
ASSOCIATION ANALYSIS BETWEEN BINARY

TRAITS AND COMMON OR RARE GENETIC

VARIANTS ON FAMILY-BASED DATA

by

Jia Jia

M.B.A., University of New Haven, 2010

B.S., Tianjin University of Commerce, China, 2008

Submitted to the Graduate Faculty of

the Department of Biostatistics

Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2015



UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This dissertation was presented

by

Jia Jia

It was defended on

2/25/2015

and approved by

Daniel E. Weeks, PhD

Professor

Department of Human Genetics

Graduate School of Public Health

University of Pittsburgh

Eleanor Feingold, PhD

Professor

Department of Human Genetics

Graduate School of Public Health

University of Pittsburgh

ii



George C. Tseng, ScD

Professor

Department of Biostatistics

Graduate School of Public Health

University of Pittsburgh

Wei Chen, PhD

Assistant Professor

Department of Biostatistics

Graduate School of Public Health

University of Pittsburgh

Dissertation Director: Daniel E. Weeks, PhD

Professor

Department of Human Genetics

Graduate School of Public Health

University of Pittsburgh

iii



Copyright © by Jia Jia

2015

iv



ASSOCIATION ANALYSIS BETWEEN BINARY TRAITS AND COMMON

OR RARE GENETIC VARIANTS ON FAMILY-BASED DATA

Jia Jia, PhD

University of Pittsburgh, 2015

ABSTRACT

Association studies test for genetic variation influencing disease risk. We explore here

the application and development of statistics for binary traits on family data. There are two

main areas of focus: the first on comparing existing single-variant tests, and the second on

developing a gene-based test.

In the first part, we carried out a comparative study by applying 42 family-based associ-

ation test statistics on different family-based datasets, which are simulated under a variety of

scenarios (varying levels of linkage disequilibrium; dominant, additive, and recessive disease

models; a variety of family structures). We have compared the Type I error, power and

robustness of all the statistics. The results show that, when testing the null hypothesis of

no association and no linkage, among the statistics that have well-behaved Type I error, the

More powerful Quasi-likelihood Score test has the highest power and high robustness.

In the second part, motivated by a need for powerful gene-based association statistics on

family-based data for binary traits, we have proposed a new test statistic, which is based on

a mixed model framework, Laplace’s method and a variance component score test. We have

compared the Type I error rates and power of our new statistic and six existing statistics

by simulating different scenarios (varying the number and effect size of risk and protective

variants). Our proposed statistic shows well-behaved Type I error and high power in some

scenarios.

The insights gathered here may improve public health by providing information on how

to effectively utilize association methods to detect genetic variants that are related to disease.

Ultimately, they should help improve the understanding of disease etiology.
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1.0 INTRODUCTION

1.1 OVERVIEW

The unifying aim of this dissertation is to research family-based association test statistics

for binary traits and for both common and rare variants. In Chapter 2, we conducted

a simulation-based comparative study of family-based single common variant association

tests, in which we simulated family data under different scenarios, compared and evaluated

the Type I error, power and robustness of many statistics with different algorithms and

implementations. Then, we discussed some applications of these compared statistics. In

Chapter 3, we extended a gene-based kernel statistic for rare variants and binary traits to

deal with family data, and evaluated its Type I error and power by simulation as well as

compared it to other similar statistics. Then in Chapter 4, we discussed some advantages

and disadvantages of existing methods and potential future work.

1.2 GENERAL BACKGROUND

1.2.1 Trait and marker

A trait is either a continuous or a binary expressed phenotype, which is controlled by a un-

observed disease locus genotype; genetic markers are based on DNA polymorphisms. There

are several different genetic markers. For example, there are single nucleotide polymor-

phisms (SNP), copy number variation (CNV) and restriction fragment length polymorphisms

(RFLP). In Chapter 2, we have simulated one binary trait (e.g. affected/unaffected) and
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one bi-allelic marker, which uses alleles to measure the polymorphism at a given locus on

a pair of chromosomes; while in Chapter 3, we have simulated one binary trait and many

genetic markers that within a selected genetic region.

1.2.2 Association analysis

In general, association analysis is, by applying an appropriate statistical test, trying to

identify the relationship between a trait (an unobserved disease locus) and genetic markers.

The purpose of association analysis is trying to provide genetic evidence of the etiology of

a certain disease. Oftentimes, association analysis is also called gene mapping between a

disease phenotype (trait) and marker genotypes.

1.2.3 Population and family data

There are generally two types of data that can be collected in order to identify the relationship

between a trait and a marker using any statistic. The first one is population-based data, in

which the individuals are randomly sampled from a huge population, thus assumed to be

independent to each other; while the other one is family-based data, in which the individuals

are family members, thus assumed to have correlations with each other within families. Using

family-based data can guard against confounding factors such as population stratification,

which means the population itself can be separated into different groups just by differences

of allele frequencies between sub-populations due to different ancestry. In this case, allele

frequency based association analysis would be confused by the confounding factor. In this

dissertation, we focused on family-based data and discussed the applications in the presence

of population stratification.

1.2.4 Linkage and association

There are basically two types of tests that can be applied for a single marker analysis. One is

called linkage test, where linkage can be viewed as a measurement of the correlation between

the pattern of marker inheritance and the pattern of trait inheritance (recombination events

2



during meiosis) in a long-range along a chromosome; The other one is called association test,

where the association can be viewed as a relationship (linkage disequilibrium or LD) between

a marker allele and a trait in a short-range along a chromosome.

Therefore, one can apply association test statistics on both population-based and family-

based data, while one can only apply linkage test statistics on family-based data. In fact, in

family-based data, as illustrated in Figure 1.1 for a bi-allelic marker with genotypes "A/A",

"A/a" or "a/a", there would be both association and linkage if the targeted marker is related

to the trait and has been passed from generation to generation; and there could be a linkage

signal alone if the targeted marker is not related to the trait but has been passed from

generation to generation. However, in family-based data, it is unlikely that there is an

association signal alone because if a marker is very close to a disease-causing mutation, then

they will always be inherited together.
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No association but only linkage between disease locus and marker locus. 

D/d 

a/A 
D/D 

a/a 

D/D 
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A/a 

D/D 

A/A 

d/D 

a/A 

D/d 

A/a 
D/d 

A/a 

Unobserved disease locus genotype 

Observed marker locus genotype 

D/D 

A/A 

d/D 

a/A 

D/d 

A/a 

D/d 
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A/a 

Both association and linkage between disease locus and marker locus. 

Male    Female 

Affected 
 
 
Unaffected 

Figure 1.1: Example of linkage and association in family-based data.
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1.2.5 Common and rare variants

For a bi-allelic marker, there are four different haplotypes: (0, 0), (0, 1), (1, 0) and (1, 1).

Usually, we use ’1’ to represent the minor allele in haplotypes. These four haplotypes can be

coded to genotypes by counting how many minor alleles are presented: 0: (0, 0), 1: (0, 1) or

(1, 0) and 2: (1, 1). Minor allele frequency (MAF) can be calculated as the proportion of the

minor allele in population. Based on MAF for each variant (marker) in the dataset, common

variants usually are defined as the MAF greater than 5%, and we define those variants that

have MAF smaller or equal to 5% as rare variants. Rare variants sometimes have larger effect

size than common variants. Because of the small MAF, single variant analysis statistics will

not be able to detect the association unless the sample size is large enough, so that people

developed multi-variant (region-based) test statistics that identify the association between

the traits and a genetic region, which contains a number of rare variants. Rare variants

have not been as much researched as common variants. But as sequencing technology has

improved, rare variants data are not as difficult to obtain as it was before. Therefore, it

is necessary for statisticians to develop powerful statistics to do rare variants association

analysis.
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2.0 A SIMULATION-BASED COMPARATIVE STUDY OF

FAMILY-BASED ASSOCIATION TESTS

2.1 MOTIVATION

The statistical genetics community has created a large number of different statistics for

testing for association on family data. However, it is not necessarily clear which one of

these would be best for a particular dataset. Furthermore, with the development of next

generation sequencing technology, the pendulum is moving toward the increasing study of

families, which will increase the need for family-based association analysis. It is essential to

apply well-behaved, powerful, and robust statistics when analyzing family-based data. So

it is important to evaluate, compare and summarize the statistical properties of commonly

used family-based association test statistics when they are applied under different situations.

Some comparison studies of family-based association test statistics have been done: Chen

et al. [2009] proposed a generalized disequilibrium test (GDT) and compared it to several

other statistics such as the Family-based Association Test (FBAT) [Laird et al., 2000; Ra-

binowitz and Laird, 2000], and the Pedigree Disequilibrium Test (pdt) [Martin et al., 2001,

2000]. Their results showed that the GDT was the most powerful among those statis-

tics. Hiekkalinna et al. [2011] compared their Pseudomarker statistics to some commonly

used family-based association tests such as FBAT, MENDEL association test given linkage

[Lange et al., 2001, 2005], QTDT [Abecasis et al., 2000a], TRANSMIT [Clayton, 1999] and

UNPHASED [Dudbridge, 2008]. Pseudomarker was shown to have higher power than the

other statistics.

In this Chapter, we compared a number of different association statistics (Table 2.1) on

identical simulated datasets in a controlled environment to determine which ones are best
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under which conditions. By simulating family data and varying the strength of associa-

tion, family structures, and the disease model, we evaluated and compared the statistical

properties such as Type I error, power and robustness of different association statistics. We

explore, in a controlled comparison, which statistic is most powerful and robust on which

kind of data, and how power changes as the simulation models change.

2.2 APPROACH

2.2.1 Null Hypothesis

When testing for association on family data, there are four different null hypotheses that

could be tested. These null hypotheses include:

Null A: H0: no association (D'= 0)

Null NL: H0: no association and no linkage (θ = 0.5 and D'= 0)

Null CL: H0: no association given complete linkage (D'= 0 | θ = 0)

Null AL: H0: no association given no linkage (D'= 0 | θ = 0.5)

where θ denotes the recombination fraction and D'measures the strength of association. Note

that, although we focused on association analysis, we also included a few statistics that test

Null L and Null LA. In this study, we evaluated all the statistics listed in Table 2.1 on

the family-based data simulated under Null NL and Null CL listed above, as well as under

appropriate alternative hypotheses. We did not simulate any data under Null AL, because

it is unlikely that, two locus which are under strong linkage disequilibrium (high D') and

very close on same chromosome, would segregate separately within a family. Table 2.1 also

shows the null hypotheses of the association tests and defines short names for those statistics,

which we will use when referring to them.
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Table 2.1: Abbreviations, null Hypothesis and descriptions of all statistics evaluated in this

study

Abbreviation Null Hypothesis Description

ALLELE_FREQ No Association Pedigree based allele

frequency estimation

[Boehnke, 1991] and chi-

square test implemented

in Mendel package [Lange

et al., 2001].

AS|LINK No Association Given

Linkage

Test for association given

linkage [Cantor et al., 2005]

implemented in Mendel

package [Lange et al.,

2001].

CACO_FISHER

CACO_ZMAX

No Association Case Control test with

Fisher and Z-max p-values

as implemented in Mendel

package [Lange et al., 2001].

FBAT No Association And

No Linkage

Family-based association

test [Laird et al., 2000;

Laird and Lange, 2006;

Rabinowitz and Laird,

2000].
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Table 2.1 Continued

Abbreviation Null Hypothesis Description

FBAT_e No Association Given

Linkage

FBAT with empirical

variance estimator [Laird

et al., 2000; Laird and

Lange, 2006; Rabinowitz

and Laird, 2000].

g_1tdt No Association And

No Linkage

TDT extension that allows

one un-typed parent in each

family [Sun et al., 1999] im-

plemented in GDT package

[Chen and Abecasis, 2007;

Chen et al., 2009].

g_gee1 No Association Generalized Estimating

Equation with independent

working correlation imple-

mented in GDT package

[Chen and Abecasis, 2007;

Chen et al., 2009].

g_mqls No Association And

No Linkage

MQLS [Thornton and

McPeek, 2007] imple-

mented in GDT package

[Chen and Abecasis, 2007;

Chen et al., 2009].
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Table 2.1 Continued

Abbreviation Null Hypothesis Description

g_pdt No Association And

No Linkage

Pedigree Disequilibrium

Test [Martin et al., 2001,

2000] implemented in

GDT package [Chen and

Abecasis, 2007; Chen et al.,

2009].

g_qlsw No Association And

No Linkage

Quasi-likelihood score test

[Bourgain et al., 2003; Mc-

Cullagh and Nelder, 1989]

implemented in GDT pack-

age [Chen and Abecasis,

2007; Chen et al., 2009].

g_tdt No Association And

No Linkage

Transmission Disequilib-

rium Test implemented in

GDT package [Chen and

Abecasis, 2007; Chen et al.,

2009].

GC1, GC2 No Association And

No Linkage

Gamete Competition with

preset (GC1) or estimated

(GC2) allele frequencies

[Sinsheimer et al., 2000,

2001] as implemented in

Mendel [Lange et al., 2001].
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Table 2.1 Continued

Abbreviation Null Hypothesis Description

GC1CT, GC2CT No Association And

No Linkage

GC1, GC2 with Comple-

mentary Transmission op-

tion.

GDT No Association And

No Linkage

Generalized Disequilibrium

Test [Chen and Abecasis,

2007; Chen et al., 2009].

GEE_ind GEE_ex No Association Generalized Estimating

Equation with indepen-

dent (ind) or exchangeable

(ex) working correlation

implemented in R package

"GEE".

IQLS No Association And

No Linkage

Incomplete-Data quasi-

likelihood score test [Wang

and McPeek, 2009].

LME No Association Generalized linear mixed

model implemented in R

package "MASS" [Venables

and Ripley, 2002].

Mendel_TDT No Association And

No Linkage

Transmission Disequilib-

rium Test [Spielman et al.,

1993; Terwilliger and Ott,

1992; Lazzeroni and Lange,

1998] as implemented in

Mendel [Lange et al., 2001].
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Table 2.1 Continued

Abbreviation Null Hypothesis Description

MM1 No Association Polygenic model based score

test implemented in R pack-

age GenABEL [Aulchenko

et al., 2007].

MQLS_e No Association And

No Linkage

More Powerful Quasi-

likelihood Score test

[Thornton and McPeek,

2007] implemented by

Liang (www.sph.umich.

edu/csg/liang/MQLS).

MQLStest_r No Association And

No Linkage

More Powerful Quasi-

likelihood Score test

[Thornton and McPeek,

2007].

MQLStest_caco No Association And

No Linkage

Case-control corrected

quasi-likelihood score test

[Bourgain et al., 2003;

Thornton and McPeek,

2007].

PENE No Association Likelihood ratio test based

on Generalized Linear

Penetrance Model [Lange

et al., 2005] implemented in

Mendel [Lange et al., 2001].
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Table 2.1 Continued

Abbreviation Null Hypothesis Description

PMDom_L No Linkage

PMRec_L No Linkage

PMMbase_L No Linkage

PMDom_L|LD No Linkage Given As-

sociation

PMRec_L|LD No Linkage Given As-

sociation

PMMbase_L|LD No Linkage Given As-

sociation

Psuedomarker(PM)

[Göring and Terwilliger,

2000; Hiekkalinna et al.,

2011, 2012] wiht penetrance

model dominant (Dom)

and recessive (Rec) or

model based (Mbase).

PMDom_LD|L No Association Given

Linkage

PMRec_LD|L No Association Given

Linkage

PMMbase_LD|L No Association Given

Linkage

PMDom_LD|NL No Association Given

No Linkage

PMRec_LD|NL No Association Given

No Linkage

PMMbase_LD|NL No Association Given

No Linkage

PMDom_LDL No Association And

No Linkage

PMRec_LDL No Association And

No Linkage

PMMbase_LDL No Association And

No Linkage
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Table 2.1 Continued

Abbreviation Null Hypothesis Description

poGDT No Association And

No Linkage

Generalized Disequilibrium

Test but only examines

discordant parent-offspring

pairs.

QTDT_ad No Association General version of TDT

Test use all available geno-

typic information from ev-

ery individual, implemented

in QTDT package [Abecasis

et al., 2000a,b; Fulker et al.,

1999].

QTDT_am No Linkage Monks model [Monks

et al., 1998] implemented in

QTDT package [Abecasis

et al., 2000a,b; Fulker et al.,

1999].

QTDT_ar No Association And

No Linkage

Rabinowitz model [Rabi-

nowitz, 1997] implemented

in QTDT package [Abecasis

et al., 2000a,b; Fulker et al.,

1999].
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Table 2.1 Continued

Abbreviation Null Hypothesis Description

Transmit No Association TRANSMIT tests for as-

sociation between genetic

marker and disease by ex-

amining the transmission of

markers from parents to

affected offspring [Clayton,

1999].

Transmit_r No Association TRANSMIT with robust

variance estimator [Clay-

ton, 1999].

WQLS_r No Association And

No Linkage

Quasi-likelihood score test

[Thornton and McPeek,

2007; Bourgain et al., 2003;

McCullagh and Nelder,

1989].
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2.2.2 Simulation Description

In order to thoroughly compare the statistics, the data were simulated under several differ-

ent simulation scenarios (Table 2.2). To mimic different family structures in real data, we

simulated two different family structures: two-generation and three-generation. Note that in

Figure 2.1, the family structures are examples, while in simulation, the number of offspring

for each generation in each family were randomly generated according to a negative binomial

distribution with dispersion parameter 3.84 and probability 0.93.

Table 2.2: Simulation Scenarios with Marker/Disease allele frequency = 0.2/0.2
Family Structure Number of families Penetrance Model Null NL, Null CL, Alternatives

2 generation families (2gen)

Dom (0.05, 0.35, 0.35)

Null NL: no linkage (θ =

0.5), no association (D'=

0), 1000 replications.

Null CL: complete linkage

(θ = 0), no association

(D'= 0), 1000 replications.

Alternatives: complete

linkage (θ = 0), D'= (0.4,

0.5, 0.6, 0.7), 200

replications.

80 Rec (0.05, 0.05, 0.35)

Add (0.05, 0.175, 0.35)

3 generation families (3gen)

Dom (0.05, 0.35, 0.35)

25 Rec (0.05, 0.05, 0.35)

Add (0.05, 0.175, 0.35)

2 generation families with one

untyped parent (2genUP)

Dom (0.05, 0.35, 0.35)

80 Rec (0.05, 0.05, 0.35)

Add (0.05, 0.175, 0.35)

3 generation families with two

grandparents untyped (3genUG)

Dom (0.05, 0.35, 0.35)

25 Rec (0.05, 0.05, 0.35)

Add (0.05, 0.175, 0.35)

3 generation families with two

grandparents and some parents

untyped (3genUGP)

Dom (0.05, 0.35, 0.35)

25 Rec (0.05, 0.05, 0.35)

Add (0.05, 0.175, 0.35)

For one dataset, we first simulated 80 two-generation families with both parents geno-

typed and phenotyped (fully-typed), which we named it as "2gen" for short, as shown in

Figure 2.1. And then, we assigned fixed binary disease status (phenotypes) to one child in

each two-generation family, which is equivalent to ascertain the families that contain one

affected child from the population, and conditionally simulated traits for the remaining fam-

ily members and genotypes for everyone at a two-allele marker with allele frequencies (0.8,
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0.2) using the simulation program FastSLINK [Cottingham et al., 1993; Ott, 1989; Schaffer

et al., 2011]. The disease allele frequencies are set as paffected = 0.2, punaffected = 0.8. We

used Mega2 [Mukhopadhyay et al., 2005] to transform the simulated data into nine differ-

ent formats as required by the various analysis programs. For those statistics that require

pre-specified marker allele frequencies, we used the allele frequencies estimated from Mendel

package analysis option 6: "Allele Frequencies", which provides estimates of allele frequen-

cies by using the pedigree information [Lange et al., 2001]; for those statistics that require a

pre-set prevalence, we set it at 0.05; and for those statistics that require a pre-set penetrance

model, we set it as: (0.05, 0.45, 0.90).

