
 i 
 

FEMALE BODY TYPES CLASSIFED BY WAIST-TO-HIP  

AND REGIONAL FAT DISTRIBUTION RATIOS 

 

 

 

 

 

 

 

 

by 

Danielle Christine Lyman 

B.S., University of Missouri-Rolla, 2007 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

School of Education in partial fulfillment  

of the requirements for the degree of 

Master of Science 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

2015 



 ii 

UNIVERSITY OF PITTSBURGH 

School of Education 

 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Danielle Christine Lyman 

 

 

 

It was defended on 

December 12, 2013 

and approved by 

Dr. Fredric L. Goss, Health and Physical Activity 

Dr. Elizabeth F. Nagle, Health and Physical Activity 

Dr. Elaine Rubinstein, Measurement and Evaluation of Teaching 

 Thesis Director: Dr. Robert J. Robertson, Thesis Advisor, Health and Physical Activity 

 

 



 iii 

Copyright © by Danielle Christine Lyman 

2015 



 iv 

 

 

 

 

 

Body type classification is employed to determine disease risk using measurements such 

as Waist-to-Hip Ratio (WHR) and waist circumference. However, these measures classify body 

types using a priori determined cut-points. The purpose of this investigation was to establish 

data-based cut-points denoting female body types ranging between android and hyper-gynoid 

using the WHR and regional body fat distribution-ratio (RFD-ratio). Waist, abdomen, and hip 

circumference, height, weight, and body fat were obtained for 73 Caucasian females. The waist 

and hip circumferences were used to determine the WHR classification. The abdomen 

circumference, height, and BMI were used to develop the RFD-ratio classification. The subjects 

were 20.93 ± 1.95 years old, weighed 62.31 ± 9.92 kg, and were 163.78 ± 6.70 cm tall. They had 

a BMI of 23.19 ± 3.21 kg·m-2 and a body fat percentage of 25.85 ± 6.59. A TwoStep cluster 

analysis was used to determine the number of “naturally” formed body type clusters. The 

analysis was conducted with no a priori determination of number of clusters to form, where to 

make the cut-points, or how many subjects to place in each cluster. Within both body type 

classification systems (ie. WHR and RFD-ratio), three good quality clusters formed. For the 

WHR system, the cut-point between the hyper-gynoid and gynoid clusters fell at 0.72, while the 

cut-point between the gynoid and android clusters was 0.78. For the RFD-ratio system, the cut-
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points were 0.68 and 0.78, respectively. To examine interchangeability between systems, the 

WHR and RFD-ratio system’s values were compared using a One-Factor ANOVA. Ratios 

differed (p < 0.01) between systems. This indicated that the two systems could not be used 

interchangeably despite having a correlation of r = 0.65. It was concluded that both classification 

systems can be used to determine female body type. Owing to application simplicity, the WHR 

classification system may be preferable. Further examination of the subjects’ health status as 

well as testing a larger number of overweight or obese subjects is required to broaden 

generalizability of the two body type classification systems. 
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1.0 INTRODUCTION 

 

In the early 1950’s, Vague investigated the relation between body fat distribution and the 

prevalence of metabolic and cardiovascular diseases (53). Prior to this research, it was assumed 

that simply being obese, regardless of the anatomical distribution of the adipose tissue, increased 

the prevalence of these diseases. Through this early work, and the research that followed, it has 

been determined that in addition to obesity, body fat distribution differentially influences the 

incidence of metabolic and cardiovascular diseases (3,25,34,35,37,39,56). For obese individuals, 

those with a greater amount of abdominal fat are at a higher disease risk than those with a greater 

amount of lower body fat. As an extension of this previous research, the present investigation 

established data-based cut-points describing the range of female body types between hyper-

android and hyper-gynoid using continua derived from Waist-to-Hip Ratio (WHR) and regional 

body fat distribution ratio (RFD-ratio). 

At the same time Vague (53) was examining the differential effects of body fat 

distribution on disease risk, Sheldon’s (12) work on somatotyping was also gaining interest. 

Sheldon’s methodology of somatotyping determines an individual’s physique (or shape) based 

on fat quantity, muscular robustness, and height compared to body weight (12). While combining 

body physique and fat distribution into one classification system is not a new concept, it is one 

that has yet to be fully explored. Body shape is heavily reliant on fat distribution, and though fat 

distribution is more closely linked to disease-risk, body shape is more recognizable by the 

general population. It was proposed in the present investigation that merging these two 
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measurements could form a new “body type” classification system, one that matches an 

individual’s body shape to a particular fat distribution pattern (i.e. gynoid or android). This 

system would allow weight management programs and/or disease-risk categories to be 

developed based on specific body types defined along a data-based of body fat continua. 

Most studies of the relation of anatomical fat distribution to disease-risk have two major 

limitations. First, almost all studies focus on overweight or obese subjects, and devote little 

attention to normal-weight individuals. This lack of attention to normal-weight individuals limits 

implementation of preventative medicine protocols. These protocols would identify those who 

may fall into the established “at-risk” disease categories, but who presently do not have a high 

body mass index (BMI). Second, when determining body types, the vast majority of fat 

distribution studies arbitrarily pre-determine which subjects fit into which group. Either a finite 

number of subjects are assigned to each fat distribution group, or the quantity of the sample is 

used to create equal group size.  

It seemed important to identify a methodological approach that remedied the above 

mentioned measurement limitations. The first methodological issue to resolve entailed 

determining body type categories that are not a priori determined, but rather are based on 

uniform clustering of the data. Two types of regional fat distribution are commonly referred to 

within exercise and anthropometric literature – android and gynoid. Android fat distribution is 

typically associated with male fat patterning (predominantly upper body fat), while gynoid fat 

distribution refers to female fat patterning (predominantly lower body fat); although females can 

also present android fat patterning (53). As body type can differ between sexes, it was also 

imperative that males and females be studied and grouped separately, according to their sex 
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specific clustering of fat measurements. The present study focused on female body types as 

determined by differences in anatomical fat distribution. 

Despite the common use of only two body types in previous research, it is possible that 

more may exist. Krotkiewski and colleagues introduced a third body type (i.e. “intermediate”) 

when creating a new fat distribution system for females. This intermediate body type fell 

between those with predominately lower body fat distribution and those with predominately 

upper body fat distribution (35).  More convincingly, Newell-Morris et al. using a k-means 

statistical cluster analysis for an all male sample, identified four body types – one predominately 

gynoid, one excessively android, and two other types displaying more android characteristics 

(45).  Newell-Morris et al. demonstrated that a cluster analysis can be used to identify multiple 

body types independent of investigator determined classifications. 

Waist-to-hip ratio (WHR) and waist circumference are two commonly used 

anthropometric measures that are influenced by body fat distribution (1,14). Both of these 

measures are used to predict an individual’s metabolic and cardiovascular disease risk. Waist-to-

hip ratio is calculated by dividing the waist circumference by the hip circumference. The waist 

circumference measures the girth of the abdomen. For women, the “at-risk” WHR category is 

0.80 and higher, while the “at-risk” category according to waist circumference is 88 cm and 

higher (1).  

The problem with the application of WHR and waist circumference categories, especially 

when only the latter is measured, is that the focus predominately falls on the overweight or obese 

population. It is recognized that overall, these individuals may be at a higher disease risk than 

leaner individuals. However, the data provided by Hartz et al. succinctly details why fat 

distribution may have a comparatively bigger impact on disease risk (Figure 1). In their study, 
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Hartz et al. first divided subjects into four groups based on WHR: ≤ 0.72, 0.73 to 0.76, 0.77 to 

0.80, and ≥ 0.81. Subjects were then categorized by levels of obesity based on percent over ideal 

weight (as listed in the Metropolitan Life Insurance tables): non-obese (<21%), moderately-

obese (21-50%), and severely-obese (>50%). It was found that the percentage of diabetics was 

similar between non-obese subjects whose WHR was 0.81 or higher and the severely-obese 

subjects with a WHR of 0.72 or less (25). 

 
 

FIGURE 1: Prevalence of diabetes according to obesity classification and fat distribution 

(25). 
 

Numerous studies have shown that as both the level of obesity and WHR rises, there is an 

increase in the prevalence of metabolic and cardiovascular disease (3,25,34,35,37,39,56). 

However, the Hartz et al. study points out why it is critical to examine and clearly define which 

body types (and how many) exist, and to identify the relation between each body type and the 

prevalence of disease occurrence.  

It is advantageous to use WHR and waist circumference when examining fat distribution 

due to their ease of measurement and that the general population can perform their own 
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measurements of these variables. Because these relatively simple methods do not require the 

expertise of health or exercise professionals, they are ideal for increasing the interest and 

adherence of the general population to exercise and dietary intervention programs. Never-the-

less, while these methods may be among the most practical, their simplicity of assessment can be 

a limitation, i.e. they employ only body circumference measurements, not the measurement of 

the actual amount of fat. However, there is a strong correlation between circumference measures 

and total body fat mass (48). 

Currently, the most precise method of determining regional body fat is dual-energy x-ray 

absorptiometry (DXA). This procedure can accurately measure the quantity of adipose tissue 

found in a specific body region. Unfortunately, DXA is expensive and typically only found in a 

laboratory or clinical setting. In lieu of such a costly and relatively inaccessible system, regional 

fat distribution can be estimated through anthropometric equations such as those developed by 

Ritchie and Davidson (48). These equations are based on body circumferences, body mass index 

(BMI), height, and weight and all show strong correlations to regional body fat determined by 

DXA. 

The present investigation examined two separate body type continua, i.e. one based on 

WHR and one based on a regional fat distribution ratio (RFD-ratio). These two classification 

systems are based on underlying fat distribution and are both strongly correlated with the 

prevalence of metabolic and cardiovascular disease (23,35). A body type continuum based on 

WHR would be advantageous due to its ease of use. The determined value could then be used 

conjunctively with the body types based on a regional fat distribution ratio, which is more 

closely linked to the amount of anatomically specific adipose tissue.  
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An additional benefit of establishing body type categories based on fat distribution 

methods involves individualizing weight management plans.  As an example, studies involving 

dietary caloric restriction have shown that those females with android-type obesity are able to 

lose more weight than those with gynoid-type obesity within the same time period (22,29). This 

may be due, in part, to the metabolic and structural differences in adipose tissue found in the 

abdomen (i.e. android type) versus that found in the gluteal-femoral (i.e. gynoid type) region 

(34,35). Once again, establishing body types based on fat distribution can help in developing diet 

and exercise programs. 

As differences in anatomical fat distribution have been observed between ethnic groups 

(44) as well as between pre-, peri-, and post-menopausal women (33) the present study focused 

only on Caucasian females ages 18-29 years old. Any individuals with diseases (i.e. Polycystic  

Ovarian Syndrome) or taking medications known to affect normal fat distribution were not 

included in the study. This study employed a cross-sectional design, sampling subjects from a 

population that included a wide range of BMIs. 

1.1 STATEMENT OF PURPOSE 

The purpose of the present investigation was to develop a data-driven continuum of body 

types ranging from android to gynoid fat distribution based on WHR and a RFD-ratio for pre-

menopausal women. Statistical clustering models were used to develop two body type 

classification continua, i.e. one based on WHR and one based on RFD-ratio.
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2.0 LITERATURE REVIEW 

The present investigation aimed to determine cut-points along continua for various 

female body types based on WHR and a RFD-ratio. In order to confirm the importance of such 

undertaking as well as to determine the appropriate methods for the investigation, it was 

imperative to find rationale in the literature. Critical areas of review included the importance of 

regional body fat distribution and its association with obesity-related diseases, determining the 

strongest anthropometric measures for regional fat distribution prediction, and previous 

developments of body type classification systems. 

2.1 IMPORTANCE OF REGIONAL BODY FAT DISTRIBUTION 

The association between regional body fat distribution (RFD) and disease-related risk 

was first recognized by Vague in the early 1950’s (53). Vague hypothesized that it was not solely 

obesity that was the driving factor for disease risk, but the activity of adiposity as controlled 

through neurohormonal mechanisms was also important. After creating the first RFD scale, 

Vague tested his hypothesis by comparing the prevalence of diseases such as diabetes and 

atherosclerosis within five RFD categories: hypergynoid, gynoid, intermediate, android, and 

hyperandroid.  
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Vague found that 35% of hyperandroid females were diagnosed with diabetes. The 

percentage fell to 25% in the android category, followed by 7%, 2%, and 1% in the remaining 

three categories as the predominate fat location moved from the waist to the hips. A similar, but 

more pronounced relation between predominate adipose tissue location and disease risk occurred 

when investigating coronary artery disease (CAD). One hundred percent of hyperandroid and 

android women that were studied had CAD, with the level dropping to 50% in the intermediate 

group, 10.6% in the gynoid group and only 1.7% in the hypergynoid group. Vague’s (53) study 

was the first to show a relation between the anatomical location of fat and the prevalence of 

chronic disease. Since this first study appeared, a multitude of additional studies have been 

performed to further support the relation between RFD and prevalence of disease 

(8,11,13,20,21,25,37,39,47,49,51,55,57,59).  

2.1.1 Association between RFD and Disease 

From the beginning, studies investigating the link between RFD and obesity focused 

primarily on known obesity-related disorders: diabetes, cardiovascular disease (CVD), stroke, 

gallbladder disease, and those clinical elements associated with the development of these 

diseases such as hypertension and elevated lipids, glucose, and insulin levels.  In the early 

1980’s, simplified anthropometric measures were developed, such as WHR. These measures 

helped to more easily identify those with upper body fat distribution versus lower body fat 

distribution for use in research that defined disease risk (11,20,21,24,25,30,35,37,57,59).  

Hartz and colleagues (24) used this new body fat index in a study investigating the 

association between RFD, obesity, and diabetes. Subjects were first divided into subgroups based 

on WHR and then again by obesity level. It was found that those females in the highest WHR 
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quartile had a threefold increase in risk of diabetes as compared to those in the lowest quartile at 

a comparable level of obesity. When examining women in the upper quartile of both WHR and 

obesity classifications, the risk of diabetes was 10.3 times greater than non-obese subjects in the 

lowest WHR category. Using similar methods as Hartz et al., other studies (11,21,24,25,51) have 

examined the correlation between diabetes and RFD. These studies have determined that the 

relative risk (RR) for those women with high WHR ranged from 2.15 (51), to as high as 7.5 (11) 

(Table 1). A recent meta-analysis (55) involving 32 studies determined a pooled RR of 3.0 for 

diabetes for women in the highest WHR group versus the reference group. 

