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ABSTRACT 

 

Prediction of fetal DNA allows diagnosing known/passed mutations before child’s birth. Public 

health significance of such early testing is that it can reassure parents who have negative results 

and offers timely information for those with abnormal results. 

My dissertation work presents a new approach of reconstructing fetal DNA from 

maternal plasma. The method works because plasma from pregnant women, which contains 

“cell-free DNA”, has been noted to contain fetal DNA as well as maternal DNA. I developed and 

tested a workflow that implements my suggested approach. The workflow was broken into 

several parts, each fully documented in this dissertation. Each step we have taken was supported 

with explanation of the logic driving the step. The approach works through the examination of 

sequencing data sets generated by short-read sequencing (also known as next-generation 

sequencing), by calling variation (single nucleotide polymorphisms, or SNPs) within those 

samples vis-à-vis a reference sequence. I developed and introduced a series of quality control 

criteria applied to SNPs to improve overall prediction. A novel single individual haplotyping 

method was developed and applied to haplotype the parental samples. The obtained parental 

haplotypes were incorporated into the workflow and along with parental genotypes were used to 
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 v 

find transmitted haplotypes in the maternal plasma. The predicted haplotypes were then aligned 

to each other to obtain phased SNPs. For evaluation, I compared fetal SNPs predicted by my 

method against control fetal SNPs (from sequencing of fetal DNA). Overall prediction power is 

discussed. Possible ways of improvements that should affect the overall prediction are also 

described. 
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1.0  INTRODUCTION 

1.1 BACKGROUND AND SIGNIFICANCE 

The current dissertation work is based on a phenomenon known as “cell-free DNA”. During a 

pregnancy, cell-free DNA from the fetus can be found in the maternal blood plasma, such that 

DNA prepared from maternal blood plasma will contain both fetal and maternal DNAs 1-5 In 

theory, knowing the DNA sequence of the parents (only mother or both parents), one could 

predict fetal DNA sequence from the cell-free DNA of the plasma. This method is very unique. 

First of all it allows prediction of fetal DNA sequence during the early stages of the pregnancy 

and to diagnose genetic abnormalities if any exist. Secondly, cell-free fetal DNA testing is 

noninvasive because it requires only a maternal blood sample. It means that, compared to 

invasive methods like chorionic villus sampling (CVS) or amniocentesis, the method does not 

increase the risk of miscarriage. Thirdly, it can be used starting as early as the 9-10th week of 

pregnancy, which is much earlier than conventional invasive methods mentioned. CVS and 

amniocentesis are usually done at 10-12 and 15-18 weeks, respectively 6. On the other hand 

predicting fetal DNA from cell-free DNA of the maternal plasma also has limitations, especially 

because it is fundamentally a prediction based on probability. The accuracy of the prediction 

depends on many factors, for example, the timing of the test. The concentration of fetal DNA in 

the maternal blood plasma increases throughout the pregnancy, which makes detecting fetal 
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DNA easier and then predicting the fetal DNA sequence more accurate as the pregnancy 

progresses. In the early stages of the pregnancy the concentration of fetal DNA in the mother’s 

blood plasma is very low. This means that, in order to make a valid prediction that can be 

utilized for counseling, one must balance the timing of the test vs. the accuracy of the 

information gathered – the longer one waits, the more accurate the prediction, but fewer options 

remain to manage the consequences of the obtained information. Furthermore, although the test 

can be performed using only mother’s blood sample, for better performance additional testing of 

paternal DNA samples is required, which increases the price of the test. When paternal DNA is 

not available for ethical or other reasons, it becomes difficult to predict the alleles inherited from 

the father. It is conceivable that, when technologies advance making genetic testing more precise 

and less expensive, the limitations mentioned above will become less relevant. 

Finally, the scale of the genetic polymorphism of interest is another factor that affects the 

accuracy. The bigger the DNA change we are looking for, the more exact the prediction we get. 

Consequently, predicting inherited chromosomal abnormalities like aneuploidies is 

straightforward1-3. This method is becoming very popular and is actively being integrated into 

clinical practice. Starting in 2011, at least 4 companies have offered clinical tests based on cell-

free fetal DNA to predict inherited aneuploidies of chromosomes 13, 18, and 21. The price for 

any one such test was arbitrary; it varied from $200 to $235. One of the companies claimed that 

during the year 2012 they performed 60,000 tests 7. 

We can also predict smaller changes such as single nucleotide polymorphisms (SNPs) 4 

as well as small insertions and deletions (indels). By looking for small differences in the 

coverage of tested alleles we can even identify (possibly) which allele was inherited from which 

parent. Next-generation sequencing methods are great in this regard in terms of their simplicity; 
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they give a faster and cheaper means of scanning broad regions of the genome with high 

sensitivity. However they suffer from some limitations that need to be worked on. For example 

because of the vast number of identified SNPs, the rate of finding false positive results due to 

random chance is also high. Increased level of significance and p-value adjustment for multiple 

testing may solve part of the issue; nevertheless it also decreases the sensitivity of the test. 

Furthermore, due to the inherited stochasticity of the experimental process used in sequencing 

technology, the number of times a specific SNP is sequenced (coverage, depth) may greatly vary, 

which may bias the prediction of inherited alleles. In order to increase accuracy, one could 

additionally use laboratory-based methods of whole genome haplotyping 8-10, however this 

would mean additional lab work. The idea of the cell-free DNA method is based on the fact that 

a child inherits only one haploid set of chromosomes from each parent. By generating haplotypes 

of the parents, we are then able to determine which parental haplotypes were passed to the child 

4. It means that we will be able to assign inheritance of the alleles as groups, but not individually. 

Analytically, there are multiple methods for analyzing maternal plasma sequence data. 

One method described by Christina Fan et al 11 starts with individual sequencing and whole 

genome haplotyping (Kitzman et al 9) of both parents. With that data in hand, it proceeds by 

determining which allele was passed on to the fetus at loci which are maternal-only heterozygous 

(i.e. loci where the mother is heterozygous, but the father is homozygous), and then doing the 

same prediction for paternal-only heterozygous sites (where the father is heterozygous, but the 

mother is homozygous). Using this information it determines the haplotypes that were passed on 

to the fetus. Next, the method will predict transmission at sites that are heterozygous for both 

parents for sites situated in the same haplotype blocks that are maternal-only or parental-only 

heterozygous sites (Figure 1). Finally, one can predict sites with apparent de novo mutations 
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(when the offspring appears heterozygous, while both parents are homozygous and are identical) 

4. 

 

 

Figure 1. Haplotype based prediction. 

 

Another method starts with whole genome haplotyping of both parents. Then they assess 

each SNP in every haplotype block and identify which allele was transmitted to the fetus. 

However the method does not assign inherited alleles for individual SNPs, but for whole 

haplotype block. It identifies the haplotype that has greater number of SNPs that support the 

inheritance pattern, and then corrects the rest of the SNPs within that haplotype block 12. 

Both methods depend on haplotype technologies. Haplotypes are constructed for parents 

and assumed to be the same for offspring. However haplotypes may change due to 

recombination and the SNPs within a haplotype after the breakpoint will be wrongly predicted. 

Another weakness of the approaches is that they omit any variants for which parental haplotypes 
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are not available. They also require ultra-deep sequencing of maternal plasma to enable practical 

detection of fetal de novo mutations due to low specificity. 

As mentioned above haplotype information is critical for fetal DNA prediction. Based on 

literature research there are several approaches to obtain haplotype information: (1) population 

genotype data; (2) population sequenced fragment data; and (3) single individual sequenced 

fragments data. We use later approach in current work to increase the accuracy of our prediction. 

