

)(

1

1
+

+

=
Bmean

BCOV σ ) ≤ 25% and (
)min(
)max(minmax/
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+

+

=
B
B ) ≤ 3 (this optimization does 

not aim at achieving best B1
+ uniformity).  Inside the ROI8, for two criteria COV and  

minmax/ are 23% and 3 respectively, the average (Watts per Kg) and peak SAR (Watts per Kg 
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per 10gm) were 1.47 and 5.5 respectively. The 3D B1
+ experimental map is shown with axial 

slices in Figure 4.7.   

 

Figure 4.7: 3D in-vivo B1
+ map of one optimized preliminary case. The map was normalized to maximum 90° 

flip angle to show the uniformity. 

4.4 DISCUSSION AND CONCLUSION 

Various methods have been explored to improve field homogeneity: the parallel RF excitation 

approach uses spatially tailored RF pulse design (125); however, it is sensitive to the measured 

B1
+ maps, B0 field shimming quality, and gradient field performance (126).  There are several 

works suggesting the use of two modes to increase the homogeneity of the B1
+ field distribution 

(126,127). The average of magnitudes over standard deviation of a 2D image can reach 1.57% by 

adding higher order of eigenmodes (102).  However, this can come at a significant elevation of 

SAR and difficulties in simultaneously exciting several distinctive modes of a coil 

(110,128,129).  In this work, a 20-ch modular coil based on Tic-Tac-Toe design performs as 5 

groups of transmit arrays mounted at different locations/levels along the static magnet field (Z) 

direction.  For each level of the coil elements, there are 4 different distinctive modes that can be 

generated. The modes of each group/level can be excited simultaneously. With power splitters 



 73 

and phase cables, all 20 transmit channels combined into different modes and can be excited.  

The coil elements are physically distributed along the Z direction; hence they can be used to 

excite different regions in the load along the Z direction. The arrangement allows for the 

capability to control RF excitation not only at the XY plane but also along the Z direction.   

While there can be many different solutions for the RF excitation that achieve a very 

similar fidelity to the targeted excitation pattern (e.g. homogenous B1
+ field), minimizing the 

local SAR is the most important constraint of the optimization procedure.  In this work, the 

average B1
+ field intensities per 3.2 W/kg over 10 gram (average SAR) is compared for different 

levels, modes as well as regions.  The field distributions of the eigenmodes have been tested 

inside a water phantom and in-vivo human subjects. The performance of the modes is consistent 

different human subjects.   

The Z locations of highest B1
+ field intensities in the load (Mode1) normally follow the 

physical excitation locations of Top Level, Level2, Level3 and Level4.  Interestingly, the highest 

B1
+ field intensity of Mode1 of Level1 (excitation locations are located near the top of the coil 

below Top Level) is at the lower half of the load. This can be explained by the method of mirror 

images where the top RF shielding cap is the ground plane.  Level1 is positioned 4cm away from 

the ground plane. The fields close to the ground plane have been canceled while constructed at 

locations further down the Z axis.  Since all coil elements are physically distributed along the 

direction of the static magnet field (Z), they can be used to excite different regions in the load 

along the Z direction. As such they can potentially be used for different applications. For 

example, the localization of Mode3 can potentially be used for the MR spectroscopy application 

(extracerebral lipids from the skin and skull can be suppressed to reduce the influence from this 

region while leaving the central brain regions unaffected (130)).  
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In conclusion, eigenmode arrangement of the 20-ch planer coil allows controlling RF 

excitation not only at the XY plane but also along the Z direction.  The modes (superposed 

fields) from different levels can be excited simultaneously. The preliminary optimized case was 

presented to show that the eigenmode could be optimized and generate a uniform 3D B1
+ 

excitation.  RF shimming method (14,50,87,131,132) could also be used to find a uniform 

whole-head excitation pattern by manipulating the amplitude and phase of each of the excitation 

modes under specified SAR constraints, which is an ongoing effort in our work and results are 

presented in the next Chapter.  
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5.0  TRANSMIT ARRAY EIGENMODES OPTIMIZATION  

5.1 INTRODUCTION 

As discussed in Chapter 4, inhomogeneous distribution of the transmit fields B1
+ (9-12) and 

potential high power deposition inside the human tissues (13,14) are the two major challenges 

that hinder the clinical application of ultrahigh field MRI.  Innovative RF coil designs have been 

proposed to optimize the RF (SAR and B1
+ field) performance for ultrahigh field MRI (99-101).  

Additionally, parallel RF transmission (PTX) is useful in improving 7T MRI B1
+ inhomogeneity 

by using slice-selective RF pulses (114) and/or B1
+ shimming methods (83,133).  The eigenmode 

approach has also been used to solve electromagnetic homogeneity problems (98,102,103,105).  

For example, the image uniformity of a spherical phantom was improved by linearly combining 

the magnetization magnitudes with appropriate weighting factors for 8 harmonic modes (102).   

Furthermore, some clinically useful images require high B1
+ field intensity besides the 

field uniformity. For instance, MPRAGE, Turbo-Spin-Echo and FLAIR require a 180º pulse for 

the inversion/refocusing, which in turns require high B1
+ field intensity in order to be clinically 

useful (228,229). This high field intensity requirement increases the difficulty to overcome the 

inhomogeneity and safety challenges.  Therefore, the inhomogeneity and safety issues should be 

solved from fundamental electromagnetic theory, instead of conditional situations. From our 
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experience, construction of magnetic fields with destruction of electric fields will generate less 

SAR (44) for the required large flip angle imaging.    

  In this work, a 20-channel array coil (Tic-Tac-Toe based) elements are combined into 5 

different rows/levels based on longitudinal (Z direction) spatial selectivity (as detailed in Chapter 

4).  This arrangement of the 20-ch coil allows controlling RF excitation not only at the XY plane 

but also along the Z direction. Eigenmodes for each level are calculated using FDTD numerical 

simulated fields. There are 4 distinct modes that can be excited (including quadrature, opposite-

phase, anti-quadrature and zero-phase modes) for each level; there are 20 distinct modes in total 

that can be utilized for different excitation purposes.  The B1
+ shimming method is used to 

optimize these generated eigenmodes. The nonlinear optimization function used by the in-house 

optimization software finds a minimum of the test function with variables starting at an initial 

estimate of the scalar weighting. An exhaustive search is used to go through all possible 

eigenmode combinations.  While there could be many different optimization solutions for the RF 

excitation that achieve a very similar fidelity to the targeted excitation pattern (homogenous B1
+ 

field), minimizing the SAR and maximizing the B1
+ intensity are two of the most important 

evaluation criteria.  Based on the array structure, this new eigenmode excitation paradigm is able 

to generate uniform 3D B1
+ fields with appropriate SAR.  The optimized results have been 

compared with an 8-ch TEM coil. Finally, the optimization results have been verified by in-vivo 

experiments with different sequences on Siemens 7T MRI human whole body scanner equipped 

with 8 PTX channels.  High quality whole brain (including cerebellum) 3D MPRAGE, 2D SWI 

and Turbo-Spin-Echo images are acquired successfully.  

While PTX system can be used to generate uniform and high intensity excitation, PTX 

excitation may create distinct hot spots inside the human body by constructive interference of 
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electric fields, generated by the respective coil elements driven with individual amplitudes and 

phases.  Monitoring global and local peak SAR is a challenging task.  Pre-calculated 3D SAR 

modeling is widely used to estimate the SAR of the worst-case scenario. But calculations without 

consideration of different waveforms at different instances of time will limit their usefulness in 

clinical applications. The Virtual Observation Points (VOP) (15,135) method implemented on a 

PTX 7T MRI system shows promise in the online monitoring of the real-time peak local SAR by 

evaluating only a limited upper bounded set of matrices for real-time arbitrary RF waveforms. In 

this chapter, on-line real-time SAR monitoring workflow and verifications on the Siemens 7T 

MRI human whole body scanner equipped with 8 PTX channels are also presented.   

5.2 MATERIALS AND METHODS  

5.2.1 RF Coil and Eigenmodes  

In this work, a 20-channel Tie-Tac-Toe (TTT) based head transmit array is used (detailed in 

Chapter 4). Figure 5.1(b) shows the assembled RF coil system, composed of 5 sets of the 2x2 

TTT transmit array.  The coil shielding (detailed in Chapter 6) has been designed for EPI like 

fast speed imaging applications (43).  The 20 elements can be divided into 5 different 

groups/levels based on longitudinal (Z direction) spatial selectivity (107) which is also shown in 

Figure 5.1 (b).  
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Figure 5.1: Coil arrangements. (a) Parallel transmit system connected to the coil by using N-way power 

splitters, phase cables are needed for specific applications. (b) TTT coil (without RF shielding) and the 

relative human head position.  (c) TEM coil (without RF shielding) and the relative human head position. 

 

For MRI excitation, an electromagnetic (EM) mode is determined by a specific current 

distribution on the array elements (110).  Targeted field distributions can then be represented by 

the superposition of these modes.  By using the field matrix (103,104), eigenmodes could be 

calculated as discussed in Chapter 4.  For the grouped 20-ch array, there are 4 distinct modes that 

can be excited (including quadrature, opposite-phase, anti-quadrature and zero-phase modes) for 

each level; therefore 20 distinct modes can be utilized for different excitation purposes.  Some of 

the modes excite the center area and periphery areas are excited by other modes (107) as shown 

in Chapter 4.  Five of those modes, along the Z direction, can be simultaneously excited with 

power splitters (shown in Figure 5.1 (a)). The number and format of splitters used depends on 

specific amplitude combinations.   

5.2.2 FDTD Simulations and Field Optimization 

An in-house FDTD package with an accurate transmission-line feed model mechanism is 

implemented to model the RF performance of the TTT transmit coil (122) with a human head 
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model ( cmcmcm 9.226.181.18 ×× ), which was rescaled from the virtual family Duke Model 

(124).  An 8-ch TEM coil (Figure 5.1 (c)) is also simulated with the same human head model and 

the relative same position to compare the field distributions and SAR with the TTT coil. The 

transmission-line feed model properly simulates the excitation source and thus could provide 

more accurate quantitative values of the coil’s input impedance, power input and coupling 

between coil elements. This simulation package has been widely utilized and been verified in 

many different applications (48,49,83,122,134). The nonlinear optimization function applied by 

the in-house optimization software finds a minimum of the test function with variables starting at 

an initial estimate of the scalar weighting.  Since there are 1024 eignemodes combinations (4 

possible field combinations for each level, 44444 ×××× ), an exhaustive search is used to go 

through all possible combinations to acquire a thorough study.  For nonlinear optimization, 

applied initial values influence the acquired local minimum. Therefore, hundreds of random 

initial values are also used to fetch the global minimum for each eigenmode combination.   

During the optimization procedure, the amplitude and phase of each excited eigenmode is 

modified with the updated scalar weighting. The uniformity of the fields that are calculated by 

superposition principle is the output of the optimization test function.  The homogeneity is 

evaluated by two criteria
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B . The calculation results 

from the optimization software are processed by the in-house SAR- power calculation packages 

to get relative B1
+ efficiency, absorbed power efficiency and SAR.   

The transmit coil produces 2/)( 111 yx jBBB +=+ , which is the circularly polarized 

component of the magnetic flux density that is responsible for exciting the spins. When two 

linearly polarized transmit fields are combined in this way, the generated B1
+ field intensity will 
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be 2  times of the field intensity generated by one linear transmit field with the same applied 

input power. The relative B1
+ efficiency (130) is 

∑
∑

+

+

=
1

1

B

B
Bef  and the relative absorbed power 

efficiency is defined as
∑
∑= 2

2

E

E
Eef  . We aim at high relative B1

+ efficiency to gain spin 

excitation and low relative absorbed power efficiency to reduce SAR effects.  Therefore, efB  and 

efE are used as the other two evaluation filters in the post processing procedure. The filtered 

optimized cases can be optimized again to fine-tune the optimization results for specific 

applications.  

For the VOP method section, the field information of the human head model is also 

calculated by the in-house FDTD simulation package. The amplitudes and phases are processed 

by the SAR-power calculation package to calculate the local SAR per 10g tissue mass and 

absorbed power per input power. This SAR model is compressed by the VOP concepts (15,135) 

and set as input of the scanner VOP SAR monitoring system.  

5.2.3 Experiments 

All experiments in this chapter are acquired with a 7T Siemens Magnetom MRI scanner 

(Erlangen, Germany).  The scanner is equipped with 8 parallel transmission lines (PTX 2.2), 

hence up to 8 pairs of amplitude and phase are adjustable.  On the other hand, 5 independent 

eigenmodes, consisting of 20 transmit channels, are optimized using the optimization software. 

To get the best control ability out of the 8 equipped parallel-transmit channels and to realize the 

highest power efficiency, the optimized 5 modes should be rearranged. Channels with higher 
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intensities could be used independently; the rest could be combined by 2-way or 4-way 

combiners.  RF shimming profiles can then be implemented by applying various amplitude and 

phase combinations into the 8 parallel transmission channels.   

