ULTRASOUND IMAGING SYSTEM COMBINED WITH MULTI-MODALITY IMAGE ANALYSIS ALGORITHMS TO MONITOR CHANGES IN ANATOMICAL STRUCTURES

by

Vikas Revanna Shivaprabhu

B.E., Visveswaraya Technological University, 2008

M.S., University of Pittsburgh, 2010

Submitted to the Graduate Faculty of
Swanson School of Engineering in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

University of Pittsburgh

2015
UNIVERSITY OF PITTSBURGH
SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Vikas Revanna Shivaprabhu

It was defended on
January 27, 2015
and approved by

Dr. Lance Davidson, Ph.D., Associate Professor, Department of Bioengineering
Dr. Dana Tudorascu, Ph.D., Assistant Professor of Medicine, Biostatistics, Psychiatry and Clinical and Translational Science
Dissertation Co-Director: George Stetten, MD, Ph.D., Professor, Department of Bioengineering
Dissertation Co-Director: Howard Aizenstein, MD, Ph.D., Associate Professor, Department of Psychiatry and Bioengineering
ULTRASOUND IMAGING SYSTEM COMBINED WITH MULTI-MODALITY IMAGE ANALYSIS ALGORITHMS TO MONITOR CHANGES IN ANATOMICAL STRUCTURES

Vikas Revanna Shivaprabhu, B.E., M.S., Ph.D.

University of Pittsburgh, 2015

This dissertation concerns the development and validation of an ultrasound imaging system and novel image analysis algorithms applicable to multiple imaging modalities. The ultrasound imaging system will include a framework for 3D volume reconstruction of freehand ultrasound: a mechanism to register the 3D volumes across time and subjects, as well as with other imaging modalities, and a playback mechanism to view image slices concurrently from different acquisitions that correspond to the same anatomical region. The novel image analysis algorithms include a noise reduction method that clusters pixels into homogenous patches using a directed graph of edges between neighboring pixels, a segmentation method that creates a hierarchical graph structure using statistical analysis and a voting system to determine the similarity between homogeneous patches given their neighborhood, and finally, a hybrid atlas-based registration method that makes use of intensity corrections induced at anatomical landmarks to regulate deformable registration. The combination of the ultrasound imaging system and the image analysis algorithms will provide the ability to monitor nerve regeneration in patients undergoing regenerative, repair or transplant strategies in a sequential, non-invasive manner, including visualization of registered real-time and pre-acquired data, thus enabling preventive and
therapeutic strategies for nerve regeneration in Composite Tissue Allotransplantation (CTA). The registration algorithm is also applied to MR images of the brain to obtain reliable and efficient segmentation of the hippocampus, which is a prominent structure in the study of diseases of the elderly such as vascular dementia, Alzheimer’s, and late life depression. Experimental results on 2D and 3D images, including simulated and real images, with illustrations visualizing the intermediate outcomes and the final results are presented.
TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

1.1 THESIS STATEMENT .. 1

1.2 OVERVIEW OF CONTRIBUTIONS ... 2

1.3 THESIS ORGANIZATION .. 3

2.0 BACKGROUND AND SIGNIFICANCE ... 4

2.1 CLINICAL SIGNIFICANCE .. 4

2.1.1 Nerve regeneration .. 4

2.1.2 Alzheimer’s Disease .. 7

2.2 TECHNOLOGY BACKGROUND ... 8

2.2.1 Ultrasound imaging .. 8

2.2.2 High Resolution Ultrasound (HRUS) .. 12

2.2.3 Volumetric Ultrasound ... 14

2.2.4 Magnetic Resonance Imaging (MRI) ... 16

2.2.5 Medical Image Analysis .. 18

2.2.5.1 Image segmentation ... 20

2.2.5.2 Image registration ... 26

2.2.5.3 Visualization ... 28

3.0 INNOVATION ... 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>MONITOR NERVE REGENERATION</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>OVERVIEW OF THE DEVELOPED SYSTEM</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>AUTOMATED IMAGE ANALYSIS</td>
<td>33</td>
</tr>
<tr>
<td>4.0</td>
<td>FREEHAND 3D RECONSTRUCTION</td>
<td>36</td>
</tr>
<tr>
<td>5.0</td>
<td>IMAGE SEGMENTATION</td>
<td>44</td>
</tr>
<tr>
<td>5.1</td>
<td>SHELLS AND SPHERES</td>
<td>45</td>
</tr>
<tr>
<td>5.2</td>
<td>FEATURE BASED SEGMENTATION</td>
<td>48</td>
</tr>
<tr>
<td>5.3</td>
<td>VARIANCE DESCENT GRAPHS</td>
<td>54</td>
</tr>
<tr>
<td>5.4</td>
<td>GRAPH BASED TECHNIQUES</td>
<td>61</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Constructing a graph of patches</td>
<td>64</td>
</tr>
<tr>
<td>5.4.1.1</td>
<td>Graph notation</td>
<td>64</td>
</tr>
<tr>
<td>5.4.1.2</td>
<td>Voting system</td>
<td>65</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Clustering regions in the graph of patches</td>
<td>74</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>Affinity propagation</td>
<td>75</td>
</tr>
<tr>
<td>5.4.2.2</td>
<td>Dominant Sets</td>
<td>76</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Segmenting anatomical structures</td>
<td>79</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Results on Simulated Data</td>
<td>81</td>
</tr>
<tr>
<td>5.4.4.1</td>
<td>Community Distribution</td>
<td>82</td>
</tr>
<tr>
<td>5.4.4.2</td>
<td>Rand index</td>
<td>84</td>
</tr>
<tr>
<td>5.4.4.3</td>
<td>Simulated 3D Image</td>
<td>85</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Results on Real Ultrasound Data</td>
<td>87</td>
</tr>
<tr>
<td>5.4.5.1</td>
<td>Ultrasound of phantom</td>
<td>87</td>
</tr>
<tr>
<td>5.4.5.2</td>
<td>Ultrasound nerve image</td>
<td>88</td>
</tr>
</tbody>
</table>
5.4.5.3 3D reconstructed ultrasound of phantom ... 90
5.4.5.4 3D reconstructed ultrasound of the median nerve 92
5.4.5.5 Comparison with pairwise similarity measure 94

6.0 IMAGE REGISTRATION ... 96

6.1 HYBRID LANDMARK-INTENSITY BASED REGISTRATION 97
6.1.1 Methodology ... 98
6.1.1.1 Identify Landmarks .. 98
6.1.1.2 Landmark Registration ... 98
6.1.1.3 Alter the image intensity ... 101
6.1.1.4 Deformable intensity registration ... 102

6.2 VALIDATION ON HIPPOCAMPUS SEGMENTATION 104
6.2.1 Comparison with previous similar methods 105
6.2.2 Quantitative comparison with other methods 106

7.0 SIMULTANEOUS VISUALIZATION ... 109

7.1 REGISTRATION OF PRIOR AND ACQUIRED VOLUMES 110

7.2 OFFLINE SIMULTANEOUS VISUALIZATION 111

7.3 REAL-TIME SIMULTANEOUS VISUALIZATION 112

8.0 DISCUSSION AND FUTURE WORK ... 118

8.1 FUTURE DIRECTIONS ... 122
8.1.1 ProbeSight ... 123

BIBLIOGRAPHY ... 125
LIST OF TABLES

Table 1 Rand Index computed for four images shown in Figure 30 .. 84
LIST OF FIGURES

Figure 1 Illustration showing Wallerian degeneration (reprinted from (Burnett & Zager, 2004)). 5
Figure 2 Lateral view of the brain highlighting the hippocampus................................. 7
Figure 3 Nerve image with individual fascicles scanned using VisualSonics Vevo 2100 system at 50 MHz .. 13
Figure 4 HRUS image (Vivo 2100) of artery showing measurement of Intimal Thickness (IT), Intima-Media Thickness (IMT), and Lumen Diameter (LD). 13
Figure 5 A) 3D probe with 2D “matrix” array acquiring 3D volumes directly ("3D Imaging Using 2D CMUT Arrays with Integrated Electronics,"). B) 3D probe with an internal 2D probe that is mechanically swept repeatedly in the third dimension. C) Reconstructing a 3D volume from the 2D images based on the position and orientation of a hand-held 2D ultrasound probe.. 15
Figure 6 Overview of the developed system together with the individual methods that have been developed, and their arrangement in the pipeline. .. 32
Figure 7 System overview of 3D volume reconstruction ... 37
Figure 8 The image acquisition system and the tracking system generates data at their own rates. .. 37
Figure 9 Temporal calibration estimates the latency between the tracking and imaging systems. Location data of the two systems before (top) and after (bottom) compensating for the latency. .. 39
Figure 10 A) CAD model of the N-wire phantom. (Lasso et al., 2014). B) 3D printed N-wire phantom with reference marker attached.. 40
Figure 11 Ultrasound image of the N-wires, which was acquired with the phantom immersed in water bath. The wires appear as dots, as seen in the image at locations pointed by the red arrows... 40
Figure 12 3D rendering of the segmentation of the wires from the freehand reconstructed volume of the N-wire phantom. Also shown are three orthogonal slices................. 42
Figure 13 (A) US probe tracked by markers mounted on it. (B) 3D model of individual 2D US images stacked in a 3D space based on the recorded location and orientation of the US probe. (C) Live US image. (D) US image slice retrieved from a previously reconstructed US volume corresponding to the live US image. 43
Figure 14 (A) Asymmetric sphere-pairs (B) Search algorithm to find the nearest boundary of the rectangular area...

Figure 15 (A) 3D model of a torus visualized using surface rendering. (B) Noisy image of a torus. Cross-sectional slice of the 3D image showing the detected medial points at scale 5 (blue), and at scale 6 (green). Reproduced from (Revanna Shivaprabhu, 2010)...

Figure 16 (B) shows the result of applying the methods mentioned above to a binary segmentation of the hippocampus (A). The medial manifold is represented by cubes in the figure. The color of Eigen vectors represented by arrows positioned at cubes and the color of the cubes indicate the partitions obtained after applying normalized cuts method...

Figure 17 Illustrations of cases where the methods described above is likely to fail. (A) The boundary separating the hippocampus and the adjacent amygdala is very thin, as seen at the location of the red arrow. The outer sphere in such cases is likely to encompass more than the neighboring amygdala, leading to erroneous identification of boundary. (B) Missing boundaries such as those that appear in the ultrasound images of the median nerve can result in unpredictable medial manifolds...

Figure 18 Directed edges (arrows) between pixels (circles) representing decreasing intensity variance of spheres centered on those pixels. Reproduced from (G. Stetten et al., 2013)...

Figure 19 Flowchart for the variance descent graphs algorithm...

Figure 20 Flowchart for the recursive function ‘Follow tree recursively’ used in the flowchart shown in Figure 19...

Figure 21 Variance descent graph applied at various radii (in pixels) to an ultrasound image of the median nerve...

Figure 22 Variance descent graph applied MRI image of the brain. Shown in left is the original image and in right the VDG patches evaluated at radius 1...

Figure 23 (A) 50 MHz ultrasound image of the median nerve. The boundaries between fascicles are often incomplete, as seen at locations highlighted by red circles. (B) VDG Patches obtained for radius 2. The roots of patches are displayed as black dots. (C) Patches are converted to nodes (roots of patches) and edges of a graph. Figure shows an example of edges incident on one node (position of crosshairs)...

Figure 24 Synthetic isotropic image depicting the SAS framework applied to patches. A and B are two distinct patches. Numbers assigned to pixels denotes inter-pixel distance from the central pixel x, denoted 0. The circle denotes sphere $S_r(x)$ where the radius $r = 2$...

Figure 25 Radius of $S_r(x)$ computed at each node using change in variance method...

Figure 26 Spheres of influence (dotted green) obtained for two nodes (crosshairs) along with the subgraph enclosed in each $S_r(x)$ (shown in yellow and blue). Edges belonging to both spheres of influence are shown in red...
Figure 27 Graph structure generated by asserting each node’s degree of influence on edges in its sphere(s) of influence for the data in Figure 23B. Color of the edge represents its weight (see color bar). Edges with weights equal to 0 are not shown.

Figure 28 Clusters obtained for the affinity matrix (A) by applying affinity propagation (B) and dominant sets (C) algorithms.

Figure 29 Our hierarchical graph structure for segmentation. Starting with pixels, each level is associated with a graph whose nodes are data element resulting from the previous level.

Figure 30 Axial slice of a 3D image consisting of three cylinders representing nerve fascicles with a surrounding sheath, located adjacent to each other such that the boundaries between them are incomplete. Gaussian noise is added to generate images having SNR 5db (A), 10db (B), 15db (C), and 20db (D).

Figure 31 Community distribution for the simulated images shown in Figure 30.

Figure 32 (A) Cross section through a simulated 3D image containing tortuous tubular structure. (B) Patches computed at radius 2. Individual colored voxels represent fragments and the labels within the structure are the segmentation results obtained by applying threshold based on expected intensity.

Figure 33 (A) Graph structure leading to the fragments with a axial image plane of the 3D volume of patches. The 3D model of fragments in (B) is also shown in green. Edges of the graph with low weights have been omitted for illustrative purposes. The color of the edges represents weights (refer color bar). (B) 3D model depicting the fragments.

Figure 34 Patches generated at radius 14 (B) for the ultrasound image of a gel phantom (A).

Figure 35 Graph structure associated with the first level communities overlaid on patches (A). Second level communities (clusters of fragments) obtained using affinity propagation (B) and dominant sets (C).

Figure 36 Individual fascicles identified by clustering fragments using affinity propagation (A & B) and dominant sets (C & D) algorithms. The inherent nature of our method to find spherical structures helps define boundaries between fascicles.

Figure 37 (A) Freehand 3D reconstructed ultrasound volume of a gel phantom. (B) Patches computed at radius 1. Colored voxels represents fragments. Also the segmentation obtained by applying a threshold based on expected intensity is shown.

Figure 38 (A) Graph structure leading to the fragments with a coronal image plane of the 3D volume of patches. The 3D model of the segmentation in (B) is also shown in green. Edges of the graph with low weights have been omitted for illustrative purposes. The color of the edges represents weights (refer color bar). (B) 3D model of the segmentation.

Figure 39 Cross-sectional view of patches computed at radius 3. Colored voxels represents fragments. Also the segmentation obtained by applying a threshold based on expected intensity is shown.
Figure 40 (A) Graph structure leading to the fragments with an axial image plane of the 3D volume of patches for a freehand 3D reconstructed ultrasound volume of the median nerve. Edges of the graph with low weights have been omitted for illustrative purposes. The color of the edges represents weights (refer color bar). (B) Segmentation result overlaid on the original image.

Figure 41 3D model of the segmentation result with a cross-sectional image plane.

Figure 42 Affinity propagation (A) and Dominant sets (B) algorithms applied to a graph structure modeled by pairwise similarity measures. An expected intensity threshold has been applied to obtain the final result.

Figure 43 Pipeline of the hybrid registration method.

Figure 44 (1-4) Sagittal view of MR image of brain showing the positioning of six landmarks (A-F). (5) 3D view showing the six landmarks with axial and sagittal slices in the background.

Figure 45 (1) 3D view of landmarks positioned in atlas (A~ - F~) and subject (A – F) with axial and sagittal slices. (2) Grid of the resulting affine transform (3) Landmarks in the atlas warped by affine transform.

Figure 46 (1) Deformation field obtained from non-linear landmark registration to be applied to the landmarks A~ - F~ (2) 3D view of landmarks showing excellent correspondence after they are warped by the deformation field.

Figure 47 Image slices corresponding to the landmarks A~ - F~ (highlighted by red circles) after applying $F(A^*)$. Notice the change in image intensity at the location of landmarks.

Figure 48 Deformation field obtained from demons warp for slice corresponding to landmarks E~ and F~ shown in Figure 46.

Figure 49 Overlap measures for each subject using the method described in this paper in comparison to previously reported results in (Carmichael et al., 2005).

Figure 50 Cross-sectional sagittal views of the segmentation results of FreeSurfer (row A), FIRST (row B), our method (row C), and manual segmentation (row D). The false positives, indicated by red circles, are significantly higher in both FIRST and FreeSurfer.

Figure 51 Volumes in the standard space are loaded and linked in 3D Slicer, such that moving through image slices in one volume will automatically display corresponding image slices from the other volumes.

Figure 52 Rendered CT image of a gel phantom embedded with vascular structures that is MR/Ultrasound compatible.

Figure 53 Three orthogonal views of an MR image of the phantom shown in Figure 52.

Figure 54 Cross-sectional view of the reconstructed ultrasound volume overlaid on the registered MR image.

Figure 55 3D Slicer interface for the real-time simultaneous visualization. Top left: Slices extracted from MR image overlaid on a reconstructed ultrasound volume corresponding to the current position and orientation of the ultrasound probe. Bottom
left: Live ultrasound image transmitted from the scanner. Bottom right: Slice of MR image. Top right: 3D rendering of segmentation of vascular structure together with images seen in top left and bottom right windows.
Development and validation of an ultrasound imaging system and image analysis methodologies, including a framework for 3D volume reconstruction of freehand ultrasound, a playback mechanism to view image slices concurrently from different acquisitions that correspond to the same anatomical region, a multi-modality hybrid image registration method, and an automated robust image segmentation method will enhance the ability to monitor changes, study functionality and analyze geometry of anatomical structures.
1.2 OVERVIEW OF CONTRIBUTIONS

i. A system to acquire freehand 3D reconstructed ultrasound images has been implemented.

ii. A technique to concurrently visualize, in real-time, multiple reconstructed volumes including 3D ultrasound and other imaging modalities has been developed.

iii. A hybrid atlas based registration method that makes use of intensity corrections induced at anatomical landmarks to regulate deformable intensity registration has been developed. The method is evaluated on the task of segmentation of the hippocampus in MR images of the brain.

iv. An n-dimensional image analysis method for clustering pixels into homogeneous regions using a directed graph of edges between neighboring pixels has been developed.

v. An n-dimensional automated method that makes use of statistical analysis and graph theory to segment individual fascicles in ultrasound images of the median nerve has been developed.
1.3 THESIS ORGANIZATION

The clinical significance of the systems and methods that have been developed are described in section 2.1. Specifically, the mechanism of nerve regeneration and its significance in patients with peripheral nerve injury is described in section 2.1.1, and the hippocampus and its role in diseases of the elderly such as Alzheimer’s disease (AD) is described in section 2.1.2. The technologies related to the topics covered in this dissertation are introduced in section 2.2, including, ultrasound imaging (section 2.2.1), high resolution ultrasound (section 2.2.2), volumetric ultrasound (section 2.2.3), magnetic resonance imaging (section 2.2.4), and various topics in medical imaging analysis (section 2.2.5), such as image segmentation (section 2.2.5.1), image registration (section 2.2.5.2), and visualization (section 2.2.5.3). The innovation presented in this dissertation is summarized in section 3.0. In section 3.2, an overview of the developed system is illustrated. The novel image analysis methods that have been developed are summarized in section 3.3. The freehand 3D reconstruction system that has been implemented is described in section 4.0. In section 5.0, the developed image segmentation methods are presented. A previously developed medial detection framework is reviewed in section 5.1. A method to transform medial features to a graph structure in feature space, and generate segmentation is explored in section 5.2. A method for clustering pixels into homogeneous regions using a directed graph of edges between neighboring pixels is described in section 5.3. A method that makes use of statistical analysis and graph theory to segment individual fascicles in ultrasound images of the median nerve is described in section 5.4. The hybrid registration method, together with the validation of the method is reported in section 6.0. A technique to concurrently visualize multiple 3D volumes, both in offline and real-time mode, is described in section 7.0. Discussion and future work can be found in Section 8.0.
2.0 BACKGROUND AND SIGNIFICANCE

In this section, the clinical significance of the methods developed as part of this dissertation is discussed in section 2.1. The technologies related to the methods are introduced in section 2.2.