Kitzman et al. introduced haplotype-resolved genome sequencing 9. They physically chop 

the whole genome and clone the pieces; combine them into pools so each contains approximately 

~3% physical coverage of the diploid human genome; sequence those and finally use maximum 

parsimony approach 13 to combine unphased variant calls with haploid genotype calls to 

assemble haplotype blocks. 

Lancia et al. introduced another method called individual SNP haplotype reconstruction 

14 that can be performed purely on sequenced fragments and does not require additional 

laboratory work as the method mentioned above. It can be described in a following way. The 

fragments obtained by DNA sequencing originate from two copies of a chromosome and based 

on the SNP values observed in the sequenced fragments we could sort them into two groups that 

represent two haplotypes (Figure 2). If we denote sequenced fragments as nodes and draw a 

connection between two nodes (fragments) only if they carry different alleles for a particular 

SNP, then haplotype reconstruction becomes simply solving a network problem, in particular 

constructing bipartite graphs, where nodes are divided into two sets and connections exist 

between nodes of different sets, but not within a set (Figure 3). In error-free scenario this task is 

a matter of computational time. However, due to the nature of the experiments in molecular 

biology there are always some errors that need to be corrected before your data become 
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consistent with the existence of two haplotypes. Then depending on optimization approach, the 

problem may turn into minimum fragment removal (MFR) 14, minimum SNP removal (MSR) 14, 

longest haplotype reconstruction (LHR) 14, and minimum error correction (MEC) 15. This process 

is computationally intensive and as soon as we allow gaps in the sequenced fragments the 

problem becomes considerably more complex. A fragment has a gap when the SNPs {i,i+1, … 

i+k} it covers do not have values, while SNPs {m, m+1 … i-1} and {i+k+1, i+k+2, … n} where 

m < i < n and ݇ א {0, 1, 2 … } does. The data I have in current study came from paired end 

sequencing, which means that fragments are sequenced from both ends and have some gap when 

those fragments do not connect. 

 

 

Figure 2. Single individual haplotyping. 
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Figure 3. Networking problem. 

 

Dynamic programming can be used to approach the problems 16-22. However does not 

allow to solve the four models effectively in general case, which is HP-hard (Non-deterministic 

Polynomial-time hard). Better performance can be obtained using heuristic algorithms 13, 23-29. 

In this current work, we will define a workflow for fast and accurate prediction of fetal 

DNA sequence from maternal plasma sequencing data. We will develop and apply a novel 

analytical method to understand sequence data from an 8 Mbp region from a chromosome 12, 

allowing us to predict the fetal genotypes from the maternal plasma sequence data. For 

confirmation, we also have available the sequence data from the father, from the mother (core 

blood) and from the fetus (CVS). We will use modern methods to obtain haplotype information 

using a computational approach and avoid additional lab work saving time and money spent on 

making the test. 
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1.2 PUBLIC HEALTH RELEVANCE 

Prediction of fetal DNA allows diagnosing known/passed abnormalities (mutations) before 

child’s birth. Earlier testing has many benefits. It can reassure parents who have negative results. 

For those with abnormal results it offers timely information to help them make difficult 

decisions. If they choose to continue a pregnancy, they will have additional time to prepare to 

deliver and care for their child. 

Our method is categorized as noninvasive, which is risk-free for miscarriage. 

Haplotyping improves overall prediction accuracy and obtaining haplotype information 

computationally improves the timing, which also affects the cost of the test. We suggest a new 

approach of haplotyping that is done without using lab assistance and thus results in a 

significantly reduced cost. 
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2.0  METHODS 

2.1 CREATING THE SNP DATABASE 

In current work we attempted to predict fetal genotypes from cell-free DNA in maternal plasma. 

For this purpose we assessed and sequenced DNA samples from both parents using their blood 

(excluding the plasma part) and obtained sequencing information from cell-free DNA in 

maternal plasma. The gestational age at which we got the mother’s blood was approximately 

~11.2 weeks. A month later we got cultured cells that were received from an amnio procedure 

and extracted pure fetal DNA, which then was used as a control for predicted genotypes. The 

karyotype for the baby was 46, XY. All of our sequencing data came from a hiseq2000. The 

sequencing data was from a sure select capture of an 8 Mbp region on chromosome 12 with the 

approximate coordinates at 22,456,231-30,651,071. 

We used GATK tools and followed the best practice 30 provided on their website to 

process sequencing data and produce a set of SNPs for all of the available DNA samples. In 

order to evaluate quality of the SNPs first we focused on SNPs that are available for whole trio, 

both parents and a child (fetus). By knowing genotypes of both parents and a child we were able 

to use a simple recombination rule to find troublesome SNPs, i.e. those that have several possible 

genotypes. Then we tried different filtering criteria to reduce the number of troublesome SNPs 

and used final cutoff values for quality control step. 
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Actual fetal DNA prediction was made based on positions of the maternal SNPs because 

DNA from plasma mainly consists of maternal DNA and we tried to develop method that does 

not rely on, but additionally improve accuracy when paternal DNA information is available. 

We did not genotype DNA samples from maternal plasma because general genotyping 

methods assume existence of two alleles for each SNP and they are distributed with allelic ratio 

around 50/50. However plasma contains DNA from two origins (maternal and fetal), 

consequently some SNP might have more than 2 alleles. The DNA proportion in the plasma is 

greatly shifted towards maternal DNA and half of the fetal DNA is inherited from mother, which 

further complicates variant discovery. For all SNPs in the database we searched directly 

sequencing data of maternal plasma and obtained allelic count and coverage of those positions. 

SNPs that had less than 20 sequencing fragments (coverage) in the plasma were excluded from 

further analysis. 

Knowing maternal genotypes and allelic distribution from the plasma we were able to 

find SNPs, discordant in these two samples. Assuming that majority of plasma DNA had 

maternal origin we should observe allelic distribution close to homozygous for any homozygous 

maternal SNPs and observe allelic distribution close to heterozygous for any heterozygous 

maternal SNPs. SNPs that in our opinion did not follow this logic were also excluded from 

further analysis. ,I� IHWDO� '1$� LQ� WKH� SODVPD� SUHVHQW� DV� İ� then the plasma should consist of 

maternal homozygous allele in 100-İ����LI�IHWXV�LV�KHWHUR]\JRXV��RU�����(if fetus is homozygous) 

percentages. Any maternal homozygous allele that had maternal homozygous allele frequency 

less than 70% in the plasma was excluded from the analysis. Likewise maternal heterozygous 

allele should have following percentages in the plasma 50-İ�2, 50, or 50+İ��. If major allele 

frequency was greater than 80% then that SNP was also excluded from the analysis. 
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The final step in our workflow was to reconstruct haplotypes for both parents (section 

2.2) and use this information in prediction of fetal DNA (section 2.3) 

2.2 HAPLOTYPE RECONSTRUCTION 

The normal individual has two copies of each chromosome. In every SNP we can be either 

homozygous, carrying the same allele, or heterozygous, carrying different alleles. Since 

homozygous SNPs do not carry information, necessary to distinguish between two haplotypes, 

we reconstructed haplotypes based on only heterozygous SNPs. In order to simplify formulation 

of the problem we replaced four-letter alphabet of the alleles {A, T, C, G} with binary notation, 

where 0 and 1 represented minor and major alleles respectively. With a new notation a SNP 

content of a chromosome become a string over the alphabet {0,1}. 

The basic framework for a SNP problem was introduced by Lancia et. al. 14, where he 

thought of a data as m×n matrix over the alphabet {0,1,-}, where each row corresponded to a 

fragment and each column corresponded to a SNP site. Then M[i,j] denoted the SNP allele of the 

ith fragment and jth SNP site. Whenever the allele was not available the M[i,j] = ‘-‘. All SNPs 

were sorted by positions from left to right and fragments were sorted by their starting positions 

from top to bottom. Using this data representation, we introduced the approach we have taken. 