We also simulated scenarios with different family structures, and gave them short names

for easy reference in the following parts of this chapter (Figure 2.1). In specific, we simulated

scenarios where the dataset contains 80 two-generation families with one untyped parent

(2genUP), which means that parent was neither genotyped nor phenotyped, and scenarios

where the dataset contains 25 fully-typed three-generation families (3gen), then scenarios

where the dataset contains 25 three-generation families with both grandparents untyped

(3genUG), and finally, another set of scenarios where the dataset contains 25 three-generation

families with grandparents and some parents untyped (3genUGP). Note that we assigned

fixed binary disease status (phenotypes) to one child in the first two parent-children families

in each three-generation family, which is equivalent to ascertain the families that contain

two affected subjects, who belong to two separated families at the bottom generation, and

then conditionally simulated disease status for the remaining family members. The sample

size in each dataset was controlled at around 500.

17



Figure 2.1: Examples of simulated family structures. The numbers of offspring are ran-

domly generated from a negative binomial distribution.
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To measure Type I error, we simulated 1,000 replicates. Within each replicate, first we

simulated two datasets under two different null hypotheses: Null NL and Null CL, respec-

tively. Second, we calculated p-values for each statistic under these two nulls. Third, after

finishing the 1,000 replicates, for each statistic, we calculated the Type I error as the portion

of the 1,000 P-values that were smaller than the pre-set threshold (α = 0.05). For compar-

ison purposes, based on 1,000 replicates, we calculated the boundaries of a 95% confidence

interval of α = 0.05: [0.037, 0.064] = (0.05 ± 1.96×
√
(0.05× (1− 0.05)/1000)) and defined

three Type I error rates categories in terms of the boundaries of the 95% confidence interval.

As illustrated in Table 2.3, if the estimated Type I error fell within the confidence interval,

we labeled it as "Well-behaved". Otherwise, if the estimated Type I error fell in [0, 0.037)

or (0.064, 1], we labeled it as "Conservative" or "High FP" (high false positive rate), respec-

tively. And we plot the Type I error values in the columns "plot" in Table 2.3. Within each

of those plots, there are five segments, each segment connects three points represents the

three Type I error values under dominant, recessive and additive penetrance models, respec-

tively. For these five segments, they represent five different family structures: 2gen, 3gen,

2genUP, 3genUG, 3genUGP, respectively starting from the left. Table A1 contains the Type

I error values for all the statistics in Table 2.1 across all scenarios in Table 2.2. To measure

power, 200 replicates were simulated for each of the alternatives in Table 2.2. The power is

estimated as the fraction of p-values that are ≤ 0.05, based on 200 replicates simulated under

each of the different simulation scenarios (Table 2.2). To measure robustness, we measured

the behavior of our statistics in the presence of untyped individuals (Figure 2.1, and under

additive, dominant and recessive penetrance models, where penetrance is the probability of

being affected given a certain trait genotype (Table 2.2). A desirable statistic should have a

consistently high power with a well-behaved Type I error across our simulated scenarios. In

this study, after the simulation, we also clustered the statistics using Manhattan distances

(absolute distance between two vectors) based on their p-values under Null NL across the

scenarios where the data do not contain untyped individuals (we used R function ’hclust’).
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2.3 RESULTS

2.3.1 Clusters

The association test statistics we have compared in this study can be broadly classified into

three categories: Transmission-based, Regression-based and Likelihood-based according to

their basic characteristics. Transmission-based methods (e.g. Mendel_TDT, FBAT) usually

construct the test statistics based on the count of alleles that are transmitted from parents to

affected offspring. In other words, these statistics condition on parental genotype and thus

robust to confounding factors such as population stratification. Regression-based methods

(e.g. LME) usually construct regression models between trait and marker while adjusting for

the correlation structure induced by the family structure. These methods themselves cannot

effectively control for population stratification, but they can adjust for potential covariates,

so that one can put in a principle component as a covariate that adjusts for population

stratification. Likelihood-based methods can be separated into likelihood ratio tests (e.g.

Pseudomarker tests), which construct the likelihood based on disease phenotype and marker

genotype, then test the null hypotheses using likelihood ratio tests; and quasi-likelihood

score tests (QLS, e.g., MQLStest), which build the likelihood based on allele frequencies

and test the null hypotheses using a score test. Most of these methods are powerful but

cannot control for population stratification except the one that has been recently developed:

Roadtrips [Thornton and McPeek, 2010], which can control for population stratification.

When we cluster our family-based association statistics based on their Type I errors

under Null NL, they fall into groups that reflect their underlying assumptions, algorithms

and characteristics. Figure 2.2 shows that Group A contains regression-based statistics

and MQLStest_caco, Group B contains Pseudomarker statistics, which are all based on

likelihood ratio tests. Group C contains quasilikelihood-based case-control statistics and

Group D contains transmission-based statistics.
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Figure 2.2: Hierarchical clustering plot based on Manhattan distance of p-values under Null NL across fully typed family

structures and penetrance models.
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2.3.2 Type I error

The statistics in our study also can be categorized into four groups according to their null

hypotheses as we introduced in section 2.2.1 and in Table 2.1. Within each group, by

comparing their Type I error behaviors, power and robustness, we would like to select the

statistic which has well-behaved Type I error, high power and good robustness. In the

following sections, we first compared Type I error behaviors of the statistics within each of

the null hypotheses, and then we dropped the statistics that had inflated Type I error (H)

or more than one deflated (C) Type I errors and compared power only for the ones that had

well-behaved Type I errors.

Table 2.3 shows that, in the group of statistics that test for association, ALLELE_FREQ,

which is the Mendel association test based on allele frequencies estimated by maximizing the

likelihood that takes pedigree structure into consideration, has well-behaved Type I error

under Null CL, which means it can control for linkage, but it has one conservative and one

inflated Type I error behavior under Null NL when there are untyped individuals.
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Table 2.3: Counts of Type I error behavior and power across 15 different scenarios.

No Linkage Complete Linkage

Statistics C W H plot C W H plot

Test for association (Null A)

ALLELE_FREQ 1 13 1 0 15 0

CACO_FISHER 0 15 0 1 11 3

CACO_ZMAX 0 15 0 2 11 2

PENE 7 8 0 5 6 4

LME 6 6 3 5 7 3

GEE_ind 0 8 7 0 6 9

GEE_ex 0 2 13 0 1 14

g_gee1 0 7 8 0 7 8

Transmit 0 15 0 0 4 11

Transmit_r 0 14 1 0 11 4

QTDT_ad 10 5 0 10 5 0

MM1 0 0 15 0 0 15

Test for association in the absence of linkage (Null AL)

PMDom_LD|NL 1 10 4 1 13 1

PMRec_LD|NL 0 9 6 1 10 4

PMMbase_LD|NL 0 10 5 0 11 4

Test for association in the presence of linkage (Null CL)

FBAT_e 2 13 0 0 15 0

AS|LINK 15 0 0 11 4 0

PMDom_LD|L 0 2 13 0 2 13

PMRec_LD|L 0 1 14 0 6 9

PMMbase_LD|L 0 3 12 0 2 13

Test for association or linkage (Null NL)

QTDT_ar* 2 10 0 0 9 3
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Table 2.3 Continued

No Linkage Complete Linkage

Statistics C W H plot C W H plot

FBAT 0 15 0 0 8 7

GC1 0 15 0 0 3 12

GC2 0 15 0 0 3 12

GC1CT 1 14 0 0 11 4

GC2CT 1 14 0 0 11 4

Mendel_TDT* 6 6 0 5 8 2

g_tdt* 0 12 0 3 6 6

g_1tdt 1 14 0 0 15 0

g_pdt 4 11 0 0 15 0

GDT 1 14 0 0 9 6

poGDT 0 15 0 0 12 3

MQLStest_caco 1 14 0 0 13 2

WQLS_r 0 15 0 0 6 9

MQLStest_r 1 14 0 0 13 2

MQLS_e 1 13 1 0 12 3

IQLS 1 13 1 0 12 3

g_mqls 1 13 1 0 12 3

g_qlsw 0 13 2 0 7 8

PMDom_LDL 0 4 11 0 0 15

PMRec_LDL 0 3 12 0 0 15

PMMbase_LDL 0 9 6 0 6 9

Note: C: Conservative, W: Well-behaved, H: High False Positive; Blue col-

ored values are power, others are Type I errors. "plot": five segments

correspond to family structures: 2gen, 3gen, 2genUP, 3genUG, 3genUGP,

respectively. Each segment connects three points correspond to Type I error

values under dominant, additive, recessive penetrance models, respectively.

*: These statistics do not run in 2genUP families.
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CACO_FISHER and CACO_ZMAX, which are case-control tests based on contingency ta-

ble, are well-behaved under Null NL, but they have more than one inflated Type I errors

under Null CL. PENE, which is Mendel penetrance based association test, has too many

deflated Type I errors in two-generation families (2gen, 2genUP) and some inflated Type I

errors in three-generation families (3gen, 3genUG, 3genUGP) under Null CL. LME (Gener-

alized Linear Mixed Model) has too many inflated or deflated Type I errors. Note that if the

segments are missing in those plots, that means they are outside the plotting area. GEE_ind

(Generalized Estimating Equation with an independent working correlation implemented in

R-package ’GEE’) and g_gee1 (GEE with independent working correlation implemented in

’GDT’ package) are essentially equivalent. We can see that all GEE statistics have inflated

Type I errors in three-generation families and GEE_ex (Generalized Estimating Equation

with exchangeable working correlation implemented in R-package ’GEE’) has inflated Type

I error in all five family structures. Transmit are well-behaved under Null NL, but has in-

flated Type I error in the presence of complete linkage. Transmit_r is Transmit with robust

variance estimator, which enables the use of Transmit on families with more than one af-

fected offspring, and even in the presence of linkage. Transmit_r shows better behaviors

than Transmit under Null CL, but it still have inflated Type I error especially in three-

generation families with family structure 3genUGP. QTDT_ad has heavily deflated Type I

errors. While the polygenic model based score test (MM1) has heavily inflated Type I error

behavior. Thus, in this group, we select ALLELE_FREQ and evaluate its power behavior.

The group of statistics that test for association in the absence of linkage are all Pseudo-

marker statistics. We can see that these statistics have inflated Type I error. However, since

strong association with a nearby causative disease locus usually implies linkage in family

data, so we do not simulate any dataset with association but no linkage. Thus, we do not

further evaluate the Type I error or power behaviors of PMMbase_LD|NL, PMRec_LD|NL

or PMDom_LD|NL.

In the group of statistics that test for association in the presence of linkage, Table 2.3

shows that FBAT_e, which is FBAT (Family-Based Association Test) with empirical vari-

ance estimator has well-behaved Type I error under Null CL, but has conservative Type
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I error under Null NL in 3genUGP families. Pseudomarker statistics have inflated Type I

error. While, with the same setting of the penetrance model as the one for model-based

Pseudomarker statistics, AS|LINK, which is the Mendel likelihood ratio test for association

given linkage, has deflated Type I error. Thus, in this group, we select FBAT_e and evaluate

its power behavior.

In the group of statistics that tests the null of no association and no linkage, under

Null CL (D'= 0 and θ= 0), these statistics are expected to generate significant p-values

to reject their null hypotheses, thus, the simulation here measures their power to detect

linkage. Note that, although differs by implementation, MQLStest_r, MQLS_e g_mqls

and IQLS are essentially equivalent. And QTDT_ar, Mendel_TDT and g_tdt do not run

in 2genUP families. Under Null NL, Table 2.3 shows that, most of these statistics have

well-behaved Type I errors, except for some Quasi-likelihood tests namely MQLS_e, IQLS,

g_mqls g_qlsw and Pseudomarker statistics that jointly test for association and linkage. But

note that the one inflated Type I error for those quasilikelihood-based statistics are very close

to the boundary. QTDT_ar has deflated Type I errors in 3genUGP families, Mendel_TDT

has deflated Type I errors when the family contains untyped parents or grandparents. Recall

that we only select the statistics that have zero inflated Type I error (H) or less than two

deflated (C) Type I errors. Thus, in this group, we select FBAT, GC2, GC2CT, g_tdt,

g_1tdt, GDT, poGDT, MQLStest_caco, WQLS_r and MQLStest_r. Note that GC1 and

GC2 have very similar behaviors, so we just select GC2 and drop GC1. Also, we select

GC2CT and drop GC1CT since they have very similar behaviors. The actual values of Type

I error are contained in Table A1.

2.3.3 Power

Recall that we dropped the statistics that had inflated Type I error behavior and more than

one deflated Type I error count in the absence of untyped individual (Table 2.3). Thus, we

have the following statistics left: ALLELE_FREQ, FBAT_e, FBAT, GC2, GC2CT, g_tdt,

g_1tdt, GDT, poGDT, MQLStest_caco, WQLS_r and MQLStest_r.
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ALLELE_FREQ 
 mean = 0.44 
 var = 0.051
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 mean = 0.58 
 var = 0.078
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Figure 2.3: Power of selected statistics with well-behaved Type I error at 0.05 alpha level, with D'= 0.6, across all simulated

scenarios. The bars within each statistic are ordered according to the legends. g_tdt does not work on 2genUP families. Error

bars are 95% confidence intervals calculated based on 200 replicates.
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Figure 2.3 shows the power of the selected statistics when D'= 0.6 across all the scenarios

in Table 2.2. Note that ALLELE_FREQ, FBAT_e and the remaining statistics are testing

three different null hypotheses. We can tell that the two statistics have similar power if their

CIs are overlapping. We group the power bars in Figure 2.3 by statistics, which enables us to

quickly tell which statistic has consistently high power across different scenarios. Figure 2.3

shows that ALLELE_FREQ, which tests for association, has medium power (around 50%)

in 2gen and 2genUP families, but suffers power loss in 3gen, 3genUG and 3genUGP families,

especially under recessive penetrance models. FBAT_e, which tests for association given

linkage, has high power in 2gen families, but suffers power loss in 2genUP. It has medium

power in 3gen, 3genUG and 3genUGP families, but has consistently low power under recessive

penetrance models in those families. The other selected statistics test for association or

linkage. Figure 2.3 shows that FBAT has similar power behaviors with FBAT_e although

they have different null hypotheses. g_1tdt has high power in 2gen families and medium

power in 3gen and 3genUG families, especially under recessive penetrance model. It has

low power in 2genUP and 3genUGP families. g_tdt does not run in 2genUP families due

to one untyped parent. But it has high power in 2gen and 3gen families, medium power

in 3genUG families, and low power in 3genUGP families. GC2 has medium to high power

in all scenarios, except for 2genUP under the dominant penetrance model, for which it has

low power. GC2CT has low power in 2gen and 2genUP families, but has medium power in

3gen, 3genUG and 3genUGP families. GDT has high power in 3gen, 3genUG and 3genUGP

families, but only has medium power in 2gen and 2genUP families. poGDT has similar

power behaviors to GDT except in 3genUGP families, but with smaller variations across

different scenarios. Among the quasilikelihood-based statistics, they have similar power

behaviors, but MQLStest_r has, in average, the highest power. Note that, in all three-

generation scenarios (3gen, 3genUG, 3genUGP), statistics have highest, medium, lowest

power under dominant, additive, recessive penetrance models, respectively. However, in

most two-generation scenarios (2gen, 2genUP), this order is reversed.
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2.4 DISCUSSION

In this study, we evaluated several family-based association test statistics (referred by the ab-

breviations in Table 2.1) by applying them on simulated family data varying family structures

(Figure 2.1), inheritance models, presence or absence of linkage and genotype/phenotype sta-

tus of the parents (Table 2.2). We would like to find a statistic that has well-behaved Type

I error and high power as well as robustness to untyped parents, different family structures

and underlying penetrance models. There are four different null hypotheses (Section 2.2.1)

that were tested by these family-based statistics. As it may be confusing and misleading to

compare statistics that test different null hypotheses, we compare statistics that are testing

the same null hypothesis.

Figure 2.2 shows the groups of statistics that are clustered together based on their p-

values under Null NL across different scenarios. We have calculated Manhattan distance,

which measures the absolute distance (L1 norm) between two vectors; we also have found

similar results (Figure A1) by using Euclidean distance, which measures the squared distance

(L2 norm) between two vectors. Note that these groups are not clustered based on power

because any two statistics, although different in algorithm, could be clustered together if

they have similar power behaviors, which influences the distance between two vectors of

p-values. However, under Null NL, the dataset contains neither association nor linkage,

so that the behavior of the p-values are purely depend on the underlying algorithm of the

statistics. Someone may argue that, for each statistic, p-values under null shall follow a zero-

one uniform distribution if the statistic is well calibrated, so that each replicate of simulation

would generate a p-value randomly from a zero-one uniform distribution. This is true if we

look at the distribution of p-values over a number of replicates in simulation. However,

here the comparisons are among statistics. Two well calibrated statistics could generate

two different p-values when they are applied to the same dataset that is simulated under

null, where the difference between these two p-values implies the difference between the two

statistics, which could have different implementations or different underlying algorithms. In

other words, statistics have different Type I error behavior due to their algorithms. And Type

I error is a function of p-values under null in simulation studies, thus, it is interesting and
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reasonable to cluster different statistics based on their p-values and the results in Figure 2.2

and Figure A1 reflect the underlying algorithm of the statistics. In Table 2.3, we have

summarized the Type I error behaviors for all statistics in Table 2.1, and we also listed the

Type I error values in Table A1. In the group of statistics that test for no association, the

inflated Type I error for CACO_FISHER and CACO_ZMAX implies that permutation of

case-control labels within each family isn’t sufficient to attain good Type I error rates when

the family structure becomes complicated. But, the Type I error behaviors do not change

when the data contain untyped individuals, which means these two methods are robust

to untyped individuals. For LME, it is interesting that even with pre-specified correlation

structure, which is the expected kinship matrix calculated based on family structure, LME

still cannot control Type I error in three-generation families, which may imply that logit link

cannot model the kinship correlation very well for a binary trait, single marker analysis. For

GEE-based statistics, it looks like their Type I error behaviors do not get influenced by the

untyped individuals since GEE-based methods allow missing data. However, we can tell that

the exchangeable working correlation is inappropriate to model the family structure. Even

with independent working correlation, Type I errors are inflated in three-generation families

although GEE-based methods are robust to mis-specifications of correlation structure. Since

one can calculate expected kinship correlations given the correct family structure, one may

use a function of kinship coefficients as the working correlation in order to better control

the Type I error behaviors of GEE-based statistics. Transmit and Transmit_r are robust to

different family structures, but not robust to different penetrance models, and Transmit_r

cannot control for complete linkage when there are untyped people.

In our simulation, Pseudomarker statistics that test for association are not well-behaved

in Type I error. But in other simulation scenarios, one may find Pseudomarker statistics

are well-behaved [Hiekkalinna et al., 2011]. However, even when they are well-behaved, the

problem is that, by using "-all" option, the Pseudomarker program is able to calculate all

15 Pseudomarker statistics all at once; if we report the smallest p-value among these 15

statistics, then there is a potential multiple testing problem. So we should choose only one

of these 15 statistics in advance, and use it through all the analysis, to avoid this prob-

lem. Also, Hiekkalinna et al. [2011] compared Pseudomarker statistics to FBAT, AS|LINK,
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Transmit, and QTDT. They find that Pseudomarker statistics, Transmit, and QTDT are

well-behaved, which are different from ours; AS|LINK is badly deflated, which is similar to

what we observed in Table 2.3. Note that, in their study, not only AS|LINK and FBAT

are set with recessive and dominant penetrance models, but also Pseudomarker recessive

and dominant statistics are selected respectively to match the underlying true (simulated)

penetrance models. However, in real data, usually researchers have very limited information

about the underlying penetrance model. While, in our study, in order to fairly compare each

statistic to others, we grouped the statistics by their null hypothesis, and compared them

across all different scenarios to evaluate the robustness to different penetrance models while

assuming the penetrance models are unknown.

In the group of statistics that test for no association or no linkage, most of them have

well-behaved Type I error. Note that we include GDT and poGDT into the group of statistics

that test for association or linkage, the reason is because our results show that the presence

of linkage will inflate GDT statistic even when there is no association (Table 2.3). Although

Chen et al. [2009] also recognized this inflation of the GDT test statistic due to the presence of

linkage in their study, and suggested using local identity-by-descent (IBD) estimates instead

of kinship-derived IBDs to correct for this, they did not clearly define the null hypothesis of

GDT as no association and no linkage. Also in their study, MQLStest_r was not compared

to GDT, among the statistics that were compared, GDT shows well-behaved Type I error

at 0.01 alpha level, which are similar to the results in our study.