2.1 CLINICAL SIGNIFICANCE

The ultrasound imaging system and the n-dimensional segmentation algorithm developed as part of this dissertation are general medical imaging advances that can potentially enhance the ability to monitor changes, study functionality and analyze geometry of anatomical structures across disorders. Two particular current clinical dilemmas motivated this work: monitoring nerve regeneration in composite tissue allotransplantation (CTA) and hippocampal segmentation from high-resolution MRI in individuals with Alzheimer’s disease.

2.1.1 Nerve regeneration

Composite tissue allotransplantation (CTA) involves the transplantation of multiple tissues including skin, muscle, tendon, bone, cartilage, fat, nerves and blood vessels, unlike conventional solid organ transplantation, which involves single separate organ. CTA mainly focuses on improving the quality of life by restoring anatomic, cosmetic, and functional integrity.
Hand transplantation is a form of composite tissue allotransplantation, whereby the hand of a cadaveric donor is transferred to the forearm of an amputee. The first successful hand transplants were performed in 1998–99 by teams in Lyon (France), Louisville (KY), and Guangzhou (China) (Barker, Francois, Frank, & Maldonado, 2002). By 2013, the International Registry on Hand and Composite Tissue Transplantation (IRHCTT) had received details of 51 hand transplants with encouraging outcomes ("Hand Registry,"). The focus of current CTA research/clinical trials is to improve the safety, efficacy and applicability of these promising reconstructive modalities. Nerve Regeneration is a major challenge that affect the outcome of these life-enhancing procedures.

Following a hand transplant, the distal donor nerve undergoes a process called Wallerian degeneration, which causes the axons in fascicles in the donor to undergo physical deterioration, as shown in Figure 1 (Note: Figure 1 actually shows Wallerian degeneration in the case of nerve injury).

![Figure 1 Illustration showing Wallerian degeneration (reprinted from (Burnett & Zager, 2004))](source: Medscape.com)
The axons and surrounding myelin in the donor hand break down (B to D in Figure 1). As the degradation of the distal nerve segment continues, connection with the target muscle is lost, leading to muscle atrophy (Burnett & Zager, 2004) (E in Figure 1). Distal muscles that have lost their innervation have impaired/no function and will undergo atrophy if new axons do not reach the motor end plates in time. At this stage, only the nerve sheaths/tubes remain in the donor hand to serve as conduits.

Axons grow from the recipient, advancing towards the donor target muscles. Once reinnervation is complete, the axons mature and the pre-injury cytoarchitecture and function are restored. In addition to hand-transplants, nerve regeneration also takes place in peripheral nerve injury (PNI), which is a serious health problem, with approximately 360,000 people in the United States suffering from upper extremity paralytic syndromes yearly and affecting 2.8% of trauma patients (Kesley, Praemer, Nelson, Felberg, & Rice, 1997). In addition to civilian causes (motor vehicle accidents, lacerations with sharp objects, penetrating trauma, stretching or crushing trauma and fractures, and gunshot wounds), devastating PNI is also seen in war injuries, due primarily to improvised explosive device (IED) blast trauma from shrapnel of various dimensions, shapes, and velocities.

The ability to objectively diagnose nerve injury or monitor nerve regeneration in patients undergoing regenerative, repair, or transplant strategies (recipients of CTA such as hand transplants or after PNI treatments such as nerve repair) in a sequential, inexpensive, non-invasive manner would be a significant improvement in the treatment of these patients and study of the underlying processes.
2.1.2 Alzheimer’s Disease

Alterations of hippocampal activity play a vital role in conditions such as Alzheimer’s disease (AD), schizophrenia, and epilepsy. In 2013, approximately 5.2 million people had AD in the U.S. alone, and it is the sixth leading cause of death (Thies & Bleiler, 2013). The hippocampus is a paired structure that belongs to the limbic system. It has mirror-image halves in the left and right sides of the brain and a distinct curved shape (see Figure 2). The hippocampus is located inside the medial temporal lobe, beneath the cortical surface, and consists of ventral and dorsal portions. It is involved in a variety of cognitive and emotional functions, including long-term memory, olfaction, and spatial navigation.

![Figure 2 Lateral view of the brain highlighting the hippocampus](image)

In AD, the hippocampus is one of the regions that are primarily affected. Studies indicate that AD patients have significantly smaller volumes of both hippocampi and the left frontal lobe (Laakso et al., 1995). There appears to be a reduction in the size of hippocampus in patients as they progress from mild cognitive impairment to AD. Recent developments in Magnetic Resonance Imaging (MRI) have resulted in high-resolution images of the brain, making it possible to identify various structures in high detail. Hence, it is of utmost importance for both basic neuroscience and clinical research that reliable and efficient methods for accurately
segmenting the hippocampus in MR images of the brain are developed. Such methods would further aid in studying the function and structure of the hippocampus in the living human brain as it relates to various other conditions.

2.2 TECHNOLOGY BACKGROUND

2.2.1 Ultrasound imaging

Ultrasound imaging makes use of backscattering phenomenon of acoustic signals with frequencies in the MHz range (too high for humans to hear) to generate images of the internal anatomy including tendons, muscles, joints, vessels and internal organs for diagnostic purposes. Typically, piezoelectric transducers encased in a casing and driven by electric pulses are used to generate acoustic signals at the desired frequency. Ultrasound beams are focused either by physical lenses or by using phased array techniques (beamforming). The sound waves travel into the target structure, being partially reflected from the layers between different tissues or scattered by very small structures. A certain fraction of the reflected sound waves (echo) return to the same transducers that generated the initial signal, which now act as receivers and convert the backscattered waves to electric pulses, which, after amplification and filtering are processed into images. Depending on the time it took for the sound wave to propagate through the medium and reflect back to the source, as well as the intensity of the reflected signal, the ultrasound machine determines the intensity of the pixels at specific locations in the image.

The strength of the echo depends on the change of acoustical impedance in the material that generates the echo. The change in acoustical impedance is so high between air and any
other substance that virtually all the ultrasound waves are reflected where air is encountered in
the beam path. Hence, ultrasound imaging requires a point of contact with no air present
between the transducer and the patient. Since ultrasound waves travel easily through liquids, a
thick liquid (gel) is commonly used to bridge the gap.

Ultrasound scanners typically operate at frequencies between 1 and 20 MHz. The spatial
resolution, which defines the distance between two scatterers at which they are resolvable, is
inversely proportional to frequency. In other words, the axial resolution improves (the
resolvable distance decreases) with increasing frequency. The attenuation of the ultrasound
beam as it propagates through the target structure is also strongly dependent on frequency. The
relationship between attenuation coefficient (in dB cm\(^{-1}\)) and frequency (Hz) is approximately
linear (Webb & Kagadis, 2003). For soft tissue, the typical attenuation coefficient is
1 dB cm\(^{-1}\)MHz\(^{-1}\). Hence, a trade-off exists between frequency and depth of penetration –
higher frequency results in lower penetration. For this reason, lower frequencies of 1 – 6 MHz
are used to study deep structures such as liver and kidney, while higher frequencies of 7 – 20
MHz, which provide better spatial resolution, are used to study more superficial structures such
as muscles, tendons, nerves and breast.

Transducer arrays are manufactured in varying configurations of piezoelectric crystal
elements to suit different applications. Linear sequential arrays consist of elements that are
arranged in a linear form in which they fire sequentially. The images generated form a
rectilinear grid. These transducers are mostly used for vascular imaging since the flat probe tip
can be oriented to image the longer dimension of the vessels. The transducer elements can also
be arranged into a curved array to acquire a sector image. This arrangement provides a wider
field of view, and is thereby better suited for abdominal imaging, where target structures are
Another configuration, known as a phased array also has a linear arrangement of elements, but unlike linear sequential arrays, uses smaller form factor. The voltage pulses exciting each element of phased array are delayed with respect to each other to effect beam-steering and thus generating a sector image with sequential interrogations. The small form factor suits cardiovascular applications where the probe is placed in tight windows between the ribs to image the heart.

A number of different imaging modes are available in ultrasound imaging:

- **A-mode**: Amplitude (A) mode is a one-dimensional scan, where the amplitude of the backscattered wave is plotted against the time after transmission of the ultrasound pulse.

- **B-mode**: Brightness (B) mode results in a two-dimensional image. Each line of the resulting image consists of an A-mode scan with the amplitude of the backscattered wave represented as the brightness of the pixel.

- **M-mode**: Motion (M) mode is a continuous series of A-mode scans that are brightness modulated and each displayed vertically, while sweeping horizontally for successive scans. This mode is used to study time-varying displacements of tissues/organs along a single path and does not encompass a cross-section of the anatomy.

- **Color Doppler**: This mode uses the Doppler effect caused by moving objects. It is commonly used to study blood flow, where velocity of blood flow is color coded and overlaid on the B-mode image.

In this dissertation, only B-mode scans are employed.

The signal-to-noise ratio in ultrasound images is one of the poorest found in all medical imaging. There are three sources of noise in ultrasound imaging (Webb & Kagadis, 2003). The first is the noise induced by the electronics of the detection system. The second, known as
speckle, is an interference pattern caused by the superposition of the echoes arriving with random phases and amplitudes from a given resolution cell. The range of speckle is between a minimum of zero to a maximum that depends on the extent that the interference is destructive or constructive. Speckle makes the images appear granular although the tissue being imaged is a grossly homogenous. The third source of noise results from artifacts in the image such as mirroring, shadowing, posterior enhancement, refraction, side lobes, grating lobes, and reverberation. A detailed study on artifacts in ultrasound imaging can be found in (Kremkau & Taylor, 1986).

Ultrasound has many advantages over other imaging modalities. It is non-ionizing and has no known long term side effects, making it ideal for longitudinal studies where a particular anatomy needs to be imaged repeatedly over a period of time. It is widely available, being relatively inexpensive compared to other imaging modalities. Ultrasound scanners are highly portable making scans easy to perform at the bedside or outside the hospital setting. Ultrasound scanners can be engineered in a wide range of physical sizes and shapes, including pocket size scanners, transrectal probes, and intravascular systems. One of the most important advantages of ultrasound is that it is real time. The operator can visualize anatomy live and dynamically choose the most informative scan location for a given diagnose. The real time nature also makes it suitable for image guided interventions such as biopsies, spinal taps, and placement of central line.

Limitations of ultrasound imaging include low signal-to-noise ratio, which renders automated image analysis extremely challenging. It requires expert skill, training, and knowledge of the anatomy to acquire useful ultrasound images. Both location and orientation of the probe during scanning plays a critical role in the acquisition of images of the desired
anatomy. The user should be well versed with ultrasound imaging technology and the effect of various hardware settings including gain, frequency, focus, and time gain compensation (TGC) on the resulting images. In addition to the above-mentioned trade-off between resolution and depth of penetration, the need to maintain contact with the patient makes it difficult to get good images when imaging at locations with high curvature using a linear probe. Since ultrasound does not pass through bone or lung, probe location and orientation becomes critical when imaging targets behind these tissues. In addition, once the images are acquired, the exact location from which they were acquired is lost, and thus it is difficult to replicate a scan precisely at a later time.

2.2.2 High Resolution Ultrasound (HRUS)

Solid-state array transducers have recently been developed capable of imaging at frequencies up to 70MHz at high frame rates. Such scanners can acquire ultrasound images at 30 microns resolution. The advances in HRUS have made possible the visualization of individual fascicles in a nerve, as well as the changes in arterial walls associated with graft vascular disease (GVD). However, this high resolution comes with a price; depth of penetration at 50-70 MHz is typically less than 1 cm. Figure 3 shows an example of a nerve imaged in a human arm using a newly introduced 50 MHz ultrasound scanner (Vevo 2100, VisualSonics, Inc.). We can clearly see the fascicles within the median nerve.
Chronic Rejection (CR) can successfully be monitored using HRUS by measuring the thickness of the arterial wall and the patency of the lumen. Our collaborators have shown such measurements to be possible using the Vivo 2100 ultrasound scanner, as shown in Figure 4 (Keith et al., 2012).

Figure 3 Nerve image with individual fascicles scanned using VisualSonics Vevo 2100 system at 50 MHz

Figure 4 HRUS image (Vivo 2100) of artery showing measurement of Intimal Thickness (IT), Intima-Media Thickness (IMT), and Lumen Diameter (LD).
The hand transplant program at UPMC is one of 2 programs using HRUS to monitor CR changes in their patients (Kaufman et al., 2012). The program has performed one of the largest number of hand/forearm transplants in the nation (8 transplants in 5 patients). Early evidence suggests that both arteries and veins may be primary targets of CR in the hand. Although the UPMC experience confirms that HRUS is a useful tool to evaluate Intimal Hyperplasia (IH) in vessels, a serious limitation remains in the local 2D nature of the current HRUS technology. After the scan is completed, the exact anatomical location of the scan at each moment in time is lost. If the site/location of scan is not registered to a 3D coordinate system, the vascular data cannot provide an accurate progression for IH in the imaged vessel over time.

2.2.3 Volumetric Ultrasound

Conventional 2D ultrasound has been widely used in medical practice since the 1970’s as a diagnostic imaging technique to visualize anatomical structures and functions. Lately, 3D ultrasound is gaining importance because of the additional information it provides for diagnosis compared to conventional 2D ultrasound. 3D volumes allow direct visualization of anatomy in 3D rendered views. 2D slices can be generated from the 3D volume at arbitrary orientations. Quantitative measures such as the volume of a structure or particular linear distances within it may be obtained more accurately given a 3D data set. There are well established image analysis methods such as registration, segmentation, visualization and volume estimation that work on 3D images.

There are currently two methods to acquire 3D ultrasound images:

1) One can use a 3D probe, either with a 2D “matrix” array acquiring 3D volumes directly (Figure 5A), or one in which an internal 2D probe that is mechanically swept repeatedly in the
third dimension (a “wobbler”) (Figure 5B). Matrix array scanners suffer from poor resolution, and both wobblers and matrix array scanners produce volumes of only a relatively small region of anatomy at a given time.

2) One can combine slices acquired while manually moving a 2D probe across the patient to construct a 3D volume (Figure 5C).

![Figure 5](image)

Figure 5 A) 3D probe with 2D “matrix” array acquiring 3D volumes directly ("3D Imaging Using 2D CMUT Arrays with Integrated Electronics,"). B) 3D probe with an internal 2D probe that is mechanically swept repeatedly in the third dimension. C) Reconstructing a 3D volume from the 2D images based on the position and orientation of a hand-held 2D ultrasound probe

This second method involves reconstructing a 3D volume from the 2D images based on the position and orientation of a hand-held 2D ultrasound probe. The probe’s position and orientation is tracked as it is maneuvered freely without any mechanical restrictions on linear, tilt and rotational movements. This method has the advantage of covering a much larger region than the method in (1), while permitting optimal image quality to be maintained by the human operator manipulating the probe appropriately. Although 3D volume reconstruction
methodologies for hand-held ultrasound have been studied extensively in the past decade (Estépar et al., 2003; Hsu, Prager, Gee, & Treece, 2008; Rohling, Gee, & Berman, 1999; François Rousseau, Hellier, & Barillot, 2005), we extend the concept to produce a convenient and effective visualization tool capable of building 3D US volumes in a standard space, from acquisitions obtained at different times, for the purpose of monitoring changes in anatomical structures.

2.2.4 Magnetic Resonance Imaging (MRI)

MR imaging is commonly used to image soft tissues and is based on perturbations of nucleic magnetic fields using radio waves. Hydrogen nuclei, which are abundantly present in soft tissue (water and fat molecules) posses strong magnetic moment due to the inherit property of spin angular momentum. Hence, they are an excellent source of signal to image soft tissue. Although the orientation of spins of a group of nuclei in a given location of the body is random, thus producing no net magnetic moment (they cancel each other), the spins can be forced to align by the application of an external magnetic field (B_0). Under the influence of B_0, a net magnetic moment in the same direction as B_0 is created. The net magnetic moment can be pushed from their alignment with B_0 by application of radiofrequency (RF) pulses at a specific frequency, known as the Larmor frequency. This resonant frequency depends on the strength of B_0; higher strength B_0 results in higher Larmor frequency. By controlling the strength and duration of the RF pulse the magnetic moment may be tilted by any desired angle (0° to 180°). When the RF pulse is done, the spins slowly return to their alignment with B_0 while precessing at the Larmor frequency. This precession induces an AC current in a receive antenna, which is often the same as that used to apply the RF pulses. The induced AC current forms the signal that is mapped as
intensity onto the image. The dependency of the Larmor frequency on the external magnetic field B_0 is exploited by the introduction of gradients in B_0 to achieve spatial separation of the detected signal. Additional magnetic fields, known as x-, y- or z- gradient magnetic fields, depending on the direction of increasing field strength, cause the resonant frequency for molecules in the now non-uniform magnetic field to be dependent on the location of the molecules within the gradient. Slice selection can be achieved by applying an RF pulse at a frequency that corresponds to the resonant frequency for a particular area in the gradient field, leading to the excitation of only those protons in the selected area and the consequent production of signal from only those protons. Gradients can be generated in arbitrary directions, thereby making it possible to acquire image planes in arbitrary orientations. To localize protons within a slice, techniques such as frequency encoding and phase encoding, which make use of Fourier analysis, are employed. The tissue composition dictates the characteristics of the emitted signal, with differences in signal strength creating contrast between various tissues in the reconstructed image. Different aspects of the resonance signal – proton density ρ, spin-lattice relaxation time T_1, and spin-spin relaxation time T_2 – can be emphasized by using different MR pulse sequences. More detailed coverage on MR principles and techniques can be found in (Liang & Lauterbur, 2000).

The main advantages of MR imaging include its non-ionizing nature, high spatial resolution, flexibility, and high soft tissue contrast. Since, unlike CT, MRI does not involve exposure to radiation, MRI scans can be safely used for such patients as pregnant women and infants. A number of imaging sequences of the same patient can be acquired in a single sitting by varying the RF pulse sequence, each resulting in varying contrast across different tissues.
Due to its ability to differentiate soft tissue, MRI can be used to image a wide variety of structures such as muscles, ligaments, cartilage, brain, heart, liver, eyes, etc.