The haplotype reconstruction was divided into two steps. The first step was to divide the 

initial SNP matrix into smaller matrices in a way that each smaller matrix represented a set of 

SNPs that were connected with fragments. In other words any two adjacent SNP within a smaller 

matrix were covered by at least one fragment. While between these sets of SNPs (smaller 
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matrices) the length of fragments were not enough to cover two adjacent SNPs and connection 

was disrupted. The step we were taking may be formulated as follows: 

Given two adjacent columns X = {x1, … xm} and Y = {y1, … ym}, where m is a number of 

fragments, ݔ௜ ௜ݕ ݀݊ܽ  א {0,1,െ}, and Dj is defined as formula (1) 

 

ܦ = σ ௠(௜ݕ,௜ݔ)݀
௜ୀଵ         (1) 

where 

(ݕ,ݔ)݀ = ൜1,    (ݕ ݎ݋ ݔ)  ് ᇱ െ Ԣ,
.݁ݏ݅ݓݎ݄݁ݐ݋    ,0     (2)  

 

For j = {2 …,n} we get a vector of numbers {D2, …, Dn}. If we cut the vector whenever 

Dj < p (where p is a minimum number of fragments, that cover two adjacent SNPs), then we 

receive a set of smaller vectors such as {Do, …, Do+k}, where k is a number of consecutive times 

Dj � p. If we divide the initial SNP matrix into smaller ones based on the rule introduced above, 

then the final matrices can be represented as M’l,k. Where l is a number of unique fragments that 

cover SNPs {so-1, …, so+k}. The reduced matrix will contain at least two SNPs and at least p 

fragments. In current work we used p=10. 

The second step of haplotype reconstruction approach was actually calculating haplotype 

blocks from reduced matrices. Every two SNPs can be combined in a way that gives four 

possible haplotypes {(0,0), (0,1), (1,0), (1,1)} or two pairs of complementary haplotypes {(0,0), 

(1,1)} and {(0,1), (1,0)}. If reduced SNP matrix contains k SNPs, then there are 2k-1 possible 

haplotype pairs (HPs). We calculated frequencies of all possible HPs and chose the most 

frequent HP for further analyses. The step we have taken to calculate frequencies of HPs can be 

formulated as follows. For each SNP pair there are four possible haplotypes or two 
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complementary haplotype pairs. H is proportion of fragments covering these two SNPs that 

supported a particular HP. 

�଴  =  σ݀(ݔ௜,ݕ௜) +  σ݀(1 െ ௜ݔ , 1 െ   (௜ݕ

�ଵ  =  σ݀(ݔ௜, 1 െ (௜ݕ + σ݀(1 െ ௜ݔ  ௜)    (3)ݕ,

where 

(ݕ,ݔ)݀  = ൜1,     ܲܪ  ݎ݈ܽݑܿ݅ݐݎܽ݌ ܽ ݏݐݎ݋݌݌ݑݏ ݕݔ
.݁ݏ݅ݓݎ݄݁ݐ݋    ,0    (4) 

 

where ݔ௜ ௜ݕ ݀݊ܽ  ݏ݁ݑ݈ܽݒ ܲܰܵ ݁ݎܽ  א {0,1}, i={1,…,l}, and l is a number of fragments 

covering SNPs x and y. Then a frequency of a particular HP would be: 

݂ = ς �௝௞
௝ୀଶ         (5) 

After calculating the frequencies of all possible HP we would get F = {f1, …, f2k-1}, where 

k is a number of SNPs covered in a reduced Matrix. Whatever HP has max(fi) was taken for 

further analyses. 

The majority of the haplotype blocks were error free and concordant with only one HP. 

As an example below we present a HP that covered 6 consecutive heterozygous SNPs and had 

been calculated from 430 fragments: 

 

haplo block length: 6 

number of reads: 430 

positions: 22465632 22465638 22465698 22465775 22465814 22466013 

1 ['GCCCCA', 'TGATTG', 1.0] 

 

Another good example was the following HPs that had been calculated from a reduced 

matrix with 10 consecutive heterozygous SNPs and 1115 fragments. As we can see due to errors 
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there were 8 HPs and all of them except one had very low frequencies. From this data it was 

obvious that HP ('TGCCGGTGGG', 'GAAAAACTAT') with frequency 0.986 had huge advantage over 

other HPs and could be considered to be the true haplotype. 

 

haplo block length: 10 

number of reads: 1115 

positions: 23037386 23037417 23037435 23037453 23037486 23037531 23037558 
23037587 23037607 23037623 

1 ['TGCCGGTGGG', 'GAAAAACTAT', 0.986] 

2 ['TGCAAACTAT', 'GAACGGTGGG', 0.006] 

3 ['TGAAAACTAT', 'GACCGGTGGG', 0.003] 

4 ['TGCCGGTTAT', 'GAAAAACGGG', 0.002] 

5 ['TGCCGGTGAT', 'GAAAAACTGG', 0.002] 

6 ['TGACGGTGGG', 'GACAAACTAT', 1.818e-05] 

7 ['TGCAAACGGG', 'GAACGGTTAT', 1.400e-05] 

8 ['TGCAAACTGG', 'GAACGGTGAT', 1.336e-05] 

 

However some of the reduced matrices gave less obvious results. For example, the 

following HPs had been calculated from a reduced matrix with 4 consecutive heterozygous SNPs 

and 165 fragments. The most frequent HP did not have obvious advantage compared to others. 

The ratio between the most and the second most frequent HP was 4.69. But if we ignore the first 

SNP, then the rest of the SNPs in both HPs are concordant. 

 

haplo block length: 4 

number of reads: 165 

positions: 24206118 24206121 24206171 24206438 

1 ['CTTT', 'ACCC', 0.756] 

2 ['CCCC', 'ATTT', 0.161] 

3 ['CTCC', 'ACTT', 0.068] 

4 ['CCTT', 'ATCC', 0.015] 
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In order to overcome this problem we introduced a simple condition in our calculation. 

When calculating h (formula 3), the number of fragments that supported a single HP, we 

assessed the ratio (r) of the two possible HPs. Whenever r>q we introduced a break into the HP, 

in other cases we ignored the HP with the least count. In current work we used q=0.1. 

ݎ = ௠௜௡(�ೣ,�భషೣ)
௠௔௫(�ೣ,�భషೣ)

   where ݔ א {0,1}   (5) 

As a result the same reduced matrix from previous example gave two possible HPs with 

fewer SNPs, but more satisfying difference in frequencies. 

 

haplo block length: 3 

number of reads: <165 

positions: 24206121 24206171 24206438 

1 ['TTT', 'CCC', 0.917] 

2 ['TCC', 'CTT', 0.083] 

 

This simple condition of checking r also solved another problem. Due to inevitable 

errors, the more SNPs and fragments the reduced matrix contained, the more number of possible 

HPs with low frequencies we got. For example from a reduced matrix that covered 11 

consecutive heterozygous SNPs and 1065 fragments we observed 61 HPs. In this particular 

example the highest frequency was still very low and the haplotypes from this reduced matrix 

was ignored even though it contained 11 SNPs. 

 

haplo block length: 11 

number of reads: 1065 

positions: 26832732 26832753 26832769 26833052 26833117 26833247 26833448 
26833495 26833497 26833503 26833523 
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1 ['CCAAATCAGTT', 'TTCGTCTGAAC', 0.165] 

2 ['CCAAATCAAAC', 'TTCGTCTGGTT', 0.099] 

3 ['CCAAATCAGAC', 'TTCGTCTGATT', 0.097] 

4 ['CTCGTCTGAAC', 'TCAAATCAGTT', 0.059] 

. 

. 

. 

