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Cellular and Molecular Mechanisms Underlying Vulnerability and Resilience to  

Noise-Induced Tinnitus 

Shuang Li, PhD 

 

 Tinnitus, the perception of phantom sound, is often a debilitating condition that affects 

many millions of people. Little is known, however, about the molecule that underlies 

vulnerability and resilience to tinnitus.  We investigated these mechanisms in the dorsal cochlear 

nucleus (DCN), an auditory brainstem nucleus that is essential for the induction of tinnitus. In 

DCN principal neurons (fusiform cells), we reveal a tinnitus-specific increase in the spontaneous 

firing rate (hyperactivity). We show that a reduction in Kv7.2/3 (KCNQ2/3) channel activity is 

essential for tinnitus induction and for the tinnitus-specific hyperactivity. This reduction is due to 

a shift in the voltage-dependence of KCNQ channel activation to more positive voltages. 

Importantly, in vivo pharmacological manipulation that shifts the voltage-dependence of KCNQ 

channels to more negative voltages prevents the development of tinnitus and provides an 

important link between the biophysical properties of the KCNQ channel and the vulnerability to 

tinnitus. Fusiform cells from noise-exposed mice that show resilience to tinnitus (non-tinnitus 

mice) display normal levels of spontaneous firing, but have more hyperpolarized subthreshold 

dynamics and more hyperpolarized resting membrane potential. These differences are due to a 

reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity. 

Longitudinal study reveals that 4 days after noise exposure, noise-exposed mice display non-

tinnitus behavior, no fusiform cell hyperactivity, but reduced KCNQ2/3 currents. Importantly, 

while the preservation of reduced KCNQ2/3 currents 7 days after noise exposure gives rise to 

tinnitus behavior, the recovery of KCNQ2/3 currents to pre-exposed control levels is associated 
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with non-tinnitus behavior, and is accompanied by a decrease in HCN channel activity. In vivo 

pharmacological opening of KCNQ2/3 channels prevented the development of tinnitus and 

decreased HCN currents, suggesting that KCNQ2/3 plasticity determines vulnerability and 

resilience to tinnitus and drives the reduction in HCN channel activity. Reduced HCN channel 

activity in non-tinnitus mice, by hyperpolarizing the resting membrane potential, may further 

prevent fusiform cell hyperactivity and contribute to tinnitus resilience. Together, our results 

highlight KCNQ2/3 and HCN channels as potential targets for designing therapeutics that may 

reduce vulnerability and promote resilience to tinnitus. 
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1.0  INTRODUCTION 

 Tinnitus, perceptions of sounds in the absence of sound stimulus, is a common auditory 

disorder that can be detrimental to the quality of life for millions of tinnitus sufferers. An 

estimated 5 – 15% of the population experiences chronic tinnitus; many millions of those have 

incapacitating symptoms (Axelsson and Ringdahl, 1989; Heller, 2003; Roberts et al., 

2010; Shargorodsky et al., 2010). With an even higher prevalence of chronic tinnitus in recent 

war veterans (Yankaskas, 2012), the personal and financial costs of tinnitus have expanded 

dramatically. Despite the high prevalence of the disorder, the mechanisms that lead to tinnitus 

remain poorly understood. As a result, there is no generally accepted treatment, cure or 

preventive method for tinnitus. Therefore, to improve therapeutic methods for treating tinntius, it 

is critical to understand the pathophysiology that is causally linked to the development of 

tinnitus. 

1.1.1 Central origin of noise-induced tinnitus  

Tinnitus is frequent sequelae of acoustic overexposure (noise-induced tinnitus)(Tyler et 

al., 2007; Shargorodsky et al., 2010). Noise exposure primarily damages the auditory periphery 

(cochlea) and causes hair cell loss (Wang et al., 2002), ganglion cell degeneration (Kujawa and 

Liberman, 2006) and reduces auditory nerve activty (Liberman and Kiang, 1978; Schaette and 
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McAlpine, 2011). For many years, the peripheral auditory system was assumed to be the 

anatomical location where the pathology that led to tinntius was generated. However, as tinnitus 

can occur in deaf individuals and after sectioning of the auditory nerve (House and Brackmann, 

1981; Berliner et al., 1992), it is now evident that the pathology that causes tinnitus is mostly in 

the central nervous system (CNS)(Tonndorf, 1987; Jastreboff, 1990). Therefore, a fundamental 

question is what is the abnormality of  CNS that leads to the phantom perception of sound. 

1.1.2 Behavioral models for evaluating tinnitus in animals 

 To investigate the cellular and molecular mechanisms underlying noise-induced tinnitus, 

successful assessment of tinnitus in animal is critical. Behavioral approaches to test tinnitus in 

animal models have adopted three major paradigms: Pavlovian conditioning, operant 

conditioning, and reflexes (von der Behrens, 2014). In Pavlovian conditioning, animals perform 

a preferable behavior (e.g. water licking) while a continuous sound is played. Ceasing of the 

sound (no sound, conditioned stimulus, CS) is followed by a punishment signal (unconditioned 

stimulus, US, e.g. footshock), leading to suppression of the preferable behavior during the CS 

stimulus (Jastreboff et al., 1988b; Jastreboff et al., 1988a; Heffner and Harrington, 2002). By 

measuring suppression of the preferable response, the ability to perceive no sound can be 

evaluated. After tinnitus induction, conditioned suppression that is related to perception of no 

sound reduced, indicating the spontaneous hearing of a sound, i.e. tinnitus (Heffner and 

Harrington, 2002). The relatively fast training process of Pavlovian paradigm enables a large 

number of animals to be assessed. However, as the association of no sound perception and 

suppression of the preferable behavior is dependent on the establishment of fear, and that CS is 

given only during the training period, the suppression of preferable response extinguishes 
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overtime and prevents the assessment of tinnitus over a long time (von der Behrens, 2014). 

Operant conditioning addresses this limitation. Operant conditioning is based on the training of 

the animal to take a special action (e.g. pressing a lever) to achieve a desirable stimulus (e.g. 

obtaining a food pellet). Punishment stimulus is given to suppress the operant behavior during no 

sound stimulus. Different from Pavlovian conditioning where the punishment signal is given 

only during the training session, the operant model also applies punishment during the testing 

session, which eliminates the extinguishment of the suppression behavior and enables the 

assessment of tinnitus behavior over extended periods. The disadvantage of this approach, 

however, is the requirement for repeated long-lasting training to reach the criteria for performing 

the behavioral testing (Bauer and Brozoski, 2001). 

 In 2006, Turner et al. introduced the gap startle paradigm as a high throughput method 

for screening tinnitus in animals that does not require training. This paradigm is based on the 

acoustic startle reflex (ASR) system. The ASR is elicited by acoustic stimuli more than 80-

decibel sound pressure level (dB SPL) and with a steep onset (Kehne and Davis, 1984; Pilz et al., 

1987). The acoustic stimuli excite neurons in the cochlear root nucleus and the auditory 

brainstem nucleus, which further project to the nucleus reticularis pontis caudalis (PnC) in the 

brainstem. Neurons in PnC in relay excite spinal interneurons and motor neurons that initiate a 

startle response (Kehne and Davis, 1984; Lee et al., 1996). A sound gap embedded in the 

otherwise continuous background sound that is delivered 10 - 300 ms before the startle stimulus 

inhibits the amplitude of the startle response (Leitner et al., 1993). Therefore, perception of 

tinnitus could be evaluated based on the inability of animals to show inhibition of ASR that is 

normally elicited by the silent gap. Previous study revealed that in normal rats, a pre-startle 

sound gap suppressed the startle amplitude (Turner et al., 2006b). However, after salicylate 
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(Turner and Parrish, 2008) or acoustic trauma (Turner et al., 2006b), animals display reduced 

inhibition of startle stimulus by the sound gap, ostensibly indicating that the gap is filled by a 

sound perception and is considered a perception of tinnitus. The ASR-based gap detection 

paradigm is not dependent on learning. Therefore, it could be applied to a large amount of 

animals with a short amount of time for behavioral measurements. The disadvantage of the ASR-

based paradigm is that damage of the auditory and/or startle reflex system may lead to a false 

positive assessment of the tinnitus behavior (Lobarinas et al., 2013). Therefore, measurement of 

hearing ability through auditory brainstem response (ABR) and evaluation of ASR function is 

important for the interpretation of tinnitus behavior.   

1.1.3 Application of gap detection paradigm to test tinnitus in humans 

Due to the subjectivity of tinnitus perception in humans, evaluation of tinnitus in human 

patients has been relient on self-reporting, visual analog scale and questionnaires (Fournier and 

Hebert, 2013). Objectification of tinnitus measurements in humans is highly demanded. Given 

the development of ASR-based assessment of tinnitus in animals (Turner et al., 2006b), attempts 

have been made to apply similar methods to measure tinnitus in humans. Instead of measuring 

muscle twitching, electromyography (EMG) activity of the eye blink in human subjects is 

recorded as the indication for the strength of the startle response (Blumenthal et al., 2006). 

Similar to the gap effect in suppressing startle response in animals, introduction of a sound gap 

30 - 500 ms before the startle stimulus led to a significant suppression of the startle response in 

human subjects with normal hearing and no tinnitus (Fournier and Hebert, 2013). Patients with 

high frequency tinnitus, however, show reduced suppression of the eye blinking by a sound gap. 

Importantly, although tinnitus patients report high frequency tinnitus (16 kHz and 11.3 kHz), 
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they show reduced gap-mediated suppression of eye blinking with both low (500 Hz) and high (4 

kHz) background noise. This contradiction indicates that deficit of gap detection may not reveal 

purely the filling effect of tinnitus into the gap. Instead, it may reveal changes in the functional 

activity of one or more central neural structures that compose the gap detection circuit. Given 

that inhibition of the startle response by a prepulse sound (prepulse inhibition, PPI) is intact in 

tinnitus patients, and that gap detection but not PPI is dependent on cortical activation (Ison et al., 

1991), it is probable that changes in the cortical processing lead to gap detection deficits in 

tinnitus patient. This possibility is consistent with previous findings that auditory cortex plays an 

essential role underlying tinnitus generation (Eggermont and Roberts, 2004) and that numerous 

neural correlates of tinnitus haven been detected in auditory cortex, including cortical 

reorganization, neuronal hyperactivity and hyper synchrony (Muhlnickel et al., 1998; Weisz et 

al., 2005; Engineer et al., 2011b; Shetake et al., 2012).  

1.1.4 Neural correlates for noise-induced tinnitus 

 Study on noise-induced tinnitus has been focused on chronic phase, when symptom of 

tinnitus stabilizes. Significant progress has been made revealing that decrease in auditory nerve 

inputs leads to pathogenic neuronal plasticity and results in hyperexcitability of dorsal cochlear 

nucleus (auditory brainstem) and hyperexcitability of inferior colliculus (auditory midbrain) 

(Kaltenbach and Afman, 2000; Brozoski et al., 2002a; Ma et al., 2006), increased spontaneous 

activity, increased neural synchrony and tonotopical reorganization of primary auditory cortex 

(Norena and Eggermont, 2003; Roberts et al., 2008; Engineer et al., 2011b), and ultimately to 

stimulus-independent perception of sound (Yang et al., 2011). However, little is known about the 

plasticity mechanisms that initiate tinnitus. Elucidation of these mechanisms will lead to the 
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development of drugs and therapies that can be applied soon after acoustic trauma, thus 

preventing tinnitus from becoming permanent and irreversible. 

1.1.5 Heterogeneous susceptibility to noise-induced tinnitus 

  Although the development of tinnitus is strongly correlated with acoustic trauma and 

noise-induced hearing loss (Liberman, 1990; Henderson and Hamernik, 1995), the absence of 

tinnitus after exposure to loud sounds -- resilience to tinnitus -- has been observed in a significant 

percentage of the population both in humans and in tinnitus animal models (Li et al., 

2013; Yankaskas, 2013). Unlike other disorders where genetic and epigenetic factors play 

essential roles in determining vulnerability (Taylor et al., 2011; Bell et al., 2014b; Denk et al., 

2014), vulnerability to noise-induced tinnitus cannot be explained by genetic factors (Kvestad et 

al., 2010), suggesting that the boundary between susceptibility and resilience to tinnitus may be 

malleable. Therefore, elucidating the molecular mechanisms underlying resilience to tinnitus 

could be vital for both developing natural ways to prevent and treat tinnitus, and understanding 

the mechanisms that differentiate pathogenic plasticity that leads to tinnitus from homeostatic 

plasticity that prevents the induction of tinnitus. 

1.1.6 Dorsal cochlear nucleus is critical for the induction of noise-induced tinnitus 

The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that receives direct 

input from the auditory nerves (Oertel and Young, 2004). It processes the complex spectral 

pattern of the acoustic signal after the filtering effect of the pinna, and determines the sound 
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localization in the vertical plane (Young et al., 1992; Imig et al., 2000). Though previous study 

revealed that DCN is not necessary for the maintenance of tinnitus (Brozoski and Bauer, 2005), 

DCN is indispensible in the induction of tinnitus: bilateral DCN lesions before noise exposure 

prevents the development of tinnitus (Brozoski et al., 2012a). This inability to induce tinnitus is 

not due to a disruption in the afferent pathway that one might expect in case of cochlear ablation. 

In one hand, DCN does not participate in determining the hearing threshold (Masterton et al., 

1994; Sutherland et al., 1998). More importantly in another, unilateral DCN lesion ipsilateral to 

the noise exposure side, in which case similar disruption on afferent pathway has been made, 

could not prevent tinnitus (Brozoski et al., 2012b). Therefore, DCN is the important link that 

enables the noise-induced peripheral trauma to trigger pathogenic plasticity in the central 

nervous system. 

1.1.7 General mechanisms underlying the induction of tinnitus and the induction of 

neuropathic pain 

 The fact that tinnitus sufferers detect sound in the absence of acoustic stimulation leads to 

the conclusion that tinnitus is a phantom perception of sound (House and Brackmann, 

1981; Berliner et al., 1992). A similar phantom perception-related neural disorder is neuropathic 

pain. Normally after damage in peripheral sensory tissue, inflammatory mediators are released 

(von Hehn et al., 2012). Those inflammatory mediators excite unmyelinated (C-) and thinly 

myelinated (Aδ-) primary afferent neurons and lead to change in neuronal activity of sensory 

fibers that are frequently accompanied by a decrease of in pain threshold as well as an increase in 

pain sensitivity (Scholz and Woolf, 2007; Basbaum et al., 2009). Those stimulus-driven pain 

sensations are reversible, serving as a protection mechanism and promoting tissue healing. 
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However, in neuropathic pain the nervous system itself is damaged and causes a decrease in pain 

threshold and an increase of pain sensitivity that does not depend on appearance of the pain-

eliciting stimulus. Perception of pain in this case is input-independent and becomes a chronic 

phantom perception -- neuropathic pain (Baron, 2000). 

Tinnitus is frequently generated following damage into the peripheral auditory system 

that leads to reduced auditory nerve inputs into the central auditory system (Liberman and Kiang, 

1978; Schaette and McAlpine, 2011). Decreased auditory nerve inputs is followed by 

hyperactivity of principle cells in the DCN, which is a consistent neural correlate for tinnitus 

(Kaltenbach and Afman, 2000; Brozoski et al., 2002a; Kaltenbach et al., 2005; Middleton and 

Tzounopoulos, 2012). Similarly, neuropathic pain is initiated by injury of the peripheral sensory 

nerve, leading to neuronal death, degeneration of nerve terminals, loss of peripheral axons, 

damage in central terminals etc. (von Hehn et al., 2012). Peripheral nerve injury further triggers 

continuous or burst firing in the primary sensory neuron in the dorsal root ganglion (DRG) 

(Costigan et al., 2009). The fact that a normally quiet sensory neuron begins to initiate action 

potential is likely to be a causative agent in the continuous pain, allodynia and hyperalgesia 

(Kajander et al., 1992; Sheen and Chung, 1993). Moreover, previous studies revealed the crucial 

role of hyperactivity of DRG neurons in triggering central sensitization and neuropathic pain in 

the early stage (within 1 week of injury) (Sun et al., 2005; Xie et al., 2007). Therefore, 

hyperactivity of DRG neurons and the hyperactivity of DCN have extreme similarity in their 

roles underlying the induction of neuropathic pain and tinnitus respectively. The connection 

between peripheral deafferentation and development of central hyperactivity also composes a 

key factor shared by tinnitus and neuropathic pain. Although the event cascade and molecular 

mechanisms are still to be explored, a compensatory mechanism seems to play a role targeting 
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for homeostasis of a firing rate-related signal (O'Leary et al., 2014). Given that DRG neurons 

generate spontaneous activity without synaptic inputs, changes in ionic conductances of the 

neurons have been explored as a crucial mechanism underlying the induction of neuropathic 

pain.  

1.1.8 Synaptic and intrinsic mechanisms underlying tinnitus-related DCN hyperactivity 

Consistent with its key role in tinnitus generation, the DCN is a site where robust 

tinnitus-related neuronal hyperactivity has been identified (Kaltenbach and Afman, 

2000; Brozoski et al., 2002a; Kaltenbach et al., 2005; Middleton and Tzounopoulos, 2012). 

Therefore, identifying the mechanisms underlying DCN hyperactivity is key to understanding the 

induction of tinnitus, and to providing important links between changes in the operation of 

cochlea and a phantom perception generated in the central nervous system.  

Firing activity of DCN principle cells, fusiform cells, is determined both intrinsically and 

synaptically. Fusiform cell displays tonic spontaneous firing activity with a firing rate between 0 

to 50 Hz (Manis, 1990; Leao et al., 2012). It integrates two sources of glutamatergic synaptic 

inputs - auditory nerve fibers and parallel fibers - and receives feed-forward glycinergic as well 

as GABAergic inhibition (Oertel and Young, 2004) . Severance of ascending (Zacharek et al., 

2002) or descending (Zhang et al., 2006) inputs did not significantly affect the magnitude of 

spontaneous firing rate in the DCN, suggesting that tinnitus-related DCN hyperactivity is a 

phenomenon either generated by a self-regulated neural network, or caused by change in intrinsic 

neuronal properties.  Although previous studies have suggested that synaptic disinhibition 

contributes to the increase in the spontaneous firing rate of principal neurons in the DCN 

(hyperactivity) (Wang et al., 2009; Middleton et al., 2011; Zeng et al., 2012), direct evidence is 
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lacking that these synaptic changes are crucial for the induction of tinnitus. Moreover, the 

principle neurons in the DCN, fusiform cells, display spontaneous firing activity that is 

independent of synaptic inputs (Leao et al., 2012). Therefore, it is possible that noise-induced 

DCN hyperactivity is caused by change in intrinsic membrane property of fusiform cells, which 

finally leads to the development of noise-induced tinnitus. 

1.1.9 Summary of dissertation research 

The goal of this dissertation is to unravel the cellular and molecular mechanisms in DCN 

fusiform cell that lead to the vulnerability and resilience to noise-induced tinnitus. We first 

improved a mouse model of noise-induced tinnitus (Turner et al., 2006b; Longenecker and 

Galazyuk, 2011), and established statistical criteria for behaviorally separating noise-exposed 

mice with tinnitus behavior (tinnitus mice) and noise-exposed mice without tinnitus behavior 

(non-tinnitus mice). With in vitro slice recording on DCN fusiform cells from sham-exposed 

(control) mice, noise-exposed tinnitus mice and noise-exposed non-tinnitus mice, we revealed a 

hyperactivity of fusiform cells that is specific to tinnitus mice and is independent of excitatory or 

inhibitory synaptic transmission. We then investigated intrinsic membrane property of DCN 

fusiform cells. We revealed that the tinnitus-specific fusiform cell hyperactivity and vulnerability 

to tinnitus is caused by a reduction in KCNQ2/3 channel activity. The lack of fusiform cell 

hyperactivity and resilience to tinnitus is mediated by recovery of KCNQ2/3 channel activity 

after an initial reduction, together with a decrease in HCN channel activity. Collectively, our 

studies reveal that noise-induced plasticity of KCNQ2/3 and HCN channels in DCN fusiform 

cells contribute to the vulnerability and resilience to tinnitus. 
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2.0  CHAPTER 1. PATHOGENIC PLASTICITY OF KV7.2/3 CHANNEL ACTIVITY IS 

ESSENTIAL FOR THE INDUCTION OF TINNITUS 

2.1 ABSTRACT 

Tinnitus, the perception of phantom sound, is often a debilitating condition that affects 

many millions of people. Little is known, however, about the molecules that participate in the 

induction of tinnitus. In brain slices containing the dorsal cochlear nucleus, we reveal a tinnitus-

specific increase in the spontaneous firing rate of principal neurons (hyperactivity). This 

hyperactivity is observed only in noise-exposed mice that develop tinnitus and only in the dorsal 

cochlear nucleus regions that are sensitive to high frequency sounds. We show that a reduction in 

Kv7.2/3 (KCNQ2/3) channel activity is essential for tinnitus induction and for the tinnitus-

specific hyperactivity. This reduction is due to a shift in the voltage dependence of KCNQ 

channel activation to more positive voltages. Our in vivo studies demonstrate that a 

pharmacological manipulation that shifts the voltage dependence of KCNQ to more negative 

voltages prevents the development of tinnitus. Together, our studies provide an important link 

between the biophysical properties of the KCNQ channel and the generation of tinnitus. 

Moreover, our findings point to previously unknown biological targets for designing therapeutic 

drugs that may prevent the development of tinnitus in humans. 
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2.2 INTRODUCTION 

Tinnitus is a common auditory disorder that is often the result of extreme sound 

exposure. An estimated 5 – 15% of the population experiences chronic tinnitus, with many 

millions of those sufferers disabled by this condition (Axelsson and Ringdahl, 1989; Roberts et 

al., 2010; Shargorodsky et al., 2010). With an even higher prevalence of chronic tinnitus in 

recent war veterans (Yankaskas, 2012), the personal and financial costs of tinnitus have 

expanded dramatically. Despite the high prevalence of tinnitus, the neuronal mechanisms that 

mediate the initiation (induction) and the maintenance (expression) of the disorder remain poorly 

understood. As a result, there is no generally accepted treatment, cure or preventive method for 

tinnitus. 