There are a few drawbacks associated with MR imaging. It is very expensive, mostly because of the high cost associated with the manufacture of superconducting magnets. A single MR scanner can cost millions of dollars. Some patients can experience claustrophobia when they are put in the narrow hole of the scanner, which may be intensified because of the loud noise emitted by the gradient coils during the scan. Due to the strong magnetic field, patients with any embedded ferromagnetic metal such as found in pacemakers or shrapnel cannot undergo MR scans. Furthermore, MR images are susceptible to movement. A single MR scan can take a long time (greater than 20 minutes), during which time it can be very challenging for some patients to hold still.

2.2.5 Medical Image Analysis

Medical images produced by a wide range of modalities including the ones described above provide vital information necessary for diagnosis and treatment. Doctors rely on these images to predict, diagnose and treat various conditions of the human body. Radiologists and physicians manually interpret the images using their expert knowledge and training to identify, measure and functionally assess the structures of the body affected by the conditions under investigation. This manual process is tedious and time consuming, especially with large 3D datasets such as those produced by MRI and volumetric ultrasound, which are generally examined one slice at a time. In addition, the manual analysis of the images is subjective in nature and prone to inter-subject variability, thus resulting in inconsistencies in the prediction, diagnosis or treatment.
Hence, Computer Assisted Image Analysis (CAIA) as a means to assist doctors to extract information with little or no manual intervention is of critical importance.

CAIA can be applied in a wide variety of clinical scenarios. It can be effective in clinical research studies where the goal is to understand or confirm findings based on large datasets of images. Analysis of datasets comprised of thousands of images benefits in great measure if manual intervention is minimized. The accuracy and reliability of the algorithms used in such scenarios must be very high since validation of the analysis on each image by a user is not feasible. Since time constraints on the execution of the algorithms are not critical, the analysis may be performed offline. CAIA is also used in diagnostics where decisions are made using a single image or series of images from a single patient, or to guide treatment and study response to treatment. In these scenarios, manual intervention is acceptable - an expert user provides initialization to the algorithm or guides the algorithms until convergence. The analyses in these scenarios may also be performed offline, although, unlike in clinical research studies, the results should be delivered in a timely manner. Image guided surgery, as the name suggests, makes use of CAIA to aid the physician to perform surgery. Preoperative images, usually CT and MR, are used for surgical planning. Reliable image correspondence across modalities and accurate identification of target structures is critical. Intraoperative images are registered to preoperative images (and the information extracted from them) by algorithms that execute in real time to assist in guidance of the surgical procedure. The algorithm can be dependent on user interaction in the preoperative stage, but should be fully automatic during surgery. CAIA can also be used for disease prognostics, where the presence/absence of certain bio-markers detected in the images can predict the chances of a patient developing a certain disease.
The most common tasks in CAIA are image segmentation and image registration. Image segmentation produces delineation of structures in the image. Image registration finds the transformation that maps one image to another image, such that, the correspondence (intensity or feature based) of anatomical structures between the two images is maximized. These topics will be discussed more in detail in the following sections.

2.2.5.1 Image segmentation

Image segmentation is the process of generating delineations in the image based on certain image attributes. The delineations divide the image into regions such that each region is comprised of similar attributes. Among others, intensity of the pixels, edges, and texture are some of the most widely used image attributes. Over the past few decades many novel image segmentation methods have been developed based on concepts borrowed from mathematics, physics, statistics, numerical analysis, combinatorial optimization, graph theory, etc., often focused on a specific application. As such, there does not exist a single method that works in all scenarios for all applications. In this section, several image segmentation methods are introduced. It is beyond the scope of this dissertation to perform an exhaustive review of all the segmentation methods or describe all the details of the algorithms mentioned below. Surveys and in-depth coverage of these algorithms can be found in (Balafar, Ramli, Saripan, & Mashohor, 2010; Jain, 1989; Noble & Boukerroui, 2006; Petrou & Petrou, 2010; Pratt, 1991; Toennies, 2012; Yoo, 2004).

Segmentation methods can be broadly classified into three categories: manual, automatic, and semi-automatic. In manual segmentation, an operator uses expert knowledge of the target structure and its appearance to identify the delineations and generates labels on a voxel-by-voxel basis. The operator uses a pointing device such as a mouse or trackball to trace the boundary of the target structure in the image. Manual segmentations performed by an expert can be reliably
accurate and are generally considered to be the gold standard. However, such manual segmentations are laborious and require a large investment of time. This method further demands considerable training related to both the anatomy and the interactive tool used to generate the labels. It is unlikely to replicate a given segmentation exactly even if the operator remains the same. Hence, manual segmentation suffers from intra- and inter-observer variability, which confounds subsequent statistical analyses of the results. Automatic segmentation methods generate partitions in the image algorithmically without the need for human interaction. Since image characteristics across different imaging modalities and the geometry of different anatomy vary vastly, automatic segmentation systems are generally designed for a specific application. Such systems are prone to error due to anomalies in the image acquisition and/or geometrical abnormalities in the anatomy that were not expected. The third category of segmentation method is semi-automatic, wherein the operator guides an algorithm and interacts with it to generate partitions in the image. Commonly, the operator initializes the algorithm, which then performs most of the segmentation. The operator observes as the segmentation converges and intervenes when an error is detected. This method benefits from the speed and efficiency of an automatic method while providing the accuracy and robustness of manual segmentation. However, in applications where a large dataset with thousands of images need to be analyzed, or in scenarios where analysis needs to be performed in real-time, user dependent solutions are not feasible.

Intensity based segmentation methods make use of the value stored at each pixel (gray scale intensity or color components) to produce the final segmentation. The simplest method, known as thresholding, takes as input a threshold value and produces a binary image such that pixels with intensity value at or above the threshold level are assigned the same label (let us say
label 1) while those below the threshold level are assigned a different label (label 0). Adaptive thresholding uses a threshold value that is a function of position in the image. This makes use of local information to determine the optimum threshold value rather than a single global value. Hence, adaptive thresholding works better in cases where the intensity distribution of similar structures is inconsistent from one position to another within the image. Histograms of intensity can be used to identify the threshold value automatically. When the contrast between heterogeneous structures is high, we expect to see well separated peaks in the histogram. A valley between peaks may correspond to the optimum threshold value. Otsu’s threshold segmentation method is an iterative algorithm that finds an optimal threshold for a histogram with bimodal distribution such that the inter-class variance of the two partitions created by the threshold is maximized. The method was extended to generate more than two partitions in (Liao, Chen, & Chung, 2001). Erosion, dilation and its variants (opening, closing, shrinking, and thinning) are methods derived from mathematical morphology, which uses a structuring element made up of distributions of 1’s and 0’s and operates on binary images. The structuring element is applied at each pixel with a specified logical operation to create certain effects such as eroding an object by one pixel all around its perimeter. Mathematical morphology can be extended to grayscale images as well.

Region merging and split-and-merge algorithms are based on local intensity homogeneity, which can be measured by a second order statistic (variance). In region merging, each pixel is initially considered as a region, which is mapped to a region adjacency graph (RAG). In a RAG, nodes represent a region and edges connect two adjacent nodes. The homogeneity value between two nodes is computed for the corresponding edge. A predetermined homogeneity criterion is used as the decision rule to merge the two regions
represented by the connecting nodes. The RAG is updated at each iteration until no edge exists that fulfills the homogeneity criterion. The split-and-merge algorithm also uses a homogeneity criterion, but unlike the region merging, the criterion is used to split a region into components. Initially the entire image is considered as a single region and the splitting is performed until the homogeneity criterion is no longer satisfied. The resulting regions are converted into a RAG on which a region merging is performed.

Active contours, also known as snakes, are deformable models with an energy minimization framework designed to find boundaries in an image when the approximate shape of the boundary is known (Kass, Witkin, & Terzopoulos, 1988). The word “contour” is used for convenience, although they are not limited to 2D and also work in 3D (active surfaces). The aim is to minimize an energy function $E(c)$, which is a sum of two terms: $E(c) = E_{image}(c) + E_{shape}(c)$, where, $E_{image}(c)$ is the image energy, which depends on intensity of voxels in the image surrounding the contour and $E_{shape}(c)$ is the shape energy, which is a function of similarity between the current shape of the contour and the expected shape. Image energy attracts the contour to image boundaries by looking at the similarity between voxels within the growing contour and the regions outside the contour. Shape energy enforces constraints on the shape of the contour, for example, to reduce extreme curvature. There are three steps involved in the execution of active contours. The first step involves initializing the boundary curve either manually or automatically at some location in the image. The next step involves moving and/or deforming the contour governed by minimization of the energy described above. The final step addresses a stopping criterion, to terminate the algorithm. A comprehensive report on deformable models can be found in (McInerney & Terzopoulos, 1996)
Level sets are a popular image segmentation framework in which a curve (or surface) is represented implicitly by a level set function Ψ. The typical procedure is to initialize the algorithm with an initial contour, mostly inside the target structure. The estimate of the delineation at some time t consists of all locations x for which $\Psi(x, t) = 0$. The function Ψ can be defined as:

$$
\Psi(x, t) = \begin{cases}
 d(x, C(t)), & \text{if } x \text{ is inside contour} \\
 -d(x, C(t)), & \text{if } x \text{ is outside contour}
\end{cases}
$$

where $C(t)$ is the set of points in the 0-level set at time t, and $d(x, C(t))$ is the shortest distance of x to the contour. Partial Differential Equations (PDEs) can then be used to iteratively modify the segmentation by updating Ψ. Although in the ideal case the contour stops or changes minimally at the true boundary in the image, the stopping criterion can be problematic in certain scenarios, leading for example to endless oscillation. Hence, a predetermined number of iterations is often chosen as the stopping criteria, such that the contour usually grows close to the true boundary but does not cross it.

Edge detection techniques find delineations in the image by identifying locations in the image where there exists significant change in appearance. A common measure of edge strength at any location can be determined simply by computing the local intensity gradient. The location of the edges can also be determined by the zero crossing of the Laplacian operator. The magnitude and direction of edges in the neighborhood of a pixel can be detected by convolution with a set of directional derivative masks such as Roberts, Sobel, and Prewitt edge operators. One of the most popular edge detection methods is the Canny edge detector (Canny, 1986), which makes use of intensity gradients to detect edges. In addition, the method suppresses noise, gets rid of spurious edges and seeks well connected edges. Edges can also be detected using
multi-resolution detection techniques such as wavelet decomposition (Mallat & Zhong, 1992) and Family of Gaussians and derivatives of Gaussians. Edges of particular geometric shapes that can be parameterized can be detected using Hough transforms, which is a voting scheme in parameter space (Hough, 1962).

Graph based segmentation methods can consider each pixel in the image as a node in the graph with weighted edges connecting the nodes. The weights represent pairwise similarity/dissimilarity between the corresponding two pixels, determined as a function of some image attribute such as brightness, color, texture, etc. Graph theoretical concepts such as minimum spanning tree, connected components, spectral clustering, graph cuts, etc. are utilized to effect image segmentation. A broader overview of graph based segmentation is presented in section 5.4.

Texture segmentation looks for patterns in the image to generate delineations. Textures can be of two types: deterministic or random. Deterministic patterns have replications that can be learned, a priori. The pattern can then be identified in the test image by using template matching or by applying Fourier transform to find spatial frequencies. Random textures do not have any pattern regularity. These can be modeled with Markov random fields (C.-C. Chen & Huang, 1993).

Live wire (Barrett & Mortensen, 1997; Falcão, Udupa, & Miyazawa, 2000) is a popular interactive segmentation tool that allows the operator to choose the optimum delineation from few likely possibilities. An interface lets the operator select a starting point from which a connected edge of a certain length is automatically generated based on certain optimality criteria. If there is ambiguity, the method generates more than one edge and allows the user to choose the most optimal edge. The optimality criterion is based on a combination of predetermined local
image attributes that are selected based on the target application and the length of the edge. The method is intuitive and the generation of edges is fast, making it a favorable option to delineate structures in applications that can afford user interaction.

2.2.5.2 Image registration

Image registration is the process of finding a geometric transformation \((T)\) that maps data from one image, known as the reference image, to data from another image, known as the fixed image, such that there is high spatial correspondence between anatomical structures in the two images. There are four facets that influence the determination of the appropriate transformation (Brown, 1992; Toennies, 2012): feature space, similarity criterion, search space, and search strategy.

Feature space provides critical information about the reference and fixed images, which is used to find the transform optimizing the correspondence. Features encapsulate local or global properties of the images, such as statistical, geometric, spatial, differential, and spectral properties (Goshtasby & Le Moign, 2012).

Similarity criteria determine and quantify how well the reference and the fixed image correspond to each other. The higher the similarity measure, the better the correspondence. There are a number of similarity measures that can be used for image registration, including the Pearson correlation coefficient, Spearman's Rho, Kendall's space Tau, the correlation ratio, the energy of joint probability distribution, Shannon mutual information, and F-information measures. Analogous to similarity measures, we can also use dissimilarity measures, which tell us how dissimilar the transformed reference image and the fixed image are. In this case, correspondence between the images can be obtained by minimizing the dissimilarity measure. Some of well-known dissimilarity measures include the L1 norm, median of absolute
differences, the square L2 norm, median of square differences, and joint entropy. Additional details on similarity/dissimilar criteria can be found in (Goshtasby & Le Moign, 2012)

The search space provides constraints on the transformations generated by the registration process. Commonly, there are four types of transformations used in image registration:

1. Rigid transformations preserve parallelism, straightness of lines, and angles. It includes only rotation and translation.

2. Affine transformations preserve straightness of lines and parallelism. They include all the rigid transformations plus non-uniform scaling, which can be combined to effect shearing.

3. Projective transformations allow parallel lines to transform into pairs of straight lines that converge. It does not preserve angles, but preserves collinearity and incidence.

4. Deformable transformations are the most general case of transformations that map straight lines to arbitrary curves, which may be parameterized as polynomials, B-splines, thin-plate splines, etc.

Search strategy, also viewed as an optimization problem, finds an optimum transformation confined within the specified search space, such that the specified similarity criterion is maximized. The optimization procedure iteratively finds a solution by evaluating the similarity criterion between the transformed reference image and the fixed image, and then altering the transform applied to the reference image. There are a wide variety of optimization algorithms available in the literature, which can be broadly classified into those that use derivatives of the cost function to be optimized and those that do not (Yoo, 2004). Some of the common optimization methods include Newton's method, gradient descent, the Gauss-Newton algorithm, and simulated annealing.
Once the optimum transformation is obtained, the intensity at each pixel in the image after warping the referencing image is found by resampling it onto the lattice of the fixed image using methods such as nearest neighbor, bilinear interpolation, cubic convolution and spline interpolation.

2.2.5.3 Visualization

Visualization of medical images and the data extracted after analyzing them plays a substantial role in assisting doctors in the treatment of patients. Recent advancements in the acquisition of medical images - 3D and 4D images – requires sophisticated methods and interfaces to communicate with the human visual system through an inherently 2D sensors, the retina.

Image volumes can be visualized using 2D and 3D techniques, as described below. 2D visualization methods include those that extract optimal image planes with views of important image features. These may be orthogonal cardinal planes (axial, coronal, and sagittal) displayed in separate windows, or planes with arbitrary orientation plane. Interactive methods that allow the operator to define the oblique plane may be used to reformat the volume such that the orientation of the volume is transformed so that the viewing plane matches the oblique plane. 3D visualization techniques include surface rendering and volume rendering. In surface rendering, collections of 2D patches or tessellations are fitted at surfaces in the 3D data using image analysis techniques. Visualization cues such as perspective, shading, texture, shadowing, and stereopsis may be added to make the rendering more effective. Volume rendering provides direct visualization of the 3D image using ray-casting, which projects 2D images from 3D volumes. Different attributes of the image, such as intensity, intensity gradient, etc., can be factored in along each ray as the corresponding pixel is rendered, accommodating such cues as
simulated lighting and opacity. This enables direct visual interpretation of structures, surfaces, and other anatomical features from arbitrary viewpoints.

3D Slicer (Pieper, Lorensen, Schroeder, & Kikinis, 2006) is a free and open-source cross-platform toolkit for medical image segmentation, registration, visualization, and analysis, which currently supports numerous applications such as tractography, endoscopy, tumor volume estimation, and image-guided surgery. It is widely used by the biomedical imaging research community as a vehicle for visualization and to translate innovative algorithms into clinical research applications. Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac OS X. Slicer development uses an agile software process that focuses on lightweight, iterative, incremental, and test-driven development principles. The Slicer configuration and build process is controlled by Cmake (Martin & Hoffman, 2010), a cross-platform build system that simplifies the configuration process by using platform-independent configuration files to generate native build files. The module plugin mechanism in 3D slicer enables easy and fast implementation of new functionalities. There are various levels of integration in Slicer (Command Line Interface, Loadable and Scriptable modules). Loadable modules, which have full access to the internals of the Slicer application, are developed for the research described in this dissertation. Using loadable modules, developers can implement interactive tools, introduce new data types, or customize the main Slicer GUI.
3.0 INNOVATION

3.1 MONITOR NERVE REGENERATION

Our laboratory has been exploring the possibility of monitoring nerve regeneration after hand, face and other vascularized composite allotransplantation (VCA) procedures, and more generally, after peripheral nerve injury (PNI) (Tuffaha et al., 2011). PNI results in an anterograde degeneration leaving myelin debris within the neuronal conduit. Representation of fascicular anatomy in a regenerating nerve may be complicated by such debris, neuronal edema or axonal disruption. Currently, there is no non-invasive and economical imaging modality for sequential, reproducible monitoring of peripheral nerve (PN) regeneration that correlates with validated measures and clinical functional outcomes. Recent advances in high-resolution ultrasound (HRUS) have allowed fascicular resolution of PN anatomy. The diagnostic and monitoring applications of ultrasound, and of HRUS in particular, in nerve imaging are areas of high significance and key impact in PNI as well as in VCA. The ability to objectively diagnose nerve injury and monitor nerve regeneration in patients undergoing regenerative, repair or transplant strategies in a sequential, inexpensive, and non-invasive manner would be a significant improvement in the treatment of these patients and in the study of underlying biological processes. Identification of individual fascicles in HRUS images of a normal nerve such as the median nerve and developing automated methods to reliably discriminate fascicles from other
grossly similar structures (such as tendons) is a critical first step. In addition, the capability to acquire freehand volumetric ultrasound images at multiple time points and register them to a single standard image space, together with an easy to use interface to visualize side-by-side registered images of the same anatomy acquired at different time points, would be a great resource to study nerve regeneration.

