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Acute kidney injury (AKI), a sudden deterioration in renal function which occurs when the 

kidneys no longer remove waste products from the blood, is a challenging medical condition 

that affects intensive care unit patients worldwide. Patients with severe cases of AKI are placed 

on renal replacement therapy (RRT), a life-supporting treatment, and have been linked to 

mortality rates as high as 60%. Despite having guidelines with indications for RRT it is unclear 

what the optimal initiation time should be. Studies looking at the association between timing of 

initiation and mortality give contradictory results: some suggest a better outcome with early 

initiation while others with late initiation. There are four issues with current studies: 1) 

selection bias due to treatment status being driven by a patient’s baseline characteristics and 

the physician’s decision to treat; 2) the time from which survival is measured is different across 

studies causing lead-time or immortal-time biases; 3) results from the different statistical 

methods used are not always comparable; 4) patients never started on RRT are excluded from 

analyses. 

The aim of this study is to determine the association between timing of initiation of RRT 

and mortality by addressing existing biases and limitations. Selection bias will be controlled for 

by a propensity score and 1-1 matching without replacement using the nearest neighbor 

Mahalanobis distance. Lead-time bias will be addressed by counting survival time from the 
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same point for all patients. Immortal-time bias will be eliminated by using an expanded risk sets 

analysis in which patients are part of all three risk groups: early, late, and no RRT. Unlike 

current studies patients never started on RRT will also be analyzed. Cox proportional hazards 

will be used to test differences in the hazard of mortality at 1-year between groups. 

Public Health Significance: To our knowledge, this is the largest observational study 

investigating the optimal time for initiating RRT.  Our study shows the effect of different biases 

on the outcome and reinforces the importance of carefully designing an observational study. 

Future nephrology researchers can use this work as foundation in the quest of finding the 

optimal time for RRT initiation. 
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1.0 INTRODUCTION 

Acute kidney injury (AKI) is a challenging condition characterized by an abrupt decline in kidney 

function over a period of hours to days that can occur before or in the hospital setting.1,2 

Worldwide, severe AKI occurs in approximately 6% of intensive care unit (ICU) patients, with 

almost two-thirds receiving renal replacement therapy (RRT).3 For severe AKI patients hospital 

mortality is approximately 60% and dialysis dependence at hospital discharge is approximately 

14%.3 AKI has also been associated with increased length of ICU and hospital stay, with those in 

need of RRT having a median ICU stay 3 times longer than those without AKI.1  

The association between timing of initiation of RRT and mortality is uncertain. The 

Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines recommend 

starting RRT based on the clinical context, the presence of conditions that can be modified with 

RRT, and trends of laboratory tests rather than single blood urea nitrogen or creatinine levels.2 

Despite these guidelines, hard data remain absent or conflictive regarding the optimal time to 

start dialysis.4 Some studies suggest that early initiation of RRT is associated with lower 

mortality5–8, other studies suggest no difference9,10, while a recent multicenter retrospective 

observational study found a U-shape association between RRT timing and in-hospital 

mortality.11 (Table 1) 
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Table 1: Summary of studies evaluating the timing of initiation of RRT 

Study Year Study Design N 

BUN 

at initiation of RRT (mg/dl) 

Hospital 
Mortality (%) 

Early Late Early Late 

Gettings et al.5 1999 Retrospective 100 <60 ≥60 61 80 

Demirkiliç et al.6 2004 Retrospectivea 61 NS NS 23.5 55.5 

Elahi et al.7 2004 Retrospectivea 64 67±35b 75±61b 22 43 

Liu et al.8  2006 Observational 243 ≤76 76 35c 41c 

Korevaar et al.9 2001 Prospectived 253 NS NS 16e 25e 

Bouman et al.10 2002 RCT 106 
LV: 48 (40-66)f 

HV: 46 (38-58)f 

LV: 

105 (62-116)f 

LV: 51 

HV: 37 
LV: 40 

Shiao et al.11 2012 Retrospectiveg 648 
EG: 49±29b 

IG: 59±26b 
LG: 90±43b 

EG: 59 

IG:49 
LG: 67 

a
RRT started based on urine output <100 ml over 8 hours in early group and based on biochemical parameters in 

late group. 
b
Mean BUN ± standard deviation. 

c
Percent of patients that died by day 28 from ICU admission. 

d
Classification into early and late was done according to the Dialysis Outcomes Quality Initiative

12
. 

e
Percent of

patients that died during the 24 months after RRT initiation. 
f
Median BUN (BUN quartiles). 

g
EG, early group, ≤1

day; IG, intermediate group, 2–3 days; LG, late group, ≥4 days between ICU admission and RRT initiation. BUN, 
serum blood urea nitrogen; RRT, renal replacement therapy; NS, not specified; RCT, randomized controlled trial; 
LV, low-volume hemofiltration; HV, high-volume hemofiltration; ICU, intensive care unit. 