2.4.1 Population stratification

One important issue for association analysis is that when there are population substruc-

tures, for example, population stratification, marker allele frequency could be different in

the sub-population level, which will introduce bias for some statistics whose algorithms de-

pend on marker allele frequencies even though the study design is family-based. In our study,

Quasilikelihood-based statistics, for instance, MQLStest_r, which tests the null hypothesis

of no association and no linkage, is a desirable statistic: it has well-behaved Type I error and

consistently high power. Moreover, by using local kinship coefficients, it also can be used to
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test the null hypothesis of no association given linkage [Thornton and McPeek, 2007]. But

it is not robust to population stratification because it compares the difference of allele fre-

quencies between cases and controls while using kinship matrix that is either calculated from

family structure or estimated from the genotype data (posterior) to control for relatedness

among individuals. However, Thornton and McPeek [2010] has extended MQLStest_r to be

also robust to population stratification, pedigree errors and unknown pedigree structures by

constructing an estimator of kinship matrix from genome-screen data. This extended statis-

tic is called ROADTRIPS, it assumes the correlation structure is the same across markers. In

their study, ROADTRIPS has been compared to FBAT, MQLStest_r and MQLStest_caco

on simulated data in the presence of population stratification. Their results have showed

that, in the absence of population admixture, ROADTRIPS and MQLStest_r have similar

power, but ROADTRIPS has better Type I error behavior and power in the presence of

population admixture whereas FBAT has well-behaved Type I error but very low power.

Besides Quasilikelihood-based statistics, Pseudomarker statistics are not robust to popula-

tion stratification, either. Pseudomarker statistics construct a likelihood and maximize it

over marker allele frequencies, which could be different among sub-populations.

Transmission-based statistics condition on observed parental genotypes, which eliminates

nuisance parameters such as marker allele frequencies. Thus, these statistics should be able

to control for population stratification. Although GDT, poGDT, GC1CT, GC2CT and

QTDT_ar are not clustered together with Transmission-based statistics group in Figure 2.2,

they are all Transmission-based statistics and robust to population stratification. Thus,

we can also apply GC2 to test the null hypothesis of no linkage and no association in the

presence of population stratification. However, the problem for GC2 is that when the data

contain untyped individuals, it is no longer immune to population stratification because it

fills in missing allele according to the population frequencies [Sinsheimer et al., 2000]. Also,

similar to Mendel_TDT, when one applies them to trios, they test the null hypothesis of no

linkage or no association instead of no linkage and no association [Lange et al., 2005]. Note

that Mendel_TDT and g_tdt do not work on two-generation families with one untyped

parent, in which case, g_1tdt, which can handle families with one untyped parent, would

be a good alternative option. Among the rest of the statistics in Figure 2.3, GDT has high
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power and well-behaved Type I error in Table 2.3, where poGDT is more robust to different

scenarios, but less powerful than GDT. Note that GDT and poGDT are robust to population

stratification and also can handle missing data well [Chen et al., 2009]. Although LME and

GEE_ind, which test for association, show inflated Type I error in three-generation families,

it can incorporate covariates in the model to control for population stratification, for example,

by using PCA method [Price et al., 2006]. Chen et al. [2011] has compared LME, LMEBIN,

which treats binary traits as continuous, and GEE with several different working correlation

structures and variance estimators. Note that the LME and LMEBIN in their study have

been carried out by using R package ’LME4’, in which it is very difficult, if not impossible,

to specify the correlation structure. In their study, the simulated dataset contains families

with fixed three-generation family structure. When the prevalence is set at 0.05, GEE_ind

and GEE_ex have showed deflated Type I error behavior, which is different from what we

observed. This may be due to the fact that the family structure in their study is fixed,

while in our study, every family has a different number of offspring. In the Mendel package,

ALLELE_FREQ tests for association, but it should also be able to control for population

stratification because it estimates marker allele frequency by using MLE of a likelihood that

contains transmission probabilities, and then constructs a chi-square test of homogeneity to

test for association. However, it only has medium power and robustness, which would not

make it the first choice of statistics in real data analysis, but one can use it to estimate

marker allele frequencies that can then be used by other statistics that require pre-set allele

frequencies, which is what we have done in our simulation.

2.4.2 Mis-specified family structure

Besides the issue of population substructure, there are issues of mis-specified family struc-

tures, which could affect all the transmission-based statistics and all the statistics that

use kinship coefficients in their algorithms. In this case, GEE_ind, CACO_FISHER or

CACO_ZMAX could be the choice of statistics. GEE_ind uses independent working corre-

lations, CACO_FISHER and CACO_ZMAX do permutations within each family, but their

Type I errors in our simulation are slightly inflated (Table 2.3). Another potential problem
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for GEE is convergence. However, we have encountered this problem only when we use ex-

changeable working correlations (GEE_ex), which was also an issue that has been found in

Slager et al. [2003], but not if we use independent working correlations.

2.4.3 Test for association in the presence of linkage

In real data analysis, usually one can measure the strength of linkage by calculating the LOD

score of a genetic region, which contains a number of genetic markers. Then the researchers

would have prior knowledge of the strength of linkage, and would like to test for association

within the linkage region. In this case, we can apply FBAT_e, which has well-behaved

Type I error under all the scenarios, but has medium power and low robustness to different

scenarios.

If the data contain trios without untyped individual, but have population stratification

problem, one can also apply GC2 or Mendel_TDT in the region where there is linkage, as

they test the null hypothesis of no linkage or no association. Thus, it requires both linkage

and association to reject the null hypothesis. However, if the data contain nuclear families

with more than one affected offspring, GC2 and Mendel_TDT confound association with

linkage. In our simulation, one can see that GC2 has 7% power when there is no association

but complete linkage (Table A1), compared to 80% power when there is both association

(D'= 0.6) and complete linkage (Figure 2.3). In this case, another choice could be g_1tdt

or g_pdt, which can handle families that have only one fully-typed parent. But they are

less powerful than Mendel_TDT or g_tdt. Table 2.3 shows that, although g_1tdt and

g_pdt test for association and linkage, under complete linkage, their power do not increase

compared to their Type I error under no linkage. Power-wise, this is not a good thing because

these two statistics are supposed to detect linkage, but, in other words, these two statistics

are robust to linkage signal. Figure 2.3 shows their power when there is association (D'=

0.6) and complete linkage in the data, because they are not sensitive to linkage, their power

are purely from the association signal. Thus, I believe, ambiguously, we can apply these

two statistics on the region in the presence of linkage, but this needs to be verified by a

thoroughly carried simulation study in the future.
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2.4.4 Ascertainment criteria and study design

Also, in this study, we have simulated and selected the families with some ascertainment cri-

teria. Specifically, we have ascertained those two-generation families that contain at least one

affected child, and the three-generation families (Grandparents, parents, children) that con-

tain one affected child in at least two parent-children families. The ascertainment procedure

could introduce bias to population level parameter estimates [Clark et al., 2005; Siegmund

and Langholz, 2002], for example, allele frequency, if not handle correctly in family-based

data. In this study, we do not quite address this issue in the simulation, but according

to the literature, "Deviance" option in PENE in Mendel package can be used to control

for ascertainment procedure. And MQLStest_e and similar statistics assume the families

are ascertained such that the data contain certain numbers of affected and unaffected indi-

viduals, this is probably one of the reasons that MQLStest_e is more powerful than others.

Transmission-based statistics, for example Mendel_TDT, should be robust to the bias caused

by ascertainment procedure since they eliminate the population level parameters by condi-

tion on parental genotypes. One possible study design to guard against ascertainment bias

is to ascertain the sample according to one trait, and then analyze another trait that is

not highly correlated with the ascertained one [Schifano et al., 2012]. But more simulations

need to be carried out to evaluate the performance of this study design. Also, in real data

analysis, one has to consider the family members may live at different regions in the world,

such that their environment exposure factors can be quite different, Siegmund and Langholz

[2002] has proposed a method to correct for this, but in our simulation study, we do not

address this issue.

In Genome-wide association analysis, single marker test statistics are applied over a

genetic region that contains several markers. Depends on the length of the genetic region,

by calculating LOD score, one can see that the strength of linkage could be different over the

region prior to the application of statistics. It is possible to divide the region into separate

parts, among which the strength of linkage are different, then, one can apply the test statistics

with different null hypotheses simultaneously to those separated genetic regions accordingly

in order to obtain the best outcome. While then the problem becomes at where, what LOD
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score value, we should separate the genetic region according to the strength of linkage, and

what if some of the markers in separated regions are correlated. It would be interesting to

simulate and compare this strategy versus the regular strategy in the future.
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3.0 FAMILY-BASED RARE VARIANTS ASSOCIATION

ANALYSIS FOR BINARY TRAITS

3.1 BACKGROUND AND MOTIVATION

Many population-based Genome-Wide Associations Studies (GWAS) have been carried out

to look for common genetic variants that are associated with diseases. GWAS have suc-

cessively identified more than 1,000 genetic loci, which are associated with many human

diseases. In most GWAS, researchers usually focus on common genetic variants, which usu-

ally are defined as minor allele frequency (MAF) greater or equal to 5%, due to lack of power

to detect rare variants (MAF < 5%). Thus the diseases are assumed to be only associated

with common genetic variants (MAF ≥ 5%). This forms an arbitrary assumption, which is

called "Common Disease, Common Variant (CDCV)". However, there is another assumption

called "Common Disease, Rare Variant (CDRV)", which argues that multiple rare genetic

variants are not only associated with the diseases, but are also the major contributors, espe-

cially for complex and/or serious diseases. In fact, the common variants that are identified

in GWAS often only explain at most 5% - 10% of the heritable component of a disease.

The debates between these two assumptions still continue. Both of the assumptions have

supportive evidence and have been discussed in Smith and Lusis [2002], Iyengar and Elston

[2007] and Schork et al. [2009].

In population-based GWAS association studies, the data are collected from unrelated

individuals, and in the past few years, family-based association analysis were not so popular

due to higher costs of collecting related individuals compared to GWAS, in which it is cheaper

and faster to collect unrelated individuals. However, as we come to the next-generation-

sequencing era, faster and less expensive sequencing techniques have been developed. Thus,
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collecting family-based genetic data has become cheaper and faster. Moreover, using family-

based data can effectively control for the Type I error due to confounding factors (e.g.

population substructure), which becomes more of an issue for rare variant association analysis

because that rare variants can cause stronger stratification than common variants [Babron

et al., 2012; Mathieson and McVean, 2012; Cheng and Chen, 2013; Mao et al., 2013; Jiang

et al., 2013; He et al., 2014]. Although using the Principle Component Analysis (PCA)

method can also control for Type I error due to population substructure, performing PCA

is insufficient for admixed populations, even in the case of common variants [Liu et al.,

2013a]. As we are entering the era of "Big Data", development of new study designs and

new statistical tools for detecting rare genetic variants that are associated with complex

diseases using family-based data are of significant importance.

3.1.1 Existing methods

Because of the low frequency (MAF ≤ 5%) of the rare genetic variants, those single marker

statistical tests that we have compared in Chapter 2 are no longer powerful enough unless the

sample size is very large and simply increasing sample size is difficult due to limited resources.

To overcome this issue, researchers have developed some methods to aggregate information

over a genetic region (e.g., a gene) in order to decrease the degrees of freedom of the test

statistic. In general, there are three methods for aggregating information over a genetic

region: one is the so-called ’burden’ method, which, for each individual, sums the variant

over all the markers in the genetic region to form an aggregated (increased) genetic variation

signal; while the second one is the bi-directional (kernel) method that treats the coefficients

of genetic markers as random effects within a mixed-model framework to decrease the degree

of freedom of the test statistic. The third one is the Principle Component Analysis (PCA)

method, which compares between the component of cases and the component of controls to

decrease the degree of freedom of the test statistic. All of these three aggregating methods

are implemented in many statistical tests, which will be explained further below.
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3.1.1.1 Burden tests Although there are a lot of different implementations of burden

tests, the concepts are quite similar: for each individual, aggregate the genetic variants within

the genetic region of interest into one collapsed score, so that for all the individuals, there

is a single column vector of collapsed scores. Currently, there are two different methods of

collapsing, one is by counting, and the other is by dichotomizing, which means the collapsed

scores are indicators (0 or 1) of whether the corresponding individual carries the rare allele(s)

or not (Table 3.1). The collapsed scores are used for association tests, which would have

higher power due to the stronger rare allele variation signal from collapsing over the region.

The limitations of burden tests are that they have high power only when the most of the

rare genetic variants within the region influence the traits in same direction [Schaid et al.,

2013].

Table 3.1: Example of Burden test collapsing genotype

Person Marker genotype Counting Dichotomizing

1 0 0 1 0 2 0 1 0 0 4 1

2 1 0 0 1 0 0 1 2 0 5 1

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 2 0 0 1 0 1 0 4 1

3.1.1.2 Bi-directional (Kernel) tests As mentioned above, burden tests only have

high power under certain situations, which might not be satisfied when a genetic region con-

tains a lot of non-risk rare genetic variants and/or the direction of effect of the variants could

be more than one (risk and protective variants). In this case, there are some other statistics

that have high power [Wu et al., 2011; Neale et al., 2011; Schaid et al., 2013]. These statis-

tics are different from each other, but they all draw inference by using a variance component

method. Specifically, for case-control data, one can compare the expected variance with the

actual variance of the distribution of allele frequencies [Neale et al., 2011]. Or one can con-

struct a random effect model by assuming that the marker coefficients (random coefficients)
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are following a multivariate normal distribution with mean zero and a variance-covariance

matrix (Σβ) that contains a variance component, then one can test whether the variance

component is equal to zero or not, which is equivalent to test the null hypothesis of no

association. For example, if one assumes independence among markers, the variance of each

marker (every diagonal element in Σβ) can be expressed in the form of a multiplication of a

weight (e.g. wk for marker k) and a variance component (τ). Then, testing for association

is equivalent to testing the null hypothesis that τ = 0, such that all the marker coefficients

are zero. For example, this test is illustrated below:
Traits Y n×1︷ ︸︸ ︷

y1

y2
...

yn



Covariates Xn×t︷ ︸︸ ︷
x11 x12 · · · x1t

x21 x22 · · · x2t
...

... . . . ...

xn1 xn2 · · · xnt



Genotypes Gn×m︷ ︸︸ ︷
g11 g12 · · · g1m

g21 g22 · · · g2m
...

... . . . ...

gn1 gn2 · · · gnm


So, the model that we fit is

g(E[Y | β]) = ηβn×1 = α0 +Xn×tαt×1 +Gn×mβm×1 (3.1)

where ’g()’ is the link function, ηβ is the vector of linear predictors,α0 is the intercept,

α = (α1, α2, ..., αt)
T is the coefficient for the fixed effect. And the random slope β =

(β1, β2, ..., βm)
T ∼MVN(0,Σβ) where Σβ = τ ×W and

Wm×m =


w1 0 · · · 0

0 w2 · · · 0
...

... . . . ...

0 0 · · · wm


where wk represents the weight for βk, k = 1, ..., m, and τ is a variance component. By

doing this, the degrees of freedom is decreased (only one parameter τ is tested), so the power

of the test would be increased. This algorithm has been implemented in "Sequencing Kernel

Association Test (SKAT)" by Wu et al. [2011], in which it assumes
√
wk follows Beta(MAFk;

1, 25) to increase the weights for rare variants, where MAFk is the minor allele frequency

for marker k.
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3.1.1.3 Combined and PCA tests In whole-genome sequencing studies, usually there

are mixtures of risk and protective variants. In order to reach the optimal statistical power,

one can use a linear combination of burden and kernel tests by giving them adaptively

selected weights [Lee et al., 2012]. Besides combined tests, one can also adjust the p-values

from applying multiple single-marker tests [Cheung et al., 2012; Fang et al., 2013; Lin et al.,

2014], or construct the test by using a two-stage design [Zhu et al., 2010], or blocking approach

[Turkmen and Lin, 2014] as well, which separates a genomic region into "independent"

blocks and then aggregates the information over each block. Moreover, as proposed by Luo

et al. [2011], one can use the PCA method to do dimension deduction and then conduct a

rare variant association analysis, in which, they applied functional data analysis techniques

to jointly test the association by testing the equality of two random functional principle

components between cases and controls.

3.1.2 Familial correlation

In previous sections, statistical tests for rare genetic variants have been introduced. Among

those tests, only a few that can analyze family-based data. In order to utilize the familial

correlation contained in family-based data to obtain 1) a better control for Type I error due to

population stratification, 2) a possibly increased statistical power from potential information

provided by the familial correlation, and 3) a more sensible interpretation of the genetic

association with the disease than using population (unrelated) data, people have developed

some methods by either extending current family-based tests to test for rare variants, or

adding familial correlation into current population-based rare variant tests.

One can extend those family-based common variants association tests to test for rare

variants association. There is a popular family-based single marker association test, FBAT

[Laird et al., 2000], which has been extended to a multi-marker gene-based version (FBAT-

MM [De et al., 2013]). Specifically, the FBAT-MM test is a multivariate extension of the

univariate FBAT test designed to simultaneously test a set of markers in a defined genetic

region. Similar to burden tests, FBAT-MM assumes effects of the rare genetic variants are

all in the same direction.
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On the other hand, one can also add familial correlation to population-based rare genetic

association tests. For burden tests, one can construct a linear mixed effects model by treating

covariates and collapsed scores as fixed effects, and familial correlations as random effects

[Chen et al., 2013]. For bi-directional tests, one can treat the genotypes (random coefficient)

and familial correlation (random intercept) as random effects. Usually, one assumes the

distribution of the familial correlation (random intercept) follows a multivariate normal

distribution with mean zero, and a variance-covariance matrix that is proportional to the

kinship coefficients of all the subjects [Chen et al., 2013; Oualkacha et al., 2013]. Although

Ionita-Laza et al. [2013] have extend SKAT by conditioning the null distribution on parental

genotypes, they did not use the whole information from considering familial correlations

among other family relationships. For combined tests, one can also extend them by adding

in familial correlations. For example, Jiang and McPeek [2014] have developed "Minimum

P-value Optimized Nuisance parameter Score Test Extended to Relatives (MONSTER)" by

adding familial correlations to the combined test "Optimal Unified test (SKAT-O)" [Lee

et al., 2012]. For PCA based tests, Zhu and Xiong [2012] have proposed a method to extend

population-based PCA tests to process family-based data by dividing the test statistic over a

correction factor, which depends on kinship coefficients and the number of cases and controls.

3.1.3 Continuous traits versus binary traits

Currently, most of the powerful family-based rare genetic variants association statistics are

only able to model the association between continuous traits and the targeted genetic region

(e.g., "MONSTER" [Jiang and McPeek, 2014]). When the traits are binary, explicitly con-

structing the marginal likelihood function is difficult due to the evaluation of the multiple

integrals over all sample subjects and random effects. Some approximation methods have

been applied to solve this issue, for example, Laplace’s method and quasi-likelihood are ap-

plied by Lin [1997] in variance component test, which is implemented first by Wu et al. [2011]

in SKAT for both continuous and binary traits, but only for unrelated individuals, and then

by Oualkacha et al. [2013] in "Adjusted Sequencing Kernel Association Test (ASKAT)" for

related individuals (family-based data), but only for continuous traits.
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By treating traits as fixed and genotypes as random, Schaid et al. [2013] has developed

a statistic test that can model the association between binary traits and the genetic region

while avoiding the problem of approximating multiple integrals for the marginal likelihood.

But this method tends to be less efficient compared to those methods that treat traits as

random variables, especially when the traits are continuous. Also, the method developed by

Wang et al. [2013] is a GEE-based SNP set association test for continuous and discrete traits

in family-based data. This method uses kinship coefficients as the correlation structure. An

advantage is that it allows for the within-family correlation to be mis-specified. But in the

paper [Wang et al., 2013], this method has not been applied to family-based data with a

binary trait; in this study, we applied it to a binary trait and compared it to other statistics.

In this chapter, we extend the statistic in Lin [1997] by deriving a generalized linear mixed

model that contains familial correlation and a variance component score test for a binary

trait, and building a new statistic to test for rare variants association on family-based data.

