JOINT REGRESSION MODELING OF TWO CUMULATIVE INCIDENCE FUNCTIONS UNDER AN ADDITIVITY CONSTRAINT

AND

STATISTICAL ANALYSES OF PILL-MONITORING DATA

by

Martin P. Houze

B. Sc. University of Lyon, 2000

M. A. Applied Statistics, University of Pittsburgh, 2009

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School Of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015

UNIVERSITY OF PITTSBURGH

THE KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Martin P. Houze

It was defended on

Apr 16th, 2015

and approved by

Yu Cheng, Associate Professor, Department of Statistics and Department of Psychiatry

Satish Iyengar, Professor, Department of Statistics

Leon J. Gleser, Professor, Department of Statistics

Jong-Hyeon Jeong, Professor, Department of Biostatistics

Dissertation Advisors: Yu Cheng, Associate Professor, Department of Statistics and Department of Psychiatry,

Satish Iyengar, Professor, Department of Statistics

Copyright © by Martin P. Houze2015

JOINT REGRESSION MODELING OF TWO CUMULATIVE INCIDENCE FUNCTIONS UNDER AN ADDITIVITY CONSTRAINT AND STATISTICAL ANALYSES OF PILL-MONITORING DATA

Martin P. Houze, PhD

University of Pittsburgh, 2015

In the first part of this dissertation, we propose a parametric regression model for cumulative incidence functions (CIFs) which are commonly used for competing risks data. Our parametric model adopts several parametric functions as baseline CIFs and a proportional hazard or a generalized odds rate model for covariate effects. This parametric model explicitly takes into account the additivity constraint that a subject should eventually fail from one of the causes so the asymptotes of the CIFs should add up to one. Our primary goal is to propose a parametric regression model that provides regression parameters for the CIFs of both the primary and secondary risks. Moreover, we introduce a modified Weibull baseline distribution. The inference procedure is straightforward. Parameters are estimated via the maximization of the likelihood. Standard errors are obtained via the Hessian of the log-likelihood. We demonstrate the good practical performance of this parametric models with some existing methods.

In the second part of this dissertation, we propose several approaches for the modeling and analysis of medication bottle opening events data, and focus on frailty models, in both parametric and semiparametric forms. This approach provides regression coefficients which are of great interest to investigators and clinicians. A time effect can also be estimated. We apply our approaches to the analysis of a medication bottle opening events data set. To our knowledge, this is the first study of prescription bottle opening events which focuses on time between medication administrations through frailty models. We discuss the interpretation of the random effect of a subject, and how it can help characterize the adherence of that individual relative to that of the other subjects. We then present an exploratory cluster analysis of the survival curves of the participants.

TABLE OF CONTENTS

1.0	JO	INT REGRESSION MODELING OF TWO CUMULATIVE INCI-	
	DE	NCE FUNCTIONS UNDER AN ADDITIVITY CONSTRAINT .	1
	1.1	Introduction	1
	1.2	Model formulation	3
		1.2.1 Modified logistic baseline with PH link function	5
		1.2.2 Modified Weibull baseline with PH link function	6
		1.2.3 Modified logistic baseline with GOR link function	7
		1.2.4 Modified Weibull baseline with GOR link function	9
	1.3	Simulations	10
	1.4	Breast Cancer study data analysis	15
		1.4.1 Cause 1 regression coefficients	16
		1.4.2 Cause 2 regression coefficients	17
		1.4.3 Model Discussion	24
2.0	ST	ATISTICAL ANALYSES OF PILL-MONITORING DATA	25
	2.1	Introduction	25
	2.2	Models	28
		2.2.1 Modeling of gap times	28
		2.2.1.1 Cox regression	29
		2.2.1.2 Accelerated failure time models	29
		2.2.1.3 Frailty models with nonparametric baseline function	29
		2.2.1.4 Modeling of the random effects	31

			2.2.1.5 Cox frailty model with time-varying covariate \ldots	32
			2.2.1.6 Frailty models with parametric baseline function	32
		2.2.2	Counting processes	33
			2.2.2.1 Bayesian estimation of Cox regression with random effects \therefore	33
		2.2.3	Software	34
	2.3	Analy	ysis of data	35
		2.3.1	Exploratory data analysis	36
		2.3.2	Proportional hazard assumption	40
		2.3.3	Model comparison and covariate selection	40
		2.3.4	Interpretation of the random effect	41
		2.3.5	Model validation	46
	2.4	Explo	pratory cluster analysis	47
		2.4.1	Spline regression	47
			2.4.1.1 Cubic splines	47
			2.4.1.2 Natural smoothing splines	48
		2.4.2	Application to the ACT/CARE study dataset	48
			2.4.2.1 Clustering using ID-level summary measure	48
			2.4.2.2 Functional data clustering	49
	2.5	Conc	lusion and future work	50
3.0	BI	BLIO	GRAPHY	52

LIST OF TABLES

1.1	Simulation results where the data were simulated from our proposed modified	
	logistic (panel $LOG + PH$) or Weibull model (panel $WEI + PH$) with comple-	
	mentary log-log transformation or with generalized odds-rate transformation	
	(panel LOG + GOR and WEI + GOR), where AVE is the average of the	
	estimates, MoSE is the average of the model-based standard errors, ESE is	
	the empirical standard error, and Cov is the coverage rates of the 95% Wald	
	CIs	13
1.2	The estimates of the Causes 1 and 2 regression coefficients for the Breast	
	Cancer Study based on our proposed modified logistic (Log) and the modified	
	Weibull (Wei) with generalized odds-rate transformation, and the Fine-Gray	
	model (FG).	18
1.3	The estimates of the Cause 2 regression coefficients for the Breast Cancer	
	Study based on the Fine-Gray model (FG), the Fine-Gray model with tumor	
	size by time interaction (FGt), and the stratified Fine-Gray model (SFG) $\ .$.	22
2.1	Parametric models	44
2.2	Frailty models with non parametric baseline hazard	45
2.3	Descriptive statistics of clusters	50

LIST OF FIGURES

1.1	Estimates of CIFs for two example patients using the breast cancer study dataset	19
1.2	Estimates of time-varying coefficient for age in the cause 2 regression using	
	the Breast cancer study dataset	20
1.3	Estimates of time-varying coefficient for treatment in the cause 2 regression	
	using the Breast cancer study dataset	21
1.4	Estimates of time-varying coefficient for tumor size in the cause 2 regression	
	using the Breast cancer study dataset	21
1.5	Nonparametric estimates of cause 2 CIF curves for Placebo and Tamoxifen	
	groups	23
2.1	Histogram of gap times	37
2.2	Histogram of log gap times.	37
2.3	ID 1328's individual survival curve.	38
2.4	ID 1517's individual survival curve.	39
2.5	Survival curve for the entire sample	40
2.6	Survival curves by gender.	41
2.7	ID 1139's individual survival curve.	42
2.8	Profile likelihood for the individual random effect model	43
2.9	Survival curves of first and last gap times	46
2.10	Clusters	49
2.11	Individual survival curve with spline	50

Acknowledgments

I want to thank my advisors, Pr. Yu Cheng and Pr. Satish Iyengar, for their guidance. I express my gratitude to Pr. Leon Gleser for his support during my years as a graduate student. I also thank the members of my committee for the time they invested in reading my manuscript, and in providing me with important feedback.

Finally I want to thank Pr. Susan Sereika and Pr. Jacqueline Dunbar-Jacob for their encouragement and for giving me access to the dataset of the Evaluation of Adherence Interventions in Clinical Trials study.

1.0 JOINT REGRESSION MODELING OF TWO CUMULATIVE INCIDENCE FUNCTIONS UNDER AN ADDITIVITY CONSTRAINT

1.1 INTRODUCTION

Cox regression models (Cox, 1972b) and accelerated failure time models (Wei et al., 1990; Jin et al., 2003) are commonly used to analyze covariate effects on a single variable measuring the time to an event. In many survival studies, there are several competing causes of failure. The primary event, or the event of interest, may not be observed if the other competing events occur first. For example, in the breast cancer study considered by Shi et al. (2013), the primary event is the recurrence of a cancer growing locally. But this primary event may be unobservable, or competing-risk censored, if the other events such as death or distant metastasis have occurred first. In many other studies, investigators are interested in analyzing the time to death due to a certain disease of interest. However some of the participants will die from causes other than the disease of death into account and carry out cause-specific analyses.

In a competing risks setting, some standard quantities such as the survival function may not be well defined if removal of competing events is not conceptually realistic (Gooley et al., 1999). Instead, the cumulative incidence function (CIF) has been an established quantity to describe cumulative risks of an event of interest over time (Kalbfleisch and Prentice, 2002). The limit of a CIF is less than one, and is thus often referred to as subdistribution. Another approach in competing risks studies with covariates involves modeling the cause-specific hazard functions via a proportional hazards assumption (Prentice et al., 1978; Beyersmann et al., 2012). Unfortunately, the cause-specific hazard function does not have a direct interpretation in terms of survival probabilities for the particular failure type (Pepe, 1991; Gaynor et al., 1993). Many clinicians prefer using the CIF because it is intuitively appealing and more easily understood by the nonstatistician.

Shi et al. (2013) point out that all subdistributions, or CIFs, should add up to one when time goes to infinity, as one subject should eventually die from one of the competing causes. Shi et al. (2013) also note that such additivity constraint is ignored in some commonly used regression models for CIFs, such as the semi-parametric models of Fine and Gray (1999) and Scheike et al. (2008), which only consider one event at a time. If several causes are of interest, one may run their models several times (one iteration for each cause). However, it is not clear how to interpret the sets of regression parameters when the CIFs do not add up to one as time goes to infinity (Shi et al., 2013). Jeong and Fine (2007) presented a parametric model based on CIFs, but did not seem to account for the constraint either.

We consider two causes K = 1, 2, one for the event of interest, and the other for the competing event. Let T and C be the event time and censoring time. Let t denote time, and z the covariates. Shi et al. (2013) presented a parametric model for simultaneous inference of two CIFs. Their model adopts a modified logistic model as the baseline CIF and a generalized odds-rate model for covariate effects. Moreover, it explicitly takes into account the additivity constraint that a subject should eventually fail from one of the causes, so that the asymptotes of the CIFs should add up to one,

$$P(K = 1|\mathbf{z}) + P(K = 2|\mathbf{z}) = 1.$$
(1.1.1)

However Shi et al. (2013) did not explicitly model the covariate effects on the competing cause. Rather, they specified the covariate effects on the competing cause indirectly through the covariate effects on the primary cause and the additivity constraint.

Our primary goal is to propose a parametric regression model that is based on the framework of Jeong and Fine (2007) and Shi et al. (2013), but provides regression parameters for the CIFs of both the primary and secondary risks. Our model also accounts for the aforementioned additivity constraint (1.1.1). Moreover, we update the model of Shi et al. (2013) by introducing a new baseline function: the modified Weibull CIF. The Weibull distribution has been widely used in industrial and biomedical applications (Klein and Moeschberger, 2003), and is especially useful in modeling time to appearance of tumors in humans (Doll, 1971). However it cannot be directly used to model time to local cancer recurrence in our breast cancer application, because of competing-risk censoring. We hence introduce an extra leveling-off parameter in the modified Weibull CIF. The modified Weibull CIF can take a range of shapes with one or two bendpoints. Some Weibull CIF curves are of concave increasing shape, other curves are of sigmoidal shape, similar to the modified logistic function (Cheng, 2009).

The rest of the document is organized as follows. We introduce our parametric models in Section 1.2. Extensive simulation studies are performed in Section 1.3 to compare the performance of our parametric model with the Fine and Gray (1999) method, the semiparametric model by Scheike et al. (2008) and the parametric model in Jeong and Fine (2007). We applied all these regression models to the datasets of a breast cancer study in section 1.4.

1.2 MODEL FORMULATION

Let C be the censoring time, T be the time to an event, and K = 1, 2 be the cause indicator. We observe $Y = \min(T, C)$ and $\eta = KI\{T < C\}$, where I is the indicator function. Let Z_k be a covariate vector with respect to the cause k event, k = 1, 2. Fine and Gray (1999) and Fine (2001) assume that

$$g_k\{F_k(t;\beta_k,Z)\} = g_k\{F_{0k}(t)\} + \beta_k Z, \qquad (1.2.1)$$

where g_k is some nondecreasing known function, and $F_{0k}(t) = F_k(t; Z = 0)$ is an invertible and monotonically increasing function. The commonly used Fine and Gray method considers

$$g(u) = \log\{-\log(1-u)\},\tag{1.2.2}$$

which gives a proportional hazards interpretation for subdistribution hazards.

In the current work, we will continue to adopt parametric forms for g_k and F_{0k} in (1.2.1) as in Shi et al. (2013), and further improve the flexibility of the model by allowing covariate effects on both causes 1 and 2 events. The parametric model is a convenient choice by explicitly taking into account the additivity constraint. We will consider two families of distributions for F_{0k} , and focus on the commonly used transformation model (1.2.2). We will also study a more general family of transformation models, the generalized odds rate models,

$$\log[\{(1-u)^{-\alpha} - 1\}/\alpha], \tag{1.2.3}$$

which include (1.2.2) as a special case.

Let $f_k(t; \alpha_k, \beta_k, \psi_k, z) = \dot{F}_k(t; \alpha_k, \beta_k, \psi_k, z), \ k = 1, 2$, where the dot superscript denotes a derivative with respect to t. Similar to Jeong and Fine (2007), we consider the following full likelihood function

$$L = \prod_{i=1}^{n} \left[\left\{ \prod_{k=1}^{2} f_k(y_i; \alpha_k, \beta_k, \psi_k, z_i)^{I\{K_i=k\}} \right\} \left\{ 1 - \sum_{k=1}^{2} F_k(y_i; \alpha_k, \beta_k, \psi_k, z_i) \right\}^{I\{K_i=0\}} \right].$$
(1.2.4)

Taking the first derivative of log L with respect to the parameters $\alpha_k, \beta_k, \psi_k$, the maximum likelihood estimators (MLEs) $\widehat{\alpha_k}, \widehat{\beta_k}, \widehat{\psi_k}$ may be determined using a numerical algorithm, such as the Newton-Raphson method. The MLE of the cumulative incidence function is then $F_k(t, \widehat{\alpha_k}, \widehat{\beta_k}, \widehat{\psi_k})$, by using the functional invariance property of the MLEs.

We assume certain regularity conditions for the MLEs, including consistency and asymptotic normality. Thus the observed information matrix can be derived by taking the second derivatives of the log the likelihood function with respect to $\alpha_k, \beta_k, \psi_k$. Letting $\theta_k =$ $(\alpha_k, \beta_k, \psi_k)$, and applying the delta method, we can find the variance of $F_k(t, \hat{\theta}, \hat{\beta}_k, \hat{\psi}_k)$ by evaluating the expression

$$\widehat{\operatorname{Var}}\left(F_k(t,\widehat{\theta_k})\right) = \left(\frac{\partial F_k(t,\theta_k)}{\partial \theta_k}\right)\Big|_{\theta_k = \widehat{\theta_k}} \widehat{\operatorname{Var}}\left(\widehat{\theta_k}\right) \left(\frac{\partial F_k(t,\theta_k)}{\partial \theta_k}\right)^T\Big|_{\theta_k = \widehat{\theta_k}}.$$

Because $\theta_k = (\alpha_k, \beta_k, \psi_k), \frac{\partial F_k(t, \widehat{\theta_k})}{\partial \theta_k}$ is equivalent to

$$\left(\frac{\partial F_k(t,\theta_k)}{\partial \alpha_k}, \frac{\partial F_k(t,\theta_k)}{\partial \beta_k}, \frac{\partial F_k(t,\theta_k)}{\partial \psi_k}\right).$$

1.2.1 Modified logistic baseline with PH link function

Cheng (2009) proposed a modified three-parameter logistic distribution which models the "leveling-off" of the cumulative incidence using an added parameter, making it more appropriate for survival data with competing risks. The modified logistic model accommodates CIF curves of concave increasing shape or sigmoidal shape.