Tinnitus is usually initiated by noise-induced cochlear damage that causes hair cell loss, 

ganglion cell degeneration and reduced auditory nerve input to the central auditory system 

(Schaette and McAlpine, 2011). Decreased peripheral input leads to pathogenic neuronal 

plasticity that results in subcortical hyperexcitability, increased neural synchrony, cortical 

reorganization, and ultimately stimulus-independent perception of sound (Melcher et al., 

2000; Salvi et al., 2000; Brozoski et al., 2002b; Eggermont and Roberts, 2004; Finlayson and 

Kaltenbach, 2009; Engineer et al., 2011a; Middleton et al., 2011; Schaette and McAlpine; Yang 

et al., 2011). However, little is known about the plasticity mechanisms that initiate tinnitus. 

Elucidation of these mechanisms will lead to the development of drugs and therapies that can be 

applied soon after the acoustic trauma, thus preventing tinnitus from becoming permanent and 

irreversible. 

The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that is indispensable 

to the induction of tinnitus: ablation of the DCN prior to noise exposure prevents the induction of 
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tinnitus (Brozoski et al., 2012b). Consistent with its key role in tinnitus generation, the DCN is a 

site where robust tinnitus-related neuronal plasticity has been identified (Kaltenbach et al., 

2005).  Studies in animal models of noise-induced tinnitus have revealed that DCN principal 

neurons, fusiform cells, exhibit elevated spontaneous firing frequency (hyperactivity) that is 

correlated with the behavioral evidence of tinnitus (Brozoski et al., 2002b; Kaltenbach et al., 

2004; Middleton et al., 2011). Although previous studies have suggested that a shift in the 

excitatory/inhibitory synaptic balance contributes to the DCN hyperactivity (Wang et al., 

2009; Middleton et al., 2011; Zeng et al., 2012), direct evidence is lacking that these synaptic 

changes are crucial for the induction of tinnitus. Here, we reveal that pathogenic plasticity of 

Kv7 (KCNQ) potassium channel establishes DCN hyperactivity and triggers the development of 

tinnitus. This significant role of KCNQ channels makes them promising targets for the 

development of therapeutic approaches for preventing the induction of tinnitus.  

2.3 RESULTS 

2.3.1 Changes in the Intrinsic Properties of Fusiform Cells Mediate Tinnitus-Specific, 

DCN Hyperactivity 

To determine the cellular mechanisms underlying the induction of tinnitus, we used an 

animal model that allows us to assess whether a mouse experiences tinnitus one week after being 

exposed to a loud sound (noise exposure, see Materials and Methods 2.5.1 and Figure S 1). This 

animal model is based on the inhibition of an acoustic startle response by a silent gap that is 

embedded in a constant background sound (Turner et al., 2006a); the silent gap is placed 130 ms 
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before the startle stimulus (gap detection, Figure 1a). Control mice and mice that do not 

experience tinnitus after noise exposure (non-tinnitus mice) detect the gap and show inhibition of 

the startle response; mice with behavioral evidence of tinnitus after noise exposure (tinnitus 

mice) show reduced inhibition of the startle response, as their tinnitus fills the gap. One week 

after noise exposure, 51.4% (18/35) of noise-exposed mice showed behavioral evidence of 

tinnitus, with significantly increased gap startle ratio (startle response to gap and startle stimulus 

/ response to startle stimulus alone) revealed only by high (≥ 20 kHz), but not low frequency 

background sounds (Figure 1b, sham-exposed mice (control): n = 16, p = 0.55; tinnitus: n = 18, p 

< 0.001; non-tinnitus: n = 17, p = 0.20; Figure 1c, control: n = 16, p = 0.47; tinnitus: n = 18, p = 

0.17; non-tinnitus: n=17, p = 0.14; Figure S 2). The development of the high-frequency tinnitus 

is consistent with previous studies that have used similar noise exposure (Wang et al., 

2009; Middleton et al., 2011). Importantly, gap detection deficits of tinnitus mice are not due to 

temporal processing impairment or inability to hear the background sounds, because prepulse 

inhibition (PPI, inhibition of startle response by a preceding non-startling sound, Figure 1d) was 

identical among control, tinnitus and non-tinnitus mice (Figure 1e, control: n = 18, p = 0.72; 

tinnitus: n = 16, p = 0.61; non-tinnitus: n = 17, p = 0.32; Figure 1f, control: n = 18, p = 0.62; 

tinnitus: n = 18, p = 0.26; non-tinnitus: n = 17, p = 0.83; Figure S 3, Figure S 4, Figure S 5). The 

behavioral distinction of tinnitus from non-tinnitus mice enables us to identify the induction 

mechanisms that are tinnitus-specific and that are not general markers of noise exposure or 

hearing loss.  

Previous studies have shown that DCN fusiform cells exhibit elevated spontaneous firing 

frequency (hyperactivity) that could underlie the triggering of tinnitus (Brozoski et al., 

2002b; Kaltenbach et al., 2004). Given that spontaneous firing of fusiform cells is dependent on 
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their intrinsic ionic conductances (Leao et al., 2012), we blocked excitatory and inhibitory 

synaptic transmission to study the role of intrinsic conductances on the observed tinnitus-related 

DCN hyperactivity. Using whole-cell and cell-attached recordings in DCN slices, we recorded 

from fusiform cells in control, tinnitus and non-tinnitus mice one week after noise exposure. We 

revealed that when synaptic transmission is blocked, only fusiform cells from tinnitus mice 

showed increased spontaneous activity (Figure 1h, control: 9.7 ± 1.8 Hz, n = 14, tinnitus: 15.9 ± 

1.0 Hz, n = 16, non-tinnitus: 8.4 ± 0.9 Hz, n = 12, p = 0.0004). Moreover, this hyperactivity is 

observed only in DCN areas that represent high (~ ≥ 20 kHz, dorsal part), but not low sound 

frequencies (Parham et al., 2000) (< 20 kHz, ventral part) (Figure 1g, i, control: 10.0 ± 1.5 Hz, n 

= 17, tinnitus: 7.9 ± 1.1 Hz, n = 7, non-tinnitus: 9.5 ± 1.9 Hz, n = 8, p = 0.71). Thus, our results 

suggest that noise-induced DCN hyperactivity is tinnitus-specific and is mediated by changes in 

the intrinsic ionic conductances of fusiform cells. 
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Figure 1. Fusiform cells recorded from DCN areas representing high frequency sounds 

display increased spontaneous firing frequency in mice with tinnitus. 
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Legends for Figure 1. 

a. Top, diagram illustrating the gap detection protocol (black trace: a startle sound stimulus preceded by a constant 

background sound; yellow trace: a startle sound stimulus preceded by a constant background sound with a brief 

gap). Bottom, startle responses elicited by gap detection protocol were recorded as a downward pressing force on a 

mechanical platform. 

b, c. Summary graph of gap startle ratio (response to gap and startle stimulus / response to startle stimulus alone) for 

high- and low-frequency background sounds (high frequency background, 20 - 32 kHz, control: n = 18, tinnitus: n = 

18, non-tinnitus: n = 17; low frequency background, 10 - 16 kHz, control: n = 17, tinnitus: n = 17, non-tinnitus: n = 

15).  Open bars represent gap startle ratio before sham- or noise exposure, filled bars represent gap startle ratio one 

week later.  

d. Top, diagram illustrating the prepulse inhibition protocol (PPI); Bottom, startle responses elicited by a loud sound 

(black trace) or by a loud sound preceded by a brief non-startling sound (yellow trace).  

e, f. Summary graph of prepulse startle ratio (response to prepulse and startle stimulus / response to startle stimulus 

alone) for high- and low-frequency prepulse (high frequency prepulse, control: n = 18, tinnitus: n = 16, non-tinnitus: 

n = 17; low frequency prepulse, control: n = 17, tinnitus: n = 17, non-tinnitus: n = 15).  

g. Top, light microscopic image of a coronal section of DCN from a P25 ICR mouse. The dotted line indicates the 

boundary that was used for dividing DCN areas that respond to high (~ ≥ 20 kHz, dorsal) or low frequency sounds 

(ventral). Bottom, representative cell-attached recordings from fusiform cells in the high frequency region of the 

DCN from control (black), tinnitus (red) and non-tinnitus mice (blue).  

h, i.  Summary graph of spontaneous firing rate of fusiform cells from control, tinnitus and non-tinnitus in the 

presence of excitatory and inhibitory receptor antagonists (10 μM NBQX, 20 μM SR95531 and 0.5 μM strychnine) 

(high frequency region, control: n = 14, tinnitus: n = 16, non-tinnitus: n = 12; low frequency region, control: n = 17, 

tinnitus: n = 7, non-tinnitus: n = 8).  

Asterisk, p < 0.05. Error bars indicate SEM. 
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Figure S 1. Noise-induced increase in gap startle ratio for more than 0.3 is a criterion for 

separating tinnitus from non-tinnitus mice. 
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Legends for Figure S 1. 

a. Probability distribution of changes in gap startle ratio (response to gap and startle stimulus/response to startle 

alone) (gap ratio change) before and 1 wk after sham exposure in control mice. Changes in gap ratios represent 

changes in control mice between postnatal day (P) 17–P20 and P24–P27 (age matched to pre- and post-noise-

exposed mice). Data were fitted by a normal distribution (gray curve, μ = −0.01, δ = 0.15, n = 77). Gap ratio changes 

less than 0.3 (red arrow) represent 96.1% of the population in experiment and 97.8% in fitted distribution. 

b. Cumulative probability distribution for changes in gap ratio before and after sham- or noise exposure for control 

(black), tinnitus (red), and non-tinnitus mice (blue) (control: −0.01 ± 0.02, n = 75, tinnitus: 0.14 ± 0.02, n = 70, non-

tinnitus: −0.06 ± 0.02, n = 65, P < 0.0001). *P < 0.05.  

c. Diagram illustrating the criteria for assessing the behavioral evidence of tinnitus. 
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Figure S 2. Tinnitus behavior (gap detection deficit) is detected with high-frequency 

background sounds. 

Legends for Figure S 2. 

Summary graph of gap startle ratio (response to gap and startle stimulus/response to startle alone) for different 

frequencies of background for:  

a. Control (10 kHz, before: 0.63 ± 0.03, after: 0.67 ± 0.04, n = 13, P = 0.37; 12 kHz, before: 0.73 ± 0.02, after: 0.71 

± 0.04, n = 13, P = 0.64; 16 kHz, before: 0.66 ± 0.04, after: 0.61 ± 0.04, n = 13, P = 0.44; 20 kHz, before: 0.65 ± 

0.03, after: 0.68 ± 0.04, n = 13, P = 0.46; 24 kHz, before: 0.77 ± 0.03, after: 0.71 ± 0.04, n = 12, P = 0.19; 32 kHz, 

before: 0.69 ± 0.03, after: 0.68 ± 0.02, n = 16, P = 0.87);  

b. Tinnitus (10 kHz, before: 0.74 ± 0.03, after: 0.83 ± 0.04, n = 13, P = 0.11; 12 kHz, before: 0.79 ± 0.02, after: 0.81 
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± 0.06, n = 9, P = 0.67; 16 kHz, before: 0.73 ± 0.05, after: 0.72 ± 0.05, n = 9, P = 0.93; 20 kHz, before: 0.63 ± 0.03, 

after: 0.82 ± 0.05, n = 16, P < 0.001; 24 kHz, before: 0.68 ± 0.03, after: 0.92 ± 0.04, n = 12, P = 0.004; 32 kHz, 

before: 0.66 ± 0.04, after: 0.92 ± 0.03, n = 12, P < 0.0001);  

c. Non-tinnitus mice (10 kHz, before: 0.64 ± 0.05, after: 0.69 ± 0.05, n = 10, P = 0.37; 12 kHz, before: 0.70 ± 0.05, 

after: 0.64 ± 0.09, n = 7, P = 0.39; 16 kHz, before: 0.74 ± 0.06, after: 0.59 ± 0.05, n = 9, P = 0.06; 20 kHz, before: 

0.71 ± 0.04, after: 0.64 ± 0.05, n = 13, P = 0.16; 24 kHz, before: 0.68 ± 0.04, after: 0.63 ± 0.06, n = 13, P = 0.29; 32 

kHz, before: 0.68 ± 0.04, after: 0.60 ± 0.04, n = 15, P = 0.12).  

*P < 0.05. Error bars indicate SEM. 
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Figure S 3. PPI is not affected by noise exposure. 

Legends for Figure S 3. 

Summary graph of PPI startle ratio (response to prepulse and startle stimulus/response to startle alone) with different 

frequencies of prepulse for:  

a. Control (10 kHz, before: 0.48 ± 0.04, after: 0.52 ± 0.07, n = 15, P = 0.52; 12 kHz, before: 0.46 ± 0.06, after: 0.52 

± 0.06, n = 16, P = 0.52; 16 kHz, before: 0.47 ± 0.06, after: 0.45 ± 0.05, n = 18, P = 0.06; 20 kHz, before: 0.42 ± 

0.07, after: 0.56 ± 0.07, n = 15, P = 0.12; 24 kHz, before: 0.55 ± 0.07, after: 0.50 ± 0.07, n = 16, P = 0.61; 32 kHz, 

before: 0.52 ± 0.05, after: 0.50 ± 0.08, n = 16, P = 0.61);  

b. Tinnitus (10 kHz, before: 0.49 ± 0.05, after: 0.47 ± 0.04, n = 17, P = 0.79; 12 kHz, before: 0.53 ± 0.05, after: 0.48 

± 0.06, n = 15, P = 0.49; 16 kHz, before: 0.54 ± 0.05, after: 0.48 ± 0.07, n = 14, P = 0.51; 20 kHz, before: 0.66 ± 

0.07, after: 0.54 ± 0.07, n = 12, P = 0.28; 24 kHz, before: 0.54 ± 0.08, after: 0.49 ± 0.05, n = 11, P = 0.64; 32 kHz, 
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before: 0.58 ± 0.09, after: 0.59 ± 0.06, n = 14, P = 0.69) and;  

c. Non-tinnitus mice (10 kHz, before: 0.56 ± 0.06, after: 0.49 ± 0.03, n = 16, P = 0.31; 12 kHz, before: 0.48 ± 0.07, 

after: 0.51 ± 0.05, n = 14, P = 0.75; 16 kHz, before: 0.53 ± 0.06, after: 0.55 ± 0.06, n = 15, P = 0.84; 20 kHz, before: 

0.50 ± 0.06, after: 0.55 ± 0.06, n = 15, P = 0.50; 24 kHz, before: 0.53 ± 0.06, after: 0.53 ± 0.04, n = 15, P = 0.99; 32 

kHz, before: 0.37 ± 0.06, after: 0.48 ± 0.06, n = 17, P = 0.13).  

Error bars indicate SEM. 
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Figure S 4. ABR thresholds are equally elevated one week after noise exposure in both 

tinnitus and non-tinnitus mice. 

Legends for Figure S 4. 

Summary graph showing ABR thresholds before (opens bars) and 1 wk after noise exposure (filled bars) in:  

a. Tinnitus (click, before: 23.0 ± 3.4 dB, after: 22.0 ± 2.5 dB, n = 5, P = 0.28; 10 kHz, before: 37.0 ± 4.6 dB, after: 

40.0 ± 2.2 dB, n = 5, P = 0.41; 12 kHz, before: 29.0 ± 3.7 dB, after: 37.5 ± 2.2 dB, n = 5, P = 0.04; 16 kHz, before: 

29.0 ± 4.3 dB, after: 54.0 ± 6.4 dB, n = 5, P = 0.01; 20 kHz, before: 21.0 ± 2.9 dB, after: 49.0 ± 2.9 dB, n = 5, P < 

0.001; 24 kHz, before: 27.0 ± 3.4 dB, after: 54.0 ± 1.9 dB, n = 5, P < 0.001; 32 kHz, before: 46.0 ± 5.8 dB, after: 

48.0 ± 2.5 dB, n = 5, P = 0.73); and  

b. Non-tinnitus mice (click, before: 26.9 ± 3.5 dB, after: 24.2 ± 2.6 dB, n = 7, P = 0.2; 10 kHz, before: 40.0 ± 1.1 

dB, after: 43.6 ± 3.8 dB, n = 7, P = 1.00; 12 kHz, before: 33.6 ± 3.8 dB, after: 39.9 ± 3.9 dB, n = 7, P = 0.22; 16 
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kHz, before: 31.8 ± 2.1 dB, after 52.5 ± 5.1 dB, n = 7, P = 0.04; 20 kHz, before: 26.3 ± 4.5 dB, after: 48.1 ± 4.0 dB, 

n = 7, P = 0.005; 24 kHz, before: 25.6 ± 2.6 dB, after: 56.3 ± 2.1 dB, n = 7, P < 0.001; 32 kHz, before: 43.1 ± 3.5 

dB, after: 53.1 ± 2.8 dB, n = 18, P = 0.07).  

*P < 0.05. Error bars indicate SEM. 

 

 

 

 

Figure S 5. Acoustic startle amplitude is increased in mice between P17–P20 and P24–P27 

in an age-dependent manner, but the increase is unaffected by noise exposure. 
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Legends for Figure S 5. 

Acoustic startle amplitude before and 1 wk after sham- or noise exposure for:  

a.  Control (10 kHz, before: 0.18 ± 0.03, after: 0.26 ± 0.05, n = 11, P = 0.21; 12 kHz, before: 0.21 ± 0.03, after: 0.27 

± 0.05, n = 11, P = 0.26; 16 kHz, before: 0.15 ± 0.04, after: 0.38 ± 0.05, n = 11, P = 0.01; 20 kHz, before: 0.23 ± 

0.02, after: 0.49 ± 0.08, n = 11, P = 0.007; 24 kHz, before: 0.28 ± 0.04, after: 0.49 ± 0.06, n = 11, P = 0.01; 32 kHz, 

before: 0.30 ± 0.03, after: 0.46 ± 0.08, n = 11, P = 0.03); and  

b. Noise-exposed mice (10 kHz, before: 0.25 ± 0.02, after: 0.34 ± 0.04, n = 17, P = 0.06; 12 kHz, before: 0.25 ± 

0.02, after: 0.36 ± 0.05, n = 17, P = 0.04; 16 kHz, before: 0.24 ± 0.03, after: 0.38 ± 0.04, n = 17, P = 0.006; 20 kHz, 

before: 0.32 ± 0.03, after: 0.51 ± 0.05, n = 17, P = 0.004; 24 kHz, before: 0.34 ± 0.04, after: 0.48 ± 0.04, n = 17, P = 

0.005; 32 kHz, before: 0.30 ± 0.02, after: 0.45 ± 0.03, n = 17, P = 0.001).  

*P < 0.05. Error bars indicate SEM. 

 

 

 

 

 

 

 

 



 27 

2.3.2 Decreased KCNQ Channel Activity Causes Tinnitus-Specific, DCN Hyperactivity 

To determine the ionic conductances that are associated with the tinnitus-specific 

hyperactivity, we examined the intrinsic properties of fusiform cells. Our studies revealed that 

reduction in KCNQ (M) current -- a subthreshold, non-inactivating K+ current (Brown and 

Adams, 1980; Delmas and Brown, 2005) -- is responsible for the detected DCN hyperactivity. 

To quantify KCNQ channel activity we held fusiform cells at -30 mV for 5 seconds and then 

stepped the voltage to -50 mV for 1 sec to unmask their slow deactivation (Figure 2a). In 

agreement with previous studies, this protocol revealed a slowly deactivating current that is 

blocked by XE991 (10 μΜ), a specific KCNQ channel blocker (Figure 2a). Given the voltage-

independence of XE991 blocking on KCNQ1 (Wang et al., 2000) and similar IC50s (~ 1 μΜ) of 

KCNQ currents tested by different voltages (Wang et al., 1998; Koyama and Appel, 

2006; Cavaliere and Hodge, 2011), we use the XE991-sensitive deactivation current tested from 

-30 mV to -50 mV to represent the KCNQ currents activity. By recording from control, tinnitus 

and non-tinnitus mice, we found that XE991-sensitive KCNQ currents are specifically reduced in 

tinnitus mice (Figure 2b, control: 68.6 ± 9.6 pA, n = 7, tinnitus: 27.0 ± 3.7 pA, n = 8, non-

tinnitus: 72.4 ± 8.2 pA, n = 7, p = 0.004). Importantly, the reduction of KCNQ currents in 

tinnitus mice is observed only in fusiform cells that represent high, but not low sound 

frequencies (Figure 2c, control: 80.9 ± 12.0 pA, n = 6; tinnitus: 62.8 ± 6.2 pA, n = 6, non-

tinnitus: 73.4 ± 10.7 pA, n = 6, p = 0.45). Thus, the frequency-dependent reduction of KNCQ 

currents corresponds to the frequency-dependence of tinnitus-specific hyperactivity (Figure 2h, 

i), as well as to the frequency-dependence of tinnitus behavior (Figure 2b, c). Together, these 

results suggest that the reduction of KCNQ channel activity is associated with the tinnitus 

behavior and the tinnitus-specific DCN hyperactivity.  



 28 

Next we examined whether the decrease of KCNQ channel activity is causally linked to 

the tinnitus-specific hyperactivity. If hyperactivity of fusiform cell in tinnitus mice is caused by 

decreases in KCNQ channel activity, then the pharmacological blockade of KCNQ channel 

activity is expected to have a smaller effect on increasing the spontaneous firing activity in 

tinnitus mice compared to control mice. Moreover, we expect to observe this occluding effect in 

recordings from the high frequency, but not the low frequency region of the DCN. Indeed, in 

cell-attached recordings from high frequency DCN regions, XE991 did not affect spontaneous 

firing rates of fusiform cells in tinnitus mice, but it significantly increased spontaneous firing 

rates of fusiform cells in control mice (Figure 2d, at 15 - 20 mins after XE991 application, 

control: 184.9 ± 1.9 % of baseline, n = 6, tinnitus: 111.3 ± 1.1 % of baseline, n = 7, p < 0.05). 

Moreover, application of XE-991 equalizes the spontaneous firing rate of fusiform cells of 

control and tinnitus mice (Figure S 6), which further supports the hypothesis that a decrease in 

KCNQ channel activity is responsible for the tinnitus-specific hyperactivity. Consistent with our 

hypothesis, in recordings from low frequency DCN regions, blockade of KCNQ channels with 

XE991 revealed a similar enhancing effect on the spontaneous firing frequency of fusiform cells 

in control and tinnitus mice (Figure 2e, control: 199.8 ± 1.6 % of baseline, n = 6, tinnitus: 208.8 

± 3.0 % of baseline, n = 6, p > 0.05). The lack of effect of XE991 on fusiform cells in tinnitus 

mice is not due to a “ceiling” effect, as XE991 had a similar effect in fusiform cells with both 

low (< 12 Hz, n = 2) and high (> 12 Hz, n = 5) spontaneous firing frequency (Figure 2f, middle 

and right traces). Together, these results demonstrate that reduction of KCNQ channel activity is 

correlated, and causally linked to the DCN, tinnitus-specific hyperactivity. This previously 

unknown plasticity of KCNQ channels reveals the importance of KCNQ channels in the 

generation of the neural correlates of tinnitus. 
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Figure 2. Decreased KCNQ channel activity is responsible for tinnitus-specific DCN 

hyperactivity. 