The correlation between body fat distribution and CVD has also been investigated 

(21,37,47,59). These investigations examined CVD in general as well as by more specific 

diagnoses, such as stroke or myocardial infarction (MI). Relative risk values for CVD and its 

specific diagnoses ranged from 1.7 (21) to 8.2 (37) when expressed according to WHR, as shown 

in Table 2. A meta-analysis performed by de Koning et al. (14) showed a minimally adjusted 

pooled RR for CVD of 2.50 for women (maximally adjusted RR was 2.19).  

Relative risk values, however, can be somewhat misleading as they vary depending on 

what adjustments are used to control confounding variables. As such, another method of 

evaluating the impact of RFD on disease risk is to examine prevalence across obesity subgroups 

as defined by WHR. If the prevalence across subgroups remains relatively constant, then the 

subgrouping is a poor indicator of the correlation between the RFD and disease risk. Conversely, 

if the prevalence rises or falls significantly between subgroups in a linear or exponential trend, 

then an association can be made between RFD and disease risk. 
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TABLE 1: Relative risk for diabetes in highest subgroup of women based on WHR* 
 

Reference Risk Ratio Adjustments 

 

WHR 

Subgroup 

Age of sample 

(years) 

Snijder et al. (51)               2.15 Age N/A 50-75 

Hartz et al. (25)               3.09 Age, relative weight Four groups: 

<0.72, 

0.73-0.76 

0.77-0.80 

>0.81 

40-59 

Hartz et al. (24)               3.15 Obesity Quartiles 40-59 

            10.34 

   (WHR & BMI)* 

Carey et al. (11)               3.3 Age, family history of diabetes, 

exercise, smoking, intakes of 

saturated fat, calucium, potassium, 

and magnesium, and glycemic index 

Six groups: 

<0.72, 

0.72-0.75 

0.76-0.79 

0.80-0.83 

0.84-0.87 

>0.88 

30-55 

               7.5 Age 

Folsom et al. (21)             11.3 Age, educational level, physical 

activity, alcohol intake, smoking 

status, pack-years of cigarette 

smoking (continuous), age at first 

live birth, estrogen use, vitamin use, 

high blood pressure, and daily 

calorie, whole grain, fruit, vegetable, 

fish and red meat intake 

Quintiles 55-69 

            29.0 

    (WHR & BMI)* 

* Unless otherwise noted, certain studies investigated the cumulative effect of WHR and BMI on the relative risk 

factor for diabetes. 
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TABLE 2: Relative risk for cardiovascular disease (CVD) events for women based on 

WHR 

 

Reference Risk Ratio Adjustments 

WHR 

Subgroup 

Age of sample 

(years) 

Yusuf et al. (59)          1.75 (MI)a, b Age, sex, smoking, region, BMI, 

apolipoproteins B and A, history of 

hypertension, history of diabetes, diet, 

activity, alcohol use, and psychosocial 

variables 

Quintiles Not listed 

Folsom et al. (21)          1.9 (CHD)c 

         1.7 (other) 

Age, educational level, physical activity, 

alcohol intake, smoking status, pack-

years of cigarette smoking (continuous), 

age of first live birth, estrogen use, 

vitamin use, high blood pressure, and 

energy, whole grain, fruit, vegetable, fish 

and red meat intake 

Quintiles 55-69 

Rexrode et al. (47)          2.43 (CHD)c BMI, age, smoking, parental history of 

MI, alcohol consumption, physical 

activity, menopausal status, hormone 

replacement therapy, oral contraceptive 

use, aspirin intake, saturated fat intake, 

antioxidant score, hypertension, diabetes, 

elevated cholesterol level 

Six groups 

<0.72, 

0.72 - <0.76, 

0.76 - <0.80, 

0.80 - <0.84, 

0.84 - <0.88, 

≥0.88 

40-65 

Lapidus  et al. 

(37) 

         8.2 (MI)b 

         3.8 (stroke) 

Age Quintiles 38-60 

a Odds Ratio,  b Myocardial Infarction, c Coronary Heart Disease 
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Dalton et al. (13) investigated the association of BMI, WC, and WHR with CVD risk 

factors such as diabetes, hypertension, and dyslipidaemia. The disease prevalence was examined 

within a priori determined body weight categories. Subjects were divided into three body weight 

categories (normal, overweight, and obese), with the cut-points dependent on the obesity 

classification system (BMI, WC, or WHR). Those with a BMI < 25.0 kg·m-2 were classified as 

normal weight, 25.0-29.9 kg·m-2 as overweight, and ≥ 30.0 kg·m-2 as obese. Women with a 

WHR < 0.80 were categorized as normal, 0.80-0.84 as overweight, and ≥ 0.85 as obese. 

Regardless of the body weight classification system used, each CVD risk factor demonstrated an 

increase in prevalence as the body weight level increased (Table 3). This trend held when 

examining the prevalence of having one, two, or all three risk factors. Dalton et al. determined 

that WHR was the strongest predictor of having at least one of the three risk factors, although 

age-adjustment significantly attenuated the associations. 

TABLE 3: Prevalence of CVD risk factors by BMI and WHR in Australian women (13) 
 

 Type 2 diabetes Hypertension Dyslipidaemia One or more factors 

Body Weight Category BMI WHR BMI WHR BMI WHR BMI WHR 

Normal 2.8 2.2 16.3 16.3 12.8 11.0 25.6 24.0 

Overweight 6.3 6.1 31.9 34.6 28.0 30.2 47.7 52.7 

Obese 16.2 19.1 46.5 48.7 42.8 47.4 66.8 70.0 

    All values listed as percentages of total population studied. 

A number of investigations have correlated anthropometric measures with disease 

incidence rates. An association between RFD and both hypertension and dyslipidaemia has been 

demonstrated either preceding or in the presence of these metabolic/circulatory disorders.  The 

appearance of certain metabolic/circulatory markers such as hypertension and elevated glucose, 

insulin, and lipid levels is often seen prior to and during the development of obesity-related 
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diseases. However, testing for these markers typically involves blood assays, laboratory time, 

and extra diagnostic cost. Several studies indicate that RFD has a moderately-strong correlation 

with hypertension and elevated fasting glucose, fasting insulin, and triglyceride levels (Table 4). 

Thus, it may be beneficial to use RFD as a general indicator of potential risk for diseases such as 

diabetes and CVD.  

Examining both the relative risk and prevalence values it is clear that an association 

exists between RFD and certain diseases. Using the WHR classification of obesity gives a pooled 

RR of 3.0 for diabetes (55) and 2.50 for CVD (14). This indicates that WHR is a strong predictor 

of both diseases. The WHR is also moderately correlated with metabolic/circulatory variables 

such as hypertension, fasting insulin, fasting glucose, and triglyceride levels. However, WHR is 

not a strong predictor of other diseases, such as lung or colon cancer (21). This is because these 

diseases may be influenced more by environmental factors and genetics than obesity. 
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TABLE 4: CVD risk factors and association with RFD 
 

Risk Factors 

Dalton et al. 

(13) 

Mundi et al.  

(43) 

Kissebah et al.  

(34) 

Kalkhoff et al.  

(30) 

Seidell et al. 

(49) 

Jensen et al.  

(28) 

  CT viscerala UBSOb LBSOc UBSOb LBSOc  UBSO LBSO 

Hypertension          

SBP (mm Hg)     136 ± 4e 125 ± 3    

DBP (mm Hg)       84 ± 2d   76 ± 2    

R 0.345 (SBP) 

    

              0.26 (SBP) 

              0.29 (DBP) 

0.43 (SBP) 

0.36 (DBP)   

Fasting Glucose 

(mg/dl)     97 ± 4   88 ± 5      94 ± 2   93 ± 1 

R 0.309 0.35                 0.24 0.40   

Fasting Insulin 

  

  34 ± 4d 

μIU/ml 

  20 ± 3 

μIU/ml    

10.9 ± 1.4e 

μU/ml 

 7.3 ± 0.5 

μU/ml 

R  0.52                 0.18 0.45   

Cholesterol (mg/dl)   187 ± 8 183 ± 15 196 ± 12 212 ± 9  216 ± 6 209 ± 14 

R      0.24   

Triglycerides (mg/dl)   156 ± 14d   79 ± 7 103 ± 24   72 ± 8  145 ± 21f   71 ± 8 

R 0.406 0.59    0.40   

FFA 

    

476 ± 34 

μEq/L 

501 ± 28 

μEq/L  

579 ± 44 

μmol/L 

412 ± 95 

μmol/L 

a Mundi et al. (43) investigated the correlation between visceral, subcutaneous, and leg fat and metabolic characteristics using computed tomography rather 

than using WHR or WC    b UBSO = subjects with upper body segment obesity   c LBSO = subjects with lower body segment obesity   d Significantly greater 

than subjects with lower body fat distribution (P < 0.01)   e Significantly greater than subjects with lower body fat distribution (P < 0.05)   f Significantly 

greater than subjects with lower body fat distribution (P < 0.001) 
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2.1.2 Relation of RFD to cellular differences in adipose tissue 

Although a correlation exists between RFD and certain disease states, it is important to 

understand the differences between abdominal and femoral adipose cells and how these 

differences relate to RFD. Despite the fact that abdominal and femoral adipose cells are similar 

in origin and perform the same function, cells from the two anatomical areas vary with respect to 

size, lipolysis rate, and effects of certain hormones. 

While abdominal subcutaneous fat cell volume differs minimally between males and 

females (0.531 ± 0.27 vs. 0.599 ± 0.28 μg lipid/cell, respectively), the femoral fat cell size is 

significantly lower in males than females (0.596 ± 0.27 vs. 0.724 ± 0.23 μg lipid/cell, P < 0.001, 

respectively) (43). In general, women tend to have larger femoral fat cells than abdominal fat 

cells (34,35,43,50), with sizes up to 0.7-0.8 µg/cell (35). However, when considering RFD 

status, it has been found that women with upper body obesity have significantly greater 

abdominal fat cell volume compared to women who are nonobese or have lower body obesity. 

However, the volume of femoral fat cells does not differ between the groups (34). 

 It is well known that certain hormones and catecholamines such as epinephrine, 

norepinephrine, glucagon, growth hormone, testosterone, and cortisol trigger lipolysis, although 

only catecholamines have an acute stimulatory effect (58). Each hormone effects both abdominal 

and femoral fat cells, but the responses elicited differ. These variations are most likely due to the 

quantity and/or sensitivity of four adrenoreceptors found on the cell surface: β1, β2, β3, and α2. 

The β receptors are responsible for stimulating lipolysis, while the α receptors inhibit it (58). 

To test the lipolytic response, baseline levels of palmitate, free fatty acids (FFA), insulin, 

and glucose have been evaluated, and then measured again during influxes of catecholamines, 

insulin, or glucose. At baseline, plasma palmitate and FFA concentrations did not differ 
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significantly between upper body obese, lower body obese, and non-obese females (28,42). 

However, the palmitate and FFA flux was found to be significantly greater in upper body obese 

women than lower body or nonobese women (28,42). Fasting insulin levels were found to be 

significantly different between the three groups, with upper body obese women having the 

highest level and non-obese women having the lowest levels (28,34). Fasting glucose levels 

showed non-significant differences between the three groups (34). 

Baseline levels of plasma palmitate, FFA, and glucose do not differ between obesity 

types. Never-the-less, creating influxes of catecholamines, insulin, and glucose allows 

investigators to determine if the cell location and/or RFD affects lipolysis. Increasing 

catecholamines (i.e. norepinephrine and epinephrine) produces a significant increase in lipolysis 

from abdominal cells with almost no change from femoral cells (34,50). Removing the α-

adrenergic component in femoral cells through the use of phentolamine changes their lipolytic 

response to more closely resemble that from the abdominal cells. This indicates that the reduced 

lipolytic response found in femoral cells is most likely due to an increased number and/or 

sensitivity of α-adrenergic receptors (34). As lipolysis in abdominal cells rises with increasing 

concentrations of catecholamines, the anti-lipolytic effect of insulin also increases in these cells. 

Whereas, even a supramaximal concentration of insulin has no significant effect on the femoral 

fat cells (50). 

Oral glucose timed tests are also used to determine the effect of increased intake of 

glucose on the plasma glucose and insulin levels. As demonstrated in Figure 2, women 

presenting with upper body obesity have significantly higher baseline plasma glucose and insulin 

levels throughout an oral glucose tolerance test (34,35). High levels of glucose and insulin found 

in upper body obese women during an oral glucose test indicates that some change in the glucose 
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transporter type 4 receptors has occurred, but whether it is due to a lower sensitivity or reduced 

quantity is unknown. 

 

 

FIGURE 2: Effects on plasma glucose and insulin levels during oral glucose tests (34). 

UBSO: Upper Body Segment Obesity; LBSO: Lower Body Segment Obesity 

 

Jensen et al. (28) used an insulin clamp procedure that can also be used to examine the 

lipolytic response in adipocytes. Providing a bolus of insulin significantly increased the plasma 

palmitate, FFA, and glucose concentrations in the two obese groups as well as normal weight 

controls. Both the lower and upper body obese groups were significantly higher than the non-

obese group, although not from each other. Despite having a lower plasma insulin concentration 

during the insulin clamp procedure (9.3 ± 0.4, 11.5 ± 0.7, 17.6 ± 1.5 µU/ml, for the nonobese,  

lower body obese, and upper body obese groups, respectively), the nonobese women showed a 

greater glucose utilization and produced significantly less endogenous glucose than either obese 

group (28). 

