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ABSTRACT 

 

The brain is an extraordinarily complex and organized system. Environmental 

information reaches the brain via the sensory systems, and this information is processed to 

interpret and make sense of the world. The mechanisms used to transmit information between 

neurons are also involved in directing and modifying the strength of these connections. Thus, the 

brain is always in a plastic state and has the ability to both interpret neural information and be 

shaped by it. Cocaine addiction is a progressive condition highlighted by maladaptive and 

compulsive behavior that develops after exposure to cocaine. Thus, cocaine exposure changes 

neural processing in the brain in ways that lead to the addicted state. The work presented here 

examines how neural circuits in addiction-related brain regions, such as those involved in 

motivated behavior and translating emotion into action, change at the cellular and molecular 

levels in response to cocaine exposure. The results uncover a variety of novel cocaine-induced 

changes in neural circuitry and processing which likely contribute to the development and/or 

maintenance of addiction.  
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1.0  INTRODUCTION: THE BRAIN AND DRUG ADDICTION 

The brain is an extraordinarily complex and organized system. It is also a system that is 

constantly changing. Countless signals are transmitted and biological processes occur at every 

moment. Environmental information reaches the brain via the sensory systems, and this 

information is heavily processed to make sense of and to decode the world. But, the information 

flowing in also has the ability to change the processing system. The mechanisms used to transmit 

information between neurons are also involved in directing and modifying the strength of these 

connections. Thus, the brain is always in a plastic state and has the ability to both interpret inputs 

and to be shaped by them. Momentary experiences may leave powerful impressions that can be 

remembered for entire life times. In this way, the brain’s plasticity processes are both flexible 

and powerful. But, the complexity of the system has prevented us from fully understanding it.  

Drug addiction is a progressive condition highlighted by maladaptive and compulsive 

behavior. Drug addiction exists as a matter of degree—the degree to which a person’s thoughts 

and behaviors are affected by or preoccupied with taking and seeking addictive substances. 

Addiction is, therefore, a cognitive disorder of the brain which develops progressively from 

environmental exposure (to addictive drugs). There is commonly a physical dependence aspect 

to addiction, but addiction is more than physical dependence (Solomon and Corbit, 1974, Hyman 

and Malenka, 2001, Koob and Le Moal, 2001, Robinson and Berridge, 2003, Wise, 2004, Kauer 

and Malenka, 2007, Conrad et al., 2008). It would be relatively easy to treat addiction if it were 
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as simple as separating an addict from drugs through withdrawal until physical symptoms are 

gone. But, physical dependence to a substance is only the first challenge which must be 

overcome when trying to treat addiction. The cognitive challenge of dealing with cravings and 

the preoccupation with the substance remains long after physical dependence is overcome and 

the physical symptoms of withdrawal have subsided. In fact, it is the constant and persistent 

cravings during abstinence, which often escalate over time, that represent the biggest hurdles to 

overcome (Gawin and Kleber, 1986, Lu et al., 2004, Conrad et al., 2008, Wolf and Tseng, 2012). 

Thus, it is these cognitive barriers related to motivated behaviors which are the largest challenge 

in overcoming addiction.  

The question is, then, how do addictive drugs create such strong cravings during 

withdrawal, even in the absence of further drug use? The well-accepted neuroadaptation theory 

states that addiction is the result of addictive substances acting on natural learning and memory 

processes in the brain (Hyman et al., 2006, Kauer and Malenka, 2007). Addictive drugs exploit 

these natural learning mechanisms, leading to strong and persistent memories related to drugs 

which then translate into cognition and behavior. However, the related neural systems which 

process thoughts and behaviors are incredibly complex and are not currently well understood. 

This thesis will explain why and how I have attempted to decode and examine parts of this 

complex neural system in an effort to better-understand how changes to these neural systems 

may lead to addiction in hopes of finding better treatments. 
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1.1 THE ANATOMY OF ADDICTION 

Addiction is considered a cognitive disorder affecting emotions and motivations. Early work 

concerning motivated behaviors discovered that rats will learn a task to electrically self-stimulate 

parts of the brain (Olds, 1958). Rats will even work to self-stimulate despite other aversive 

consequences (Olds, 1958, Valenstein and Beer, 1962) and will starve themselves in favor of 

self-stimulation (Routtenberg and Lindy, 1965). These studies and others have confirmed that 

specific neural stimulation and signaling within the brain can mediate maladaptive and 

compulsive behaviors. Further studies examining this behavior have implicated the mesolimbic 

dopamine circuit between the VTA and NAc as a primary mediator (Fibiger et al., 1987, Wise 

and Bozarth, 1987).    

1.1.1 The Mesolimbic System and Nucleus Accumbens 

The mesolimbic circuit primarily involves the ventral tegmental area (VTA) and the nucleus 

accumbens (NAc; also known as the ventral striatum) along with the regions with which they 

send and receive signals. In this circuit, the NAc acts as a processing center for incoming 

emotional information from regions such as the amygdala, the hippocampus, and other regions 

before sending output to the ventral pallidum and the basal ganglia motor system (Mogenson et 

al., 1980, Kelley, 1999). This neural architecture positions the NAc as a critical gating point for 

the transition from emotions to actions, making it a central player in mediating motivations and 

goal-directed behavior including compulsive motivations and behaviors such as those observed 

in addiction.  
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Transmission from the VTA to the NAc is often thought of in terms of dopamine 

signaling. Dopamine sent from the VTA to the NAc has long been implicated in drug- and 

reward-seeking behavior. All drugs of abuse act either directly or indirectly by increasing 

dopamine signaling within the limbic circuit (Grace, 2000), and blocking dopamine signaling 

attenuates seeking behavior for both drug and natural rewards (De Wit and Wise, 1977, Wise et 

al., 1978, Gerber et al., 1981). Changes in dopamine signaling appear to be important for 

subsequent changes in glutamatergic signaling at NAc neurons (White, 1996, Wolf, 1998). And, 

these pathophysiological changes in excitatory glutamate signaling in the NAc are thought to 

underlie and maintain the addicted state (Wolf, 1998, Koob and Le Moal, 2001, Everitt and 

Robbins, 2005, Kalivas and Volkow, 2005).   

The NAc is the ventral region of the striatum. It is composed of greater than 90% 

medium spiny neurons (MSNs) and 5-10% fast-spiking interneurons (Chang and Kitai, 1985, 

Kawaguchi et al., 1995, Meredith, 1999). As the principle neurons of the NAc, MSNs send 

GABAergic output from the NAc to motor-related systems important for the execution of 

motivated behaviors (Groenewegen et al., 1999, Kelley, 1999). MSNs have a low membrane 

resistance and generally require multiple excitatory inputs to fire action potentials (Wilson and 

Kawaguchi, 1996).  

The NAc is divided into 2 subregions, the core and the shell. There is evidence that the 

core and shell have different roles. The core is generally involved with information related to 

motivationally salient environmental stimuli, whereas the shell is more involved in 

unconditioned responses—though these two subregions are not entirely independent and 

information is transmitted between them regularly (Meredith et al., 2008, Wolf and Ferrario, 

2010). Though both subregions share most inputs, there is often a bias for one subregion over the 
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other. Subtle difference in connectivity and microarchitecture lead to different roles in 

processing information for the core and shell (Meredith et al., 1992, Maldonado-Irizarry and 

Kelley, 1994). In general, the core has a larger role in mediating learned and conditioned 

behaviors while the shell has a stronger role in mediating responses to unconditioned stimuli 

(Meredith et al., 2008). Interestingly, the morphological differences between MSNs in the core 

and shell also appear to make the shell more labile in terms of dendritic growth and formation, 

whereas the core is more labile in terms of traditional NMDA-mediated long-term 

potentiation/depression (Meredith et al., 2008). 

1.1.2 Nucleus Accumbens Inputs 

The NAc receives extensive glutamatergic inputs from many brain regions including the 

hippocampus, the basolateral amygdala (BLA), and the medial prefrontal cortex (mPFC) 

(Mogenson et al., 1980, Groenewegen et al., 1999). It is the combined excitatory and inhibitory 

input processed by NAc MSNs which determines NAc functional output. We will focus on the 

excitatory glutamatergic inputs to NAc MSNs, as glutamate is the primary driver of action 

potentials and functional output.  

The hippocampus sends and receives information related to environmental context, and is 

involved in drug seeking behavior, specifically context-induced reinstatement of drug seeking 

(Vorel et al., 2001, Sun and Rebec, 2003, Fuchs et al., 2005). 

BLA neurons project to the NAc and encode emotional significance and motivational 

information. BLA neurons are activated only when a contextual cue is paired with a conditioned 

stimulus (Rosenkranz and Grace, 2002, Tye and Janak, 2007). And, when the reward association 

with a CS is reversed, the neural response of the BLA is also reversed (Schoenbaum et al., 1999). 
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This indicates that BLA output is related to emotional salience. BLA-to-NAc signaling has also 

been shown to mediate reinstatement of drug seeking and craving during withdrawal (Lee et al., 

2013).  

The mPFC also sends major glutamatergic input to the NAc. The mPFC is largely 

thought to relay information related to goal-directed/motivated and planned/executive behavior 

(Kalivas and Volkow, 2005). The infralimbic mPFC biases its projections towards the NAc shell, 

while the prelimbic mPFC mostly sends its projections to the NAc core (Krettek and Price, 1977, 

Sesack et al., 1989). These different projections have opposite effects on drug seeking behavior. 

Following exposure to cocaine, the infralimbic projections to the shell appear to facilitate drug 

seeking during withdrawal while the prelimbic projections to the core appear to inhibit drug 

seeking (Ma et al., 2014).  

Together, these and other pathways send their signals to the NAc. The NAc then receives 

a variety of incoming information related to context, emotional salience, the value of rewards, 

and other impulses, which is then processed within NAc MSNs and drives neural output 

(O'Donnell and Grace, 1995). Thus, changes in the strength and disruptions in the balance of 

incoming signals to the NAc (or to how the NAc processes these signals) can lead to alterations 

in the output sent downstream to motor-related regions including the ventral pallidum and basal 

ganglia. 
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1.2 COCAINE AND SYNAPTIC PLASTICITY 

The neuroadaptaion theory posits that drug addiction is the result of addictive substances acting 

on natural learning and memory processes in the brain to create addiction-related memories 

(Hyman, 1996, Hyman and Malenka, 2001, Hyman et al., 2006). This is achieved when drug 

exposure induces plastic changes within the neurons and circuits which mediate motivated 

behavior, cognition, and emotion. Thus, alterations in circuitry and connections related to the 

NAc are thought to underlie drug addiction (Everitt and Robbins, 2005, Kalivas and Volkow, 

2005). Via this mechanism of drug-induced plasticity, addiction can be considered a form of 

memory—a memory which is long-lasting, durable, and difficult to weaken (Lee and Dong, 

2011). Understanding how neural signaling changes in response to cocaine will help to reveal 

how the information is encoded and processed and may provide targets for the treating of 

addiction. 

1.2.1 Cocaine Pharmacology 

Cocaine is a psychostimulant which acts by blocking the function of the dopamine transporter 

(DAT) protein. By binding with and blocking this transporter, dopamine cannot be cleared from 

the synaptic space and extracellular areas around neurons. This extends the ability of dopamine 

to be an active signaling molecule and leads to increased levels of dopamine signaling. This 

acute pharmacological effect of cocaine also leads to a cascade of cellular changes related to 

mesolimbic circuit function and glutamatergic signaling (Jones et al., 2000, Thomas et al., 2000, 

Ungless et al., 2001, Saal et al., 2003). 
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1.2.2 Glutamate Receptors: AMPARs and NMDARs  

As the primary excitatory neurotransmitter throughout the brain, glutamate has the strongest 

direct influence over action potential firing and the output of neural signals. There are 2 major 

receptor types which are activated by glutamate, 1) a-amino-3-hydroxy-5-methylisoxazole-4-

propionate (AMPA) receptors (AMPARs) and 2) N-methyl-D-aspartate (NMDA) receptors 

(NMDARs).  

AMPARs are the most common type of receptor found throughout the nervous system 

and mediate the majority of excitatory synaptic transmission throughout the brain. AMPARs are 

ionotropic transmembrane receptors that open their channel when glutamate binds, allowing Na
+
 

to flow into the cell (and K
+
 to flow out) and depolarizing the postsynapse (Chater and Goda, 

2014). AMPARs are tetramers composed of two pairs of four possible subunits (GluA1-4, also 

referred to as GluR1-4) (Hollmann and Heinemann, 1994). GluA2 subunits are the most 

commonly found of these subunits and their presence causes the ion channel to be impermeable 

to Ca
2+

 ions (Greger et al., 2003). AMPARs that lack GluA2 subunits allow both Na
+
 and Ca

2+
 

ions to pass through their channel into the cell when bound by glutamate and are called calcium-

permeable AMPARs (CP-AMPARs). CP-AMPARs have a higher single channel conductance 

and faster rise and decay kinetics compared to GluA2-containing AMPARs (Swanson et al., 

1997). The ability of CP-AMPARs to allow extracellular calcium into the postsynapse leads to 

interesting implications related to synaptic plasticity (see below for more). AMPARs are also 

highly dynamic. They have a high trafficking rate to and from the cell membrane and have high 

lateral mobility along the cell membrane, allowing them to traverse between synaptic to 

extrasynaptic locations (Nishimune et al., 1998). Persistent changes in the number of stable 

AMPARs at postsynaptic locations influences the efficacy of glutamate signal transduction 
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(Luscher et al., 1999, Chater and Goda, 2014), a process referred to as long-term potentiation 

(LTP) or long-term depression (LTD), which increases or decreases the efficiency of glutamate 

signal transduction, respectively.  

Similar to AMPARs, NMDARs are also tetrameric ionotropic transmembrane glutamate 

receptors that contain two pairs of four possible subunits (NR1-4, also known as GluN1-4). 

However, NMDARs have other characteristics which make them different as well. For one, 

NMDARs require glycine (or D-serine) as a co-agonist with glutamate in order to open their 

channel (Kleckner and Dingledine, 1988). Additionally, NMDARs are voltage-gated: the ion 

channel is blocked by Mg
2+

 (or Zn
2+

) ions at hyperpolarized resting potentials but is released at 

depolarized potentials (Jahr and Stevens, 1990). Thus channel blockade by Mg
2+

 ions essentially 

makes NMDARs non-functional at resting cell potentials. Glutamate and glycine may bind to 

NMDARs under normal resting potentials, but the ion channel remains nonconductive due to 

Mg
2+

 blockade. NMDARs thus require the presence of other agents such as AMPARs to create a 

depolarized environment so that the Mg
2+

 block is released and the channel becomes conductive. 

Under these functional conditions, NMDARs are non-selectively conductive to cations, meaning 

that positive ions, including extracellular Ca
2+

, may pass through NMDARs into the cell.  

Calcium conductance is an important characteristic of NMDAR function due to the role of Ca
2+

 

signaling within neurons. The presence of extracellular calcium can trigger additional calcium 

release from intracellular stores and mediates signal-transduction cascades which lead to lasting 

changes such as alterations in AMPAR trafficking and synaptic potentiation and depression 

(Morris, 2013). Calcium influx through NMDARs activates a protein in complex known as 

Calcium/Calmodulin-dependent protein kinase II, an important interaction for initiating LTP 

processes (the increase in stable synaptic AMPARs) and memory formation (Coultrap and 
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Bayer, 2012). Blocking NMDARs blocks the induction of LTP at synapses (Collingridge et al., 

1983) and prevents behavioral learning and memory encoding (Morris et al., 1986, Morris, 

2013). In these ways, the joint function of AMPARs and NMDARs is important not only for 

sending neural signals between cells, but also for directing the plasticity of circuits through 

which neural signals are sent. 

1.2.3 The Role of Glutamate in Cocaine Addiction  

All drugs of abuse, including cocaine, either directly or indirectly increase dopamine signaling 

within the limbic circuit (Grace, 2000), but glutamatergic signaling is thought to be the primary 

mediator responsible for the maintenance of addiction to cocaine and other drugs (Wolf, 1998, 

Koob and Le Moal, 2001, Fuchs et al., 2005, Kalivas and Volkow, 2005, Kauer and Malenka, 

2007). Glutamate transmission onto postsynaptic AMPARs and NMDARs is the primary way to 

synaptically communicate between neurons. Thus, in many ways, changes in the number or 

function of these receptors fundamentally changes the neural information sent between cells. 

And, changes in glutamate transmission in the mesolimbic circuit have been critically implicated 

in mediating cocaine relapse and cocaine seeking behavior (McFarland and Kalivas, 2001, 

Everitt and Robbins, 2005, Kalivas and Volkow, 2005). Results from many animal models of 

addiction show that AMPAR activation within the NAc is critical for cocaine seeking. Intra-NAc 

infusion of AMPAR antagonists blocks cue-induced cocaine seeking during withdrawal (Conrad 

et al., 2008), cue-induced reinstatement (Backstrom and Hyytia, 2007), and cocaine-induced 

reinstatement (Cornish and Kalivas, 2000). Likewise, infusion of AMPA into the NAc reinstates 

cocaine seeking behavior after extinction training (Cornish et al., 1999, Suto et al., 2004). 

Cocaine also induces an increase in the amount of AMPARs at NAc synapses that begins about 
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3-4 days after exposure and lasts for weeks afterwards (Boudreau and Wolf, 2005, Kourrich et 

al., 2007). Re-exposure to cocaine after a period of withdrawal (cocaine challenge) transiently 

decreases AMPAR surface expression, and further withdrawal shows that AMPARs return back 

to their elevated levels again afterwards (Bachtell and Self, 2008). An increase in synaptic and/or 

membrane associated AMPARs indicates that LTP-like processes have occurred and that 

excitatory signal transduction is increased. It seems likely that this increase in synaptic 

excitability may correspond to greater sensitivity of NAc synapses to input related to cocaine 

cues and stimuli. Thus, the upregulation of AMPARs may be responsible for the sensitization of 

incentive salience to cocaine (Wolf and Ferrario, 2010, Wolf and Tseng, 2012).  

AMPARs inserted at NAc neurons 1-3 weeks after cocaine exposure are almost 

exclusively AMPARs containing GluA1 and 2 subunits (Boudreau et al., 2007, Kourrich et al., 

2007). However, after 35 days of withdrawal from cocaine, CP-AMPARs (lacking GluA2 

subunits) appear in the NAc (Conrad et al., 2008). CP-AMPARs are not normally present. 

Glutamate still activates CP-AMPARs like normal GluA2-AMPARs, but the channel 

conductance is higher (Liu and Zukin, 2007). Thus NAc MSNs may be even more sensitive to 

glutamate signals after longer withdrawal from cocaine (Wolf, 2010).   

Withdrawal from cocaine induces a phenomenon known as the incubation of cocaine craving, in 

which cocaine-seeking behavior by animals previously exposed to cocaine progressively 

increases over time throughout withdrawal (Grimm et al., 2001, Lu et al., 2004). Multiple studies 

have shown that the appearance and presence of CP-AMPARs during withdrawal corresponds to 

drug-seeking behavior during cue-induced re-exposure (Conrad et al., 2008), and specifically 

that stimulation-induced removal of CP-AMPARs reduces the incubation of cocaine craving 

(Lee et al., 2013, Ma et al., 2014). 
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1.2.4 Silent Synapses  

Silent synapses are glutamatergic synapses which contain NMDARs but have no stable 

AMPARs (Isaac et al., 1995, Liao et al., 1995). Normal activation of these synapses with 

glutamate results in no postsynaptic conductance because without nearby AMPARs to depolarize 

the cell in response to glutamate, NMDAR channels remain inactive due to Mg
2+

 block (see 

section 1.2.2 for more information). Silent synapses are thought to be immature synaptic 

connections which do not have stable AMPARs at the postsynaptic membrane (Groc et al., 2006, 

Kerchner and Nicoll, 2008, Hanse et al., 2013). Silent synapses are found at high levels in young 

and juvenile brains (Kerchner and Nicoll, 2008, Sametsky et al., 2010) and the number of silent 

synapses drops significantly as the brain matures (Durand et al., 1996, Isaac et al., 1997). These 

silent synapses may be either strengthened or weakened based on different patterns of activity 

(Isaac et al., 1997, Hanse et al., 2013). Therefore, silent synapses act as efficient substrates for 

plasticity via AMPAR insertion at the postsynaptic membrane.  

Cocaine also induces generation of silent synapses in the NAc of mature animals (Huang 

et al., 2009, Brown et al., 2011). However, there has been some debate over how these silent 

synapses form. In theory, cocaine-generated silent synapses in the NAc could form 1) via 

generation of new synaptic contacts with the insertion of NMDARs or 2) via removal and 

internalization of AMPARs at existing synapses. Evidence from our lab and others points to the 

idea that cocaine-generated silent synapses are the result of de novo synapse creation. This 

evidence comes from several sources: 1) cocaine-generated silent synapses largely contain 

NR2B NMDARs, as newer synaptic contacts usually do before being swapped for NR2A 

NMDARs (Huang et al., 2009); 2) NMDARs composed of newly constructed subunits are 

incorporated at silent synapses (Huang et al., 2009), 3) AMPAR surface expression largely stays 
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constant during repeated cocaine exposure at times when silent synapses are forming (Boudreau 

and Wolf, 2005), 4) cocaine increases the frequency of miniature EPSCs in NAc MSNs with no 

indication of presynaptic changes (Kourrich et al., 2007), and 5) drugs of abuse including 

cocaine persistently increase the number of spines and dendritic connections within the NAc 

(Robinson and Kolb, 2004). Others have suggested that silent synapses may be a byproduct of 

synaptic scaling processes in the NAc, whereby AMPARs are removed from MSN synapses after 

being persistently activated by cocaine to normalize activity within the circuit (Koya et al., 

2012). One of the difficulties contributing to this debate is the fact that methods used to detect 

silent synapses are relative to the number of functional synapses. Thus, generation of silent 

synapses either via new synaptic contacts or via existing synapses would show similar results in 

tests for silent synapses because the total number of synapses is unknown.  

Regardless of how they are formed, the apparent ability of silent synapses to undergo efficient 

LTP processes based on the insertion of AMPARs (Isaac et al., 1997, Kerchner and Nicoll, 2008) 

creates a situation where there are highly plastic substrates in the NAc after cocaine exposure. 

Recently, our lab has connected the appearance and maturation of silent synapses at synaptic 

connections in the NAc with the appearance of CP-AMPARs (Lee et al., 2013, Ma et al., 2014). 

However, not all silent synapses in the NAc have been observed to attract CP-AMPARs (Ma et 

al., 2014). Thus, it appears that withdrawal from cocaine differentially affects glutamatergic 

afferents to the NAc and that maturation of silent synapses may be different among afferents to 

the NAc as well. Understanding this differentiation in plasticity between glutamatergic inputs to 

the NAc may be crucial to understanding how cocaine exposure and withdrawal lead to an 

addicted state. 
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1.3 DYNORPHINS AND THE NUCLEUS ACCUMBENS 

In addition to glutamatergic and dopaminergic signaling, several other intercellular signaling 

mechanisms are present in the NAc (Meredith, 1999, Hyman et al., 2006). Dynorphins are a type 

of signaling molecule found in the NAc which may be particularly relevant in addiction. 

Dynorphins are a family of small signaling peptides that are all derived from a common 

precursor, prodynorphin (Kakidani et al., 1982). From this precursor, comes dynorphin A 

(DynA, 17 and 8 amino acids), dynorphin B (DynB, 13 amino acids), and several other varieties 

(Healy and Meador-Woodruff, 1994). DynA and DynB are produced and released locally by 

NAc MSNs. Dynorphins bind to and activate opioid receptors, including kappa, mu, and delta. 