3.2 OVERVIEW OF THE DEVELOPED SYSTEM

Figure 6 shows an overview of the system presented in this dissertation, together with the individual methods that have been developed, and their arrangement in the developed pipeline. The system consists of four main components. The first component is a framework for 3D volume reconstruction of freehand ultrasound (section 4.0). The pose (position and orientation) of the ultrasound probe is recorded using optical tracking, simultaneously with the extraction of 2D ultrasound images from the scanner. The image data and the tracking data are combined to reconstruct a 3D volume. The second component is a general n-dimensional segmentation algorithm applicable to multiple imaging modalities (section 5.0). The segmentation algorithm is targeted for applications that demand a constraint on shape, which is critical in scenarios where the structural boundary is not well defined either because of high noise in the image or lack of intensity contrast between neighboring structures. The third component is a mechanism to register 3D volumes and/or segmentation results across time and subjects, as well as with other imaging modalities (section 6.0). The reconstructed 3D ultrasound volume will be registered via the developed registration algorithm to previously generated volumes or to a prior volume obtained from different imaging modality, thereby, transforming the current, previous
and prior volumes to a single standard image space. The fourth component is a playback mechanism to view image slices concurrently from different acquisitions that correspond to the same anatomical region (section 7.0). The playback can be performed under two scenarios: offline, and real-time, as discussed in sections 7.2 and 7.3 respectively. In the offline mode, volumes in the standard space are loaded and linked after reconstruction such that moving through image slices in one volume will automatically display corresponding image slices from the other volumes. A real-time visualization system is also presented, in which, using a correspondence obtained between the current scan and the standard image space, image slices from multiple volumes that correlate to the image resulting from the current position of the ultrasound probe are displayed concurrently.

Figure 6 Overview of the developed system together with the individual methods that have been developed, and their arrangement in the pipeline.
The combination of the four components described above will provide the ability to accurately monitor changes in anatomical structures, thus enabling preventive and therapeutic strategies for nerve regeneration and chronic rejection (CR) in Composite Tissue Allotransplantation (CTA). The registration algorithm is also applied in this dissertation to MR images in diseases of the elderly such as vascular dementia, Alzheimer’s, and late life depression.

3.3 Automated Image Analysis

A critical first step before attempting to identify the growing axon cone of the regenerating nerve is identification of individual fascicles in HRUS images of a normal nerve such as the median nerve and developing automated methods to reliably discriminate fascicles from other similar structures (such as tendons). Likewise, it is of utmost importance for both basic neuroscience and clinical research that reliable and efficient methods for accurately segmenting the hippocampus in MR images of the brain are developed, to aid in studying the function and structure of the hippocampus in the living human brain and its effects on various brain related conditions.

Interpreting medical images generally requires expert manual interpretation to separate the target anatomy and relevant contextual information from the noise. This process, which generally involves examining one slice at a time, is tedious and time consuming, especially with large 3D datasets such as those produced by MRI and volumetric ultrasound. Hence, computerized image analysis to extract information with little or no manual intervention is of critical importance. Most conventional automated methods, such as the ones mentioned in
sections 2.2.5.1 and 2.2.5.2, are unreliable because of noise, poor contrast between neighboring structures, variation in anatomical shape, discontinuous object boundaries, and varying imaging characteristics. For instance, the hippocampus is primarily made up of gray matter and lies adjacent to other gray matter structures, resulting in the boundaries not easily distinguishable at certain portions of the border. In fact, a large part of the border with the amygdala is usually invisible. Likewise, ultrasound images of many structures elsewhere in the body have proven difficult for automated analysis. The reasons are evident in ultrasound image shown in Figure 3, which is highly noisy, with the boundary between nerve fascicles only faintly visible or altogether absent.

Hence, there is a need for semi-automatic methods that combine the automatic techniques with *a priori* knowledge of the location, anatomical boundaries, and shape of the structure to be segmented. A goal of the present research is to design new algorithms that run in a robust and efficient manner on *n*-dimensional images, while integrating *a priori* information and requiring minimum adjustments of parameters to operate on images from a variety of modalities including MRI and ultrasound. In this thesis, novel image analysis methods including image noise reduction, image segmentation, and image registration methods are presented.

A novel method for clustering pixels into homogeneous patches, called as Variance Descent Graphs (VDG), uses a directed graph of edges between neighboring pixels (see section 5.3). The variance of image intensity is computed within a circular (spherical) region centered at each pixel. Each pixel forms the node in a graph, with a directed edge pointing to the neighbors with lower variance. Local minima in variance form the roots of disjoint trees, representing *patches* of relative homogeneity. The resulting trees each represent self-normalized homogenous
regions. Setting the intensity of all pixels within a given patch to the mean of its root significantly reduces image noise while preserving boundary location.

Extending on the VDG’s and a method previously developed in my Masters thesis, known as Shells and Spheres (Revanna Shivaprabhu, 2010), a new method is presented here that creates a hierarchical graph structure using statistical analysis and a voting system to determine the similarity between homogeneous patches given their neighborhood (see section 5.4). Edges within circular or spherical structures are favored to receive higher similarity measures. Clustering algorithms are then employed to distinguish distinct homogeneous regions. Finally, segmentation is obtained based on those homogeneous regions, by making use of expected image attributes. Experimental results on 2D and 3D images, including simulated and real images, with illustrations visualizing the generated graph structure are presented.

Finally, a novel hybrid atlas-based registration method is presented that makes use of intensity corrections induced at anatomical landmarks, to regulate deformable registration (see in section 6.1). Landmarks are placed strategically within the structure to be segmented in both the atlas and test images. The two sets of landmarks are registered using linear and non-linear landmark registration methods. Image intensities in a small neighborhood centered at the landmarks are altered to a value that is far beyond the intensity range of the raw image to create unique image features. Deformable intensity registration is then performed on the modified images to yield the desired segmentation. The method is tested on the segmentation of the hippocampus in MRI images of the brain and validated using manual segmentation. Results show that our method agrees better with manual segmentation than previously reported methods and other popular methods such as FIRST (Patenaude, Smith, Kennedy, & Jenkinson, 2011) and FreeSurfer (Fischl et al., 2002).
4.0 FREEHAND 3D RECONSTRUCTION

The various techniques available to generate volumetric ultrasound were discussed in section 2.2.3. In this dissertation, freehand 3D reconstruction is employed to generate volumetric ultrasound images. Figure 7 shows the overview of the freehand ultrasound 3D volume reconstruction system. As the ultrasound probe is maneuvered over the target anatomical structure, position and orientation of the probe are recorded using a Micron Tracker, a commercially available tracking system from Claron Technology Inc. ("Micron Tracker,"). For each B-scan, individual, 2D image is acquired digitally from the ultrasound scanner using a video frame grabber. The 2D images are stamped with meta-data indicating the time of acquisition, as well as the position and orientation of the scan obtained from the tracking system. A 3D volume is reconstructed by placing the 2D images within a 3D space based on the information in this meta-data.

When the 2D images are consolidated into a 3D space, a particular voxel in the 3D volume may either be intersected by pixels from more than one 2D image or may not be intersected by any pixel. As suggested in (Rohling et al., 1999), the former problem, known as ‘bin-filling’, can be solved by combining data in the overlapping pixels (compounding). The latter problem, known as ‘hole-filling’, can be solved by inferring values for the missing data using information of the voxel’s neighbors (interpolation). Bin-filling and hole-filling techniques
have been studied extensively in the past (Dewi et al., 2009; Solberg, Lindseth, Torp, Blake, & Nagelhus, 2007).

Figure 7 System overview of 3D volume reconstruction

Temporal and spatial calibration of the system is required to correctly localize the data captured. As shown in Figure 8, the image acquisition system and the tracking system generate data at their own rates.

Figure 8 The image acquisition system and the tracking system generates data at their own rates.
The aim of temporal calibration is to estimate the latency between the two systems and provide a single time coordinate. The ultrasound probe is moved vertically in a tank of water in a smooth periodic motion, such that the bottom of the tank appears in the image as a horizontal line that moves up and down. The tracker and video streams are recorded simultaneously. The horizontal line is segmented using automated image analysis and the temporal relation found where there is maximum correlation between the movement of the line segment and the tracker data (F. Rousseau, Hellier, & Barillot, 2006). Figure 9 shows the data recorded from the tracking and imaging systems. The blue plot in both the graphs denotes data from the tracking data. The red plot in the top graph denotes line segmented in the image before calibration. Maximum correlation of the two plots was detected at an offset of 0.244 seconds. The green plot in the bottom graph denotes the image data after it is compensated for the time offset.
Figure 9 Temporal calibration estimates the latency between the tracking and imaging systems. Location data of the two systems before (top) and after (bottom) compensating for the latency.

Spatial calibration finds the geometric relationship in space between pixels in the 2D image and the position of the probe in 3D space. The calibration transformation between the ultrasound image and the probe tracking sensor, known as Image-To-Probe transform, was calculated using an established N-wire phantom (Figure 10) developed specifically for this purpose (T. K. Chen, Thurston, Ellis, & Abolmaesumi, 2009; Lasso et al., 2014).
The N-wire phantom intersects the ultrasound slice in a unique pattern of locations depending on slice location. Figure 11 shows an ultrasound image of the N-wires, which was acquired with the phantom immersed in a water bath. The cross-section of the wires is scanned such that they appear as dots in the image (at locations pointed by red arrow).

Figure 11 Ultrasound image of the N-wires, which was acquired with the phantom immersed in water bath. The wires appear as dots, as seen in the image at locations pointed by the red arrows.
By detecting the intersecting points in the ultrasound image as the probe is maneuvered over the phantom, it is possible to calculate the calibration transformation. The reader is referred to (T. K. Chen et al., 2009) for the theory concerning the estimation of calibration parameters. Automatic segmentation and pattern recognition algorithms also described in (T. K. Chen et al., 2009) were used to detect the cross-section of the wires in the ultrasound image.

The implementation was performed using PLUS (Public software Library for UltraSound imaging research) (Lasso et al., 2014), an open source toolkit containing library functions and applications for tracked ultrasound image acquisition, calibration, and processing. PLUS conveniently combines calibration methods (temporal and spatial), recording tracked ultrasound images and volume reconstruction algorithms. The ultrasound images were saved as an extension to the meta-IO standard image file format (*.mha, *.mhd), with the image header containing tracking information, including image orientation, transforms from the tracker, and timestamps, as described above. PLUS currently supports a variety of image acquisition devices such as Ultrasonix, BK ultrasound systems, and various frame grabbers. It also supports a wide range of tracking systems such as Ascension, NDI, Claron, Phidget, CHRobotics pose tracking devices, and any device with OpenIGTLink output. The advantage of using such a library is that the system developed does not depend on any single device configuration. Using PLUS, it is very easy to switch to a different combination of image acquisition and tracking devices.
The freehand 3D reconstruction system was tested on the N-wire phantom made up of three layers of three wires each (with each set of three wires forming the shape of an “N”, hence the term “N-wire). Figure 12 shows 3D rendering of the segmentation of the wires from the reconstructed volume. Segmentation was performed using the intensity threshold method mentioned above. Also shown are three orthogonal slices through the ultrasound data to provide a spatial context. We can clearly see the N-shape of the wires in the reconstructed image. The width of the middle N-wire (distance between the parallel lines), and the height between the first and third N-wire were measured in the reconstructed image. The measured width and height were 19.6 mm and 20.2 mm respectively, while the true physical distances were both 20 mm.
Figure 13D shows an image slice retrieved from a reconstructed 3D US volume of the phantom corresponding to the live US image seen in Figure 13C (J. Wang et al., 2014). The quality of the reconstructed slice suffers from the problems outlined above.

Figure 13 (A) US probe tracked by markers mounted on it. (B) 3D model of individual 2D US images stacked in a 3D space based on the recorded location and orientation of the US probe. (C) Live US image. (D) US image slice retrieved from a previously reconstructed US volume corresponding to the live US image.
5.0 IMAGE SEGMENTATION

In this section, we present novel image segmentation methods including a medial based segmentation method, a method that clusters pixels into homogenous patches, and a graph based segmentation method.

In sections 5.1 and 5.2, we present a medial based segmentation method, which extends a method previously developed (Revanna Shivaprabhu, 2010) to extract medial points based on the divergence of the direction function to the nearest boundary as it changes across medial ridges. The direction function is determined by analyzing the mean and variance of intensity within asymmetric pairs of adjacent spherical regions. The medial points detected are clustered to extract features including scale, orientation and medial dimensionality. These are then organized as a graph structure and partitioned in the feature space using spectral analysis. A learning based approach to find similar partitions in a test image is presented.

In section 5.3, we present a novel and relatively simple method for clustering pixels into homogeneous patches using a directed graph of edges between neighboring pixels. The method works in n-dimensions and requires only a single parameter, the radius of the circular regions used to compute variance.

In section 5.4, we present an n-dimensional automated method, which creates a hierarchical graph structure that makes use of statistical analysis and a voting system to determine the similarity between previously generated homogeneous patches given their
neighborhood, stored as weights on the edges of the graph. Edges within circular or spherical structures are favored to receive higher similarity measures. We then employ clustering algorithms to distinguish distinct homogeneous regions. Finally, a segmentation is generated based on those homogeneous regions by making use of expected image attributes. We present experimental results on 2D and 3D images, including simulated and real images, with illustrations visualizing the generated graph structure.

5.1 SHELLS AND SPHERES

Shells and Spheres (SaS) is a novel system developed in our laboratory for analyzing images. In the SaS framework (G. Stetten et al., 2010), spheres centered at every voxel grow or shrink by adding or deleting an outer shell one voxel thick, based on statistical measures of their contents (e.g., mean and standard deviation of pixel intensity) to reach, but not cross object boundaries in the image. Figure 14 shows the construct of the asymmetric sphere-pair, which forms the basis of the analysis of boundaries and medial locations in our previous work (Revanna Shivaprabhu, 2010).

Figure 14 (A) Asymmetric sphere-pairs (B) Search algorithm to find the nearest boundary of the rectangular area.
An asymmetric sphere-pair consists of an “outer” sphere (dashed circle) held at a constant, small radius, adjacent to an “inner” sphere (solid circle) that increases in radius. The location of the asymmetric sphere-pair is considered to be the center of its inner-sphere, and thus a family of possible sizes for the inner-sphere and orientations for the outer-sphere for a given inner-sphere size are possible at each location. Two such pairs at a given location within a rectangular object are shown in Figure 14A, with the larger inner-sphere correctly finding the boundary of the object in conjunction with one of its outer-spheres. The constant radius of the outer sphere is chosen to be small enough to provide sufficient boundary curvature while still being large enough to represent a statistically significant population. As the inner-sphere is grown to each new radius, every possible orientation of outer-sphere is tested, and an overall measure of boundary strength is used to identify the boundary. The optimum sphere-pair should have its inner-sphere just touching the nearest boundary and its outer-sphere just on the other side of that boundary.

To permit the SaS framework to find boundaries, a measurement of boundary strength based on the samples of voxel intensity in adjoining spherical regions is required. The measure of boundary strength we choose is the \(d' \) (d-prime) statistic, commonly used in signal detection to express the difference between the mean of a signal and the distribution of noise, in units of standard deviation. It is applied to the intensity of voxels within the inner-sphere and outer-sphere of a given sphere-pair. Since the standard deviations of the inner-sphere and outer-sphere samples are not expected to be necessarily equal, the concept of pooled standard deviation is borrowed from the Student’s \(t \)-test to yield the following definition of \(d' \):

\[
d' = \frac{\bar{X}_i - \bar{X}_o}{\sqrt{(S_i^2 + S_o^2)/2}}
\]
where \bar{X} and S are the means and standard deviations of voxel intensity for the voxel samples in the inner-sphere (i) and outer-sphere (o).

Using the d' statistic as a measure of boundary strength, a search is performed for the boundary nearest to a particular location x using the algorithm depicted in Figure 14B. Starting with an inner-sphere of the same radius as the outer-sphere, the inner sphere is expanded, checking each possible orientation of adjacent outer-sphere. A discrete set of the centers of such outer-spheres is obtained from the shell centered at x whose radius is the sum of the outer-sphere and inner-sphere radii. At each inner-sphere radius (scale) the sphere-pair with the maximum d' statistic is chosen to represent the distance $r(x)$ and radial direction $\hat{r}(x)$ to the putative nearest boundary (the ‘\wedge’ denotes a unit vector).

The direction vector changes abruptly when one crosses the medial manifold, as one boundary suddenly becomes closer than the other. This amounts to a singularity in the divergence of the direction vector in the continuous domain (Siddiqi & Pizer, 2008). Since medical images are generally discrete and the asymmetric sphere-pair represents a forced choice at every voxel location and scale to a single nearest boundary, neighboring voxels whose direction vectors $\hat{r}(x)$ change significantly infer that the actual medial location is somewhere between the two voxels. This strategy is implemented by checking the winning sphere-pairs at each inner-sphere radius (scale) against their immediate neighbors. Since, for a medial location, the distance to the opposing boundaries is equal, the scale of the two neighboring sphere-pairs should be equal, and thus all the sphere-pairs can be searched one scale at one time. When neighboring voxel locations whose sphere-pairs have a sufficiently high d' and whose direction vectors yield a dot product that is sufficiently negative are found (to ensure that the two boundaries are not actually neighboring segments of the same boundary region), it implies that a
medial location has been traversed and the corresponding sphere-pairs are identified as medial. The location of the medial point is taken to be midway between the centers of the adjacent inner spheres in the constituent sphere pair. Figure 15(B) shows a cross-sectional slice of a noisy 3D image containing a torus (Figure 15(A)), whose minor radius is 6 and major radius is 15. The medial points detected at scale 5 and 6 using the method described above are shown in blue and green respectively.

![Figure 15](image)

Figure 15 (A) 3D model of a torus visualized using surface rendering. (B) Noisy image of a torus. Cross-sectional slice of the 3D image showing the detected medial points at scale 5 (blue), and at scale 6 (green). Reproduced from (Revanna Shivaprabhu, 2010)

5.2 Feature Based Segmentation

The medial points detected can be clustered and analyzed to parameterize geometric shapes. Clustering is performed by describing a local region and a particular size of the region (scale). The region is simply the inner sphere of any sphere pair at a medial location, as determined in the previous section. Any other medial points (sphere pairs) of the same scale within that inner
sphere are considered to be in the cluster. Thus, a cluster $C_r(\mathbf{x})$ at pixel location \mathbf{x} is defined as $C_r(\mathbf{x}) = \{ S_r(\mathbf{x}) \cap M \}$, where $S_r(\mathbf{x})$ is an inner sphere of radius r centered at image pixel \mathbf{x}, and M is the set of all medial points. Associated with each medial point is a direction vector pointing to the nearest boundary. A given population of direction vectors may be examined to obtain a compact and versatile representation of the local shape, following methods developed by Stetten and Pizer (G. D. Stetten & Pizer, 1999). Eigenanalysis on the cluster of direction vectors, computed using the covariance matrix D given by:

$$D = \frac{1}{n} \sum_{i=1}^{n} \hat{a}_i \hat{a}_i^T$$

where \hat{a}_i is a population of n unit directional vectors, results in as many eigenvalues and eigenvectors as the dimension of the image. Assuming we are working in N dimensions, the eigenvalues may be denoted as $\lambda_1, \lambda_2, \ldots, \lambda_N$ and their corresponding eigenvectors may be denoted as $\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_N$. Since D is a positive definite symmetric matrix, its eigenvalues are all positive and sum to 1, i.e. $\lambda_1 + \lambda_2 + \cdots + \lambda_N = 1$. If we arrange the eigenvalues such that $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$, then their relative values can be used to represent dimensionality of the medial manifold, and their corresponding eigenvectors $\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_N$ can represent the manifold’s orientation. In the case of 3D, \hat{a}_1 and \hat{a}_2 can be used to describe the dimensionality of an object. Note that it is sufficient to compute λ_1 and λ_2 since $\lambda_3 = 1 - (\lambda_1 + \lambda_2)$.

