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Beta-Tricalcium phosphate (β-TCP) has attracted attention as a scaffold material for bone tissue 

engineering. The calcium content in β-TCP is thought to have an important influence on the 

sintering and biodegradability of the scaffold and the growth of bone tissue. The aim of this thesis 

was to process a β-TCP scaffold with enhanced solubility by infiltration of porous TCP with a 

calcium salt. The sintering behavior and phase distribution of Ca infiltrated β-TCP was 

investigated using relative density measurement, SEM observation and XRD analysis. High 

temperature sintering was only able to achieve a relative density of 89% and showed evidence of 

liquid phase formation consistent calcium deficient β-TCP. The liquid phase formation is thought 

to have caused coarsening of the microstructure that limited the final density. Similar studies 

were also conducted on Ca-infiltrated β-TCP. The results suggest that Ca-infiltration results in the 

stabilization of α-TCP rather than the formation of significant amounts of other calcium rich 

phases, which is thought to enhance degradation when the materials were immersed in water.  

Additionally, β-TCP foam was successfully processed using an emulsion based direct foaming 

method. Immersion of the foams in water showed no evidence of the enhanced degradation due to 

calcium rich phases. 
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1.0  INTRODUCTION 

Regenerative medicine of bone and bone marrow has developed fast over decades, from 

pioneering achievement with bone marrow transplants for select hematological disorders to the 

recent success in bioengineered stem cell platforms.1 The bone marrow transplantation includes 

both whole bone marrow cell transplantation and hematopoietic stem cells transplantation 

(HSCT). HSCT was firstly introduced in 1950s, developed afterwards and has become the most 

effective treatment for leukemia.2 According to survey conducted by Worldwide Network for 

Blood and Marrow Transplantation, 51,536 cases of hematopoietic stem cell transplantation have 

been performed in 72 countries worldwide.3 Despite of this widely use of bone marrow cell 

transplantation, it is facing several difficult problems in clinical application. Allogeneic 

HSCT(stem cells come from a donor) can cause graft-versus-host disease because the white 

blood cells from the donor may attack the cells in the host body.4 An alternative is autologous 

HSCT, which avoids the problems with allogeneic HSCT. However, this option is inhibited 

because of the difficulty in obtaining a large enough population of health hematopoietic stem 

cells from the patient, especially after they have been subject to a partial or complete bone 

marrow ablation.5  

Tissue engineering, as a main approach for regenerative medicine, focuses on 

development of a functional substitute for damaged tissue by combining principles of biology 

and engineering. This field of study provides the a potential method of increasing the population 
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of bone marrow stem cells in an in-vitro environment before implanting into the host body, 

therefore avoiding the problems of autologous HSCT. Tissue engineering usually involves a 

substrate material, known as scaffold, whose function is providing a surface and void volume 

that improves the attachment, migration, proliferation and desired differentiation of stem cells 

and tissue progenitors.6 Biocompatibility and biodegradability is highly preferred for such a 

scaffold. Two phases of calcium phosphate compounds are the most attractive scaffold materials 

for bone and bone marrow because of their excellent bioactivity and biocompatibility due to their 

similarity in structure and composition to the mineral phase of bone.7 Hydroxyapatite (HA) has 

been studied widely as a scaffold material. However, the problem, of low biodegradability of HA 

impedes bone ingrowth and results in weak chemical bonding between bones and HA implant, 

thereby limiting the application of HA as a scaffold.8 An alternative choice among calcium 

phosphates is β-tricalcium phosphate (β-TCP). It is regarded as a resorbable bioceramic with 

better biodegradability, but worse biocompatibility than HA.  

This thesis is based on the hypothesis that Ca infiltration of porous calcium phosphates 

has the ability of improving the biodegradability of the scaffold, by introducing water-soluble 

phases. However this must be done with care, researches9,10 have shown that very high Ca 

content can have a negative effect on the function and differentiation of the stem cells. So the 

main purpose of this dissertation is to produce a rapid biodegradable scaffold of β-TCP with 

enhanced calcium release by Ca infiltration without exceeding the accepted calcium limit for cell 

culture.  The infiltration should result in high calcium concentration near the scaffold surface and 

thereby promote cell attachment. 

The sintering behavior of β-TCP is complex, since it difficult to achieve full density in β-

TCP and, α-TCP is expected to be formed above 1180°C according to the CaO–P2O5 phase 
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diagram. However, this temperature changes significantly with different Ca content. In this study 

the sintering behavior of β-TCP was investigated and it is concluded that higher ratio of Ca/P has 

a positive effect on stabilizing α-TCP but no significant amounts of calcium rich phases were 

detected in the Ca-infiltrated samples.  
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2.0  BACKGROUND 

2.1 REGENERATIVE MEDICINE 

Regenerative medicine is defined as the fast developing interdisciplinary field of clinical 

therapies on the reconstruction, repair, replacement or regeneration of missing or damaged cells, 

tissues or organs, to restore its native architecture or function. 11 From pioneering achievement 

with bone marrow transplants for select hematological disorders to the recent success in 

bioengineered stem cell platforms, regenerative medicine has developed rapidly over the last two 

decades.12 Regenerative medicine is regarded as “long-term promising” field by NIH, National 

Institutes of Health, for its important role in modern medical practice.13 Usually, a combination 

of several approaches is used in regenerative medicine, including the use of soluble molecules, 

cell therapy, gene therapy, tissue engineering, immunomodulation therapy, etc.14 

2.1.1 Cell therapy 

Usually regarded as a sub-class of regenerative medicine, cell therapy is defined as the 

administration of cellular materials or maturation of a specific cell population in a patient to treat 

a disease or to repair a damaged tissue.15 Cell therapy is usually achieved by the transplanting 

isolated and characterized cells to a target organ with sufficient number and quality to survive 

long enough to restore its function.16Although the first type of cell therapy was blood 
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transfusion, which appears much earlier than modern cell therapy, the Swiss physician Paul 

Niehans, MD, is widely accepted as the inventor of cell therapy, for his successful treatment of a 

patient who had damaged parathyroid glands by injecting a solution containing ground-up 

parathyroid cells from a calf.17The practice of injecting animal cells into human as an attempt to 

cure disease is one branch of today’s cell therapy. However it is mainstream, since it is mostly 

ineffective, dangerous and controversial. 

Nowadays cell therapy focuses on human cells transplanted from a donor to a recipient. 

Since stem cells can now be isolated from a diverse range of human tissues they are promising 

part of cell therapy.  Stem cells are capable of replenishing their own number and also 

differentiating into more than one cell type.18 Based on the concept of immunotherapy, which is 

a treatment of disease by inducing, enhancing, or suppressing an immune response,19 clinicians 

are utilizing stem cells for cell therapies that have successfully treated several diseases.20 For 

instance, allogeneic bone marrow transplantation is the treatment of choice for many kinds of 

blood disorders, including anemias, leukemias, lymphomas, and rare immunodeficiency 

diseases.21 Cell therapy is also being used in the treatment to Parkinson's diseases22, ischemic 

cardiomyopathy23, brain repair,24 and cardiovascular repair,25 etc. 

Embryonic stem cell therapies are also being considered because of the ability of 

embryonic stem cells to differentiate into a wide range of cell types, but this is controversial 

because for the stem cell source and it is banned in many countries.  

According to a recently investigation, the estimated annual revenue in cell therapy 

industry was $5.1 billion in 2014.26 There is no doubt that cell therapies will continue to expand. 
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2.1.2 Tissue engineering 

Tissue engineering, applies the principles of biology and engineering by combining cells, 

engineering principles, and materials method to the development of functional substitutes for 

damaged tissue.27 These tissues including skin, liver, pancreas, kidney, bone, etc. have been 

demonstrated and applied in some clinical applications.28 Unlike replacing the failing organs 

mechanically, or using synthetic replacements, engineered tissues minimizes the risk of infection 

and device rejection  

Previously research in tissue engineering has used differentiated cells such as fibroblasts 

in skin replacement and chondrocytes in cartilage repair. With the progress in stem cell biology 

and the recognition of the unique biological properties of stem cells, tissue engineering using 

stem cells has become of great interest to researchers.29 Tissue engineering also involves a 

substrate material, known as the scaffold, to assist the organization of the cells in three-

dimension, before the cells, which have their tissue-specific function, is implanted to patients.30 

Furthermore, in-vitro 3D cell culturing in bioreactors will require a scaffold.  Bioreactor will be 

needed for extensive culturing of the primary human cells needed to improve survival, growth 

and inducement of functionality of the engineered tissue. A bioreactor is an engineered device or 

system that supports a biologically active environment by controlling parameters including 

oxygen, pH, humidity, temperature, nutrients and osmotic pressure required for culturing.  

Bone tissue engineering, is one of the leading areas in tissue engineering, due to the need 

to alleviate the demand for bone tissue arising from the shortage of suitable auto graft and 

allograft materials for augmenting bone healing.31 However, few researchers have reported 

successfully engineer bone marrow tissue, the focus of this thesis. 32 The use of porous material 

scaffolds made from bioceramic and polymer components to support bone cell function and 
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tissue growth is a lasting area of interest. However, there are challenges in the engineering of 

materials that can match both the mechanical and biological demand of real bone tissue matrix 

and support the vascularization of large tissue constructs.33 

2.2 BONE STRUCTURE 

Bone is a hierarchically structured composite that has long held the attention of the materials 

engineers who seek to duplicate its mechanical properties.34 The hierarchical organization of 

bone ranging from the components to the whole bone is summarized in figure 1. This section 

will introduce bone structure briefly. 

 

Figure 1: Hierarchical organization of bone35 

At the molecular level, bone can be seen as a composite material composing of a fibrous 

protein, collagen, stiffened by a highly dense filling of calcium phosphate crystals. Other 
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components such as water, certain proteins and polysaccharides are also found in bone at the 

molecular level. 

At the cellular level, various kinds of specialized cells exist in bone simultaneously. 