60 ['CTAATCTGAAT', 'TCCGATCAGTC', 1.096e-05] 

61 ['CCCGATCAATC', 'TTAATCTGGAT', 1.071e-05] 

 

Among all possible HPs, for further analyses we were using only one HP with the highest 

frequency. By ignoring low HP ratios and breaking haplotypes whenever HP ratio was too high, 

we were able to track only successive haplotypes and saved computational time and memory 

required for calculation. Finally the reduced matrix from previous example gave us two HPs with 

desired confidence. 

 

positions: 26833247 26833448 26833495 26833497 

[ATCA, TCTG, 1.0] 

 

positions: 26833503 26833523 

[TT, AC, 1.0] 

 

It is worth to mention that we showed an example where reduced matrix covered 11 SNP 

and gave 61 possible HPs. In our final haplotype table we were able to calculate haplotype 

blocks that covered 14, 19 and 20 SNPs in mom’s, dad’s and fetal samples respectively. If we 

did not ignore low frequent HP and did not break haplotypes, those haplotypes would cover over 

100 SNPs and calculated frequencies would be so low, that without special treatment during the 

calculation, the program would crash. 
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2.3 PREDICTION OF THE INHERITED SNPS 

We have two potential approaches to predict the inherited SNPs. First one is to modify already 

existing methods described by Fan et al. 11 or similar to it (discussed in section 1.1). These 

methods are greatly relying on haplotype information that is obtained by routine lab work. We 

may improve this step by using computational approach to reconstruct haplotypes from a SNP 

matrix of both parents. This is an intuitive way of predicting fetal DNA using plasma DNA 

samples. However with current data in hand we are not able to get much from it. Haplotyping of 

both parents allowed us to phase majority of the SNPs for each sample. And even less SNPs that 

have haplotype information from both parents at the same time. Most of the haplotype blocks 

connected only two SNPs, which means that prediction based on haplotype information has a 

marginal advantage from individual SNP based prediction. Attempting to predict inherited alleles 

based on individual SNPs is error prone. 

The second and main approach we want to focus on is to haplotype SNPs obtained from 

plasma samples. To my knowledge haplotyping DNA samples that have mixed origin has not 

been attempted. Current haplotyping methods assume existence of only two haplotypes, which 

are also complementary to each other and appears in equal amounts in the sample. DNA from 

plasma is a mixture of mother’s and fetal DNA, which present in the plasma in shifted 

proportion. The amount of mother’s DNA present in plasma exceeds fetal DNA by 

approximately 10 fold. Furthermore, half of the fetal DNA is inherited from mother, which 

means that theoretically we are looking at 3 possible haplotypes with expected proportion 

somewhat close to 50/45/5. The way we look at haplotype reconstruction problem allows us to 

deal with the main feature of the plasma sample, the existence of 3 haplotypes with shifted 

proportions.  
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Prediction of the inherited SNPs was made based on finding inherited maternal and 

paternal haplotypes. First, data from plasma was searched for any possible haplotypes consistent 

with available SNP matrices and then amount of short sequenced fragments that supports those 

haplotypes was calculated. From the pool of possible haplotypes we determined two of them that 

most likely were passed to the fetus. Finally predicted inherited haplotypes were used to 

reconstruct phased fetal SNPs. 

2.3.1 Constructing a pool of possible haplotypes 

Similar to single individual (parental) haplotype reconstruction first we transformed aligned 

short sequencing fragments into a set of small SNP matrices. Where SNPs within a matrix were 

connected to each other through fragments (described in section 2.2). We made fetal SNPs 

prediction based on each small matrix separately (Figure 4a). Every SNP matrix contained a set 

of SNPs S = {s1, … sn} and a set of fragments F = {f1, … fm}. Fragments were sorted in a way 

that every next fragment fj+1 had equal or more gaps from the left side compared to previous 

fragment fj. 

The reconstruction of possible haplotypes started from assigning the first fragment f1 to 

the first newly created haplotype h1. If next f2 overlapped with existing h1 and had the same value 

on the overlapped region, we extended h1 with values from f2. Otherwise another h2, equal to f2, 

was created. We repeated that process for the rest of the fragments and obtained a set of all 

possible branching haplotypes (Figure 4b). In order to complete haplotypes, created later during 

the reconstruction we repeated reconstruction of haplotypes with reverse ordered fragments and 

took previously obtained haplotypes as an initial pool of existing haplotypes.  
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a) An example of a SNP matrix with 3 SNPs and 5 fragments;  

b) Possible haplotypes reconstructed from the SNP matrix; 

Figure 4. SNP Matrix. 

 

Finally in the obtained pool of haplotypes if there were overlapping and concordant to 

each other haplotypes, they were also merged together to assure that constructed haplotypes were 

complete and did not contain any duplicates. 

2.3.2 Finding inherited maternal haplotype 

After obtaining a pool of possible haplotypes we attempted to find inherited maternal haplotypes. 

In order to assure finding of maternal haplotypes we scanned all possible haplotypes and 

removed those not consistent with available maternal genotypes or haplotypes. This procedure 

served us as the first filtering criteria. The next step was to calculate a set of A = {a1, … an} that 

corresponded to an amount of fragments that supported each haplotype F = {f1, … fn}. Every 

fragment was mapped against a set of potential maternal haplotypes and the amount of all 

identical fragments was distributed proportionally among all haplotypes that covered that 
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fragment. In other words for every fragment (fj) we got a temporary set of B = {b1, … bn} 

calculated by following formula: 

ܾ௜ = ௧೔
ௌ ௝ܿ         (6) 

where  

௜ݐ = ൜ܽ௜,     ݂݅ ݅௧� ݄ܽݐ݊݁݉݃ܽݎ݂ ݄݁ݐ ݏݎ݁ݒ݋ܿ ݁݌ݕݐ݋݈݌
݁ݏ݅ݓݎ݄݁ݐ݋    ,0   

 ܵ = σ ௜௡ݐ
௜ୀଵ    

And cj corresponds to an amount of identical fragment fj. 

Finally calculated B was added to A or ai = ai + bi and calculation of B was carried for 

the rest of the fragments in the SNP matrix. There were several potential issues that needed to be 

addressed. Firstly, in order to successfully initiate the algorithm each element of the set A was 

assigned 1 (a1 = a2 = … =an =1) and subtracted 1 after completing the calculation. Secondly, the 

order with which fragments are fed to the algorithm mattered. Performing calculations 100 times 

with randomly ordered fragments and averaging the resulting number we overcame mentioned 

problem. 

Another step in a way of finding maternal haplotypes was to group them into 

complementary pairs. Taking into account that maternal DNA was prevalent in the plasma and 

that both maternal haplotypes must be present, it was safe to assume that the two complementary 

haplotypes, as well as the most frequent haplotypes were maternal haplotypes. In single 

individual two haplotypes should be present in equal amount (or close to equality), but in the 

plasma there should be three haplotypes: maternal not passed, maternal passed and paternal 

passed. If fetal DNA concentration in the plasma present as İ then the three haplotypes should be 

present in the plasma in following proportions (percentages) 50-İ���� ���� İ��� UHVSHFWLYHO\��
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Following this logic it was clear that whichever maternal haplotype had more supporting 

fragments (more abundant) was the one passed from mother. 

It is important to mention that when possible haplotypes were grouped into 

complementary pairs it became possible to merge some of the haplotypes. In some cases two 

non-overlapping haplotypes were both complementary to a single haplotype. Even though there 

was no fragment linking those two haplotypes, due to the complementarity to a single haplotype 

they were still thought as one and merged in the process. Due to described actions a number of 

haplotypes were merged together, which reduced diversity of haplotypes for certain SNP 

matrices. In order to be more accurate in prediction after merging haplotypes we recalculated an 

amount of fragments that supported each haplotype and for second time predicted inherited 

maternal haplotype. 