 A wide array of hormones have been linked to fat cell localization. Cortisol has been 

shown to have lipid accumulating effects in the presence of insulin, though these effects can be 

negated by growth hormone. Growth hormone is also responsible for lipid mobilization. These 
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effects are most pronounced in visceral fat cells due to the high density of glucocorticoid 

receptors found on these cells. Growth hormone can also accentuate the effects of testosterone, 

which inhibits lipoprotein lipase, the enzyme responsible for regulation of lipid accumulation, 

and glycerophosphate dehydrogenase. In women, this inhibition can cause an increase in the 

accumulation of visceral fat (7).  Unbound, or free testosterone (%), has been found to be 

directly correlated with WHR (r = 0.44). Plasma sex hormone-binding globulin (SHBG) is 

inversely correlated with WHR (r = -0.49). An increased level of free testosterone and lower 

SHBG indicate an increase in degree of androgenic/estrogenic hormonal activity as the WHR 

increases (17). Other hormones, such as oestrogen, progesterone, estradiol, androstenedione, and 

dehydroepiandrosterone sulfate have also been investigated, but show no association or effect on 

adipose tissue metabolism or localization (7,17). 

 When studying RFD, it is not only important to recognize the effects and metabolic 

characteristics that are specific to fat cell localization, but also to understand why and how they 

occur on the cellular level. Even though femoral and abdominal fat cells are derived from the 

same tissue, they display remarkably different behaviors. Abdominal fat cells tend to be smaller 

(unless upper body obesity is present) and more sensitive to lipolytic stimulation from 

catecholamines, while femoral fat cells tend to be larger and less responsive, even at 

supramaximal concentrations (34). Those females with upper body obesity tend to have a higher 

level of insulin, glucose, palmitate, and FFA during influxes of catecholamines and glucose 

(28,34,35,42,50). This indicates that larger fat cells due to increased adipose storage have 

reduced insulin and carbohydrate metabolic function when compared to women who are non-

obese or have lower body obesity. These differences are most likely due to variation in the 

number and sensitivity of β and α receptors found on the cell surface (58). Even though a large 
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number of studies focused on the differences in obese and/or overweight subjects based on RFD, 

more recent research has found that similar cellular and metabolic abnormalities can also be 

found in certain normal weight individuals (15,16). 

2.1.3 Rationale for examining normal weight individuals 

As described above, Hartz et al. (25) found that non-obese subjects with a high WHR (> 

0.81) had a similar prevalence of diabetes as those severely obese subjects with a low WHR (< 

0.72). The finding is somewhat incongruous as a higher disease-risk is usually associated with 

obese individuals. However, Folsom et al. (21) reported similar findings, showing that those 

individuals in the lowest BMI and highest WHR quintiles had a non-significantly different RR 

for diabetes than those individuals in the highest BMI and lowest WHR quintiles (11.5 and 13.8, 

respectively) (Figure 3). This further supports the hypothesis that WHR plays a part in the 

development of obesity-related diseases, and that those individuals with a high WHR may be at 

risk, even in the absence of obesity. 

This trend is not only found in diabetes, but with CVD as well. Folsom et al. also showed 

that women in the highest quintile of WHR actually had a higher RR than those in the highest 

BMI quintile with respect to coronary heart disease (2.5 and 1.6, respectively) (Figure 4) and 

other cardiovascular diseases (1.7 and 0.89, respectively) (21). Even metabolic characteristics, 

such as plasma insulin concentration, have shown low to high gradient increases with 

corresponding increases in WHR. These responses were independent of BMI (although WHR 

group comparison was only performed in obese subjects) (Figure 5) (18). 
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FIGURE 3: Age-adjusted relative risk of 

incident diabetes based on quintiles of BMI 

and WHR (21). 

 

 

FIGURE 4: Age-adjusted relative risk of 

coronary heart disease-related mortality 

among never smokers based on tertiles of 

BMI and WHR (21). 

 

            Unfortunately, the association between disease risk and both BMI and WHR has been 

primarily determined for on overweight or obese patients. Too often, normal-weight individuals 

present with at-risk metabolic characteristics that go undetected due to their “healthy” body 

weight classification. Karelis et al. (31) and De Lorenzo et al. (15,16) have discussed subsets of 

obesity that are not widely understood: (a) metabolically healthy, but obese (MHO), (b) 

metabolically obese, but normal weight (MONW), and (c) normal-weight obese (NWO). 

Characteristics of each subset are listed in Table 5. The two more concerning subsets are those 

involving normal weight individuals. These individuals are less likely to receive early detection 

and treatment needed to prevent obesity-related diseases. 
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FIGURE 5: Relationship of plasma insulin to WHR (18). 

Individuals in the MONW classification present with a normal BMI (18.5-24.9 kg·m-2), 

fat mass greater than 30%, signs of insulin resistance, hyperinsulinemia, dyslipidemia, and are 

typically young (31). It is estimated that between 13-18% of the general population fall into this 

subset of obesity (31). The NWO individuals also present with a normal BMI (18.5-24.9 kg·m-2), 

fat mass greater than 30%, and lower percent fat-free mass when compared to the general 

population of normal-weight individuals (16). However, unlike MONW, NWO individuals have 

few metabolic abnormalities associated with diabetes, thus do not have metabolic syndrome (16).  

 Despite there not being many significant anthropometric differences between normal-

weight, NWO, and pre-obese individuals, a slight upward trend across categories does exist in 

the WHR (0.72, 0.76, 0.78, respectively) and separate waist and hip circumferences (15). 

Significant increases do occur across all three groups with respect to percent fat mass, with the 

normal-weight group having the lowest percent. Other significant increases are also found 

between the NWO and pre-obese groups when comparing fat mass, weight, and waist and hip 

circumferences, while a significant decrease is found between these two groups when comparing 

lean mass (15). These anthropometric differences place NWO women intermediate between 

normal-weight and pre-obese females. However, the metabolic profile of NWO women do not 
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differ from normal-weight individuals. This indicates that anthropometric measures, and not a 

plasma lipid-lipoprotein profile, could be better indicators for obesity-related disease risk in this 

subset (16). 

TABLE 5:  Metabolic characteristics of obese subsets 
 

Metabolically Healthy 

Obese (MHO) (31) 

Metabolically Obese Normal 

Weight (MONW) (31) 

Normal-Weight Obese 

(NWO) (15,16) 

Low visceral fat High visceral fat Normal BMI 

High BMI Normal BMI High fat mass 

High fat mass High fat mass High TC/HDL cholesterol 

High insulin sensitivity Low lean body mass High LDL/HDL cholesterol 

Elevated HDL cholesterol Low insulin sensitivity Low TG/HDL cholesterol 

Low Triglycerides High liver fat Normal blood glucose 

 High Triglycerides  

HDL: high-density lipoproteins; LDL: low-density lipoproteins; TC: total cholesterol; and TG: triglycerides. 

It is also believed that anthropometric measures such as body composition and RFD are 

related to the metabolic complications in MONW. Unlike NWO, MONW women present with 

metabolic abnormalities similar to those found in obese individuals. The MONW females have 

elevated total fat mass, body fat percentage, subcutaneous fat, and visceral fat compared to their 

metabolically healthy counterparts, yet have a similar BMI, body mass, and fat-free mass (31). 

 The characteristics of these new subsets of obesity suggest that anthropometric measures, 

particularly those involving visceral and subcutaneous fat mass, are critical in helping to identify 

those normal weight individuals with obesity-related risk factors. The goal then, was to 

determine which of the RFD measures were the best indicators of obesity-related disease risk 

factors regardless of the level of obesity. 
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2.2 STRONGEST ANTHROPOMETRIC PREDICTORS FOR DISEASE 

2.2.1 Importance of WHR and RFD 

Several anthropometric measures help determine body type. However, many of these 

measures are impractical to perform in a home or fitness center setting and require special 

personnel and equipment (such as magnetic resonance imaging (MRI) and computed 

tomography (CT)). Other methods, such as BMI, WHR, and waist circumference, may not 

correlate as well with visceral or subcutaneous adipose tissue when compared to tests such as CT 

topography, yet they still provide strong correlations with CVD and diabetes. 

 Depending on the study, population used, and data adjustments to control for co-variates, 

both WHR (8,14,51,55) and waist circumference (11,57) have been shown to be the strongest 

predictors of obesity-related disease risk. Other studies, however, indicate there is a negligible 

difference between the two in prediction strength (13,21,39,59). Never-the-less, both are usually 

used rather than BMI for prediction of diseases such as diabetes and CVD. Thus, the conundrum 

of which method is the most suitable remains. 

Due to a higher rate of metabolic activity in visceral tissue the comparatively easy to use 

waist circumference is currently the method of choice for many practitioners. However, one of 

the main differences between male and female body types based on fat distribution lies in the hip 

circumference. Despite the common knowledge that women are typically smaller in stature than 

males, female hip circumference tends to be significantly larger (49,51). This larger hip 

circumference has been associated with lower risk of obesity-related diseases. 

Lissner et al. (40) found that hip circumference in females is an independent and inverse 

risk estimator for myocardial infarction (MI) and CVD morbidity and mortality and diabetes 
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morbidity (Table 6). This study showed a decreasing trend in RR from the lowest hip 

circumference quartile to the highest. In fact, hip circumference was found to be a statistically 

stronger predictor than waist circumference for all the endpoints examined. 

Hip circumference has also been found to be inversely correlated with disease related 

metabolic risk factors, and positively correlated with healthy metabolic factors. Negative 

associations have been determined between hip circumference and triacylglycerols, insulin 

concentrations, visceral fat, subcutaneous abdominal fat, and both fasting and post-load glucose 

concentrations (49,51). Positive correlations have also been determined between hip 

circumference and HDL cholesterol (49). 

TABLE 6: Relative risk values associated with hip circumference as a predictor of 24-year 

mortality and morbidity endpoints in Swedish women 38-60 years of age (40). 
 

Quartilea MI mortality MI morbidity CVD Mortality CVD Morbidity Diabetes 

Morbidity 

Hip Q1 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference) 

Hip Q2 0.41 0.59 0.61 0.76 0.41 

Hip Q3 0.47 0.56 0.44 0.76 0.57 

Hip Q4 0.18 0.34 0.30 0.43 0.31 

a Hip quartile cut-points at 94.5, 98.5, and 103.5 cm. Relative risk values adjusted for age, smoking status, BMI, and 

waist circumference at baseline. 

 

With studies supporting the apparent protective power of hip circumference, especially among 

women, WHR becomes the method of choice in determining disease risk. This conclusion is 

further supported by a recent meta-analysis’s findings that a 1 cm increase in waist 

circumference only shows a 2% increase in the risk of CVD, whereas a 0.01 increase in WHR is 

associated with a 5% increase in risk (14). This indicates that WHR is a more sensitive marker 

than waist circumference in predicting disease risk. Before the final determination of the most 
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effective RFD method, WHR must first be shown to be a strong predictor of disease-risk 

independent of obesity. 

2.2.2 WHR as a predictor of disease risk independent of obesity 

While BMI and WHR share many of the same properties, and consistently overlap when 

assessing disease-risk status, statistical applications can be used to separate the two 

anthropometric measures and test for the independent predictive effect of each. Several studies 

have shown that WHR even after adjustment for BMI still remains a strong factor for predicting 

diabetes or CVD (11,21,25,37,47,51). It is of note that age also failed to show significant 

correlations to WHR (36).  

WHR has only shown low to moderate correlations with BMI (r = 0.28 to 0.56), as 

compared to the high correlations seen between waist circumference and BMI (r = 0.81 to 0.95) 

(11,25,47,49). The independent predictive power of WHR is important, as it allows disease-risk 

to be assessed separate of obesity status. The same does not hold true for waist circumference 

where it has such a high correlation with BMI. Establishing that WHR is mostly independent of 

BMI (no measure of obesity will truly be independent of another obesity variable), allows its use 

in this development of a body type classification system. 
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2.3 RATIONALE UNDERLYING DEVELOPMENT OF RFD CLASSIFICATION 

SYSTEM 

 

2.3.1 Development of previous RFD classification systems 

Vague (53) developed the first RFD classification system in the mid 1950’s termed the 

“index of masculine differentiation (IMD)”. This classification system was based on a ratio of 

the nape to sacrum ratio and the brachio-femoral ratio (skinfold thickness measured from behind 

the neck and at the attachment points of the four limbs). The scale ranged from < -75 to > 15, 

with women typically falling between -60 and 0, although extremes were found outside these 

two points (Figure 6). 

  

 

FIGURE 6: Classification of masculine differentiation based 

on the index of masculine differentiation (IMD) scale (53). 

Vague’s classification system originated the terms “android” and “gynoid” (53). Vague 

defined gynoid and hypergynoid individuals by the comparatively larger amount of localized fat 

on the lower part of the body, poor muscule development, reduced arterial circulation activity 

and function, a normal basal metabolism, a moderate appetite and digestion, water retention, and 
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insufficient venous circulation (53). Android and hyperandroid individuals were characterized by 

the exact opposite of the aforementioned types, with an increased amount of localized upper 

body fat, greater muscule development, “strong arterial circulation” (bordering on hypertension), 

a large appetite, normal basal metabolism, and normal venous circulation (53). Since these terms 

were first defined, several of the characteristics first believed to be associated with each type 

have been disproved (i.e. poor venous circulation and water retention associated with gynoid 

body type). 

In 1978, Ashwell et al. (4) created another RFD classification scale based on waist and 

thigh diameters. This study borrowed its methodology from Stalley and Garrow’s somatotype 

photographic technique. Full body photographs were taken from the side, then outlines of the 

subjects were drawn on cellophane paper (Figure 7). These outlines were used to determine the 

waist and thigh diameters. The diameters were also rated visually by three observers. The results 

from the measured diameters were compared against the visual ratings. This procedure used a 

discriminate analysis which resulted in a final fat distribution score of  

26log10(waist diameter·thigh diameter-1). A later study performed by the same investigators 

changed this fat distribution score to 29log10(waist circumference) – 36log10(thigh 

circumference) + 10.5. This new fat distribution score used circumferences in place of diameters, 

included an additional outline of the front-view of subjects (Figure 8), and a changed the 

classification names to “central” and “peripheral” (5). 