Legends for Figure 2. 

a.  Current elicited by 1 s hyperpolarization to −50 mV from a holding potential of −30 mV before (black) and after 

XE991 (10 μM) (red). Curly bracket indicates the XE991-sensitive, slowly deactivating, KCNQ current.  
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b, c. Summary graphs showing KCNQ currents as measured by protocol in A (high-frequency region, control: n = 7, 

tinnitus: n = 8, non-tinnitus: n = 7; low-frequency region, control: n = 6, tinnitus: n = 6, non-tinnitus, n = 6).  

d, e. Summary graphs showing the time course of normalized spontaneous firing frequency of fusiform cells before 

and after XE991 in high- (control: n = 6, tinnitus: n = 7) and low-frequency DCN region (control: n = 6, tinnitus: n = 

6).  

f. Representative cell- attached recordings showing spontaneous firing of fusiform cell in high-frequency region of 

the DCN before (control: black; tinnitus: red) and after XE991 (green). All experiments were performed in the 

presence of excitatory and inhibitory receptor antagonists as in Figure 1 H and I.  

Asterisk, p < 0.05. Error bars indicate SEM. 
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Figure S 6. XE991 equalizes the spontaneous firing rate between control and tinnitus mice. 

Legends for Figure S 6. 

Summary graph of spontaneous firing rate of fusiform cells recorded from high-frequency DCN regions in control 

(black) and in tinnitus mice (red), before and after XE991 application (before XE991: control, 7.9 ± 0.9 Hz, n = 6, 

tinnitus, 16.3 ± 3.4 Hz, n = 7, P = 0.049; after XE991: control, 14.3 ± 0.6 Hz, n = 6, P < 0.001 compared with 

control before XE991; after XE991: tinnitus, 18.6 ± 3.1 Hz, n = 7, P = 0.232 compared with control after XE991). 

*P < 0.05. Error bars indicate SEM. 

 

 

 

2.3.3 Reduced KCNQ Channel Activity Enhances Subthreshold Excitability in Tinnitus 

Mice 

 Previous studies in hippocampal neurons have shown that KCNQ channel activity 

reduces neuronal excitability by modulating resting membrane potential (RMP), action potential 
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threshold, spike afterdepolarization, and subthreshold excitability (Yue and Yaari, 2004; Peters 

et al., 2005; Hu et al., 2007; Tzingounis and Nicoll, 2008). To investigate the mechanism via 

which KCNQ channels modulate fusiform cell excitability, we examined these parameters in 

control and tinnitus mice. Our results show that RMP, spike threshold and other suprathreshold 

parameters are not different either between control and tinnitus mice or in control mice before 

and after XE991 application (Figure 3a, RMP, control: n = 6, tinnitus: n = 11, p = 0.87; control: 

n = 6, XE991: n = 6, p = 0.74; Figure 3b, spike threshold, control:  n = 11, tinnitus: n = 11, p = 

0.26; control: n = 6; XE991: n = 6, p = 0.85, Table 1). However, we observed a significant 

increase in the subthreshold excitability of tinnitus mice (Figure 3c, depolarization rate from -60 

mV to spike threshold, control: 0.32 ± 0.05 V/s, n=11, tinnitus: 0.75 ± 0.16 V/s, n = 12, p = 

0.02). Moreover, application of XE991 in control mice mimics the effect of reduced KCNQ 

channel activity in tinnitus mice (Figure 3d, left): XE991 speeds up the rate of subthreshold 

depolarization and reduces the threshold current (Ithreshold) needed to elicit a spike (Figure 3d, 

Ithreshold, control: 0.13 ± 0.05 nA, n = 5, after XE991: 0.10 ± 0.04 nA, n = 5, p = 0.045). Together, 

our results suggest that the reduced KCNQ channel activity in tinnitus mice increases 

spontaneous firing rate of fusiform cells by increasing subthreshold excitability. 

2.3.4 Plasticity of KCNQ2/3 Channels Is Crucial for the Induction of Tinnitus 

The KCNQ family of K+ channels comprises five members (KCNQ1 - 5). Given that 

mutations of KCNQ2 and KCNQ3 genes cause hyperexcitable epileptic states (Jentsch, 2000), 

and the expression of these subunits in the DCN (Cooper et al., 2001; Saganich et al., 2001), we 

investigated whether KCNQ2/3 subunits mediate KCNQ currents in fusiform cells. We 

employed TEA and UCL2077, two pharmacological agents that provide differential block to 
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KCNQ currents mediated by different subunits. Compatible with the sensitivity of KCNQ2/3-

mediated currents to these blockers (Wang et al., 1998; Soh and Tzingounis, 2010), application 

of TEA blocked KCNQ currents with an IC50 of 1.8 mM (Figure 3e, n = 4 - 6 for each TEA 

concentration) and application of UCL2077 (3 μΜ) blocked KCNQ currents by 23 % (Figure 3f, 

77.3 ± 0.5 % of baseline, n = 5). Given that KCNQ5-mediated currents are potentiated by 

UCL2077 (Soh and Tzingounis, 2010; Huang and Trussell, 2011) and neither KCNQ1 nor 

KCNQ4 subunits are expressed in the DCN (Kharkovets et al., 2000; Goldman et al., 2009), our 

findings suggest that KCNQ2/3 heteromers mediate the KCNQ currents in fusiform cells. 

Together, our results suggest that it is the plasticity of KCNQ2/3 channels that leads to the 

reduction of KCNQ channel activity in tinnitus mice.  

2.3.5 Depolarizing Shift of V1/2 Causes Reduced KCNQ Channel Activity in Tinnitus Mice 

The reduction of KCNQ channel activity in tinnitus mice suggests a reduction of channel 

expression, a shift in the voltage-dependence of channel activation or both. To examine these 

possibilities, we compared maximal conductance (Gmax) and half-maximal activation voltage 

(V1/2) of KCNQ channels in control and tinnitus mice. Voltage ramps evoked an outward current 

that was partially suppressed by XE991 (Figure 3g); by subtracting the trace after application of 

XE991 from the control trace, we determined the conductance–voltage relationship for KCNQ 

currents (Figure 3h). Through fitting with a Boltzmann relationship, we revealed that Gmax in 

tinnitus mice is not reduced (Figure 3i), but the V1/2 of KCNQ currents is shifted to more 

depolarized potentials (Figure 3i, V1/2, control: -32.8 ± 1.7 mV, n = 6, tinnitus: -25.1 ± 1.7 mV, n 

= 6, p = 0.009; Gmax, control: 54.7 ± 14.2 nS, n = 6, tinnitus: 53.1 ± 12.9 nS, n = 6, p = 0.93). 

While the Boltzmann fits -- especially, for determining maximal conductance -- are limited by 
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the range of voltages over which we were able to maintain voltage clamp, our results suggest that 

a depolarizing shift in V1/2 in tinnitus mice is important for the reduction in KCNQ currents that, 

in turn, leads to tinnitus-specific hyperactivity. 
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Figure 3. Reduced KCNQ2/3 channel activity leads to increased subthreshold excitability in 

tinnitus mice; this reduction is due to a depolarizing shift of V1/2.  
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Legends for Figure 3. 

a. (Left) RMP of fusiform cells from control and tinnitus mice (control: n = 11; tinnitus: n = 11). (Right) RMP of 

fusiform cells from control mice before and after the effect of XE991 (10 μΜ) (n = 6).  

b. (Left) Spike threshold of fusiform cells from control and tinnitus mice (control: n = 11; tinnitus: n = 11). (Right) 

Spike threshold of fusiform cells from control mice before and after the effect of XE991 (n = 6).  

c. Representative traces (Left) and summary graph (Right) of rate of subthreshold depolarization (from −60 mV to 

spike threshold) during spontaneous firing of fusiform cell in control (black: n = 11) and tinnitus mice (red: n = 12).  

d. (Left) Representative traces of voltage response of fusiform cell (Lower) to injection of a current ramp (top, 0.2 

nA/s) before (black) and after the effect of XE991 (green) (only response to shadowed region of stimulus is shown). 

Arrows indicate the times of the peak of the first spike response in each case. (Right) Currents needed to evoke the 

first spike during the current ramp (Ithreshold) before (black, n = 5) and after XE991 application (green, n = 5). 

e. Representative traces (Left) and summary graph (Right) showing block of KCNQ currents by 0.1, 1, 10, and 

30mM TEA (0.1 mM: n = 5, 1 mM:  n = 6; 10 mM: n = 6; 30 mM: n = 4). The voltage protocol is the same as 

in Figure 2A.  

f. Summary graph showing the time course of UCL2077 (3 μM) effect on KCNQ currents elicited at −30 mV (n = 

5).  

g. Voltage ramp (10 mV/s) reveals an outward current that is partially blocked by XE991.  

h. Representative conductance– voltage relationship of XE991-sensitive current in control (dark gray) and tinnitus 

mice (light gray). Black and red lines represent Boltzmann fits.  

i. Summary graph for Boltzmann fit parameters V1/2 and Gmax (control: n = 6, tinnitus: n = 6). All experiments were 

performed in the presence of excitatory and inhibitory receptor antagonists as in Figure 1 H and I. 

Asterisk, p < 0.05. Error bars indicate SEM. 
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Table 1. Spike parameters of fusiform cells from high-frequency region of DCN in control 

and tinnitus mice 

 

 

Legends for Table 1. 

All recordings were performed in fusiform cells in the high-frequency region of the DCN (input resistance, control: 

n = 8, tinnitus: n = 12, P = 0.62; spike amplitude, control: n = 11, tinnitus: n = 11, P = 0.67; depolarization slope, 

control: n = 11, tinnitus: n = 11, P = 0.07; hyperpolarization slope, control: n = 11, tinnitus, n = 11, P = 0.07; half 

height width, control: n = 11, tinnitus: n = 11, P = 0.67; fAHP, control: n = 11, tinnitus: n = 11, P = 0.88). 

Depolarization slope: maximum depolarizing slope; hyperpolarization slope: minimum hyperpolarizing slope; 

fAHP: fast afterhyperpolarization. 
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2.3.6 Retigabine, a KCNQ Channel Activator, Prevents the Development of Tinnitus. 

 The critical role of the voltage-dependence of KCNQ channels on generating tinnitus-

specific hyperactivity, suggests the provocative link between the biophysical properties of 

KCNQ channels and the development of perception of phantom sound. This hypothesis predicts 

that pharmacological shift in the voltage-dependence of KCNQ channel activity to more 

hyperpolarized potentials will inhibit the development of tinnitus behavior. To test this 

hypothesis, we injected noise-exposed mice (starting 30 min after noise exposure and continuing 

injections twice a day for 5 days) with retigabine: retigabine specifically enhances KCNQ 

channel activation by causing a hyperpolarizing shift in the voltage-dependence of the channel 

activation (Tatulian et al., 2001; Xiong et al., 2008). IP injection of retigabine (as its 

dihydrochloride salt) reduced the percentage of noise-exposed mice that develop tinnitus to the 

same level as for control mice (Figure 4a, control: 11.1% (2/18, see Materials and Methods 2.5.1 

and Figure S 1), noise-exposed: 51.4% (18/35), noise-exposed + retigabine: 18.8% (3/16), noise-

exposed + saline: 43.8% (7/16)). Retigabine does not affect temporal processing or hearing, as it 

did not affect prepulse inhibition or hearing thresholds (Figure 4b, PPI, control: n = 16, noise-

exposed: n = 33, noise-exposed + retigabine: n = 16, noise-exposed + saline: n = 16, p = 

0.55; Figure 4c, ABR threshold, control: n  = 7, noise-exposed: n = 18, noise-exposed + 

retigabine: n = 7, noise-exposed + saline: n = 7, p = 0.35; Figure S 7, Figure S 8). Although IP 

injection of retigabine affects KCNQ channels throughout the brain, these results, in combination 

with our physiological studies (Figure 1, Figure 2, Figure 3) and the key role of DCN in tinnitus 

induction (Brozoski et al., 2012b), support the notion that the pathogenic plasticity of subcortical 

KCNQ channel activity is crucial for the induction of tinnitus. Importantly, these results link the 
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voltage-dependence of KCNQ channel opening with the development of the perception of 

phantom sound.  

 

 

 

 

Figure 4. Pharmacological enhancement of KCNQ channel activity prevents the 

development of tinnitus. 

Legends for Figure 4. 

All data were recorded 1 week after sham- or noise exposure.  

a. Percentage of mice that develop tinnitus (control: n = 18, noise-exposed: n = 35, noise-exposed + retigabine: n = 

16, noise-exposed + saline: n = 16).  

b, c. PPI and ABR thresholds for high-frequency testing sounds (20–32 kHz) (PPI startle ratio, control: n = 16, 

noise-exposed: n = 33, noise-exposed + retigabine: n = 16, noise-exposed + saline: n = 16; ABR thresholds, control: 

n = 7, noise-exposed: n = 18, noise-exposed + retigabine: n = 7, noise-exposed + saline: n = 7).  

Asterisk, p < 0.05. Error bars indicate SEM. 
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Figure S 7. Retigabine administration prevents the development of tinnitus. 

Legends for Figure S 7. 

a. Cumulative probability distribution for changes in gap startle ratio before and 1 wk after noise exposure (gap ratio 

change) for noise-exposed only mice (black), noise-exposed mice with retigabine injection (red), and noise-exposed 

mice with saline injection (blue) (noise-exposed: 0.04 ± 0.02, n = 135, noise-exposed + retigabine: −0.05 ± 0.02, n = 

81, noise-exposed + saline: 0.03 ± 0.03, n = 72, P = 0.002).  

b. Summary graph of gap startle ratio (response to gap and startle stimulus/response to startle alone) for different 

frequencies of background for: noise-exposed mice treated with retigabine that showed tinnitus (Upper Left, 10 kHz, 
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before: 0.78 ± 0.04, after: 0.56 ± 0.05, n = 3; 12 kHz, before: 0.67 ± 0.11, after: 0.77 ± 0.06, n = 2; 16 kHz, before: 

0.62 ± 0.14, after: 0.61 ± 0.04, n = 3, 20 kHz, before: 0.57 ± 0.10, after: 0.80 ± 0.10, n = 3; 24 kHz, before: 0.61 ± 

0.11, after: 0.66 ± 0.11, n = 3; 32 kHz, before: 0.59 ± 0.10, after: 0.80 ± 0.02, n = 3), noise-exposed mice treated 

with retigabine that did not show tinnitus (Upper Right, 10 kHz, before: 0.75 ± 0.03, after: 0.71 ± 0.04, n = 13, P = 

0.37; 12 kHz, before: 0.75 ± 0.03, after: 0.56 ± 0.04, n = 9, P < 0.001; 16 kHz, before: 0.71 ± 0.03, after: 0.61 ± 

0.05, n = 11, P = 0.03; 20 kHz, before: 0.67 ± 0.04, after: 0.60 ± 0.05, n = 10, P = 0.21; 24 kHz, before: 0.71 ± 0.03, 

after: 0.59 ± 0.04, n = 11, P = 0.02; 32 kHz, before: 0.61 ± 0.05, after: 0.63 ± 0.04, n = 11, P = 0.71), noise-exposed 

mice treated with saline that showed tinnitus (Lower Left, 10 kHz, before: 0.72 ± 0.08, after: 0.75 ± 0.07, n = 6, P = 

0.76; 12 kHz, before: 0.56 ± 0.11, after: 0.81 ± 0.04, n = 4, P = 0.08; 16 kHz, before: 0.73 ± 0.07, after: 0.77 ± 0.09, 

n = 6, P = 0.55; 20 kHz, before: 0.67 ± 0.08, after: 0.80 ± 0.07, n = 7, P = 0.13; 24 kHz, before: 0.61 ± 0.08, after: 

0.78 ± 0.04, n = 6, P = 0.04; 32 kHz, before: 0.60 ± 0.02, after: 0.87 ± 0.8, n = 6, P = 0.02) and noise-exposed mice 

treated with saline that did not show tinnitus (Lower Right, 10 kHz, before: 0.69 ± 0.05, after: 0.66 ± 0.04, n = 11, P 

= 0.52; 12 kHz, before: 0.79 ± 0.02, after: 0.68 ± 0.06, n = 8, P = 0.14; 16 kHz, before: 0.74 ± 0.04, after: 0.61 ± 

0.04, n = 11, P = 0.01; 20 kHz, before: 0.69 ± 0.04, after: 0.63 ± 0.05, n = 11, P = 0.18; 24 kHz, before: 0.78 ± 0.03, 

after: 0.64 ± 0.06, n = 11, P = 0.02; 32 kHz, before: 0.71 ± 0.04, after: 0.66 ± 0.07, n = 10, P = 0.49).  

*P < 0.05. Error bars indicate SEM. 
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Figure S 8. Retigabine administration does not affect PPI; auditory brainstem response 

(ABR) thresholds; startle reflex amplitude. 

Legends for Figure S 8. 

a. Summary graph of PPI startle ratio (response to prepulse and startle stimulus/response to startle alone) for 

different frequencies of prepulse 1 wk after noise exposure in noise- exposed only mice (black), noise-exposed mice 

with retigabine injection (red), and noise-exposed mice with saline injection (blue) (10 kHz, noise-exposed: 0.48 ± 

0.02, n = 33, noise-exposed + retigabine: 0.49 ± 0.06, n = 15, noise-exposed + saline: 0.60 ± 0.07, n = 13, P = 0.13; 

12 kHz, noise-exposed: 0.50 ± 0.04, n = 29, noise-exposed + retigabine: 0.56 ± 0.08, n = 14, noise-exposed + saline: 

0.51 ± 0.09, n = 11, P = 0.77; 16 kHz, noise-exposed: 0.52 ± 0.04, n = 29, noise-exposed + retigabine: 0.44 ± 0.05, n 

= 15, noise-exposed + saline: 0.46 ± 0.07, n = 16, P = 0.49; 20 kHz, noise-exposed: 0.55 ± 0.04, n = 27, noise-

exposed + retigabine: 0.52 ± 0.06, n = 14, noise-exposed + saline: 0.49 ± 0.06, n = 12, P = 0.70; 24 kHz, noise-

exposed: 0.52 ± 0.03, n = 26, noise-exposed + retigabine: 0.48 ± 0.05, n = 14, noise-exposed + saline: 0.52 ± 0.08, n 

= 13, P = 0.82; 32 kHz, noise-exposed: 0.54 ± 0.04, n = 30, noise-exposed + retigabine: 0.40 ± 0.06, n = 16, noise-
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exposed + saline: 0.51 ± 0.09, n = 14, P = 0.21).  

b. Summary graph showing ABR thresholds 1 wk after noise exposure for noise-exposed only mice, noise-exposed 

mice with retigabine injection and noise-exposed mice with saline injection (click, noise-exposed: 25.3 ± 1.6 dB, n = 

15, noise-exposed + retigabine: 26.4 ± 3.2 dB, n = 7, noise-exposed + saline: 25.0 ± 1.9 dB, n = 7, P = 0.9; 10 kHz, 

noise-exposed: 41.9 ± 1.5 dB, n = 18, noise-exposed + retigabine: 45.0 ± 6.1 dB, n = 7, noise- exposed + saline: 48.1 

± 6.8 dB, n = 7, P = 0.5; 12 kHz, noise-exposed: 40.0 ± 1.6 dB, n = 18, noise-exposed + retigabine: 37.9 ± 6.4 dB, n 

= 7, noise-exposed + saline: 43.1 ± 5.7 dB, n = 7, P = 0.69; 16 kHz, noise-exposed: 55.8 ± 2.4 dB, n = 18, noise-

exposed + retigabine: 55.7 ± 3.0 dB, n = 7, noise-exposed + saline: 53.1 ± 5.3 dB, n = 7, P = 0.86; 20 kHz, noise-

exposed: 48.3 ± 1.8 dB, n = 18, noise-exposed + retigabine: 45.0 ± 3.3 dB, n = 7, noise-exposed + saline: 45.0 ± 3.2 

dB, n = 7, P = 0.50; 24 kHz, noise-exposed: 58.1 ± 1.0 dB, n = 18, noise-exposed + retigabine: 56.4 ± 3.7 dB, n = 7, 

noise-exposed + saline: 52.5 ± 4.11 dB, n = 7, P = 0.26; 32 kHz, noise-exposed: 48.6 ± 1.65 dB, n = 18; noise-

exposed + retigabine: 49.3 ± 2.0 dB, n = 16, noise-exposed + saline: 43.7 ± 1.3 dB, n = 7, P = 0.17).  

c. Summary graph showing acoustic startle amplitude 1 wk after noise exposure for noise-exposed only mice, noise-

exposed mice with retigabine injection and noise- exposed mice with saline injection (noise-exposed: 0.34 ± 0.04, n 

= 17, noise-exposed + retigabine: 0.30 ± 0.06, n = 14, noise-exposed + saline: 0.26 ± 0.06, n = 14, P = 0.57; 12 kHz, 

noise-exposed: 0.36 ± 0.05, n = 17, noise-exposed +retigabine: 0.31 ± 0.05, n = 14, noise-exposed + saline: 0.30 ± 

0.04, n = 14, P = 0.53; 16 kHz, noise-exposed: 0.39 ± 0.04, n = 17, noise-exposed + retigabine: 0.36 ± 0.06, n = 14, 

noise-exposed + saline: 0.30 ± 0.04, n = 14, P = 0.39; 20 kHz, noise- exposed: 0.51 ± 0.05, n = 17, noise-exposed + 

retigabine: 0.49 ± 0.08, n = 14, noise-exposed + saline: 0.45 ± 0.06, n = 14, P = 0.75; 24 kHz, noise-exposed: 0.49 ± 

0.04, n = 18, noise-exposed + retigabine: 0.48 ± 0.08, n = 14, saline: 0.44 ± 0.05, n = 14, P = 0.81; 32 kHz, noise-

exposed: 0.45 ± 0.03, n = 17, noise-exposed + retigabine: 0.43 ± 0.07, n = 14, noise-exposed + saline: 0.40 ± 0.04, n 

= 14, P = 0.7).  