The optimized uniform excitation pattern obtained from the shimming optimization 

method is tested by manipulating the amplitude and phase of each excited mode under allowed 

SAR constraints.  The optimization results are tested using a water spherical phantom (107) and 

in-vivo ( >15 human subjects who signed consent forms approved by the Institutional Review 

Board at the University of Pittsburgh).  In-vivo B1
+ maps are acquired using saturated turbo 

FLASH methods (SatTFL) and 8 flip angles are acquired for each measurement. 3D MPRAGE 

images, 2D SWI and Turbo-Spin-Echo are also acquired. 

5.3 RESULTS 

5.3.1 Slice Excitation Verification and Limits of Homogenous Slice via RF 

Shimming 

Slice-selection is important for MRI applications and RF pulse design methods including multi-

band approaches (230).  Before studies of 3D volume excitation in this chapter, the possibility of 

the slice selective homogenous excitation is demonstrated from axial and sagittal images of the 

phantom and the human head in this section. The cost to achieve the ultra-uniform slice selection 

images using the RF shimming method is also discussed. Testing is done with water phantom 

(dielectric constant = 78 and conductivity = 0.46 S/m) and 3 in-vivo human subjects.  
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The magnitudes maps of two modes that can be simultaneously excited using different 

groups of coil elements are shown in Figure 5.2.  The phase maps are measured when all 

channels are in phase (relative phase being zero) and three of them are shown in Figure 5.2 phase 

map. Figure 5.3 displays the experimental and simulated B1
+ maps associated with RF shimming 

that targets homogeneous excitation. The results show that the simulation results are in excellent 

agreement with the experimental measurements. The ratio of maximum to minimum B1
+ 

intensity in the slice of interest is 1.1 in the simulation and approximately 1.2 in the experimental 

B1
+ map for the phantom axial slice. For the sagittal slice, maximum to minimum ratio in the 

simulation is 1.5 and approximately 1.7 in the experimental B1
+ map.  These ratio differences 

between simulations and experiments could be caused by the measurement errors (from slice 

thickness, slice location, loading property changes, etc.).  Unique excitation patterns are also in 

excellent agreement with experimental findings (Figure 5.4).  

For the human studies, the maximum to minimum ratio inside the brain slice in addition 

to the skin/bone is 1.2 in the simulation (COV is less 4.6%), while 1.4 is achieved for the in-vivo 

B1
+ map.  With respect to global average SAR=2.6 Watts/Kg/10g (inside the 3D whole head and 

per 1.97uT). If considering the pseudo CP mode as an initial excitation to compare, its maximum 

over minimum is 5.4 at the same slice, the average SAR is 2.3 Watts/Kg/10g inside the 3D whole 

head.  In general, homogenous slices come with more average SAR for this case. 
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Figure 5.2: Experimental and simulated B1
+ magnitude and phase maps 

 

 

Figure 5.3: Experimental and simulated B1
+ magnitude maps of axial and sagittal slices targeted for 

homogeneous excitation. 

 

 

Figure 5.4: Phantom localization 
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In conclusion, simulation based ultra-homogenous slice excitation can be achieved by B1
+ 

shimming in conjunction with this multi-channel highly coupled TTT array and PTX system, 

although average SAR and B1
+ intensity may be sacrificed to achieve this goal.  

5.3.2 3D Field Simulation Verification  

In this section, the simulated 3D field distribution and intensity are verified by the in-vivo B1
+ 

maps.  One of the shimmed B1
+ field distributions is verified by the in-vivo B1

+ maps in Figure 

5.5.  In addition, the average of the measured flip angle inside the brain is 600º per 1000 V 

(nominal) for a 1ms square pulse.  Considering the power loss between the system input and the 

coil input level ~-3.5 dB and TB1γθ = the average B1
+ intensity = 56 Tµ .  In the simulations, for 

the same region of the interest average B1
+ = 60 Tµ . This verification has been applied across 

different human subjects and different shimming excitations. Therefore, the FDTD simulation 

method can be applied not only to modify/optimize B1
+ distribution but also to compare field 

efficiency in this work.  
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Figure 5.5: The 20 ch pseudo quadrature mode (not optimized for homogeneity nor SAR.) Simulated 

magnetic fields compared with measured magnetic field distribution (sagittal and axial slice).  In-vivo B1
+ 

maps were measured using Saturated Turbo Flash method (1ms square pulse); cable loss was taken into 

consideration for the intensity calculation. 

5.3.3 Transmit Field and Absorbed Power Efficiency  

Examples of the simulated transmit fields and power efficiency comparisons are shown in Figure 

5.6.  For the top 4-ch quadrature polarization case: inside the whole head, efB  is 85%, which 

indicates the B1
+ field is constructing in most of the volume and especially inside the middle of 

the brain; efE is 56%, minmax/ is 12.6 and COV is 0.54.  For the 20-ch pseudo quadrature 

excitation case:  efB  is 65% efE is 32%; the B1
+ is uniquely constructed from the ventricle to the 

cerebellum (more than 90%); minmax/ is 2.97 and COV is 0.22.  From the relative B1
+ 

efficiency and absorbed power efficiency, the 20-ch pseudo quadrature excitation case could 

generate about 30% higher B1
+ when absorbing the same amount of power.  For both cases, there 
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is one small area where the absorbed power efficiency is almost zero, which indicates very low 

SAR in this area.  Based on these analyses, optimized B1
+ field uniformity could be obtained 

while reducing E field construction. 

 

Figure 5.6: TTT 20-ch pseudo quadrature excitation and quadrature excitation generated by the top 4-ch 

quadrature excitation compared with TEM quadrature excitation.   
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5.3.4 Optimization Criteria Comparison  

Characteristics of the field uniform are compared in Figure 5.7. In the subfigure of max/min with 

COV, the results are separated into two groups by max/min=25 line. Inside the two groups, 

max/min and COV are generally consistent with each other; i.e. good uniformity normally 

translates to low COV and max/min (shown in the zoomed subfigure).  This separation between 

the two groups is mainly caused by two reasons: 1) mode combinations are totally random and 

there are some mode combinations that only excite the peripheral areas. Most of these cases will 

appear in the large max/min and COV region and 2) for the cases of large max/min with small 

COV. They represent the cases where there are “dark” local areas.  These “dark” regions may 

only be one or two pixels having a minimum value which leads to a high max/min while COV is 

minimally affected.   
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Figure 5.7: Field uniformity (COV, max/min), efficiency, SAR distribution for all of the optimization results.   

 

Subfigures COV with Mean (B1
+) and COV with B (efficiency) in Figure 5.7 show high 

B1
+ intensity could be generated by a good uniformity case, although the most uniform case may 

not be the most efficient case.  Subfigure COV with Global SAR in Figure 5.7 shows that 

although the nonlinear optimization function is only used to optimize the uniformity (COV 

and/or max/min), global SAR also decreases.  For the ratio of peak local SAR over global SAR: 
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85% of the peak local SAR to global SAR ratio are less than 5 and 60% of them are less than 4. 

Notice that field efficiency and SAR in this work are normalized: average SAR (W/kg 

per1.97 uT  which is the field intensity required when using a 3ms square pulse generating a 90 

flip angle excitation inside the ROI) and B1
+ intensity (B1

+ per input voltage) is normalized to the 

top 4-ch quadrature mode. 

5.3.5 Comparison between Different Coils and Applications 

In Figure 5.6, for the TEM quadrature excitation, the absorbed power efficiency map shows the 

E field constructs towards the periphery of the head while the for the TTT 20 Ch pseudo 

quadrature excitation the E field constructs towards the middle of the brain. Since the E field 

intensity is always high at the periphery, the E field construction at the periphery of the head 

could lead to high average/peak SAR values.  

In order to generate a homogeneous field distribution with small SAR and high field 

intensity for large flip angle applications, field efficiency and SAR are used to evaluate and filter 

the optimized results.  Then the selected cases are fine-tuned for two different optimizations (i.e. 

optimization 1 with good uniformity for SWI and optimization 2 with high intensity for 

MPRAGE).  The B1
+ distributions of these two optimization results are shown in Figure 5.8. The 

minimum and maximum flip angle values inside the two measured in-vivo B1
+ maps are labeled 

inside the black circle and values are shown within the red boxes.  TTT optimization 1 generates 

better uniformity than TTT optimization 2, while the mean intensity is ~30% less.  

Their calculated parameters are also compared with the simulated TEM coil’s quadrature 

excitation which is shown In Figure 5.6.  The SAR values are: 2.1 W/kg for TTT optimization 1, 

1.75 W/kg for TTT optimization 2 and 2.2 W/kg for TEM (per1.97 uT ) inside the whole brain 
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including the cerebellum.  However, the uniformity COV is significant different:  18% for TTT 

optimization 1, 20.2% for TTT optimization 2 and 29.4% for TEM.   

 

Figure 5.8: B1
+distribution from two different optimizations. B1

+ efficiency is 52% and 61% for Optimization 

1 and Optimization 2 respectively; absorbed efficiency is 20% and 19% respectively. 
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5.3.6 Experimental Verifications 

The optimized cases are then implemented with the 7T MRI by varying the input phase and 

amplitude in the 8 PTX system. For the 3D MPRAGE images, resolution is 

1mm0.9mm0.9mm ×× , TR 3000 ms, TE 2.32 ms, TI 1200 ms.  The 3D MPRAGE images are 

shown in Figure 5.9 with axial, coronal and sagittal slices.  This case has also been applied to 

TSE (Figure 5.10) and other sequence applications requiring large flip angles.  Figure 5.11 are 

the coronal slices of MPRAGE and SWI images to demonstrate the excitation coverage.  

 

Figure 5.9: In-vivo 3D MPRAGE images (0.9 x 0.9 x1.0 mm3, TR/TE/TI = 3000/2.32/1200 ms, ~10 minutes). 

The images are obtained by Dr. Ibrahim’s Lab. 

 

Figure 5.10: In-vivo Turbo Spin Echo with GRAPPA 2 (0.4x0.4x2 mm3, TR/TE=14000/54ms). The images are 

obtained by Dr. Ibrahim’s Lab. 
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Figure 5.11: MPRAGE and SWI images to show the excitation coverage. The images are obtained by Dr. 

Ibrahim’s Lab. 

5.3.7 20 Modes and B1
+ shimming Optimizations Comparison  

The 20 channels can also be combined directly. In this section, 20 different eigenmodes are 

generated by 20 different amplitudes and phases.  The mode order can be arranged following the 

field intensity or iλ  as illustrated in equation (4-2)  and the maximum field intensity is the Mode 

1. There are 20 modes can be generated and they have also been optimized by using the in-house 

optimization software and results are shown in Figure 5.12.  This optimization is used to test the 

optimal uniformity from this 20-Ch coil and it is done with increasing number of the inputted 

modes.  In Figure 5.12, the case #1 represents Mode1 with the second mode as the input; case 

#19 represents Mode1 with the other 19 modes (Mode2-20) as the input.  The optimizations are 

done on the entire 3D head model (ROI 6) and the brain (ROI 8) (ROIs are shown in Figure 4.1).  

Figure 5.12 shows that when more modes are included into the optimization procedure, 

the field’s uniformity improved significantly. The best COV is 10% for this whole brain region 

and the minmax/ is 1.55, while for the whole head the best COV is 14.9% and the minmax/  is 

1.89.  
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Figure 5.12: 20 modes optimization inside the head and brain 

5.3.8 Virtual Observation Points Applications and Verification  

All experiments in this section are done with a 7T Siemens MRI scanner (Erlangen, Germany) 

equipped with 8 channel parallel transition (PTX Step 2.2 system).  The 8 directional couplers 

(DICO), shown in Figure 5.13, pick up the real-time amplitudes and phases of the transmitted RF 

pulses. The pulse information is used to calculate global power transmitted into the coil as well 

as an input to the VOP SAR model to calculate real-time local SAR. The 20-ch transmit/receive 

array (122) with the TR switch box is used to excite different transmission patterns driven by 

different phases and amplitudes.  

From the conservation law, within the region of interest, the supplied power sP  is equal 

to the power exiting the region plus the power  dissipated inside the region (absorbed by the 

Case Number (Mode1 with the other 1-19 modes) 



 94 

human body) plus the energies stored within that region (magnetic and electric energies mW and 

eW ) )(2 emdes WWjPPP −++= ω . 

 

Figure 5.13: Global and local SAR monitoring pathway 

 

An FID sequence is applied and the input voltage is 50 V per channel (at the coil plug 

level), the applied RF pulse is a 2 ms rectangular pulse, TR=200 ms, therefore the input power 

per channel is 0.5 W. Five different combination cases (Figure 5.14) are tested by driving 

different phases and amplitudes on the 20-ch coil. The results in Figure 5.14 show the excellent 

agreement between the calculated global power and the measured global power (forward-

backward). The local SAR calculations also match the VOP measured results. 

Taking one particular mode as an example (combination 3 in Figure 5.14), the real input 

forward power is measured to be 3.12 W at the DICO level (Figure 5.13) when counting the 

cable loss, and etc. The backward (from reflected and coupling) power is 0.31 W at the DICO 

level. As a result, the calculated total global power is 2.8 W (3.12 W-0.31 W) at the DICO level. 