A feature vector V comprised of the location of the medial point \mathbf{x}, the radius of the inner sphere s centered at the medial point, and the eigenvalues λ_i, $i = 1 \ldots N - 1$ computed at the medial point, characterizes the shape of the object locally in the vicinity of the medial point. A feature vector V may be formed at each medial point and the combination of all vectors represents the complete object. Thus, the shape of the object, originally represented as group of
voxels in the Cartesian image space I, is transformed to data points in feature space F represented by feature vectors V

\[
I : [x, y, z] \rightarrow F : V = \begin{bmatrix} x \\ y \\ z \\ \lambda_i \end{bmatrix}
\]

The feature space may be modeled as a complete (simple undirected) graph \(G = (\mathcal{N}, E) \), with the feature vectors \(V \) forming the nodes/vertices (\(\mathcal{N} \)) of the graph. Every node in the graph (\(\mathcal{N}_i \)) is connected to every other node by weighted edges (\(E \)). The weight on each edge, denoted as \(w(\mathcal{N}_i, \mathcal{N}_j) \), is a function of similarity between the two nodes, with the weight being larger if the nodes are dissimilar. A number of similarity measures can be used. For example, in (Egghe, 2009) similarity measures such as Jaccard, cosine, Dice, and several related overlap measures have been derived for vectors from set-theoretic similarity measures.

The graph \(G \) may be partitioned into groups using normalized cuts criterion (Shi & Malik, 2000), which measures both the total dissimilarity between groups as well as the total similarity within groups. A partition is obtained when the edges connecting the two dissimilar groups are removed. The degree of dissimilarity between the two groups (A and B), called the cut, can be computed as the total weight of the edges that have been removed, i.e.,

\[
cut(A, B) = \sum_{\mathcal{N}_i \in A, \mathcal{N}_j \in B} w(\mathcal{N}_i, \mathcal{N}_j)
\]

In (Shi & Malik, 2000), Shi and Malik have proposed a normalized cut criterion - an unbiased measure of disassociation between subgroups of a graph – having the property that minimizing normalized cut leads directly to maximizing the normalized association, which is an unbiased measure for total association within subgroups. A generalized eigenvalue system for
computing the minimum normalized cut has also been proposed. The normalized cut \((Ncut)\) and normalized association \((Nassoc)\) are given by:

\[
Ncut(A, B) = \frac{\text{cut}(A, B)}{\text{assoc}(A, N)} + \frac{\text{cut}(A, B)}{\text{assoc}(B, N)} \tag{6}
\]

\[
Nassoc(A, B) = \frac{\text{assoc}(A, A)}{\text{assoc}(A, N)} + \frac{\text{assoc}(B, B)}{\text{assoc}(B, N)} \tag{7}
\]

where,

\[
\text{assoc}(A, N) = \sum_{N_i \in A, N_j \in N} w(N_i, N_j) \tag{8}
\]

is the total connection from nodes in A to all the nodes in the graph.

By partitioning the graph according to the criteria described above, the global shape of the object will be divided into distinct partitions in feature space. Figure 16(B) shows the result of applying the method described above to a binary segmentation of the hippocampus (Figure 16(A)). The medial manifold is represented by cubes in the figure. The Eigenvectors are represented by arrows and the partitions obtained after applying the normalized cut method are shown in different colors. The following similarity measure was used to generate the weight on each edge:

\[
w(N_i, N_j) = -\log \left(1 - \frac{1}{n} \sum_{k=1}^{n} \frac{|v_i^k - v_j^k|}{v_{max}^k - v_{min}^k}\right) \tag{9}
\]

where \(v^k\) is the \(k\)th feature in the feature vector \(V\) that is stored at each node \(N\), \(v_{max}\) and \(v_{min}\) are the maximum and minimum values of the \(k\)th feature, which are obtained from all available data points. Equation 9 takes into consideration the dynamic range of each feature, by normalizing each feature individually. We include a logarithm to compress the total dynamic
range. The similarity measure becomes 0 when the two feature vectors are exactly the same, and the measure increases as the feature vectors become less similar.

Figure 16 (B) shows the result of applying the methods mentioned above to a binary segmentation of the hippocampus (A). The medial manifold is represented by cubes in the figure. The color of Eigen vectors represented by arrows positioned at cubes and the color of the cubes indicate the partitions obtained after applying normalized cuts method.

Suppose we are able to extract the medial manifold and the subsequent partitions in an accurate and robust manner, the feature vectors can be trained by computing the partitions in binary images obtained by manual segmentations. The training images can be selected such that a wide range of shape variations are factored. This avoids uncertainty due to image noise and enables shape variations to be analyzed at a higher spatial resolution. The trained partitions can be used to segment objects in test images by matching them with the partitions obtained in the test image.
However, the method described above is prone to error, mostly because feature vectors and partitions similar to those in the training dataset need to be identified in the raw test image as well. Although medial manifolds can be computed reliably using SaS in binary images, using asymmetric sphere pairs of SaS to identify boundaries in gray scale images can be challenging, especially when the neighboring region is smaller than the size of the outer sphere. For example, at the location pointed by the red arrow in Figure 17, the boundary separating the hippocampus and the adjacent amygdala is very thin. The outer sphere in such cases can encompass both the thin tissue that separates the two structures and the neighboring amygdala, thereby failing to identify the boundary. In addition, modest deviation in the expected shape of the target structure can alter the medial manifold considerably, leading to the generation of irregular partitions previously unseen during training. Missing boundaries such as those that appear in the ultrasound images of the median nerve (Figure 17B) also results in unpredictable medial manifolds. Also, Eigen analysis of direction vectors does not account for the occurrence of endness. Endness is the extremity of medial manifolds, where the inner sphere osculates with the boundary, i.e., where the curvature of the inner sphere matches the curvature of the boundary.
The following sections describe methods that overcome some of the drawbacks of medial based approach mentioned above. First we develop pixel-based clustering of homogeneous regions in section 5.3, and then we come back to the SaS framework and apply it to clustering those regions in the graph based segmentation method discussed in section 5.4.

5.3 VARIANCE DESCENT GRAPHS

We have developed an image analysis method called Variance Descent Graphs (VDGs) to cluster pixels into homogeneous regions using a directed graph of edges between neighboring pixels (G. Stetten et al., 2013). In this method, the variance of image intensity is computed
within a circular (or spherical in 3D) region centered at each pixel. Each pixel forms a node in a
graph, with a directed edge pointing to the neighboring pixel with lowest variance, assuming one
exists with lower variance than itself. Local minima in variance thus form the roots of disjoint
trees. The resulting trees each represent a self-normalized relatively homogenous region, and we
call these regions *patches*.

Figure 18 illustrates the concept. The flowchart for the method is shown in Figure 19 and
Figure 20. Pixels in an 8 x 8 image are shown as small circles (either filled or empty) each
surrounded by square regions whose gray level denotes membership in one of three relatively
homogeneous regions. Arrows are present between neighboring pixels, such that each pixel
either points to its neighbor with the lowest variance, or, in certain cases (within one of the three
square boxes) the pixel does not point to any neighbor, signifying that it has a lower variance
than any of its neighbors. The result is 3 disjoint trees, each representing one of the 3 relatively
homogeneous patches, and each with its own unique root (square box). Nodes that are sources
(open circles) tend to be at the outsides of the patches, but not always.

Figure 18 Directed edges (arrows) between pixels (circles) representing decreasing intensity variance of spheres
centered on those pixels. Reproduced from (G. Stetten et al., 2013)
Figure 19 Flowchart for the variance descent graphs algorithm
Figure 20 Flowchart for the recursive function ‘Follow tree recursively’ used in the flowchart shown in Figure 19

The method works in n-dimensions, is self-normalizing, and requires only a single parameter: the radius of the circular regions used to compute variance for each pixel. Replacing the pixel intensity in each VDG patch with the mean intensity of the sphere belonging to the corresponding root represents a compression of useful information in the image, reducing intensity noise while preserving useful intensity and boundary information.
Methods that reduce noise and perform data dimensionality reduction are extremely useful when analyzing ultrasound images. Due to the nature of ultrasound image acquisition, the signal-to-noise ratio (SNR) in ultrasound images is amongst the lowest in medical imaging. High noise and variability in image intensity in these images make reliable automated image analysis tasks particularly difficult. High data dimensionality also poses challenges to automated image analysis. Commonly, image segmentation algorithms work at the pixel level, i.e., every pixel of the image is analyzed by the algorithm. For \(n \) pixels, computation time and memory usage, are often proportional to somewhere from \(n \) and \(n^2 \), depending on the algorithm, making such algorithms impractical where a large number of 2D images are obtained over the course of a single scan, or when 3D ultrasound datasets are to be analyzed. Thus reducing noise and the number of elements to analyze by first forming patches is beneficial in a number of ways.
We tested the VDG algorithm on ultrasound scans of peripheral nerves. Cross-sectional scans of a human medial nerve were performed on a normal volunteer using the HRUS scanner described in section 2.2.2 operating at 50MHz. Penetration depth was approximately 5mm with 30µm resolution. A 256×256 pixel 8-bit grayscale image was used as input to the algorithm. The results are shown in Figure 21. The original ultrasound image is labeled 0. The images labeled 1, 3, and 5, show the results of applying the VDG algorithm with variances computed using spheres of those respective radii (in units of pixels). In each of these three images, the mean intensity of all pixels within a given patch was set to the mean of its root pixel. The operation clearly preserves anatomical structure, including edge location, while significantly
reducing noise. Figure 23B shows the same results (at radius 3) of applying the algorithm to the ultrasound image of the median nerve (shown again in Figure 23A). The roots of the VDG patches are displayed in Figure 23B as black dots. Thus the 65536 pixels in the raw image have been compressed to approximately 300 VDG patches, resulting in considerable noise and dimensionality reduction.

To demonstrate the formation of VDG patches in 3D, we applied the algorithm described to MRI images of the brain. Figure 22 (left) shows a T2 fluid-attenuated inversion recovery (FLAIR) image of a patient with periventricular white matter hyperintensities (WMHs). Images were collected on a 3T Siemens Trio total imaging matrix (TIM) scanner. The 3D version of the VDG algorithm was applied with a radius of 1, and a slice at the same location through the resulting 3D patches is shown in Figure 22 (right). Again, reduction in noise and retention of region and boundary information is evident.

![Figure 22](image)

Figure 22 Variance descent graph applied MRI image of the brain. Shown in left is the original image and in right the VDG patches evaluated at radius 1
The next section describes a graph based method that further clusters the VDG patches in a hierarchical approach resulting in the identification of larger target structures.

5.4 GRAPH BASED TECHNIQUES

The VDG patches computed in the previous section (5.3) reduces noise in the image while preserving useful intensity and boundary information. There are far fewer patches than original pixels, thus resulting in significant data dimensionality reduction. The next goal is to further cluster the VDG patches using graph methods in a hierarchical approach.

Graph based image segmentation methods have been studied extensively. As opposed to the graph based VDG method for clustering pixels, described in the previous section, which uses an unweighted directed graph, most methods that consider each pixel in the image as a node in the graph have weighted undirected edges connecting the nodes. The weights on the edges represent pairwise similarity/dissimilarity between two pixels, determined as a function of some image attribute such as intensity, color, texture, etc. In (Morris, Lee, & Constantinides, 1986), the shortest spanning tree is used to segment regions hierarchically. Another method that makes use of the shortest spanning tree is presented in (Felzenszwalb & Huttenlocher, 2004), with a greedy region-merging process that satisfies particular global properties and an adaptive threshold to merge two components. The threshold is a function of both the size of the components to be merged and the largest edge weight in the shortest spanning tree within each of the components. Another popular method, graph cuts, uses combinatorial optimization techniques to find solutions to a class of energy functions resulting in an optimal partition of a graph. Wu et al. (Wu & Leahy, 1993) introduced the graph cut method based on minimizing the
cost of partitioning. The cost of a partition is equal to the sum of the weights of edges to be removed to effect the partition. To mitigate the inherent bias in this approach towards finding small components, Shi et al. (Shi & Malik, 2000) proposed a normalized cuts criterion – an unbiased measure of disassociation between subgroups of a graph – having the property that minimizing normalized cuts leads directly to maximizing the normalized association, which is an unbiased measure for total association within subgroups. They have also developed a generalized eigenvalue system for computing the minimum normalized cut. Several other similar graph cut methods have been proposed (Cox, Rao, & Zhong, 1996; S. Wang & Siskind, 2001, 2003), each with a different cost function and optimization method. Interactive graph cut methods (Y. Boykov & Kolmogorov, 2004; Y. Y. Boykov & Jolly, 2001) find the minimum cut by performing max-flow/min-cut analysis, with nodes marked by the user as foreground or background functioning as the source and the sink, respectively. Graph cuts with shape priors have been proposed in (Cremers, 2006; Das, Veksler, Zavadsky, & Boykov, 2009; Freedman & Tao, 2005). In (Grady, 2006), the random walker algorithm is proposed, an interactive segmentation method in which the user marks certain nodes as seed points. The weight on an edge between two nodes is viewed as the likelihood that a random walker will go across that edge. Each node in the graph is given the same label as the seed point that the random walker reaches first. An extension to the random walkers algorithm has been proposed in (Grady, 2005), wherein a probability density model is incorporated as a prior to circumvent the need for manual seed placement. Pavan et al. (Pavan & Pelillo, 2003) have proposed an image segmentation method that extends the notion of maximal clique-to-edge weighted graphs, called dominant sets. This method clusters nodes in a graph based on the weights on the edges conditioned on internal homogeneity within clusters and external inhomogeneity between
A comprehensive review of graph based segmentation methods can be found in (B. Peng, Zhang, & Zhang, 2013). Although the methods mentioned above perform well in many situations, our application of identifying individual fascicles in ultrasound images renders them less than ideal. Most of the aforementioned methods label regions with similar attributes as a single segment, especially when the regions are not well separated by complete boundaries. Their performance relies heavily on the presence of strong boundary cues. However, as seen at locations highlighted by red circles in Figure 23A, the boundaries between fascicles are often incomplete. We desire to generate distinct labels for each individual fascicle, even though they may partially merge into each other. Furthermore, methods that are based on pairwise similarities are highly sensitive to noise, which is profoundly present in ultrasound, resulting in erroneous results as demonstrated in section 5.4.5.5. Some of the prior methods are restricted to 2D images, while others are not practical for large 3D datasets because of the high density of their pixel-based graphs. Interactive semi-automated methods require considerable time and effort with ultrasound, making them impractical where a large number of 2D images are obtained over the course of a single scan, or when 3D ultrasound datasets are to be analyzed. By first forming VDG patches, described in section 5.3, we address these problems of noise and computation time, and by introducing a spherical shape prior, as discussed below, we address the issue of incomplete boundaries between fascicles.

The objective is to effect a segmentation based on clustering the VDG patches. Our goals are threefold, (1) determine the similarity between homogeneous patches given their neighborhood, stored as weights on the edges of a graph whose nodes are individual patches, (2) distinguish distinct homogeneous regions by clustering patches based on that graph, favoring
spherical structures, (3) produce a segmentation based on those homogeneous regions. To accomplish these goals, we make use of statistical analysis and graph theory, as discussed in the following three sections, corresponding to the three objectives just described: (5.4.1) Constructing a graph of patches, (5.4.2) Clustering regions in that graph, and (5.4.3) Segmenting anatomical structures from those clusters.

5.4.1 Constructing a graph of patches

5.4.1.1 Graph notation

The set of disjoint trees making up VDG patches just described may be used to form a new complete (simple undirected) graph $G = (\mathcal{N}, E)$, with the roots of the trees forming the nodes/vertices (\mathcal{N}) of the graph. Each node in the graph (\mathcal{N}) is connected to every other node by weighted edges (E). For example, Figure 23C shows edges connecting the node positioned at the cross-hairs to every other node. We intend to use the weight on each edge, denoted as $w(\mathcal{N}_i, \mathcal{N}_j)$, as a function of similarity between the two patches, determined using a voting system discussed in the next section. Thus we will use these weights to cluster similar patches into larger anatomical structures.
incomplete, as seen at locations highlighted by red circles. (B) VDG Patches obtained for radius 2. The roots of patches are displayed as black dots. (C) Patches are converted to nodes (roots of patches) and edges of a graph. Figure shows an example of edges incident on one node (position of crosshairs)

5.4.1.2 Voting system

Homogenous regions in an image comprised of patches are grouped to form what we call communities. In graph notation, communities are subgraphs comprised of edges, such that the weights on edges whose nodes belong to the same community are high and weights on edges whose nodes belong to different communities are low. Communities are the undirected graph equivalent of strongly connected components (which are specific for directed graphs). The formation of communities involves a voting system, wherein edges of the graph accumulate weighted votes. Each node partakes in the formation of its community by asserting its influence in its neighborhood via weighted votes assigned to edges in that neighborhood. The weights of the votes correspond to the degree of homogeneity in the neighborhood. This process is regulated by two criteria. The first criterion, called sphere of influence, defines the neighborhood of edges accessible to the node. We say sphere although the neighborhoods will actually be circular in a 2D image. The second criterion, called strength of influence, defines the
weight of each vote that the node will assign to edges in its sphere of influence. The method to establish these two criteria will be discussed in the next section.

Sphere of influence

Spherical (or circular) neighborhoods, denoted as $S_r(x)$, where r is the radius of the spherical neighborhood and x is its center, are used to determine the region in which a node is allowed to cast its votes. This neighborhood, centered at each node, will encompass the most homogenous spherical region in the vicinity of the node. In particular, $S_r(x)$ will be comprised of VDG patches that are similar to the patch at the center of the neighborhood. In order to determine the optimal r, the previously (section 5.1) described *Shells and Spheres* (SAS) framework is adapted.

In SAS, r is defined as the integer radius in units of inter-pixel distance, assuming an isotropic image grid. A shell of radius r centered at location x contains any pixel whose distance from x rounds to the integer r. Shells of different r are therefore non-overlapping. The corresponding sphere of radius r is the union of all the shells of radius equal or less than r. Spheres are grown incrementally by adding a shell at the next larger radius to the sphere. The SAS framework is modified such that it can operate on patches in place of pixels. The definition of r remains unchanged - the integer radius in units of inter-pixel distance. A shell of radius r centered at location x contains patches at least some of whose pixels are at a distance r from x. It is sufficient for a section of a patch to be at a distance r - not necessarily the entire patch – for it to be included in the shell. However, as a sphere grows by adding outer shells, the same patch is not included in subsequent shells after it has already been included in a smaller shell. Thus, including a patch in a shell identifies the initial contact with that patch as the sphere $S(r,x)$, grows from a given central pixel x. For shells that extend beyond the boundaries of the image,
only pixels within the truncated shell are used. Thus, no assumption is made about the value of pixels outside the image. A sphere of radius r contains patches that are completely enclosed by the sphere. Similar to the original SAS framework, spheres are grown incrementally by adding a shell at the next larger radius to the sphere. Patches that are partially enclosed by the sphere are either included in or excluded from the sphere of influence based on a decision criteria explained below.