Bone-lining cells cover all surfaces of bones, constructing a thin continuous film that controls the 

movement of ions between the body and the bone. Osteoblasts derive from bone-lining cells and 

are responsible for the formation of bone. Osteocytes are the cells in the body of the bone. They 

derive from osteoblasts. They are imprisoned in the hard bone tissue and connect with 

neighboring osteocytes and with bone-lining cells by means of processes that occur in the little 

channels between the bone tissues. Osteoclasts are large, multinucleated cells derived from 

precursor cells circulating in the blood, and help dissolve bone during the constant restructuring 

that occurs in natural bone. When osteoclasts have done their job they die. 36 

At longer length scales there are two main types of bone architecture, cortical and 

trabecular bone which have distinct mechanical properties and mechanical functions. Bone 

marrow, is a very important tissue in bone, and will also be introduced below. Figure 2 shows the 

basic structures and tissues in common bone. 

 

Figure 2: Schematic diagram for bone structure37 
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2.2.1 Cortical bone 

Cortical bone, also synonymous with compact bone, is the hard outer layer of bone, which gives 

bone its smooth, white and solid surface, accounting for 80% of total bone mass in an adult38,39 

The basic unit of cortical bone, called an osteon, are arranged in columns with multiple layers of 

osteoblasts and osteocytes arranged around a central canal called the Haversian canal. Cortical 

bone is covered by a periosteum, a membrane layer between bones and skins,40 on its outer 

surface, and an endosteum, which is a thin layer that lines the surface of the bone tissue, 40 on its 

inner surface. The endosteum is the boundary between the cortical bone and the trabecular 

bone.41 Cortical bone facilitates bone's main functions of supporting the whole body, protecting 

organs, providing levers for movement, and administrating chemical elements, mainly calcium. 

Figure 3 schematically shows the position and structure of cortical bone (compact bone). 

2.2.2 Trabecular bone 

Trabecular bone, synonymous with cancellous bone or spongy bone is a porous network filling 

the interior of large bones. Trabecular bone accounts for the remaining 20% of total bone mass, 

but has nearly ten times the surface area of compact bone.42 Trabecular bone has a much higher 

surface area to mass ratio compared to cortical bone, for it is less dense, giving it a softer but 

more flexible properties. The larger surface also enables trabecular bone to be a perfect bone 

type for metabolic activity, such as exchange of ions especially calcium. Typically, trabecular 

bone is found at the ends of long bones. Most importantly, it is highly vascular and frequently 
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contains red bone marrow, where blood cell produces hematopoiesis.43 Figure 4 displays the 

bony trabeculae (pink) and marrow tissue (purple) in trabecular bone. 

 

Figure 3: Hierarchical structure of human cortical (compact bone) 44 

 

 

Figure 4: Light micrograph of cancellous bone45 
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2.2.3 Bone marrow 

Bone marrow mainly lies within the trabecular bone, constituting nearly 4% of the total body 

mass on average. Red marrow, which consists mainly of hematopoietic tissue, and yellow 

marrow, made up of fat cells are the two types of marrow found in bone. Red blood cells, 

platelets, and most white blood cells are made in red marrow. In newborns, all such bones are 

filled exclusively with red marrow, but as the child ages it is mostly replaced by yellow, or fatty 

marrow. 46 

One of the main functions of bone marrow is a process called hematopoiesis, which 

creates red blood cells. The cells, which conduct this process, are called hematopoietic stem cells 

(HSCs). HSCs can replenish all blood cell types due to its multipotency. In order to maintain 

steady state levels in the peripheral circulation, approximately 1011–1012 new blood cells are 

produced in red marrow daily,47 using the bone marrow vasculature as a conduit to the body's 

system.48 The number of HSCs in a healthy adult is never depleted due to its self-renewing 

ability.49This relies on both asymmetric and symmetric cell division.50 These properties of 

multipotency and self-renewal are of key importance to the use for HSCs transplantation 

therapies. All the other tissues in red bone marrow not directly related to hematopoiesis are 

called stroma. However, stroma influences hematopoiesis indirectly by providing the 

microenvironment that facilitates hematopoiesis by the parenchymal cells. Stroma contains 

another important type of stem cell in bone marrow called mesenchymal stem cells (MSCs).51  

HSCs have been used in bone marrow allogeneic transplantation for the treatment of 

patients with diseases of blood and bone marrow such as leukemia and multiple myeloma,52,53 

for more than30 years. HSCs studies through much of the past half century have led to a much 
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deeper understanding of their function. More recent advances have resulted in the use of HSC 

transplants in the treatment of cancers and other immune system disorders.54 

In contrast, MSCs can differentiate into many types of cells including osteoblasts (bone 

cells), chondrocytes (cartilage cells), and adipocytes (fat cells). 55,56 Human clinical trials are still 

under way to use allogeneic MSCs for treatment a variety of conditions including myocardial 

infarcts, graft-versus-host disease, Cohn’s Disease, cartilage and meniscus repair, stroke, and 

spinal cord injury and other diseases promised to use MSCs transplantation.57  

The transplantation of bone marrow stem cells can be autologous and allogeneic. 

Autologous transplantation means that the stem cells were extracted from the patients themselves 

and stored in a freezer before use. High dose chemotherapy, sometimes with radiotherapy, is 

then used to treat patients with the intention of killing the malignant cell population, but 

unfortunately partial or complete bone marrow usually results. The stored stem cells are then 

transplanted into patients, replacing the destroyed tissue or restoring the normal blood cell 

production. However, in an allogeneic transplantation, the stem cells are donated to the recipient 

by a healthy person whose immune system markers closely matched to patients. The match is 

based on that the variability at three or more loci in the gene of HLA, a tissue type that is 

responsible for regulation of the immune system in humans.58 A perfect match to the patients at 

these loci is preferred for a donor. However, immunosuppressive medication are still required for 

recipient to alleviate the graft-versus-host disease, a common complication following allogeneic 

transplantation, which usually does not happen in an autologous transplantation.59 Donors are 

more likely matched to patients when they are related and a sibling is intentionally selected to 

match with patients and prevent inheritable disorders.  
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In general, compared to allogeneic transplantation, autologous transplantation has a lower 

risk of infection and very rare graft-versus-host disease incidence. These advantages lead to the 

widespread use of autologous transplantation in the treatment of lymphoma.60 Research based on 

autologous transplantation is also being pursued as a cure for other diseases, such as myocardial 

diseases,61 ischemic stroke,62 myeloma,63 and diabetes, 64etc. 

Even though autologous transplantation has many advantages, there are some diseases 

such as acute myeloid leukemia, for which the increased chance of cancer relapse for autologous 

transplantation makes allogeneic transplantation a better choice for patients even with a longer 

hospital treatment and the risk of peritransplantation death.65,66 Taking this point into 

consideration, allogeneic transplantation appear to have higher possibility for curing long-term 

remission, once the short-term complications are prevented or mitigated.67 

2.3 SCAFFOLD MATERIALS FOR HARD TISSUE 

To reconstitute new tissue by cell based tissue engineering, three factors are necessary: 1) cells 

extracted from donors or the patients themselves, 2) scaffold substrates in which cells are 

cultured, and with which cells are implanted to fulfill desired function, 3) perfusion which 

controls the microenvironment promoting cells proliferation and differentiation of stem cells.68 

This section will discuss the scaffold used for tissue formation and growth, especially for bone 

and bone marrow. 

The scaffold plays a role of providing a surface and void volume that improves the 

attachment, migration, proliferation and desired differentiation of stem cells and tissue 

progenitors. Based on the expected function of scaffold materials for tissue engineering, 
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biocompatibility and biodegradability is highly preferred.69 While biocompatibility promotes 

cell-biomaterial interactions, biodegradability allows the replacement of the scaffold with natural 

biological tissues without leaving toxic degradation products. The degradation rate must match 

the new tissue generation time in order to maintain the structural integrity needed for tissue 

formation.70 Porosity is also a requirement of the scaffold in order to provide sufficient 

accommodation for cell reproduction and differentiation that will eventually result in tissue 

formation. The interconnectivity between pores is also critical to uniform cell seeding and 

distribution, as well as for nutrients and metabolites exchange at the interface between the cells 

and scaffold.71 The degree of scaffold porosity is found to be important in regulating the 

bioactivity of scaffold due to its influence on structural permeability, which controls the initial 

rate of bone regeneration, and the local mechanical environment, which mediates the equilibrium 

volume of new bone within the repair site.72 Furthermore, as a mechanical support, the scaffold 

also needs adequate mechanical stability to undergo the implantation procedure and avoid 

collapse during the patient’s normal activity. Other parameters influencing the efficacy of a 

scaffold include the pore morphology and the local environment in the area of the scaffold.73  

Research activity related to the scaffold for bone tissue engineering has become very 

active. Some of these studies have made progress on manufacturing of scaffolds and some have 

been successful in specific application, even though most attempts have been plagued by poor 

implant survival and integration due to the lack of vascularization within the engineered bone 

constructs.74 

The selection of materials for bone tissue engineering varies among metal, ceramics and 

polymer. The biocompatibility and utilization of all these materials has been researched and they 

all have demonstrated some advantages as well as some drawbacks. Metal such as titanium, 
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stainless steel and cobalt-chromium benefit from extraordinary properties of adequate 

biocompatibility, high strength and low cost.75 Polymers are an alternative choice for scaffold 

due to their desirable properties, including biocompatibility, tunable degradation, processing 

ability, and versatility.76The composition of the inorganic mineral phase bone is approximated as 

hydroxyapatite (HA, chemical formula Ca10 (PO4)6(OH) 2
 with a Ca/P ratio of 1.67)77, and so 

ceramics have been widely considered as a material for bone tissue engineering scaffolds. 

Hydroxyapatite (HA) and tricalcium phosphate β-TCP are the two of most interest to researchers 

due to their similarity in structure and composition to the mineral phase of bone.78 This gives HA 

and β-TCP high bioactivity and biocompatibility to bone and bone marrow cells, facilitating the 

attachment of progenitor cells seeded on the surface of scaffold and reproduction.79 Nevertheless, 

HA and β-TCP are not suitable to some circumstance because of their low mechanical strength 

which may result in fracture.80 HA also has a low degradation rate impeding the disappearance of 

scaffold and replacement by new tissue.  