2.3.3 Finding inherited paternal haplotype 

In order to find inherited paternal haplotype first we constructed allele count matrix. Where 

columns and rows represent SNP positions and alleles respectively (Figure 5.1). The data was 

taken directly from short read library (bam file). At this point we already knew both maternal 

haplotypes and decided which one of them was passed to the child. We hypothesized that when 

counts from the alleles that maternal haplotypes hold were removed the remaining allele counts 

matrix had contained some leftovers from which we were potentially able to calculate paternal 

haplotype. 

In the example below there is an allele count matrix with 5 SNPs and Figure 5.1 presents 

allele counts for those SNP positions. There are also two maternal haplotypes GCCCC and 

TGATT, where haplotype MH1 was passed to the child. From the corresponding SNP matrix we 
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calculated number of fragments that covered each allele in both haplotypes. The next step was to 

remove those alleles that were covered by maternal haplotypes and then to calculate sum of 

allele counts for each possible haplopytes consistent with paternal genotypes or haplotypes 

(when available). It happened that for this particular example there were only two possible 

haplotypes exactly the same as maternal haplotypes. When we simply subtracted numbers and 

calculated the sum of allele counts in each possible haplotypes, we still got fairly big numbers 

(Figure 5.2). We suspected that the reason was that maternal haplotypes were most abandoned in 

the plasma and we removed alleles that were linked in the fragments but not those that were 

separately presented in the data. Those leftovers from maternal haplotypes still presented in big 

amount that clouded further selection. In order to overcome this issue we had to subtract alleles 

from haplotypes proportionally.  

 

1) Allele count; 2) Allele count after haplotype allele count substructed; 

Figure 5. Allele count matrix. 
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One of the suggested ways was to substitute subtraction by division in the equation. The 

resulting numbers are shown in Figure 5.3 When we summed resulted numbers for each 

haplotype we got 7,722 and 7,436 for haplotypes GCCCC and TGATT respectively, which 

looked more comparable to each other. There is one more advantage of this approach. If there 

was another possible haplotype the resulting sum of allele count for that haplotypes would be in 

the same scale as both maternal haplotypes. For example haplotype TGACC would have allele 

count 7,358. 

After finding both haplotypes passed to the child it is fairly easy to reconstruct fetal SNPs. When 

both haplotypes are aligned against each other and SNP positions were tracked we got predicted 

phased fetal SNPs. 
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3.0  RESULTS 

3.1 MERGING DATASETS AND QUALITY CONTROL 

Sequencing data from all samples were processed using GATK best practice 30. Sequencing 

fragments was mapped and aligned against human whole genome version 19 (HG19). Any 

sequencing reads mapped to other than region of interests (chr12:22,456,000-30,652,000) were 

excluded from the further analysis. The number of remaining reads and the average coverage 

among all samples is shown in the Table 1. Mother, father and baby had 11887, 11180 and 

10646 unfiltered raw SNPs respectively.  

 

Table 1. Summary statistics of the datasets. 

Sample Name Plasma Mom Dad Baby 

Number of reads per sample 194 098 096 71 257 336 42 351 442 63 573 642 

Percentage of trimmed reads 9.72% 6.37% 5.94% 6.13% 

Number of reads mapped to a 

region of interest 
3 542 547 1 988 443 1 739 474 1 838 167 

Number of variants per sample 

(total) 
- 11887 11180 10646 

Number of variants per sample 

(after filtering) 
- 10535 10764 10298 

Average SNP coverage  170 155.7 163.7 
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Called SNPs from whole trio (both parents and the fetus) were merged together to create 

a list of SNPs that all three of them shared. The rational for that was to scan the SNPs and find 

obvious mismatches and develop a rule for Quality Control (QC) filtering. In total there were 

9376 common SNPs (Table 2). Knowing genotypes of both parents and the fetus we were able to 

find fetal SNPs that could not be obtained from any possible recombination of parental alleles. 

For example heterozygous fetal SNPs (Aa) should be left from the analysis if both parents were 

homozygous by major allele (AA). There were 73 examples of that kind of SNPs. Manually 

examining those SNPs we noticed that a majority of them had either low Depth (total coverage) 

or low Allelic Ratios (AR), a proportion of allele frequencies. The same as Allelic Depth, that 

indicates level of confidence with which SNP is called, the AR is also important. In general we 

expect both alleles for heterozygous SNP to be in equal amount, which gives AR close to 1. 

However due to stochasticity of the experimental process used in sequencing technology AR 

may greatly vary. In order to justify the choice, filtering value for AR was selected based on 

binomial distribution. For every Depth value we calculated two tailed 99% CI of the proportion 

(AR) and used the lower bound value. Table 2 shows filtering values and number of errors and 

total SNPs left after filtering. 

 

Table 2. Quality Control values for filtering by coverage and ratio. 

Filtering values Passed filtering 

Depth Allele Ratio Errors SNPs 

- - 73 9376 

7 0.15 17 7636 

9 0.17 10 7281 

12 0.2 5 6970 

15 0.22 3 6764 

20 0.25 3 6530 
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We filtered out SNPs with depth < 12 and AR < 0.2. As you can see after applying these 

filtering values the final dataset contained 6970 SNPs with only 5 errors. In our opinion those 

were optimal values for thresholds because compared to previous row the number of errors 

reduce 2 fold and further strengthening of threshold values did not bring much improvement, but 

did increase loss of data. Further analysis confirmed that chosen depth and AR cutoff values 

were selected properly. The same AR value was used by Panconesi et. al. where the authors tried 

to reconstruct haplotypes from single individual SNPs and treated as homozygous any SNP that 

had Allelic Ratio lower than 0.2 23. Another reason for not using very strict filtering thresholds is 

that we could also loose potential fetal mutations. After applying filtering values number of 

SNPs for each sample slightly reduced which is shown in Table 1. 

For the purpose of fetal DNA prediction we decided to use all maternal but not only 

common SNPs shared by all family members. There were 10535 maternal SNPs and only 6970 

of them in other family members too. 

All SNPs from the dataset were queried to search allelic coverage in sequencing data 

from plasma sample. Some of the SNPs were poorly sequenced in plasma sample. Any SNPs 

that had sequencing depth less than 20 reads (we used more strict threshold for plasma sample) 

were excluded from the analysis. We were able to find allelic information for 7358 SNPs with 

required sequencing depth. 

During the process of directly accessing the sequencing data we encountered another 

criteria for quality control, so called Mapping Quality (mapq). Mapping Quality showed how 

good any sequenced fragment had been mapped to the reference. Based on our observation it was 

decided to not rely on any fragment with mapq < 20 (data not shown). Mapq = 20 means that 

there is 0.01 chance to mistakenly map the read. Experience showed that applying more strict 
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value for mapq  (< 40) resulted in lost of too many sequencing fragments and many heterozygous 

SNPs did not show the second allele (became homozygous). Furthermore such reduction of reads 

directly affected very important variable Allelic Ratio. 

Finally 159 SNPs were removed from the dataset. 12 of them were homozygous in the 

mother, but clearly heterozygos in the plasma and other way around 147 of them were 

heterozygous in the mother, but had homozygous signature in the plasma. Final SNP dataset 

contained 7199 SNPs that were then used for fetal DNA prediction. 

3.2 RECONSTRUCTION OF PARENTAL HAPLOTYPES 

In every sample a total set of SNPs called for that particular sample separately, but not SNPs of 

merged datasets, was used to reconstruct haplotypes. During merging the datasets many of the 

SNPs were not called in all samples and were filtered out. Those SNPs could potentially be 

connecting links between haplotype blocks and so were considered important for haplotype 

reconstruction. For each sample we prepared individual set of SNPs positions. Any SNPs that did 

not pass QC were excluded from the haplotype reconstruction. Also all homozygous SNPs were 

removed because they did not distinguish haplotypes (this was due to the approach used in 

current work, which was different from other published methods 23, 29, 31, 32). The developed 

approach is explained in detail in Section 2.2. For mom, dad and fetus we have reconstructed 

1037, 1008 and 923 separate haplotype blocks respectively (Table 3). The majority 71.46% of 

mom’s haplotype blocks had the size of 2 SNPs. The 66.17% of dad’s haplotype blocks and 

65.9% of fetal haplotype blocks were also just pairs of SNPs. Fetus had the biggest reconstructed 
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haplotype block that linked 20 SNPs. While the biggest haplotype block reconstructed from both 

mom and dad contained 14 and 19 SNPs respectively. 