More recently, Kirchengast et al. (32) constructed a fat distribution index involving a 

simple ratio of upper body fat to lower body fat. Regional body fat (g) was obtained using DXA, 

currently the only gold standard method with the capability to determine RFD. The study divided 

the subjects into one of three categories: gynoid (< 0.9), intermediate (0.9 – 1.1), or android (> 
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1.1) based on the RFD ratio. This method is fairly similar to the WHR except additional upper 

body and lower body fat deposits are taken into account as opposed to just measuring fat around 

the waist and hips. In this procedure, the upper body region ranged from below the chin to the 

hip joints, while the lower body region was inclusive of the body region below the hip joints. 

 

 

FIGURE 7: Guideline outlines used 

for subjective assessment of female 

body type, where (a) android, (b) 

gynoid, (c) intermediate (4). 

 

 

FIGURE 8: Guideline outlines used for subjective 

assessment of female body type, where (a) central, 

(b) peripheral, (c) intermediate (5). 

 

Even though these three RFD assessment systems vary widely in their methodology, they 

still provide insight into the construction of a body type classification system. Vague’s study (53) 

gives rise to the classification naming scheme, although the definitions have changed over time. 

Ashwell et al. (4,5) demonstrated through a discriminate analysis that visual identification of a 

body type can be relatively accurate, although objective measurements (diameters or 

circumferences) are more consistent and reproducible. Kirchengast et al. (32) created the 

simplest RFD equation, although it is based on an expensive and not readily accessible 

measurement technique. Also of great importance, both Vague (53) and Kirchengast et al. (32) 
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indicated that RFD is measured on a continuum and specific sub-classifications cannot easily be 

distinguished near their respective cut-points. 

2.3.2 Evidence that body type falls along a continuum 

Vague (53) demonstrated that body type subsets distribute along a continuum by 

assigning cut-points in 30 unit increments (based on a ± 15 standard deviation). The gynoid 

subgroup ranged from -75 to -45, the intermediate subgroup from -45 to -15, and the android 

subgroup from -15 to +15 (Figure 6). Kirchengast et al. (32) simply used 1.0 as the cut-point for 

delineating between android and gynoid, with a 0.1 buffer for the intermediate group (0.9 – 1.1). 

Those individuals < 0.9 were considered gynoid, and those > 1.1 were considered android. 

 Support for a continuum-based classification system is also found in the literature 

investigating the association between WHR and obesity-related disease-risk. When relative risk 

is divided into subgroups of increasing WHR, a clear and persistent increasing trend emerges 

(Tables 7 and 8). This gradual increase in disease-risk with a progression of WHR shows that 

although the relative risk for mid-range WHR groups is less than the highest WHR group, the 

relative risk is still higher than the lowest WHR group. 

TABLE 7: Increasing relative risk trend across WHR subgroups (Quintiles). 
 

  Quintiles  

Reference  1 2 3 4 5  

Folsom (21) Diabetes 1.0 1.9 3.0 6.0 11.5  

 CHDa 1.0 1.3 1.6 2.3 2.5  

 Other CVD 1.0 1.2 1.2 1.2 1.7  

 Hypertension 1.0 1.1 1.4 1.7 2.2  

a Coronary Heart Disease 
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TABLE 8: Increasing relative risk trend across WHR subgroups (0.04 Subgroups). 
 

  < 0.72 0.72 – <0.76 0.76 - <0.80 0.80 – <0.84 0.84 - <0.88 ≥0.88 

Rexrode (47) CHDa 1.00 1.50 2.02 2.02 2.28 2.43 

Carey (11) Diabetes 1.0 1.0 1.9 2.9 3.1 3.3 

a Coronary Heart Disease 

The MONW and NWO subgroups described by Karelis et al. (31) and De Lorenzo et al. 

(15,16) also indicate that obesity-related metabolic characteristics and fat mass patterns can be 

seen in normal weight individuals. The characteristics of these two groups place them between 

healthy normal weight individuals and pre-obese obese and obese individuals. This indicates 

once again, that disease-risk has a gradual increase between body type subgroups and maybe not 

be as closely tied to general obesity as once was thought.  

2.3.3 Benefit of statistical clustering analysis 

In most studies, when WHR, waist circumference, or BMI are used to assess disease-risk, 

cut-points are either arbitrarily determined by investigators or based on previously established 

recommendations from the literature. Cut-points for WHR sub-groups are usually subdivided by 

percentiles (such as quartiles or quintiles), literature values, or simple mathematical division of 

the number of subjects or independent variable range (Tables 1 and 2). In the literature, 0.80 is a 

common figure used to distinguish between gynoid and android subjects (54), while 0.86 or 

above is considered very high risk for obesity-related diseases (1).  

Although many studies reference these cut-points, and some evidence exists to support 

them, most subgrouping originates arbitrarily – defined solely by mathematical manipulation of 

the subjects’ characteristics. These divisions can be based on percentiles, equally sized groups, or 



 31 

simply a mean or median value. Few studies attempted to categorize subjects based on the RFD 

data itself. Ashwell et al. (4,5) used a standard linear-discriminant analysis to separate subjects 

into proposed gynoid, intermediate, and android groups after converting the measurements to 

logarithmic values. This method allowed for a separation between clusters of subjects and the 

development of an equation to predict a fat distribution score. 

Newell-Morris et al. (45) also used a statistical clustering analysis to separate subjects 

according to various skinfold thickness. This study utilized a k-means clustering analysis that 

places subjects into a pre-determined number of subgroups. While the number of subgroups may 

be chosen a priori, the cut-points and number of subjects in each group are not. Four clusters 

were derived from the data set: one distinct gynoid group, one excessively android group, and 

two intermediate groups with android characteristics (all subjects were male).  

Even though the statistical methods used by these two studies arbitrarily choose the 

number of subgroups, they show that clustering subjects according to fat patterning is possible. A 

statistical method such as a TwoStep clustering analysis allowed clustering of subjects according 

to RFD without a pre-determined number of subgroups. The removal of any investigator-chosen 

cut-points or number of subgroups allowed the data to cluster naturally into any number of 

subsets with varying amounts of subjects in each. 

2.3.4 Regional fat prediction equations 

Despite DXA being the gold standard to measure RFD, the instrument is expensive and 

non-accessible to the general population. Thus, it is efficient to use statistical equations whose 

predictor variables are strongly correlated with DXA measurements to develop an RFD 
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classification system that is widely available and simple to use. Ritchie and Davidson (48) 

provide such equations specific for regional body sites (Table 9). 

TABLE 9: Regional body fat equations (48). 

 

Body Region 

Regional fat mass (g) prediction equation (A: 

Circumference; B: BMI) 

Multiple Regression 

Adjusted R2 

Waist y = -7716.2 + 69.439*A + 235.28*B 0.8041 

Hips y = -13285 + 132.63*A + 221.32*B 0.8245 

Where A: Circumference (cm), B: BMI (kg/m2) 

Using these equations in a simple RFD-ratio (RFD-ratio = Waist fat mass/Hip fat mass) 

allowed for comparison of statistically derived subgroup cut-points compared against similar cut-

points based on the WHR. While the equations derived from DXA measurements may give a 

more accurate measure of actual fat mass in grams, WHR still remains an easier and more widely 

known method. The end goal of the present investigation is to assess the natural cut-points along 

a body type continuum using the most accessible method possible. 

2.3.5 Inclusion/Exclusion rationale 

In order to define the natural cut-points of female body types along a continuum, it was 

pertinent that the subject pool be as homogeneous as possible to provide strong internal validity. 

In previous studies, variations in age, menopausal status, parity status, smoking status, ethnicity, 

and disease state have created large cut-point standard deviations and confounding 

interpretations regarding body type continua. Eliminating these variables from a prediction 

equation resulted in a reduced ability to generalize; however, the natural cut-points most likely 

change with alterations to each variable. 
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2.3.5.1 Age  As age increases in females, fat distribution has been shown to shift from 

predominantly gynoid to a more android localization. Kirchengast et al. (32) defined a fat 

distribution score as the upper body fat (g) divided by the lower body fat (g). Kirchengast et al. 

(32) showed an increasing trend in fat distribution scores with increasing age.  Females 18-29 

years old had a fat distribution score of 0.7 ± 0.4, while those 30-39 years had a score of 0.9 ± 

0.4. This fat distribution score increased to 1.1 ± 0.4 and 1.5 ± 0.5 as age rose to 40-49 years and 

50-65 years, respectively. Age was weakly correlated to WHR (r = 0.20), indicating that these 

two measures are independent of each other (36). 

2.3.5.2 Menopausal status While closely linked to age, menopausal status was also important to 

consider when developing RFD equations. This was because hormonal factors that occur during 

this period cause a shift in anatomical localization of fat mass. Pre-menopausal females have  

been shown to have a fat distribution score of 0.7 ± 0.4, which increases to 1.1 ± 0.5 during 

menopause and 1.6 ± 0.5 post-menopause (32). WHR and menopause also have a weak 

correlation (r = 0.044) (36). 

 

2.3.5.3 Parity status Parity status may also have an effect on RFD through a decrease in hip and 

thigh circumference and an increase in waist circumference with each birth (38). This is most 

likely due to the increase in mobilization of femoral fat during the lactation period (10). Parity is 

also weakly associated with WHR (r = 0.027) (36). 

 

2.3.5.4 Smoking Caan et al. (9) found that smokers consistently have larger WHRs than non-

smokers, and those subjects who stop smoking and lose weight have smaller mean changes in 

waist and hip circumferences than non-smokers. 
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2.3.5.5 Ethnicity Asian-Indian and Japanese women tend to have higher truncal and abdominal 

fat mass compared to Caucasians, while African-American women have lower visceral fat mass 

(23, 41).  Although Caucasians and African-Americans have a similar WHR when matched for 

BMI, fasting insulin levels were significantly higher in African-American women while 

triglycerides were higher in Caucasians (41). 

 

2.3.5.6 Disease status and medications Certain diseases, such as polycystic ovary syndrome 

(33), Cushing’s syndrome (7), and HIV-associated lipodystrophy syndrome (46), can influence 

the body’s metabolic and hormonal processes, altering the normal fat distribution pattern. Many 

medications may have the same effect, particularly certain psychotropic drugs, weight loss drugs, 

and steroids. Although these diseases and medications are quite common, it was important to 

employ subjects who were medically healthy and physically functional in order to increase 

internal validity of body type classification systems.  

2.4 OTHER USE FOR STUDY FINDINGS 

2.4.1 Weight loss 

It was expected that another important application of the present investigation would 

involve assessing various body types to determine differences in the rate and effect of weight 

loss interventions. Currently, the effect of weight loss on fat distribution is not completely clear. 

Some studies claim that RFD remains constant despite a significant change in body weight (9), 
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while others have found that comparatively larger changes occurred in the waist circumference 

than hip circumference during weight loss, indicating a decrease in WHR (4,54).  

 Several short-term weight loss studies have noted that those females with android fat 

distribution tend to lose more weight during interventions than females with gynoid fat 

distribution (22,29). Other studies have shown that long-term weight loss produces greater 

decreases in waist circumference than in hip or thigh circumferences (4,54). Despite these 

findings, it has been noted that RFD is not a useful prognostic indicator of a person’s ability to 

lose weight (54). Based on the knowledge that gluetal-femoral fat depots have a lower lipolytic 

rate than abdominal cells, it is plausible that different body types may affect the rate at which 

weight loss occurs while not hindering the overall ability to reduce body mass through 

interventions. 

2.5 SUMMARY 

Based on the data found in the literature review, it has been determined that data-derived 

cut-points do not exist for females along continua based on either WHR or RFD-ratio. The 

literature has also shown that disease-risk is strongly correlated with obesity-related diseases 

such as coronary heart disease and diabetes. It was also found that certain normal-weight 

individuals possess metabolic and circulatory-related characteristics similar to those found in 

overweight or obese females, thus these individuals must be included with equal importance. 

Using the literature, it was determined that WHR provides a greater benefit for use in developing 

a body type continuum than does WC. Finally, review of the literature provided an insight into 

previous developments of body fat classification systems and the pros and cons of each method. 
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This assessment of the literature found support for the concept and development of the current 

investigation.
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3.0 METHODS 

3.1 SUBJECTS 

This investigation included 73, 18-29 year old, pre-menopausal, Caucasian females. Potential 

subjects were included if they were: 

1. Nulliparious 

2. Non-smokers 

3. Not taking medications that would effect regional fat distribution 

4. Do not have any endocrine, cardiovascular, or metabolic diseases 

5. At any level of physical fitness and perform any range of aerobic physical activity 

throughout the day, and who are presently or have been athletes 

6. Not currently undergoing any weight loss regimen 

Potential subjects were excluded from this study based on the following criteria: 

1. Taking any psychotropic medications that could change the metabolic rate of adipose 

tissue such as: 

a. Tricyclic antidepressants, i.e. Amitriptyline (Elavil) or Imipramine (Tofranil). 

b. Serotonin-specific reuptake inhibitors such as Paroxetine (Paxil), Sertraline 

(Zoloft), or Fluoxetine (Prozac). 

c. Dopamine reuptake inhibitors such as Bupropion (Wellbutrin). 
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2. Taking any weight-loss specific medications such as: 

a. Phentermine (Fastin). 

b. Orlistat (Alli, Xenical). 

c. Sibutramine (Meridia). 

d. Diethylpropion (Tenuate). 

e. Benzphetamine (Didrex). 

f. Phendimetrazine (Bontril). 

3. Diagnosed with diabetes mellitus, metabolic syndrome, chronic heart failure, any 

endocrine disorder, or lipodystrophy syndrome (HIV-associated). 

4. Taking other metabolic altering medications such as: 

a. Metformin. 

b. Oral steroids such as prednisone within the past six months. 

c. Medication with diuretic properties. 

5. Have undergone gastric bypass or lap band surgery. 

6. Are currently pregnant, or have previously had children. 

Subjects wore light exercise clothing, such as a cotton tee shirt and exercise shorts. 