![Figure 24](image.png)

Figure 24 Synthetic isotropic image depicting the SAS framework applied to patches. A and B are two distinct patches. Numbers assigned to pixels denotes inter-pixel distance from the central pixel x, denoted 0. The circle denotes sphere $S_r(x)$ where the radius $r = 2$.

To illustrate the new SAS framework, consider an image grid of isotropic pixels comprising of two distinct patches labeled “A” and “B” (Figure 24). Numbers assigned to pixels denotes inter-pixel radius from the pixel x at center of the image, where that radius is 0, and thus identify their membership in that particular shell. The circle in Figure 24 denotes a sphere of radius 2 formed by the union of shells of radius 0, 1, and 2. It can be seen that patch A is completely enclosed in the sphere of radius 2 and hence, is included in the sphere. However,
patch B is only partially enclosed by the sphere, and its inclusion is determined using a decision criteria described below.

The sphere at \(x \) can have a range of values for radius \(r \) (up to some maximum \(r \)). A particular \(r \) is chosen by a method described in the next section, for the *sphere of influence* at \(x \), such that \(S_r(x) \) will be the sphere centered at \(x \) whose radius causes it to contain the group of patches whose homogeneity is high and becomes most inhomogeneous with the addition of the next shell.

Identification of Sphere of Influence and Strength of Influence

The method used to identify the radius \(r \) of the *sphere of influence* \(S_r(x) \), at a particular \(x \) and the associated degree of influence, denoted as \(W^S(x) \), that a node can assign to the edges between nodes in \(S_r(x) \) will now be discussed. At each node in the graph, starting from radius zero, spheres up to a predetermined maximum radius are evaluated (that maximum is chosen so as to accommodate the expected size of any structure of interest). At each radius, the intensity variance of a set of pixels including those within the sphere is computed. The set also includes pixels outside the sphere from patches only partially within the sphere. This enhances the change in variance when encountering a new patch. Computational efficiency is gained by precomputing for each patch the sum \(S \), sum of squared intensities \(S_q \) and the number of pixels \(\tilde{N} \) within each patch. Then, as each shell is added, variance is computed as

\[
V = \frac{S_q - (S * S/\tilde{N})}{\tilde{N} - 1}.
\]

As the sphere grows, fractional change \(C \) in variance between two adjacent radii is computed.
where, V_l and V_h are the variance in intensity within spheres at lower and higher radius respectively. The sphere corresponding to the subjacent radius that generates the highest change in variance is selected as $S_r(x)$, and the corresponding scalar value C is chosen as the weight of influence $W^S(x)$. Partially enclosed patches within $S_r(x)$ are then re-examined as described in the next section.

Figure 25 shows the radius (represented by color) of $S_r(x)$ obtained at each node using the method described above. Spheres up to a maximum radius of 14 (the maximum size of potential targets) were evaluated.
Partially enclosed patches

Given the optimal radius r, the next question is which patches to actually include in the set defined by the sphere of influence $S_r(x)$. That set of patches will not normally define a region of pixels that is actually spherical, since individual patches may extend beyond the original sphere of pixels. Thus we use the term *sphere of influence* in the sense that a country might have one that is not geographically spherical. The patches in the sphere of influence $S_r(x)$ will be a subset of the patches used to compute r. Patches that are completely enclosed in the sphere are by default included. However, partially enclosed patches are reanalyzed to determine whether they should be included in $S_r(x)$ by performing Fisher’s permutation test with the Student’s t-test to assess the degree of homogeneity of the partially enclosed patch in relation to the completely enclosed patches. Let P and Q be the intensity distribution functions of the partially enclosed patch and the group of completely enclosed patches respectively. Let the samples in P and Q be the N and M constituent pixels of the corresponding patches, $p = (p_1, p_2, ..., p_N)$ and $q = (q_1, q_2, ..., q_M)$ respectively. The Student’s t-test is given by:

$$t = \frac{|\bar{p} - \bar{q}|}{\sqrt{\frac{\sigma_p^2}{N} + \frac{\sigma_q^2}{M}}}$$

where, \bar{p} and \bar{q} are the sample means, and σ_p and σ_q are the standard deviations of P and Q. We wish to test the *null hypothesis* H_0 of no difference between P and Q, $H_0: P = Q$. If the null hypothesis is not true, we expect to observe larger values of t than if H_0 is true. Fisher’s permutation testing allows us to run the hypothesis test without quantifying a fixed threshold for t, but rather to have the threshold be determined by percentage of the population irrespective of particular expected distribution. Thus non-Gaussian intensity populations are accommodated. To perform the test, the samples p and q are pooled together. A sample (P^*) of size N is obtained
from the pool without replacement (each sample only taken once) to represent P, and the remaining M observations (Q*) then represents Q. The \(t \)-test (\(t^* \)) is computed for P* and Q*, and this process is repeated a large number of times (determined empirically). If the original \(t \)-test falls above the \(\eta \)% of the distribution of \(t^* \), the permutation test rejects the null hypothesis at \(\eta \)% level. Thus, \(\eta \) regulates the process of inclusion vs. exclusion of patches, especially for borderline patches. Lower values of \(\eta \), such as 0.1 or 1, favor exclusion, while higher values, such as 5 or 10, favor inclusion. The permutation test is performed individually on each partially enclosed patch at the particular radius of \(S_r(x) \). For the example in Figure 24, for \(r=2 \), the permutation test is performed for patch B (P in equation 12), with the completely enclosed patch A (Q in equation 12). Patch B is included in \(S_r(x) \) only if \(H_0 \) is accepted.

Casting and receiving votes

\(S_r(x) \) and its associated \(W^S(x) \) are computed at each node of the graph, i.e., with \(x \) located at the root of each patch. Since each \(S_r(x) \) will include multiple distinct patches, each \(S_r(x) \) also encloses a subgraph of nodes and edges. The edges within a given \(S_r(x) \), that is, between nodes that are both within \(S_r(x) \), receive votes equal to \(W^S(x) \). Spheres of influence of adjacent nodes may overlap considerably, resulting in certain edges belonging to multiple spheres of influence and thus receiving multiple votes. The total weight on an edge \(w(\mathcal{N}_i, \mathcal{N}_j) \) is normalized by the number constituent weights \(W^S(x) \) contributed by all the overlapping spheres that contain the edge.
\[w(N_i, N_j) = \frac{1}{n} \sum_{k=1}^{n} W_k^S(x) : i, j \in S_r(x) \]

The use of an arithmetic mean in this case ensures that the weight assigned to the edge is independent of the size of the homogenous region in which the edge exists.

Figure 26 shows \(S_r(x) \) (dotted green) obtained for two nodes (crosshairs) along with the subgraph enclosed in each \(S_r(x) \) (shown in yellow and blue). Certain edges are enclosed by both spheres of influence (shown in red). The edges shown in yellow and blue are assigned weights equal to \(W^S(x) \) of their respective \(S_r(x) \). The edges shown in red are assigned weights equal to the arithmetic mean of \(W^S(x) \) associated with the two spheres of influence. Notice that the spheres of influence tend to stop at edges between homogeneous sets of patches.

Figure 26 Spheres of influence (dotted green) obtained for two nodes (crosshairs) along with the subgraph enclosed in each \(S_r(x) \) (shown in yellow and blue). Edges belonging to both spheres of influence are shown in red.
Thus, each node asserts its influence, equal to the strength of the most prominent boundary in its vicinity, on edges that connect nodes similar to itself. The collective influence of all the nodes generates subsets of nodes whose edges within the subset have high connectivity. We call such subsets of nodes “communities”. Figure 27 shows the graph structure obtained by applying the above methods on the data shown in Figure 23A. Spheres were evaluated up to a maximum radius of 14. Permutation testing for partially enclosed patches was carried out 10000 times and a threshold for inclusions/exclusion of partially enclosed patches set at $\eta=0.1$. The color of the edge in Figure 27 represents the accumulated weight (color bar to the left). Edges with weights equal to zero are not shown. As expected, while homogeneous regions contain communities comprised of highly weighted edges, edges between heterogeneous patches are either absent or low weighted.
Figure 27 Graph structure generated by asserting each node’s degree of influence on edges in its sphere(s) of influence for the data in Figure 23B. Color of the edge represents its weight (see color bar). Edges with weights equal to 0 are not shown

5.4.2 Clustering regions in the graph of patches

Individual *communities* can be identified automatically by clustering nodes based on weights on the edges. Since edge weights within *communities* are higher than between *communities*, we can make use of algorithms such as “Affinity Propagation” and “Dominant Sets”, which can take our
weighted edges (Figure 28A) as input measures of similarity (affinity matrix), and can output clusters of strongly connected nodes. In the next section, these two clustering algorithms are discussed and results obtained by applying them to the graph structured created as described above are shown.

5.4.2.1 Affinity propagation

Frey and Dueck (Frey & Dueck, 2007) have proposed a clustering algorithm, called affinity propagation, that clusters data points (in our case, the nodes \(\mathcal{N} \) representing roots of patches) by passing messages between them until a set of representative exemplars, each with a corresponding cluster, emerge. There are two kinds of messages that are passed between data points – the “responsibility” \(r(i,k) \) sent from data point \(i \) to candidate exemplar point \(k \), and the “availability” \(a(i,k) \) sent from candidate exemplar point \(k \) to data point \(i \). These messages are updated at each iteration of the algorithm according to the update equations:

\[
\begin{align*}
 r(i,k) &\leftarrow w(i,k) - \max_{k': k' \neq k} \{ a(i,k') + w(i,k') \} \\
 a(i,k) &\leftarrow \min \left\{ 0, r(k,k) + \sum_{i': i' \in (i,k)} \max\{0, r(i',k)\} \right\} \\
 a(k,k) &\leftarrow \sum_{i': i' \neq k} \max\{0, r(i',k)\}
\end{align*}
\]

where \(w \) is the affinity matrix (the weights assigned to our edges), which holds the similarity between data points \(i \) and \(k \). The diagonal elements \(w(k,k) \), called “preferences”, denote the likelihood of data point \(k \) to be chosen as the exemplar. All \(w(k,k) \) elements are set to a common value, so that each data point is equally likely to be chosen as an exemplar. Setting the preferences too low yields too few clusters, while setting it too high yields too many clusters. In
our case we set the preferences to the median of the all \(w(i,j) \) elements, resulting in a moderate number of clusters. To avoid numerical oscillations when updating messages, each message is damped by setting it to a damping value \(\lambda \) times its value from the previous iteration plus \((1 - \lambda)\) times its prescribed updated value. Unlike other clustering algorithms such as \(k \)-means that require the number of clusters and seed points be pre-specified, affinity propagation starts by considering all data points as potential exemplars and iteratively converges to meaningful clusters.

The affinity matrix of communities was provided as input to the affinity propagation algorithm. The damping factor \(\lambda \) was set to 0.5 and the algorithm was terminated either after 200 iterations or when the number of estimated clusters remained unchanged for 15 iterations. The clusters that were generated are shown in Figure 28(B)

5.4.2.2 Dominant Sets

Like affinity propagation, dominant sets (Pavan & Pelillo, 2003) is another non-hierarchical graph-theoretic iterative clustering framework that extends the notion of maximal clique to edge-weighted graphs. A dominant set is a cluster of vertices/nodes \(S \) in an edge-weighted graph \(G = (\mathcal{N}, E) \). \(S \) is a subset of \(\mathcal{N} \) \((S \subseteq \mathcal{N}) \), initially the “dominant” subset, in our case, an individual community. The dominant set is removed from \(G \), and the algorithm proceeds to the next iteration to find the next community. The formal definition of a dominant set makes use of the terms defined in equations 17-22. Given that \(i \in \mathcal{N} \), and that the elements of the affinity matrix of \(G \) are denoted as \(w_{ij} \).
\[\text{awdeg}_S(i) = \frac{1}{|S|} \sum_{j \in S} w_{ij} \]

is the average of the weighted edges incident on node \(i \) and the nodes in \(S \), or in graph theory parlance, the average weighted “degree of \(i \) with respect to \(S \).” The next term,

\[\phi_S(i, j) = w_{ij} - \text{awdeg}_S(i) : j \notin S \]

measures the similarity between nodes \(i \) and \(j \), with respect to the average similarity between node \(i \) and its adjacent nodes in \(S \). Now, let \(i \in S \). Then

\[\omega_S(i) = \begin{cases}
1, & \text{if } |S| = 1 \\
\sum_{j \in S \setminus \{i\}} \phi_{S \setminus \{i\}}(j, i) \omega_{S \setminus \{i\}}(j), & \text{otherwise}
\end{cases} \]

transforms edge weights to weights on nodes for those nodes in \(S \), such that, \(\omega_S(i) \) measures the similarity between node \(i \) and the nodes of \(S \setminus \{i\} \) with respect to the overall similarity among the vertices in \(S \setminus \{i\} \), thereby inducing a ranking of the nodes in \(S \). The total weight of \(S \) is given by

\[\Psi(S) = \sum_{i \in S} \omega_S(i) \]

We can now define a dominant set as a non-empty subset of vertices \(S \subseteq \mathcal{N} \) such that \(\Psi(T) > 0 \) for any non-empty \(T \subseteq S \) under the conditions that \(\omega_S(i) > 0, \text{ for all } i \in S \) and \(\omega_{S \cup \{i\}}(i) < 0, \text{ for all } i \notin S \). The two conditions correspond to the properties of homogeneity within the dominant set and inhomogeneity between them, respectively. The authors prove a tight correspondence between the problem of finding dominant sets and that of finding solutions of a quadratic program such as
where $\Delta = \{ x \in \mathbb{R}^n : x \geq 0 \text{ and } e^T x = 1 \}$ is the standard simplex of \mathbb{R}^n, x is a vector belonging to \mathbb{R}^n, and A is the affinity matrix. The solution to equation 21 is obtained using a continuous optimization technique, called replicator dynamics, borrowed from evolutionary game theory.

The replicator equation in the discrete case is given by:

$$x_i(t+1) = x_i(t) \frac{(Ax(t))_i}{x(t)^T Ax(t)}$$

where A is the affinity matrix of G. Execution of the replicator dynamical system will result in a dominant set (for more details, refer (Pavan & Pelillo, 2003)). The dominant set is removed from the graph and replicator dynamics is run iteratively until all vertices have been clustered.

The clusters created by the dominant sets algorithm for the affinity matrix corresponding to the communities in Figure 27 are shown in Figure 28(C). Similar to the results of affinity propagation shown in Figure 28(B), the clusters consist of data points that are most homogeneous to each other in their neighborhood.
Figure 28 Clusters obtained for the affinity matrix (A) by applying affinity propagation (B) and dominant sets (C) algorithms.

5.4.3 Segmenting anatomical structures

As seen in the results of the patch clustering algorithms (Figure 28B and Figure 28C), the resulting clusters accurately delineate homogeneous groups of patches, which we call fragments. We are interested in detecting structures that are circular in at least one dimension, in particular, individual roughly-cylindrical fascicles in the median nerve image. We accomplish this by clustering fragments with a spherical shape prior. Accordingly, we introduce the final level in the hierarchical graph structure, the segmentation, as shown as the top box in Figure 29.
Figure 29 Our hierarchical graph structure for segmentation. Starting with pixels, each level is associated with a graph whose nodes are data element resulting from the previous level.

Let L_i be the labels assigned to each fragment. The fragments and their representative data points (exemplars in the case of affinity propagation and nodes with highest weight in each cluster for dominant sets) may be modeled as a directed graph, $G' = (\mathcal{N}', E')$, with representative data points forming the nodes (\mathcal{N}'). We assign a weight on a given edge $w'(\mathcal{N}_i', \mathcal{N}_j')$, i.e., between two fragments, as the sum of the weights of all the edges crossing between those two fragments (equation 23). Unlike the graph structure for the patches, wherein the degree of each node is allowed to be greater than one, the outdegree of G' is limited to 1; each fragment points to only one other fragment, determined by the edge E' with the highest w' (equation 24).
\[w'(N'_i, N'_j) = \sum_{\forall r : L_r = L_i} \sum_{\forall s : L_s = L_j} w(N_r, N_s)\]

\[\forall i \in N' \exists E'_{ij} : \left\{w'(N'_i, N'_j) \neq 0 \land j = \arg\max_{j \in N'} \left(w'(N'_i, N'_j)\right)\right\}\]

Being a directed graph with an outdegree of 1, \(G'\) is sparse compared to the graph of patches \(G\), with edges only between highly homogeneous fragments, containing communities that better represent entire structures, i.e., segmentations, in our application, of individual fascicles of the median nerve. At this stage, where the nodes and the edge weights of \(G'\) represents reliable collective information of homogenous local neighborhoods, segmentation results may be obtained by applying prior knowledge of the target structure beyond just expected radius. For example, we can learn the expected image intensity from training data and use it as a threshold to retain relevant clusters. Those clusters of fragments that have an average intensity agreeing with the intensity threshold are retained while the remaining clusters are ignored.

5.4.4 Results on Simulated Data

A 3D simulated image with three hollow cylindrical structures located spatially adjacent to each other was created to depict the fascicular anatomy. The dimension of the image was 80x40x40 with isotropic 1mm spacing. The proximity of the cylinders was chosen such that the boundary between them was incomplete, similar to the weak or absent boundaries seen in the ultrasound images of the nerve fascicles. The intensity of the voxels inside the simulated cylindrical fascicles, as well as in the background, was set at 100, separated by a 3-pixel rim of intensity 150.
simulating the nerve sheath. Gaussian noise with zero mean μ was added to the image. The standard deviation σ of the Gaussian was varied to generate four images having signal-to-noise ratios (SNR) of 5, 10, 15, and 20db (Figure 30). In the following sections we evaluate the application of our methods to this 3D simulated image, using a number of efficacy metrics.

![Figure 30](image)

Figure 30 Axial slice of a 3D image consisting of three cylinders representing nerve fascicles with a surrounding sheath, located adjacent to each other such that the boundaries between them are incomplete. Gaussian noise is added to generate images having SNR 5db (A), 10db (B), 15db (C), and 20db (D).

5.4.4.1 Community Distribution

The objective of the segmentation is to generate communities in the graph structure such that weights on edges within each community are high and weights on edges across different communities are low. In order to determine the efficacy of the formation of such communities, we propose an analysis called *community distribution*. Let us consider a grayscale image consisting of a background and a few foreground objects. Let us also consider a ground truth segmentation image with distinct labels for each foreground object and the background. Let us
generate the graph structure using the voting scheme described above for the grayscale image. With the ground truth image as reference, for every pair of nodes in the graph, the weight on the edge connecting the nodes is accumulated in one of four bins depending on the ground truth label that the node corresponds to. The four bins are as follows:

1. Both the nodes belong to the same foreground object.
2. Both the nodes belong to the background.
3. The nodes belong to different foreground objects.
4. One node belongs to a foreground object and the other belongs to the background.

Ideally, edges across heterogeneous regions or across different foreground objects should not belong to any *Sphere of influence*. Therefore, such edges should not receive any votes. Thus, we should expect bins 3 and 4 to remain empty, while bins 1 and 2 receive high weights.