We now model cause 1 observations through the CIF of cause 1, $P(T \le t, K = 1 | \mathbf{z})$, following the modeling in Shi et al. (2013), expressed as:

$$P(T \le t, K = 1 | \mathbf{Z} = 0) = F_{01}(t; b_1, c_1, p_1) = \frac{p_1 \exp\{b_1(t - c_1)\} - p_1 \exp(-b_1 c_1)}{1 + \exp\{b_1(t - c_1)\}}, \quad (1.2.5)$$

where the parameter p_1 corresponds to the long-term probability of the cause 1 event, b_1 describes how fast the CIF approaches its asymptote p_1 , and c_1 describes the "center" of the rising. As demonstrated in Cheng (2009), the modified three-parameter logistic model is a flexible function that characterizes the CIF. In contrast to the Gompertz model used in Jeong and Fine (2006, 2007), the model in (1.2.5) is especially useful to capture CIFs that have a sigmoidal shape.

Similar to Fine and Gray (1999) and Fine (2001), we also assume model (1.2.1) and adopt $g(u) = \log\{-\log(1-u)\}$. Hence we obtain the CIF conditional on the covariates:

$$P(T \le t, K = 1 | \mathbf{Z} = \mathbf{z}) = 1 - \left[1 - p_1 \frac{\exp\{b_1(t - c_1)\} - \exp(-b_1c_1)}{1 + \exp\{b_1(t - c_1)\}} \right]^{\exp(\beta_1 \mathbf{z})}.$$
 (1.2.6)

The same model was also considered in Shi et al. (2013) for the cause 1 event, and on the other hand for the cause 2 event, the effects of covariates were only allowed indirectly through the additivity constraint on the asymptotes. To address this limitation and to explicitly model the covariate effects on the competing event while respecting the additivity constraint, we propose to model the cause 2 CIF, $P(T \leq t, K = 2|\mathbf{z})$, through the conditional distribution $P(T \leq t | K = 2, \mathbf{z})$. That is,

$$P(T \le t, K = 2|\mathbf{z}) = P(T \le t|K = 2, \mathbf{z}) \times P(K = 2|\mathbf{z}) = P(T \le t|K = 2, \mathbf{z}) \times p_2(\mathbf{z}),$$
(1.2.7)

where $p_2(\mathbf{z})$ is set by the constraint $P(K = 1|\mathbf{z}) + P(K = 2|\mathbf{z}) = 1$.

Note that $P(T \leq t | K = 2, \mathbf{z})$ is a proper conditional distribution which approaches 1 as time goes to ∞ . Hence, we can use any of the existing parametric regression models for survival data, such as linear models for log time or the transformation models similar to (1.2.1) except now the distributions are proper. Meanwhile, the modified logistic function can be easily adapted to accommodate proper distribution functions by dropping the "leveling-off" parameter, yielding the modified logistic function for the baseline conditional distribution:

$$P(T \le t | K = 2, \mathbf{Z} = \mathbf{0}) = \text{CDF}_{02}(t) = \frac{\exp\{b_2(t - c_2)\} - \exp(-b_2c_2)}{1 + \exp\{b_2(t - c_2)\}}.$$
 (1.2.8)

If we again choose the log-log link function $g(u) = \log\{-\log(1-u)\}\)$, we have

$$P(T \le t | K = 2, \mathbf{z}) = \text{CDF}_2(t) = 1 - \left[1 - \frac{\exp\{b_2(t - c_2)\} - \exp(-b_2c_2)}{1 + \exp\{b_2(t - c_2)\}}\right]^{\exp(\beta_2 \mathbf{z})}.$$
 (1.2.9)

We now use (1.2.7) and the additivity constraint in order to find $p_2(\mathbf{z})$. Due to the additivity constraint for the baseline CIFs, $F_{01}(\infty) + F_{02}(\infty) = 1$, $p_2(\mathbf{z} = 0) = 1 - p_1$. For any given covariates \mathbf{z} , again by the additivity constraint $F_1(\infty, \mathbf{z}) + F_2(\infty, \mathbf{z}) = 1$, we have

$$1 - (1 - p_1)^{\exp(\beta_1 \mathbf{z})} + (1 - (0)^{\exp(\beta_2 \mathbf{z})}) \times p_2(\mathbf{z}) = 1 - (1 - p_1)^{\exp(\beta_1 \mathbf{z})} + p_2(\mathbf{z}) = 1,$$

and thus $p_2(\mathbf{z}) = (1 - p_1)^{\exp(\beta_1 \mathbf{z})}$. Coupled with the conditional model in (1.2.9), we can explicitly model the covariate effects on the cause 2 CIF $F_2(t)$ as

$$P(T \le t, K = 2 | \mathbf{z}) = (1 - p_1)^{\exp(\beta_1 \mathbf{z})} \times \left\{ 1 - \left[1 - \frac{\exp\{b_2(t - c_2)\} - \exp(-b_2 c_2)}{1 + \exp\{b_2(t - c_2)\}} \right]^{\exp(\beta_2 \mathbf{z})} \right\}.$$

1.2.2 Modified Weibull baseline with PH link function

As we have discussed in the introduction, we also consider a modified Weibull distribution for baseline CIFs, in addition to the modified logistic function. The Weibull distribution is used extensively in applications to model survival times (Klein and Moeschberger, 2003), since the Weibull curves can have one, or two bend points. We modify the Weibull distribution to describe the baseline cause 1 CIF:

$$F_{01}(t;k_1,\lambda_1,p_1) = P(T \le t, K = 1 | \mathbf{Z} = \mathbf{0}) = p_1\{1 - e^{-(t/\lambda_1)^{k_1}}\},$$
(1.2.10)

where $k_1 > 0$ is the shape parameter, $\lambda_1 > 0$ is the scale parameter of the distribution, and p_1 controls the asymptote of the CIF.

Using the modified Weibull baseline CIF and the log-log link function in (1.2.1), we obtain the CIF conditional on the covariates:

$$P(T \le t, K = 1 | \mathbf{Z} = \mathbf{z}) = 1 - (1 - p_1 [1 - \exp\{-(t/\lambda_1)^{k_1}\}])^{\exp(\beta_1 \cdot \mathbf{z})}$$

We then turn to the modeling of cause 2 data following the strategy in (1.2.7). We start by defining the cause 2 conditional distribution at baseline as

$$P(T \le t | K = 2, \mathbf{Z} = \mathbf{0}) = \text{CDF}_{02}(t) = 1 - e^{-(t/\lambda_2)^{k_2}}.$$
 (1.2.11)

If we again choose the log-log link function $g(u) = \log\{-\log(1-u)\}\)$, we obtain

$$P(T \le t | K = 2, \mathbf{z}) = 1 - \{e^{-(t/\lambda_2)^{k_2}}\}^{\exp(\beta_2, \mathbf{z})}.$$

Similarly to the previous model, the additivity constraint $F_{01}(\infty) + F_{02}(\infty) = 1$ results in $p_2(\mathbf{z}) = (1 - p_1)^{\exp(\beta_1 \cdot \mathbf{z})}$. Therefore, the cause 2 conditional CIF $F_2(t)$ is given below:

$$P(T \le t, K = 2 | \mathbf{z}) = (1 - p_1)^{\exp(\beta_1 \cdot \mathbf{z})} \times \{1 - [e^{-(t/\lambda_2)^{k_2}}]^{\exp(\beta_2 \cdot \mathbf{z})}\}.$$

1.2.3 Modified logistic baseline with GOR link function

The above two modeling strategies were derived based on the log-log link function which is equivalent to the proportional subdistribution hazard assumption for the cause 1 CIF, and the proportional hazard assumption for the conditional distribution given the competing event being the cause of failure. These assumptions may not be realistic in some applications. Hence we consider a more general transformation function in (1.2.3), which includes the loglog link as a special case. We begin the modeling of cause 1 observations with the same baseline modified logistic CIF $F_{01}(t)$ as in (1.2.5). The generalized odds rate link has inverse function $g_1^{-1}(u) = 1 - \{\alpha_1 \exp(u) + 1\}^{-1/\alpha_1}$. Then we have

$$P(T \le t, K = 1 | \mathbf{z}) = g_1^{-1} [g_1 \{ F_{01}(t) \} + \beta_1 \mathbf{z}].$$

We now turn to the modeling of the secondary risk quantities. Similarly as before, we consider the baseline conditional distribution in (1.2.8).

We want to bring covariate effects into our modeling. We use link function $g_2(u) = \log[\{(1-u)^{-\alpha_2} - 1\}/\alpha_2]$, which has inverse function $g_2^{-1}(u) = 1 - (\alpha_2 \times \exp(u) + 1)^{-1/\alpha_2}$, and obtain:

$$P(T \le t | K = 2, \mathbf{z}) = \text{CDF}_2(t) = g_2^{-1}[g_2(\text{CDF}_{02}) + \beta_2 \mathbf{z}].$$

We now write out $F_1(\infty)$:

$$F_{01}(\infty) = 1 - \{\alpha_1 \times \exp(\log[\{(1-p_1)^{-\alpha_1} - 1\}/\alpha_1] + \beta_1 \mathbf{z}) + 1\}^{-1/\alpha_1}.$$

Shifting to cause 2 CIF, we have $F_2(\infty, \mathbf{z}) = p_2(z) \times P(T \le \infty | K = 2, \mathbf{z}) = p_2(z)$.

Therefore the covariate-adjusted additivity constraint $F_1(\infty, \mathbf{z}) + p_2(z) \times \text{CDF}_2(\infty, \mathbf{z}) = 1$ results in $p_2(z) = 1 - F_1(\infty, \mathbf{z})$. Hence we have the following expression for $p_2(z) = \{\alpha_1 \times \exp(\log[\{(1 - p_1)^{-\alpha_1} - 1\}/\alpha_1] + \beta_1 \mathbf{z}) + 1\}^{-1/\alpha_1}$.

Using the expression of $p_2(z)$ obtained from the covariate-adjusted additivity constraint, we can write out the cause 2 CIF $F_2(t)$ as

$$P(T \le t, K = 2|\mathbf{z}) = \{\alpha_1 \times \exp(\log[\{(1 - p_1)^{-\alpha_1} - 1\}/\alpha_1] + \beta_1 \mathbf{z}) + 1\}^{-1/\alpha_1} \times g_2^{-1}(g_2(\text{CDF}_{02}) + \beta_2 \mathbf{z})).$$

That is, we explicitly model the covariate effects on the competing cause.

1.2.4 Modified Weibull baseline with GOR link function

We begin the modeling of cause 1 observations with the same baseline CIF as in (1.2.10), and for cause 2 data we use the baseline Weibull CDF as in (1.2.11).

We now need to incorporate covariate effects in the modeling of the secondary risk data. To do so, we use link function $g_2(u) = \log[\{(1-u)^{-\alpha_2} - 1\}/\alpha_2]$, which has inverse function $g_2^{-1}(u) = 1 - (\alpha_2 \times \exp(u) + 1)^{-1/\alpha_2}$, and obtain:

$$P(T \le t | K = 2, \mathbf{z}) = g_2^{-1} [g_2(\text{CDF}_{02}) + \beta_2 \mathbf{z}],$$

where $\text{CDF}_{02} = P(T \le t | K = 2, \mathbf{Z} = \mathbf{0}) = \{1 - e^{-(t/\lambda_2)^{k_2}}\}.$ We now compute $F_1(\infty)$.

$$F_1(\infty) = 1 - \{\alpha_1 * \exp(\log[\{(1-p_1)^{-\alpha_1} - 1\}/\alpha_1] + \beta_1 \mathbf{z}) + 1\}^{-1/\alpha_1}.$$

Shifting to cause 2 CIF, and using the same additivity constraint as in the previous model, we obtain $p_2(z) = \{\alpha_1 \times \exp(\log[\{(1-p_1)^{-\alpha_1}-1\}/\alpha_1] + \beta_1 \mathbf{z}) + 1\}^{-1/\alpha_1}$.

Using $p_2 = 1 - p_1$ which we obtained from the baseline CIF additivity constraint, we can write out the baseline cause 2 CIF, denoted F_{02} , as follows

$$P(T \le t, K = 2 | \mathbf{z} = 0) = (1 - p_1)(1 - e^{-(t/\lambda_2)^{k_2}}).$$

Using the expression of $p_2(z)$ obtained from the covariate-adjusted additivity constraint, we can write out the cause 2 CIF $F_2(t)$ and explicitly model the covariate effects on the competing cause:

$$P(T \le t, K = 2 | \mathbf{z}) = \{ \alpha_1 \times \exp(\log[\{(1 - p_1)^{-\alpha_1} - 1\} / \alpha_1] + \beta_1 \mathbf{z}) + 1\}^{-1/\alpha_1} \\ \times g_2^{-1}(g_2[1 - e^{-(t/\lambda_2)^{k_2}}] + \beta_2 \mathbf{z})).$$

Some datasets may require a flexible model. The baseline CIF functions for cause 1 and cause 2 do not have to be from the same parametric family. For instance, the modified Weibull baseline function can be chosen for cause 1 events, while the modified logistic can be chosen for cause 2 events. Furthermore, the regression can utilize the proportional hazards approach for cause 1 data, and the generalized odds rate approach for cause 2 data.

1.3 SIMULATIONS

We perform extensive simulation studies to evaluate the finite-sample performance of our parametric regression models using the modified logistic function (LOG), and the modified Weibull function (WEI) as compared to the Fine and Gray method (FG) and the timevarying coefficients model proposed by Scheike et al. (Sch). Several scenarios are considered. We let the baseline CIFs satisfy either a modified logistic function (LOG), or a Weibull (WEI) function. The covariate effects follow a proportional hazard model for hazards of sub-distribution (PH). Below we give details on how we simulate the data with the LOG baseline and PH effects (LOG+PH). We assume that the baseline CIF for the primary cause follows (1.2.5) with k = 1. The regression model on the cause 1 CIF satisfies $g\{F_1(t; z)\} =$ $g\{F_{01}(t)\} + \beta_1 \mathbf{z}$, where z_1 and z_2 are drawn from the standard normal distribution and $g(u) = \log\{-\log(1-u)\}$. Then the cause 1 CIF conditional on the covariates $\mathbf{z}' = (z_1, z_2)$ has the form of (1.2.6) and $\beta'_1 = (\beta_{11}, \beta_{12})$. Therefore, we simulate the event time by $F_1^{-1}(U; z)$, where $U \sim$ uniform(0, 1) and F_1^{-1} is the inverse function of $F_1(t; z)$. Note that F_1 is improper and may not be invertible. When $U < 1 - (1 - p_1)^{\exp(\beta'_1 \mathbf{z})}$, we simulate the event time by

$$T = F_1^{-1}(U; z) = c_1 + \frac{1}{b_1} \log \left\{ \frac{1 - (1 - U)^{\exp(-\beta_1' z)} + p_1 \exp\{-b_1 c_1\}}{p_1 - 1 + (1 - U)^{\exp(-\beta_1' z)}} \right\},$$

with K = 1. When $U \ge 1 - (1 - p_1)^{\exp(\beta'_1 \mathbf{z})}$, K = 2 and the event time T comes from the cause 2 event.