Both DynA and B are endogenous agonists of kappa opioid receptors, though their selectivity for 

the kappa variant over other opioid receptors is relatively weak (Corbett et al., 1982). Activation 

of either kappa or mu opioid receptors in the NAc acutely decreases excitatory post-synaptic 

currents (EPSCs) in MSNs, an effect that appears to be mediated by presynaptic action of the 

opioid receptor in both cases (Dhawan et al., 1996, Hjelmstad and Fields, 2003).  

 It has been suggested that NAc dynorphin signaling significantly contributes to the stress 

and depressed emotional states present during drug withdrawal (Shirayama et al., 2004, Hauser 

et al., 2005). Exposure to stress and addictive drugs such as cocaine increase the expression of 

prodynorphin in the NAc, and induced dynorphin signaling within the NAc leads to aversive 

behaviors (Shippenberg et al., 2007). And, elevated dynorphin levels have been implicated in 

several NAc-based behavioral changes (Shippenberg et al., 2007, Shippenberg, 2009). Thus, it 

seems possible that dynorphins may play a role in the stress and negative affect experienced after 

withdrawal from drugs. It is these negative feelings which can often cause relapse, as addicts 

seek drugs to mitigate this negative affect (Koob et al., 2014). It is with these ideas in mind that 
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the investigation into how dynorphin signaling changes in the NAc after cocaine exposure was 

undertaken (detailed in Chapter 2).  

1.4 THE LATERAL HABENULA AND ADDICTION 

Similar to effects of dynorphin signaling, the lateral habenula (LHb) brain region has been 

strongly implicated in contributing to motivated behaviors by mediating negative rewards and 

aversive behavior (Lecourtier and Kelly, 2007, Hikosaka, 2010). The habenula is part of the 

epithalamic region, and is divided into the medial and lateral nuclei. The LHb consists of many 

further subdivisions with highly heterogenous populations of cells (Andres et al., 1999, Weiss 

and Veh, 2011, Aizawa et al., 2012). However, LHb neurons also share many characteristics. 

LHb neurons primarily send glutamatergic outputs and have a notable ability to generate rebound 

action potentials following periods of hyperpolarization (Chang and Kim, 2004, Li et al., 2011, 

Weiss and Veh, 2011).  

The connectivity of the LHb makes it a prime candidate for influencing rewards and 

motivated behavior. The LHb receives glutamatergic input from regions such as the lateral 

hypothalamus, the VTA, and the prefrontal cortex while receiving GABAergic inputs from 

various regions including the VTA, NAc, and pallidum (Araki et al., 1988, Lecourtier and Kelly, 

2007, Bianco and Wilson, 2009, Sesack and Grace, 2010, Aizawa et al., 2012, Shabel et al., 

2012). Interestingly, while it has been known that VTA fibers that contain dopamine markers 

also project to the LHb, it has recently been found that these fibers actually release GABA and 

not dopamine (Stamatakis et al., 2013). However, dopamine does appear to have a role in 

signaling to the LHb (Good et al., 2013, Jhou et al., 2013). These studies and others  also show 
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clear evidence for the organization of microcircuits within the LHb, which appears to correspond 

to the heterogeneity of LHb neurons (Maroteaux and Mameli, 2012).  

Glutamatergic outputs from the LHb are sent to regions including the VTA and the 

rostromedial tegmental nucleus (RMTg) (Ji and Shepard, 2007, Lecourtier et al., 2008, Balcita-

Pedicino et al., 2011). The RMTg is a GABAergic nucleus which sends projections to dopamine 

cells in the VTA (Jhou et al., 2009, Balcita-Pedicino et al., 2011). Thus, the excitatory output 

sent from the LHb can transform into an inhibitory influence to VTA dopamine neurons via the 

RMTg, and LHb neuronal activity has been shown to inhibit the dopamine neurons in the VTA 

(Ji and Shepard, 2007, Matsumoto and Hikosaka, 2007, Hikosaka, 2010). Additionally, 

optogenetic activation of LHb terminals appears to evoke EPSCs at GABAergic neurons in 

either the VTA or RMTg, and not in VTA dopamine neurons (Stamatakis et al., 2013).  

This ability of the LHb to mediate aversive behavior and negative affect via the inhibition of 

VTA dopamine neurons makes the LHb an intriguing target for addiction research because it is a 

convergence point for reward circuits and aversive opponent processes (Lammel et al., 2012). 

Cocaine exposure initiates negative feelings and dysphoria that persist beyond the acute euphoric 

effects, and it is the desire to mitigate these prolonged negative feelings which often drives 

addicts to continue to seek drugs (Solomon and Corbit, 1974, Koob and Le Moal, 2001, Koob et 

al., 2014). In fact, the LHb exhibits greater activation during depressed like states (Li et al., 

2011, Li et al., 2013), and deep brain stimulation in the LHb has been shown to affect cocaine-

seeking behavior (Friedman et al., 2010, Lax et al., 2013). Cocaine-block of the dopamine 

transporter, densely expressed in the LHb, may lead to dopamine-induced changes in LHb 

signaling (Vaughan and Foster, 2013). Following cocaine exposure, LHb neurons projecting to 

the RMTg showed a preference for increased activity based on Fos activation (Jhou et al., 2013). 
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Additionally, synaptic transmission from LHb projections to RMTg neurons is enhanced after 

cocaine, but not in LHb projections to the VTA (Maroteaux and Mameli, 2012). Collectively, 

this data shows that the LHb is involved in mediating aversive behaviors and negative affect 

while also influencing drug seeking behavior. However, much information is missing from the 

full story explaining the LHb’s influence over aversive feelings and drug-seeking behavior 

(Lecca et al., 2014). The experiments detailed in Chapter 3 sought to uncover details 

corresponding to how cocaine self-administration affects alterations in LHb signaling 

1.5 THE PARAVENTRICULAR NUCLEUS OF THE THALAMUS AND 

ADDICTION 

One of the lesser-examined but major sources of glutamate input to the NAc is the 

paraventricular nucleus of the thalamus (PVT). The PVT is a subnucleus of the thalamus and lies 

on the midline just ventral and adjacent to the third ventricle. The PVT sends glutamatergic 

projections to the NAc, central amygdala, VTA, and mPFC (Van der Werf et al., 2002, Smith et 

al., 2004), positioning it well to mediate corticostriatal signaling involved with motivation and 

reward (Berendse and Groenewegen, 1990, O'Donnell et al., 1997, Otake and Nakamura, 1998, 

Cardinal et al., 2002, Parsons et al., 2007, Vertes and Hoover, 2008). A large percentage of PVT 

neurons are branched, meaning that a single PVT neuron can signal to multiple regions at once 

(Otake and Nakamura, 1998). PVT connections to the NAc often synapse next to incoming 

dopamine fibers, making it likely that dopamine signaling is able to directly modulate PVT 

inputs in the NAc (Pinto et al., 2003).    
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The PVT has been shown to be involved in cocaine seeking behaviors. Specifically, 

inactivating or lesioning the PVT blocks cocaine-primed reinstatement (James et al., 2010), 

sensitization to cocaine (Young and Deutch, 1998), and expression of cocaine-induced 

conditioned place preference (Browning et al., 2014). Moreover, presentation of cocaine-

associated cues activates PVT neurons based on Fos examination (Brown et al., 1992). The PVT 

appears to be specifically activated by conditioned rewards and reward cues and is not activated 

by unconditioned stimuli (Brown et al., 1992, Wedzony et al., 2003, Matzeu et al., 2014). The 

experiments detailed in Chapter 4 examine the signaling characteristics of the PVT-to-NAc 

glutamatergic pathway and how this pathway changes in response to cocaine self-administration. 

One additional interesting aspect of the PVT is that it expresses a high density of orexin (also 

known as hypocretin) receptors (Kirouac et al., 2005). Orexin is a signaling neuropeptide 

produced exclusively in the hypothalamus and projected to various regions throughout the brain, 

including the PVT, VTA, and NAc shell (Peyron et al., 1998). Studies have primarily focused on 

the role of orexin signaling as it relates to natural rewards such as food, but orexin signaling also 

modulates addictive behavior (Baimel and Borgland, 2012, Mahler et al., 2012, Matzeu et al., 

2014). Drug-associated cues activate orexin neurons in the lateral hypothalamus, and stimulating 

orexin neurons reinstates extinguished drug-seeking behavior (Harris et al., 2005). Orexin fibers 

from the hypothalamus target the PVT and may stimulate PVT-to-NAc glutamatergic 

transmission.  
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1.6 SUMMARY 

Action potential firing between neurons represents the basic from of information transfer of 

neural information—a single bit of data sent from one cell to another for processing. The 

processing of this data occurs within single neurons as a complex spatial, temporal, and 

biological function involving the state of the neuron and the summation of all incoming signals. 

This physiological activity is processed within single neurons and determines whether a neuron 

reaches its threshold of excitation necessary to fire its own action potential to connected cells. 

These physiological calculations are repeated indefinitely at billions of neurons across the brain 

at every moment, ultimately leading to the functional output of the brain—all the conscious and 

unconscious thought processes and behaviors of an organism. It’s no wonder that decoding this 

neural code is a difficult task. However, the brain can be divided into smaller, easier to 

understand portions; we examine one process at a time or one brain region at a time, and then try 

to piece the full picture back together after collecting enough pieces, hoping that the pieces fit 

together. Though this methodology can lead to problems, it continues to provide the best insights 

into the incredibly complex neural code that underlies the thoughts and behaviors of all 

organisms.  

Emotions, motivations, and reward-related behaviors are an important part of proper 

functioning in complex organisms. Appropriately, a large number of brain regions and neurons 

are involved with processing the complex sets of neural data (involving emotional salience, 

current state, conditioned stimuli, context, reward value, etc.). Electrophysiology and patch-

clamping techniques provide the ability to examine signal processing at the level of single 
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neurons. Patch-clamping can reveal cellular and molecular properties of informational 

processing in neurons and can also be used to reveal changes in these processing properties.  

Addiction is a disorder which develops after exposure to addictive drugs. This situation 

provides a clear trigger stimulus responsible for the development of addictive behaviors: 

exposure to the addictive drug. Based on the evidence reviewed to this point, it is clear that 

cocaine exposure induces cellular and molecular changes in the mesolimbic circuit and related 

regions, which affect normal processing and lead to addiction. Examining specifically where and 

how these neural processing changes occur in the brain after exposure to addictive drugs is 

important for: 1) identifying which neural circuits are affected and may contribute to addiction-

related processing changes; 2) determining how the circuits change, providing a comparison 

between normal and drug-induced neural functioning; and 3) indicating potential targets for 

manipulation to reverse or treat the changes in neural processing.  

In the first series of experiments (Chapter 2), we examine dynorphin signaling in the NAc 

after cocaine and saline exposure. A noncontingent model of cocaine exposure is used, and the 

pharmacological effects of dynorphin signaling on NAc MSN neuron activity are examined. We 

find that that cocaine exposure leads to an increase in dynorphin signaling for both dynorphin A 

and B, which reduces synaptic signals to NAc neurons via presynaptic mechanisms. We also find 

that this reduction in synaptic transmission to MSNs occurs via kappa opioid receptors for 

dynorphin A, but dynorphin B signaling occurs through kappa- and mu-independent 

mechanisms.  

In the second series of experiments (Chapter 3), we examine the excitability of lateral 

habenula neurons after cocaine and saline self-administration. It was found that cocaine self-

administration transiently increases the excitability of lateral habenula neurons for at least 7 days 
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after cocaine training, but that excitability returns to baseline by day 45 of withdrawal from 

cocaine. There is a corresponding increase in membrane resistance, which appears to mediate the 

increase in excitability of these neurons during this time. Other measurements looking for 

potential changes in calcium-activated potassium channels and sodium channels found no 

differences at any point.  

In the third series of experiments (Chapter 4), we examined the signaling characteristics 

of the glutamatergic pathway from the paraventricular nucleus of the thalamus to the nucleus 

accumbens after cocaine and saline self-administration. This pathway was isolated by expressing 

channelrhodopsin in paraventricular thalamic neurons and using optical stimulation. Several 

characteristics of this pathway were described, including a high basal level of silent synapses and 

the presence of calcium-permeable AMPARs. Cocaine self-administration affected both pre and 

postsynaptic properties of this pathway by increasing silent synapse levels and increasing the 

probability of presynaptic transmitter release. Long-term withdrawal revealed several additional 

changes within this pathway including a reduction in the number of synaptic release points, a 

strengthening of remaining synapses based on an increase of quantal size, and a return in silent 

synapses back to baseline levels. Additionally, we found that blocking AMPAR internalization in 

MSNs prevented cocaine-generation of silent synapses within this pathway and lowered baseline 

levels as well.  

 The results from these experiments reveal specific cocaine-induced molecular and 

cellular changes to signaling properties at brain regions related to addiction and motivation. 

Thus, these changes in signaling properties likely contribute to maladaptive neural processing 

following cocaine exposure and ultimately contribute to addiction-related thoughts and 

behaviors. 
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2.0  EXPOSURE TO COCAINE ALTERS DYNORPHIN-MEDIATED REGULATION 

OF EXCITATORY SYNAPTIC TRANSMISSION IN NUCLEUS ACCUMBENS 

NEURONS
1
 

2.1 OVERVIEW AND INTRODUCTION 

Background: Dysregulation of excitatory synaptic input to nucleus accumbens (NAc) medium 

spiny neurons (MSNs) underlies a key pathophysiology of drug addiction and addiction-

associated emotional and motivational alterations. Dynorphin peptides, which exhibit higher 

affinity to κ type opioid receptors, are upregulated within the NAc upon exposure to cocaine 

administration, and the increased dynorphin-signaling in the NAc has been critically implicated 

in negative mood observed in cocaine- or stress-exposed animals. Despite such apparent 

behavioral significance of the NAc dynorphins, the understanding of how dynorphins regulate 

excitatory synaptic transmission in the NAc remains incomplete.  

Methods: We used electrophysiological recording in brain slices to examine the effects of 

dynorphins on excitatory synaptic transmission in the NAc.  

                                                 

1
 Published as: Mu P, Neumann PA, Panksepp J, Schluter OM, Dong Y (2011) Exposure to cocaine alters 

dynorphin-mediated regulation of excitatory synaptic transmission in nucleus accumbens neurons. 

Biological psychiatry 69:228-235. 
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Results: We focused on two key dynorphins, dynorphin A and B. Our current results show that 

dynorphin A and B differentially regulated excitatory postsynaptic currents (EPSCs) in NAc 

MSNs. Whereas perfusions of both dynorphin A and B to NAc slices decreased EPSCs in MSNs, 

the effect of dynorphin A but not dynorphin B was completely reversed by the κ receptor-

selective antagonist nor-binaltorphimine. These results implicate κ receptor-independent 

mechanisms in dynorphin B-mediated synaptic effects in the NAc. Furthermore, repeated 

exposure to cocaine (15 mg/kg/day via intraperitoneal injection for 5 days, with 1, 2, or 14 days 

withdrawal) completely abolished dynorphin A-mediated modulation of EPSCs in NAc MSNs, 

whereas the effect of dynorphin B remained largely unchanged.  

Conclusions: Given the quantitatively higher abundance of dynorphin B in the NAc, our present 

results suggest that the dynorphin B-mediated, κ receptor-independent pathways predominate in 

the overall effect of dynorphins in cocaine-pretreated animals and potentially in cocaine-induced 

alterations in mood. 

The nucleus accumbens (NAc) has long been hypothesized as a key brain site that 

mediates emotional and motivational responses (Kelley, 2004a, b). Medium spiny projection 

neurons (MSNs) contribute to >90% of the neuronal population within the NAc (Meredith, 

1999). Malfunction of these NAc MSNs underlies a key pathophysiology of emotional and 

motivational distortions associated with cocaine addiction (Kelley, 2004a, b). The functional 

output of NAc MSNs heavily relies on excitatory synaptic input; it is the synchronous excitatory 

synaptic inputs that drive MSNs into functionally active states in which MSNs execute their 

actions by firing action potentials (O'Donnell and Grace, 1995). Excitatory synaptic transmission 

to NAc MSNs is regulated by a myriad of neuromodulator systems. Distortion of these 

regulations is presumably one way in which pathogenic stimulations, such as exposure to cocaine 
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or stress, reshape the functional output of NAc, resulting in emotional and motivational 

alterations (Kelley, 2004a, Hyman et al., 2006). 

Among the neuromodulator-based regulation of NAc MSNs, dynorphin-signaling is 

particularly important for stress- or addiction-associated negative mood (Shippenberg et al., 

2007, Bruchas et al., 2010). Dynorphins comprise a family of biologically active peptides 

derived from the common precursor prodynorphin (Kakidani et al., 1982) and are enriched in the 

NAc (Healy and Meador-Woodruff, 1994). Exposure to stress or drugs of abuse upregulates the 

gene expression of prodynorphin in the NAc, and experimental upregulation of NAc dynorphin-

signaling produces aversive behaviors (Shippenberg et al., 2007). Despite our understanding of 

the behavioral effects of dynorphins, much less in known about how dynorphins regulate 

excitatory synaptic transmission in the NAc. 

The two key dynorphins derived from prodynorphin are dynorphin A (DynA) and B 

(DynB). Early immunohistochemical results from the NAc and dorsal striatum show that DynB 

is more abundant than DynA (Healy and Meador-Woodruff, 1994). Additionally, both DynA and 

DynB are thought to be endogenous agonists of κ receptors on the basis of affinity studies, 

although their selectivity for κ receptors over other opioid receptors is poor (Corbett et al., 1982). 

Using a more selective κ receptor agonist (U69593), recent studies demonstrated that activation 

of κ receptors acutely decreases excitatory postsynaptic currents (EPSCs) in NAc MSNs, an 

effect likely mediated by inhibition of presynaptic glutamate release (Hjelmstad and Fields, 

2001). However, it is not clear whether this effect holds for DynA and DynB and whether this κ 

receptor-mediated synaptic modulation is affected by dynorphin-associated pathophysiological 

conditions. Here we demonstrated that, similar to U69593, DynA inhibited EPSCs in NAc 
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MSNs, an effect that could be reversed by κ receptor-selective antagonist nor-binaltorphimine 

(nor-BNI). In contrast, although DynB also inhibited EPSCs in NAc MSNs, this effect was not 

completely reversed by nor-BNI, suggesting a κ receptor-independent mechanism. Moreover, 

after repeated exposure to cocaine, the effect of DynA on EPSCs in NAc MSNs was abolished, 

whereas the effect of DynB was still present. Therefore, DynA and DynB might use different 

cellular and molecular mechanisms in regulating excitatory synaptic transmission to NAc MSNs 

and thus might differentially regulate NAc-based emotional and motivational responses. 

2.2 MATERIALS AND METHODS 

2.2.1 Animal Use 

Male Sprague–Dawley rats at an age of 22–24 days were allowed to acclimate to their home-

cage (housed individually) for 5–7 days with free access to food and water under a 12:12-hour 

light/dark cycle. Rats were then either kept in the home cage for an additional 7 days or received 

cocaine/saline administration for 5 days, followed by a 1–2-day withdrawal period. Rats at 35–

40 days (with or without cocaine treatment) were used for electrophysiological recording. 

2.2.2 Intraperitoneal Injection of Cocaine 

We used a 5-day procedure of repeated cocaine administration, which was similar to earlier 

studies (Huang et al., 2009, Ishikawa et al., 2009, Mu et al., 2009). Briefly, rats received one 

intraperitoneal injection (IP) of (-)cocaine hydrogen chloride (15 mg/kg) or the same volume of 
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saline/day for 5 days. Injections were performed within the home-cage at approximately 9:00 am 

each day. Treated rats were then killed for electrophysiological recordings 1–2 days or 2 weeks 

after the last injection. 

2.2.3 NAc Slice Preparation, Cell Selection, and Electrophysiology 

Detailed procedures for obtaining NAc slices can be found in our previous publications (Dong et 

al., 2006a, Huang et al., 2008, Lee et al., 2008, Ishikawa et al., 2009). Briefly, coronal NAc 

slices of 250–300-μm thickness were cut such that the preparation contained the signature 

anatomical landmarks that delineated the NAc subregions. Slices were submerged in a recording 

chamber and were continuously perfused with regular oxygenated artificial cerebrospinal fluid 

(in mmol/L: 126 sodium chloride, 1.6 potassium chloride, 1.2 sodium dihydrogen phosphate, 1.2 

magnesium chloride, 2.5 calcium dichloride, 18 sodium bicarbonate, and 11 glucose, 295–305 

mOsm, equilibrated at 31–34°C with 95% oxygen/5% carbon dioxide). 

Electrophysiological recordings were preferentially made from the MSNs located in the 

ventral-medial subregion of the NAc Shell (referred to as NAc MSNs in this study). Standard 

whole-cell recordings were made with a MultiClamp 700B amplifier (Molecular Device, Foster 

City, California) through an electrode (2–6 mΩ) in all electrophysiological experiments. 

Voltage-clamp recordings were used to measure EPSCs and inhibitory postsynaptic currents 

(IPSCs) in NAc MSNs. The intracellular and extracellular solutions used can be found in our 

published papers for EPSC (Dong et al., 2006a, Huang et al., 2008) and IPSC (Dong et al., 

2006b, Tyszkiewicz et al., 2008) recording. To record EPSCs and miniature excitatory 

postsynaptic currents (mEPSCs), the extracellular solution routinely contained picrotoxin (.1 

mmol/L) to block γ-aminobutyric acid–A receptor-mediated currents. To record IPSCS, the 
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extracellular solution contained 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-

sulfonamide (NBQX; 5 μmol/L) and D(-)2-amino-5-phosphonovaleric acid (D-APV; 50 μmol/L) 

to block α-amino-3-hydroxy-5-methylisoxazole propionate receptor- and N-methyl-D-aspartate 

receptor-mediated currents. For evoked EPSCs and IPSCs, presynaptic stimuli (intensity, 200–

500 μA; duration, 300–600 μs; frequency, .1 Hz) were applied through a monopolar 

microelectrode. The stimulating electrode was placed close to recorded neurons (approximately 

3–4 cells away), and the amplitude of EPSCs was adjusted within approximately 80–150 pA; 

both of these efforts were made to minimize the potential spatial effect (Williams and Mitchell, 

2008). Evoked EPSCs were recorded at a holding potential of −70 mV, and evoked IPSCs were 

held at −10 mV. Amplitudes of evoked EPSCs and IPSCs were calculated by averaging 30 traces 

and measuring the peak (1-ms window) compared with the baseline (1-ms window). All 

chemicals were purchased from Sigma-Aldrich (St. Louis, Missouri). Dynorphin peptides, nor-

BNI, and U69593 were provided by the Drug Supply Program of the National Institutes of 

Health National Institute on Drug Abuse. 

 

 

2.2.4 Data Acquisition, Analysis, and Statistics 

One to three cells were obtained from each rat. For experiments involving cocaine/saline 

administration, at least four rats were used in each treatment group. The numbers of cells (n) was 

used in all statistics. All results are shown as mean ± SEM. Paired t test was used for all results 

involving comparisons of the peak amplitudes of EPSCs or IPSCs before, during, and after 

(wash-out period) perfusion of pharmacological manipulations. 
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2.3 RESULTS 

2.3.1 Inhibition of Excitatory Synaptic Currents in MSNs by DynA and B 

To examine the effects of dynorphins on excitatory synaptic transmission within the NAc, we 

used whole-cell voltage-clamp techniques in acute brain slices to record evoked EPSCs in NAc 

MSNs. We first examined the effect of DynA. After establishing a stable baseline of EPSCs, we 

perfused the brain slice with DynA (1 μmol/L) through the recording bath. Upon application of 

DynA, the amplitude of EPSCs in NAc MSNs was significantly decreased (amplitude relative to 

baseline: 70.9 ± 6.6%, n = 6; p < .01, paired t test) (Figures 1A and 1B). This DynA-induced 

effect could not be washed out; it persisted after being perfused by DynA-free bath for the rest of 

the experiment (> 20 min) (relative to baseline: 76.4 ± 12.9%; p = .01, vs. baseline, paired t test) 

(Figures 1A and 1B). Accompanying the DynA-induced decreased in the amplitude, the paired 

pulse ratio (PPR) (amplitude of the second EPSC peak over the amplitude of the first EPSC 

peak, 50-msec interpulse interval) of EPSCs was increased (baseline, 1.12 ± .13; DynA, 1.34 ± 

.14, n = 6; p = .03, paired t test) (Figures 1A and 1C), suggesting a presynaptic action of DynA. 