The measured global power was 2.6 W at the DICO level from the PTX system.  
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Figure 5.14: Global power and local SAR verifications with VOP supervision 

 

To calculate the local SAR, it is noticed that the measured global power includes the 

power absorbed by the head and the power radiated out of the coil. For case 3, the absorbed ratio 

is about 28% of the total supplied real power. Taking the model mass and measured global 

power into considerations, the peak local SAR = 0.25 W/kg/10g which still closely matches the 

overestimated (because of the VOP theory) VOP local SAR measurement (0.3 W/kg/10g). As a 

margin of safety, the VOP measured peak local SAR is normally 10% more than the 

real/simulated peak local SAR, which is also shown in the Figure 5.14.   
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5.4 DISCUSSION AND CONCLUSION 

In this work, the 20-ch modular coil operating as 5 groups of transmit arrays mounted at different 

locations along the static magnet field (Z) direction is evaluated. The coil elements are physically 

distributed along the Z direction; hence they could be used to excite different regions in the load 

along the Z direction.  For each level of the coil elements, there are 4 different modes that can be 

generated.  The modes of each group/level could be excited simultaneously. The field 

distributions of the eigenmodes have been tested inside a water phantom and in-vivo human 

subjects in Chapter 4.  The modes are consistent with different human subject loads. Based on 

different criterions, different modes could be chosen for various applications.   

The FDTD simulation method is verified by in-vivo B1
+ maps: both the field distribution 

and field intensity are comparable to the measured fields. Therefore, the simulation results are 

applied not only to modify B1
+ distribution but also to compare field efficiency.  Field 

construction distribution is also studied where the left-right asymmetry inside the B1
+ 

distribution, comes from the asymmetry of the human head from front-back (136).   

The eigenmodes are calculated by the simulated fields and are then optimized with an in-

house optimization tool box.  RF shimming (B1
+ optimization) is a complex procedure: magnetic 

field uniformity, magnetic field efficiency and power deposition (SAR) have to be considered 

together to get clinically useful images.  In our experience, the shimming procedure could 

normally be separated into a macro optimization and micro optimizations. Macro optimization 

generates a generally good uniformity, efficiency and SAR.  For specific applications, the macro 

optimization result could be used as an initial input and be optimized under specific conditions 

(SAR, uniformity, coverage, efficiency and etc.).  The preferable cases should be high coil 

excitation efficiency and less SAR.  In addition, COV provides more global information (how 
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wave propagates) and max/min provides more local information (how fields interfere with each 

other).  A good COV case normally comes along with a symmetric field distribution. Normally 

one low max/min accompanies a low COV, while a low COV could generate high max/min 

when there is one tiny dark spot. By using the described eigenmode approach, we are able to 

reduce the fields’ variation from an original level of ~30 % down to less than 18% inside the 

head and 10% inside the brain including the cerebellum;  max/min reduced from ~8 to 1.89 

inside the head and 1.55 inside the brain, when the 20 channels are combined directly. 

Based on the exhaustive searches of the 5 levels’ eigenmode optimizations, the nonlinear 

function used in this case could generate good SAR cases with high field efficiency, although RF 

shimming only optimized the field uniformity without consideration to the other constrains. One 

of the optimization cases is selected for large flip angle (e.g. MPRAGE) applications. This case 

has significantly better field uniformity inside the whole head (including the cerebellum) when 

compared with an 8-ch TEM coil. The uniform field distributions are validated across different 

human subjects. High quality 3D MPRAGE images are acquired. They are currently applied to 

late-life diseases studies.  

The system global power and the local SAR from the VOP model in conjunction with 

rigorous RF modeling that incorporates coupling are demonstrated and verified by experiments 

acquired using the Parallel RF transmission system.  The input simulated SAR model is also 

verified quantitatively using B1
+ maps as well as local VOP SAR monitoring. 
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6.0  DUAL OPTIMIZATION METHOD OF RF AND QUASI-STATIC FIELD 

SIMULATIONS FOR REDUCTION OF EDDY CURRENTS GENERATED ON 7T RF 

COIL SHIELDING  

6.1 INTRODUCTION 

Gradient magnetic fields are used for information encoding in MRI.  The gradient magnetic 

fields (≤10 kHz) (137) can induce eddy currents in conductive materials of the MRI system 

(superconducting magnets, RF and gradient coil shielding, etc.).  The generated eddy currents 

decay exponentially with relatively long time constants, typically tens or hundreds of 

milliseconds (138), which in turn can  generate a second, distorting, magnetic field in the region 

of interest (ROI).  This second magnetic field can generate severe image artifacts (137); it can 

also offset the superconducting operation point of the main magnet and even cause quench 

problems (139).  Previous works have proposed methods of calculation (139-144) and reduction 

of the eddy currents on the magnet cryostat (145); these include active gradient shielding (146) 

and pre-emphasis (147,148) methods.  These system level eddy-current compensations are 

typically available on current clinical scanners.  Besides these system level compensation 

methods, post-processing methods were also discussed for eddy current compensation (149-151).  

In general, the success of these gradient imperfection correction methods rely on the image 
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contrast differences, the accuracy of the measurement of the actual k-space trajectories, and/or 

the model of the gradient field distortions.   

Less discussed are quantitative studies and correction of the eddy currents due to the RF 

shielding of RF coils.  The RF shielding can play a major factor in improving transmit efficiency 

as well as maintaining the distribution of the excitation field (152).  Especially for ultrahigh field 

(≥ 7T) MRI, the RF shielding is oftentimes one essential component for the transmit coils (17-

21).  Proper design of the RF shielding is particularly critical for echo-planar imaging (EPI) and 

7T MRI parallel transmission (PTX) applications, since many of the PTX trajectories use spiral 

or EPI type gradient waveforms and these gradient waveforms can change rapidly (22,23).  The 

fast changing gradient waveforms induce intensive eddy currents that can considerably distort 

the image quality.  Furthermore, different transmit RF coils (i.e. head/knee/breast) are used with 

7T MRI scanners and the RF shielding varies with the different coil designs, rendering the 

system eddy current correction possibly insufficient.  In addition, the spatially non-linear eddy 

current behavior in regions close to the RF coil copper shielding may also render the above-

mentioned post-processing methods less reliable. As a result, eddy currents induced on RF coil 

copper shielding could be very problematic.  

Several works have analyzed methods of adding axial and azimuthal slots to reduce eddy 

currents on the RF shielding for birdcage coils and TEM coils (40,153-157).  Capacitors are 

sometimes added at specified locations between the slots to avoid high-frequency RF field 

radiations (155).  Fingerprint-like patterns have also been utilized (155,158).  Multiple thin 

copper layers were discussed and their performance could be somewhat transparent for the MR 

gradient fields and efficiently block high frequency electromagnetic emission (137).  Slotted 

double sided copper shields could be used to reduce gradient fields induced eddy currents as the 
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copper shielding will be close to opaque for the RF signal because of the large capacitance 

between the overlapped shields (157).    

In this work, we propose a methodology that aims at minimizing eddy currents induced 

on RF-coil shielding.  The induced gradient field distortion (due to eddy currents) is 

quantitatively studied in the time and frequency domains.  Successful MRI gradient fields’ 

measurement validation is delivered to verify the simulation results.  Eddy current 

characterization is also studied based on the eddy current response function.  A comprehensive 

optimization method, guided by full wave electromagnetic simulation combined with the eddy 

current simulation, is developed to maintain the RF-coil’s RF characteristics and simultaneously 

reduce low frequency magnetic field distortions due to eddy currents on the RF coil shielding.  

The methodology is successfully tested on a Siemens 7T human whole body scanner with 1) a 

four-element, 2x2 Tic-Tac-Toe transmit/receive (Tx/Rx) array design (106,159) with an oil 

phantom and two in-vivo human subjects and 2) an RF coil system composed of 5 sets of the 2x2 

Tic Tac Toe transmit coil (total of 20 Tx elements) in conjunction with a 32-ch receive coil insert 

with 10 in-vivo human subjects. 

6.2 METHODS 

6.2.1 The RF Coil 

New RF coil designs are desirable (160) in order to approach optimal RF coil performance at 

ultrahigh fields (42,120,161-171).  Various and extensive RF shielding designs, in terms of 

shape, thickness and dimensions, may be necessary in order to achieve the optimal RF coil 
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performance (transmit field distribution and field intensity).  The proposed methodology is 

intended to be effective with any RF coil design, shape and/or geometry whether it is azimuthally 

symmetric or follows 4-fold symmetry and etc.; and/or possesses distinctive RF current patterns 

on the coil shielding. In this work, one set of a four-element, 2x2 Tic-Tac-Toe (TTT) head coil 

structure is selected and constructed.  The view from foot to head of the assembled head coil is 

shown in Figure 6.1(a1). This four-element module is placed on the top of the head and functions 

as a Tx/Rx coil.  The five flat and square-shaped copper RF shielding panels are positioned 

around the 2x2 coil structure.  These panels are designed in a fashion that copper shielding could 

be easily switched to different types (172).  The schematics of these 5 panels of RF copper 

shielding (3D) are shown in Figure 6.1(a2). The side view of the copper shielding is shown in 

Figure 6.1 (a3).   

 

Figure 6.1: Schematics of the coil, RF shielding and gradient coils 

(a1) Tic-Tac-Toe transmit/receive elements and (a2) RF shielding.  (a3) Copper shielding components.  

Schematic diagrams of (b1) X gradient coil; (b2) Y gradient coil; (b3) Z gradient coil with the copper 
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shielding to show the coil relative position. Red and blue colors indicate opposite current directions. The Y=0 

plane is represented by the light blue color plane. 

 

In order to study the influences of different shielding shapes, another RF coil’s shielding 

has been studied. RF shielding designs for TEM coils and birdcage coils were reported (40,173).  

The shielding of these RF coils are normally cylindrically shaped with a cap shielding on top of 

the coil.  In this work, the eddy current distortion of two different RF shielding shapes that are 

associated with two 7T RF coil types- TEM coil and TTT coil- are simulated, measured and 

compared.  The two copper shielding are defined as circular shielding and rectangular shielding 

because of the shape of the cross-section.  The computation are performed in-vivo and in 

phantoms and using Tx-SENSE. 

6.2.2 Gradient Field Induced Eddy Current Simulations (FEM) 

Approximate models of the Siemens (Erlangen, Germany) 7T MRI whole body gradient coils 

have been designed using the Stream Function Method (174) to match the size and region of 

gradient linearity of the coils in the system.  The designed gradient coil wire loops are shown in 

Figure 6.1(b1-b3).  The Siemens whole body gradient coil has the following characteristics: the 

inner diameter is 683 mm; Gmax in X, Y, Z are 40/40/45 mT/m, respectively; maximum slew 

rate is 200 T/m/s; imaging FOV is 500×500×420 mm; linearity is 5%.  Three gradient coils 

generate three essential gradient magnetic fields for image information encoding and they are: 

,xGB xz = ,yGB yz =  zGB zz = . Based on Maxwell’s Equations, there are concomitant fields 

with these three gradient fields.  For X gradient coil, ,zGB xx = 0=yB ; for Y gradient coil, 
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,0=xB  zGB yy = ; for Z gradient coil, ,2/xGB xx −= 2/yGB yy −= .  The Z component of the 

gradient fields is dominate at the center of the gradient coils, where the RF coil is placed (157).   

Models of a 40- turn Z-gradient coil (radius of 341.5 mm and wire diameter of 6.7mm) 

and a 36-turn X-gradient coil (radius 341.5mm and wire diameter of 4.2 mm) were constructed 

in SolidWorks (Waltham, MA, USA).    Z-gradient coil positions along the Z-axis are given in 

Table 6.1.  The X and Z-gradient coils and the RF coil models are imported into ANSYS 

Maxwell 14.0 (Canonsburg, PA, USA).  The passing currents are set up to mimic the current 

flow inside the gradient coil wires when applying different scan protocols.  The eddy current 

distortions are calculated and studied in the time and frequency domains by the Maxwell 

Transient Solver and Eddy Current Solver respectively.  

Table 6.1: Z-gradient coil arrangement 

Coil positions along (±) z-axis (in mm) 
131 261 293 316 335 
352 368 383 399 413 
429 444 460 476 493 
511 530 550 573 598 
 

The simulated Z-gradient fields (time domain) are used to compare with the 

measurements.  The eddy current characteristic is then studied based on a characterization 

method using the eddy current impulse response function (23,175).  The eddy current-induced 

magnetic fields can be derived as the convolution of the negative time-derivative of the ideal 

gradient waveform and the eddy current response function ),( ztH  (175) (6-1). In this work, 

),( ztBd  is the ideal gradient field and ),( ztBE  is the eddy current-induced gradient field.  The 

eddy current impulse response function ),( ztH  is the sum of multiple exponential terms with 

constant time nτ and variable amplitude parameters nα  (23,175) (6-2).    
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where ),( ztµ  is the unit step function and N is the number of the exponential terms.   