Swimwear with no excessive embellishments (i.e. ruffles, buckles, or multiple layers of fabric) 

was permitted in lieu of undergarments. Shoes were removed for height and weight 

measurements. A bioelectrical impedance analysis (BIA) was used to measure total body fat and 

lean tissue. BIA measures the differential speed of an electrical current as it passes through fat 

and lean tissue and is influenced by the water content of these two tissue types. As such, subjects 

must be properly hydrated to ensure a correct measurement of body fat (%). Proper hydration 

included: abstaining from alcohol consumption for the previous 48 hours, as well as not 
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consuming any products with diuretic properties (i.e. caffeine) for the previous 24 hours (2). 

Subjects also refrained from any exercise for twelve hours prior to the assessments, and eating or 

drinking four hours prior to the assessments (2). The bladder was voided 30 minutes before the 

start of any measurements. 

Each subject signed an informed consent prior to participation, as well as completed a 

medical history form. Subjects were recruited from the University of Pittsburgh’s Oakland 

campus through the use of posted flyers. Kirchengast et al. (32) found that 15.1% of women 

(aged 18-29 years) fell into the android classification, while 72.2% of women (aged 18-29 years) 

were classified as gynoid.  Initially, 100 females were to be recruited for the present 

investigation. However, due to difficulty recruiting overweight and obese females, only 73 

subjects underwent measurement testing. After 73 subjects were tested, data were checked to 

ensure that at least fifteen percent of the subjects had a WHR above 0.8 (1,32) and at least fifty 

percent of the subjects had a WHR below 0.8 (1,13,32). These percentages were not met, 

however, further recruitment effort directed at higher BMI individuals did not increase the 

percentage of individuals with a WHR greater than 0.8. All procedures were approved by the 

University of Pittsburgh’s Institutional Review Board for human subject experimentation. 

3.2 RESEARCH DESIGN 

This investigation used a within subject cross-sectional design to construct separate 

continua for female body types based on WHR and predicted RFD-ratio. Separate TwoStep 

statistical clustering analyses were used to indentify body type classifications based on a WHR 

continuum and a RFD-ratio continuum. 
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Upon voluntary agreement to enter the study, subjects signed a consent form to 

participate followed by a physical activity questionnaire (Appendix) and an anthropometric 

assessment. Measurements were performed in individual fifteen-minute blocks by the same 

investigator. 

3.3 VARIABLES 

3.3.1  Predictor variables 

Body type is defined as the combination of body shape and body fat distribution. Body 

type was statistically determined by separately clustering WHR data and predicted regional fat 

distribution data.  

 It was expected that four body types existed for females: hyper-gynoid, gynoid, android, 

and hyper-android (Figure 9). A common delineation between gynoid and android females is 0.8 

(54). 

 Hyper-gynoid: females with an excessive amount of fat in the hips and buttocks as 

compared to the amount of fat in the abdominal area. 

 Gynoid: females with predominantly more fat in the hips and buttocks as opposed to the 

abdominal area. However, the ratio of upper body fat to lower body fat is higher than 

hyper-gynoid females. 

 Android: females with more adipose tissue in the abdominal region than in the lower 

body. 
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 Hyper-android: females with an excessive amount of fat in the abdominal area as 

opposed to the lower body. The fat distribution ratio is the highest of the four body types. 

 

 
 

 

FIGURE 9: Proposed body types – A: hyper-android, B: android, C: gynoid, and D: hyper-

gynoid (19). 
 

3.3.2  Criterion variables 

WHR and fat distribution were determined for each subject. 

 WHR was determined by dividing the waist circumference by the hip circumference. Fat 

distribution was predicted using the waist and hip regional body fat equations for college-aged 

Caucasian females (48). The predicted waist fat mass was then divided by the predicted hip fat 

mass forming a regional fat distribution ratio. The equations employed the following: waist 

circumference (cm), height (m), weight (kg), and BMI (kg·m-2). 

3.4 ANTHROPOMETRIC MEASUREMENTS 

Anthropometric measurements for computation of WHR was obtained using procedures 

described in the Guidelines for Graded Exercise Testing and Prescription by the American 
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College of Sport Medicine (1). Anthropometric measurements for the RFD prediction equations 

were obtained following procedures from Ritchie and Davidson (48). All measurements were 

taken by a single, well-trained technician. 

3.4.1  Body circumferences 

Duplicate circumference measurements were taken to the nearest 5 mm using a flexible, 

inelastic tape. Measurements were repeated if the duplicate values were greater than 5 mm apart 

(1,2). The waist circumference was measured first, the abdomen circumference second, and the 

hip circumference third. Measurements were repeated using the same procedures and site 

sequence. A minimum of one minute separated the original and duplicate measurements. 

All measurements were taken with the tape horizontal to the floor, with the investigator 

inspecting visually from the front and the side. Two marks were made with a felt tip marker 

along the top of the measuring tape, one on the left and one on the right side, to denote the level 

of the tape during the first measurement. Abdomen and waist circumferences were taken with the 

tape directly on the skin, while hip circumferences were taken with the tape on no more than one 

light layer of clothing (i.e. undergarments or swimsuit). The circumference measurement 

procedures are outlined below: 

 Abdomen circumference: A horizontal measurement was taken at the level of the 

umbilicus with the subject standing and muscles relaxed. This measurement was used in 

the equation to predict fat distribution. 

 Hip circumference: A horizontal measurement was taken at the largest circumference of 

the buttocks/hips with the subject standing upright and feet together. During the first hip 

circumference measurement, the tape was placed around the area determined visually to 
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be the largest, then slid up and down in 5 cm adjustments from this location until the 

actual largest area was determined. 

 Waist circumference: A horizontal measurement was taken at the narrowest part of the 

torso, between the umbilicus and xiphoid processes. The subject stood erect with arms at 

the side, feet together, and abdomen relaxed. During the first waist circumference 

measurement, the tape was placed around the area determined visually to be the 

narrowest, then slid up and down in 5 cm adjustments from this location until the actual 

smallest area was determined. This measurement was used to determine WHR.  

3.4.2  Body weight, height, and composition 

Shoes and socks were removed for all body composition measurements. Body weight 

(kg) was determined using a DetectMedic Scale (Detecto Scales Inc., New York). Height (cm) 

was measured using a DetectMedic Scale and attached standiometer (Detecto Scales Inc., New 

York).  Subjects stood erect with feet flat on the floor, looking straight ahead with the head in a 

neutral position. Arms were placed by the side and relaxed. Bioelectrical impedance analysis  

(BIA) was used to determine subjects’ percent body fat using the standard setting on a Tanita 

TBF-300A BIA scale (Tanita, Arlington Heights, IL). BMI was calculated as follows: 

2

2

)(

)(
)(

mHeight

kgWeight
mkgBMI  

. 
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3.4.3 Regional body fat distribution equations 

The regional body fat distribution equations employed for this study were derived from 

Ritchie and Davidson (48), and were designed for use with college-aged Caucasian females. 

These equations use a combination of circumferences, BMI, and constants to estimate the fat 

mass (g) for a specified anatomical region. The equations that were used for this study are shown 

in Table 9. 

 When compared to measurements from a DXA analysis of the same body area, the chest 

equation has a R2=0.83, and the waist equation has a R2=0.80, thus making them suitable for use 

in the current study. 

3.5 STATISTICS 

Descriptive data for anthropometric measurements (i.e. height, weight, BMI, percent 

body fat, aerobic physical activity level) were calculated as mean ± standard deviation (SD). 

Normality of data distribution was also tested. All analyses were performed using the Statistical 

Package for the Social Sciences (SPSS, version 20.0, Chicago, Ill., USA). Statistical significance 

will be set at an alpha ≤0.05 for all analyses.  

The presence of data clusters along the WHR continuum and RFD-ratio continuum were 

examined using a TwoStep clustering analysis. A TwoStep clustering analysis produces solutions 

based on continuous or categorical variables without the need to specify a predetermined number 

of clusters. This analysis can use the input of only one variable (WHR or RFD-ratio) per subject 

for clustering purposes. From the output, each cluster’s mean and SD is determined along with 
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data cut-points delineating the borders of each cluster. The number of subjects that fall into each 

cluster is also presented in the analysis. In addition, a secondary TwoStep analysis was also 

employed to examine clustering using BMI plus WHR and BMI plus RFD-ratio. A comparison 

of descriptive data [aerobic physical activity (minutes/week), body fat (%), and fat mass (g)] 

between clusters was performed using a one factor ANOVA.  

If both the WHR and RFD-ratio methods yielded the same number of body type clusters, 

a follow-up objective of this investigation was to compare the two methodologies to determine if 

they could be used interchangeably. In order to perform this comparison, a one factor ANOVA 

would separately analyze WHR and RFD-ratio data to determine if the clusters were 

significantly different. Following this, a correlation and regression analysis with the same data 

(i.e. WHR only, RFD-ratio only, BMI plus WHR, and BMI plus RFD-ratio) was employed to 

determine if using the methodology from one body type continuum could place a subject into the 

corresponding cluster formed on the other continuum. Such a finding could allow either method 

to be used to determine body type for young adult females. 
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4.0 RESULTS 

This investigation examined the “natural” clustering of body types for healthy females 

aged 18-29 years old.  A within subject cross-sectional design was used to construct separate 

continua for female body types based on WHR and predicted RFD-ratio where BMI was and was 

not included in the calculation. WHR was determined by measuring the waist circumference at 

the narrowest part of the torso, between the umbilicus and xiphoid processes. The hip 

circumference measurement was taken around the largest part of the buttocks/hips. 

Anthropometric measurements were taken with the subject standing upright and feet together. 

The waist circumference was then divided by the hip circumference to produce a ratio. The RFD-

ratio was determined by measuring the hips as above and the abdomen circumference at the level 

of the umbilicus. These values were inserted into the RFD equations in Table 9. The value 

derived from the “waist” equation was divided by the value from the “hip” equation to construct 

a ratio.   

Once the two ratios were determined for each subject, a TwoStep statistical clustering 

analysis was used to indentify body type classifications based on either a WHR continuum or a 

RFD-ratio continuum. These calculations were conducted with and without the inclusion of BMI. 

From there, a one factor ANOVA was used to determine if the body type clusters were 

significantly different from each other. If applicable, a correlation and regression analysis with  
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the same data (i.e. WHR only, RFD-ratio only, BMI plus WHR, and BMI plus RFD-ratio) was 

then employed to determine if using the methodology from one body type continuum could place 

a subject into the same cluster formed on the other continuum. 

4.1 DESCRIPTIVE INFORMATION 

4.1.1 Subject descriptives 

The investigation initially intended to recruit 100 Caucasian females aged 18-29 years 

with no known health conditions. Due to recruitment limitations in identifying high WHR 

females, seventy-three subjects actually underwent testing with no subjects removed from the 

final data set. Table 10 lists the mean ± SD for age, weight, height, BMI, body fat percentage, 

waist circumference, abdomen circumference, hip circumference, and aerobic physical activity 

level for the total group of 73 subjects. 

Fifty-two of the subjects were considered under-weight or normal weight according to 

ACSM BMI standards (1), while 18 subjects were considered overweight, and three were 

considered obese. According to ACSM body fat percentage guidelines (1), seven subjects were 

at or above the 75th percentile (lowest body fat percentage), 10 subjects were at or between the 

50th and 75th percentiles, 22 subjects were at or between the 25th and 50th percentiles, and 34 

subjects fell at or below the 25th percentile. 
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TABLE 10: Subject descriptive information 
 

Measurement Mean ± SD 

Age (years) 20.93 1.95 

Weight (kg) 62.31 9.92 

Height (cm) 163.78 6.70 

BMI (kg/m2) 23.19 3.21 

Body Fat (%) 25.85 6.59 

Waist Circumference (cm) 71.29 6.79 

Abdomen Circumference (cm) 82.84 9.32 

Hip Circumference (cm) 98.23 6.67 

Physical Activity (min/week) 203.45 187.39 
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4.2 TWOSTEP CLUSTER ANALYSIS 

The TwoStep cluster analysis produces solutions based on continuous or categorical 

variables. The calculation is conducted without the need to specify a predetermined number of 

clusters based on as little as one variable, thus making it suitable for use in this investigation. 

The TwoStep analysis was performed using the WHR and RFD-ratio separately.  

4.2.1 WHR cluster analysis 

A cluster analysis based on WHR alone showed that three good quality clusters were 

naturally formed in the subject subset that was studied (Figure 10). Cluster 1 contained 5 subjects 

with a mean WHR of 0.81 ± 0.03, Cluster 2 consisted of 34 subjects with a mean of 0.74 ± 0.01, 

and Cluster 3 had 34 subjects with a mean of 0.70 ± 0.02. Cutpoints between the clusters were 

determined by averaging the distance between the minimum cluster value of the larger ratio 

cluster and the maximum cluster value of the smaller ratio cluster. Cutpoint 1 (between Clusters 

1 and 2) fell at a WHR of 0.78, while Cutpoint 2 (between Clusters 2 and 3) was found to be 

0.72. Therefore, those subjects with a WHR > 0.78 were placed into Cluster 1, those with a 

WHR of 0.72 ≤ 0.78 were placed into Cluster 2, and subjects with a WHR < 0.72 were placed 

into Cluster 3. 

4.2.2 RFD-ratio cluster analysis 

A cluster analysis based on the RFD-ratio alone showed the formation of three good 

quality clusters. Cluster 1 contained 15 subjects with a mean RFD-ratio of 0.81 ± 0.03, Cluster 2 
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consisted of 35 subjects with a mean of 0.71 ± 0.03, and Cluster 3 had 23 subjects with a mean 

of 0.62 ± 0.05 (Figure 11). Cutpoint 1 (between Clusters 1 and 2) occurred at a RFD-ratio of 

0.78, while Cutpoint 2 (between Clusters 2 and 3) occurred at 0.68. Subjects with a RFD-ratio > 

0.78 were placed into Cluster 1, those with a RFD-ratio 0.68 ≤ 0.78 were placed into Cluster 2, 

and subjects with a RFD-ratio < 0.68 were placed into Cluster 3. 