Similar to DynA, bath application of DynB (1 μmol/L) also decreased the peak amplitude of 

EPSCs (relative to baseline: 58.5 ± 7.2%, n = 6; p < .01, paired t test) (Figures 1D and 1E) and 

increased the PPR of EPSCs (baseline, 1.23 ± .08; DynB, 1.58 ± .22, n = 6; p = .04, paired t test) 

(Figures 1D and 1F) in NAc MSNs. Similar to DynA (Figure 1B), the effect of DynB was also 

only partially washed out (relative to baseline: 87.2 ± 9.9%; p = .23, vs. baseline, paired t test) 

(Figure 1E). Thus, DynA and DynB exhibited similar presynaptic effects on EPSCs in NAc 

MSNs in naive rats. 
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Figure 1. Inhibition of excitatory postsynaptic currents (EPSCs) in nucleus accumbens (NAc) 

medium spiny neurons (MSNs) by dynorphin A (DynA) and B (DynB).  

(A) Examples showing that the amplitude of EPSCs in NAc MSNs was decreased by perfusion 

of DynA. The EPSCs were elicited in a paired-pulse manner. (B) Summarized results showing 

that perfusion of DynA inhibited the amplitude of EPSCs in NAc MSNs, and the effect could not 

be washed. (C) Summarized results showing that, accompanying the DynA-mediated inhibition 

of EPSC amplitude, the paired pulse ratio (PPR) was increased. (D) Examples showing that the 

amplitude of EPSCs in NAc MSNs was decreased by perfusion of DynB. (E) Summarized 

results showing that perfusion of DynB inhibited the amplitude of EPSCs in NAc MSNs, and the 

effect could not be washed. (F) Summarized results showing that, accompanying the DynB-

mediated inhibition of EPSC amplitude, the PPR was increased. 
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2.3.2 Differential involvements of κ receptors in DynA- and DynB-mediated regulation of 

EPSCs in NAc MSNs 

Opioid κ receptors are enriched in the presynaptic terminals in the dorsal and ventral striatum, 

and both DynA and DynB exhibit higher affinity for κ receptors over other opioid receptor 

subtypes (Dhawan et al., 1996, Chen et al., 2007). We thus examined whether the 

aforementioned effects of DynA were mediated by κ receptors. The approach we used was to test 

the effects of κ receptor-selective compounds on EPSCs in NAc MSNs. If κ receptors were the 

key to the observed effects, activation of κ receptors with highly selective agonists should mimic 

DynA-mediated effects, whereas preventing the activation of κ receptors with highly-selective 

antagonists should inhibit these effects. U69593 has been demonstrated as a highly selective 

agonist for κ receptors over other opioid receptors at submicromolar concentrations (Dhawan et 

al., 1996). In the same experimental setup as in the preceding text, bath application of U69593 (1 

μmol/L) decreased the peak amplitude of EPSCs (relative to baseline: 71.7 ± 5.6%, n = 5; p = 

.02, paired t test) (Figures 2A and 2B) and increased the PPR of EPSCs in NAc MSNs (baseline, 

1.20 ± .11; U69593, 1.75 ± .27, n = 5; p = .02, paired t test) (Figures 2A and 2C), an overall 

effect similar to that of DynA and DynB. 

It has been demonstrated that nor-BNI is a highly selective κ receptor antagonist (21). 

Our results show that, when perfused alone, nor-BNI (0.1 μmol/L) did not significantly affect 

either the peak amplitude (relative to baseline: 108.3 ± 7.8%, n = 5; p = .45, paired t test) 

(Figures 2D and 2E) or the PPR (baseline, 1.37 ± .11; nor-BNI, 1.23 ± .06, n = 5, p = .47) 

(Figures 2D and 2F) of EPSCs in NAc MSNs. Consistent with previous results  (Hjelmstad and 

Fields, 2001, 2003), application of nor-BNI reversed the effects of U69593 on both the peak 
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amplitude (relative to baseline: U69593, 77.5 ± 4.7%, p < .01, vs. baseline; U69593 + nor-BNI, 

95.4 ± 8.4%, p = .67, vs. baseline; p = .33, vs. U69593; n = 5) (Figures 2G and 2H) and PPR 

(baseline, 1.02 ± .11; U69593, 1.66 ± .22, p = .02; U69593 + nor-BNI, 1.30 ± .17, p = .08; n = 5) 

(Figures 2G and 2I) of EPSCs in NAc MSNs. Thus, if the selectivity of U69593 and nor-BNI 

holds in the NAc slice as demonstrated in cell lines (Dhawan et al., 1996), our aforementioned 

results suggest that κ receptor-mediated modulation of EPSCs can be relatively selectively 

induced by U69593 and reversed by nor-BNI. 

With nor-BNI, we examined whether the effects of DynA and DynB on EPSCs in NAc 

MSNs could be inhibited by inhibition of κ receptors. Our results show that the effects of DynA 

on both peak amplitude (relative to baseline: DynA, 69.8 ± 4.5%, p < .01, vs. baseline; DynA + 

nor-BNI, 90.2 ± 10.7%, p = .38, vs. baseline; n = 6) (Figures 2J and 2K) and PPR (baseline, 1.35 

± .11; DynA, 1.68 ± .18, p = .02, vs. baseline; DynA + norBNI, 1.44 ± .14, p = .17, vs. baseline, 

n = 5) (Figures 2J and 2L) of EPSCs were reversed by application of nor-BNI. In contrast, the 

effects of DynB on the peak amplitude (relative to baseline: DynB, 60.2 ± 8.7%, p < .01, vs. 

baseline; DynB + nor-BNI, 83.8 ± 5.6%, p = .02, vs. baseline; n = 6) (Figures 2M and 2N) and 

PPR (baseline, 1.29 ± .14; DynB, 1.76 ± .24, p = .02, vs. baseline; DynB + norBNI, 1.67 ± .10, p 

= .02, vs. baseline; n = 5) (Figures 2M and 2O) of EPSCs in NAc MSNs were only partially 

reversed. These results taken together suggest that the effects of DynA on EPSCs in NAc MSNs 

are primarily mediated by activation of κ receptors, whereas the effects of DynB are mediated 

not only by activation of κ receptors but also by κ receptor-independent mechanisms. 
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Figure 2. Differential involvements of κ receptors in DynA- and DynB-mediated regulation of 

EPSCs in NAc MSNs.  

(A) Examples showing that the amplitude of EPSCs in NAc MSNs was decreased by perfusion 

of U69593. The EPSCs were elicited in a paired-pulse manner. (B) Summarized results showing 

that perfusion of U69593 inhibited the amplitude of EPSCs in NAc MSNs, and the effect could 

not be washed. (C) Summarized results showing that, accompanying the U69593-mediated 

inhibition of EPSC amplitude, the PPR was increased. (D) Examples showing that the amplitude 

of EPSCs in NAc MSNs was not affected by perfusion of nor-binaltorphimine (nor-BNI). (E) 

Summarized results showing that perfusion of nor-BNI did not significantly affect the amplitude 

of EPSCs in NAc MSNs. (F) Summarized results showing that the PPR of EPSCs was not 

significantly affected by perfusion of nor-BNI. (G) Examples showing that the amplitude of 

EPSCs in NAc MSNs was decreased by perfusion of U69593, and this effect was reversed by 

application of nor-BIN. (H) Summarized results showing that U69593-induced inhibition of 

EPSC amplitude in NAc MSNs could be reversed by application of nor-BNI. (I) Summarized 

results showing that U69593-induced increase in PPR could be reversed by application of nor-

http://www.sciencedirect.com/science/article/pii/S0006322310009509#gr2
javascript:void(0);
javascript:void(0);
javascript:void(0);


   

 33 

BNI. (J) Examples showing that the amplitude of EPSCs in NAc MSNs was decreased by 

perfusion of DynA, and this effect was reversed by application of nor-BIN. (K) Summarized 

results showing that DynA-induced inhibition of EPSC amplitude in NAc MSNs could be 

reversed by application of nor-BNI. (L) Summarized results showing that DynA-induced 

increase in PPR could be reversed by application of nor-BNI. (M) Examples showing that the 

amplitude of EPSCs in NAc MSNs was decreased by perfusion of DynB, and this effect was not 

completely reversed by application of nor-BNI. (N) Summarized results showing that DynB-

induced inhibition of EPSC amplitude in NAc MSNs could be partially reversed by application 

of nor-BNI. (O) Summarized results showing that U69593-induced increase in PPR could be 

partially reversed by application of nor-BNI. Other abbreviations as in Figure 1. 

 

2.3.3 DynA-mediated Regulation of EPSCs in NAc MSNs is Disrupted by Exposure to 

Cocaine 

Exposure to cocaine increases the level of dynorphins in NAc, and this elevated dynorphin tone 

has been implicated in several NAc-based behavioral alterations (Shippenberg et al., 2007, 

Shippenberg, 2009). We asked whether DynA/B-mediated modulation of excitatory synaptic 

transmission in NAc was affected by exposure to cocaine. With the same experimental setup as 

described in the preceding text, we observed that the effects of DynA on the peak amplitude 

(relative to baseline: DynA, 116.1 ± 8.2%, n = 7, p = .11) (Figures 3A and 3B) and PPR 

(baseline, 1.36 ± .12; DynA, 1.16 ± .04, n = 7, p = .36) (Figures 3A and 3C) were abolished in 

cocaine-pretreated rats (1–2 days withdrawal after 5-day repeated IP injection). 
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Figure 3. DynA-mediated regulation of EPSCs in NAc MSNs was disrupted by exposure to 

cocaine.  

(A) Examples showing that the amplitude of EPSCs in NAc MSNs was not affected by perfusion 

of DynA in rats with 1 or 2 days of withdrawal from repeated cocaine administration. The 

EPSCs were elicited in a paired-pulse manner. (B) Summarized results showing that DynA-

induced inhibition of EPSC amplitude in NAc MSNs was not present in rats with 1 or 2 days of 

withdrawal from repeated cocaine administration. (C) Summarized results showing that DynA-

induced increase in PPR was not present in rats with 1 or 2 days of withdrawal from repeated 

cocaine administration. (D–F) Example traces (D) and summarized results (E, F) showing that 

the frequency (E) but not the amplitude (F) of miniature excitatory postsynaptic currents 

(mEPSCs) in NAc MSNs from saline-treated rats was decreased by perfusion of DynA. (G–I) 

Example traces (G) and summarized results (H, I) showing that the frequency (H) but not the 

amplitude (I) of mEPSCs in NAc MSNs from cocaine-treated rats was decreased by perfusion of 

DynA. (J, K) Examples (J) and summarized results (K) showing that perfusion of DynA 

significantly decreased the amplitude of evoked EPSCs in rats with 2-week withdrawal from 

repeated saline treatment. (L, M) Examples (L) and summarized results (M) showing that 

perfusion of DynA did not affect the amplitude of evoked EPSCs in rats with 2-week withdrawal 

from repeated cocaine treatment. (N) Examples showing inhibitory postsynaptic currents (IPSCs) 

in NAc MSNs from saline-treated rats (with 1-day withdrawal) before, during, and after 

perfusion of DynA. (O) Summarized results showing that perfusion of DynA significantly 

inhibited the amplitude of IPSC in NAc MSNs from saline-treated rats. (P) Examples showing 

IPSCs in NAc MSNs from cocaine-treated rats (with 1-day withdrawal) before, during, and after 

perfusion of DynA. (Q) Summarized results showing that DynA-mediated inhibition of IPSC 

amplitude in NAc MSNs was still present in cocaine-treated rats (with 1-day withdrawal). Other 

abbreviations as in Figure 1. 
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As demonstrated in the preceding text (Figure 1), the effect of DynA on excitatory 

synaptic transmission seemed to be mediated by the regulation of presynaptic glutamate release. 

As such, we took an additional step to measure the effect of DynA on mEPSCs, another measure 

for potential presynaptic alteration, in saline- and cocaine-treated (1-day withdrawal from 5-day 

cocaine administration) rats. In saline-treated rats, perfusion of DynA significantly inhibited the 

frequency (normalized frequency: baseline, 104 ± 2 %; DynA, 52 ± 11%, p < .01, paired t test) 

(Figures 3D and 3E) but not the amplitude (normalized amplitude: baseline, 100 ± 1%; DynA, 

102 ± 12%, n = 6, p = .87, paired t test) (Figures 3D and 3F) of mEPSCs in NAc MSNs. These 

results, taken together with the effect of DynA on PPR of EPSCs (Figure 1), suggest that DynA 

selectively inhibited presynaptic release of glutamate in NAc MSNs. Surprisingly, the effect of 

DynA on mEPSCs remained largely intact in NAc MSNs from cocaine-treated rats (normalized 

frequency: baseline, 104 ± 2%; DynA, 58 ± 9%, n = 6, p < .01, paired t test; normalized 

amplitude: baseline, 100 ± 1%; DynA, 96 ± 11%, n = 6, p = .77, paired t test) (Figures 3G– 3I). 

The intact effect of DynA on mEPSCs and the diminished effect on evoked EPSCs, which were 

concurrently detected within the same set of NAc neurons (n = 4, data not shown), taken together 

might reflect the differential susceptibility of different pools of presynaptic vesicles to cocaine 

exposure (see Discussion). Note that no difference in baseline amplitude or frequency of 

mEPSCS was detected between saline- and cocaine-treated rats (data not shown). 

Nonetheless, it seemed that DynA-mediated regulation of evoked EPSCs in NAc MSNs 

was disrupted by cocaine exposure in a long-lasting manner; DynA-mediated regulation of 

EPSCs in NAc MSNs remained undetectable 2 weeks after repeated cocaine administration 

(relative EPSC amplitude during DynA perfusion: saline, 64 ± 9%, n = 7, p < .01, paired t test; 

cocaine, 113 ± 13%, n = 6, p = .32, paired t test) (Figures 3J– 3M). Collectively, the 
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aforementioned results suggest that exposure to cocaine disrupts DynA-mediated regulation of 

evoked excitatory synaptic transmission in a long-lasting manner. 

The lack of DynA-mediated regulation of EPSCs in cocaine-treated animals might be 

mediated by two potential mechanisms: 1) a general disruption of the DynA-signaling or 

alternatively, or 2) a disruption of the coupling between DynA-signaling and excitatory 

presynaptic machinery while general DynA-signaling remains intact. To explore these 

mechanisms, we examined potential DynA-mediated modulation of IPSCs in NAc MSNs from 

saline- and cocaine-treated (1-day withdrawal from 5-day cocaine administration) rats. Perfusion 

of DynA significantly inhibited the peak amplitude of IPSCs in NAc MSNs from both saline- 

(relative IPSC amplitude during DynA perfusion: 57 ± 8%, n = 6, p < .01, paired t test) (Figures 

3N and 3O) and cocaine-treated rats (relative IPSC amplitude during DynA perfusion: 64 ± 6%, 

n = 5, p < .01, paired t test) (Figures 3P and 3Q). Thus, it seems that excitatory synaptic 

transmission is selectively targeted by cocaine-induced DynA-mediated dysregulation in the 

NAc. 

2.3.4 DynB-mediated Regulation of EPSCs in NAc MSNs Is Not Disrupted by Exposure 

to Cocaine 

In contrast to the effect of DynA, short-term withdrawal (1 or 2 days) from repeated cocaine 

administration did not significantly reduce the effects of DynB on evoked EPSCs (relative EPSC 

amplitude: DynB, 75.9 ± 10.4%, n = 7, p = .03; PPR: baseline, 1.24 ± .10; DynB, 1.39 ± .02, n = 

7, p < .01) (Figures 4A– 4C). To selectively examine κ receptor-mediated regulation, we tested 

the effect of U69593. The effects of the selective κ receptor agonist U69593 (1 μmol/L) were 
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also abolished in cocaine-pretreated rats (relative EPSC amplitude: U69593, 97.7 ± 2.6%, n = 7, 

p = .45) (Figures 4D and 4E), similar to that for DynA (Figure 3). These results, taken together 

with the results related to DynA (Figure 3), suggest that the κ receptor-mediated modulation of 

evoked excitatory synaptic transmission in NAc was selectively abolished after exposure to 

cocaine, whereas the κ receptor-independent effects of DynB remain intact. Then, what are the κ 

receptor-independent mechanisms that mediate the effect of DynB in cocaine-treated animals? 

One candidate is μ receptors. The μ receptors are also enriched in the NAc, and activation of μ 

receptors inhibits excitatory synaptic transmission in NAc MSNs with a seemingly similar 

presynaptic mechanism (Dhawan et al., 1996). Although dynorphins, including DynB, exhibit 

preferential affinity to κ receptors over μ and other opioid receptors, the selectivity for κ 

receptors over μ receptors is limited (Corbett et al., 1982). Thus, it is possible that the μ receptor-

coupled signaling pathway was not disrupted by cocaine exposure, allowing for DynB-mediated 

effects. To examine this possibility, we preinhibited μ receptors and then measured the effect of 

DynB on evoked EPSCs in NAc MSNs from cocaine-treated rats (1-day withdrawal). The μ 

receptor-selective antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP), was 

perfused to the NAc slice at 1 μmol/L, a concentration at which CTAP completely prevented μ 

receptor-mediated modulation of EPSCs in the same preparation (n = 4, data not shown). In the 

presence of CTAP, perfusion of DynB still significantly inhibited the peak amplitude of evoked 

EPSCs in NAc MSNs in cocaine-treated rats (relative EPSC amplitude during perfusion of 

DynB: 69 ± 11%, n = 5, p < .05, paired t test) (Figures 4F and 4G). Thus, neither κ nor μ 

receptors likely mediated the effects of DynB in cocaine-treated animals. 
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Figure 4. DynB-mediated regulation of EPSCs in NAc MSNs was not disrupted by exposure to 

cocaine.  

(A) Examples showing EPSCs recorded in NAc MSNs from cocaine-treated rats (with 1 or 2 

days of withdrawal) before, during, and after perfusion of DynB. (B) Summarized results 

showing that DynB-induced inhibition of EPSC amplitude in NAc MSNs was still present in 

cocaine-treated rats. (C) Summarized results showing that DynB-induced increase in PPR was 

still present in cocaine-pretreated rats. (D) Examples showing EPSCs in NAc MSNs from 

cocaine-treated rats (with 1 or 2 days of withdrawal) before, during, and after perfusion of 

U69593. (E) Summarized results showing that U69593-induced inhibition of EPSC amplitude in 

NAc MSNs was not present in cocaine-pretreated rats. (F) Examples showing EPSCs in NAc 

MSNs from cocaine-treated rats (with 1 or 2 days of withdrawal) before, during, and after 

perfusion of DynB. Recording was made in the presence of D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-

Thr-NH(2) (CTAP) throughout the experiments. (G) Summarized results showing that, in the 

presence of CTAP, DynB-induced inhibition of EPSC amplitude in NAc MSNs was not present 

in cocaine-pretreated rats. Other abbreviations as in Figure 1. 
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2.4 DISCUSSION 

Current understanding about dynorphin-signaling-mediated regulation of synaptic transmission 

within NAc is primarily derived from κ receptor-based studies. In behaving animals, dynorphin 

peptides are released during behavioral responses, which initiate dynorphin-signaling. Thus, it is 

important to examine the precise role of dynorphin peptides to depict a complete picture of 

dynorphin-signaling. 

Our present study focused on DynA and DynB, two key dynorphin products from 

prodynorphin. Our results show that inhibiting κ receptors did not completely prevent DynB-

mediated synaptic inhibition (Figure 2), suggesting that—in addition to activation of κ 

receptors—other mechanisms are also involved in dynorphin-signaling-mediated regulation of 

synaptic transmission in NAc. These results provide a cellular explanation why different 

dynorphins exhibit differential psychopharmacological effects (Takemori et al., 1993, Tan-No et 

al., 2001). Furthermore, DynB is much more abundant than DynA in the NAc (Healy and 

Meador-Woodruff, 1994). Thus, κ receptor-independent dynorphin-signaling should play a 

significant role in the NAc upon upregulation of prodynorphins. 

An important finding of the present study is that repeated exposure to cocaine abolished 

the effect of DynA on excitatory but not inhibitory synaptic transmission in NAc. In contrast, the 

effect of DynB remained largely intact in cocaine-pretreated animals (Figure 4). As suggested by 

our results, the effect of DynA is primarily mediated by κ receptors. As such, the lack of a DynA 

effect can be mediated by cocaine-induced alteration in κ receptors or κ receptor-coupled 

intracellular signaling pathways. For example, if κ receptors are downregulated in the NAc after 

exposure to cocaine, a diminished effect of DynA would be expected. However, results related to 
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the effects of cocaine on NAc κ receptors are highly inconsistent; no effect (Schroeder et al., 

2003, Bailey et al., 2007), upregulation (Hurd and Herkenham, 1993, Unterwald, 2001, Collins 

et al., 2002), and downregulation (Rosin et al., 1999, Rosin et al., 2000) have all been reported in 

cocaine-treated animals. Such discrepant results might reflect the dynamic nature of the NAc κ 

receptors upon different cocaine procedures. Nonetheless, in addition to up- or downregulation 

of κ receptors, prestimulation of κ receptor-coupled signaling pathways might also be a 

contributing factor. It has been consistently shown that the level of dynorphins is increased by 

exposure to cocaine and other drugs of abuse (Terwilliger et al., 1991, Hurd et al., 1992, 

Spangler et al., 1993, Cole et al., 1995, Claye et al., 1996). Thus, in the NAc of cocaine-exposed 

animals, increased dynorphins might strongly and persistently stimulate κ receptors, resulting in 

either receptor desensitization or a saturation of activation of their coupled signaling pathways. 

Consequently, an additional application of DynA could not produce further effects. It is 

important to note that these potential mechanisms seem to only hold for excitatory synaptic 

transmission, because DynA-mediated modulation of IPSCs in NAc MSNs was largely intact in 

cocaine-treated animals (Figure 3). This additional result suggests that, mechanistically, cocaine-

induced disruption of DynA-signaling is not a global effect. Rather, the DynA-signaling 

specifically within either the presynaptic glutamatergic terminals or the coupling between DynA-

signaling and presynaptic machinery might be primarily targeted by exposure to cocaine, 

resulting in dysregulation. 

Our present data suggest that the inhibitory effects of DynA on excitatory synaptic 

transmission are achieved by inhibiting the presynaptic release of glutamate (Figure 1). The PPR 

of evoked EPSCs and the frequency of mEPSCs are two independent measures detecting 

alterations in presynaptic release of neurotransmitters, and very often a change in one is 
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accompanied by a change in the other. However, in cocaine-treated rats DynA-induced 

alterations in both the PPR as well as the amplitude of evoked EPSCs were completely abolished 

(Figures 3A–3C), whereas the inhibitory effect of DynA on the frequency of mEPSCs remained 

largely intact (Figures 3D–3I). These seemingly contradicting results were not likely due to 

technical caveats such as different populations of NAc MSNs, because the lack of effect on the 

PPR of evoked EPSCs and the presence of effect on the frequency of mEPSCs were also 

concurrently observed within the same set of neurons (n = 4, data not shown). Indeed, these 

“mismatched” results might reveal the mechanistic basis for the coupling of DynA-signaling to 

the release machinery in excitatory presynaptic terminals. It has been demonstrated in 

hippocampal neurons that evoked EPSCs and mEPSCs are mediated by two different sets of 

synaptic machineries (Atasoy et al., 2008, Fredj and Burrone, 2009) [but see (Groemer and 

Klingauf, 2007)]. Particularly for presynaptic release, there are two pools of presynaptic vesicles, 

one primarily for evoked presynaptic release (e.g., evoked EPSCs), and the other primarily for 

spontaneous presynaptic release (e.g., mEPSCs) (Fredj and Burrone, 2009). If this holds true for 

the excitatory synaptic transmission to NAc MSNs, a logical interpretation for the “mismatched” 

results in evoked EPSCs (Figure 1) and mEPSCs (Figure 3) is that DynA-signaling is coupled to 

the machineries for both evoked and spontaneous synaptic transmission, and exposure to cocaine 

selectively disrupts the coupling between the DynA-signaling and evoked synaptic transmission. 