The frequency domain results are used to compare the distortions from 1) X and Z-

gradient coils, 2) different copper thicknesses, and 3) the top panel, since there is no top 

shielding for some RF coils (17,18,152,153).  These gradient field simulation results are used as 

a guide for the study of eddy current reduction.   

Models of circular shielding (normally used for Birdcage coil and TEM coil) and 

rectangular shielding (used for Tic-Tac-Toe coils) are also constructed in SolidWorks (Waltham, 

MA, USA).  The 3D models are shown in Figure 6.2. One cavity end is capped and the other is 

open.  For the copper shielding comparison study, the two RF coils (TEM and TTT) used 18µm 

thick copper and had the same dimensions in terms of heights and widths.  A 4-element Tic-Tac-

Toe (TTT) transmit/receive array and a 4 channel TEM head array are built, shown in Figure 6.3.  

 

 

Figure 6.2: CAD models of circular and rectangular shielding 
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Figure 6.3 Built TEM coil and TTT coil 

6.2.3 Full Wave RF Field Simulations (FDTD) 

Effective RF shielding should provide efficient decoupling between the RF coil and the gradient 

coil without degrading the RF coils’ performance (157).  In other words, properly designed RF 

coil shielding should be transparent to low time-varying MR gradient fields and 

accommodating/supporting for high frequency RF fields.  Therefore, the goal of the study is to 

maintain the characteristics of 7T RF coils (B1
+ field distribution, B1

+ intensity, E field 

distribution, and E field intensity) while reducing the induced low frequency eddy currents.  An 

in-house Finite-difference time-domain (FDTD) package  with an accurate transmission-line feed 

model mechanism is implemented to model the RF performance of the TTT coil (176).  The RF 

magnetic field inside this four-channel TTT transceiver coil is modeled. The Discrete Fourier 

Transform (DFT) method is applied in order to calculate the RF currents (densities and 

directions) on the coil shielding at 297 MHz (7T MRI).  The RF currents on the coil shielding are 

examined for multiple types of RF excitations (varying phases and amplitudes) resembling RF/ 

B1
+ shimming on a PTX system.  
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6.2.4 RF Testing and 7T Experiments 

The gradient field simulation is verified on the 7T Siemens whole body scanner using the 

gradient field raw data measured inside a spherical oil phantom (diameter = 165 mm).  To 

measure the gradient fields, a pair of trapezoidal gradients is applied multiple times at different 

slice locations (23,172).  The gradient amplitude is ±2.0 mT/m, gradient slew rate is 40.0 

mT/m/ms and pulse duration is 2.5 ms.  Slots of the shielding and multiple thin copper layers are 

tested.  S matrix measurements, B1
+ maps and EPI sequences with the phantom and in-vivo 

human subjects are performed to verify the effectiveness of the proposed dual optimization.  For 

EPI acquisition, the image resolution is 64 by 64; bandwidth per pixel is 2442 Hz/Px; TE and TR 

are 20 ms and 2000 ms respectively.   

For the shielding comparison study, A model-based eddy current correction method (177) 

is applied to correct the eddy current for the two coils. The desired RF pulse excited pattern 

should be a smooth rectangle with FOV of 200mm x 200mm. The PTX acceleration factor, R, is 

2 for both cases. Human BOLD image slices are also obtained.  
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6.3 RESULTS 

6.3.1 Eddy Current Simulation Verification and Z Gradient Field Behavior along 

the Magnet Axis 

The simulated Z gradient field in the time domain is displayed in Figure 6.4(a2).  The 

ideal gradient strength and gradient strength associated with the presence of the TTT coil 

structure were compared at different positions along the Z direction (positive direction is defined 

towards the top panel of the RF coil).  The isocenter was labeled as the center of the coil 

structure.  The ideal gradient ramp up time is 50 μs.  The results show that simulated Gz is 

deviating from the ideal Gz (0 to ~200 μs) due to eddy currents induced on the RF coil shielding.  

After ~200 μs, the simulated Gz becomes stabilized and equals to the ideal Gz.  Figure 6.4(a1) 

shows the measured gradient waveform.  The effective ramp up time of the measured gradient 

trajectories with the shielding is shown to be ~200 μs in agreement with the simulation results.  

Similar to the simulation results, the experimental results also demonstrate that eddy current 

distortion is non-linear and asymmetric along the Z direction. 

To further study the eddy currents along the magnet axis, the simulated information was 

used to obtain the pulse response function ),( ztH the by equations (6-1) and (6-2).  The results 

show that ),( ztH  has different characteristics at positive and negative positions due to the RF 

coil top panel.  Figure 6.4(b1) demonstrates that ),( ztH  is not linear with respect to Z.  The 

eddy current effects are more prevalent in the positive 60 mm position than the negative 60 mm 

position as shown in Figure 6.4(b2):  ),( ztH  is (-80,-13, 0) at -60 mm and (133, 55, 15) at 60 

mm, at 0 μs, 60 μs and 120 μs respectively.   
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Figure 6.4: Time domain and frequency domain eddy current results. 

(a1) Normalized measured gradient field Gz at different positions along the Z direction.  The curve for the 

“Simple Loop” was obtained using a simple RF loop-array coil without any RF shielding (used to represent 

the ideal gradient field in the measurements). (a2) Normalized simulated gradient field Gz at different 

positions along the Z direction. The “Ideal” Gz is calculated when the TTT coil structure is not present.  (b1-

b2) Eddy current pulse response function “H(t,z)” as a function of time and position (obtained by (6-1) and 

(6-2).)  Frequency domain: Six different cases have been used to study the top panel and copper thickness 

influence for X-gradient and Z-gradient fields.  Positive “Z” positions are towards the top panel. Simulated 

gradient field distribution at the Y=0 plane are shown for 6 cases: 1) distribution with no RF copper shielding 

2) distribution with intact 4 sides 18 μm and no top copper shielding 3) distribution with intact 5 sides 18 μm 

copper shielding 4) distribution with intact 4 sides 4 μm and no top copper shielding 5) distribution with 

intact 5 sides 4 μm copper shielding and 6) distribution with 5 sides 4 μm copper shielding that includes the 
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proposed slots. (c1-c6) X-gradient field distributions at 10KHz and (c7-c12) Z-gradient field distributions at 

10KHz. 

6.3.2 Comparison of Rectangular and Circular Shielding  

Figure 6.5 displays the gradient field distribution when there is no coil shielding (A), circular 

shielding (B), and rectangular shielding (C) (the dark dash lines represent position of the coil 

shielding.) The gradient field is linear along the B0 direction when there is no shielding, while it 

becomes non-linear when there is RF coil shielding. The results show that the distortion is more 

severe for the circular shielding than rectangular shielding while the excitation current flowing in 

the gradient coil is the same. Figure 6.6 shows an experimental 7T Tx-SENSE excitation pattern 

in a head-sized phantom of uncorrected and corrected RF pulses for circular shielding (A and C) 

and rectangular shielding (B and D). Agreeing with Figure 6.5, the eddy current distortion 

caused by circular shielding is more sever when compared to rectangular shielding caused 

distortion, which agree with the simulation.  Moreover, the model-based eddy current correction 

method is ineffective in correcting the circular shielding induced eddy current.  

 

 

Figure 6.5: Gradient field distribution (simulations) 
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Figure 6.6: 7T Tx-SENSE excitation pattern for circular & rectangular coil shielding. 

 

The ddy-current-generated gradient field (Figure 6.7) was measured at different positions 

along the B0 direction for the two coils. Because of the cap copper shielding, the field distortion 

is not symmetric above and below the iso-center. The eddy current induced distortion decayed 

with time. Notice that the gradient field is oscillating around stabilized value until ~1200us for 

the circular shielding. This oscillation made the decay period much longer and produced larger 

field offset than the rectangular one. Therefore it induced more distortion of the gradient field. It 

also could make the model-based eddy current fitting pathway more intricate.  

 

 

Figure 6.7 : Measurements of gradient field intensities at 7T. 
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7T human BOLD images are shown in Figure 6.8.  While eddy current artifacts are 

apparent in both cases, the distortion is significantly higher with the circular shielding (A) than 

with the rectangular one (B).  

 

Figure 6.8: 7T In-vivo BOLD images 

6.3.3 Effects of Thickness of Copper Layers and the Top Panel 

Thin copper shielding could be applied to improve the transparency to the gradient fields.  The 

skin depth of copper at 297 MHz is about 4 μm and 4 μm copper is also the thinnest copper we 

have found available in the market.  We tested single 4 μm and double 4 μm (2x4 μm) copper 

shielding (Polyflon Company, Norwalk, CT, USA.)  For the double layer copper shielding, the 

dielectric substrate between the two copper layers is 0.010” (0.25 mm) PTFE.   

 In order to compare the effects of 4 μm and a thicker (18 μm) copper shielding, 

simulation studies were performed.  Figure 6.4(c1-c12) display the X and Z-gradient fields inside 

the RF coil at the Y=0 plane.  When there was no RF shielding, the field was spatially linear 

along the X and Z directions for the X and Z gradient coils respectively (Figure 6.4(c1) and 

(c7).)  When the 18 μm and 4 μm copper shielding were present, the field was distorted (Figure 

6.4(c2), (c4), (c8) and (c10).)  In general, X-gradient fields induced less distortion than Z-

gradient fields.  Although the 4 μm copper sheets generated much less eddy current distortions 

than 18 μm copper, there were still observable residual distortions near the top panel (Figure 
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6.4(c3), (c5), (c9) and (c11).)  Simulation studies (not shown) also demonstrate that the field 

distortion is more severe at higher gradient field frequencies.  

The 4 μm intact (no slots) copper shielding panels are shown in Figure 6.9(a1-a2).  They 

are square shaped and the length of the copper panel is approximately 23 cm.  The EPI images 

(Figure 6.9(b1)-3(b2)) were acquired to show the image distortions generated by the eddy 

currents when all 5 copper panels are present.  In every subfigure, there are 11 slices shown at 

adjacent positions along the 0B direction (one slice in one red frame box is used to point out the 

relative position within the EPI images.)    



 113 

 

Figure 6.9: Four different copper shielding comparisons. 

(a1) intact double 4 μm (2x4 μm) copper shielding, (a2) intact single 4 μm copper shielding, (a3) 18 

longitudinal slots in the double 4 μm (2x4 μm) copper shielding and (a4) proposed copper slots in the double 4 

μm (2x4 μm) copper shielding.  The inner copper layer slots are based on the RF current distribution 
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patterns and external copper layer slots are based on the eddy current simulations. (b1-b4) represents 11 

slices of EPI images for the above-mentioned 4 copper shielding. (c1-c4) Reflection coefficients (measured and 

simulated using FDTD) for the transmit coil with the above-mentioned 4 copper shielding. (d1-d3) RF 

currents on the copper shielding with four different excitation modes (uniform phase, quadrature, 180º phase 

shift between adjacent channels and one arbitrary set of 4 phases). The RF current distribution maps are 

presented at 297 MHz; plotted on the top of the density maps are the instantaneous current vectors. (e1-e3) 

Overlaid instantaneous RF current vectors of the four different excitation modes.  The current vectors inside 

the red dashed box are zoomed in to show the vector patterns. (d1) and (e1) are for intact 4 μm single/double 

layer copper shielding, (d2) and (e2) are for the simple slots and (d3) and (e3) are for the proposed copper 

slots.   

6.3.4 Effects of Simple-Structured Slots  

Simple-structured slots along the axial direction were shown to be an effective way to reduce the 

eddy current effects (157).  Simulation studies demonstrate that:  

1) slots along the gradient field’s changing direction are effective in reducing eddy 

current artifacts. As the X-gradient coil and Z-gradient coil generated fields are changing along 

the X direction and the Z direction, respectively, the slots should be cut along the X and Z 

direction respectively;  

2) three slots on each of the 4-μm shielding panels considerably suppress the eddy 

currents at 10 kHz.  Since the distortion from the eddy currents is a function of the thickness of 

the copper sheets and the frequency of the gradient fields, more copper slots will be needed at 

higher frequencies and with thicker copper shielding:  e.g., for 18 μm single copper, five slots 

can get similar suppression of the generated eddy currents; and 

3) slots orthogonal to the gradient field changing direction don’t reduce eddy currents.  
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The simple-structured slots have been physically applied to the double 4 μm (2x4 μm) 

copper shielding and 18 slots were etched on both sides of the copper shielding Figure 6.9(a3).  

The slots were staggered at both sides in order to minimize RF field leakage through the gap.  

EPI images (Figure 6.9(b3)) show the eddy current suppression was achieved, while the signal to 

noise (SNR) is very low.  S parameters were measured to study the coil performance with 

different copper shielding.  Figure 6.9(c1-c2) represent the network analyzer measured and 

FDTD simulated reflection coefficients with the intact 4 μm copper shielding.  All reflection 

coefficients (Sxx) of the four ports are less than -18 dB.  Figure 6.9(c3) shows the reflection 

coefficients (simulated and measured) for the simple-structured slot panel.  For the pair of coil 

elements along the direction of the slots, the reflection coefficient (S11) is significantly different 

from the pair of coil elements orthogonal to the slots (S22); yet all the coil elements are detuned.  