Error bars indicate SEM. 
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2.4 DISCUSSION 

2.4.1 Tinnitus is a KCNQ channelopathy. 

 KCNQ channels are slowly activating, non-inactivating potassium channels that open at 

subthreshold membrane potentials. The time- and voltage-dependent properties of KCNQ 

channels enable them to function as effective “brakes” that control excitability in neuronal, 

sensory and muscular cells (Delmas and Brown, 2005; Soldovieri et al., 2011). The importance 

of KCNQ channels is emphatically illustrated by the finding that mutations in KCNQ genes 

underlie multiple neurological diseases that are characterized by membrane hyperexcitability, 

such as epilepsy (Jentsch, 2000; Maljevic et al., 2010). Here, we report that tinnitus is a KCNQ 

channelopathy: a reduction in KCNQ2/3 channel activity leads to the DCN tinnitus-specific 

hyperactivity and initiates the development of tinnitus.  

2.4.2 Up-regulation of mAChR signaling may underlie the reduced KCNQ channel 

activity in tinnitus mice. 

KCNQ channels, often KCNQ2 and KCNQ3, mediate the native neuronal M-type 

currents (Brown and Adams, 1980; Wang et al., 1998). M currents are strongly inhibited by 

activation of muscarinic acetylcholine receptors (mAChRs) and other G-protein coupled 

receptors that reduce membrane PIP2 levels (Marrion, 1997; Suh and Hille, 2002; Zhang et al., 

2003). Given the important role of cholinergic activity in DCN synaptic plasticity (Zhao and 

Tzounopoulos, 2011) and that noise exposure increases cholinergic activity in the DCN (Jin et 
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al., 2006; Kaltenbach and Zhang, 2007), our results suggest that noise-induced up regulation of 

mAChR signaling may underlie the reduced KCNQ channel activity in tinnitus mice. 

2.4.3 KCNQ-mediated subcortical hyperactivity plays a triggering role for development 

of tinnitus. 

Given that ablation of the DCN does not eliminate tinnitus once developed (Brozoski and 

Bauer, 2005), we propose the existence of a “critical period” during which KCNQ channel 

enhancement is capable of preventing the development of tinnitus. Therefore, we suggest that 

plasticity of subcortical KCNQ2/3 channels is essential for the induction, but not the expression 

of tinnitus. Recent studies show that cortical reorganization (Eggermont and Roberts, 

2004; Engineer et al., 2011a) and aberrant thalamocortical rhythms (Llinas et al., 2005) 

(thalamocortical dysrythmia) may underlie the expression of tinnitus; thalamocortical 

dysrythmia, by promoting stimulus-independent gamma oscillations could maintain the 

conscious perception. Moreover, while it is evident that auditory system dysfunction is necessary 

for the generation of tinnitus, the maintenance of chronic tinnitus may involve pathological 

interactions between auditory and non-auditory structures, such as the limbic system 

(Rauschecker et al., 2010; Leaver et al., 2011). Thus, our findings suggest that KCNQ-mediated, 

subcortical hyperactivity may be triggering cortical reorganization and thalamocortical 

dysrythmia, which, in combination with changes in the limbic system, lead to the maintenance of 

the perception of phantom sound.  
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2.4.4 Plasticity of KCNQ biophysical properties may underlie the induction of chronic 

neuropathic pain. 

Chronic neuropathic pain is another phantom perception that is initiated by a peripheral 

trauma that results in subcortical hyperexcitability and cortical reorganization (Woolf, 

1983; Vartiainen et al., 2009). Although changes in KCNQ channels have been associated with 

chronic neuropathic pain (Passmore et al., 2003; Brown and Passmore, 2009), a detailed 

mechanistic scheme for the role of KCNQ channels in pain has yet to emerge. Given the 

similarities between tinnitus and central neuropathic pain (Tonndorf, 1987; Moller, 2007; De 

Ridder et al., 2011), our studies suggest that plasticity of KCNQ biophysical properties is a 

promising site for investigating the induction mechanisms of chronic neuropathic pain. 

2.4.5 KCNQ2/3 channel activators are promising therapeutic drugs for preventing the 

development of tinnitus. 

While our studies do not exclude other synaptic and intrinsic plasticity mechanisms that 

may contribute to the tinnitus-related changes in DCN excitability (Wang et al., 2011; Pilati et 

al., 2012; Zeng et al., 2012), our results highlight KCNQ2/3 channels as key players in the 

induction of tinnitus. KCNQ channels have been attractive targets for treating diseases associated 

with hyper-excitability (Wulff et al., 2009); retigabine, a KCNQ channel activator, has been 

recently approved as an anticonvulsant. Our findings, by illustrating the role of reduced KCNQ 

channel activity in the induction of tinnitus, suggest that KCNQ2/3 channel activators are 

promising therapeutic drugs for preventing the development of tinnitus. 
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2.4.6 Spontaneous firing rate of fusiform cell is dependent but not linearly correlated with 

KCNQ channel activity 

 Our results revealed that reduction in KCNQ channel activity happen only in fusiform 

cells from tinnitus mice, and only in cells from high frequency region of the DCN (Figure 2). 

Although KCNQ currents amplitude reduced for around 60% comparing with cells from control 

mice, the effect of XE991 on increasing the spontaneous firing rate of fusiform cells were 

completely abolished for cells from high frequency DCN region of tinnitus mice (Figure 2d). 

Our results indicate that KCNQ currents amplitude is not linearly correlated with spontaneous 

firing rate of fusiform cells. The dissociation between the KCNQ amplitude and change in 

spontaneous firing rate of fusiform cell is possibly due to the dynamical interactions of 

membrane potential with various ionic conductances, including KCNQ channels, persistent 

sodium channels, HCN channels, low threshold calcium channels, A-type potassium channels 

etc. (Kanold and Manis, 1999; Leao et al., 2012), on regulating the spontaneous firing rate of 

DCN fusiform cell. 

2.5 MATERIALS AND METHODS 

2.5.1 Mouse model of tinnitus 

Noise exposure ICR (CD-1) mice (postnatal day P17 - P20), both male and female, were 

used for this study.  For the noise-exposed group, mice were anesthetized with 3% isoflurane in 

oxygen; after stabilization, anesthesia level was maintained at 1 - 1.5%. A pipette tip was fixed 
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onto the speaker (CF-1; Tucker Davis Technologies), and was inserted into left ear canal of the 

mouse (unilateral noise exposure). Narrow bandpass noise with a 1-kHz bandwidth centered at 

16 kHz was presented at 116 dB SPL for 45 minutes. For sham-exposed (control) mice, the 

procedures were identical with the induced mice but no-noise was presented (sham exposure). 

Gap Detection Gap detection paradigm (Turner et al., 2006a; Middleton et al., 2011) was 

used for detecting behavioral evidence of tinnitus. Gap detection of sham- or noise-exposed mice 

was assessed before exposure and one week (6 to 7 days) after exposure. Mice were confined in 

custom-made housing constructed of Lego parts and a small plastic container with cardboard 

plate and placed on a load-cell platform (E45-11; Coulbourn Instruments) inside of a sound-

attenuating chamber (ENV-022SD; Med Associates). The ambient sound in the chamber was 46 

dB SPL (4 kHz – 40 kHz). All sounds were presented through a planar isodynamic tweeter 

(RT2H-A; HiVi), which was positioned in front of the animal to reduce standing wave 

resonances. Testing was done using narrow bandpass sound with a 1-kHz bandwidth centered at 

10, 12, 16, 20, 24, and 32 kHz presented at 70 dB SPL. For each trial, this background sound was 

presented randomly for 8 – 25 s. Testing sessions began with 20 startle-only trails (white noise 

burst at 104 dB SPL for 20 ms) to habituate the evoked startle response. The startle response 

represents the time course of the downward force (presented as arbitrary units, AU) that the 

mouse applies onto the platform in response to the startle stimulus. Gap detection was evaluated 

by the gap startle ratio, which is the ratio of the peak-peak value of the startle waveform in trials 

with gap over the peak-peak amplitude of the startle waveform in trials in the absence of the gap; 

startle-only trials and gap trials were presented in an alternating fashion (the gap detection trial 

was always before the startle-only trial). Gap detection trials were identical to startle-only trials 

except that a 50-ms silent gap was introduced; the startle stimulus was presented 80 ms after the 
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cessation of the silent gap. Background frequency was presented for three times in an ascending 

fashion in repeat of four trials. This allowed each frequency to be presented 12 times. For each 

frequency, 12 gap startle ratios were collected and averaged. Baseline movement (not induced by 

startle) was analyzed for the engagement level of a mouse to the startle dependent test. Only 

mice that showed the baseline under 0.1 AU were used.  

Prepulse Inhibition. Prepulse inhibition (PPI) is the inverse of gap detection. PPI was 

tested in a quiet background, and a brief non-startling sound (prepulse) -- of similar intensity 

with the background sound used in the gap detection test -- was presented before the startle 

stimulus. PPI was performed together with gap detection right before and one week after noise- 

or sham-exposure. In PPI trials, a 50-ms, 70-dB SPL bandpass sound with 1-kHz bandwidth 

centered at 10, 12, 16, 20, 24, and 32 kHz was presented 130 ms before a startle stimulus (20 ms 

at 104 dB SPL). Testing sessions began with 20 startle-only trials. PPI trials and startle only 

trials were presented in an alternating fashion (the PPI trial was always presented before the 

startle-only trial). Frequencies were presented in an ascending fashion, with each frequency 

being presented five times. Prepulse inhibition was evaluated by PPI startle ratio, which is the 

ratio of the peak-peak value of the startle waveform in trials with prepulse, over the peak-peak 

value of the startle waveform in startle only trial.  

Auditory Brainstem Response The hearing thresholds of left ear of sham- and noise-

exposed mice were measured before and one week after exposure using auditory brainstem 

response (ABR) measurements. ABR thresholds were measured immediately after gap detection 

and prepulse inhibition test. Measurements were conducted in a sound-attenuating chamber 

(ENV-022SD; Med Associates) using sub dermal electrodes placed at the vertex; the ground 

electrode was placed ventral to the right pinna, and the reference electrode was placed ventral to 
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the left pinna. Mice were anesthetized initially with 3% isoflurane in oxygen, which was then 

maintained at 1 – 1.5%. The mice were placed on top of the heating pad with rectal thermometer 

to maintain the internal temperature at 36.5 - 38.5 °C. To present the sound stimuli, a pipette tip 

was fixed to the end of a plastic tube (2.5 cm in length), which was attached to the speaker (CF-

1; Tucker Davis Technologies), and was inserted into the left ear canal. ABR thresholds were 

obtained for 1-ms clicks and 3-ms tone bursts of 10, 12, 16, 20, 24, and 32 kHz presented at a 

rate of 18.56 per second. Stimuli were produced using the System 3 software package from 

Tucker Davis Technologies. Evoked potentials were averaged 1,024 times and filtered using a 

300- to 3,000-Hz bandpass filter. 

Criteria for behavioral evidence for tinnitus The first requirement is that the mouse is 

able to detect the gap in the background sound before noise- or sham-exposure; thus, the gap 

startle ratio for a single test frequency before exposure is required to be below 0.9. To control for 

potential prepulse excitation effects, the gap startle ratio for a single frequency after exposure is 

required to be below 1.1. The frequencies that meet the above requirements are considered as 

valid frequencies and are used for further analysis. Next, we established the criterion for 

determining whether a valid frequency is a tinnitus or a non-tinnitus frequency. To establish this 

criterion we determined the variability in changes of gap detection in sham-exposed (control) 

mice; we measured the change in gap detection ratios before sham exposure and one-week after 

sham exposure. In Figure S 1we plot the probability distribution of changes in gap startle ratio, 

we fit these data with a normal distribution with mean μ = -0.01 and standard deviation δ = 0.15. 

As 2δ point on the upper tail marked a gap ratio increase of 0.3, the probability that the gap ratio 

increases more than 0.3 in a sham-exposed mouse is less than 2.2%. Based on this analysis, we 

identified a valid frequency as tinnitus frequency only if we detect an increase in gap ratio for 
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more than 0.3 for this frequency; otherwise this frequency is a non-tinnitus frequency. After 

assesing all six background frequencies in each mouse, we consider this mouse as a tinnitus 

mouse, if it shows, at least, one tinnitus frequency. Mice that had valid frequencies, but did not 

have any tinnitus frequency were considered as non-tinnitus mice. Mice that did not have any 

valid frequency were not included for further analsysis/experiments (uncertain group, 7/42 

(16.7%), see diagram below). Taking into consideration the number of valid frequencies for each 

control mouse (2 - 6), the probability of detecting a control mouse as tinnitus mouse, i.e., the 

false positive (or sponataneous, not noise-induced, tinnitus)  rate  is 9.2%, which is calculated by 

 

where pi is the probablity of having i valid frequency points in a tested mouse. This value 

matched our experimental findings, where 2 out of 18 (11.1%) control mice were considered as 

having tinnitus . Assessment for behavior evidence of tinnitus is described in the following 

diagram (Y = yes; N = No) 

2.5.2 Retigabine experiments 

ICR (CD-1) mice (P17 - P20), both male and female, were randomly assigned into two 

groups (16 mice for each group): noise-exposed treated with retigabine and noise-exposed 

treated with vehicle (0.9% saline) (referred to as retigabine group and saline group, respectively). 

All mice were first assessed for gap detection, PPI, as well as ABR threshold prior to noise 

exposure. For the retigabine group, retigabine (as its dihydrochloride salt, Santa Cruz 

Biotechnology, LKT lab) was dissolved in 0.9% saline and administered 30 minutes after noise 

exposure via intraperitoneal (IP) injection at a dose of 10 mg/kg. In the saline group, the same 

P = pi
i=2

6

∑ × (1− 0.978 i )
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dose of 0.9% saline was administered via IP injection. Both retigabine and saline were further 

administered twice a day for 5 days every 12 hrs. After the initial injection of retigabine 

dihydrochloride the mice showed slight motor impairment, tremor, and increase in appetite. 

These symptoms were diminished 2 – 3 hours later; by the third day, all of these behavior 

symptoms were not apparent after injection of retigabine.  Gap detection, prepulse inhibition and 

ABR threshold were re-tested 24 - 48 hours after the final injection, at which time retigabine 

dihydrochloride was out of the body system (Luszczki, 2009).  

2.5.3 Electrophysiology 

Slice preparation Coronal slices of left DCN (210 μm) were prepared from control- and 

noise-exposed (P24 - 27). Animals were handled and sacrificed according to methods approved 

by the Institutional Animal Care and Use Committee of the University of Pittsburgh. 

Immediately after the slices were prepared, they were incubated in normal artificial cerebral 

spinal fluid (ACSF) at 36°C for one hour, and then at room temperature. Fusiform cells were 

visualized using an Olympus upright microscope (BX51w1, 40 × optics) under oblique 

illumination condenser equipped with a XC-ST30 CCD camera and analog monitor. Cells were 

identified based on their morphological and electrophysiological characteristics. The preparation 

of slices and the identification for fusiform cells have been described in detail (Tzounopoulos et 

al., 2004a). The incubation as well as external recording solution contained (in mM): 130 NaCl, 

3 KCl, 1.2 KH2 PO4, 2.4 CaCl2.2H2O, 1.3 MgSO4, 20 NaHCO3, 3 NaHEPES, and 10 D-glucose, 

saturated with 95% O2 / 5% CO2. KH2PO4 free external solution was used for studying the 

voltage-dependent property of KCNQ currents, to prevent precipitation with bath-applied CdCl2 

(200 μM, see below). NBQX (10 μM, Abcam) or DNQX (20 μM, Abcam), strychnine (0.5 μM, 
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Sigma-Aldrich), SR95531 (20 μM, Abcam) were used to block glutamatergic, glycinergic as 

well as GABAergic synaptic transmission. XE991 (10 μM, Abcam) was applied for blocking 

KCNQ currents. Tetrodotoxin (TTX, 0.5 μM, Abcam) was used to block spiking activity. 

Tetraethylammonium chloride (TEA, Abcam) and UCL2077 (3 μM, Sigma-Aldrich) were used 

for assessing the subunit composition of KCNQ currents. When applying the voltage-clamp 

ramp protocol, external CsCl2 (1 mM) and CdCl2 (200 μM) were used to block 

hyperpolarization-activated non-selective cation channels (HCN, Ih channel) and calcium 

channels, respectively. All the drugs were dissolved in de-ionized water, except for UCL2077, 

which used DMSO as vehicle; the final DMSO concentration was less than 0.5%. Drugs were 

prepared as stock solution, diluted to the final concentration immediately before using, and 

applied through bath perfusion. Recordings were performed with temperature controlled between 

34 °C to 37 °C by an inline heating system (Warner Instruments, Hamden, CT) with perfusion 

speed maintained (4-6 ml min−1).  

Electrophysiological recordings For whole-cell voltage- and current-clamp 

experiments, pipettes (3 - 5 ΜΩ) were filled with a K-based internal solution containing (in 

mM): 113 K-gluconate, 4.5 MgCl2.6H20, 14 Tris-Phosphocreatine, 9 HEPES, 0.1 EGTA, 4 

Na2ATP, 0.3 Tris-GTP, 10 Sucrose, pH 7.3, and 300 mOsmol. Liquid junction potential of -11 

mV was corrected. Access resistance was monitored throughout the experiment from the size and 

shape of the capacitive transient in response to a 5 mV depolarization step. Recordings with 

access resistance larger than 15 MΩ were eliminated. For loose cell-attached voltage-clamp 

recording, pipettes (1.5 – 2.5 MΩ) were filled with modified external solution containing (in 

mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2.2H2O, 1 MgCl2, 25 NaHCO3, and 25 glucose. 

Seal resistance was maintained between 10 - 20 MΩ with command potential at 0 mV. Slight 
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adjustment (-5 mV to 5 mV) was given to ensure that the amplifier read 0 pA at the baseline 

potential. Spike peak-peak amplitudes smaller than 50 pA (background noise p-p amplitude is 

around 10 pA) were not included for the analysis, to eliminate potential contamination from 

nearby cells. Recordings were performed with Clampex 10.2 and Multiclamp 700B amplifier 

interfaced with Digidata 1440A data acquisition system (Axon Instruments). For whole-cell 

voltage clamp experiments, fast, slow capacitive currents as well as series resistance (Rs) were 

compensated (60 – 80%, bandwidth 15kHz). We did not perform Rs compensation for Figure 2a 

to monitor Rs throughout the experiment (more than 20% in Rs during the experiment led to the 

exclusion of the experiment; initial Rs was controlled to be between 8 - 12 MΩ for all these 

recordings). Cells with an average firing rate below than 1 Hz were not included, due to 

irregularity in firing rate. As spontaneous firing rate of fusiform cells is not affected by the 

recording mode (Leao et al., 2012), we used whole-cell or cell-attached mode to measure 

spontaneous firing rates in Figure 1h, i. All protocols, except for the gap-free recording in current 

clamp, were applied below 0.1 Hz to eliminate potential short-term plasticity effects. In voltage-

clamp step protocol for measuring KCNQ currents, tail-current amplitude was measured as the 

difference between the initial peak amplitude and averaged response for the last 200 ms. Step 

and ramp protocols (whole-cell recording) for studying KCNQ currents were applied after 

obtaining 5 minutes of stable KCNQ currents amplitude before drug application and 5 minutes of 

stable amplitude after drug application (Figure 2 and Figure 3e-i). These recordings were 

routinely terminated within 30 minutes after breaking in. For current-clamp ramp protocols, 

hyperpolarization current was first applied to maintain stable membrane potential at -76 mV 

(Figure 3c,d). Threshold current (Ithreshold) was measured as the ramp current at which peak of the 

first spike was detected (Figure 3d). For cell-attached recordings of the time course of the effect 
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of XE991 (10-20 μM) on the spontaneous firing of fusiform cell (Figure 2d-f), data was 

normalized to the mean firing rate of the 5 minutes before drug application.  Firing frequency 

was measured every 1 min by averaging the firing rate of 10 consecutive spikes. Resting 

membrane potential was measured with whole-cell current clamp (0 pA holding current) 5 

minutes after TTX (0.5 μM) application when a stable membrane potential was obtained. XE991 

was applied on top of TTX for its effect on resting membrane potential (Figure 3a). Spike 

parameters were analyzed from spontaneous firing spikes with holding current I = 0 pA (synaptic 

transmission was pharmacologically blocked). For each fusiform cell, 20 consecutive spikes with 

standard deviation of instantaneous firing rate smaller than 2 Hz were aligned at the peak and 

averaged. Spike threshold was measured in phase plane as the membrane potential at which the 

depolarization slope shows the first abrupt change (Δslope > 10 V/s, Figure 3b). Input resistance 

was measured with small current steps at subthreshold potentials. Spike amplitude is the voltage 

difference between spike threshold and peak amplitude of the spike. Depolarization and 

hyperpolarization slope indicate the maximum slope during the depolarization and minimum 

slope during hyperpolarization phase of the spike. Half height width is the width of the spike 

when voltage equals to (spike threshold + spike amplitude/2). Fast afterhyperpolarization (fAHP) 

is the voltage difference between spike threshold and spike undershoot. For Figure 3c, rate of 

depolarization = [spike threshold (mV) - (-60 mV)] / time from -60 mV to spike threshold]. In 

voltage-clamp ramp experiments, XE991-sensitive KCNQ currents elicited by slow voltage ramp 

(10V/s) were converted to conductance (G, nS) based on Ohm’s law: G = I / (V - Vr). I (pA) is 

the current amplitude at the membrane potential V (mV), and Vr is the reversal potential of 

potassium (-85.5 mV, (Leao et al., 2012)). Conductance-voltage curves were then fitted with 

Boltzmann function to describe the voltage dependence of KCNQ activation (Figure 3h, i):  
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where Gmax (nS) is the maximal conductance, Vhalf (mV) is the voltage for half-maximal 

activation and k is the slope factor (mV). To assess the concentration dependence TEA blockade, 

percentage of blocking (Y) with different concentration of TEA (x) was fitted with Hill equation 

(Figure 3e):  

 

Bmax is the maximum percentage of blocking, IC50 is the half-maximum blocking 

concentration and h is the Hill coefficient. Analysis was performed on Igor Pro Software 5.05A, 

GraphPad Prism 5 and Matlab 2011a. 

2.5.4 Statistics 

Mann-Whitney test was applied for behavioral data that didn’t pass normality test. For 

electrophysiological data, we assumed that the population distribution follows normal 

distribution and applied Student’s T-test as well as One-Way Analysis of Variance (ANOVA) 

for statistical analysis. 