 

Table 3. Summary statistics for haplotype block sizes. 

Variables Mom Dad Baby 

Min 2 2 2 

Q1 2 2 2 

Median 2 2 2 

Mean 2.514 2.669 2.791 

Q3 3 3 3 

Max 14 19 20 

size=2 (%) 71.46 66.17 65.9 

Total 1037 1008 923 

3.3 FETAL SNPS PREDICTION 

Actual fetal SNPs prediction was divided into 4 steps: building a set of individual SNP matrices, 

finding maternal haplotype, finding paternal haplotype and aligning both haplotypes to construct 

phased fetal SNPs. 

From the all SNP matrices that were obtained from the DNA from maternal plasma 364 

of them were removed from further analysis because the total number of fragments was less than 

10. The number of 10 was chosen arbitrarily and it will change if further analysis suggests more 

appropriate threshold. For the comparison 479, 545, 606 and 655 SNP matrices didn’t pass the 

condition when 20, 30, 40 and 50 were used as a threshold respectively. 

During the rest of the analysis 37 and 4 of the SNP matrices were additionally excluded 

from the analysis because they did not have enough information to determine maternal and 
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parental haplotypes respectively. Remaining 1463 SNP matrices contained enough information 

to calculate both inherited parental haplotypes and reconstruct fetal SNPs from those haplotypes. 

Nevertheless it is hard or even impossible to evaluate the accuracy of finding maternal and 

paternal haplotypes separately, but to evaluate them together by comparing predicted fetal SNPs 

to the control at the very end of the analysis. 

We expected the least problems on the second step, when maternal haplotype was 

chosen. Following basic assumption the haplotype that was passed to the child should be the 

most abundant in the plasma. That is why firstly we found both maternal haplotypes, then 

recalculated the number of fragments that supported each of the haplotypes and finally selected 

the one that present in most quantity. The mean and median of odd ratios between fragments 

counts that support passed and not passed maternal haplotypes were 1.72 and 1.36 respectively. 

The following statistics suits the assumption and further convinced us that inherited maternal 

haplotype was chosen based on well-justified algorithm. 

Finding inherited paternal haplotype was less obvious. It could differ from maternal 

haplotype and also partially or totally duplicate either one of the maternal haplotypes. And most 

importantly fragments that support paternal haplotypes were present in fewer amounts in the 

plasma. In order to find paternal haplotype firstly we removed those fragments that supported 

maternal haplotypes and then calculated allele based counts for all possible haplotypes using 

remaining SNP matrix. As was suggested previously we removed allele counts from maternal 

haplotype proportionally to the amount they were present in the plasma. The remaining allele 

count matrix was then used to calculate allele counts for all haplotypes concordant with both 

paternal genotypes and haplotypes (when available). We expected paternal haplotype to be next 
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most abundant in the plasma after removing maternal haplotypes. Following stated assumption 

we were able to find inherited paternal haplotypes for all, but for 4 SNP matrices. 

After knowing both parental haplotypes it became fairly easy to align them together to 

get phased fetal genotypes. The statistics for predicted fetal genotypes after comparing to the 

control are shown in Table 4. Surprisingly there were a number of incomplete haplotypes that 

resulted in 14 SNPs that were not predicted based on haplotype reconstruction. 4 of them also 

did not have available fetal genotypes, while 10 of them had. 137 SNPs had only one available 

allele. 44 of them could not be tested due to unavailable fetal genotypes, 13 did not match at all 

and 80 have only one match. There were predicted 860 SNPs without available control. The rest 

of the predicted SNPs had available both predicted and fetal genotypes. 46 of them did not 

match, 725 had only one match and 1142 matched both alleles. 

 

Table 4. Statistics for predicted fetal genotypes. 

Number of 

predicted 

alleles 

Number of 

available 

fetal alleles 

Number of 

matches 

Number of 

SNPs 

When sum of allele counts for inherited 

maternal haplotype was reduced 

-1.00 -5.00 /1.36 /1.72 

0 0 0 4 4 4 4 4 

0 2 0 10 10 10 10 10 

1 0 1 44 45 46 46 53 

1 2 0 13 13 17 16 16 

1 2 1 80 80 88 87 96 

2 0 2 860 860 858 858 851 

2 2 0 46 33 16 19 18 

2 2 1 725 675 650 655 633 

2 2 2 1142 1215 1243 1237 1251 
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It was surprise to find that some of the genotypes were missing. It is small portion 

compared to the rest of the SNPs, but we expect to reduce it even more once haplotype 

reconstruction is perfected. A whole different matter is that so many SNPs that had available 

both predicted and control fetal genotypes had only one matched allele. Our experience showed 

that maternal haplotype that was chosen as inherited were present in the plasma in such big 

concentration that it was picked secondly after removing both allele counts of maternal 

haplotypes from the allele count matrix. Meaning that that particular haplotype was assigned also 

as paternal haplotype and resulted in homozygous genotypes for all SNPs covered by that 

haplotype block. No wonder if child were heterozygous all of the SNPs in that region will have 

only one match. It also explains why some of the SNPs did not have any matches at all. 

A series of small adjustments for the condition when paternal haplotype was chosen were 

tried. Further reduction of a sum of allele counts for inherited maternal haplotype was applied in 

favor to other haplotypes to be picked as paternal one. We tried to subtract and divide to a series 

of coefficients and the results were steadily improving (Table 4). As you can observe whenever 

division was used the results where somewhat better. We suspect that it might happen because 

the total number of fragments in each SNP matrix greatly varied from 10 to over hundreds. 

Respectively the allele counts for possible haplotypes were also responding differently when 

allele counts of maternal haplotypes were removed. That is why simply subtracting a coefficient 

from a sum of allele counts of inherited maternal haplotype affected only some portion of the 

cases. The effect was much broader when divided to a coefficient because it reduced the sum 

proportionally to its magnitude. We are not claiming that it is the best approach, but it is a good 

hint towards wright direction. 
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4.0  DISCUSSION 

The sequencing data used in current work was from a sure select capture of an 8 Mbp region on 

chromosome 12. It was mapped and aligned against human whole genome (HG19) and then cut 

off to leave the sequencing fragments mapped only to the region of interest. Unfortunately after 

limiting the data to the region of interest less than 5% of the original raw data remained. In order 

to test another different approach alternatively raw sequencing data was mapped and aligned 

against only chromosome 12 of human genome and then used for variant calling. As a result we 

obtained slightly bigger amount of SNPs targeted to the region of interest, but the average 

coverage of those SNPs did not improve much. In order to make a comparison we searched for 

SNPs that were called in both scenarios. There were 7149 of such SNPs and the average 

coverage was 201.66 and 203.47 when mapped to whole genome and only to chromosome 12 

respectively. As you can see there is no benefit of limiting reference genome to only 

chromosome 12. It surely saves computational time, but miss important point. The data contains 

noise or sequenced fragments from other parts of genome. If data is forced to map against only 

chromosome 12, mistakenly mapped reads could alter the quality of called SNPs. On the other 

hand when mapped against whole genome actual reads from target region may mistakenly map 

to other chromosomes and be excluded from the analysis. Taking into the account that amount of 

SNPs and their average coverage did not change much and the purpose of this work is the 

 32 



prediction of fetal DNA we decided to minimize the amount of noise included to the analysis and 

map against whole genome. 