1.1 SIGNIFICANCE 

There are four main shortcomings in current studies that attempt to define the optimal time for 

initiating RRT. First, there are absolute and relative indications for RRT initiation and the 

decision to start therapy is affected by strongly held physician beliefs, patient characteristics, 

and the logistical or organizational aspects of a given institution.13 The proportion of patients 

with absolute or relative indications may vary across studies leading to selection bias. Second, 
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the time from which survival is measured is not defined the same in all studies. Some studies 

measured survival from RRT initiation9,11, while others measured survival from a fixed time 

point prior to RRT initiation5–8,10 which causes lead-time bias and immortal-time bias 

respectively.  Suppose patient A starts RRT on the same day as KDIGO stage 3 (i.e. the baseline 

time point from which survival is measured), patient B starts RRT a few days after baseline and 

both patients are followed from their RRT initiation until death or censoring. In this case, 

patient A has an artificial survival advantage, or lead-time bias, since at the time of RRT 

initiation he/she was earlier in the course of disease progression than patient B (Figure 1 top). If 

both patients are followed from baseline until death or censoring patient B has an artificial 

survival advantage, or immortal-time bias, because he/she had to survive between baseline and 

RRT initiation (Figure 1 bottom). Third, the statistical methods used are different between 

studies and their results are not always directly comparable. In some studies the main outcome 

was the crude hospital mortality rate5–7 while other studies looked at time to event analyses.8–

11 Fourth, the exclusion from all current studies of patients that were never started on RRT due 

to recovery, death or lost to follow-up  severely limits their validity.14  

The aim of this study is to determine the association between timing of initiation of RRT 

and mortality by addressing the existing biases and limitations in the current literature. 

Treatment selection bias will be controlled for by the use of a propensity score15 and lead-time 

and immortal-time biases will be addressed by using an expanded risk sets (ERS) analysis.16 

Unlike current studies we will also take into account patients that were never started on RRT. 
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Figure 1: Illustration of lead-time bias and immortal-time bias 
RRT, renal replacement therapy; KDIGO stage 3 is the baseline time from which survival is measured. 
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2.0 MATERIALS AND METHODS 

2.1 STATISTICAL CONCEPTS 

2.1.1 Propensity Score in Observational Studies 

Estimating treatment effects in observational studies suffers from unmeasured confounding 

and selection bias due to treatment status being driven by a patient’s baseline characteristics 

and the physician’s decision to treat.  As a result, baseline characteristics differ systematically 

between treated and untreated subjects. Propensity score matching (PSM) methods are 

recommended in order to adjust for such unmeasured confounding and selection bias.17  

Per Rosenbaum and Rubin (1983) the propensity score is the probability towards 

treatment assignment conditional on observed baseline covariates. In practice, the propensity 

score is usually estimated by logistic regression: 

   
ˆ

ˆ
| |ˆ  

 

ˆˆ
i

i

X

i i i i i X

e
E T X P T X

e




    


1

1
. 

As such, the propensity score is a balancing score that allows the selection of treated (𝑡 = 1) 

and control (𝑡 = 0) subjects with similar distributions of observed baseline covariates, making 

the two groups directly comparable. 
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2.1.2 Mahalanobis Distance Matching 

Matching on the propensity score and any function of the observed baseline covariates will also 

balance the treatment and control groups.18 An implementation of this is the nearest available 

Mahalanobis distance which takes into account the variance and the covariance between all 

variables used in the calculation of distance. 

Let ix  be a vector of p observed baseline covariates for subject i  from the treatment 

group and jx  be a vector of p  observed baseline covariates for subject j  from the control 

group. Let   be the sample variance-covariance matrix, defined as: 

   

   
,

var cov ,

cov , var
i j

i i j

x x

i j j

x x x

x x x

 
  
 
 

. 

 Then, the Mahalanobis distance can be defined as: 

     
,

,
x xi j

T

d i j i jM i j x x x x   1
. 

For uncorrelated variables with unit variance  ,dM i j  reduces to the Euclidean 

distance. Figure 2 provides an illustration of the Euclidean distance (a) and the Mahalanobis 

distance (b) where the contours represent equidistant points from the center using each 

distance metric.19 It can be seen that the Euclidean distance treats the data as if it had a 

spherical distribution while the Mahalanobis distance takes into account the distribution of the 

data points. 
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Figure 2: Illustration of Euclidean distance (a) and Mahalanobis distance (b)
Circles represent equal Euclidean distances towards the center point and ellipses represent equal Mahalanobis 

distances towards the center point.
19

Assuming that the propensity score has been generated, in order to calculate dM  and 

create a matched dataset, the following steps have to be taken: 

1. Transform the raw data X  through spectral decomposition of   into *X which 

has an identity covariance; 

2. Randomly order the subjects from the treatment group and those from the

control group; 

3. Calculate all pairwise Mahalanobis distances based on *X ; 

4. Choose the first subject i  from the treatment group and find subject j  from the

control group that has the smallest  ,dM i j ; 

5. Remove pair  ,i j  from the pool, move to the second subject from the

treatment group and apply steps 4 and 5 until there are no more subjects in the 

treatment group. 
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2.1.3 Cox Proportional Hazards Model 

For each i-th subject  1,...,ni   let *min( , )i i iT T C  be the observed follow-up time given by 

the minimum between the event time *

iT  and the censoring time 
iC ,  *

i i iI T C    the event

indicator which is 1 when *

i iT C  and 0 otherwise, and 
iX  a vector of p baseline covariates. 