3.2 APPROACH

To carry out the family-based rare genetic variant association analysis for binary traits, we

base our statistic on a generalized mixed effect model framework. In specific, we assume

random coefficients for genetic effects, and random intercepts for the familial correlations. If

the traits are continuous, this model would be exactly the same as the ’Adjusted Sequencing

Kernel Association Test’ (ASKAT) [Oualkacha et al., 2013]; but here we are focusing on

binary traits, so we derive our statistic for binary traits based on the work of Lin [1997],

who introduce a variance component score test that can be applied to unrelated individuals

with binary traits and was proved to be locally most powerful [Wu et al., 2011]. We extend

it by integrating the familial correlation into the statistic. Then, we draw inference by using

quasi-likelihood and variance component score test under the null hypothesis of no association

while controlling for familial correlations and covariates. The details are presented in the

following subsections.
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3.2.1 Proposed Method: Model setting

The proposed method is based on the kernel (bi-directional) test. Thus, similar to the

settings in Model (3.1), let Yi, i = (1, ... , n) represents a binary trait (0 or 1) measured on

individual i, n is the total number of individuals. Let Xij, j = (1, ... , t) represents the jth

covariate measured on individual i, t is the total number of covariates. Let Gik, k = (1, ... ,

m) represents the genotypes, which are the count (0, 1 or 2) of the minor allele, on the kth

bi-allele marker measured on individual i, m is the total number of markers.

We assume that:

1) intercept: α0

2) fixed effect coefficients: α = (α1, α2, ..., αt)
T

3) random effect coefficients: β = (β1, β2, ..., βm)
T independent∼ MVN(0,Σβ),

where Σβ = τ ×Wm×m = τ×


w1 0 · · · 0

0 w2 · · · 0
...

... . . . ...

0 0 · · · wm


and wk represents the weight (default weight is 1) for βk, k = 1, ..., m, and τ is a variance

component.

4) random intercepts Pi: according to Oualkacha et al. [2013], ignoring dominant effects,

each subject has a random intercept for the familial correlation, and given a kinship ma-

trix Φn×n, the familial correlations for all the subjects are following a multivariate normal

distribution: P = (P1, P2, ..., Pn)
T ∼MVN(0,ΣP )

where ΣP = σp × 2×Φn×n = σp × 2×


0.5 φ12 · · · φ1n

φ21 0.5 · · · φ2n

...
... . . . ...

φn1 φn2 · · · 0.5


Note that the kinship coefficient φij is defined as the probability that two alleles, which are

drawn at random from individual i and j, respectively, are identical-by-descent (IBD). And
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given that:

Y = (Y1, Y2, ..., Yn)
T

X i = (Xi1, Xi2, ..., Xit), Xn×t = (X1, ...,Xn)
T

Gi = (Gi1, Gi2, ..., Gim), Gn×m = (G1, ...,Gn)
T

we have,

Yi | β, Pi ∼ Bernoulli(ψβ,Pii )

By using the logit link function for binary traits, we can construct a linear mixed effect

model for individual i as:

g(ψβ,Pii ) = ηβ,Pii = log(
ψβ,Pii

1− ψβ,Pii

)

= α0 +Xi1α1 +Xi2α2 + ...+Xitαt +Gi1β1 +Gi2β2 + ...+Gimβm + Pi

In vector form:

g(ψβ,Pii ) = ηβ,Pii = log(
ψβ,Pii

1− ψβ,Pii

) = α0 +X iα+Giβ + Pi (3.2)

where

ψβ,Pii = Pr(Yi = 1 | β, Pi) = E[Yi | β, Pi] =
eα0+Xiα+Giβ+Pi

1 + eα0+Xiα+Giβ+Pi
(3.3)

In matrix form (for all n individuals):

g(ψβ,Pn×1) = η
β,P
n×1 = α0 +Xn×tαt×1 +Gn×mβm×1 + 1n×nP n×1 (3.4)

where 1n×n is an n dimension identity matrix. Thus, compared to Model (3.1) for an un-

related sample, Model (3.4) now has a random intercept 1n×nP n×1 to control for familial

correlations in a related sample.
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3.2.2 Proposed Method: Inference method

Our goal is to test whether or not rare genetic variants (Gn×m) are associated with the

traits (Y n×1) while adjusting for the covariates (Xn×t) and the familial correlations (P n×1).

Therefore, the null hypothesis is H0 : βm×1 = 0, which is equivalent to H0 : τ = 0. Under

the null hypothesis, the reduced model is:

g(ψPn×1) = η
P
n×1 = α0 +Xn×tαt×1 + 1n×nP n×1 (3.5)

3.2.2.1 Quasi-Likelihood In order to apply variance component score test similar to

Wu et al. [2011] and Oualkacha et al. [2013] to test the null hypothesis of H0 : τ = 0 while

adjusting for covariates and familial correlation (polygenic effects) for binary traits, we derive

the test statistic based on the work of Lin [1997].

First of all, we construct the log-likelihood by integrating out the random effects:

l(α0,α, τ, σp) = ln

∫∫
L(Y ,β,P )dβdP

= ln

∫∫
L(Y | β,P )× L(β)× L(P )dβdP

= ln

∫∫
exp {l(Y | β,P )} × L(β)× L(P )dβdP

= ln

∫∫
exp {l(Y | β,P )} × L(β)dβ × L(P )dP (3.6)

where l(Y | β,P ) is the log-likelihood function.

Since the log-likelihood function involves multiple integrals, it is very difficult to obtain

an explicit form, so we apply Laplace’s method to approximate the log-likelihood function
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by applying Taylor Expansion at τ = 0, which is equivalent to β = 0. So,

exp {l(Y | β,P )} = exp

{
n∑
i=1

li(y | β, Pi)

}

≈ exp

{
n∑
i=1

li(y | 0, Pi)

}
×
(
1 +

n∑
i=1

∂li(y | 0, Pi)
∂ηPii

Giβ

+
1

2
βT
[{ n∑

i=1

∂li(y | 0, Pi)
∂ηPii

GT
i

}{
n∑
i=1

∂li(y | 0, Pi)
∂ηPii

Gi

}

+
n∑
i=1

∂2li(y | 0, Pi)
∂(ηPii )2

GT
i Gi

]
β + ε

)
(3.7)

Then, the first layer of integral in Equation (3.6) can be approximated by taking expectation

with respect to β and apply Taylor Expansion at β = 0.

L(Y | P ) =

∫
exp {l(Y | β,P )} × L(β)dβ

= Eβ [exp {l(Y | β,P )}]

= Eβ

[
exp

{
n∑
i=1

li(y | β, Pi)

}]

≈ exp

{
n∑
i=1

li(y | 0, Pi)

}(
1 +

1

2
tr

([ n∑
i=1

∂li(y | 0, Pi)
∂ηPii

GT
i

n∑
i=1

∂li(y | 0, Pi)
∂ηPii

Gi

+
n∑
i=1

∂2li(y | 0, Pi)
∂(ηPii )2

GT
i Gi

]
Σβ

)
+ o(β)

)
(3.8)

Then,

l(α0,α, τ, σp) = ln

∫
L(Y | P )× L(P )dP (3.9)

Now, assume L(Y | P ) is known from Equation (3.8), we are taking derivative with respect

to τ based on Equation (3.9).

∂l(α0,α, τ, σp)

∂τ
=

∂

∂τ

∫
L(Y | P )× L(P )dP × 1∫

L(Y | P )× L(P )dP

=
∂

∂τ

∫
L(Y | P )× L(P )× 1

L(Y )
dP (3.10)
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Since L(P ) does not contain τ , so, under regularity conditions, we can move the derivative

into the integral.

∂l(α0,α, τ, σp)

∂τ
=

∫
∂

∂τ
L(Y | P )× L(P )× 1

L(Y )
dP

=

∫
∂

∂τ
l(Y | P )× L(P )× L(Y | P )

L(Y )
dP (3.11)

=

∫
∂l(Y | P )

∂τ
× L(P | Y )dP

= EP

[
∂l(Y | P )

∂τ
| Y
]

(3.12)

Note that we have already derived the likelihood in Equation (3.8), according to Lin [1997],

we can take the logarithm and approximate it.

l(Y | P ) = log(L(Y | P ))

=
n∑
i=1

li(y | 0, Pi) + log

[
1 +

1

2
tr

([ n∑
i=1

∂li(y | 0, Pi)
∂ηPii

GT
i

n∑
i=1

∂li(y | 0, Pi)
∂ηPii

Gi

+
n∑
i=1

∂2li(y | 0, Pi)
∂(ηPii )2

GT
i Gi

]
Σβ

)
+ o(β)

]
(3.13)

Note that, by applying first order Taylor expansion at 0 to the ’log’ part in Equation (3.13),

similar to

log(1 + x) ≈ log(1 + 0) +
1

1 + 0
× (x− 0)

= x (3.14)

we can get

l(Y | P ) = log(L(Y | P ))

=
n∑
i=1

li(y | 0, Pi) +
1

2
tr

([ n∑
i=1

∂li(y | 0, Pi)
∂ηPii

GT
i

n∑
i=1

∂li(y | 0, Pi)
∂ηPii

Gi

+
n∑
i=1

∂2li(y | 0, Pi)
∂(ηPii )2

GT
i Gi

]
Σβ

)
+ o(β) (3.15)
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Now, according to Equation (3.12), we take derivative with respect to τ based on Equation

(3.15), and in matrix form, we can get

∂l(Y | P )

∂τ
=

1

2
tr

(
GT

[
∂l(Y | 0, P )

∂ηP
∂l(Y | 0, P )

(ηP )T
+
∂2l(Y | 0, P )

∂ηP (ηP )T

]
GWm×m

)
(3.16)

Then, according to the properties of quasi-likelihood from Wedderburn [1974],

∂l(Y | 0, P )

∂ηP
=
∂l(Y | 0, P )

∂ψP
∂ψP

∂ηP

=
Y −ψP

V (ψP )

1

g′(ψP )
(3.17)

is an n× 1 vector with the ith element yi−ψ
Pi
i

V (ψ
Pi
i )

1

g′ (ψ
Pi
i )

and ηP = g(ψP ) in model (3.5), and

V (ψPii ) = var(yi | 0, Pi) = ψPii (1− ψPii )

g(ψPii ) = log(
ψPii

1− ψPii
)

g
′
(ψPii ) =

1

ψPii (1− ψPii )
(3.18)

for binary traits. And, ∂
2l(Y |0,P )
∂ηP (ηP )T

is an n× n diagonal matrix with the elements ∂2l(yi|0,Pi)
∂(η

Pi
i )2

on

49



the diagonal, where

∂2l(yi | 0, Pi)
∂(ηPii )2

=
∂

∂ηPii

(
∂l(yi | 0, Pi)

∂ηPii

)
=

∂

∂ηPii

(
∂l(yi | 0, Pi)

∂ψPii

∂ψPii
∂ηPii

)
=

∂

∂ηPii

(
∂l(yi | 0, Pi)

∂ψPii

)
∂ψPii
∂ηPii

+
∂l(yi | 0, Pi)

∂ψPii

∂

∂ηPii

(
∂ψPii
∂ηPii

)
=

∂

∂ηPii

(
yi − ψPii
V (ψPii )

)
1

g′(ψPii )
+
yi − ψPii
V (ψPii )

∂

∂ηPii

(
1

g′(ψPii )

)
=

[
∂(yi − ψPii )

∂ηPi
1

V (ψPii )
+ (yi − ψPii )

∂

∂ηPii
(

1

V (ψPii )
)

]
1

g′(ψPii )

+
yi − ψPii
V (ψPii )

∂(g
′
(ψPii ))−1

∂ηPii

=

[
− 1

g′(ψPii ) V (ψPii )
− (yi − ψPii )[V (ψPii )]−2

V
′
(ψPii )

g′(ψPii )

]
1

g′(ψPii )

− yi − ψPii
V (ψPii )

[g
′
(ψPii )]−2

g
′′
(ψPii )

g′(ψPii )

= −
[

1

V (ψPii )[g′(ψPii )]2
+
V
′
(ψPii )g

′
(ψPii ) + V (ψPii )g

′′
(ψPii )

[V (ψPii )]2[g′(ψPii )]3
(yi − ψPii )

]
(3.19)

in which V ′(ψPii ) = 1− 2ψPii and g′′(ψPii ) =
2ψ

Pi
i −1

(ψ
Pi
i (1−ψPii ))2

. Note that, in Equation (3.19), for

binary traits yi,

V
′
(ψPii )g

′
(ψPii ) + V (ψPii )g

′′
(ψPii ) =

1− 2ψPii
ψPii (1− ψPii )

+
ψPii (1− ψPii )(2ψPii − 1)

(ψPii (1− ψPii ))2

= 0 (3.20)

Therefore,

∂2l(yi | 0, Pi)
∂(ηPii )2

= − 1

V (ψPii )[g′(ψPii )]2
(3.21)

Let’s set

ΩP
n×n = −∂

2l(Y | 0, P )

∂ηP (ηP )T
= diag[−∂

2l(yi | 0, Pi)
∂(ηPii )2

] = diag[
1

V (ψPii )[g′(ψPii )]2
] (3.22)

∆n×n = diag[
1

g′(ψPii )
] (3.23)

50



Then, Equation (3.16) becomes

∂l(Y | P )

∂τ
=

1

2
tr

(
GT

[
ΩP∆−1(Y −ψP )(Y −ψP )T∆−1ΩP −ΩP

]
GWm×m

)
=

1

2

(
(Y −ψP )T∆−1ΩPGWm×mG

TΩP∆−1(Y −ψP )− tr(GTΩPGWm×m)

)
(3.24)

Therefore, if we put Equation (3.24) back into Equation (3.12), we can get

∂l(α0,α, τ, σp)

∂τ
= EP

[
∂l(Y | P )

∂τ
| Y
]

=
1

2
EP

[(
(Y −ψP )T∆−1ΩPGWm×mG

TΩP∆−1(Y −ψP )− tr(GTΩPGWm×m)

)
| Y
]

(3.25)

3.2.2.2 Score function From the log-likelihood, we can take derivatives with respect

to β, after some calculations, according to Lin [1997] and Zhang and Lin [2003], the score

function is in the following form:

U ∗β(α̂0, α̂, σ̂p) =
1

2
(Y ∗ −Xα)TV −1β Gn×mWm×mG

T
n×mV

−1
β (Y ∗ −Xα)

− 1

2
tr(W T

m×mG
T
n×mΛτGn×m) (3.26)

= U − e

where U and e are the first and second component in Equation 3.26 respectively. And

V β = (ΩP
n×n)

−1 + 1n×nΣP1
T
n×n (3.27)

ΣP = σ̂p × 2×Φn×n (3.28)

Λτ = V
−1
β − V

−1
β X(XTV −1β X)−1XTV −1β (3.29)

and

ΩP
n×n = E(diag([V (ψPii )g

′
(ψPii )

2
]−1)) (3.30)
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where

V (ψPii ) = var(yi | Pi) = ψPii (1− ψPii ) (3.31)

ψPii = Pr(Yi = 1 | Pi) = E[Yi | Pi] =
eα0+Xiα+Pi

1 + eα0+Xiα+Pi
(3.32)

Note that g(ψPii ) is the ith element in Equation (3.5) and (α0,α) in above equations are

evaluated at (α̂0, α̂). In order to calculate V β, one need to obtain the accurate estimates

of (σp, ψPii ); however, since these estimates are difficult to obtain, we have applied the R

function "glmmPQL" [Schall, 1991; Breslow and Clayton, 1993; Wolfinger and O’connell,

1993] in the R package "MASS" [Venables and Ripley, 2002] to fit the model (3.5), and we

have directly obtained the estimate of V β by using the R function "extract.lme.cov", thus,

U ∗β(α̂0, α̂, σ̂p) can be calculated.

The R function "glmmPQL" repeatedly calls the R function "lme" [Pinheiro et al., 2013]

to fit the model until the estimates of parameters are close enough (user specified tolerance).

Y ∗ is the value of Y at convergence, which is estimated by assuming the working vector

Y ∗ =Xα+ P + ∆−1(Y −ψP ) during the iteration process.

3.2.2.3 Information matrix Given the expression in Equation (3.27), if we take deriva-

tive of V β with respect to σp and letK = 2×Φ, then we have ∂V β
∂σp

= 2×Φ =K. According

to Zhang and Lin [2003], the conditional information matrix given nuisance parameters for

testing H0 : τ = 0 is

Iτ |σp = Iττ − IτσpI−1σpσpIσpτ (3.33)

where

Iττ =
1

2
tr(ΛτGWGTΛτGWGT ) (3.34)

Iτσp =
1

2
tr(ΛτGWGTΛτK) (3.35)

Iσpσp =
1

2
tr(ΛτKΛτK) (3.36)
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3.2.2.4 Q-statistic According to Zhang and Lin [2003], Zhang and Lin [2008] and Huang

and Zhang [2008], when the parameter is tested at the boundary of its domain, for example,

in our case, variance component τ has domain [0, ∞] and it is tested at τ = 0, the asymp-

totic distribution of U∗β(α̂0,α̂,σ̂p)2

Iτ |σp
does not follow a chi-square distribution with one degree

of freedom. Rather, the null distribution of U in Equation (3.26) can be approximated by

a scaled chi-square distribution. Therefore, we have used a scaled chi-square distribution

for our test statistic. Zhang and Lin [2003] has provided a method to calculate the scale

parameter k and the corresponding degree of freedom v:

k =
Iτ |σp
2× e

(3.37)

v =
2× e2

Iτ |σp
(3.38)

where e is the second component in Equation (3.26). Now we have our variance component

score test Q as:

Q-test =
U

k
(3.39)

which, under the null hypothesis, asymptotically follows a chi-square distribution with v

degree of freedom. We have implemented this test statistic in an R function ’Qtest’ (Ap-

pendix C) .

3.3 SIMULATION

In order to evaluate Type I error and power of our statistic (Qtest), we applied it on simu-

lated data and compared it to six other statistics. First, we simulated three-generation family

structures according to Figure 3.1, in which the number of offspring in each sub-family was

generated from a negative binomial distribution with dispersion parameter 2.84 and proba-

bility 0.93. Note that the family structures varied from family to family within each dataset,

but were kept the same from dataset to dataset for all simulated scenarios in order to obtain
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consistent sample sizes. Please see Appendix B for all the 25 simulated families. Then, we

used a haplotype data pool that was generated by the calibrated coalescent model [Schaffner

et al., 2005] with mimicking the linkage disequilibrium (LD) structure of European ancestry.

This haplotype pool contained 10,000 haplotypes, and covered 200 kb region on chromosome

Figure 3.1: An example of simulated family structure. The number of offspring are ran-

domly generated from a negative binomial distribution. Please see Appendix B for all the

25 simulated families.

one. We selected rare variants between positions 79 and 5,427, in which there were 100 poly-

morphic markers with MAF smaller than 0.05. To simulate genotypes, we first randomly

chose haplotypes from the pool and assigned them to the founders. Second, we assigned

haplotypes to the other individuals by mimicking a gene-dropping process. Specifically, for

each individual who has parents in the data, assuming no recombination, we randomly chose

one haplotype from his/her father and another one from his/her mother as his/her two hap-

lotypes, respectively. Finally, we calculated genotypes (coded as 0, 1, 2) from the assigned

haplotypes.
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In order to generate traits, within each scenario, we first randomly selected different

percentages of markers to be risk or protective, and then assigned different odds ratios (OR),

fixed or MAF-dependent (O+ for risk; O− for protective) [Wu et al., 2011], to the markers to

construct different scenarios in Table 3.2, in which risk variants have OR > 1 and protective

variants have OR < 1. Note that the MAF was calculated from the larger haplotype pool

instead of the much smaller sampled dataset. Then, we used the logistic model below to

generate the probability of being affected (Prob(Yi = 1)) for the ith individual.

Logit(Prob(Yi = 1)) = b0 +
m∑
j=1

ln(ORj)× gij + Pi; (i = 1 · · ·n, j = 1 · · ·m) (3.40)

where b0 is calculated from the prevalence, which we set at 5%; j represented the jth marker,

m was the total number of markers, n was the sample size. ORj represented the odds ratio for

marker j. And Pi was the polygenic effect generated from a multivariate normal distribution

below.

P = (P1, P2, ..., Pn)
T ∼MVN(0,ΣP ) (3.41)

where ΣP = σp × 2×Φn×n = σp × 2×


0.5 φ12 · · · φ1n

φ21 0.5 · · · φ2n

...
... . . . ...