The results also show that the coupling of the coil elements along the direction of the slots is -

4.97 dB while the other two elements coupled by -14.7 dB.  The coil cannot be re-tuned with this 

arrangement.  

6.3.5 Dual Optimization Approach  

Figure 6.9(d1) and (e1) display the FDTD calculated RF current distribution associated with four 

different excitation modes.  Figure 6.9(e1) displays overlaid RF current vectors for four 

excitation modes.  The results show that with different transmit excitation modes (as used in 

PTX applications), the current densities and distribution patterns can be substantially different.  

Especially in the center areas, the current directions are substantially spatially changing with 

different types of excitations (as shown in the zoomed subfigures.)  While the current 

distributions and current vectors are different for various excitation mechanisms, several 



 116 

locations on the shielding panels sustain minimal RF current densities (this was observed 

throughout all the modes and useful RF shimming patterns excited with the 2x2 TTT coil.)  

Based on these findings, the double 4 μm (2x4 μm) copper shielding were etched into different 

slotting patterns that are shown in Figure 6.9(a4). The inner side of the top panel is slotted at 

regions where there is relatively lower RF current density in order to maintain the main RF 

current pathways.  The external copper layers’ (facing the magnet) cuts (designed exclusively 

based on eddy current simulations) are used to reduce the eddy currents.   

The low frequency eddy current simulations were then performed and verified that the 

induced eddy current was significantly reduced with the proposed slots which are shown for X-

gradient coil in Figure 6.4(c6) and Z-gradient coil in Figure 6.4(c12). For the RF characteristics, 

Figure 6.9(c4) demonstrates that the proposed slot patterns maintain the tuning and the matching 

of the RF coil as when intact shielding is utilized.  From the EPI images in Figure 6.9(b4), the 

proposed slots in the double 4 μm (2x4 μm) copper shielding are highly effective in almost 

negating all of the eddy current artifacts and maintaining the RF characteristics of the RF coil.  

The SNR and B1
+ maps have been measured to compare RF signal intensity/distribution changes 

with different shielding thickness and patterns applied.  When compared to the intact double-

layered shielding, over all the slices, the SNR and B1
+ distribution changes per slice are less than 

5% when the proposed slot pattern is applied.  

Figure 6.9(d3) and Figure 6.9(e3) show the RF current distribution and current vectors 

were comparable with that of the intact copper, while Figure 6.9(d2) and Figure 6.9(e2) show the 

RF currents were significantly distorted by the simple slots.  
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6.3.6 In-Vivo Demonstration 

Healthy human subject studies were conducted, with signed consent forms approved by the 

Institutional Review Board at the University of Pittsburgh.  In-vivo images acquired using the 4 

element Tx/Rx coil with the proposed double 4 μm layer copper shielding and the 18 μm copper 

shielding are shown in Figure 6.10(a) and (b) respectively.  In every image, there are 22 slices 

covering the whole human head.  Because of eddy current artifacts, brain images are overlapped 

in almost every slice in the 18 μm copper case Figure 6.10(b).  In the proposed slotted copper 

case Figure 6.10(a), images are intact (except near the absolute top of the human head.)   

 

 

Figure 6.10: In-vivo EPI images (22 slices to cover the whole brain) with (a) the proposed slots in double 4μm 

(2x4 μm) copper shielding and with (b) 18 μm intact/no-slots copper shielding 
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6.4 DISCUSSION 

Thin copper shielding was shown to improve the transparency to the gradient fields (137).  

However, the EPI images were distorted by artifacts even when the thin copper is used (4 μm 

single-layer which is the skin-depth of copper at 297 MHz and double-layered thin copper 

shielding) as demonstrated by Figure 6.4 and Figure 6.9(b1-b2).  Furthermore, simple-structured 

slots in double layer copper shielding have also been used to reduce gradient field-induced eddy 

currents (24,29).  However as shown from our results, the suppressed eddy current distortion was 

achieved while significantly altering the coil RF characteristics (tuning, matching, coupling and 

RF current distribution/intensity on the coil shielding, and consequentially changes in the B1
+ 

distribution/intensity and etc.).   

When using simple slots in the double layer copper shielding, the shield can be 

considered as a number of capacitors in parallel.  The capacitance is proportional to the 

overlapping copper area and the thickness of the dielectric substrate in between.  With the thin 

dielectric substrate in this study, the double layer copper with staggered slots should represent a 

thicker continuous conductor at 297MHz.  Therefore the low SNR (Figure 6.9(b3)) was not 

necessarily caused by RF radiation/leaking.  The changes in the coil’s S parameters (Figure 

6.9(c3)) and RF current distributions/densities on the coil’s shielding (Figure 6.9(d2) and Figure 

6.9(e2)) show that the simple slots altered the RF coil’s characteristics resulting in SNR 

reduction. 

Figure 6.11 shows the ghosting quantitative comparisons between five different copper 

shielding patterns proposed and tested in this study, using the data measured from the phantom 

EPI images. The curves are the ratio between the background intensity (including noise and 

ghosting) and the image signal intensity. It shows less ghosting induced by the 4μm single and 
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double-sided copper shielding when compared to the 18μm solid copper, through most of the 

slices.  There is minimal eddy current induced ghosting in images associated with the simple-

structured slots (Figure 6.9(b3)). However, the RF coil performance was deteriorated and Figure 

6.10 shows that the background to signal intensity ratio is almost 50%. As a result and for the 

presented configuration, the use of thin copper layers and/or simple-structured slots for RF 

shielding was not effective in reducing the gradient field-induced low frequency eddy currents 

while maintaining the RF characteristics for this RF coil.   

 

 

Figure 6.11: Ghosting ratio comparisons (measured with EPI scans) between 5 tested/discussed copper 

shielding methods.   

 

Some eddy current artifacts are present towards the top of the brain, shown in Figure 

6.10(a) and Figure 6.11 curve for the proposed cut case.  This can be caused by the copper on the 

Tx/Rx coil elements (copper struts) and on the small side panels which that are covered by 18 

μm copper sheets in the original coil design.  These copper sheets can also generate eddy 
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currents.  Hence, the 18 μm copper sheets on the copper struts have been replaced by the thinner 

(9 μm) copper layers.  And in order to provide a better and more realistic brain imaging 

illustration, an RF coil system composed of 5 sets of the 2x2 Tic-Tac-Toe transmit coil (total of 

20 Tx channels) in conjunction with 32-ch receive coil insert was used.  The copper shielding of 

the large panels of this 20 element transmit coil is similar to the tested 4 element Tx/Rx coil.  

However this RF coil system contains 1) 16 additional transmit elements with their 4 sets of 

small side panels in order to provide better transmit fields and 2) receive coil insert  in order to 

provide better SNR.  The in-vivo EPI images are shown in Figure 6.12(a) (the image resolution= 

96 by 96; bandwidth per pixel = 1680 Hz/Px; TE and TR = 24 ms and 2000 ms, respectively.)  In 

order to display the background artifacts clearly, the intensity of 5 EPI image slices (showing the 

top of the head) was scaled by 10 times in Figure 6.12(b) to show the noise and eddy current 

ghosting distortion. Figure 6.12 shows that the ratio between the background intensity (including 

noise and ghosting) and the image signal intensity is less than 10%. Figure 6.4 - Figure 6.12 

demonstrate the effectiveness of the proposed slotting method in reducing eddy current artifacts.  

In our experience, the eddy current artifacts of this modified proposed slotted coil are 

comparable to other commercial non-shielded 7T RF coils. 
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Figure 6.12: In-vivo EPI images with the modified slots in the double 4μm (2x4 μm) copper shielding using the 

20-ch Tx coil with 32-ch Rx insert.  

 

 In summary, five different types of copper shielding were tested and discussed in this 

study: single 18 μm (half oz) copper sheet, single 4 μm (0.114 oz) copper sheet, double 4 μm 

(2x4 μm) copper sheet, double 4 μm (2x4 μm) copper with simple-structured slots and double 4 

μm (2x4 μm) copper with a proposed (based on RF and quasi-static field simulations) slot pattern 

specific to the RF coil (Tic-Tac-Toe transmit array) used.  The eddy current simulations were 

verified by experimental data.   

The results demonstrate that eddy currents induced on RF coil copper shielding can 

significantly distort the linear gradient fields.  Although thinner copper shielding generated less 

(yet still considerable) distortion, the distortions due to the top (cap) copper shielding were 

significant.  Simple slots along the gradient field changing direction are verified to be an 
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effective way to reduce the eddy current effects.  However, simple-structured slots significantly 

altered the coil’s RF characteristics (tuning, matching, coupling and RF current 

distribution/density on the coil shielding and consequentially transmit field intensity and 

distribution).  This is critical when RF shielding is an essential (not just for the purpose of 

reduction of radiation) part of the coil performance as in the case of many high field transmit 

arrays. 

The circular RF copper shielding induced more low frequency eddy currents than 

rectangular shielding. The long term oscillating gradient field in the circular shielding produces 

larger field distortion than the rectangular shielding. This could be explained by using circuit 

theory that high impedance occurs at corner circuits.  This high impedance blocks low frequency 

eddy currents for rectangular shielding. 

Normally the golden rule used to sustain the RF performance is maintaining the RF 

current paths.  However the RF current distribution as well as current direction could be different 

for different excitations modes, especially when a PTX system is used. In this work, using the 

proposed dual optimization method that combines both RF and quasi-static field simulations, the 

shield areas where there is minimal RF current density were distinctively slotted to maintain the 

main RF current density pathways. EPI images, GRE images, B1
+ maps and network analyzer 

measurements verified that the proposed (based on RF and quasi-static field simulations) slot 

pattern in the double 4 μm (2x4 μm) copper sheet can sufficiently suppress the eddy current 

artifacts while maintaining RF characteristics of the utilized RF transmit array.  This integrated, 

RF and quasi-static, field simulation approach can be utilized in designing RF coil shielding. 
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7.0  CONCLUSIONS AND FUTURE WORK 

7.1 SUMMARY AND FINDINGS 

In this dissertation, RF methods have been applied to design implanted miniature antennas inside 

the human brain to transmit power wirelessly for implanted Brain Computer Interfaces. The 

results show that thin (on the order of 100 micrometers thickness) biocompatible insulating 

layers can significantly impact the antenna performance.  The proper selection of the dielectric 

properties of the biocompatible insulating layers and the implantation position inside the human 

brain tissues can facilitate efficient RF power reception by the implanted antenna.  While the 

results show that the effects of the human head shape on implanted antenna performance is 

somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted 

antenna can significantly impact the electrical characteristics (input impedance, and operational 

frequency) of the implanted antenna.  Three miniaturized antenna designs are simulated and they 

demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when 

the antenna is implanted around the dura, without violating the Specific Absorption Rate (SAR) 

limits.   

A new 20-channel transmit array has been evaluated and optimized for 7 Tesla MRI 

neuron imaging applications.  Eigenmode arrangement of the 20-ch coil allows controlling RF 

excitation not only at the XY plane but also along the Z direction; the modes of each group/level 
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can be excited simultaneously. Optimized results presented show the eigenmode could be 

optimized and generate a uniform 3D B1
+ excitation. The fields were also compared with an 8-ch 

TEM coil. Based on the array structure, new excitation paradigms are presented to generate 

uniform 3D magnetic excitation fields (B1
+). The optimization results have been verified by in-

vivo experiments with different scanning sequences on a Siemens 7T MRI human whole body 

scanner equipped with 8 parallel transmit channels.  High quality whole brain (including 

cerebellum) MPRAGE and Turbo-Spin-Echo images were acquired successfully.  

The eddy current simulation method is verified by the measurement results.  Eddy 

currents induced by solid/intact and simple-structured slotted RF shielding can significantly 

distort the gradient fields.  EPI images, B1
+ maps and S matrix measurements verified that the 

proposed slot pattern can suppress the eddy currents while maintaining the RF characteristics of 

the transmit coil.  The presented dual-optimization method could be used to design the RF 

shielding and reduce the gradient field-induced eddy currents while maintaining the RF 

characteristics of the transmit coil.   

7.2 CONTRIBUTION OF THIS DISSERTATION 

7.2.1 Non 50 Ohm Antenna and SAR Regulation Considerations 

Recent research reveals that the optimal frequency for the millimeter sized implantable antennas 

is above 1 GHz; the electromagnetic field penetration depth can be asymptotically independent 

of frequency at such high frequencies (77,178).  Furthermore, an implantable antenna operating 

above 1 GHz could be designed into a very small profile; these small sizes antennas could be 
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more bio-tissue compatible.  Therefore, an implantable antenna (above 1 GHz) provides a 

promising approach to accomplish the longevity of implantation of BCI in users as well as 

transmitting power effectively.   