As mentioned in Section 1.2, one needs to keep the additivity constraint (1.1.1). Thus, for the competing cause (K = 2), the conditional distribution of T given K = 2 is

$$F(t|K=2,\mathbf{z}) = P(T \le t|K=2,\mathbf{z}) = 1 - \left[1 - \frac{\exp\{b_2 \times (t-c_2)\} - \exp(-b_2 \times c_2)}{1 + \exp\{b_2 \times (t-c_2)\}}\right]^{\exp(\beta_2,\mathbf{z})}.$$

Then we simulate the event time T by $F^{-1}(V|K = 2, \mathbf{z})$, where F^{-1} is the inverse function of F and V ~uniform(0,1). We also simulate independent censoring time C following uniform(a, b), where a and b are constants greater than zero. The observable time is $Y = \min(T, C)$ and the corresponding cause indicator is $\eta = KI\{T < C\}$. Different values of a and b are used and the percentage of censoring is around 15-25% for all our simulations.

In each run of our simulations, we generate 300 pairs of event times and associated cause indicators. Next, we fit the simulated data by using our proposed parametric model with the modified logistic (LOG) baseline and the PH transformation, and the modified Weibull (WEI) and the PH transformation.

For the parametric models, the regression coefficient estimates are obtained by using the R function "nlminb" to minimize the minus likelihood function (1.2.4). nlminb() performs optimization subject to box constraints (i.e. upper and/or lower constraints on individual elements of the parameter vector). The variance of the estimator is estimated via the inverse of the Information matrix. The Information matrix is the negative of the expected value of the Hessian matrix, the matrix of second derivatives of the likelihood with respect to the parameters. The inverse is calculated via the R function "solve." For the semi-parametric models, we use the R function "crr" in the package **cmprsk** (Fine and Gray, 1999) and the R function "comp.risk" in the package **timereg** (Scheike et al., 2008; Scheike and Zhang, 2011).

We first show simulations using our modified logistic regression model. The results from 2,500 simulations are summarized in table 1.1. In each table, we report the averages of the estimates (AVE), the model-based standard errors (MoSE) which are computed based on the observed Fisher information matrices, the empirical standard errors (ESE), and the coverage (Cov) rates of the 95% asymptotic Wald confidence intervals for the regression coefficients and the CIFs evaluated at times 3 and 5, given that the covariates are $Z_1 = -1$ and $Z_2 = 2$.

The Scheike et al. (2008) model does not provide regression coefficients for covariates like the LOG, WEI or Fine Gray models. Instead, the Scheike method provides time-varying coefficients. As a consequence, we did not use the Scheike model when comparing regression coefficients and their standard errors across different models.

Table 1.1 contains the results for the cause 1 and cause 2 regression coefficients β_{11} , β_{12} , β_{21} , and β_{22} from the two parametric models and the Fine and Gray model, as well as the cause 1 and cause 2 CIFs $F_1(1)$, $F_1(3)$, $F_2(1)$, and $F_2(3)$ from the two parametric models, the Fine and Gray model and the Scheike model. The true model is marked in bold letters

in the leftmost column of the table.

When handling the LOG+PH data, as presented in panels A1 and A2 of table 1.1, our modified logistic model has comparable or better performance than Fine and Gray's semiparametric model, when it comes to estimating regression coefficients and predicting CIFs. The Fine and Gray model shows downward bias when estimating the cause 2 regression coefficients. To evaluate the effect of misspecifying baseline CIFs when estimating regression coefficients and predicting CIFs, we generate the data based on a modified logistic baseline and the proportional hazard model (LOG+PH). We then apply our proposed modified Weibull regression model to the simulated LOG+PH data and report estimation statistics in table 1.1. The estimation converges without significant bias, and the MoSEs are reasonable, which is evidence that the Weibull estimation procedure has some robustness. However, when we apply the modified Weibull baseline model to the simulated modified logistic data, the optimization takes more time (approximately twice longer) to converge, when compared to estimating with the modified logistic model.

We also run simulations using our modified Weibull regression model. The results from 2,500 simulations are summarized in panels B1 and B2 of table 1.1. When the baseline CIFs are from the modified Weibull model, the performance of our proposed modifed logistic model is comparable to that of the modified Weibull model and of the Fine and Gray method. The more general method by Scheike et al. (2008) also performs well, although the standard errors provided by the package are noticeably larger than the ones from the other three models.

As shown in table 1.1, the semiparametric model of Fine and Gray (1999) underestimates the values of β_{21} and β_{22} , the regression coefficients of cause 2. As a result, the coverage of the Wald confidence intervals is very low.

Next, we evaluate and compare the performance of the models when the proportional hazards assumption does not hold. We adopt the generalized odds rate (GOR) transformation (Dabrowska and Doksum, 1998; Jeong and Fine, 2007) for cause 1 and cause 2 CIFs. That is, $g\{F_1(t; z); \alpha_1\} = g\{F_{01}(t); \alpha_1\} + \beta'_1 \mathbf{z}$, where $g\{\nu; \alpha_1\} = \log[\{(1-\nu)^{-\alpha_1}-1\}/\alpha_1]$. We set $\alpha_1 = 5$ in our simulations. We simulate the competing cause times using $\alpha_2 = 5$. We con-

Table 1.1: Simulation results where the data were simulated from our proposed modified logistic (panel LOG + PH) or Weibull model (panel WEI + PH) with complementary log-log transformation or with generalized odds-rate transformation (panel LOG + GOR and WEI + GOR), where AVE is the average of the estimates, MoSE is the average of the model-based standard errors, ESE is the empirical standard error, and Cov is the coverage rates of the 95% Wald CIs