φn1 φn2 · · · 0.5


And φik was expected kinship coefficient between subjects i and k. Thus, Φn×n could be

calculated directly from the family structure by using the R function ’kinship’ from the R-

package ’kinship2’ [Therneau et al., 2014]. For example, Φn×n for the family in Figure 3.1

was in the form below:
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Φ9×9 =



0.50 0.00 0.25 0.25 0.00 0.00 0.12 0.12 0.12

0.00 0.50 0.25 0.25 0.00 0.00 0.12 0.12 0.12

0.25 0.25 0.50 0.25 0.00 0.00 0.25 0.12 0.12

0.25 0.25 0.25 0.50 0.00 0.00 0.12 0.25 0.25

0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.25 0.25

0.00 0.00 0.00 0.00 0.00 0.50 0.25 0.00 0.00

0.12 0.12 0.25 0.12 0.00 0.25 0.50 0.06 0.06

0.12 0.12 0.12 0.25 0.25 0.00 0.06 0.50 0.25

0.12 0.12 0.12 0.25 0.25 0.00 0.06 0.25 0.50


Here we set σp at 0.38, which was calculated from the variance of

m∑
j=1

ln(ORj)×gij, i = 1 · · ·n,

over all n subjects. The reason why we set σp at 0.38 was because we did not want the

polygenic effect to overwhelm the rare variant effect, thus we restricted the variance of the

polygenic effect to be equal to the variance of rare variant effects. To simulate the data under

null hypothesis, after generating traits by using Equation 3.40, we generated another set of

genotypes. This way, the number and pattern of affected individuals was kept fixed, but

there was no association between genotypes and traits. In this manner, for each replication,

we ascertained the same set of 25 families that contained at least two affected subjects in

the youngest generation, sample size is 633. We only kept the markers whose MAF = (0,

0.05]. Table 3.2 shows the average number of markers that were analyzed in the data. For

each scenario, we simulated 3,000 datasets to measure Type I error, and 3,000 datasets to

measure power.

We compared Qtest to six other statistics. First, the FSKAT test developed by Yan

et al. [2015] is mathematically very similar to Qtest when estimating the parameters. The

main differences were that, in FSKAT, the test statistic was constructed mainly by using

Penalized Quasi-likelihood, and followed a mixture of chi-square distributions. In specific,

FSKAT constructed a Q-statistic where

Q = (Y ∗ −Xα)TV −1β Gn×mWm×mG
T
n×mV

−1
β (Y ∗ −Xα) (3.42)
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Q follows a mixture of chi-square distributions under the null hypothesis.

Q ∼
m∑
j=1

λjχ
2
1,j (3.43)

where χ2
1,j represented a chi-square distribution with one degree of freedom, λj were the

eigenvalues of the matrixWm×mG
T
n×mV

−1
β P 0V

−1
β Gn×mWm×m, and P 0 was the variance of

(Y ∗−Xα). While, as in Equation 3.39, Qtest was constructed mainly by using the Laplace

method, and follows a scaled chi-square distribution.

Second, we also compared Qtest to two statistics developed by Schaid et al. [2013],

which are the Burden and Kernel statistics (R-package: ’pedgene’) that treat the traits as

fixed, genotypes as random, and carry out burden and kernel test statistics to identify the

association. By treating the traits as fixed, the covariance among markers can be calculated

as

Cov(Gj, Gk) = wjwk

n∑
i=1

n∑
l=1

(yi − ŷi)(yl − ŷl)Cov(gij, glk) (3.44)

where Gj and Gk are two vectors contain marker genotypes for marker j and marker k,

respectively, over all subjects in the sample. Therefore, specifically, the Burden test is:

T =

[
(Y − Ŷ )TS

]2
(Y − Ŷ )TV S(Y − Ŷ )

(3.45)

where V S is a function of Cov(Gj, Gk) and the kinship matrix Φn×n, and S = (S1, S2, ..., Sn)

for all the n subjects in the sample and Si =
m∑
j=1

wjgij where wj is the weight for marker

j and gij is the genotype of marker j for subject i. And T has an approximate chi-square

distribution with one degree of freedom. For the Kernel test, it constructs a Q function:

Q =
m∑
j=1

[
wj

n∑
i=1

(yi − ŷi)gij
]2

(3.46)

Similar to the Qtest, this Q statistic also follows a mixture of independent chi-square distribu-

tions, and is approximated by a scaled chi-square distribution, in which the scale parameter

can be calculated as V ar(Q)/(2E(Q)) and the degrees of freedom of the scaled chi-square
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distribution can be calculated as 2(E(Q))2/V ar(Q), where E(Q) and V ar(Q) are functions

of Cov(Gj, Gk) and the kinship matrix Φn×n.

Third, we compared Qtest to famSKAT [Chen et al., 2013] and FFBSKAT [Svishcheva

et al., 2014], which have been compared in Svishcheva et al. [2014]. Note that, these two

statistics are designed for quantitative traits, here we apply them such that we treat a

binary trait as a continuous one. These two methods were the fast implementations of

the methods proposed by Schifano et al. [2012]; Chen et al. [2013]; Oualkacha et al. [2013]

and Svishcheva et al. [2014] has showed that FFBSKAT is faster and has more features

than famSKAT such as using genomic kinship matrix. Specifically, these methods used an

efficient kernel machine-based regression approach to identify the association between rare

genetic variants and continuous traits on family data. Finally, we also applied the GEE-based

method (R function "score_FSKAT_IC_pertu" in the package "gskat") developed by Wang

et al. [2013] that allowed for mis-specification of family structure. And we have obtained the

p-value calculated by using ’Rademacher’ perturbation adjustment method for small sample

size [Wang et al., 2013]. Wang et al. [2013] applied a GEE method to quantitative traits,

but they did not apply it to binary traits. Thus, in our study, we applied this method to

binary traits and evaluated its performance. All simulation and comparison were done in R.

Note that we applied different weighting methods for these statistics. In specific, for

Schaid’s methods (Burden, Kernel), we applied equal (E) weight (Wm×m = 1m×m), sample-

MAF-dependent (M) weight, which were generated from a beta distribution, Beta(MAF_j,

a = 1, b = 25), where MAF_j is the minor allele frequency calculated based on the sampled

dataset for the jth marker, and Madsen-Browning weight [Madsen and Browning, 2009].

For other methods except for GEE, we applied equal (E) and sample-MAF-dependent (M)

weight. For GEE, we only applied sample-MAF-dependent (M) weight because in its R

implementation, it was hard to set the weights to be equal.
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3.4 RESULTS

As shown in Table 3.2, we have simulated eight different scenarios by setting different per-

centages of and assigning different odds ratios (OR) to risk (OR > 1) and protective (OR <

1) rare variants. The average numbers of affected subjects across all scenarios ranged from

79 to 94. The average number of variants by minor allele frequency (MAF) are about the

same respectively for each frequency range across eight different scenarios.

Table 3.2: Eight simulated scenarios

Odds Ratio Percentage Average number of Average number of variants by MAF

Scenarios (Risk/Protective) (Risk/Protective) affected subjects (0, 0.001] (0.001, 0.01] (0.01, 0.05]

1 1.5 / 0.5 60 / 20 78.18 7.28 10.32 5.94

2 1.5 / 1 60 / 0 80.74 7.53 10.52 5.96

3 2.5 / 0.5 60 / 20 87.27 7.73 10.69 5.96

4 2.5 / 1 60 / 0 94.01 8.02 10.80 5.96

5 O+ / O− 30 / 20 81.29 8.27 10.92 5.96

6 O+ / 1 30 / 0 88.29 8.42 10.92 5.96

7 O+ / O− 40 / 20 93.47 7.99 10.58 5.96

8 O+ / 1 40 / 0 89.57 8.99 10.93 5.96

MAF-dependent odds ratio: O+ = exp
ln(10)

4
|log10MAFj |, O− = exp−

ln(10)
4
|log10MAFj |

MAFj: minor allele frequency for the jth marker in the overall haplotype pool.

3.4.1 Type I error

The Type I errors for all statistics under eight different trait simulation scenarios and three

different alpha levels are summarized in Figures 3.2 , 3.3 and 3.4. We have calculated 95%

confidence intervals (C.I.) for all the three alpha levels based on 10,000 replicates:

C.I. for alpha level 0.05 = 0.05 ± 1.96×
√

(0.05× (1− 0.05)/10000) = [0.046, 0.054]

C.I. for alpha level 0.01 = 0.01 ± 1.96×
√

(0.01× (1− 0.01)/10000) = [0.008, 0.012]

C.I. for alpha level 0.001 = 0.001 ± 1.96×
√
(0.001× (1− 0.001)/10000) = [0.0004,

0.0016]
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Note that, in each scenario, we first simulate the trait by using one set of markers with

percentages and odds ratios set according to the scenario settings, and then we simulate

another set of null markers independent of the trait and apply statistics to test for association

between the new set of markers and the traits. In this manner, we are trying to simulate

the clustering of traits within an ascertained sample under the null hypothesis.
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Figure 3.2: Type I error at a gene independent of the trait locus under eight trait simulation scenarios (ordered as scenarios 1 - 8

from left to right) at the 0.05 alpha level. Odds Ratio (Risk/Protective), Percentage (Risk/Protective). O+ = exp
ln(10)

4
|log10MAFj |,

O− = exp−
ln(10)

4
|log10MAFj |, MAFj: minor allele frequency for the jth marker calculated in haplotype pool. The boundaries of

the 95% Confidence Interval are marked out with two black lines. "M": sample-MAF-dependent weights; "E": equal weights;

"MB": Madsen-Browning weights.
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Figure 3.3: Type I error at a gene independent of the trait locus under eight trait simulation scenarios (ordered as scenarios 1 - 8

from left to right) at the 0.01 alpha level. Odds Ratio (Risk/Protective), Percentage (Risk/Protective). O+ = exp
ln(10)

4
|log10MAFj |,

O− = exp−
ln(10)

4
|log10MAFj |, MAFj: minor allele frequency for the jth marker calculated in haplotype pool. The boundaries of

the 95% Confidence Interval are marked out with two black lines. "M": sample-MAF-dependent weights; "E": equal weights;

"MB": Madsen-Browning weights.
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Figure 3.4: Type I error at a gene independent of the trait locus under eight trait simulation scenarios (ordered as scenarios 1 - 8

from left to right) at the 0.001 alpha level. Odds Ratio (Risk/Protective), Percentage (Risk/Protective). O+ = exp
ln(10)

4
|log10MAFj |,

O− = exp−
ln(10)

4
|log10MAFj |, MAFj: minor allele frequency for the jth marker calculated in haplotype pool. The boundaries of

the 95% Confidence Interval are marked out with two black lines. "M": sample-MAF-dependent weights; "E": equal weights;

"MB": Madsen-Browning weights.
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Figures 3.2, 3.3 and 3.4 show the Type I error for all the compared statistics at three

different alpha levels. We say a statistic has inflated or deflated Type I error if its Type I

error is higher or lower than the upper or lower bound of the 95% C.I., respectively; and if a

statistic’s Type I error is within the 95% C.I., we say it has well-behaved Type I error. First

we compare the Type I error behaviors across different trait simulation scenarios. At the 0.05

alpha level, GEE_M, Qtest_M, Qtest_E, FSKAT_M, Kernel_M, and Kernel_MB have

inflated Type I error. famSKAT_M and famSKAT_E, FFBSKAT_M and FFBSKAT_E

have unstable behaviors, which means their Type I errors are not robust to the different trait

simulation scenarios. We observed similar patterns at 0.01 and 0.001 alpha level.

Second, we compare the Type I error behaviors among different alpha levels. Compared

to 0.05 alpha level, when at the 0.01 alpha level, Qtest_M and Qtest_E still have inflated

Type I errors; famSKAT_M and famSKAT_E have less inflated Type I errors although

they are still inflated; and FFBSKAT_M has more inflated Type I error. And when the

alpha level is 0.001, Qtest_M and Qtest_E have the most inflated Type I error among all

statistics. FFBSKAT_E’s eight Type I errors are all within the 95% confidence interval.

Lastly, we compare the effects from assigning different weighting schemes to the markers.

In general, the weights that are based on sample minor allele frequencies are tend to inflate

the Type I error behavior of the statistic; while equal weights tend to help to control the Type

I error. For the Burden test, the Madsen-Browning (MB) weight [Madsen and Browning,

2009] can help to control the Type I error, but for the Kernel test, it cannot help with

controlling the Type I error in some scenarios.

3.4.2 Power

The naive power at the 0.05, 0.01 and 0.001 alpha levels for all compared statistics are

presented in Figure 3.5 Figure 3.6 and Figure 3.7, respectively, in which the scenarios are

ordered (from left to right) from one to eight. We have calculated 95% confidence intervals

based on the sample size (10,000) for each statistic, which are presented as error bars. We

also have labeled the statistics according to their Type I error behaviors as "d" (deflated)

and "i" (inflated). The statistics that have not been labeled have well-behaved Type I error.
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Recall that, in the first four scenarios, the odds ratio (OR) for risk and protective variants are

fixed; while in the second four scenarios, they depend on minor allele frequencies (MAF) of

the corresponding markers in the sample. The sample-MAF-dependent OR for risk variants

(O+) ranges from 2 to 10, while O−, which is the sample-MAF-dependent OR for protective

variants, ranges from 0.1 to 0.5.

In the first four scenarios (1 - 4), Figure 3.6 shows that, at the 0.01 alpha level, when the

odds ratios for risk and protective markers are fixed at 1.5 and 0.5, respectively, most of the

statistics have low power, especially the Burden_M and Burden_MB statistics; when the

protective effects are removed while keeping the same odds ratio for risk markers, Burden_E

has the highest power. And when the odds ratio for risk markers is increased to 2.5, in the

presence of protective effects, Kernel_E, famSKAT_E and FFBSKAT_E have the highest

power; in the absence of protective effects, Burden_E has the highest power.
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Figure 3.5: Power under eight scenarios (ordered as scenarios 1 - 8 from left to right) at the 0.05 alpha level. Odds Ratio
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|log10MAFj |, O− = exp−
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4
|log10MAFj |, MAFj: minor allele

frequency for the jth marker calculated in haplotype pool. Bottom Labels: "i": Inflated Type I error, "d": Deflated Type I

error. "M": sample-MAF-dependent weights; "E": equal weights; "MB": Madsen-Browning weights.
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Figure 3.6: Power under eight scenarios (ordered as scenarios 1 - 8 from left to right) at the 0.01 alpha level. Odds Ratio

(Risk/Protective), Percentage (Risk/Protective). O+ = exp
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4
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4
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error. "M": sample-MAF-dependent weights; "E": equal weights; "MB": Madsen-Browning weights.
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Figure 3.7: Power under eight scenarios (ordered as scenarios 1 - 8 from left to right) at the 0.001 alpha level. Odds
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In the last four scenarios (5 - 8), odds ratios for both risk (O+) and protective (O−) vari-

ants depend on the minor allele frequencies of those rare variants: O+ = exp
ln(10)

4
|log10MAFj |,

and O− = exp−
ln(10)

4
|log10MAFj |, in which MAFj is the minor allele frequency for the jth

marker. Figure 3.6 shows that, at 0.01 alpha level, when there are 30% risk markers and

20% protective markers, Kernel_M and Kernel_MB have the highest power; when the pro-

tective effects are removed, Burden_E and Kernel_MB have the highest power. When the

percentage of risk markers is increased to 40%, in the presence of the protective effects,

Burden_E has the highest power, which is different from what we have observed in Schaid

et al. [2013]; in the absence of the protective effects, Kernel_MB has the highest power, but

Burden_E also has very high power.

Overall, Burden_E has the highest power, and GEE_M has the lowest power. We have

also observed that, statistics that assign equal weights to all the markers tend to have higher

power than the statistics that assign unequal weights (e.g. sample-MAF-dependent weights)

in the scenarios where the odds ratios for risk and protective markers are fixed; However, in

the scenarios where the odds ratio depends on marker allele frequency, except for Burden_E

in the last three scenarios, assigning sample-MAF-dependent weights or Madsen-Browning

weights [Madsen and Browning, 2009] tends to improve power. Note that the power estimates

are only accurate for those statistics that have good Type I error rates. The statistics that

have inflated or deflated Type I error rates have overestimated or underestimated power,

respectively, because, just by chance, they can produce more or fewer significant p-values

than the statistics that have good Type I error rates. Recall that using unequal weights

cannot better control Type I error than using equal weights, even though unequal weights

match the trait simulation scenarios 5 to 8. Therefore, the high power of the statistics that

use unequal weights in scenarios 5 to 8 may be due to the inflated Type I error rates. We

have observed similar patterns and power behaviors for all statistics at 0.05 and 0.001 alpha

levels.

We also calculated so called ’adjusted power’, which means we calculated the power for

each statistic by adjusting for its own Type I error rates. The results that are in Figure A2

Figure A3 and Figure A4 show that, in most scenarios, Qtest has higher power than FSKAT,

and when statistics use the weights that match the underlying simulation scenarios, for ex-
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ample, equal weights match with scenarios with fixed odds ratio for all the marker (scenarios

1 to 4), those statistics have higher power than the statistics that use unmatched weights,

for example, using equal weights in scenarios 5 to 8, in which the odds ratios are depend on

marker allele frequency.

3.5 DISCUSSION

In this chapter, we have developed a statistic, Qtest, to identify the association between rare

variants and binary traits in family data by extending SKAT [Wu et al., 2011]. We have

evaluated and compared the Type I error and power of this statistic together with other six

ones by using family data simulated under eight different scenarios (Table 3.2). In order

to simulate polygenic effects, we add the P in Equation 3.40, which follows a multivariate

normal distribution (3.41). Note that we set σp at 0.38, which is calculated from the variance

of
m∑
j=1

ln(ORj)×gij, i = 1 · · ·n, the second component in Equation 3.40 where m is the total

number of markers and n is sample size. We set the polygenic effect this way because in this

simulation study, we focus on the effects from rare variants instead of from the polygenic

part. Thus, by setting σp to 0.38, the simulated polygenic effects do not overwhelm the

effects from rare variants. But still, setting the polygenic effect can be arbitrary, and it may

depend on the purpose of the simulation study, for example in Yan et al. [2015].

Table 3.2 shows the average number of variants by minor allele frequency (MAF). How-

ever, since each replicate contains different samples of haplotypes from the haplotype pool,

not all the risk or protective variants are polymorphic in each of the sampled datasets. Thus,

sometimes, non-polymorphic risk or protective variants have been dropped from the sampled

datasets during the simulation. In other words, the average number of variants by MAF just

gives a general distribution of those rare variants within the selected region. It is unknown

to the researcher that whether all or part of them are risk and/or protective, just like one

would expect in a real data analysis. In this study, we have included two statistics that are

designed for quantitative traits only, famSKAT and FFBSKAT. However, we are applying

them on binary traits to study their performances when treating a binary trait as a "0,
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1" continuous variable with "1" represents an affected individual. Although it is kind of

counter-intuitive, FFBSKAT showed well-behaved Type I error and power in most of the

scenarios, while famSKAT has inflated Type I errors in most of the scenarios at 0.05 alpha

level.

3.5.1 Weighting matrix

When applying association test statistics on rare variants, one can assign different weights

for the markers according to their MAF or some prior knowledge. In our simulation, we have

used equal weights, sample-MAF-dependent weights for all statistics except for GEE, which

has issues setting equal weights in its R implementation, and Madsen-Browning weights

[Madsen and Browning, 2009] for the Kernel and the Burden test statistics. We have com-

pared the effects of these different weighting schemes, which do influence the Type I error

behaviors and power of the statistics (e.g. Figure 3.3, Figure 3.6). When analyzing real data,

using equal weights has some advantages: first, assume we do not know whether or not a

marker with small MAF, thus, large effect size, is risk or protective or neutral; Second, it is

inappropriate to assign weights based on sample MAF (MAF calculated based on sampled

families), because the odds ratio or effect sizes have been simulated based on population

MAF (MAF calculated based on haplotype pool). Third, in a family-based dataset, the

sample MAFs are quite different from the MAFs in a population-based dataset, thus quite

different from population MAFs, and last but not the least, population MAF has been dis-

torted by the ascertainment procedure in sampled dataset. Therefore, using family-based

sample MAF to calculate weights could introduce bias, and by using equal weights, we are

trying to control for all these potential bias. However, whether or not using equal weights

on real data is a good idea depends on the unknown true state of nature. So, the decision of

which weighting scheme to use has to be driven by the prior beliefs, which means if one has

prior knowledge of the markers, one can use the population-MAF-dependent weights for the

markers, which may improve the power. Or, one could use both equal and MAF-dependent

weights to analyze the data at the expense of multiple testing.
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3.5.2 Inflated Type I error

Qtest and FSKAT are very similar to each other, and they have similar power behaviors

across different scenarios, but they have different Type I error behaviors. Especially, Qtest

has inflated Type I error at 0.001 alpha level (Figure 3.4). This may be due to the different

approximation methods used in the different statistics. Specifically, recall that the variance

component τ is tested at the boundary, which makes the test statistic not follow a standard

chi-square distribution with one degree of freedom. Rather, it follows a mixture of chi-square

distributions. FSKAT can calculate the weights for the mixture of chi-square distributions

(λ in Equation (3.42)), while Qtest applies the Laplace approximation method, and uses a

scaled chi-square distribution (Equation (3.39)) to approximate the mixture of chi-square

distributions. Therefore, compared to FSKAT, Qtest has an extra layer of approximation,

which might be one of the reasons why Qtest does not have well calibrated Type I errors

especially in the tail (alpha = 0.001). For Qtest, more theoretical derivations are needed

to remove this layer so as to instead use the mixture of chi-square distributions as the null

distribution of the statistic.