2.3.1 Hydroxyapatite 

Hydroxyapatite (HA), with the formula of Ca5 (PO4)3(OH), is a naturally occurring mineral form 

of calcium apatite. The formula is commonly written as Ca10 (PO4) 6(OH)2. For stoichiometric 

HA, the Ca/P ratio is 1.67 neglecting the substitution of any foreign ions in the lattice. For fully 

calcium deficient HA, the formula is Ca9(HPO4)(PO4)5OH. 81 

The crystal structure of HA is hexagonal with a space group of P63/m. Cell parameter is a=9.41 

Å, c=6.88 Å with a/c=1/0.731 and a total of 44 atoms per unit cell. Calculated density of HA is 

3.16g/cm3, 82 Figure 5 shows unit cell of the structure of the HA crystal. 
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Figure 5: Crystal structure of Hydroxyapatite83 

Hydroxyapatite is the hydroxyl endmember of the complex apatite group. It can form 

fluorapatite or chlorapatite when OH-- ion is replaced by fluoride, chloride or carbonate. The 

color of pure hydroxyapatite powder is white. Naturally existing HA can also show brown, 

yellow, or green colorations, comparable to the discolorations of dental fluorosis. HA is found 

contained in human teeth and bones. Up to 50% by volume and 7% by weight is a modified form 

of hydroxyapatite in bones.84 Carbonated calcium-deficient hydroxyapatite is the main mineral of 

which dental enamel and dentin are composed.85 

2.3.2 Tricalcium phosphate 

Tricalcium phosphate(TCP) is one of phases of calcium phosphate, differing from Monocalcium 

phosphate and dicalcium phosphate in formula and crystal structure, Calcium phosphate refers to 

minerals containing calcium ions (Ca2+) together with orthophosphates (PO4
3-), metaphosphates 

or pyrophosphates (P2O7
4-) and occasionally hydrogen or hydroxide ions.86 Common minerals of 

calcium phosphate have a formula of Ca5PO4)3 χ. When χ is replaced by hydroxide (OH-), it 
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becomes the formula of hydroxyapatite. The formula of tricalcium phosphate, Ca3(PO4)2, 

consists of calcium ions (Ca2+) and orthophosphates (PO4
3-).  

Different phases of TCP are stable at different temperature as shown on the phase 

diagram showed in figure 6. Β-TCP has a rhombohedral structure with a space group of R3c that 

is stable up to 1125 OC. The monoclinic phase α-TCP, which has a complicated crystal structure 

with the space group of P21/a, is stable between 1125 OC and 1430 OC, and can be maintained to 

room temperature as a metastable phase. The α´-TCP is stable above 1430 degrees C and is 

unable to survive quenching to room temperature.87  

 

Figure 6: Phase diagram of the system CaO–P2O5 (C=CaO, P=P2O5) at elevated temperatures88 

Β-TCP can be described with a hexagonal unit cell whose parameters are a=b=10.4352Å, 

c=37.4029(5) Å, α=β=90°, and γ=120°.89 It appears as white amorphous powder, with a 
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calculated density of 3,14g/cm3, and solubility in water is 0.002 g/100 g.90 The unit-cell 

parameters of α-TCP are, a= 12.8328 Å, b= 27.1958 Å, c= 15.1656 Å, α= γ =90°, and β= 

126.2070°. The calculated density of α-TCP (2.8945 g/cm3) is smaller than that of β-TCP, 

indicating the structure of α-TCP is more open. This loose structure is consistent with the higher 

reactivity of α -TCP in water and biodegradability.91 Figure 7 shows the crystal structure of β-

TCP, α-TCP, and α´-TCP. 

 

Figure 7: Schematic representation of the projections of the α-TCP, β-TCP and α′-TCP 
unit cells along the [0 0 1] direction92 

In spite of having the same chemical composition, the medical application and 

manufacturing of biodegradable bioceramics shaped as dense and macroporous scaffold have 

primarily focused on β-TCP, while α-TCP is used more often as a fine powder in the preparation 

of calcium phosphate cements due to its higher solubility and reactivity.93,94 Nevertheless, 

commercial bioceramic products made of α-TCP have been applied to bone repair and 

remodeling applications have used β-TCP and α-TCP materials. 
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2.3.3 Solubility of HA and TCP 

The rate at which calcium phosphate scaffold materials will degrade is often measured, to a first 

approximation, in terms of their chemical solubility. The calcium ions and phosphate ions 

released during the process of dissolution from the scaffold into the solution has a critical 

influence on the culture environment. It is reported that calcium ions affect cells that reside in the 

bone marrow microenvironment or niche, such as osteoblasts.95,96 So it is a necessary to have an 

understanding of the solubility kinetics of HA, and TCP. 

The dissolution behavior of HA, β-TCP, α-TCP varies widely because of many factors, 

such as the method of preparation, phase content, density, the extent of ionic substitutions into 

the apatite lattice and microstructure.97,98 However it is widely accepted that the order of 

solubility is α-TCP>β-TCP> HA.99 

Figure 8 gives a comprehensive diagram of the solubility of different of calcium 

phosphates.100 As a function of pH， the solubility of α-TCP, β-TCP, HA follow the order 

mentioned above over a large range of pH from 3 to 8. Monocalcium phosphate monohydrate, 

(MCPM) is not biocompatible and unsuitable to be used as a bone scaffold, due to its high 

acidity and solubility. The solubility of α-TCP, β-TCP, and HA is reviewed in a larger range of 

pH in the research of L.C. Chow.101 
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Figure 8: Solubility isotherms of several Calcium phosphates with different Ca/P ratio102 

2.3.4 The application of ceramic scaffold 

2.3.4.1   Bone cement   The first bone cement appeared clinically for the first time in the 1940s 

in plastic surgery to close gaps in the skull. Early bone cement was nothing more than Plexiglas 

(i.e. polymethyl methacrylate or PMMA). The excellent tissue compatibility of PMMA allowed 

bone cements to be used for anchorage of head prostheses in the 1950s.103 Bone cement 

combined with hydroxyapatite is also made for bone substitute and by regulating the size of HA 

particles, the ingrowth and attachment of bone tissue was promoted. However it is found that HA 

might have a negative effect on the mechanical properties of the scaffold.104 Pure calcium 

phosphate bone cements first appeared in literature in 1980s. Unlike PMMA cements which 

harden through polymerization, calcium phosphate bone cements harden by mixing and 

dissolution of one or more calcium phosphate phases forming aqueous solutions and 

precipitating less soluble calcium phosphate phases. Generally the cement is a paste before 

setting, and so it has good moldability and injectability.105 Gallinetti’s research on biphasic 

 20 



hydroxyapatite/β-TCP self-setting cements concluded that Ca2+ release and weight loss were 

unaffected by further increasing the amounts of β-TCP in the timeframe over which it was 

evaluated and there remains some doubt that higher dissolution and Ca2+ release might be 

observed in longer term study with high TCP content.106 

2.3.4.2   Bioglass  Bioglass is a commercially available family of amorphous bioceramics, 

usually having a composition with a different proportion of SiO2, Na2O, CaO and P2O5 and a 

high calcium/phosphorus ratio.107Bioglass scaffolds have been fabricated for bone tissue 

engineering by the method of foam-replication, using slurry-dip coating. Highly open, connected 

and porous scaffold have been made by this technique that show a great resemblance to 

trabecular bone.108 .  

Bioglass 45S5, Na2O-containing bioactive glasses is one of the primary compositions 

used for research or clinical application in bone tissue scaffolds because it meets the basic 

requirement of mechanical strength and biodegradability, due to the formation of crystalline 

phase, Na2Ca2Si3O9.109 One study by Qizhi Chen has explored the optimal fabrication process of 

45S5 Bioglass scaffolds, based on a theoretical design combined with an experimental 

investigation,  

New research shows that innovative bioactive glasses based on borate and borosilicate 

compositions have an ability to promote new bone formation and vascularization of new tissue 

when compared with silicate bioactive glasses.108 The author speculates that this is facilitated by 

the rapid dissolution of the scaffold and consequent release of calcium into the 

microenvironment of the tissue.  If the dissolution it too fast the build up of non-physiological 

elements such as boron and sodium can be toxic to the cells.110  Borate-based bioactive glasses 

are able to control the rate at which the degradation of implant occurs to make it compatible with 
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the rate of new bone formation.111 Other studies of bioactive glasses are reviewed in the work of 

Rahaman.94 

2.3.4.3   Biphasic calcium phosphate bioceramics  In general, HA have difficulties in 

degradation after implantation.112 On the other hand, β-TCP scaffolds have lower strength and 

biocompatibility compared to HA with same porosity. So the use of crystalline calcium 

phosphate-based bioceramics remains challenging. Biphasic calcium phosphate, consisting of 

certain proportions of HA and β-TCP, is one common approach to addressing this problem. 

Biphasic calcium phosphate have been optimized to eliminate the drawbacks of pure HA or β-

TCP as a bone tissue scaffold. The different ratio of HA/β-TCP can alter the rate of degradation 

according to the work of Daculsi G.113 Biphasic calcium phosphate is also found to have the 

ability to form a layer of carbonate-apatite on their surface, which provides chemical bonding 

between the implants and newly forming bone.114 They also can be made to be osteoconductive 

with the appropriate macroporosity and microporosity.115 

Noticing that bone, in fact, resembles as a mix of inorganic HA matrix and organic 

collagen fibers,116 methods of using calcium phosphate-based bioceramics combined with 

polymers have been studied. The incorporation of polymer in CaP scaffolds can increase 

toughness and compressive strength and result in mechanical behavior similar to bone. 

Successful scaffolds, combining HA with chitosan-gelatin,117 PLA,118 PLGA,119 and collagen,120 

or TCP coated by PCL,121 PGA122 have been shown to enhance bone formation in vitro and/or in 

vivo.  
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2.4 PROCESSING OF MACROPOROUS CERAMICS FOR SCAFFOLDS 

As discussed above, the porosity and pore size are two key parameters concerning the efficacy of 

ceramic scaffold for tissue engineering. The necessity for porosity will be summarized and 

several methods for making macroporous ceramics will be reviewed. 

Traditionally, pores are avoided in ceramic materials because of the flaw sensitivity of 

brittle failure, not commonly shared by metallic and polymeric porous structures.123 However, 

many areas of application, including the bone tissue engineering, require highly porous ceramics. 