LOG + PH			$\hat{\beta}_{11}$			$\hat{\beta}_{12}$			\hat{F}_1	(1)			\hat{F}_1	(3)	
DIM	VAR	Log	Wei	FG	Log	Wei	FG	Log	Wei	FG	Sch	Log	Wei	FG	Sch
(A1)	True	0.50	0.50	0.50	0.50	0.50	0.50	0.08	0.08	0.08	0.08	0.15	0.15	0.15	0.15
300	AVE	0.50	0.51	0.50	0.50	0.50	0.50	0.08	0.09	0.09	0.09	0.15	0.15	0.14	0.14
000	MoSE	0.11	0.11	0.11	0.11	0.11	0.11	0.02	0.03	0.09	0.33	0.04	0.04	0.06	0.37
	ESE Cov	$0.11 \\ 0.95$	0.11	$0.11 \\ 0.95$	0.11 0.94	$0.11 \\ 0.95$	$0.11 \\ 0.94$	0.02 0.93	0.03 0.92	0.08 0.98	0.08 0.98	$0.04 \\ 0.94$	$0.04 \\ 0.95$	0.05 1.00	0.05 1.00
WEI +	- PH	0.000	Â11	0.00	0.01	Âıo	0.01	0.00		(1)	0.000	0101		(3)	1.00
(B1)	True	0.50	0.50	0.50	0.50	0.50	0.50	0.19	0.19	0.19	0.19	0.35	0.35	0.35	0.35
(21)	AVE	0.50	0.51	0.50	0.00	0.51	0.50	0.18	0.19	0.19	0.19	0.35	0.36	0.36	0.36
300	MoSE	0.11	0.11	0.11	0.43	0.01 0.11	0.00 0.11	0.04	0.04	0.09	$0.10 \\ 0.32$	0.00	0.08	0.50 0.10	$0.00 \\ 0.18$
	ESE	0.10	0.11	0.11	0.12	0.11	0.11	0.04	0.04	0.07	0.07	0.07	0.07	0.08	0.08
	Cov	0.96	0.95	0.95	0.88	0.94	0.94	0.90	0.94	0.90	1.00	0.91	0.94	0.90	0.99
LOG +	GOR		$\hat{\beta}_{11}$			$\hat{\beta}_{12}$			\hat{F}_1	(1)			\hat{F}_1	(3)	
(C1)	True	0.50	0.50	0.50	0.50	0.50	0.50	0.08	0.08	0.08	0.08	0.14	0.14	0.14	0.14
300	AVE	0.50	0.52	0.24	0.51	0.52	0.24	0.08	0.08	0.09	0.09	0.15	0.16	0.14	0.14
300	MoSE	0.24	0.26	0.11	0.25	0.26	0.11	0.03	0.03	0.06	0.36	0.13	0.14	0.07	0.36
	ESE	0.21	0.21	0.11	0.21	0.21	0.11	0.03	0.03	0.06	0.08	0.04	0.05	0.07	0.06
	Cov	0.93	0.94	0.32	0.94	0.94	0.31	0.91	0.92	0.92	0.99	0.96	0.97	0.92	1.00
WEI +	GOR		$\hat{\beta}_{11}$			$\hat{\beta}_{12}$			\hat{F}_1	(1)			\hat{F}_1	(3)	
(D1)	True	0.50	0.50	0.50	0.50	0.50	0.50	0.16	0.16	0.16	0.16	0.29	0.29	0.29	0.29
300	AVE	0.50	0.53	0.26	0.48	0.53	0.26	0.16	0.16	0.16	0.16	0.29	0.29	0.29	0.29
	MoSE	0.24	0.25	0.11	0.25	0.25	0.11	0.05	0.05	0.06	0.34	0.19	0.19	0.06	0.20
	ESE	0.19	0.23	0.11	0.19	0.24 0.01	0.11	0.04	0.05	0.00	0.06	0.04	0.05	0.07	0.07
	000	0.34	0.91	0.44	0.30	0.31	0.41	0.30	0.03	0.32	1.00	0.30	0.30	0.32	1.00
LOG +	- PH		$\hat{\beta}_{21}$			$\hat{\beta}_{22}$			\hat{F}_2	(1)			\hat{F}_2	(3)	
LOG +	- PH VAR	Log	$\hat{\beta}_{21}$ Wei	FG	Log	$\hat{\beta}_{22}$ Wei	FG	Log	\hat{F}_2 Wei	(1) FG	Sch	Log	\hat{F}_2 Wei	(3) FG	Sch
LOG + DIM (A2)	- PH VAR True	Log 0.50	$\hat{\beta}_{21}$ Wei 0.50	FG 0.50	Log 0.50	$\hat{\beta}_{22}$ Wei 0.50	FG 0.50	Log 0.32	\hat{F}_2 Wei 0.32	(1) FG 0.32	Sch 0.32	Log 0.48	\hat{F}_2 Wei 0.48	(3) FG 0.48	Sch 0.48
LOG + DIM (A2) 300	- PH VAR True AVE	Log 0.50 0.51	$\hat{\beta}_{21}$ Wei 0.50 0.48	FG 0.50 -0.04	Log 0.50 0.51	$\hat{\beta}_{22}$ Wei 0.50 0.49	FG 0.50 -0.04	Log 0.32 0.32	\hat{F}_2 Wei 0.32 0.32	(1) FG 0.32 0.32	Sch 0.32 0.32	Log 0.48 0.47	\hat{F}_2 Wei 0.48 0.47	(3) FG 0.48 0.43	Sch 0.48 0.43
LOG + DIM (A2) 300	- PH VAR True AVE MoSE	Log 0.50 0.51 0.09	$\hat{\beta}_{21}$ Wei 0.50 0.48 0.09 0.00	FG 0.50 -0.04 0.08	Log 0.50 0.51 0.09	$\hat{\beta}_{22}$ Wei 0.50 0.49 0.09	FG 0.50 -0.04 0.08	Log 0.32 0.32 0.07	\hat{F}_2 Wei 0.32 0.32 0.06 0.06	(1) FG 0.32 0.32 0.20	Sch 0.32 0.32 0.20	Log 0.48 0.47 0.07	\hat{F}_2 Wei 0.48 0.47 0.07 0.07	(3) FG 0.48 0.43 0.07 0.07	Sch 0.48 0.43 0.13
LOG + DIM (A2) 300	- PH VAR True AVE MoSE ESE Cov	Log 0.50 0.51 0.09 0.10 0.94	$\hat{\beta}_{21}$ Wei 0.50 0.48 0.09 0.09 0.96	FG 0.50 -0.04 0.08 0.08 0.00	Log 0.50 0.51 0.09 0.10 0.95	$\hat{\beta}_{22}$ Wei 0.50 0.49 0.09 0.09 0.95	FG 0.50 -0.04 0.08 0.08 0.00	Log 0.32 0.32 0.07 0.07 0.94	\hat{F}_2 Wei 0.32 0.32 0.06 0.06 0.94	(1) FG 0.32 0.32 0.20 0.08 1.00	Sch 0.32 0.32 0.20 0.08 1.00	Log 0.48 0.47 0.07 0.07 0.94	\hat{F}_2 Wei 0.48 0.47 0.07 0.07 0.94	(3) FG 0.48 0.43 0.07 0.07 1.00	Sch 0.48 0.43 0.13 0.07 1.00
LOG + DIM (A2) 300	- PH VAR True AVE MoSE ESE Cov	Log 0.50 0.51 0.09 0.10 0.94	$\hat{\beta}_{21}$ Wei 0.50 0.48 0.09 0.09 0.96	FG 0.50 -0.04 0.08 0.08 0.00	Log 0.50 0.51 0.09 0.10 0.95	$\hat{\beta}_{22}$ Wei 0.50 0.49 0.09 0.09 0.95 $\hat{\beta}_{22}$	FG 0.50 -0.04 0.08 0.08 0.00	Log 0.32 0.32 0.07 0.07 0.94	\hat{F}_2 Wei 0.32 0.32 0.06 0.06 0.94	(1) FG 0.32 0.32 0.20 0.08 1.00	Sch 0.32 0.20 0.08 1.00	Log 0.48 0.47 0.07 0.07 0.94	\hat{F}_2 Wei 0.48 0.47 0.07 0.07 0.94	(3) FG 0.48 0.43 0.07 0.07 1.00	Sch 0.48 0.43 0.13 0.07 1.00
LOG + DIM (A2) 300 WEI + (B2)	- PH VAR True AVE MoSE ESE Cov - PH	Log 0.50 0.51 0.09 0.10 0.94	$\hat{\beta}_{21}$ Wei 0.50 0.48 0.09 0.09 0.96 $\hat{\beta}_{21}$ 0.50	FG 0.50 -0.04 0.08 0.00 0.00	Log 0.50 0.51 0.09 0.10 0.95	$\hat{\beta}_{22}$ Wei 0.50 0.49 0.09 0.09 0.95 $\hat{\beta}_{22}$ 0.50	FG 0.50 -0.04 0.08 0.08 0.00	Log 0.32 0.32 0.07 0.07 0.94	\hat{F}_2 Wei 0.32 0.06 0.06 0.94 \hat{F}_2	(1) FG 0.32 0.20 0.08 1.00 (1)	Sch 0.32 0.32 0.20 0.08 1.00	Log 0.48 0.47 0.07 0.07 0.94	\hat{F}_2 Wei 0.48 0.47 0.07 0.07 0.94 \hat{F}_2	(3) FG 0.48 0.43 0.07 0.07 1.00 (3)	Sch 0.48 0.43 0.13 0.07 1.00
LOG + DIM (A2) 300 WEI + (B2)	- PH VAR True AVE MoSE ESE Cov - PH True	Log 0.50 0.51 0.09 0.10 0.94 0.50	$\hat{\beta}_{21}$ Wei 0.50 0.48 0.09 0.09 0.96 $\hat{\beta}_{21}$ 0.50 0.52	FG 0.50 -0.04 0.08 0.00 0.50 -0.03	Log 0.50 0.51 0.09 0.10 0.95 0.50	$\hat{\beta}_{22}$ Wei 0.50 0.49 0.09 0.09 0.95 $\hat{\beta}_{22}$ 0.50 0.51	FG 0.50 -0.04 0.08 0.00 0.50 -0.03	Log 0.32 0.07 0.07 0.94 0.31	\hat{F}_2 Wei 0.32 0.32 0.06 0.06 0.94 \hat{F}_2 0.31 0.31	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28	Sch 0.32 0.20 0.08 1.00 0.31	Log 0.48 0.47 0.07 0.07 0.94 0.51	\hat{F}_2 Wei 0.48 0.47 0.07 0.07 0.94 \hat{F}_2 0.51 0.50	(3) FG 0.48 0.43 0.07 0.07 1.00 (3) 0.51 0.47	Sch 0.48 0.43 0.13 0.07 1.00 0.51 0.47
LOG + DIM (A2) 300 WEI + (B2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE	Log 0.50 0.51 0.09 0.10 0.94 0.50 0.51 0.10	$\hat{\beta}_{21}$ Wei 0.50 0.48 0.09 0.99 0.96 $\hat{\beta}_{21}$ 0.50 0.52 0.09	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08	Log 0.50 0.51 0.09 0.10 0.95 0.50 0.50 0.51 0.10	$\hat{\beta}_{22}$ Wei 0.50 0.49 0.09 0.95 $\hat{\beta}_{22}$ 0.50 0.51 0.10	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08	Log 0.32 0.32 0.07 0.07 0.94 0.31 0.31 0.06	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07	$\begin{array}{c} \hat{F}_2 \\ \hline Wei \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \end{array}$	(3) FG 0.48 0.43 0.07 0.07 1.00 (3) (3) 0.51 0.47 0.10	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11
LOG + DIM (A2) 300 WEI + (B2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE	Log 0.50 0.51 0.09 0.10 0.94 0.50 0.51 0.10 0.10	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \hat{\beta}_{21} \\ \hline Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.09 \\ 0.96 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08	Log 0.50 0.51 0.09 0.10 0.95 0.50 0.50 0.51 0.10 0.11	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \hat{\beta}_{22} \\ \hline Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.10 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08	Log 0.32 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.06 \\ \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.07	$\begin{array}{c} \hat{F}_2 \\ \hline Wei \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ \end{array}$	(3) FG 0.48 0.43 0.07 1.00 (3) (3) 0.51 0.47 0.10 0.07	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07
LOG + DIM (A2) 300 WEI + (B2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov	Log 0.50 0.51 0.99 0.10 0.94 0.50 0.51 0.10 0.10 0.95	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00	Log 0.50 0.51 0.99 0.10 0.95 0.50 0.50 0.51 0.10 0.11 0.95	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \hat{\beta}_{22} \\ \hline Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.10 \\ 0.95 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00	Log 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.32 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.07 0.95	$\begin{array}{c} \hat{F}_2 \\ \hline Wei \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \end{array}$	(3) FG 0.48 0.43 0.07 1.00 (3) (3) (3) 0.51 0.47 0.10 0.07 0.90	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99
LOG + DIM (A2) 300 WEI + (B2) 300 LOG +	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR	Log 0.50 0.51 0.09 0.10 0.94 0.50 0.51 0.10 0.10 0.95	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \\ Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{21} \end{array}$	FG 0.50 -0.04 0.08 0.08 0.00 0.50 -0.03 0.08 0.08 0.00	Log 0.50 0.51 0.09 0.10 0.95 0.50 0.51 0.10 0.11 0.95	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \\ Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{22} \end{array}$	FG 0.50 -0.04 0.08 0.08 0.00 0.50 -0.03 0.08 0.08 0.00	Log 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96	$\begin{array}{c} \hat{F}_2 \\ \hline Wei \\ 0.32 \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \hat{F}_2 \\ \hline \hat{F}_2 \\ \hline \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90 (1)	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.07 0.95	$\begin{array}{c} \hat{F}_2 \\ \hline Wei \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \hat{F}_2 \\ \hline \end{array}$	(3) FG 0.48 0.43 0.07 0.07 1.00 (3) 0.51 0.47 0.07 0.90 (3)	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2)	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True	Log 0.50 0.51 0.09 0.94 0.50 0.51 0.10 0.95 0.50	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50	Log 0.50 0.51 0.09 0.95 0.50 0.50 0.51 0.10 0.11 0.95 0.50	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \hat{\beta}_{22} \\ Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ \hline \\ \hat{\beta}_{22} \\ 0.50 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50	Log 0.32 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96 0.26	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90 (1) 0.26	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.95 0.46	$\begin{array}{c} \hat{F}_2 \\ \hline Wei \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.46 \\ \end{array}$	(3) FG 0.48 0.43 0.07 1.00 (3) 0.51 0.47 0.10 0.07 0.90 (3) 0.46	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2)	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE	Log 0.50 0.51 0.99 0.94 0.50 0.51 0.10 0.95 0.50 0.50 0.51	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \hat{\beta}_{21} \\ \hline Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.58 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 0.50 -0.10	Log 0.50 0.51 0.99 0.95 0.50 0.51 0.10 0.11 0.95 0.50 0.50 0.51	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \hat{\beta}_{22} \\ Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.58 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 0.50 -0.09	Log 0.32 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96 0.26 0.27	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90 (1) 0.26 0.26	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.95 0.46 0.46	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.94 \\ \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hat{F}_2 \\ 0.46 \\ 0.47 \\ \end{array}$	(3) FG 0.48 0.43 0.07 1.00 (3) 0.51 0.47 0.10 0.07 0.90 (3) 0.46 0.47	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE MoSE	Log 0.50 0.51 0.99 0.94 0.50 0.50 0.51 0.10 0.95 0.50 0.51 0.28	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \hat{\beta}_{21} \\ \hline Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.58 \\ 0.32 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.10 0.07	Log 0.50 0.51 0.99 0.95 0.50 0.50 0.51 0.95 0.50 0.50 0.51 0.29	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \hat{\beta}_{22} \\ \hline Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.58 \\ 0.32 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.09 0.07	Log 0.32 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96 0.26 0.27 0.06	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90 (1) 0.26 0.07	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26 0.26 0.23	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.95 0.46 0.46 0.13	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.94 \\ \hline{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline{F}_2 \\ 0.46 \\ 0.47 \\ 0.14 \end{array}$	(3) FG 0.48 0.43 0.07 1.00 (3) 0.51 0.47 0.10 0.07 0.90 (3) 0.46 0.47 0.07	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47 0.11
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE MoSE ESE	Log 0.50 0.51 0.99 0.94 0.50 0.50 0.51 0.10 0.95 0.50 0.51 0.28 0.24	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \hat{\beta}_{21} \\ \hline Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \hat{\beta}_{21} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.10 0.07 0.07	Log 0.50 0.51 0.99 0.95 0.50 0.50 0.51 0.95 0.50 0.50 0.51 0.29 0.23	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \hat{\beta}_{22} \\ \hline Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.95 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ \hline \hat{\beta}_{22} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.09 0.07 0.07	Log 0.32 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96 0.26 0.27 0.06 0.06	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ 0.06 \\ 0.06 \\ \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90 (1) 0.26 0.07 0.07	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.95 0.46 0.46 0.13 0.05	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.46 \\ 0.47 \\ 0.14 \\ 0.05 \\ \end{array}$	(3) FG 0.48 0.43 0.07 1.00 (3) 0.51 0.47 0.07 0.90 (3) 0.46 0.47 0.07 0.07 0.07	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47 0.11 0.07
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE MoSE ESE Cov	Log 0.50 0.51 0.09 0.94 0.50 0.50 0.51 0.10 0.95 0.50 0.51 0.28 0.24 0.95	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \\ Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.10 0.07 0.00	Log 0.50 0.51 0.09 0.10 0.95 0.50 0.51 0.10 0.11 0.95 0.50 0.51 0.29 0.23 0.96	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \\ Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \\ \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{22} \\ 0.50 \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.09 0.07 0.07 0.00	Log 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96 0.26 0.27 0.06 0.06 0.94	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ 0.94 \\ \hline \end{array}$	$(1) \\ FG \\ 0.32 \\ 0.20 \\ 0.08 \\ 1.00 \\ (1) \\ 0.31 \\ 0.28 \\ 0.09 \\ 0.07 \\ 0.90 \\ (1) \\ 0.26 \\ 0.07 \\ 0.07 \\ 0.92 \\ (0.92 \\ 0.92$	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26 0.23 0.07 1.00	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.95 0.46 0.46 0.13 0.05 0.96	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.46 \\ 0.47 \\ 0.14 \\ 0.05 \\ 0.97 \\ \end{array}$	$(3) \\ FG \\ 0.48 \\ 0.43 \\ 0.07 \\ 1.00 \\ (3) \\ 0.51 \\ 0.47 \\ 0.10 \\ 0.07 \\ 0.90 \\ (3) \\ 0.46 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.95 \\ (.95) \\ (.9$	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47 0.11 0.07 0.98
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2) 300 WEI +	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE MoSE ESE Cov	Log 0.50 0.51 0.94 0.50 0.51 0.10 0.51 0.10 0.95 0.50 0.51 0.28 0.24 0.95	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \\ Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.10 0.07 0.07 0.00	Log 0.50 0.51 0.99 0.10 0.95 0.50 0.51 0.10 0.11 0.95 0.50 0.51 0.29 0.23 0.96	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \\ \hat{\beta}_{22} \\ \hline \\ Wei \\ 0.50 \\ 0.50 \\ 0.95 \\ \hline \\ \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{22} \\ 0.50 \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \hat{\beta}_{22} \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.09 0.07 0.07 0.07 0.00	Log 0.32 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96 0.26 0.27 0.06 0.06 0.94 0.94	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ \hline \\ 0.27 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.95 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.95 \\$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90 (1) 0.26 0.26 0.07 0.92 (1)	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26 0.26 0.23 0.07 1.00	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.95 0.46 0.46 0.46 0.46 0.13 0.05 0.96	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \hat{F}_2 \\ 0.46 \\ 0.47 \\ 0.14 \\ 0.05 \\ 0.97 \\ \hline \hat{F}_2 \\ 0.97 \\ \hline \hat{F}_2 \\ 0.14 \\ 0.05 \\ 0.97 \\ \hline \hat{F}_2 \\ 0.97$	(3) FG 0.48 0.43 0.07 1.00 (3) 0.51 0.47 0.07 0.90 (3) 0.46 0.47 0.07 0.95 (3)	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47 0.11 0.07 0.98
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2) 300 WEI + (D2)	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE MoSE ESE Cov	Log 0.50 0.51 0.99 0.94 0.50 0.51 0.10 0.95 0.50 0.51 0.28 0.24 0.95 0.50	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \\ Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.10 0.07 0.07 0.00 0.50	Log 0.50 0.51 0.99 0.95 0.50 0.50 0.51 0.10 0.11 0.95 0.50 0.51 0.29 0.23 0.96 0.50	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \\ \hline \\ Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \\ \\ \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.95 \\ \hline \\ \\ \hat{\beta}_{22} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \\ \\ \hat{\beta}_{22} \\ 0.50 \\ \hline \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.08 0.00 0.50 -0.09 0.07 0.07 0.00 0.50	Log 0.32 0.32 0.07 0.07 0.94 0.31 0.31 0.06 0.06 0.96 0.26 0.27 0.06 0.06 0.94 0.29	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.29 \\ \hline \end{array}$	$(1) \\ FG \\ 0.32 \\ 0.20 \\ 0.08 \\ 1.00 \\ (1) \\ 0.31 \\ 0.28 \\ 0.09 \\ 0.07 \\ 0.90 \\ (1) \\ 0.26 \\ 0.07 \\ 0.90 \\ (1) \\ 0.26 \\ 0.07 \\ 0.92 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ 0.29 \\ (1) \\ $	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26 0.26 0.23 0.07 1.00	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.07 0.95 0.46 0.46 0.13 0.05 0.96 0.51	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.46 \\ 0.47 \\ 0.14 \\ 0.05 \\ 0.97 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ \end{array}$	$(3) \\ FG \\ 0.48 \\ 0.43 \\ 0.07 \\ 0.07 \\ 1.00 \\ (3) \\ 0.51 \\ 0.47 \\ 0.10 \\ 0.07 \\ 0.90 \\ (3) \\ 0.46 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.95 \\ (3) \\ 0.51 \\ 0.51 \\ (3) \\ 0.51 \\ $	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47 0.11 0.07 0.98 0.51
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2) 300 WEI + (D2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE MoSE ESE Cov	Log 0.50 0.51 0.09 0.94 0.50 0.51 0.10 0.95 0.50 0.51 0.28 0.24 0.95 0.50 0.50 0.45	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \\ Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.10 0.07 0.07 0.50 -0.07	Log 0.50 0.51 0.99 0.10 0.95 0.50 0.51 0.29 0.23 0.96 0.51 0.50 0.51	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \\ \hline \\ Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \\ \\ \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.10 \\ 0.95 \\ \hline \\ \\ \hat{\beta}_{22} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \\ \hat{\beta}_{22} \\ 0.50 \\ \hline \\ 0.50 \\ 0.52 \\ \hline \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.09 0.07 0.07 0.00 0.50 -0.07	Log 0.32 0.32 0.07 0.94 0.31 0.31 0.31 0.06 0.06 0.96 0.26 0.27 0.06 0.06 0.94 0.29 0.29	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \end{array}$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90 (1) 0.26 0.07 0.90 (1) 0.26 0.07 0.92 (1) 0.29 0.29	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26 0.26 0.23 0.07 1.00 0.29 0.29	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.7 0.95 0.46 0.46 0.13 0.05 0.96 0.51 0.51	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.46 \\ 0.47 \\ 0.14 \\ 0.05 \\ 0.97 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ 0.51 \\ 0.51 \\ \end{array}$	$(3) \\ FG \\ 0.48 \\ 0.43 \\ 0.07 \\ 0.07 \\ 1.00 \\ (3) \\ 0.51 \\ 0.47 \\ 0.10 \\ 0.07 \\ 0.90 \\ (3) \\ 0.46 \\ 0.47 \\ 0.07 \\ 0.95 \\ (3) \\ 0.51 \\$	Sch 0.48 0.43 0.13 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47 0.11 0.07 0.99 0.46 0.47 0.51 0.51
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2) 300 WEI + (D2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE MoSE ESE Cov	Log 0.50 0.51 0.09 0.94 0.50 0.51 0.10 0.50 0.51 0.28 0.24 0.95 0.50 0.45 0.28 0.45 0.28	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \\ Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ \hline \\ 0.52 \\ 0.27 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ \hline \\ 0.52 \\ 0.29 \\ 0.29 \\ \hline \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.10 0.07	Log 0.50 0.51 0.09 0.10 0.95 0.50 0.51 0.29 0.23 0.96 0.50 0.51 0.29 0.23 0.96	$\hat{\beta}_{22}$ Wei 0.50 0.49 0.09 0.95 $\hat{\beta}_{22}$ 0.50 0.51 0.10 0.10 0.95 $\hat{\beta}_{22}$ 0.50 0.51 0.10 0.10 0.95 $\hat{\beta}_{22}$ 0.50 0.50 0.58 0.32 0.27 0.96 $\hat{\beta}_{22}$ 0.50 0.52 0.50	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.08 0.00 0.50 -0.09 0.07 0.07 0.00 0.50 -0.07 0.87 4.27	Log 0.32 0.32 0.07 0.94 0.94 0.31 0.31 0.06 0.96 0.26 0.27 0.06 0.27 0.06 0.94 0.29 0.29 0.29 0.29	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.26 \\ 0.27 \\ 0.29 \\ 0$	(1) FG 0.32 0.20 0.08 1.00 (1) 0.31 0.28 0.09 0.07 0.90 (1) 0.26 0.07 0.92 (1) 0.26 0.07 0.92 (1) 0.29 0.29 0.77	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26 0.26 0.23 0.07 1.00 0.29 0.29 0.21 0.21 0.21	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.7 0.95 0.46 0.46 0.46 0.13 0.05 0.96 0.51 0.52 0.51	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.46 \\ 0.47 \\ 0.14 \\ 0.05 \\ 0.97 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.57 \\ \hline \end{array}$	$(3) \\ FG \\ 0.48 \\ 0.43 \\ 0.07 \\ 0.07 \\ 1.00 \\ (3) \\ 0.51 \\ 0.47 \\ 0.10 \\ 0.07 \\ 0.90 \\ (3) \\ 0.46 \\ 0.47 \\ 0.07 \\ 0.95 \\ (3) \\ 0.51 \\ 0.51 \\ 0.07 \\$	Sch 0.48 0.43 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47 0.11 0.07 0.99 0.51 0.51 0.51 0.51 0.51 0.51
LOG + DIM (A2) 300 WEI + (B2) 300 LOG + (C2) 300 WEI + (D2) 300	- PH VAR True AVE MoSE ESE Cov - PH True AVE MoSE ESE Cov GOR True AVE MoSE ESE Cov GOR True	Log 0.50 0.51 0.09 0.94 0.50 0.51 0.10 0.50 0.51 0.28 0.24 0.95 0.50 0.45 0.28 0.24 0.95 0.24 0.95	$\begin{array}{c} \hat{\beta}_{21} \\ \hline \\ Wei \\ 0.50 \\ 0.48 \\ 0.09 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.52 \\ 0.09 \\ 0.10 \\ 0.95 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \hat{\beta}_{21} \\ 0.50 \\ \hline \\ 0.52 \\ 0.29 \\ 0.26 \\ 0.92 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.00 0.50 -0.10 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.09	Log 0.50 0.51 0.09 0.10 0.95 0.50 0.51 0.29 0.23 0.96 0.51 0.29 0.50 0.51 0.29 0.50 0.51 0.29 0.50	$\begin{array}{c} \hat{\beta}_{22} \\ \hline \\ \hline \\ Wei \\ 0.50 \\ 0.49 \\ 0.09 \\ 0.95 \\ \hline \\ \\ \hat{\beta}_{22} \\ 0.50 \\ 0.51 \\ 0.10 \\ 0.10 \\ 0.95 \\ \hline \\ \\ \hat{\beta}_{22} \\ 0.50 \\ 0.58 \\ 0.32 \\ 0.27 \\ 0.96 \\ \hline \\ \\ \hat{\beta}_{22} \\ 0.50 \\ \hline \\ \\ 0.52 \\ 0.29 \\ 0.26 \\ 0.92 \\ \end{array}$	FG 0.50 -0.04 0.08 0.00 0.50 -0.03 0.08 0.08 0.08 0.08 0.00 0.50 -0.09 0.07 0.07 0.07 0.07 0.50 -0.07 0.50	Log 0.32 0.32 0.07 0.94 0.31 0.31 0.31 0.06 0.96 0.26 0.27 0.06 0.06 0.94 0.29 0.29 0.29 0.29 0.29	$\begin{array}{c} \hat{F}_2 \\ \hline \\ Wei \\ 0.32 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.31 \\ 0.31 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.26 \\ 0.27 \\ 0.06 \\ 0.06 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.29 \\ 0.29 \\ 0.06 \\ 0.06 \\ 0.90 \\ \end{array}$	$(1) \\ FG \\ 0.32 \\ 0.20 \\ 0.08 \\ 1.00 \\ (1) \\ 0.31 \\ 0.28 \\ 0.09 \\ 0.07 \\ 0.90 \\ (1) \\ 0.26 \\ 0.07 \\ 0.90 \\ (1) \\ 0.26 \\ 0.07 \\ 0.92 \\ (1) \\ 0.29 \\ 0.07 \\ 0.07 \\ 0.92 \\ (0,07 \\ 0.92 \\ 0.07 \\ 0.92 \\ 0.07 \\ 0.92 \\$	Sch 0.32 0.20 0.08 1.00 0.31 0.28 0.21 0.07 1.00 0.26 0.26 0.27 0.07 1.00	Log 0.48 0.47 0.07 0.94 0.51 0.51 0.51 0.46 0.46 0.46 0.46 0.46 0.13 0.05 0.96 0.51 0.52 0.18 0.07	$\begin{array}{c} \hat{F}_2 \\ \text{Wei} \\ 0.48 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ 0.50 \\ 0.09 \\ 0.08 \\ 0.94 \\ \hline \\ \hat{F}_2 \\ 0.46 \\ 0.47 \\ 0.46 \\ 0.47 \\ 0.14 \\ 0.05 \\ 0.97 \\ \hline \\ \hat{F}_2 \\ 0.51 \\ 0.51 \\ 0.51 \\ 0.95 \\ 0.95 \\ \hline \end{array}$	$\begin{array}{c} (3) \\ \hline FG \\ 0.48 \\ 0.43 \\ 0.07 \\ 0.07 \\ 1.00 \\ \hline (3) \\ \hline 0.51 \\ 0.47 \\ 0.10 \\ 0.07 \\ 0.90 \\ \hline (3) \\ \hline 0.46 \\ 0.47 \\ 0.07 \\ 0.07 \\ 0.95 \\ \hline (3) \\ \hline 0.51 \\ 0.51 \\ 0.07 \\ 0.95 \\ \hline \end{array}$	Sch 0.48 0.43 0.13 0.07 1.00 0.51 0.47 0.11 0.07 0.99 0.46 0.47 0.11 0.07 0.99 0.46 0.47 0.11 0.07 0.98 0.51 0.51 0.51 0.71