4.2.3 Cluster analyses with body mass index 

As health problems and weight management plans can be influenced by a person’s total 

weight regardless of fat distribution, including BMI as part of the cluster analysis can be 

beneficial.  Pairing BMI with either WHR or RFD-ratio in the statistical cluster analysis 

produced only two good quality clusters, as compared to three when using WHR or RFD-ratio 

independently. The resulting clusters each had a mean ratio value as well as a mean BMI, but 

only one cutpoint (as there were only two clusters). The results are shown in Table 11. 

TABLE 11: TwoStep Clustering results for WHR and RFD-Ratio in conjunction with BMI 
 

 

Cluster N 

Mean Ratio 

± SD 

Cutpoint between 

clusters 

WHR with 

BMI 

 

1 26 0.74 ± 0.04 0.73 

2 47 0.72 ± 0.03 

 

RFD-ratio 

with BMI 

 

1 

 

33 

 

0.76 ± 0.06 

 

0.74 

2 40 0.66 ± 0.06 

WHR: Waist-to-Hip Ratio; RFD-ratio: Regional Fat Distribution-Ratio. 
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4.3 CLUSTER COMPARISONS 

Once clusters for both WHR and RFD-ratio were determined, it was then possible to 

examine differences in descriptive characteristics between the subjects in each cluster. 

Descriptive data, such as body fat percentage (%), regional fat mass (g), and aerobic physical 

activity level (min/wk), can help to explain the differences in body types as indicated by the 

ratios. Cluster comparisons were made using a One-Way ANOVA. 

TABLE 12: Means ± SD for individual clusters based on body fat percentage 
 

Cluster WHR Mean ± SD RFD-Ratio Mean ± SD 

1 35.54 ± 6.0 29.45 ± 8.0 

2 26.42 ± 5.9 26.83 ± 5.5 

3 23.85 ± 6.1 22.00 ± 5.3 

WHR: Waist-to-Hip Ratio; RFD-Ratio: Regional Fa Distributiotn-Ratio. 

4.3.1 Body fat percentage cluster comparison 

The means ± SD for each cluster within the WHR and RFD-ratio classification systems 

can be found in Table 12. A One-Way ANOVA for body fat percentage indicated that there were 

statistically significant differences between the clusters for both WHR and RFD-ratio (Table 13). 

Tukey’s honestly significant difference post hoc test was used to determine if the clusters were 

significantly different from each other. This post hoc test determines the minimum difference 

between the means of any two groups by not underestimating the least significant difference. 
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Tukey’s post hoc test performed on the WHR clusters showed that Cluster 1 was significantly 

greater than Clusters 2 and 3, and that Clusters 2 and 3 were not significantly different from each 

other (Table 14). Tukey’s post hoc analysis indicated that the RFD-ratio Clusters 1 and 2 were 

not significantly different, though Cluster 3 was significantly lower than Clusters 1 and 2 (Table 

14).  

TABLE 13: One-Way ANOVA of body fat percentage for Waist-to-Hip Ratio and Regional 

Fat Distribution-ratio clusters 
 

  Sum of 

Squares 

df Mean 

Square 

F Significance Eta2 

WHR Clusters Between 

Groups 

616.44 2 308.22 8.60 0.000 0.197 

 Within Groups 2510.17 70 35.86    

 Total 3126.60 72     

RFD-Ratio 

Clusters 

Between 

Groups 

568.23 2 284.11 7.77 0.001 0.182 

 Within Groups 2558.23 70 36.55    

 Total 3126.60 72     

WHR: Waist-to-Hip Ratio; RFD-ratio: Regional Fat Distribution-Ratio. 

 

TABLE 14: Tukey post hoc analysis for Waist-to-Hip Ratio and Regional Fat Distribution-

ratio clusters with body fat percentage as the dependent variable. 
  

 Cluster Cluster Significance 

WHR Clusters 1 2 0.006 

 1 3 0.000 

 2 3 0.188 

RFD-ratio Clusters 1 2 0.342 

 1 3 0.001 

 2 3 0.011 

WHR: Waist-to-Hip Ratio; RFD-ratio: Regional Fat Distribution-Ratio. 
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TABLE 15: Means ± SD for individual clusters based on regional and total body fat (g) 
 

 

Cluster 

Abdomen Fat Mass 

Mean ± SD 

Hip Fat Mass  

Mean ± SD 

Total Fat Mass 

Mean  ± SD 

WHR Clusters 1 5526.02  ± 1968.29 6601.79 ± 2148.06 12127.80 ± 4107.42 

 2 3630.60 ± 1157.82 4930.28 ± 1429.26 8560.87 ± 2567.33 

 3 3053.85 ± 1159.27 4564.96 ± 1430.96 7618.81 ± 2574.27 

RFD-Ratio Clusters 1 4527.67 ± 1678.25 5529.32 ± 1898.57 10056.98 ± 3571.68 

 2 3627.71 ± 1099.35 5064.48 ± 1426.28 8692.19 ± 2519.94 

 3 2609.41 ± 873.28 4158.71 ± 1217.55 6768.12 ± 2076.59 

WHR: Waist-to-Hip Ratio; RFD-Ratio: Regional Fat Distribution-Ratio. 

4.3.2 Regional and total fat mass cluster comparison 

Means ± SD for each cluster within the two classification systems can be found in Table 

15. Regional fat mass (g) was predicted for the abdominal and hip areas using the equations from 

Table 9.  Total fat mass was calculated by adding the two areas. Separate One-Way ANOVA, 

using WHR and RFD-ratio as independent factors, indicated that the clusters within all three 

areas (abdomen, hips, and total) were significantly different from each other (Table 16).  

Tukey’s post hoc analysis of the regional and total fat mass clusters as determined by the 

WHR can be found in Table 16. For the abdomen region and total fat mass Clusters 1 and 2 were 

found to be significantly different. Clusters 1 and 3 were significant across all three regions. 

Clusters 2 and 3 were not significantly different in all three regions. 

The Tukey post hoc analysis for regional and total fat mass clusters based on RFD-ratio 

are also shown in Table 17. Post hoc testing of RFD-ratio “abdomen” clusters indicated that all 
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three clusters were significantly different from each other. RFD-ratio “hip” clusters only showed 

significant differences between Clusters 1 and 3. Clusters 1 and 2 and Cluster 2 and 3 were not 

significantly different. The final regional and total fat mass post hoc test involving the RFD-ratio 

total clusters showed that Clusters 1 and 2 were not significantly different, though Clusters 1 and 

3 and Clusters 2 and 3 were significantly different. 

4.3.3 Aerobic physical activity level cluster comparison 

Weekly aerobic physical activity level (min/week) was obtained through a short 

questionnaire (Appendix). If subjects reported a range for either number of days or minutes per 

session, the lower value was used for the cluster analysis. For the WHR clusters, the average 

minutes per week that subjects engaged in aerobic physical activity was 259.40 ± 251.10 for 

Cluster 1, 151.03 ± 118.74 for Cluster 2, and 247.65 ± 222.62 for Cluster 3. The aerobic physical 

activity levels within RFD-ratio clusters averaged 201.47 ± 175.61, 197.57 ± 179.40, and 213.70 

± 213.06 minutes per week for Clusters 1, 2, and 3, respectively. Regardless if WHR or RFD-

ratio was used, there was no significant difference between any of the clusters. 
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TABLE 16: One-Way ANOVA for regional and total fat mass (g). 
 

Cluster Fat Mass  

Sum of 

Squares df 

Mean 

Square F Significance Eta2 

WHR Abdomen Between 

Groups 27866403.89 2 13933201.94 9.371 0.000 0.211 

  Within Groups 104083205.87 70 1486902.94    

  Total 131949609.76 72     

 Hip Between 

Groups 18281150.19 2 9140575.09 4.170 0.019 0.106 

  Within Groups 153440472.74 70 2192006.75    

  Total 171721622.92 72     

 Total Between 

Groups 91029130.16 2 45514565.08 6.325 0.003 0.153 

  Within Groups 503679248.23 70 7195417.83    

  Total 594708378.39 72     

RFD-Ratio Abdomen Between 

Groups 34649798.80 2 17324899.40 12.47 0.000 0.263 

  Within Groups 97299810.97 70 1389997.30    

  Total 131949609.76 72     

 Hip Between 

Groups 19479197.87 2 9739598.93 4.48 0.015 0.113 

  Within Groups 152242425.06 70 2174891.79    

  Total 171721622.92 72     

 Total Between 

Groups 105339359.50 2 52669679.75 7.534 0.001 0.177 

  Within Groups 489369018.89 70 6990985.98    

  Total 594708378.39 72     

WHR: Waist-to-Hip Ratio; RFD-ratio: Regional Fat Distribution-Ratio. 
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TABLE 17: Tukey post hoc examination of regional and total fat mass (g) between clusters 

based on Waist-to-Hip Ratio and Regional Fat Distribution-Ratio. 
 

  Cluster Cluster Significance 

WHR Clusters Abdomen 1 2 0.005 

  1 3 0.000 

  2 3 0.132 

 Hips 1 2 0.055 

  1 3 0.015 

  2 3 0.568 

 Total 1 2 0.019 

  1 3 0.002 

  2 3 0.322 

RFD-Ratio Clusters Abdomen 1 2 0.041 

  1 3 0.000 

  2 3 0.005 

 Hips 1 2 0.566 

  1 3 0.018 

  2 3 0.064 

 Total 1 2 0.223 

  1 3 0.001 

  2 3 0.023 

WHR: Waist-to-Hip Ratio; RFD-ratio: Regional Fat Distribution-Ratio. 
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4.4 INTERCHANGING WAIST-TO-HIP RATIO AND REGIONAL FAT 

DISTRIBUTUION RATIO 

As a follow-up to the original purpose of the investigation, the ability to interchange one 

method to classify body type clusters with the other was examined. A One-Way ANOVA was 

used to determine if the body type clusters differed between the WHR and RFD-ratio methods 

(Table 16). It was intended that if the clusters were not significantly different a correlation and 

regression analysis would be performed. The R2 value derived from these analyses would be 

used to determine if there was a strong enough correlation between the WHR and RFD-ratio to 

use them interchangeably. However, the ANOVA and Tukey post hoc tests showed that there 

was a significant difference between the two sets (i.e. WHR and RFD-ratio) of clusters (Tables 

16 and 17, respectively), indicating that it was not possible to use the two body type 

classification systems interchangeably with this group of young adult women. 

TABLE 18: One-Way ANOVA results comparing Waist-to-Hip Ratio and Regional Fat 

Distribution-Ratio. 
 

 Sum of Squares df Mean Square F Significance Eta2 

Between Groups 12.27 2 6.14 28.24 0.000 0.426 

Within Groups 15.21 70 0.22    

Total 27.48 72     
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TABLE 19: Tukey post hoc comparison of Waist-to-Hip Ratio and Regional Fat 

Distribution-Ratio clusters. 
 

TwoStep 

Cluster Number 

TwoStep 

Cluster Number Mean Difference Standard of Error Significance 

1 2 -0.76 0.14 0.000 

 3 -1.16 0.16 0.000 

2 1 0.76 0.14 0.000 

 3 -0.40 0.13 0.006 

3 1 1.16 0.16 0.000 

 2 0.40 0.13 0.006 

 

 

FIGURE 10: Correlation between Waist-to-Hip Ratio and 

Regional Fat Distribution-Ratio. Graph indicates cluster overlap 

between the two ratios. For each ratio, Cluster 1 includes those 

subjects with the highest ratio, while Cluster 3 includes those 

subjects with the lowest ratio. 
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4.5 SUMMARY 

The study population used in this investigation included mostly normal-weight, college-

aged females. Cluster analysis indicated that the subjects’ body types could be grouped into three 

clusters regardless of whether a WHR or RFD-ratio method was used. The results also showed 

that while the clusters within each ratio type differed significantly based on body fat percentage, 

fat mass, or aerobic physical activity level, the comparatively small effect size indicated that 

these descriptive characteristics only had a weak effect. Finally, ANOVA showed that WHR and 

RFD-ratio could not be used interchangeably to place subjects into body type clusters.  
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5.0 DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

The purpose of this investigation was to determine if two new female body type 

classification systems could be developed based on the WHR and RFD-ratio. It was proposed 

that subsequent to follow-on population based clinical studies, these classification systems could 

provide a more individualized, yet simple method of identifying those females who may be at 

risk for developing obesity-related diseases. Subjects used to develop the classification systems 

included normal-weight as well as overweight and obese adult females. 

 To develop the new body type classification systems, a TwoStep cluster analysis was 

employed. Using this analysis, three body type clusters were formed for the WHR classification 

system and three for the RFD-ratio classification system. This statistical method of subject 

separation allowed for a natural formation of body type clusters, rather than identifying groups 

formed a priori as has been the customary approach in published literature.  Body type clusters 

were formed along a continuum for WHR and for RFD-ratio, as well as for WHR combined with 

BMI and RFD-ratio combined with BMI.  

 The initial experimental step determined body type clusters within each classification 

system. Descriptive data were then compared between clusters within a classification system. 

The intent was to determine if a specific descriptor differed significantly between body type 

clusters.  Descriptors for this comparison were body fat percentage (%), regional fat mass (g), 

and aerobic physical activity level (min/wk). As a secondary purpose, a correlation was 
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computed to determine if WHR and RFD-ratio systems were related and hence could be used 

interchangeably to classify female body types. 

5.1 PRIMARY FINDINGS: BODY TYPE CLASSIFICATIONS USING WAIST-TO-HIP 

RATIO AND REGIONAL FAT DISTRIBUTION RATIO 

5.1.1 TwoStep cluster analysis for WHR and RFD-Ratio 

Waist-to-Hip Ratio was determined by dividing the circumference of the abdomen by the 

circumference of the hips. It was expected that four clusters (hypergynoid, gynoid, android, and 

hyperandroid) would naturally form for the female subjects that were studied. However, only the 

first three of these clusters emerged within each of the two classification systems when the 

TwoStep cluster analysis was performed.  