As such, the mechanism underlying cocaine-induced disruption of DynA-mediated modulation 

of EPSCs might reside on the molecular and cellular components that selectively govern evoked 

synaptic transmission, such as activity-dependent calcium influx (and thus calcium channels), 

calcium sensors (i.e., synaptotagmins), or the “refractory” vesicles (Fredj and Burrone, 2009) 

that mediate evoked presynaptic release. Nonetheless, given that most biologically functional 
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synaptic transmissions are “evoked” transmissions, the results related to evoked EPSCs might 

better reflect the in vivo impact of cocaine administration on DynA-mediated modulation of 

excitatory synaptic transmission in the NAc. 

Our results also suggest that, in contrast to the effect of DynA, the κ receptor-independent 

component of the DynB-mediated effects on excitatory synaptic transmission in the NAc remain 

substantially intact in cocaine-exposed rats, albeit the maximal effect is diminished (Figure 4). 

Thus, the fine balance between κ receptor-dependent and κ receptor-independent modulation of 

excitatory synaptic transmission might be disrupted by cocaine administration; κ receptor-

independent effects might dominate the dynorphin-mediated regulations of excitatory synaptic 

transmission in the NAc after cocaine exposure. 

Taken together, we demonstrate differential effects of dynorphins in the NAc as a 

function of exposure to drugs of abuse, suggesting the existence of complex cellular behavior of 

dynorphins in the NAc. The NAc dynorphins significantly contribute to stress and drug 

withdrawal-induced depressive emotional state, likely through their coupled κ receptor-signaling 

(Shirayama et al., 2004, Hauser et al., 2005). It has been hypothesized that activation of 

dynorphin-κ receptors might counteract the development and maintenance of the addictive state 

(Shippenberg et al., 2007), particularly for drug addiction. The present results provide a more 

detailed cellular understanding of intra-NAc dynorphins and their potentially differential 

implications in the development of drug addiction, addiction-associated anhedonic emotional 

states, and treatment of these emotional and motivational disorders. 
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3.0  INCREASED EXCITABILITY OF LATERAL HABENULA NEURONS IN 

ADOLESCENT RATS FOLLOWING COCAINE SELF-ADMINISTRATION
2
 

3.1 OVERIEW AND INTRODUCTION 

Background: The lateral habenula (LHb) is a brain region that has been critically implicated in 

modulating negative emotional states and responses to aversive stimuli. Exposure to addictive 

drugs such as cocaine negatively impacts affective states, an effect persisting longer than acute 

drug effects. However, the mechanisms of this effect are poorly understood. We hypothesized 

that drugs of abuse, such as cocaine, may contribute to drug-induced negative affective states by 

altering the firing properties of LHb neurons, thus changing the signaling patterns from the LHb 

to downstream circuits. 

Methods: Using whole-cell current-clamp recording of acutely prepared brain slices of rats after 

various periods of withdrawal from cocaine self-administration, we characterized an important 

heterogeneous subregion of the LHb based on membrane properties.  

Results: We found two major relevant neuronal subtypes: burst firing neurons and regular 

spiking neurons. We also found that LHb regular spiking neurons had higher membrane 
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excitability for at least 7 days following cocaine self-administration, likely due to a greater 

membrane resistance. Both the increase in LHb excitability and membrane resistance returned to 

baseline when tested after a more prolonged period of 45 days of withdrawal. 

Conclusion: This is the first study to look at intrinsic LHb neuron properties following cocaine 

exposure beyond acute drug effects. These results may help to explain how cocaine and other 

drugs negatively impact affect states. 

 

Drug addiction involves complex neural circuits and involves an enormous number of 

cellular and molecular adaptations. Acute exposure to drugs of abuse often elicits an emotional 

“high,” while also inducing negative/aversive effects which out-last the initial positive feelings 

(Solomon and Corbit, 1974, Koob and Le Moal, 1997). This reduction in affect—one’s cognitive 

emotional state—by increasing negative emotional states and/or reducing positive emotional 

states may contribute to continued or chronic drug use as the user seeks to alleviate these 

negative feelings (Solomon and Corbit, 1974, Solomon, 1980, Koob and Le Moal, 1997). 

Chronic drug use is often a serious condition as maladaptive emotional and motivational states 

can be developed, leading to compulsive drug use or addiction (Solomon, 1980, Koob and Le 

Moal, 2008). The opponent process theory posits that these prolonged aversive effects work in 

opposition to the positive rewarding effects of addictive drugs and that these aversive effects are 

also one of the major difficulties in abstaining from drug use as users seek drugs in order to 

mitigate chronic negative affect (Solomon and Corbit, 1974, Solomon, 1980, Koob and Le Moal, 

1997, 2001, 2008).  

The lateral habenula (LHb) has recently garnered interest for its role in mediating 

negative rewards and aversive effects (Matsumoto and Hikosaka, 2007) and negative affect 
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(Yang et al., 2008, Li et al., 2011). LHb neuronal activity is negatively correlated with neuronal 

activity in positive reward-related regions such as the ventral tegmental area (VTA) (Christoph et 

al., 1986, Ji and Shepard, 2007, Stamatakis et al., 2013). Additionally, direct application of 

cocaine to brain slices excites LHb neurons (Good et al., 2013, Zuo et al., 2013), while cocaine 

exposure has been shown to increase aversive conditioning via the LHb (Jhou et al., 2013).    

The LHb is a heterogeneous region and includes several smaller sub-nuclei with 

physiology, connectivity, and functionality that are currently poorly defined (Andres et al., 1999, 

Weiss and Veh, 2011, Aizawa et al., 2012). Inputs to the LHb arrive from a variety of brain 

regions and include TH-positive projections from the VTA, indicating that dopaminergic neurons 

from the VTA send signals to the LHb (Lecourtier and Kelly, 2007, Hikosaka, 2010, Aizawa et 

al., 2012, Good et al., 2013). Outputs from the LHb are chiefly glutamatergic and primarily 

target the VTA and the rostromedial tegmental nucleus (RMTg), which then sends GABAergic 

signals to the VTA (Ji and Shepard, 2007, Lecourtier et al., 2008, Balcita-Pedicino et al., 2011, 

Matsui and Williams, 2011, Stamatakis et al., 2013). It appears, then, that the LHb is well-

situated to mediate negative affect and aversive behaviors by controlling inhibitory signaling to 

VTA dopamine neurons via this LHb-to-RMTg-to-VTA pathway (Sesack and Grace, 2010, 

Balcita-Pedicino et al., 2011).  

These circuitry-based reports position the LHb as a critical region for regulating drug-induced 

negative affect as well. Indeed, there is evidence that cocaine exposure induces synaptic 

plasticity specifically in the LHb-to-RMTg pathway (Maroteaux and Mameli, 2012), likely 

leading to increased inhibitory signaling from the RMTg to the VTA. Other studies have also 

examined the LHb-RMTg-VTA pathway and found supporting evidence for its involvement in 

cocaine-induced aversive behaviors (Jhou et al., 2013). However, it remains largely unknown 
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whether exposure to drugs of abuse, such as cocaine, reshape or induce plastic changes within 

LHb neurons directly. Here, we demonstrate that short-term withdrawal (1-2 days) from cocaine 

self-administration results in significantly increased intrinsic membrane excitability and 

membrane resistance of LHb neurons. Given the highly regulated conditions under which LHb 

neurons operate, this adaptation may significantly increase the response of LHb neurons to 

incoming signals, thus contributing to increases in LHb signaling to downstream targets such as 

the RMTg and potentially contributing to the prolonged increases in negative affect following 

cocaine exposure. The cocaine-induced increase in LHb membrane excitability was maintained 

for at least 7 days after cocaine self-administration. But, when measured after long-term 

withdrawal of 45 days, this membrane adaptation had returned to baseline levels. These results 

indicate that there may be a window of time following exposure to cocaine whereby LHb 

neurons exhibit cocaine-induced increases in excitability and downstream signaling. 

3.2 METHODS 

3.2.1 Animals 

Upon arrival, male Sprague-Daley Rats (Charles River) weighing 90-110 grams were housed in 

pairs with 12 h/12 h light/dark cycles and free access to food and water. Animals were allowed to 

habituate to their cages for at least 6 days before undergoing any procedures. Following catheter 

surgery, animals were single-housed. All experimental procedures were approved by the 

Institutional Animal Care and Use Committee of the University and were performed in 

accordance with the guidelines of the National Institutes of Health. 
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3.2.2 Catheter Surgery 

After habituating to their cages, p33-40 rats (weighing between 125 and 150 grams) underwent 

self-administration catheter surgery. Briefly, rats were anesthetized with a ketamine/xylazine 

mixture (50–100/5-10 mg/kg, i.p.). A silicone catheter (0.51 inner/0.940 mm outer diameter, 

HelixMark) was then inserted into the jugular vein and run under the skin to a small incision 

made between the scapulae where it exited the body and connected to a harness with quick 

connect luer (SAI infusion technologies) worn by the rat. Throughout the recovery and training 

period, catheters were flushed daily through the harness with sterile saline solution containing 

gentamicin (5 mg/mL) and heparin (10 us/mL). 

3.2.3 Self-administration Training 

Following surgery, the rats were placed back in cages to be single-housed and allowed to recover 

for 7-12 days before beginning self-administration training. Self-administration operant 

chambers (Med Associates) contained 2 separate nose-poke holes 6 cm above the grid floor. The 

harness luer was attached to a swivel with a tether and connected to a syringe loaded into an 

infusion pump. Nose pokes to the active hole initiated an infusion “reward” of cocaine/saline 

(0.75mg/kg cocaine or an equivalent volume of saline over 6 s; the volume of each infusion was 

90-150 µL and was adjusted based on the body weight of the animal at each training session to 

meet this criteria), turned off the house light for 20 s, and turned on a separate 6 s cue light. A 

successful infusion was followed by a 14 s lockout period. During this lockout period, active 

nose pokes continued to be recorded but failed to initiate any cues or further infusions. At the 

end of this lockout period, the house light would turn back on, signaling that the active nose poke 
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hole could now initiate another infusion. Nose pokes in the inactive hole were recorded but 

elicited no effects. All tests were done using an FR1 schedule. 

Rats were randomly divided into cocaine and saline groups for across the 3 chosen 

withdrawal time points and were placed in the operant chambers for one over-night training 

session (~12 hours) 8-10 days after surgery. Rats in a cocaine group that failed to receive greater 

than 30 cocaine infusions during the overnight session were excluded from further testing (~10% 

of the group). ~24 hours later, rats began a series of daily 2-hour training sessions over 5 

consecutive days. Rats in a cocaine group which did not show the ability to distinguish between 

active and inactive nose pokes or did not receive at least 15 cocaine infusions per 2 hour session 

were excluded from further study (~10% of the group). At the conclusion of the training, rats 

from all groups were placed back into their home cages for a 24-48 hour, 5-7 day, or a 43-47 day 

(referred to as 45 days) withdrawal period before being taken for brain slice preparation. 

3.2.4 Brain Slice Preparation 

Following the withdrawal period, rats were quickly anesthetized with ~3-4 mL of 99.9% 

isofluorane in a closed 20x16x16 cm chamber and were decapitated so that the brain could be 

extracted. Coronal brain slices (260 µm thick) containing the LHb were prepared using a 

VT1200S microtome (Leica). Slices were cut in the presence of 4°C cutting solution containing 

(in mM): 135 N-methyl-D glucamine, 1 KCl, 1.2 KH2PO4, 0.5 CaCl2, 1.5 MgCl2, 20 choline-

HCO3, and 11 glucose, saturated with 95% O2/5% CO2, with the pH adjusted to 7.4 using HCl, at 

300-310 mOsm. After being cut, slices were placed in an incubation chamber in artificial 

cerebrospinal fluid (aCSF) containing the following (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 

MgCl2, 1 NaH2PO4, 26.2 NaHCO3, and 11 glucose, at 290-294 mOsm, saturated with 95% 
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O2/5% CO2 to maintain a pH of 7.4 at 37°C for 30 min. Slices were then allowed to recover for 

at least 30 min at room temperature before being used for experimentation. 

3.2.5 Electrophysiological Recordings 

Whole-cell current-clamp recordings were made in the LHb, specifically in the parvocellular and 

central parts of the medial division of LHb (see Fig. 2a). During recordings, slices were 

superfused with aCSF that was heated to 31–33°C by passing the solution through a feedback 

controlled in-line heater (Warner Instruments) before entering the recording chamber. 

Recordings were made under visual guidance (40x, differential interference contrast optics) with 

micropipettes (2.5–5 MΩ) filled with a potassium-based internal solution containing (in mM): 

130 KMeSO3, 10 KCl, 0.4 EGTA, 10 HEPES, 2.5 Mg-ATP, 0.25 Na-GTP, and 2 MgCl2-6H2O, 

pH 7.3, 294 mOsm.  

The holding current for each cell was adjusted such that the cell maintained a membrane 

potential of -65 mV, which is close to the average resting membrane potential of these neurons 

(Wilcox et al., 1988). Though rare, cells requiring currents greater than +/-20 pA to reach this 

holding potential were excluded for data collection. Series resistance was 9 – 20 MΩ, 

uncompensated, and monitored continuously during recording. Recordings with a change in 

series resistance greater than 20% for the duration of data collection were not accepted for data 

analysis. To record evoked action potential firing, current injection steps were generated using 

Clampex software (Molecular Devices). The range of -50 to +90 pA, 10 pA increments/steps, 

and 0.1 Hz/step was chosen based on calibration trials to find appropriate current steps which 

would elicit the best range of action potential spikes across the full sample of recorded LHb 

neurons. Voltage traces were recorded with a MultiClamp 700B amplifier, filtered at 3 kHz, 
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amplified 5 times, and then digitized at 20 kHz. 3 consecutive series of 10 pA steps (from -50 to 

+90 pA) were recorded from each cell. Cells were allowed ~5 minutes to stabilize after achieving 

the whole-cell patch configuration before data collection began. 

3.2.6 Drugs and Reagents 

Cocaine-HCl was supplied by the Drug Supply Program of the National Institute of Drug Abuse. 

All other chemicals were purchased from Sigma-Aldrich. 

3.2.7 Statistics and Data Analysis 

All cell measurements were averaged across 3 consecutive trials. The number of action potentials 

evoked by each current injection step was used as a measure of cell membrane excitability. If the 

number of peaks at any current step varied more than 20% across any of the 3 trials, the cell was 

excluded from analysis for being unstable. Membrane resistance measurements for each cell 

were calculated using Ohm’s law by taking the difference in the cell’s voltage between the final 

100 ms of each negative current step compared to the cell’s baseline and dividing by the amount 

of current injected. The threshold for action potentials was measured as the point at which the 

voltage level of the cell slopes upwards at >25 mV/ms during the final rise to form an action 

potential peak. Using this threshold as a baseline, the fast-decaying afterhyperpolarization 

(fAHP) was measured as the lowest point 2-5 ms after the peak of the action potential and the 

medium-duration afterhyperpolarization (mAHP) was measured as the lowest point 20-40 ms 

after the peak of the action potential. Neurons which did not demonstrate either a clear fAHP or 

mAHP phase were excluded from analysis of that phase. All measurements were taken from the 
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same set of recorded cells with none being excluded, unless specifically stated. Student’s t-test 

was used to compare single data points, while two-way repeated measures ANOVA was used to 

compare treatment groups across multiple data points (spike numbers across all current steps and 

treatment groups, or behavioral data across multiple days and treatment groups). Results are 

shown as mean +/- SEM.  

3.3 RESULTS 

3.3.1 Self-administration of Cocaine or Saline 

To test the effects of cocaine exposure on LHb neurons, a self-administration training model was 

used. Rats received 5-day self-administration training after an initial over-night training session. 

Rats were trained to nose-poke for 0.75 mg/kg infusions of cocaine/saline during 2 hour sessions. 

Animals in short-term (ST), moderate-term (MT), and long-term (LT) withdrawal groups 

received identical training and access to cocaine/saline. ANOVA was used to compare the 

number of rewards received across all treatment groups and training days, whereby rewards 

infusions was the dependent variable and the training day and treatment group were fixed 

factors. As expected, comparisons between the ST, MT, and LT withdrawal groups for rats 

revealed no differences between reward infusions after a Bonferroni posttest (ST vs. LT: saline, 

p = 1.00, n = 6, 3; cocaine,  p = 1.00, n = 6, 3; ST vs. MT: saline, p = 1.00 , n = 6, 4; cocaine, p = 

1.00, n = 6, 6; MT vs. LT: saline, p = 1.00, n = 4, 3; cocaine, 1.00, n = 6, 3). Thus, the behavioral 

results were combined across withdrawal groups. Analysis comparing saline and cocaine 

treatment groups revealed that rats in combined cocaine treatment groups nose poked for more 
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infusions than rats in the combined saline group (Fig. 5; p < 0.0001, F[1, 139] = 562.64, n 

coc/sal = 15/13). The individual day of training had no effect (p = 0.69, F[4, 139] = 0.56, n 

coc/sal = 15/13) and no interaction effects were present across withdrawal groups or training 

days. These results confirm that this 5-day self-administration procedure is sufficient to both 

initiate and measure cocaine-seeking behavior in adolescent rats and that these rats demonstrate 

equivalent cocaine-seeking across withdrawal groups.  

 

 

Figure 5. Self-administration leads to cocaine-seeking behavior in rats.  

Rats receiving cocaine nose-poked for more infusions than rats receiving saline. The graph 

shows the average number of infusions for rats in cocaine groups and saline groups across the 5 

daily 2-hour self-administration training sessions. Data from ST, MT, and LT withdrawal groups 

were combined (n of animals per treatment condition: saline ST, 6; MT, 4; LT, 3; total = 13; 

cocaine ST, 6; MT, 6; LT, 3; total = 15). 
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Figure 6. The LHb and subnuclei regions.  

(a) Diagram showing the parvocellular and central regions of the medial division of the LHb 

where cells were recorded (shaded region). 3V, third ventricle; LHbMPc, parvocellular part of 

the medial division of the lateral habenula; LHbMC, central part of the medial division of the 

lateral habenula; LHbLMC, magnocellular part of the lateral division of the lateral habenula. (b) 

Differential interference contrast image of the habenula of a rat brain slice. The LHb region of 

interest is apparent from natural markings in the surrounding areas and is outlined by a dashed 

white line in this picture. 

 

3.3.2 Characterization of Two LHb Neuron Subtypes 

24 to 48 hours following the fifth and final self-administration training session, rats were 

sacrificed to obtain coronal brain slices containing the LHb for whole-cell current-clamp 

recordings. Cells located in the parvocellular or central parts of the medial division of the lateral 

habenula were preferentially targeted for recording (simply referred to as LHb hereafter, Fig. 

6a), as cells in these regions have been shown to receive the highest density of incoming TH-

positive fibers originating from the VTA (Aizawa et al., 2012, Good et al., 2013). The target 

region was easily discernable under standard differential interference contrast optics (Fig. 6b).   
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Figure 7. Cell types and spiking patterns in the LHb.  

(a) Example traces showing a typical burst firing (BF) pattern and (b) regular spiking (RS) 

pattern following depolarizing injections of current. (c, d) Example traces showing typical (c) BF 

and (d) RS rebound spiking patterns. (e) Chart showing the relative ratios of BF and RS spiking 

LHb cells during depolarization following saline (BF = 3, RS = 19, total = 22; 6 rats) or cocaine 

(BF = 4, RS = 19, total = 23; 6 rats) self-administration training. (f) Chart showing the relative 

ratios of BF and RS rebound spiking patterns in LHb cells following saline (BF = 12, RS = 10, 

total = 22; 6 rats) or cocaine (BF = 14, RS = 9, total = 23; 6 rats) self-administration training. (g) 

Example trace showing a typical ~5 Hz tonic firing pattern from an LHb cell at rest.  
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A survey of LHb cells revealed 2 relevant major neuronal types: burst firing (BF) cells 

and regular spiking (RS) cells (Fig. 7a, b). Continued observation revealed that 3 of 22 recorded 

cells from saline-treated animals showed clear BF characteristics, while 4 of 23 recorded cells 

from cocaine-treated animals showed clear BF characteristics (Fig. 7e), indicating that cocaine 

exposure does not shift the population composition of BF/RS cell types in the LHb.  

All recorded LHb neurons also exhibited action potentials evoked by releasing a 

hyperpolarizing stimulation, termed rebound spiking (Wilcox et al., 1988, Chang and Kim, 2004, 

Weiss and Veh, 2011) (Fig. 7c, d). Similar to depolarization spiking in LHb neurons, rebound 

spiking occurs in trains of RS or BF patterns. These rebound spike trains continue for various 

extended periods of time depending upon the magnitude of the preceding hyperpolarization. 

Interestingly, the rebound spiking pattern did not necessarily match the depolarization spiking 

pattern within the same cell, even at the same holding potential. Whereas only 3 of 22 cells 

recorded from saline treated animals exhibited BF spike patterns during depolarization, 12 of the 

22 recorded cells showed BF spike patterns following hyperpolarization (Fig. 7e, f). Similarly, 

while only 4 of 23 recorded cells from cocaine-treated animals had BF spike patterns during 

depolarization, 14 of these 23 cells had BF rebound spike patterns (Fig. 7e, f). All cells which 

showed BF spiking during depolarization also showed BF rebound spiking. The similarity of 

these sample numbers between the saline and cocaine groups, again, indicates that cocaine 

exposure does not shift the population composition or resting potential of cell types within the 

LHb.  

Upon achieving a whole-cell patch-clamp configuration, most LHb neurons demonstrated 

a variety of tonic firing patterns, ranging between 0.1 and 10 Hz (Fig. 7g). This tonic firing was 

variable and unstable over time though, and even disappeared in many cases ~10-20 minutes 
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after cells came to rest. Though, continued persistence or even intensification in other cases 

complicated certain measurements (such as rheobase current). Recorded neurons were injected 

with current (up to +/-20 pA) in order to maintain a resting potential near -65 mV. A majority 

(~85%) of LHb neurons demonstrated RS spiking patterns, while a minority (~15%) 

demonstrated BF spiking patterns. It should also be noted that a relatively small amount of 

current is needed to bring these LHb neurons to their action potential threshold. The current steps 

used in the present study ranged from -50 to +90 pA, where spike numbers began to plateau in 

some cells. A majority of recorded LHb neurons fire multiple spikes with just a 400 ms injection 

of +10 pA, confirming that neurons in the LHb are highly regulated and sensitive to incoming 

signals (Wilcox et al., 1988, Chang and Kim, 2004, Weiss and Veh, 2011).  

 

 

3.3.3 Membrane excitability of LHb neurons is increased after short-term withdrawal 

from cocaine self-administration 

To examine the impact of cocaine self-administration on the membrane excitability of LHb cells, 

we elicited action potentials from these neurons using a series of current injection steps (-50 to 

+90 pA, 10 pA increments) 24-48 hours after the final self-administration training session. Cells 

that demonstrated BF spiking during depolarization (~15% of cells) were excluded from 

excitability analysis due to their irregular firing pattern. Spike numbers at each current step were 

counted as a measure of the membrane excitability (Fig. 8a). Two-way repeated measures 

ANOVA with spike number as the dependent variable repeated at each current step for both 

saline and cocaine treatment groups revealed that animals from the treatment group had a 
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significant effect on the membrane excitability in LHb cells 24-48 hours after the final cocaine 

exposure when compared to saline-exposed controls (Fig. 8b, p < 0.05, F[1, 36] = 5.62, n = 38). 