sider both the modified logistic and modified Weibull functions for the baseline CIFs when generating the data. We then fit our modified logistic and modified Weibull models with the generalized odds-rate transformation, the Fine and Gray method and the semiparametric model by Scheike et al. (2008) to the simulated LOG+GOR and WEI+GOR data.

When estimating the LOG+GOR data, our modified logistic model does well, although the Fine Gray model has lower MoSEs when estimating $F_1(3)$ and $F_2(3)$, as seen in panels C1 and C2 of table 1.1. We estimate a relatively high number of parameters (the center of rising and steepness of the two baseline models, the four regression coefficients, α_1 and α_2). This allows us to test our parametric model in conditions similar to those of the analysis of a new dataset. The somewhat higher MoSEs of some of the predictions obtained from the parametric models may be a reflection the number of parameters in the model. As before, the Scheike model tends to overestimate the standard errors in their CIF estimators. The modified Weibull model can handle data generated from the modified logistic baseline model, although the MoSEs when estimating the regression coefficients are a bit higher than when using the modified logistic model.

As the proportional hazards assumption is clearly violated, the Fine and Gray method results in downward bias when estimating covariate effects. Because the Fine and Gray model is a semiparametric approach, the misspecified covariate effects may be compensated by the nonparametric estimation of the baseline CIF. As a consequence, the predicted CIF is close to the true value despite the misspecified covariate effects.

We now turn to the WEI+GOR simulations presented in panels D1 and D2 of table 1.1. Again, our modified Weibull model does quite well, although the MoSEs for $F_1(3)$ and $F_2(3)$ are larger than those of the Fine and Gray model. The modified logistic model again does well when used to estimate data generated from the Weibull baseline model. The Fine and Gray method again seriously underestimates regression coefficients, although its CIFs predictions are satisfactory. When the true data are from the modified Weibull model, the modified logistic model performs well. Our modified Weibull model performs just as well as the modified logistic model does. Both work well for the sample of size 300 and clearly outperform the general semiparametric model by Scheike et al. (2008). The Scheike model overestimates the variability in predicting CIFs, so that its coverage rate is close to 1. The coverage rates of regression parameters from the Fine and Gray method are much lower than the nominal level.

1.4 BREAST CANCER STUDY DATA ANALYSIS

Having developed our modeling framework, we now turn to applying our proposed models to the National Surgical Adjuvant Breast and Bowel Project Breast Cancer Study (NSABP B-14). This study investigated the effects of tamoxifen for node negative and hormonal receptor positive patients. The data contain information on time (in years), event (0=censored, 1=recurrence, 2=other events), treatment group (trt=1, placebo; trt=2, tamoxifen), age, and tumor size (through variable tsize), for 2,582 eligible patients who had follow-up and known tumor sizes. Recurrence is the event of interest and other events are treated as competing ones.

Of the 2,582 patients enrolled in the study, 1,276 (49.4 %) were censored, 577 (22.3 %) had a recurrence of their cancer, and 729 (28.2 %) had other events. 1299 (50.3 %) of the study participants were in the placebo group, whereas 1283 (49.7 %) of the participants were in the tamoxifen group. The age of the participants ranges between 25 and 75 years of age with a median of 56 years of age and an interquartile range (IQR) of 16 years. Tumor size ranges between 3 and 135, with a median of 20 and an IQR of 13. Tumor size shows 18 mild outliers. These observations are identified as mild outliers because they are greater than $75^{th}\%$ tile $+1.5 \times IQR$. Tumor size also shows 9 severe outliers, defined as such because they are greater than $75^{th}\%$ tile $+3 \times IQR$. Hence, tumor size is top-coded before running the analyses. That is, the top 10% of tumor size values are set respectively to the value of the 1st 90th percentile. Topcoding is often called censoring. Censoring and robustness methods are presented in Tukey (1979b) and Tukey (1979a).

We investigate the statistical associations among covariates. The placebo and tamoxifen groups are well-balanced when considering the age of the participants. A t-test fails to reject the hypothesis of equal average age across the treatment groups (t=.34, p=.73). The median age is 57 years (IQR=16 years) in the placebo group, and 54.8 years (IQR=15 years) in the treatment group. A t-test fails to reject the hypothesis of equal average tumor size across the treatment groups (t=-.43, p=.67). Median tumor size is 20 (IQR=14) in the placebo group, and 20 (IQR=12). Tumor size has more severe outliers (8) in the tamoxifen group than in the placebo group (1). The mild outliers of tumor size are more or less evenly distributed among the two randomization groups. The correlation between age and tumor size is small (-.05), but statistically significant (p=.01).

Before fitting the data, we code trt=0 for placebo and trt=1 for tamoxifen, and center the age at mean 55 and tumor size at mean 22. The likelihood is maximized on all the parameters of the two distribution, as well as on α_1 and α_2 . We fit cause 1 and cause 2 regressions simultaneously, but for clarity's sake, we present the results separately in the following sections. We emphasize the presentation of the competing cause because Shi et al. (2013) investigated cause 1 in details.

1.4.1 Cause 1 regression coefficients

The cause 1 coefficients in our work are modeled in a fashion similar to that of Shi et al. (2013). As expected, the cause 1 coefficients we estimated were very close to those of Shi et al. (2013).

We first run the Kolmogorov-Smirnov test and the Cramer von Mises test for time invariant effects of treatment group, age and tumor size (Scheike et al., 2008). The assumption of proportional hazards for subdistribution does not hold for age. Hence we apply our modified logistic model and the modified Weibull model with the GOR transformation to the breast cancer data. The Fine and Gray (1999) model is also included for comparison because our simulations suggest that this model can have good prediction on CIFs even though the estimates of the regression coefficients may be biased.

As shown in table 1.2, the cause 1 coefficient estimates and standard errors obtained from the modified logistic model and the modified Weibull model are generally close to each other, and the coefficient estimates from the Fine and Gray model are a bit larger than those from the parametric models. However, the p values from the three models are comparable and fairly small for all three prognostic factors. The coefficients for treatment and age are all negative while those for tumor size are all positive across the three models. This suggests that the patients who were older, received Tamoxifen treatment and had smaller tumor sizes were less likely to have cancer recurrence.

Next, we select two patient cases to compare the predicted CIFs from the four models. Patient I has good prognostic factors: Tamoxifen (trt = 1), 65 years old (age = 10) and tumor size 12 (tsize = -10), while patient II has poor prognostic factors: placebo (trt = 0), 45 years old (age = -10) and tumor size 32 (tsize = 10). The four predicted CIFs are plotted in Figure 1.1. The solid lines are the estimated CIFs from 0 to 20 years from the modified logistic model, the dashed lines are for the modified Weibull model and the dotted lines are from Fine and Gray's model. The estimated CIFs of the Scheike semiparametric model are represented by the gray lines. We first observe that the CIF curves only have one bend point. The predicted 20 years recurrence rate is somewhere between 0.1 and 0.2 for patient I and somewhere between 0.3 and 0.4 for patient II based on the parametric and the Fine Gray models. In the figure, we also include the confidence bands (gray dashed lines) from the Scheike et al. model, which are available from the R package **timereg**. The estimated CIFs of the parametric models and of the Fine Gray models lie between the confidence bands of the Scheike et al. model, though the confidence bands are likely to be conservative.

An exploratory Cox regression is run to evaluate the covariate effects on the hazard of local recurrence. The coefficients in the Cox regression were consistent with those of the CIF-based analyses.

1.4.2 Cause 2 regression coefficients

We first run the Kolmogorov-Smirnov test and the Cramer von Mises test for time invariant effects of treatment group, age and tumor size (Scheike et al., 2008).

The assumption of proportional hazards for subdistribution holds for age. On the lefthand panel of figure 1.2, we show the time-varying coefficient estimate for age (solid line) along with its 95 % pointwise confidence intervals (broken lines) and 95% confidence bands

Table 1.2: The estimates of the Causes 1 and 2 regression coefficients for the Breast Cancer Study based on our proposed modified logistic (Log) and the modified Weibull (Wei) with generalized odds-rate transformation, and the Fine-Gray model (FG).