 The findings identified three rather than the four female body types that were projected in 

the hypothesis. This was likely due to difficulty recruiting subjects with a high WHR (typically 

overweight or obese individuals). The vast majority of subjects that volunteered to participate 

had a WHR less than 0.8. The TwoStep cluster analysis separated the subjects into three groups 

with WHR as follows: < 0.72, 0.72 to 0.78, and > 0.78. These cut-points indicate that 

hypergynoid, gynoid, and android body type groups formed along a continuum from low to high 

WHR. These cut-point ranges are similar to those found in previous literature for adult females 

(4,32,53). As noted, very few subjects had a WHR over 0.8; a cut-point typically used to 

delineate high disease-risk in individuals who have a hyperandroid body type classification. 
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Nevertheless, it is proposed that if a more robust recruitment of subjects in this higher WHR 

category had been possible, a fourth body type cluster (i.e. hyperandroid) may have emerged. 

RFD-ratio was calculated by dividing abdominal fat mass by femoral fat mass as 

predicted using DXA-based equations from Ritchie and Davidson (48). It was expected that four 

female body type clusters (hypergynoid, gynoid, android, and hyperandroid) would naturally 

form through the use of a TwoStep cluster analysis. The TwoStep cluster analysis identified 

three good quality clusters with RFD-ratio’s as follows: < 0.68 (hypergynoid), 0.68 to 0.78 

(gynoid), and > 0.78 (android). As the same subjects were used to develop both the WHR and 

RFD-ratio clusters, it can be proposed that a hyperandroid group was not identified by the 

analysis due to lack of subjects with a high RFD-ratio. 

A WHR of 0.80 is commonly used as the cut-point to delineate those individuals at high-

risk for obesity-related diseases (1). However, the 0.80 WHR cut-point was originally chosen as 

a risk indicator because it fell at the midpoint of the group of subjects being studied (54). It was 

not based on actual documentation of disease risk or body type delineation at that particular ratio. 

The results of these previous investigations indicated that significant disease-risk differences 

existed between the high WHR and low WHR groups. Thus, a WHR of 0.80 was considered an 

effective cut-point for determination of clinical risk based on excess fat mass. In the present 

investigation, the TwoStep cluster analysis demonstrated that when data derived from healthy 

female subjects were allowed to cluster naturally according to body type, the WHR cut-point was 

0.78. This cut-point separated the gynoid and android body types. It is possible that future 

research may show that this is also the cut-point that delineates those subjects at high risk for 

obesity-related diseases. In the present investigation, the TwoStep cluster analysis using the 

RFD-ratio identified a 0.78 cut-point between the gynoid and android groups. However, 
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methodological differences exist between the present and previous investigations regarding how 

regional fat mass was calculated and defined. As such, it was not feasible to identify a standard 

cut-point that could be used for comparative purposes when interpreting the present findings.  

5.1.2 TwoStep cluster analysis for WHR and RFD-Ratio with the addition of body mass 

index 

Abundant experimental evidence demonstrates a correlation between an increase in body 

fat and disease-risk. Although the independence of WHR from BMI was previously discussed, 

the fact remains that those individuals with a higher BMI typically demonstrate comparatively 

more metabolic and cardiovascular diseases (3,25,34,35,37,39,56). Therefore, it was deemed 

appropriate to combine BMI with both the WHR and RFD-ratio data as part of the TwoStep 

analysis to examine possible contributory influences of standardized measures of adiposity on 

cluster distribution of female body types.  

 A TwoStep cluster analysis using both WHR and BMI as variables produced two good 

quality clusters. The cut-point between the two clusters fell at 0.73. A TwoStep cluster analysis 

using RFD-ratio and BMI also demonstrated two good quality clusters. A cut-point of 0.72 was 

found between these two clusters. Cut-points for both the WHR+BMI and RFD-ratio+BMI 

systems were determined by calculating the average of the highest ratio from one cluster and the 

lowest of the next. As was noted for the classification systems based on WHR and RFD-ratio 

alone, it is unknown if a comparatively more heterogeneous sample size with regard to body fat 

mass would increase the number of clusters identified in the female sample that was studied.  

However, upon closer inspection of the cluster analysis with respect to predictor 

importance, it was found that BMI vastly overwhelmed the WHR and RFD-ratio for body type 
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differentiation. The importance level of BMI was 1.00 for both classification systems. WHR had 

an importance level of 0.14 and RFD-ratio had an importance level of 0.53. In addition, when 

BMI was added to the TwoStep analysis for both WHR and RFD-ratio, the average silhouette 

(the confidence with which the cut-points separate the clusters) either remained the same or 

decreased. This indicates that the addition of BMI made the cluster association weaker, not 

stronger as anticipated. Because BMI was such an overwhelmingly strong predictor variable, its 

presence in the statistical analysis did not increase the strength of the cluster association. As 

such, the addition of BMI to either the WHR or RFD-ratio classification systems may not be as 

useful as anticipated in identifying female body types.  

5.1.3 Cluster comparisons within body type classification systems 

Once the body type clusters had been determined within each classification system, it was 

then of interest to investigate if and how certain descriptive characteristics varied between the 

clusters. This was done by comparing descriptive data such as body fat percentage (%), regional 

and total body fat mass (g), and aerobic physical activity level (min/week) between the three 

body type clusters that were determined separately using the two measurement systems. The 

intent of the analysis was to determine if significant differences in selected descriptive 

characteristics of the female cohort that was studied existed between body type clusters. In 

theory, such differences would allow health care providers to recognize that females with a 

certain body type may have clinically significant characteristics that require further testing (i.e. 

NWO individuals and MONW individuals). Between cluster differences can also help to identify 

what descriptive data are pertinent for separating subjects within a classification system, and 
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which are not. Descriptive data deemed influential in establishing disease risk can also be 

included in the assessment during a medical evaluation of women having a particular body type.  

5.1.3.1 Cluster comparisons using body fat percentage  A One-Way ANOVA indicated that 

for the WHR classification system, body fat percentage differed significantly between body type 

clusters. A Tukey post hoc test revealed that body fat percentage of subjects in Cluster 1 was 

significantly higher than that of subjects in Clusters 2 and 3. Body fat percentage did not differ 

significantly between Clusters 2 and 3. This indicates that Cluster 1 (i.e. the android cluster), 

was associated with a significantly higher overall body fat percentage (mean = 35.5%) than 

either the gynoid (mean = 26.4%) or hypergynoid (mean = 23.9%) clusters. 

 A One-Way ANOVA found significant differences in body fat percentages between 

clusters as determined by the RFD-ratio method. The Tukey post hoc test indicated that body fat 

percentage of subjects in Clusters 1 and 2 (android and gynoid, respectively) did not differ 

significantly. However, both clusters demonstrated significantly greater body fat percentage than 

Cluster 3 (hypergynoid). The android cluster had a mean of 29.5% fat, while the gynoid cluster 

had a mean of 26.8% fat, and the hypergynoid cluster had a mean of 22.0% fat. 

 It is important to note that body fat percentage was significantly higher for subjects in the 

android cluster than those in the hypergynoid cluster independent of the body type classification 

system that was employed. Body fat percentage also increased from the hypergynoid cluster to 

the android cluster within both the WHR and RFD-ratio systems. As the regional fat distribution 

changed from the hips to the waist, body fat percentage generally followed in the same pattern, 

albeit the change was not statistically significant. That is, the mean body fat percentage in 

Cluster 3 (23.9%) increased to 26.4% in Cluster 2, and reached 35.5% in Cluster 1 for the WHR 
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classification system. Body fat percentage increased from 22.0%, to 26.8%, to 29.5% in Clusters 

3, 2, and 1, respectively, when the RFD-ratio classification system was employed.  

In the present investigation, the observational trend for increased adiposity across female 

body type classifications was not statistically significant. Nevertheless, the trend suggests that 

body fat may tend to be deposited at a faster rate in the abdominal region as it begins to 

accumulate in healthy, young, Caucasian females. As mentioned in Section 2.1.2, this anatomical 

variation in fat accumulation is most likely due to differences in the number and sensitivity of β 

and α receptors found on the adipose cell surface specific to given body regions (34,58). The 

sample of females employed in the present study appeared to accumulate fat to a comparatively 

greater extent in the abdominal region. However, some studies have shown that abdominal fat is 

also lost faster through diet and exercise intervention than occurs for fat found in the femoral 

region (22,29). From a health care perspective, this anatomically differentiated reduction in fat 

mass consequent to a weight loss intervention is clinically important as abdominal fat is more 

strongly correlated with obesity-related diseases than femoral fat 

(11,20,21,24,25,30,35,37,57,59).  

 As noted above, the present findings suggested that body fat increased across female 

body types from hypergynoid, to gynoid, to android, regardless of whether the WHR or RFD-

ratio classification system was employed. However, in the present sample, body fat percentage 

was only moderately correlated to WHR or RFD-ratio (r = 0.491 and 0.553, respectively). Such a 

moderate correlation was also noted previously between visceral fat and WHR (9). The trend for 

body fat accumulation to increase across body types from hypergynoid to android is similar to 

that found with age, onset of menopause, and parity (10,32,36,38) (i.e. the regional fat 

distribution shifts from gynoid to android with an increase in these descriptive factors). 
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5.1.3.2 Cluster comparisons using regional and total body fat mass  Comparison of body fat 

percentage between clusters within each of the two separate body type classification systems 

demonstrated that absolute measures of adiposity changed systematically from cluster to cluster. 

However, between cluster differences in regional and total body fat mass may give a different 

perspective on the distinction between the three body types that were identified. One-Way 

ANOVAs were performed to determine if either regional or total fat mass differed between body 

type clusters determined separately using the WHR or RFD-ratio classification systems. The 

results showed that estimated values of abdominal fat mass, hip fat mass, and total fat mass were 

all significantly different between the clusters regardless of the classification system used.  

 In the present investigation, fat mass was estimated according to the equations developed 

by Ritchie and Davidson (48). Using the WHR classification system fat mass was distributed 

across body types as follows: the mean regional fat mass in the android cluster was 5526.02g for 

the abdominal area and 6601.79g for the hip area. The total fat mass was 12127.80g. The gynoid 

cluster had regional fat mass means of 3630.60g for the abdominal area, 4930.28g for the hip 

area, and a total fat mass of 8560.57g. The hypergynoid cluster had a regional fat mass mean of 

3053.85g for the abdominal area, 4564.96g for the hip area and a total fat mass of 7618.80g. The 

mean fat mass values for each anatomical area within the hypergynoid and gynoid body types 

were not significantly different from each other. However, all three estimated fat mass values 

were significantly greater for the android body type than the other two body type clusters.  

 For the RFD-ratio classification system, the android cluster was found to have a mean 

abdominal fat mass of 4527.67g, hip fat mass of 5529.32g, and total fat mass of 10056.98g. The 

gynoid cluster had abdominal, hip, and total fat mass means of 3627.71g, 5064.48g, and 

8692.19g, respectively.  The hypergynoid cluster had an abdominal fat mass mean of 2609.41g, a 
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hip fat mass mean of 4158.71g, and a total fat mass mean of 6768.12g. Fat mass values in each 

anatomical area for the android and gynoid clusters were not significantly different. The 

hypergynoid cluster had significantly less regional and total fat mass than was estimated for the 

other two body type clusters.  

In the present investigation, significant differences were found in estimated fat mass 

between body type clusters within both classification systems. These results indicate that young, 

healthy females tend to accumulate fat mass in the abdominal region to a greater extent than in 

the hip region. Specific to the subject sample studied, it appeared that females with a 

hypergynoid body type tended to have less fat mass then observed for the other two clusters, 

regardless of the anatomical area of measurement. A significant statistical difference in regional 

and total body fat mass was observed between the clusters regardless of the body type 

classification system that was employed. Initially, the TwoStep cluster analysis separated 

subjects into three distinct clusters based solely on WHR or RFD-ratio. It was recognized that if 

there is no impact on body type due to fat mass, each anatomical area of interest (abdomen, hips, 

or total) would have a similar mean fat mass between body types. However, significant 

differences in estimated fat mass values for a given anatomical area were observed between 

clusters (Table 15). This indicates that the amount of fat mass per anatomical area may influence 

body fat distribution. These findings generalize to both the WHR and RFD-ratio systems to 

classify female body type. 

Previous investigations have examined body fat distribution according to body type 

classification using measured or calculated fat mass as the comparative variable 

(27,28,29,41,42,43,49). However, some studies only used total body fat mass (28,42) as it was 

easier to determine. Other studies used more definitive methods to anatomically regionalize fat 
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mass measures to visceral, subcutaneous, and/or peripheral compartments (27,29,41,43,49). In 

those studies where gynoid and android obesity body types were compared, differences in total 

body fat mass between the body type groups were examined statistically (28,42). However, when 

regional body fat mass was determined through CT tomography or DXA, the measured value 

was typically used as a descriptive characteristic, rather than a variable that was compared 

between body type groups (27,29,41,43,49).  

Based on published literature, it appears that previous investigations have not compared 

regional body fat mass as a single variable across body types. Typically, when subjects are 

divided into body type groups, weight or BMI is also used to further delineate the groupings. For 

example, subjects are categorized by body type (lower body obese and upper body obese) then 

by BMI (lower body obese and upper body obese versus non-obese subjects). The current 

investigation initially clustered subjects solely on calculated fat distribution, regardless of weight 

or BMI. Follow-on analyses showed that the addition of BMI to the calculation did not improve 

the cluster quality. In this regard, the current study is unique in its comparison of regional fat 

mass between body type clusters independent of other descriptive characteristics, particularly in 

a young, healthy, Caucasian female subset. 

5.1.3.3 Cluster comparisons using physical activity level  Regardless of whether WHR or 

RFD-ratio was used as the system to classify female body types, aerobic physical activity level 

(min/week) did not differ significantly between the three body type clusters that were identified. 

Across the three clusters within both body type classification systems, aerobic physical activity 

participation ranged from 151.03 min/week to 259.40 min/week. The standard deviations almost 

equivalent to the cluster means. This lack of significant difference between body type clusters 

indicates that aerobic physical activity level does not affect cluster assignment. Though not 
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statistically significant, it is interesting to note that within both classification systems, the gynoid 

group (Cluster 2) had the lowest aerobic physical activity level of the three clusters. The lack of 

statistical significance between the clusters indicates that the amount of weekly aerobic physical 

activity may not influence the body fat distribution in the young Caucasian females that were 

studied. 