We are interested in estimating the marginal survival function at time t given by 

  ( )S t P T t   and adjusted for covariates X where the observed right-censored survival data 

will be represented by  , ,i i iT X  for each of the n subjects. In such a setting, Cox proportional 

hazards (PH) model is typically used.20  Cox PH is defined as: 

    '

0| Xh t X h t e  , 

where  0h t  is the unknown baseline hazard function for 0X   and   a p-dimensional vector 

of unknown parameters. The estimated marginal survival function under the Cox PH model is 

defined as: 

   
ˆ'

0
ˆˆ |

XH t e
S t X e


 , 

where ̂   is the maximum-likelihood estimator of   and  0Ĥ t  is the Breslow estimator of

 0H t . This model is subject to the proportionality assumption which implies that the survival 

curves for different X  strata must have hazard functions that are proportional over time. 
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2.1.4 Expanded Risk Sets 

In order for the start of follow-up for survival to be the same for all RRT groups one would have 

to assign subjects to their RRT group on the day of KDIGO stage 3 which is impossible without 

knowing the future treatment path for each subject.  Suppose early RRT was defined as having 

started RRT within 3 days of KDIGO stage 3 and subject A started RRT on day 2 and died on day 

19, subject B started RRT on day 4 and was alive at one year, subject C never started RRT and 

died on day 4 and subject D never started RRT and was alive at one year. In retrospect we 

would say that subject A was an early starter, subject B a late starter and subjects C and D were 

part of the no RRT group. However, following the subjects prospectively it is not until days 2, 4, 

4, and one year that we know the true groups for subjects A, B, C, and D respectively. Thus the 

true RRT group is determined after the start of follow-up and it is contrived to assign subjects to 

a group on the day of KDIGO stage 3. 

Through the use of ERS analysis subjects are followed prospectively from the time they 

reach KDIGO stage 3 and are allowed to have different contributions of follow-up times and 

events in all three risk sets: early RRT, late RRT, and no RRT. Figure 3 displays the ERS replicate 

contributions for subjects A, B, C, and D. For example, subject A was followed in the early RRT 

group for 19 days and contributed with an event to this group.  Subject A also had the potential 

of being part of the late RRT and no RRT groups for 2 days until he/she was artificially censored 

because RRT was initiated. Subject B had the potential to be part of the early RRT group for 3 

days and was censored, was followed in the late RRT group for one year and was censored, and 

had the potential to be part of the no RRT group for 4 days, until RRT was initiated, and as a 



10 

result became censored. Subject C had the potential to be part of the early RRT group for 3 days 

and was censored, was followed in the late RRT and no RRT groups for 4 days, until his/her 

death. Thus he/she contributed with an event to both late and no RRT groups. Subject D had 

the potential to be part of the early RRT group for 3 days, was followed in the late RRT and no 

RRT groups for one year and did not contribute with an event to any of the three groups. 

Figure 3: Follow-up of subjects from different RRT groups in the expanded risk sets
See section 2.1.4 for a detailed explanation. RRT, renal replacement therapy; KDIGO stage 3 is the baseline 

time from which survival is measured. 

A survival analysis based on the ERS does not suffer from lead-time bias or immortal-

time bias.16 Lead-time bias is prevented by starting the follow-up time for survival from KDIGO 

stage 3 for all subjects. Immortal-time bias is prevented by not defining the RRT group using the 

follow-up time21 and also by not excluding subjects who die or become censored before they 

start RRT.16 
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2.2 TIMING OF RRT STUDY DATA 

2.2.1 Study Population 

This retrospective cohort study used the High-Density Intensive Care (HiDenIC-8) database, 

which includes data on a source population of 45,568 adult patients admitted to one of 8 ICUs 

(i.e. medical, cardiac, transplant, surgical, neurological and trauma) within a single academic 

medical center (University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA) during an 8-

year period (July 2000 through October 2008). HiDenIC-8 data was obtained from several 

computerized databases and deidentified using an honest broker as previously described.22  

For this study, we selected a population of patients that reached KDIGO stage 3 during their 

hospital stay and: 1) had no prior history of hemodialysis or renal transplant; 2) their known 

baseline creatinine was < 4; 3) had no liver transplant during hospitalization; 4) had no history 

of heart failure. We were able to identify 4781 such patients. Furthermore, in order to ensure 

that the population selected had a comparable risk of being started on RRT we  applied the 

following exclusions: 1) RRT started within 24 hours from ICU admission (n=199); 2) in the 

group of patients that did not receive RRT an increase in serum creatinine (sCr) within 48 hours 

from KDIGO stage 3 was not observed (n=1860); 3) KDIGO stage was classified on urine output 

(UO) only and the previous rule could not be determined (n=121); 4) no data on risk factors of 

interest (n=676).  The remaining 1925 patients formed our study population (Figure 4).  This 

study was conducted in accordance with institutional review board guidelines and approval. 
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Source Population 
(n = 4781)

 RRT started before 24 hours from ICU admission (n = 199 )
 Within the no RRT group there was not an increase in 

creatinine within 48 hours from KDIGO Stage 3 (n = 1860)
 AKI was based only on urine output and previous criterion

could not be determined  (n = 121)
 Missing data on covariates (n = 676)

Study Population  
(n = 1925; 40.3%)

No RRT       
(n = 1017; 52.8%)

RRT           
(n = 908; 47.2%)

Figure 4: Study population
RRT, renal replacement therapy; ICU, intensive care unit; KDIGO, Kidney Disease Improving Global 
Outcomes; AKI, acute kidney injury.  