Kuboki showed the necessity of pores in bone tissue scaffolds by proving that no new bone 

formed on solid particles of HA in a rat ectopic model, while direct osteogenesis occurred in 

porous scaffolds of HA. This is because pores with suitable size and connectivity facilitate the 

migration and proliferation of the two kinds of bone stem cells and new-formed osteoblasts.124 

Furthermore, the porous structure has been proven to be contributive to the mechanical 

interlocking between implant scaffold and natural bone, providing greater mechanical stability at 

this critical interface.125 

Generally, porous materials are classified into three categories depending on the pore 

diameter d: macro-porous (d>50 nm), meso-porous (50 nm>d>2 nm) and micro- porous (d>2 

nm), according to the IUPAC (International Union of Pure and Applied Chemistry).126 For bone 

tissue scaffold, the minimum pore size required to generate mineralized bone is considered to be 

100μm according to the research of Hulbert et al.127 He also concluded that larger pore size 

resulted in more substantial bone ingrowth, while scaffold with smaller pore size resulted in the 

growth of unmineralized tissue or fibrous tissue.  

The influence of other parameters related to porosity is shown in the work of Hing, who 

suggested that there is no optimal porosity standard that guarantees the rapid osteointegration in 
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ceramic scaffolds, however, there are broad guidelines for making bone tissue ceramic scaffold, 

which includes a minimum of 50%-60% in porosity and a pore size larger than 

100μm.128Karageorgiou has published a review on the influence of porosity on osteogenesis, 

concluding that high porosity and large pores enhance bone ingrowth and osteo-integration of an 

implant after surgery.  The minimum recommended pore size for a scaffold is 100μm, which 

correspond to Hing’s statement. Additionally, he suggested that high degradation rate materials 

should have porosity lower than 90%, since the mechanical and structural integrity tend to be 

compromised by rapid degradation.129 

The porosity and pore size are significantly influenced by the processing method used for 

manufacturing the porous ceramics. Partial sintering is the most straightforward processing route 

for the preparation of porous ceramics..130,131 However, this method result in relative low 

porosity (<60%) which is not high enough for bone tissue ingrowth. Therefore, innovative 

processing methods that can tailor porosity are required for making ceramic scaffold for bone 

tissue engineering. Figure 9 shows the porosity and the average pore size can be obtained by a 

variety of forming methods. Three general methods can be used to make macroporous ceramics, 

and they are reviewed below. 132,133,134 
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Figure 9: Typical porosity and average pore size achieved via the replica, sacrificial templating, 
and direct foaming processing routes135 

2.4.1 Foam Replication 

This approach begins with the coating of a template porous cellular structure with a ceramic 

suspension, a precursor solution, etc. The template used could be a porous polymeric sponge 

such as polyurethane,136 or a piece of wood which is initially soaked in a ceramic suspension 

until the internal pores are coated in with ceramic material. After that, roller compression is 

applied to the coated sponge to remove the excess suspension, and subsequently dried and 

pyrolyzed through careful heating. Finally, sintering at temperature ranges from 1100°C to 

1700°C is usually required to densify the final foams. In this process, the appropriate viscosity 

and fluidity of the ceramic suspension are required so that uniform ceramic layer forms over the 

sponge walls. Figure 10 (a), schematically shows the process of foam replication. Natural 

sources, such as woods,137 corals138 can function as the solid template.  
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Porous ceramics obtained with foam replication can reach total open porosity levels 

within the range 40%–95% and are characterized by a reticulated structure of highly 

interconnected pores with sizes between 200μm and 3mm.139In addition, a variety of ceramic cell 

types could be formatted, including open- cells, semi-closed cells and closed cells.140However, 

during the pyrolysis of the polymeric template, the reticulated ceramic structure are often 

cracked, significantly degrading the mechanical strength of the final porous ceramics. This is the 

major disadvantage of the foam replication process.141 

 

Figure 10: Possible processing routes used for the production of macroporous ceramics142 
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2.4.2 Sacrificial template foaming 

This method starts with a preparation of a biphasic composite consisting of a continuous ceramic 

phase of particles or precursors as a matrix and a homogeneously dispersed sacrificial phase 

which is eventually extracted to form pores within the structure. Figure 10 (b) schematically 

shows the process of this method. The sacrificial phase is usually polymer beads, organic fibres, 

potato starch, graphite, charcoal, salicylic acid, etc.143,144,145 These foaming agents are usually 

classified into organic matter, inorganic matter and liquid.  Organic agents are often extracted 

through pyrolysis by applying long thermal treatment at temperature between 200°C-

600°C.146,147 The extensive amount of gaseous by-products and mismatch in thermal expansion 

coefficient caused by the long period of pyrolysis of the organic component are the main 

disadvantages of organic agents and they can induce cracks within the porous structure. 

Inorganic agents, on the other hand, are usually eliminated by chemical means. For instance, salt 

crystals are removed simply by washing the composite with water repeatedly.148Fibers agents 

need more aggressive liquid like acid leaching. 149 

Porosity is controlled by the amount of the agents, and pore shape and size are also 

affected by the shape and size of the agents respectively when their sizes are large in comparison 

with those of starting powders or matrix grains. This approach is useful particularly for obtaining 

high open porosity. The range of porosity and pore sizes that can be achieved with this technique 

is very broad (20%–90% and 1–700 mm, respectively), as they only depend on the volume 

fraction and size of the sacrificial template used. 
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2.4.3 Direct foaming 

In this method, the porous structure is formed by incorporating air or easily-evaporated liquid 

into a prepared ceramics suspension which are stabilized to prevent pores from growing too big 

and coalescing. Subsequent drying and sintering is also required to obtain the final structure. The 

general process is shown in figure 10 (c). Other than air, liquid used to form the porosity include: 

alkane,150 CO2,151 ethanol,152 etc. The porosity of direct foamed ceramics is proportional to the 

amount of gas incorporated into the suspension during the foaming processing. 

Liquid foams such as those produced by these direct foaming methods are 

thermodynamically unstable due to their high gas-liquid interfacial area, causing three physical 

processes: drainage, coalescence, and Ostwald ripening. Drainage is the physical separation 

between the gaseous and liquid phases of the foam because of the effect of gravity, resulting a 

denser foam layer on the top and heavier liquid phase in the bottom. The bubbles at top are 

characterized as highly packed foams with very thin film between touching cells. Coalescence 

happens after foam drainage since the thin film are no longer stable enough to keep touching 

cells apart, resulting the association of neighboring bubbles. The mechanism of Ostwald ripening 

is generated by the difference in Laplace pressure between bubbles of different size, where the 

Laplace pressure means the pressure difference between the inside and the outside of a curved 

surface.153 This difference in Laplace pressure of distinct sized pores leads to the steady diffusion 

of gas from smaller to larger bubbles with time, thereby causing Ostwald ripening. These 

destabilization processes quickly increase the size of pores in the foam structure. However, an 

introduced surfactant that increases the stability of the bubble surfaces can be very useful for 

impeding these process because of the attachment of surfactant to the air water interface, 

decreasing the interfacial energy of gas-liquid boundaries. 
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Therefore, direct foaming with surfactants requires a setting agent or drying to 

consolidate the foam microstructure before extensive coalescence can take place. The ultimate 

pore size of the porous ceramic depends on a balance between the kinetics of bubble coarsening 

and the speed of liquid/suspension setting or drying. A variety of surfactant have been researched 

and been developed to make porous ceramics by direct foaming. Lipids and proteins are two 

common groups of surfactants, others include sodium dodecyl sulfate and benzethonium 

chloride. This surfactant based foaming method can achieve a pore size ranging from 35μm to 

1.2mm and a porosity of 40% up to 97%. Either closed or opened pores with a spherical shape 

can be obtained, based on adjusting the foam stability, air content, particle concentration and 

setting kinetics. Furthermore, this method usually results in dense flawless struts after sintering, 

increasing markedly the mechanical strength of the porous ceramic in comparison with foam 

replication method.  

Studies have shown that solid particles with tailored surface chemistry can also be used to 

stabilize bubbles.154,155 Particles absorbed at the interface of gas/liquid are proven to efficiently 

impede the destabilization processes described above for days, unlike only minutes or hours of 

stabilization time provide by long-chain surfactant and protein surfactant.156 Particle stabilized 

foams typically have a porosity from 40% to 93%, whereas the average pore size can be obtained 

is only about 10 to 300 μm. Closed pores structure and thin cell wall usually expected in the 

product of this method. However, by decreasing the concentration of stabilizing particles, open 

pores structure can also be prepared. 
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2.5 SINTERING 

Sintering, a process of forming a solid material from powders by heating at a certain temperature 

lower than the melting point, is usually required in the preparation of bioceramic scaffold. 

Through sintering, a strengthening and densification of the ceramic take place, caused by a 

reduction in porosity and reduction in volume (sintering shrinkage). Chemical reaction may be 

also involved in sintering, changing the chemical or phase composition in the final product. 

Therefore, a detailed understanding of ceramic sintering is of importance, because the final 

mechanical properties and biological behavior of the ceramics significantly depend on this 

process. A specific review about the sintering of hydroxyapatite and tricalcium phosphate is 

presented below. 

The sintering of HA is generally performed in the temperature range from 1100°C- 

1250°C.157 The fact that no secondary phase, either crystalline, amorphous or liquid are formed 

during the process of sintering HA in this range of temperatures has been proved.158 Even though 

Raynaud claimed that HA decomposes into TCP and HA above 900°C, and inverse phase change 

(TCP to HA) occurs during cooling process,159 most studies on this subject agreed that HA 

remain stable up to 1350°C -1450°C.160,161 Only a partial transformation of hydroxyapatite to 

oxyhydroxyapatite proceeds above 900°C.162 

Commonly 3 stages are involved in the sintering of HA. At low temperature from 400°C 

up to 700°C-800°C, the surface area of HA powders begin to decrease without densification, 

leading to little consolidation of the initial powder compact.  The second stage starts at 

approximately 750°C, when thermal energy provided is enough to active the volume or boundary 

diffusion required for densification. Densification occurs by the shrinking of the pores, which 

corresponds to an increase in relative density to 90%. The final stage happens when all the pores 
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are isolated and begin disappear and leave a fully dense ceramic.  There is usually some residual 

porosity.163,164 

The sintering of β-TCP is more complex compared to HA, for it is reported that β-TCP is 

only thermodynamically stable at low temperature and transforms to α-TCP at the temperature 

range from 1120°C -1170°C.165 According to the research of Ryu,166 the relative density of 

sintered β-TCP increased rapidly to 83% below 1150°C and then α-TCP was observed above 

1200°C. The relative density continued to increase, but slowly due to phase transition, and 

reached to 95% at 1550°C, (figure 11) even though, α-TCP was present only as a minor phase. 