G =
Gmax

1+ e−(V−Vhalf )/k

Y =
Bmaxxh

IC50
h + xh



 57 

3.0  CHAPTER 2. NOISE-INDUCED PLASTICITY OF KCNQ2/3 AND HCN CHANNELS 

UNDERLIES VULNERABILITY AND RESILIENCE TO TINNITUS 

3.1 ABSTRACT 

Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing 

rate (hyperactivity) in dorsal cochlear nucleus (DCN) principal neurons (fusiform cells). This 

hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. 

However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in 

noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our 

results show that noise exposure induces a reduction in KCNQ2/3 channel activity in DCN 

fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that 

do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in 

mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN 

(hyperpolarization-activated cyclic nucleotide-gated, non-selective cation) channel activity. Our 

results highlight KCNQ2/3 and HCN channels as potential targets for designing therapeutics that 

may promote resilience to tinnitus. 
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3.2 INTRODUCTION 

Tinnitus, the perception of sound in the absence of acoustic stimulus, is frequently caused 

by exposure to loud sounds (Shargorodsky et al., 2010) and can be detrimental to the quality of 

life for millions of tinnitus sufferers (Roberts et al., 2010; Shargorodsky et al., 2010). Although 

the development of tinnitus is strongly correlated with acoustic trauma and noise-induced 

hearing loss, the absence of tinnitus after exposure to loud sounds -- resilience to tinnitus -- has 

been observed in a significant percentage of the population both in humans and in animal models 

(Zeng et al., 2012; Li et al., 2013; Yankaskas, 2013). Unlike other hyperexcitability-related 

disorders, such as neuropathic pain and epilepsy, where genetic and epigenetic factors play 

essential roles in determining susceptibility (Taylor et al., 2011; Bell et al., 2014a; Denk et al., 

2014), the susceptibility to noise-induced tinnitus cannot be explained by genetic factors 

(Kvestad et al., 2010), suggesting that the boundary between susceptibility and resilience to 

tinnitus may be malleable. Therefore, elucidating the molecular mechanisms underlying 

resilience to tinnitus could be vital for both developing natural ways to prevent and treat tinnitus, 

and understanding the mechanisms that differentiate pathogenic plasticity that leads to tinnitus 

from homeostatic plasticity that prevents the induction of tinnitus. 

Physiological properties associated with resilience to tinnitus have been detected in the 

DCN, an auditory brainstem nucleus that is essential for the induction of tinnitus (Brozoski et al., 

2012b). Although all noise-exposed animals show similar shifts in their hearing thresholds, only 

a portion of them display DCN hyperactivity (increased spontaneous firing rate of fusiform cells) 

and develop tinnitus, termed tinnitus mice (Longenecker and Galazyuk, 2011; Koehler and 

Shore, 2013; Li et al., 2013; Longenecker et al., 2014). In tinnitus mice, KCNQ2/3 currents are 

reduced at hyperpolarized membrane potentials, due to a depolarizing shift in the voltage 
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dependence of KCNQ2/3 channel opening (Li et al., 2013). This reduction leads to DCN 

hyperactivity, which is crucial for the induction of tinnitus (Li et al., 2013). On the other hand, 

noise-induced mice that do not develop tinnitus (non-tinnitus mice) do not show fusiform cell 

hyperactivity after sound-exposure, and express normal levels of KCNQ2/3 currents (Li et al., 

2013). Nonetheless, knowledge of the biophysical mechanisms associated with resilience to 

tinnitus is still in its infancy. 

Because fusiform cell spontaneous firing is mediated by intrinsic, not synaptic, properties 

(Leao et al., 2012), we blocked excitatory and inhibitory synaptic transmission to investigate the 

intrinsic mechanisms underlying resilience to tinnitus in a mouse model of noise-induced 

tinnitus. We evaluated fusiform cell intrinsic excitability in control (sham-exposed), tinnitus and 

non-tinnitus mice. We then extended this analysis by pharmacologically and biophysically 

isolating the ion channels whose noise-induced plasticity was associated with fusiform cell 

spontaneous firing rates and tinnitus or non-tinnitus behavior. Our results highlight the 

importance of KCNQ2/3 and HCN channels in the resilience to tinnitus and illuminate 

therapeutic paths that may enhance natural resilience for tinnitus prevention. 

3.3 RESULTS 

3.3.1 Mouse model of tinnitus allows for behavioral separation of noise-exposed mice with 

either vulnerability or resilience to tinnitus 

To study the neural mechanisms underlying resilience to noise-induced tinnitus, we 

employed an animal model of tinnitus that permits behavioral separation of tinnitus from non-



 60 

tinnitus mice. According to this model, behavioral evidence of tinnitus is evaluated based on the 

inability of tinnitus mice to detect a silent sound gap in a continuous background sound, for their 

tinnitus “fills in the gap” (Turner et al., 2006b; Longenecker and Galazyuk, 2011; Li et al., 

2013). When introducing a silent gap in a constant background sound before a startle stimulus 

(gap trial), normal mice detect the gap and show reduced startle amplitude compared to their 

response to a startle stimulus preceded by the same background sound but without any gap. 

Noise-exposed mice that do not perceive the silent gap show similar startle amplitudes in gap 

and no-gap trials and are considered tinnitus mice. Noise-exposed mice that perceive the silent 

gap show reduced startle amplitudes in gap trials and are considered non-tinnitus mice. To 

evaluate the gap detection ability of sham- and noise-exposed mice, we quantified the gap startle 

ratio (before and after exposure), which is the maximum startle amplitude in gap trials divided by 

the maximum startle amplitude in no-gap trials (Figure 5B). Moreover, to evaluate the 

frequency-specificity of noise-induced tinnitus, we quantified the gap startle ratio for background 

sounds with different frequencies (Materials and Methods 3.5.1). Our results showed that one 

week after noise exposure, 52.4% (11/21) of the noise-exposed mice exhibited a significant gap 

detection deficit at high- (20 - 32 kHz) but not at low-frequency (10 - 16 kHz) background 

sounds. This deficit is indicated by an increase in gap startle ratios and is consistent with 

behavioral evidence of high-frequency tinnitus (Figure 5B middle, Figure S 9, Materials and 

Methods 3.5.1). Importantly, increases in gap startle ratios in tinnitus mice cannot be explained 

by noise-induced impairments in temporal processing or by noise-induced inability to hear the 

background sound, because prepulse inhibition (PPI, the inhibition of startle response by a 

preceding non startling sound of similar intensity as the background sound used in gap detection) 

was similar among control, tinnitus, and non-tinnitus. We conclude that our animal model 
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provides a clear separation of noise-exposed mice with and without behavioral evidence of 

tinnitus, and therefore enables us to investigate the mechanisms underlying vulnerability and 

resilience to tinnitus. 

 

 

 

 

Figure 5. Mouse model of tinnitus allows for behavioral separation of noise-exposed mice 

with either vulnerability or resilience to tinnitus 

Legends for Figure 5. 

A. Summary graphs of gap startle ratio (response to gap-trial/ response to no-gap-trial) for high- and low-frequency 

background sounds (high-frequency background, 20–32 kHz, control: n = 22, tinnitus: n = 11, non-tinnitus: n = 10; 
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low frequency background, 10–16 kHz, control: n = 22, tinnitus: n = 11, non-tinnitus: n = 10). Open bars represent 

gap startle ratio before sham- or noise exposure; filled bars represent gap startle ratio 1 week later.  

B. Summary graphs of prepulse inhibition ratio (PPI ratio, response to prepulse and startle stimulus/response to 

startle stimulus alone) for high- and low-frequency prepulse (control: n = 22, tinnitus: n = 11, non-tinnitus: n = 10).  

Asterisk, p < 0.001. Error bars indicate SEM. 
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Figure S 9. Noise-Induced increases in gap startle ratio for more than 0.28 is a criterion for 

separating tinnitus from non-tinnitus mice 

Legends for Figure S 9. 

A. Probability distribution of changes in gap startle ratio (Δ gap startle ratio) in sham-exposed (control) mice. Δ gap 

startle ratio represents changes in control mice between postnatal day P17- P20 and P24 - P27. Data were fitted by a 

normal distribution (red curve, μ = −0.02, δ = 0.15, n = 21). Δ gap startle ratios smaller than 0.28 (dotted line, which 

is the point that is 2 standard deviations above the mean and used as the threshold for evaluating tinnitus) represent 

98.6% of the experimental population and 98.5% of the fitted distribution. 
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 B. Summary graph of gap startle ratio for different frequencies of background for control mice: 10 kHz, before: 

0.69 ± 0.03, n = 13, after: 0.79 ± 0.04, n = 17, p = 0.08; 12 kHz, before: 0.65 ± 0.04, n = 8, after: 0.70 ± 0.04, n = 18, 

p = 0.47; 16 kHz, before: 0.67 ± 0.03, n = 15, after: 0.66 ± 0.03, n = 18, p = 0.67; 20 kHz, before: 0.64 ± 0.02, n = 

14, after: 0.67 ± 0.03, n = 18, p = 0.47; 24 kHz, before: 0.74 ± 0.02, n = 17, after: 0.69 ± 0.05, n = 14, p = 0.34; 32 

kHz, before: 0.71 ± 0.03, n = 19, after: 0.69 ± 0.05, n = 16, p = 0.78. 

 C. Summary graph of gap startle ratio for different frequencies of background for tinnitus mice: 10 kHz, before: 

0.65 ± 0.04, n = 8, after: 0.70 ± 0.04, n = 10, p = 0.36; 12 kHz, before: 0.61 ± 0.06, n = 5, after: 0.71 ± 0.03, n = 10, 

p = 0.10; 16 kHz, before: 0.66 ± 0.05, n = 8, after: 0.74 ± 0.06, n = 10, p = 0.30; 20 kHz, before: 0.62 ± 0.06, n = 7, 

after: 0.80 ± 0.05, n = 11, p = 0.04; 24 kHz, before: 0.68 ± 0.02, n = 7, after: 0.86 ± 0.05, n = 9, p = 0.006; 32 kHz, 

before: 0.59 ± 0.03, n = 8, after: 0.86 ± 0.03, n = 12, P < 0.0001. 

 D. Summary graph of gap startle ratio for different frequencies of background for non-tinnitus mice: 10 kHz, 

before: 0.69 ± 0.05, n = 7, after: 0.61 ± 0.07, n = 10, p = 0.40; 12 kHz, before: 0.78 ± 0.03, n = 6, after: 0.58 ± 0.06, 

n = 8, p = 0.02; 16 kHz, before: 0.71 ± 0.04, n = 6, after: 0.72 ± 0.04, n = 9, p = 0.83; 20 kHz, before: 0.73 ± 0.05, n 

= 6, after: 0.64 ± 0.06, n = 9, p = 0.32; 24 kHz, before: 0.66 ± 0.04, n = 7, after: 0.70 ± 0.07, n = 9, p = 0.67; 32 kHz, 

before: 0.71 ± 0.03, n = 7, after: 0.78 ± 0.05, n = 6, p = 0.26.  

Asterisk, p < 0.05. Double asterisk, p < 0.01. Error bars indicate SEM. 
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3.3.2 Fusiform cells from non-tinnitus mice show hyperpolarized subthreshold dynamics 

and hyperpolarized resting membrane potential  

Given the importance of fusiform cell intrinsic conductances in mediating vulnerability to 

tinnitus (Li et al., 2013), we blocked excitatory and inhibitory neurotransmission to study the 

role of its intrinsic properties in tinnitus resilience (Materials and Methods). Because pathogenic 

intrinsic plasticity underlying vulnerability to tinnitus induction matches the behavioral evidence 

for tinnitus and appears specifically in fusiform cells that represent high (∼≥20 kHz, dorsal part) 

but not low sound frequencies (<20 kHz, ventral part) (Li et al., 2013), we conducted our 

recordings on fusiform cells located in the high frequency part of the DCN (Materials and 

Methods 3.5.6)(Li et al., 2013). Fusiform cells from sham-exposed (control) and non-tinnitus 

mice showed no differences in their spike parameters (Table 2, Materials and Methods 3.5.6). 

Although fusiform cells from non-tinnitus mice showed a spontaneous firing rate that is not 

different from control mice (Materials and Methods)(Li et al., 2013), they revealed more 

hyperpolarized membrane potential in the early part of the inter-spike interval (Figure 6A, 

shaded area). To quantify this difference, we measured the membrane potential at the middle 

time point of the inter-spike interval (medium inter-spike potential, Figure 6A, dotted line). This 

analysis revealed that fusiform cells from non-tinnitus mice have significantly more 

hyperpolarized medium inter-spike potential, suggesting changes in subthreshold conductance(s) 

(Figure 6B, control: -61.1 ± 0.8 mV, n = 8; non-tinnitus: -64.9 ± 0.86 mV, n = 8; p = 0.002). 

Consistent with this notion, after blocking spontaneous firing activity with tetrodotoxin (TTX, 

0.5 μM), we found that fusiform cells from non-tinnitus mice showed more hyperpolarized 

resting membrane potential (Figure 6C, control: -64.2 ± 1.3 mV, n = 14; non-tinnitus: -67.5 ± 0.7 
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mV, n = 15, p = 0.04). Moreover, when small current steps were used to evaluate the initial and 

steady state input resistance, we observed that the initial input resistance was not different among 

control, tinnitus and non-tinnitus mice, but non-tinnitus mice displayed a significantly increased 

steady state input resistance, which is measured at a later time point during the hyperpolarizing 

or depolarizing pulses (Materials and Methods 3.5.6; Figure 6D; Figure 6E, steady state input 

resistance, control: 58.2 ± 3.6 ΜΩ, n = 8; tinnitus: 54.8 ± 4.2 ΜΩ, n = 7; non-tinnitus: 97.7 ± 

16.9 ΜΩ, n = 8; p = 0.01; Figure 6F, initial state input resistance, control: 97.9 ± 8.4 ΜΩ, n = 8; 

tinnitus: 90.1 ± 4.8 ΜΩ, n = 7; non-tinnitus: 105.7 ± 18.5 ΜΩ, n = 8; p = 0.73). Taken together, 

these results suggest that non-tinnitus mice exhibit a decrease in a slowly activating and 

deactivating depolarizing conductance (Figure 6D-F) that is open at subthreshold potentials. The 

decrease in this conductance hyperpolarizes subthreshold dynamics and reduces resting 

membrane potential (Figure 6A-C). These results highlight that although control and non-tinnitus 

mice show similar non-tinnitus behavior, non-tinnitus mice are biophysically distinct from 

control mice, and suggest the development of resilience mechanisms in non-tinnitus mice. 
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Figure 6. Fusiform cells from non-tinnitus mice show hyperpolarized subthreshold 

dynamics.   

Legends for Figure 6. 

A. Representative spontaneous spikes from control (Black) and non-tinnitus (Blue) mice with the same inter-spike 

interval (ISI) aligned at the negative peak of the spike. Shaded box highlights the region where fusiform cells from 

non-tinnitus mice display more hyperpolarized subthreshold dynamics. Dotted line indicates the middle time point 

of ISI where medium inter-spike potential is measured.  
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B. Summary graph of the medium inter-spike potential from control and non-tinnitus mice (control: n = 8; non-

tinnitus: n = 8).  

C. Summary graph of resting membrane potential of fusiform cells from control and non-tinnitus mice after 

blocking spontaneous firing with 0.5 μM TTX (control: n = 14; non-tinnitus: n = 15).  

D. Representative voltage traces of fusiform cells from control, tinnitus and non-tinnitus mice (Top) in response to 

small depolarizing and hyperpolarizing current steps (Bottom) for measuring input resistance. Shaded areas indicate 

the region for evaluating initial and steady state input resistance (Materials and Methods).  

E. Summary graph of steady state input resistance of fusiform cells from control, tinnitus and non-tinnitus mice 

(control: n = 8; tinnitus: n = 7; non-tinnitus: n = 8).  

F. Summary graph of initial state input resistance of fusiform cells from control, tinnitus and non-tinnitus mice 

(control: n = 8; tinnitus: n = 7; non-tinnitus: n = 7).  

Asterisk, p < 0.05. Error bars indicate SEM. 
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Table 2. Spike parameters of fusiform cells from high-frequency region of DCN in control 

and non-tinnitus mice 

 

Legends for Table 2. 

All recordings were performed in fusiform cells in the high-frequency region of the DCN (spike threshold, control: n 

= 8, non-tinnitus: n = 8, P = 0.16; spike amplitude: control, n = 8, non-tinnitus, n = 8, p = 0.98; depolarization slope, 

control: n = 8, tinnitus: n = 8, P = 0.97; hyperpolarization slope, control: n = 8, tinnitus, n = 8, P = 0.07; half height 

width, control: n = 8, tinnitus: n = 8, P = 0.09; fAHP, control: n = 8, tinnitus: n =8, P = 0.68). Depolarization slope: 

maximum depolarizing slope; hyperpolarization slope: minimum hyperpolarizing slope; fAHP: fast 

afterhyperpolarization. 
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Figure S 10 Fusiform cells from non-tinnitus mice show different subthreshold membrane 

dynamics comparing with cells from sham-exposed control mice.  

Legends for Figure S 10. 

A. Spike trace between negative peak of a previous spike and spike threshold of the following spike were down-

sampled from 20 kHz to 40Hz. Inter-spike interval is normalized relative to the negative peak of a previous spike 

and spike threshold of the following spike. Fusiform cells from non-tinnitus mice show significantly smaller 

depolarization slope immediately after a spike (sham-1: 0.06 ± 0.01, n = 8; non-tinnitus-1: 0.03 ± 0.005, n = 9, p = 

0.03). However, cells from non-tinnitus mice show significantly faster depolarization at end of the interspike 

interval (sham-2: 0.03 ± 0.003, non-tinnitus-2: 0.04 ± 0.004, p = 0.04; sham-3: 0.04 ± 0.004, non-tinnitus-3: 0.06 ± 

0.005, p = 0.03; sham-4: 0.07 ± 0.004, non-tinnitus-4: 0.10 ± 0.008, p = 0.04). Error bars indicate SEM. 
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3.3.3 Reduced HCN channel activity underlies hyperpolarized subthreshold dynamics 

and hyperpolarized resting membrane potential in non-tinnitus mice 

Previous studies have revealed hyperpolarization-activated cyclic nucleotide-gated 

channels (HCN channels) as important regulators of subthreshold dynamics in fusiform cells 

(Manis, 1990; Leao et al., 2012). Given the more hyperpolarized medium inter-spike potential, 

the hyperpolarized resting membrane potential and the increased steady state input resistance in 

non-tinnitus mice (Figure 6B, C, E), we hypothesized that a decrease in HCN channel activity 

may lead to the hyperpolarized subthreshold dynamics and increased steady state input resistance 

in non-tinnitus mice. 

 To test this hypothesis, we injected hyperpolarizing current (-550 pA, 2s) to activate 

HCN channels (Materials and Methods 3.5.6). HCN channel activation led to a characteristic 

rebound in the membrane voltage (voltage sag) that was sensitive to the specific HCN channel 

blocker ZD7288 (10 μM; Figure 7. A, Red: before ZD7288; Black: after ZD7288). HCN channel 

activity was evaluated by the ZD7288-sensitive sag ratio, which was calculated as the difference 

between the peak and steady state voltage normalized to the peak voltage (Sag ratio = (Vpeak - 

Vss)/Vpeak*100%, Materials and Methods 3.5.6)(Sheets et al., 2011). Consistent with our 

hypothesis, fusiform cells from non-tinnitus mice showed significantly reduced HCN channel 

activity (Figure 7B, control: 15.5 ± 2.2%, n = 8; tinnitus: 14.1 ± 1.1%, n = 6; non-tinnitus: 8.3 ± 

1.1%, n = 8, p = 0.004). To confirm whether reduction in HCN channel activity is responsible for 

the non-tinnitus-specific intrinsic properties, we evaluated the effect of ZD7288 on steady state 

input resistance, resting membrane potential and subthreshold membrane dynamics. ZD7288 

application abolished the voltage deflection in response to small current steps in fusiform cells 

from control and tinnitus mice (compare Figure 6D vs. Figure 7C), and therefore eliminated the 
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differences in steady state input resistance (Figure 7D, control: 79.2 ± 22.8 MΩ, n = 4; tinnitus: 

54.9 ± 10.9 MΩ, n = 4; non-tinnitus: 70.02 ± 15.1 MΩ, n = 3, p = 0.7). Moreover, ZD7288 

application eliminated the difference in resting membrane potential among control, tinnitus and 

non-tinnitus mice (Figure 7E, control: -67.4 ± 2.6 mV, n = 6; tinnitus: -67.4 ± 0.9 mV, n = 6; 

non-tinnitus: -65.8 ± 2.1 mV, n = 8, p = 0.6). Finally, ZD7288 application in control mice 

mimicked the hyperpolarization in the medium inter-spike potential observed in fusiform cells 

from non-tinnitus mice (Materials and Methods 3.5.6, Figure 7F, G, Before ZD7288: -63.6 ± 1.5 

mV, After ZD7288: -66.0 ± 1.2 mV, n = 8, p < 0.001). Together, our results suggest that reduced 

HCN channel activity is responsible for hyperpolarized subthreshold dynamics, hyperpolarized 

resting membrane potential and increased steady state input resistance in non-tinnitus mice. 

These results suggest that reduction in HCN channel activity is a biophysical change associated 

with resilience to tinnitus. 

 



 73 

 

Figure 7. Reduced HCN channel activity underlies hyperpolarized subthreshold dynamics 

and hyperpolarized resting membrane potential in non-tinnitus mice. 

Legends for Figure 7. 

A. Representative voltage traces (Top) of fusiform cells from control, tinnitus and non-tinnitus mice in response to a 

hyperpolarizing current step (Bottom) for measuring HCN channel activity before (Red) and after (Black) 10 μΜ 

ZD7288. HCN channel activity is measured by the calculating sag ratio ((Vpeak - Vss)/Vpeak*100 (%)) that is sensitive 
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to ZD7288 (Materials and Methods 3.5.6).  

B. Summary graph showing HCN channel activity as measured by the protocol described in A (control: n = 8; 

tinnitus: n = 6; non-tinnitus: n = 8).  

C. Representative voltage traces of fusiform cells from control, tinnitus and non-tinnitus mice in response to current 

steps for measuring input resistance as in Figure 6D but now in the presence of 10 μΜ ZD7288. D. Summary graph 

showing steady state input resistance in control, tinnitus and non-tinnitus mice in 10 μΜ ZD7288 (control, n = 4; 

tinnitus, n = 4; non-tinnitus, n = 3).  