Bonferroni’s multiple comparisons test was performed to detect significant differences between 

treatment groups at each current step.  

We then looked to examine additional properties of these LHb neurons in an attempt to 

determine contributing factors to the observed cocaine-induced increase in the membrane 

excitability. We first measured the threshold of action potentials in single-standing spikes.  There 

was no significant differences in the threshold for action potentials between saline and cocaine 

exposed rats (Fig. 8c, p = 0.48, n sal/coc = 19/19). We next calculated the membrane resistance 

of the LHb cells by measuring the cell’s change in potential in response to negative current 

injections (-10 to -50 pA). We found that the membrane resistance was increased in cocaine-

treated rats compared to saline-treated rats (Fig. 8d, p < 0.05, n sal/coc = 19/19). We also 

measured fast and medium components of AHPs (Fig. 8e) and observed no differences in these 

two parameters between cocaine and saline treated groups (Fig. 8f; fAHP, p = 0.91, n sal/coc = 

13/16; mAHP, p = 0.49, n sal/coc = 9/6). Thus, an increase in membrane excitability is correlated 

with an increase in membrane resistance. 
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Figure 8. LHb neuron characteristics 1-2 days after cocaine/saline self-administration.  

(a) Example traces showing typical current steps from -50 to +10 pA (left) and +90 pA (right) in 

LHb neurons after saline (top) or cocaine (bottom) self-administration. (b) Plot showing the 

mean number of spikes fired at each current step from LHb neurons 24-48 hours after cocaine or 

saline self-administration training (saline/cocaine, n = 19/19; rats = 6/6). (c) Graph showing the 

mean threshold of action potentials (saline/cocaine, n = 19/19; rats = 6/6). (d) Graph showing the 

mean input resistance of LHb cells (saline/cocaine, n = 19/19; rats = 6/6). (e) Example of fAHP 

and mAHP measurement locations on a typical isolated spike trace. (f) Graph of mean fAHP 

(saline/cocaine, n = 10/8; rats = 6/6) and mAHP (saline/cocaine, n = 13/15; rats = 6/4) 

measurements relative to spike threshold. *, p < 0.05 based on ANOVA comparison in (b) and 

Ttest in (d). 
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3.3.4 Membrane excitability of LHb neurons following long-term withdrawal from 

cocaine 

After observing that cocaine self-administration leads to an increase in the membrane excitability 

of LHb neurons 24-48 hours later, we then looked at a more protracted withdrawal time point at 

45 days to determine if these changes were persistent. The same cell characteristics measured at 

24-48 hours of withdrawal were then measured after 45 days of withdrawal. Again, spike 

numbers at each current step were counted as a measure of the membrane excitability (Fig. 9a). 

Two-way repeated measures ANOVA using spike number as the dependent variable repeated at 

each current step for cocaine LT and saline LT treatment groups revealed no significant effect of 

the treatment on the number of spikes across all current steps (F[1, 23] = 0.17, n = 25, p = 0.68). 

Thus, it appears that the initial cocaine-induced increase in membrane excitability returns to 

baseline levels at some time point after 48 hours of withdrawal (Fig. 9b). Additionally, the 

membrane resistance no longer differed significantly from saline-exposed controls 45 days after 

the last cocaine exposure (Fig. 9d). All other cellular measures including action potential 

threshold, fAHP, and mAHP also showed no statistical differences between treatment groups 

after LT withdrawal (Fig. 9c, e, f). Taken together, these results indicate that the cocaine-induced 

increase in LHb cell excitability returns to baseline at some point between 2 and 45 days of 

withdrawal from cocaine and is correlated with changes in membrane resistance. 
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Figure 9. LHb neuron characteristics 45 days after cocaine/saline self-administration.  

(a) Example traces showing typical current steps from -50 to +10 pA (left) and +90 pA (right) in 

LHb neurons after 45 days of withdrawal from saline (top) or cocaine (bottom) self-

administration. (b) Plot showing the mean number of spikes fired at each current step from LHb 

neurons 45 days after cocaine or saline self-administration training (saline/cocaine, n = 10/15; 

rats = 3/3). (c) Graph showing the mean threshold of action potentials (saline/cocaine, n = 10/15; 

rats = 3/3). (d) Graph showing the mean membrane resistance of LHb cells (saline/cocaine, n = 

10/15; rats = 3/3). (e) Example of fAHP and mAHP measurement locations on a typical isolated 

spike trace. (f) Graph of mean fAHP (saline/cocaine, n = 6/10; rats = 3/3) and mAHP 

(saline/cocaine, n = 7/12; rats = 3/3) measurements relative to spike threshold.  
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3.3.5 Membrane excitability of LHb neurons following moderate-term withdrawal from 

cocaine 

After observing that the cocaine-induced increases in membrane excitability and membrane 

resistance returned to saline-control levels by day 45 of withdrawal, we decided to examine a 5-7 

day moderate term (MT) withdrawal point to better-understand the time course of these observed 

changes. Again, the same cell characteristics were measured at this MT time point as were 

measured at the ST and LT withdrawal time points. A two-way repeated measures ANOVA 

using spike number as the dependent variable repeated at each current step for saline MT and 

cocaine MT treatment groups showed that the cocaine MT treatment had a significant increase in 

cell excitability compared to the cocaine ST group (F[1, 35] = 5.39, n = 37, p < 0.05), similar to 

the cocaine ST treatment group (Fig. 10a, b). Bonferroni’s multiple comparisons test was used to 

check for differences at each current step. This result reveals that LHb neurons maintain 

increased levels of excitability until at least 7 days after cocaine self-administration training (a 

Bonferroni posttest comparing withdrawal days 5-7 showed no differences between withdrawal 

days, p = 1.00 for all comparisons). Measurements of other cellular characteristics including the 

action potential threshold, fAHP, and mAHP again revealed no significant effects of cocaine at 

the MT withdrawal point (Fig. 10c, e, f). However, the membrane resistance of LHb cells after 

MT withdrawal from cocaine self-administration was again significantly different from saline 

controls (Fig. 10d, p < 0.01, n sal/coc = 18/19), further supporting a correlation between 

membrane excitability and membrane resistance.  



   

 62 

 

Figure 10. LHb neuron characteristics 5-7 days after cocaine/saline self-administration.  

(a) Example traces showing typical current steps from -50 to +10 pA (left) and +90 pA (right) in 

LHb neurons after 5-7 days of withdrawal from saline (top) or cocaine (bottom) self-

administration. (b) Plot showing the mean number of spikes fired at each current step from LHb 

neurons 5-7 days after cocaine or saline self-administration training (saline/cocaine, n = 18/9; 

rats = 4/6). (c) Graph showing the mean threshold of action potentials (saline/cocaine, n = 18/19; 

rats = 4/6). (d) Graph showing the mean membrane resistance of LHb cells (saline/cocaine, n = 

18/19; rats = 4/6). (e) Example of threshold, fAHP, and mAHP measurement locations on a 

typical isolated spike trace. (f) Graph of mean fAHP (saline/cocaine, n = 15/13; rats = 4/6) and 

mAHP (saline/cocaine, n = 14/14; rats = 4/6) measurements relative to spike threshold. *, p < 

0.05, based on ANOVA comparison; **, p < 0.01 based on Ttest.   
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3.4 DISCUSSION 

The present study demonstrates that LHb RS neurons have increased membrane excitability 24-

48 hours following self-administration of cocaine with lasts until at least 7 days after the last 

cocaine exposure. There was no difference in the distribution of cell types, action potential 

threshold, or fast/medium duration hyperpolarization potentials within the LHb after cocaine 

self-administration. As an increase in membrane resistance was observed in correlation with the 

increase in excitability of LHb cells after ST and MT withdrawal, it seems likely that the 

observed increase in cell excitability is at least partially mediated by an increase in membrane 

resistance. This cocaine-induced increase in intrinsic excitability amplifies LHb neuron signal 

transmission. Upon receiving equivalent input, LHb neurons in cocaine-trained animals transmit 

a greater number of signals to downstream targets, enhancing the contribution of the LHb to the 

involved circuits. As the LHb appears to mediate negative affect and aversive behaviors, this 

amplification of LHb signaling may represent a drug-induced alteration contributing to the 

increased opponent processes and prolonged negative affect known to occur after cocaine and 

addictive drug use.  

Early studies examining the functional and behavioral role of the LHb largely targeted 

the entire structure, treating it as a homogenous region. However, molecular and ultra-structural 

characterizations have revealed that the LHb is highly heterogeneous, with many potentially 

distinct subnuclei involved in specific circuits and functions (Andres et al., 1999, Weiss and Veh, 

2011, Aizawa et al., 2012). The present study recorded from neurons located in the parvocellular 

and central subregions of the medial LHb, which receive the majority of TH-positive projections 

from the VTA (Aizawa et al., 2012, Good et al., 2013). LHb neurons which receive TH-positive 

fibers from the VTA primarily send glutamatergic projections to the RMTg (Balcita-Pedicino et 
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al., 2011, Stamatakis et al., 2013). The receiving neurons in the RMTg then send inhibitory 

projections to VTA dopamine neurons (Christoph et al., 1986, Jhou et al., 2009, Omelchenko et 

al., 2009, Stamatakis et al., 2013). Thus, if signals coming out of the LHb are tonically amplified 

after cocaine exposure, VTA dopamine neurons receive a greater amount of tonic inhibition from 

the RMTg, causing less dopamine to be released in reward-related regions and reducing positive 

affect levels of an individual. This scenario supports the hypothesis that increased LHb neuron 

membrane excitability may contribute to the chronic increase in negative affect states following 

cocaine and addictive drug exposure.  

Increased excitability is observed at least 7 days after the final cocaine exposure, at a time 

when all acute cocaine effects have subsided. This observed change therefore represents an 

enduring adaptation in the LHb, as it persists well beyond acute pharmacological effects of 

cocaine. However, the increase in LHb neuron excitability was not observed at a much later 

withdrawal time point of 45 days, indicating that it is not a permanent change. Thus, cocaine-

induced adaptations in LHb neurons and any posited impact on negative affect appear to be 

reversible following a short-access cocaine regimen (2 hours per day for 5 days). Hence, there 

seems to be a window of time following cocaine exposure when LHb transmission is amplified. 

This window of amplified LHb signaling may be sufficient to trigger additional circuitry changes 

downstream, such as those found at LHb-to-RMTg synapses after cocaine exposure (Maroteaux 

and Mameli, 2012), particularly when considering the highly regulated and sensitive nature of 

LHb neurons (Wilcox et al., 1988, Weiss and Veh, 2011). The cocaine regimen used in this study 

was relatively mild, and a longer or stronger cocaine treatment regimen may result in larger or 

longer-lasting cellular effects relative to the results observed here.  
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Additional analysis was done to further examine the cause of the increased excitability in 

LHb neurons after cocaine self-administration. A number of membrane properties were 

measured, including the fast and medium components of AHP, the threshold of action potentials, 

and the membrane resistance of recorded cells from saline or cocaine treated animals. No 

differences were found between any of the examined cell characteristics, save for the membrane 

resistance in the cocaine ST and MT withdrawal group (See Table 1 and Fig. 8d, 6d). 

Collectively, these results suggest that cocaine self-administration does not affect sodium 

channels or big/small conductance calcium-activated potassium channels of LHb cells, and that 

these channels are not responsible for the increase in excitability. However, membrane resistance 

does appear to be correlated with an increase in excitability, and can be affected by several 

factors—resting potassium channels being the principle mediators. Thus, if cocaine exposure 

were to increase dopamine signaling to LHb neurons by blocking re-uptake, increased dopamine 

activity at LHb neurons (via D2 and D4 receptors) could hypothetically result in intracellular 

signaling cascades leading to a reduction in the number of passive potassium channels at the 

membrane that could persist for days or weeks before returning to baseline levels. There are 

other potential factors which could lead to increases in membrane excitability, but further 

investigation into the identities of the specific channels or receptors which might be involved 

was beyond the scope of the present study. We therefore cannot make definitive conclusions 

about the underlying mechanism by which cocaine self-administration may lead to increases in 

membrane excitability and resistance.  

It is worth noting that all LHb neurons demonstrate clear rebound spiking following even 

brief and relatively weak hyperpolarizing current injections, as has been previously reported 

(Wilcox et al., 1988, Gutnick and Yarom, 1989, Chang and Kim, 2004, Weiss and Veh, 2011). 
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This rebound spiking appeared to be dependent on the magnitude and length of the 

hyperpolarization stimulus and could last up to 30 seconds following a single hyperpolarizing 

period in some cases. This firing mechanism is especially interesting at the level of the circuit 

because it potentially allows both incoming excitatory and inhibitory signals to elicit subsequent 

excitatory output from LHb neurons. This scenario has interesting implications regarding how 

plasticity develops within LHb pathways and how it may affect functional output and behavior. 

This question has apparently been under-explored to this point but seems to merit further 

investigation to determine the role of LHb rebound spiking in vivo. Interestingly, the rebound 

spiking patterns did not necessarily match the spiking patterns during depolarization within the 

same cell. Some cells which showed RS spike patterns during depolarizing current injections 

then showed BF rebound spiking patterns, despite resting at a constant membrane potential.  

LHb neurons are known to fire spontaneously in slices. However, observed spontaneous 

tonic firing in LHb neurons was highly variable. ~30% of patched cells would demonstrate no 

spontaneous tonic firing, ~40% of cells would initially show spontaneous tonic activity but 

would progressively lose that activity within 20 minutes, and ~30% of cells showed consistent 

spontaneous tonic firing activity lasting for 30+ minutes. When present, spontaneous tonic 

activity generally occurred at 0.1-10 Hz for standing spikes or at 0.1-2 Hz for tonic bursts. 

However, even in cells which showed consistent spontaneous tonic firing, the firing rate for an 

individual cell often fluctuated between higher and lower frequency over time. For these reasons, 

attempts to measure a reliable and consistent rheo base or an average tonic firing rate were 

deemed to be too volatile and inconsistent within the population of sampled LHb cells to make 

any reliable interpretations or conclusions. Other studies have noted similar levels of 

heterogeneity or variability regarding spontaneous firing in LHb cells (Chang and Kim, 2004, 
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Weiss and Veh, 2011). No obvious differences in spontaneous tonic firing patterns or rates 

between LHb cells of cocaine and saline trained animals were apparent.  

The VTA-to-LHb pathway is especially interesting because the projecting neurons from 

the VTA have been shown to possess the TH marker for dopamine production while also 

possessing markers for GABA and glutamate release (Stuber et al., 2010, Stamatakis et al., 

2013). There is evidence that these TH-positive VTA-to-LHb fibers do not actually release 

dopamine upon stimulation, but rather release GABA or glutamate in mice (Stamatakis et al., 

2013). On the other hand, cocaine has been shown to directly affect dopamine signaling within 

the LHb via D2 and D4 receptors in rats (Good et al., 2013). The full picture of VTA-to-LHb 

signaling has yet to be revealed, but cocaine-induced changes to intrinsic membrane properties of 

LHb neurons would likely affect signaling sent along this peculiar pathway. These intrinsic 

membrane adaptations would broadly affect signal transduction at LHb neurons across all input 

pathways.  

The results of the current study may also have implications beyond cocaine and addictive 

drug-use because LHb activity also appears to modulate other reward behaviors such as sucrose 

intake (Friedman et al., 2011), presumably via similar pathways involving the RMTg and VTA. 

As the present study did not test rewarding stimuli other than cocaine, it is possible that LHb 

neurons have increased membrane excitability following other rewarding stimuli. In future 

experiments, it would be interesting to see how LHb excitability is affected by other drugs or 

sucrose compared to cocaine and saline.  

Taken together, the present study characterizes LHb neurons in the parvocellular and 

central areas of the medial LHb at various time points after saline or cocaine self-administration 

and determines that LHb neurons have higher membrane excitability 1-7 days after cocaine self-
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administration. This effect returned to baseline by 45 days of withdrawal from cocaine. This 

change in cell excitability was correlated with changes in membrane resistance. As the LHb 

largely sends glutamatergic output to regions including the RMTg, which then sends GABAergic 

projections to the VTA, this result has potentially important implications in the sensitization of 

negative affect and opponent processes following addictive drug exposure (Solomon and Corbit, 

1974, Koob and Le Moal, 2008), especially if this window of LHb signal amplification is 

sufficient to trigger additional long-lasting circuitry adaptations. Preventing or reversing these 

LHb neuron adaptations after cocaine exposure may assist in reducing chronic negative affect 

and reduce relapse. 
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Table 1. Intrinsic RS LHb Cell Characteristics  
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4.0  COCAINE ALTERS SIGNALING WITHIN THE PARAVENTRICULAR 

NUCLEUS OF THE THALAMUS-TO-NUCLEUS ACCUMBENS PATHWAY 

4.1 OVERVIEW AND INTRODUCTION  

Drug Addiction is characterized by maladaptive changes in signaling between brain regions 

which regulate rewards and motivated behaviors. The paraventricular thalamic nucleus (PVT) is 

a brain region which sends direct projections to the nucleus accumbens (NAc) and contributes to 

addictive behaviors. We sought to characterize the molecular and cellular changes within the 

PVT-to-NAc pathway in response to cocaine self-administration. We used virally mediated 

channelrhodopsin injections in the PVT of rats to isolate fibers from the PVT while recording 

from neurons in the NAc shell. We found that cocaine self-administration increases silent 

synapses within the PVT-to-NAc pathway. Additionally, calcium-permeable AMPARs are 

present at PVT-to-NAc synapses under normal conditions, but are not recruited to maturing 

silent synapses. Cocaine self-administration also leads to a greater probability of presynaptic 

vesicle release, which persists though long-term withdrawal. After long-term withdrawal, the 

number of presynaptic release sites within the PVT-to-NAc pathway is reduced, but the quantal 

size of presynaptic vesicles is increased, suggesting that the fewer remaining synaptic 

connections are stronger. We then examined the mechanism of origin of the observed cocaine-

generated silent synapses within this pathway and found that silent synapses are most likely 
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generated from the internalization of AMPARs at existing synapses. These results are the first to 

characterize cellular and molecular signaling along the PVT-to-NAc pathway in the context of 

cocaine exposure.  

Drug addiction is a disorder characterized by chronic relapse to drug-seeking behavior. 

Drug-induced changes to glutamatergic neural circuitry related to motivated behaviors and 

reward is critically implicated in mediating relapse and addictive behaviors (Kalivas, 2004, Wolf 

and Ferrario, 2010, Pickens et al., 2011). Specifically, medium spiny neurons (MSNs) within the 

nucleus accumbens (NAc) shell mediate emotional and motivational arousal leading to 

behavioral output (Kelley and Berridge, 2002). Glutamatergic input to NAc MSNs is targeted by 

drugs of abuse, such as cocaine, to produce adaptive changes (Wolf, 2010). These drug-induced 

signaling adaptations may substantially reshape the functional output of NAc MSNs, leading to 

the prioritization of addiction-related behavioral output.  

The generation of silent synapses is another method of cocaine-initiated signaling 

adaptation (Huang et al., 2009). Silent synapses are thought to be immature synaptic connections 

which contain NMDA receptors (N-methyl-D-aspartate receptor, NMDARs), but lack a normal 

compliment of AMPA receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor, AMPARs) (Groc et al., 2006, Kerchner and Nicoll, 2008, Hanse et al., 2013). 

Maturation of these silent synapses involves the recruitment of AMPARs, and in some cases 

calcium-permeable AMPARS (CP-AMPARs) (Wolf and Tseng, 2012, Lee et al., 2013, Ma et al., 

2014), to the synaptic membrane and may alter the flow of neural information within the affected 

circuits (Wolf, 2010, Wolf and Ferrario, 2010). Our lab has also recently demonstrated that the 

maturation of cocaine-generated silent synapses in pathways to the NAc is critical for regulating 

the incubation of cocaine craving and re-exposure cocaine-seeking (Lee et al., 2013, Ma et al., 
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2014). Examination of cocaine-generated silent synapses and their maturation in the NAc may 

reveal neural and signaling mechanisms that contribute to addictive behaviors (Lee and Dong, 

2011).  

One potentially important, yet less-examined, source of glutamatergic input to the NAc is 

the paraventricular nucleus of the thalamus (PVT). The PVT sends direct excitatory projections 

to the NAc (Van der Werf et al., 2002, Smith et al., 2004) and to the prefrontal cortex (PFC), 

positioning it well to regulate cortico-striatal signaling involved in motivation and reward 

(Berendse and Groenewegen, 1990, O'Donnell et al., 1997, Otake and Nakamura, 1998, Cardinal 

et al., 2002, Parsons et al., 2007, Li and Kirouac, 2008, Vertes and Hoover, 2008). Perhaps 

unsurprisingly then, the PVT has been shown to mediate cocaine-related behaviors: inactivation 

of the PVT prevents cocaine-prime induced reinstatement (James et al., 2010), sensitization to 

cocaine (Young and Deutch, 1998), and expression of cocaine-induced conditioned-place 

preference (Browning et al., 2014). Additionally, PVT neurons are activated by cocaine-paired 

contextual cues (Brown et al., 1992, Franklin and Druhan, 2000), and inactivation of hypocretin 

receptor 1 in the PVT prevents cocaine seeking but not natural reward seeking (Martin-Fardon 

and Weiss, 2014).  

The current study sought to examine pre and postsynaptic signaling within the PVT-to-

NAc pathway after cocaine or saline self-administration after short-term (1-2 days) and long-

term (43-47 days) withdrawal. We found that the PVT-to-NAc pathway may contain a relatively 

high baseline level of silent synapses, but that cocaine self-administration generates additional 

silent synapses. AMPA/NMDA ratio examinations corroborated this finding. About 20% of 

AMPARs in the PVT-to-NAc pathway of control animals appear to be CP-AMPARs, but long 

term withdrawal from cocaine and the maturation of cocaine-generated silent synapses does not 
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appear to affect this percentage. Cocaine also significantly affects presynaptic signaling at PVT-

to-NAc synapses. Cocaine increases the probability of vesicle release from presynaptic 

terminals, and long-term withdrawal from cocaine reduces the total number of presynaptic 

release sites, while also strengthening remaining synapses by increasing the quantal size of 

released vesicles. We then determined that cocaine-generated silent synapses within the PVT-to-

NAc pathway are derived from the internalization of existing AMPARs.  

Thus, cocaine self-administration may remodel the PVT-to-NAc pathway, disrupting 

normal signaling and causing the PVT to contribute to addictive behaviors. This is first study to 

examine how cocaine affects the cellular and molecular signaling properties of the PVT-to-NAc 

pathway. 

4.2 MATERIALS AND METHODS 

4.2.1 Animals 

Male Sprague-Daley Rats were ordered from Charles Rivers Labs weighing 90-110 grams upon 

arrival. Rats were housed in pairs with 12 h/12 h light/dark cycles and free access to food and 

water. Animals were allowed to habituate to their cages for at least 5 days before undergoing any 

procedures. Following surgical procedures, animals were single-housed. All experimental 

procedures were approved by the Institutional Animal Care and Use Committee of the University 

and were performed in accordance with the guidelines of the National Institutes of Health.  
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4.2.2 Surgeries 

After habituating to their cages, p33-40 rats (weighing between 125 and 145 grams) underwent 

self-administration catheter surgery and stereotaxic virus delivery surgery in a single surgical 

session. Rats were anesthetized with a ketamine/xylazine mixture (50–100/5-10 mg/kg, i.p.). A 

silicone catheter (0.51 inner/0.940 mm outer diameter, HelixMark) was then inserted into the 

jugular vein and run under the skin to a small incision made between the scapulae where it exited 

the body and connected to a harness with quick connect luer (SAI infusion technologies) worn 

by the rat. Throughout the recovery and training period, catheters were flushed daily through the 

harness with sterile saline solution containing gentamicin (5 mg/mL) and heparin (10 µs/mL).  