![Bar chart showing community distribution](image)

Figure 31 Community distribution for the simulated images shown in Figure 30

Figure 31 shows the community distribution generated for the simulated images shown in Figure 30. As expected, bins 1 and 2 have received most of the weights, even in the lowest SNR.
case of 5 db. In fact, bin 4 did not receive any weight (remained at 0) in all four SNR cases. Bin 3 addresses the condition of missing boundary between adjacent target structures. In all four SNR cases, the weights in bin 1 are much higher than the weights in bin 3 and 4. Thus, this experiment verifies the capability of the algorithm to generate the desired communities on simulated data with noise.

5.4.4.2 Rand index

Another way to assess the efficacy of our segmentation is the Rand Index (Rand, 1971), which computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The index ranges from 0 to 1, where, a value close to 0.0 signifies random labeling and a value of exactly 1.0 signifies the clusterings are identical. Table 1 shows the Rand Index computed for the clusters obtained using the graph based segmentation method described in the previous sections for the four simulated images shown in Figure 30. The result confirms the accuracy of the method to assign distinct labels to target structures even in the case of missing boundaries between adjacent structures.

<table>
<thead>
<tr>
<th>SNR (db)</th>
<th>Rand Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>0.97</td>
</tr>
<tr>
<td>5</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 1 Rand Index computed for four images shown in Figure 30
5.4.4.3 Simulated 3D Image

The method was also tested on a publicly available simulated 3D image containing tortuous tubular structures (Aylward & Bullitt, 2002). The background intensity in the image is 100 and the intensity within the structure has a parabolic profile ranging from 150 at the structure’s edge to 200 at the middle of the structure. Gaussian noise having a standard deviation of 20 has been added to the image. The image was cropped to a size of 35x66x100 to improve computation time since the tubular structures formed only a small region of the image. A cross section of the cropped 3D data is shown in Figure 32A. VDG Patches were computed at radius 2, and the maximum radius of $S_r(\mathbf{x})$ was limited to 6. Figure 33A shows the graph structure associated with clustering patches into fragments. It can be seen that the edge weights within the tubular structure are relatively higher and that very few (and only low weighted) edges exists across the boundary. Figure 32B shows the labels obtained (colored voxels) using dominant sets to cluster the patches. The fragments selected after applying an intensity threshold based on expected intensity is shown in Figure 33B.

![Figure 32](image.png)

Figure 32 (A) Cross section through a simulated 3D image containing tortuous tubular structure. (B) Patches computed at radius 2. Individual colored voxels represent fragments and the labels within the structure are the segmentation results obtained by applying threshold based on expected intensity.
Figure 33 (A) Graph structure leading to the fragments with an axial image plane of the 3D volume of patches. The 3D model of fragments in (B) is also shown in green. Edges of the graph with low weights have been omitted for illustrative purposes. The color of the edges represents weights (refer color bar). (B) 3D model depicting the fragments.
5.4.5 Results on Real Ultrasound Data

This section discusses the results obtained using the methods described in the previous sections on 2D and 3D real images.

5.4.5.1 Ultrasound of phantom

The algorithm was tested on ultrasound images of a commercial gel phantom ("Blue Phantom Inc.,") containing 3 water filled tubular structures (Figure 34A). VDG patches (Figure 34B) were computed with radius of 8. The maximum radius for spheres of influence was 40, the expected radius of the largest tubular structure. The graph structure associated with clustering patches into fragments is shown in Figure 35A. The resulting fragments obtained using affinity propagation and dominant sets are shown in Figure 35B and Figure 35C, respectively.

![Figure 34](image)

Figure 34 Patches generated at radius 14(B) for the ultrasound image of a gel phantom (A).
Figure 35 Graph structure associated with the first level communities overlaid on patches (A). Second level communities (clusters of fragments) obtained using affinity propagation (B) and dominant sets (C)

5.4.5.2 Ultrasound nerve image

Figure 36 shows the result of segmentations created by clustering fragments formed using affinity propagation and dominant sets. Clusters with mean intensities outside an intensity range expected for the target have been omitted. The resulting segmentations are overlaid on the original ultrasound image. Qualitatively, the dominant sets algorithm appears to perform better
in identifying individual fascicles. The inherent nature of our method to find spherical structures can be appreciated in cases where the boundary between neighboring fascicles is vague or completely missing.

Figure 36 Individual fascicles identified by clustering fragments using affinity propagation (A & B) and dominant sets (C & D) algorithms. The inherent nature of our method to find spherical structures helps define boundaries between fascicles.
5.4.5.3 3D reconstructed ultrasound of phantom

A 3D ultrasound volume of the gel phantom was reconstructed from freehand ultrasound image acquisition as described in Section 4.0. Figure 37A shows a cross-sectional view of the 3D reconstructed volume. Patches (Figure 37B) were computed at radius 1 and the maximum radius of $S_r(\mathbf{x})$ was limited to 7, large enough to include the expected radius of the visible tubular structure. The graph structure associated with clustering patches into fragments is shown in Figure 38C. For illustrative purposes, a threshold has been applied to edge weights to omit low weighted edges. The fragments obtained using dominant sets are shown in Figure 38B and the corresponding 3D view with the resulting segmentation obtained after applying an intensity threshold based on expected intensity is shown in Figure 38D.

![Figure 37](image1.png)
Figure 37 (A) Freehand 3D reconstructed ultrasound volume of a gel phantom. (B) Patches computed at radius 1. Colored voxels represents fragments. Also the segmentation obtained by applying a threshold based on expected intensity is shown.
Figure 38 (A) Graph structure leading to the fragments with a coronal image plane of the 3D volume of patches. The 3D model of the segmentation in (B) is also shown in green. Edges of the graph with low weights have been omitted for illustrative purposes. The color of the edges represents weights (refer color bar). (B) 3D model of the segmentation.
5.4.5.4 3D reconstructed ultrasound of the median nerve

A freehand 3D ultrasound volume of the median nerve was reconstructed using the same image acquisition system described in the Section 4.0. Patches were computed at radius 3 and the maximum radius of $S_r(x)$ was limited to 12, large enough to include the expected radius of the largest fascicle. The graph structure associated with clustering patches into fragments is shown in Figure 40A along with a cross-sectional 2D slice. For illustrative purposes, a threshold has been applied to edge weights to omit low weighted edges. The color of the edges represents weights (refer color bar). The fragments obtained using dominant sets overlaid on a cross-sectional slice of the patches are shown in Figure 39. Figure 40B is the resulting segmentation obtained after applying an intensity threshold based on expected intensity, and the corresponding 3D model of the segmentation result with a cross-sectional image plane is shown in Figure 41.

Figure 39 Cross-sectional view of patches computed at radius 3. Colored voxels represents fragments.

Also the segmentation obtained by applying a threshold based on expected intensity is shown.
Figure 40 (A) Graph structure leading to the fragments with an axial image plane of the 3D volume of patches for freehand 3D reconstructed ultrasound volume of the median nerve. Edges of the graph with low weights have been omitted for illustrative purposes. The color of the edges represents weights (refer color bar). (B) Segmentation result overlaid on the original image.
5.4.5.5 Comparison with pairwise similarity measure

We compared our method of determining weights on edges between patches (the voting system) with the most widely used method in graph based segmentation techniques – pairwise similarity measure – on the 2D median nerve image. For the same graph structure $G = (\mathcal{N}, E)$ (section 5.4.1.1), the edge weights were calculated using the similarity measure employed in (Pavan & Pelillo, 2003), given by:

$$w(i, j) = \exp \left(- \frac{||F(i) - F(j)||_2^2}{\sigma^2} \right)$$

where $F(i)$ and $F(j)$ are the intensities of patch represented by node i and σ, a positive real number which affects the rate of decrease of w with increasing difference in intensity between
the patches. For this experiment, σ was set to 1. Analogous to our method of determining edge weights, the maximum degree of each node was restricted by preserving only those edges incident on nodes within a radius of 14 (inter-pixel distance) from the current node (the maximum size of the sphere of influence set for the result shown in section 5.4.5.2). The affinity matrix of the resulting graph structure was provided as input to the two clustering methods, affinity propagation and dominant sets, to obtain fragments. The final segmentation results (Figure 42) were obtained as before (refer section 5.4.3), using an additional expected intensity threshold similar to the one used in section 5.4.5.2, to limit the segmentation to the target of interest. Although the final segmentation includes the desired patches, it fails to establish structure and the fragments lack spatial aggregation. Furthermore, patches across missing boundaries between fascicles are assigned the same label, and even proximate patches separated by strong boundary cues are not distinguished from each other. As seen in Figure 36, the method described in this paper overcomes these limitations.

Figure 42 Affinity propagation (A) and Dominant sets (B) algorithms applied to a graph structure modeled by pairwise similarity measures. An expected intensity threshold has been applied to obtain the final result.
6.0 IMAGE REGISTRATION

An overview of image registration was presented in section 2.2.5.2. In this section, a hybrid atlas based registration method that makes use of intensity corrections induced at anatomical landmarks to regulate deformable intensity registration is presented. The developed method is tested on the segmentation of the hippocampus in MRI images of brain and validated using manual segmentations. Results show that our method agrees better with manual segmentations than previously reported methods and other popular methods such as FIRST (M. Chen, Kanade, Pomerleau, & Schneider, 1999) and FreeSurfer (Fischl et al., 2002).

In atlas based segmentation, a reference image, called as an atlas, in which structures of interest have been manually segmented, is registered to the subject image under investigation. The resulting spatial transformation maps the manual segmentation from the atlas coordinate space to the subject coordinate space, yielding the resultant segmentation. The accuracy of the final segmentation is conditional upon the image registration process, i.e., the accuracy of the image-to-image correspondence in the region of interest. Methods that use global mapping models, which take into account every voxel of the image in its cost function, are suitable for applications like tissue (gray matter (GM), white matter (WM), and cerebrospinal liquid CSF) segmentation in MR images of the brain, where the region of interest includes most of the image voxels. However, in instances that involve local deformations, or when the region of interest
consists of a small volume of the image, global mapping models does not produce satisfactory results because local distortions are averaged out equally over the entire image.

6.1 HYBRID LANDMARK-INTENSITY BASED REGISTRATION

We present a method (Figure 43) that applies local constraints to any intensity-based registration algorithm. The local constraints, enforced as small neighborhoods of altered image intensity around landmarks, holds fast predefined correspondences, while the registration algorithm finds correspondence in rest of the image. This method can be applied to segment any structure in any imaging modality. In this paper, we focus on the segmentation of the hippocampus in 7T MR images of the brain.
6.1.1 Methodology

6.1.1.1 Identify Landmarks

Landmarks are a set of discrete points in an image that are biologically homologous across all the images in the dataset. Landmarks can be obtained either prior to the image acquisition, by positioning physical fiducial markers at predetermined locations on the patient, or post image acquisition, by deriving spatial locations in the images with the help of either sophisticated image analysis tools or the knowledge of an expert. A set of six landmarks (Figure 44) were identified in the hippocampus by an expert in the atlas and subject images using an image analysis and visualization tool (Fedorov et al., 2012; "http://www.slicer.org,"). The protocol provided in (Pluta et al., 2009) was followed to identify the landmarks. This process took approximately 5 - 10 minutes for each subject depending on amount of deformation in the hippocampus.

![Figure 44](image)

Figure 44 (1-4) Sagittal view of MR image of brain showing the positioning of six landmarks (A-F). (5) 3D view showing the six landmarks with axial and sagittal slices in the background.

6.1.1.2 Landmark Registration

The goal of landmark registration is to find the transformation that maps the landmarks in the atlas to the landmarks in the subject images. Let x^j_A, and x^j_S, denote the spatial location of the j^{th} landmark in the atlas A and the subject S, respectively, $j = 1, \ldots, m$, where $m \in \mathbb{N}$ denotes the
number of landmarks. The registration problem is to find a transformation \(\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^d \), such that (Modersitzki, 2004)

\[
x'_s = \varphi(x'_a), \; j = 1, \ldots, m
\]

Linear landmark registration

The iterative descent algorithm defined in (Späth, 2004) was employed to compute a translation and an affine transformation such that equation 26 is satisfied as best as possible in the least squared sense. Figure 45 (1) shows the six landmarks in the atlas (A~ - F~) and subject (A – F) with a root mean squared error (RMSE) of 4.29. The affine transform generated is shown in Figure 45 (2) along with cross sectional views of the atlas. The RMSE after applying the transform to the landmarks (A~ - F~) (Figure 45 (3)) is 2.00

![Figure 45](image)

Figure 45 (1) 3D view of landmarks positioned in atlas (A~ - F~) and subject (A – F) with axial and sagittal slices.

(2) Grid of the resulting affine transform (3) Landmarks in the atlas warped by affine transform

Non-linear landmark registration

To improve the landmark registration, we chose \(\psi \)-functions of Wendland as the transformation function (Wendland, 1995). These functions are radial basis functions (RBFs) that are
polynomials, are positive definite and have compact support. The general form of the RBF is given by:

\[\psi(r) = \begin{cases} \frac{p(r)}{r} & 0 \leq r \leq 1 \\ 0 & r > 1 \end{cases} \]

where \(p(r) \) is a univariate polynomial. The positive definite nature of the functions ensures that the registration problem is always solvable, even when the landmarks are not coplanar in 3D. Unlike other RBFs like thin-plate splines or multiquadrics, which are globally supported (any addition of landmark pairs will cause changes in entire registration result), the compact support of \(\psi \)-functions of Wendland provides improved locality in the deformation field (Fornefett, Rohr, & Stiehl, 2001). The improved locality means that regions of the registration output that are beyond a certain radius from the landmark location do not undergo any deformation. Figure 46(1) shows the deformation field corresponding to the image slice containing landmarks C~ and D~. As seen, deformation occurs only in the vicinity of the landmarks. A RMSE of 0.32 was achieved after performing non-linear landmark registration (Figure 46(2)) using the software package – Plastimatch (Sharp et al., 2010). Let us denote the atlas image warped by the linear and non-linear registration methods as \(A^* \).
6.1.1.3 Alter the image intensity

Let $I_A(x^i_A)$ denote the image intensity in image A at spatial location x^i_A. Let us define a function F which takes as input an image A and returns a modified image A^\wedge according to the following rule:

$$I_{A^\wedge}(x^i_{A^\wedge}) = \begin{cases} \eta & \text{if } d(x^i_A, x^j_A) \leq r, \text{where } i \in \Omega_A, j = 1, \ldots, m, \quad i \neq j \\ I_A(x^i_A) & \text{otherwise} \end{cases}$$

where Ω_A is the domain of image A, and $d(\cdot, \cdot)$ is the Euclidean distance metric. η is chosen such that its value is far-off from the raw image intensity range.

When the function F is applied to the subject and the atlas image (A^*), we obtain spatially overlapping islands of unique image features that can be used to incorporate landmark based registration approach into any intensity based registration method. Figure 47 shows the results of applying F to the atlas image with landmarks $A\sim$ to $F\sim$.

\[\text{Figure 46 (1) Deformation field obtained from non-linear landmark registration to be applied to the landmarks } A\sim - F\sim \quad \text{(2) 3D view of landmarks showing excellent correspondence after they are warped by the deformation field}\]
Figure 47 Image slices corresponding to the landmarks A~ - F~ (highlighted by red circles) after applying F(A~).

Notice the change in image intensity at the location of landmarks

6.1.1.4 Deformable intensity registration

F(A~) and F(S) generates a warped atlas image that corresponds to the subject at the landmark locations. We will now employ deformable intensity based registration to find correspondence in rest of the image, while maintaining the correspondence at the landmarks.

In (Thirion, 1998), Thirion presents a method to perform non-rigid image registration based on the notation of Maxwell’s demons in thermodynamics. Demons positioned at certain locations in the image determine whether movement of the atlas image in a certain direction at the location of the demon reduces the disparity between the atlas and subject images. The demon induces a pushing force depending on the image gradient and the disparity between the atlas and the subject images computed at the location of demon (Modersitzki, 2004). A particular algorithm proposed in (Thirion, 1998), which Thirion called free form case, places demons at each spatial location, where, a displacement field is stored. At each iteration, a Gaussian filter with a given σ is applied to the whole field to get a regular displacement field. The algorithm alternates between the computation of pushing force inspired from optical flow equations, and regularization by Gaussian blurring. One of the main limitations of Thirion’s demons algorithm is that it does not produce diffeomorphic transformations. Diffeomorphic transformations maps
one differentiable manifold to another, such that both the transformation and its inverse are smooth. Diffeomorphism is a requirement because these transformations preserve topology and prevent cracks or folds of objects. In (Vercauteren, Pennec, Perchant, & Ayache, 2007), T. Vercauteren et al have developed an efficient non-parametric diffeomorphic image registration method as an extension to Thirion’s demons registration (Thirion, 1998).

Given a fixed image \(F(\cdot) \) and a moving image \(M(\cdot) \), let \(s(\cdot), p \rightarrow s(p) \) be the transformation that models the spatial mappings of points from fixed image space to moving image space. Mean squared error is used as the similarity criterion \(S_{\text{sim}}(\cdot, \cdot) \), which measures the resemblance of two images.

\[
S_{\text{sim}}(F, M \circ s) = \frac{1}{2|\Omega_p|} \sum_{p \in \Omega_p} |F(p) - M(s(p))|^2
\]

where \(\Omega_p \) is the region of overlap between \(F \) and \(M \circ s \)

Non-parametric image registration is treated as an optimization problem that aims at minimizing a global energy (Vercauteren et al., 2007):

\[
E(c, s) = \frac{1}{\sigma_i^2} S_{\text{sim}}(F, M \circ c) + \frac{1}{\sigma^2} \text{dist}(s, c)^2 + \frac{1}{\sigma^2} R_{\text{reg}}(s)
\]

where \(c \) is a vector field that represents point correspondences between pixels, \(\text{dist}(s, c) = ||c - s|| \), \(R_{\text{reg}}(s) \) is the regularization criterion given by \(||\nabla s||^2 \), and \(\sigma_x \) accounts for special uncertainty on the correspondences.

Unlike Thirion’s demons algorithm, which registers the fixed and moving images by optimizing equation 30 over the entire space of displacement fields, T. Vercauteren et al have developed an alternate optimization scheme of the demons and combined it with Newton’s method tools for Lie groups to provide free-form diffeomorphic transformations.
Figure 48 shows the deformation field corresponding to image slice containing previously positioned landmarks E~ and F~ obtained using ITK implementation of T. Vercauteren’s method (Johnson & Zhao, 2009). While the algorithm generates deformation throughout the image, it is clearly seen that the deformation occurring in the vicinity of the previously positioned landmarks (highlighted by red circle) is restricted by the islands of image features generated using F, thereby, preserving previously achieved correspondences.

Figure 48 Deformation field obtained from demons warp for slice corresponding to landmarks E~ and F~ shown in Figure 46

6.2 VALIDATION ON HIPPOCAMPUS SEGMENTATION

As mentioned earlier, the hybrid method presented in this dissertation was evaluated on the task of segmentation of the hippocampus in MR images of the brain. The dataset consisted of 7T MR
images of seven subjects. The images were of dimensions 240 x 320 x 256 and 0.7mm isotropic spacing. The right hippocampus was manually segmented for each subject and was used to validate the results.