There are some groups studying implantable antennas to transmit data wirelessly into the 

human body.  Most of these implantable antennas have been designed to operate at the medical 

implant communication service (MICS) band of 402-405 MHz.  The implantable small profile 

(about 30 mm length and 40 mm width) microstrip antennas’ resonance characteristics and their 

radiation were evaluated (36).  The transmission and reflection of microstrip antennas affected 

by different superstrates and substrates were studied (72), through numerical analysis and 

measurement.  The effects of different inner insulating layers and external insulating layers and 

power loss were discussed (73) analytically, using a spherical model. The radiation efficiency 

impacts of insulating layers were also presented (74).  For GHz and above operating frequencies, 

the impact of the coating on antenna performance was studied by an implanted antenna radiation 

measurement setup (75) .  A pair of microstrip antennas working at microwave frequencies (1.45 

and 2.45 GHz) established a data telemetry link for a dual-unit retinal prosthesis (76).   

All these referenced papers, whether working in the MICS band or at GHz frequencies, 

are assuming that the implantable antennas are connected with 50 Ohm transmission lines.  It is 

noted however, 1) the 50 Ohm assumption could limit the antenna geometry and operation 

frequency; 2) the ratio between received RF power and tissue absorption depends on the input 

impedance of the receive antenna (77). To realize the optimal antenna performance and 

conjugate matching (i.e. optimal performance), the antenna loads including connected wires and 

implanted chips could be designed to other values rather than being restricted to 50 Ohms.  

Additionally, the available transmitted power into the human brain has not been studied 
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thoroughly under SAR regulation studies in these referenced papers.  In this study, the maximum 

received power under the SAR regulations will be calculated based on the FDTD simulation 

results for different antenna structure designs.  

7.2.2 A New RF coil Mode Excitation Paradigm 

In order to generate a homogenous B1
+ field, various methods have been explored.  The parallel 

RF excitation approach uses a spatially tailored RF pulse design and has generated satisfactory 

results (179).  However, it requires extra time to measure B1
+ maps for each transmit channel; it 

is sensitive to the B0 field shimming quality and gradient field performance(126).  RF shimming 

is another widely used method.  Mao’s paper discussed the limits of this method for high field 

MRI of the human head, while there was no safety consideration (180) and signal efficiency 

consideration included.   

Time-Interleaved Acquisition of Modes (TIAMO) combines only two different 

excitations, but the contrast in the final image is expected to deviate since the excitation field is 

nonuniform in each of the individual modes (126).  The cylindrical coil produces homogeneity 

by driving a traveling wave from one end and absorbing at the other, however, the resistive 

termination makes the coil extremely inefficient (181).  In conclusion, none of the presented 

methods has yet been accepted and used for clinical application and a new coil excitation 

paradigm design and optimization method needs to be investigated.  

The TTT coil (182) is a highly coupled (between struts) and decoupled (between sides) 

coil.  Since the signal from one strut is coupled to another strut, the coil’s performance will not 

be changed significantly by the load (phantom or coil).  Since the load sensitivity of the TTT RF 

coil is robust, the optimization results could be extended for all patient scans without patient-
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specific simulations.  The modes of the RF coil are the linear independent current distribution 

solutions of coil’s circuit equations (183).  Some mode (uniform mode) was used to generate a 

very uniform transverse magnetic field inside the coil for lower field MRI, for example, mode 1 

of the high-pass birdcage coils at 1.5T (183).  Some other mode (gradient mode) was used to 

increase the SNR in the temporal lobes, occipital lobes and cerebellum (127).  There are also 

papers suggesting the use of two modes to increase the homogeneity of the image (126).  

However, it is not easy to excite several modes of the coil simultaneously (184) and modify 

modes freely; normally it needs the assistance of extra circuitry (e.g. Butler Matrix).  The TTT 

coil could easily excite different modes with combinations of different coil elements.  The 20 

channels provide the control ability not only at the XY plane but also in the Z direction. The 

optimization methods could be used to find a uniform excitation pattern by manipulating the 

amplitude and phase of each of the excitation modes under certain constraints.  There are many 

different solutions for the RF excitation that achieve a very similar fidelity to the targeted 

excitation pattern.  A solution with the minimized local SAR and best efficiency can be selected 

and used for a specific clinical application.  

7.2.3 New Eddy Currents Calculation and Shielding Slot Methods 

RF copper shielding induced eddy currents can be very problematic.  There are patents and 

papers discussing the shielding slot method to reduce eddy currents (153,154).  Less reported is 

the quantitative eddy current study.  Analytically, eddy currents are notoriously difficult to 

calculate.  In objective 3, the eddy current field is numerically calculated.  Successful MRI field 

experiment validation is delivered.  Eddy current characterization is studied based on eddy 

current response function.  Effective RF coil shielding slot design was reported (185,186) in 
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order to reduce eddy currents, for example, the multiple thin copper layers were discussed and 

their performance could ideally be transparent for the MR gradient fields and could efficiently 

block the high frequency electromagnetic emission (137).  These methods only work for coil 

structures where the RF shielding is not a component of the coil.  This work studies a new and an 

elaborate dual-optimization method that maintains the RF characteristics of the RF-coil and 

simultaneously reduces low frequency magnetic field distortions created by eddy currents. The 

optimization is guided by full wave electromagnetic simulation combined with eddy current 

simulation. The designs are tested on a 7T human scanner using phantoms and in-vivo subjects. 

7.3 FUTURE WORKS 

7.3.1 Implanted Antenna Designed for Wireless Power Transmission  

In this work, the input impedance of the antenna has been verified by the measurements of a 

monopole antenna in the air; the power transmission inside a lossy material has been discussed 

by analytical methods.  In the next step, performance of antennas with bio-compatible materials 

and inside the human tissue lossy environment should be measured. This can be done with the 

recently developed eight-component detailed human head phantom in our lab. The designed 

antenna system (transmit and receive circuitry with implanted chips and electrode array) could 

be measured inside this human head phantom to study the antenna power transmission efficiency 

and to calculate the needed number of antenna arrays.  
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7.3.2 RF Coil Designed for 7 Tesla MRI  

The designed innovative RF coil and new eigenmodes excitation method (along the Z direction) 

could generate high efficient, high uniformity and low power absorption 3D excitation pattern.  It 

will be a powerful tool for brain studies at 7 Tesla; it has been tested and provided high quality 

3D MPRAGE, SWI, fMRI and etc. It could benefit many clinical studies. Therefore, in the next 

steps, new 7 Tesla MRI clinical applications should be investigated.  Furthermore, most DTI 

imaging is done at 3 Tesla, since it requires high B0 field uniformity (which gets much worse at 7 

Tesla MRI).  How to generate uniform B0 or to get rid of the influence could also be a very 

interesting topic.  Last but not least, the coil design and excitation strategy will also be very 

useful for body coil, breast coil, knee coil and other RF coil designs for ultrahigh MRI 

applications.  
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APPENDIX A 

MRI GUIDED MAGNETIC NANOPARTICLE BASED DRUG DELIVERY FOR 

NEURODEGENERATIVE DISEASES- PRELIMINARY IN-VIVO AND IN-VITRO 

DATA 

This work relates to audiences who are interested in drug delivery research and development for 

Neurodegenerative Diseases by using MRI technology or ultrahigh field MRI. 

Purpose:   

To develop a new magnetic nanoparticle (MNP) based drug release system and to study the 

feasibility of MRI fields triggering MNP drug release in-vitro and in-vivo in the region of central 

the nervous system.  

Introduction:  

Neurodegenerative diseases are generally not well-understood and there are no effective drugs 

available to treat and prevent these diseases. Oxidative markers and damaged cell components 

were observed in neurodegenerative patients (187). Magnetic sensitive silica nano-spheres were 

used to control drug release (188). A potent antioxidant compound could be incorporated in 

magnetic nanoparticles and delivered into the central nervous systems (CNS) tissue for lowering 

oxidative stress related to numerous neurodegenerative diseases.  In this study, the feasibility of 
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using MRI fields to trigger the drug loaded MNPs is investigated. In-vitro and in-vivo results are 

provided.  

Experiments:  

Silica magnetic nanoparticles were synthesized. Fluorescent compound was loaded to represent 

the drug release. All the experiments were done with a 7T MRI (Germany, Siemens).  The 

effects of high intensity static magnetic fields on the stability of the particles were measured. An 

Echo Planar Imaging (EPI) sequence was used to generate the proper gradient field frequency to 

stimulate the drug release from designed dialysis sample tubes.  The release of fluorescein in-

vitro was measured using a spectrum meter. For the pilot study, magnetic nanoparticles loaded 

with fluorescein were also injected into the brain of a rat. The rat was exposed to the gradient 

field stimulation and then tissue slices were examined for fluorescein released with brightfield 

and fluorescence microscopy.  Magnetic nanoparticles were also injected into the rat brain 

without MRI stimulation exposure as the control. 

 

Figure A.1: Stability of MNP in the magnetic field 
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Results and Discussion:   

The synthesized particles were places inside the 7T MRI for 1hour to compare with controlled 

groups. Figure A. 1 shows that the static field did not increase the drug release from magnetic 

nanoparticles. MRI scanner room data was used to test the fringe fields. The heated sample (80 

ºC) was used as a positive control for the release. The EPI sequence was applied with RF 

amplitude of 0 Volt to make sure any release of the drug from the synthesized particles was 

caused by the gradient field.  The readout is Z gradient field. Figure A.2 shows the major 

frequency of the applied field is ~1.7 kHz and the intensity is about 16mT/m. We placed the 

sample at a location (80 cm away from the imaging iso-center) where 12 mT gradient fields were 

generated. For the in-vitro experiments, two 10 minute gradient field stimulations were applied 

at time points of 130 and 170 minute. The release of fluorescein was measured. Figure A.3 

shows that after samples reached a plateau during the passive release phase with fluorescein 

diffusion across the dialysis membrane, constituent fluorescein increase was observed, indicating 

MRI triggered release.  

 

Figure A.2: Gradient fields generated by the applied EPI sequence (a) and Fourier transform of the gradient 

field (b) 
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Figure A.3: MRI triggered release from magnetic nanoparticle 

 

In-vivo images are shown in Figure A.4. Magnetic nanoparticles ( mLmgL /20,10m ) were 

injected 2mm into the rat brain and a 10 minutes stimulation was done with 1.7 kHz and 12 mT 

gradient fields. The control was just injected but no stimulation was done. The animal was 

immediately sacrificed. The brain was removed and flash-frozen. Brain slice in Figure A.4 shows 

a clear increase of florescence in tissue surrounding the magnetic nanoparticles.  
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Figure A.4: In-vivo MRI triggered fluorescein release 

 

Conclusion:  

In-vivo drug release from silica magnetic nanoparticles via MRI stimulation was demonstrated 

by observing fluorescein release from silica magnetic nanoparticles injected into the brains of 

rodents.  
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APPENDIX B   

STUDIES IN RF POWER COMMUNICATION, SAR, AND TEMPERATURE 

ELEVATION IN WIRELESS IMPLANTABLE NEURAL INTERFACES 

B.1 INTRODUCTION  

Neural interfaces provide a direct functional interface with the brain to monitor or initiate neural 

activity.  The goal for these devices is to provide real-time control signals for prosthetic devices, 

study brain function, and/or restore sensory information lost as a result of injury or disease (1).   

The various classes of neural interfaces can be distinguished by their level of invasiveness (non-

invasive and invasive, i.e. intra-cranial) (31).  Non-invasive systems primarily record 

electroencephalograms (EEGs) from the scalp surface to control computer cursors or other 

devices.  The signals provided by EEGs are typically weak, since the signals are transmitted 

cross different tissue layers and the background noise also reduces the accuracy of the EEG 

received signals (32).  Furthermore, EEG-based techniques provide communication channels of 

limited capacity (20-30 bits/min) (189), limiting the usefulness for prosthetic devices for real-

time control.  Two other non-invasive technologies that could be considered as neural interfaces 

are magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) (190).  

However, both MEG and fMRI technologies require a high field magnetic environment enclosed 
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in a magnetically shielded room, which greatly increases the cost and severely limits their 

applications.  

The invasive neural interfaces are implanted either on the surface of the brain, or inserted 

into the cerebral cortex to capture local field potentials and/or action potentials (2-4).  The 

invasive neural interfaces have the potential to provide the spatial and temporal precision 

required for implementing real-time prosthetic systems.  The utility of neural interfaces have 

been demonstrated by several labs using non-human primates to control robotic arm movements 

(191-193) and people with tetraplegia to control a robotic arm (5) and a prosthetic limb (6) . The 

initial results suggest that neural interfaces implanted in the cortex could use spiking activity to 

restore independence for humans with paralysis (7).   

Most invasive neural interfaces use wires for power and data transmission.  The wires not 

only limit the utility of neural interfaces, but also increase the likelihood of device failure and 

clinical risks (8).  Using Radio Frequency (RF) to power and communicate with a neural 

interface could widely extend the number of applications and increase chronic in-vivo viability.  