This behavior creates two difficulties in sintering β-TCP. Firstly, the low mechanical reliability 

due to the porosity due to the reduction in densification rate associated with the phase 

transformation. Another issue is that the reverse transformation from α-TCP to β-TCP during 

cooling process does not go to completion resulting in unwanted α-TCP in the cooled 

ceramics.138 To overcome this difficulty, additives are used to increase high-temperature limit of 

β-TCP. These additives, including MgO,167 ZnO,168 and Ca2P2O7,147 etc., are chosen because of 

their tendency to improve biological or mechanical properties. 
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Figure 11: Shrinkage and shrinkage rate of the pure b-TCP sample at each temperature169 

            The sintering process of biphasic calcium phosphates (BCP) ceramics is also well 

studied. Higher temperatures are required at least 800°C for the onset of densification and at least 

1250°C is required for fully dense.170 Mg is usually added to prevent phase transformation from 

β-TCP to α-TCP, allowing BCP be sintered at high temperature without forming α-TCP.171 

Raynaud, summarized the sintering characteristics of BCP with various Ca/P ratio, concluding 

that BCP with a high amount of β-TCP has significantly lower linear shrinkage when sintered, 

while BCP with low amount of β-TCP (<30wt%) did not result in much transformation from β-
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TCP to α-TCP and has a linear shrinkage smaller than pure HA but larger than BCP with a high 

amount of β-TCP.172 

2.6 INFILTRAION 

Infiltration is a process of introducing a second phase into a porous ceramic by being immersed 

in a precursor liquid that is decomposed into an inorganic phase upon heating. The pre-infiltrated 

ceramic must have open-pores structure with a relatively high porosity, allowing liquid flows 

through most of the pores. Therefore, a partial sinter process at a lower temperature is needed to 

shape a pre-infiltrated ceramic materials with a relatively low density compared to those fully 

dense ones.173Through the infiltration process, unique microstructure, surface modification, 

compositional gradient, and mechanical properties can be achieved, as long as suitable second 

phases are selected and their spatial distribution is carefully controlled. 174 Some of the 

infiltration studies are summarized below.  

Honeyman-Colvin infiltrated alumina powder compacts with mullite, stabilized zirconia 

and partially stabilized zirconia, finding that all of these second phases contribute to a higher 

strength of the materials.153 Interestingly, in the work of Yung-Jen Lin’, mullite was infiltrated 

into zirconia, demonstrating that the porosity and pore diameter is decreased after infiltration 

with minor improvement in hardness and no improvement in fracture toughness.175 This may be 

due to the fact that the final infiltrated ceramic was still porous.  Glass, infiltrated porous zirconia 

with molten nitrate salts found that the infiltration depth is a function of both the infiltration time 

and the initial relative density of the pre-infiltrated ceramics. The study also developed a 

modified form of Darcy’s law to predict infiltration depth.154 Another study used mullite 
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precursors to infiltrate alumina, and concluded that a concentration gradients (the mullite content 

decreasing with increasing distance from the surface of the ceramics) resulted.  Additionally, a 

microstructural effect (the alumina grain size in composite bodies tended to increase with 

distance from the surface of the sample) was observed.  These studies support the idea that 

infiltration is an effective means of tailoring the composition and microstructure of ceramic 

bodies.176 

Research had been conducted concerning the influence of Ca content on the degradability 

of HA.177 Since Infiltration is a method capable of manipulating the Ca content in ceramic 

scaffold, Ca infiltrated ceramics provides a promising method to optimize calcium phosphate 

ceramics.  
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3.0  HYPOTHESIS 

β-TCP has become one the most popular choice for bone tissue scaffold due to its fast 

dissolution rate compared to hydroxyapatite.  

Recent study has suggested that a higher calcium concentration in hydroxyapatite 

scaffolds based on hydroxyapatite might improve the degradability of the scaffold.178 However, 

the influence of Ca concentration on the degradability of scaffold made by β-TCP has not been 

researched yet. 

Also, according to the review of Alexander Hoppe, higher Ca concentration enhances 

ostegenesis and angiogenesis,179 while some other researches prove that high Ca content also 

hinders the function and differentiation of bone marrow stem cells.180,181 

Therefore, the hypothesis of this work is that a degradable TCP scaffold with enhanced 

calcium release, due to a CaO introduced by infiltration of porous TCP, can be produced without 

exceeding the commonly recognized Ca ion limit of 3mol/L. 

Objectives. 

1. Process a composite of β-TCP and CaO by direct foaming, infiltration and insitu 

formation of CaO. 

2. Study the effects of reaction between β-TCP and CaO, and the possible formation of 

hydroxyapatite. 
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4.0  APPROACH 

4.1 MATERIAL PREPARATION 

4.1.1 β-Tricalcium phosphate powder 

The β-TCP powder used is a laboratory product (product number 21218) from Sigma-Aldrich. 

The purity of it reaches as high as 96%. The trace elements are listed in table 1. 

Table 1: List of trace elements in β-TCP powder 

anion traces chloride (Cl-): ≤500 mg/kg 

 sulfate (SO4
2-): ≤1000 mg/kg 

cation traces Cd: ≤50 mg/kg 

 Co: ≤50 mg/kg 

 Cu: ≤50 mg/kg 

 Fe: ≤200 mg/kg 

 K: ≤100 mg/kg 

 Na: ≤1000 mg/kg 

 Ni: ≤50 mg/kg 

 Pb: ≤50 mg/kg 

 Zn: ≤50 mg/kg 
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4.1.2 High calcium content pellets 

The β-TCP powder was pressed into 13mm diameter pellets at a pressure of 30MPa. The average 

green density of the pellets was 58.7%.  

According to the CaO–P2O5 phase diagram, β-TCP transforms to α-TCP at nearly 

1200℃, which makes it difficult for β-TCP to be fully densified. To investigate the influence of 

sinter temperature on the transformation from β-TCP to α-TCP and densification, the pressed 

pellets were first sintered at temperature from 1000°C to 1300°C (one temperature point every 

50°C) for an hour using a heating rate of 5℃/min and a cooling rate of 10℃/min. The bulk 

relative density of the each pellet sintered at different temperature was determined using the 

Archimedes method with 4-5 repeats for each condition. The true density of β-TCP used was 

3.07g/cm3. This procedure was used to establish the pre-sintering temperature prior to infiltration 

and the final sintering temperature after infiltration.  

Once the sintering temperature range had been established, pressed pellets were sintered 

at 3 different temperatures: 1200℃, 1250℃, 1300℃ for different times. Relative bulk density of 

samples under each condition was determined with 4-5 repeats. Table 2 lists all the conditions 

were used to treat pressed pellets. 

Table 2: Heat treatment parameters used for the sintering of pressed pellets 

         0.5h 1h 2h 5h 

1200℃     
1250℃     

1300℃     
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The high calcium content pellets were prepared by infiltrating Ca into partial sintered 

pellets. Calcium nitrate tetrahydrate (Ca(NO3)24H2O,Alfa Aesar, England) was used as a source 

of calcium. Dissolved by water, solutions contain Ca(NO3)24H2O with Ca2+ concentration of 

0mol/L, 1mol/L, 2mol/L were prepared. Partial sintered pellets were put into these solutions and 

evacuated to remove air from the pores in the pellets. After 24 hours, the pellets were taken out 

from the calcium nitrate solution and immersed in ammonium hydroxide solution with pH=12-

13 for 30 minutes to form Ca(OH)2 insitu in the pores and on the external surfaces of the pellet. 

Then the pellets were pre-fired at 900℃ in order to crystallize the CaO in the infiltrated pellets. 

By now, the pellets had higher ratio of Ca/P than pure β-TCP(Ca/P=1.5). 

Similarly with un-infiltrated pellets, infiltrated pellets were then sintered at temperature 

of 1200℃, 1250℃, and 1300℃ for 2 hours to investigate the influence of sintering temperature on 

infiltrated pellets. The heat rate was 5OC/min while cooling rate was 10OC/min. The control 

group (infiltrated with 0mol/L) samples were made in the same processing steps except for 

infiltration. 

4.1.3 High calcium content β-TCP foam 

The foam of β-TCP were made by emulsion method and infiltrated to obtain high calcium 

content ceramic foam by an emulsion based direct foaming method. Ammonium 

polymethacrylate polyelectrolyte dispersant (Darvan C,RT Vanderbilt Co.) was added to 

deionized water, with pH=5.5 adjusted by HCl solution. Then the β-TCP powder was added to 

the water gradually while the suspension was being slowly blended. After all the powder was 

added, the blending speed was raised to 2500RPM and continued for 20 minutes to realize a fully 

dispersed suspension. After that, a cationic surfactant (benzothonium chloride, sigma) was used 
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added and mixed at 2500RPM for 2 minutes to stabilized the following foaming process. Finally, 

10% volume of heptane was added and mixed at high speed for 2 minutes. The recipe for making 

the foams is listed in table 3. 

Table 3: The recipe for making porous β-TCP foam 

Volume% of β-TCP 36% 

Mass of β-TCP 12g 

Darvan C 3.48ml 

Deionized water 3.47ml 

Alkane 1.2ml 

Benzothonium Chloride 0.0883g 

Since humidity is a major parameter determining the foam expansion, the final emulsion 

was poured into a paper cup mold and placed in an incubator with a humidity of 65% for 

approximately an hour and the suspension was allowed to foam. The humidity was decreased 

after 1 hour to nearly 35% until the foam fully dried without collapsing, which usually took 24 

hours. The dried emulsion, with the paper cup mold, was then fired in furnace at 900OC with a 

heating rate of 5OC/min and a cooling rate of 10OC/min. 