Preprocessing

The images were ACPC-aligned and the skulls were stripped using the Brain Extraction Tool (BET) (Smith, 2002). Bias field correction was applied using the ITK (Ibanez, Schroeder, Ng, & Cates, 2003) implementation of the non-uniform intensity normalization approach (Sled, Zijdenbos, & Evans, 1998). The images were cropped to remove slices with no anatomical information and normalized.

6.2.1 Comparison with previous similar methods

Figure 49 shows the overlap measures \(O \), defined below, for our method in comparison to the measures reported in (Carmichael et al., 2005).

\[
O = 2 \frac{|A \cap M|}{|A| + |M|}
\]

where \(A \) and \(M \) are automated and manual segmentation volumes.

In (Carmichael et al., 2005), Carmichael et al compared the performance of the following atlas based segmentation methods for hippocampus segmentation: AIR, SPM, FLIRT, and a fully deformable method of Chen (M. Chen et al., 1999; Friston et al., 1995; Jenkinson, Bannister, Brady, & Smith, 2002; Woods, Grafton, Holmes, Cherry, & Mazziotta, 1998). They reported that Chen’s fully deformable method generated the highest overlap ratio (between 0.18 and 0.65 with median value 0.42) than the other methods. As seen in Figure 49, overlap measures
obtained for our method are consistently >0.7, which is significantly better than the methods examined in (Carmichael et al., 2005).

Figure 49 Overlap measures for each subject using the method described in this paper in comparison to previously reported results in (Carmichael et al., 2005)

6.2.2 Quantitative comparison with other methods

We also compared our results with two popular methods - FIRST(Patenaude et al., 2011) and FreeSurfer (Fischl et al., 2002). FIRST is an automatic segmentation tool based on Bayesian Appearance Model, which uses a probabilistic framework to estimate the relationship between shape and intensity. The model is trained for 15 subcortical structures using manual segmentations.
Figure 50 Cross-sectional sagittal views of the segmentation results of FreeSurfer (row A), FIRST (row B), our method (row C), and manual segmentation (row D). The false positives, indicated by red circles, are significantly higher in both FIRST and FreeSurfer.

FreeSurfer is an image analysis suite that generates volumetric segmentations of subcortical structures. It assigns a label to each location on a cortical surface model based on probabilistic information estimated from a manually labeled training set. Figure 50 shows four cross-sectional sagittal views of the segmentation results of FreeSurfer (row A), FIRST (row B), and our method (row C). Figure 50 (row D) shows the manual segmentation for the corresponding slices. The output of FreeSurfer appears in a different view since it converts the images to Talairach.
coordinates. By analyzing the results qualitatively, it can be seen that the segmentation resulting from our method concurs better than FIRST or FreeSurfer. It should be noted that false positives are significantly higher in both FIRST and FreeSurfer. Quantitative comparison of the hippocampus measures is not feasible since the tracing protocols used to generate the training sets in FIRST and FreeSurfer differ from each other and also from the protocol used by us to generate ground truth. Hence, the definition and geometry of the hippocampus formation will vary across different methods, thereby, voiding any quantitative comparisons.
A longitudinal study often involves examination and analysis of structural and/or functional changes of a specific structure in the same patient over a period of time. Among other outcomes, it provides physicians reliable data to interpret the patient’s response to treatment, and facilitates the determination of subsequent treatment. Structural changes over a period of time can be observed by correlating images of the structure that were acquired at different points in time. In order to correlate multiple volumetric images, it is imperative to isolate the appropriate slice corresponding to the structure of interest in each and every volume, which will likely be laborious, analogous to finding needles in multiple haystacks, considering volumes are usually comprised of hundreds of slices. Furthermore, as the structure of interest can span across more than one slice in the image, examining the whole structure will involve analyzing multiple slices simultaneously. As a result, correlation across multiple volumes will be even more tedious because each time the operator selects a different slice, the corresponding slice in every other volume should be identified manually. Correlation across multiple modalities can present additional challenges since the same structure can appear differently in different modalities, thus making identification of corresponding slices even more difficult. The entire process would benefit greatly if the identification of corresponding slices could be performed automatically and if doctors could concurrently visualize the corresponding anatomy registered automatically from
previous acquisitions while performing the current scan, thereby enabling them to perform dynamic correlations.

In the following sections, we present methods that address the aforementioned challenges. Foremost, the multiple volumetric images are registered to a single standard image space, as described in section 7.1. Image slices from multiple volumes that correspond to the same anatomical location will be displayed concurrently under two scenarios: offline (see sections 7.2), and real-time (see section 7.3).

7.1 REGISTRATION OF PRIOR AND ACQUIRED VOLUMES

Often, medical images from more than one imaging modality are used to provide effective medical care, since the drawbacks of one imaging modality can be balanced by another. For example, MR and ultrasound imaging, employed for a particular application, can complement each other well. MR images provide high resolution, low noise, and high contrast images of soft tissue, but is very expensive and require substantial amount of time to acquire. In contrast, ultrasound is low cost and real time, but highly noisy and not very reliable at differentiating soft tissue types. Hence, an efficient approach would be to acquire MR images at only critical stages of treatment and employ ultrasound for routine follow up studies. Another example of applying multi-modality imaging is image guided surgery, wherein CT/MR images are generally used only in pre-surgical planning, while ultrasound is used during surgery for guidance.

A critical step in the application of multi-modality imaging is finding anatomical correspondence between the different images. Correspondence can be achieved by image registration, as described in section 2.2.5.2. In this dissertation, prior volume (CT/MRI), and the
3D reconstructed ultrasound volumes acquired at different time points are registered to a single standard image space using landmark registration described in section 6.1.1.2.

7.2 OFFLINE SIMULTANEOUS VISUALIZATION

In the offline mode, the coordinate system of the prior volume, e.g., the first ultrasound volume that is acquired, is chosen as the standard image space to which all other volumes are registered. Volumes in the standard space are loaded and linked in the 3D Slicer volumes module, such that, moving through image slices in one volume will automatically display corresponding image slices from the other volumes. At any given time, slices from up to 3 volumes and any binary segmentation can be visualized simultaneously (Figure 51). For each volume, an image plane of any arbitrary orientation may be visualized. Having the ability to visualize side-by-side the corresponding slices from volumes acquired at different instances of time, physicians will be in a better position to quantify and monitor changes in anatomical structures. Users can also make measurements and add annotations to the images using the annotations module in 3D Slicer, and these annotations transfer to the other images.
Figure 51 Volumes in the standard space are loaded and linked in 3D Slicer, such that moving through image slices in one volume will automatically display corresponding image slices from the other volumes.

7.3 REAL-TIME SIMULTANEOUS VISUALIZATION

Supplementary to offline visualization described in the previous section, a real-time visualization system has been developed, in which, using registration obtained between the current scan and the standard image space, image slices are displayed concurrently from multiple volumes that correspond to the current position of the US probe. The real-time system has been implemented using PLUS and 3D Slicer. In this section, the system will be demonstrated on a gel phantom ("Blue Phantom Inc.,") embedded with vascular structures that is MR/Ultrasound compatible. A rendered CT data set of this phantom is shown in Figure 52.
Reference markers compatible with the tracking device (Micron tracker) were attached external to the phantom. A freehand 3D ultrasound volume of the phantom was reconstructed, such that the position of the reference marker was set as the origin of the reconstructed volume and the coordinate system of this volume was then used as the standard image space. MR scans of the phantom, shown in Figure 53, were also acquired. The vascular structures in the phantom, which are filled with water stained with red dye to simulate blood, appear as bright pixels in the MR image.
The MR image was registered to the reconstructed ultrasound volume using the landmark registration method described in section 6.1.1.2. A set of four landmarks were manually identified in both the MRI and reconstructed ultrasound volume. Figure 54 shows a cross-sectional view of the reconstructed ultrasound volume overlaid on the registered MR image. We can see that there is good correspondence in the region of the vessel. The overlay of the ultrasound image occupies a small area compared to the MRI, because the MR image captures the full dimensions of the phantom, whereas the ultrasound represents only a small portion of the phantom.
Finally, we combine the real-time registration into a multi-window system (see Figure 55). By tracking the location and orientation of the ultrasound probe relative to the markers, correspondence between the current scan and the standard image space are computed. Using this correspondence, based on the current position and orientation of the probe, image slices from the reconstructed ultrasound volume and corresponding slices from the MR volume are displayed concurrently along with the current frame extracted from the ultrasound scanner.
Figure 55 3D Slicer interface for the real-time simultaneous visualization. Top left: Slices extracted from MR image overlaid on a reconstructed ultrasound volume corresponding to the current position and orientation of the ultrasound probe. Bottom left: Live ultrasound image transmitted from the scanner. Bottom right: Slice of MR image. Top right: 3D rendering of segmentation of vascular structure together with images seen in top left and bottom right windows.

3D Slicer is used to implement this real-time simultaneous visualization system. Similar to the offline mode, the ultrasound volume and the MR volume in the standard space are loaded to separate viewer windows and linked using the 3D Slicer volumes module. Figure 55 shows the real-time visualization interface. The bottom right window shows a slice of the MR image of the phantom. The upper left window shows the MR image of the phantom overlaid on the reconstructed ultrasound image. In the top right window, the MRI and reconstructed ultrasound image are rendered together with the 3D segmentation of the vascular structures (green). The segmentation is obtained by applying an intensity threshold to the MR image of the phantom. Due to reasons mentioned earlier, the ultrasound image occupies only a small area compared to the entire MR data set. The lower left window shows the live image transmitted from the
ultrasound scanner. The position and orientation of the probe generated by Micron Tracker is also transmitted to the interface. OpenIGTLink, which is a set of digital messaging formats and protocols used for data exchange on a local area network (LAN) for a wide variety of image-guided therapy (IGT) applications (Tokuda et al., 2009), is used to transmit the live ultrasound image and the tracking data from their respective sources to the 3D Slicer interface. The tracking data is used to extract arbitrary slices from the loaded volumes using the reformat widget in 3D Slicer. The images seen in red, yellow, and 3D viewers in Figure 55 are slices extracted from the MR and reconstructed ultrasound volumes corresponding to the current position and orientation of the probe. As seen in the figure, there is good correspondence between the live image and the slices extracted from previous acquisitions.
8.0 DISCUSSION AND FUTURE WORK

The proposed ultrasound imaging system - with the ability to reconstruct 3D volumes from freehand 2D images and visualize image slices concurrently from different acquisition that correspond to the same anatomical region - will provide the ability to track changes in anatomical structures in hand-transplant patients and to monitor nerve regeneration in patients undergoing regenerative, repair or transplant strategies. The image analysis methods, including variance descent graphs, the graph based segmentation method that generates communities, and the hybrid atlas based registration method, will provide a system to study the function and geometry of various anatomical structures in MR and ultrasound images in a reliable, accurate and efficient manner.

The freehand 3D reconstruction system described in section 4.0 has advantages over other 3D ultrasound imaging solutions. Unlike the wobblers and matrix array scanners that can produce volumes of only a relatively small region of anatomy at a given time, the extent of anatomy that can be acquired using the freehand system is limited only by the memory capacity and speed of the computer running the reconstruction algorithm. In addition, operators have greater control over the reconstruction parameters such as image size, spacing, and the choice of compounding and bin-fillings methods. The modular nature of the freehand 3D reconstruction system allows upgrading of individual components with more advanced counterparts without necessitating major alterations to the rest of the system. For example, it is very straightforward
to replace the micron tracker with an advanced version when it becomes available, or to forgo
the optical tracking system completely for a magnetic tracking system. In addition, the same
tracking device can be reused with any conventional 2D probe, with only the recalculation of the
spatial calibration required. Furthermore, the original, raw 2D images from the scanner are
saved and can be made available at a later time. Consequently, advances in reconstruction
techniques can be applied to the images acquired in the past, resulting in better reconstructed
volumes, which can greatly benefit longitudinal studies. Lastly, the tracking system permits
real–time visualization applications such as the one presented in section 7.3.

There are a few drawbacks associated with the freehand 3D reconstruction system. Although
external tracking systems work well in a controlled environment, optical tracking
demands continuous line of sight and magnetic tracking is unpredictable near ferromagnetic
materials. An external tracking system restricts the portability of the US scanner, one of
ultrasound’s great advantages in the hospital. The location of the patient and the particular
anatomical target being scanned must be independently determined. Moreover, a large hole in
the reconstructed image data, too big for the hole-filling methods to interpolate over, may be
created when a significant number of 2D slices are missing at a particular location in 3D space.

In section 6.0 we have presented and validated a framework that enforces local
constraints in any intensity based registration method. In previously reported works
(Papademetris, Jackowski, Schultz, Staib, & Duncan, 2004; W. Peng, Tong, Qian, & Dong,
2006), landmark points are combined with intensity information by considering them as
additional constraints in an optimization problem that are solved by Lagrangian multipliers and
Newton’s method. The advantage of our approach is the versatility in the choice of intensity
based registration. Since landmarks, which are features external to the image, are synthesized as
an intrinsic part of the image, any intensity based registration method can be applied on the resulting fixed and moving images with the assurance that the landmarks will maintain correspondence. Contrary to the view of losing information by altering the raw image intensity at landmark locations, we believe the change in intensity at locations with known correspondence simply provide enhanced image features compatible with intensity based registration methods. A weakness of the method is that the landmark registration methodology, which uses anatomical landmarks placed manually by the user to register reconstructed volumes to standard image space, may be erroneous due to inaccurate positioning of the landmarks, either because of user error or ambiguity in the reconstructed image data at the landmark locations.

The variance descent graphs method, presented in section 5.3, has some similarities to other graph-based methods for image segmentation, which generally treat the entire image as a graph, with each pixel as a node connected to its neighbors by edges. Felzenszwalb and Huttenlocher’s graph-based segmentation (Felzenszwalb & Huttenlocher, 2004) begins with each pixel in its own sub-graph, and then joins sub-graphs if the edges between them have a low enough weight (i.e. the pixels they connect are similar). Edges are examined in order of weight, so that “easy” connections are made first, leaving the more ambiguous decisions for later in the algorithm. Our method may also be considered a form of the so-called superpixel (Ren & Malik, 2003), in which over-segmentation based on local similarities preserves most of the structure while reducing the dimensionality of the overall image (and reducing noise). The contribution of our work, we believe, is to provide a simple and rapid method to reduce the noise while preserving meaningful structure in n-dimensional images. The initial step requires only a single parameter: the radius of the spheres used to compute mean and variance of pixel intensity. VDGs have been employed in this dissertation to reduce noise in ultrasound images. The method
reduces the dimensionality of the images, thus enabling efficient implementation of subsequent graph based segmentation.

Representation of fascicular anatomy in a regenerating nerve may be complicated by myelin debris, neuronal edema or axonal disruption. The ultrasound images of the nerve can be especially noisy, and expert interpretation is required to separate the signals, which include target anatomy and relevant contextual information, from noise to identify the structures of interest. We have developed an algorithm (section 5.4) that inherently detects expected shapes - circular regions - by making use of statistical data computed in robust neighborhoods of an image. Our method favors circular structures by analyzing local image features in neighborhoods that are circular (the spheres of influence), and the nature of the voting system guides the assignment of edge weights such that edges within a potential circular structure receive higher weights than between such structures. Hence, incomplete boundaries in basically circular structures do not derail the algorithm and the radius of the $S_r(x)$ is determined appropriately. The voting system also ensures that decisions are not induced based on pairwise measures (between individual pixels, patches, or fragments) but rather by consolidating data in relevant local neighborhoods, thereby effecting meaningful results even in the presence of high noise. The edge weights consist of a vector of features instead of a scalar value. Additional image attributes such as color and texture, and any other derived characteristics, can be included in the feature vector, thus making the algorithm more robust. Results presented for both 2D and 3D datasets confirm that the clustering algorithms employed are suitable to form fragments and perform the subsequent segmentation. The modular design facilitates testing other clustering algorithms in our future work that includes vascular images acquired using HRUS.
The image analysis system comprises distinct methods connected to each other in a pipeline. The output of the first method is passed as the input to the second. It is possible for one of the methods to induce errors into the system or even fail completely when applied to a different application, propagating the errors along the pipeline. However, the methods are modular in nature, such that each module in the overall system is independent and interchangeable. During implementation, if any one of the modules does not produce satisfactory results, it can easily be replaced with a different method. For example, when image noise is not prominent, the VDGs can be replaced with any other data dimensionality reduction technique. The affinity propagation and dominant sets clustering algorithms can also be replaced with other graph based clustering techniques.

8.1 FUTURE DIRECTIONS

In this section, avenues of future work are discussed. It is possible to overcome the issues related to large holes in the reconstructed volume by extracting data from previous volumes. The correspondence between the current location of the US probe and the standard image space can be computed by methods discussed in the real-time playback scenario (section 7.3). Since the previous and prior volumes are registered to the standard image space, hole-filling methods may be extended to utilize data from other images at locations corresponding to the missing US data. The identification of anatomical landmarks, which are critical for registering volumes to the standard image space, could also be facilitated using the same approach.

The simultaneous visualization system should be applied next to a human arm. During each scan, the subject’s arm will be held rigidly by a brace. The brace will be MRI/CT
compatible and attached with commercially available multi-modality markers that are visible in MRI/CT and to the tracking system ("Multi-Modality Markers,"). The brace will be placed at a precise location on the arm ensuring that the markers are at a specific location relative to the arm consistently from one scan to the next.

To account for physical deformation between scans, or within scans due to the ultrasound probe, the hybrid registration can be modeled with the Finite Element Method (FEM) (Hagemann, Rohr, Stiehl, Spetzger, & Gilsbach, 1999; Kyriacou, Davatzikos, Zinreich, & Bryan, 1999). In this method, the image is modeled as a physical body, on which external forces that govern deformations in the body are applied. Physical characteristics such as elasticity and density associated with the body determine the degree of deformation of the physical body. The external forces can correspond to image attributes (intensity), or they can be user defined landmarks. With this approach, landmarks can be coupled with intensity information within the same optimization criterion.

8.1.1 ProbeSight

The aforementioned problems related to external tracking systems can be addressed with a technique we are developing in our laboratory, called ProbeSight. It is a system for guiding ultrasound probes and other clinical tools with respect to the exterior of the patient, using one or more video camera(s) mounted directly on the probe or tool. Real-time video images of the patient’s exterior are matched against a prior high-resolution surface map acquired with a high resolution multiple-camera imaging device used in plastic surgery (J. Wang et al., 2014). This surface map is rendered from multiple viewpoints in real-time to find the viewpoint that best matches the probe-mounted camera image, thus establishing the camera’s pose relative to the
anatomy. For ultrasound, this will permit freehand 3D reconstruction, as well as simultaneous visualization of real-time ultrasound and previous acquisitions from the same anatomical location, all without using external tracking devices. Thus ProbeSight will permit the ultrasound methods described in this dissertation to be used in a more practical manner in the hospital setting.
BIBLIOGRAPHY

Blue Phantom Inc.

127