2.2.2 Data Collection 

Data variables included demographic data, comorbid conditions, and indications for RRT. 

Demographic data consisted of age, sex and race. History of cardiac disease, chronic renal 

disease, diabetes and liver transplant were considered. Reference creatinine was derived as 

previously described.22 Admission type (medical versus surgical) was based on the diagnosis 

related group at hospital admission. Biochemistry data such as  sCr, fraction of inspired oxygen 

(FiO2), serum potassium (sK+), serum bicarbonate (HCO3) and serum blood urea nitrogen (BUN) 

were extracted. Severity scores included Glasgow Coma Scale (GCS), APS-III score and severity 

of hypotension. Fluids infused, weight adjusted urine, suspected sepsis, use of vasopressors and 
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mechanical ventilation support were also considered. All variables were measured in the 24 

hours following ICU admission and their definitions have been previously described.22  

Patients were classified according to their maximum KDIGO criteria met during 

hospitalization using sCr and UO criteria.2 If multiple episodes of KDIGO stage 3 occurred we 

only considered the first one as our entry criteria. 

2.2.3 Timing of RRT 

The first instance of intermittent hemodialysis or continuous RRT was considered as the time of 

initiation of RRT. Early RRT was defined based on the number of calendar days from KDIGO 

stage 3 to initiation of RRT. The definition varied from 1 to 7 days. Patients that were started on 

RRT later than the cut off day or those that were never started on RRT during their 

hospitalization were used as the control group. 

2.2.4 Outcome Assessment 

The primary end point of this study was 1-year mortality from KDIGO stage 3. The survival 

period was calculated from KDIGO stage 3 to mortality (in non-survivors) or censored at 1-year 

(in survivors). 
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2.2.5 Statistical Analyses 

Statistical analyses were performed using STATA (version SE 11.2), with statistical significance 

set at p-value <0.05. Mahalanobis matching was done in SAS (version 9.3).  Graphs were 

created in Microsoft Excel 2010 unless otherwise specified. Categorical variables were 

summarized as frequency (percentage) and continuous variables were summarized as 

median±interquartile range. For categorical variables the Pearson Chi-square asymptotic test 

was used and for continuous variables the Kruskal Wallis  test was used.  First, to determine the 

propensity for early RRT we ran multivariable logistic models with all risk factors from Table 2. 

All variables were retained in the model regardless of significance level. For a sensitivity 

analysis, however, backward stepwise selection was used with the probability-to-enter set at 

0.05 and probability-to-remove set at 0.1. In this procedure, removal testing was based on the 

probability of the likelihood-ratio statistic based on conditional parameter estimates. Second, 

matches from the pool of late/no RRT patients were chosen without replacement using a 1-1 

nearest neighbor Mahalanobis distance algorithm. The propensity for early RRT from the 

logistic regression along with the reference creatinine, FiO2, sK+, fluids and weight adjusted

urine were used in calculating the Mahalanobis distance. Covariate balance between groups 

was checked by plotting the chi-square statistics from the unmatched and matched 

populations. Third, the ERS method was applied to the unmatched and to the matched 

populations. We used Cox proportional hazards regression adjusted for age to test the 

differences in the hazard of mortality at 1-year between late RRT versus early RRT and between 

no RRT versus early RRT. All steps were applied to each of the 7 populations from Table 3. 
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3.0 RESULTS 

3.1 BASELINE CHARACTERISTICS 

Of the 1925 patients meeting the inclusion criteria, 47.2% were started on RRT after reaching 

KDIGO stage 3. Baseline characteristics for the RRT and no RRT groups are shown in Table 2. As 

expected, younger patients, liver transplants, multiple comorbidities, higher reference 

creatinine, surgical admission, higher FiO2, azotemia (BUN ≥ 100), worse APS-III scores, more 

fluids, lower weight adjusted urine, suspected sepsis and use of vasopressors were more 

common in the RRT group (p-values 0.03 to <0.001). There was no difference in hyperkalemia 

(sK+ > 5 meq/L) (p-value 0.12). 
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Table 2: Patient characteristics by in-hospital RRT 

Characteristics 
RRT No RRT All 

P-value* 
(N = 908) (N = 1017) (N = 1925) 

Age 60 (49-70) 64 (51-76) 62 (50-73) <0.001 

Males 526 (57.9) 544 (53.5) 1,070 (55.6) 0.05 

Race 

0.79 
  White 682 (75.1) 750 (73.7) 1,432 (74.4) 

  Black 58 (6.4) 68 (6.7) 126 (6.5) 

  Other 168 (18.5) 199 (19.6) 367 (19.1) 