Another possible explanation of the inflation of Type I errors for Qtest is that, as men-

tioned in Lin [1997], when the data are binary, the sample size and the number of levels

of each random effect is small, the performance of Laplace approximation is unsatisfactory.

When the sample size and the number of levels of each random effect increase, the accu-

racy of Laplace-based approximation methods could quickly improve, thus improve the score

test. Therefore, a Monte Carlo based simulation method such as importance sampling may

be needed when dealing with binary traits to improve performance. This could be part of

the future work.

Moreover, the inflated Type I error behaviors, not only for Qtest, but also for other statis-

tics, for example famSKAT, may be also caused by ascertainment procedure. In this study,

we have ascertained the simulated families according to the criteria that the family should

contain at least two affected individuals in the youngest generation. The ascertainment pro-

cedure has resulted in increased portion of affected subjects in the sample from the prevalence

(5%) under null hypothesis, and introduces selection bias [Clark et al., 2005; Siegmund and
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Langholz, 2002]. Except for the Burden and the Kernel tests, other statistics assume the

families are randomly ascertained. Thus, treating ascertained sample as completely random

without any adjustment is not quite appropriate. Without proper adjustment, the estimated

variance components are biased, influencing test statistics [Oualkacha et al., 2013] by inflat-

ing the Type I error. Therefore, it is necessary to adjust for the ascertainment procedure

somewhere in the statistic if the families are not randomly ascertained to obtain a better

control of Type I error behavior, which could be very challenging [Vieland and Hodge, 1995].

For the Burden and the Kernel tests, with different weighting schemes (e.g. Equal

weights, sample-MAF-dependent weights), we have observed that they have well-behaved

Type I error as well as high power across most of the simulated scenarios, especially for the

Burden tests. Note that these statistics are constructed in a retrospective way such that

they assume the traits are fixed, instead of random. This way, these statistics could avoid

modeling the ascertainment procedure and obtain well-behaved Type I error behaviors. Note

that the inflated Type I error behaviors for famSKAT and FFBSKAT could also be due to

treating binary traits as continuous. For GEE, in Wang et al. [2013], GEE has showed well-

behaved Type I error in both random and ascertainment sampling designs, which increases

its robustness to ascertainment bias. But GEE has low power, which could be a trade off of

this robustness. In real studies, the multi-generation family data could be collected retro-

spectively with some ascertainment criteria, or collected prospectively as the study goes on

such as the family data in Framingham heart study. Obviously, collecting data prospectively

could cost a lot more time and money than the retrospective way. One possible way to avoid

the ascertainment issue is ascertaining families using the secondary traits while analyzing the

primary traits, but it only works when these two are not highly associated [Schifano et al.,

2012], as also shown in De Andrade and Amos [2000], the ascertainment bias had ignorable

effect when the correlation between primary and secondary traits are ignorable. Also, the

statistics may have low power when analyzing the primary traits.
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3.5.3 Population stratification and family structure mis-specification

In real data analysis, researchers have to deal with confounding factors such as population

stratification, which results in different allele frequencies in sampled population due to a

variety of reasons such as different ancestors. The statistics in our simulation are not robust

to population stratification by themselves. However, one can apply the Principle Component

Analysis (PCA) method on founders of the pedigrees and check for clusters, or to adjust for

population stratification [Zhu et al., 2008; Liu et al., 2013b] and add into the model as a

covariate. In this simulation study, we do not simulate population stratified data, which

would be carried out in future work.

However, before checking for population stratification using PCA method, one has to

make sure the family structures are correctly specified. GEE [Wang et al., 2013], although

has lower power than any other statistics in our study in most scenarios, in theory, is robust

to mis-specification of family structure as it uses working correlation structure and has valid

estimates of mean and variance. But we need more simulation with mis-specified family

structure to check that. Also, by genotyping a large number of individuals, one can identify

the relationship within families and thus check for mis-specified family structure.

3.5.4 Untyped subjects

Another issue in real data analysis is missing phenotype or genotype data. For missing

phenotype data, one can first calculate kinship matrix, and then drop the subjects with

missing phenotypes from the dataset and also from the kinship matrix. For missing genotype

data, although in this simulation, we do not address this issue, there are many imputation

methods that can be applied. For example, BEAGLE [Browning, 2006], MACH [Li et al.,

2006], IMPUTE [Marchini et al., 2007], GIGI [Cheung et al., 2013], which can impute missing

genotypes in family-based data. Some statistical algorithms for imputing genotypes within

families, which are based on Lander Green [Lander and Green, 1987] or Elston-Stewart

[Elston and Stewart, 1971] algorithms, or Monte Carlo sampling [Heath, 1997; Lange and

Sobel, 1996], are described in Chen and Abecasis [2007] and Visscher and Duffy [2006], and

implemented in MERLIN [Abecasis et al., 2002; Abecasis and Wigginton, 2005], MENDEL
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[Lange et al., 2001] and some other programs. In family-based data, missing genotype

imputation has to condition on Mendelian consistency [Cheung et al., 2014], population

stratification and the correlation among markers, which can be very complicated for rare

variants. In future work, we would like to focus on the development of a missing genotype

imputation method on family-based data and integrate it into Qtest.
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4.0 SUMMARY AND FUTURE WORK

4.1 A SIMULATION-BASED COMPARATIVE STUDY OF

FAMILY-BASED ASSOCIATION TESTS

In Chapter 2, we compared many single-common-variant association analysis statistics, and

discussed the advantages and disadvantages when applying these statistics to real data.

During the preparation of this dissertation, many new statistics have been developed (e.g.

ROADTRIPS [Thornton and McPeek, 2010]). Thus, we would like to continue comparing

single-common-variant association statistics by including those newly developed ones. Also,

in our study, we did not evaluate or compare the statistics’ performance in the presence

of population stratification. Thus, we would like to modify our simulation to mimic the

population stratification in simulated family-based data. To do this, we could first simulate

a set of pedigrees with one set of allele frequencies, and simulate another set of pedigrees

with a different set of allele frequencies. Then we could combine these two sets of family data

to form one dataset, in which there is population stratification reflected by the difference of

underlying allele frequencies. Moreover, we would like to compare all these statistics on real

data to further evaluate their performances.

4.2 FAMILY-BASED RARE VARIANTS ASSOCIATION ANALYSIS FOR

BINARY TRAITS

In Chapter 3, we developed a statistic, Qtest, to test for association between a binary trait

and rare variants on family-based data by extending SKAT [Wu et al., 2011]. Through

76



simulation, we also found that this method has elevated Type I error behavior (Figures 3.2 ,

3.3 and 3.4), and not as powerful as the statistics (Kernel and Burden) developed by Schaid

et al. [2013] (Figures 3.7, 3.6 and 3.5).

Therefore, for future work, we would like to improve this statistic in the following per-

spectives:

1) According to Lin [1997], the elevated Type I error may be caused by non-accurate

approximation from the Laplace method due to insufficient sample size. Lin [1997] also sug-

gested combining the Laplace approximation method with Monte Carlo importance sampling

or similar method to improve the approximation accuracy. Booth and Hobert [1999] and Mc-

Culloch [1997] have provided methods of applying Monte Carlo Expectation-Maximization

(MCEM) on Generalized Linear Mixed Models (GLMM). In general, MCEM uses Monte

Carlo procedure to enlarge the sample size in simulation, and treats the random effects in

the GLMM as missing data, and applies EM methods to obtain estimates of interested pa-

rameters. Thus, we would like to try integrate this MCEM method into Qtest to improve

its performance. Papachristou et al. [2011] have applied this algorithm to an association

study for common variants, and they have found that this method needs a burn-in step,

which although very time consuming, would not be a problem as the speed of computers is

constantly improving.

2) Qtest has no adjustment for ascertainment, and it assumes the sampled families are

randomly selected from the population. Thus, ascertainment bias [Clark et al., 2005; Sieg-

mund and Langholz, 2002] affects the behaviors of Qtest and other similar statistics that

based on mixed model [Oualkacha et al., 2013]. There are some methods to adjust for that

bias, for example, the methods proposed in Schaid et al. [2013] assume that the trait is

fixed, instead of a random variable, thus do not assume the sampled families are randomly

selected from the population. We have seen that in Chapter 3, these two methods (Burden

and Kernel) have better Type I error and power than Qtest.

For Qtest, one possible way to adjust for ascertainment bias is to construct a likeli-

hood that is condtioned on ascertainment. Recall in Chapter 2, the Likelihood ratio test

based on Generalized Linear Penetrance Model [Lange et al., 2005] implemented in Mendel

[Lange et al., 2001], PENE, has been evaluated. This method constructs a log-likelihood for
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the ascertainment procedure and subtracts it from the log-likelihood for the pedigree. In

other words, if we define the joint likelihood of the pedigree and ascertainment procedure

as L(Pedigree, Ascertainment), then we might be able to construct a likelihood for the as-

certainment procedure L(Ascertainment), which could be a function of or proportional to

the multiplication of the probability of observing, for example, two affected offspring in each

family. Then, we might be able to construct the conditional likelihood L(Pedigree | Ascertain-

ment) as L(Pedigree, Ascertainment)/L(Ascertainment). After taking logarithm, it becomes:

log(L(Pedigree | Ascertainment)) = log(L(Pedigree, Ascertainment)) - log(Ascertainment).

Finally, we might be able to use the conditional log-likelihood, log(L(Pedigree | Ascertain-

ment)), as our likelihood and derive the score statistic and information matrix. Another way

to correct for ascertainment bias is to ascertain according to one trait that is not of inter-

ested, then analyze the trait of interested, given that the two traits are not highly correlated.

This is more of a study design issue, and it may cause power loss when analyzing the trait

of interest. We would like to evaluate this study design in the future, too.

3) In this study, we have not simulated rare variant family-based data in the presence of

population stratification. We would like to evaluate the performance of the statistics we have

compared in Chapter 3 in the presence of population stratification. In order to adjust for

population stratification in Qtest, we could apply the strategy proposed by Zhu et al. [2008];

Liu et al. [2013b], in which the population stratification has been identified and added into

the model as a covariate. However, this method may not work well on rare variants. Or, we

could first detect population stratification by using the PCA method or the method proposed

in Qiao et al. [2013] on pedigree founders, and separately analyze the data. Obviously, this

method would reduce sample size.

4) In Chapter 3, we do not simulate any family-based data for X-chromosome rare vari-

ants, which requires recoded genotypes for males and re-calculated kinship coefficients be-

cause males have only one copy of X-chromosome. There are two recoding methods that

can be applied to recode genotypes for males. One is developed by Zheng et al. [2007] and

the other one is developed by Clayton [2008]. And these two recoding methods have been

compared for common variants by Loley et al. [2011] and Konig et al. [2014]. For future

work, we will apply both methods and compare them for rare variant analysis.
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5) In our simulation, we do not simulate any scenarios containing untyped individual. In

other words, Qtest assumes the data are complete, every individual has fully typed genotype.

In real data analysis, one has to handle untyped individuals. One simple way is to drop

them, but that would cause reduced sample size. So, it would be better if we can fill in the

missing genotype by constructing a proper imputation procedure in family-based data for

rare variants on both autosomes and X-chromosome. For missing phenotype, we suggest to

first calculate the kinship matrix based on the complete family structure, and then drop the

subject who has missing phenotype from the dataset and the kinship matrix.

In family-based data, the genotypes within each family should be Mendelianly consistent

when assuming no mutation, which is appropriate in small samples. One popular imputation

method in population-based data, which assumes independence among individuals, is to fill

in the missing genotype by sampling from the pool of candidate genotypes in the population

according to their frequencies. However, in family-based imputation, due to Mendelian

consistency, the number of candidate genotypes in the pool are limited. Thus, the first

step of imputing the missing genotype in family-based data is to identify correct candidate

genotypes by checking for Mendelian inconsistencies within a family. Then, one can sample

genotype from the limited or Mendelianly consistent candidate genotypes and fill in the

missing genotype. This shall be done individual by individual and family by family. Then,

one can apply Qtest or other statistics on imputed dataset to test for association.

6) There is a newly developed method by Zhang et al. [2014], Weighted Sum Mixed Model

(WSMM), which applies a permutation methods on family data to obtain adjusted weights

for association analysis between quantitative traits and rare variants. It was compared to

famSKAT, and the author claimed that it also can be applied on binary traits. So we would

like to include this statistic into our study in the future.
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APPENDIX A

SUPPLEMENTARY TABLES AND FIGURES

Table A1: Type I error and power for all statistics across all scenarios.

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

Test for association (Null A)

ALLELE_FREQ 2gen 0.050 0.046 0.044 0.050 0.046 0.045

3gen 0.047 0.057 0.063 0.043 0.056 0.063

2genUP 0.045 0.035 0.060 0.047 0.040 0.061

3genUG 0.055 0.060 0.065 0.050 0.060 0.063

3genUGP 0.054 0.059 0.054 0.052 0.048 0.052

CACO_FISHER 2gen 0.037 0.044 0.049 0.040 0.045 0.044

3gen 0.058 0.055 0.045 0.075 0.062 0.056

2genUP 0.059 0.040 0.039 0.033 0.044 0.048

3genUG 0.054 0.055 0.052 0.069 0.057 0.047

3genUGP 0.048 0.043 0.043 0.074 0.049 0.045

CACO_ZMAX 2gen 0.041 0.046 0.047 0.038 0.038 0.045

3gen 0.054 0.042 0.046 0.072 0.052 0.056

2genUP 0.048 0.038 0.043 0.034 0.047 0.063

3genUG 0.041 0.048 0.041 0.062 0.043 0.048
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Table A1 Continued

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

3genUGP 0.053 0.038 0.040 0.077 0.038 0.035

PENE 2gen 0.025 0.019 0.028 0.029 0.021 0.034

3gen 0.064 0.045 0.035 0.089 0.064 0.040

2genUP 0.030 0.028 0.033 0.026 0.028 0.038

3genUG 0.062 0.044 0.043 0.078 0.055 0.049

3genUGP 0.052 0.044 0.042 0.080 0.065 0.051

LME 2gen 0.018 0.041 0.054 0.022 0.051 0.046

3gen 0.107 0.126 0.128 0.145 0.140 0.137

2genUP 0.042 0.037 0.046 0.032 0.045 0.061

3genUG 0.022 0.011 0.028 0.027 0.016 0.024

3genUGP 0.036 0.044 0.033 0.063 0.056 0.047

GEE_ind 2gen 0.042 0.043 0.064 0.048 0.053 0.059

3gen 0.079 0.067 0.057 0.082 0.083 0.065

2genUP 0.051 0.047 0.060 0.045 0.055 0.055

3genUG 0.088 0.062 0.070 0.090 0.070 0.078

3genUGP 0.081 0.069 0.072 0.081 0.078 0.068

GEE_ex 2gen 0.055 0.064 0.079 0.060 0.065 0.086

3gen 0.085 0.074 0.078 0.092 0.096 0.071

2genUP 0.069 0.086 0.094 0.071 0.088 0.103

3genUG 0.093 0.080 0.083 0.082 0.088 0.089

3genUGP 0.093 0.087 0.089 0.091 0.091 0.082

g_gee1 2gen 0.043 0.044 0.067 0.047 0.053 0.062

3gen 0.073 0.071 0.057 0.080 0.081 0.069

2genUP 0.049 0.045 0.059 0.045 0.053 0.057

3genUG 0.088 0.061 0.066 0.084 0.067 0.073

3genUGP 0.079 0.067 0.069 0.077 0.076 0.064
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Table A1 Continued

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

Transmit 2gen 0.054 0.057 0.047 0.058 0.070 0.091

3gen 0.052 0.052 0.055 0.080 0.065 0.063

2genUP 0.057 0.047 0.058 0.058 0.076 0.092

3genUG 0.043 0.052 0.039 0.075 0.073 0.054

3genUGP 0.045 0.050 0.049 0.082 0.073 0.068

Transmit_r 2gen 0.059 0.058 0.045 0.057 0.047 0.053

3gen 0.052 0.057 0.062 0.066 0.060 0.059

2genUP 0.059 0.049 0.060 0.046 0.057 0.064

3genUG 0.043 0.065 0.038 0.066 0.061 0.053

3genUGP 0.053 0.052 0.048 0.078 0.077 0.057

QTDT_ad 2gen 0.034 0.047 0.048 0.041 0.039 0.040

3gen 0.032 0.035 0.029 0.028 0.031 0.031

2genUP 0.043 0.039 0.042 0.032 0.037 0.048

3genUG 0.021 0.025 0.027 0.025 0.036 0.036

3genUGP 0.015 0.032 0.029 0.021 0.031 0.022

MM1 2gen 0.288 0.301 0.310 0.268 0.295 0.298

3gen 0.374 0.404 0.416 0.430 0.473 0.434

2genUP 0.276 0.328 0.271 0.287 0.295 0.282

3genUG 0.383 0.411 0.436 0.395 0.415 0.452

3genUGP 0.360 0.383 0.382 0.361 0.392 0.407

Test for association in the absence of linkage (Null AL)

PMDom_LD|NL 2gen 0.067 0.062 0.075 0.060 0.063 0.075

3gen 0.056 0.063 0.049 0.052 0.063 0.052

2genUP 0.076 0.061 0.073 0.064 0.050 0.058

3genUG 0.056 0.058 0.059 0.058 0.061 0.061

3genUGP 0.042 0.052 0.031 0.042 0.043 0.030
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Table A1 Continued

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

PMRec_LD|NL 2gen 0.058 0.069 0.067 0.048 0.067 0.065

3gen 0.055 0.067 0.051 0.056 0.064 0.052

2genUP 0.063 0.075 0.068 0.048 0.054 0.034

3genUG 0.073 0.060 0.062 0.071 0.057 0.057

3genUGP 0.060 0.061 0.063 0.062 0.064 0.070

PMMbase_LD|NL 2gen 0.056 0.055 0.066 0.052 0.051 0.067

3gen 0.069 0.053 0.056 0.067 0.057 0.051

2genUP 0.058 0.042 0.064 0.045 0.047 0.064

3genUG 0.067 0.057 0.067 0.078 0.065 0.064

3genUGP 0.067 0.055 0.042 0.055 0.053 0.046

Test for association in the presence of linkage (Null CL)

FBAT_e 2gen 0.052 0.053 0.042 0.052 0.044 0.051

3gen 0.040 0.051 0.052 0.047 0.038 0.043

2genUP 0.051 0.041 0.039 0.042 0.047 0.052

3genUG 0.037 0.044 0.036 0.044 0.052 0.053

3genUGP 0.032 0.037 0.038 0.044 0.046 0.040

AS|LINK 2gen 0.019 0.021 0.032 0.028 0.027 0.037

3gen 0.033 0.030 0.022 0.047 0.034 0.024

2genUP 0.008 0.017 0.019 0.009 0.029 0.019

3genUG 0.033 0.025 0.031 0.044 0.027 0.038

3genUGP 0.026 0.022 0.014 0.032 0.020 0.019

PMDom_LD|L 2gen 0.077 0.087 0.101 0.062 0.071 0.084

3gen 0.062 0.076 0.072 0.073 0.079 0.073

2genUP 0.110 0.093 0.111 0.076 0.078 0.077

3genUG 0.072 0.081 0.086 0.078 0.088 0.084

3genUGP 0.070 0.079 0.058 0.068 0.066 0.047
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Table A1 Continued