E. Summary graph showing resting membrane potential in control, tinnitus and non-tinnitus mice in 10 μΜ ZD7288 

(control, n = 6; tinnitus, n = 6; non-tinnitus, n = 8).  

F. Representative spontaneous spikes of fusiform cells from control mice before (Red) and after ZD7288 (Black). 

Traces are aligned at the negative peak of the spike. Dotted line indicates the middle point of ISI where medium 

inter-spike potential is measured.  

G. Summary graph of medium inter-spike potential before and after ZD7288 in fusiform cells from control mice 

(Before ZD7288: n = 8; After ZD7288: n = 8).  

Asterisk, p < 0.05. Error bars indicate SEM. 
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3.3.4 Noise-induced KCNQ2/3 plasticity occurs before HCN plasticity 

 While vulnerability to tinnitus is associated with reduced KCNQ2/3 and control-level 

HCN channel activity (Figure 7B and Li et al., 2013), resilience to tinnitus is associated with 

reduced HCN channel activity and control-level KCNQ2/3 channel activity (Figure 7B and Li et 

al., 2013). Based on these observations, one hypothesis predicts that it is the lack of reduction in 

KCNQ2/3 channels activity that determines resilience to tinnitus, while another hypothesis 

points to the reduction in HCN channel activity as a major determinant of resilience. To 

distinguish between these two hypotheses and to determine the temporal hierarchy in the 

development of KCNQ2/3 and HCN plasticity after noise-exposure, we measured KCNQ2/3 

current amplitude as well as HCN channel activity in fusiform cells from noise-exposed mice 4 

days post noise exposure (4 days noise-expose mice; Figure 8A, C). To quantify KCNQ channel 

activity, we held fusiform cells at −30 mV for 5 s and then stepped the voltage to −50 mV for 1 s 

to unmask the deactivation of KCNQ channels. Consistent with previous KCNQ currents 

measurements in fusiform cells (Li et al., 2013), this protocol revealed both a fast and slow 

deactivating current and that was significantly reduced by XE991 application. Only the slow 

deactivation current was used for analysis in our study (10 μM, a specific KCNQ channel 

blocker; Figure 8A shows the slowly deactivating XE991-sensitive current, Materials and 

Methods). Because KCNQ2/3 heteromers mediate the KCNQ currents in fusiform cells, the 

XE991-sensitive component of these recordings represents the KCNQ2/3 current amplitude (Li 

et al., 2013). Four days after exposure, exposed mice showed significantly reduced KCNQ2/3 

currents (Figure 8B, 4 days sham-exposed, 73.1 ± 9.8 pA, n = 4; 4 days noise-exposed, 40.2 ± 

6.7 pA, n = 15, p = 0.004). However, HCN channel activity, measured as in Figure 7A was not 

different between 4 days sham-exposed and 4 days noise-exposed mice (Figure 8D, 4 days sham-
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exposed, 27.2 ± 2.5%, n = 4; 4 days, 24.4 ± 5.4%, n = 7, p = 0.7). Our data therefore suggest that 

the decrease in KCNQ2/3 activity happens before the reduction of HCN channel activity. 

 Four days after noise exposure, noise-exposed mice display homogeneous tinnitus-like 

biophysics: reduced KCNQ2/3 and control-level HCN channel activity. Therefore, we suggest 

that it is not the lack of reduction in KCNQ2/3 channels activity that determines resilience to 

tinnitus. Instead, we propose that it is the recovery of KCNQ2/3 currents, together with the 

reduced HCN channel activity, both occurring 4 to 7 days after noise-exposure, that contribute to 

tinnitus resilience. Mice that maintain their tinnitus-like biophysical properties, which are 

established 4 days post noise exposure, develop tinnitus by 7 days post noise exposure. 

 

 

 



 77 

 

Figure 8. Noise-induced KCNQ2/3 plasticity occurs before HCN plasticity 

Legends for Figure 8. 

A. Representative traces illustrating XE991 (10 μM)-sensitive KCNQ2/3 current (Top) in fusiform cells from 4 days 

sham-exposed and 4 days noise-exposed mice in response to a hyperpolarizing voltage step form -50 to -30 mV 

(Bottom).  

B. Summary graph showing KCNQ2/3 current amplitude in fusiform cells from 4 days sham-exposed and 4 days 

noise-exposed mice (4 days sham-exposed mice, n = 4; 4 days noise-exposed mice, n = 7).  

C. Representative traces illustrating ZD7288 (10 μM)-sensitive HCN channel activity (Top) in fusiform cells from 4 

days sham-exposed and 4 days noise-exposed mice; HCN activity was measured as in Figure 7A, B.  

D. Summary graph showing HCN channel activity in fusiform cells from 4 days sham-exposed and 4 days noise-

exposed mice (4 days sham-exposed mice, n = 4; 4 days noise-exposed mice, n = 7).  

Asterisk, p < 0.05. Error bars indicate SEM. 
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3.3.5 Pharmacological activation of KCNQ channels prevents the development of tinnitus 

and promotes a reduction in HCN channel activity 

Reduced KCNQ2/3 currents appear in all noise-induced mice 4 days post noise exposure 

(Figure 8B); however, non-tinnitus mice display control-level KCNQ2/3 currents 7 days post 

exposure, indicating that fusiform cells in non-tinnitus mice experience a recovery in KCNQ2/3 

channel activity between 4 and 7 days post noise exposure. Moreover, previous findings showed 

that in vivo pharmacological activation of KCNQ currents with retigabine (KCNQ channel 

activator) prevents the development of tinnitus (Li et al., 2013). Therefore, we propose that it is 

the recovery in KCNQ2/3 activity that drives the resilience to tinnitus. Given the determinant 

role of KCNQ channel activity in tinnitus resilience, we hypothesized that reduction in HCN 

channel activity in non-tinnitus mice may represent a homeostatic response that is driven by 

changes in KCNQ channel activity. To test these hypotheses, we first explored whether in vivo 

pharmacological activation of KCNQ currents prevents the development of tinnitus (positive 

control), and then we determined whether the same manipulation affects HCN channel activity. 

Consistent with previous results (Li et al., 2013), pharmacological activation of KCNQ channels 

with intraperitoneal injection of KCNQ channel activators, such as retigabine or flupirtine (10 

mg/kg, 30 mins after noise exposure for 5 days, Methods), prevented the development of tinnitus 

in noise-exposed mice (Figure 9A, control: 9.5% (2 of 21); noise-exposed mice: 53.4% (11 of 

21); noise-exposed mice + KCNQ activator: 25% (5 of 20); noise-exposed mice + saline: 50% (9 

of 18)). The effect KCNQ channel activators on eliminating tinnitus was not due to changes in 

temporal processing or inability of the mice to hear the background sound, for prepulse 

inhibition, unlike gap detection, was not affected by KCNQ activators (Figure 9B, noise-exposed 

mice + saline, before noise-exposure: 0.47 ± 0.03, n = 18, after noise-exposure + saline, 0.51 ± 
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0.03, n = 18, p = 0.07; noise-exposed mice + KCNQ activator, before noise-exposure: 0.56 ± 

0.03, n = 20, after noise-exposure + KCNQ activator, 0.49 ± 0.03, n = 20, p = 0.12). Moreover, 

consistent with the known role of KCNQ channel activators in enhancing KCNQ currents and 

decreasing spontaneous firing rates, in vitro recordings showed that fusiform cells from mice 

injected with retigabine exhibited significantly increased KCNQ2/3 currents, and reduced 

spontaneous firing rate (Figure 9C, KCNQ2/3 current, noise-exposed mice + saline: 47.3 ± 8.2 

pA, n = 7; noise-exposed mice + retigabine: 86.9 ± 15.2 pA, n = 8, p < 0.05; Figure 9D, 

spontaneous firing rate, noise-exposed mice + saline: 15.0 ± 1.5 Hz, n = 5; noise-exposed mice + 

retigabine: 7.5 ± 2.2 Hz, n = 7, p = 0.02).  

 After establishing that pharmacological enhancement of KCNQ channel activity is 

sufficient for preventing the development of tinnitus, we tested whether reduction in HCN 

channel activity is driven by changes in KCNQ2/3 channel activity, which we realized through 

pharmacologically activating KCNQ channels (mice injected with retigabine from Figure 9A 

were used for these recordings). In agreement with this hypothesis, fusiform cells from 

retigabine-injected mice displayed significantly reduced HCN channel activity, suggesting that 

increased KCNQ2/3 channel activity promotes a decrease in HCN channel activity. (Figure 9E, 

F, noise-exposed mice + saline: 26.1 ± 0.6%, n = 13; noise-exposed mice + retigabine: 17.9 ± 

0.5%, n = 14, p = 0.008). Taken together, our results suggest that it is the recovery in KCNQ2/3 

channel activity, between 4 to 7 days post noise exposure, that provides resilience to tinnitus and 

promotes a decrease in HCN currents in non-tinnitus mice. 
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Figure 9. Pharmacological activation of KCNQ channels prevents the development of 

tinnitus and promotes a reduction in HCN channel activity 
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Legends for Figure 9. 

A. Percentage of mice that develop tinnitus in control mice, noise-exposed mice, noise-exposed mice injected with 

KCNQ channel activator (retigabine or flupirtine, intraperitoneal injection, 10 mg/kg) and noise-exposed mice 

injected with saline (control: n = 21, noise-exposed mice: n = 21, noise-exposed mice with KCNQ activator: n = 20, 

noise-exposed mice with saline: n = 18).  

B. PPI ratio in noise-exposed mice injected with saline and noise-exposed mice injected with KCNQ activator 

injection before (Open bar) and after (Filled bar) noise-exposure (noise-exposed mice with saline: n = 18; noise-

exposed mice with KCNQ activator (retigabine): n = 20).  

C. Summary graph showing KCNQ2/3 current amplitude in noise-exposed mice with saline injection and noise-

exposed mice with KCNQ activator injection (noise-exposed mice with saline: n = 7; noise-exposed mice with 

KCNQ activator (retigabine): n = 8).  

D. Summary graph showing spontaneous firing rate in fusiform cells from noise-exposed mice injected with either 

saline or KCNQ activator (noise-exposed mice with saline: n = 5; noise-exposed mice with activator: n = 7). 

E. Representative voltage traces (Bottom) from fusiform cells in response to hyperpolarizing current step (Top) for 

measuring HCN channel activity (saline-injected, black; activator-injected, red).  

F. Summary graph showing HCN channel activity as measured by the protocol in Figure 7A. (noise-exposed mice 

with saline: n = 13; noise-exposed mice with activator: n = 14).  

Asterisk, p < 0.05. Error bars indicate SEM. 
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3.3.6 Four days after noise exposure, mice have reduced KCNQ2/3 currents but do not 

show tinnitus  

Four days post noise exposure, fusiform cells from noise-exposed mice display 

homogeneous tinnitus-like biophysical properties (reduced KCNQ2/3 and control level HCN 

activity), suggesting that these mice may have increased fusiform cell spontaneous firing activity 

and tinnitus behavior. Surprisingly, behavioral testing revealed that 4 days noise-exposed mice 

did not show behavioral evidence of tinnitus (Figure 10A, 4 days sham-exposure: tinnitus 1/19; 4 

days noise-exposure: tinnitus 2/20, p = 0.28). Moreover, fusiform cells from 4 days noise-

exposed mice did not show increased spontaneous firing activity (Figure 10B, 4 days sham-

exposed: 14.3 ± 4.7 Hz, n = 6; 4 days noise-exposed: 5.6 ± 2.3 Hz, n = 6, p = 0.13). Given that 4 

days noise-exposed mice show reduced KCNQ2/3 current but do not show either increased 

spontaneous firing rate or tinnitus behavior, our results suggest the crucial role of fusiform cell 

hyperactivity underlying the induction of tinnitus. Consistent with decreased spontaneous firing 

rate, fusiform cells in 4 days noise-exposed mice had more hyperpolarized resting membrane 

potential, suggesting plasticity of ion channel(s) other than KCNQ2/3 and HCN (Figure 10C, 4 

days sham-exposed: -64.4 ± 1.2 mV, n = 6; 4 days noise-exposed: -67.7 ± 0.8 mV, n = 14, p = 

0.04). Taken together, our data uncovered that reduction of KCNQ2/3 channel activity happens 

by 4 days after noise exposure; however, at this time no tinnitus has developed yet, probably due 

to the absence of fusiform cell hyperactivity. Preservation of reduced KCNQ2/3 channel activity 

till 7 days post exposure leads to fusiform cell hyperactivity and behavioral evidence of tinnitus. 

Recovery of KCNQ2/3 channel to control level between 4 to 7 days after noise-exposure 

determines resilience to tinnitus and drives the reduction of HCN channel activity in non-tinnitus 

mice.  
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Figure 10. Four days post noise exposure mice have reduced KCNQ2/3 current amplitude 

but do not show tinnitus. 

Legends for Figure 10. 

A. Percentage of mice that develop tinnitus in 4 days sham-exposed and 4 days noise-exposed mice (4 days sham-

exposed: n = 19; 4 days noise-exposed: n = 20). 

B. Summary graph showing spontaneous firing rate in fusiform cells from 4 days sham-exposed and 4 days noise-

exposed mice (4 days sham-exposed: n = 6; 4 days noise-exposed: n = 6).  

C. Summary graph showing resting membrane potential in 4 days sham-exposed mice and 4 days noise-exposed 

mice (4 days sham-exposed: n = 6; 4 days noise-exposed: n = 14).  

Asterisk, p < 0.05. Error bars indicate SEM. 
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3.4 DISCUSSION 

3.4.1 Plasticity of KCNQ2/3 channels and its contribution to vulnerability and resilience 

to hyperexcitability-related disorders 

KCNQ2/3 channels are slowly activating, non-inactivating voltage-dependent potassium 

channels that are open at hyperpolarized (subthreshold) voltages. As a result, they control 

subthreshold membrane potential and serve as a powerful brake on neuronal firing activity 

(Maljevic et al., 2008; Brown and Passmore, 2009). The crucial role of these channels in 

controlling neuronal excitability is illustrated by the finding that disorders that are characterized 

by neuronal hyperexcitability, such as epilepsy, neuropathic pain, and tinnitus are linked to 

genetic or experience-dependent reduction in KCNQ2/3 channel activity (Biervert et al., 

1998; Schroeder et al., 1998; Dedek et al., 2001; Kullmann, 2002; Wuttke et al., 2007; Li et al., 

2013). Pharmacological activation of KCNQ channels by retigabine, an FDA approved anti-

epileptic drug that activates KCNQ2-5 channel activity, prevents seizures, neuropathic pain and 

the development of tinnitus (Tatulian et al., 2001; Gunthorpe et al., 2012; Li et al., 2013). 

Because in vitro studies have shown that KCNQ2/3 channel activity is plastic and can be 

enhanced in response to increased neuronal activity (Wu et al., 2008; Brown and Randall, 

2009; Misonou, 2010), it is possible that endogenous, non-pharmacologically driven recovery in 

KCNQ2/3 channel activity may provide resilience to KCNQ2/3-related pathology. However, 

such KCNQ2/3-mediated resilience mechanisms have not been observed in hyperexcitability-

related disorders. Here we report that natural, non-pharmacologically driven recovery in 

KCNQ2/3 channel activity is linked with resilience to noise-induced tinnitus. This novel finding 

suggests a temporal window during which endogenous, intrinsic mechanisms can restore 
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KCNQ2/3 channel activity and lead to tinnitus resilience. Elucidation of these mechanisms will 

unmask previously unknown plasticity mechanisms of KCNQ2/3 channel activity, and lead to 

new targets for drug development towards enhancing resilience to noise-induced tinnitus in 

humans. 

Reduction of KCNQ2/3 currents is associated with increased spontaneous firing rate and 

tinnitus behavior 7 days after noise exposure (Li et al., 2013). However, at 4 days after noise 

exposure, fusiform cells showed reduced KCNQ2/3 currents (Figure 8A, B) but without 

hyperactivity (Figure 10). This lack of association between reduced KCNQ2/3 channel activity 

and neuronal hyperactivity can be explained by the hyperpolarized resting membrane potential of 

fusiform cells 4 days after noise exposure (Figure 10). Because various levels of inwardly 

rectifying potassium channels (Kir) set the diverse resting membrane potential of fusiform cells 

(Leao et al., 2012; Li et al., 2013), we suggest that noise-induced increases in Kirs may mediate 

this hyperpolarization of resting membrane potential and hence resilience to tinnitus. We 

conclude that reduction in KCNQ2/3 channel activity is a robust mechanism for triggering 

tinnitus, but its pathogenic effect is gated by the resting membrane potential of fusiform cells. 

Therefore, besides targeting KCNQ2/3 channel activators for preventing tinnitus, manipulations 

that hyperpolarize the resting membrane potential of fusiform cell may also provide additional 

therapeutic approaches.  

KCNQ2/3 channels, mediate the native neuronal M-type current (Wang et al., 1998). In 

1980, Brown and Adams discovered a slowly activating voltage-gated potassium current that 

was blocked by muscarinic acetylcholine (M) receptors, which they named the M-current 

(Brown and Adams, 1980). The M-current has now been identified throughout the central and 

the peripheral nervous system. KCNQ2/3 currents are strongly inhibited not only by the 
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activation of M receptors, but also by the activation of other G protein-coupled receptors that 

reduce membrane phosphatidylinositol-(4,5)-bisphosphate (PIP2) levels, which is the major 

determinant in KCNQ channel gating (Marrion, 1997; Zhang et al., 2003). Our previous studies 

have revealed the important role of cholinergic activity and M receptors, namely M1 and M3, in 

fusiform cell synaptic plasticity (Zhao et al., 2011). Importantly, because noise exposure 

increases basal cholinergic activity in the DCN (Jin et al., 2006; Kaltenbach and Zhang, 

2007; Manzoor et al., 2013) we propose that noise-induced increases and decreases (or recovery 

to baseline levels) in basal (tonic) M receptor signaling may underlie the bidirectional plasticity 

of KCNQ2/3 channel activity in response to noise exposure. 

3.4.2 Plasticity of HCN channels and its contribution to vulnerability and resilience to 

disorders  

HCN channels are non-inactivating cation channels that open at hyperpolarized voltages. 

Because of their voltage-dependent properties and their reversal potential at -30 mV, HCN 

channels depolarize the resting membrane potential, but also reduce membrane resistance and 

therefore stabilize the membrane voltage by opposing its alterations in response to synaptic 

inputs (Pape, 1996; Robinson and Siegelbaum, 2003; Biel et al., 2009). Therefore, changes in 

HCN channel activity affect intrinsic and synaptic excitability in opposing directions. Down 

regulation of HCN channel activity may hyperpolarize neurons and decrease intrinsic excitability 

(Lupica et al., 2001; Noam et al., 2011), but enhance synaptic excitability due to increased input 

resistance and enhanced temporal summation (Magee, 1998, 1999) This dual role of HCN 

channels on synaptic and intrinsic neuronal excitability has implicated the plasticity of HCN 

channel activity in the vulnerability and resilience to several neurological disorders characterized 
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by abnormal synaptic or intrinsic excitability, such as epilepsy, neuropathic pain, depression and 

Parkinson’s disease (Chaplan et al., 2003; Biel et al., 2009; Chan et al., 2011; Emery et al., 

2011; Shah et al., 2013; Friedman et al., 2014). Here, we show that reduction of HCN channel 

activity is associated with resilience to tinnitus and with normal levels of fusiform cell 

spontaneous firing activity (Figure 6, Figure 7). We hypothesize that reduced HCN channel 

activity in non-tinnitus mice prevents fusiform cell hyperactivity and contributes to tinnitus 

resilience by hyperpolarizing the resting membrane potential of fusiform cells (Figure 6, Figure 

7). Immunohistochemical studies have shown that the HCN2 subunit is expressed in fusiform 

cells that lack HCN1 subunit expression (Koch et al., 2004), suggesting that HCN2 isoforms may 

mediate the noise-induced plasticity in fusiform cells. Therefore, we propose that manipulations 

that reduce HCN2 channel activity may serve as a potential therapeutic path for preventing the 

development of tinnitus. Our results are consistent with an important role of HCN channels in 

tinnitus resilience; however, it is still unresolved whether the down regulation of HCN channel 

activity in DCN fusiform cells is necessary for resilience to tinnitus induction or it is a 

consequence of resilience to tinnitus. Future studies are needed to test the causal relationship 

between reduction of HCN channel activity in fusiform cells and the resilience to tinnitus.  

Decreased HCN channel activity hyperpolarized fusiform cells and maintained normal 

levels of spontaneous firing rates of fusiform cells (Figure 6, Figure 7). However, decreased 

HCN channel activity increased the steady state input resistance of fusiform cells (Figure 

6, Figure 7), which is expected to enhance the responsiveness of fusiform cells to synaptic 

inputs. Therefore, reduction of HCN channel activity in fusiform cells may contribute to 

enhanced evoked activity and potentially to noise-induced hyperacusis -- the perception of 

moderate-level sounds as intolerably loud (Anari et al., 1999). 
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Previous studies have shown that large increases in postsynaptic calcium lead to 

enhancement in HCN current amplitude via NMDA receptor (NMDAR) activation, CaMKII 

activation and increased HCN channel expression (Fan et al., 2005), while smaller increases in 

calcium through L-type calcium channels and/or activation of mGluRs and PKC activation lead 

to activity-dependent decreases in HCN expression (Brager and Johnston, 2007; Chan et al., 

2011). Pharmacological enhancement of KCNQ channels with retigabine reduces the 

spontaneous firing rate in fusiform cells (Figure 9D) and promotes a decrease in HCN current 

amplitude (Figure 9). Therefore, we propose that decreases in spontaneous firing that may be 

caused by the enhancement in KCNQ2/3 channel activity lead to changes in intracellular 

calcium, which, in turn, may trigger a homeostatic mechanism that decreases HCN currents in an 

effort to normalize spontaneous spike rates.  

3.4.3 DCN spontaneous firing rates and tinnitus induction 

Ablation of the dorsal acoustic stria (the output of the DCN) prior to noise-exposure 

prevents the induction of tinnitus (Brozoski et al., 2012b). However, when the same lesion 

occurs at a later time point after acoustic trauma, it fails to eliminate pre-existing tinnitus 

(Brozoski and Bauer, 2005). These results highlight the crucial role of the DCN in the induction 

of tinnitus and justify studying the DCN for understanding the mechanisms underlying resilience 

and vulnerability to tinnitus induction. 