Comorbid condition 

Cardiac disease 35 (3.9) 47 (4.6) 82 (4.3) 0.41 

Chronic renal disease 53 (5.8) 46 (4.5) 99 (5.1) 0.19 

Diabetes 137 (15.1) 158 (15.5) 295 (15.3) 0.79 

Liver transplant 59 (6.5) 39 (3.8) 98 (5.1) 0.008 

Multiple comorbidities 396 (43.6) 394 (38.7) 790 (41) 0.03 

Reference creatinine, mg/dl 1 (0.8-1.2) 0.9 (0.8-1.1) 1 (0.8-1.1) <0.001 

Surgical admission 577 (63.5) 568 (55.9) 1,145 (59.5) 0.001 

sCr ≥ 4 meq/La 152 (16.7) 154 (15.1) 306 (15.9) 0.34 

FiO2 > 60%a 258 (28.4) 240 (23.6) 498 (25.9) 0.02 

sK+ > 5 meq/La 188 (20.7) 182 (17.9) 370 (19.2) 0.12 

HCO3 < 18 meq/La 82 (9) 73 (7.2) 155 (8.1) 0.14 

BUN ≥ 100 mgs/dla 44 (4.8) 29 (2.9) 73 (3.8) 0.02 

GCSa 

0.36 
[3,5] 234 (25.8) 250 (24.6) 484 (25.1) 

[6,10] 281 (30.9) 294 (28.9) 575 (29.9) 

[11,15] 393 (43.3) 473 (46.5) 866 (45) 

APS-III scorea 87 (67-112) 79 (59-103.5) 83 (62-109) <0.001 

Severity of hypotensiona,b 1.5 (0-15.1) 0.5 (0-13) 1 (0-14) 0.05 

Fluids, La 4.4 (2.7-6.9) 3.7 (2.3-6.1) 4 (2.5-6.5) <0.001 

Weight adjusted urine, CCsa 11.3 (4.5-20.3) 13.1 (7.2-23) 12.3 (5.9-21.4) <0.001 

Suspected sepsisa 303 (33.4) 219 (21.5) 522 (27.1) <0.001 

Vasopressorsa 430 (47.4) 411 (40.4) 841 (43.7) 0.002 

Mechanical ventilationa 604 (66.5) 649 (63.8) 1,253 (65.1) 0.21 

Data presented as n (%) or median (Q1-Q3). RRT, renal replacement therapy; sCr, serum creatinine;  FiO2, fraction of inspired 
oxygen; sK+, serum potassium; HCO3, serum bicarbonate; BUN, serum blood urea nitrogen; GCS, Glasgow Coma Scale; APS-III,
acute physiology score.  
*P-va lue for the comparison of RRT and No RRT. For categorical variables Pearson Chi-square asymptotic 2-sided test was used. 

For continuous variables Kruskal Wallis Test was used.  
a
Measured within 24 hours following ICU admission.  

b
Area under the curve for severity and duration of hypotension.  
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3.2 MATCHING 

3.2.1 Generating Propensity Scores 

For this study we used the days from KDIGO stage 3 to RRT initiation [median (interquartile 

range): 3 (2-7)] to define early RRT. We had no a priori definition for the number of days that 

should classify patients as early starters. Instead, we looked at various cut off points where 

early was defined as having started RRT on the same day as KDIGO stage 3 or anywhere up to 

and including day 7. As seen in Table 3 under the unmatched analysis (i.e. the study 

population), in population 1 there were 192 patients that started RRT on the same day as 

KDIGO stage 3, 716 that started RRT anywhere after day 2 and 1017 that were never on RRT for 

a total of 1925 patients. In population 2, there were 128 more patients that started RRT on day 

2, thus the early group had 320 patients while the late group was left with 588. 

We used the same logistic regression model to generate the propensity for early RRT for 

each of the 7 unmatched populations: 
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 
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i i
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  
    

  
0 1

1
1

0
, 

where 

Y = 1 for early RRT, 

Y = 0 for the combined late and no RRT groups, 

X = vector of all baseline covariates from Table 2. 
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Table 3: Sample size description by early RRT definition and analysis type 

Days from KDIGO 
Stage 3 to RRT 

Initiation 

Unmatched Analysis* Matched Analysis^ ERS Analysis# 

(n) Early RRT 
(n) 

Late RRT 
(n) 

No RRT 
(n) 

Late RRT 
(n) 

No RRT 
(n) 

Population 1: 1 192 716 1017 76 116 1152 

Population 2: ≤ 2 320 588 1017 139 181 1920 

Population 3: ≤ 3 470 438 1017 161 309 2820 

Population 4: ≤ 4 568 340 1017 161 407 3408 

Population 5: ≤ 5 636 272 1017 147 489 3816 

Population 6: ≤ 6 673 235 1017 150 523 4038 

Population 7: ≤ 7 703 205 1017 133 570 4218 

* Early RRT + Late RRT = 908 and Early RRT + Late RRT + No RRT = 1925 regardless of population.
^ Late RRT + No RRT = Early RRT; under each matched population, the numbers in the late and no RRT groups represent the
number of  matched patients from the available pool of unmatched patients in the late and no RRT  groups. 
# Early RRT + (Late RRT + No RRT)^ multiplied by 3 wi ll give the ERS (n).

3.2.2 Generating Matched Populations 

For each population from Table 3 each subject i  from the early RRT group was matched 

without replacement to one subject j  from the late or no RRT group by using the nearest 

neighbor Mahalanobis distance algorithm.  The propensity for early RRT and the following 

baseline covariates, identified a prior as being clinical indicators for RRT initiation, were used in 

calculating all 'sdM for each  ,i j  pair: reference creatinine, FiO2, sK+, fluids and the weight

adjusted urine. Table 3, under the matched analysis, gives the number of matched patients and 

the group from which they originated. For example, in population 1 all 192 patients from the 

early RRT group were matched to 76 out of 716 and 116 out of 1017 patients from the available 

late and no RRT groups respectively. 