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

PMRec_LD|L 2gen 0.069 0.085 0.094 0.063 0.074 0.053

3gen 0.065 0.073 0.058 0.064 0.072 0.059

2genUP 0.086 0.101 0.101 0.060 0.072 0.055

3genUG 0.090 0.085 0.079 0.087 0.068 0.084

3genUGP 0.073 0.079 0.090 0.079 0.077 0.095

PMMbase_LD|L 2gen 0.062 0.062 0.091 0.062 0.067 0.081

3gen 0.074 0.070 0.073 0.074 0.070 0.072

2genUP 0.069 0.067 0.078 0.061 0.068 0.092

3genUG 0.078 0.071 0.090 0.087 0.079 0.083

3genUGP 0.084 0.066 0.056 0.068 0.075 0.071

Test for association or linkage (Null NL)

QTDT_ar 2gen 0.049 0.051 0.046 0.041 0.041 0.045

3gen 0.046 0.041 0.053 0.069 0.069 0.060

2genUP NaN NaN NaN NaN NaN NaN

3genUG 0.040 0.043 0.050 0.060 0.061 0.058

3genUGP 0.032 0.035 0.042 0.072 0.040 0.053

FBAT 2gen 0.054 0.057 0.047 0.058 0.070 0.091

3gen 0.052 0.052 0.055 0.080 0.065 0.063

2genUP 0.053 0.039 0.049 0.045 0.063 0.063

3genUG 0.043 0.054 0.040 0.071 0.071 0.056

3genUGP 0.044 0.043 0.051 0.067 0.064 0.064

GC1 2gen 0.055 0.057 0.047 0.060 0.070 0.091

3gen 0.052 0.053 0.057 0.081 0.067 0.065

2genUP 0.055 0.046 0.056 0.053 0.070 0.087

3genUG 0.044 0.054 0.042 0.077 0.076 0.056

3genUGP 0.047 0.043 0.041 0.084 0.071 0.065
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Table A1 Continued

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

GC2 2gen 0.055 0.057 0.047 0.060 0.070 0.091

3gen 0.052 0.053 0.057 0.081 0.067 0.065

2genUP 0.058 0.047 0.059 0.058 0.076 0.091

3genUG 0.044 0.054 0.042 0.077 0.076 0.056

3genUGP 0.050 0.043 0.041 0.086 0.075 0.066

GC1CT 2gen 0.051 0.049 0.045 0.042 0.046 0.051

3gen 0.050 0.045 0.051 0.068 0.080 0.056

2genUP 0.048 0.055 0.043 0.045 0.044 0.041

3genUG 0.036 0.045 0.049 0.074 0.050 0.055

3genUGP 0.047 0.052 0.046 0.081 0.063 0.058

GC2CT 2gen 0.051 0.049 0.045 0.042 0.046 0.051

3gen 0.050 0.045 0.051 0.068 0.080 0.056

2genUP 0.048 0.055 0.043 0.045 0.044 0.041

3genUG 0.036 0.045 0.050 0.076 0.052 0.056

3genUGP 0.047 0.053 0.047 0.083 0.063 0.059

Mendel_TDT 2gen 0.045 0.041 0.035 0.047 0.057 0.076

3gen 0.039 0.043 0.040 0.068 0.044 0.051

2genUP NaN NaN NaN NaN NaN NaN

3genUG 0.030 0.038 0.032 0.058 0.046 0.046

3genUGP 0.027 0.015 0.017 0.039 0.027 0.028

g_tdt 2gen 0.054 0.057 0.047 0.060 0.070 0.091

3gen 0.052 0.052 0.055 0.080 0.065 0.063

2genUP NaN NaN NaN NaN NaN NaN

3genUG 0.038 0.050 0.046 0.072 0.067 0.062

3genUGP 0.043 0.039 0.040 0.063 0.049 0.051

g_1tdt 2gen 0.054 0.053 0.042 0.052 0.044 0.051

3gen 0.040 0.051 0.052 0.047 0.038 0.045
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Table A1 Continued

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

2genUP 0.048 0.039 0.059 0.058 0.043 0.052

3genUG 0.033 0.054 0.039 0.042 0.049 0.052

3genUGP 0.046 0.049 0.044 0.053 0.047 0.048

g_pdt 2gen 0.039 0.045 0.055 0.039 0.053 0.038

3gen 0.037 0.035 0.054 0.040 0.042 0.051

2genUP 0.048 0.045 0.044 0.043 0.049 0.056

3genUG 0.028 0.054 0.036 0.037 0.048 0.044

3genUGP 0.038 0.040 0.034 0.050 0.052 0.046

GDT 2gen 0.036 0.052 0.060 0.037 0.048 0.048

3gen 0.050 0.045 0.049 0.085 0.067 0.051

2genUP 0.050 0.043 0.052 0.039 0.050 0.069

3genUG 0.043 0.047 0.054 0.075 0.060 0.063

3genUGP 0.046 0.039 0.047 0.077 0.068 0.047

poGDT 2gen 0.047 0.049 0.053 0.056 0.040 0.063

3gen 0.046 0.050 0.050 0.077 0.068 0.062

2genUP 0.046 0.039 0.055 0.040 0.050 0.069

3genUG 0.041 0.046 0.038 0.045 0.063 0.056

3genUGP 0.038 0.053 0.046 0.052 0.054 0.055

MQLStest_caco 2gen 0.035 0.037 0.048 0.041 0.042 0.048

3gen 0.056 0.042 0.041 0.075 0.064 0.045

2genUP 0.044 0.043 0.055 0.043 0.049 0.053

3genUG 0.050 0.045 0.049 0.066 0.053 0.059

3genUGP 0.042 0.046 0.041 0.062 0.061 0.052

WQLS_r 2gen 0.048 0.050 0.056 0.052 0.065 0.077

3gen 0.048 0.052 0.058 0.081 0.069 0.060

2genUP 0.047 0.041 0.052 0.037 0.046 0.067

3genUG 0.049 0.048 0.047 0.066 0.066 0.062
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Table A1 Continued

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

3genUGP 0.043 0.053 0.044 0.077 0.070 0.063

MQLStest_r 2gen 0.036 0.050 0.049 0.050 0.055 0.070

3gen 0.064 0.049 0.049 0.073 0.063 0.046

2genUP 0.050 0.038 0.058 0.043 0.058 0.050

3genUG 0.055 0.049 0.055 0.064 0.051 0.058

3genUGP 0.048 0.056 0.040 0.064 0.056 0.052

MQLS_e 2gen 0.036 0.054 0.053 0.046 0.055 0.064

3gen 0.066 0.052 0.049 0.079 0.062 0.049

2genUP 0.053 0.038 0.059 0.039 0.056 0.048

3genUG 0.055 0.046 0.057 0.065 0.056 0.058

3genUGP 0.047 0.055 0.043 0.066 0.055 0.053

IQLS 2gen 0.036 0.054 0.053 0.046 0.055 0.064

3gen 0.066 0.052 0.049 0.079 0.062 0.049

2genUP 0.053 0.038 0.059 0.039 0.056 0.048

3genUG 0.055 0.046 0.057 0.065 0.056 0.058

3genUGP 0.047 0.055 0.043 0.066 0.055 0.053

g_mqls 2gen 0.036 0.054 0.054 0.048 0.056 0.064

3gen 0.066 0.052 0.050 0.079 0.062 0.050

2genUP 0.053 0.038 0.059 0.040 0.056 0.051

3genUG 0.057 0.047 0.057 0.065 0.056 0.059

3genUGP 0.048 0.055 0.045 0.067 0.055 0.054

g_qlsw 2gen 0.046 0.052 0.052 0.059 0.066 0.088

3gen 0.067 0.060 0.051 0.077 0.067 0.048

2genUP 0.053 0.042 0.057 0.039 0.051 0.070

3genUG 0.066 0.050 0.048 0.069 0.066 0.062

3genUGP 0.040 0.054 0.048 0.072 0.054 0.051
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Table A1 Continued

Family No Linkage Complete Linkage

Statistics Structure Dom Add Rec Dom Add Rec

PMDom_LDL 2gen 0.063 0.075 0.079 0.158 0.156 0.225

3gen 0.066 0.072 0.061 0.197 0.124 0.093

2genUP 0.082 0.072 0.079 0.117 0.140 0.207

3genUG 0.069 0.068 0.069 0.150 0.112 0.108

3genUGP 0.051 0.071 0.057 0.140 0.116 0.075

PMRec_LDL 2gen 0.064 0.082 0.067 0.120 0.187 0.354

3gen 0.067 0.072 0.056 0.127 0.127 0.097

2genUP 0.067 0.086 0.086 0.096 0.148 0.219

3genUG 0.086 0.089 0.070 0.132 0.117 0.119

3genUGP 0.058 0.066 0.072 0.116 0.111 0.112

PMMbase_LDL 2gen 0.053 0.061 0.069 0.050 0.051 0.062

3gen 0.077 0.052 0.062 0.221 0.111 0.084

2genUP 0.059 0.065 0.064 0.057 0.061 0.064

3genUG 0.064 0.058 0.070 0.191 0.094 0.097

3genUGP 0.067 0.069 0.045 0.132 0.103 0.079

Note: Due to different null hypotheses, blue colored values are power, oth-

ers are Type I error. Family structures: 2gen: fully typed two-generation

families; 3gen: fully typed three-generation families; 2genUP: two-generation

families with one untyped parent; 3genUG: three-generation families with two

untyped grandparents; 3genUGP: three-generation families with two untyped

grandparents and some untyped parents.
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Figure A1: Hierarchical clustering plot based on Euclidean distance of p-values under Null NL across fully typed family

structures and penetrance models
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Figure A2: Adjusted power under eight scenarios (ordered as scenarios 1 - 8 from left to right) at the 0.05 alpha level. Odds

Ratio (Risk/Protective), Percentage (Risk/Protective). O+ = exp
ln(10)

4
|log10MAFj |, O− = exp−

ln(10)
4
|log10MAFj |, MAFj: minor allele

frequency for the jth marker calculated in haplotype pool. Bottom Labels: "i": Inflated Type I error, "d": Deflated Type I

error. "M": sample-MAF-dependent weights; "E": equal weights; "MB": Madsen-Browning weights.
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Figure A3: Adjusted power under eight scenarios (ordered as scenarios 1 - 8 from left to right) at the 0.01 alpha level. Odds

Ratio (Risk/Protective), Percentage (Risk/Protective). O+ = exp
ln(10)

4
|log10MAFj |, O− = exp−

ln(10)
4
|log10MAFj |, MAFj: minor allele

frequency for the jth marker calculated in haplotype pool. Bottom Labels: "i": Inflated Type I error, "d": Deflated Type I

error. "M": sample-MAF-dependent weights; "E": equal weights; "MB": Madsen-Browning weights.
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Figure A4: Adjusted power under eight scenarios (ordered as scenarios 1 - 8 from left to right) at the 0.001 alpha level. Odds

Ratio (Risk/Protective), Percentage (Risk/Protective). O+ = exp
ln(10)

4
|log10MAFj |, O− = exp−

ln(10)
4
|log10MAFj |, MAFj: minor allele

frequency for the jth marker calculated in haplotype pool. Bottom Labels: "i": Inflated Type I error, "d": Deflated Type I

error. "M": sample-MAF-dependent weights; "E": equal weights; "MB": Madsen-Browning weights.
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APPENDIX B

SIMULATED FAMILIES FOR RARE VARIANT ASSOCIATION ANALYSIS
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1
17 individuals

Mar 30 2015 1

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

1_2
1/1
1.00000

1_1
1/1
1.00000

1_6
1/1
1.00000

1_5
1/1
1.00000

1_9
1/1
1.00000

1_4
1/1
1.00000

1_8
1/1
1.00000

1_3
1/1
1.00000

1_7
1/1
1.00000

1_17
1/1
1.00000

1_16
1/1
1.00000

1_15
1/1
1.00000

1_14
1/1
1.00000

1_13
1/1
1.00000

1_12
1/1
1.00000

1_11
1/1
1.00000

1_10
1/1
1.00000
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10
31 individuals

Mar 30 2015 2

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

10_19
1/1
1.00000

10_17
1/1
1.00000

10_18
1/1
1.00000

10_22
1/1
1.00000

10_2
1/1
1.00000

10_1
1/1
1.00000

10_20
1/1
1.00000

10_21
1/1
1.00000

10_30
1/1
1.00000

10_16
1/1
1.00000

10_15
1/1
1.00000

10_14
1/1
1.00000

10_13
1/1
1.00000

10_12
1/1
1.00000

10_23
1/1
1.00000

10_24
1/1
1.00000

10_25
1/1
1.00000

10_26
1/1
1.00000

10_27
1/1
1.00000

10_28
1/1
1.00000

10_3
1/1
1.00000

10_8
1/1
1.00000

10_29
1/1
1.00000

10_31
1/1
1.00000

10_4
1/1
1.00000

10_9
1/1
1.00000

10_5
1/1
1.00000

10_10
1/1
1.00000

10_6
1/1
1.00000

10_11
1/1
1.00000

10_7
1/1
1.00000
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11
19 individuals

Mar 30 2015 3

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

11_9
1/1
1.00000

11_4
1/1
1.00000

11_7
1/1
1.00000

11_12
1/1
1.00000

11_13
1/1
1.00000

11_14
1/1
1.00000

11_5
1/1
1.00000

11_8
1/1
1.00000

11_15
1/1
1.00000

11_19
1/1
1.00000

11_18
1/1
1.00000

11_10
1/1
1.00000

11_2
1/1
1.00000

11_1
1/1
1.00000

11_3
1/1
1.00000

11_6
1/1
1.00000

11_17
1/1
1.00000

11_11
1/1
1.00000

11_16
1/1
1.00000
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12
16 individuals

Mar 30 2015 4

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

12_15
1/1
1.00000

12_14
1/1
1.00000

12_2
1/1
1.00000

12_1
1/1
1.00000

12_10
1/1
1.00000

12_11
1/1
1.00000

12_3
1/1
1.00000

12_5
1/1
1.00000

12_9
1/1
1.00000

12_13
1/1
1.00000

12_8
1/1
1.00000

12_7
1/1
1.00000

12_4
1/1
1.00000

12_6
1/1
1.00000

12_12
1/1
1.00000

12_16
1/1
1.00000

97



13
22 individuals

Mar 30 2015 5

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

13_15
1/1
1.00000

13_14
1/1
1.00000

13_13
1/1
1.00000

13_6
1/1
1.00000

13_21
1/1
1.00000

13_12
1/1
1.00000

13_5
1/1
1.00000

13_9
1/1
1.00000

13_20
1/1
1.00000

13_11
1/1
1.00000

13_10
1/1
1.00000

13_2
1/1
1.00000

13_1
1/1
1.00000

13_19
1/1
1.00000

13_4
1/1
1.00000

13_8
1/1
1.00000

13_18
1/1
1.00000

13_17
1/1
1.00000

13_22
1/1
1.00000

13_3
1/1
1.00000

13_7
1/1
1.00000

13_16
1/1
1.00000
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14
15 individuals

Mar 30 2015 6

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

14_14
1/1
1.00000

14_15
1/1
1.00000

14_2
1/1
1.00000

14_1
1/1
1.00000

14_3
1/1
1.00000

14_5
1/1
1.00000

14_4
1/1
1.00000

14_6
1/1
1.00000

14_7
1/1
1.00000

14_8
1/1
1.00000

14_9
1/1
1.00000

14_10
1/1
1.00000

14_11
1/1
1.00000

14_12
1/1
1.00000

14_13
1/1
1.00000
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15
21 individuals

Mar 30 2015 7

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

15_5
1/1
1.00000

15_8
1/1
1.00000

15_4
1/1
1.00000

15_7
1/1
1.00000

15_3
1/1
1.00000

15_6
1/1
1.00000

15_9
1/1
1.00000

15_21
1/1
1.00000

15_20
1/1
1.00000

15_2
1/1
1.00000

15_1
1/1
1.00000

15_19
1/1
1.00000

15_18
1/1
1.00000

15_17
1/1
1.00000

15_16
1/1
1.00000

15_15
1/1
1.00000

15_14
1/1
1.00000

15_13
1/1
1.00000

15_12
1/1
1.00000

15_11
1/1
1.00000

15_10
1/1
1.00000
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16
26 individuals

Mar 30 2015 8

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

16_26
1/1
1.00000

16_24
1/1
1.00000

16_25
1/1
1.00000

16_21
1/1
1.00000

16_23
1/1
1.00000

16_22
1/1
1.00000

16_3
1/1
1.00000

16_7
1/1
1.00000

16_4
1/1
1.00000

16_8
1/1
1.00000

16_5
1/1
1.00000

16_9
1/1
1.00000

16_6
1/1
1.00000

16_10
1/1
1.00000

16_20
1/1
1.00000

16_2
1/1
1.00000

16_1
1/1
1.00000

16_19
1/1
1.00000

16_18
1/1
1.00000

16_17
1/1
1.00000

16_16
1/1
1.00000

16_15
1/1
1.00000

16_14
1/1
1.00000

16_13
1/1
1.00000

16_12
1/1
1.00000

16_11
1/1
1.00000
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17
14 individuals

Mar 30 2015 9

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

17_3
1/1
1.00000

17_5
1/1
1.00000

17_4
1/1
1.00000

17_6
1/1
1.00000

17_9
1/1
1.00000

17_7
1/1
1.00000

17_8
1/1
1.00000

17_2
1/1
1.00000

17_1
1/1
1.00000

17_14
1/1
1.00000

17_13
1/1
1.00000

17_12
1/1
1.00000

17_11
1/1
1.00000

17_10
1/1
1.00000
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18
19 individuals

Mar 30 2015 10

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

18_4
1/1
1.00000

18_8
1/1
1.00000

18_3
1/1
1.00000

18_7
1/1
1.00000

18_19
1/1
1.00000

18_2
1/1
1.00000

18_1
1/1
1.00000

18_5
1/1
1.00000

18_9
1/1
1.00000

18_6
1/1
1.00000

18_10
1/1
1.00000

18_15
1/1
1.00000

18_18
1/1
1.00000

18_17
1/1
1.00000

18_16
1/1
1.00000

18_14
1/1
1.00000

18_13
1/1
1.00000

18_12
1/1
1.00000

18_11
1/1
1.00000
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19
22 individuals

Mar 30 2015 11

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

19_20
1/1
1.00000

19_8
1/1
1.00000

19_7
1/1
1.00000

19_13
1/1
1.00000

19_6
1/1
1.00000

19_12
1/1
1.00000

19_5
1/1
1.00000

19_11
1/1
1.00000

19_4
1/1
1.00000

19_10
1/1
1.00000

19_3
1/1
1.00000

19_9
1/1
1.00000

19_22
1/1
1.00000

19_21
1/1
1.00000

19_2
1/1
1.00000

19_1
1/1
1.00000

19_19
1/1
1.00000

19_18
1/1
1.00000

19_17
1/1
1.00000

19_16
1/1
1.00000

19_15
1/1
1.00000

19_14
1/1
1.00000
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2
27 individuals

Mar 30 2015 12

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

2_22
1/1
1.00000

2_20
1/1
1.00000

2_21
1/1
1.00000

2_25
1/1
1.00000

2_23
1/1
1.00000

2_24
1/1
1.00000

2_2
1/1
1.00000

2_1
1/1
1.00000

2_19
1/1
1.00000

2_18
1/1
1.00000

2_17
1/1
1.00000

2_16
1/1
1.00000

2_15
1/1
1.00000

2_26
1/1
1.00000

2_27
1/1
1.00000

2_3
1/1
1.00000

2_9
1/1
1.00000

2_4
1/1
1.00000

2_10
1/1
1.00000

2_5
1/1
1.00000

2_11
1/1
1.00000

2_6
1/1
1.00000

2_12
1/1
1.00000

2_7
1/1
1.00000

2_13
1/1
1.00000

2_8
1/1
1.00000

2_14
1/1
1.00000
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20
26 individuals

Mar 30 2015 13

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

20_23
1/1
1.00000

20_20
1/1
1.00000

20_12
1/1
1.00000

20_13
1/1
1.00000

20_14
1/1
1.00000

20_15
1/1
1.00000

20_16
1/1
1.00000

20_17
1/1
1.00000

20_18
1/1
1.00000

20_19
1/1
1.00000

20_2
1/1
1.00000

20_1
1/1
1.00000

20_21
1/1
1.00000

20_22
1/1
1.00000

20_24
1/1
1.00000

20_25
1/1
1.00000

20_26
1/1
1.00000

20_3
1/1
1.00000

20_8
1/1
1.00000

20_4
1/1
1.00000

20_9
1/1
1.00000

20_5
1/1
1.00000

20_10
1/1
1.00000

20_6
1/1
1.00000

20_11
1/1
1.00000

20_7
1/1
1.00000
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21
22 individuals