		$\hat{\beta}_{1_trt}$			$\hat{\beta}_{1_age}$			$\hat{\beta}_{1_tsize}$	
VAR	Log	Wei	FG	Log	Wei	FG	Log	Wei	FG
Est	-0.82	-0.69	-0.48	-0.02	-0.02	-0.01	0.04	0.05	0.02
Stderr	0.16	0.15	0.09	0.01	0.007	0.004	0.01	0.010	0.003
Z	-5.15	-4.68	-5.60	-3.22	-3.38	-2.58	6.05	4.94	7.40
p value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.01	< 0.001	< 0.001	< 0.001
		$\hat{\beta}_{2_trt}$			$\hat{\beta}_{2_age}$			$\hat{\beta}_{2_tsize}$	
VAR	Log	Wei	FG	Log	Wei	FG	Log	Wei	FG
Est	-0.23	-0.63	0.02	0.038	0.021	0.03	0.013	0.013	-0.005
Stderr	0.15	0.17	0.07	0.007	0.006	0.004	0.007	0.006	0.003
Z	-1.50	-3.66	0.23	5.86	3.31	7.50	1.95	1.74	-1.67
p value	0.13	< 0.001	0.81	< 0.001	< 0.001	< 0.001	0.06	0.08	0.10

Figure 1.1: Estimates of CIFs for two example patients using the breast cancer study dataset

(dotted lines). The age effect is not time-varying. The **timereg** package also outputs the test process for the null hypothesis $\alpha(t)$ being a constant. The solid line on the right panel of the figure represents the test process based on the estimated time-varying coefficient

 $T(t, \hat{\alpha}) = \hat{\alpha}(t) - \frac{1}{\tau} \int_0^{\tau} \hat{\alpha}(t) dt$, where t is some reasonably large time point. The gray area corresponds to the simulated test processes under the null hypothesis. There is no clear departure from the null in the observed test process.

Figure 1.2: Estimates of time-varying coefficient for age in the cause 2 regression using the Breast cancer study dataset

It is not clear if the assumption of proportional hazards for subdistribution holds for treatment. Figure 1.3 shows the estimated time-varying coefficient for treatment. The treatment effect may be time-varying, as there is some departure from the null in the observed test process.

Figure 1.4 shows the estimated time-varying coefficient for tumor size $\alpha(t)$ in the Breast cancer Study using Scheike et al.'s model. As shown on the right panel, the observed test process (solid line) shows departure from the test processes simulated under the null hypothesis. Thus the assumption of proportional hazards for subdistribution does not hold for tumor size.

To handle the departure of the proportional subdistribution hazards assumption for tumor size, we run a stratified Fine and Gray model (SFG) proposed by Zhou and Fine (2011), and the standard Fine and Gray model including treatment, tumor size, age as well as the time by tumor size interaction (FGt). The estimated coefficients are summarized in table 1.3. The coefficient estimates for treatment and age are almost identical under these

Figure 1.3: Estimates of time-varying coefficient for treatment in the cause 2 regression using the Breast cancer study dataset

Figure 1.4: Estimates of time-varying coefficient for tumor size in the cause 2 regression using the Breast cancer study dataset

three models.

We apply our modified logistic model and the modified Weibull model with the general-

		$\hat{\beta}_{2_trt}$			$\hat{\beta}_{2_age}$			$\hat{\beta}_{2_tsize}$		$\hat{\beta}_{2_tsize*t}$
VAR	\mathbf{FG}	FGt	SFG	FG	FGt	SFG	\mathbf{FG}	FGt	SFG	FGt
Est	0.02	0.02	0.02	0.03	0.03	0.03	-0.005	0.01	-	-0.002
STD	0.07	0.07	0.07	0.004	0.004	0.003	0.003	0.006	-	0.0006
z value	0.23	0.21	0.29	7.50	7.49	8.01	-1.67	1.93	-	-3.19
p value	0.82	0.83	0.80	< 0.001	< 0.001	< 0.001	0.12	0.05	-	.001

Table 1.3: The estimates of the Cause 2 regression coefficients for the Breast Cancer Study based on the Fine-Gray model (FG), the Fine-Gray model with tumor size by time interaction (FGt), and the stratified Fine-Gray model (SFG)

ized odds-rate transformation to the breast cancer data. The Fine and Gray (1999) model is also included for comparison. The estimated coefficients using our proposed modified logistic (Log) and the modified Weibull (Wei) with generalized odds-rate transformation, and the Fine-Gray (FG) model for cause 2 are summarized in table 1.2.

As shown in table 1.2, the cause 2 coefficient estimates and standard errors obtained from the modified logistic model and the modified Weibull model are generally close to each other. However, the parametric models find the treatment group to have a statistically significant effect, whereas the Fine Gray model does not find the treatment group to have a statistically significant effect. To better understand this discrepancy, we ran a model with trt and trt × time as predictors. The estimate of the trt effect was -0.28 and statistically significant (p = 0.05), which is close to the estimates of the parametric models. The trt × time effect was also statistically significant (p=0.02). All three models agree to find age to be statistically significant, and provide similar estimates for the effect size. None of the models seems to find tumor size to be significant.

The coefficients for treatment are negative in the parametric models, while those for age are positive across the two parametric models. This suggests that the patients who received Tamoxifen treatment, and were younger were less likely to have an event such as death or second primary cancers, according to the parametric models. A Cox regression was run in order to better determine the effect of covariates, and particularly of the Tamoxifen treatment on the cause 2 events. The regression coefficient for age is similar when using Cox Regression, our parametric models, and the Fine Gray model. The regression coefficient for tumor size is not statistically significant when using Cox regression, which is consistent with our parametric models, and the Fine and Gray model. The Cox regression treatment effect is negative (-0.13) and borderline statistically significant (p = 0.08). Our parametric models find the treatment effect to be negative (-0.3 and -0.6) and statistically significant (p = 0.03 and p < 0.01). But the Fine Gray model does not find the treatment effect to be statistically significant (p = 0.8). When using Fine Gray with a treatment by time effect, the estimate of the treatment effect was -0.28 and statistically significant, and the treatment by time effect was positive and also statistically significant. Therefore, there is some evidence showing that Tamoxifen lowers the risk of other events.

Figure 1.5: Nonparametric estimates of cause 2 CIF curves for Placebo and Tamoxifen groups

On Figure 1.5, we plot nonparametric estimates of the cause 2 CIF curves for the placebo and the Tamoxifen groups. The curve of the Tamoxifen group is below that of the placebo group, showing a small effect of Tamoxifen on the incidence of other events.

1.4.3 Model Discussion

In this first part of this dissertation, we focused on the joint regression modeling of two cumulative incidence functions under an additivity constraint. We have proposed a parametric regression model using a flexible baseline function and a proportional hazard or a generalized odds rate model for covariate effects. The primary advantage of our parametric model is that it explicitly incorporates the additivity constraint between the asymptotes of the CIFs from the primary and secondary causes for any given covariates. Our parametric model provides a robust alternative to its semiparametric counterparts: it not only accounts for nonproportionality but also provides a reliable variance estimator. Furthermore, it does not require the modeling of censoring times.

We assessed the robustness of our proposed models by considering such baseline functions as the modified logistic and the modified Weibull. Likelihood for the modified logistic model is 6085.6, whereas likelihood for the modified Weibull model is 6091.7. The likelihoods of the two models are very close, so that no one of our two models seems better than the other in this data example.

2.0 STATISTICAL ANALYSES OF PILL-MONITORING DATA

2.1 INTRODUCTION

The objective of this chapter is to present several analyses of data collected via an electronic medication-event monitoring device. The device in question is a medication bottle which records the times when it is opened.

In medication bottle opening events studies, data include event times, which are correlated within individuals. The focus can be on the durations between events, the durations between the baseline and the events, or the number or rates of events. In simple cases, the data-generating process can be modeled by a renewal process. In more complex situations, the events can display short term dependence, or present a between-individual dependence structure. The wide range of data situations gives way to numerous approaches when it comes to model specification and estimation.

There are many reasons why some patients do not follow their drug regimen. They may forget to take their drugs. They may have difficulties managing several medications with different dosing regimens. A patient with an asymptomatic disease, such as high blood pressure or high cholesterol, may believe that the treatment is no longer needed. Patients may skip doses or stop taking medications because of their side effects. Elderly patients may have memory-loss or even dementia. Medical non-adherence has direct health consequences as well as costs related to the complications of the chronic condition. For high blood pressure, it could be a cerebrovascular accident; and for Type 2 diabetes, it could be heart disease. Medication adherence is generally computed over some interval of time as the percentage of correct medication administrations over the total number of prescribed administrations. When observed in a group of subjects, the distribution of medication adherence is often Jshaped. That is because most study participants correctly follow their medication regimen, but some take no medication, and others miss some doses. J-shape distributions are quite different from Gaussian distributions, so that parametric techniques utilizing a normal distribution can be inadequate, especially in small sample size situations. For example, measures of central tendency fail to provide an adequate summary of the distribution.

Summarizing and analyzing the hundreds of data points per subject which are often collected in medication bottle opening events studies is challenging. Several statistics can be used including the average or the median adherence over a given interval, often three weeks. Some study reports provide an indicator of the spread of the distribution of adherence. This is adequate if adherence is relatively constant within the interval, or if the changes in adherence across time are not of great interest. However, patients can behave differently as time progresses. The behavior of patients often changes as they are affected by stress and fatigue during the week, then have time to take better care of themselves over the weekend. If adherence rates increase or decrease within the intervals, then simple descriptive statistics will not properly summarize the data.

One approach to analyze adherence data is to categorize the percentage of correct dose administrations into two groups. However, some potentially significant changes occuring across time can then go unnoticed, because the threshold is not crossed. 80% is often considered the lowest percentage of correct doses for a good adherer. A patient who progresses from 20% to 70% adherence will be considered a poor adherer throughout the study, despite a substantial improvement after the intervention.

A different method was developed by Rohay (2010) who used a mixture of beta distri-

butions to describe the distribution of the adherence of several patients. The author used the expectation-maximization algorithm to obtain parameter and standard error estimates of that distribution. The parameters can be used to characterize the pill taking behavior of different groups of participants, so that this approach can be of great interest to study investigators. On the other hand, this analysis can be computationally intensive.

As indicated by Knaff GJ (2004), another assessment of medication adherence across time can be obtained by grouping observation days and computing counts and rates over separate periods of cap use. To do this, the analyst divides the observation period into intervals, counts the number of openings (or the number of adherent days in each interval), and obtains the opening rate for the interval. The patterns of adherence can then be studied across time using splines fitted onto the observations of number or rates of openings. The polynomial curves are of interest for several reasons. First, power terms in the polynomial can be added or removed from the model using the maximization of a score function. Second, an alternative measure of the participant's adherence may be obtained by calculating the smoothness of the polynomial fit to the participant's count data.

This part of the thesis looks at adherence data via the analysis of time between two medication bottle openings (also called gap times). To this end, we largely focus on frailty models. Frailty models can be used for duration data, and are characterized by the inclusion of a random effect, that is, an unobservable random variable which represents the heterogeneity of observations coming from the same cluster. A cluster can be a family of several individuals who share genetic factors, for example. In our recurrent events study, the cluster is the individual with his or her psychosocial and behavioral characteristics.

Proportional hazards models (Cox, 1972a) were extended to frailty models (Andersen et al., 1995; Hougaard, 1995; Sinha and Dey, 1997), which are characterized by the presence of a random effect. Vaupel et al. (1979) presented the frailty term in the context of univariate survival models, while Clayton (1978) and Oakes (1982) generalized frailty modeling to

multivariate survival models.

The rest of the thesis is organized as follows. We review several models for the analysis of gap times in section 2.2. We describe the analysis of a prescription bottle event dataset in section 2.3. An exploratory cluster analysis of survival curves is presented in section 2.4. We indicate the directions of our future work in section 2.5.

2.2 MODELS

2.2.1 Modeling of gap times

We assume that individual *i* is observed over the time interval $[0, \tau_i]$ and that w = 0 corresponds to the start of the event process. The gaps T_{ij} between events have hazard function $\lambda(t|x_i)$, where x_i is a covariate. If n_i events are observed at times $0 < w_{i1} < \cdots < w_{in_i} \leq \tau_i$, let $t_{ij} = w_{ij} - w_{i,j-1}$, with $j = 1, \ldots, n_i$. These are the observed gap times for individual *i* with the final time being possibly censored. Let $t_{i,n_i+1} = \tau_i - t_{i,n_i}$.

The likelihood function from m independent individuals is of the form

$$\prod_{i=1}^{m} \left\{ \prod_{j=1}^{n_i} \lambda(t_{ij}|x_i) \exp\left(-\Lambda(t_{i,j}|x_i)\right) \right\} \exp\left(-\Lambda(t_{i,n_i+1}|x_i)\right),$$

where $\lambda(t_{ij}|x_i)$ is the hazard and $\Lambda(t_{i,j}|x_i)$ is the cumulative hazard.

We now review several model formulation for the analysis of the times between medication administrations.

2.2.1.1 Cox regression The Cox semiparametric multiplicative hazards model in which the hazard function given X_i is of the form

$$\lambda(t|X_i) = \lambda_0(t) \exp(\beta^T X_i),$$

where $\lambda_0(t)$ is the baseline hazard function.

The basic assumption in Cox's proportion hazard model is that the survival time of subjects are independent. This assumption is violated in pill monitoring studies as the collected gap times exhibit correlation. A naive use of the Cox model in a pill monitoring study would greatly inflate the sample size and the power of the analyses. The sample size could erroneously be taken to be equal to the number of bottle openings. In order to use the simple Cox model, the analyst would have to only use one observation, or one summary measure of the observations, per study participant.

2.2.1.2 Accelerated failure time models Let T be a response time, and define $Y = \log(T)$. An accelerated failure time (AFT) model is of the form:

$$Y = \beta_0 + x'\beta + \sigma\epsilon, \qquad (2.2.1)$$

where $x = (x_1, \ldots, x_k)'$ is a covariate vector, $\beta = (\beta_1, \ldots, \beta_k)'$ is a vector of regression coefficients, $\sigma > 0$ is a scale parameter, and ϵ is a random variable whose distribution is independent of x. When ϵ has standard extreme value, logistic, and normal distributions, Thas Weibull, log-logistic, and log-normal distributions, respectively. Because of the absence of frailty, only one observation per ID or an ID level summary measure can be used. One approach is to average the gap times of an individual and use that mean value as a summary measure.

2.2.1.3 Frailty models with nonparametric baseline function The heterogeneity of the times to openings can lead to trouble insofar as parameter estimates can be inconsistent, standard errors can be wrong, and estimates of duration dependency can be misleading.

Frailty terms seek to explicitly account for the extra variance associated with the variability of the gap times within each prescription bottle user.

Consider a survival regression model with hazard $\lambda(t|\theta,\beta)$, where θ is a vector-valued parameter and β is a regression parameter. Assume that the random variable U, with density $g(u_i|\sigma^2)$ denotes the unobservable individual frailties and that E(U) = 1 and $V(U) = \sigma^2$. The random effect needs to be integrated out. The likelihood is:

$$L(\theta,\beta,\sigma^2) = \prod_{i=1}^n \int_0^\infty \lambda(t_i|u_i,\theta,\beta)^{\delta_i} S(t_i|u_i,\theta,\beta) g(u_i|\sigma^2) du_i,$$

where δ_i is the censoring indicator.