For each population, we checked the distribution and common support of the 

propensity scores between the early RRT group and the matched and unmatched late and no 

RRT groups. Figure 5 shows adequate overlap in the propensity scores between the early RRT 
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group and the matched late and no RRT groups. In other words, each late and no RRT patient 

had a good match on the propensity score to an early RRT patient. Population 7 not shown but 

the results were similar. 

We also checked the balance before and after matching on all baseline risk factors that 

were used to generate the propensity for early RRT. Figure 6 displays a plot of the chi-square 

statistics for the test of difference in risk factors between early RRT and the combined late and 

no RRT groups before matching (red) and after matching (green). For categorical variables we 

used the Pearson chi-square statistic23 

n
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2
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1

, 

where 

N  = the total number of observations, 

n  = the number of cells compared, 

ip  = the proportion of observations of type i , 

iO  = the number of observations of type i , 

k 2  = chi-square distribution with k degrees of freedom. 

For continuous variables we used the Kruskal-Wallis statistic24 
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where 

c  = the number of samples, 

in  = the number of observations in sample i , 
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N  = in , the number of observations in all samples combined,

iR  = the sum of the ranks in sample i , 

g  = the number of groups with tied observations, 

jt   = the number of tied observations in group j , 

c 

2
1 = chi-square distribution with c 1degrees of freedom. 

The central tendency line (gray) represents the chi-square value of 3.84 which is analogous to a 

p-value of 0.05 for a chi-square distribution with 1 degree of freedom. Before matching, across 

all populations, there was imbalance in most risk factors as represented by the red symbols 

associated with high chi-square values. However, after matching, the imbalance between risk 

factors was corrected as represented by the green symbols with very low chi-square values 

(Figure 6). 
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Figure 5: Jitter plot of propensity scores in the matched and unmatched groups
Matches chosen without replacement using a 1 -1 nearest neighbor Mahalanobis distance algorithm on the propensity for early RRT, reference    creatinine, FiO 2, 

sK
+
, fluids and weight adjusted urine.
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= 𝟑. 𝟖𝟒) except for Race and GCS which had 2 (𝝌𝟐
𝟐
,𝟎.𝟎𝟓 =

Figure 6: Covariate balance before and after matching 
All tests had 1 degree of freedom (𝝌𝟏

𝟐
,𝟎.𝟎𝟓                                                                                                                                                                                                       𝟓. 𝟗𝟗). For a detailed explanation see section 3.2.2. 
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3.2.3 Generating Expanded Risk Sets Populations 

For the ERS analysis, patients from each matched population were allowed to have different 

contributions of follow-up times and events in all three risk sets: early RRT, late RRT, and no 

RRT. As a result, the ERS analysis population will have 3 times more subjects than the 

corresponding matched population. For example, population 1 had 192*2=384 subjects in the 

matched analysis and 384*3=1152 in the ERS analysis (Table 3). 

3.3 SURVIVAL 

3.3.1 Before Matching 

In the unmatched populations, unadjusted analyses showed no difference in hospital mortal ity 

between early and late starters except for population 5, where late starters had higher hospital 

mortality than early starters: 62.9% vs 54.1% (p-value 0.01) (Table 4). The unadjusted 1-year 

mortality was significantly worse in late than in early starters as the definition for early RRT 

changed from ≤3 to ≤7 days (Table 4). There was no apparent benefit in initiating RRT earlier in 

the course of the disease progression since the 1-year mortality in the early group only slightly 

increased from 66.9% in population 2 to 68.8% in population 7.  However, these results suffer 

from selection bias and immortal-time bias. 
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Table 4: Unadjusted outcomes before matching 

Early RRT 
Hospital Mortality (%) 1-year Mortality (%) 

Early RRT Late RRT  No RRT P-value* Early RRT Late RRT  No RRT P-value* 

Population 1 59.4 56 

41.3 

0.4 69.8 70.9 

57.7 

0.75 

Population 2 55.6 57.3 0.62 66.9 72.8 0.06 

Population 3 55.3 58.2 0.38 67.2 74.4 0.02 

Population 4 54.2 60.9 0.05 67.8 75.6 0.01 

Population 5 54.1 62.9 0.01 67.9 77.2 0.005 

Population 6 54.8 62.1 0.05 68.8 76.2 0.03 

Population 7 55.2 62 0.09 68.8 77.1 0.02 

The sample size for each population and RRT group is the same as in Table 3 under the unmatched analysis. 
*P-value for the comparison between early RRT and late RRT groups only. 
All  3-way comparisons had p-value <0.001. 

In the unmatched populations, after adjusting for age and taking into account the time 

to death there was no difference in the hazard of mortality at 1-year between early and late 

starters (Figure 7a). Even though the hazard ratio (HR) in population 1 (HR (95%CI): 0.86 (0.71-

1.04)) seemed to favor late initiation the confidence interval contained 1. As definitions for 

early RRT changed the HRs got very close to 1 and there was no clear signal of an optimal time 

for initiation. However, these results suffer from both selection bias and immortal -time bias. 