Mar 30 2015 14

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

21_20
1/1
1.00000

21_19
1/1
1.00000

21_6
1/1
1.00000

21_5
1/1
1.00000

21_9
1/1
1.00000

21_4
1/1
1.00000

21_8
1/1
1.00000

21_3
1/1
1.00000

21_7
1/1
1.00000

21_22
1/1
1.00000

21_21
1/1
1.00000

21_2
1/1
1.00000

21_1
1/1
1.00000

21_18
1/1
1.00000

21_17
1/1
1.00000

21_16
1/1
1.00000

21_15
1/1
1.00000

21_14
1/1
1.00000

21_13
1/1
1.00000

21_12
1/1
1.00000

21_11
1/1
1.00000

21_10
1/1
1.00000
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22
17 individuals

Mar 30 2015 15

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

22_14
1/1
1.00000

22_15
1/1
1.00000

22_16
1/1
1.00000

22_17
1/1
1.00000

22_2
1/1
1.00000

22_1
1/1
1.00000

22_3
1/1
1.00000

22_7
1/1
1.00000

22_4
1/1
1.00000

22_8
1/1
1.00000

22_5
1/1
1.00000

22_9
1/1
1.00000

22_6
1/1
1.00000

22_13
1/1
1.00000

22_12
1/1
1.00000

22_11
1/1
1.00000

22_10
1/1
1.00000
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23
37 individuals

Mar 30 2015 16

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

23_28
1/1
1.00000

23_27
1/1
1.00000

23_29
1/1
1.00000

23_3
1/1
1.00000

23_10
1/1
1.00000

23_30
1/1
1.00000

23_31
1/1
1.00000

23_32
1/1
1.00000

23_33
1/1
1.00000

23_34
1/1
1.00000

23_35
1/1
1.00000

23_36
1/1
1.00000

23_37
1/1
1.00000

23_4
1/1
1.00000

23_11
1/1
1.00000

23_5
1/1
1.00000

23_12
1/1
1.00000

23_6
1/1
1.00000

23_13
1/1
1.00000

23_7
1/1
1.00000

23_14
1/1
1.00000

23_8
1/1
1.00000

23_15
1/1
1.00000

23_9
1/1
1.00000

23_17
1/1
1.00000

23_26
1/1
1.00000

23_16
1/1
1.00000

23_18
1/1
1.00000

23_19
1/1
1.00000

23_2
1/1
1.00000

23_1
1/1
1.00000

23_20
1/1
1.00000

23_21
1/1
1.00000

23_22
1/1
1.00000

23_23
1/1
1.00000

23_24
1/1
1.00000

23_25
1/1
1.00000
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24
16 individuals

Mar 30 2015 17

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

24_4
1/1
1.00000

24_7
1/1
1.00000

24_2
1/1
1.00000

24_1
1/1
1.00000

24_3
1/1
1.00000

24_6
1/1
1.00000

24_14
1/1
1.00000

24_5
1/1
1.00000

24_8
1/1
1.00000

24_9
1/1
1.00000

24_15
1/1
1.00000

24_13
1/1
1.00000

24_12
1/1
1.00000

24_11
1/1
1.00000

24_10
1/1
1.00000

24_16
1/1
1.00000
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25
15 individuals

Mar 30 2015 18

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

25_5
1/2
1.00000

25_8
1/1
1.00000

25_4
1/2
1.00000

25_7
1/1
1.00000

25_3
1/2
1.00000

25_6
1/1
1.00000

25_2
1/2
1.00000

25_1
1/1
1.00000

25_15
1/2
1.00000

25_14
1/1
1.00000

25_13
1/2
1.00000

25_12
1/1
1.00000

25_11
1/2
1.00000

25_10
1/1
1.00000

25_9
1/1
1.00000
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3
17 individuals

Mar 30 2015 19

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

3_13
1/1
1.00000

3_14
1/1
1.00000

3_15
1/1
1.00000

3_16
1/1
1.00000

3_17
1/1
1.00000

3_2
1/1
1.00000

3_1
1/1
1.00000

3_3
1/1
1.00000

3_5
1/1
1.00000

3_4
1/1
1.00000

3_6
1/1
1.00000

3_7
1/1
1.00000

3_8
1/1
1.00000

3_9
1/1
1.00000

3_10
1/1
1.00000

3_11
1/1
1.00000

3_12
1/1
1.00000
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4
56 individuals

Mar 30 2015 20

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

4_4
1/1
1.00000

4_16
1/1
1.00000

4_47
1/1
1.00000

4_46
1/1
1.00000

4_45
1/1
1.00000

4_44
1/1
1.00000

4_43
1/1
1.00000

4_42
1/1
1.00000

4_41
1/1
1.00000

4_40
1/1
1.00000

4_49
1/1
1.00000

4_39
1/1
1.00000

4_38
1/1
1.00000

4_37
1/1
1.00000

4_36
1/1
1.00000

4_35
1/1
1.00000

4_48
1/1
1.00000

4_33
1/1
1.00000

4_5
1/1
1.00000

4_17
1/1
1.00000

4_50
1/1
1.00000

4_51
1/1
1.00000

4_52
1/1
1.00000

4_53
1/1
1.00000

4_54
1/1
1.00000

4_55
1/1
1.00000

4_56
1/1
1.00000

4_6
1/1
1.00000

4_18
1/1
1.00000

4_7
1/1
1.00000

4_19
1/1
1.00000

4_8
1/1
1.00000

4_20
1/1
1.00000

4_9
1/1
1.00000

4_21
1/1
1.00000

4_10
1/1
1.00000

4_22
1/1
1.00000

4_11
1/1
1.00000

4_23
1/1
1.00000

4_12
1/1
1.00000

4_24
1/1
1.00000

4_13
1/1
1.00000

4_14
1/1
1.00000

4_2
1/1
1.00000

4_1
1/1
1.00000

4_34
1/1
1.00000

4_25
1/1
1.00000

4_26
1/1
1.00000

4_27
1/1
1.00000

4_28
1/1
1.00000

4_29
1/1
1.00000

4_3
1/1
1.00000

4_15
1/1
1.00000

4_30
1/1
1.00000

4_31
1/1
1.00000

4_32
1/1
1.00000
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5
23 individuals

Mar 30 2015 21

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

5_23
1/1
1.00000

5_22
1/1
1.00000

5_2
1/1
1.00000

5_1
1/1
1.00000

5_21
1/1
1.00000

5_20
1/1
1.00000

5_3
1/1
1.00000

5_7
1/1
1.00000

5_4
1/1
1.00000

5_8
1/1
1.00000

5_5
1/1
1.00000

5_9
1/1
1.00000

5_6
1/1
1.00000

5_10
1/1
1.00000

5_19
1/1
1.00000

5_18
1/1
1.00000

5_17
1/1
1.00000

5_16
1/1
1.00000

5_15
1/1
1.00000

5_14
1/1
1.00000

5_13
1/1
1.00000

5_12
1/1
1.00000

5_11
1/1
1.00000
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6
66 individuals

Mar 30 2015 22

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

6_29
1/1
1.00000

6_27
1/1
1.00000

6_28
1/1
1.00000

6_26
1/1
1.00000

6_25
1/1
1.00000

6_37
1/1
1.00000

6_3
1/1
1.00000

6_14
1/1
1.00000

6_30
1/1
1.00000

6_31
1/1
1.00000

6_32
1/1
1.00000

6_34
1/1
1.00000

6_35
1/1
1.00000

6_36
1/1
1.00000

6_33
1/1
1.00000

6_2
1/1
1.00000

6_1
1/1
1.00000

6_13
1/1
1.00000

6_24
1/1
1.00000

6_12
1/1
1.00000

6_23
1/1
1.00000

6_11
1/1
1.00000

6_22
1/1
1.00000

6_10
1/1
1.00000

6_21
1/1
1.00000

6_61
1/1
1.00000

6_54
1/1
1.00000

6_55
1/1
1.00000

6_56
1/1
1.00000

6_57
1/1
1.00000

6_58
1/1
1.00000

6_59
1/1
1.00000

6_6
1/1
1.00000

6_17
1/1
1.00000

6_60
1/1
1.00000

6_64
1/1
1.00000

6_62
1/1
1.00000

6_63
1/1
1.00000

6_65
1/1
1.00000

6_66
1/1
1.00000

6_7
1/1
1.00000

6_18
1/1
1.00000

6_8
1/1
1.00000

6_19
1/1
1.00000

6_9
1/1
1.00000

6_20
1/1
1.00000

6_38
1/1
1.00000

6_53
1/1
1.00000

6_39
1/1
1.00000

6_4
1/1
1.00000

6_15
1/1
1.00000

6_40
1/1
1.00000

6_41
1/1
1.00000

6_42
1/1
1.00000

6_43
1/1
1.00000

6_44
1/1
1.00000

6_45
1/1
1.00000

6_46
1/1
1.00000

6_52
1/1
1.00000

6_51
1/1
1.00000

6_50
1/1
1.00000

6_5
1/1
1.00000

6_16
1/1
1.00000

6_49
1/1
1.00000

6_47
1/1
1.00000

6_48
1/1
1.00000
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7
23 individuals

Mar 30 2015 23

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

7_19
1/1
1.00000

7_6
1/1
1.00000

7_10
1/1
1.00000

7_5
1/1
1.00000

7_9
1/1
1.00000

7_4
1/1
1.00000

7_8
1/1
1.00000

7_3
1/1
1.00000

7_7
1/1
1.00000

7_23
1/1
1.00000

7_22
1/1
1.00000

7_21
1/1
1.00000

7_20
1/1
1.00000

7_2
1/1
1.00000

7_1
1/1
1.00000

7_18
1/1
1.00000

7_17
1/1
1.00000

7_16
1/1
1.00000

7_15
1/1
1.00000

7_14
1/1
1.00000

7_13
1/1
1.00000

7_12
1/1
1.00000

7_11
1/1
1.00000
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8
26 individuals

Mar 30 2015 24

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

8_21
1/1
1.00000

8_25
1/1
1.00000

8_26
1/1
1.00000

8_24
1/1
1.00000

8_23
1/1
1.00000

8_22
1/1
1.00000

8_12
1/1
1.00000

8_3
1/1
1.00000

8_7
1/1
1.00000

8_4
1/1
1.00000

8_8
1/1
1.00000

8_5
1/1
1.00000

8_9
1/1
1.00000

8_6
1/1
1.00000

8_10
1/1
1.00000

8_2
1/1
1.00000

8_1
1/1
1.00000

8_19
1/1
1.00000

8_18
1/1
1.00000

8_17
1/1
1.00000

8_16
1/1
1.00000

8_15
1/1
1.00000

8_14
1/1
1.00000

8_13
1/1
1.00000

8_11
1/1
1.00000

8_20
1/1
1.00000
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9
40 individuals

Mar 30 2015 25

male 

female

Name
M8
Genotyping-rate

Trait

Affected

Unknown

9_31
1/1
1.00000

9_38
1/1
1.00000

9_32
1/1
1.00000

9_37
1/1
1.00000

9_8
1/1
1.00000

9_17
1/1
1.00000

9_30
1/1
1.00000

9_3
1/1
1.00000

9_12
1/1
1.00000

9_29
1/1
1.00000

9_28
1/1
1.00000

9_27
1/1
1.00000

9_39
1/1
1.00000

9_4
1/1
1.00000

9_13
1/1
1.00000

9_40
1/1
1.00000

9_5
1/1
1.00000

9_14
1/1
1.00000

9_6
1/1
1.00000

9_15
1/1
1.00000

9_7
1/1
1.00000

9_16
1/1
1.00000

9_35
1/1
1.00000

9_9
1/1
1.00000

9_18
1/1
1.00000

9_33
1/1
1.00000

9_34
1/1
1.00000

9_36
1/1
1.00000

9_10
1/1
1.00000

9_19
1/1
1.00000

9_11
1/1
1.00000

9_26
1/1
1.00000

9_2
1/1
1.00000

9_1
1/1
1.00000

9_20
1/1
1.00000

9_21
1/1
1.00000

9_22
1/1
1.00000

9_23
1/1
1.00000

9_24
1/1
1.00000

9_25
1/1
1.00000
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APPENDIX C

R IMPLEMENTATION OF THE QTEST

1 Qtest <- function(phenoQ , genoQ , id , fa , mo , family="binomial", weights=NULL , covariates=
NULL){

2 # phenoQ: A vector contains phenotypes for all the subjects , no missing.
3 # genoQ: A vector or matrix c ontains genotypes for all the subjects , no missing.
4 # id: A vector contains subjects ' IDs , no missing.
5 # fa: A vector contains fathers ' IDs , should be unique in the sample , no missing.
6 # mo: A vector contains mothers ' IDs , should be unique in the sample , no missing.
7 # family: optional , specify the distribution of the trait , default is "binomial ".
8 # weights: optional , 1) "Equal" means equal weights , 2) default is sample -MAF -dependent ,

or 3) an vector contains user specified weights for the marker(s).
9 # covariates: optinal , 1) default is NULL , 2) an vector of matrix contains covariates of

interest.
10 library(MASS)
11 library(kinship2)
12 library(nlme)
13 library(mgcv)
14 if(class(phenoQ) != "data.frame") stop("phenoQ should be data.frame class!")
15 if(class(genoQ) != "data.frame") stop("genoQ should be data.frame class!")
16 n1 <- nrow(phenoQ)
17 n2 <- nrow(genoQ)
18 if(n1 != n2) stop("Number of subjects in phenoQ and genoQ files do not match")
19 y <- as.matrix(phenoQ)
20 K <- kinship(id, fa, mo)
21 if (weights =="Equal"){
22 W <- diag(1, n2)
23 } else {
24 w <- dbeta(colMeans(genoQ)/2, 1, 25)
25 W <- diag(w^2)
26 }
27 intercept <- rep(1,length(id))
28 if(is.null(covariates)){
29 X <- as.matrix(intercept)
30 exprs <-paste("y ~ 1")} else if(!is.null(covariates)){
31 X <- cbind(intercept , as.matrix(covariates))
32 X <- as.matrix(X)
33 exprs <-paste("y ~", paste(names(covariates),collapse=" + "))}
34 cs.K <- corSymm (2*K[lower.tri(K)],fixed=T)
35 id <- as.matrix(id)
36 colnames(id) <- "id"
37 cs.K <- Initialize(cs.K, data = id)
38 data <- data.frame(id = as.factor(id), y = y)
39 fit1 <- glmmPQL2(as.formula(exprs), random = ~1|id, correlation = cs.K, data = data ,

family = family , control = lmeControl(opt = "optim"))
40 G <- as.matrix(genoQ)
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41 II <- diag(1, nrow(G))
42 alpha <- fit1$fit$coefficients$fixed
43 V_beta <- extract.lme.cov(fit1$fit , data) # '1' -- calculated from this function
44 V_beta_inv <- solve(V_beta)
45 lamda <- V_beta_inv - V_beta_inv %*% X %*% solve(t(X) %*% V_beta_inv %*% X) %*% t(X) %*% V

_beta_inv
46 res <- as.matrix(Y <- fit1$y_star - X %*% alpha)
47 KK <- 2 * K
48 T_11 <- 1/2 * sum(diag(lamda %*% G %*% W %*% t(G) %*% lamda %*% G %*% W %*% t(G)))
49 T_13 <- 1/2 * sum(diag(lamda %*% G %*% W %*% t(G) %*% lamda %*% II %*% KK %*% t(II)))
50 T_31 <- t(T_13)
51 T_33 <- 1/2 * sum(diag(lamda %*% II %*% KK %*% t(II) %*% lamda %*% II %*% KK %*% t(II)))
52 I <- T_11 - T_13 * T_31/T_33
53 e <- 1/2 * sum(diag(lamda %*% G %*% W %*% t(G)))
54 k <- I/(2*e)
55 v <- 2*e^2/I
56 U <- 1/2 * (t(res) %*% V_beta_inv %*% G %*% W %*% t(G) %*% V_beta_inv %*% (res))
57 S <- U/k
58 Q <- pchisq(S, df = v, lower.tail = FALSE)
59 result <- round(Q, digits = 5)
60 return(result)
61 }
62 #########################################
63 glmmPQL2 <- function (fixed , random , family , data , correlation , weights ,
64 control , niter = 10, verbose = TRUE , ...)
65 {# Modified glmmPQL function , which returns the y values at the last iteration.
66 if (!require("nlme"))
67 stop("package 'nlme ' is essential")
68 if (is.character(family))
69 family <- get(family)
70 if (is.function(family))
71 family <- family ()
72 if (is.null(family$family)) {
73 print(family)
74 stop("'family ' not recognized")
75 }
76 m <- mcall <- Call <- match.call()
77 nm <- names(m)[-1L]
78 keep <- is.element(nm , c("weights", "data", "subset", "na.action"))
79 for (i in nm[!keep]) m[[i]] <- NULL
80 allvars <- if (is.list(random))
81 allvars <- c(all.vars(fixed), names(random), unlist(lapply(random , function(x) all.vars(

formula(x)))))
82 else c(all.vars(fixed), all.vars(random))
83 Terms <- if (missing(data))
84 terms(fixed)
85 else terms(fixed , data = data)
86 off <- attr(Terms , "offset")
87 if (length(off <- attr(Terms , "offset")))
88 allvars <- c(allvars , as.character(attr(Terms , "variables"))[off + 1])
89 if (!missing(correlation) && !is.null(attr(correlation , "formula")))
90 allvars <- c(allvars , all.vars(attr(correlation , "formula")))
91 Call$fixed <- eval(fixed)
92 Call$random <- eval(random)
93 m$formula <- as.formula(paste("~", paste(allvars , collapse = "+")))
94 environment(m$formula) <- environment(fixed)
95 m$drop.unused.levels <- TRUE
96 m[[1L]] <- as.name("model.frame")
97 mf <- eval.parent(m)
98 off <- model.offset(mf)
99 if (is.null(off))

100 off <- 0
101 wts <- model.weights(mf)
102 if (is.null(wts))
103 wts <- rep(1, nrow(mf))
104 mf$wts <- wts
105 fit0 <- glm(formula = fixed , family = family , data = mf , weights = wts , ...)
106 w <- fit0$prior.weights
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107 eta <- fit0$linear.predictors
108 zz <- eta + fit0$residuals - off
109 wz <- fit0$weights
110 fam <- family
111 nm <- names(mcall)[-1L]
112 keep <- is.element(nm , c("fixed", "random", "data", "subset", "na.action", "control"))
113 for (i in nm[!keep]) mcall[[i]] <- NULL
114 fixed [[2L]] <- quote(zz)
115 mcall [["fixed"]] <- fixed
116 mcall [[1L]] <- as.name("lme")
117 mcall$random <- random
118 mcall$method <- "ML"
119 if (!missing(correlation))
120 mcall$correlation <- correlation
121 mcall$weights <- quote(varFixed(~invwt))
122 mf$zz <- zz
123 mf$invwt <- 1/wz
124 mcall$data <- mf
125 for (i in seq_len(niter)) {
126 if (verbose)
127 message("iteration ", i)
128 fit <- eval(mcall)
129 etaold <- eta
130 eta <- fitted(fit) + off
131 if (sum((eta - etaold)^2) < 1e-06 * sum(eta^2))
132 break
133 mu <- fam$linkinv(eta)
134 mu.eta.val <- fam$mu.eta(eta)
135 mf$zz <- eta + (fit0$y - mu)/mu.eta.val - off
136 wz <- w * mu.eta.val^2/fam$variance(mu)
137 mf$invwt <- 1/wz
138 mcall$data <- mf
139 }
140 y_star <- mf$zz
141 attributes(fit$logLik) <- NULL
142 fit$call <- Call
143 fit$family <- family
144 fit$logLik <- as.numeric(NA)
145 oldClass(fit) <- c("glmmPQL", oldClass(fit))
146 newfit <- list("fit"=fit , "y_star"=y_star , "W_inverse"=mf$invwt)
147 }

Qtest_and_glmmPQL2.R
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