We can modify Cox's model into the form $\lambda_{ij}(t) = \lambda_0(t)u_i \exp(x_{ij}\beta)$ where the u_i s are log-normal with a mean parameter equal to 0. Observations j within cluster i share the frailty u_i , and fail faster (hence the term frailty) than average if $u_i > 1$.

Another way to write this frailty model is as

$$\lambda_{ij}(t|b_i) = \lambda_o(t) \exp(x_{ij}\beta + b_i), \text{ where } b_i \sim \mathcal{N}(0, \sigma^2), \qquad (2.2.2)$$

and where observations j are in clusters i, and b_i is uncorrelated with $b_{i'}$. The spread of b_i quantifies the variability of the occurrence rate between individuals.

Therneau and Grambsch (2000) introduce an interesting model which assumes a frailty whose distribution is gamma with parameters $(\frac{1}{\alpha}, \frac{1}{\alpha})$. α quantifies the amount of heterogeneity among subjects. If α is large, variability among individuals is high, and the values of the variable will be close to 1. On the other hand, a small α implies low heterogeneity among the observations individuals within the cluster.

The clustering is modeled by the random effect ξ_i . The gap time has intensity function

$$\lambda_{ij}(t|\xi_i) = \xi_i \lambda_o(t) \exp(x_{ij}\beta), \qquad (2.2.3)$$

where $\xi_i \sim \Gamma\left(\frac{1}{\alpha}, \frac{1}{\alpha}\right)$ i.i.d., $\mathbf{E}(\xi_i) = 1$, and $\mathbf{Var}(\xi_i) = \alpha$. The difference between (2.2.2) and (2.2.3) is the distribution of the random effect. The frailty term can be specified in an additive way, as in (2.2.2), or in a multiplicative fashion, as in (2.2.3).

Instead of choosing ξ_i in (2.2.3) to be distributed as i.i.d. gamma random variables, one can use for example a positive stable, an inverse gaussian, or a power variance function distribution (Duchateau and Janssen, 2008; Wienke, 2010). While being able to choose between different frailty distributions is useful, we are going to focus on the model form with the normal frailty, such as in (2.2.2). That model provides a simpler framework for modeling multiple and correlated random effects.

We note that the individual frailty is modeled as an extra risk that the medication bottle is opened. As such, the frailty is related to relative adherence. The individual frailty measures the adherence of the individual when compared to the sample.

2.2.1.4 Modeling of the random effects As presented in Therneau and Grambsch (2000), a more general frailty model is:

$$\lambda(t) = \lambda_0(t)e^{X\beta+Zb}$$
, where $b \sim G(0, \Sigma(\theta))$,

where λ_0 is the baseline hazard function, X and Z are the design matrices for the fixed and random effects, respectively, β is the vector of fixed-effects coefficients and b is the vector of random effects coefficients. The random effects distribution G is modeled as Gaussian with mean zero and a variance matrix Σ , which in turn depends on a vector of parameters θ . We start with the simple model characterized by one random intercept per individual. Z is the one-way ANOVA design matrix. $Z_{ij} = 1$ if gap time j is that of individual i. A more complex model would require the individuals to be nested within a group, such as an enrolling center, or a hospital.

We may want to test the significance of the random effects. In order to test, we fit the model without one of the random effects and compare the integrated likelihood, which we denote L, for the two fits. The following chi-square statistic is computed:

$$2\log(L_{model_s}) - 2\log(L_{model_l}) \sim_{H_0} \chi^2_{(dfmodel_s - dfmodel_l)} \sim \chi^2_{(df_s - df_l)} \sim \chi^2_{diff}.$$

Here, s denotes the smaller model with fewer parameters, whereas l denotes the larger model with more parameters. This χ^2_{diff} diff-value is distributed with df_{diff} degrees of freedom and can be checked for significance.

2.2.1.5 Cox frailty model with time-varying covariate Investigators are often interested in studying the dynamics of time to administration as study time increases. Several authors have pointed out that a patient's adherence decreases as the novelty feel of the treatment and prescription bottle wears out and between clinic visits Cramer et al. (1990); Feinstein (1990); de Klerk et al. (2003). Such a behavior is often called the "white coat" effect.

Let TiSt denote the time a patient has been in the study, or the time a patient has been using the prescription bottle, whichever is available from the data set. The hazard function can be written as:

$$\lambda_{ij}(t) = \lambda_0(t) \exp(\mathbf{x}_i \beta + \text{TiSt}_{ij} \beta_t + b_i), \text{ where } b_i \sim \text{Normal}(0, \sigma^2).$$
(2.2.4)

Alternately, the frailty effect can be specified as a gamma distribution:

$$\lambda_{ij}(t|\xi_i) = \xi_i \lambda_o(t) \exp(\mathbf{x}_i \beta + \mathrm{Ti} \mathrm{St}_{ij} \beta_t), \qquad (2.2.5)$$

where $\xi_i \sim \Gamma\left(\frac{1}{\alpha}, \frac{1}{\alpha}\right)$ i.i.d., $\mathbf{E}(\xi_i) = 1$, and $\mathbf{Var}(\xi_i) = \alpha$

2.2.1.6 Frailty models with parametric baseline function We now turn to frailty models with parametric baseline hazard functions. The frailty model is defined in terms of the conditional hazard

$$\lambda_{ij}(t|u_i) = h_0(t)u_i \exp(x_{ij}\beta), \qquad (2.2.6)$$

where h_0 is the baseline hazard function. Following Munda and Legrand (2012), we consider a Weibull distribution for the baseline hazard. The Weibull hazard function is specified as $h(t; \rho, \nu) = \rho \nu t^{\rho-1}$, with $\rho > 0$ and $\nu > 0$.

Again following Munda and Legrand (2012), we set the frailty term to be a gamma random variable U with probability density function:

$$f(u;\theta) = \frac{u^{1/\theta - 1} \exp(-u/\theta)}{\Gamma(1/\theta)\theta^{1/\theta}}, \theta > 0.$$

The variance of the frailty term U is θ .

2.2.2 Counting processes

The focus in this section is to analyze counts of bottle events within a particular window of time, rather than gap times. Let $i = 1 \dots n$ note independent subjects. $N_i(t)$ counts the number of events for the period of time $[0, \tau_i]$, for subject *i*.

An interesting quantity is the mean cumulative function (MCF) of the number of medications taken by the patients. The MCF is a staircase function that depicts the cumulative number of medication administrations over time. The cumulative mean function provides a graphical representation of the degree of medication adherence for each patient. It can be used to compare the compliance of two of more patients. Furthermore, the cumulative mean function can be estimated for groups of patients, thus enabling group comparisons. To our knowledge, the MCF has not been used to represent or analyze medication adherence datasets.

2.2.2.1 Bayesian estimation of Cox regression with random effects Following Nielsen et al. (1992), we formulate the frailty model using the counting process notation. For subjects i = 1, ..., n, we observe processes $N_i(t)$ which count the number of events which have occurred up to time t. The corresponding intensity process $I_i(t)$ is given by

$$I_i(t)dt = E(dN_i(t)|F_{t-}),$$

where F_t is a filtration.

We model the clustering of gap times within patients by introducing a frailty term into the proportional hazards model. In counting process notation, this gives

$$I_i(t)dt = Y_i(t) \exp(\beta x_i + b_i) d\Lambda_0(t)$$
, where, $b_i \sim \text{Normal}(0, 1/\theta)$.

We observe data $D = (N_i(t), Y_i(t), x_i), i = 1, ..., n$ and parameters β , $\Lambda_0(t) = \int_0^t \lambda_0(u) du$ is to be estimated non-parametrically. The joint posterior distribution of the model is defined by

$$P(\beta, \Lambda_0()|D) \sim P(D|\beta, \Lambda_0()) \times P(\beta) \times P(\Lambda_0()).$$

A non-informative gamma prior can be assumed for θ , the precision of the frailty parameters. To our knowledge, the Bayesian frailty model has not been used to analyze prescription bottle events datasets.

2.2.3 Software

The Cox model is handled by the functions of package **coxph** in R. The survreg function in package **survival** can fit an accelerated failure time model.

Frailty models can be handled by packages **coxph**, **frailtypack**, **parfm**, and **coxme** in R. **Coxph** can fit frailty models with a random effect drawn from a gamma distribution. In **frailtypack**, a random effect, and a random slope can be fitted. The random effects can be gamma or log-normal. The baseline function $\lambda_0(T)$ can be semiparametric, piecewise constant, or parametric Weibull. In addition, **frailtypack** allows the analyst to compare the AIC from different model specifications to determine the best fit for the data. Package **parfm** fits frailty models with parametric baseline hazard functions. Possible baseline hazards are Weibull, inverse Weibull, exponential, Gompertz, log-normal and log-logistic. Possible frailty distributions are gamma, inverse Gaussian, positive stable and log-normal. **Coxme** allows the analyst to compare the AIC from different model specifications to determine the best fit for the data.

SAS's proc reliability provides the mean cumulative function, as well as confidence intervals. Regression analyses for recurring events data sets can also be run via SAS's proc reliability. Bayesian Cox regression models can be handled by BUGS.

2.3 ANALYSIS OF DATA

This section applies frailty models to the data set of the Evaluation of Adherence Interventions in Clinical Trials (NIH-HL48992) study, a randomized controlled trial which we refer to as the ACT study. The ACT Study recruited 180 adults. The participants were given their medication in Medication Event Monitoring System (MEMS)-capped bottles containing a computer chip, which records each time the prescription bottle is opened. All subjects had a prescribed regimen of 1 dose/day. The cap opening times recorded were presumed to coincide with medication-taking.

The ACT study was nested within the Effect of Cholesterol Lowering on Behavior (or CARE) study (NIH-HL46328), a gender-balanced, randomized, controlled trial, where the 180 subjects were randomized either to a lipid lowering drug (90 subjects), or to a placebo (90 subjects). The participants of the CARE study continued into the ACT study, where they were randomized to one of three groups: controls, habit training, or habit training/problem solving. The behavioral training delivered to the habit training, and to the habit training/problem solving subjects aimed to improve their medication adherence. All subjects were prescribed a once-a-day medication regimen. There were 59 subjects in the controls

group, 63 in the habit training group, and 58 in the habit training/problem solving group.

Data were collected over a six month period. Available variables include electronically monitored events (MEMs), published self-report inventories (Morisky, Shea, Haynes), specific recall over one day, one week, one month, and six months, as well as pill counts.

Overall, the sample was evenly distributed by gender (53.4% male), predominantly white (87.8%), and middle-aged (mean age=46.2 years). Most subjects (68.2%) were married, and 75.4% of the subjects were employed full or part time. The subjects were well-educated, with 98.9% of them having a high school diploma/GED or more education.

The missingness rate is very low in the sociodemographic, and electronic event monitoring variables. No data inconsistencies are detected. The length of use of the MEMS caps ranges between 0 and 9.5 months, with an average of 6.0 months, and a standard deviation of 1.4 months. Summary adherence is computed as the ratio of the number of openings over the number of days observed. When the number of medication administrations is greater than the number of days, the computed adherence is higher than 1. Summary adherence ranges between 0.02 doses per day and 1.44 doses per day, with a median of 0.99 doses per day and an interquartile range of 0.31 doses per day.

2.3.1 Exploratory data analysis

The histogram of the gap times across all the observations of all the subjects is in Figure 2.1. The time unit of interest is hours. The distribution of the gap times shows a protuberance between 0 and 3 hours, a very high spike around 24 hours, and two bumps of decreasing sizes around 48 and 72 hours. The distribution of the gap times does not seem to lend itself to simple parametric modeling. The histogram of the log gap times, shown in Figure 2.2, appears to be that of a mixture of several time distributions. From that standpoint, the nonparametric baseline hazard approach is appealing.

Number hours btwn bottle openings

Figure 2.1: Histogram of gap times

Figure 2.2: Histogram of log gap times.

We plot individual survival curves of gap times in figures 2.3 and 2.4. These curves show various pill-taking behaviors. ID 1328's gap time survival curve drops from around .98 to around 0.05 very steeply around 24 hours. ID 1328 is thus very good at taking their medication with a gap time consistently around 23 to 24 hours.

ID 1517's gap time survival curve shows several drops between time 0 and 72 hours. A relatively small drop before time 2 hours shows that the medication bottle was opened several times in the space of a couple of hours. This is not consistent with a once-a-day medication regimen. Perhaps the participant forgot they had already taken their medication, or was experimenting with the prescription bottle, or the participant was pocketing the dose for the next day. A fairly large drop of the survival curve is seen around 24 hours, consistent with the subject opening the bottle once-a-day for some of the days of the experiment. Another small drop of the survival curve around 48 hours shows that the subject forgot their medication some of the days, or was taking the medication they had pocketed. Another smaller drop around 72 hours shows that the bottle was not opened for a duration of 3 days for some part of the experiment.

Figure 2.3: ID 1328's individual survival curve.

Figure 2.4: ID 1517's individual survival curve.

Figure 2.5 shows the survival curve of the entire sample. The survival curve shows a slow decrease during the first 24 hours, indicating that some patients will open their prescription bottle in the first 24 hours after their previous medication administration. The survival curve then shows a large and steep drop around 24 hours. This indicates that patients tend to have the habit of taking their medication around the same time of the day. Perhaps around breakfast time, lunch, or possibly bedtime.

The survival curve shows a smaller, but steep drop around 48 hours. This indicates that some patients will forget their dose the first day, but then successfully take their medication at their usual time of the day on the second day. A much smaller drop is seen around 72 hours. This indicates that some patients will forget their dose on both the first and second day, but then successfully take their medication at their usual time of the day on the third day. Those patterns can also be seen on the hazard plots.

Figure 2.5: Survival curve for the entire sample

2.3.2 Proportional hazard assumption

We plot the Kaplan-Meier survival curves for each gender in order to check the proportional hazard assumption. The plots are shown in figure 2.6. The female survival curve is for the most part above the male survival curve by a small distance which is about the same throughout time. Therefore the proportional hazard assumption seems to hold for gender.

2.3.3 Model comparison and covariate selection

Tables 2.1 and 2.2 show the results of analyses run using parametric and nonparametric models. Gender is found to be statistically significant or to approach significance in all models. The intensity function of the frailty models is higher for male participants, relative to female participants, indicating that the time between medication administrations is longer for females. The accelerated failure time model is run using individual-level average gap times, so that the effect of the time spent in study cannot be assessed. Time in study

Figure 2.6: Survival curves by gender.

was calculated in months. The three frailty models (2.2.6), (2.2.4), and (2.2.5) find time in study to be statistically significant. The regression coefficient for Time in study is negative, indicating that as Time in Study passes, intensity goes down, and thus the time between medication administrations increase.

2.3.4 Interpretation of the random effect

In this section, we focus on models which use Gaussian distributed frailties. The "frailty" of subject k can be interpreted as an excess noncompliance $f_k = \exp(b_k)$ in taking medication for individual k. The random individual effect in our model has a standard deviation of .30. We can expect about 15% of the subjects to be 1 standard deviation below the mean, and these individuals will have a noncompliance that is $\exp(1 \times .30) = \exp(.30) = 1.35$ greater than the norm. This is a modestly large individual effect.