There are several advantages to wireless implementation of neural interfaces: 1) the surgical 

access can be closed, 2) devices could be distributed across the brain, and 3) it minimizes relative 

motion between the device and tissue by removing tethering forces.  However, RF exposure may 

result in tissue heating, which is regulated by the Food and Drug Administration (FDA), 

International Electrotechnical Commission (IEC) and Federal Communications Commission 

(FCC).  In order to comply with these standards, accurate heating effects and RF exposure must 

be estimated.  In addition, it is essential to perform an analysis of electromagnetic power 

deposition throughout the human head to determine the amount of available power to neural 

interfaces without violating these limits.  Hence, this work focuses on the RF power 
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produced/received by dipole antennas in or on the surface of a human brain and the associated 

tissue heating.  The dipole antenna design was chosen in order to set up a normalized model for 

future studies.   

Power deposition analyses have been performed in the design of transcutaneous 

transmission coils for powering devices (such as cochlear implants), as well as to simulate the 

effects of external antennas (e.g. cell phones, magnetic resonance imaging probes, and 

hyperthermia antennas) placed in close proximity to biological tissue (194,195).  Studies have 

been conducted on the effects of implantable electric devices placed on the retina, cardiac 

muscle, and other structures within the body (36,196-203).  However, none of the above studies 

examine wireless operation inside the brain.   

A miniaturized neuroprosthesis suitable for implantation into the brain was studied by 

Mojarradi, et al (204), where they measured performance of low  power low-noise CMOS 

preamplifiers.  Bashirullah et al (205) provided a brief overview of developments towards the 

Florida wireless implantable recording electrode micro systems as well.  Harrison et al. (68) 

presents bench and in vivo experimental results from an integrated circuit designed for wireless 

implantable neural recording applications demonstrating wireless and inductively powered 

neural recordings from a cat and non-human primate using a single-chip system (INI3 chip) with 

a minimal number of off-chip components.  None of these studies examine tissue heating 

increases inside the human brain due to the wireless operation. 

Kim et al. studied the thermal impact from the operation of the implanted integrated 

electrode array (UEA) device (206). SAR was measured within a human-head-equivalent 

phantom during operation of the embedded passive wireless neurorecording microsystem(207) . 

Nevertheless, SAR and temperature changes due to the RF radiation by the wireless RF 
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transmitting antenna haven’t been investigated.  Ibrahim et al. provided an initial estimation of 

the amount of tissue heating under the SAR limitation with the operation of a wireless neural 

interface device (208).  However, all these calculations were performed in two dimensions (2-D) 

finite difference time domain (FDTD) method and the peak temperature changes caused by 

electromagnetic absorption in the head were predicted using the 2-D bio-heat equation.  In the 2-

D simulation, the simulated head model has to be highly simplified, as well as the structure of 

the transmit/receive antennas and the integrated implantable chip. Therefore, these models only 

provide an estimate of heating and SAR. For engineering neural interfaces for human 

applications, it is critical that we are able to accurately simulate specific 3D antenna structures 

and chip dimensions.  3-D simulation provides critical data for calculating the transmit power, 

radiation efficiency and the SAR distributions during device design.  The presence of human 

tissues at high frequencies can affect RF field distribution/intensity/polarization; all of which will 

impact the allowed power reception under specific SAR guidelines.  In conclusion, an elaborate 

three dimensional (3-D) SAR and temperature study of the implantable neural interface device is 

needed to accurately model SAR and temperature associated with RF powered neural interface 

operation. 

In this work, we designed a 3-D modeling scheme of the head-neural interface antenna 

system to study RF power reception and local heating associated with the operation of a wireless 

implantable neural interface.  The dipole antennas were numerically implanted inside of a 19-

tissue head model (38,209-212) at different depths.  The study was performed with different 

antenna lengths at different frequencies.  Since FDTD method has great advantage when applied 

to the human body simulation (relative short computational time and small memory 

requirements), an in-house 3-D FDTD package was used to calculate the SARs, in conjunction 
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with an accurate excitation/reception algorithm (59).  The FDTD model of the implanted antenna 

was validated by the analytical formulation on a simplified geometry for uniform dielectric and 

lossy media.  The 3-D bio-heat equation was then used to calculate the temperature changes in 

the head due to the external antenna.  

B.2 MATERIALS AND METHODS 

B.2.1 The Numerical Electromagnetic Model 

The neural interface is implanted intracranially, including the antenna and all the neural signal 

processor (spike detection, signal conditioning, RF/DC converter, impedance matching, and 

analog to digital converter, etc).  Since our focus is on the RF power reception by the implanted 

antenna and the associated tissue heating; the chip structure will be simplified and the antenna 

performance will be emphasized.  An external transmitting antenna is used to transmit power to 

the implanted receiving antenna within the skull.  In our analysis, both the transmitting (outside 

the head) and receiving antennas (inside the head) were designed as dipole antennas.  The dipole 

antenna was chosen to set up a normalized model for future studies.   

The transmitting antenna has a length of 63 mm and is located 10 mm away from the 

back of the head as shown in Figure B.1, and it resonates at a frequency of 2.38GHz in free space 

(achieved numerically).  The receiving antenna, as a part of the neural interface, is implanted 

inside the skull.  To calculate and analyze the efficiency of power transmission, the receiving 

antennas were designed with three different lengths (5 mm, 9 mm, and 15 mm) and tested at 

various depths (0 mm, 10 mm, 30 mm, and 60 mm) inside the brain (the brain surface is 
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normally 20mm from the head surface).  The radiation efficiency is in part proportional to the 

radiation resistance (the real part of the antenna input impedance) (33,74).  Ideally the radius of 

the wire does not affect the input resistance (33).  Therefore the thickness and width of the wire 

of the implanted dipole antennas are negligible in this study.   The material of the antenna is 

simulated as a perfect electrical conductor (PEC) to model very good conducting materials.  The 

positions of the external antenna and 4 implant depths are illustrated in the sagittal plane of the 

human head in Figure B.1.   

 

 

Figure B.1: Sagittal view of the human head model.  (Lines represent simulated positions of the 

transmitting/external antenna outside of the head and the implanted neural interfaces at 4 different depths 

inside the skull.) 

 

The FDTD grid of the 19-tissue head model developed from 1.5 Tesla MR images (209) 

has a resolution of mmmmmm 111 ×× .  The FDTD grid of the head-neural interface system has 

dimensions of 200278162 ××  cells with the spatial resolution of 1mm.  The time step is 1.8873 

picoseconds to satisfy the FDTD stability criterion.  The perfectly matched layers (PML) (213) 

are used as the absorbing boundary conditions. 
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B.2.2 Transmission Line Excitation/Reception and Power Calculations 

At the feeding location, the transmitting dipole antenna is excited by a virtual 

transmission line (85), which is injected with a differentiated Gaussian pulse with sufficient 

frequency content around the intended operational frequency.  The differentiated Gaussian pulse 

is: 
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The parameter T affects the pulse-width and the time delay of the pulse.  S is a temporal 

delay parameter.  The widely used Medical Implant Communications Service (MICS) frequency 

band is 402-405 MHz (214,215). A sub-skin-depth implanted antenna has been studied around 

400 MHz (216). Recent research reveals that the optimal frequency for millimeter sized 

implanted antennas is in the gigahertz range (77,78). A set of suitable parameters for S (5.8) and 

T (0.1) from equation (B-1) have been chosen for a wideband spectrum of frequencies ranging 

from 1GHz to 4GHz according to the lengths of the simulated antennas (5 mm, 9 mm and 15 

mm).  The differentiated Gaussian pulse in the time domain and the frequency response are 

shown in Figure B.2. 
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Figure B.2: The differentiated Gaussian pulse in (a) time and (b) frequency domains used to power the 

implanted antenna. 

 

Using an in-house simulation FDTD software that has been experimentally validated in 

many MRI applications (217-219), a coaxial probe (one dimensional transmission line) feed 

model is implemented with the standard 3-D FDTD algorithm.  This hybrid algorithm is 

conditionally stable and is subject to continuous adjustment according to the geometry, structure, 

and properties of the object being simulated.   

A virtual coaxial cable is modeled as a loss-free one-dimensional transmission line (59) 

connected to the center-fed dipole antennas.  The transmission line implementation is used to 

measure the power radiated by the transmit antenna outside of the head, as well as the power 

received by the implanted receiving antennas.  The power received by each of the implanted 

antennas is calculated using the following equation: 

 [ ]∗= recrecrec IVP Re
2
1  (B-2) 



 143 

The load impedance (which will be used to match with the transmission line impedance) 

ZL as seen from the transmission line is calculated based on the following equation: 
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Where V(z’)/I(z’) is the ratio of the voltage and current (using frequency domain analysis) 

at this location, 0Z  is the characteristic impedance of the virtual transmission line, z’ is the 

distance between a given point located inside the transmission line and the aperture (interface 

between the dipole and transmission line) and 
λ
πβ 2

=  is the wave number.  

B.2.3 Impedance Matching 

From circuit theory, a maximum transfer of power from a given voltage source to a load occurs 

when the load impedance is the complex conjugate of the source impedance (220).  Before 

calculating the power reception by the implanted antennas, the input impedance and the resonant 

frequency of a load (composed of antenna, neural interface, human head, and the environment 

surrounding the head) are computed.  After calculating the resonant frequencies and impedances 

of the load, the characteristic impedance of the transmission line is adjusted to match the load 

value. The characteristic impedance of the transmission line connected to the external 

(transmitting) antenna is set to 50 Ohm; while the characteristic impedance of the virtual 

transmission line connected to the implanted (receiving) antenna is adjusted to the antenna input 

impedances for the most efficient power reception.  
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B.2.4  The 3-D Bio-Heat Model  

Since the wireless RF power produced/received by external and implanted receiving antennas is 

the focus of this work, temperature changes in the human tissue caused by the RF power 

deposition in the head with the implanted neural interface antenna due to the radiation from the 

external transmitting antenna will be considered.  After the electromagnetic fields in the human 

head model are calculated using the FDTD method, the SAR distribution due to the 

communication between the antennas within the human head model is then computed. The 

temperature T changes due to the RF field from the external transmitting antenna are calculated 

using equation (B-4) (196).  

 SARTTBATK
t
TC bp ρρ +−−+∇=
∂
∂ )(0

2  (B-4) 

where Cp (J/kg ºC) denotes the specific heat (the amount of heat per unit mass required to 

raise the temperature by one degree Celsius), K (J/m s ºC) denotes the thermal conductivity (the 

property of a material that indicates its ability to conduct heat), Ao (J/m3 s) denotes the basal 

metabolic rate (the minimum calorific requirement needed to sustain life in a resting individual), 

and B (J/m3 s ºC) denotes the blood perfusion coefficient (196,197).  At the boundary between 

the tissue and air, the following boundary condition is applied (208): 
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where Ha denotes the convective transfer coefficient (a constant with a value of 20 J/m2 s 

ºC) (208).  The ambient temperature, Ta, is set to 24 ºC (196,197).   

The head model, initially at a uniform 37 ºC, is put into a 24 ºC environment without RF 

power deposition (SAR=0) until the equilibrium condition T0 is met.  A steady state is defined as 
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dT/dt = 2 × 10 -7 °C/s for at least 20 minutes.  Then the SAR due to the RF field is inputted in 

order to calculate the temperature elevations caused by the RF power emitted from the external 

antenna.  The spatial and time steps are 1 mm and 0.0125 second, respectively.  The thermal 

properties of the tissues in the head model can be found in Table B.1(196,208).  

Table B.1: Thermal properties for the biological tissues contained in the human head model(196,208). 

 
Basal Metabolic 

Rate 
Specific 

Heat 
Blood Perfusion 

Coeff. 
Thermal 

Conductivity 

 Ao Cp B K 

 [J/(m3 s)] [J/kg °C] [J/ (m3 s °C)] [J/m s °C] 

Air  0 1000 0 0.03 
Blood  0 3640 0 0.549 

BoneCancellous  590 1300 3300 0.4 
BoneCortical  610 1300 3400 0.4 

BrainGreyMatter  7100 3700 40000 0.57 
BrainWhiteMatter  7100 3600 15925 0.5 

Cartilage  1600 3500 9000 0.47 
Cerebellum  7100 3700 40000 0.57 

CerebroSpinalFluid  0 4200 0 0.62 
Cornea  0 4200 0 0.58 
Dura  860 2802 4830 0.31 
Fat  300 2500 1700 0.25 

MucousMembrane  1600 3300 9000 0.43 
Muscle  690 3600 2700 0.5 
Nerve  7100 3500 40000 0.46 

Skin Dry  1620 3500 9100 0.42 
Skin Wet  1620 3500 9100 0.42 
Tongue* 690 3600 2700 0.5 

VitreousHumor  0 4200 0 0.6 
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B.3 VALIDATION  

In this section we describe the analytical models of a Hertzian dipole antenna immersed in a 

dielectric and lossy media used to validate our numerical calculations of the implantable antenna.  