 The effect of aerobic physical activity level on body fat distribution in females has not 

been widely studied. The majority of studies investigating change in body fat distribution in 

relation to weight gain or loss have employed dietary caloric restriction as the intervention 

strategy (4,9,22,29,50). However, Tremblay et al. found that those individuals who performed 

vigorous aerobic physical activity on a regular basis had a lower WHR than those who did not 

(52). The present investigation did not take into account the aerobic physical activity intensity, 

only the amount of participation time. Although the findings were non-significant, the current 

study suggests that for both body type classification systems, subjects in the hypergynoid cluster 

exhibited comparatively greater minutes per week of aerobic physical activity. This observation 

is consistent with previous literature. 

 Despite the observation that weekly aerobic physical activity levels were not significantly 

different between body type clusters, the results from the current study can be helpful for weight 

management planning and health-fitness programming. The present findings indicated that the 

amount of aerobic physical activity performed throughout the week did not explain differences in 

body fat distribution according to body type clusters. Future research should focus on weight loss 

programs centered around other aerobic physical activity dimensions such as exercise intensity 

or mode. Such knowledge can help health-care and fitness professionals develop more robust and 
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individualized intervention plans, rather than simply focusing on one aspect of an exercise 

participation. 

5.2 SECONDARY FINDINGS: INTERCHANGEABILITY OF BODY TYPE 

CLASSIFICATION SYSTEMS 

A secondary objective of this investigation was to determine if the two body type 

classification systems identified clusters that were similar enough to be used interchangeably. 

One of the main goals for development of new body type classification systems was to make the 

process for determining female body type easy enough that it would be of use to the general 

population. It has already been established that the WHR as compared to the RFD-ratio system is 

the easier of the two to implement. This is because the RFD-ratio classification system uses 

equations that are complex and as such require time to calculate. Ultimately, this methodological 

limitation makes the RFD-ratio system impractical for large scale application. 

However, the RFD-ratio procedure should not be discounted as a viable body type 

classification system. Further study of the RFD-ratio system should be undertaken to determine 

if in fact it can predict obesity-related disease-risk to the level of other classification systems. A 

study performed by Ito et al. (27) indicated that the ratio of trunk fat mass divided by the leg fat 

mass predicted cardiovascular risk factors similarly or better than the WHR in a sample of 

Japanese women. Since it is plausible that the RFD-ratio is at least as good, if not better, than the 

WHR in predicting obesity-related disease risk factors in a young Caucasian female population, 

it is important to continue to investigate this method of body type classification. The major 

limitation of the RFD-ratio classification method is the complexity and time involved in 
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calculating the fat mass of each anatomical area, then finding the ratio of these values. It would 

be advantageous to determine if the RFD-ratio and WHR classification systems are similar 

enough to be used interchangeably. If such similarity is demonstrated, then the WHR body type 

classification system could be used. This application combines the ease-of-use of the WHR 

system with the comparative accuracy of the RFD-ratio system. 

The first step in exploring interchangeability was to compare the ratio for a given cluster 

between the two body type classification systems. As an example, the android cluster determined 

by the WHR system was compared to the android cluster determined by the RFD-ratio system 

using a One-Way ANOVA. This test verified whether the mean ratio of the subjects with a given 

body type cluster in one classification system differed significantly from the mean ratio in the 

corresponding cluster as determined by the other classification system. If the mean ratio of 

subjects did not differ, then a correlation and regression analysis was to be performed. Such a 

correlation analysis was intended to determine whether using the methodology for one body type 

classification system would accurately place a subject into the corresponding cluster formed by 

the other body type system. 

 However, the One-Way ANOVA demonstrated that the mean value for a given cluster in 

the WHR system and the mean value for a comparable RFD-ratio cluster differed significantly 

from each other. This indicated that the two body type classification systems are not 

interchangeable. This result was not unexpected, as measurement systems such as DXA (which 

the RFD-ratio equations are based on), MRI, or CT scans determine subcutaneous and visceral 

fat differently and more precisely than anthropometric measurement systems such as WHR, WC, 

or BMI. This discrepancy in classification assignment existed even though both types of systems 

used presently predict obesity-related diseases with equal power (8). In the present investigation 
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the ratios of subjects placed in any two corresponding body type clusters were significantly 

different. Never-the-less, a Pearson correlation analysis was calculated to determine the relation 

between the WHR and RFD-ratio clusters. The resulting correlation coefficient was statistically 

significant at r = 0.652. However, this coefficient demonstrated only a moderately-strong 

correlation between the two classification systems. This correlation coefficient only explained 

42% of the variance between the cluster ratios formed by the two classification systems. The 

findings further support the conclusion that the two body type classification systems examined 

presently are not interchangeable methodologies.  

5.3 CONCLUSIONS 

Two different anthropometric-based measurement systems were used to develop female 

body type classification continua. Among a sample of healthy, young, female Caucasians, three 

main body types appeared to form naturally, regardless of whether the classification system was 

based on WHR or RDR-ratio methodology. These clusters align well with previously established 

hypergynoid, gynoid, and android female body type groupings (4,32,53). Due to difficulty 

recruiting subjects with a high BMI and WHR, it is unknown if a fourth, hyperandroid, group 

would emerge as a body type cluster for this cohort. However, based on the few subjects that had 

a WHR greater than 0.8, it is very probable that as hypothesized, a hyperandroid cluster exists 

for female body types. With regard to the current female sample, of those subjects considered 

within the “normal weight” BMI category (18.5-24.9 kg·m-2), none had a WHR at or higher than 

0.8, and only two subjects had a WHR higher than the naturally formed cluster cut point of 0.78. 
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5.3.1 Body type classification systems developed on a baseline sample 

One drawback of this study is that the subject sample had narrow demographic 

characteristics. Only healthy Caucasian females, aged 18-29 years, who had never been pregnant 

or smoked, were allowed to participate in the study. This comparatively narrow range of a priori 

selected descriptive characteristics may be one of the reasons for the difficulty experienced in 

recruiting subjects with a high WHR. However, it is important to initially establish a body type 

classification system using a “baseline” population sample to help better determine if follow-on 

investigation should account for the effect of such factors as age, health, smoking, etc. on female 

body type.  

Had the body type classification systems included females, regardless of age, health, 

ethnicity, or parity status, the cluster cut-points, especially for the middle cluster, would likely be 

much farther apart. This is because these factors are correlated with an increase in abdominal fat 

(9,10,23,36,38,41). For example, if females who smoked had been included in the sample, the 

gynoid/android cut-point may have fallen at 0.82 in the WHR classification system instead of 

0.78. Thus, if a healthy-appearing female presents with a WHR of 0.80, they would fall in the 

gynoid cluster, and the WHR would not provide helpful clinical information to the health care 

professional. However, when a body type classification system is built on healthy females with 

no confounding factors (i.e. ethnicity, smoking habits, parity status, etc.), a female with a WHR 

of 0.8 may alert the health care provider to raise the level of evaluation as the gynoid/android cut 

point is 0.78. As both classification systems were built on a baseline population sample, any 

female presenting with a WHR or RFD-ratio above the gynoid/android cut-point may warrant 

further clinical attention and testing.  
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In this same context, multi-factor body type classification systems could be developed 

wherein the female body types identified presently are used as baseline continua. For the present 

investigation, the “baseline continua” were developed for a cohort of healthy, young, females 

who do not smoke and have not had children. In future investigations, demographic factors that 

may relate to body type classification for females could then be incorporated into the cluster 

analysis. Based on previous reports, such factors as ethnicity (23,41), tobacco smoking (9), 

and/or parity status (10,36,38) may affect female body type. Such descriptive research may 

refine the derived body type clusters. Their application in a clinical setting would be simple, 

providing comparatively more useful information than separate application of WHR, WC, or 

BMI measurements. This individualization of body type classification may not seem as 

necessary with overweight or obese individuals for whom the disease-risk is already known to be 

high. However, the classification systems could help to identify females, such as those MONW 

(31), who should undergo more extensive testing and receive appropriate preventative care 

where they otherwise would not. 

5.3.2 Body type classification based on WHR versus RFD-Ratio 

As noted in the Introduction, this investigation projected three main application goals. 

The first goal was to create a system that classified female body types based on natural 

clustering. This goal rejected the traditional classification methodology based on a priori defined 

body type groupings. The second goal was to develop a generalizable body type classification 

system that included normal weight, overweight, and obese subjects equally, not just the latter 

two types of individuals who had been studied previously. The final and most important goal was 

to develop a classification system that was simple enough to use in an everyday clinical and/or 
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health-fitness setting. It was reasoned that if the methodology was complicated or time-

consuming, it would be difficult to implement in day-to-day assessments.  

 With these application goals in mind, two body type classification systems were designed 

– one based on body circumference measurements (WHR), and one based on fat mass 

determined using prediction equations derived from DXA measurements (RFD-ratio). The 

second system also included several anthropometric measurements. However, these 

anthropometric measurements were used as part of the fat mass equations rather than employed 

independently to provide a ratio from which body type was directly determined. Both 

classification systems produced three naturally occurring female body type clusters – 

hypergynoid, gynoid, and android. However, an ANOVA and Pearson Correlation indicated that 

body type assignments to these clusters were not interchangeable across classification systems.  

 If these systems are not interchangeable, then which one is more accurate and practical 

for broad-based clinical and health-fitness application? As the present study was preliminary in 

design, it did not examine the subjects’ health status, focusing only on determining the separate 

body type clusters.  Based on ease of use, the WHR body type classification system is simpler 

and faster to use than the RFD-ratio system. However, it would be prudent to investigate which 

system better detects disease-risk before discarding RFD-ratio as a useful body type 

classification system. 

5.4 RECOMMENDATIONS 

The primary purpose of this study was to determine if body type classification systems 

could be created based on measures of either WHR or RFD-ratio. The research rationale 
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projected three key application goals with the intent of keeping the classification systems easy to 

use while still maintaining a high level of discrimination between body type clusters. First, the 

classification systems needed to be based on naturally occurring body type clusters. Second, the 

subject sample used presently was to be equally distributed between normal weight, overweight, 

and obese individuals. Third, the method of determining female body types was to be simple 

enough to be used on a day-to-day basis by health care and physical activity specialists. 

 The first application goal of the study was met through the use of a TwoStep cluster 

analysis. The TwoStep cluster analysis allowed the formation of good quality clusters without 

influence of a predetermined number of clusters or set ranges of the criterion variable. While this 

analysis works well for most sample sizes, it was not possible to be determine the smallest 

sample that could still provide a strong effect size. Thus, it is recommended that future studies 

use a comparatively larger population sample size than employed presently to increase the 

strength of the effect size. 

 The second goal of the investigation was to include normal-weight individuals in at least 

the same numbers as overweight or obese subjects (as determined by BMI). Of 73 subjects 

assessed, 71% were considered normal-weight, 18% were overweight and 4% were obese. While 

the study reached its goal of including at least 50% normal-weight subjects, the sample size for 

the three weight groups was still not equivalent. In order to determine the most accurate body 

type continuum regardless of classification system used, a priori determined BMI groups should 

contain equal numbers of subjects.  

Although the present findings determined that BMI should not be used in conjunction 

with the ratios to form the body type classification clusters, the inclusion of higher BMI subjects 

increases the likelihood of higher WHR and RFD-ratios. The lack of overweight and obese 
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individuals in the subject pool employed presently most likely is the reason a fourth cluster 

(hyperandroid) did not emerge from the analysis. Only two subjects exceeded the traditional 

0.80 WHR cut-point used to determine those individuals at a high disease-risk owing to excess 

body weight. As such, there were simply not enough subjects to determine if the hyperandroid 

cluster appeared in the female body type continuum. It is known that individuals with a WHR 

above the 0.80 cut-point do exist, but they are also more difficult to recruit for research studies. It 

is strongly recommended that future investigations use a population sample that consists of a 

higher percentage of females that fall into the overweight and/or obese categories. 

The third goal of the study was to develop female body type classification systems that 

could be easily used by the general population. The WHR body type classification system is very 

easy to use and simple to calculate. It is proposed that a majority of the general population is able 

to use a measuring tape to determine the circumference of the waist and the widest part of the 

hips. Thus, the two anthropometric measures necessary to compute the WHR can be performed 

independently by the individual themselves. The RFD-ratio measurements are also easy to 

understand and perform. However, the insertion of those measurements along with the BMI into 

a prediction equation is not easy to accomplish for a significant portion of the general population. 

The equations are too complex to memorize and their calculation may be too time consuming for 

clinical use. 

As mentioned above, the methodology of this study only permitted determining the 

natural formation of clusters within a body type classification system. Given the type of data that 

were collected, it was not possible to determine if either the WHR or RFD-ratio body type 

classification system was the better predictor of obesity-related disease risk in young women. It 

is recommended that the next research step be to gather health-related data (such as lipid levels, 
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blood pressure, insulin and glucose sensitivity, etc.) to compare across the body type clusters 

determined by both the WHR and RFD-ratio systems. Once these data are collected and 

analyzed, it would then be possible to compare the two classification systems and determine if 

one or both consistently predict if an individual had any disease-risk factors. It is hypothesized 

that either a WHR or RFD-ratio above the gynoid/android cut-point would indicate an increase 

in the risk of developing obesity-related diseases, regardless of BMI. If this holds true, early 

testing (i.e. pro-active) could be performed on these individuals (especially normal-weight 

individuals who would otherwise not be candidates for further evaluation) and preventative care 

could be given.  
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APPENDIX A 

PHYSICAL ACTIVITY QUESTIONNAIRE 
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ID # _______________ 

 

University of Pittsburgh 

Center for Exercise and Health-Fitness Research 

Physical Activity Questionnaire 

 

YES/NO 

1. Do you participate in weekly aerobic exercise?             ________ 

 A. If yes, how many days per week?   __________ 

 B. How many minutes per exercise session?  __________ 

  i. Total minutes per week?   __________ 

 C. What types of exercises? ____________________________ 

 

2. Do you participate in any college or professional athletics (i.e. NCAA, club, etc.)?    ________ 
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