In current work we developed and suggested two single individual haplotyping methods. 

First is done on parental DNA samples, the second on DNA from the plasma. Actually, the 

second haplotyping method can be thought as a slight improvement of the first one. It was 

adjusted to work with DNA from plasma, which is a mixture of DNAs sample from two origins. 

Single individual haplotyping method applied for parental samples has some similarities 

with already published haplotyping methods. For example, it relies on the same assumption of 

existence of two complementary haplotypes that could be reconstructed from overlapping 

fragments. Sequencing fragments need to be transformed into SNP matrices that later are used in 

the analysis separately. However the method developed in this dissertation has it’s own 

distinguishing differences. There are series of advantages of my method over published 

haplotyping methods. First it builds haplotypes that are consistent with available data. It 

predicted all possible haplotypes, counts the number of fragments that support each of the 

haplotypes and chooses only two complementary haplotypes that are most frequent and have 

clear advantage compared to other possible haplotypes. Second, it does not introduce any 

changes to the alleles. There are two ways of dealing with fragments that support alternative 

haplotypes: they are removed if their prevalence is too small compared to fragments that support 

main haplotypes and a breakpoint in haplotypes is introduced so the remaining data is consistent 

with existence of two but smaller haplotypes. Third, the published methods try to reconstruct two 

continuous (unbroken) haplotypes for whole SNP matrix. After any change in SNP matrix 

(removed SNP, fragment or changed allele) haplotypes are reconstructed again. The process is 

repeated until all possible changes are calculated. After that a minimum set changes that makes 
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data most consistent with existence of only two haplotypes is chosen. Consequently the 

computational time is increased exponentially for longer SNP matrices. In contrast, our method 

avoids such redundancy. It forces to make a decision either to continue haplotype or introduce a 

breakpoint for every next SNP. Less calculation results in faster performance. Our method with 

huge adjustment can be thought as MFR (minimum fragments removal approach). But fragments 

are excluded based on observed data, rather than searching for best set of fragments to ignore 

and recalculate entire process after any removal. Fourth, if data contains gaps the computation 

dramatically complicates when published methods are used. In proposed method we safely skip 

those gaps and keep computational time reasonable. 

Unfortunately, my haplotyping method remains some limitations that also common to 

published methods. In particular, it has limited application for fetal DNA prediction. Haplotype 

reconstruction is done on a SNP matrix, which contain interconnected SNPs. Any SNP that is not 

in the matrix is potentially lost or need to be predicted individually. From the data available at 

our disposal for each sample we were able to successfully group majority of all SNPs into 

matrices and use them to reconstruct haplotypes. However when both parental haplotypes 

aligned only half of phased SNP were common for both parents. Furthermore majority of the 

haplotypes had size of 2 SNPs, which had almost no advantage over individual SNP based 

prediction. On the other hand prediction based on too big haplotypes does not account for 

recombination. Parental haplotypes are reconstructed prior to recombination that may occur 

during the meiosis. Haplotype based prediction is strongly dependent on finding fetal DNA 

concentration in the plasma. For any data like ours that does not contain sequencing information 

for Y chromosome finding fetal DNA concentration is difficult challenge. Finally discussed 
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methods greatly rely on paternal DNA, which may not always be available for some ethical or 

other reasons. 

Our proposed method that predicts fetal DNA based on haplotyping directly from plasma 

avoids mentioned limitations and uses parental haplotypes as an additional step, but is not 

required. Previously data was searched for only two complementary haplotypes. The rest of 

possible haplotypes, that could contain the third paternal haplotype, were considered as a noise 

and were dropped out from the analysis. Our proposed method uses all available haplotypes and 

has a series of advantages: available paternal DNA sample is preferable, but not required; plasma 

usually is sequenced with great depth, which allows phasing more SNPs and obtaining longer 

haplotypes; haplotypes not only predicted, but quantitative measure is introduced to count 

fragments supporting each haplotype. It greatly improves the prediction and has potential useful 

in finding fetal DNA concentration in the plasma; and most importantly this method may be 

potentially applied to other samples with mixed DNAs. 

For example my method with some adjustments can be applied in cancer genetics. 

Mother become a host, fetus become a mutated cancer cells. The similarity between host and 

cancer DNAs are much greater compared to similarities between maternal and fetal DNAs, but it 

can be accounted for. As you can see in this scenario there is no paternal DNA to evaluate half of 

the cancer genome and no Y chromosome to calculate concentration of cancer DNA. My method 

allows to option in and out additional source of information like paternal DNA or Y chromosome 

to improve overall accuracy. Which makes it very flexible in practical application. 

Due to the stochasticity used in sequencing technologies some level of errors (wrong 

alleles) is always present. We constantly worked on reducing these errors by filtering SNPs that 

not consistent with parental genotypes and removing sequenced fragments that also not 
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consistent with either genotypes or haplotypes of the parents. This filtering process helps with 

prediction, especially when predicting possible haplotypes in the plasma (less diversity), but 

consequently lower the chance to find fetal mutations. 

We tried to develop a fast and accurate method to predict fetal DNA based on single 

sample of blood (taken from pregnant woman). We succeeded in keeping it fast and obtained 

main purpose of predicting genotypes. However the accuracy is something that requires some 

work. Potential ways to achieve some improvement would be: 1) make more complete 

haplotypes. The predicted genotypes are reconstructed from both parental haplotypes. If any of 

the predicted haplotypes have gaps it will directly affect reconstructed SNPs; 2) find a way to 

calculate the fetal DNA concentration that is not dependent on sex chromosomes. It will greatly 

improve the accuracy of finding paternal haplotypes; 3) improving filtering criteria for SNPs 

included in the analysis. If a distinguishable difference is found between SNPs that were 

predicted accurately and mistakenly, that will certainly reveal the hidden issues that can be 

further corrected or help to exclude bad SNPs from the analysis from the start. For example it 

helped us to abandon the idea of recovering some SNPs called in mother, but not in father or 

fetus. We were able to newly assign 539 paternal and 408 fetal SNPs as homozygous by 

reference, but those SNPs did not add any significant contribution to correctly predicted SNPs, 

but mainly increased pool of predicted SNPs with only one correctly guessed allele. 

My dissertation work presents a new approach of reconstructing fetal DNA from 

maternal plasma. The method works because plasma from pregnant women, which contains 

“cell-free DNA”, has been noted to contain fetal DNA as well as maternal DNA. I developed and 

tested a workflow that implements my suggested approach. The workflow was broken into 

several parts, each fully documented in this dissertation. Each step we have taken was supported 
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with explanation of the logic driving the step. The approach works through the examination of 

sequencing data sets generated by short-read sequencing (also known as next-generation 

sequencing), by calling variation (single nucleotide polymorphisms, or SNPs) within those 

samples vis-à-vis a reference sequence. I developed and introduced a series of quality control 

criteria applied to SNPs to improve overall prediction. A novel single individual haplotyping 

method was developed and applied to haplotype the parental samples. The obtained parental 

haplotypes were incorporated into the workflow and along with parental genotypes were used to 

find transmitted haplotypes in the maternal plasma. The predicted haplotypes were then aligned 

to each other to obtain phased SNPs. For evaluation, I compared fetal SNPs predicted by my 

method against control fetal SNPs (from sequencing of fetal DNA). Overall prediction power is 

discussed. Possible ways of improvements that should affect the overall prediction are also 

described. 

 37 



BIBLIOGRAPHY 

1. Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. The impact 
of maternal plasma DNA fetal fraction on next generation sequencing tests for common 
fetal aneuploidies. Prenat Diagn. Jul 2013;33(7):667-674. 

2. Nicolaides KH, Syngelaki A, Gil M, Atanasova V, Markova D. Validation of targeted 
sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of 
aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenat Diagn. Jun 2013;33(6):575-
579. 