To make infiltrated foams, the foams firstly partial sintered at 1100OC for an hour to 

obtain a suitable strength for infiltration. The infiltration process is also similar to the process 

applied to the pellets: after infiltrated with Ca2+ concentration of 0,1, and 2 mol/L, the foams 

were immersed in ammonia hydroxide with pH=12-13 and then pre-firing at 900OC.  Finally, the 

foams are sintered at a relatively high density at 1200OC for 2 hours with a heating rate of 

5OC/min and a cooling rate of 10OC/min.  
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4.2 CHRACTERIZATION METHOD 

4.2.1 Relative bulk density measurements 

The relative bulk density was measured based on the Archimedes' principle that the upward 

buoyant force is equal to the weight of the fluid that the immersed body displaces. The 

procedures were described as below.  

After taking out from the furnace, the mass of the sintered pellets (4-5 repeats) was 

immediately measured as Ma. The pellets were placed in beaker and immersed in water, Along 

with the beaker, they were put into a container, which was then evacuated to remove air from the 

pellets using an air pump for 30 minutes. The pellets were immersed for 24 hours in order that all 

air in the pellets was removed. The beaker was taken out from the container, and the mass of 

pellets when immersing in water was measured as Mb. 

Then the pellets were taken out from the beaker. The surface of the pellets was gently 

wiped using lab tissue, to remove excess water attached on the surface while preventing the 

water actually inside the pellets from being removed. The mass of each pellet was measured 

afterwards as Mc 

According to Archimedes' principle, 

    Fbuoyancy=ρwatergV=ρwatergMa/ρTCP=Mcg-Mbg 

    ρTCP=ρwaterMa/( Mc-Mb)The true density of β-TCP used is 3.07g/cm3 

The relative bulk density was then calculated by ρ=ρTCP/ρtrue. 
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4.2.2 XRD analysis 

For the samples without infiltration, both the surface and cross-section of the pellets sintered at 

different temperature were scanned by x-ray to identify potential second phase such as α-TCP. 

The scanning angle ranges from 20°<2θ<80° according to the standard pattern of α-TCP and β-

TCP as shown in figure 12 (a), (b). The peaks used to identify α-TCP are the main peak 

(2θ=35.80°) and several low density peaks (26°<2θ<29°), as marked in figure 12 (b). Noticing 

that no peaks of α-TCP appear above 2θ=50°, more detailed scan were achieved, by narrowing 

down the range to 20°<2θ<50° and increasing scanning time to obtain more accurate peak 

pattern. 

For the infiltrated pellets, as well as scanning the sintered surface and cross-section of the 

samples, the pellets were ground into powder and scanned to obtain more average analysis. 

Several possible second phases, including CaO, Ca(OH)2, CaCO3, and HA might exist or co-exist 

in infiltrated pellets after sintering. The overall name of all these second phases (not including α-

TCP) is termed as “Ca-rich phases. Due to the fact that α-TCP might be formed in the infiltrated 

pellets after sintering, the characterized peaks for the Ca-rich phases should not overlap with the 

peaks of either the β-TCP or α-TCP. By comparing those standard pattern as shown in figure 12 

(a), (b), (c), (d), (e), (f) the peaks identifying each phases were found except for CaO: 

Ca(OH)2: 2θ=33.34°, and 2θ=20.82°; CaCO3: 2θ=33.89°; HA: 2θ=37.16. 

The diffraction pattern of CaO shows that only few characterized peaks existing for CaO 

and they are overlapped with the peaks of β-TCP or α-TCP, which makes it hard to identify CaO 

phase. 

Based on the study of the standard diffraction pattern, the scanning angle range for 

infiltrated pellets were set to be from 2θ=15° to 2θ=45°. 
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Figure 12: The standard X-ray diffraction pattern of (a) β-TCP, (b) α-TCP, (c) Ca(OH)2, 
(d)CaCO3, (e)CaO, (f)Hydroxyapatite 

 

(d) 

(e) 

(f) 
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4.2.3 SEM observation 

Scanning electron microscopy analysis was done on the surface and cross-section of β-TCP 

pellets treated under different infiltration and sintering conditions, in order to investigate the 

influence of sintering parameter and calcium infiltration on them. These samples prepared by 

impregnating into low viscosity resin and oil-polished by the process shown in table 4. 

Table 4: Procedures of preparing SEM samples 

Steps Diamonds sized/μm Loading/lb Speed/rpm Media 

1 45 18 60 Water 

2 30 18 60 Water 

3 15 17 70 Polish oil and paste 

4 6 16 50 Polish oil and paste 

5 1 16 50 Polish oil and paste 

After polishing, the samples are sonicated in alcohol to remove the impurities, such as oil or 

paste, without causing any defects on the surface. Furthermore, a control group of infiltrated 

pellets were prepared by ultra-sonicating in water for 5 minutes to create defects introduced by 

the Ca-rich phases, since CaO, CaCO3 and Ca(OH)2 are much more soluble in water than TCP. 

Finally, all samples were coated with palladium using Cressington sputter coater/108auto and 

observed in Joel 6610-LV under 15kV or 20 kV. 

The foams subjected to solubility testing (which will be discussed in the following 

section) were also observed in SEM to investigate the microstructure and dissolution behavior 

with different immersion times and different concentration of infiltrated calcium. 
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4.3 SOLUBILITY PROPERTY EXPERIMENT 

Three groups of infiltrated foams with 0mol/L, 1mol/L, 2mol/L Ca2+ infiltration were prepared 

as the procedures described in 4.1.3. Afterwards, they were placed separately in sealed tubes 

which contained 25ml Tris-buffer Saline (TBS). Seven time points were set to each group, listed 

in table 5, and one foam from each group is removed at every time point. After the removed 

foams were fully dried, they were coated with palladium and observed in SEM.  

Table 5: Time points for each group under infiltration process with different Ca concentration 

 0.5hr 1 hr 1day 3days 1 week 2 weeks 4 weeks 

0mol/L        

1mol/L        

2mol/L        
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5.0  RESULTS AND DISCUSSION 

5.1 SINTERING BEHAVIOR OF Β-TCP PELLETS 

Previous studies have shown that the powder preparation method, the ratio of Ca/P, and the 

addition of substituted ion can significantly affect the sintering behavior of β-TCP.182,183,184 

Sintering behavior curves 

Figure 13 shows the relative density of pressed β-TCP pellets sintered at 1000°C 1050 

°C, 1100 °C, 1150 °C, 1200 °C, 1250 °C, 1300°C for 1 hour, using a heating rate of 5°C/min and 

a cooling rate of 10°C/min. As can be seen from the figure 13, the level of the densification 

increases gradually from 1000°C to 1300°C. However, the slope of the curve suggests that the 

inflection occurs at approximately 1250°C when sintered for 1 hour. The highest relative density 

obtained after 1 hour of sintering was 88.5% and the TCP never reached final stage sintering 

(92%). This result is thought to be due to the disruptive volume change on the β-TCP to α-TCP 

transformation at sintering temperatures of 1250 °C and above, since the density of α-

TCP(2.87g/cm3 is lower than the density of β-TCP(3.07g/cm3. The shape of the curve in figure 

13 is similar to the sintering curve reported in Hyun-Seung Ryu’s paper.158 Main difference is 

that the inflection occurs at 1150 °C in this previous report, while at 1250 °C in the curve 

showed here. The difference in the sinterability of the powders may be responsible for the 

different observations but the inability to reach high sintered density was a common observation 
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in this study and the study of Hyun-Seung Ryu et al. Furthermore, for the purposes of the 

consequent infiltration in this work, the relative density of pellets sintered at 1100°C for 1h was 

approximately 64%, which was considered a suitable density for infiltration because of the large 

fraction of porosity and the fact that all the pores remain connected to the surface. So the partial 

sintering conditions for the powders set to be at 1100°C for 1h. 

 

Figure 13: The plot of relative density vs temperature for β-TCP pellets without infiltration 

The relative density of sintered pellets under 12 different heat treatment conditions were 

measured, and its mean values and standard deviations were listed in table 6. Figure 14 integrates 

the results in the table 4 into 3 curves to show the trends and differences more directly. It is well 

known that, for most ceramics, the relative density increases with log (sintering time) until fully 

densified. With this in mind the results are discussed below. 

The trend of the relative density of pellets sintered at 1200°C shows the expected trend 

with time. The highest relative density was only 80% at this temperature.  The trend suggests that 
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little or no α-TCP phase formed was formed such that the sintering was unaffected. The curve of 

the pellets sintered at 1250°C undergoes a slight decrease from 87.5% at 0.5h to 85% at 1h and 

then increase to 86% at 2 hours and 89% at 5 hours. The initial decrease is unexpected, but might 

be caused by the formation of α-TCP. Since that the standard deviation of relative density for the 

sample sintered at 1250°C, 1hr) is about 3%, the decrease is assumed to be caused by variations 

between the samples repeats and the curve may have a slowly increasing trajectory limited to 

approximately 90% by slow sintering kinetics in this density range, little α-phase formation is 

thought to have occurred at this temperature. In contrast, sintering behavior of pellets sintered at 

1300°C exhibits opposite trend with a relatively high density of 89% after 0.5 hours and a 

gradual decrease to 85% at 5 hours. Considering the standard deviations, the relative density 

remains unchanged at this temperature or decreases slightly at longer sintering times.  Again 

high density was not achieved, perhaps due to the transformation of β-TCP to α-TCP that was 

shown to occur in the pellets sintered at 1300°C. The highest relative density reached is 89.3%, 

which is still not high enough to be considered as final stage densification. 