Next, we removed the artificial survival advantage given to late starters by applying the 

ERS method to the unmatched populations. The sample size for each population was 5775 

(1925*3). In this analysis, there seems to be an advantage in delaying RRT since the rate of 

mortality for the late RRT group decreased from 14% in population 2 to 25% in population 7 

(Figure 7b). Selection bias has not been addressed in the ERS analysis on the unmatched 

populations. 
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Figure 7: Age adjusted survival at 1-year before matching 
Red dots represent the hazard ratios (HR) for late RRT vs early RRT; black lines represent 95% confidence intervals for 
HR; dashed lines represent a HR of 1; ERS, expanded risk sets. Sample size for each population in (a) is 1925. Sample 
size for each population in (b) is 1925*3=5775. 

3.3.2 After Matching 

In the matched analysis, after controlling for age, there was no difference in the hazard of 

mortality at 1-year associated with timing of RRT initiation. Even though in population 1 the HR 

of 0.84 seemed to favor late initiation the 95% confidence interval (0.61-1.16) contained 1 

(Table 5). As definitions for early RRT changed the HRs got very close to 1 and there was no 

clear signal of an optimal time for initiation. Except for populations 2 and 5 patients that were 

never started on RRT seemed to have a decreased hazard of 1-year mortality when compared 

to early starters (Table 5). However, these results still suffer from immortal-time bias. 

In the ERS analysis the HRs were lower for both late and no RRT groups but their 

magnitude did not change with the varying definitions for early RRT. In population 1 the rate of 

mortality decreased by 25% in the late RRT group and by 44% in the no RRT group. When the 

definition of early RRT was changed, the rates of mortality in the late RRT group only slightly 

varied from 24% in population 3 to 27% in population 7 with no significant decrease in mortality 

for population 2. Similar to the results seen in Figure 7b which only suffered from selection 
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bias, there seems to be an advantage in delaying RRT once both selection bias and immortal -

time bias were removed through the use of the ERS analysis. 

Table 5: Survival at 1-year in the matched and expanded risk sets populations 

Matched Analysis ERS Analysis 

Early RRT 
N 

HR* (95%CI) 
N 

HR* (95%CI) 

Late vs Early No RRT vs Early Late vs Early No RRT vs Early 

Population 1 384 0.84 (0.61-1.16) 0.71 (0.53-0.96) 1152 0.75 (0.59-0.96) 0.56 (0.42-0.76) 

Population 2 640 0.93 (0.73-1.18) 0.85 (0.67-1.07) 1920 0.85 (0.71-1.03) 0.63 (0.5-0.79) 

Population 3 940 0.88 (0.71-1.09) 0.78 (0.65-0.94) 2820 0.76 (0.65-0.89) 0.59 (0.49-0.71) 

Population 4 1136 0.99 (0.8-1.22) 0.8 (0.68-0.94) 3408 0.78 (0.67-0.88) 0.6 (0.52-0.71) 

Population 5 1272 0.92 (0.74-1.13) 0.87 (0.75-1.01) 3816 0.77 (0.67-0.87) 0.64 (0.55-0.73) 

Population 6 1346 0.93 (0.75-1.15) 0.81 (0.7-0.94) 4038 0.73 (0.65-0.83) 0.6 (0.53-0.69) 

Population 7 1406 0.96 (0.77-1.19) 0.83 (0.72-0.95) 4218 0.73 (0.65-0.83) 0.61 (0.54-0.7) 

RRT, renal replacement therapy; HR, hazard ratio; CI, confidence interval; ERS, expanded risk sets; *Age adjusted. 

For a sensitivity analysis we determined the propensity for early RRT by using 

multivariable logistic regression with backward stepwise variable selection as described under 

section 2.2.5. We then followed all other steps for matching and for creating ERS populations. 

Changing the method for selecting the propensity for early RRT did not modify our overall 

results. There still seems to be an advantage in delaying RRT once both selection bias and 

immortal-time bias were removed through the use of the ERS analysis (Figure 8a). 
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Figure 8: Age adjusted survival at 1-year after matching 
Red dots represent the hazard ratios (HR) for late RRT vs early RRT (a) and for no RRT vs early RRT (b); black lines 

represent 95% confidence intervals for HR; dashed lines represent a HR of 1; ERS, expanded risk sets. Populations 

were generated from ERS models based on matched populations where the propensity for early RRT was modeled 

with a backward stepwise selection method. The sample size for each population is the same as in the ERS analysis 

from Table 3 but the sample size for the true late and true no RRT groups is slightly different. 
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4.0 DISCUSSION 

In this retrospective cohort study, using a large adult population admitted to one of 8 ICUs 

within a single academic medical center over an 8-year period, we examined the association 

between timing of initiation of RRT and 1-year mortality. Current studies in this domain suffer 

from either selection bias, lead-time bias, and/or immortal-time bias. To our knowledge, in the 

renal literature, there is only one other study that addresses both lead-time bias and immortal-

time bias.16 However, there are several major differences between our studies. First, we 

defined the groups early RRT, late RRT, and no RRT based on the number of days from KDIGO 

stage 3 to RRT initiation (Table 3) and not on changes in estimated glomerular filtration rate. 