Immediately following catheter surgery, rats undergoing viral injections were placed in a 

stereotaxic apparatus (Stoelting). A 28-gauge injection needle was used to inject 1.5 μL (0.3 

μL/min) of the AAV-ChR2YFP solution via a Hamilton syringe and Thermo Orion M365 pump 

(Thermo Scientific) into the paraventricular nucleus (AP -3.05, ML ±0.00, DV −5.55). In later 

experiments, a 28-gauge injection needle was used to also bilaterally inject 1 μL (0.2 μL/min) of 

AAV-GluA2eGFP-3A or 3Y solution into the nucleus accumbens shell (AP +1.55, ML ±0.80, 

DV −7.05). Injection needles were left in place for 5 min after injection.  

4.2.3 Virus Preparation 

Channelrhodopsin-2 (ChR2, H134R variant) fused to Venus (Addgene plasmid 20071) was 

under the control of a CAG promoter in an adeno-associated viral vectors (AAV) with AAV2 

ITRs: AAV-ChR2Y (Mattis et al., 2012). AAV1/2 serotype AAV vectors were generated 

adenovirus free essentially as described in (Klugmann et al., 2005, Pilpel et al., 2009). Briefly, 
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human embryonic kidney 293T cells were transfected with the AAV-ChR2 plasmid, AAV1 

(pH21) and AAV2 (pRV1) helper plasmids, and the adenovirus helper plasmid (pFΔ6) by 

standard polyethylenimine transfection. Cells were harvested 48–72 h after transfection and 

purified by discontinuous iodixanol gradient centrifugation (20). After desalting by Amicon 100k 

concentrators (Millipore) with PBS-MK according to manufacturers’ procedures, AAV vectors 

were stored at -80 °C until further use. 

Generation of the 3A and 3Y GluA2 C-terminal tail plasmids (AAV-GluA2eGFP-3A or 

3Y) was done via a similar process. The relevant GluA2 C-terminal tail sequences of these 

plasmids are as follows: 3A, TAKEGANVAGIESVKI; 3Y, TYKEGYNVYGIESVKI. Both 

viruses are similar, but have a difference of 1 amino acid in 3 locations (Y-A swap). The 3A 

variant is an inactive mutant control, while the 3Y variant is active. Both were fused to a GFP 

label, which was also visible under 512 nm light. 

4.2.4 Behavioral Training 

Following surgery, the rats were placed back in cages to be single-housed and allowed to recover 

for 13-18 days before beginning self-administration training. Self-administration operant 

chambers (Med Associates) contained 2 separate nose-poke holes 6 cm above the grid floor. The 

harness luer was attached to a swivel with a tether and connected to a syringe loaded into an 

infusion pump. Nose pokes to the active hole initiated an infusion “reward” of cocaine/saline 

(0.75mg/kg cocaine or an equivalent volume of saline over 6 s; the volume of each infusion was 

90-150 µL and was adjusted based on the body weight of the animal at each training session), 

turned off the house light for 20 s, and turned on a separate 6 s cue light. A successful infusion 

was followed by a 14 s lockout period. During this lockout period, active nose pokes continued 
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to be recorded but failed to initiate any cues or further infusions. At the end of this lockout 

period, the house light would turn back on, signaling that the active nose poke hole could now 

initiate another infusion. Nose pokes in the inactive hole were recorded but elicited no effects. 

All tests were done using an FR1 schedule. 

Rats were randomly divided into cocaine and saline treatment groups and were placed in 

the operant chambers for one over-night training session (~12 hours) 13-18 days after surgery. 

Rats in cocaine groups that failed to receive greater than 30 cocaine infusions during the 

overnight session were excluded from further testing (~20% of the group). ~24 hours later, rats 

began a series of daily 2-hour training sessions over 5 consecutive days. Rats in a cocaine group 

which did not show the ability to distinguish between active and inactive nose pokes or did not 

receive at least 12 cocaine infusions per 2 hour session were excluded from further study (~10% 

of the group). At the conclusion of the training, rats from all groups were placed back into their 

home cages for 24-48 hours or 43-47 days for long-term withdrawal groups before being taken 

for brain slice preparation. 

4.2.5 Brain Slice Preparation 

Rats were quickly anesthetized with ~3-4 mL of 99.9% isofluorane in a closed 20x16x16 cm 

chamber and were decapitated so that the brain could be extracted. Coronal brain slices (260 µm 

thick) containing the PVT or the NAc were prepared using a VT1200S microtome (Leica). Slices 

were cut in the presence of 4°C cutting solution containing (in mM): 135 N-methyl-D glucamine, 

1 KCl, 1.2 KH2PO4, 0.5 CaCl2, 1.5 MgCl2, 20 choline-HCO3, and 11 glucose, saturated with 

95% O2/5% CO2, with the pH adjusted to 7.4 using HCl, at 300-310 mOsm. After being cut, 

slices were placed in an incubation chamber in artificial cerebrospinal fluid (aCSF) containing 
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the following (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgCl2, 1 NaH2PO4, 26.2 NaHCO3, 

and 11 glucose, at 290-294 mOsm, saturated with 95% O2/5% CO2 to maintain a pH of 7.4 at 

37°C for 30 min. Slices were then allowed to recover for at least 30 min at room temperature 

before being used for experimentation.  

4.2.6 Electrophysiological Recordings 

Whole-cell voltage-clamp recordings were made in the NAc shell. During recordings, slices were 

superfused with aCSF that was heated to 31–33°C by passing the solution through a feedback 

controlled in-line heater (Warner Instruments) before entering the recording chamber. 

Recordings were made under visual guidance (40x, differential interference contrast optics) with 

micropipettes (2.5–5 MΩ) filled with a cesium-based internal solution containing (in mM): 

CsCH3O3S (140), tetraethylammonium chloride (TEA-Cl) (5), EGTA (0.4), Hepes (20), Mg-

ATP (2.5), Na-GTP (0.25) and QX-314 (1), pH 7.3, 294 mOsm.  

To evoke PVT-to-NAc synaptic transmission, axons expressing ChR2 were stimulated by 

473 nm DPSS laser (IkeCool) coupled to a 62.5 μm optic fiber, generated using Clampex 

software (Molecular Devices). Collimated laser light was coupled to a fluorescent port of the 

Olympus BX51WI microscope, allowing the blue laser light to illuminate the slice through the 

objective, focused on the cell. An optical stimulation of 1.0-0.05 ms duration was used to 

stimulate at 0.1 Hz for paired-pulse or AMPA-NMDA ratio measurements, 0.04 Hz for trains of 

5 pulses (50 ms inter-pulse interval), and 0.17 Hz for minimal stimulation measurements. To 

record excitatory postsynaptic currents (EPSCs), picrotoxin (100 μM) was included in the 

external aCSF to block GABAA. Series resistance was 8 – 20 MΩ, uncompensated, and 

monitored continuously during recording. Recordings with a change in series resistance greater 
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than 20% for the duration of data collection were not accepted for analysis. Current traces were 

recorded with a MultiClamp 700B amplifier (Molecular Devices), filtered at 3 kHz, amplified 5 

times, and then digitized at 20 kHz. Cells were allowed ~5 minutes to stabilize after achieving 

the whole-cell patch configuration before beginning data collection.  

Stimulation intensity for minimal stimulation protocols was set by adjusting stimulator 

output to elicit EPSC responses in approximately 30–70% of trials at −70mV and was then kept 

constant through changes in holding potential. Stimulation intensity during other trials was 

adjusted to evoke EPSC responses preferentially at 100-300 pA.  

4.2.7 Staining and Imaging 

Injections of biotinylated dextran amine (BDA; 10,000 molecular weight, Molecular Probes, 

dissolved as a 10% solution in 10 mM sodium phosphate buffer) were done into the PVT at 2.4 

mm posterior to Bregma, 1.1 mm lateral to the midline, and 5.45 mm ventral to the skull surface by using 

a 14-degree angle relative to the midline vertical axis (Paxinos and Watson, 1997). The tracer was 

delivered by iontophoresis through a glass pipette with 50- to 75-μm tip diameter using a positive 5 μA 

current pulsed 10 seconds on and off for a total of 30 minutes. The pipette was then left in place for an 

additional 5 minutes. After 5-days of recovery, the animals were deeply anesthetized with sodium 

pentobarbital (100 mg/kg, i.p.). Tissue from these rat brains were used for multiple purposes across labs. 

One of these purposes required the chelation of endogenous zinc. Consequently,, animals receiving BDA 

injections were subsequently treated for 15 minutes with 1 g/kg, i.p. of a zinc chelator, 

diethyldithiocarbamic acid, (Sigma) (Veznedaroglu and Milner, 1992). All rats were perfused through the 

aorta with 10 ml of a heparin-saline solution (1,000 U/ml heparin in 0.9% saline) followed by 50 ml of 

3.75% acrolein in 2% paraformaldehyde, and finally 250 ml of 2% paraformaldehyde in 0.1 M 

phosphate buffer (PB), pH 7.4. The brains were extracted, post-fixed in 2% paraformaldehyde 
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for 1 hour, and sectioned at approximately 50 μm by using a Vibratome. Sections were then 

mounted on glass slides, dehydrated, and cover-slipped. Pictures were taken on an Olympus 

BM51 microscope and were adjusted for contrast and color balance using Adobe Photoshop. 

4.2.8 Drugs and Reagents 

Cocaine-HCl was supplied by the Drug Supply Program of the National Institute of Drug Abuse. 

All other chemicals were purchased from Sigma-Aldrich. 

4.2.9 Statistics and Analysis 

All results are shown as mean ± SEM. Minimal stimulation assay (Isaac et al., 1995, Liao et al., 

1995, Huang et al., 2009) was used to measure the ratio of silent synapses. The percentage of 

silent synapses within the measured environment can be estimated by the formula:  

 

Silent synapse ratio = 1-ln(failure rate-70) / ln(failure rate+50) 

 

The NMDAR-mediated component was recorded at +50 mV. The amplitude was 

operationally defined as the amplitude of the current 40 ms after the onset of the evoked current, 

at a time point when AMPAR-mediated currents have subsided.  

 For variance-mean analysis (multiple probability fluctuation analysis, MPFA), 30–100 

AMPAR EPSCs were used from each cell at five release probability conditions achieved by a 

five-pulse train of presynaptic stimulations with a short interpulse interval (50 ms) (Scheuss and 

Neher, 2001, Silver, 2003). The peak amplitude of each EPSC was compared to its baseline and 
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averaged. Variance of EPSC peaks was calculated and plotted against their mean amplitude for 

each eliciting condition. We assumed the presynaptic releasing sites are independent, and the 

release probability across all synapses within the examined pathway is the same in each cell. 

Thus, the amplitudes of EPSCs can be expressed as:  

 

I = NPrQ  [EQ 1] 

N is the number of release sites, Pr is the presynaptic release probability, and Q is the quantal 

size (amplitude of postsynaptic response upon a release of one quantum). For a binomial model, 

the variance (σ2) of EPSC amplitudes can be expressed as:  

σ
2
 = NQ

2
Pr(1-Pr)  [EQ 2] 

 

Based on these 2 above equations, the following equation can be derived: 

 

σ
2
 = IQ-(1/N)

2
  [EQ 3] 

 

This equation predicts a parabolic relationship between σ
2
 and I. As such, the variance-mean 

relationship was fit with EQ 3 to estimate N, and Q in each examined cell. Pr was then calculated 

with EQ 1. If one of the theoretical assumptions does not hold (e.g., if multivesicular release 

exists), the σ
2
-I curve would not exhibit such a parabolic relationship. 22 cells among the total of 

70 recorded cells undergoing 20 Hz stimulation were not included in the final data analysis 

because they could not be well-fitted by this relationship (R
2
 < 0.9), or they had minimal 

variance in EPSCs. In a few cells (n = 3), only the first four EPSCs were included in the analysis 

because the fifth EPSC was predominated by failed responses. Student’s Ttest was used to 
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compare averaged data points between groups, and paired Ttest was used to compare before-after 

data points within subjects. 

4.3 RESULTS 

4.3.1 Paraventicular Thalamic Nucleus Sends Projections Primarily to the Nucleus 

Accumbens Shell 

The PVT is a long thin structure extending ventrally adjacent along the third ventricle.  The 

direct pathway between the PVT and the NAc has been described previously (Christie et al., 

1987, Otake and Nakamura, 1998, Pinto et al., 2003, Vertes and Hoover, 2008), and reports also 

show a distinction in the projections between the anterior and posterior PVT. The anterior PVT 

projects more to the NAc core while the posterior PVT projects more to the NAc shell (Vertes 

and Hoover, 2008). To ensure that our injection/infection location within the PVT adequately 

innervated the NAc, we injected BDA into the more posterior PVT and then looked for fibers in 

the NAc (Fig. 11a, b). We found good innervation within the NAc shell, which was also 

functionally confirmed in subsequent experiments involving pathway stimulation. 
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Figure 11. BDA tracing of PVT-to-NAc fibers.  

(a) Location of BDA injection within the PVT. (b) Stained PVT fibers visible in the NAc shell 

from the injection shown in (a). Note the punctate nature of the labeling in the boxed region 

shown at higher magnification in the insert. Scale bar = 250 μm for panels (a) and (b), and 25 μm 

for the inset in (b). (c, d) Number of infusions of saline and cocaine for animals in short-term (c) 

and long-term (d) withdrawal groups during the 5 daily 2-hour self-administration sessions. 
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4.3.2 Cocaine Self-administration Generates Silent Synapses within the PVT-to-NAc 

Pathway 

Animals that had received viral injections for the expression of ChR2 in the PVT then underwent 

either cocaine or saline self-administration training (Fig. 12c, d). NAc slices were then taken 

after short-term (1-2 day) withdrawal after 5 days of training. NAc shell MSNs were patched and 

underwent the minimal stimulation assay (Isaac et al., 1995, Liao et al., 1995, Huang et al., 

2009), which takes advantage of the fact that NMDAR-only synapses are inactive at polarized 

resting potentials due to magnesium block but are active at depolarized potentials because the 

magnesium block is released. To detect silent synapses only within the PVT-to-NAc pathway, 

we minimally stimulated PVT fibers with 488 nm light. It was observed that the cells from 

cocaine-trained animals exhibited significantly more silent synapses than saline-trained animals 

(Fig. 12a). This increase in silent synapses did not persist through long-term (42-47 days) 

withdrawal, instead returning to baseline levels (Fig. 12b). This suggests that cocaine does 

generate silent synapses within the PVT-to-NAc pathway, similar to other pathways which have 

been specifically measured (Lee et al., 2013, Ma et al., 2014). Interestingly, the baseline level of 

silent synapses within the PVT-to-NAc pathway does appear to be higher (~20%) compared to 

other pathways such as the prefrontal cortex and amygdala or random sampling including all 

pathways (~5-10%). Nevertheless, cocaine exposure generates a proportional increase in silent 

synapses in connections coming from the PVT, despite higher basal levels. Silent synapses are 

no longer detected after long-term withdrawal from cocaine because many of the previously 

silent synapses have presumably matured into functional synapses containing AMPARs.   
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Figure 12. Cocaine self-administration generates silent synapses within the PVT-to-NAc 

Pathway after short-term withdrawal.  

(a) Percentage of silent synapses of all synapses within the PVT-to-NAc pathway after short-

term withdrawal from 5-day cocaine or saline self-administration training (p < 0.05, n sal = 10, n 

coc = 17). (b)  Percentage of silent synapses of all synapses within the PVT-to-NAc pathway 

after long-term withdrawal from 5-day cocaine or saline self-administration training (n sal = 13, 

n coc = 11). (c-f) Overlaid responses (black) and failures (gray) of example traces from the 

minimal stimulation assay after saline (c) and cocaine (e) self-administration short-term 

withdrawal and after saline (d) and cocaine (f) self-administration long-term withdrawal.   
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4.3.3 AMPA/NMDA Ratio in PVT-to-NAc Pathway Is Affected by Cocaine Self-

administration 

To confirm and corroborate the minimal stimulation data, we also examined the AMPA/NMDA 

ratio of NAc MSNs. By stimulating PVT-to-NAc shell connections, we found that animals 

trained to self-administer cocaine showed a significant decrease in the AMPA/NMDA ratio (Fig. 

13a). This result fits with the increase in silent synapses at the same stage, as all of the detected 

silent synapses contain NMDARs without AMPAR compliment. And, just as the silent synapse 

levels return to baseline after long-term withdrawal, the AMPA/NMDA ratios do as well (Fig. 

13b).  This result showing a decrease in AMPA/NMDA ratio can be due either to an increase in 

synaptic NMDAR content or a decrease in synaptic AMPAR content. This result helps to 

confirm that silent synapses are indeed generated, but it does not help in determining the 

mechanism of generation. Silent synapses can be generated by either adding NMDARs to new 

synapses or by removing AMPARs from existing synapses. Both mechanisms would result in a 

reduction in AMPA/NMDA ratio, such as observed here. 
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Figure 13. Cocaine self-administration reduces the AMPA/NMDA ratio at PVT-to-NAc 

synapses after short-term withdrawal.  

(a) AMPA/NMDA ratio at synapses within the PVT-to-NAc after short-term withdrawal, 

showing that short-term withdrawal from cocaine decreases the AMPA/NMDA ratio compared 

to saline controls (p < 0.05, n sal = 6, n coc = 7). (b) After long-term withdrawal from cocaine, 

the AMPA/NMDA ratio returns to saline control levels (n sal = 8, n coc = 11). (c-f) Averaged 

example EPSCs at +50 (black) and -70 mV (gray) taken after saline (c) and cocaine (d) self-

administration short-term withdrawal and after saline (e) and cocaine (f) self-administration 

long-term withdrawal.   
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4.3.4 CP-AMPARs Are Not Inserted at Maturing Cocaine-generated Silent Synapses 

within the PVT-to-NAc Pathway 

After withdrawal from cocaine self-administration, silent synapses in the NAc may mature by 

recruiting calcium-permeable (CP)-AMPARs to the membrane (Conrad et al., 2008, Wolf and 

Tseng, 2012, Lee et al., 2013). CP-AMPARs are not often detected at NAc MSNs under normal 

conditions. However, CP-AMPARs appear in the NAc after addictive drug exposure and mediate 

aspects of addictive behavior, including the incubation of cocaine craving (Conrad et al., 2008, 

Wolf and Tseng, 2012, Lee et al., 2013). Our lab has recently published an example of 

differences in the recruitment of CP-AMPARs in different pathways (Ma et al., 2014), and we 

were interested in whether cocaine-generated silent synapses within the PVT-to-NAc pathway 

would also demonstrate the recruitment of CP-AMPARs after 45 days of withdrawal.  

 Rats trained to self-administer either cocaine or saline were tested after short-term 

withdrawal or long-terms withdrawal. MSNs were patched, and a stable synaptic response was 

established at PVT-to-NAc synapses. A CP-AMPAR-selective antagonist was then washed in via 

local perfusion while the amplitude of the responses continued to be measured. Somewhat 

surprisingly, the NASPM application blocked ~20% of the synaptic response in both saline and 

cocaine treated rats after short-term withdrawal (Fig. 14a). After long-term withdrawal, NASPM 

application continued to block responses by ~20% in both saline and cocaine treated animals 

(Fig. 14b). These results indicate that roughly 20% of synaptic AMPARs within the PVT-to-

NAc pathway are CP-AMPARs under normal (cocaine naïve) conditions—a higher percentage 

than detected in other pathways within the NAc—and that cocaine treatment and the maturation 

of cocaine-generated silent synapses does not lead to any increase in CP-AMPAR expression 

within this pathway.  
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Figure 14. CP-AMPARs are present within the PVT-to-NAc pathway, and are unaffected by 

cocaine self-administration.  

(a) Local perfusion of Naspm leads to ~20% reduction in average EPSC amplitude at PVT-to-

NAc synapses after short-term withdrawal from either saline or cocaine self-administration. 

Comparisons were made between average amplitudes at minutes 1-5 vs. 5-minute sections with 

Naspm (sal, p < 0.05, n = 12; coc, p < 0.05, n = 5). (b) Local perfusion of Naspm also leads to 

~20% reduction in average EPSC amplitude at PVT-to-NAc synapses after long-term withdrawal 

from saline or cocaine self-administration (sal, p < 0.01, n = 20; coc, p < 0.01, n = 12). *, p < 

0.05; ** p < 0.01.  
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4.3.5 Cocaine Self-administration Alters Presynaptic Signaling Properties within the 

PVT-to-NAc Pathway 

Just as cocaine may alter postsynaptic characteristics of reward-related pathways, presynaptic 

characteristics can be modified as well. Previous work has indicated that different reward-related 

pathways may undergo different presynaptic changes in response to cocaine exposure (Ishikawa 

et al., 2013, Suska et al., 2013). We sought to examine how cocaine self-administration may 

change presynaptic signaling properties within the PVT-to-NAc pathway.   

 As before, rats were split into cocaine and saline treatment groups and examined after 

either short-term or long-term withdrawal, and blue light was used to stimulate PVT fibers in the 

NAc shell. To detect presynaptic properties, we employed multiple-probability fluctuation 

analysis (MPFA, see Methods section 4.3.9). This analysis method allowed us to estimate a 

range of presynaptic properties under certain conditions. We found that the paired-pulse ratio 

was changed after cocaine treatment (Fig. 15a), indicating that cocaine initiates presynaptic 

signaling changes within the PVT-to-NAc pathway. The paired-pulse ratio remained similarly 

altered even after long-term withdrawal (Fig. 15b). Analysis based on MPFA revealed that the 

probability of release was significantly increased after short- and long-term withdrawal in 

cocaine-trained animals (Fig. 15c, d). These results match with the paired-pulse ratio. Further 

analysis showed that the quantal size of presynaptically released vesicles within the PVT-to-NAc 

pathway was significantly increased after long-term withdrawal from cocaine, but not short term 

withdrawal (Fig. 15e, f). Thus, the signaling strength of matured silent-synapses may be 

furthered strengthened within this pathway throughout cocaine withdrawal by packaging greater 

amounts of neurotransmitter into vesicles. Interestingly, however, the number of presynaptic 

release points appears to be decreased after long-term withdrawal from cocaine self-
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administration, but not short-term withdrawal (Fig 15g, h). This is an intriguing result as it 

suggests that the number of synaptic contacts with this pathway is reduced after extended 

withdrawal from cocaine. Taken together, it appears synaptic contacts are reduced during 

withdrawal, but that the remaining synapses have increased signaling strength. These results may 

provide some support for the idea that cocaine-generated silent synapses within the PVT-to-NAc 

pathway form from existing synapses via the internalization of AMPARs. However, it could still 

be possible that silent synapses are formed de novo and mature into strong connections while 

existing connections, likely related to other memories, are culled away. We sought to answer this 

question on the origin of cocaine-generated silent synapses in our next set of experiments.  
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Figure 15. Cocaine self-administration alters presynaptic release properties of PVT-to-NAc 

synapses.  