Table 6: The mean values and standard deviations of the tested relative densities 

 0.5h 1h 2h 5h 

Mean SD Mean SD Mean SD Mean SD 

1200°C 69.5% 0.0064 72.4% 0.0029 74.6% 0.0039 80.4% 0.0085 

1250°C 87.5% 0.0073 84.8% 0.0357 86.4% 0.0063 89.3% 0.0141 

1300°C 89.0% 0.0133 88.5% 0.0141 86.1% 0.0040 84.8% 0.0355 
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Figure 14: The curves of relative density vs lg (t) at 3 different temperature 

5.1.1 SEM observation 

Figure 15 (a), (b), (c) displays the morphology of the surface of the pellets sintered at 1300°C for 

1h, 2h, and 5h. It is can be seen that the morphology of the surface of the pellets undergoes 

significant changes along with time. The pores between the TCP grains coarsened during 

sintering with increasing sintering time. This would explain why the sintered density does not 

increase above 89%, the pore coarsening process produces fewer more widely spaced pores 

thereby increasing the diffusion distance and slowing the sintering process.  The reason for the 

pore coarsening is unclear.  It may be caused by coarsening of the grain structure during 

sintering or may be associated with the phase transformation from β-TCP to α-TCP if the α-

phase shows faster coarsening. Similar changes of morphology are also found between pellets 

sintered at different temperature for the same time. As can been seen in figure 15 (d), (e), (f), the 
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higher the sintering temperature, the larger the pores that created by the process of sintering. In 

summary, the results above demonstrates that the relative density of pellets sintered at 1200°C is 

lower than those at 1250°C and 1300°C as expected but it undergoes the expected increase in 

density on sintering.  At the higher temperatures the pore structure coarsens considerably and 

limits the density to less than 90%.  It is now necessary to determine the phase distribution to see 

if the pore coarsening correlates with the formation of α-TCP.  
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Figure 15: SEM image of the surface of pellets sintered at 1300°C for (a)1h, (b)2h, (c)5h and 

pellets sintered for 2 hours at (d)1200°C, (e)1250°C, and (f)1300°C 

(d) 

(c) 

(e) 

(f) 

(b) 

(a) 
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5.1.2 XRD analysis 

To identify the α-TCP phase in the samples, the x-ray diffraction patterns of the sintered pellets 

at different temperature (1200°C, 1250°C, 1300°C) for 2 hours were studied. Due to strong 

relationship between the crystals structures and the numerous reflections observed for β-TCP and 

α-TCP, most of their peak overlap. Previous studies often used the main peak of α-TCP 

(2θ=35.8°) and several other peaks with relatively low intensity (range from 25°<2θ<29°) to 

qualitatively determine the relative amounts of α-TCP and β-TCP. The diffraction patterns of 

each pellet sintered at different temperature are nearly the same, and it is found difficult to 

identify α-TCP, even in the diffraction pattern of the pellet sintered at 1300°C. Amplified 

pictures of the pattern derived from these pellets, as is shown in figure 16, demonstrates that the 

peaks to identify α-TCP (green lines) were not present in the pattern. The main peak of α-

TCP(2θ=35.8°) does not appear to contribute to the nearby peak of β-TCP and the peaks ranging 

from 26° to 29° do not appear either.  

These results are contradict to the expected transformation to α-TCP when sintered above 

a temperature of 1125°C according to P2O5-CaO diagram and the previous report by Hyun-

Seung Ryu et al. The potential reason for this might be a very low content of α-TCP was formed 

in this study, so that the x-ray signal is not strong enough to differentiate the nearby overlapping 

peaks, noticing that the main peak of α-TCP(2θ=35.8°) is close to the second highest peak of β-

TCP(2θ=36.1). Also, considering the fact that the surface of the pellets is not as flat as a polished 

surface and might cause high noise to signal ratio at lower angle, including the minor α-phase 

peaks from 25°<2θ<29°. 
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Figure 16: Diffraction patterns of the surface of pellets without Ca infiltration sintered for 2 
hours at (a)1200°C, (b)1250°C and (c)1300°C 

Therefore, the signal count was improved by increasing the scanning time and narrowing 

the step size, in order to obtain more accurate diffraction pattern of pellets sintered at each 

temperature. However, the evidence for the existence of α-TCP has not yet to be found in the un-

infiltrated pellets sintered at any of temperature (1200°C, 1250°C, and 1300°C). The diffraction 

pattern of the pellet sintered at 1300°C with a more detailed scan is shown in figure 18. Still, the 

(a) 

(b) 

(c) 
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α-TCP is not well identified, for the peaks of α-TCP (green lines) are not showed up in the 

pattern. The diffraction patterns of pellets sintered at 1200°C and 1250°C by more detailed scan 

were obtained but are not shown here since they are similar to the results shown in figure 17. 

    

Figure 17: Detailed scan of surface of pellet without Ca infiltration sintered at 1300°C for 2h 

However, compared to diffraction pattern of pellets sintered at 1300°C showed in figure 

16 (c), the peak at 2θ=36° derived from the higher resolution scan pattern does shift to the 

position of the main peak of α-TCP (2θ=35.8°), which can be regarded as a possible evidence for 

the existence of α-TCP, suggesting that, at least, very small amount of α-TCP might exist. The 

shift may also be caused by the exact positioning of the sample surface in the beam and so there 

is no evidence of α-TCP in the un-infiltrated pellets. According to the paper of R.G. Carrodeguas 

et al,185 it is also possible that any α−TCP formed during sintering transformed back to β-TCP on 

cooling from the sintering temperature due to a low cooling rate. 

Additionally, the cross-section of the pellets sintered at each temperature were x-rayed as 

well, since there might be a difference in proportion of each phases at surface or at interior. 

However the diffraction pattern obtained shows no differences from the pattern obtained from 

the sintered surface, as can be seen in figure 18.The diffraction patterns of pellets sintered at 

1200°C and 1250°C but they show similar results. 
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Figure 18: Diffraction patterns of cross-section of the pellet without Ca infiltration sintered at 
1300°C for 2 hours 

In summary, the transformation from β-TCP to α-TCP may be the cause of the pore 

coarsening observed at the high sintering temperatures and many researches have same 

conclusion.158, 159,186 However, this study cannot confirm the formation of α-TCP at higher 

sintering temperatures that is predicted by phase diagram and the conversion to α-TCP is very 

small under the experimental conditions used and it is difficult to be detected by XRD. 

Interestingly, another report, by M. Bohner et al187 stated that little conversion from β-TCP to α-

TCP were found in β-TCP samples with a slightly lower ration of Ca/P (1.47<1.50) when it is 

sintered at 1300°C for 2 hours. These findings are very similar to the data collected here. The 

material used here could be calcium deficient.   

According to the P2O5-CaO phase diagram shown in figure 19, in Ca-deficient TCP will 

form a liquid phase when sintered at temperature above 1288°C, while the melting point for 

calcium phosphate with a ratio of Ca/P=1.5 is 1470°C and in Ca-rich region, liquid phase will 

not appear until the sintering temperature reach 1578°C. To clarification, TCP is a line 

compound, Ca-deficient TCP means TCP containing a second phase with lower Ca/P ratio (<1.5) 

and Ca-rich means TCP containing a second phase with higher Ca/P ratio (>1.5). There is no 

pure TCP that is Ca-deficient or Ca-rich. From the observation of macroscopic observations of 
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the pellets produced in this study, as shown in figure 20 the pellets sintered at 1300°C are appear 

to have distorted under gravity which may indicate melting. Pellets sintered at lower temperature 

do not have such change in shape. Returning to the SEM images shown in figure 15, the 

observed pore coarsening at the longer sintering times might be associated with the formation of 

a small amount of liquid phase that is not detectable by XRD analysis. To examine this further 

TCP pellets were infiltrated with calcium to increase the Ca/P ratio and thereby avoid the 

possible formation of a liquid phase if the TCP is calcium deficient. These experiments will be 

described in the next section.   

The powder used for this dissertation is a β-TCP product with a purity of 96%, and other 

amorphous calcium phosphate with lower ratio of Ca/P might result from powder synthesis and 

result in calcium deficient powder. 

 

Figure 19: A detailed part of P2O5-CaO phase diagram 
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Figure 20: Pellets sintered at 1300°C (Right) and 1250°C (Left) from different direction 

5.2 INFILTRATION PROCESSING 

After treated in ammonium hydroxide solution and sintering, the introduced calcium might exist 

in air at room temperature as in the form of CaO or Ca(OH)2. CaCO3 also has a possibility of 

existing in the final products, due to the reaction between CO2 in the air and Ca(OH)2. Therefore 

several calcium rich phases could be present.  Additionally, TCP would be expected to react with 

CaO at the sintering temperatures used to form hydroxyapatite (HA). All these phases will be 

termed as Ca rich phases in the following discussion.  

5.2.1 SEM observation 

Since the possible second phases, including CaO or Ca(OH)2 and CaCO3, have a much higher 

solubility in water than β-TCP and α-TCP, water-treating the SEM samples would be an 

effective method leach these phases from polished surface and quantify the resultant damage. 

The SEM images of the surface of the 2mol/L infiltrated pellets sintered at 1200°C, 1250°C and 

1200°C are collected in figure 21, both with and without exposure to water during polishing.  

Comparing the SEM images of the pellets sintered at 1200°C, there is little difference and 

no apparent defects were created by water treatment. Careful observation of the images of 
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samples sintered at 1200OC suggested that there may be some small defects in the water treated 

pellets. This might indicates that, at least, particles at the surface are removed by the water 

treatment. For the pellets sintered at 1250°C and 1300°C, the water-treated samples show 

significant difference in contrast to the oil-polished (no water treatment) samples. Defects were 

created after water treatment as is shown in figure 21(d) and (f). However, the size of these 

defects are large, and therefore it is likely that the defects might not only a result from individual 

grains of Ca rich phases (CaO, Ca(OH)2, or CaCO3), but also of removal of adjacent TCP crystal 

that are coordinated to Ca(CaO, Ca(OH)2, or CaCO3) particles.  