Two dielectric (lossless/lossy) blocks with cubic shapes are modeled using our FDTD 

electromagnetic numerical model.  Considering the operational frequency of 2.4 GHz, a relative 

dielectric constant of 39.0, and a conductivity 0.39 S/m (average dielectric constant and 

conductivity in the brain at 2.4 GHz) are used (88).  The resolution of the domain is set to 

mmmmmm 111 ×× and the time step is 1.8873 Pico seconds (similar to that used in our 

calculations).  A coaxial probe feed model is implemented at the center of the calculation domain 

as a feed point to the Hertzian dipole.  Bounded with PMLs, the power radiated from the dipole 

in the FDTD model propagates similarly to the way it does in the lossless/lossy medium of 

infinite extent.  After a prescribed number of time steps, the recorded electromagnetic fields in 

the time domain are calculated at the operational frequency of 2.4 GHz using Fourier transforms.  

Figure B.3 demonstrates the results of the power radiation in (a) lossless (s = 0, ε  = 39.0) and 

(b) lossy (s = 0.46, ε = 39.0) media.  In the simulation of power propagation in a lossless block 

(Figure B.3 (a)), the power radiated through a set of cubic-shaped surfaces enclosing the dipole 

is calculated as a function of the distance from the dipole.  In the case of the lossy medium 

(Figure B.3 (b)), instead of the cubical surfaces, the power radiation is computed through a series 

of spherical enclosures centered on the dipole for comparison with the analytical result (shown 

later in equation (B-6)).  The calculations in the spherical surface slightly vary with the radius of 

the spheres when rectangular cells in the FDTD model are applied to a polar coordinate.  

Therefore, the power radiation through a sphere enclosure is averaged over three adjacent 
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spherical layers (the resolution of the spherical layers is 1 mm which is the same as that used in 

the FDTD model.) 

 

Figure B.3: Electromagnetic power radiation in (a) lossless and (b) lossy media. (The solid line represents the 

FDTD calculated data and dotted line represents the analytical data. The power radiation is normalized and 

is shown as a function of radial distance from the dipole.) 

 

The output from the full wave FDTD model in a lossless medium Figure B.3 (a) shows 

that the total power radiated outwardly measured from a cubic surface is conserved: the 

simulation result of the time average power radiation over one period (
β
πλ 2

= where µεωβ =  
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for a lossless medium) minimally changes with propagation (less than 1% difference from the 

normalized value), which agrees with the energy conservation law (221).  

According to the power calculation from equation (B-6) (222), radiated power of a 

Hertzian dipole immersed inside a lossy medium is a function of the operational frequency, the 

radial distance from the source, and the properties of the excitation source and the medium.  
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where S is the complex Poynting’s vector given as *

2
1 EHS = ; R is the radial distance 

from the source; α and β are the real and imaginary parts of the propagation constant γ given in 

equation (B-7): 
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According to equation (B-7), analytical calculation is performed and the normalized 

power radiation is plotted as a function of radial distance from the excitation source shown with 

the dotted line in Figure B.3 (b).  The simulation results are in excellent agreement with the 

analytical results.  In a lossy medium, the simulation results show that electromagnetic energy 

decays with its propagation as shown in Figure B.3 (b).  Similarly, the time average power 

radiation over one period (
β
πλ 2

= ) from the FDTD simulation clearly predicts the analytical 

results. 
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B.4 RESULTS AND DISCUSSION  

B.4.1 Resonant frequencies and input impedances of the Implanted Antennas 

The load as seen from the transmission line (composed of antenna, human head, and the 

environment surrounding the head) is numerically computed by FDTD method.  Table B.2 lists 

the resonant frequencies (defined as the frequency at which the implanted antenna input 

impedance is purely real) and the corresponding input impedance for the three specified antennas 

at the four specified brain depths.  The transmission line connected to the receiving dipole should 

be adjusted to these impedance values individually in order to maximize power reception.  Table 

B.2 demonstrates that implanted dipole antennas with the same length resonate at different 

frequencies when implanted at various brain depths.  Thus the input impedance (at resonance) of 

the implanted antennas (as defined equation (B-3)) varies with the antenna length as well as the 

position within the human brain indicating that the received near-field RF power maybe 

impacted by constitutive parameters of the surrounding tissues (Table B.1) 

 

Table B.2: Resonant frequencies and input impedances for the dipole antennas implanted at various depths 

Antennas(length) 0mm brain-depth 10mm brain-depth  30mm brain-depth  60mm brain-depth  

 f 
(GHz) 

Z 
(Ohm) 

f 
(GHz) 

Z 
(Ohm) 

f 
(GHz) 

Z 
(Ohm) 

f 
(GHz) 

Z 
(Ohm) 

5 mm 3.39 16.5 3.56 12.0 3.59 12.1 3.01 14.6 
9 mm 2.07 22.7 2.16 16.5 2.18 14.6 1.95 16.5 

15 mm 1.27 27.1 1.31 23.1 1.37 18.4 1.27 18.3 
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B.4.2 Maximum Power Reception without SAR Violations  

The SAR safety regulations regarding RF power deposition in the head varies for different 

applications: the International Electrotechnical Commission (IEC) and the Food and Drug 

Administration (FDA) limit local SAR to <=10 W/kg over every 10 grams of tissue for heating 

due to the RF exposure during MRI experiments (normally the frequency is less than 300MHz 

for human MRI studies).  According to FCC safety regulations, the peak local SAR for any 1gm 

of tissue must be less than or equal to 1.6 W/kg when a human head is exposed to an external 

radiofrequency field (223).  In this work, the power reception of the implanted antennas is 

analyzed based on the FCC SAR safety limit, which covers the frequencies up to 6 GHz. 

Figure B.4 shows the maximum receiving RF power at the FCC SAR limit for the three 

dipole antennas at their individual resonant frequencies (shown in Table B.2) and at various 

brain depths. The Friis transmission formula indicates that in the far field regime and in lossless 

media, the power received is inversely proportional to the square of the electrical distance 

between the transmitting and receiving antennas.   Figure B.4 demonstrates that the relationship 

between power reception and the implantation depth of the neural interface device does not 

strictly follow the Friis transmission formula due to 1) the inhomogeneous and lossy 

environment (human head) and 2) near field effects.  Figure B.4 also shows that longer antennas 

receive more power than shorter ones at their individual resonant frequencies.  Therefore, the 

results clearly show that for the shorter dipoles, the available RF power decays with a more rapid 

rate than the longer dipoles at greater depths inside the brain. 
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Figure B.4: Maximum power reception for all 3 antenna geometries at 2.07 GHz (red) and different 

frequencies tuned to their individual geometries (black) (maximum power reception at FCC SAR limit.) 

 

Furthermore, Figure B.4 provides the maximum power reception values at the FCC SAR 

safety limit at 2.07 GHz (the resonant frequency of the 9-mm antenna on the surface of the brain) 

for the 5-mm, 9-mm and 15-mm antennas implanted at different brain depths.  The results show 

that longer antennas at shallower brain-depths often receive more RF power at the FCC SAR 

limits even when operating at the non-matched/non-resonant frequencies.  For example at a 

specified brain depth, the 15 mm dipole is still the most efficient antenna when compared to the 

5-mm and 9-mm antennas even though the operational frequency (2.07 GHz) is 800 MHz away 

from its resonant frequency (1.27 GHz as shown in Table B.2.)   

Figure B.4 along with Table B.2 demonstrate that the operating frequency significantly 

affects the power reception of the implanted antennas: higher frequencies result in less power 
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availability at the SAR limit.  The loss in power at higher frequencies is a result of the reduced 

skin depth; thus, converting much of the RF energy into heat in the superficial tissues.  However, 

the use of lower frequencies can possibly alter the intrinsic impedance of the antenna which can 

result in significant mismatch with the circuits’ impedances.  Therefore, a balanced choice of 

antenna geometry and operational frequency is crucial.  

Last but not least, the development of neural interfaces capable of recording from deeper 

structures may require ultra-low power circuit designs.  The antennas’ performance at different 

operational frequencies in Figure B.4 shows that the maximum power available before violating 

the FCC SAR limit for the 15-mm implanted antenna at its resonant frequency will be 190uW or 

less when the neural interface is implanted at brain depths greater than 3cm (or equivalently 5cm 

inside the head).  Assuming a 25% RF/DC conversion efficiency (due to the switching nature of 

the harvester circuits), the neural interfaces can consume 47.5 uW or less.   

B.4.3 Temperature Changes  

A maximum temperature elevation of less than 1.0 C°  is regulated by the FDA government 

safety guideline (208,224).  In this paper, we evaluated the temperature changes due to the RF 

radiation by the transmitting antenna.   



 153 

 

Figure B.5: Maximum temperature elevation for all 3 antenna geometries at 2.07 GHz (red) and frequencies 

tuned to their individual geometries (black) at FCC SAR safety limit. 

 

Figure B.5 shows the maximum temperature elevations due to the RF radiation by the 

transmitting antenna when the receiving antenna is implanted at various depths.  It shows that a 

maximum of 1.6 W/kg per 1gm SAR results in a temperature increase that is less than or equal to 

0.02 °C for all cases.  At the same operational frequency of 2.07GHz, the maximum temperature 

elevations for an antenna at various brain-depths are similar.  This could be explained based on 

equation (B-4): the temperature changes due to the RF radiation of the external antenna mainly 

depend on the SAR distribution; since the maximum SAR is limited to the same value (1.6W/kg 

averaged over every gram of tissue), the increased temperature is expected to be very similar.  

Furthermore, because of the thermal diffusion was considered in this 3D simulation, small-scale 
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variations in SAR do not necessarily lead to biologically significant variations in 

temperature(225).    

 

Figure B.6: Logarithmic SAR and temperature (T) distributions for the 3 antennas positioned at 0-mm brain 

depth. 

 

Figure B.6 provides a set of examples of the logarithmic SAR and temperature 

distributions for the three antennas at 0 mm brain-depth.  The top row shows the logarithmic 

SAR distributions for the 5-mm, 9-mm and 15-mm antennas (each operating at its resonant 

frequency).  Comparing the results in the top row, the deposited RF power extends deeper into 

the brain at the lower operating frequencies (longer antenna operating frequency) than higher 

frequencies (shorter antenna operating frequency) with the same SAR peak (1.6 W/kg averaged 

over 1gm of the tissue), this is because the power is decaying faster at higher frequency than at 

the lower frequency).  The bottom row of Figure B.6 shows the corresponding temperature 

elevations caused by SARs shown in the top row.  The surface of the head nearest the 

transmitting antenna experiences the greatest temperature rise.  This is expected, since the SAR 

and temperature peaks calculated in this section are due to the transmitting antenna rather than 
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the implanted receiving antenna. Comparing the temperature distributions and the SAR 

distributions, the temperature distributions do not always correlate with the SAR distributions; 

therefore predicting the locations of the hot spots (where highest temperature rise occurs) based 

on the SAR distribution alone can be misleading.  This issue has been discussed in previous 

works involving high frequency electromagnetic field biological tissue interactions (226,227). 

B.5 CONCLUSION 

The maximum power reception (at the FCC SAR limit) by the implanted antennas was calculated 

for the three different dipole antenna geometries.  The results demonstrate that a longer-length 

implanted antenna (when dipole antennas are utilized) with lower operational frequencies (not 

necessarily the antennas resonance frequencies) and shallower implantation depth will maximize 

the RF power reception prior to violating the safety limits.   However, the use of lower 

frequencies can possibly alter the intrinsic impedance of the antenna which can result in 

significant mismatch with the circuits’ impedances.  Therefore, a balanced choice of antenna 

geometry and operational frequency is crucial. The corresponding temperature elevations 

calculated using 3-D bio-heat simulations show that for the antennas and frequencies evaluated 

the highest temperature increase was less than 1 °C.   

The development of neural interfaces capable of recording from deeper structures may 

require ultra-low power circuit designs.  Neural interfaces must be capable of operating with less 

than 47.5 uW of power when implanted at depths greater than 3 cm inside the brain (or 

equivalent 5 cm inside the head) based on the results in this work.  Our current designs of 

implantable neural interface sensors consume about 35 uW (97) 
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For new applications that do not possess their own specific SAR regulation such as the 

case of measuring neural activity with wireless (RF powered) microneural interfaces (the topic of 

this work), new SAR limits may be determined using factors specific to the application of 

interest including: 1) Findings from experimental studies/numerical methods and/or 2) More 

complete understanding of long term consequences of exposure to electromagnetic fields.  

The maximum allowable received power will then change based on new SAR limits.  For 

instance, we have calculated the maximum power reception whenIEC/FDA SAR regulations are 

applied and the results show that the allowed power reception will be almost ten times of the 

power received as when the FCC SAR limit is applied: the maximum power reception for 

receiving antennas operating at their resonant frequencies (shown in Table B.2) and implanted at 

the surface of the brain using IEC/FDA SAR safety regulations are 393.02 µW, 1996.30 µW and 

7667.91 µW for 5 mm ,9 mm and 15 mm antenna respectively.  The temperature elevations for 

these cases are 0.70 °C, 0.83°C and 0.84 °C for the 5 mm, 9 mm and 15 mm antennas 

respectively. This compares to power reception values of 33.25 µW, 166.03 µW, and 737.69 µW 

and temperature elevation values of 0.02 °C, 0.011 °C, and 0.017 °C when the FCC SAR limit is 

applied.   
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