One of the major neural correlates for tinnitus induction is fusiform cell hyperactivity 

(Zhang and Kaltenbach, 1998; Brozoski et al., 2002a; Li et al., 2013). While a persistent change 

in other auditory centers such as the ventral cochlear nucleus (VCN), inferior colliculus (IC), 

auditory thalamus, or auditory cortex (AC) may be crucial for tinnitus maintenance (Eggermont, 
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2005; Vogler et al., 2011; Kalappa et al., 2014; Ropp et al., 2014), transient increases in DCN 

spontaneous firing rates appear necessary for tinnitus induction (Li et al., 2013; Ropp et al., 

2014). Our results on the correlation of spontaneous firing rates of fusiform cell with behavioral 

evidence of tinnitus, which may or may not be associated with decreased KCNQ2/3 channel 

activity, further confirm that noise-induced fusiform cell hyperactivity is the only consistent 

biophysical change associated with the induction of tinnitus. 

3.5 MATERIALS AND METHODS 

3.5.1 Mouse model of tinnitus 

 ICR (CD-1) male and female mice were noise-exposed at postnatal day P17 - P20. After 

anesthetizing the mouse with 1 - 1.5% isoflurane, a pipette tip that was connected with the 

speaker was inserted into left ear canal of the mouse (unilateral noise exposure). Narrow 

bandpass noise with a 1 kHz bandwidth centered at 16 kHz was presented at 116 dB SPL for 45 

minutes. For sham-exposed (control) mice, the procedures were identical with the noise-exposed 

mice but without noise presentation. For 4 days sham- and noise exposure experiments, P20 - 

P23 (instead of P17 - P20) mice were used for sham- or noise exposure, so that 

electrophysiological recordings and behavioral assessments 4 days after noise exposure were 

performed on mice that had similar age with the mice that were used for experiments 7 days after 

sham- or noise exposure. 
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3.5.2 Gap Detection  

 The gap detection paradigm (Turner et al., 2006b; Middleton and Tzounopoulos, 2012; Li 

et al., 2013) was used for assessing behavioral evidence of tinnitus. Gap detection of sham- or 

noise-exposed mice was assessed before exposure, 4 days or one week (6 to 7 days) after sham- 

or noise exposure. Detailed testing has been described in (Li et al., 2013). Briefly, the gap 

detection testing consists of two types of trials, gap trials and no-gap trials. In gap trials, a sound 

gap was embedded in a narrow bandpass background sound (1 kHz bandwidth centered at 10, 

12, 16, 20, 24, and 32 kHz presented at 70 dB SPL), which was followed by the startle stimulus 

(20 ms white noise burst at 104 dB SPL); a 50-ms sound gap was introduced 130 ms before the 

startle stimulus. No-gap trials were the same as gap trials, but that no gap was introduced in the 

background sound. Gap trials and no-gap trials were presented as paired stimuli for the same 

background sound frequency, and were delivered in an alternating manner. The startle response 

represents the waveform of the downward pressing force that the mouse applies onto the 

platform in response to the startle stimulus. The ability of a mouse to detect sound gap was 

quantified by the gap startle ratio, which is the ratio of the peak-to-peak value of the startle 

waveform in gap trials over the peak-to-peak value of the startle waveform of the paired no-gap 

trials. 

3.5.3 Prepulse Inhibition  

 Prepulse inhibition (PPI) is the inverse of gap detection and was tested together with gap 

detection before, 4 days or one week after sham- or noise exposure. PPI testing consists of 

prepulse trials and startle-only trials, which were delivered in an alternating fashion. In prepulse 
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trials, a brief non-startling sound (prepulse) of similar intensity as the background sound used in 

the gap detection test (50-ms, 70-dB SPL bandpass sound with 1-kHz bandwidth centered at 10, 

12, 16, 20, 24, and 32 kHz). The prepulse was presented 130 ms before the startle stimulus. 

Startle-only trials were similar to the prepulse trials, but no prepulse was delivered. PPI was 

quantified by the PPI ratio, which is the ratio of the peak-to-peak value of the startle waveform in 

prepulse trials over the peak-to-peak value of the startle waveform in startle-only trials.  

3.5.4 Gap detection and PPI analysis  

 For each sham- or noise-exposed mouse, gap detection and PPI ratios were averaged 

from three rounds of testing before and after sham or noise exposure. Each round of testing 

included 72 pairs of gap and no-gap trials for gap detection (6 background sound frequencies, 12 

pairs for each frequency) and 30 pairs of prepulse and startle-only trials for PPI (6 prepulse 

sound frequencies, 5 pairs for each frequency). Gap startle and PPI ratios were analyzed 

separately. Maximum absolute amplitude of the startle response and root mean square of baseline 

movement preceding the startle response (RMS baseline) were measured with a Labview-based 

recording system. Mean and standard deviation of RMS baseline of gap, no-gap, prepulse and 

startle-only trials were measured to assess the variability of baseline movement. Trials with RMS 

baseline amplitude above or below the mean ± 2.5 standard deviations were eliminated. When a 

trial was eliminated, its paired trial was also eliminated. For gap detection trials of the same 

background frequency, gap startle ratios were sorted in an ascending manner. To control for 

variability of gap startle ratios within a frequency, ratios that showed an increase of more than 

0.5 from the preceding value were excluded; the following values were also excluded. If more 

than 5 ratios were excluded within a frequency, the gap startle ratio for this frequency was not 
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used. For background and prepulse sound of the same frequency, individual gap startle and PPI 

ratios were averaged and generated the average ratio for each frequency for each round of 

testing. Average gap startle and PPI ratios of each frequency were then averaged across the three 

rounds of pre-exposure and post-exposure testing to generate the final ratio value. According to 

previous established criteria, gap startle ratios that were bigger than 0.9 before sham or noise 

exposure, or bigger than 1.1 after exposure were excluded (Li et al., 2013). Similarly, PPI ratios 

that were bigger than 1 before or after exposure were excluded (Li et al., 2013). Changes in gap 

startle ratio before and after exposure (Δ gap startle ratio) were calculated by subtracting the 

post-exposure ratio from the pre-exposure ratio for each testing frequency. The probability 

distribution of Δ gap startle ratios from all testing frequencies of sham-exposed mice was fitted 

with a Gaussian distribution, which permitted the calculation of the mean (μ) and the standard 

deviation (δ) of the probability distribution, as described previously (Li et al., 2013). For 

evaluating the behavioral evidence of tinnitus, we calculated the point that is 2 standard 

deviations above the mean and used this value as the threshold (Li et al., 2013). Mice that 

presented Δ gap startle ratio higher than threshold value in at least one tested frequency were 

considered tinnitus mice (Li et al., 2013). To determine whether Δ gap startle ratios from 4 days 

noise-exposed mice were different from Δ gap startle ratios from 4 days sham-exposed mice, we 

tested thresholds ranging from 1 to -1 with 0.02 increments  

3.5.5 In vivo administration of KCNQ channel activators 

 For these experiments, ICR (CD-1) mice (P17 - P20), both male and female were used. 

Twenty noise-exposed mice were treated with KCNQ channel activators: 10 mice were injected 

with retigabine (as its dihydrochloride salt from Santa Cruz Biotechnology, LKT Laboratories) 
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and 10 mice were injected with flupirtine (flupirtine maleate from Selleck Chemicals), another 

KCNQ channel activator (Mackie and Byron, 2008). Moreover, 18 noise-exposed mice were 

treated with vehicle (11 mice with 0.9% saline paired with the retigabine group; and 7 mice with 

30% propylene glycol, 5% Tween 80, 65% D5W paired with the flupirtine group). Prior to noise 

exposure, all mice were assessed for gap detection and PPI. For the KCNQ channel activator 

group, retigabine or flupirtine were administered 30 minutes after noise exposure via IP injection 

(10 mg/kg). In the vehicle group, the same volume of vehicle solution was administered 30 

minutes after noise exposure via IP injection. All mice were further administered with KCNQ 

channel activator or vehicle twice a day for 5 days every 12 hrs. Gap detection and PPI were 

retested 24 - 48 hours after the final injection. Only mice from the retigabine and saline vehicle 

group were used for electrophysiological recordings. 

3.5.6 Electrophysiological recordings 

 Coronal slices of the left DCN (210 μm) were prepared from control and noise-exposed 

mice (P24 - P27). Animals were handled and sacrificed according to methods approved by the 

Institutional Animal Care and Use Committee of the University of Pittsburgh. Immediately after 

brain slices were prepared, they were incubated in normal artificial cerebral spinal fluid (ACSF) 

at 36°C for one hour, and then at room temperature. Fusiform cells were visualized using an 

Olympus upright microscope under oblique illumination condenser equipped with a XC-ST30 

CCD camera and analog monitor. Cells were identified based on their morphological and 

electrophysiological characteristics. The preparation of slices and the identification for fusiform 

cells have been described in detail previously (Tzounopoulos et al., 2004b). The incubation as 

well as external recording solution contained (in mM): 130 NaCl, 3 KCl, 1.2 KH2PO4, 2.4 
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CaCl2.2H2O, 1.3 MgSO4, 20 NaHCO3, 3 NaHEPES, and 10 D-glucose, saturated with 95% O2 / 

5% CO2. DNQX (20 μM, AMPA and Kainate receptor antagonist, Abcam), strychnine (0.5 μM, 

glycine receptor antagonist, Sigma-Aldrich), SR95531 (20 μM, GABAa receptor antagonist, 

Abcam) were used to block glutamatergic, glycinergic as well as GABAergic synaptic 

transmission, respectively. XE991 (10 μM, KCNQ channel blocker, Abcam) was applied for 

blocking KCNQ currents. Tetrodotoxin (TTX, selective inhibitor for sodium channel, 0.5 μM, 

Abcam) was used to block spiking activity. ZD7288 (10 μM, blocker for HCN channel, Abcam) 

was used to block HCN channel activity. Recordings were performed at 34 - 37 °C using an 

inline heating system (Warner Instruments, Hamden, CT) with perfusion speed maintained (4-6 

ml min−1).  

 Because fusiform cells from DCN regions that represent high, but not low, frequency 

sounds are involved in tinnitus-related biophysical changes (Li et al., 2013), we recorded from 

fusiform cells from high-frequency DCN regions (≥20 kHz, dorsal part). For whole-cell voltage 

and current clamp experiments, pipettes (3 - 5 ΜΩ) were filled with a K+-based internal solution 

containing (in mM): 113 K-gluconate, 4.5 MgCl2, 2.6 H20, 14 Tris-Phosphocreatine, 9 HEPES, 

0.1 EGTA, 4 Na2ATP, 0.3 Tris-GTP, 10 Sucrose, pH 7.3, and 300 mOsmol. Liquid junction 

potential of -11 mV was corrected. Access resistance was monitored throughout the experiment 

from the size and shape of the capacitive transient in response to a 5 mV depolarization step.  

Recordings with access resistance larger than 15 MΩ were eliminated. Recordings were 

performed with Clampex 10.2 and Multiclamp 700B amplifier interfaced with Digidata 1440A 

data acquisition system (Axon Instruments). For whole-cell voltage clamp experiments, fast, 

slow capacitive currents as well as series resistance (Rs) were compensated (70%, bandwidth 

15kHz). All recording protocols, except for the gap-free recording in current clamp, were applied 
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below 0.1 Hz to eliminate potential short-term plasticity effects. Spike parameters were analyzed 

from spontaneous firing spikes whole-cell, voltage-follower mode recordings (current clamp, at I 

= 0; synaptic transmission was pharmacologically blocked). To assess spike properties, 20 

consecutive spontaneous spikes were aligned at the negative peak and averaged. Spike threshold 

is the membrane potential at which the depolarization slope exceeds 10 V/s. Spike amplitude is 

the voltage difference between the spike threshold and the peak amplitude of the spike. 

Depolarization and hyperpolarization slope indicate the maximum positive slope during the 

depolarization and minimum negative slope during hyperpolarization phase of the spike. Half 

height width is the width of the spike when voltage equals to (spike threshold + half of spike 

amplitude). Fast afterhyperpolarization (fAHP) is the voltage difference between spike threshold 

and negative peak of the spike. Resting membrane potential (RMP) was measured with whole-

cell, voltage-follower mode recordings (current clamp, at I = 0) 5 minutes after TTX (0.5 μM) 

application. ZD7288 was applied after TTX for evaluating its effect on resting membrane 

potential. Input resistance (Rin) was measured in current clamp mode through current injection (-

60 pA to 60 pA, 20 pA step size, 2 sec). Initial state input resistance is the slope of the current - 

voltage (I - V) relationship of the average membrane voltage response of the initial 100 ms after 

current injection. Steady state input resistance was calculated similarly to the initial state input 

resistance, but the last 250 ms of the voltage response were used. To quantify KCNQ2/3 

currents, we measured the XE991-sensitive tail current amplitude in response to a voltage step to 

-50 mV from a holding potential of -30 mV, described in detail previously (Li et al., 2013). To 

measure HCN channel activity, we injected bias current to maintain the membrane potential at -

75 mV. A hyperpolarizing current step (-550 pA, 2 sec) was then used to activate HCN channels. 

The biggest membrane potential change from -75 mV (Vpeak), and the membrane potential 
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change at the end of hyperpolarizing current (Vss) were used to calculate the sag ratio: Sag ratio 

= (Vpeak-Vss)/Vpeak×100%. Sag ratio before and after ZD7288 (15 min application) was 

subtracted and generated the ZD7288-sensitive sag ratio. 

3.5.7 Statistics 

 For data that were normally distributed (based on Liliefors test), we conducted Student’s 

t-test or One-Way Analysis of Variance (ANOVA). Post-hoc analysis for one-way ANOVA was 

performed with Tukey's least significant test. For non-normally distributed data, we performed 

non-parametric Wilcoxon ran sum test or Kruskal-Wallis test. F-test was applied for comparing 

the variance of KCNQ currents amplitudes between 4 days sham-exposed mice and 4 days noise-

exposed mice. Binomial test was used for comparing percentages of tinnitus mice in response to 

different experimental manipulations. 
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4.0  GENERAL DISCUSSION 

4.1.1 Potential mechanisms underlying the heterogeneous development of noise-induced 

tinnitus  

Four days after noise exposure, fusiform cells from all noise-exposed mice show reduced 

KCNQ2/3 channel activity. Recovery of KCNQ2/3 current that happens between 4 to 7 days 

after exposure in a fraction of mice prevents the generation of fusiform cell hyperactivity, and 

gives rise to non-tinnitus behavior. To further understand the mechanism underlying resilience to 

tinnitus, it is key to understand what leads to the recovery of KCNQ2/3 current, and what 

differentiates the mice in which KCNQ2/3 current recover from ones that do not. 

KCNQ2/3 channels mediate the native neuronal M-type potassium currents (M currents), 

which are strongly inhibited by activation of muscarinic acetylcholine receptors (mAChRs) 

(Brown and Adams, 1980; Wang et al., 1998). One of the major neuromodulatory inputs that 

DCN neurons receive is the cholinergic input (Mellott et al., 2011). Previous experiments 

revealed that cholinergic input influences the spontaneous firing of fusiform cells and is 

mediated predominantly by muscarinic receptors (Chen et al., 1994, 1998). Therefore, it is 

possible that variability of cholinergic innervation in DCN contributes to the differential 

recovery of KCNQ2/3 channel activity 4 to 7 days after noise exposure. The DCN receives 

cholinergic projections from medial olivo-cochlear neurons and midbrain pontomesencephalic 



 98 

tegmentum (PMT) (Mellott et al., 2011; Schofield et al., 2011), which target granule cells 

(Godfrey et al., 1990; Brown, 1993; Manzoor et al., 2013), cartwheels cells (He et al., 2014b) 

and fusiform cells (Chen et al., 1998; Zhao and Tzounopoulos, 2011).  Therefore, influence of 

cholinergic modulation on the intrinsic plasticity of fusiform cells may happen at cholinergic-

fusiform cell terminals (Chang et al., 2002) through muscarinic acetylcholine receptors (Jin and 

Godfrey, 2006). Alternatively, it may exert indirectly through cholinergic modulation on granule 

cells and/or cartwheel cells (He et al., 2014b).  

 Previous research has shown the existence of homeostasis -- a biological 'setpoint' of 

activity that neurons and networks return to after perturbations (LeMasson et al., 1993; Liu et al., 

1998; Turrigiano, 2007). Therefore, recovery of KCNQ2/3 channel after initial reduction may 

result from compensatory changes of sub-cellular signaling molecules that maintain the 

previously established homeostatic 'setpoint' (Delmas and Brown, 2005; Brown and Passmore, 

2009). The persistence of reduced KCNQ2/3 channel activity that leads to tinnitus may represent 

the establishment of a new homeostatic point. It has been shown that ability of a neuron to retain 

its original homeostatic setpoint after perturbation is influenced by the biophysical profile of the 

neuron, the synaptic inputs that it receives, the current network connectivity, and the type and 

strength of the perturbation (O'Leary et al., 2014). Accordingly, a detailed investigation of ion 

channel expression profiles, transcriptional/translational molecules that modulate expression of 

ion channels, synaptic and neural network activity, as well as the impact of noise-exposure in 

these parameters is needed for understanding the differentiating factors leading to KCNQ2/3 

recovery in only a portion of the mice.  

Induction and development of tinnitus could also be influenced by the psychological and 

emotional state of the subjects, especially stress level (Mazurek et al., 2012). Stress excites 
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neuroendocrine pathways, among which the hypothalamus-pituitary-adrenal axis (HPA axis) 

influences both the function of auditory system and neural plasticity. Mineralcorticoid and 

glucocorticoid receptors have been identified in rat cochlea (Zachos et al., 1995; Yao and Rarey, 

1996). Hyperactivity of mineralcorticoid receptors has been shown influencing the potassium-

sodium balance of the inner ear and affects the development of tinnitus in Ménière's disease 

(Mazurek et al., 2012). Given that otologists and audiologists frequently observe tinnitus patients 

complain of psycho-social distress before or during the onset of tinnitus, it is possible that stress-

related factors and variability of HPA axis also contribute to heterogeneous development of 

noise-induced tinnitus. 

4.1.2 A latent period exists before the development of noise-induced tinnitus 

 Previous in vivo longitudinal studies revealed that the onset of noise-induced DCN 

hyperactivity is not immediate. Instead, it develops 2 to 5 days after noise exposure (Kaltenbach 

et al., 2000). By showing that 4 days post noise-exposed mice display no fusiform cell 

hyperactivity (Figure 10), our result confirmed previous findings. Importantly, our data also 

revealed the lack of tinnitus behavior in 4 days noise-exposed mice, indicating a delayed onset of 

tinnitus after noise exposure. Similarly, delayed onsets have also been observed in kainite model 

of seizures as well as in animal model of neuropathic pain, implying that a latent period is 

needed for the initial damage to trigger pathogenic plasticity at physiological and behavioral 

level (Shah et al., 2004; Xie et al., 2005). Increased firing rate in the primary auditory cortex 

(A1) has been detected several hours post noise exposure (Norena and Eggermont, 2003). The 

fact that fusiform cell hyperactivity happens after the hyperactivity of cortical neurons indicates 

that cortical modulation from top-down projection neurons, e.g. layer 5B neurons, may 
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contribute to the pathogenic plasticity in the brainstem (Eggermont and Roberts, 

2004; Eggermont, 2005).  

4.1.3 Potential modulators contributing to the noise-induced plasticity of KCNQ channel 

Reduction of KCNQ2/3 currents 7 days after noise exposure leads to hyperactivity of 

DCN fusiform cell and the development of tinnitus (Figure 2b). To understand the mechanism 

behind this, it is important to look into the determinants of KCNQ2/3 channel conductance, as 

well as how it has changed in other hyperactivity-related neuronal disorders. Members of the 

KCNQ channel family are composed of six trans-membrane segments, with a voltage sensing 

domain (S1 - S4) and a pore domain (S5 - S6) (Haitin and Attali, 2008). Uniquely, subunits of 

KCNQ channels contain a large carboxy terminal tail (C terminus), which is important for 

binding modulatory molecules and influencing the channel gating, trafficking and expression 

(Maljevic et al., 2003; Shamgar et al., 2006; Haitin and Attali, 2008). Benign familial neonatal 

convulsion (BFNC) in humans has been associated with mutations in the pore and voltage 

sensing regions of the KCNQ2 and KCNQ3 channel as well as the C terminus of KCNQ2 that 

leads to a reduction in K+ current (Schwake et al., 2000; Schwake et al., 2003; Singh et al., 

2003; Richards et al., 2004; Schwake et al., 2006). Therefore, a direct change at the voltage 

sensing/gating domain and a modulatory effect through the C terminus are possible paths that 

lead to the reduction of KCNQ2/3 channel activity in tinnitus. 

In KCNQ channels, tetrametic assembly of KCNQ subunits gives rise to four voltage-

sensing domains (VSD) and one central pore-gate domain (PGD) (Zaydman and Cui, 2014). 

Through VSD-PGD coupling, VSD activation promotes PGD opening and yields a voltage-

dependent conductance (Seoh et al., 1996). Previous studies have shown that all five members of 
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KCNQ channel family require membrane expression of phosphatidylinositol 4,5-bisphosphate 

(PIP2) to conduct KCNQ currents (Gamper and Shapiro, 2003; Delmas and Brown, 2005). 

Reduction of PIP2 expression in the membrane effectively reduced the KCNQ currents 

(Zaydman and Cui, 2014). Availability of PIP2 on the membrane influence neither the number of 

KCNQ channel expressed (Zaydman et al., 2012), nor the single channel conductance (Li et al., 

2005). Therefore, it is plausible that reduced membrane PIP2 level inhibit KCNQ channel 

activity in tinnitus animal through interfering with the voltage dependent gating (Zaydman and 

Cui, 2014).  

Calmodulin (CaM) is a ubiquitous intracellular Ca2+ binding protein (Hoeflich and Ikura, 

2002). Changes in intracellular Ca2+ levels, which is frequently a result of changes in neuronal 

activity, influences the CaM biniding on voltage-gated ion channels (Hoeflich and Ikura, 2002). 

Mutations in the C terminus of KCNQ2 that yield weaker CaM binding cause reduction in 

KCNQ currents (Wen and Levitan, 2002; Richards et al., 2004), suggesting that functional 

expression of KCNQ2/3 channel requires constitutive interaction with CaM. Rise in the 

intracellular Ca2+ level, by forming CaM/Ca2+, also suppresses KCNQ2/3 channel activity in 

heterologous system and in sympathetic neurons (Gamper et al., 2005; Zaika et al., 2007). 