(a) Cocaine self-administration decreases the paired-pulse ratio of PVT-to-NAc EPSCs after 

short-term withdrawal (p < 0.05, n sal = 14, n coc = 8). (b) The paired-pulse ratio of PVT-to-

NAc EPSCs remains decreased after long-term withdrawal from cocaine self-administration (p < 

0.05, n sal = 9, n coc = 17). (c) The probability of PVT-to-NAc presynaptic vesicle release is 

increased after short-term withdrawal from cocaine self-administration (p < 0.05, n sal = 14, n 

coc = 8), (d) and it remains increased after long-term withdrawal (p < 0.05, n sal = 9, n coc = 

17). (e) The PVT-to-NAc quantal size of is unchanged after short-term withdrawal from cocaine 

self-administration (n sal = 14, n coc = 8), (f) but is increased after long-term withdrawal (p < 

0.05, n sal = 9, n coc = 17). (g) The number of PVT-to-NAc presynaptic release points is 
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unchanged after short-term withdrawal from cocaine self-administration (n sal = 14, n coc = 8), 

(h) but is significantly reduced after long-term withdrawal (p < 0.05, n sal = 9, n coc = 17). (i-l) 

Example data from individual cells showing the variance-amplitude curves derived from 5 

stimulations at 20 Hz after short-term withdrawal from (i) saline and (j) cocaine and long-term 

withdrawal from (k) saline and (l) cocaine.   

 

4.3.6 Cocaine Does Not Generate Silent Synapses if Existing AMPARs Cannot Be 

Internalized 

To determine whether cocaine-generated silent synapses are formed de novo as new synaptic 

contacts or whether they arise from existing synapses after having internalized their AMPA 

receptors, we employed an AAV plasmid which expresses a small string of amino acids identical 

to the C-terminal end of GluA2 subunits found in AMPARs (active ‘3Y’ variant). Thus, cells 

infected by this virus are flooded by the expression of this small sequence of amino acids, 

meaning that normal cellular signals interacting with the PDZ domain at the C-terminus of 

GluA2 subunits should be blocked and sequestered by the over-whelming availability of these 

small amino acid sequences. These blocked GluA2 PDZ domain interactions include interactions 

with proteins like GRIP1 and PICK1, which regulate the internalization of AMPARs (Dong et 

al., 1997, Kim et al., 2001). A second virus, similar to the first, but having different amino acids 

in 3 locations (Y-A swap), was used as a nonfunctional mutant control (inactive ‘3A’ variant).  

 Animals were prepared just as in previous experiments, except that an additional set of 

virus injections was made at the same time as the channelrhodopsin virus injection. Thus, 

animals additionally received bilateral injection of either the GluA2 C-terminus 3A or 3Y virus 

to the NAc shell. The timelines for the experiments remained unchanged. Only infected cells 

within the NAc shell of injected animals were patched and recorded for data. Animals were 
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trained for cocaine or saline and were examined after short-term withdrawal, when cocaine-

generated silent synapses were previously observed within the PVT-to-NAc pathway (Fig. 12a).  

Animals infected with the 3A virus showed very similar levels of silent synapses as 

previously observed (Fig. 16). However, cells infected with the 3Y virus, showed significantly 

lower silent synapse levels compared to controls (Fig. 16). This result indicates that cocaine-

generation of silent synapses requires the internalization of AMPARs, and strongly suggests that 

silent synapses are formed from existing synapses within the PVT-to-NAc pathway. 

 

 

Figure 16. Blocking internalization of AMPARs at PVT-to-NAc synapses also blocks cocaine-

generation of silent synapses.  

NAc shell MSNs infected with the inactive 3A virus showed cocaine-generation of silent 

synapses (3A, n sal = 7, n coc = 11), while NAc shell MSNs infected with the 3Y virus (3Y, n sal 

= 7, n coc = 11) to block and sequester AMPAR internalization signals showed significantly less 

cocaine-generation of silent synapses as well as lower baseline levels of silent synapses. **, p < 

0.01; *, p < 0.05. 
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4.4 DISCUSSION 

By selectively activating PVT synapses to NAc shell MSNs, we demonstrate that cocaine 

remodels signaling both pre and postsynaptically within the PVT-to-NAc pathway. This cocaine-

based remodeling likely alters the functional output of NAc neurons based on PVT input, 

potentially contributing to addictive behaviors.   

 

4.4.1 Cocaine Generated Silent Synapses and CP-AMPARs in the PVT-to-NAc Pathway 

As the basic unit of communication between neurons, synaptic contacts control signaling 

patterns and determine circuit functions. Glutamatergic input to NAc MSNs is the major force 

driving MSN functional output (Wolf, 2010). The present study found high baseline levels 

(~20%) of silent synapses within the PVT-to-NAc pathway (Fig. 2). For comparison, global 

sampling within the NAc shell or examination of other pathways shows ~5 to 12% silent 

synapses (Huang et al., 2009, Koya et al., 2012, Lee et al., 2013, Ma et al., 2014). As silent 

synapses are thought to be immature synapses which may be substrates for further plasticity 

(Isaac et al., 1995, Kerchner and Nicoll, 2008, Lee and Dong, 2011), this may indicate that the 

PVT-to-NAc pathway is able to more readily undergoes plastic changes relative to other 

pathways. With a greater number of silent synapses present at any time, the PVT-to-NAc 

pathway may be in a state of high metaplasticity, making it especially sensitive to environmental 

stimuli (Lee and Dong, 2011).  

We also found cocaine-generated silent synapses in the PVT-to-NAc pathway after 

cocaine self-administration. Because relapse is a critical hallmark of addiction, it has been a 
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focus of addiction research to identify long-term molecular and cellular changes in the NAc 

which occur during withdrawal (Conrad et al., 2008, Peters et al., 2008, Wolf, 2010). The 

appearance of CP-AMARs in the NAc is one such neural adaptation which occurs during 

withdrawal from cocaine and appears to mediate relapse behavior and the incubation of craving 

(Conrad et al., 2008, Wolf and Tseng, 2012, Lee et al., 2013, Ma et al., 2014). CP-AMPARs are 

thought to be recruited specifically to cocaine-induced silent synapses as the synapses mature 

through withdrawal.  

CP-AMPARs lack the GluA2 subunits found in other types of AMPARs and allow for 

the passage of calcium ions into the cell through their channel, providing an additional source of 

extracellular calcium which can be activated at sub-threshold voltages (Liu and Zukin, 2007).  

Normally, GluA2-lacking AMPARs are expressed at very low levels in the NAc and contribute 

minimally to signaling within the NAc (Conrad et al., 2008). Under normal conditions, ~4-6% of 

all AMPARs in the NAc are CP-AMPARs (GluA2-lacking) (Conrad et al., 2008, Reimers et al., 

2011). However, the present study found that ~20% of PVT-to-NAc AMPARs are CP-AMPARs 

under normal conditions (Fig. 4). Thus, the small existing amount of CP-AMPARs in the NAc 

may preferentially be located at PVT-to-NAc synapses, putting baseline levels within other 

pathways at even smaller percentages than the overall average level of ~5%.  This functional 

expression rate was consistent across both saline and cocaine groups for both short-term and 

long-term withdrawal.  

It is currently unclear why higher basal levels of CP-AMPARs may exist specifically 

within the PVT-to-NAc pathway, but it may somehow be related to the fact that this pathway 

also possesses high baseline levels of silent synapses. Previous studies have shown that CP-

AMPARs are likely recruited to maturing silent synapses after cocaine, but not in all pathways. 
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The infralimbic and basolateral amygdala pathways to the NAc recruit CP-AMPARs to silent 

synapses after withdrawal from cocaine, contributing to the incubation of craving and relapse-

like behaviors (Lee et al., 2013, Ma et al., 2014). The prelimbic pathway to the NAc does not 

recruit CP-AMPARs to maturing silent synapses, and instead inhibits craving and relapse 

behaviors (Ma et al., 2014). The unique cellular properties of the PVT-to-NAc pathway, 

including existing basal levels of CP-AMPARs which are not increased as silent synapses 

mature, make direct comparisons to any other described pathways to the NAc difficult. The basal 

presence of CP-AMPARs may simply be a side effect due to the relatively high turnover rate 

within this pathway or may simply be a normal adaptive neural feature which aides in regulating 

neural information sent from the PVT to NAc. Given these unique properties, it therefore 

remains an important question how exactly the maturation of silent synapses at PVT-to-NAc 

synapses affects drug-seeking and relapse behaviors throughout withdrawal from cocaine. 

4.4.2 Cocaine Alters Presynaptic Properties of PVT-to-NAc Synapses 

In additional to changing synaptic connections and postsynaptic receptor composition via 

generating silent synapses, cocaine self-administration also alters presynaptic signaling 

properties of PVT-to-NAc synapses. NAc MSNs integrate incoming glutamatergic information 

from numerous sources to process their functional output. Here, we are focused specifically on 

PVT signaling to the NAc. Optical stimulation of ChR2 was used to elicit 5 PVT-to-NAc 

stimulations at 20Hz and the resulting traces were analyzed using multiple-probability 

fluctuation analysis (MPFA). This analysis examined paired-pulse ratio (PPR), probability of 

presynaptic glutamate release (Pr), the quantal size of the glutamate release (Q), and the number 

of active release sites (N) (Silver, 2003). Similar five-pulse trains have been used to stimulate 
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excitatory synapses at five repetitive and consistent release states (with different Prs) for analysis 

with MPFA (Scheuss and Neher, 2001). And, the ability of ChR2 (the same H134R variant also 

used in this study) to create consistent synaptic activity has been previously tested and verified to 

be suitable for use in similar MPFA tests (Suska et al., 2013).  

In saline-trained animals, we found that the PPR was greater than 1, indicating paired-

pulse facilitation. However, in cocaine-trained animals, the PPR was generally lower than 1, 

indicating paired-pulse inhibition. Differences in paired-pulse ratio generally indicate 

presynaptic differences. And, fittingly, analysis with MPFA revealed that cocaine-trained 

animals had a higher rate of presynaptic release. This fits the PPR data because a higher 

presynaptic release rate would make fewer vesicles available during quick subsequent 

stimulations. The PPR and the Pr rates were also consistent across saline and cocaine groups 

after both short-term and long-term withdrawal. This consistency helps to confirm the reliability 

of the analysis via MPFA, and it also indicates that long-term withdrawal from cocaine does not 

rectify the change in Pr rate at PVT-to-NAc synapses once initiated by cocaine self-

administration.  

It should also be noted that the Pr is assumed to be uniform across all release sites 

(Scheuss and Neher, 2001). In addition to the assumption that (1) Pr is uniform across release 

sites, MPFA also assumes that: (2) release sites operate independently, (3) release is 

synchronous, and (4) Q is uniform at an individual site and across release sites. Thus, if these 4 

assumptions are not met, the amplitude and variance data from the 5-pulse train could not be 

well-fit to a binomial model (Scheuss and Neher, 2001, Silver, 2003, Suska et al., 2013). This 

was the case with 22 of 70 total cells which underwent 5-pulse stimulation and MPFA. These 22 

cells were not included in data analysis because a close-fitting binomial curve could not be fit, 
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indicating that the above assumptions were not met. However, in a majority of recorded cells (48 

of 70 total), an appropriate binomial curve could be well-fit to the 5 data points, and these cells 

were used for analysis.  

MPFA also revealed that short-term withdrawal from cocaine self-administration does 

not significantly affect the quantal size of release or the number of presynaptic release points 

within the PVT-to-NAc pathway. However, following long-term withdrawal from cocaine, the Q 

is significantly increased and the N is significantly decreased. This data suggests that withdrawal 

from cocaine self-administration may decrease the number of PVT-to-NAc synaptic connections, 

but that the synaptic strength of the remaining connections may be greater because larger 

amounts of glutamate are release upon activation. Importantly, the Q values and N values were 

consistent across saline short- and long-term withdrawal groups, further indicating the reliability 

of these measurements.  

The number of release sites (N) is highly depended on the number of synapses activated 

during stimulation of each recording. This number may exhibit high variability that is unrelated 

to cocaine exposure, but is instead related to the specific activated synaptic network of the 

individual patched neuron. However, by averaging the N value over multiple cells, comparisons 

between groups can be made based on average values. It is also important to note that the 

number of release sites corresponds only to the number of active release sites during the 5-pulse 

train stimulation, which corresponds selectively to PVT-to-NAc release points due to the optical 

stimulation method in this case. Thus, if fewer PVT neurons express the ChR2 protein or if lower 

levels of ChR2 protein are expressed in a certain treatment groups, a difference in the measured 

N values between groups might also be expected. However, no obvious differences in the AAV-

ChR2 infection rate or in the ChR2-YFP fluorescence expression of PVT neurons was observed 
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between groups, so there is assumed to be no inherent bias in the number of eligible PVT-to-

NAc fibers between treatment groups.   

Another important point to consider concerning the observed difference in the N value 

after long-term withdrawal from cocaine self-administration is the generation of silent synapses 

as observed in Fig. 2. It is unlikely that silent synapses directly interfere with MPFA 

measurements of presynaptic parameters. The 5-pulse stimulation is performed at a holding 

potential of −70 mV, and only active synapses contribute to EPSC peaks. Silent synapses are 

thus not sampled during MPFA because NMDARs are only active at depolarized potentials. 

However, due to the disappearance and presumed maturation of silent synapses during 

withdrawal, it is expected that the newly matured silent synapses do contribute to MPFA 

measurements after long-term withdrawal from cocaine. However, at this stage, we found a 

decreased N value, indicating that there are fewer synaptic release points. This seeming 

discrepancy inspired further investigation into the origin of cocaine-generated silent synapses. 

4.4.3 Origin Mechanism of Cocaine-generated Silent Synapses 

Based on the observation that the N value decreases after withdrawal from cocaine self-

administration but that cocaine-generated silent synapses have disappeared, we attempted to 

investigate the mechanism of cocaine-induced silent synapse generation. Because silent synapses 

are thought to be immature synapses, it is natural to assume that they may mature into fully 

functional synapses. However, there has been much debate over the mechanism by which 

cocaine generates silent synapses in the NAc. In theory, silent synapses could be formed 1) via 

the generation of new synapses and the insertion of NMDARs into these new synapses; or 2) via 

the internalization of AMPARs at existing synapses to leave only NMDARs at these existing 
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synapses. Much of the debate over the origin mechanism of silent synapses stems from the fact 

that the methods used to detect silent synapse, such as the minimal stimulation assay, are relative 

measurements and would provide similar results regardless of the mechanism of generation. 

Likewise, AMPA/NMDA measurements would also be the same regardless of whether the 

AMPAR expression decreases to form silent synapses from existing synapses or whether the 

NMDAR expression increases to form silent synapses at new synaptic contacts.  

Additional evidence from our lab and others has largely pointed to the idea that cocaine-

generated silent synapses are the result of de novo synapse creation and thus leading to an over-

all increase in synaptic NMDARs. This evidence comes from several sources: 1) cocaine-

generated silent synapses largely contain NR2B NMDARs, as newer synaptic contacts usually 

do before being swapped for NR2A NMDARs (Huang et al., 2009); 2) NMDARs composed of 

newly constructed subunits are incorporated at silent synapses (Huang et al., 2009), 3) AMPAR 

surface expression largely stays constant during repeated cocaine exposure at times when silent 

synapses are forming (Boudreau and Wolf, 2005), 4) cocaine increases the frequency of 

miniature EPSCs in NAc MSNs while PPR does not change (Kourrich et al., 2007), and 5) drugs 

of abuse including cocaine persistently increase the number of spines and dendritic connections 

within the NAc (Robinson and Kolb, 2004). Others have suggested that silent synapses may be a 

byproduct of synaptic scaling processes in the NAc, where AMPARs are removed from MSN 

synapses after being persistently activated by cocaine to normalize activity within the circuit 

(Koya et al., 2012). However, there remains much debate, and direct evidence showing the 

origins of silent synapses has been elusive.  

Thus, we sought to determine whether blocking activity-dependent internalization of 

existing AMPARs at MSNs by over-expression a small peptide that mimics a section of GluA2 
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C-terminal tail would prevent the appearance of silent synapses in MSNs. By flooding MSNs 

with this GluA2 C-terminal tail, normal cell signals internalize AMPARs such as PICK1 would 

instead bind to these freely-available GluA2 C-terminal tail sections and become sequestered 

before reaching active AMPARs at the membrane (Dong et al., 1997, Kim et al., 2001). Thus, 

activity-dependent AMPAR internalization should be disrupted, and existing AMPARs should 

remain at the cell surface. We found that MSNs expressing this GluA2 C-terminal tail segment 

(3Y variant) during cocaine self-administration did not express increased levels of silent 

synapses after cocaine self-administration (Fig. 6). MSNs infected with an inactive 3A variant 

which does not disrupt binding between GluA2 and PICK1, had normal levels of cocaine-

generation of silent synapses, as observed in Fig. 2. These results indicate that cocaine generates 

silent synapses within the PVT-to-NAc pathway by internalizing AMPARs at existing synapses, 

leaving only NMDARs.  

This finding is consistent with the previous data showing a decrease in synaptic release 

points after withdrawal from cocaine, and may even provide insight into the mechanism of 

release point reduction. Silent synapses are found at high levels in young and juvenile organisms 

(Kerchner and Nicoll, 2008, Sametsky et al., 2010), and different patterns of activity can either 

drive these silent synapses to become strengthened or to be eliminated (Hanse et al., 2013). If 

existing synapses within the PVT-to-NAc pathway are reverted to the silent state, this could be a 

first step in a process to eliminate synapses within this pathway. This scenario may explain how 

cocaine both generates silent synapses and leads to a reduction in the number of release points 

after long-term withdrawal. Perhaps indicatively, we also observed a trend towards a reduction in 

the number of synaptic release points after short-term withdrawal from cocaine (from averages 

of ~20 to ~13, p = 0.23), though this reduction did not reach statistical significance.  
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A significant difference in the levels of silent synapses was also found between 3Y and 

3A infected NAc shell cells of saline treated animals, indicating that the internalization of 

membrane associated AMPARs is necessary even for the maintenance of basal silent synapse 

levels within the PVT-to-NAc pathway. Given the unique properties of the PVT-to-NAc 

pathway, however, it is possible that these silent synapses may be generated differently when 

compared to other pathways. The presence of high basal levels of silent synapses indicates that 

this pathway may have a high synaptic turnover rate and may be especially sensitive to 

plasticity-inducing stimuli. Mechanisms may be in place to maintain a certain level of silent 

synapses within this pathway to preserve a certain metaplasticity. This may be necessarily aided 

by reverting existing synapses to silent synapses and would be disrupted when internalization of 

AMPARs is prevented. We did not, however, test other pathways which are known to exhibit 

cocaine-generation of silent synapses. So, it remains a possibility that silent synapses are 

generated as new synaptic contacts within other pathways or even, perhaps, via both 

mechanisms. 

4.4.4 Summary 

Taken together, it is clear from these results that cocaine self-administration dramatically alters 

the postsynaptic and presynaptic signaling environment at NAc MSNs for incoming PVT 

signals. The functional output of NAc MSNs is certainly affected by these signaling changes, 

especially when considered they are in combination with other cocaine-induced changes in 

signaling at NAc MSNs. Future investigations into the behavioral correlates of cocaine-driven 

PVT-to-NAc signaling changes would provide a clearer picture of the importance of these 

signaling alterations.  
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5.0  DISCUSSION AND SUMMARY 

5.1 OVERVIEW AND INTRODUCTION 

 

We have investigated cocaine-induced signaling changes in 3 distinct systems and found that 

cocaine affects each system in a discrete manner. We have shown evidence that 1) cocaine 

exposure increases dynorphin signaling in the NAc, which was also shown to affect excitatory 

signal strength sent to NAc MSNs; 2) LHb neurons have a greater propensity to fire action 

potentials after cocaine self-administration, which is correlated with an increase in membrane 

resistance; and 3) excitatory PVT-to-NAc connections undergo a range of adaptations following 

cocaine-self administration, including silent synapse-based remodeling and an increase in 

presynaptic transmitter release. Taken together, these results show complex circuit alterations 

which affect the flow and transmission of neural information through the mesolimbic system and 

related areas. It is likely that these described changes contribute to the maladaptive thoughts and 

behaviors of cocaine addiction.  
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5.2 DYNORPHIN SIGNALING AND COCAINE 

5.2.1 Cocaine-Induced Dynorphin Signaling Changes in the NAc 

Activation of kappa or mu opioid receptors in the NAc has previously been shown to acutely 

decrease EPSCs in MSNs, an effect that appears to be mediated by presynaptic action of the 

opioid receptor in both cases (Dhawan et al., 1996, Hjelmstad and Fields, 2003). We found that 

the ability of DynA to reduce EPSCs in NAc shell neurons was completely blocked by the 

specific kappa opioid receptor antagonist nor-BNI while the ability of DynB to reduce EPSCs 

was only partially blocked (Mu et al., 2011). We also found that noncontingent cocaine exposure 

also blocked the ability of kappa opioid receptors and DynA to alter EPSCs. This cocaine-

initiated effect could be observed through 2 possible mechanisms: 1) the levels of kappa 

receptors are dramatically decreased (to this point of disappearing entirely, see Chapter 2, Fig. 

3F and 4E) after cocaine or 2) the activation of kappa receptors is now saturated such that further 

activation attempts at have no effect. Published results related to the effects of cocaine on kappa 

opioid receptor levels in the NAc are highly inconsistent: no effect (Schroeder et al., 2003, 

Bailey et al., 2007), upregulation (Hurd and Herkenham, 1993, Unterwald, 2001, Collins et al., 

2002), and downregulation (Rosin et al., 1999, Rosin et al., 2000). This variety of results may 

simply reflect the unstable nature of kappa opioid receptors. However, previous studies have 

consistently shown that cocaine increases levels of dynorphins in the NAc (Hurd et al., 1992, 

Spangler et al., 1993, Cole et al., 1995). Due to these considerations, the observed result is most 

likely due to saturation and/or desensitization of kappa opioid receptors based on an increase in 

dynorphin signaling in the NAc. 
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 However, DynB’s effect on reducing EPSCs is only partially blocked by cocaine or a 

kappa receptor antagonist. DynB’s effects were also not blocked when using a mu opioid 

receptor antagonist (CTAP) after cocaine exposure. Thus, DynB must reduce NAc MSN EPSCs 

through kappa and mu receptor-independent mechanisms. DynB is expressed at higher levels in 

the NAc than DynA (Healy and Meador-Woodruff, 1994), signaling that this unknown 

mechanism by which DynB reduces NAc EPSCs should still play a significant role in mediating 

NAc signaling after cocaine exposure. As local electrical stimulation was used in this study to 

excite all incoming connections to NAc MSNs, we could not discriminate between different 

pathways. It then remains a possibility that kappa, mu, and other DynB receptors are expressed 

differently at presynapses based on where the input is coming from and perhaps different cell 

types. This possibility would cause a general increase in dynorphin signaling by NAc neurons to 

reduce signaling from some sources of input more than others and bias NAc processing in ways 

that may contribute to addiction. Considering that a reduction in EPSCs was found after cocaine 

without a corresponding reduction in IPSCs, this scenario becomes increasingly realistic as it 

indicates that opioid receptors are specifically not present at inhibitory inputs to the NAc. Further 

studies are needed to dissect the precise expression of opioid receptors at NAc inputs to clarify 

this scenario.  

5.2.2 Implications of Increased Dynorphin Signaling on NAc Processing 

If we assume that dynorphin signaling is broadly upregulated in the NAc after cocaine as 

suggested by our results and others, and we assume that incoming EPSCs to NAc are broadly 

inhibited, a situation arises where excitatory input (but not inhibitory input) to NAc MSNs is 

globally reduced by ~30-50% (Chapter 2, Fig 1b, e). This is a large decrease in excitatory drive 
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that surely has significant effects on NAc function and output. However, other broad changes in 

excitatory synaptic signaling also occur in the NAc following cocaine exposure. For example, 

postsynaptic AMPARs are upregulated within a week after cocaine exposure, which could work 

to counteract the presynaptic reduction in signaling caused by increased opioid receptor 

activation (Boudreau et al., 2007, Wolf and Ferrario, 2010). Also, the intrinsic excitability of 

NAc neurons is reduced after exposure to cocaine (Ishikawa et al., 2009, Mu et al., 2010), likely 

mediated by intracellular homeostatic scaling mechanisms. These adaptations also continue to 

progress throughout withdrawal periods. Based on the number of changes that occur within the 

NAc after cocaine, it may be the case that the development of addictive motivations and 

priorities is an emergent effect resulting from a set of neural adaptations such as these. This is an 

especially likely scenario when considering the number of studies that demonstrate disruptions in 

addictive behaviors after disruption of a single signaling system. 