To make it more certain the defects were caused by infiltrated Ca (CaO, Ca (OH)2, or 

CaCO3) phases, the cross-section of the infiltrated pellets were observed under SEM. It is 

expected that the infiltrated Ca (CaO, Ca(OH)2, or CaCO3) phase has a gradient with higher 

concentration on or near the infiltrated surface and lower concentrations in the interior. Figure 22 

shows the images of the cross-section of the infiltrated pellets sintered at 1300°C. Figure 22(a), 

(b), and (c) are taken from top surface, interior, and bottom surface, respectively. The defects 

(white contrast) exists throughout the cross-section of the sample but are more concentrated near 

the infiltrated surface. In other words, a gradient does exist as expected. However, the size of the 

white defects changes and looks different from the ones in the images taken from the surface of 

the infiltrated pellets directly. This may be due to the constrained growth of the crystals for the 

calcium rich phases in the interior of the pellets.  
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Figure 21: SEM Images of infiltrated pellets sintered at (a)1200°C without water treated (oil 

polished), (b)1200°C with water treated, (c)1250°C without water treated, (d)1250°C with water 
treated, (e)1300°C without water treated, and (f)1300°C with water treated 

  

(c) 

(b) 

(a) (d) 

(e) 

(f) 
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Figure 22: SEM images of the cross-section of the infiltrated pellets sintered at 1300°C for 2hrs 

     

(c) 

(b) 

(a) 
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Finally, the images of oil-polished infiltrated pellets (Figure 21(a), (c), (e)) and the 

images of un-infiltrated pellets (Figure 15(d), (e), (f)) were compared (as shown in figure 23). 

They were attached below for convenience. For pellets sintered at 1200°C, the morphology of 

the microstructures looks the same with or without Ca infiltration. However, for the pellets 

sintered at 1250°C and 1300°C, the morphology of the infiltrated one seems less coarse and 

looks similar to the pellets sintered at lower temperature (1200°C), while significant coarsening 

happened in the un-infiltrated ones when sintered at 1250°C or 1300°C. As discussed in 5.1, this 

phenomenon could be explained by that melting happened in the un-infiltrated pellets, while this 

does not happen in the infiltrated pellets, since the main difference between infiltrated pellets and 

un-infiltrated pellets is the ratio of Ca/P.  
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Figure 23: SEM images of the surface of pellets without infiltration sintered for 2 hours at 
(a)1200°C, (b)1250°C, (c)1300°C and pellets sintered for 2 hours at (d)1200°C without water 

treated, (e)1250°C without water treated, and (f)1300°C without water treated 
 

(c) 

(b) 

(d) 

(e) 

(f) 

(a) 
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5.2.2 XRD analysis 

Diffraction patterns of the infiltrated pellets surface showed no obvious evidence for all of the 

calcium rich phases. Only the diffraction pattern of the pellet sintered at 1300°C is shown below, 

because the diffraction patterns of the pellets sintered at 1200°C and 1250°C are similar to that 

of the pellets sintered at 1300°C and results obtained are the same.  

Figure 24(a) demonstrates that there are only few peaks of CaO (light blue lines) and they 

are all overlapped with the peaks of β-TCP, making it very difficult to identify CaO from β-TCP. 

Figure 24(b) displays that the peak 2θ=33.89° (red line) for CaCO3 is not present at fractions 

above the detection limit. As is can be seen in Figure 24(c) and figure 24(d), the peak 2θ=33.34° 

and 2θ=20.82° (green lines) also fail to show up, providing no evidence for Ca(OH)2 .Finally, the 

formation of HA is not identified according to the absence of the peak at 2θ=37.16° (black 

lines)as shown in figure 24(e). 
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Figure 24: Amplified images of diffraction patterns of the infiltrated pellets sintered at 1300°C in 
a specified angle range for (a) CaO, (b) CaCO3 (c) (d)Ca(OH)2, and (e)HA detection 

(c) 

(b) 

(d) 

(a) 

(e) 
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Figure 25: Amplified images of diffraction pattern of infiltrated pellet sintered at 1300°C in a 
specified angel range to identify α-TCP 

Interestingly, the existence of α-TCP was detected according to the diffraction pattern of 

the infiltrated pellets sintered at 1300°C. As it is demonstrated in figure 25, the main peak of α-

TCP (2θ=35.8°, green line) is present and well-distinguished from the peak of β-TCP. 

Additionally, weaker peaks ranging from 26°<2θ<29° were observed also. The identification of 

α-TCP was not found in the diffraction patterns of the pellet, which has the same heat treatment 

but without Ca infiltration. The scan time and scan step size were also the same. The quantity of 

α-TCP is estimated to be 11% according to the analysis software. This finding suggests that 

increase the content of calcium might be able to stabilize α-TCP phase or stimulate the 

transformation from β-TCP to α-TCP. 

In the research of Miranda,188 it is reported that no clear evidence shows the 

transformation from β-TCP to α-TCP in Ca-deficient β-TCP (ratio of Ca/P<1.5) sintered at 

1300°C for 2 hours, which is consistent with the results presented in 5.1. It is also reported by 

Miranda et al that Ca-rich β-TCP (ratio of Ca/P>1.5) can transform completely to α-TCP at 

1500°C for 2 hours suggested the α-phase is stabilized.  

Similar to α-TCP in pellets without infiltration, the small amount of the Ca phases 

introduced by infiltration is one of the barriers to identify them. So, one more detailed XRD scan 

 65 



was conducted with an even longer scanning time and even more narrowed step size, in order to 

identify Ca rich phases. The sample used for this scan is the powder ground from the infiltrated 

pellet sintered at 1300 °C. Since the previous XRD analysis focuses on the surface of the pellets, 

the diffraction patterns obtained only represent the phase composition on the surface. In contrast, 

XRD on the powder would result in a diffraction pattern reflecting the average phase 

composition of the whole pellet. As expected, some of the Ca phases were detected. 

Figure 26(a) and (b) demonstrates that the peaks of Ca(OH)2(2θ=33.34°, and 2θ=20.82°, 

green lines) were found in the diffraction patterns, although the intensity of the peaks is really 

low. The peak showed in figure 26(b) (green line) also can be an indication of CaCO3, as it is 

displayed in figure 26(c) (green line), noticing that the peak of Ca(OH)2(2θ=33.34°) is quite 

close to the peak of CaCO3: (2θ=33.89°). Since the peak at 2θ=20.82° is the main peak of the 

Ca(OH)2, the intensity of peak at 2θ=20.82° should be higher than the peak at 2θ=33.34° if only 

Ca(OH)2 exists, which is contrary to the relative intensities of the peaks(green lines) showed in 

figure 26(a) and (b). Therefore, Ca(OH)2 and CaCO3 are more likely to be co-existing. 

Furthermore, no evidence for the existence of HA were found as it is shown in figure 

26(d). So it is suggested that the reaction of CaO+TCP=HA were hardly involved in sintering of 

the infiltrated samples. It is much more likely that Ca went into solution in TCP and stabilized 

the α-phase leaving only minor amounts of calcium rich phases. 
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Figure 26: Amplified images of the diffraction pattern of the powder ground from 
infiltrated pellets sintered at 1300°C 

5.3 INFILTRATED FOAMS 

TCP foams were processed using an emulsion direct foaming method and some of the foams 

were partially sintered and infiltrated with different concentration of Ca (0mol/L, 1mol/L, and 

2mol/L) in the same way as the pellets. The foams were then immersed in water for different 

times up to 4 weeks. Figure 27 shows low magnification SEM images of foams with different 

concentration of infiltrated Ca at different immersion time points. The defects circled on the 

images of foam with 2mol/L infiltration at time point of 4 weeks (Figure 27(i)) might be the 

defects caused by the dissolution of introduced Ca rich phase. However, similar defects were 

(c) 

(b) 

(d) 

(a) 
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found also in all other foams with or without infiltration, suggesting that there is no significant 

difference. Also, there is not an effective method to quantify the number of these kinds of defects 

in each foam because stereological techniques cannot be accurately applied to curved surfaces. 

Since the defects are quite large and have smooth surfaces so they could have been formed 

during the foaming processing instead of the dissolution of infiltrated of Ca phase.  

Other smaller defects were also found in both in foams with or without infiltration. As is 

shown in the circle in figure 28. However, they are also found in un-infiltrated pellets and are 

difficult to quantify, so the hypothesis that Ca rich phases will result from infiltration and 

preferentially dissolve are not supported by the results of this study. It is more likely that the 

calcium increases the calcium to phosphorous ratio of the TCP pellets and foams and thereby 

stabilizes the α-phase. 
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Figure 27: SEM images of foams with 0mol/L Ca infiltrated: (a)0.5 hours, (b)3 days, and (c)29 
days; with 1mol/L Ca infiltrated: (d)0.5 hours, (e)3 days, and (f)29 days; with 2mol/L Ca 

infiltrated: (g)0.5 hours, (h)3 days, and (i)29 days 

    

Figure 28: SEM of images of foams (a)with 0mol/L Ca infiltrated after 3 days immersion, 
(b)with 2mol/L Ca infiltrated after 3 days immersion 

 

(a) (g) (d) 

(b) (e) (h) 

(i) (f) (c) 

(b) (a) 

 69 



6.0  CONCLUSION 

The sintering behavior of β-TCP was investigated and compared with calcium infiltrated samples.  

1. β-TCP was unable to reach high sintered density in pellets in the temperature range 

1200°C to 1300°C. Microstructural investigation suggest that this was due to coarsening 

of the microstructure at the higher temperatures that increases the effective diffusion 

distance for densification.  High temperature sintering resulted in evidence of melting that 

may suggest the β-TCP powder used was calcium deficient. 

2. Infiltration of amount up to 2mol/L of calcium rich salts results in the stabilization of α-

TCP in pellets sintered at higher temperature rather than the formation of calcium rich 

phases. Water treatment of the infiltrated samples did produce defects but their origin is 

unclear. No evidence of hydroxyapatite formation was observed in the sintered samples. 

3. β-TCP foams were successfully processed using a emulsion based direct foaming method.  

Immersion of the foams for times up to 4 weeks showed no evidence of defects produced 

by preferential dissolution of second phases. 
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7.0  FUTURE WORK 

The following future experiments are recommended 

1. Quantitative measurement of the calcium concentration in buffered saline should be 

measured after exposure to infiltrated foams and un-infiltrated foams over a period of 4 

weeks.  Additionally, the mechanical properties and fragmentation of the foams should be 

quantified. 

2. Attempts should be made to sinter calcium rich TCP at lower temperature to avoid the 

coarsening and thereby reach higher density.  The effect of other susbstitutional elements 

on densification should be studied quantitatively  
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