Therefore, it is possible that change in Ca2+ signaling and/or CaM binding may lead to the 

changes in the KCNQ2/3 channels in fusiform cells. Besides being modulated by CaM, KCNQ 

channel also display phosphorylation-dependent regulation. Increase of protein kinase C (PKC) 

in Xenopus oocytes facilitates KCNQ channel activity by leftward shifting of the KCNQ channel 

in a subunit specific manner (Nakajo and Kubo, 2005). Src tyrosine kinase also diminished the 

probability of the opening of KCNQ2/3 channels in heterologous cells, and decreased KCNQ2/3 

currents amplitude in sympathetic neurons (Gamper et al., 2003). Therefore, plasticity of the 
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KCNQ channel in noise-induced tinnitus may be a synergistic effect of multiple signaling 

molecules. 

4.1.4 Potential modulators contributing to the noise-induced plasticity of HCN channel 

Seven days after noise exposure, mice without behavioral evidence of tinnitus show 

reduced HCN channel activity in DCN fusiform cells (Figure 7B). The reduction in HCN 

channel activity happens after 4 days post noise exposure and could be triggered by the increase 

in KCNQ channel activity (Figure 9). Therefore, signaling molecules that potentially influence 

KCNQ channel activity are important candidates leading to plasticity of HCN channel in DCN 

fusiform cell.  

Various intracellular molecules regulate HCN channel gating, kinetics and membrane 

expression, including small molecules (cAMP, PIP2, protons), protein kinases (SrC, p38-MAPK, 

PKC, cGKII, CaMKII) and associated proteins (Wahl-Schott and Biel, 2009; Lewis et al., 2010). 

Cyclic adenosine monophosphate (cAMP) positively shifts the voltage dependent property of the 

HCN channel and facilitates channel activation in a subunit specific manner (Chen et al., 2001). 

Similar to KCNQ channels, HCN channels are also subjective to modulation of membrane PIP2. 

PIP2 facilitates activation of HCN channels by shifting the voltage dependence of HCN channels 

in a positive direction (Pian et al., 2006; Zolles et al., 2006). Previous study revealed that the 

PIP2-mediated up-regulation of HCN3 channel activity gave rise to burst firing and spontaneous 

oscillation in neurons from the thalamic intergenuculate leaflet (IGL). Depletion of PIP2 also 

reduced the excitability of IGL neurons (Ying et al., 2011). Therefore, PIP2 mediated modulation 

of HCN channel activity plays a critical role controlling neuronal excitability (Biel et al., 2009). 

Besides small molecules, protein kinases also play a key role modulating HCN channel activity 
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(He et al., 2014a). Different from the facilitating effect of PKC on KCNQ channels, activation of 

PKC induces a down-regulation of HCN channel activity in dopaminergic neurons of the ventral 

tegmental area, and in non-neuronal as well as neuronal cells transfected with HCN1 channel 

(Liu et al., 2003; Inyushin et al., 2010; Reetz and Strauss, 2013). HCN channels have also been 

shown to be subjective to modulation of Ca2+ through the CaM-dependent protein kinase II (II). 

Ca2+/CaMKII plays a key role in the rapid regulation of the HCN channel current through 

altering the channel trafficking and expression (Shin and Chetkovich, 2007; Noam et al., 2010). 

Increase of postsynaptic HCN channel activity following enhancement of presynaptic activity 

has also been shown to require Ca2+ influx and activation of CaMKII (van Welie et al., 

2004; Fan et al., 2005). Moreover, in an in vitro seizure model, increase in glutamate leads to 

reduce of HCN1 expression that requires Ca2+ influx via Ca2+ permeable AMPA-receptors and 

activation of Ca2+/CaMKII (Bender and Baram, 2008; Richichi et al., 2008). Computational 

simulation derived a potential calcium-dependent plasticity rule for HCN channels where firing 

rate homeostasis could be maintained in the face of synaptic plasticity. As the model revealed, 

reduced increase of cytosolic calcium due to reduced firing activity, which in a Bienenstock-

Cooper-Munro (BCM)-like rule underlies synaptic depression, leads to reduction in HCN 

channel activity. Increased levels of cytosolic calcium, which underlies synaptic potentiation, 

leads to increased HCN channel activity (Honnuraiah and Narayanan, 2013). It is therefore 

possible that in vivo pharmacological activation of KCNQ2/3 channels (Figure 9C) reduces the 

firing rate of fusiform cells (Figure 9D), which causes the reduced cytosolic calcium via voltage-

gated Ca2+ channels (van Welie et al., 2004) and gives rise to the decreased HCN channel 

activity in non-tinnitus mice through a Ca2+/CaMKII dependent pathway.  
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4.1.5 Reduction in HCN channel activity in DCN fusiform cell serves as a protection 

mechanism against noise-induced tinnitus 

Previous study has revealed the contribution of HCN channels to the intrinsic excitability 

of DCN fusiform cells (Pal et al., 2003; Leao et al., 2012). Our study for the first time uncovered 

that HCN channel in DCN fusiform cells may contribute to the resilience to tinnitus induction. 

Immunohistochemical studies in the DCN have shown consistent and strong HCN2 subunit 

expression in fusiform cells (Pal et al., 2003; Koch et al., 2004; Notomi and Shigemoto, 2004), 

suggesting that HCN2 isoforms may mediate the noise-induced plasticity in fusiform cells.  

 Plasticity of HCN channels has shown both a pathogenic effect leading to development of 

diseases states and a neural protective effect that compensates the insult-induced disturbances. 

Down-regulation of HCN channels has been linked to the generation of epilepsy in the entorhinal 

cortex (EC) (Shah et al., 2004). As spontaneous activity in EC neurons depends on synaptic 

inputs, decreased HCN channel activity in EC neurons plays a pathogenic role in inducing 

epilepsy due to its effect in increasing dendritic excitability and in increasing spontaneous 

activity of EC neurons (Shah et al., 2004). Our results, however, revealed that reduction in HCN 

channel activity in DCN fusiform cells contributes to the resilience to tinnitus. Decreased HCN 

channel activity hyperpolarizes the resting membrane potential of fusiform cells and prevents 

them from generating increased spontaneous firing activity. Therefore, plasticity of HCN 

channels could play either a pathogenic or a neural protective role underlying the development of 

neuronal disorders depending on how it influences neuronal as well as network activity.  
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4.1.6 Plasticity of KCNQ and HCN channels underlying the development of neuropathic 

pain 

 Our study revealed that 7 days following noise exposure, DCN fusiform cell display 

divergent plasticity of ion channels that leads to vulnerability and resilience to tinnitus. Fusiform 

cells in tinnitus mice show increased spontaneous firing rate that is independent of synaptic 

transmission (Figure 1). This hyperactivity is mediated by a reduction of KCNQ2/3 channel 

activity and is due to a depolarizing shift of the voltage dependence of the channel activation 

(Figure 3). Fusiform cells in non-tinnitus mice experience an initial decrease of KCNQ channel 

activity 4 days after noise exposure (Figure 7). This reduction is followed by a recovery of 

KCNQ currents 7 days after noise exposure as well as a reduced HCN channel activity (Figure 

8), which gives rise to an unchanged spontaneous firing rate of fusiform cells.  

Hyperactivity of DCN fusiform cells is an important neural correlate for the development 

of tinnitus (Kaltenbach and McCaslin, 1996; Kaltenbach and Afman, 2000; Brozoski et al., 

2002a; Kaltenbach et al., 2002). Similarly, hyperactivity of nociceptive sensory neurons in the 

dorsal root ganglion (DRG) following damage of the peripheral sensory nerve is key to the 

induction of neuropathic pain (von Hehn et al., 2012). Plasticity of both KCNQ and HCN 

channel has also been revealed in DRG neurons contributing to the induction of chronic 

inflammatory and neuropathic pain. However, a direct link is lacking as for the relationship 

between a change in KCNQ and a change in HCN channel activity.  

KCNQ channels are present in the DRG neurons and play an important role regulating 

the excitability of nociceptors (Passmore et al., 2003). Reduced KCNQ channel activity in DRG 

neurons contributes to the generation of neuronal hyperactivity and induction of inflammatory 

neuropathic pain (Linley et al., 2008; Liu et al., 2010). Repression of the KCNQ2 channel in 
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DRG neurons has also been identified at the transcription level following partial sciatic nerve 

ligation, indicating a long lasting change of the KCNQ channel underlying the induction of 

neuropathic pain (Rose et al., 2011). In a proteases-induced inflammatory pain model, depletion 

of membrane PIP2 and rise in cytosolic Ca2+ concentration (through CaM) mediated the 

reduction of KCNQ channel activity (Linley et al., 2008). Rise in cytosolic Ca2+ also underlies 

the suppression of KCNQ channel activity during bradykinin induced spontaneous pain (Liu et 

al., 2010). Therefore, Ca2+ and PIP2 mediated reduction of KCNQ channel activity could be 

shared mechanisms for the induction of tinnitus and neuropathic pain. KCNQ channel activators, 

including retigabine, have also shown a stabilizing effect on nociceptive pathway following 

nerve lesion, and reduce signs of neuropathic pain (Blackburn-Munro and Jensen, 2003; Dost et 

al., 2004). Importantly from our study, we revealed for the first time that a KCNQ channel 

opener could also prevent the induction of noise-induced tinnitus in animal models, and 

potentially be used as a preventive and therapeutic drug for treating tinnitus in humans. 

HCN channels are abundantly expressed in DRG neurons and play a key role regulating 

neuronal excitability (Dunlop et al., 2009). HCN1 isoforms are the majority HCN channels 

subunits expressed in DRG neurons, mainly in large and medium size neurons. However, 

knockout study revealed that HCN1 subunits in DRG neurons contribute little to the induction of 

inflammatory and neuropathic pain (Jiang et al., 2008; Momin et al., 2008). HCN2 isoforms are 

expressed in large and medium size DRG neurons, as well as in small size DRG neurons co-

localized with peptidergic nociceptive neuron marker (Jiang et al., 2008). Previous study has 

shown that HCN channel activity is significantly increased 1 - 3 weeks after spinal nerve ligation 

(SNL) (Chaplan et al., 2003). The same change were observed within 1 week after DRG chronic 

compression (Yao et al., 2003) and within 3 days after chronic constriction injury (Kitagawa et 
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al., 2006), indicating a contribution of increase of HCN channel activity underlying the 

generation of spontaneous activity of DRG neurons (Jiang et al., 2008). However, reduction of 

HCN2 mRNA expression has been identified in DRG neurons 1 - 3 weeks after SNL (Dunlop et 

al., 2009). Sciatic nerve section also revealed reduction of HCN channel activity 2 - 7 weeks 

later (Abdulla and Smith, 2001b, a). According to our results, decrease of HCN channel in 

fusiform cell didn’t happen until 4 - 7 days after noise exposure. We also observed an initial 

increase of HCN channel activity 2 hours - 2 days after noise exposure (data not shown).  

Therefore, it is possible that the increase and decrease of HCN channel activity in DRG neurons 

play different roles underlying the development of neuropathic pain. Given that reduction of 

HCN channel activity either through pharmacological blocking (Chaplan et al., 2003; Lee et al., 

2005; Sun et al., 2005; Jiang et al., 2008) or conditional knockout (Emery et al., 2011) 

significantly reduced the spontaneously generated firing in DRG neurons and eliminated 

symptoms of neuropathic pain, it is possible that the reduction in HCN channel activity in DRG 

neurons following nerve injury serves as a protective role against the development of 

neuropathic pain.  

4.1.7 Resting membrane potential of fusiform cells controls the outcome of pathogenic 

plasticity of KCNQ2/3 channels 

Fusiform cell hyperactivity and development of tinnitus is associated with reduced 

KCNQ2/3 channel activity 7 days after noise exposure. Differently, normal firing of fusiform 

cells and non-tinnitus behavior is associated with a reduced resting membrane potential through 

either reduced HCN channel activity 7 days after noise exposure, or other unidentified 

mechanisms 4 days after noise exposure. Therefore, pathogenic effect of reduction in KCNQ2/3 
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channel activity could be gated by the resting membrane potential of fusiform cells. This is an 

interesting finding and revealed the dominant regulation of resting membrane potential on 

KCNQ2/3 channel activity with little contribution vice versa (Li et al., 2013), unless the voltage 

dependence of KCNQ2/3 is pharmacologically shifted towards hyperpolarized potential (Brown 

and Passmore, 2009). Previous treatments of KCNQ2/3 channel-mediated channelopathy 

focused on KCNQ2/3 activators, which activate KCNQ2/3 channel majorly through rightward 

shifting the voltage dependence of KCNQ2/3 channel activity. Here, our results indicate that 

reducing resting membrane potential of fusiform cells will be another potential method for 

treating KCNQ2/3 channelopathy. 

4.1.8 Retigabine may have long lasting influence on KCNQ channel activity 

 To prevent the reduction of KCNQ channel activity after noise exposure, we 

administrated retigabine through IP Injection twice a day for 5 days. We performed 

electrophysiology recording on retigabine-injected mice 12 - 24 hours after the final injection, 

ensuring that retigabine is out of the physiological system (Luszczki et al., 2009). However, our 

result revealed that noise-induced mice with retigabine injection has significantly increased 

KCNQ currents comparing with noise-induced mice with saline injection, and is not different 

from the KCNQ currents amplitude in sham-exposed control mice (Figure 9C). Previous study 

revealed that retigabine opens Kv2 - Kv5 channels through binding to the hydrophobic pocket 

near the channel gate and stabilizing the open form of the channels (Gunthorpe et al., 2012). Our 

finding indicates that binding of retigabine on KCNQ channel may exerts long lasting effect on 

KCNQ channel activity.  
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4.1.9 Fusiform cell hyperactivity is an important neural correlate for noise-induced 

tinnitus 

Reduced KCNQ2/3 channel activity in fusiform cells is associated with no fusiform cell 

hyperactivity and no behavioral evidence of tinnitus 4 days after noise-exposure, indicating an 

indispensible role of fusiform cell hyperactivity underlying the induction of tinnitus (Kaltenbach 

and McCaslin, 1996; Kaltenbach and Afman, 2000; Brozoski et al., 2002a). Our previous finding 

revealed the essential role of KCNQ2/3 channel on induction of tinnitus and implicated 

KCNQ2/3 activators as potential therapeutic drugs for preventing the induction of tinnitus (Li et 

al., 2013). Here, our data expanded upon the previous finding and showed that eliminating the 

hyperactivity of fusiform cell during the induction phase of tinnitus could potentially prevent the 

development of tinnitus. Therapeutic methods aiming at occluding tinnitus-related neuronal 

hyperactivity have been implemented through reducing central excitation and/or increasing 

inhibition and showed limited effect (Simpson and Davies, 1999; Simpson et al., 1999; Bauer 

and Brozoski, 2001; Guitton et al., 2004; Brozoski et al., 2007). Given that spontaneous firing of 

fusiform cells is not dependent on synaptic input (Leao et al., 2012), eliminating fusiform cell 

hyperactivity through manipulating intrinsic ionic conductances may be more efficient. Our data 

revealed that resilience of noise-exposed fusiform cell hyperactivity and behavioral evidence of 

tinnitus can be achieved with control level KCNQ2/3 current amplitude together with decreased 

HCN channel activity. Therefore, besides activation of KCNQ2/3 channels as previously 

proposed, blocking of HCN channels during the induction phase of tinnitus may be useful a 

method for preventing the development of tinnitus. 
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4.1.10 Homeostatic plasticity and tinnitus 

Fusiform cells from control, 4 days noise-exposed and 7 days non-tinnitus mice show 

similar spontaneous firing rates but with different combinations of ionic conductances (Figure 

1, Figure 10). These findings complement and extend previous experimental and theoretical 

work showing that similar neuronal output can result from multiple combinations of intrinsic and 

synaptic properties (Edelman and Gally, 2001; Prinz et al., 2004; Marder and Goaillard, 

2006; Goaillard and Dufour, 2014; Ratte et al., 2014).   

In accordance with this view, activity-dependent changes in conductances that affect 

neuronal excitability frequently trigger homeostatic, compensatory changes in different 

conductances, which result in constant neuronal output (LeMasson et al., 1993; Desai et al., 

1999; Turrigiano, 2008; O'Leary et al., 2010; O'Leary et al., 2013; O'Leary et al., 2014). Our 

results are consistent with such homeostatic mechanisms and highlight that recovery of KCNQ 

channel activity is associated with a reduction in HCN channel activity and the maintenance of 

normal spontaneous firing rates in non-tinnitus mice (Figure 9). Because homeostatic and 

coordinated regulation of potassium and HCN currents occurs in different species and neuronal 

circuits, such as dopaminergic neurons in rat susbstantia nigra pars compact and neurons of the 

lobster stomatogastric ganglion (MacLean et al., 2003; Amendola et al., 2012), we propose that 

coordinated plasticity of potassium and HCN channels may represent a general biophysical 

strategy for achieving neuronal homeostasis. 

The fact that multiple molecular pathologies underlie hyperexcitability-related disorders, 

such as neuropathic pain and epilepsy, has led to the suggestion that drugs that simultaneously 

target more than one type of ion channels could treat these disorders more effectively (Klassen et 

al., 2011; Goaillard and Dufour, 2014; Ratte et al., 2014). Similarly, because plasticity of 
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multiple conductances is involved in tinnitus, we propose that a combination of drugs that 

enhance KCNQ2/3 and reduce HCN channel activity represents a potent therapeutic approach 

that will enhance resilience and reduce vulnerability to tinnitus. 
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APPENDIX A: VALUES FOR MAIN FIGURES OF CHAPTER 1 

Figure 1b, control, before sham-exposure: 0.71 ± 0.02, after sham-exposure: 0.69 ± 0.02, 

n = 16, p = 0.55; tinnitus, before noise-exposure: 0.65 ± 0.02, after noise-exposure: 0.88 ± 0.02, 

n = 18, p < 0.001; non-tinnitus, before noise-exposure: 0.69 ± 0.03, after noise-exposure:  0.63 ± 

0.03, n = 17, p = 0.20. 

 

Figure 1c, control, before: 0.69 ± 0.02, after: 0.66 ± 0.04, n = 16, p = 0.47; tinnitus, 

before: 0.75 ± 0.03, after: 0.79 ± 0.03, n = 18, p = 0.17; non-tinnitus, before: 0.73 ± 0.04, after: 

0.66 ± 0.04, n=17, p = 0.14. 

 

Figure 1e, control, before: 0.51 ± 0.05, after: 0.53 ± 0.06, n = 18, p = 0.72; tinnitus, 

before: 0.60 ± 0.06, after: 0.56 ± 0.04, n = 16, p = 0.61; non-tinnitus, before: 0.46 ± 0.05, after: 

0.52 ± 0.04, n = 17, p = 0.32. 

 

Figure 1f, control, before: 0.47 ± 0.04, after: 0.50 ± 0.04, n = 18, p = 0.62; tinnitus, 

before: 0.52 ± 0.03, after: 0.48 ± 0.03, n = 18, p = 0.26; non-tinnitus, before: 0.54 ± 0.04, after: 

0.52 ± 0.03, n = 17, p = 0.83. 
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Figure 3a, RMP, control: -62.7 ± 0.7 mV, n = 6, tinnitus: -62.9 ± 0.7 mV, n = 11, p = 

0.87; control: -61.8 ±1.4 mV, n = 6, after XE991: -62.0 ± 1.4 mV, n = 6, p = 0.74.  

 

Figure 3b, spike threshold, control: -48.1 ± 1.0 mV, n = 11, tinnitus: -46.8 ± 0.5 mV, n = 

11, p = 0.26; control: -48.4 ± 1.8 mV, n = 6; after XE991: -48.5 ± 1.7 mV, n = 6, p = 0.85. 

 

Figure 3h, 0.1 mM, 11.5 ± 3.5%, n = 5; 1 mM, 39.9 ± 3.7%, n = 6; 10 mM, 75.4 ± 6.8%, 

n = 6; 30 mM, 82.3 ± 4.3%, n=4. 

 

Figure 4b, PPI startle ratio, control: 0.47 ± 0.06, n = 16, noise-exposed: 0.53 ± 0.04, n = 

33, noise-exposed + retigabine: 0.54 ± 0.06, n = 16, noise-exposed + saline: 0.65 ± 0.04, n = 16, 

p = 0.55. 

 

Figure 4c, ABR threshold, control: 46.7 ± 2.7 dB, n  = 7, noise-exposed: 51.6 ± 2.0 dB, n 

= 18, noise-exposed + retigabine: 50.2 ± 2.7 dB, n = 7, noise-exposed + saline: 46.7 ± 2.2 dB, n 

= 7, p = 0.35. 
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APPENDIX B: VALUES FOR MAIN FIGURES OF CHAPTER 2 

Figure 5A, control, high frequency: before exposure, 0.70 ± 0.01, after exposure: 0.68 ± 

0.02, n = 21, p = 0.6; low frequency, before exposure, 0.67 ± 0.02, after exposure, 0.71 ± 0.02, n 

= 21, p = 0.2; tinnitus, high frequency: before exposure, 0.64 ± 0.02, after exposure: 0.82 ± 0.03, 

n = 11, p < 0.001; low frequency, before exposure, 0.66 ± 0.03, after exposure, 0.74 ± 0.03, p = 

0.06, n = 11; non-tinnitus, high frequency: before exposure, 0.69 ± 0.03, after exposure: 0.71 ± 

0.04, n = 10, p =0.6; low frequency, before exposure, 0.72 ± 0.02, after exposure, 0.64 ± 0.03, p 

= 0.07, n = 10 

 

Figure 5B, control, high frequency, 0.56 ± 0.03, after exposure, 0.60 ± 0.02, n = 22, p = 

0.25; low frequency, before exposure: 0.59 ± 0.02; after exposure: 0.60 ± 0.01, n = 22, p = 0.56; 

tinnitus, high frequency, before exposure, 0.52 ± 0.03, after exposure, 0.57 ± 0.02, n = 11, p = 

0.18; low frequency, before exposure, 0.52 ± 0.04, after exposure, 0.59 ± 0.03, n = 11, p = 0.17; 

non-tinnitus, high frequency, before exposure, 0.54 ± 0.03, after exposure, 0.60 ± 0.03, n = 10, p 

= 0.36; low frequency, before exposure, 0.56 ± 0.04, after exposure, 0.54 ± 0.02, n = 10, p = 0.56 
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