5.3 LATERAL HABENULA SIGNALING AND COCAINE 

The LHb has been strongly implicated in contributing to motivated behaviors by mediating 

negative rewards and aversive behavior (Lecourtier and Kelly, 2007, Hikosaka, 2010). We 

looked at whether LHb neurons underwent any intrinsic signaling changes following cocaine 

self-administration. Our results showed that LHb neurons were more excitable for at least 7 days 

during withdrawal from short-access cocaine self-administration, but that the excitability 

returned to baseline by day 45 of withdrawal (Neumann et al., 2014). The increase in excitability 

was well correlated with an increase in the membrane resistance, which also returned to baseline 

by day 45 of withdrawal.  
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In addition to the results presented in Chapter 3, several pilot experiments were done to 

measure spontaneous EPSC (sEPSC) activity in LHb neurons from cocaine and saline treated 

animals. We saw no obvious differences in sEPSCs between these two treatment groups, but 

sEPCS regularly reached amplitudes upwards of 100 pA (unpublished data). This level of current 

is similar to the upper current steps measured in our current-clamp recordings. Our data showed 

individual significant differences at these upper current steps between cocaine and saline groups 

after ST and MT withdrawal, thus these current steps may also be the most physiologically 

relevant. 

5.3.1 Distinct Cell Populations and Circuits within the LHb 

The highly heterogeneous population of LHb cells combined with studies showing projection-

specific function and plasticity indicate that various different and perhaps discrete circuits may 

be present within the LHb (Maroteaux and Mameli, 2012, Good et al., 2013, Jhou et al., 2013, 

Lecca et al., 2014). This type of heterogeneous organization can make decoding the significance 

of cellular changes particularly difficult without equally specific methods of discrimination 

between these circuits. However, several circuit-specific changes have been found in the LHb 

after cocaine. Cocaine-induced increases in dopamine levels may affect the LHb particularly 

strongly, due to the high concentration of dopamine transporter proteins in the LHb (Freed et al., 

1995). In a subsequent paper published after our initial experiments had been completed, Good et 

al. (2013) showed that dopamine can elicit excitatory depolarizing currents in LHb neurons in 

LHb neurons that project to the RMTg but not in LHb neurons that project to the VTA. It was 

also shown that this dopamine excitation contributes to greater glutamate-mediated excitation in 

LHb cells and less inhibitory signaling, increasing the overall excitability of LHb cells. An 
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additional interesting note from this study is that LHb neurons that could be depolarized by 

dopamine had a more hyperpolarized resting membrane potential, making it possible to identify 

cells with sensitivity to dopamine depolarization based on their resting cellular characteristics 

(Good et al., 2013). This information was not known at the time of our experiments and thus was 

not taken into account, but it would be interesting to see if our observed cocaine-induced changes 

in membrane excitability and resistance based on average sampling of LHb neurons may actually 

stem from a similar subpopulation that were averaged together with other neurons, possibly 

creating a larger effect within a smaller population 

5.3.2 Increased LHb Excitability and Addiction 

Taken together, the results from the experiments described in Chapter 3 show that LHb neurons 

are more excitable during a window of time lasting for at least one week after withdrawal from 

cocaine self-administration. This likely leads to increased LHb transmission during this time, 

which may be sufficient to trigger additional circuitry changes, such as increased synaptic 

strength at LHb-RMTg synapses after cocaine exposure (Maroteaux and Mameli, 2012). LHb 

neurons possess high membrane resistances and are highly sensitive. The observed changes in 

excitability levels are more like to affect how many action potentials an LHb neuron fires in 

response to incoming excitatory input, rather than if an LHb will fire. This change may lead to an 

increase in excitatory signaling sent to the RMTg, which in turn would cause RMTg neurons to 

increase inhibitory signals sent to VTA dopamine neurons.  

In addition to this increased inhibitory effect in the VTA via the RMTg, recent evidence 

also shows that a large portion of LHb neurons which project directly to the VTA are inhibited 

by dopamine (~50%, via D2 receptors) (Good et al., 2013). However, it appears that the direct 
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LHb-to-VTA projection targets GABAergic neurons in the VTA (Stamatakis and Stuber, 2012), 

and that these VTA neurons are part of a subpopulation which project to the mPFC (Lammel et 

al., 2012). It is currently unclear how this pattern of signaling may contribute to processing of 

motivated behaviors.  

Nevertheless, stimulation of LHb neurons causes a strong transient inhibition in VTA 

dopamine neurons (Ji and Shepard, 2007). An increase in inhibitory signaling to VTA dopamine 

neurons via increase LHb signaling would be consistent with the observed role of the LHb in 

mediating negative rewards and aversive behaviors (Matsumoto and Hikosaka, 2009, Hikosaka, 

2010, Lammel et al., 2012, Good et al., 2013, Jhou et al., 2013, Lecca et al., 2014), and it may 

contribute to cocaine-induced increases in negative affect that drives persistent drug-seeking 

behavior (Solomon and Corbit, 1974, Solomon, 1980, Koob et al., 2014). Further work is needed 

to better understand these complex neural circuits and how changes to their neural signaling may 

lead to addiction. 
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5.4 COCAINE-INDUCED CHANGES IN SIGNALING BETWEEN THE 

PARAVENTRICULAR NUCLEUS OF THE THALAMUS AND THE NUCLEUS 

ACCUMBENS 

5.4.1 Generation of Silent Synapses and Implications of High Silent Synapses Levels 

Analysis based on the structure and anatomy of NAc shell MSNs led to suggestions that these 

neurons may have a specific propensity to undergo plasticity via the creation of new spines and 

synapses rather than traditional LTP/LTD processes (Meredith et al., 2008). It was then 

demonstrated that cocaine induced silent synapses in randomly sampled NAc neurons (Huang et 

al., 2009, Brown et al., 2011) and also specifically within certain pathways to the NAc (Lee et 

al., 2013, Ma et al., 2014). Our results, presented in Chapter 4, show that the PVT-to-NAc shell 

pathway contains a relatively high baseline level of silent synapses, and that additional silent 

synapses are generated in response to cocaine self-administration.  

Silent synapses are intriguing synaptic structures, as it appears that the generation of 

silent synapses acts as a form of metaplasticity (Lee and Dong, 2011). Silent synapses can either 

be strengthened into functional synapses by inserting AMPARs at the membrane or they can be 

atrophied and removed (Isaac et al., 1995, Hanse et al., 2013). Thus, the presence of high levels 

of silent synapse within connections from the PVT to the NAc implies that this pathway has a 

high propensity for plasticity. Because the PVT may be preferentially activated by conditioned 

drug rewards and reward cues rather than appetitive stimuli (Brown et al., 1992, Wedzony et al., 

2003, Matzeu et al., 2014), it may be the case that high silent synapse levels within this pathway 

allow for rapid learning and conditioning of new and/or novel stimuli. The rewarding effects of 



   

 111 

cocaine and other drugs may become quickly engrained via this pathway as new motivational 

drives.  

An intriguing hypothesis to consider, then, is that cocaine may dramatically reorganize 

the PVT-to-NAc pathway to bias PVT transmission to correspond to motivation for cocaine 

rewards while also weakening the ability of the PVT to send signals related to motivation for 

other types of rewards, such as natural rewards. Our evidence shows that there may be reduced 

synapse numbers in the PVT-to-NAc pathway after long-term withdrawal from cocaine self-

administration, but that the remaining synapses have stronger signal transmission. If the fewer 

remaining synaptic connections correspond specifically to conditioned cocaine cues and rewards 

while the eliminated connections corresponded to other types of conditioned rewards, the circuit 

would be strongly biased towards cocaine-associated output and biased against other cues or 

conditioned stimuli. Many different pathways and signals contribute to motivated behaviors, but 

the repurposing of the PVT-to-NAc pathway to promote signaling based on cocaine cues while 

simultaneously reducing the influence of other conditioned cues in this way could be a 

particularly strong neural influence on NAc signaling and could contribute to addictive behavior 

(Kelley and Berridge, 2002). This may also help to explain why motivations to seek addictive 

drugs come to outweigh motivation for other types of reward during addiction. One recently 

described study in support of this hypothesis contends that conditioned cocaine rewards 

preferentially activate PVT neurons relative to conditioned appetitive rewards (Martin-Fardon et 

al., 2013, Matzeu et al., 2014). Another study has shown that the PVT preferentially activates in 

response to conditioned ethanol rather than conditioned sucrose (Wedzony et al., 2003). These 

studies suggest that the PVT may become especially responsive to drug-related stimuli after 
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prolonged withdrawal over appetitive-related stimuli. Our results in Chapter 4 and these studies 

would indicate that this hypothesis warrants further investigation. 

5.4.2 Maturation of Silent Synapses 

Our lab has shown that the maturation of cocaine-generated silent synapses correspond to 

incubation of cocaine craving throughout withdrawal via the insertion of CP-AMPARs at 

maturing silent synapses after long-term withdrawal (Lee et al., 2013, Ma et al., 2014). 

Importantly, while pathways that attenuate cocaine-seeking behavior (prelimbic PFC-to-NAc 

pathway) also generate silent synapses after cocaine exposure, these synapses did not recruit CP-

AMPARs during maturation. Thus, the appearance of silent synapses and the subsequent 

recruitment of CP-AMPARs to these NAc shell synapses appear to be critical for cocaine-

induced molecular changes to NAc signaling that influence craving and relapse behavior.  

CP-AMPARs were also found at PVT-to-NAc synapses in cocaine-naïve rats, but CP-

AMPAR levels did not change after long-term withdrawal from cocaine. Based on results from 

our lab’s previous studies (Lee et al., 2013, Ma et al., 2014), this may indicate that the PVT-to-

NAc pathway is not involved in incubating cocaine craving during withdrawal. However, the 

role of CP-AMPARs within the PVT-to-NAc pathway remains perplexing. CP-AMPARs only 

account for ~5% of all AMPARs in the NAc under control conditions (Reimers et al., 2011). Yet, 

we see that CP-AMPARs account for ~20% of AMPAR-mediated synaptic current along the 

PVT-to-NAc pathway. CP-AMPARs have a higher conductance than other AMPARs (Liu and 

Zukin, 2007), so the actual basal expression rate of CP-AMPARs is likely slightly less than 

~20%. However, their role and their effect on PVT-to-NAc signaling remain unclear.  
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 One reason why an increase in CP-AMPARs after long-term withdrawal may not have 

been observed might be due to the cocaine self-administration procedure that was used. There 

are conflicting reports concerning the appearance of CP-AMPARs after cocaine exposure. One 

lab reports failing to observe CP-AMPARs after using a short-term (2 hour) daily self-

administration protocol and have reported that a longer training period involving greater daily 

exposure to cocaine is needed (Purgianto et al., 2013). However, our lab has had success 

inducing CP-AMPAR expression after long-term withdrawal when using a 2-hour daily self-

administration protocol (Lee et al., 2013). Perhaps CP-AMPARs appear more readily within 

certain pathways relative to others. 

5.4.3 Orexin Signaling in the PVT 

Orexin is an excitatory signaling peptide produced exclusively in the hypothalamus, and then 

transmitted to regions throughout the brain including the PVT, VTA, and NAc shell (Peyron et 

al., 1998, Kirouac et al., 2005). Intracerebroventricular injections of orexin reinstate cocaine 

seeking behavior (Boutrel et al., 2005), and orexin neurons in the lateral hypothalamus become 

activated by exposure to stimuli associated with cocaine (Harris et al., 2005). Orexin neurons do 

play a role in mediating natural reward processes such as food (Harris et al., 2005, Kelley et al., 

2005, Choi et al., 2012). However, a report indicates that orexin receptor antagonists may 

preferentially block conditioned cocaine seeking (Martin-Fardon and Weiss, 2014) and ethanol 

seeking (Jupp et al., 2011) while having no effect on appetitive reward seeking. Thus, the orexin 

system may be preferentially involved in drug reward processing over appetitive reward 

processing. This type of effect may be mediated via orexin receptors and neural activity in the 

PVT, as a similar bias for conditioned cocaine- and ethanol-motivations over conditioned 
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appetitive reward processes may also exist within the PVT (Wedzony et al., 2003, Martin-Fardon 

et al., 2013). This pattern seems to further indicate that orexin and PVT signaling may be 

important in neural processes that distinguish drug-related motivations from other types of 

natural rewards. This activity may have crucial implications for the development and 

maintenance of addictive states and should be investigated further.  

 An additional point of note is that another neuropeptide named ‘Cocaine- and 

amphetamine-regulated transcript’ (CART) appears to target the PVT and is also largely 

produced in the hypothalamus (Kirouac et al., 2006). Contrary to orexin’s excitatory effects, 

signaling activity via this peptide to the PVT is correlated with reduced cocaine-primed 

reinstatement (James et al., 2010). Thus, hypothalamus-to-PVT signaling may have bidirectional 

control in regulating motivation for cocaine-seeking-related behavior via orexin and CART 

signaling. This activity is presumably mediated by regulating the excitation levels of PVT 

neurons, which then project to the NAc and other addiction-related regions. 

5.4.4 PVT Interaction with Dopamine in the NAc 

PVT-to-NAc fibers can synapse adjacent to dopamine fibers at NAc neurons (Pinto et al., 2003). 

Stimulation of the PVT also induces dopamine release within the NAc (Jones et al., 1989, 

Parsons et al., 2007). This neural architecture leads to an additional layer of complexity in PVT-

to-NAc signaling. If PVT inputs are adjacent to postsynaptic D2 receptors, then dopamine 

signaling would counteract excitatory PVT signals. But, if PVT synapses are adjacent to D1 

receptors, dopamine signaling would complement excitatory PVT signals to NAc MSNs. PVT 

projections to D1 receptor-expressing MSNs may be well-positioned to be especially 

strengthened in response to drug-related stimuli. Increased excitatory modulation via dopamine 
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activation of D1 receptors would directly potentiate PVT glutamatergic signals to these NAc 

MSNs. Thus, addictive drugs may be especially efficient in promoting the strength of PVT-to-

NAc connections by increasing dopamine signaling, and this processes may also help to 

strengthen these connections specifically. However, the expression pattern of D1 and D2 

receptors in the NAc is scattered without clear organization and has yet to be examined with 

respect to PVT inputs. 

5.4.5 Dynorphin Signaling and Opioid Receptor Expression in the NAc 

In section 5.1.1 above, we speculated that dynorphin signaling may affect certain pathways to the 

NAc but not others based on selective expression of opioid receptors at some inputs. We showed 

that dynorphin signaling is likely increased in the NAc after cocaine, leading to a presynaptic 

reduction of EPSCs in NAc MSNs. However, we also showed the probability of presynaptic 

release specifically in the PVT-to-NAc pathway is increased following cocaine exposure at the 

same time points when dynorphin signaling was measured to reduce presynaptic release. 

Dynorphin-mediated reduction in EPSCs could instead be due to a reduction in quantal size 

rather than presynaptic release rate. However, we also did not observe a change in quantal size 

after short-term withdrawal within the PVT-to-NAc pathway at these time points. Thus, it 

appears unlikely that PVT-to-NAc synapses are affected by dynorphin signaling and may not 

express presynaptic opioid receptors. This interpretation makes it increasingly likely that the 

expression of opioid receptors is selective to certain NAc inputs and that increases in dynorphin 

signaling following cocaine exposure may influence a subset of NAc inputs. 
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5.4.6 Multiple Probability Fluctuation Analysis Technique Discussion 

Consistent with the presence of CP-AMPARs, we saw a paired-pulse facilitation effect at PVT-

to-NAc synapses. Synapses containing CP-AMPARs often demonstrate paired-pulse facilitation 

because CP-AMPARs can be blocked by intracellular polyamines, but this block is displaced by 

rapid successive stimulations (Rozov and Burnashev, 1999). The decrease in paired-pulse 

facilitation after cocaine self-administration is most likely related to the increase in presynaptic 

release probability rather than functional expression of CP-AMPARS because pharmacological 

block of CP-AMPARs showed no change in their contribution to EPSCs following cocaine.  

 PVT-to-NAc synapses showed changes in PPR following cocaine self-administration, 

which indicates that presynaptic changes occurred following cocaine-self administration. We 

investigated the specifics of these presynaptic changes using MPFA and found that PVT-to-NAc 

synapses have a higher Pr after cocaine. After long-term withdrawal, we found that the increased 

Pr persisted and also that there were fewer presynaptic release points with stronger transmission 

based on having a larger quantal size. Presynaptic release points could potentially correspond to 

extra-synaptic glutamate release sites or other non-traditional release formations, but this 

measure was largely interpreted as reflecting functional synapses. Silent synapses are thus 

excluded because they conduct no appreciable EPSCs which are used in MPFA measurements. 

Thus, the number of PVT-to-NAc synapses is thought to be reduced after long-term withdrawal 

from cocaine self-administration, but the strength of these synapses is thought to be higher based 

on higher Pr and larger quantal content.  

 Roughly 30% of cells were excluded from analysis with MPFA because a binomial curve 

could not be well fit to the variance-mean relationship of the 5-pulse stimulation train. This 
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indicates that this section of cells did not meet the assumptions of the MPFA model: (1) Pr is 

uniform across release sites, (2) release sites operate independently, (3) release is synchronous, 

and (4) Q is uniform at an individual site and across release sites (Silver, 2003, Suska et al., 

2013). It’s unclear why exactly this section of PVT-to-NAc connections which did not meet 

these assumptions, but we think it is most likely related to point 1 or 4. A change in the 

probability of release or the quantal size across synapses may relate to differing inputs. Because 

we observed changes in both Pr and Q after cocaine, these properties appear to flexible 

properties within this pathway. Thus, if Pr or Q values varied too greatly based on differing 

inputs, the variance-mean analysis would not be fit to a binomial curve. Points 2 and 3 are 

assumed to be relatively stable in slice preparations such as those used in our experiments.  

 Another caveat of the MPFA technique is that making comparisons based on the number 

of presynaptic release points between cells can be highly variable. This value corresponds to the 

number of release sites which are activated by the stimulation used to generate the 5-pulse data. 

So, there are regularly some relevant synapses that are not included in this analysis, as all 

connecting synapses are unlikely to be stimulated. When using optogenetic stimulation, such as 

was done in our experiments, this value is also dependent on the expression rate of the opsin 

channel in eligible projecting fibers. The opsin plasmid does not infect every projecting cell, and 

thus an additional proportion of projecting fibers are invariably left out from analysis when using 

optical stimulation. However, for our experiments, there does not appear to be any bias in 

infection rates between treatment groups because the same virus and procedure was used to 

infect PVT neurons in both groups. No differences in infection rate were obvious between the 

groups. Additionally, the same optical stimulation intensity and duration (1.5 ms) was used for 

most all experiments, reducing the number of variables which could contribute to differences in 
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the number of presynaptic release sites activated between subjects. Thus, the N values calculated 

from MPFA are unlikely to be accurate as raw values for the total number of PVT-to-NAc 

synapses (because some portion of synapses are not included when collecting the data), but the N 

values are accurate as relative measurements between groups under our controlled conditions. 

5.4.7 Blocking AMPAR Internalization Blocks Cocaine-generation of Silent Synapses in 

the PVT-to-NAc pathway 

Because we observed an increase in silent synapses within the PVT-to-NAc pathway after 

cocaine self-administration but our MPFA data indicated that fewer synaptic connections existed 

after long-term withdrawal, we wanted to explore this relationship further. Silent synapses can 

potentially be formed by creating new synaptic connections with inserted NMDARs or from 

existing synaptic connections by internalizing AMPARs. We used a virally mediated plasmid to 

express a peptide mimicking the C-terminal tail of the AMPAR GluA2 subunit. The C-terminal 

tail of GluA2 contains a PDZ-binding domain which interacts with PICK1 to signal 

internalization of AMPARs (Dong et al., 1997, Kim et al., 2001). By expressing this peptide 

sequence, these internalization protein signals would bind to the peptide instead of functional 

AMPARs at the synapse, effectively sequestering these internalization signals (Kim et al., 2001).  

 We found that expression of this GluA2 C-terminal tail peptide reduced both cocaine-

generation of silent synapses and basal levels of silent synapses in infected neurons. Expression 

of an inactive control variant of this peptide had no effect on silent synapse levels. This result 

indicates that silent synapses are formed within the PVT-to-NAc pathway via internalization of 

AMPARs at existing synapses. When AMPARs internalization signals are blocked, silent 

synapse generation is thus also blocked. This result seems to fit well with our other data showing 
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that there may be a reduction in synapse numbers after long-term withdrawal from cocaine. 

Reverting existing functional synapses to a silent state may be the first step in eliminating these 

synapses entirely (Hanse et al., 2013). Previous studies in our lab have indicated that cocaine-

generate silent synapses mature by recruiting AMPARs to become functional synapses (Huang et 

al., 2009, Brown et al., 2011, Lee et al., 2013, Ma et al., 2014). But, the high basal level of silent 

synapses and the basal presence of CP-AMPARs in the PVT-to-NAc pathway may indicate that 

this pathway has unique properties related to plasticity. The lack of CP-AMPAR recruitment to 

silent synapses after long-term withdrawal from cocaine may also indicate these synapses do not 

mature normally or similarly to other pathways.  

 GluA1/2 AMPARs comprise about 81% of synaptic AMPARs in the NAc, while 

GluA2/3 AMPARs make up about 16% (Lu et al., 2009). GluA1/2 AMPARs have longer C-

terminus tails and are trafficked to and from synapses in an activity-dependent manner, while 

GluA2/3 AMPARs have short C-terminus tails and cycle in and out of synapses constitutively 

(Malinow, 2003). The GluA2 tail peptide blocks PICK1 internalization interactions, which is 

thought to be specific for GluA1/2 AMPARs which moved to and from synapses in an activity-

dependent manner, and constitutive cycling of GluA2/3 AMPARs is thought to be preserved 

(Kim et al., 2001, Malinow, 2003). Based on this functionality, the 3Y virus thus also blocks 

activity-dependent LTD-like processes that involve the internalization of AMPARs. It is possible 

that this inability to initiate LTD processes in infected NAc MSNs (rather than direct 

internalization of AMPARs) is responsible for the lack of observed silent synapses after cocaine 

exposure. Possible indirect effects that blocked LTP has on the formation of silent synapses is 

unclear, but the most straight forward interpretation of our current results is that AMPAR 

internalization is required for the formation of silent synapses within the PVT-to-NAc pathway. 
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5.5 CONCLUDING REMARKS 

Cocaine exposure very likely leads to cascades of cellular changes which lead to the 

development of maladaptive thoughts and behaviors. It is critical to identify and decode these 

cellular changes in order to understand the mechanisms of addiction and to find possible 

treatment targets. The most clinically relevant treatments for addiction are all related to 

circumstances when addictive thoughts and behaviors have already established themselves. It is 

therefore important to understand the cellular and molecular changes that underlie these thoughts 

and processes so that realistic and clinically relevant treatments can be found. 

Taken together, the results detailed here demonstrate a number of previously unknown 

cocaine-induced neural adaptations in regions related to motivational processing and addictive 

behavior. Major targets for further research are identified, including PVT neural signaling to the 

NAc (potentially related to orexins and CART) which may be related to the development of 

novel drives and motivated behaviors, and LHb and dynorphin signaling which may be related to 

the aversive effects of cocaine which likely contribute to relapse during withdrawal periods. 

Hopefully, future studies can further expand on the results presented here and build on them to 

construct a better understanding of the array of neural changes responsible for addiction. 
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