We obtain estimates of the frailties for all the subjects. The lowest frailty is -1.0, the highest is 0.46, and the mean is 0. In the context of this adherence study, low frailties indicate subjects with longer gap times and thus poorer adherence behavior. ID1139 whose survival curve is shown in figure 2.7 is a poor adherer whose gap time distribution has a long right tail (skewness=3.2). The mean gap time (72 hours) and the 75% percentile (50.4 hours) of subject 1139 are high. The frailty of ID1139 is very low (-0.73). In contrast, consider ID1328 whose survival curve is shown in figure 2.3. Subject 1328 is a high adherer with a mean gap time of 24.6 hours. The frailty of ID1328 is 0.25. Frailty estimates can therefore help characterize the pill-taking behavior of subjects. They can also be useful during the screening phase of a study. Frailty estimates can help identify poor adherers, and those subjects are more susceptible to respond to the help of interventionists.

Figure 2.7: ID 1139's individual survival curve.

Confidence intervals for the random effect can be obtained from a profile likelihood. We start by computing the likelihood over a range of values for the variance. The 95% profile likelihood confidence interval is the region where the curve lies above the line, i.e., the set of values x for which a 1 degree of freedom likelihood ratio test would not reject the hypoth-

esis that the true standard deviation = x. We get the following estimate of the confidence interval: from .27 to .35.

Figure 2.8: Profile likelihood for the individual random effect model

We estimate a model containing a random individual effect nested within a random treatment effect. The difference on the likelihood brought about by the treatment effect is very small and we conclude that the random treatment effect is not statistically significant.

Type of model	Accelerated	Failure Time	Frailty model		
Baseline hazard	No baseline hazard		Weibull		
Frailty details	No f	railty	gamma		
Equation	(2.2)	2.1)	(2.2.6)		
r package	surv	vival	parfm		
Fixed effect parameters	Est. (SE)	р	Est. (SE)	р	
β male	-0.21 (.08)	.01	0.18(0.12)	0.06	
β Tstudy	-	-	-0.03 (3.0E-3)	< .01	
Frailty Parameter					
θ	-		0.37		
Baseline hazard					
Parameters					
ρ	-		1.47		
ν	-		0.007		
Log-likelihood	-107133		-96330		

Table 2.1: Parametric models

Type of model	Fraily mod	el	Frailty model			
Equation	(2.2.5)		(2.2.4)			
Baseline	Nonparamet	tric	Nonparamet	tric		
hazard						
Frailty	gamma		Gaussian			
r package	frailtypack	k	coxme			
Fixed effect	Est. (SE)	р	Est. (SE)	р		
Parameters						
β male	$0.15 \ (0.08)$	0.05	$0.15 \ (0.05)$	<.01		
β Tstudy	-0.03 (3.5E-3)	<.01	-0.02 (3.4E-3)	<.01		
Frailty						
Parameters						
α	0.19(0.025)		-			
σ^2	-		0.09			
Likelihood	-228439		-225609			

Table 2.2: Frailty models with non parametric baseline hazard

2.3.5 Model validation

In figure 2.9 we plot the survival functions for the gap times at the beginning and at the end of the observation period. The gap times at the beginning of the study, when the participants met with the nurse and the study manager, were shorter than the last gap times.

Figure 2.9: Survival curves of first and last gap times

2.4 EXPLORATORY CLUSTER ANALYSIS

The goal of this section is to cluster the survival curves of the participants into a small number of curves representing groups of patients. We use a two-stage approach. In the first step we reduce the dimension of the survival curves using spline regression. In the second step we cluster the curves according to the spline coefficients.

2.4.1 Spline regression

We have knots (t_1, \ldots, t_n) and a vector of responses (y_1, \ldots, y_n) . We start by considering g a function consisting of piecewise polynomials. We can put constraints on the behavior of the function g at the break points.

We can write any function g in the truncated basis power:

$$g(x) = \theta_{0,1} + \theta_{0,2}x + \dots + \theta_{0,k}x^{k-1} + \\ \vdots \\ \theta_{i,1}(x - t_i)_+^0 + \theta_{i,2}(x - t_i)_+^1 + \dots + \theta_{i,k}(x - t_i)_+^{k-1} + \\ \vdots \\ \theta_{m,1}(x - t_m)_+^0 + \theta_{m,2}(x - t_m)_+^1 + \dots + \theta_{m,k}(x - t_m)_+^{k-1}$$

where $(\cdot)_+ = \max(\cdot, 0)$.

 $(x - t_i)_+$ is sometimes called a hinge function. $(x - t_i)_+^{k-1}$ is a shifted power function that is truncated to the left of t_i .

2.4.1.1 Cubic splines Cubic splines are continuous and have continuous first and second derivatives. In this case we can write:

$$g(x) = \theta_{0,1} + \theta_{0,2}x + \dots + \theta_{0,4}x^3 + \theta_{1,k}(x-t_1)^3 + \dots + \theta_{m,k}(x-t_m)^3$$

2.4.1.2 Natural smoothing splines Natural splines add the constraint that the function must be linear after the knots at the end points. This forces two more restrictions since g'' must be 0 at the end points. Among all functions g with two continuous first two derivatives, find one that minimizes the penalized residual sum of squares

$$\sum_{i=1}^{n} \{y_i - g(t_i)\}^2 + \lambda \int_a^b \{g''(t)\}^2 dt$$

where λ is a fixed constant, and $a \leq t_1 \leq \cdots \leq t_n \leq b$.

2.4.2 Application to the ACT/CARE study dataset

2.4.2.1 Clustering using ID-level summary measure This approach is simple to implement and its results can be compared to other clustering methods. Given a set of observations (x_1, x_2, \ldots, x_n) , where each observation is a *d*-dimensional real vector, *k*-means clustering aims to partition the *n* observations into $k (\leq n)$ sets $S = \{S_1, S_2, \ldots, S_k\}$ so as to minimize the within-cluster sum of squares (WCSS). In other words, its objective is to find:

$$\underset{\mathbf{S}}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|^2$$

where μ_i is the mean of points in S_i .

The percentage of gap times that lie between 21 and 27 hours are calculated. Also computed are the percentage of gap times that were greater than 27 hours. Using k-means Clustering analysis on those two ID-level summary measures, and having indicated 4 clusters, we get the following plot.

The participants of the blue group (about 6%) are low adherers: the prescription bottle openings in this group are not very frequent when compared to the openings of the other three groups of participants. The patients seem to have a hard time taking their medication at the same time of the day: the survival curve drops around 24 and 48 hours are very small. There does not seem to be a time pattern when it comes to the openings. Those happen at many different times in the first 48 hours. About one third of the gap times are longer than 96 hours (or 4 days), when the recommended gap time is 24 hours.

The participants of the purple group (about 36% of the total sample) are high adherers: the gap times are rarely greater than 24 hours. The patients seem to be very apt at taking their medication at the same time of the day: the survival curve show a large drop around 24 hours.

Figure 2.10: Clusters

2.4.2.2 Functional data clustering We use a two-stage method, which first reduces the dimension of the survival curves data using regression on a B-spline basis matrix for a natural cubic spline. B-spline basis matrices for a polynomial or a restricted cubic spline are also available. The second stage performs clustering using an approach dedicated to high-dimensional data (package funHDDC).

Summary descriptives for the resulting cluster curves are presented in table 2.3. The analysis clustered poor adherers separately from the rest of the participants.

Figure 2.11: Individual survival curve with spline

Cluster number	N	Pct of gap times	Pct female	Mean age
		lying between 21		
		and 27 hours		
		8	%	years
1	103	49.9	39.8	46
2	21	31.0	76.2	44
3	51	75.4	49.0	48
4	1	0	100	39

Table 2.3: Descriptive statistics of clusters

2.5 CONCLUSION AND FUTURE WORK

In this second part of the thesis, we focused on the modeling of medication bottle opening data. We reviewed several models, and largely focused on frailty models. These models provide an important framework for adherence analyses. In chapter 2.2, we focused on models where the clustering within individuals is accounted for by a gamma or a lognormal variable. We discussed the interpretation of the random effect of a subject, and how it can help characterize the adherence of that individual relative to that of the other subjects. In chapter 2.3, we analyzed a prescription bottle opening data set. We showed that gap time frailty models can be utilized to identify poor adherers. We evaluated the effects of several covariates on the gap times, and found gender to be a statistically significant predictor. We also uncovered a time effect. In chapter 2.4, we clustered the survival curves of the participants into a small number of curves representing groups of patients. The exploratory cluster analysis focuses on the shape of the survival curves, and is useful to identify and quantify different pill-taking behaviors.

In future work, we will apply frailty models to more prescription bottle opening events data sets. In many adherence studies, different subjects are on different drug regimens, such as once, twice, three times per day, or every other day, rendering the analysis of data sets more challenging. Furthermore, we will assess the effects of more predictors on the times between the administration of doses. Possible predictors of adherence can include sociodemographic variables, number of comorbidities, mood (anxiety, depression), perceived adherence (self- reported adherence), and the perception of illness. Other predictors such as economic hardship and symptom distress could also be investigated. Developing such models will be very useful for understanding how patient-related and medication-related variables affect individual adherence.

One limitation of the current approach is that the frailty models we considered use a proportional hazards transformation. The proportional hazard assumption may not hold for some covariates. Therefore, implementing a more flexible class of link functions would be very useful.

3.0 BIBLIOGRAPHY

- Andersen, P. K., O. Borgan, R. D. Gill, and N. Keiding (1995, June). Statistical Models Based on Counting Processes (Corrected ed.). Springer Series in Statistics. Springer.
- Beyersmann, J., A. Allignol, and M. Schumacher (2012). Competing risks and multistate models with R. New York: Springer.
- Cheng, Y. (2009). Modeling cumulative incidences of dementia and dementia-free death using a novel three-parameter logistic function. *The International Journal of Biostatistics*.
- Clayton, D. G. (1978, April). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. *Biometrika* 65(1), 141–151.
- Cox, D. R. (1972a). Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B (Methodological) 34(2), 187–220.
- Cox, D. R. (1972b). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, Series B: Methodological 34, 187–220.
- Cramer, J. A., R. D. Scheyer, and R. H. Mattson (1990). Compliance declines between clinic visits. Archives of internal medicine 150(7), 1509.
- Dabrowska, D. M. and A. Doksum, K (1998). Estimation and testing in a two-sample generalized odds-rate model. *Journal of the american statistical association 83*, 744–749.
- de Klerk, E., D. van der Heijde, R. Landewé, H. van der Tempel, J. Urquhart, and S. van der

Linden (2003). Patient compliance in rheumatoid arthritis, polymyalgia rheumatica, and gout. The Journal of rheumatology 30(1), 44–54.

- Doll, R. (1971). The age distribution of cancer: implications for models of carcinogenesis. Journal of the Royal Statistical Society. Series A (General), 133–166.
- Duchateau, L. and P. Janssen (2008). The Frailty Model. New York: Springer.
- Feinstein, A. R. (1990). On white-coat effects and the electronic monitoring of compliance. Archives of Internal Medicine 150(7), 1377–1378.
- Fine, J. P. (2001). Regression modeling of competing crude failure probabilities. *Biostatistics (Oxford)* 2(1), 85–97.
- Fine, J. P. and R. J. Gray (1999). A proportional hazards model for the subdistribution of a competing risk. *Journal of the American Statistical Association* 94, 496–509.
- Gaynor, J. J., E. J. Feuer, C. C. Tan, D. H. Wu, C. R. Little, D. J. Straus, B. D. Clarkson, and M. F. Brennan (1993). On the use of cause-specific failure and conditional failure probabilities: Examples from clinical oncology data. *Journal of the American Statistical* Association 88, 400–409.
- Gooley, T. A., W. Leisenring, J. Crowley, and B. E. Storer (1999). Estimation of failure probabilities in the presence of competing risks: New representations of old estimators. *Statistics in Medicine* 18, 695–706.
- Hougaard, P. (1995, September). Frailty models for survival data. *Lifetime Data Analysis* 1(3), 255–273.
- Jeong, J. and J. P. Fine (2006). Direct parametric inference for the cumulative incidence function. *Journal of the Royal Statistical Society, Series C: Applied Statistics* 55, 187–200.
- Jeong, J. and J. P. Fine (2007). Parametric regression on cumulative incidence function. Biostatistics 55, 184–200.

- Jin, Z., D. Y. Lin, L. J. Wei, and Z. Ying (2003). Rank-based inference for the accelerated failure time model. *Biometrika* 90(2), 341–353.
- Kalbfleisch, J. D. and R. L. Prentice (2002). The Statistical Analysis of Failure Time Data. New York: Wiley.
- Klein, J. P. and M. L. Moeschberger (2003). Survival Analysis: Techniques for Censored and Truncated Data. New York: Springer-Verlag Inc.
- Knafl GJ, F. K. (2004). Electronic monitoring device event modelling on an individualsubject basis using adaptive poisson regression. *Statistics in medicine* 23(5), 783–801.
- Munda, M. and C. Legrand (2012). parfm: Parametric frailty models in r. *Journal of Statistical Software 51*(11).
- Nielsen, G., R. Gill, and A. P. (1992). A counting process approach to maximum likelihood estimation in frailty models. *Scandinavian Journal of Statistics* 19(1), 25–43.
- Oakes, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society. Series B (Methodological) 44(3), pp. 414–422.
- Pepe, M. S. (1991). Inference for events with dependent risks in multiple endpoint studies. Journal of the American Statistical Association 86 (415), 770–778.
- Prentice, R. L., J. D. Kalbfleisch, A. V. Peterson, N. Flournoy, V. T. Farewell, and N. E. Breslow (1978). The analysis of failure time data in the presence of competing risks. Biometrics 12, 737–751.
- Rohay, J. (2010). Statistical Assessment of Medication Adherence Data: A Technique to Analyze the J-Shaped Curve. Ph. D. thesis, University of Pittsburgh.
- Scheike, T. H. and M.-J. Zhang (2011). Analyzing competing risk data using the r timereg package. *Journal of Statistical Software* 38(2), 1–15.

- Scheike, T. H., M.-J. Zhang, and T. A. Gerds (2008). Predicting cumulative incidence probability by direct binomial regression. *Biometrika* 95(1), 205–220.
- Shi, H., Y. Cheng, and J. J.-H. (2013). Constrained parametric model for simultaneous inference of two cumulative incidence functions. *Biometrical Journal* 55, 82–96.
- Sinha, D. and D. K. Dey (1997). Semiparametric bayesian analysis of survival data. *Journal* of the American Statistical Association 92(439), 1195–1212.
- Therneau, T. M. and P. M. Grambsch (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer.
- Tukey, J. W. (1979a). Oxford Handbook of Innovation. New York: Academic Press.
- Tukey, J. W. (1979b). Robustness in Statistics, Chapter Robust techniques for the user, pp. 103–106. New York: Academic Press.
- Vaupel, J. W., K. G. Manton, and E. Stallard (1979, August). The impact of heterogeneity in individual frailty on the dynamics of mortality. *Demography* 16(3), 439–454.
- Wei, L. J., Z. Ying, and D. Y. Lin (1990). Linear regression analysis of censored survival data based on rank tests. *Biometrika* 77, 845–851.
- Wienke, A. (2010). Frailty Models in Survival Analysis. Chapman and Hall/CRC.
- Zhou, B., L. A. and J. Fine (2011). Competing risks regression for stratified data. *Biomet*rics 67(2), 661–670.