Second, we varied our definition for early RRT from 1 to 7 days to find the optimal time for RRT 

initiation. Third, before expanding the risk sets we dealt with selection bias. In conclusion, by 

using a new definition for the timing of initiation and statistical techniques based on propensity 

scores, Mahalanobis matching, and ERS analyses we have addressed three of the existing biases 

in the current literature. 

In randomized control trials, on average, patients are similar on all baseline 

characteristics. Hence, any significant differences between groups in the outcome event can be 

attributed to the intervention.25 However, in observational studies, the assignment of patients 

into the treatment and control groups is typically not random. Differences in the outcome may 
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not necessarily be due to the treatment effect but rather to the differential distributions of 

other prognostic factors, known and unknown, which are associated with both the outcome 

and the decision to treat.26–28 We believe that our study contains patients in the late RRT and 

no RRT groups in which due to their baseline risk factors and day-to-day disease progression 

the decision to initiate RRT was never a choice. This is supported by the divergent distributions 

of risk factors between the early RRT and late/no RRT groups (Figure 6). Even though with the 

available risk factors we cannot address the daily changes in a patient’s risk to be initiated on 

RRT, we believe that the spectrum of their baseline risk factors is a good indication for the 

decisions made. Although no method can be trusted to remove hidden selection bias,  it is 

important to minimize differences between known risk factors .26 Thus, as suggested in 

literature, the use of a propensity score along with Mahalanobis metric matching can eliminate 

hidden selection bias.18,29,30  

Lead-time bias occurs in observational studies when follow-up time for survival is 

counted from the exposure time rather than from enrollment. Patients exposed to the 

treatment earlier in the course of their disease development get an artificial survival time over 

those that are exposed later. Even though it has been acknowledged as a limitation by several 

authors9,31,32 dating to 2001, studies affected by this bias have been published in 201033 and as 

recently as 201434. In our study, survival time was counted from the time patients reached the 

same severity in their renal dysfunction, namely KDIGO stage 3. 

Immortal time in epidemiology refers to a period of cohort follow-up or observation 

time, during which death cannot occur.35 Depending on the methodology used, if immortal 

time is not correctly accounted for, estimated treatment effects can be substantially biased. 36 
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Pharmacoepidemiology research has shown that for time-based, event-based, and exposure-

based cohort definitions, the bias in the rate ratio resulting from misclassified or excluded 

immortal time increases proportionately to the duration of immortal time.37,38 A review of 127 

studies published in highly-cited medical journals found that immortal time was not handled 

properly in 52 of them.39  

Immortal time bias can occur in observational studies in one of two ways. The first is 

through misclassification of immortal time as a part of the follow-up time for survival. As a 

result, patients with longer immortal time periods have an artificially inflated survival 

advantage when compared to patients with shorter immortal time periods. The second is 

through exclusion of immortal time from the analysis and then starting the follow-up time for 

survival at the exposure time.  Immortal time bias through exclusion differs from lead-time bias 

in that in occurs when patients who were never exposed to the treatment of interest are now 

included in the survival analysis. In this case, the exposed and unexposed patients are not 

comparable because their follow-up times start at different stages in the development of their 

disease. In the ERS analysis the RRT group assignment is made at baseline ( i.e. KDIGO stage 3) 

thus the time-varying nature of the treatment is removed and patients no longer have immortal 

time. For example, within the early RRT group, subjects that initiated RRT or those that died or 

become censored before initiating RRT all contribute their observed follow-up days for survival 

to the same treatment regime – early RRT, thus within group  immortal-time bias has been 

removed. 

There are important limitations to our study. First, because this was an observational 

study our results are subject to unmeasured confounding ( i.e. hidden bias) and causation 
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cannot be established. Even though we used a propensity score to minimize selection bias, we 

only used patient specific parameters to address this issue and there are immeasurable 

physician beliefs and logistical and/or operational issues that impact RRT initiation that we did 

not account for.13  Second, even though we had a large sample size, patients are all from a 

single medical center which makes it difficult to assess the generalizability of our results. 

However, we had access to patient data from multiple ICUs ( i.e. medical, cardiac, transplant, 

surgical, neurologic, and trauma) which increases our confidence that the results are not 

unique to this medical center. Third, by using the ERS method we introduced nonrandom 

censoring and patients censored at time t  will have worse prognosis than uncensored 

patients.16 In the future, we plan to use inverse probability weighting to adjust for any new 

selection bias introduced by the nonrandom censoring.16,40  

In this study, we found that selection bias did not have a big impact on the estimated 

hazard of mortality but immortal-time bias drastically affected the conclusions drawn. When 

comparing results from unmatched and matched analyses that still suffered from immortal-

time bias we concluded that there was no clear signal of an optimal time to initiate RRT (Figure 

7a versus Table 5 - matched analyses). However, after removing immortal-time bias, regardless 

of selection bias, there seemed to be an advantage in delaying RRT (Figure 7b and Table 5 - ERS 

analysis). 

In conclusion, the optimal time to start dialysis is still uncertain but we believe that 

building upon our methods and those used by Sjolander et al.16 will aid future researchers in 

better analyzing observational data and providing less biased estimates. 
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