3. Walsh JME, Goldberg JD. Fetal aneuploidy detection by maternal plasma DNA 
sequencing: a technology assessment. Prenatal Diagnosis. Jun 2013;33(6):514-520. 

4. Kitzman JO, Snyder MW, Ventura M, et al. Noninvasive whole-genome sequencing of a 
human fetus. Sci Transl Med. Jun 6 2012;4(137):137ra176. 

5. Vaiopoulos AG, Athanasoula KC, Papantoniou N, Kolialexi A. Review: advances in non-
invasive prenatal diagnosis. In Vivo. Mar-Apr 2013;27(2):165-170. 

6. Chorionic villus sampling and amniocentesis: recommendations for prenatal counseling. 
Centers for Disease Control and Prevention. MMWR Recomm Rep. Jul 21 1995;44(RR-
9):1-12. 

7. Morain S, Greene MF, Mello MM. A new era in noninvasive prenatal testing. N Engl J 
Med. Aug 8 2013;369(6):499-501. 

8. Duitama J, McEwen GK, Huebsch T, et al. Fosmid-based whole genome haplotyping of a 
HapMap trio child: evaluation of Single Individual Haplotyping techniques. Nucleic 
Acids Res. Mar 2012;40(5):2041-2053. 

9. Kitzman JO, Mackenzie AP, Adey A, et al. Haplotype-resolved genome sequencing of a 
Gujarati Indian individual. Nat Biotechnol. Jan 2011;29(1):59-63. 

10. Peters BA, Kermani BG, Sparks AB, et al. Accurate whole-genome sequencing and 
haplotyping from 10 to 20 human cells. Nature. Jul 12 2012;487(7406):190-195. 

11. Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR. Non-invasive prenatal 
measurement of the fetal genome. Nature. Jul 19 2012;487(7407):320-324. 

12. Lam KW, Jiang P, Liao GJ, et al. Noninvasive prenatal diagnosis of monogenic diseases 
by targeted massively parallel sequencing of maternal plasma: application to beta-
thalassemia. Clin Chem. Oct 2012;58(10):1467-1475. 

13. Bansal V, Bafna V. HapCUT: an efficient and accurate algorithm for the haplotype 
assembly problem. Bioinformatics. Aug 15 2008;24(16):i153-159. 

14. Lancia G, Bafna V, Istrail S, Lippert R, Schwartz R. SNPs Problems, Complexity, and 
Algorithms. In: Heide F, ed. Algorithms — ESA 2001. Vol 2161: Springer Berlin 
Heidelberg; 2001:182-193. 

 38 



15. Lippert R, Schwartz R, Lancia G, Istrail S. Algorithmic strategies for the single 
nucleotide polymorphism haplotype assembly problem. Brief Bioinform. Mar 
2002;3(1):23-31. 

16. Bafna V, Istrail S, Lancia G, Rizzi R. Polynomial and APX-hard cases of the individual 
haplotyping problem. Theoretical Computer Science. May 20 2005;335(1):109-125. 

17. Rizzi R, Bafna V, Istrail S, Lancia G. Practical Algorithms and Fixed-Parameter 
Tractability for the Single Individual SNP Haplotyping Problem. In: Guigó R, Gusfield 
D, eds. Algorithms in Bioinformatics. Vol 2452: Springer Berlin Heidelberg; 2002:29-43. 

18. Xie M, Chen J, Wang J. Research on parameterized algorithms of the individual 
haplotyping problem. J Bioinform Comput Biol. Jun 2007;5(3):795-816. 

19. Xie M, Wang J. An Improved (and Practical) Parameterized Algorithm for the Individual 
Haplotyping Problem MFR with Mate-Pairs. Algorithmica. 2008/10/01 2008;52(2):250-
266. 

20. Cilibrasi R, Iersel L, Kelk S, Tromp J. The Complexity of the Single Individual SNP 
Haplotyping Problem. Algorithmica. 2007/09/01 2007;49(1):13-36. 

21. Wang RS, Wu LY, Li ZP, Zhang XS. Haplotype reconstruction from SNP fragments by 
minimum error correction. Bioinformatics. May 15 2005;21(10):2456-2462. 

22. He D, Choi A, Pipatsrisawat K, Darwiche A, Eskin E. Optimal algorithms for haplotype 
assembly from whole-genome sequence data. Bioinformatics. Jun 15 2010;26(12):i183-
190. 

23. Panconesi A, Sozio M. Fast hare: A fast heuristic for single individual SNP haplotype 
reconstruction. In: Jonassen I, Kim J, eds. Algorithms in Bioinformatics, Proceedings. 
Vol 3240; 2004:266-277. 

24. Zhao YY, Wu LY, Zhang JH, Wang RS, Zhang XS. Haplotype assembly from aligned 
weighted SNP fragments. Comput Biol Chem. Aug 2005;29(4):281-287. 

25. Wang Y, Feng E, Wang R. A clustering algorithm based on two distance functions for 
MEC model. Comput Biol Chem. Apr 2007;31(2):148-150. 

26. Genovese LM, Geraci F, Pellegrini M. SpeedHap: an accurate heuristic for the single 
individual SNP haplotyping problem with many gaps, high reading error rate and low 
coverage. IEEE/ACM Trans Comput Biol Bioinform. Oct-Dec 2008;5(4):492-502. 

27. Levy S, Sutton G, Ng PC, et al. The diploid genome sequence of an individual human. 
PLoS Biol. Sep 4 2007;5(10):e254. 

28. Chen Z, Fu B, Schweller R, Yang B, Zhao Z, Zhu B. Linear time probabilistic algorithms 
for the singular haplotype reconstruction problem from SNP fragments. J Comput Biol. 
Jun 2008;15(5):535-546. 

29. Wu J, Liang B. A fast and accurate algorithm for diploid individual haplotype 
reconstruction. Journal of bioinformatics and computational biology. 2013 Aug (Epub 
2013 Jun 2013;11(4):1350010. 

30. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ Data to High-Confidence 
Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current Protocols 
in Bioinformatics: John Wiley & Sons, Inc.; 2002. 

31. Bansal V, Bafna V. HapCUT: an efficient and accurate algorithm for the haplotype 
assembly problem. Bioinformatics. Aug 2008;24(16):I153-I159. 

32. Bansal V, Halpern AL, Axelrod N, Bafna V. An MCMC algorithm for haplotype 
assembly from whole-genome sequence data. Genome Research. Aug 2008;18(8):1336-
1346. 

 39 


	TITLE PAGE
	COMMITTEE MEMBERS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1.0  INTRODUCTION
	1.1 BACKGROUND AND SIGNIFICANCE
	Figure 1. Haplotype based prediction.
	Figure 2. Single individual haplotyping.
	Figure 3. Networking problem.

	1.2 PUBLIC HEALTH RELEVANCE

	2.0  METHODS
	2.1 CREATING THE SNP DATABASE
	2.2 HAPLOTYPE RECONSTRUCTION
	2.3 PREDICTION OF THE INHERITED SNPS
	2.3.1 Constructing a pool of possible haplotypes
	Figure 4. SNP Matrix.

	2.3.2 Finding inherited maternal haplotype
	2.3.3 Finding inherited paternal haplotype
	Figure 5. Allele count matrix.



	3.0  RESULTS
	3.1 MERGING DATASETS AND QUALITY CONTROL
	Table 1. Summary statistics of the datasets.
	Table 2. Quality Control values for filtering by coverage and ratio.

	3.2 RECONSTRUCTION OF PARENTAL HAPLOTYPES
	Table 3. Summary statistics for haplotype block sizes.

	3.3 FETAL SNPS PREDICTION
	Table 4. Statistics for predicted fetal genotypes.


	4.0  DISCUSSION
	BIBLIOGRAPHY



